
HP Fortran Programmer’s Reference

Second Edition

Product Number: B3909DB

HP Fortran Compiler for HP-UX

Document Number: B3908-90003

June 2001

Edition: Second

Document Number: B3908-90003
Remarks: Released June 2001.

Edition: First

Document Number: B3908-90002
Remarks: Released October 1998. Initial release.

Notice

 Copyright Hewlett-Packard Company 2001. All Rights Reserved.
Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance
or use of this material.

Itanium is a trademark of the Intel Corporation.

Parts of the Itanium-based compiler were generated by the iburg code-
generator generator, described at http://www.cs.princeton.edu/software/
iburg.

Table of Contents iii

Contents

Preface . xix
New in HP Fortran v2.5 .xx

Scope. xxi
Notational conventions . xxii

Command syntax . xxiii

Associated documents . xxiv

1 Introduction to HP Fortran . 1

HP Fortran features .2
Source format .2
Data types .2
Pointers .3
Arrays .3
Control constructs .3
Operators .4
Procedures. .4
Modules .5
I/O features .5
Intrinsics .6

2 Language elements . 7

Character set .8
Lexical tokens .9

Names. .9
Program structure .10

Statement labels .10
Statements .11

Source format of program file .13
Free source form .13
Fixed source form .16

INCLUDE line .19

3 Data types and data objects. 21

Intrinsic data types .22
Type declaration for intrinsic types. .24
Implicit typing .28
Constants .29

iv Table of Contents

Character substrings . 36
Character strings as automatic data objects . 37

Derived types . 39
Defining a derived type. 40
Sequence derived type . 41
Structure component . 41
Declaring a derived type-object . 43
Structure constructor . 43
Alignment of derived-type objects . 44
A derived-type example . 45

Pointers . 47
Pointer association status. 48

4 Arrays . 51

Array fundamentals . 52
Array declarations . 54

Explicit-shape arrays . 55
Assumed-shape arrays . 56
Deferred-shape arrays . 58
Assumed-size arrays . 61

Array sections . 63
Subscript triplet . 64
Vector subscripts . 65

Array-valued structure component references . 68

Array constructors . 71
Array expressions. 74

Array-valued functions . 76
Intrinsic functions. 76
User-defined functions . 76

Array inquiry intrinsics . 78

5 Expressions and assignment . 79

Expressions. 80
Operands . 80
Operators. 81
Special forms of expression . 89

Assignment . 95
Assignment statement . 95
Pointer assignment . 97
Masked array assignment . 99

6 Execution control . 103

Table of Contents v

Control constructs and statement blocks .104
CASE construct. .105
DO construct .107
IF construct .111

Flow control statements .112
CONTINUE statement .113
CYCLE statement .113
EXIT statement .114
Assigned GO TO statement .115
Computed GO TO statement .116
Unconditional GO TO statement .117
Arithmetic IF statement .117
Logical IF statement .118
PAUSE statement .118
STOP statement .119

7 Program units and procedures . 121

Terminology and concepts .122
Program units .122
Procedures .123
Scope .123
Association .124

Main program .125
External procedures .128

Procedure definition .128
Procedure reference .130
Returning from a procedure reference .132
Alternate entry points .133

Internal procedures .135
Statement functions .137

Arguments .139
Argument association. .139
Keyword option. .144
Optional arguments .145
Duplicated association .146
INTENT attribute .148
%VAL and %REF built-in functions .148

Procedure interface .151
Interface blocks. .152
Generic procedures. .154
Defined operators .155
Defined assignment .157

Modules .161

vi Table of Contents

Module program unit . 161
USE statement . 163
Program example . 165

Block data program unit . 169

8 I/O and file handling . 171

Records . 172
Formatted records . 172
Unformatted records . 172
End-of-file record. 172

Files. 173
External files . 173
Internal files . 174

Connecting a file to a unit . 175
Connecting to an external file . 175
Performing I/O on internal files . 176
Preconnected unit numbers . 176
Automatically opened unit numbers . 177

File access methods . 178
Sequential access . 178
Direct access . 185

Nonadvancing I/O. 187

I/O statements . 188
Syntax of I/O statements . 190

I/O specifiers . 190
I/O data list . 192

ASA carriage control . 197
Example programs . 198

Internal file . 198
Nonadvancing I/O . 199
File access . 202

9 I/O formatting . 205

FORMAT statement. 206

Format specification . 207
Edit descriptors . 208

Character string (’...’ or ”...”) edit descriptor 210
Newline ($) edit descriptor . 211
Slash (/) edit descriptor. 212
Colon (:) edit descriptor. 212
A and R (character) edit descriptors . 213
B (binary) edit descriptor . 216

Table of Contents vii

BN and BZ (blank) edit descriptors. .218
D, E, EN, ES, F, G, and Q (real) edit descriptors 219
H (Hollerith) edit descriptor .225
I (Integer) edit descriptor. .226
L (Logical) edit descriptor .228
O (Octal) edit descriptor. .229
P (scale factor) edit descriptor .231
Q (bytes remaining) edit descriptor. .233
S, SP, and SS (plus sign) edit descriptors .233
T, TL, TR, and X (tab) edit descriptors .234
Z (hexadecimal) edit descriptor .234

Embedded format specification. .237

Nested format specifications .238
Format specification and I/O data list .239

10 HP Fortran statements . 241

Attributes .242

Statements and attributes .244
ACCEPT (extension) .245

ALLOCATABLE (statement and attribute) .247
ALLOCATE .249

ASSIGN .252
AUTOMATIC (extension) .253

BACKSPACE. .254
BLOCK DATA .256

BUFFER IN (extension). .257
BUFFER OUT (extension) .259

BYTE (extension) .261
CALL .263

CASE .265
CHARACTER. .268

CLOSE .271
COMMON .273

COMPLEX .277
CONTAINS .280

CONTINUE .282
CYCLE .283

DATA .284

viii Table of Contents

DEALLOCATE . 288
DECODE (extension). 290

DIMENSION (statement and attribute) . 293
DO. 297

DOUBLE COMPLEX (extension) . 301
DOUBLE PRECISION . 303

ELSE . 305
ELSE IF . 306

ELSEWHERE . 307
ENCODE (extension). 308

END . 311
END (construct) . 313

END (structure definition, extension). 314
END INTERFACE . 315

END TYPE. 316
ENDFILE . 317

ENTRY . 319
EQUIVALENCE . 323

EXIT . 327
EXTERNAL (statement and attribute) . 328

FORMAT . 330
FUNCTION . 332

GO TO (assigned) . 334
GO TO (computed) . 335

GO TO (unconditional) . 336
IF (arithmetic) . 337

IF (block) . 338
IF (logical) . 339

IMPLICIT . 340
INCLUDE . 342

INQUIRE . 344
INTEGER . 355

INTENT (statement and attribute) . 358
INTERFACE . 361

INTRINSIC (statement and attribute) . 363
LOGICAL . 365

Table of Contents ix

MAP (extension) .368
MODULE .369

MODULE PROCEDURE .371
NAMELIST .373

NULLIFY .375
ON (extension). .376

OPEN .379
OPTIONAL (statement and attribute) .387

OPTIONS (extension). .390
PARAMETER (statement and attribute) .391

PAUSE .395
POINTER (Cray-style extension) .397

POINTER (statement and attribute) .400
PRINT .402

PRIVATE (statement and attribute) .404
PROGRAM .407

PUBLIC (statement and attribute) .408
READ .411

REAL .417
RECORD (extension) .420

RETURN .425
REWIND .426

SAVE (statement and attribute) .428
SELECT CASE .431

SEQUENCE .432
STATIC (statement, attribute, extension) .434

STOP .436
STRUCTURE (extension) .437

SUBROUTINE. .447
TARGET (statement and attribute) .449

TASK COMMON (extension) .452
TYPE (declaration) .454

TYPE (definition) .457
TYPE (I/O) (extension) .459

UNION (extension) .460
USE .461

x Table of Contents

VIRTUAL (extension) . 464
VOLATILE (extension) . 465

WHERE (statement and construct) . 466
WRITE . 470

11 Intrinsic procedures . 475

Basic terms and concepts. 476
Availability of intrinsics . 476
Subroutine and function intrinsics . 476
Generic and specific function names . 477
Classes of intrinsics . 477
Optimized intrinsic functions . 478

Nonstandard intrinsic procedures. 479
Data representation models. 480

Data representation model intrinsics . 480
The Bit Model . 481
The Integer Number System Model . 482
The Real Number System Model . 482

Functional categories of intrinsic procedures . 484
Intrinsic procedure specifications . 487

ABORT() . 488
ABS(A) . 488
ACHAR(I) . 488
ACOS(X) . 489
ACOSD(X) . 489
ACOSH(X) . 490
ADJUSTL(STRING) . 490
ADJUSTR(STRING) . 490
AIMAG(Z) . 491
AINT(A, KIND) . 491
ALL(MASK, DIM) . 492
ALLOCATED(ARRAY) . 493
AND(I, J) . 493
ANINT(A, KIND) . 494
ANY(MASK, DIM) . 495
ASIN(X) . 496
ASIND(X). 496
ASINH(X) . 497
ASSOCIATED(POINTER, TARGET) . 497
ATAN(X) . 498
ATAN2(Y, X) . 498
ATAN2D(Y, X) . 499
ATAND(X) . 499

Table of Contents xi

ATANH(X) .500
BADDRESS(X) .500
BIT_SIZE(I) .500
BTEST(I, POS) .501
CEILING(A) .501
CHAR(I, KIND) .502
CMPLX(X, Y, KIND). .502
CONJG(Z) .503
COS(X) .503
COSD(X) .504
COSH(X) .504
COUNT(MASK, DIM) .505
CSHIFT(ARRAY, SHIFT, DIM) .506
DATE(DATESTR). .507
DATE_AND_TIME(DATE, TIME, ZONE, VALUES) 507
DBLE(A) .509
DCMPLX(X,Y) .509
DFLOAT(A). .510
DIGITS(X). .510
DIM(X, Y) .511
DNUM(I) .511
DOT_PRODUCT(VECTOR_A, VECTOR_B) 511
DPROD(X, Y) .512
DREAL(A) .513
EOSHIFT(ARRAY, SHIFT, BOUNDARY, DIM) 513
EPSILON(X) .515
EXIT(STATUS). .515
EXP(X) .516
EXPONENT(X). .516
FLOOR(A) .517
FLUSH(LUNIT) .517
FNUM(UNIT) .517
FRACTION(X) .517
FREE(P) .518
FSET(UNIT, NEWFD, OLDFD) .518
FSTREAM(UNIT). .518
GETARG(N, STRING) .518
GETENV(VAR, VALUE) .519
GRAN() .519
HFIX(A). .519
HUGE(X). .519
IACHAR(C) .520
IADDR(X) .520
IAND(I, J) .521
IARGC(). .522

xii Table of Contents

IBCLR(I, POS). 522
IBITS(I, POS, LEN) . 523
IBSET(I, POS) . 523
ICHAR(C) . 524
IDATE(MONTH, DAY, YEAR) . 524
IDIM(X, Y) . 525
IEOR(I, J) . 525
IGETARG(N, STR, STRLEN). 526
IJINT(A) . 527
IMAG(A) . 527
INDEX(STRING, SUBSTRING, BACK) . 527
INT(A, KIND) . 528
INT1(A) . 529
INT2(A) . 529
INT4(A) . 529
INT8(A) . 530
INUM(I) . 530
IOMSG(N, MSG) . 530
IOR(I, J) . 530
IQINT(A) . 531
IRAND(). 532
IRANP(X). 532
ISHFT(I, SHIFT). 533
ISHFTC(I, SHIFT, SIZE) . 533
ISIGN(A, B) . 534
ISNAN(X) . 534
IXOR(I, J) . 535
IZEXT(A) . 536
JNUM(I) . 536
JZEXT(A). 536
KIND(X) . 537
KZEXT(A) . 537
LBOUND(ARRAY, DIM). 538
LEN(STRING). 539
LEN_TRIM(STRING) . 539
LGE(STRING_A, STRING_B) . 540
LGT(STRING_A, STRING_B) . 540
LLE(STRING_A, STRING_B) . 541
LLT(STRING_A, STRING_B). 542
LOC(X). 542
LOG(X). 543
LOG10(X). 543
LOGICAL(L, KIND) . 544
LSHFT(I, SHIFT) . 544
LSHIFT(I, SHIFT) . 544

Table of Contents xiii

MALLOC(SIZE) .544
MATMUL(MATRIX_A, MATRIX_B) .545
MAX(A1, A2, A3, ...) .546
MAXEXPONENT(X) .547
MAXLOC(ARRAY, MASK). .547
MAXVAL(ARRAY, DIM, MASK) .548
MCLOCK() .549
MERGE(TSOURCE, FSOURCE, MASK) .550
MIN(A1, A2, A3, ...) .550
MINEXPONENT(X) .551
MINLOC(ARRAY, MASK) .551
MINVAL(ARRAY, DIM, MASK) .553
MOD(A, P). .554
MODULO(A, P) .554
MVBITS(FROM, FROMPOS, LEN, TO, TOPOS).555
NEAREST(X, S) .556
NINT(A, KIND) .556
NOT(I) .557
OR(I, J) .557
PACK(ARRAY, MASK, VECTOR) .558
PRECISION(X) .559
PRESENT(A) .559
PRODUCT(ARRAY, DIM, MASK) .560
QEXT(A) .561
QFLOAT(A). .561
QNUM(I) .561
QPROD(X, Y) .562
RADIX(X) .562
RAN(ISEED). .562
RAND() .563
RANDOM_NUMBER(HARVEST). .563
RANDOM_SEED(SIZE, PUT, GET) .563
RANGE(X) .564
REAL(A, KIND) .565
REPEAT(STRING, NCOPIES) .566
RESHAPE(SOURCE, SHAPE, PAD, ORDER)566
RNUM(I) .567
RRSPACING(X) .567
RSHFT(I, SHIFT) .568
RSHIFT(I, SHIFT) .568
SCALE(X, I) .568
SCAN(STRING, SET, BACK). .568
SECNDS(X). .569
SELECTED_INT_KIND(R) .570
SELECTED_REAL_KIND(P, R) .570

xiv Table of Contents

SET_EXPONENT(X, I) . 571
SHAPE(SOURCE). 572
SIGN(A, B). 572
SIN(X) . 573
SIND(X) . 573
SINH(X) . 574
SIZE(ARRAY, DIM). 574
SIZEOF(A) . 575
SPACING(X) . 575
SPREAD(SOURCE, DIM, NCOPIES) . 575
SQRT(X). 576
SRAND(ISEED) . 577
SUM(ARRAY, DIM, MASK) . 577
SYSTEM(STR) . 578
SYSTEM_CLOCK(COUNT, COUNT_RATE, COUNT_MAX) 579
TAN(X) . 579
TAND(X) . 580
TANH(X) . 580
TIME(TIMESTR) . 581
TINY(X) . 581
TRANSFER(SOURCE, MOLD, SIZE) . 582
TRANSPOSE(MATRIX) . 583
TRIM(STRING). 583
UBOUND(ARRAY, DIM) . 583
UNPACK(VECTOR, MASK, FIELD). 584
VERIFY(STRING, SET, BACK) . 585
XOR(I, J) . 586
ZEXT(A). 586

12 BLAS and libU77 libraries . 587

Calling libU77 and BLAS routines . 588
Compile-line options . 588
Year-2000 compatibility . 589
Declaring library functions. 589
Declaring library routines as EXTERNAL . 590
Man pages . 591

libU77 routines . 592

BLAS routines . 600

Appendix A: I/O runtime error messages. 603

Runtime I/O errors . 604

Glossary . 613

Tables

 xv

Table 1. Fortran 90 character set .8

Table 2. Statement order in a program unit .11

Table 3. Statements allowed in scoping units .12

Table 4. Keywords allowing optional spacing .14

Table 5. Intrinsic data types .23

Table 6. Attributes in type declaration statement.26

Table 7. Escape characters .35

Table 8. Example of structure storage .44

Table 9. Array inquiry intrinsic functions .78

Table 10. Logical operators .85

Table 11. Operator precedence .87

Table 12. Examples of operator precedence .87

Table 13. Initialization and specification expressions94

Table 14. Conversion of variable=expression .95

Table 15. Specification statements .126

Table 16. Executable statements .127

Table 17. Input values for list-directed I/O .180

Table 18. Format of list-directed input data .180

Table 19. Format of list-directed output data .182

Table 20. Data transfer statements .188

Table 21. File positioning statements. .189

Table 22. Auxiliary statements. .189

Table 23. I/O statements and specifiers .191

xvi

Tables

Table 24. ASA carriage-control characters . 197

Table 25. Edit descriptors . 208

Table 26. Character string edit descriptor output examples 211

Table 27. Contents of character data fields on input 214

Table 28. Contents of character data fields on output 214

Table 29. A and R edit descriptors: input examples 215

Table 30. A and R Edit descriptors: output examples 215

Table 31. B Edit descriptor: input examples. 217

Table 32. B Edit descriptor: output examples. 217

Table 33. BN and BZ edit descriptors: input examples 218

Table 34. D, E, F, and G edit descriptors: input examples 220

Table 35. D and E edit descriptors: output examples. 221

Table 36. EN and ES edit descriptors: output examples 222

Table 37. F edit descriptor: output examples . 223

Table 38. G edit descriptor: output examples . 224

Table 39. H edit descriptor: output examples . 225

Table 40. I edit descriptor: input examples. 226

Table 41. I edit descriptor: output examples . 227

Table 42. L edit descriptor: input examples . 228

Table 43. L edit descriptor: output examples . 229

Table 44. O edit descriptor: input examples . 230

Table 45. O edit descriptor: output examples . 230

Table 46. P edit descriptor: input and output examples 232

Tables

 xvii

Table 47. Z edit descriptor: input examples .235

Table 48. Z edit descriptor: output examples .236

Table 49. Format control and nested format specifications.240

Table 50. Attribute compatibility .242

Table 51. Exceptions handled by the ON statement377

Table 52. Intrinsic functions and data representation models480

Table 53. Intrinsic procedures by category. .485

Table 54. Truth table for AND intrinsic .493

Table 55. Default values for the BOUNDARY argument514

Table 56. Truth table for IAND intrinsic .521

Table 57. Truth table for IEOR intrinsic .526

Table 58. Truth table for IOR intrinsic .531

Table 59. Truth table for IXOR intrinsic .535

Table 60. Truth table for NOT intrinsic .557

Table 61. Truth table for OR intrinsic .558

Table 62. libU77 naming conflicts. .591

Table 63. Categories of libU77 routines .592

Table 64. libU77 routines .593

Table 65. BLAS routines .600

Table 66. Runtime I/O errors .604

xviii

Tables

Preface xix

Preface

The HP Fortran Programmer’s Reference is a language reference for
programmers using HP Fortran V2.0 and higher. It describes the
features and requirements of the HP Fortran programming language.

The HP Fortran Programmer’s Reference is intended for use by
experienced Fortran programmers who are interested in writing or
porting HP Fortran applications. This manual includes information on
the parallel concepts and directives, as well as optimization of programs
that use them.

You need not be familiar with the HP parallel architecture, programming
models, or optimization concepts to understand the concepts introduced
in this book.

xx Preface

Preface

New in HP Fortran v2.5
HP Fortran v2.5 introduces a port of the HP-UX PA-RISC Fortran
product to the Itanium-based systems. It is source compatible between
PA-RISC and Itanium. However, Itanium Fortran will not run on PA-
RISC based systems.

The HP Fortran v2.5 features described in this reference are upgrades
from the previous version of HP Fortran v2.0, including:

• Full Fortran 95 compiler (based on International ANSI/ISO
standards) for Itanium-based and PA-RISC systems

• Native subset OpenMP implementation

• Object-oriented Fortran feature optimizations

• Support for math intrinsic inlining

Preface xxi

Preface

Scope
This guide covers programming methods for the HP Fortran compiler on
machines running:

• HP-UX 11.0 and higher (PA-RISC)

• HP-UX 11i Version 1.5 (Itanium)

HP Fortran supports an extensive shared-memory programming model.
HP-UX 11.0 and higher includes the required assembler, linker, and
libraries.

HP Fortran fully supports the international Fortran standards
informally called Fortran 90 and Fortran 95 as defined by these two
standards: ISO/IEC 1539:1991(E) and ISO/IEC 1539:1997(E).

xxii Preface

Preface

Notational conventions
This section discusses notational conventions used in this book.

bold monospace In command examples, bold monospace
identifies input that must be typed exactly as
shown.

monospace In paragraph text, monospace identifies
command names, system calls, and data
structures and types.

In command examples, monospace identifies
command output, including error messages.

italic In paragraph text, italic identifies titles of
documents.

In command syntax diagrams, italic identifies
variables that you must provide.

The following command example uses
brackets to indicate that the variable
output_file is optional:

command input_file [output_file]

Brackets ([]) In command examples, square brackets
designate optional entries.

Curly brackets ({}),
Pipe (|)

In command syntax diagrams, text
surrounded by curly brackets indicates a
choice. The choices available are shown inside
the curly brackets and separated by the pipe
sign (|).

The following command example indicates
that you can enter either a or b:

command {a | b}

Preface xxiii

Preface

References to man pages appear in the form mnpgname(1), where
“mnpgname” is the name of the man page and is followed by its section
number enclosed in parentheses. To view this man page, type:

% man 1 mnpgname

NOTE A Note highlights important supplemental information.

Command syntax
Consider this example:

COMMAND input_file [...] {a | b} [output_file]

• COMMAND must be typed as it appears.

• input_file indicates a file name that must be supplied by the user.

• The horizontal ellipsis in brackets indicates that additional, optional
input file names may be supplied.

• Either a or b must be supplied.

• [output_file] indicates an optional file name.

Horizontal ellipses
(...)

In command examples, horizontal ellipses
show repetition of the preceding items.

Vertical ellipses Vertical ellipses show that lines of code have
been left out of an example.

Keycap Keycap indicates the keyboard keys you must
press to execute the command example.

xxiv Preface

Preface

Associated documents
The following documents are listed as additional resources to help you
use the compilers and associated tools:

• HP aC++ Online Programmer’s Guide—Presents reference and
tutorial information on aC++. This manual is only available in html
format.

• HP C/HP-UX Programmer’s Guide—Contains detailed discussions of
selected C topics.

• HP C/HP-UX Reference Manual—Presents reference information on
the C programming language, as implemented by HP.

• CXperf Command Reference—Provides both introductory and
reference information for using the CXperf performance analyzer.

• CXperf User’s Guide—Provides information on how to use the CXperf
performance analysis tool.

• HP-UX Floating Point Guide—Describes how floating-point
arithmetic is implemented on HP 9000 Series 700/800 systems. It
discusses how floating-point behavior affects the programmer.
Additional useful includes that which assists the programmer in
writing or porting floating-point intensive programs.

• HP Fortran Programmer’s Guide—Provides extensive usage
information, including how to compile and link, migration tips and
tools, and how to call C and HP-UX routines for HP Fortran.

• HP MPI User’s Guide—Discusses message-passing programming
using HP’s Message-Passing Interface library.

• HP MLIB User’s Guide VECLIB and LAPACK—Provides usage
information about mathematical software and computational kernels
for engineering and scientific applications.

• HP-UX Linker and Libraries User's Guide—Describes how to develop
software on HP-UX using the HP compilers, assemblers, linker,
libraries, and object files.

Preface xxv

Preface

• Parallel Programming Guide for HP-UX Systems—Describes efficient
methods for shared-memory programming using the HP-UX suite of
compilers: HP Fortran, HP aC++ (ANSI C++), and HP C. This guide is
intended for use by experienced Fortran, C, and C++ programmers
and is intended for use on HP-UX 11.0 and higher.

• Programming with Threads on HP-UX—Discusses programming
with POSIX threads.

• Threadtime by Scott J. Norton and Mark D. DiPasquale—Provides
detailed guidelines on the basics of thread management, including
POSIX thread structure; thread management functions; and the
creation, termination and synchronization of threads.

• HP MLIB User’s Guide VECLIB and LAPACK—Provides usage
information about mathematical software and computational kernels
for engineering and scientific applications.

NOTE Many of these documents are accessible through the HP document World
Wide Web site at http://docs.hp.com. To locate a particular document at this
location, use this site’s search link to search for the document name or
subject matter.

xxvi Preface

Preface

1

1 Introduction to HP Fortran

This chapter summarizes standard features of HP Fortran that are not
found in FORTRAN 77. This includes the following topics:

• Source format

• Data types

• Pointers

• Arrays

• Control constructs

• Operators

• Procedures

• Modules

• I/O features

• Intrinsics

2 Chapter 1

Introduction to HP Fortran
HP Fortran features

HP Fortran features
The following summarizes features of HP Fortran that are not in
standard FORTRAN 77 and indicates where they are described in this
manual.

Source format
The fixed source form of FORTRAN 77 is extended by the addition of the
semicolon (;) statement separator and the exclamation point (!) trailing
comment.

HP Fortran also supports free format source code. The format used in a
source program file is normally indicated by the file suffix, but the
default format can be overridden by the +source compile-line option.

For information about source format, see “Source format of program file”
on page 13.

Data types
• Data declarations can include a kind type parameter—an integer

value that determines the range and precision of values for the
declared data object. The kind type parameter value is the number of
bytes representing an entity of that type, except for COMPLEX entities,
where the number of bytes required is double the kind type value.

In principle, multibyte character data for languages with large
character sets can be implemented in Fortran by means of a kind type
parameter for the CHARACTER data type. HP Fortran, however, uses
the Extended Unix Code (EUC) characters in file names, comments,
and string literals.

• Fortran supports derived types, which are composed of entities of the
intrinsic types (INTEGER, REAL, COMPLEX, LOGICAL, and CHARACTER)
or entities of previously defined derived types. You declare derived-
type objects in the same way that you declare intrinsic-type objects.

For information about intrinsic and derived types, see “Intrinsic data
types” on page 22 and “Derived types” on page 39.

Chapter 1 3

Introduction to HP Fortran
HP Fortran features

Pointers
Pointers are variables that contain addresses of other variables of the
same type. Pointers are declared in Fortran 90 with the POINTER
attribute. A pointer is an alias, and the variable (or allocated space) for
which it is an alias is its target. The pointer enables data to be accessed
and handled dynamically. For more information, see “Pointers” on
page 47.

Arrays
The Fortran 90 standard has defined these new array features:

• Array sections that permit operations for processing whole arrays or a
subset of array elements; expressions, functions, and assignments can
be array-valued. The WHERE construct and statement are used for
masked-array assignment.

• Array constructors—unnamed, rank-one arrays whose elements can
be constants or variables. You can use the RESHAPE intrinsic function
to transform the array constructor to an array value of higher rank.

• New types of array:

– Assumed-shape arrays are dummy arguments that take on the
size and shape of the corresponding actual arguments.

– Deferred-shape arrays become defined when they are associated
with target array objects.

– Automatic arrays have at least one bound that is not a constant.

Arrays are discussed in Chapter 4, “Arrays,” on page 51.

Control constructs
Control constructs

• The CASE construct selects and executes one or more associated
statements on the basis of a case selector value, which can be of type
INTEGER, CHARACTER or LOGICAL.

• Additional forms of the DO statement allow branching to the end of a
DO loop and branching out of a DO loop.

4 Chapter 1

Introduction to HP Fortran
HP Fortran features

These constructs are described in “Control constructs and statement
blocks” on page 104.

Operators
You can write your own procedures to define new operations for intrinsic
operators, including assignment, for use with operands of intrinsic data
types or derived data types; see “Defined operators” on page 155 and
“Defined assignment” on page 157.

Procedures
• Fortran 90 includes a feature called the procedure interface block,

which provides an explicit interface for external procedures. The
names and properties of the dummy arguments are then available to
the calling procedure, allowing the compiler to check that the dummy
and actual arguments match. For information about interface blocks,
see “Procedure interface” on page 151.

• Actual arguments can be omitted from the argument list or can be
arranged in a different order from the dummy arguments.

• You can implement user-defined operators or extend intrinsic
operators, including the assignment operator; see “Defined operators”
on page 155 and “Defined assignment” on page 157.

• Dummy arguments to procedures can be given an INTENT attribute
(IN, OUT or INOUT); see “INTENT attribute” on page 148.

• Subprograms can appear within a module subprogram, an external
subprogram, or a main program unit; see “Internal procedures” on
page 135.

• Recursive procedures (an extension in HP FORTRAN 77) are a
standard feature of Fortran 90. For more information, see “Recursive
reference” on page 131.

Chapter 1 5

Introduction to HP Fortran
HP Fortran features

Modules
A module is a program unit that can be used to specify data objects,
named constants, derived types, procedures, operators, and namelist
groups. Partial or complete access to these module entities is provided by
the USE statement. An entity may be declared PRIVATE to limit visibility
to the module itself.

One use of the module is to provide controlled access to global data,
making it a safer alternative to the COMMON block. The module also
provides a convenient way to encapsulate the specification of derived
types with their associated operations.

For information about modules, see “Modules” on page 161.

I/O features
• Nonadvancing I/O

After a record-based I/O operation in FORTRAN 77, the file pointer
moves to the start of the next record. In Fortran 90, you can use the
ADVANCE=NO specifier to position the file pointer after the characters
just read or written rather than at the start of the next record.
Nonadvancing I/O thus allows you to determine the length of a
variable-length record. See “Nonadvancing I/O” on page 187 for more
information.

• Namelist-directed I/O

Namelist-directed I/O—previously available as an extension to
FORTRAN 77—is a standard feature of Fortran 90. This feature
enables you to perform repeated I/O operations on a named group of
variables. See “Namelist-directed I/O” on page 183 for more
information.

6 Chapter 1

Introduction to HP Fortran
HP Fortran features

Intrinsics
Fortran 90 provides a large number of new intrinsic procedures for
manipulating arrays. Many of them are elemental, taking either scalar
or array arguments. In the latter case, the result is as if the procedure
were applied separately to each element of the array.

Other additions include transformational functions that operate on
arrays as a whole, and inquiry functions that return information about
the properties of the arguments rather than values computed from them.

Table 9 on page 78 lists the array-inquiry intrinsic functions. For
descriptions of all intrinsic procedures, see Chapter 11, “Intrinsic
procedures,” on page 475.

7

2 Language elements

This chapter describes the basic elements of an HP Fortran program.
This includes the following topics:

• Character set

• Lexical tokens

• Program structure

• Statement labels

• Statements

• Source format of program file

• INCLUDE line

8 Chapter 2

Language elements
Character set

Character set
The Fortran 90 standard character set, shown in Table 1, consists of
letters, digits, the underscore character, and special characters. The HP
Fortran character set consists of the Fortran 90 character set, plus:

• Control characters (Tab, Newline , and Carriage return). Carriage
return and Tab are usually treated as “white space” in a source
program. You can use them freely to make the source easier to read.

• The pound sign (#) character in column 1 to initiate a comment. This
is an HP extension that allows C preprocessor directives embedded in
source files to be treated as comments.

• Any other characters in the HP character set listed in Appendix B.
These characters may be used in character constants, character
string edit descriptors, comments, and I/O records.

Table 1 Fortran 90 character set

Lowercase alphabetic characters are equivalent to uppercase characters
except when they appear in character strings or Hollerith constants.

HP Fortran supports only the default character type,
CHARACTER(KIND=1), as described in “Type declaration for intrinsic
types” on page 24. Support is provided, however, for Extended Unix Code
(EUC) and Shift-JIS encoding.

Category Characters

Letters A to Z, a to z

Digits 0 to 9

Underscore _

Special characters blank (space)
: ! “ % & ; < > ? $
= + - * / () , . '

Chapter 2 9

Language elements
Lexical tokens

Lexical tokens
Lexical tokens consist of sequences of characters and are the building
blocks of a program. They denote names, operators, literal constants,
labels, keywords, delimiters, and may also include the following
characters and character combinations:

 , = => : :: ; %

Names
In Fortran 90, names denote entities such as variables, procedures,
derived types, named constants, and COMMON blocks. A name must
start with a letter but can consist of any combination of letters, digits,
and underscore (_) characters. As an extension in HP Fortran, the dollar
sign may also be used in a name, but not as the first character.

The Fortran 90 Standard allows a maximum length of 31 characters in a
name. In HP Fortran this limit is extended to 255 characters, and all are
significant—that is, two names that differ only in their 255th character
are treated as distinct. Names and keywords are case insensitive: for
example, Title$23_Name and TITLE$23_NAME are the same name.

The CASE, IF, and DO constructs can optionally be given names. The
construct name appears before the first statement of the construct,
followed by a colon (:). The same name must appear at the end of the
final statement of the construct. For more information about these
constructs, refer to “Control constructs and statement blocks” on
page 104.

10 Chapter 2

Language elements
Program structure

Program structure
A complete executable Fortran program contains one and only one main
program unit and may also contain one or more of the following other
types of program units:

• External function subprogram unit

• External subroutine subprogram unit

• Block data program unit

• Module program unit

Each program unit can be compiled separately. Execution of the program
starts in the main program. Control may be passed to other program
units.

The Fortran 90 program units, and the transfer of control between them,
are described in Chapter 7, “Program units and procedures,” on
page 121.

Statement labels
A Fortran 90 statement may have a preceding label, composed of one to
five digits. All statement labels in the same scoping unit must be unique;
leading zeroes are not significant. Although most statements can be
labeled, not all statements can be branched to.

The FORMAT statement must have a label. The INCLUDE line, which is
not a statement but a compiler directive, must not have a label.

Chapter 2 11

Language elements
Statements

Statements
All HP Fortran statements are fully described in alphabetical order in
Chapter 10, “HP Fortran Statements.”

The required order for statements in a standard Fortran 90 program unit
is illustrated in Table 2. Vertical lines separate statements that can be
interspersed, and horizontal lines separate statements that cannot be
interspersed. For example, the DATA statement can appear among
executable statements but may not be interspersed with CONTAIN
statements. Also, the USE statement, if present, must immediately follow
the program unit heading.

Table 2 Statement order in a program unit

PROGRAM, FUNCTION, SUBROUTINE, MODULE, or BLOCK DATA
statement

USE statement

IMPLICIT NONE statement

PARAMETER statement IMPLICIT statement

FORMAT Derived-type definitions,

and PARAMETER and Interface blocks,

ENTRY DATA statements Type declarations,

statements Statement functions, and

Specification statements

DATA statements Executable constructs

CONTAINS statement

Internal subprograms or module subprograms

END statement

12 Chapter 2

Language elements
Statements

Table 2 does not show where comments, the INCLUDE line, and directives
may appear. Comments may appear anywhere in a source file, including
after the END statement. The INCLUDE line may appear anywhere before
the END PROGRAM statement.

Table 3 identifies which statements may appear within a scoping unit; a
check mark indicates that a statement is allowed in the specified scoping
unit. For the purpose of this table, type declarations include the
PARAMETER statement, the IMPLICIT statement, type declaration
statements, derived-type definitions, and specification statements.

Table 3 Statements allowed in scoping units

Scoping units

Statements

M
a

in
 p

ro
g

ra
m

E
x

te
rn

a
l

p
ro

ce
d

u
re

M
o

d
u

le

M
o

d
u

le
p

ro
ce

d
u

re

In
te

rn
a

l
p

ro
ce

d
u

re

In
te

rf
a

ce
b

o
d

y

B
lo

ck
 d

a
ta

p
ro

g
ra

m
 u

n
it

CONTAINS ✓ ✓ ✓ ✓

DATA ✓ ✓ ✓ ✓ ✓ ✓

ENTRY ✓ ✓

Executable ✓ ✓ ✓ ✓

FORMAT ✓ ✓ ✓ ✓

Interface block ✓ ✓ ✓ ✓ ✓ ✓

Statement function ✓ ✓ ✓ ✓

Type declaration ✓ ✓ ✓ ✓ ✓ ✓ ✓

USE ✓ ✓ ✓ ✓ ✓ ✓ ✓

Chapter 2 13

Language elements
Source format of program file

Source format of program file
The HP Fortran compiler accepts source files in fixed form (the standard
source form for FORTRAN 77 programs) or free form. The following
sections describe both forms.

The compiler assumes that source files whose names end in the .f90
extension are in free source form and that files whose names end in the
.f or .F extension are in fixed form. You can override these assumptions
by compiling with the +source=free or +source=free option. See the
HP Fortran Programmer’s Guide for more information.

Although the two forms are quite different, you can format a Fortran 90
source file so that the compiler would accept it as either fixed or free
form. This would be necessary, for example, when preparing a source file
containing code that will be inserted through the INCLUDE line into a file
for which the form is not known. To format a source file to be acceptable
as either free or fixed source form, use the following rules:

• Put labels in columns1-5.

• Put statement bodies in columns 7-72.

• Begin comments with an exclamation mark in anycolumn except
column 6.

• Indicate all continuations with an ampersand character (&) in column
73 of the line to be continued and an ampersand character in column
6 of the continuing line.

• Do not insert blanks in tokens.

• Separate adjacent names and keywords with a space.

Free source form
In free source form, the source line is not divided into fields of predefined
width, as in the fixed form. This makes entering text at an interactive
terminal more convenient.

14 Chapter 2

Language elements
Source format of program file

Source lines
Freeform lines can contain from 0 to 132 characters. The
+extend_source option extends the line to column 254. This is
described in the HP Fortran Programmer’s Guide. Several statements
can appear on a single source line, separated by semicolons. A single
Fortran 90 statement can extend over more than one source line, as
described below in “Statement continuation” on page 15.

Multiple statements may appear on the same line, separated by a
semicolon (;).

Statement labels
Statement labels are not required to be in columns 1-5, but must be
separated from the statement by at least one space.

Spaces
Spaces are significant:

• They may not appear within a lexical token, such as a name or an
operator.

• In general, one or more spaces are required to separate adjacent
statement keywords, names, constants, or labels. Within the keyword
pairs listed in Table 4, however, the space is optional. The keyword
following END can be: BLOCK DATA, DO, FILE, FUNCTION, IF,
INTERFACE, MAP, MODULE, PROGRAM, SELECT, SUBROUTINE,
STRUCTURE, TYPE, UNION, or WHERE.

Table 4 Keywords allowing optional spacing

• Spaces are not required between a name and an operator because the
latter begins and ends with special symbols that cannot be part of a
name. Multiple spaces, unless in a character context, are equivalent
to a single space.

BLOCK DATA GO TO

DOUBLE PRECISION IN OUT

ELSE IF SELECT CASE

END keyword

Chapter 2 15

Language elements
Source format of program file

Consider the spaces (designated by b) in the following statement:

IFbb(TEXT.EQ.'bbbYES') ... ! Valid

The two spaces after IF are valid and are equivalent to one space. No
spaces are required before or after .EQ., because there is no ambiguity.
However, the three spaces in the character constant are significant.

In the next example

IF(MbARY.bGE.MIKE) ... ! Faulty in free source form

the spaces are invalid in free source form but valid in fixed source form.

Comments
An exclamation mark (!) indicates the beginning of a comment in free
source form, except where it appears in a character context. The
compiler considers the rest of the line following the exclamation mark as
part of the comment. Embedding a comment inside program text within
a single source line is not allowed, but it can follow program text on a
source line. A statement on a line with a trailing comment can be
continued on subsequent lines.

Statement continuation
A statement can be split over two or more source lines by appending an
ampersand character (&) to each source line except the last. The
ampersand must not be within a character constant.

A statement can occupy up to 40 source lines. As an extension,
HP Fortran increases this limit to 100 source lines. The END statement
cannot be split by means of a continuation line. Comments are not
statements and cannot be continued.

The text of the source statement in a continuation line is assumed to
resume from column 1. However, if the first nonblank symbol in the line
is an ampersand, the text resumes from the first column after the
ampersand.

Consider the following two statements:

INTEGER marks, total, difference,& ! work variables
 mean, average

INTEGER marks, total, difference, mean_& ! work variables
 &value, average

16 Chapter 2

Language elements
Source format of program file

The second statement declares the integer variable, mean_value. Any
spaces appearing in the variable name as a result of the continuation
would be invalid. This is the reason for the ampersand character in the
continuation line. (Alternatively, value could have been positioned at
column 1.) Using the ampersand character to split lexical tokens and
character constants across source lines is permitted, but not
recommended.

Fixed source form
Statements or parts of statements must be written between character
columns 7 and 72. Any text following column 72 is ignored. The
+[no]extend_source option extends the statement to column 254.
Columns 1-6 are reserved for special use.

NOTE Programs that depend on the compiler’s ignoring any characters after
column 72 will not compile correctly with the +extend_source option.

Multiple statements may appear on the same line, separated by a
semicolon (;).

Spaces
Spaces are not significant except within a character context. For
example, the two statements

RETURN
R E T U R N

are equivalent, but

c = "abc"
c = "a b c"

are not.

Source lines
There are three types of lines in fixed source form:

• Initial line

• Continuation line

• Comment line

Chapter 2 17

Language elements
Source format of program file

The following sections describe each type of source lines.

Initial line
An initial line has the following form:

• Columns 1 to 5 may contain a statement label.

• Column 6 contains a space or the digit zero.

• Columns 7 to 72 (optionally, to 254) contain the statement.

Continuation line
A continuation line has the following form:

• Columns 1 to 5 are blank.

• Column 6 contains any character other than zero or a space. One
practice is to number continuation lines consecutively from 1.

• Columns 7 to 72 (optionally, to 254) contain the continuation of a
statement.

The Standard specifies that a statement must not have more than 19
continuation lines. As an extension to the Standard, HP Fortran allows
as many as 99 continuation lines.

Comment line
Comment lines may be included in a program. Comment lines do not
affect compilation in any way, but usually include explanatory notes. The
letter C, or c , or an asterisk (*) in column 1 of a line, designates that
line as a comment line; the comment text is written in columns 1 to 72.
The compiler treats a line containing only blank characters in columns 1
to 72 as a comment line. In addition, a line is considered to be a comment
when there is an exclamation mark (!) in column 1 or in any column
except column 6.

The following are HP extensions to the comment:

• A line with D or d in column 1 is by default treated as a comment. The
+dlines option causes the compiler to treat such lines as statements
to be compiled. This extension to the comment—called debugging
lines—is useful for including PRINT statements that are to be
compiled during the debugging stage to display the program state.

18 Chapter 2

Language elements
Source format of program file

• A line with a pound sign (#) character in column 1 is treated as a
comment. This extension allows compilation of source files that have
been preprocessed with the C preprocessor (cpp).

• HP Fortran allows tab formatting. That is, a tab character may be
entered in the first column of a line to skip past the statement label
columns. If the character following the tab character is a digit, this
digit is assumed to be in column 6, the continuation indicator column.
Any other character following the tab character is assumed to be in
column 7, the start of a new statement. A tab character in any other
column of a line is treated as a space.

Chapter 2 19

Language elements
INCLUDE line

INCLUDE line
The INCLUDE line is a directive to the compiler, not a Fortran 90
statement. It causes the compiler to insert text into a program before
compilation. The inserted text is substituted for the INCLUDE line and
becomes part of the compilable source text. The format of an INCLUDE
line is:

INCLUDE char-literal-const

where char-literal-const is the name of a file containing the text to be
included. The character literal constant must not have a kind parameter
that is a named constant.

If char-literal-const is only a filename (in other words, no pathname is
specified), the compiler searches a user-specified path. You can use the -
Idir option to tell the compiler where to search for files to be included.

The INCLUDE line must appear on one line with no other text except
possibly a trailing comment. There must be no statement label. This
means, for example, that it is not possible to branch to it, and it cannot
be the action statement that is part of an IF statement. Putting a second
INCLUDE or another Fortran 90 statement on the same line using a
semicolon as a separator is not permitted. Continuing an INCLUDE line
using an ampersand is also not permitted.

The text of the included file must consist of complete Fortran 90
statements.

INCLUDE lines may also be nested. That is, a second INCLUDE line may
appear within the text to be included, and the text that it includes may
also have an INCLUDE line, and so on. HP Fortran has a maximum
INCLUDE line nesting level of 10. However, the text inclusion must not be
recursive at any level; for example, included text A must not include text
B if B includes text A.

The following are example INCLUDE lines:

INCLUDE ”MY_COMMON_BLOCKS”
INCLUDE ”/usr/include/machine_parameters.h”

20 Chapter 2

Language elements
INCLUDE line

In the next example, the INCLUDE line occurs in the executable part of a
program and supplies the code that uses the input value from the
preceding READ statement:

READ *, theta
INCLUDE ”FUNCTION_CALCULATION”

21

3 Data types and data objects

This chapter describes how data is represented and stored in HP Fortran
programs, and includes the following topics:

• Intrinsic data types

• Derived types

• Pointers

Arrays are described in Chapter 4, “Arrays,” on page 51. The RECORD and
STRUCTURE statements—HP Fortran extensions—are fully described in
Chapter 10, “HP Fortran Statements.” Intrinsics procedures are
described in Chapter 11, “Intrinsic procedures,” on page 475.

22 Chapter 3

Data types and data objects
Intrinsic data types

Intrinsic data types
The intrinsic data types are the data types predefined by the HP Fortran
language, in contrast with derived types, which are user-defined (see
“Derived types” on page 39). The intrinsic data types include numeric
types:

• Integer

• Real

• Complex

and nonnumeric types:

• Character

• Logical

Each type allows the specification of a kind parameter to select a data
representation for that type (see “Type declaration for intrinsic types” on
page 24 for the format of the kind parameter). If the kind parameter is
not specified, each type has a default data representation. Table 5
identifies the data representation for each type, including the default
case where a kind parameter is not specified. The types are listed by
keyword and applicable kind parameter. The table also includes the data
representation for the HP extensions, BYTE and DOUBLE COMPLEX.

As shown in Table 5, HP Fortran aligns data on natural boundaries.
Entities of the intrinsic data types are aligned in memory on byte
boundaries of 1, 2, 4, or 8, depending on their size. Array variables are
aligned on an address that is a multiple of the alignment required for the
scalar variable with the same type and kind parameters.

NOTE The ASCII character set uses only the values 0 to 127 (7 bits), but the
HP Fortran implementation allows use of all 8 bits of a character entity. The
processing of character sets requiring multibyte representation for each
character makes use of all 8 bits.

For additional information about data representation models, see “Data
representation models” on page 480.

Chapter 3 23

Data types and data objects
Intrinsic data types

Table 5 Intrinsic data types

Type Range of values Precision (in
decimal digits) Bytes Alignment

INTEGER(1) -128 to 127 Not applicable 1 1

INTEGER(2) -215 to 215-1 Not applicable 2 2

INTEGER(4)
(default)

-231 to 231-1 Not applicable 4 4

INTEGER(8) -263 to 263-1 Not applicable 8 8

REAL(4)
(default)

-3.402823x1038 to
-1.175495x10-38

0.0
+1.175495x10-38 to
+3.402823x1038

approximately 6 4 4

REAL(8) -1.797693x10+308 to
-2.225073x10-308

0.0
+2.225073x10-308 to
+1.797693x10+308

approximately 15 8 8

REAL(16) -1.189731x10+4932 to
-3.362103x10-4932

0.0
+3.362103x10-4932 to
+1.189731x10+4932

approximately 33 16 8

DOUBLE
PRECISION

Same as for REAL(8) approximately 15 8 8

COMPLEX(4) Same as for REAL(4) Same as for
REAL(4)

8 4

COMPLEX(8) Same as for REAL(8) Same as for
REAL(8)

16 8

24 Chapter 3

Data types and data objects
Intrinsic data types

Type declaration for intrinsic types
The following is the general form of a type declaration statement for the
intrinsic data types:

type-spec[[,attribute-spec] ... ::] entity-list

type-spec
is one of :

• INTEGER [kind-selector]

• REAL [kind-selector]

• DOUBLE PRECISION [kind-selector]

• CHARACTER [char-selector]

• LOGICAL [kind-selector]

• COMPLEX [kind-selector]

• DOUBLE COMPLEX

• BYTE

BYTE and DOUBLE COMPLEX are HP extensions. BYTE
is equivalent to INTEGER(KIND=1). DOUBLE
PRECISION is equivalent to REAL(KIND=8), and
DOUBLE COMPLEX is equivalent to COMPLEX(KIND=8),
except when +autodbl or +autodbl4 is used. Refer to
the HP Fortran Programmer’s Guide for information

DOUBLE
COMPLEX

Same as for REAL(8) Same as for
REAL(8)

16 8

CHARACTER(1)
(default)

ASCII character set Not applicable 1 1

LOGICAL(1) .TRUE. and .FALSE. Not applicable 1 1

LOGICAL(2) .TRUE. and .FALSE. Not applicable 2 2

LOGICAL(4)
(default)

.TRUE. and .FALSE. Not applicable 4 4

LOGICAL(8) .TRUE. and .FALSE. Not applicable 8 8

Chapter 3 25

Data types and data objects
Intrinsic data types

about using these options to increase sizes. Refer to
Chapter 10, “HP Fortran Statements” for information
about each type-spec.
If type-spec is present, it overrides the implicit-typing
rules; see “Implicit typing” on page 28.
As an HP extension to the Standard, type-spec can also
take the form:
type*length
where type is an intrinsic type excluding BYTE,
CHARACTER, DOUBLE COMPLEX, and DOUBLE
PRECISION; and length is the number of bytes of
storage required, as shown in Table 5. Alternatively,
*length may appear after the entity name. If the entity
is an array with an array specification following it,
*length may appear after the array specification. If
*length appears with the entity name, it overrides the
length specified by kind-selector.

kind-selector
is
([KIND=]scalar-int-init-expr)

scalar-int-init-expr
is a scalar integer initialization expression that must
evaluate to one of the kind parameters available (see
Table 5). For information about initialization
expressions, see “Initialization expressions” on page 90.

char-selector
specifies the length and kind of the character variable,
when type-spec is CHARACTER.

attribute-spec
is one or more of the attributes listed in Table 6. Some
attributes are incompatible with others; for
information about which attributes are compatible as
well as full descriptions of all the attributes, see
Chapter 10, “HP Fortran Statements.”

26 Chapter 3

Data types and data objects
Intrinsic data types

entity-list
is a comma-separated list of entity names of the form:

• var-name [(array-spec)] [*char-len] [=
init-expr]

• function-name[(array-spec)] [*char-len]

wherearray-spec is described in “Array declarations” on
page 54; char-len is described with the CHARACTER
statement in Chapter 10; and init-expr is described in
“Initialization expressions” on page 90. If you include
init-expr in entity, you must also include the double
colon (::) separator.
As an extension to the Standard, HP Fortran permits
the use of slashes to delimit init-expr. The double colon
separator, array constructors, and structure
constructors are not allowed in this form of
initialization. Arrays may be initialized by defining a
list of values that are sequence associated with the
elements of the array.

Table 6 Attributes in type declaration statement

Attribute Description

AUTOMATIC Makes procedure variables automatic (extension).

ALLOCATABLE Declares an array that can be allocated during execution.

DIMENSION(array-
spec)

Declares an array; see “Array declarations” on page 54. If entity-
list also includes an array-spec, it overrides the DIMENSION
attribute.

EXTERNAL Specifies a subprogram or block data located in another program
unit.

INTENT Defines the mode of use of a dummy argument.

INTRINSIC Allows a specific intrinsic name as an actual argument.

OPTIONAL Declares the presence of an actual argument as optional.

PARAMETER Defines named constants.

POINTER Declares the entity to be a pointer.

Chapter 3 27

Data types and data objects
Intrinsic data types

The following are examples of type declaration statements:

! Default, KIND=4, integers i j k.
INTEGER i, j, k

! Using optional separator.
INTEGER :: i,j,k

! An 8-byte initialized integer.
INTEGER(KIND=8) :: i=2**40

! 10 element array of 8-byte integers.
INTEGER(8),DIMENSION(10) :: i

! Using an array constructor for initialization.
REAL, DIMENSION(2,2):: a = RESHAPE((/1.,2.,3.,4./),(/2,2/))

! Initialized complex.
COMPLEX :: z=(1.0,2.0)

! SYNTAX ERROR - no :: present.
COMPLEX z=(1.0,2.0) ! ILLEGAL

! Initialization using the HP slash extension
INTEGER i/1/,j/2/
REAL a(2,2)/1.1,2.1,1.2,2.2/ ! a(i,j)=i.j

! One character (default length).
CHARACTER(KIND=1) :: c

! A 10-byte character string.
CHARACTER(LEN=10) :: c

! Length can be * for a named constant; title is a 13-byte
! character string
CHARACTER(*),PARAMETER :: title=’Ftn 90 MANUAL’

! next four declarations are all equivalent, but only the last
! is standard-conforming
REAL*8 r8(10)

PRIVATE Inhibits visibility outside a module.

PUBLIC Provides visibility outside a module.

SAVE Ensures the entity retains its value between calls of a procedure.

STATIC Ensures the entity retains its value between calls of a procedure
(extension).

TARGET Enables the entity to be the target of a pointer.

VOLATILE Provides for data sharing between asynchronous processes
(extension).

Attribute Description

28 Chapter 3

Data types and data objects
Intrinsic data types

REAL r8*8(10)
REAL r8(10)*8
REAL(8), DIMENSION(10) :: r8

! If the statement is in a subprogram, n must be known at entry;
! otherwise, it must be a constant.
CHARACTER(LEN=n) :: c
SUBROUTINE x(c)
 CHARACTER*(*) :: c
 ! c assumes the length of the actual argument.
END

! A single entity, of derived type node.
TYPE(node):: list_element

! Declaration and initialization of a user-defined variable
TYPE(coord) :: origin = coord(0.0,0.0)

Implicit typing
In Fortran 90, an entity may be used without having been declared in a
type declaration statement. The compiler determines the type of the
entity by applying implicit typing rules. The default implicit typing rules
are:

• Names with initial letter A to H or O to Z are of type real.

• Names with initial letter I to N are of type integer.

Because Fortran 90 is a case-insensitive language, the same rules apply
to both uppercase and lowercase letters.

The following statements

DIMENSION a(5), i(10)
k = 1
b = k

implicitly declare a and b as default reals and i and k as default
integers.

As described in Chapter 10, the IMPLICIT statement enables you to
change or cancel the default implicit typing rules. The IMPLICIT
statement takes effect for the scoping unit in which it appears, except
where overridden by explicit type statements.

You can override the implicit typing rules and enforce explicit typing—
that is, declare entities in type declaration statements—with the
IMPLICIT NONE statement. If this statement is included in a scoping
unit, all names in that unit must have their types explicitly declared. You
can also enforce explicit typing for all names within a source file by

Chapter 3 29

Data types and data objects
Intrinsic data types

compiling with the +implicit_none option. This option has the effect of
including an IMPLICIT NONE statement in every program unit within a
source file.

For a full description of the IMPLICIT and IMPLICIT NONE statements,
see Chapter 10, “HP Fortran Statements.” The +implicit_none option
is described in the HP Fortran Programmer’s Guide.

Constants
Constants can be either literal or named. A literal constant is a
sequence of characters that represents a value. A named constant is a
variable that has been initialized and has the PARAMETER attribute. This
section describes the formats of literal constants for each of the intrinsic
data types. For more information about named constants and the
PARAMETER statement and attribute, see Chapter 10.

Integer constants
The format of a signed integer literal constant is:

[sign] digit-string [_kind-parameter]

sign
is either + or -.

digit-string
takes the form:
digit[digit] ...

kind-parameter
is one of:

• digit-string

• the name of a scalar integer constant

The following are examples of integer constants:

-123
123_1
123_ILEN

In the last example, ILEN is a named integer constant used as a kind
parameter. It must have a value of 1, 2, 4, or 8.

30 Chapter 3

Data types and data objects
Intrinsic data types

BOZ constants
Fortran 90 allows DATA statements to include constants that are
formatted in binary, octal, or hexadecimal base. Such constants are
called BOZ constants.

A binary constant is:

leading-letter{'digit-string'|"digit-string"}

where leading-letter is the single character B, O, or Z, indicating binary,
octal, or hexadecimal base, respectively. digit-string must consist of
digits that can represent the base, namely:

• Binary: 0 and 1.

• Octal: 0 through 7.

• Hexadecimal: 0 through 9, and A through F. The letters can be
uppercase or lowercase.

In the following, the three DATA statements use BOZ constants to
initialize i, j, and k to the decimal value 74:

INTEGER i, j, k
DATA i/B'01001010'/
DATA j/O'112'/
DATA k/Z'4A'/

As an extension, HP Fortran allows octal constants with a trailing O, and
hexadecimal constants with a trailing X. The following DATA statements
initialize j and k to the decimal value 74:

DATA j/'112'O/
DATA k/'4A'X/

HP Fortran also allows the use of BOZ constants in contexts other than
the DATA statement; see “Typeless constants” on page 31.

Hollerith constants
Hollerith constants have the form:

lenHstring

where len is the number of characters in the constant and string contains
exactly len characters. The value of the constant is the value of the
pattern of bytes generated by the ASCII values of the characters.

Chapter 3 31

Data types and data objects
Intrinsic data types

As an extension, HP Fortran allows Hollerith constants to appear in the
same contexts as BOZ constants (see “Typeless constants” on page 31), as
well as wherever a character string is valid. If len is greater than the
number of characters in string, the constant is padded on the right with
space characters. If len is less than the number of characters in string,
the constant is truncated on the right.

If a Hollerith constant appears as an argument to the conversion
functions INT and LOGICAL, the kind parameter is KIND=1 if the length
of the constant is 1 byte, KIND=2 if the length is 2 bytes, KIND=4 if 3 0r 4
bytes, and KIND=8 if greater than 4.

Following are examples of Hollerith constants:

3HABC

5HABCbb !bb = two space characters, making the length equal to 5

Typeless constants
HP Fortran extends the uses of binary, octal, and hexadecimal constants
(BOZ) beyond those prescribed in the Fortran 90 Standard; see “BOZ
constants” on page 30. HP Fortran allows BOZ constants to be used as
typeless constants wherever an intrinsic literal constant of any
numeric or logical type is permitted.

If possible, the type attached to a typeless constant is derived from the
magnitude of the constant and the context in which it appears. When
used as one operand of a binary operator, it assumes the type of the other
operand. If it is used as the right-hand side of an assignment, the type of
the object on the left-hand side is assumed. When used to define the
value within a structure constructor, it assumes the type of the
corresponding component. If appearing in an array constructor, it
assumes the type of the first element of the constructor.

The following rules and restrictions also apply:

• If the context does not determine the type, a warning is issued and
the type attached to the constant is:

– INTEGER(4) if the constant occupies 1-4 bytes.

– INTEGER(8) if the constant occupies more than 4 bytes.

Leading zeros are considered significant in determining the size.

For example, Z'00000001' assumes INTEGER(4), and
Z'000000001' assumes INTEGER(8).

32 Chapter 3

Data types and data objects
Intrinsic data types

• The compiler truncates and issues a warning if more than 8 bytes are
required to represent a constant—for example,
Z'12345678123456781234'. The resulting truncated value differs
from that specified in the source code.

• When the size of the type determined by context does not match the
size of the actual constant, the constant is either extended with
zeroes on the left or truncated from the left as necessary.

• If a single constant is assigned to a complex entity, it is assumed to
represent the real part only and will assume the real type with the
same length as the complex entity.

• When the compiler attempts to resolve a generic procedure, a BOZ
constant in the argument list is considered to match a logical or
numeric dummy argument. An ambiguous reference is likely to occur.
See “Generic procedures” on page 154 for information about generic
procedures.

• Except for the intrinsic conversion procedures, a BOZ constant used
as an actual argument for an intrinsic procedure assumes the integer
type.

• The intrinsic functions INT, LOGICAL, REAL, DBLE, DREAL, CMPLX,
and DCMPLX are available to force a BOZ constant to a specific type. If
a BOZ constant is specified as an argument to these functions, its
assumed type is determined as follows:

– For functions INT and LOGICAL the assumed type will be
(respectively) INTEGER(KIND=4) and LOGICAL(KIND=4), if the
constant occupies 1 to 4 bytes; otherwise, the type is assumed to be
INTEGER(KIND=8) and LOGICAL(KIND=8).

– For the functions REAL, DBLE, DREAL, CMPLX, and DCMPLX an
argument of type REAL(KIND=4) is assumed if the constant
occupies 1 to 4 bytes, REAL(KIND=8) if it occupies 5 to 8 bytes,
and REAL(KIND=16) otherwise.

The following examples illustrate the extended use of BOZ constants:

! The value is 20 (constant treated as INTEGER(2) and
! truncated on the left).
10_2 + Z'1000A'

LOGICAL(2) :: lgl2
! Constant treated as LOGICAL(2), the type of the variable.
lgl2 = B'1'

Chapter 3 33

Data types and data objects
Intrinsic data types

! Constant treated as INTEGER(4); IABS is used.
ABS(Z'41')

! Constant treated as REAL(8) as it is more than 4 bytes.
REAL(Z'3FF0000000000000')

Real constants
A signed real literal constant is one of:

[sign]digit-string[[.[digit-string]]][exponent][_kind-parameter]

exponent
takes the form:
exponent-letter [sign] digit-string

exponent-letter

is the character E, D, or Q. Q is an HP Fortran
extension.

sign and digit-string

are explained in “Integer constants” on page 29.

If no kind parameter is present, or if the exponent letter E is present, the
default kind representation is used; see Table 5. If the exponent letter is
D, the kind parameter is 8, and if the exponent letter is Q, the kind
parameter is 16. If both an exponent and a kind parameter are specified,
the exponent letter must be E.

Following are examples of real constants:

3.4E-4 !0.00034

42.E2 !4200

1.234_8 !1.234 with approximately 15 digits precision

-2.53Q-300 !-2.53 x 10 to the -300th, with approximately 34
 ! digits precision

34 Chapter 3

Data types and data objects
Intrinsic data types

Complex constants
A complex literal constant has the form:

(real-part, imaginary-part)
real-part and imaginary-part

are each one of:

• signed-integer-literal-constant

• signed-real-literal-constant

The kind parameter of the complex value corresponds to the kind
parameter of the part with the larger storage requirement.

Following are examples of complex constants:

(1.0E2, 2.3E-2) !default complex value

(3.0_8,4.2_4) !complex value with KIND=8

Character constants
A character literal constant is one of:

[kind-parameter_]'character-string'

[kind-parameter_]"character-string"

The delimiting characters are not part of the constant. If you need to
place a single quote in a string delimited by single quotes, use two single
quotes; the same rule applies for double quotes.

Following are examples of character constants:

1_'A.N.Other'

'Bach''s Preludes' ! actual constant is: Bach's Preludes

"" ! a zero length constant

 For compatibility with C-language syntax, HP Fortran allows the
backslash character (\) as an escape character in character strings. You
must use the +escape option to enable this feature. When this option is
enabled, the compiler ignores the backslash character and either
substitutes an alternative value for the character following, or interprets
the character as a quoted value. For example:

'ISN\'T'

is a valid string when compiled with the +escape option.

Chapter 3 35

Data types and data objects
Intrinsic data types

The backslash is not counted in the length of the string. Also, if \&
appears at the end of a line when the +escape option is enabled, the
ampersand is not treated as a continuation indicator.

Table 7 lists recognized escape sequences.

Table 7 Escape characters

Logical constants
The format of a logical literal constant is:

{.TRUE.|.FALSE.}[_kind-parameter]

The following are examples of logical constants:

.TRUE.

.FALSE._2

In standard-conforming programs, a logical value of .TRUE. is
represented by 1, and .FALSE. is represented by 0. In nonstandard-
conforming programs involving arithmetic operators with logical
operands, a logical variable may be assigned a value other than 0 or 1. In
this case, any nonzero value is .TRUE., and only the value zero is
.FALSE.

Escape character Effect

\n Newline

\t Horizontal tab

\v Vertical tab

\b Backspace

\f Form feed

\0 Null

\' Apostrophe (does not terminate a string)

\” Double quote (does not terminate a string)

\\ \

\x x, where x is any character other than 1

36 Chapter 3

Data types and data objects
Intrinsic data types

Character substrings
A character substring is a contiguous subset of a character string. The
substring is defined by the character positions of its start and end within
the string, formatted as follows:

string ([starting-position] : [ending-position])

starting-position
is a scalar expression. If starting-position is omitted, a
value of 1 is assumed. The starting-position must be
greater than or equal to 1, unless the substring has
zero length.

ending-position
is a scalar integer expression. If ending-position is
omitted, the value of the length of the character string
is assumed.

The length of the substring is:

MAX (ending-position - starting-position + 1, 0)

The following example, substring.f90, illustrates the basic operation on a
substring.

substring.f90

PROGRAM main
 CHARACTER(LEN=15) :: city_name

 city_name = 'CopXXXagen'
 PRINT *, “The city's name is: “, city_name
 city_name(4:6) = 'enh' ! assign to a substring of city_name
 PRINT *, “The city's name is: “, city_name
END PROGRAM main

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 substring.f90
$ a.out
 The city’s name is: CopXXXagen
 The city’s name is: Copenhagen

For information about substring operations on an array of strings, see
“Array sections” on page 63.

Chapter 3 37

Data types and data objects
Intrinsic data types

Character strings as automatic data objects
An automatic data object can be either an automatic array (see “Explicit-
shape arrays” on page 55) or a character string that is local to a
subprogram and whose size is nonconstant. The size of a character
string is determined when the subprogram is called and can vary from
call to call.

An automatic character string must not be:

• A dummy argument

• Declared with the SAVE attribute

• Initialized in a type declaration statement or DATA statement

The following example, swap_names.f90, illustrates the use of automatic
character strings:

swap_names.f90

PROGRAM main
 ! actual arguments to pass to swap_names
 CHARACTER(6) :: n1 = "George", n2 = "Martha"
 CHARACTER(4) :: n3 = "pork", n4 = "salt"

 PRINT *, "Before: n1 = “, n1, " n2 = “, n2
 CALL swap_names(n1, n2)
 PRINT *, "After: n1 = “, n1, " n2 = “, n2

 PRINT *, "Before: n3 = “, n3, " n4 = “, n4
 CALL swap_names(n3, n4)
 PRINT *, "After: n3 = “, n3, " n4 = “, n4
END PROGRAM main

! swap the arguments - two character strings of the same length
SUBROUTINE swap_names (name1, name2)
 CHARACTER(*) :: name1, name2 ! the arguments
 ! declare another character string, temp, to be used in the
 ! exchange. temp is an automatic data object, its length
 ! can vary from call to call
 CHARACTER(LEN(name1)) :: temp

 ! the exchange
 temp = name1
 name1 = name2
 name2 = temp
END SUBROUTINE swap_names

38 Chapter 3

Data types and data objects
Intrinsic data types

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 swap_names.f90
$ a.out
 Before: n1 = George n2 = Martha
 After: n1 = Martha n2 = George
 Before: n3 = pork n4 = salt
 After: n3 = salt n4 = pork

Chapter 3 39

Data types and data objects
Derived types

Derived types
Derived types are user-defined types that are constructed from entities of
intrinsic data types (see “Intrinsic data types” on page 22) or entities of
previously defined derived types. For example, the following is a
definition of a derived type for manipulating coordinates consisting of
two real numbers:

TYPE coord
 REAL :: x,y
END TYPE coord

x and y are the components of the derived type coord.

The next statement declares two variables (a and b) of the derived type
coord:

TYPE(coord) :: a, b

The next statement copies the values of a to b, as in any assignment
statement:

a = b

The components of a and b are referenced as a%x, a%y, b%x, and b%y. By
using the defined operation facility of Fortran 90, it is possible to extend
the standard operators to work with derived types. For example, if the +
and = operators were re-defined to operate on derived type operands, the
following statement

a = a + b

would be equivalent to

a%x = a%x + b%x; a%y = a%y + b%y

The following sections describe:

• The syntax of defining a derived type

• Sequence types

• Structure constructors

• Referencing a structure component

• Alignment of derived type objects

The last section provides an example program that illustrates different
features of derived types.

40 Chapter 3

Data types and data objects
Derived types

Defining a derived type
The format for defining a derived type is:

TYPE [[, access-spec] ::] type-name

 [private-sequence-statement] ...

 comp-definition-statement

 [comp-definition-statement] ...

END TYPE [type-name]

access-spec
is one of:

• PRIVATE

• PUBLIC

access-spec is allowed only if the definition appears
within a module. For more information about modules,
see “Modules” on page 161. The PRIVATE and PUBLIC
attributes are described in Chapter 10.

type-name
is the name of the type being defined. type-name must
not conflict with the intrinsic type names.

private-sequence-statement
is a PRIVATE or SEQUENCE statement. The PRIVATE
statement is allowed only if the definition appears
within a module. For more information about the
SEQUENCE statement, see “Sequence derived type” on
page 41. Both statements are fully described in
Chapter 10.

comp-definition-statement
takes the form:
type-spec [[comp-attr-list]::]comp-decl
Notice that the syntax does not allow for initialization.

comp-attr-list

can only contain the DIMENSION and POINTER
attributes. A component array without the POINTER
attribute must have an explicit-shape specification
with constant bounds. If a component is of the same

Chapter 3 41

Data types and data objects
Derived types

derived type as the type being defined then the
component must have the POINTER attribute. Both
attributes are fully described in Chapter 10.

comp-declaration

takes the form:
comp-name [(array-spec)][*char-len]
where array-spec is an array specification, as described
in “Array declarations” on page 54; and char-len is used
when comp-name is of type character to specify its
length.

Sequence derived type
As shown in “Defining a derived type” on page 40, the SEQUENCE
statement may appear in the definition of a derived type. When storage
for a variable of derived type is allocated, the presence of the SEQUENCE
statement in the definition of the derived type causes the compiler to
arrange all components in a storage sequence that is the same as the
order in which they are defined. Such a derived type is called a
sequence derived type.

A sequence derived type may appear in a common block or in an
equivalence set. The Standard makes requirements about the type—
numeric or character—of the components in a sequence type. As an
extension, HP Fortran makes no restrictions on the types of the
components other than that the definition of the derived type must
include the SEQUENCE statement.

Structure component
A component of a derived-type object may be referenced and used like
any other variable—in an expression, on the lefthand side of an
assignment statement, or as procedure argument. It may be a scalar, an
array, or itself a derived-type object. The component name has the same
scope as the derived-type object in which it is declared.

42 Chapter 3

Data types and data objects
Derived types

To reference a structure component, use the form:

parent-name[%comp-name]...%comp-name

parent-name is a derived type. This part of a structure component
reference is the parent and is joined to comp-name by
the component selector operator (%). The comp-name
component to which the parent is joined on its
immediate right must be a component of parent-name.
If parent-name has the INTENT, TARGET, or
PARAMETER attribute, then the structure component
being referenced—the rightmost comp-name—also has
that attribute.

comp-name is the name of a component. If more than one comp-
name appears in a structure component reference, the
reference is to the rightmost comp-name. If more than
one comp-name appears in the reference, each one
(except the rightmost) must be a derived-type object,
and the comp-name to its immediate right must be one
of its declared components.

If parent-name and comp-name are arrays, each can be followed by a
section-subscript-list enclosed in parentheses. See “Array sections” on
page 63 for information about the syntax of section-subscript-list. The
Standard imposes certain restrictions on structure component references
that are array-valued, as described in “Array-valued structure
component references” on page 68.

If the definition of a derived type contains a component that is of the
same derived type, the component must have the POINTER attribute.
The following example defines the derived type node, which includes a
component (next) of the same derived type:

TYPE node ! for use in a singly linked list
 INTEGER :: value
 TYPE(node), POINTER :: next ! must have the POINTER attribute
END TYPE node

Chapter 3 43

Data types and data objects
Derived types

Declaring a derived type-object
To declare an object of derived type, use the TYPE statement, as follows:

TYPE (type-name) [[, attrib-list] ::] entity-list

where type-name, attrib-list, and entity-list all have the same meaning as
in a type declaration statement that is used to declare an object of an
intrinsic type; see “Type declaration for intrinsic types” on page 24.

Structure constructor
A structure constructor constructs a scalar value of derived type. The
value is constructed of a sequence of values for each component of the
type. The syntax of a structure constructor is:

type-name (expression-list)

type-name
is the name of the derived type. The name must have
been previously defined.

expression-list
is a comma-separated list of expressions that must
agree in number, order, and rank with the components
in type-name. For information about expressions, see
“Expressions” on page 80 and “Special forms of
expression” on page 89.

The following restrictions apply to the use of the structure constructor:

• If a component is of derived type, an embedded structure constructor
must be used to specify a value for the derived-type component.

• If a component is an array, an array constructor must appear in
expression-list that satisfies the array. For more information about
array constructors, see “Array constructors” on page 71.

• If a component is a pointer, the corresponding expression in
expression-list must evaluate to an allowable target.

44 Chapter 3

Data types and data objects
Derived types

Alignment of derived-type objects
Derived type objects have the same alignment as the component that has
the most restrictive alignment requirement. (This rule also applies to
records.) To ensure natural alignment, the compiler may add padding to
each element in an array of derived type.

The following illustrates the alignment of an array of derived type. The
definition of the derived type includes the SEQUENCE statement to ensure
the order in which components are laid out in memory is the same as in
the definition. The SEQUENCE statement has no effect on alignment:

! definition of a derived type
TYPE t
 SEQUENCE
 CHARACTER(LEN=7) :: c
 INTEGER(2) :: i2
 REAL(8) :: r8
 REAL(4) :: r4
END TYPE t

! declaration of an array variable of derived type
TYPE (t), DIMENSION(5) :: ta

Each element of t is allocated storage as shown in Table 8. The first
component of t starts at an address that is a multiple of 8. The four
trailing padding bytes are necessary to preserve the alignment of r8 in
each element of the array.

Table 8 Example of structure storage

Component Byte offset Length

c 0 7

i2 8 2

r8 16 8

r4 24 4

padding 28 4

Chapter 3 45

Data types and data objects
Derived types

A derived-type example
The example below, traffic.f90, illustrates how to define a derived type,
declare a variable of the type, specify a value for the variable using the
structure constructor, pass the variable as an argument to another
procedure, and reference a structure component. The derived type is
defined in a module so that it can be made accessible by use association.

For more information about modules and the USE statement, see
“Modules” on page 161. The MODULE and USE statements are also
described in Chapter 10.

traffic.f90

PROGRAM traffic
! Illustrates derived types: defines a derived type, declares an
! to array variable of derived type, uses a structure constructor
! assign to its components, and passes a component which is
! itself another derived type to a subprogram.

! Make the definition of the derived type called hours accessible
! to this program unit
USE hours_def

LOGICAL :: busy
INTEGER :: choice

! Define another derived type that uses hours as a component
TYPE hiway
 INTEGER :: rte_num
 TYPE(hours) :: busy_hours
END TYPE hiway

! Declare an array of derived-type structures.
TYPE(hiway), DIMENSION(3) :: route

! Use the structure constructor to specify values for each
! element of route
route(1) = hiway(128, hours(.TRUE., .FALSE.))
route(2) = hiway(93, hours(.FALSE., .TRUE.))
route(3) = hiway(97, hours(.FALSE., .FALSE.))

PRINT *, 'What road do you want to travel?'

PRINT *, '1. Rte. 128'
PRINT *, '2. Rte. 93'
PRINT *, '3. Rte 97'
READ *, choice

! Pass the busy_hours component of the selected route to
! the function busy.
IF (busy(route(choice)%busy_hours)) THEN
 PRINT *,’Heavy commute on rte.’, route(choice)%rte_num
ELSE

46 Chapter 3

Data types and data objects
Derived types

 PRINT *,’Easy commute on rte.’, route(choice)%rte_num
END IF

END PROGRAM traffic

LOGICAL FUNCTION busy(when)
! This function accepts a derived-type argument whose definition
! is defined in the module hours_def, made accessible here by
! use association. It returns .TRUE. or .FALSE., depending on
! on the value of the user-selected component of the argument.

! Make the definition of hours accessible to this function.
USE hours_def

TYPE(hours) :: when

INTEGER :: choice

PRINT *, 'When do you want to commute:'
PRINT *, '1. Morning'
PRINT *, '2. Evening'
READ *, choice

! Find out if the route is busy at that time of day.
IF (choice .EQ. 1) THEN
 busy = when%am
ELSE
 busy = when%pm
END IF

END FUNCTION busy

MODULE hours_def
 ! Define a derived type, which will be passed as an argument.
 TYPE hours
 LOGICAL :: am
 LOGICAL :: pm
 END TYPE hours
END MODULE hours_def

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 traffic.f90
$ a.out
 What road do you want to travel?
 1. Rte. 128
 2. Rte. 93
 3. Rte 97
1
 When do you want to commute:
 1. Morning
 2. Evening
1
 Heavy commute on rte. 128

Chapter 3 47

Data types and data objects
Pointers

Pointers
Pointers in Fortran 90 are more strongly typed than in other languages.
While it is true that the Fortran 90 pointer holds the address of another
variable (the target), it also holds additional information about the
target. For this reason, declaring a pointer requires not only the
POINTER attribute but also the type, kind parameter, and (if its target is
an array) rank of the target it can point to.

If a pointer is declared as an array with the POINTER attribute, it is an
array pointer. As explained in “Deferred-shape arrays” on page 58, the
declaration for an array pointer specifies its specifies rank but not the
bounds. Following is the declaration of the array pointer ptr:

REAL(KIND=16), POINTER, DIMENSION(:,:) :: ptr

To become assignable to an array pointer, a target must be declared with
the TARGET attribute and must have the same type, kind parameter, and
rank as the array pointer. Given the previous declaration of ptr, the
following are legal statements:

! declare a target with the same type, kind parameter, and
! rank as ptr
REAL(KIND=16), TARGET, DIMENSION(4,3) :: x
...
ptr => x ! assign x to ptr in a pointer assignment statement

Once the assignment statement executes, you can use either ptr or x to
access the same storage, effectively making ptr an alias of x.

You can also allocate storage to a pointer by means of the ALLOCATE
statement. To deallocate that storage after you are finished with it, use
the DEALLOCATE statement. Although allocating storage to a pointer
does not involve a target object, the declaration of the pointer must still
specify its type, kind parameter, and (if you want to allocate an array)
rank. The ALLOCATE statement specifies the bounds for the dimensions.
Here is an example of the ALLOCATE statement used to allocate storage
for ptr:

INTEGER :: j = 10, k = 20
...
! allocate storage for ptr
ALLOCATE (ptr(j,k))

ptr can now be referenced as though it were an array, using Fortran 90
array notation.

48 Chapter 3

Data types and data objects
Pointers

As an extension, HP Fortran provides the Cray-style pointer variables;
for more information, see Chapter 10. For information about aspects of
pointers, refer to:

• “Array pointers” on page 59 for information about allocating array
pointers.

• “Pointer assignment” on page 97 for information about associating a
pointer with a target by means of pointer assignment.

• Chapter 10, “HP Fortran Statements” for a full description of the
ALLOCATE and DEALLOCATE statements as well as the POINTER
and TARGET attributes.

The following section discusses pointer status and includes an example
program.

Pointer association status
Certain pointer operations can only be performed depending on the
status of the pointer. A pointer’s status is called its association status,
and it can take three forms:

Undefined The status of a pointer is undefined on entry to the
program unit in which the pointer is declared or if:

• Its target is never allocated.

• Its target was deallocated (except through the
pointer.

• The target goes out of scope, causing it to become
undefined.

If the association status is undefined, the pointer must
not be referenced or deallocated. It may be nullified,
assigned a target, or allocated storage with the
ALLOCATE statement.

Associated The status of a pointer is associated if it has been
allocated storage with the ALLOCATE statement or is
assigned a target. If the target is allocatable, it must be
currently allocated.

If the association status is associated, the pointer may
be referenced, deallocated, nullified, or pointer
assigned.

Chapter 3 49

Data types and data objects
Pointers

Disassociated The status of a pointer is disassociated if the pointer
has been nullified with the NULLIFY statement or
deallocated, either by means of the DEALLOCATE
statement or by being assigned to a disassociated
pointer.

If the association status is disassociated, the same
restrictions apply as for a status of undefined. That is,
the pointer must not be referenced or deallocated, but
it may be nullified, assigned a target, or allocated
storage with the ALLOCATE statement.

You can use the ASSOCIATED intrinsic function to determine the
association status of a pointer; see Chapter 11, “Intrinsic procedures,” on
page 475 for a description of this intrinsic.

A pointer example
The example below, ptr_sts.f90, illustrates different pointer operations,
including calls to the ASSOCIATED intrinsic to determine pointer status.

ptr_sts.f90

PROGRAM main
 ! This program performs simple pointer operations, including
 ! calls to the ASSOCIATED intrinsic to determine status.
 !
 ! Declare pointer as a deferred shape array with POINTER
 ! attribute.
 REAL, POINTER :: ptr(:)
 REAL, TARGET :: tgt(2) = (/ -2.2, -1.1 /) ! initialize target

 PRINT *, "Initial status of pointer:"
 call get_ptr_sts

 ptr => tgt ! pointer assignment
 PRINT *, "Status after pointer assignment:"
 call get_ptr_sts

 PRINT *, "Contents of target by reference to pointer:", ptr

 ! use an array constructor to assign to tgt by reference to ptr
 ptr = (/ 1.1, 2.2 /)

 PRINT *, “Contents of target after assignment to pointer:”, tgt

 NULLIFY(ptr)
 PRINT *, "Status after pointer is nullified:"
 call get_ptr_sts

 ALLOCATE(ptr(5)) ! allocate pointer

50 Chapter 3

Data types and data objects
Pointers

PRINT *, "Status after pointer is allocated:"
 ! To learn if pointer is allocated, call the ASSOCIATED
 ! intrinsic without the second argument
 IF (ASSOCIATED(ptr)) PRINT *, " Pointer is allocated."

 ptr = (/ 3.3, 4.4, 5.5, 6.6, 7.7 /) ! array assignment
 PRINT *, ‘Contents of array pointer:’, ptr

 DEALLOCATE(ptr)
 PRINT *, “Status after array pointer is deallocated:"
 IF (.NOT. ASSOCIATED(ptr)) PRINT *, " Pointer is deallocated."

CONTAINS
 ! Internal subroutine to test pointer’s association status.
 ! Pointers can be passed to a procedure only if its interface
 ! is explicit to the caller. Internal procedures have an
 ! explicit interface. If this were an external procedure,
 ! its interface would have to be declared in an interface
 ! block to be explicit.
 SUBROUTINE get_ptr_sts
 IF (ASSOCIATED(ptr, tgt)) THEN
 PRINT *, " Pointer is associated with target."
 ELSE
 PRINT *, " Pointer is disassociated from target."
 END IF
 END SUBROUTINE get_ptr_sts
END PROGRAM main

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 ptr_sts.f90
$ a.out
 Initial status of pointer:
 Pointer is disassociated from target.
 Status after pointer assignment:
 Pointer is associated with target.
 Contents of target by reference to pointer: -2.2 -1.1
 Contents of target after assignment to pointer: 1.1 2.2
 Status after pointer is nullified:
 Pointer is disassociated from target.
 Status after pointer is allocated:
 Pointer is allocated.
 Contents of array pointer: 3.3 4.4 5.5 6.6 7.7
 Status after array pointer is deallocated:
 Pointer is deallocated.

51

4 Arrays

This chapter describes arrays and the array-handling features of
HP Fortran. This includes the following topics:

• Array fundamentals

• Array declarations

• Array-valued structure component references

• Array constructors

• Array expressions

• Array-valued functions

• Array inquiry intrinsics

52 Chapter 4

Arrays
Array fundamentals

Array fundamentals
An array consists of a set of elements, each of which is a scalar and has
the same type and type parameter as declared for the array. Elements
are organized into dimensions. Fortran 90 allows arrays up to seven
dimensions. The number of dimensions in an array determines its rank.

Dimensions have an upper bound and a lower bound. The total
number of elements in a dimension—its extent—is calculated by the
formula:

upper-bound - lower-bound + 1

The size of an array is the product of its extents. If the extent of any
dimension is zero, the array contains no elements and is a zero-sized
array.

Elements within an array are referenced by subscripts—one for each
dimension. A subscript is a specification expression and is enclosed in
parentheses. As an extension, HP Fortran allows a subscript expression
of type real; the expression is converted to type integer after it has been
evaluated.

The shape of an array is determined by its rank and by the extents of
each dimension of the array. An array’s shape may be expressed as a
vector where each element is the extent of the corresponding dimension.
For example, given the declaration:

REAL, DIMENSION(10,2,5) :: x

the shape of x can be represented by the vector [10, 2, 5].

Two arrays are conformable if they have the same shape, although the
lower and upper bounds of the corresponding dimensions need not be the
same. A scalar is conformable with any array.

A whole array is an array referenced by its name only, as in the
following statements:

REAL, DIMENSION(10) :: x, y, z
PRINT *, x
x = y + z

Chapter 4 53

Arrays
Array fundamentals

The array element order used by HP Fortran for storing arrays is
column-major order; that is, the subscripts along the first dimension
vary most rapidly, and the subscripts along the last dimension vary most
slowly. For example, given the declaration:

INTEGER, DIMENSION(3,2) :: a

the order of the elements would be:

a(1,1)
a(2,1)
a(3,1)
a(1,2)
a(2,2)
a(3,2)

The following array declarations illustrate some of the concepts
presented in this section:

! The rank of a1 is 1 as it only has one dimension, the extent of
! the single dimension is 10, and the size of a1 is also 10.
! a1 has a shape represented by the vector [10].
REAL, DIMENSION(10) :: a1

! a2 is declared with two dimensions and consequently has a rank
! of 2, the extents of the dimensions are 2 and 4
! respectively,and the size of a2 is 8.
! The array’s shape can be represented by the vector [2, 4].
INTEGER, DIMENSION(2,4) :: a2

! a3 has a rank of 3, the extent of the first two dimensions is
! 5,and the extent of the third dimension is zero. The size of
! a3 is the product of all the extents and is therefore zero.
! The shape of a3 can be represented by the vector [5, 5, 0].
LOGICAL, DIMENSION(5,5,0) :: a3

! a and b are conformable, c and d are conformable. The shape of
! a and b can be represented by the vector [3, 4]. The shape of
! c and d can be represented by the vector [6, 8].
REAL, DIMENSION :: a(3,4), b(3,4), c(6,8), d(-2:3,10:17)

54 Chapter 4

Arrays
Array declarations

Array declarations
An array is a data object with the dimension attribute. Its rank—and
possibly the extents—are defined by an array specification. The array
specification is enclosed in parentheses and can be attached either to the
DIMENSION attribute, as in:

INTEGER, DIMENSION(17) :: a, b

or to the array name, as in:

REAL :: y(3,25)

If the array specification is attached both to the DIMENSION attribute
and to the array name in the same declaration statement, the
specification attached to the name takes precedence. In the following
example:

INTEGER, DIMENSION(4,7) :: a, b, c(15)

a and b are declared as two-dimensional arrays, but c is declared as a
one-dimensional array.

An array specification can declare an array as one of the following:

• Explicit-shape array

• Assumed-shape array

• Deferred-shape array

• Assumed-size array

The following sections describe these types and the form of the array
specification for each type. For information about initializing arrays with
the array constructor, see “Array constructors” on page 71.

Chapter 4 55

Arrays
Array declarations

Explicit-shape arrays
An explicit-shape array has explicitly declared bounds for each
dimension; the bounds are neither taken from an actual array argument
(“assumed”) nor otherwise specified prior to use (“deferred”). Each
dimension of an explicit-shape array has the following form:

[lower-bound :] upper-bound

where lower-bound and upper-bound are specification expressions and
may be positive, negative, or zero. The default for lower-bound is 1.

For a given dimension, the values of lower-bound and upper-bound define
the range of the array in that dimension. Usually, lower-bound is less
than upper-bound; if lower-bound is the same as upper-bound, then the
dimension contains only one element; if it is greater, then the dimension
contains no elements, the extent of the dimension is zero, and the array
is zero-sized.

The simplest form is represented by an array declaration in which the
name of the array is not a dummy argument and all bounds are constant
expressions, as in the following example:

INTEGER :: a(100,4,5)

This form of array may have the SAVE attribute and may be declared in
any program unit.

Other forms of the explicit-shape array include:

• An automatic array: An array that is declared in a subprogram but
is not a dummy argument and has at least one nonconstant bound.
Automatic arrays may be declared in a subroutine or function, but
may not have the SAVE attribute nor be initialized.

Character strings can also be declared as automatic data objects; see
“Character strings as automatic data objects” on page 37.

• A dummy array: An array that is identified by its appearance in a
dummy argument list; its bounds may be constants or expressions.
Dummy arrays may only be declared in a subroutine or function.

• An adjustable array: A particular form of a dummy array. Its name
is specified in a dummy argument list, and at least one of its bounds
is a nonconstant specification expression.

56 Chapter 4

Arrays
Array declarations

Explicit-shape arrays may also be used as function results, as described
in “Array-valued functions” on page 76 and in “Array dummy argument”
on page 140.

The following code segment illustrates different forms of explicit-shape
arrays:

SUBROUTINE sort(list1,list2,m,n)
! examples of arrays with explicit shape
INTEGER :: m,n
INTEGER :: cnt1(2:99)
! a rank-one array, having an explicit shape represented by
! the vector [98]
REAL :: list1(100), list2(0:m-1,-m:n)
! two dummy arrays with explicit shape: list1 is a rank-one
! array with an extent of 100; list2 is a rank-two array with an
! extent of m * (m+n+1). list2 is also an adjustable array.

REAL :: work(100,n)
! work is an automatic array; it does not appear in the dummy
! argument list and at least one of its bounds is not constant

INTEGER, PARAMETER :: buffsize = 0
REAL :: buffer (1: buffsize)
! buffer has explicit shape, but no elements and is zero-sized
 .
 .
 .
END SUBROUTINE sort

Assumed-shape arrays
An assumed-shape array is a dummy argument that assumes the
shape of the corresponding actual argument. It must not have the
POINTER attribute. Each dimension of an assumed-shape array has the
form:

[lower-bound] :

where lower-bound is a specification expression. The default for lower-
bound is 1.

The actual argument and the corresponding dummy argument may have
different bounds for each dimension. An assumed-shape array subscript
may extend from the specified lower-bound to an upper bound that is
equal to lower-bound plus the extent in that dimension of the actual
argument minus one.

Chapter 4 57

Arrays
Array declarations

The following code segment illustrates different declarations of assumed-
shape arrays.

SUBROUTINE initialize (a,b,c,n)
! examples of assumed-shape arrays
INTEGER :: n

INTEGER :: a(:)
! the array a is a rank-one assumed-shape array, it takes its
! shape and size from the corresponding actual argument; its
! lower bound is 1 regardless of the lower bound defined for
! the actual argument

COMPLEX :: b(ABS(n):)
! a rank-one assumed-shape array, the lower bound is ABS(n) and
! the upper bound will be the lower bound plus the extent of
! the corresponding actual argument minus one

REAL, DIMENSION(:,:,:,:,:) :: c
! an assumed-shape array with 5 dimensions; the lower bound for
! each dimension is 1
 .
 .
 .
END SUBROUTINE initialize

If a procedure has an argument that is an assumed-shape array, its
interface must be explicit within the calling program unit. A procedure’s
interface is explicit if it is an internal procedure within the caller
procedure or if the interface is declared in an interface block within the
caller.

For example, to call the external subroutine initialize in the previous
example, its interface must appear in an interface block, as in the
following:

PROGRAM main
INTEGER :: parts(0:100)
COMPLEX :: coeffs(100)
REAL :: omega(-2:+3, -1:+3, 0:3, 1:3, 2:3)
INTERFACE
 SUBROUTINE initialize (a,b,c,n)
 INTEGER :: n
 INTEGER :: a(:)
 COMPLEX :: b(ABS(n):)
 REAL, DIMENSION(:,:,:,:,:) :: c
 END SUBROUTINE initialize
END INTERFACE
CALL initialize(parts,coeffs,omega,lbound(omega,1))
 .
 .
 .
END PROGRAM main

58 Chapter 4

Arrays
Array declarations

SUBROUTINE initialize (a,b,c,n)
 INTEGER :: n
 INTEGER :: a(:)
 COMPLEX :: b(ABS(n):)
 REAL, DIMENSION(:,:,:,:,:) :: c
.
.
.
END SUBROUTINE initialize

For more information about:

• Internal procedures, see “Internal procedures” on page 135

• Interface blocks, see “Procedure interface” on page 151

• Arrays used as dummy arguments, see “Array dummy argument” on
page 140

Deferred-shape arrays
A deferred-shape array has either the POINTER attribute or the
ALLOCATABLE attribute. Its shape is not specified until the array is
pointer assigned or allocated. Although a deferred-shape array can have
the same form as an assumed-shape array, the two are different. The
assumed-shape array is a dummy argument and must not have the
POINTER attribute.

The array specification for a deferred-shape array has the form:

: [, :] ...

The specification for a deferred-shape array defines its rank but not the
bounds. The bounds are defined either when the array is allocated or
when an array pointer becomes associated with a target.

Array pointers and allocatable arrays are described in the following
sections.

Chapter 4 59

Arrays
Array declarations

Array pointers
An array pointer is a deferred-shape array with the POINTER attribute.
Its bounds and shape are defined only when the array is associated with
a target in a pointer assignment statement or in an ALLOCATE
statement. An array pointer must not be referenced until it is associated.

Following are example declarations of array pointers:

! p1 is declared as a pointer to a rank-one
! array of type real; p1 is not associated with any target
REAL, POINTER, DIMENSION(:) :: p1

! p2 is a pointer to an integer array of rank-two;
! it must be associated with a target before it can be referenced
INTEGER, POINTER :: p2(:,:)

! err is a pointer to a rank-3 array of type err_type
TYPE err_type
 INTEGER :: class
 REAL :: code
END TYPE err_type
TYPE(err_type), POINTER, DIMENSION(:,:,:) :: err

! The next statement is ILLEGAL: pointers cannot have an
! explicit shape.
INTEGER, POINTER :: p3(n)

For information about associating an array pointer with a target, see
“Pointers” on page 47. For information about the POINTER attribute and
ALLOCATE statement, see Chapter 10, “HP Fortran Statements.”

Allocatable arrays
An allocatable array is a deferred-shape array with the ALLOCATABLE
attribute. Its bounds and shape are defined when it is allocated with the
ALLOCATE statement. Once allocated, the allocatable array may be used
in any context in which any other array may appear. An allocatable array
can also be deallocated with the DEALLOCATE statement.

An allocatable array has an allocation status that can be tested with the
ALLOCATED intrinsic inquiry function. Its status is unallocated when the
array is first declared and after it is deallocated in a DEALLOCATE
statement. After the execution of the ALLOCATE statement, its status is
allocated. An allocatable array with the unallocated status may not be
referenced except as an argument to the ALLOCATED intrinsic or in an
ALLOCATE statement. If it has the allocated status, it may not be
referenced in the ALLOCATE statement. It is an error to allocate an
allocatable array that is already allocated, or to deallocate an allocatable
array either before it is allocated or after it is deallocated.

60 Chapter 4

Arrays
Array declarations

In HP Fortran, an allocatable array that is unallocated, is local to a
procedure, and does not have the SAVE attribute. It is automatically
deallocated when the procedure exits.

The following example, alloc_array.f90, calls a subroutine that allocates
and deallocates an allocatable array and uses the ALLOCATED intrinsic
function to test its allocation status:

alloc_array.f90

PROGRAM main
! driver program for calling a subroutine that allocates and
! deallocates an allocatable array
 CALL test_alloc_array
END PROGRAM main

SUBROUTINE test_alloc_array
! demonstrate how to allocate and deallocate an allocatable array

 ! the array matrix is rank-2 allocatable array, with no
 ! shape or storage
 REAL, ALLOCATABLE, DIMENSION(:,:) :: matrix

 INTEGER :: n
 LOGICAL :: sts

 ! sts is assigned the value .FALSE. as the array is not yet
 ! allocated
 sts = ALLOCATED(matrix)
 PRINT *, 'Initial status of matrix: ', sts

 PRINT *, 'Enter an integer (rank of array to be allocated):'
 READ *,n

 ! dynamically create the array matrix; after allocation, array
 ! will have the shape [n, n]
 ALLOCATE(matrix(n,n))

 ! test allocation by assigning to array
 matrix(n,n) = 9.1
 PRINT *, 'matrix(',n,',',n,') = ', matrix(n,n)
 ! sts is assigned the value .TRUE. as the allocatable array
 ! does exist and its allocation status is therefore allocated
 sts = ALLOCATED(matrix)
 PRINT *, 'Status of matrix after ALLOCATE: ', sts

 DEALLOCATE (matrix)

 ! sts is assigned the value .FALSE. as the
 ! allocation status of a deallocated array
 sts = ALLOCATED (matrix)
 PRINT *, 'Status of matrix after DEALLOCATE: ', sts
END SUBROUTINE test_alloc_array

Chapter 4 61

Arrays
Array declarations

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 alloc_array.f90
$ a.out
 Initial status of matrix: F
 Enter an integer (rank of array to be allocated):
4
 matrix(4 , 4) = 9.1
 Status of matrix after ALLOCATE: T
 Status of matrix after DEALLOCATE: F

For information about the ALLOCATABLE, ALLOCATE, DEALLOCATE
statements, see Chapter 10, “HP Fortran Statements.” See also
“ALLOCATED(ARRAY)” on page 493.

Assumed-size arrays
An assumed-size array is a dummy argument whose size is taken from
the associated actual argument. Its declaration specifies the rank and
the extents for each dimension except the last. The extent of the last
dimension is represented by an asterisk (*), as in the following:

INTEGER :: a(2,5,*)

All dummy array arguments and their corresponding actual arguments
share the same initial element and are storage associated. In the case of
explicit-shape and assumed-size arrays, the actual and dummy array
need not have the same shape or even the same rank. The size of the
dummy array, however, must not exceed the size of the actual argument.
Therefore, a subscript in the last dimension of an assumed-size array
may extend from the lower bound to a value that does not cause the
reference to go beyond the storage associated with the actual argument.

Because the last dimension of an assumed-size array has no upper
bound, the dimension has no extent and the array consequently has no
shape. The name of an assumed-size array therefore cannot appear in
contexts in which a shape is required, such as a function result or a
whole array reference.

62 Chapter 4

Arrays
Array declarations

The following example, assumed_size.f90, illustrates two assumed-size
arrays: x (declared in subr) and i_array (declared in func):

assumed_size.f90

PROGRAM main
 REAL :: a(2,3) ! an explicit-shape array, represented by the
 ! vector [10, 10]
 k = 0
 DO i = 1, 3
 DO j = 1, 2
 k = k + 1
 a(j, i) = k
 END DO
 END DO

 PRINT *, 'main: a =', a
 CALL subr (a)
END PROGRAM main

SUBROUTINE subr(x)
 REAL :: x(2,*) ! an assumed-size array; the subscript for the
 ! last dimension may take any value 1 - 3

! PRINT *, x ! ILLEGAL, whole array reference not allowed

 PRINT *, ‘main: x(2, 2) = ‘, x(2, 2)

 PRINT *, 'returned by func: ', func(x), ', the value in x(2,3)'
END SUBROUTINE subr

REAL FUNCTION func(y)
 REAL :: y(0:*) ! an assumed-size array; the subscript may
 ! take any value 0 - 5

 func = y(5)
END FUNCTION func

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 assumed_size.f90
$ a.out
 main: a = 1.0 2.0 3.0 4.0 5.0 6.0
 main: x(2, 2) = 4.0
 returned by func: 6.0 , the value in x(2,3)

An assumed-size array is a FORTRAN 77 feature that has been
superseded by the assumed-shape array; see “Assumed-shape arrays” on
page 56.

Chapter 4 63

Arrays
Array sections

Array sections
An array section is a selected portion of another array (the parent) that
is itself an array, even if it consists of only one element, or possibly none.
An array section can appear wherever an array name is allowed.

The syntax for specifying an array section is:

array-name (section-subscript-list)[(substring-range)]

where:

section-subscript-list
is a comma-separated list of section-subscript.

section-subscript
is one of:

• subscript

• subscript-triplet

• vector-subscript

subscript
is a scalar integer expression.

subscript-triplet
takes the form:
[subscript]:[subscript][:stride]
where stride is a scalar integer expression.

vector-subscript
is a rank-one integer array expression.

substring-range
specifies a character substring, as described in
“Character substrings” on page 36. If substring-range
is specified, array-name must be of type character.

Section-subscript-list must specify section-subscript for each dimension of
the parent array. The rank of the array section is the number of
subscript-triplets and vector -subscripts that appear in the section-
subscript-list. Because an array section is also an array, at least one
subscript-triplet or vector-subscript must be specified.

64 Chapter 4

Arrays
Array sections

The following sections provide more information about subscript-triplet
and vector-subscript.

Subscript triplet
A subscript triplet selects elements from the parent array to form
another array. It specifies a lower bound, an upper bound, and a stride
for any dimension of the parent array. Elements are selected in a regular
manner from a dimension. The stride can, for example, select every
second element.

All three components of a subscript triplet are optional. If a bound is
omitted, it is taken from the parent array. However, an upper bound
must be specified if a subscript triplet is used in the last dimension of an
assumed-sized array.

A bound in a subscript triplet need not be within the declared bounds for
that dimension of the parent array if all the elements selected are within
its declared bounds. If the stride is omitted, the default is to increment
by one.

The stride must not be zero. If it is positive, the subscripts range from
the lower bound up to and including the upper bound, in steps of stride.
When the difference between the upper bound and lower bound is not a
multiple of the stride, the last subscript value selected by the subscript
triplet is the largest integer value that is not greater than the upper
bound. The array expression a(1: 9: 3) selects subscripts 1, 4, and 7
from a.

Strides may also be negative. A negative stride selects elements from the
parent array starting at the lower bound and proceeds backwards
through the parent array in steps of the stride down the last value that is
greater than the upper bound. For example, the expression a(9:1:- 3)
selects the subscripts 9, 6, and 3 in that order from a.

If the section bounds are such that no elements are selected in a
dimension (for example, the section a(2:1)), the section has zero-size.

Chapter 4 65

Arrays
Array sections

The following example shows subscript triplet notation assigning the
same value to a regular pattern of array elements.

INTEGER, DIMENSION(3,6) :: x,y,z ! declare 3 3x6 arrays

! initialize the arrays, using whole-array assignments.
x = 0; y = 0; z = 0

! assign to elements of x, y, and z, using subscript triplets
x(3,2:4:1) = 1
y(2,2:6:2) = 2
z(1:2,3:6) = 3

! The arrays x, y, and z now have the following values:
! x y z
! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3
! 0 0 0 0 0 0 0 2 0 2 0 2 0 0 3 3 3 3
! 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In the following example of an array substring, the variable
dates(5:10) is an array section that includes elements 5 through to 10
of the parent array dates, and the variable dates(5:10)(8:11) is also
an array section of the array dates but only contains the last 4 character
positions of the elements 5 through to 10.

CHARACTER(11) :: dates(20)
dates(5:10)(8:11) = ”1776”

Vector subscripts
A vector subscript is any expression that results in a rank-one array
with integer value. The values of the array select the corresponding
elements of the parent array for a given dimension. Vector subscripts can
describe an irregular pattern and may be useful for indirect array
addressing. For example, if v represents a rank-one integer array
initialized with the values 4, 3, 1, 7, then the array section a(v) is a
rank-one array composed of the array elements a(4), a(3), a(1), and
a(7)—in that order.

Vector subscripts are commonly specified using array constructors,
which are described in the next section. For example, the expressions
a(v) and a((/ 4, 3, 1, 7/)) reference the same section of the array
a.

66 Chapter 4

Arrays
Array sections

Vector subscripts may not appear:

• On the right hand side of a pointer assignment statement.

• In an I/O statement as an internal file.

• As an actual argument that is associated with a dummy argument
declared with INTENT(OUT) or INTENT(INOUT) or with no INTENT.

A vector subscript may specify the same element more than once. When
a vector subscript of this form specifies an array section, the array
section is known as a many-one array section. An example of a many-one
array section is:

a((/ 4, 3, 4, 7/))

where element 4 has been selected twice. A many-one array section may
not appear in either an input list or on the left-hand side of an
assignment statement.

The following example, vector_sub.f90, illustrates an array section using
a section subscript list.

vector_sub.f90

PROGRAM main
 ! m is a rank-1 array that has been
 ! initialized with the values of an array constructor

 INTEGER, DIMENSION(4) :: m = (/ 2, 3, 8, 1/)

 INTEGER :: i

 ! initialize a (a rank-1 array) with the values
 ! 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9, 11.0
 REAL, DIMENSION(10) :: a = (/ (i*1.1, i=1,10) /)

 ! b is an uninitialized 4x2 array
 REAL, DIMENSION(4,2) :: b

 ! print a section of a, using a vector subscipt
 PRINT *,a(m)

 ! assign the values 5.5, 11.0, 6.6, and 5.5 to the first column
 ! b; this is an example of a many-one array
 b(:,1) = a((/ 5, 10, 6, 5/))

 ! the vector subscript MIN(m,4) represents a rank-1 array with
 ! the values 2, 3, 4, 1; the second column of b is assigned
 ! the values 11.0, 6.6, 5.5, 5.5
 b(:,2) = b(MIN(m,4),1)

 ! increment a(2), a(3), a(8), and a(1) by 20.0

Chapter 4 67

Arrays
Array sections

 a(m) = a(m) + 20.0

 ! print the new values in a
 PRINT *,a
END PROGRAM main

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 vector_sub.f90
$ a.out
 2.2 3.3 8.8 1.1
 21.1 22.2 23.3 4.4 5.5 6.6 7.7 28.8 9.9 11.0

68 Chapter 4

Arrays
Array-valued structure component references

Array-valued structure component
references
A structure component reference can specify an array or a scalar. If, for
example, the parent in the reference is declared as an array and likewise
one of the components is declared as an array, this makes possible an
array-valued structure component reference. Conceptually, an array-
valued structure component reference is similar to a reference to an
array section (see “Array sections” on page 63).

Consider the following code:

TYPE student_data
 CHARACTER(25) :: name
 INTEGER :: average, test(4)
END TYPE student_data

TYPE course_data
 CHARACTER(25) :: course_title
 INTEGER :: course_num, class_size
 TYPE(student_data) :: student(10)
END TYPE course_data
TYPE (course_data) :: course(5)

These statements prepare a database for maintaining course information
for 50 students—10 students per course. The information about the
students is held in student—an array of derived type. Likewise, the
information about the five courses is held in course, which is also an
array of derived type and which has student as one of its components.
The following statement assigns a test score to a one student in one
course, using a structure component reference:

course(5)%student(7)%test(4) = 95

The reference is scalar-valued: 95 is assigned to a single element,
test(4) of student(7) of course(5).

However, it is also possible to reference more than one element in a
structure component reference. The following statement assigns the
same score to one test taken by all students in one course:

course(4)%student%test(3) = 60

The structure component reference is array-valued because thirty
elements are assigned with the one reference. The reference is to a
section of the array course, rather than to the entire array.

Chapter 4 69

Arrays
Array-valued structure component references

The next statement also makes an array-valued structure component
reference to initialize all the tests of one student in one course:

course(3)%student(3)%test = 0

The next statement uses a subscript triplet in an array-valued structure
component reference to assign the same score to one test of three
students in one course:

course(2)%student(1:3)%test(4) = 82

It would be convenient if we could initialize all tests of all students in all
courses to 0. But the Standard does not allow structure component
references in which more than one of the parts specifies a rank greater
than 0. In other words, the following is not legal:

course%student%test = 0 ! ILLEGAL

The following example, array_val_ref.f90, contains the code examples
listed in this section:

array_val_ref.f90

PROGRAM main
! illustrates array-valued structure component references

 ! define a derived type that will be used to declare an
 ! object of this type as a component of another derived type
 TYPE student_data
 CHARACTER(25) :: name
 INTEGER :: average, test(4)
 END TYPE student_data

 TYPE course_data
 CHARACTER(25) :: course_title
 INTEGER :: course_num, class_size
 TYPE(student_data) :: student(10) ! an array of derived
 ! type
 END TYPE course_data

 TYPE (course_data) :: course(5) ! an array of derived
 ! type

 ! scalar-valued structure component reference
 course(5)%student(7)%test(4) = 95
 PRINT *, course(5)%student(7)%test(4)

 ! array-valued structure component reference
 course(4)%student%test(3) = 60
 PRINT *, course(4)%student%test(3)

 ! array-valued structure component reference
 course(3)%student(3)%test = 0
 PRINT *, course(3)%student(3)%test

70 Chapter 4

Arrays
Array-valued structure component references

 ! array-valued structure component reference, using
 ! a subscript triplet to reference a section of the
 ! array component student
 course(2)%student(1:3)%test(4) = 82
 PRINT *, course(2)%student(1:3)%test(4)

 ! the following commented-out statement is illegal:
 ! only one part (of the combined components and
 ! parent) in a structure component reference
 ! may have a rank greater than 0.
 ! course%student%test = 0

END PROGRAM main

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 array_val_ref.f90
$ a.out
 95
 60 60 60 60 60 60 60 60 60 60
 0 0 0 0
 82 82 82

Chapter 4 71

Arrays
Array constructors

Array constructors
An array constructor is used to assign values to an array. The
generated values are supplied from a list of scalar values, arrays of any
rank, and implied DO specifications. An array constructor may appear in
any context in which a rank-one array expression is allowed. An array
with a rank greater than one may be constructed by using the RESHAPE
intrinsic function. The type of an array constructor is taken from the
values in the list, which must all have the same type and type
parameters (including character length). The extent is taken from the
number of values specified.

The syntax of an array constructor is:

(/ ac-value-list /)

where ac-value-list is a comma-separated list of one or more ac-values.
Each ac-value may be any of the following:

• Scalar expressions, for example:

(/ 1.2, 0.0, 2.3 /)

• An array expression, for example:

(/ x(0:5) /)

where the values in x(0) through x(5) become the values of the
array constructor. If the array the value list has a rank greater than
one, the values are generated in column-major order, as explained in
“Array fundamentals” on page 52.

• An implied-DO specification, taking the form:

(ac-value-list, do-var = expr1, expr2 [, expr3])

where do-var is the name of a scalar integer variable, expr1 is the
initial value, expr2 is the final value, and expr2 is the stride (the
default is 1). For example:

(/ i, i = 1, 10)

72 Chapter 4

Arrays
Array constructors

When used to initialize an array in a type declaration or in an
assignment statement, all elements in the array must be initialized. For
example, the following is illegal:

INTEGER :: i(10) = (/ 1, 2, 3 /) ! ILLEGAL: too few
 ! initializers

If no values are supplied, the array constructor is zero-sized. For
example, the size of the following array constructor:

(/ (i, i=10,n) /)

depends on the value of the variable n; if the value of the variable is less
than 10, then the constructor contains no values.

If the list contains only constant values, the array constructor may
initialize a named constant or a type declaration statement. An array
constructor may not initialize variables in a DATA statement, which may
contain scalar constants only.

As an extension, HP Fortran allows the use of [and] in place of (/ and
/).

The following are examples of array constructors:

! array x is assigned three real values.
x = (/19.3, 24.1, 28.6/)

! One vector, consisting of 16 integer values, is assigned to j
j = (/4, 10, k(1:5), 2 + l, (m(n), n = -7,-2),16, 1/)

! assign 5 values
a = (/(base(k), k=1,5)/)

! The named constant t is a rank-one array initialized with
! the values 36.0 and 37.0
REAL,DIMENSION(2):: t
PARAMETER (t=(/ 36.0, 37.0/))

! the array constructor is reshaped as 1 3 5 7
! 2 4 6 8
! and is then assigned to z
z=RESHAPE((/1,2,3,4,5,6,7,8/), (/2,4/))

! an array constructor is used for the second component of
! the structure constructor
alaska = site(”NOME”,(/-63,4/))

diagonal = (/ (b(i,i), i=1,n) /)
hilbert = RESHAPE((/ ((1.0/(i+j), i=1,n), j=1,n) /), (/ n,n /))
ident = RESHAPE ((/ (1, (0, i=1,n), j=1,n-1), 1 /), (/ n,n /))

Chapter 4 73

Arrays
Array constructors

As shown in last three examples, an array constructor with implied- DO
loops and the RESHAPE function permit construction of arrays that
cannot otherwise be expressed conveniently with alternative notations.

74 Chapter 4

Arrays
Array expressions

Array expressions
Array operations areperformed in parallel. That is, an operation is
performed on each element independently and in any order. The practical
effect of this is that, because an assignment statement may have the
same array on both the left and right-hand sides, the right-hand side is
fully evaluated before any assignment takes place. This means that in
some cases the compiler may create temporary space to hold
intermediate results of the computation.

A scalar may appear in an array expression. If the scalar is used in an
expression containing whole array references—for example

a = b + 2.0 ! a and b are conformable arrays of type real

then the effect is as if the scalar were evaluated and then broadcast to
form a conformable array of elements, each having the value of the
scalar. Thus, a scalar used in an array context is conformable with the
array or arrays involved.

Zero-sized arrays may also appear in an array expression. Although they
have no elements, they do have a shape and must therefore follow the
rule of conformable arrays. Because scalars are conformable with any
array, they may therefore appear in an operation involving a zero-sized
array.

The following illustrates valid and invalid array expressions.

SUBROUTINE foo(a,b,c)

! a is an assumed-shape array with rank-one
REAL :: a(:)

! b is a pointer to a rank-two array
REAL, POINTER :: b(:,:)

! c is an assumed-size array
REAL :: c(*)

! d is an allocatable array; its shape can only be defined in an
! ALLOCATE statement
REAL, ALLOCATABLE :: d(:)

! create the array d with the same size as a; a and d have
! the same shape and are therefore conformable
ALLOCATE(d(SIZE(a)))

! copy the array a into d
d = a

Chapter 4 75

Arrays
Array expressions

! sets each element of the array associated with b to 0.0;
! the effect is as if the scalar were broadcast into a
! temporary array, with the same shape as b; b is then assigned
! to theleft-hand side
b = 0.0

! corresponding elements of a and d are added together and then
! stored back into the corresponding array element of d
d = a + d

! conceptually the operand SQRT(d) is evaluated into an
! intermediate array with the same shape as d; each element of
! the intermediate array will be added to the corresponding
! element of a and stored into the corresponding element of d
d = a + SQRT(d)

DEALLOCATE(d)

! examples of illegal uses of arrays:

! ILLEGAL - c is an assumed-size array and so has no shape;
! an assumed-size array may not be used as a whole array
! operand(except in an argument list)
a = c

! ILLEGAL - the arrays a and b do not have the same shape and are
! therefore not conformable
a = a + b

! ILLEGAL - d was previously deallocated and must not be
! referenced subsequently
a = a + d

END SUBROUTINE foo

76 Chapter 4

Arrays
Array-valued functions

Array-valued functions
A function may be array-valued; that is, its return value may evaluate to
an array of values rather than to a scalar. Array-valued functions may
appear in any array expression except:

• In an input list

• On the left side of an assignment statement (unless returning the
result from within a function)

Array-valued functions may also be used in an array expression
wherever a scalar function reference is allowed but must be
conformable—that is, the function result must have the same shape as
the expression.

The following sections describe intrinsic functions and user-defined
functions that are array-valued.

Intrinsic functions
Elemental procedures and transformation procedures have particular
relevance to array expressions. Elemental procedures—for example,
SQRT and SIN—are specified for scalar arguments, but with an array
argument they return an array-valued result with the same shape as the
argument. Each element of the result is as if the function were applied to
each corresponding element of the argument.

A transformational procedure—for example, RESHAPE, SUM, and
MATMUL—generally has one or more array arguments that the procedure
operates on as a whole, and usually returns an array-valued result
whose elements may depend not only on the corresponding elements of
the arguments but also on the values of other elements of the arguments.

User-defined functions
User-defined functions can return either a scalar-valued result or an
array-valued result. A scalar function can appear in an array expression;
its effect is to broadcast its value throughout a conformable array. A
reference to a user-defined array-valued function must obey the rules for
functions in general, and must also conform to the shape of the
expression in which it appears.

Chapter 4 77

Arrays
Array-valued functions

User-defined functions are described in “External procedures” on
page 128.

The following code segment illustrates two array-valued functions,
genrand (user-defined) and RESHAPE (intrinsic):

PROGRAM main

! The following interface block describes the characteristics of
! the function genrand; the function inputs a single integer
! scalar and returns a real array of rank-one with an extent
! equal to the value of its argument
INTERFACE
 FUNCTION genrand(n)
 INTEGER:: n
 REAL, DIMENSION (n)::genrand
 END FUNCTION genrand
END INTERFACE

REAL :: a(100)
REAL :: b(10,10)

! set array a to the result returned by the function genrand;
! note that the left and right hand side are conformable
a = genrand(SIZE(a))

! add each element of a to the corresponding element of the
! result returned by genrand, forming an intermediate rank-one
! result that is passed into the intrinsic function RESHAPE.
! This intrinsic transforms its argument into a 10 by 10 array.
! Again, the left and right hand side are conformable.
b = RESHAPE(a + genrand(100),(/ 10, 10 /))
 .
 .
 .
END PROGRAM main

78 Chapter 4

Arrays
Array inquiry intrinsics

Array inquiry intrinsics
Table 9 lists and briefly describes the inquiry intrinsic functions that
return the properties of an array. For a full description of these intrinsics,
see Chapter 11, “Intrinsic procedures,” on page 475.

Table 9 Array inquiry intrinsic functions

Intrinsic Description

ALLOCATED Returns the allocation status of an allocatable array;
see “Allocatable arrays” on page 59.

ASSOCIATED Returns the association status of an array pointer;
see “Pointer association status” on page 48.

LBOUND Returns either the lower bound of a specified
dimension or the lower bounds of the array as a
whole.

SHAPE Returns the shape of the array as a rank-one integer
array.

SIZE Returns the size of the array or the extent of a
particular dimension.

UBOUND Returns the upper bound of a specified dimension or
the upper bounds of the array as a whole.

79

5 Expressions and assignment

This chapter describes expressions and assignment. More specifically, it
covers the following topics:

• Expressions, including their components:

– Operands

– Operators

– Special forms of expression

• Assignment, including the following topics:

– Assignment statement

– Pointer assignment

– Masked array assignment

NOTE This chapter discusses intrinsic operators and assignment only. For
information about user-defined operators and assignment, see “Defined
operators” on page 155 and “Defined assignment” on page 157.

80 Chapter 5

Expressions and assignment
Expressions

Expressions
An expression is the specification of data and, possibly, a set of
operations that enable the computer to evaluate the expression and
produce a value. Because an expression results in a value, it has a type,
kind, and shape. If an expression is of the character type, it also has a
length parameter.

The general form of an expression is:

[operand1] operator operand2

operand1, operand2
are data objects or expressions that evaluate to data.
They may be array-valued or scalar-valued.

operator
is either an intrinsic or defined operator. If operator is
unary, operand1 must not be specified.

The following sections describe operands, operators, and expressions in
more detail.

Operands
An operand may be any of the following:

• A constant or a variable, such as 1.0, 'ab', or a

• An array element or an array section, such as a(1,3) or a(1,2:3)

• A character substring or a structure component, such as ch(1:3) or
employee%name

• An array constructor, such as (/1.0,2.0/)

• A structure constructor, such as
employee(8, "Wilson", 123876)

• A function reference, such as SQRT(x)

• An expression in parentheses, such as (b + SIN(y)**2)

Chapter 5 81

Expressions and assignment
Expressions

Any variable or function reference used as an operand in an expression
must have been previously defined. Likewise, any pointer must have
been previously associated with a target. If an operand has the POINTER
attribute, the target associated with it is the operand.

When an operand is a whole array reference, the complete array is
referenced. An assumed-size array variable cannot be an operand. An
array section of an assumed-size array can be an operand if the extent of
the last dimension of the section is defined by the use of a subscript, a
section subscript with an extent for the upper bound, or a vector
subscript. (Assumed-size arrays are discussed in “Assumed-size arrays”
on page 61, and array sections in “Array sections” on page 63.)

If two operands in an expression are arrays, they must have the same
shape. If one operand is a scalar, it is treated as if it were an array of the
same shape as the other operand, in which all elements have the value of
the scalar. The result of the operation is an array in which each element
is the result of applying the operator repeatedly to corresponding
elements of the two operands.

The rules governing how the use of operands in an expression vary,
depending on the type of expression. For example, some operands that
may appear on the right-hand side of an assignment statement but not
in an initialization expression. See “Special forms of expression” on
page 89 for detailed information about the different forms of an
expression and the restrictions that those forms impose on operands.

Operators
HP Fortran recognizes the following types of operators:

• Arithmetic operators

• Relational operators

• Concatenation operator

• Logical operators

• Bitwise operators

• Defined operators

All of these except the last are intrinsic operators—that is, the
operations they perform are defined by HP Fortran. Intrinsic operators
are described in the following sections. Defined operators are those that

82 Chapter 5

Expressions and assignment
Expressions

the programmer defines—or overloads, if the operator already has
already been defined—using the INTERFACE statement. Defined
operators and overloading are discussed in “Defined operators” on
page 155.

Arithmetic operators
The arithmetic operators are:

• Additive operators (+ and -). These can be used either as unary
operators or binary operators.

• Multiplicative operators (/, *, and **). These are binary.

Two operands joined by a binary operator can be of different numeric
types or different kind type parameters. The type of the result is:

• If the type and kind type parameters of the operands are the same,
the result has the same type and kind type parameter.

• If the type of the operands is the same but the kind type parameters
differ, the result has the same type and the larger kind type
parameter.

• If either operand is of type complex, the result is of type complex.

• If either operand is of type real and the other operand is not of type
complex, the result is of type real.

Except for a value raised to an integer power, each operand that differs
in type or kind type parameter from that of the result is converted to a
value with the type and kind type of the result before the operation is
performed.

Logical and integer operands can be combined with arithmetic operators.
The logical operand is treated as an integer of the same kind type
parameter, and the result of the operation is of type integer. If the
operands have different kind type parameters, the shorter is considered
to be extended as a signed integer. For information about logical values,
see “Logical operators” on page 84.

Chapter 5 83

Expressions and assignment
Expressions

The arithmetic operators behave as expected, with the following
qualifications:

• The division of an integer by an integer is defined to be the integer
closest to the true result that is between zero and the true result.

• Exponentiation of an integer to a negative integer—i1**i2, where
i2 is negative—is interpreted as 1/(i1**(-i2)), where the division
is interpreted as described for division of one integer by another.

• If x1 and x2 are real and x1 is negative, then x1**x2 could be an
invalid expression, as the result could be complex. Note, however,
that CMPLX(x1)**x2 is valid; the result is the principal value.

The following are HP extensions to the Fortran 90 Standard:

• The exponentiation operator may be followed by a signed entity, as in
the following example:

i ** -j

The Fortran 90 Standard does not allow adjacent operators.

• Operands of logical and integer types may be combined with the
arithmetic operators. The logical variable is treated as an integer of
equivalent size, and the result of the operation is an integer value.
When different lengths of operands are involved, the shorter is
considered extended as a signed integer. The following is an example:

LOGICAL(1) :: boolean1 = -4
LOGICAL(4) :: boolean4 = 2**16 + 27
INTEGER(1) :: flag1
INTEGER(4) :: flag4

flag4 = boolean4 - boolean1 !set flag4 to 2**16 + 31

! a relational operator with a logical operand
IF (boolean4 > 65536) THEN
 flag1 = -(boolean4/65536) !set flag1 to -1
ENDIF

84 Chapter 5

Expressions and assignment
Expressions

Relational operators
The relational operators are .EQ., .NE., .GT., .GE., .LT., .LE., ==, /
=, >, >=, <, and <=. All relational operators are binary. The letter forms
of the relational operators have the same meaning as the symbol forms.
Thus, .EQ. is a synonym for ==, .NE. is a synonym for /=, and so on.

If the operands in a relational operation are numerical expressions with
different type or kind type parameters, the operands are converted to the
type and kind type parameters that the sum of the operands would have
and are then compared; see “Arithmetic operators” on page 82 for
information about the result of mixed arithmetic expressions.

If the operands are character expressions, the shorter operand is blank-
padded to the length of the other prior to the comparison. The
comparison starts at the first character and proceeds until a character
differs or equality is confirmed. See Appendix C for the collating
sequence.

Concatenation operator
The concatenation operator is //. It is binary.

In a concatenation operation, each operand of the concatenation operator
must be of type character and have the same kind type parameter. The
character length parameter of the result is the sum of the character
length parameters of the operands.

Logical operators
The logical operator are .AND., .OR., .EQV., .NEQV., .XOR., and
.NOT.. The .NOT. operator is unary; the others are binary. The .XOR. is
an HP extension having the same meaning as the .NEQV. operator.

As an HP extension, the operands of a logical expression may be of type
integer. Functions returning integers may appear in logical expressions,
and functions returning logicals may appear in integer expressions.

If the operands of a logical operation have different kind type
parameters, the operand with the smaller parameter is converted to a
value with the larger parameter before the operation is performed. The
result has the larger kind type parameter.

Table 10 shows the behavior of the logical operators for the different
permutations of operand values. Note that the .XOR. operator is a
synonym for the .NEQV. operator and behaves similarly.

Chapter 5 85

Expressions and assignment
Expressions

Table 10 Logical operators

Bitwise operators
As an extension to the Standard, HP Fortran allows logical operators to
be used as bitwise operators on integer operands. The logical operations
are bitwise; that is, they are performed for each bit of the binary
representations of the integers. When the operands are of different
lengths, the shorter is considered to be extended to the length of the
other operand as if it were a signed integer, and the result has the length
of the longer operand.

When logical operators are used on integer operands, any nonzero value
is considered .TRUE., and a zero value is considered .FALSE. .

In general, an actual argument of type integer may not be used in a
reference to a procedure when the corresponding dummy argument is of
type logical, nor may an actual argument of type logical be used when
the dummy argument is of type integer. As an HP extension, logical and
integer arguments may be used interchangeably in calls to bit
manipulation intrinsics. See Chapter 11, “Intrinsic procedures,” on
page 475 for information about the bit manipulation intrinsics.

The following example shows the use of the .AND. operator to perform a
bitwise AND operation:

INTEGER i, j

i = 5
j = 3
PRINT *, i .AND. j

! Output from the PRINT statement: 1

The next example shows the use of logical operators to perform bit-
masking operations.

opnd1 opnd2 .AND. .OR. .EQV. .NEQV. .NOT. opnd1

.TRUE. .TRUE. .TRUE. .TRUE. .TRUE. .FALSE. .FALSE.

.TRUE. .FALSE. .FALSE. .TRUE. .FALSE. .TRUE. .FALSE.

.FALSE. .TRUE. .FALSE. .TRUE. .FALSE. .TRUE. .TRUE.

.FALSE. .FALSE. .FALSE. .FALSE. .TRUE. .FALSE. .TRUE.

86 Chapter 5

Expressions and assignment
Expressions

INTEGER(2) mask2
INTEGER(4) mask4
DATA mask2/ -4 /
DATA mask4/Z"ccc2"/

mask4 = mask4 .NEQV. mask2 !set mask4 to Z"ffff333e"

mask2 = .NOT. mask4 !set mask2 to Z"ccc1"

The next example makes a standard-conforming reference to a bit
manipulation intrinsic:

INTEGER :: mask = 65535
LOGICAL :: is_even = .FALSE.
IF (IAND(mask,1) /= 0) is_even = .TRUE.

HP Fortran allows the following nonstandard version of the preceding
example:

LOGICAL :: mask = z"ffff"

INTEGER :: is_even = .FALSE.
IF (IAND(mask,1)) is_even = .TRUE.

Operator precedence
When an expression expands to

operand1 operator1 operand2 operator2 operand3 ...

each operator is assigned a precedence. The defined order of evaluation is
that any subexpressions containing an operator with higher precedence
than the adjacent operators is evaluated first. Where operators are of
equal precedence, evaluation is from left to right. The exception to this
rule is the exponentiation operator (**), which is evaluated from right to
left.

Any expression or subexpression may be enclosed in parentheses. These
expressions are always evaluated first, using the rules explained above.
This usage of parentheses is therefore equivalent to normal
mathematical usage.

Table 11 lists the precedence of the operators, and Table 12 gives
example expressions that illustrate operator precedence.

Chapter 5 87

Expressions and assignment
Expressions

Table 11 Operator precedence

Table 12 Examples of operator precedence

Precedence Operators

Highest User defined unary operators

. **

. * /

. Unary + Unary -

. + -

. //

. .EQ. .NE. .LT. .LE. .GT. .GE.
== /= < <= > >=

. .NOT.

. .AND.

. .OR.

. .EQV. .NEQV. .XOR.

Lowest User-defined binary operators

Expression How evaluated Explanation

a+b*c a + (b*c) * has a higher precedence
than +.

a/b*c (a/b)*c / and * have the same
precedence, and evaluation
is left to right.

a**b**c a**(b**c) ** evaluates right to left.

a.AND.b.AND
.c.OR.d

((a.AND.b).AND.c)
.OR.d)

Logical operators evaluate
left to right.

88 Chapter 5

Expressions and assignment
Expressions

The Standard allows the compiler to generate code that evaluates an
expression by any sequence that produces a result mathematically
equivalent to the sequence implied by the statement. This laxity permits
code optimization, including (for example) the reordering of expressions
and the promotion of common subexpressions.

Because the order of evaluation is not defined by the Standard, a
function reference within an expression may not modify any of the other
operands within the same expression. For example, fun(x)+x is
indeterminate if the reference to fun modifies the value of the argument
x.

Chapter 5 89

Expressions and assignment
Expressions

Special forms of expression
Certain language constructs allow only restricted forms of expressions.
For example, the value specified for a named constant in a PARAMETER
statement may be defined by an expression, but it must be possible to
evaluate the expression at compile-time. This means that the expression
must not contain any operands that depend on program execution for
their value. To take another example, a bound of a dummy array
argument may be specified as an expression, but it must be possible to
evaluate this expression on entry to the subprogram.

There are special restrictions imposed on operands and operators that
may appear in an expression, depending on whether the expression is
one of the following:

• Constant expressions

• Initialization expressions

• Specification expressions

The following sections describe the special forms of expression.

Constant expressions
A constant expression is either a constant or an expression containing
only intrinsic operators and constant operands. This restriction also
applies to any clearly defined part of a constant—for example, a
substring with constant start and end points, or an array or structure
constructor. A constant expression may include references to intrinsic
functions that can be evaluated at compile-time. A constant expression
may appear in any context in which any expression may appear.

90 Chapter 5

Expressions and assignment
Expressions

The following are examples of constant expressions:

123 ! an integer literal

”Hello ” // ” World” ! a character constant expression

3.0_single ! a real literal constant where single is
 ! a named integer constant

coord(0.0,infinity) ! a structure constructor in which
 ! "infinity" is a named constant

(/ SQRT(x), x, x*x /) ! an array constructor in which x is a
 ! named real constant

x*x + 2*x*y + y*y ! a constant numeric expression where x
 ! and y are named constants

SUM(iterations,DIM=1) ! reference to a transformational
 ! intrinsic where iterations is an
 ! array-valued named constant

SHAPE(matrix) ! a reference to an inquiry intrinsic in
 ! which "matrix" is an array with
 ! constant bounds

Initialization expressions
An initialization expression is a more specialized form of constant
expression that can appear as the initial value in a declaration
statement. Initialization expressions have these additional restrictions:

• Exponentiation is only allowed if the second operand is an integer.

• Any subexpression within the expression must itself be an
initialization expression.

• All arguments to intrinsic function references must be initialization
expressions.

• Only the following transformational intrinsic functions may be
referenced:

– REPEAT

– RESHAPE

– SELECTED_INT_KIND

– SELECTED_REAL_KIND

– TRANSFER

Chapter 5 91

Expressions and assignment
Expressions

– TRIM

• Any inquiry intrinsic that is referenced may interrogate a property of
an entity (such as bounds or kind type parameter) only if the property
is a constant.

• Any elemental intrinsic functions must have integer or character
arguments and an integer or character result.

Initialization expressions are required for the following:

• Values of named constants. Any entity declared with the PARAMETER
attribute must be initialized with an initialization expression.

• Kind parameter in a type specification statement.

• The KIND dummy argument of a type conversion intrinsic function.

• Initial values in type declaration statements.

• Expressions in structure constructors in DATA statements.

• Case values in CASE statements.

• Subscript expressions or substring ranges in EQUIVALENCE
statements.

The following entities may not be initialized:

• Dummy arguments

• Function results

• Allocatable arrays

• Pointers

• External names

• Intrinsic names

• Automatic objects

92 Chapter 5

Expressions and assignment
Expressions

The following are examples of initialization expressions:

-456 ! an integer literal

(”Hello ”// ”World”) ! a character constant expression

pi * r ** 2 ! a constant numeric expression, where
 ! pi and r are named constants

ABS(i * j) ! reference to an elemental intrinsic,
 ! where i and j are named integer
 ! constants

SELECTED_REAL_KIND(7) ! reference to a transformational
intrinsic

The following are illegal initialization expressions:

x ** 2.5 ! the power operand is not an integer

LOG(10.0) ! the intrinsic function is neither
 ! integer nor character type

SUM((/ i, 2 /)) ! reference to a prohibited function

For information about initializing arrays with an array constructor, see
“Array constructors” on page 71.

Specification expressions
A specification expression has a scalar value, is of type integer, and
can be evaluated on entry to the scoping unit in which it appears. A
specification expression may appear (for example) as a bound in an array
declaration or as the length in a CHARACTER type declaration.

An operand in a specification expression is one of the following:

• A literal or named constant or part of a constants.

• A variable that is available by argument, host, or use association or is
in common.

• An array constructor or structure constructor where each element or
component is also a specification expression or is a variable in an
implied-DO loop appearing in the array constructor.

• A dummy argument having neither the OPTIONAL attribute nor the
INTENT(OUT) attribute.

• An argument to an intrinsic function.

Chapter 5 93

Expressions and assignment
Expressions

• A reference to an elemental intrinsic function that returns an integer
result.

• A reference to any of the following transformational intrinsic
functions:

– REPEAT

– RESHAPE

– SELECTED_INT_KIND

– SELECTED_REAL_KIND

– TRANSFER

– TRIM

• Any inquiry intrinsic except ALLOCATED, ASSOCIATED, and PRESENT.
Other inquiry intrinsics may be referenced so long as the property
interrogated is not defined by either a pointer assignment or
ALLOCATE statement. Furthermore, an inquiry intrinsic may not
interrogate the following properties of an assumed size array:

– Upper bound of the last dimension

– Extent of the last dimension

– Size of the array

– Shape of the array

94 Chapter 5

Expressions and assignment
Expressions

The differences between specification expressions and initialization
expressions are summarized in Table 13.

Table 13 Initialization and specification expressions

The following are examples of specification expressions:

789 ! an integer literal constant

MAX(m+n,0) ! m and n are integer dummy arguments

LEN(c) ! c is a character variable accessible via
 ! host association

SELECTED_INT_KIND(5) ! reference to a transformational
 ! intrinsic

UBOUND(arr,DIM=n) ! reference to an array inquiry
 ! intrinsic in which arr is an array
 ! accessible via USE and n is a
 ! variable in common

Initialization expression Specification expression

Can be either scalar or array-valued. Must be scalar-valued.

Can be of any type. Must be of type integer.

Must be a constant expression. Can reference variables by host, argument, or
use storage association; can reference
variables in common.

Except for ALLOCATED, ASSOCIATED, and
PRESENT, can reference inquiry intrinsics
to interrogate a property of an entity,
provided that the property is constant.

Can reference inquiry intrinsic functions,
except for ALLOCATED, ASSOCIATED, and
PRESENT. The arguments must be
specification expressions or variables whose
bounds or type parameters inquired about are
not assumed, are not defined by the
ALLOCATE statement, or are not defined by
pointer assignment.

Chapter 5 95

Expressions and assignment
Assignment

Assignment
An assignment operation defines a variable by giving it a value. In
HP Fortran, there are four types of assignment:

• Intrinsic assignment (also known as the assignment statement)

• Pointer assignment

• Masked-array assignment (also known as the WHERE construct)

• Defined assignment

The following sections describe the first three assignment types. The
last—defined assignment—is defined by the programmer, using the
INTERFACE statement. For information about defined assignment, see
“Defined assignment” on page 157.

Assignment statement
An assignment statement gives the value of an expression to a variable.
It has the following syntax:

variable = expression

variable may be any nonpointer variable or a pointer variable that is
associated with a target. (If variable is a pointer, expression is assigned
to the target.) The valid combinations of types for variable and
expression are given in Table 14. The intrinsic functions that document
the conversions are described in Chapter 11.

Table 14 Conversion of variable=expression

Variable
type Expression type Conversion

Integer Integer, real, or complex INT(expression, KIND(variable))

Real Integer, real, or complex REAL(expression, KIND(variable))

Character Character (same kind
parameters)

CMPLX(expression, KIND(variable))

96 Chapter 5

Expressions and assignment
Assignment

As described in “Bitwise operators” on page 85, HP Fortran allows
integer and logical operands to be used interchangeably. HP Fortran also
allows logical expressions to be assigned to integer variables and integer
expressions to logical variables. As shown in Table 14, a logical
expression may also be assigned to real or complex variables, and
similarly, a real or complex expression may be assigned to a logical
variable.

If variable is a scalar, expression must be scalar. If variable is an array or
an array section, expression must be either an array-valued expression of
the same shape or a scalar. If variable is an array or an array section,
and expression is a scalar, the value of expression is assigned to all
elements of variable. If variable and expression are both arrays, the
assignment is carried out element by element with no implied ordering.

The expression is evaluated completely before the assignment is started.
For example, the following code segment:

CHARACTER (LEN=4):: c
c(1:4) = 'abcd'
c(2:4) = c(1:3)

sets c(2:4) to "abc", not to "aaa", which might result from a left-to-
right character-by-character assignment.

Logical Logical Truncate expression if its length is greater
than that of variable; otherwise, pad value
assigned to variable, with blanks.

Logical Logical LOGICAL(expression, KIND(variable))

Derived type Same derived type None

Variable
type Expression type Conversion

Chapter 5 97

Expressions and assignment
Assignment

The following examples illustrate assignments of different data types:

! declarations of the variables used in the assignment statements
! to follow
integer icnt
type circle
 real radius
 real xreal y
end type
type (circle) circle1, circle2
real area, pi
logical boolx, booly, pixel(10,10)
integer a(10,5)
integer, dimension (10,10):: matrix1, matrix2
character*3 initials
character*10 surname
character*20 name

icnt = icnt + 1 ! integer assignment

circle1 = circle2 ! derived-type assignment

area = pi * circle%radius**2 ! real assignment

pixel(x,y) = boolx .AND. booly ! assigns a logical expression to
 ! an element of the logical
 ! array pixel

a(:,1:2) = 0 ! first two columns of a are set to zero

maxtrix1 = maxtrix2 ! each element of maxtrix2 is assigned to
 ! the corresponding element of maxtrix1

name = initials // surname ! character assignment using the
 ! concatenation operator

Pointer assignment
Pointer assignment establishes an association between a pointer and a
target. Once the association is established, if the pointer is referenced on
the left-hand side of an assignment statement, it is the target to which
the assignment is made. And if the pointer is referenced in an
expression, the target is taken as the operand in the expression.

The syntax of a pointer assignment is:

pointer-object => target-expression

pointer-object
is a variable with the POINTER attribute.

98 Chapter 5

Expressions and assignment
Assignment

target-expression
is one of the following:

• A variable with the TARGET or POINTER attribute

• A function reference or defined operation that
returns a pointer result

The type, kind, and rank of pointer-object and target-expression must be
the same. If target-expression is an array, it cannot be an assumed-size
array or an array section with a vector subscript. For information about
assumed-size arrays, see “Assumed-size arrays” on page 61. For
information about array sections with vector subscripts, see “Vector
subscripts” on page 65.

If target-expression is a pointer already associated with a target, then
pointer-object becomes associated with the target of target-expression. If
target-expression is a pointer that is disassociated or undefined, then
pointer-object inherits the disassociated or undefined status of target-
expression. For information about pointer status, see “Pointer association
status” on page 48.

The following example, ptr_assign.f90, illustrates association of scalar
and array pointers with scalar and array targets:

ptr_assign.f90

PROGRAM main
 INTEGER, POINTER :: p1, p2, p3(:) ! declare three pointers, p3
 ! is a deferred-shape array
 INTEGER, TARGET :: t1 = 99, t2(5) = (/ 1, 2, 3, 4, 5 /)

 ! p1, p2 and p3 are currently undefined.
 p1 => t1 ! p1 is associated with t1.
 PRINT *, 'contents of t1 referenced through p1:', p1

 p2 => p1 ! p2 is associated with t1.
 ! p1 remains associated with t1.
 PRINT *, 'contents of t1 referenced through p1 through p2:', p2

 p1 => t2(1) ! p1 is associated with t2(1).
 ! p2 remains associated with t1.

 PRINT *, 'contents of t2(1) referenced through p1:', p1

 p3 => t2 ! p3 is associated with t2.
 PRINT *, &
 'contents of t2 referenced through the array pointer p3:', p3

 p1 => p3(2) ! p1 is associated with t2(2).
 PRINT *, &

Chapter 5 99

Expressions and assignment
Assignment

 'contents of t2(2) referenced through p3 through p1:', p1

 NULLIFY(p1) ! p1 is disassociated.
 IF (.NOT. ASSOCIATED(p1)) PRINT *, "p1 is disassociated."

 p2 => p1 ! Now p2 is also disassociated.
 IF (.NOT. ASSOCIATED(p2)) PRINT *, &
 "p2 is disassociated by pointer assignment."
END PROGRAM main

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 ptr_assign.f90
$ a.out
 contents of t1 referenced through p1: 99
 contents of t1 referenced through p1 through p2: 99
 contents of t2(1) referenced through p1: 1
 contents of t2 referenced through the array pointer p3: 1 2 3
 4 5
 contents of t2(2) referenced through p3 through p1: 2
 p1 is disassociated.
 p2 is disassociated by pointer assignment.

Masked array assignment
In a masked array assignment, a logical expression—called a mask—
controls the selection of array elements for assignment. Masked array
assignment is implemented by the WHERE statement and the WHERE
construct. The syntax of the WHERE statement is:

WHERE (array-logical-expression) array = array-expression

where array-logical-expression, array, and array-expression must all be
conformable. The array-logical-expression (the mask) is evaluated for
each element and the outcome (.TRUE. or .FALSE.) determines whether
an assignment is made to the corresponding element of array.

The syntax of the WHERE construct is:

WHERE (array-logical-expression)
 array = array-expression
 [array = array-expression] ...
[ELSEWHERE
 array = array-expression
 [array = expression] ...]
END WHERE

100 Chapter 5

Expressions and assignment
Assignment

The WHERE construct is similar to the WHERE statement, but more general
in that several array = array-expression statements can be controlled by
one array-logical-expression. In addition, an optional ELSEWHERE part of
the construct assigns array elements whose corresponding array-logical-
expression elements evaluate to .FALSE..

When a WHERE construct is executed, array-logical-expression is
evaluated just once and therefore any subsequent assignment in a WHERE
block (the block following the WHERE statement) or ELSEWHERE block to
an entity of array-logical-expression has no effect on the masking.
Thereafter, successive assignments in the WHERE block are evaluated in
sequence as if they were specified in a WHERE statement, as follows:

WHERE (array-logical-expression) array = array-expression

Each assignment in the ELSEWHERE is executed as if it were:

WHERE (.NOT.array-logical-expression) array = array-expression

For example, the following WHERE construct:

WHERE (a > b)
 a = b
 b = 0
ELSEWHERE
 b = a
 a = 0
END WHERE

is evaluated as if it was specified as:

mask = a > b
WHERE (mask) a = b
WHERE (mask) b = 0
WHERE (.NOT.mask) b = a
WHERE (.NOT.mask) a = 0

Only assignment statements may appear in a WHERE block or an
ELSEWHERE block. Within a WHERE construct, only the WHERE statement
may be the target of a branch.

The form of a WHERE construct is similar to that of an IF construct, but
with this important difference: no more than one block of an IF construct
may be executed, but in a WHERE construct at least one (and possibly
both) of the WHERE and ELSEWHERE blocks will be executed. In a WHERE
construct, this difference has the effect that results in a WHERE block may
feed into, and hence affect, variables in the ELSEWHERE block. Notice,
however, that results generated in an ELSEWHERE block cannot feed back
into variables in the WHERE block.

Chapter 5 101

Expressions and assignment
Assignment

The following example score2grade.f90 illustrates the use of a masked
assignment to find the letter-grade equivalent for each test score in the
array test_score. To do the same operation without the benefit of
masked array assignment would require a DO loop iterating over the
array either in an IF-ELSE-IF construct or in a CASE construct, testing
and assigning to each element at a time.

score2grade.f90

PROGRAM main
 ! illustrates the use of the WHERE statement in masked array
 ! assignment
 !
 ! use an array constructor to initialize the array that holds
 ! the numerical scores
 INTEGER, DIMENSION(10) :: test_score = &
 (/75,87,99,63,75,51,79,85,93,80/)
 ! array to hold the equivalent letter grades (A, B, C, etc.)
 CHARACTER, DIMENSION(10) :: letter_grade
 ! because the array arguments are declared in the procedure
 ! as assumed-shape arrays, the procedure’s interface must
 ! be explicit
 !
 INTERFACE
 SUBROUTINE convert(num, letter)
 INTEGER :: num(:)
 CHARACTER :: letter(:)
 END SUBROUTINE convert
 END INTERFACE

 PRINT *, 'Numerical score:', test_score
 CALL convert(test_score, letter_grade)
 PRINT '(A,10A3)', ' Letter grade: ', letter_grade
END PROGRAM main

SUBROUTINE convert(num, letter)
 ! declare the dummy arguments as assumed-shape arrays
 INTEGER :: num(:)
 CHARACTER :: letter(:)

 ! use the WHERE statements to figure the letter grade
 ! equivalents
 WHERE (num >= 90) letter = 'A'
 WHERE (num >= 80 .AND. num < 90) letter = 'B'
 WHERE (num >= 70 .AND. num < 80) letter = 'C'
 WHERE (num >= 60 .AND. num < 70) letter = 'D'
 WHERE (num < 60) letter = 'F'
END SUBROUTINE convert

102 Chapter 5

Expressions and assignment
Assignment

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 score2grade.f90
$ a.out
 Numerical score: 75 87 99 63 75 51 79 85 93 80
 Letter grade: C B A D C F C B A B

The next example is a subroutine that uses the WHERE construct to
replace each positive element of array a by its square root. The
remaining elements calculate the complex square roots of their values,
which are then stored in the corresponding elements of the complex
array ca. In the ELSEWHERE part of the construct, the assignment to
array a should not appear before the assignment to array ca; otherwise,
all of ca will be set to zero.

SUBROUTINE find_sqrt(a, ca)
 REAL :: a(:)
 COMPLEX :: ca(:)

 WHERE (a > 0.0)
 ca = CMPLX(0.0)
 a = SQRT(a)
 ELSEWHERE
 ca = SQRT(CMPLX(a))
 a = 0.0
 END WHERE
END SUBROUTINE find_sqrt

103

6 Execution control

The normal flow of execution in a Fortran 90 program is sequential.
Statements execute in the order of their appearance in the program.
However, you can alter this flow. The following topics, described in this
chapter, describe how to achieve this:

• Control constructs and statement blocks

• Flow control statements

For a full description of each Fortran 90 control statement, see
Chapter 10, “HP Fortran Statements.” For information about the WHERE
construct, see “Masked array assignment” on page 99.

104 Chapter 6

Execution control
Control constructs and statement blocks

Control constructs and statement blocks
A control construct consists of a statement block whose execution logic is
defined by one of the following control statements:

• CASE statement

• DO statement

• IF statement

A statement block is a sequence of statements delimited by a control
statements and its corresponding terminal statement. A statement block
consists of zero or more statements and can include nested control
constructs. However, any nested construct must have its beginning and
end within the same statement block.

Although the Standard forbids transferring control into a statement
block except by means of its control statement, HP Fortran allows it. The
Standard does permit the transferring control out of a statement block.
For example, the following IF construct contains a GO TO statement that
legally transfers control to a label that is defined outside the IF
construct:

 IF (var > 1) THEN
 var1 = 1
 ELSE
 GO TO 2
 END IF
 ...
2 var1 = var2

The next logical IF statement is nonstandard (but permitted by HP
Fortran) because it would transfer control into the DO construct:

 IF (.NOT.done) GO TO 4 ! nonstandard!
 ...
 DO i = 1, 100
 sum = b + c
4 b = b + 1
 END DO

The following sections describe the operations performed by the three
control constructs.

Chapter 6 105

Execution control
Control constructs and statement blocks

CASE construct
The CASE construct selects (at most) one out of a number of statement
blocks for execution.

Syntax [construct-name :] SELECT CASE (case-expr)
[CASE (case-selector) [construct-name]
 statement-block]
 ...
[CASE DEFAULT [construct-name]
 statement-block]
END SELECT [construct-name]

Notes on syntax case-selector is one of the following:

• case-value

• low :

• : high

• low : high

case-selectors must be mutually exclusive and must agree in type with
case-expr.

case-expr must evaluate to a scalar value and must be an integer, logical,
or character type.

If construct-name is given in the SELECT CASE statement, the same
name may appear after any CASE statement within the construct, and
must appear in the END CASE statement. The construct name cannot be
used as a name for any other entity within the program unit.

CASE constructs can be nested. Construct names can then be useful in
avoiding confusion.

Although the Standard forbids branching to any statement in a CASE
construct other than the initial SELECT CASE statement from outside
the construct, HP Fortran allows it. The Standard allows branching to
the END SELECT statement from within the construct.

106 Chapter 6

Execution control
Control constructs and statement blocks

Execution logic The execution sequence of the CASE construct is as follows:

1 case-expr is evaluated.

2 The resulting value is compared to each case-selector.

3 If a match is found, the corresponding statement-block executes.

4 If no match is found but a CASE DEFAULT statement is present, its
statement-block executes.

5 If no match is found and there is no CASE DEFAULT statement,
execution of the CASE construct terminates without any block
executing.

6 The normal flow of execution resumes with the first executable
statement following the END SELECT statement, unless a statement
in statement-block transfers control.

Example The following CASE construct prints an error message according to the
value of ios_err:

INTEGER :: ios_err
...
SELECT CASE (ios_err)
CASE (:900)
 PRINT *, ”Unknown error”
CASE (913)
 PRINT *, ”Out of free space”
CASE (963:971)
 PRINT *, ”Format error”
CASE (1100:)
 PRINT *, ”ISAM error”
CASE DEFAULT
 PRINT *, ”Miscellaneous Error”
END SELECT

Chapter 6 107

Execution control
Control constructs and statement blocks

DO construct
The DO construct repeatedly executes a statement block. The syntax of
the DO statement provides two ways to specify the number of times the
statement block executes:

• By specifying a loop count.

• By testing a logical expression as a condition for executing each
iteration.

You can also omit all control logic from the DO statement, in effect
creating an infinite loop. The following sections describe the three
variations of the DO construct.

You can use the CYCLE and EXIT statements to alter the execution logic
of the DO construct. For information about these statements, see “Flow
control statements” on page 112.

Counter-controlled DO loop
A counter-controlled DO loop uses an index variable to determine the
number of times the loop executes.

Syntax [construct-name :] DO index = init, limit [, step]
 statement-block
END DO [construct-name]

HP Fortran also supports the older, FORTRAN 77-style syntax of the DO
loop:

DO label index = init, limit [, step]
 statement-sequence
label terminal-statement

A third form, combining elements of the other two, is also supported:

[construct-name :] DO label index = init, limit [, step]

108 Chapter 6

Execution control
Control constructs and statement blocks

Execution logic The following execution steps apply to all three syntactic forms, except as
noted:

1 The loop becomes active, and index is set to init.

2 The iteration count is determined by the following expression:

MAX(INT (limit - init + step) / step, 0)

step is optional, with the default value of 1. It may not be 0.

Note that the iteration count is 0 if either of the following conditions
is true:

• step (if present) is a positive number and init is greater than limit.

• step is a negative number and init is less than limit.

3 If the iteration count is 0, the construct becomes inactive and the
normal flow of execution resumes with the first executable statement
following the END DO or terminal statement.

4 statement-block executes. (In the case of the old-style syntactic form,
both statement-sequence and terminal-statement execute.)

5 The iteration count is decremented by 1, and index is incremented by
step, or by 1 if step is not specified.

6 Go to Step 3.

NOTE To ensure compatibility with older versions of Fortran, you can use the
+onetrip compile-line option to ensure that, when a counter-controlled DO
loop is encountered during program execution, the body of the loop executes
at least once.

Examples This example uses nested DO loops to sort an array into ascending order:

INTEGER :: scores(100)

DO i = 1, 99
 DO j = i+1, 100
 IF (scores(i) > scores(j)) THEN
 temp = scores(i)
 scores(i) = scores(j)
 scores(j) = temp
 END IF
 END DO
END DO

Chapter 6 109

Execution control
Control constructs and statement blocks

The following example uses the older syntactic form. Note that, unlike
the newer form, old-style nested DO loops can share the same terminal
statement:

 DO 10 i = 1, 99
 DO 10 j = i+1, 100
 if (scores(i) <= scores(j)) GO TO 10
 temp = scores(i)
 scores(i) = scores(j)
 scores(j) = temp
10 CONTINUE

Conditional DO loop
A conditional DO loop uses the WHILE syntax to test a logical expression
as a condition for executing the next iteration.

Syntax [construct-name :] DO WHILE (logical-expression)
 statement-block
END DO [construct-name]

Fortran 90 also supports the older syntax of the DO WHILE loop:

DO label WHILE (logical-expression)
 statement-sequence
label terminal-statement

Execution logic 1 The loop becomes active.

2 The logical-expression is evaluated. If the result of the evaluation is
false, the loop becomes inactive, and the normal flow of execution
resumes with the first executable statement following the END DO
statement, or in the old DO-loop syntax, the terminal statement.

3 statement-block executes. (In the case of the old-style syntactic form,
both statement-sequence and terminal-statement execute.)

4 Go to Step 2.

Example ! Compute the number of years it takes to double the value of an
! investment earning 4% interest per annum
REAL :: money, invest, interest
INTEGER :: years

money = 1000
invest = money
interest = .04
years = 0
DO WHILE (money < 2*invest) ! doubled our money?
 years = years + 1

110 Chapter 6

Execution control
Control constructs and statement blocks

 money = money + (interest * money)
END DO
PRINT *, ”Years =”, years

Infinite DO loop
The DO statement for the infinite DO loop contains no loop control logic. It
executes a statement block for an indefinite number of iterations, until it
is terminated explicitly by a statement within the block; for example, a
RETURN or EXIT statement.

Syntax [construct-name :] DO
 statement-block
END DO [construct-name]

Execution logic The execution sequence of an infinite DO loop is as follows:

1 The loop becomes active.

2 statement-block executes.

3 Go to Step 2.

Example ! Compute the average of input values; press 0 to exit
INTEGER :: i, sum, n

sum = 0
n = 0
average: DO
 PRINT *, 'Enter a new number or 0 to quit'
 READ *, i
 IF (i == 0) EXIT
 sum = sum + i
 n = n + 1
END DO average
PRINT *, 'The average is ', sum/n

Chapter 6 111

Execution control
Control constructs and statement blocks

IF construct
The IF construct selects between alternate paths of execution. The
executing path is determined by testing logical expressions. At most, one
statement block within the IF construct executes.

Syntax [construct-name :] IF (logical-expression1) THEN
 statement-block1
[ELSE IF (logical-expression2) THEN [construct-name]
 statement-block2]
 .
 .
 .
[ELSE [construct-name]
 statement-block3]
END IF [construct-name]

Execution logic 1 logical-expression1 is evaluated. If it is true, statement-block1
executes.

2 If logical-expression1 evaluates to false and ELSE IF statements are
present, the logical-expression for each ELSE IF statement is
evaluated. The first expression to evaluate to true causes the
associated statement-block to execute.

3 If all expressions evaluate to false and the ELSE statement is present,
its statement-block executes. If the ELSE statement is not present, no
statement block within the construct executes.

4 The normal flow of execution resumes with the first executable
statement following the END IF statement.

Example ! Compare two integer values
IF (num1 < num2) THEN
 PRINT *, ”num1 is smaller than num2.”
ELSE IF (num1 > num2) THEN
 PRINT *, ”num1 is greater than num2.”
ELSE
 PRINT *, ”The numbers are equal”
END IF

112 Chapter 6

Execution control
Flow control statements

Flow control statements
Flow control statements alter the normal flow of program execution or
the execution logic of a control construct. For example, the GO TO
statement can be used to transfer control to another statement within a
program unit, and the EXIT statement can terminate execution of a DO
construct.

This section describes the operations performed by the following flow
control statements:

• CONTINUE statement

• CYCLE statement

• EXIT statement

• Assigned GO TO statement

• Computed GO TO statement

• Unconditional GO TO statement

• Arithmetic IF statement

• Logical IF statement

• PAUSE statement

• STOP statement

For additional information about these statements, see Chapter 10, “HP
Fortran Statements.”

Chapter 6 113

Execution control
Flow control statements

CONTINUE statement
The CONTINUE statement has no effect on program execution. It is
generally used to mark a place for a statement label, especially when it
occurs as the terminal statement of a FORTRAN 77-style DO loop.

Syntax CONTINUE

Execution logic No action occurs.

Example ! find the 50th triangular number
 triangular_num = 0
 DO 10 i = 1, 50
 triangular_num = triangular_num + i
10 CONTINUE
 PRINT *, triangular_num

CYCLE statement
The CYCLE statement interrupts execution of the current iteration of a
DO loop.

Syntax CYCLE [do-construct-name]

Execution logic 1 The current iteration of the enclosing DO loop terminates. Any
statements following the CYCLE statement do not execute.

2 If do-construct-name is specified, the iteration count for the named DO
loop decrements. If do-construct-name is not specified, the iteration
count for the immediately enclosing DO loop decrements.

3 If the iteration count is nonzero, execution resumes at the start of the
statement block in the named (or enclosing) DO loop. If it is zero, the
relevant DO loop becomes inactive.

114 Chapter 6

Execution control
Flow control statements

Example LOGICAL :: even
INTEGER :: number

loop: DO i = 1, 10
 PRINT *, ”Enter an integer: ”
 READ *, number
 IF (number == 0) THEN
 PRINT *, ”Must be nonzero.”
 CYCLE loop
 END IF
 even = (MOD(number, 2) == 0)
 IF (even) THEN
 PRINT *, ”Even”
 ELSE
 PRINT *, ”Odd”
 END IF
END DO loop

EXIT statement
The EXIT statement terminates a DO loop. If it specifies the name of a DO
loop within a nest of DO loops, the EXIT statement terminates all loops by
which it is enclosed, up to and including the named DO loop.

Syntax EXIT [do-construct-name]

Execution logic If do-construct-name is specified, execution terminates for all DO loops
that are within range, up to and including the DO loop with that name. If
no name is specified, execution terminates for the immediately enclosing
DO loop.

Example DO
 PRINT *, ”Enter a nonzero integer: ”
 READ *, number
 IF (number == 0) THEN
 PRINT *, ”Bye”
 EXIT
 END IF
 even_odd = MOD(number, 2)
 IF (even_odd == 0) THEN
 PRINT *, ”Even”
 ELSE
 PRINT *, ”Odd”
 END IF
END DO

Chapter 6 115

Execution control
Flow control statements

Assigned GO TO statement
The assigned GO TO statement transfers control to the statement whose
statement label was assigned to an integer variable by an ASSIGN
statement.

Syntax GO TO integer-variable [, (label-list)]

If label-list is present, then the label previously assigned to integer-
variable must be in the list.

Execution logic Control transfers to the executable statement at integer-variable.

116 Chapter 6

Execution control
Flow control statements

Example INTEGER int_label
 .
 .
 .
 ASSIGN 20 TO int_label
 .
 .
 .
GOTO int_label
.
.
.
20 ...

Computed GO TO statement
The computed GO TO statement transfers control to one of several
labeled statements, as determined by the value of an arithmetic
expression.

Syntax GO TO (label-list) [,] integer-expression

Execution logic 1 integer-expression is evaluated.

2 The resulting integer value (the index) specifies the ordinal position
of the label that is selected from label-list.

3 Control transfers to the executable statement with the selected label.
If the value of the index is less than 1 or greater than the number of
labels in label-list, the computed GO TO statement has no effect, and
control passes to the next executable statement in the program.

Example DO
 PRINT *, ”Enter a number 1-3: ”
 READ *, k
 GO TO (20, 30, 40) k
 PRINT *, ”Number out of range.”
 EXIT
20 i = 20
 GO TO 100
30 i = 30
 GO TO 100
40 i = 40
100 print *, i
 END DO

Chapter 6 117

Execution control
Flow control statements

Unconditional GO TO statement
The unconditional GO TO statement transfers control to the statement
with the specified label.

Syntax GO TO label

Execution logic Control transfers to the statement at label.

Example Older, “dusty-deck” Fortran programs often combine the GO TO statement
with the logical IF statement to form a kind of leap-frog logic, as in the
following:

 IF (num1 /= num2) GO TO 10
 PRINT *, ”num1 and num2 are equal.”
 GO TO 30
10 IF (num1 > num2) GO TO 20
 PRINT *, ”num1 is smaller than num2.”
 GO TO 30
20 PRINT *, ”num1 is greater than num2.”
30 CONTINUE

Arithmetic IF statement
The arithmetic IF transfers control to one of three labeled statements, as
determined by the value of an arithmetic expression.

Syntax IF (arithmetic-expression) label1, label2, label3

Execution logic 1 arithmetic-expression is evaluated.

2 If the resulting value is negative, control transfers to the statement at
label1.

3 If the resulting value is 0, control transfers to the statement at label2.

4 If the resulting value is positive, control transfers to the statement at
label3.

Example As shown in this example, two or more labels in the label list can be the
same.

i = MOD(total, 3) + 1
IF (i) 10, 20, 10

118 Chapter 6

Execution control
Flow control statements

Logical IF statement
The logical IF statement executes a single statement, conditional upon
the value of a logical expression. The statement it executes must not be:

• A statement used to begin a construct

• Any END statement

• Any IF statement

Syntax IF (logical-expression) executable-statement

Execution logic 1 logical-expression is evaluated.

2 If it evaluates to true, executable-statement executes.

3 The normal flow of execution resumes with the first executable
statement following the IF statement. (If executable-statement is an
unconditional GO TO statement, control resumes with the statement
specified by the GO TO statement.)

Example LOGICAL :: finished
.
.
.
IF (finished) PRINT *, ”Done.”

PAUSE statement
The PAUSE statement causes a temporary break in program execution.

Syntax PAUSE [pause-code]

where pause-code is a character constant or a list of up to 5 digits.

Execution logic 1 Execution of the program is suspended, and the following message is
written to standard output:

To resume execution, type 'go'.

If pause-code is specified, the following message is written:

To resume execution, type 'go'.

PAUSE pause-code

Chapter 6 119

Execution control
Flow control statements

2 The normal flow of execution resumes after the user types the word
go followed by RETURN. If the user enters anything other than go,
program execution terminates.

If the standard input device is other than a terminal, the message is:

To resume execution, execute a kill -15 pid
command.

pid is the unique process identification number of the suspended
program. The kill command can be issued at any terminal at which the
user is logged in.

Example PAUSE 999

STOP statement
The STOP statement terminates program execution.

Syntax STOP [stop-code]

where stop-code is a character constant, a named constant, or a list of up
to 5 digits.

Execution logic Program terminates execution. If stop-code is specified, the following is
written to standard output:

STOP stop-code

Example STOP ”Program has stopped executing.”

120 Chapter 6

Execution control
Flow control statements

121

7 Program units and procedures

This chapter describes the internal structure of each type of program
unit, how it is used, and how information is communicated between
program units and shared by them. This includes the following topics:

• Terminology and concepts

• Main program

• External procedures

• Internal procedures

• Statement functions

• Arguments

• Procedure interface

• Modules

• Block data program unit

For detailed information about individual statements that can be used to
build program units and procedures, see Chapter 10, “HP Fortran
Statements.”

122 Chapter 7

Program units and procedures
Terminology and concepts

Terminology and concepts
The following sections define the terms and explain the concepts that are
mentioned throughout this chapter.

Program units
A program consists of the following program units:

• Main program unit

• External procedure, which can be either a subroutine or a function

• Module program unit

• Block data program unit

A complete executable program contains one (and only one) main
program unit and zero or more other program units, each of which is
separately compilable. A program unit is an ordered set of constructs,
statements, comments, and INCLUDE lines. The heading statement
identifies the kind of program unit; it is optional in a main program unit
only. An END statement marks the end of a program unit.

The only executable program units are the main program and
external procedures. Program execution begins with the first
executable statement in the main program and ends (typically) with the
last. During execution, if the main program references an external
procedure, control passes to the procedure, which executes and returns
control to the main program. An executing procedure can also reference
other procedures or even reference itself recursively.

The main program unit is described in “Main program” on page 125, and
external procedures are described in “External procedures” on page 128.

The nonexecutable program units are:

• The module program unit, which contains data declarations, user-
defined type definitions, procedure interfaces, common block
declarations, namelist group declarations, and subprogram
definitions used by other program units. Modules are described in
“Modules” on page 161.

Chapter 7 123

Program units and procedures
Terminology and concepts

• The block data program unit, which specifies initial values for
variables in named common blocks. Block data program units are
described in “Block data program unit” on page 169.

Procedures
A procedure is a subroutine or function that contains a sequence of
statements and that may be invoked during program execution.
Depending on where and how it is used, a procedure can be one of the
following:

• Intrinsic procedures are defined by the language and are available
for use without any declaration or definition. Intrinsic procedures
implement common computations that are important to scientific and
engineering applications. Intrinsic procedures are described in detail
in Chapter 11, “Intrinsic procedures,” on page 475.

• An external procedure is a separately compilable program unit
whose name and any additional entry points have global scope.
External procedures are described in “External procedures” on
page 128.

• An internal procedure has more limited accessibility than an
external procedure. It can appear only within a main program unit or
an external procedure and cannot be accessed outside of its hosting
program unit. Internal procedures are described in “Internal
procedures” on page 135.

• A module procedure can be defined only within a module program
unit and can be accessed only by use association. Module procedures
are described in “Modules” on page 161.

Scope
All defined Fortran entities have a scope within which their properties
are known. For example, a label used within a subprogram cannot be
referenced directly from outside the subprogram; the subprogram is the
scoping unit of the label. A variable declared within a subprogram has
a scope that is the subprogram. A common block name can be used in any
program unit, and it refers to the same entity—that is, the name has
global scope. At the other extreme, the index variable used within an
implied-DO loop in a DATA statement or array constructor has a scope
consisting only of the implied-DO loop construct itself.

124 Chapter 7

Program units and procedures
Terminology and concepts

Association
If the concept of scope limits the accessibility of entities, then the concept
of association permits different entities to become accessible to each
other in the same or different scope. The different types of association
are:

• Argument association is the association that is established
between actual arguments and dummy arguments during a
procedure reference. For more information, see “Argument
association” on page 139.

• Host association applies to nested scoping units, where the outer
scoping unit (for example, an external procedure) plays host to the
inner scoping unit (for example, an internal procedure). Host
association allows the host and its nested scoping units to share data.
For information about internal procedures, see “Internal procedures”
on page 135.

• Pointer association is the association between a pointer and its
target that is established by a pointer assignment statement. For
more information, see “Pointer association status” on page 48 and
“Pointer assignment” on page 97.

• Sequence association is the association that is established between
dummy and actual arguments when they are arrays of different rank.
For more information, see “Array dummy argument” on page 140.

• Storage association is the association of different objects with the
same storage area and is established by the EQUIVALENCE and
COMMON statements. For more information about storage association,
refer to the descriptions of the EQUIVALENCE and COMMON statements
in Chapter 10, “HP Fortran Statements.” Derived-type objects that
include the SEQUENCE statement in their definition can also be
storage associated; see “Sequence derived type” on page 41.

• Use association allows different program units access to module
entities by means of the USE statement. For more information about
modules and the USE statement, see “Modules” on page 161.

Chapter 7 125

Program units and procedures
Main program

Main program
A main program is a program unit. There must be exactly one main
program in an executable program. Execution always begins with the
main program.

The main program can determine the overall design and structure of the
complete program and often performs various computations by
referencing procedures. A program may consist of the main program
alone, in which case all the program logic is contained within it.

A main program has the form:

[PROGRAM program-name]
 [specification-part]
 [execution-part]
 [internal-procedure-part]
END [PROGRAM [program-name]]

program-name
i s the name of the program. program-name can appear on the
END PROGRAM statement only if it also appears on the PROGRAM
statement; the name must be the same in both places.

specification-part
is zero or more of the statements listed in Table 15 as well as
any of the following:

• Type declaration statement

• Derived-type definition

• Interface block

• Statement function

• Cray-style pointer statement (HP extension)

• Structure definition (HP extension)

• Record declaration (HP extension)

126 Chapter 7

Program units and procedures
Main program

execution-part
is zero or more of the statements or constructs listed in Table 16
as well as any of the following:

• Assignment statement

• Pointer assignment statement

internal-procedure-part
takes the form:

CONTAINS
 [internal-procedure]...

where internal-procedure is one or more internal procedures;
see “Internal procedures” on page 135.

Table 15 Specification statements

ALLOCATABLE FORMAT POINTER

COMMON IMPLICIT SAVE

DATA INTRINSIC STATIC

DIMENSION NAMELIST USE

EQUIVALENCE OPTIONAL VIRTUAL

EXTERNAL PARAMETER VOLATILE

Chapter 7 127

Program units and procedures
Main program

Table 16 Executable statements

The only required component of a main program unit is the END
statement. The following is therefore a valid, compilable program:

END

ACCEPT ELSE ON

ALLOCATE ELSE IF OPEN

ASSIGN ELSEWHERE PAUSE

BACKSPACE ENCODE PRINT

CALL END READ

CASE construct ENDFILE REWIND

CLOSE EXIT STOP

CONTINUE FORMAT TYPE (I/O)

CYCLE GO TO WHERE

DEALLOCATE IF WHERE construct

DECODE IF construct WRITE

DO INQUIRE

DO construct NULLIFY

128 Chapter 7

Program units and procedures
External procedures

External procedures
External procedures are implemented as either functions or subroutines.
The major difference between the two is that a function subprogram
returns a value and can therefore appear as an operand in an expression.

The following sections describe both types of external procedures,
including the following topics:

• Procedure definition

• Procedure reference

• Returning from a procedure call

• Alternate entry points

For detailed information about any of the statements associated with
procedures (for example, SUBROUTINE and FUNCTION), refer to Chapter
10, “HP Fortran Statements.”

Procedure definition
The definition of an external procedure takes the form:

external-procedure-statement
 [specification-part]
 [execution-part]
 [internal-procedure-part]
end-external-procedure-statement

external-procedure-statement
takes one of the following forms, depending on whether the
procedure is a subroutine or function

• [RECURSIVE] SUBROUTINE name &
 [([dummy-arg-list])]

• [RECURSIVE][type-spec] FUNCTION name &
 ([dummy-arg-list]) [RESULT (result-name)]

where name is the name of the procedure; type-spec is the type
of the function’s result value; and dummy-arg-list is a comma-
separated list of dummy arguments, as described in

Chapter 7 129

Program units and procedures
External procedures

“Arguments” on page 139. The SUBROUTINE and FUNCTION
statements are fully described in Chapter 10, “HP Fortran
Statements.”

specification-part
is zero or more of the statements listed in Table 15 as well as the
AUTOMATIC statement.

execution-part
is zero or more of the statements listed in Table 16 as well as the
following statements:

• ENTRY statement

• RETURN statement

internal-procedure-part
takes the form:

CONTAINS
 [internal-procedure]...internal-procedure

is the definition of an internal procedure; see “Internal
procedures” on page 135.

end-external-procedure-statement
takes one of the following forms, depending on whether the
procedure is a subroutine or function:

• END [SUBROUTINE [subroutine-name]]

• END [FUNCTION [function-name]]

130 Chapter 7

Program units and procedures
External procedures

Procedure reference
A procedure reference—also known as a procedure call—occurs when a
procedure name is specified in an executable statement, which causes
the named procedure to execute. The following sections describe
references to subroutines and functions, and recursive references—when
a procedure directly or indirectly calls itself.

Referencing a subroutine
A reference to an external subroutine occurs in a CALL statement, which
specifies either the subroutine name or one of its entry point names. The
syntax of the CALL statement is:

CALL subroutine-name [([actual-argument-list])]

actual-argument-list
is a comma-separated list of the actual arguments that take the
form:
[keyword =] actual-argument

keyword

is the name of a dummy argument that appears in the
SUBROUTINE statement. For more information about
keyword, see “Keyword option” on page 144.

actual-argument

is one of:

• Expression, including a variable name

• Procedure name

• Alternate return

For detailed information about arguments, see
“Arguments” on page 139.

alternate-return

is one of:

• *label

• &label

Chapter 7 131

Program units and procedures
External procedures

label must be a branch target in the same scoping unit as the
CALL statement. The ampersand prefix (&) is an HP extension
and is permitted in fixed source form only. For information
about alternate returns, see “Returning from a procedure
reference” on page 132.

For information about referencing a subroutine that implements a
defined assignment, see “Defined assignment” on page 157.

Referencing a function
An external function subprogram is referenced either by its name or by
one of its entry point names. The syntax of a function reference is:

name ([actual-argument-list])

where name is the function name or the name of one of its entry points
(see “Alternate entry points” on page 133). actual-argument-list has the
same as it does in a subroutine reference (see “Procedure reference” on
page 130), except that it may not include an alternate return.

For information about referencing a function that implements a defined
operator, see “Defined operators” on page 155.

Recursive reference
A procedure that directly or indirectly invokes itself is recursive. Such a
procedure must have the word RECURSIVE added to the FUNCTION or
SUBROUTINE statement.

If a function calls itself directly, both RECURSIVE and a RESULT clause
must be specified in the FUNCTION statement, making its interface
explicit.

The following is a recursive function:

RECURSIVE FUNCTION factorial (n) RESULT(r)
 INTEGER :: n, r
 IF (n.ne.0) THEN
 r = n*factorial(n-1)
 ELSE
 r = 1
 ENDIF
END FUNCTION factorial

Both internal and external procedures can be recursive.

132 Chapter 7

Program units and procedures
External procedures

Returning from a procedure reference
When the END statement of a subprogram is encountered, control returns
to the calling program unit. The RETURN statement can be used to the
same effect at any point within a procedure. The syntax of the RETURN
statement is:

RETURN [alt-return-arg]

where alt-return-arg is a scalar integer expression that evaluates to the
position of one of an alternate-return argument in the subroutine
argument list. alt-return-arg is not permitted with RETURN statements
appearing in functions.

By default, when control returns from a subroutine call, the next
statement to execute is the first executable statement following the CALL
statement. However, by specifying alternate returns as actual arguments
in the subroutine call, the programmer can return control to other
statements. The alternate returns are labels prefixed with an asterisk
(*). Each label is inserted in the list of actual arguments in the position
that corresponds to a placeholder—a simple asterisk (*)—in the dummy
argument list. For example, if the subroutine subr has the following list
of dummy arguments:

SUBROUTINE subr(x, y, z, *, *)

then the actual arguments must include two labels for alternate returns,
as in the following call:

CALL subr(a, b, c, *10, *20)

As a compatibility extension, HP Fortran allows the ampersand (&) as a
prefix character instead of the asterisk, but only in fixed source form.
Alternate returns cannot be optional, and the associated actual
argument cannot have keywords. For detailed information about the
syntax of the alternate return argument, refer to the descriptions of the
CALL and RETURN statements in Chapter 10, “HP Fortran Statements.”

The following example, alt_return.f90, illustrates the alternate return
mechanism. The referenced subroutine, subr, selects one of two
alternate return arguments based on the value of the first argument,
where_to.

alt_return.f90

PROGRAM main
 ! illustrates alternate return arguments

 INTEGER :: por ! point of return

Chapter 7 133

Program units and procedures
External procedures

 por = -1 ! interpreted by arithmetic IF
 CALL subr(por, *10, *15) ! executes first
 PRINT *, 'Default returning point'
 por = 0
 CALL subr(por, *10, *15) ! executes second
 GOTO 20 ! control should never reach here
10 PRINT *, 'Line 10 in main'
 por = 1
 CALL subr(por, *10, *15) ! executes third
 GOTO 20 ! control should never reach here
15 PRINT *, 'Line 15 in main'
20 CONTINUE

END PROGRAM main

SUBROUTINE subr(where_to, *, *)
! Argument list includes placeholders for two alternate returns;
! the third argument, where_to, is used to select a return
! argument

 INTEGER :: where_to

 ! use arithmetic IF to select a return
 IF (where_to) 25, 30, 35 ! labels to transfer control
 PRINT *, 'Should never print'
25 PRINT *, 'Line 25 in subr'
 RETURN ! default returning point
30 PRINT *, 'Line 30 in subr'
 RETURN 1 ! select the first return argument
35 PRINT *, 'Line 35 in subr'
 RETURN 2 ! select the second return argument

END SUBROUTINE subr

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 alt_return.f90
$ a.out
 Line 25 in subr
 Default returning point
 Line 30 in subr
 Line 10 in main
 Line 35 in subr
 Line 15 in main

Alternate entry points
When a procedure is referenced, execution normally begins with the first
executable statement in the procedure. Using the ENTRY statement,
however, the programmer can define alternate entry points into the

134 Chapter 7

Program units and procedures
External procedures

procedure and associate a name with each entry point. Each ENTRY
statement within a procedure defines a procedure entry, which can be
referenced by name as a separate, additional procedure.

The syntax for the ENTRY statement is:

ENTRY entry-name ([dummy-arg-list])[RESULT (result-name)]

Chapter 7 135

Program units and procedures
Internal procedures

Internal procedures
An internal procedure is similar to an external procedure except that:

• It must be defined within a hosting program unit—a main, external,
or module program unit—following the CONTAINS statement.

• It can be referenced by the host only.

• It can access other entities by host association within the host.

• It cannot have an ENTRY statement.

• It cannot be passed as an argument.

• It cannot contain an internal procedure.

The syntax of an internal procedure definition is the same as for an
external procedure (see “Procedure definition” on page 128), except that
it has no internal procedure part. The reference to an internal procedure
is the same as for an external procedure; see “Procedure reference” on
page 130.

The following example, int_func.f90, declares and references an internal
function. Note that both the external procedure and the internal
procedure have an assumed-shape array as a dummy argument, which
requires the procedure to have an explicit interface (see “Procedure
interface” on page 151). External procedures must be declared in an
interface block to make their interface explicit; the interface of internal
procedures is explicit by default.

int_func.f90

PROGRAM main

 ! declare and initialize an array to pass to an external
 ! procedure
 REAL, DIMENSION(3) :: values = (/2.0, 5.0, 7.0/)

 ! Because the dummy argument to print_avg is an assumed-shape
 ! array (see the definition of print_avg below), the
 ! procedure interface of print_avg must
 ! be made explicit within the calling program unit.

 INTERFACE
 SUBROUTINE print_avg(x)
 REAL :: x(:)
 END SUBROUTINE print_avg

136 Chapter 7

Program units and procedures
Internal procedures

 END INTERFACE

 CALL print_avg(values)
END PROGRAM main

! print_avg is an external subprogram
SUBROUTINE print_avg(x)
 REAL :: x(:) ! an assumed-shape array

 ! reference the internal function get_avg
 PRINT *, get_avg(x)

 CONTAINS ! start of internal procedure part
 REAL FUNCTION get_avg(a) ! get_avg is an internal procedure
 ! The interface of an internal procedure is explicit within
 ! the hosting unit, so this function may declare a as an
 ! assumed-shape array.
 REAL a(:) ! an assumed-shape array

 ! references to the SUM and SIZE intrinsics
 get_avg = SUM(a) / SIZE(a)
 END FUNCTION get_avg

END SUBROUTINE print_avg

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 int_func.f90
$ a.out
 4.66667

Chapter 7 137

Program units and procedures
Statement functions

Statement functions
If an evaluation of a function with a scalar value can be expressed in just
one Fortran assignment statement, such a definition can be included in
the specification part of a main program unit or subprogram. This
definition is known as a statement function. It is local to the scope in
which it is defined. The syntax is:

function-name (dummy-argument-list) = scalar-expression

All dummy arguments must be scalars. All entities used in scalar-
expression must have been declared earlier in the specification part. A
statement function can reference another statement function that has
already been declared. The name cannot be passed as a procedure-name
argument. A statement function has an explicit interface.

The following example, stmt_func.f90, is the same as the one listed in
“Internal procedures” on page 135 except that it implements get_avg as
a statement function rather than as an internal function. As noted in the
comments to the program, the elements of the array x are passed to the
statement function as separate arguments because dummy arguments of
a statement function must be scalars.

stmt_func.f90

PROGRAM main

 ! declare and initialize an array to pass to an external
 ! procedure
 REAL, DIMENSION(3) :: values = (/2.0, 5.0, 7.0/)

 ! Because the dummy argument to print_avg is an assumed-shape
 ! array (see the definition of print_avg below), the
 ! procedure interface of print_avg must be made
 ! explicit within the calling program unit.

 INTERFACE
 SUBROUTINE print_avg(x)
 REAL :: x(:)
 END SUBROUTINE print_avg
 END INTERFACE

 CALL print_avg(values)
END PROGRAM main

! print_avg is an external subprogram
SUBROUTINE print_avg(x)
 REAL :: x(:) ! an assumed-shape array

138 Chapter 7

Program units and procedures
Statement functions

 ! Define the statement function get_avg.
 ! Note that the dummy arguments must be scalar, so in order
 ! to find the average of the elements of the array, we must
 ! pass each element as a separate argument
 get_avg(x1, x2, x3) = (x1 + x2 + x3) / 3

 ! reference the statement function get_avg
 PRINT *, get_avg(x(1), x(2), x(3))

END SUBROUTINE print_avg

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 stmt_func.f90
$ a.out
 4.66667

Chapter 7 139

Program units and procedures
Arguments

Arguments
Arguments data to be passed during a procedure call. Arguments are of
two sorts: dummy arguments and actual arguments. Dummy
arguments are specified in the argument list in a procedure definition.
They define the number, type, kind, and rank of the actual arguments.
The actual arguments are the arguments that appear in the procedure
reference and are the actual entities to be used by the referenced
procedure, even though they are known by the dummy argument names.

This section covers the following topics related to arguments:

• Argument association

• Keyword option

• Duplicated association

• INTENT attribute

• %REF and %VAL

Argument association
Argument association is the linkage of actual argument to dummy
argument that initially occurs when a procedure having arguments is
invoked. During the execution of the referenced procedure, the dummy
arguments are effectively aliases for the actual arguments. After control
returns to the program unit making the reference, the dummy
arguments and actual arguments are no longer associated, and the
actual arguments may no longer be referenced by the dummy argument
names.

The principle of argument association is positional: the first item in the
list of actual arguments is associated with the first item in the list of
dummy arguments, and so on with the remaining arguments in each list.
However, the programmer can use the keyword option to override this
positional correspondence; see “Keyword option” on page 144.

Dummy and actual arguments must agree in kind, type, and rank. The
corresponding dummy and actual arguments must both be scalars or
both arrays; if they are both arrays, they must have the same

140 Chapter 7

Program units and procedures
Arguments

dimensionality. Likewise, if an actual argument is an expression or a
reference to a function, it must match the type and kind of the dummy
argument.

The following sections provide more detailed information about these
types of dummy arguments:

• Scalars

• Arrays

• Derived types

• Pointers

• Procedure names

Scalar dummy argument
If the dummy argument is a scalar, the corresponding actual argument
must be a scalar or a scalar expression, of the same kind and type. If the
dummy argument is a character variable and has assumed length, it
inherits the length of the actual argument. Otherwise, the length of the
actual argument must be at least that of the dummy argument, and only
the characters within the range of the dummy argument can be accessed
by the subprogram. Lengths may differ for default character types only.

Array dummy argument
If the dummy argument is an assumed-shape array, the corresponding
actual argument must match in kind, type, and rank; the dummy
argument takes its shape from the actual argument, resulting in an
element-by-element association between the actual and dummy
arguments.

If the dummy argument is an explicit-shape or assumed-size array, the
kind and type of the actual argument must match but the rank need not.
The elements are sequence associated—that is, the actual and dummy
arguments are each considered to be a linear sequence of elements in
storage without regard to rank or shape, and corresponding elements in
each sequence are associated with each other in array element order.

A consequence of sequence association is that the overall size of the
actual argument must be at least that of the dummy argument, and only
elements within the overall size of the dummy argument can be accessed
by referenced procedure.

Chapter 7 141

Program units and procedures
Arguments

For example, if an actual argument has this declaration:

REAL a(0:3,0:2)

and the corresponding dummy argument has this declaration:

REAL d(2,3,2)

then the correspondence between elements of the actual and dummy
arguments is as follows:

Dummy <=> Actual

d(1,1,1) <=> a(0,0)
d(2,1,1) <=> a(1,0)
d(1,2,1) <=> a(2,0)
 ...
d(2,3,2) <=> a(3,2)

When an actual argument and the associated dummy argument are
default character arrays, they may be of unequal character length. If this
is the case, then the first character of the dummy and actual arguments
are matched, and the successive characters—rather than array
elements—are matched.

The next example illustrates character sequence association. Assuming
this declaration of the actual argument:

CHARACTER*2 a(3,4)

and this declaration of the corresponding dummy argument:

CHARACTER*4 d(2,3)

then the correspondence between elements of the actual and dummy
arguments is as follows:

Dummy <=> Actual

d(1,1) <=> a(1,1)//a(2,1)
d(2,1) <=> a(3,1)//a(1,2)
 ...
d(2,3) <=> a(2,4)//a(3,4)

An actual argument may be an array section, but associating an array
section with any other but an assumed-shape dummy argument may
cause a copy of the array section to be generated and is likely to result in
a degradation in performance.

For information about the different types of arrays, see “Array
declarations” on page 54.

142 Chapter 7

Program units and procedures
Arguments

Derived-type dummy argument
When passing a derived-type object, the corresponding dummy and
actual arguments of derived types are assumed to be of the same derived
type. Unless the interface of the referenced procedure is explicit within
the program unit that makes the reference, the compiler does not
perform any type-checking. It is the programmer’s responsibility to
ensure that the types of the dummy argument and the actual argument
are the same, such as by doing either of the following:

• Replicating the definition of the derived type in both subprograms

• Placing the definition in a module and making the definition
available to both subprograms by use association

For information about explicit interface, see “Procedure interface” on
page 151. For information modules and use association, see “Modules” on
page 161.

Pointer dummy argument
If the dummy argument has the POINTER attribute, the actual argument
must also have the POINTER attribute. Furthermore, they must match in
kind, type, and rank. If the dummy argument does not have the POINTER
attribute but the actual argument is a pointer, the argument association
behaves as if the pointer actual argument were replaced by its target at
the time of the procedure reference.

Procedure dummy argument
If a dummy argument is a procedure, the actual argument must be the
name of an appropriate subprogram, and its name must have been
declared as EXTERNAL in the calling unit or defined in an interface block
(see “Procedure interface” on page 151). Internal procedures, statement
functions, and generic names may not be passed as actual arguments.

If the actual argument is an intrinsic procedure, the appropriate specific
name must be used in the reference. It must have the INTRINSIC
attribute.

The following example, intrinsic_arg.f90, declares the intrinsics QSIN
and QCOS with the INTRINSIC attribute so that they can be passed as
arguments to the user-defined subroutine call_int_arg. Note that the
dummy argument, trig_func, is declared in the subroutine with the

Chapter 7 143

Program units and procedures
Arguments

EXTERNAL attribute to indicate that it is a dummy procedure. This
declaration does not conflict with the declaration of the actual arguments
in the main program unit because each occurs in different scoping units.

intrinsic_arg.f90

PROGRAM main
 ! declare the intrinsics QSIN and QCOS with the INTRINSIC
 ! attribute to allow them to be passed as arguments
 REAL(16), INTRINSIC :: QSIN, QCOS

 CALL call_int_arg(QSIN)
 CALL call_int_arg(QCOS)
END PROGRAM main

SUBROUTINE call_int_arg(trig_func)
! trig_func is an intrinsic function--see the declarations
! of the actual arguments in the main program. trig_func
! is declared here as EXTERNAL to indicate that it is a
! dummy procedure.

 REAL(16), EXTERNAL :: trig_func
 REAL(16), PARAMETER :: pi=3.1415926
 INTEGER :: i

 DO i = 0, 360, 45
 ! Convert degrees to radians (i*pi/180) and call the
 ! intrinsic procedure passed as trig_func.
 WRITE(6, 100) i,” degrees “, trig_func(i*pi/180)
 END DO
100 FORMAT (I4, A9, F12.8)
END SUBROUTINE call_int_arg

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 intrinsic_arg.f90
$ a.out
 0 degrees 0.00000000
 45 degrees 0.70710675
 90 degrees 1.00000000
 135 degrees 0.70710686
 180 degrees 0.00000015
 225 degrees -0.70710665
 270 degrees -1.00000000
 315 degrees -0.70710697
 360 degrees -0.00000030
 0 degrees 1.00000000
 45 degrees 0.70710681
 90 degrees 0.00000008
 135 degrees -0.70710670
 180 degrees -1.00000000
 225 degrees -0.70710691
 270 degrees -0.00000023

144 Chapter 7

Program units and procedures
Arguments

 315 degrees 0.70710659
 360 degrees 1.00000000

See Chapter 10, “HP Fortran Statements,” for information about the
EXTERNAL and INTRINSIC statements. Intrinsic procedures are fully
described in Chapter 11, “Intrinsic procedures,” on page 475.

Keyword option
The keyword option allows the programmer to specify actual
arguments in a procedure reference independently of the position of the
dummy arguments. Using the keyword option, the programmer explicitly
pairs an actual argument with its dummy argument, as shown by the
syntax:

dummy-argument = actual-argument

If the keyword option is used for an argument, it must be followed by
other arguments with the keyword option. If all arguments in the
argument list use the keyword option, the actual arguments may appear
in any order.

As an example of how to use the keyword option, consider the SUM
intrinsic function. As described in “SUM(ARRAY, DIM, MASK)” on
page 577, this intrinsic has three arguments: array, dim, and mask, in
that order; dim and mask are optional arguments. The following are
therefore valid references to SUM:

SUM(a,2)
SUM(a,mask=a.gt.0)
SUM(dim=2,array=a)

The following is an invalid reference—the mask keyword must be
specified:

SUM(a,dim=2,a.gt.0) ! ILLEGAL, mask keyword missing

Chapter 7 145

Program units and procedures
Arguments

Optional arguments
An actual argument may be omitted from the argument list of a
procedure reference if its corresponding dummy argument is optional. A
dummy argument is optional if it is declared with the OPTIONAL
attribute and appears at the end of the argument list. The procedure
reference may also omit trailing arguments with the OPTIONAL
attribute. Otherwise, keywords must be provided to maintain an
identifiable correspondence (see “Keyword option” on page 144). Only
procedures with an explicit interface may have optional arguments.

The following example, optional_arg.f90, references an internal function
that declares one of its dummy arguments with the OPTIONAL attribute.
(Internal functions have an explicit interface, making them eligible for
optional arguments; see “Internal procedures” on page 135.) The function
uses the PRESENT intrinsic to test whether or not the optional argument
is present. If the intrinsic returns .TRUE. (an actual argument is
associated with the optional dummy argument), the function returns the
sum of the two arguments; otherwise, it returns the required argument
incremented by 1.

optional_arg.f90

PROGRAM main
! illustrates the optional argument feature

 INTEGER :: arg1 = 10, arg2 = 20

 PRINT *, add_or_inc(arg1) ! omit optional argument
 PRINT *, add_or_inc(arg1, arg2)

 CONTAINS ! internal procedure with explicit interface
 INTEGER FUNCTION add_or_inc(i1, i2)
 ! return the sum of both arguments if the second argument
 ! (declared as optional) is present; otherwise, return the
 ! first argument incremented by 1

 INTEGER :: i1
 INTEGER, OPTIONAL :: i2 ! optional argument

 ! use PRESENT intrinsic to see if i2 has an actual
 ! argument associated with it
 IF (PRESENT(i2)) THEN
 add_or_inc = i1 + i2 ! add both arguments
 ELSE
 add_or_inc = i1 + 1 ! increment required argument
 END IF
 END FUNCTION add_or_inc
END PROGRAM main

146 Chapter 7

Program units and procedures
Arguments

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 optional_arg.f90
$ a.out
 11
 30

For information about the syntax, rules and restrictions governing the
OPTIONAL statement and attribute, see “OPTIONAL (statement and
attribute)” on page 387. For information about the PRESENT intrinsic see
“PRESENT(A)” on page 559.

Duplicated association
If a procedure reference would cause a data object to be associated with
two or more dummy arguments, the object must not be redefined within
the referenced procedure. Consider the following example:

PROGRAM p
 CALL s (a,a)
CONTAINS
 SUBROUTINE s (c,d)
 c = 22.01 ! ILLEGAL definition of one of the dummy
 ! arguments associated with data object a
 ...
 END SUBROUTINE

END PROGRAM

Both dummy arguments, c and d, are associated with the actual
argument a. The procedure includes an assignment to c, the effect of
which is to redefine a. This attempt to redefine a is invalid. This rule
actual arguments that are overlapping sections of the same array.

Similarly, if a data object is available to a procedure through both
argument association and either use, host, or storage association, then
the data object must be defined and referenced only through the dummy
argument.

Chapter 7 147

Program units and procedures
Arguments

In the following code, the data object a is available to the subroutine as a
consequence of argument association and host association. The direct
reference to a in the subroutine is illegal.

PROGRAM p
 CALL s (a,b)
CONTAINS
 SUBROUTINE s (c,d)
 c = 22.01 ! valid definition of a through the dummy
 ! argument
 d = 3.0*a ! direct reference to a is ILLEGAL
 ...
 END SUBROUTINE
END PROGRAM

148 Chapter 7

Program units and procedures
Arguments

INTENT attribute
To enable additional compile-time checking of arguments and to avoid
possibly unwanted side effects, the INTENT attribute can be declared for
each dummy argument, which may be specified as INTENT(IN),
INTENT(OUT) or INTENT(INOUT).

The values that may be specified for the INTENT attribute have the
following significance:

• IN is used if the argument is not to be modified within the
subprogram.

• OUT implies that the actual argument must not be used within the
subprogram before it is assigned a value.

• INOUT (the form IN OUT is also permitted) implies that the actual
argument must be defined on entry and is definable within the
subprogram.

See “INTENT (statement and attribute)” on page 358 for more
information about the INTENT attribute.

%VAL and %REF built-in functions
By default, HP Fortran passes noncharacter arguments by reference.
Instead of passing the value of the actual argument to the referenced
procedure, Fortran passes its address, with which the name of the
dummy argument becomes associated—as explained in “Argument
association” on page 139. When HP Fortran passes character arguments,
it includes a hidden length parameter along with the address of the
actual argument.

However, it is possible to change the way arguments are passed by using
the %VAL and %REF built-in functions, which HP Fortran provides as
extensions:

• %VAL(arg) specifies that the value of arg—rather than its address—
is to be passed to the referenced procedure. arg can be a constant
variable, an array element, or a derived-type component.

Chapter 7 149

Program units and procedures
Arguments

• %REF(arg) specifies that the address of arg is to be passed to the
referenced procedure. Because this is how HP Fortran normally
passes all noncharacter arguments, %REF is useful only when arg is of
type character. The effect of using %REF with a character argument is
to suppress the hidden length parameter.

These built-in functions are typically used to pass arguments from
Fortran to a procedure written in another language, such as a C function.
The following example illustrates this use. The program consists of a
Fortran 90 main program unit and a C function. The main program calls
the C function, passing 4 arguments: an integer constant, a real variable,
a character variable, and an integer expression. The main program uses
the built-in functions to change Fortran’s argument-passing conventions
to conform to C. C expects all arguments except the string—Fortran’s
character variable—to be passed by value. It expects the string to be
passed by reference, without the hidden length parameter.

pass_args.f90

PROGRAM main
 REAL :: x = 3.4
 INTEGER :: i1 = 5, i2 = 7
 ! C expects strings to be null-terminated, so use the
 ! concatenation operator to append a null character.
 CHARACTER(LEN=5) :: str = "Hi!"//CHAR(0)

 ! Pass 4 arguments--a constant, a variable, a character
 ! variable, and an expression--to a function written in C.
 ! Use HP Fortran’s built-in functions to change the
 ! argument-passing conventions to conform to C.
 CALL get_args(%VAL(20), %VAL(x), %REF(str), %VAL(i1+i2))
END PROGRAM main

get_args.c

#include <stdio.h>

/* accept 4 arguments from a Fortran 90 program, which are
 * passed as C expects them to be passed
 */
void get_args(int i1, float x, char *s, int i2)
{
 /* display argument values */
 printf("First argument: %i\n", i1);
 printf("Second argument: %f\n", x);
 printf("Third argument: %s\n", s);
 printf("Fourth argument: %i\n", i2);
}

Here are the command lines to compile and link both files, and to execute
the program, along with the output from a sample run:

150 Chapter 7

Program units and procedures
Arguments

$ cc -Aa -c get_args.c
$ f90 pass_args.f90 get_args.o
$ a.out
First argument: 20
Second argument: 3.400000
Third argument: Hi!
Fourth argument: 12

For additional information about multi-language programming, refer to
the HP Fortran Programmer’s Guide. The built-in functions can also be
used with the ALIAS directive, where they have a slightly different
syntax.

Chapter 7 151

Program units and procedures
Procedure interface

Procedure interface
A procedure interface is the information specified in a procedure
reference, including the name of the procedure, the arguments, and (if
the procedure is a function) the result. If the interface is explicit, all of
the characteristics of the arguments and the result—type, kind,
attributes, and number—are defined within the scope of the reference. If
the interface is implicit, the compiler may be able to make sufficient
assumptions about the interface to permit the procedure reference.

All procedure interfaces are implicit except for the following:

• Intrinsic procedure

• Internal procedure

• Module procedure

• Recursive function that specifies a result clause

• External procedure whose interface is declared in an interface block

An explicit interface is required when:

• The procedure reference uses the keyword form of an actual
argument.

• The procedure has OPTIONAL arguments.

• Any dummy argument is an assumed-shape array or a pointer.

• The result of a function is array-valued or a pointer.

• The procedure is a character function, the length of which is
determined dynamically.

• The procedure reference is to a generic name.

• The procedure reference implements a user-defined operator or
assignment.

• The procedure has the same name as an intrinsic procedure, but you
want it to have precedence over the intrinsic; see “Availability of
intrinsics” on page 476.

152 Chapter 7

Program units and procedures
Procedure interface

• You want the compiler to perform argument-checking at compile-
time.

The following sections describe the interface block and its use for
creating:

• Generic procedures

• Defined operators

• Defined assignment

Interface blocks
An interface block is used to provide an explicit interface for external
procedures or to define a generic procedure. An interface block may
appear in any program unit, except a block data program unit. It is
specified in the specification part of the program unit.

The syntax for an interface block is:

INTERFACE [generic-spec]
 [interface-body]...
 [MODULE PROCEDURE module-procedure-name-list]
END INTERFACE

generic-spec
is one of:

• generic-name

• OPERATOR (operator)

• ASSIGNMENT (=)

If generic-spec is omitted, then the MODULE PROCEDURE
statement must also be omitted.

generic-name

is the name of the generic procedure that is referenced
in the subprogram containing the interface block.

operator

is a unary or binary operator—intrinsic or user-
defined—of the form:

.letter[letter]... .

Chapter 7 153

Program units and procedures
Procedure interface

interface-body
is:
function-statement
 [specification-part]
end-function-statement
or
subroutine-statement
 [specification-part]
end-subroutine-statement

module-procedure-name-list
is a comma-separated list of names of module procedures that
have generic-spec as a generic interface. Each module-procedure
name must be accessible either by use association or—if this
interface block is in a module that defines the module
procedure—by host association.
If the MODULE PROCEDURE statement is present, then generic-
spec must also be present.

The following example, proc_interface.f90, uses an interface block in the
main program unit to provide an explicit interface for the function avg.

proc_interface.f90

! Define an external function avg with one assumed-shape dummy
! argument. Note that the definition of the function must
! lexically precede its declaration in the interface block.
REAL FUNCTION avg(a)
 REAL a(:)
 avg = SUM(a)/SIZE(a)
END FUNCTION avg

PROGRAM main
 REAL,DIMENSION(3) :: x
 INTERFACE
 REAL FUNCTION avg(a)
 REAL, INTENT(IN) :: a(:)
 END FUNCTION avg
 END INTERFACE
 x=(/2.0, 4.0, 7.0/)
 PRINT *, avg(x)
END PROGRAM main

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 proc_interface.f90
$ a.out
 4.33333

154 Chapter 7

Program units and procedures
Procedure interface

Generic procedures
The Fortran 90 concept of generic procedures extends the
FORTRAN 77 concept of generic intrinsics to allow user-defined generic
procedures. A procedure is generic if its name—a generic name—is
associated with a set of specific procedures. Referencing the generic
name allows actual arguments to differ in type, kind, and rank. The
differences in the arguments determine which specific procedure is
invoked.

A generic procedure is defined in an interface block that specifies its
name and the interfaces of the specific procedures; see “Interface blocks”
on page 152. The specific procedures within the interface block must all
be subroutines or all functions. The interface for each procedure must
differ from the others in one or more of the following ways:

• The number of dummy arguments must differ.

• Arguments that occupy the same position in the dummy argument
lists must differ in type, kind, or rank.

• The name of a dummy argument must differ from the names of the
other dummy arguments in the argument lists of the other
procedures, or all dummy arguments with the same name must differ
in type, kind, or rank.

There may be more than one interface block with the same generic name,
but the specific procedures whose interfaces appear in all such interface
blocks must be distinguishable by the above criteria.

The MODULE PROCEDURE statement can be used to extend the list of
specific procedures to include procedures that are otherwise accessible to
the program unit containing the interface block. The MODULE PROCEDURE
statement specifies only the procedure names; the procedure interfaces
are already explicit. The MODULE PROCEDURE statement may appear only
in an interface block that has a generic specification. Furthermore, the
interface block must be contained either in the same module that
contains the definitions of the named procedures or in a program unit in
which the procedures are accessible through use association.

The following example assumes that two subroutines have been coded for
solving linear equations: rlineq for when the coefficients are real, and
zlineq for when the coefficients are complex. A generic name, lineq, is

Chapter 7 155

Program units and procedures
Procedure interface

declared in the INTERFACE statement, enabling it to be used for
referencing either of the specific procedures, depending on whether the
arguments are real or complex:

INTERFACE lineq
 SUBROUTINE rlineq(ra,rb,rx)
 REAL,DIMENSION(:,:) :: ra
 REAL,DIMENSION(:) :: rb,rx
 END SUBROUTINE rlineq
 SUBROUTINE zlineq(za,zb,zx)
 COMPLEX,DIMENSION(:,:) :: za
 COMPLEX,DIMENSION(:) :: zb,zx
 END SUBROUTINE zlineq
END INTERFACE lineq

Defined operators
The OPERATOR clause can be used with the INTERFACE statement either
to define a new user-defined operator or to extend—or overload—the
behavior of an already defined or intrinsic operator. This second use is
similar to defining a generic procedure (see “Generic procedures” on
page 154). The re-defined operator becomes associated with a generic
operator.

When the OPERATOR clause is present in the INTERFACE statement, the
specific procedures within the interface block must all be functions. The
functions can implement the operator for operands of different types,
kinds, and ranks. These functions are restricted to one or two mandatory
arguments, depending on whether the defined operator is unary or
binary. The functions return the result of an expression of the form:

[operand] operator operand

Each dummy argument of the functions listed in the interface block must
have the INTENT(IN) attribute. If operator is intrinsic, each specified
function must take the same number of arguments as the intrinsic
operator has operands. Furthermore, the arguments must be
distinguishable from those normally associated with the intrinsic
operation. However, argument keywords must not be used when the
argument is specified as an operand to a defined operator.

If a user-defined operator is referenced by its generic name, the reference
must resolve to a unique, specific function name. The selection of the
function is accomplished by matching the number, type, kind, and rank
of the operand with the dummy argument lists of the functions specified
in the interface block. As with generic name references (see “Generic

156 Chapter 7

Program units and procedures
Procedure interface

procedures” on page 154), exactly one procedure must match the
properties of the operands, and the matching function is selected and
invoked.

The following program, def_op.f90, illustrates a defined operation. The
operation, .inrect., compares two derived-type operands. The one
operand holds the x and y co-ordinates of a point on a graph, and the
other holds the set of co-ordinates defining a rectangle. If the point is
inside the rectangle, the operation evaluates to .TRUE.. The module in
which the operation is defined also contains the definitions of the types of
the operands.

As noted in the comments, when a module is defined in the same file as
any USE statements that reference the module, the definition must
lexically precede the USE statements. For information about modules and
the USE statement, see “Modules” on page 161.

def_op.f90

! Note that, if a module definition and any USE statements that
! reference the definition are in the same file, then the
! definition must lexically precede the USE statements.
MODULE coord_op_def
 ! Defines a logical operation for comparing two derived-type
 ! operands, as well as the derived types

 ! Define a derived type for the co-ordinates of a point
 ! in a graph
 TYPE coord_pt
 INTEGER :: x, y
 END TYPE coord_pt

 ! define a derived type for the co-ordinates of a rectangle
 TYPE rect_coords
 TYPE(coord_pt) :: p1, p2
 END TYPE rect_coords

 ! Interface block to define the logical operator .inrect.
 ! Evaluates to .TRUE. if the point operand lies inside
 ! the rectangle operand
 INTERFACE OPERATOR (.inrect.)
 MODULE PROCEDURE cmp_coords
 END INTERFACE

CONTAINS
 LOGICAL FUNCTION cmp_coords(pt, rect)
 ! returns .TRUE. if pt is inside rect

 ! arguments
 TYPE (coord_pt), INTENT (IN) :: pt
 TYPE (rect_coords), INTENT (IN) :: rect

Chapter 7 157

Program units and procedures
Procedure interface

 cmp_coords = .FALSE. ! initialization
 IF (pt%x >= rect%p1%x .AND. pt%x < rect%p2%x &
 .AND. pt%y >= rect%p1%y .AND. pt%y < rect%p2%y) &
 cmp_coords = .TRUE. ! pt is inside rect

 END FUNCTION cmp_coords
END MODULE coord_op_def

PROGRAM main
 ! make the defined operation and the derived-type definitions
 ! of the operands accessible to this program unit
 USE coord_op_def

 ! specify a value for the rectangle co-ordinates
 TYPE (rect_coords) :: rectangle = &
 rect_coords(coord_pt(3, 5), coord_pt(7, 10))
 TYPE (coord_pt) :: point ! user will specify value for this

 PRINT *, 'Enter two co-ordinates (integers) in a graph:'
 READ *, point

 ! perform defined operation
 IF (point .inrect. rectangle) THEN
 PRINT *, 'The point lies inside the rectangle.'
 ELSE
 PRINT *, 'The point lies outside the rectangle.'
 END IF
END PROGRAM main

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 def_op.f90
$ a.out
 Enter two co-ordinates (integers) in a graph:
4,8
 The point lies inside the rectangle.

Defined assignment
The ASSIGNMENT clause can be used with the INTERFACE statement to
specify one or more subroutines that extend—or overload—the
assignment operator. Each subroutine must have exactly two arguments.
The first argument can have either the INTENT(OUT) or the
INTENT(INOUT) attribute; the second argument must have the
INTENT(IN) attribute. The first argument corresponds to the variable
on the left-hand side of an assignment statement, and the second to the
expression on the right-hand side.

Similarly to generic names and defined operators, there can be more
than one defined assignment, but each occurrence of the assignment
statement must resolve to a unique, specific subroutine. The subroutine

158 Chapter 7

Program units and procedures
Procedure interface

whose dummy arguments match the left-hand and right-hand sides of
the assignment statement in kind, type, and rank is selected and invoked
from the list of subroutines specified in the defined-assignment interface
block.

The following example, def_assign.f90, illustrates defined assignment.
The assignment consists of performing an elementary statistical analysis
of the data on the right-hand operand and storing the results in the left-
hand operand. As noted in the comments, when a module is defined in
the same file as any USE statements that references the module, the
definition must lexically precede the USE statements. For information
about modules and the USE statement, see “Modules” on page 161.

def_assign.f90

! Note that, if a module definition and any USE statements that
! reference the definition are in the same file, then the
! definition must lexically precede the USE statements.
MODULE def_assign_stats
 ! Defines the derived-type operands and extends the assignment
 ! operator to perform a statistical analysis of the data in
 ! raw_data

 ! input data
 TYPE raw_data
 REAL :: x(100) ! values to be averaged
 INTEGER :: n ! number of values assigned to x
 END TYPE raw_data

 ! output data
 TYPE stats_data
 REAL :: sum, max, min, avg ! statistical results
 END TYPE stats_data

 ! interface block to extend the assignment operator
 INTERFACE ASSIGNMENT (=)
 MODULE PROCEDURE do_stats
 END INTERFACE

CONTAINS
 SUBROUTINE do_stats(lside, rside)
 ! define the operations that are performed when
 ! rside is assigned (=) to lside

 TYPE (raw_data), INTENT (IN) :: rside
 TYPE (stats_data), INTENT (OUT) :: lside

 ! use a structure constructor for initialization
 lside = stats_data(0, 0, 9999999.9, 0)

 ! find the sum, max, and min
 DO i = 1, rside%n
 lside%sum = lside%sum + rside%x(i)

Chapter 7 159

Program units and procedures
Procedure interface

 IF (lside%max < rside%x(i)) lside%max = rside%x(i)
 IF (lside%min > rside%x(i)) lside%min = rside%x(i)
 END DO

 lside%avg = lside%sum / rside%n ! the average
 END SUBROUTINE do_stats
END MODULE def_assign_stats

PROGRAM main
 ! Make the defined assignment and the definitions of the
 ! derived-type operands in the assignment accessible to
 ! this program unit
 USE def_assign_stats

 TYPE (raw_data) :: user_data ! right-hand side of
 ! assignment
 TYPE (stats_data) :: user_stats ! left-hand side of assignment

 CALL get_data(user_data) ! collect user data
 user_stats = user_data ! defined assignment statement

 PRINT *, 'Maximum =', user_stats%max
 PRINT *, 'Minimum =', user_stats%min
 PRINT *, 'Sum =', user_stats%sum
 PRINT *, 'Average =', user_stats%avg
END PROGRAM main

SUBROUTINE get_data(data)
 ! this subroutine stores user-input values and the number
 ! of values stored in data

 ! make the definition of raw_data accessible
 USE def_assign_stats
 TYPE (raw_data) :: data ! the argument
 REAL :: val
 INTEGER :: i

 ! get user input
 DO i = 1, 100
 PRINT *, 'Enter a positive real (negative to quit):'
 READ *, val
 IF (val < 0.0) EXIT ! negative, so leave
 data%x(i) = val
 data%n = i ! count of values so far
 END DO
END SUBROUTINE get_data

160 Chapter 7

Program units and procedures
Procedure interface

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 def_assign.f90
$ a.out
 Enter a positive real (negative to quit):
25.5
 Enter a positive real (negative to quit):
35.5
 Enter a positive real (negative to quit):
45.5

 Enter a positive real (negative to quit):
-1
 Maximum = 45.5
 Minimum = 25.5
 Sum = 106.5
 Average = 35.5

Chapter 7 161

Program units and procedures
Modules

Modules
A module is a nonexecutable program unit that contains—usually
related—definitions and declarations that may be accessed by use
association. Typically, modules are used for:

• Defining and declaring derived types

• Defining and declaring global data areas

• Defining operators

• Creating subprogram libraries

The definitions within a module are made accessible to other program
units through use association. The program unit that requires access
to the module must have a USE statement at the head of its specification
part, and the statement must specify the name of the module.

The following sections describe the module program unit and the USE
statement. The last section gives an example program that uses a
module.

NOTE Compiling programs that contain modules requires care to ensure that each
module is compiled before the program unit that uses it. For detailed
information about compiling programs that contain modules, refer to the
HP Fortran Programmer’s Guide.

Module program unit
The syntax of a module program unit is:

MODULE module-name
 [specification-part]
 [module-procedure-part]
END [MODULE [module-name]]

where:

module-name
is the name of the module.

162 Chapter 7

Program units and procedures
Modules

specification-part
is zero or more of the statements listed in Table 15 with the
exception of the FORMAT statement. Also, specification-part
must not contain statement function definitions or automatic
objects. (Specifying the SAVE attribute within a module is
unnecessary in HP Fortran as entities declared within a module
retain their values by default.)
Each entity declared in specification-part and each of the
procedure defined in module-procedure-part has either the
PUBLIC or PRIVATE attribute. By default, all entities have the
PUBLIC attribute and are thereby accessible by use association.
Entities having the PRIVATE attribute are accessible from
within the module only.
The PUBLIC and PRIVATE attributes and statements are fully
described in Chapter 10, “HP Fortran Statements.”

module-procedure-part
is:
CONTAINS
 module-procedure[module-procedure...]

module-procedure

is either a function or subroutine. module-procedure has the
same structure as an external function or subroutine except
that the END statement of module-procedure must include the
SUBROUTINE or FUNCTION keyword, as appropriate; for an
external procedure this is optional. For information about
external subroutines, see “External procedures” on page 128.
Note the following about module procedures:

• They have an explicit interface within the using program
unit. It is not necessary to create an interface block for a
module procedure.

• They can also contain internal procedures.

• They can be passed as an actual argument.

Chapter 7 163

Program units and procedures
Modules

The following may be contained in a module and be made accessible by
use association:

• Declared variables

• Named constants

• Derived-type definitions

• Procedure interfaces

• Module procedures

• Generic names

• Namelist groups

USE statement
The USE statement provides access to module entities within the using
program unit—that is, the program unit in which the statement is
specified. The USE statement specifies the name of the module that the
program unit wants to access. The information in the specified module is
made accessible to the program unit by use association. The USE
statement must appear at the head of the specification part of a program
unit.

The USE statement can take either of two forms:

• USE module-name[, rename-list]

• USE module-name, ONLY : access-list

where:

rename-list
is a comma separated list of:
local-name => module-entity-name

module-entity-name
is the name of a module entity.

local-name
is the name by which module-entity-name will be accessed
within the using program unit.

164 Chapter 7

Program units and procedures
Modules

access-list
is a comma-separated list of:
[local-name =>] module-entity-name

As shown in the syntax description, the USE statement provides a
renaming feature that allows module entities to be renamed within a
using program unit. The association between local-name and module-
entity-name is conceptually similar to argument association: the one
name is an alias for the other, and the association between the two is in
effect only within the using program unit.

The renaming feature can be used to resolve name conflicts when more
than one module contains an entity with the same name. Consider a
program unit that has access by use association to two modules:
mod_defs1 mod_defs2. The names of the entities in mod_defs1 are a,
b, and c; and the names of the entities in mod_defs2 are b, c, and d. The
following USE statements will avoid name conflicts within the using
program unit:

USE mod_defs1
USE mod_defs2, b => local_b, c => local_c

The ONLY clause provides an additional level of control over access to
module entities. As described in “Module program unit” on page 161, the
PRIVATE and PUBLIC attributes control access to module entities in all
using program units. The ONLY clause controls access within a specific
program unit.

For example, consider a module named mod_defs that contains the
entities ent_x, ent_y, and ent_z. If a program unit contains the
following USE statement:

USE mod_defs, ONLY : ent_x, entry += local_y

it has access to ent_x and ent_y only. Furthermore, it must access
ent_y by the name local_y.

A program unit may have more than one USE statement specifying the
same module:

• If one of the USE statements is without the ONLY clause, then all
module entities with the PUBLIC attribute are accessible.
Furthermore, all local-names from the rename-lists and access-lists
are interpreted as a single concatenated rename-list.

• If all of the USE statements have the ONLY clause, all of the access-
lists are interpreted as a single concatenated access-list.

Chapter 7 165

Program units and procedures
Modules

For more information, see “USE” on page 461.

Program example
The following example program consists of three files:

• main.f90

• precision.f90

• lin_eq_slv.f90

The file main.f90 is the driver that has access to entities in two
modules—precision and linear_equation_solver—by use
association. The modules are the other two files.

The purpose of precision is to communicate a kind type parameter to
the other program units in the program, for the sake of precision
portability. The second module—linear_equation_solver—contains
three module procedures, the first of which,
solve_linear_equations, uses the other two;
solve_linear_equations is itself invoked by the main program.

Stated algebraically, the equations that main.f90 provides as input for
solution are:

2x + 3y + 4z = 20
3x + 4y + 5z = 26
4x + 5y - 6z = -4

main.f90

PROGRAM main
 ! use the two modules defined in precision.f90 and
 ! lin_eq_slv.f90
 USE precision
 USE linear_equation_solver
 IMPLICIT NONE
 ! the matrix a contains the coefficients to solve; b holds
 ! the constants on the right-hand side of the equation;
 ! the solution goes in x
 REAL (adequate) :: a(3,3), b(3), x(3)
 INTEGER :: i, j

 ! set by solve_linear_equations to indicate whether or not
 ! a solution was possible
 LOGICAL :: error

 ! initialize the matrix
 DO i = 1,3

166 Chapter 7

Program units and procedures
Modules

 DO j = 1,3
 a(i,j) = i+j
 END DO
 END DO
 a(3,3) = -a(3,3)

 ! initialize the vector of constants
 b = (/ 20, 26, -4 /)
 CALL solve_linear_equations (a, x, b, error)

 IF (error) THEN
 PRINT *, 'Cannot solve.'
 ELSE
 PRINT *, 'The solution:', x
 END IF
END PROGRAM main

precision.f90

MODULE precision
 ! The named constant adequate is a kind number of a real
 ! representation with at least 10 digits of precision and 99
 ! digits range that normally results in 64-bit arithmetic.
 ! This constant ensures the same level of precision
 ! regardless of whether the program
 ! of whether the program is compiled on a 32-bit or 64-bit
 ! single-precision machine.
 INTEGER, PARAMETER :: adequate = SELECTED_REAL_KIND(10,99)
END MODULE precision

lin_eq_slv.f90

MODULE linear_equation_solver
 USE precision
 IMPLICIT NONE
 PRIVATE adequate ! to avoid a "double definition" of adequate
 ! in program units that also use precision

 ! forbid outside access to these two module procedures
 PRIVATE :: factor, back_substitution

 CONTAINS ! module procedures defined here
 SUBROUTINE solve_linear_equations (a, x, b, error)
 ! solve the system of linear equations ax = b; set error to
 ! true if the extents of a, x, and b are incompatible or
 ! a zero pivot is found
 REAL (adequate), DIMENSION (:, :), INTENT (IN) :: a
 REAL (adequate), DIMENSION (:), INTENT (OUT) :: x
 REAL (adequate), DIMENSION (:), INTENT (IN) :: b
 LOGICAL, INTENT (OUT) :: error
 REAL (adequate), DIMENSION (SIZE (b), SIZE (b) + 1) :: m
 INTEGER :: n
 n = SIZE (b)
 ! check for compatible extents
 error = SIZE(a, DIM=1) /= n .OR. SIZE(a, DIM=2) /= n &
 .OR. SIZE(x).LT. n

Chapter 7 167

Program units and procedures
Modules

 IF (error) THEN
 x = 0.0
 RETURN
 END IF

 ! append the right-hand side of the equation to m
 m (1:n, 1:n) = a
 m (1:n, n+1) = b
 ! factor m and perform forward substitution in the last
 ! column of m
 CALL factor (m, error)
 IF (error) THEN
 x = 0.0
 RETURN
 END IF
 ! perform back substitution to obtain the solution
 CALL back_substitution (m, x)
 END SUBROUTINE solve_linear_equations

 SUBROUTINE factor (m, error)
 ! Factor m in place into a lower and upper triangular
 ! matrix using partial pivoting
 ! Set error to true if a pivot element is zero; Perform
 ! forward substitution with the lower triangle on the
 ! right-hand side m(:,n+1)
 REAL (adequate), DIMENSION (:, :), INTENT (INOUT) :: m
 LOGICAL, INTENT (OUT) :: error
 INTEGER, DIMENSION (1) :: max_loc
 REAL (adequate), DIMENSION (SIZE (m, DIM=2)) :: temp_row
 INTEGER :: n, k
 INTRINSIC MAXLOC, SIZE, SPREAD, ABS

 n = SIZE (m, DIM=1)
 triang_loop: DO k = 1, n
 max_loc = MAXLOC (ABS (m (k:n, k)))
 temp_row (k:n+1) = m (k, k:n+1)
 m (k, k:n+1) = m (k-1+max_loc(1), k:n+1)
 m (k-1+max_loc(1), k:n+1) = temp_row (k:n+1)
 IF (m (k, k) == 0) THEN
 error = .TRUE.
 EXIT triang_loop
 ELSE
 m (k, k:n+1) = m (k, k:n+1) / m (k, k)
 m (k+1:n, k+1:n+1) = m (k+1:n, k+1:n+1) - &
 SPREAD (m (k, k+1:n+1), 1, n-k) * &
 SPREAD (m (k+1:n, k), 2, n-k+1)
 END IF
 END DO triang_loop
 END SUBROUTINE factor

 SUBROUTINE back_substitution (m, x)
 ! Perform back substitution on the upper triangle to compute
 ! the solution
 REAL (adequate), DIMENSION (:, :), INTENT (IN) :: m
 REAL (adequate), DIMENSION (:), INTENT (OUT) :: x
 INTEGER :: n, k

168 Chapter 7

Program units and procedures
Modules

 INTRINSIC SIZE, SUM

 n = SIZE (m, DIM=1)
 DO k = n, 1, -1
 x (k) = m (k, n+1) - SUM (m (k, k+1:n) * x (k+1:n))
 END DO
 END SUBROUTINE back_substitution
END MODULE linear_equation_solver

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 precision.f90 lin_eq_slv.f90 main.f90
$ a.out
 The solution: 1.0 2.0 3.0

The order in which the files appear on the f90 command line is
significant: files that contain modules must be compiled before files
containing the program units that use the modules. For more
information about compiling programs that use modules, see the
HP Fortran Programmer’s Guide

Chapter 7 169

Program units and procedures
Block data program unit

Block data program unit
A block data program unit initializes data values in common blocks. The
syntax of a block data program unit is:

BLOCK DATA [block-data-name]
 [specification-part]
END [BLOCK DATA [block-data-name]]

block-data-name
is the name of the block data program unit. Note that the name
is optional. If omitted, no more than one unnamed block data
program unit may appear in an executable program.

specification-part
is zero or more of the following:

• Type declaration statement

• USE statement

• IMPLICIT statement

• COMMON statement

• DATA statement

• EQUIVALENCE statement

• Derived-type definition

• The following attribute-specification statements:

• DIMENSION

• INTRINSIC

• PARAMETER

• POINTER

• SAVE

• TARGET

If a USE statement appears in a block data program unit, it makes only
the named constants accessible to the program unit.

170 Chapter 7

Program units and procedures
Block data program unit

The block data program unit can initialize more than one common block.
However, a common block can be initialized in only one block data
program unit. It is not necessary to initialize every object within the
common block, but the common block must be completely specified.

As an extension, HP Fortran allows the initialization of objects in
blank—or unnamed—common. The following example illustrates this
extension:

BLOCK DATA blank
 COMMON//aa(3),ab(5) ! an unnamed common block
 DATA aa/3*1.0/
 DATA ab/1.0,2.0,3*4.0/
END BLOCK DATA blank

171

8 I/O and file handling

This chapter describes input/output and file handling as supported by
HP Fortran. This includes the following topics:

• Records

• Files

• Connecting a file to a unit

• File access methods

• Nonadvancing I/O

• I/O statements

• Syntax of I/O statements

• ASA carriage control

• Example programs

172 Chapter 8

I/O and file handling
Records

Records
The record is the basic unit of Fortran 90 I/O operations. It consists of
either characters or binary values, depending upon whether the record is
formatted or unformatted. The following sections describe both
formatted and unformatted records, plus the special case of the end-of-
file record.

Note that nonadvancing I/O makes it possible to read and write partial
records. For more information, see “Nonadvancing I/O” on page 187.

Formatted records
A formatted record consists of characters that have been edited during
list-directed or namelist-directed I/O, or by a format specification during
a data transfer. (For information about format specifications, see “Format
specification” on page 207.) The length of a formatted record is measured
in characters; there is no predefined maximum limit to the length of a
formatted record.

Unformatted records
An unformatted record consists of binary values in machine-
representable format. The length of an unformatted record is measured
in bytes. Unformatted records cannot be processed by list-directed or
namelist-directed I/O statements or by I/O statements that use format
specifications to edit data.

End-of-file record
The end-of-file record is a special case: it contains no data and is the last
record of a sequential file. The end-of-file record is written:

• By the ENDFILE statement

• When the file is closed—either explicitly by the CLOSE statement or
implicitly when the program terminates—immediately following a
write operation

• When a BACKSPACE statement executes after a write operation,
before the file is backspaced

Chapter 8 173

I/O and file handling
Files

If the end-of-file record is encountered during the execution of the READ
statement, the program execution will abort unless the READ statement
includes the END= specifier, the IOSTAT= specifier, or both. For
information about these specifiers, see the description of the READ
statement in Chapter 10, “HP Fortran statements,” on page 241.

Files
A file is a collection of data, organized as a sequence of logical records.
Records in a file must be either all formatted or all unformatted, except
for the end-of-file record.

The following sections describe the two types of files, external files and
internal files.

External files
An external file is stored on disk, magnetic tape, or some other
peripheral device. External files can be accessed sequentially or directly
as described in “File access methods” on page 178.

Scratch files
A scratch file is a special type of external file. It is an unnamed,
temporary file that exists only while it is open—that is, it exists no
longer than the life of the program. HP Fortran uses the tempnam(3S)
system routine to name the scratch file. The name becomes unavailable
through the file system immediately after it is created, and it cannot be
seen by the ls(1) command and cannot be opened by any other process.

To create a scratch file, you must include the STATUS='SCRATCH'
specifier in the OPEN statement, as in the following:

OPEN (25, STATUS='SCRATCH')

In all other respects, a scratch file behaves like other external files. For
an example of a program that uses a scratch file, see “File access” on
page 202.

174 Chapter 8

I/O and file handling
Files

Internal files
An internal file is stored in a variable where it exists for the life of the
variable. Its main use is to enable programs to transfer data internally
between a machine representation and a character format, using edit
descriptors to make the conversions. (For more information about edit
descriptors, see “Edit descriptors” on page 208.)

An internal file can be one of the following:

• A character variable

• A character array

• A character array element

• A character substring

• An integer or real array (HP Fortran extension)

• Any of the above that is either a field of a structure or a component of
a derived type

Note, however, that a section of a character array with a vector subscript
cannot be used as an internal file.

Accessing records in an internal file is analogous to accessing them in a
formatted sequential file; see “Formatted I/O” on page 178. For an
example program that uses an internal file, see “Internal file” on
page 198.

Chapter 8 175

I/O and file handling
Connecting a file to a unit

Connecting a file to a unit
Before a program can perform any I/O operations on an external file, it
must establish a logical connection between the file and a unit number.
Once the connection is established, the program can reference the file by
specifying the associated unit number (a nonnegative integer
expression). In the following example, the OPEN statement connects unit
number 1 to the file my_data, allowing the WRITE statement to write the
values in total_acct and balance to my_data:

OPEN (UNIT=1, FILE='my_data')

WRITE (1, '(F8.2)') total_acct, balance

The following sections describe three types of unit numbers:

• Those that are explicitly connected by means of the OPEN statement

• Preconnected unit numbers

• Automatically opened unit numbers

Connecting to an external file
Typically, the connection between an external file and a unit number is
established by the OPEN statement. When the program is finished using
the file, the connection is terminated by the CLOSE statement. Once the
connection is terminated, the unit number can be assigned to a different
file by means of another OPEN statement. Similarly, a file whose
connection was broken by a CLOSE statement can be reconnected to the
same unit number or to a different unit number.

A unit cannot be connected to more than one file at a time.

The following code establishes a connection between unit 9 and the
external file first_file, which is to be by default opened for sequential
access. When the program is finished with the file, the CLOSE statement
terminates the connection, making the unit number available for
connection to other files. Following the CLOSE statement, the program
connects unit 9 to a different external file, new_file:

! connect unit 9 to first_file
 OPEN (9, FILE='first_file')
 ...
! process file
 ...

176 Chapter 8

I/O and file handling
Connecting a file to a unit

! terminate connection
 CLOSE (9)
! connect same unit number to new_file
 OPEN (9, FILE='new_file')
 ...
! process file
 ...
! terminate connection
 CLOSE (9)

Performing I/O on internal files
An internal file is not connected to a unit number and therefore does not
require an OPEN statement. It is referenced as a character variable. In
the following example, the WRITE statement transfers the data from
char_var to the internal file int_file, using list-directed formatting.
Because int_file is declared to be 80 characters long, it is assumed
that the length of char_var will be no more than 80 characters.

CHARACTER(LEN=80) :: int_file
...
WRITE (FILE=int_file, FMT=*) char_var

For information about internal files, see “Internal files” on page 174.

Preconnected unit numbers
Unit numbers 5, 6, and 7 are preconnected; that is, they do not have to be
explicitly opened and are connected to system-defined files, as follows:

• Unit 5 is connected to standard input—by default, the keyboard of the
machine on which the program is running.

• Unit 6 is connected to standard output—by default, the terminal/
display of the machine on which the program is running.

• Unit 7 is connected to standard error—by default, the terminal/
display of the machine on which the program is running.

Each predefined logical unit is automatically opened when a Fortran 90
program begins executing and remains open for the duration of the
program. This means, for example, that standard output can be used by a
PRINT statement without prior execution of an OPEN statement.
Attempting to CLOSE a preconnected logical unit has no effect.

A preconnected unit number can be reused with an OPEN statement that
assigns it to a new file. Once a preconnected unit number is connected to
a new file, however, it cannot be reconnected to its original designation.

Chapter 8 177

I/O and file handling
Connecting a file to a unit

You can use the HP-UX input/output redirection (< and >) and piping (|)
operators to redirect from standard input, standard output, or standard
error to a file of your own choosing.

Automatically opened unit numbers
Unit numbers that have not been associated with a file by an OPEN
statement can be automatically opened using the READ or WRITE
statement. When a file is automatically opened, a string is created of the
form:

ftnXX

where XX is replaced by the unit number in the range 01 to 99.

If you have made an environment variable assignment of the form
ftnXX = path, the file named in path is opened. Otherwise, the file
whose name is ftnXX is opened in the current directory. If the file does
not exist, it is created.

The following program

PROGRAM Auto
WRITE (11,'(A)') 'Hello, world!'
END

writes the string

Hello, world!

to the file ftn11.

If this program is compiled to a.out and is run as follows (using /bin/
sh or /bin/ksh)

ftn11=datafile
export ftn11
a.out

the output string is written to the file datafile instead of ftn11.

Automatically opened files are always opened as sequential files. Other
characteristics of an automatically opened file, such as record length and
format, are determined by the data transfer statement that creates the
file. If the statement does not specify formatted, list-directed, or
namelist-directed I/O, the file is created as an unformatted file.

178 Chapter 8

I/O and file handling
File access methods

File access methods
HP Fortran allows both sequential access and direct access. You specify
the access method with the OPEN statement when you connect the file to
a unit number. The following example opens the file new_data for direct
access:

OPEN(40, ACCESS='DIRECT', RECL=128, FILE='new_data')

If you do not specify an access method, the file is opened for sequential
access.

The following sections describe both sequential and direct methods.

Sequential access
Records in a file opened for sequential access can be accessed only in the
order in which they were written to the file. A sequential file may consist
of either formatted or unformatted records. If the records are formatted,
you can use list-directed, namelist-directed, and formatted I/O
statements to operate on them. If the records are unformatted, you must
use unformatted I/O statements only. The last record of a sequential file
is the end-of-file record.

The following sections describe the types of I/O that can be used with
sequential files, namely:

• Formatted I/O

• List-directed I/O

• Namelist-directed I/O

• Unformatted I/O

Formatted I/O
Formatted I/O uses format specifications to define the appearance of
data input to or output from the program, producing ASCII records that
are formatted for display. (Format specifications are described in detail
in “Format specification” on page 207.) Data is transferred and
converted, as necessary, between binary values and character format.
You cannot perform formatted I/O on a file that has been connected for
unformatted I/O; see “Unformatted I/O” on page 185.

Chapter 8 179

I/O and file handling
File access methods

Formatted I/O can be performed only by data transfer statements that
include a format specification. The format specification can be defined in
the statement itself or in a FORMAT statement referenced by the
statement.

For an example of a program that accesses a formatted file, see “File
access” on page 202.

List-directed I/O
List-directed I/O is similar to formatted I/O in that data undergoes a
format conversion when it is transferred but without the use of a format
specification to control formatting. Instead, data is formatted according
to its data type. List-directed I/O is typically used when reading from
standard input and writing to standard output.

List-directed I/O uses the asterisk (*) as a format identifier instead of a
list of edit descriptors, as in the following READ statement, which reads
three floating-point values from standard input:

READ *, A, B, C

List-directed I/O can be performed only on internal files and on
formatted, sequential external files. It works identically for both file
types.

Input
Input data for list-directed input consists of values separated by one or
more blanks, a slash, or a comma preceded or followed by any number of
blanks. (No values may follow the slash.) An end-of-record also acts as a
separator except within a character constant. Leading blanks in the first
record read are not considered to be part of a value separator unless
followed by a slash or comma.

Input values can be any of the values listed in Table 17. A blank is
indicated by the symbol b.

180 Chapter 8

I/O and file handling
File access methods

Table 17 Input values for list-directed I/O

Reading always starts at the beginning of a new record. Records are read
until the list is satisfied, unless a slash in the input record is
encountered. The effect of the slash is to terminate the READ statement
after the assignment of the previous value; any remaining data in the
current record is ignored.

Table 18 outlines the rules for the format of list-directed input data.

Table 18 Format of list-directed input data

Value Meaning

z A null value, indicated by two successive separators with
zero or more intervening blanks (for example, ,b/).

c A literal constant with no embedded blanks. It must be
readable by an I, F, A, or L edit descriptor. Binary, octal, and
hexadecimal data are illegal.

r*c Equivalent to r (an integer) successive occurrences of c in the
input record. For example, 5*0.0 is equivalent to 0.0 0.0
0.0 0.0 0.0.

r*z Equivalent to r successive occurrences of z.

Data type Input format rules

Integer Conforms to the same rules as integer constants.

Real and
double
precision

Any valid form for real and double precision. In
addition, the exponent can be indicated by a signed
integer constant (the Q, D, or E can be omitted), and
the decimal point can be omitted for those values
with no fractional part.

Chapter 8 181

I/O and file handling
File access methods

Output
The format of list-directed output is determined by the type and value of
the data in the output list and by the value of the DELIM= specifier in the
OPEN statement. For information about the DELIM= specifier, see the
description of the OPEN statement in Chapter 10, “HP Fortran
statements,” on page 241.

Complex and
double
complex

Two integer, real, or double precision constants,
separated by a comma and enclosed in parentheses.
The first number is the real part of the complex or
double complex number, and the second number is
the imaginary part. Each of the numbers can be
preceded or followed by blanks or the end of a record.

Logical Consists of a field of characters, the first nonblank
character of which must be a T for true or an F for
false (excluding the optional leading decimal point).
Integer constants may also appear.

Character Same form as character constants. Delimiting with
single or double quotation marks is needed only if the
constant contains any separators; delimiters are
discarded upon input. Character constants can be
continued from one record to the next. The end-of-
record does not cause a blank or any other character
to become part of the constant. If the length of the
character constant is greater than or equal to the
length, len, of the list item, only the leftmost len
characters of the constant are transferred. If the
length of the constant is less than len, the constant is
left-justified in the list item with trailing blanks.

Data type Input format rules

182 Chapter 8

I/O and file handling
File access methods

Table 19 summarizes the rules governing the display of each data type.

Table 19 Format of list-directed output data

With the exception of character values, all output values are preceded by
exactly one blank. A blank character is also inserted at the start of each
record to provide ASA carriage control if the file is to be printed; see
“ASA carriage control” on page 197 for a description of this. For example,
the following statement:

PRINT *, 'Hello, world!'

outputs the line (where b indicates a blank):

bHello,bworld!

If the length of the values of the output items is greater than 79
characters, the current record is written and a new record started.

Slashes, as value separators, and null values are not output by list-
directed WRITE statements.

Data
type Output format rules

Integer Output as an integer constant.

Real and
Double
Precision

Output with or without an exponent, depending on the
magnitude. Also, output with field width and decimal
places appropriate to maintain the precision of the data
as closely as possible.

Complex Output as two numeric values separated by commas and
enclosed in parentheses.

Logical If the value of the list element is .TRUE., then T is
output. Otherwise, F is output.

Character Output using the Alen format descriptor, where len is the
length of the character expression (adjusted for
doubling). If DELIM='NONE' (the default), no single (') or
double (”) quotation marks are doubled, and the records
may not be suitable list-directed input. If the value
specified by DELIM= is not 'NONE', only the specified
delimiter is doubled. Character strings are output
without delimiters, making them also unsuitable for list-
directed input.

Chapter 8 183

I/O and file handling
File access methods

Namelist-directed I/O
Namelist-directed I/O enables you to transfer a group of variables by
referencing the name of the group, using the NML= specifier in the data
transfer statement. The NAMELIST statement specifies the variables in
the group and gives the group a name.

Like list-directed I/O, namelist-directed I/O does not use a format
specification when formatting data but uses default formats, as
determined by the data types.

In the following example, the NAMELIST statement defines the group
name_group, which consists of the variables i, j, and c. The READ
statement reads a record from the file connected to unit number 27 into
name_group. The PRINT statement then writes the data from the
variables in name_group to standard output. (As an extension, HP
Fortran allows this use of the PRINT statement in namelist I/O.)

INTEGER :: i, j
CHARACTER(LEN=10) :: c
NAMELIST /name_group/ i, j, c
...
READ (UNIT=27,NML=name_group)
PRINT name_group

Each namelist-directed output record begins with a blank character to
provide for ASA carriage control if the records are to be printed (see “ASA
carriage control” on page 197).

Namelist-directed I/O can be performed only on formatted, sequential
external files.

The following program illustrates namelist-directed I/O:

PROGRAM namelist
INTEGER, DIMENSION(4) :: ivar
CHARACTER(LEN=3), DIMENSION(3,2) :: cvar
LOGICAL :: lvar
REAL :: rvar
NAMELIST /nl/ ivar, cvar, lvar, rvar
READ (*,nl)
PRINT nl
END PROGRAM namelist

If the input data is:

&nl
ivar = 4,3,2,1
lvar=toodles
cvar=,,'QRS',2*,2*'XXX'
rvar=5.75E25, cvar(3,2)(1:2)='AB'
/

184 Chapter 8

I/O and file handling
File access methods

then the output will be:

b&NLbIVAR = 4 3 2 1bCVAR ='', 'QRS', '',
'', 'XXX', 'ABX'bLVAR = TbRVAR =
5.75000E+25b/

The following sections describe the format of namelist-directed input and
output. See “NAMELIST” on page 373 for detailed information about the
NAMELIST statement.

Input
A namelist-directed input record takes the following form:

1 An ampersand character (&) immediately followed by a namelist
group name. The group name must have been previously defined by a
NAMELIST statement.

As an extension, the dollar sign ($) can be substituted for the
ampersand.

2 A sequence of name-value pairs and value separators. A name-value
pair consists of the name of a variable in the namelist group, the
equals sign (=), and a value having the same format as for list-
directed input (z, c, r*c, and r*). A name-value pair can appear in any
order in the sequence or can be omitted.

A value separator may be one of the following:

• Blanks

• Tabs

• Newlines

• Any of the above with a single comma

3 A terminating slash (/). As an extension, ($END) can be substituted
for the slash.

Names of character type may be qualified by substring range expressions
and array names by subscript/array section expressions. If the name in a
name-value pair is that of an array, the number of the values following
the equals sign must be separated by value separators and must not
exceed the number of elements in the array. If there are fewer values
than elements, null values are supplied for the unfilled elements.

Namelist-directed input values are formatted according to the same
rules as for list-directed input data; see Table 18.

Chapter 8 185

I/O and file handling
File access methods

Output
The output record for namelist-directed I/O has the same form as the
input record, but with these exceptions:

• The namelist group name is always in uppercase.

• Logical values are either T or F.

• As in list-directed output, character values are output without
delimiters by default, making them unsuitable for namelist-directed
input. However, you can use the DELIM= specifier in the OPEN
statement to specify the single or double quotation mark as the
delimiter to use for character constants.

• Only character and complex values may be split between two records.

Unformatted I/O
Unformatted I/O does not perform format conversion on data it transfers.
Instead, data is kept in its internal, machine-representable format. You
cannot perform unformatted I/O on files that have been connected for
formatted I/O (see “Formatted I/O” on page 178).

Unformatted I/O is more efficient than formatted, list-directed, or
namelist-directed I/O because the transfer occurs without the conversion
overhead. However, because unformatted I/O transfers data in internal
format, it is not portable.

Direct access
When performing I/O on a direct-access file, records can be read or
written in any order. The records in a direct-access file are all of the same
length.

Reading and writing records is accomplished by READ and WRITE
statements containing the REC= specifier. Each record is identified by a
record number that is a positive integer. For example, the first record is
record number 1; the second, number 2; and so on. If REC= is not
specified:

• The READ statement inputs from the current record, and the file
pointer moves to the next record.

• The WRITE statement outputs to the record at the position of the file
pointer, and the file pointer is advanced to the next record.

186 Chapter 8

I/O and file handling
File access methods

As an extension, HP Fortran allows sequential I/O statements to access a
file connected for direct access.

Once established, a record number of a specific record cannot be changed
or deleted, although the record may be rewritten. A direct-access file
does not contain an end-of-file record as an integral part of the file with a
specific record number. Therefore, when accessing a file with a direct-
access read or write statement, the END= specifier is not valid and is not
allowed.

Direct-access files support both formatted and unformatted record types.
Both formatted and unformatted I/O work exactly as they do for
sequential files. However, you cannot perform list-directed, namelist-
directed, or nonadvancing I/O on direct-access files.

For an example program that uses direct access, see “File access” on
page 202.

Chapter 8 187

I/O and file handling
Nonadvancing I/O

Nonadvancing I/O
By default, a data transfer leaves the file positioned after the last record
read or written. This type of I/O is called advancing. Fortran 90 also
allows nonadvancing I/O, which positions the file just after the last
character read or written, without advancing to the next record. It is
character-oriented and can be used only with external files opened for
sequential access. It cannot be used with list-directed or namelist-
directed I/O.

To use nonadvancing I/O, you must specify ADVANCE='NO' in the READ
or WRITE statement. The example program in “File access” on page 202
uses nonadvancing I/O in the first WRITE statement, which is reproduced
here:

WRITE (6, FMT='(A)', ADVANCE='NO') &
 ' Enter number to insert in list: '

The effect of nonadvancing I/O on the WRITE statement is to suppress the
newline character that is normally output at the end of a record. This is
the desired effect in the example program: by using a nonadvancing
WRITE statement, the user input to the READ statement stays on the
same line as the prompt.

You can get the same effect with the newline ($) edit descriptor, an HP
Fortran extension that also suppresses the carriage-return/linefeed
sequence at the end of a record; see “Newline ($) edit descriptor” on
page 211.

For an example program that illustrates nonadvancing I/O in a READ
statement, see “Nonadvancing I/O” on page 199. For more information
about nonadvancing I/O and the ADVANCE= specifier, see the READ and
WRITE statements in Chapter 10.

188 Chapter 8

I/O and file handling
I/O statements

I/O statements
HP Fortran supports three types of I/O statements:

• Data transfer statements (see Table 20)

• File positioning statements (see Table 21)

• Auxiliary statements (see Table 22)

For detailed information about all I/O statements, refer to Chapter 10,
“HP Fortran statements,” on page 241.

Table 20 Data transfer statements

NOTE Although the DECODE and ENCODE statements are available as compatibility
extensions for use with internal files, they are nonportable and are provided
for compatibility with older versions of Fortran. To keep your programs
standard-conforming and portable, you should use the READ and WRITE
statements with both external and internal files.

ACCEPT and TYPE are also available as compatibility extensions for reading
from standard input and writing to standard output. However, if you wish your
program to be portable, you should use the READ and PRINT statements
instead of the ACCEPT and TYPE statements.

Statement Use

ACCEPT Inputs data from the preconnected default input device
(standard input) (extension).

DECODE Inputs data from an internal file (extension).

ENCODE Outputs data to an internal file (extension).

PRINT Outputs data to the preconnected default output device
file (standard output)

READ Inputs data from a connected or automatically opened
unit.

TYPE Synonym for the PRINT statement (extension).

WRITE Outputs data to a connected or automatically opened
unit.

Chapter 8 189

I/O and file handling
I/O statements

Table 21 File positioning statements

Table 22 Auxiliary statements

Statement Use

BACKSPACE Moves the file pointer of the connected sequential file to
the start of the previous record.

ENDFILE Writes an end-of-file record as the next record of the
sequential file.

REWIND Moves the file pointer of the connected file to the initial
point of the file.

Statement Use

CLOSE Disconnects a unit from a file.

INQUIRE Requests information about a file or unit.

OPEN Connects an existing file to a unit, creates a file and
connects it to a unit, or changes certain specifiers of a
connection between a file and a unit.

190 Chapter 8

I/O and file handling
Syntax of I/O statements

Syntax of I/O statements
The general syntactic form of file-positioning and auxiliary statements
is:

statement-name (io-specifier-list)

where

statement-name is one of the statements listed in Table 21 or Table 22.

io-specifier-list is a comma-separated list of I/O specifiers that control
the statement’s operation.

The general form of a data-transfer statement is:

statement-name (io-specifier-list) data-list

where

statement-name is one of the statements listed in Table 20.

io-specifier-list is a comma-separated list of I/O specifiers that control
the data transfer.

data-list is a comma-separated list of data items.

The following sections describe the I/O specifiers and the form of data-
list. For detailed information about the syntax of individual I/O
statements, see Chapter 10, “HP Fortran statements,” on page 241.

I/O specifiers
I/O specifiers provide I/O statements with additional information about a
file or a data transfer operation. They can also be used (especially with
the INQUIRE statement) to return information about a file. Table 23 lists
all I/O specifiers supported by HP Fortran and identifies the statements
in which each can appear. Note that the ACCEPT, DECODE, ENCODE, and
TYPE statements are not listed in the table as they are nonstandard. All
I/O specifiers and statements are fully described in Chapter 10, “HP
Fortran statements,” on page 241. Each I/O specifier is described under
the I/O statement in which it may appear.

Chapter 8 191

I/O and file handling
Syntax of I/O statements

Table 23 I/O statements and specifiers

I/O Specifiers

B
A
C
K
S
P
A
C
E

C
L
O
S
E

E
N
D
F
I
L
E

I
N
Q
U
I
R
E

O
P
E
N

P
R
I
N
T

R
E
A
D

R
E
W
I
N
D

W
R
I
T
E

ACCESS= ✓ ✓

ACTION= ✓ ✓

ADVANCE= ✓ ✓

BLANK= ✓ ✓

DELIM= ✓ ✓

DIRECT= ✓

END= ✓

EOR= ✓

ERR= ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

EXIST= ✓

FILE= ✓ ✓

FMT= ✓ ✓

FORM= ✓ ✓

FORMATTED= ✓

IOLENGTH= ✓

IOSTAT= ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

NAME= ✓

NAMED= ✓

NEXTREC= ✓

NML= ✓ ✓

NUMBER= ✓

192 Chapter 8

I/O and file handling
Syntax of I/O statements

I/O data list
The I/O data list can be used with any data transfer statement except
namelist I/O; see “Namelist-directed I/O” on page 183 for a description of
this. The general form of the I/O data list is:

item1[, item2...]

where item is a either a simple data element or an implied-DO loop.

The following sections describe simple data elements and the implied-DO
loop.

OPENED= ✓

PAD= ✓ ✓

POSITION= ✓ ✓

READ= ✓

READWRITE= ✓

REC= ✓ ✓

RECL= ✓ ✓

SEQUENTIAL= ✓

SIZE= ✓

STATUS= ✓ ✓

UNFORMATTED= ✓

UNIT= ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

WRITE= ✓

I/O Specifiers

B
A
C
K
S
P
A
C
E

C
L
O
S
E

E
N
D
F
I
L
E

I
N
Q
U
I
R
E

O
P
E
N

P
R
I
N
T

R
E
A
D

R
E
W
I
N
D

W
R
I
T
E

Chapter 8 193

I/O and file handling
Syntax of I/O statements

Simple data elements
In a read operation, the simple data element specifies a variable, which
can include:

• A scalar

• An array

• An array element or section

• A character substring

• A structure

• A component of a structure

• A record

• A field of a record

• A pointer

In a write operation, the simple data element can include any variable
that is valid for a read operation, plus most expressions. Note that, if the
expression includes a function reference, the function must not itself
perform I/O.

The output list in the following PRINT statement contains two simple list
elements, a variable named radius and an expression formed from
radius:

99 FORMAT('Radius = ', F10.2, 'Area = ', F10.2)
 PRINT 99, radius, 3.14159*radius**2

The next READ statement contains three simple elements: a character
substring (name(1:10)), a variable (id), and an array name (scores):

88 FORMAT(A10,I9,10I5)
 READ(5, 88) name(1:10), id, scores

If an array name is used as a simple data element in the I/O list of a
WRITE statement, then every element in the array will be displayed. If a
format specification is also used, then the format will be reused if
necessary to display every element. For example, the following code

 INTEGER :: i(10) = (/1,2,3,4,5,6,7,8,9,10/)
88 FORMAT(' N1:',I5, ' N2:',I5, ' N3:',I5)
 PRINT 88, i

194 Chapter 8

I/O and file handling
Syntax of I/O statements

will output the following:

 N1: 1 N2: 2 N3: 3
 N1: 4 N2: 5 N3: 6
 N1: 7 N2: 8 N3: 9
 N1: 10 N2:

The following restrictions apply to the use of arrays in input and output:

• Sections of character arrays that specify vector-valued subscripts
cannot be used as internal files.

• An assumed-size array cannot be referenced as a whole array in an
input or output list.

The following restrictions apply to the use of structures and records in
input and output:

• All components of the structure or fields of the record must be
accessible within the scoping unit that contains the data transfer
statement.

• Every component of the structure or field of the record is written.

• A structure in an I/O list must not contain a pointer that is an
ultimate component—that is, the last component in a variable
reference. In the expression a%b%c, a and b can be pointers, but not c.

Implied-DO loop
An implied-DO loop consists of a list of data elements to be read, written,
or initialized, and a set of indexing parameters. The syntax of an
implied-DO loop in an I/O statement is:

(list , index = init , limit [, step])

where

list
is an I/O list, which can contain other implied-DO loops.

index
is an integer variable that controls the number of times
the elements in list are read or written. The use of real
variables is supported but obsolescent.

Chapter 8 195

I/O and file handling
Syntax of I/O statements

init
is an expression that is the initial value assigned to
index at the start of the implied-DO loop.

limit
is an expression that is the termination value for index.

step
is an expression by which index is incremented or
decremented after each execution of the DO loop. step
can be positive or negative. Its default value is 1.

Inner loops can use the indexes of outer loops.

The implied-DO loop acts like a DO construct. The range of the implied-DO
loop is the list of elements to be input or output. The implied-DO loop can
transfer a list of data elements that are valid for a write operation. index
is assigned the value of init at the start of the loop. Execution continues
in the same manner as for DO loops (see “DO construct” on page 107).

The implied-DO loop is generally used to transmit arrays and array
elements, as in the following:

INTEGER :: b(10)
PRINT *, (b(i), i = 1,10)

If b has been initialized with the values 1 through 10 in order, the PRINT
statement will produce the following output:

1 2 3 4 5 6 7 8 9 10

If an nonsubscripted array name occurs in the list, the entire array is
transmitted at each iteration. For example:

REAL :: x(3)
PRINT *, (x, i=1, 2)

If x has been initialized to be [1 2 3], the output will be:

 1.0 2.0 3.0 1.0 2.0 3.0

The list can contain expressions that use the index value. For example:

REAL :: x(10) = (/.1, .2, .3, .4, .5, .6, .7, .8, .9, 1 /)
PRINT *, (i*2, x(i*2), i = 1, 5)

print the numbers

2 .2 4 .4 6 .6 8 .8 10 1

196 Chapter 8

I/O and file handling
Syntax of I/O statements

Implied-DO loops can also be nested. The form of a nested implied-DO
loop in an I/O statement is:

(((list, index1 = init1, limit1, step1), index2 = init2, limit2,
 step2) ... indexN = initN, limitN, stepN)

Nested implied-DO loops follow the same rules as do other nested DO
loops. For example, given the following statements:

REAL :: a(2,2)

a(1,1) = 1
a(2,1) = 2
a(1,2) = 3
a(2,2) = 4

WRITE(6,*)((a(i,j),i=1,2),j=1,2)

the output will be:

 1.0 2.0 3.0 4.0

The first, or nested DO loop, is completed once for each execution of the
outer loop.

Chapter 8 197

I/O and file handling
ASA carriage control

ASA carriage control
The program asa(1) processes the output of a Fortran 90 program that
uses ASA carriage control characters so that it can be properly handled
by many printers.

The syntax of asa is:

asa [file-names]

where file-names is a list of file names to be output with carriage control
characters interpreted according to ASA rules.

Table 24 describes the ASA carriage-control characters.

Table 24 ASA carriage-control characters

asa reads input from file-names or from standard input if file-names is
not specified. The first character of each line is interpreted as a control
character. Lines beginning with any character other than those listed in
Table 24 are interpreted as if they began with a blank, and an
appropriate diagnostic appears on standard error. The first character of
each line is not printed. The asa program interprets input lines and
sends its output to standard output. Each input file begins on a new
page.

To properly view the output of programs that use asa carriage control
characters, asa should be used as a filter. For example, the following
example pipes the output of fortran_asa, an executable HP Fortran
program that outputs lines with ASA carriage control characters,
through the asa filter to the line printer command, lp:

fortran_asa | asa | lp

Character Meaning

blank Advance one line.

0 Advance two lines.

1 Advance to top of next page.

+ Do not advance; overstrike previous line.

198 Chapter 8

I/O and file handling
Example programs

Example programs
This section gives example programs that illustrate I/O and file-handling
features of HP Fortran.

Internal file
The following example, int_file.f90, illustrates how internal files can use
edit descriptors internally. The comments within the program explain in
detail what the program does.

int_file.f90

! The main program is a driver for the function roundoff, which
! truncates and rounds a floating-point number to a requested
! number of decimal places. The main program prompts for two
! numbers, a double-precision number and an integer. These are
! passed to the function roundoff as arguments. The
! double-precision argument (x) is the value to be rounded, and
! the integer (n) represents the number of decimal places for
! rounding. The function converts both arguments to character
! format, storing them in separate internal files. The function
! uses the F edit descriptor (to which n in character format has
! been appended) to round x. This rounded value is finally
! converted back from a character string to a double-precision
! number, which the function returns.
PROGRAM main
 REAL (KIND=8) :: x, y, roundoff

 ! Use nonadvancing I/O to suppress the newline and keep the
 ! prompt on the same line as the input.
 WRITE (6, '(X, A)', ADVANCE='NO') 'Enter a real number: '
 READ (5, '(F14.0)') x
 WRITE (6, '(A)') 'How many significant digits (1 - 9) to the'
 WRITE (6,'(X, A)',ADVANCE='NO') 'right of the decimal point? '

 ! Don’t enter a number greater than you input into x!
 READ (5, '(I1)') n
 y = roundoff(x, n)
 PRINT *, y
END PROGRAM main

 ! This function truncates and rounds x to the number of decimal
 ! places specified by n. The function performs no error
 ! checking on either argument.
 REAL (KIND=8) FUNCTION roundoff(x, n)
 INTEGER :: n
 REAL (KIND=8) :: x
 CHARACTER (LEN=14) :: dp_val
 CHARACTER :: dec_digits

Chapter 8 199

I/O and file handling
Example programs

 ! Use an edit descriptor to convert the value of n to a
 ! character; write the result to the internal file
 ! dec_digits.
 WRITE (dec_digits, '(I1)') n

 ! Concatenate dec_digits to the string 'F14.'. The complete
 ! string forms an edit descriptor that will convert the
 ! binary value of x to a formatted value of x to a
 ! formatted character string that formats the
 ! value. The character represents the requested level of
 ! precision. The formatted number is stored in the internal
 ! file dp_val.
 WRITE (dp_val, '(F14.'//dec_digits//')') x

 ! Re-convert the formatted record in dp_val to a binary
 ! value that the function will return.
 READ (dp_val, '(F14.0)') roundoff

END FUNCTION roundoff

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 int_file.f90
$ a.out
 Enter a real number: 3.1415927
How many significant digits (1 - 9) to the
 right of the decimal point? 3
 3.142

Nonadvancing I/O
The following program reads a formatted sequential file as a set of
records divided into an arbitrary number of fields. The program uses
nonadvancing I/O to read and process each field. The comments explain
what the program does. Included with the is a listing of the data file,
grades, read by the program.

nonadvance.f90

! This program uses nonadvancing I/O to read a series of
! sequential-file records, character by character. Each
! record is divided into fields. The first field is the name
! of a student and is 20 characters log. Each of the
! remaining fields s a numeric test score and is 3
! i characters long. The name score fields. The program
! reads the name field, then reads each score field
! until it encounters end-of-record. When the
! program encounters end-of-record, it starts a new record.
! When it encounters and end-of-file,
! the program is done. For the sake of simplicity, the
! program does no error-checking.

200 Chapter 8

I/O and file handling
Example programs

PROGRAM main
 INTEGER :: grade, count, sum, average
 CHARACTER(LEN=20) name

 OPEN(20, FILE='grades')
 WRITE (6, 10) ”Name”, ”Average”
 WRITE (6, *) ”--------------------------”
 DO ! read and process each record
 sum = 0
 count = 0
 ! Read the first field of each record, using nonadvancing
 ! I/O so as not to advance beyond that field. The END=
 ! specifier causes the program to exit the loop and branch
 ! to the statement at 999 when it detects end-of-file.
 READ(20, ”(A20)”, ADVANCE='NO', END=999) name

 ! Read each of the score fields of the record, using
 ! nonadvancing I/O to avoid advancing to the next record
 ! after each read. The EOR= specifier causes the program
 ! to break out of the loop and resume
 ! execution at the statement labeled 99.
 DO ! inner loop to read scores
 ! read a score and convert it to integer
 READ(20, ”(I3)”, ADVANCE='NO', EOR=99) grade

 count = count + 1
 sum = sum + grade
 END DO

 ! calculate average
99 average = sum/count
 WRITE(6, 20) name, average ! write student name and average
 END DO

10 FORMAT (X, A, T21, A)
20 FORMAT (X, A, I3)
999 CLOSE(20)
END PROGRAM main

grades

Sandra Delford 79 85 81 72100100
Joan Arunsoelton 8 64 77 79
Herman Pritchard 100 92 87 65 0
Felicity Holmes 97 78 58 75 88 73
Anita Jayson 93 85 90 95 68 72 93
Phil Atley 9 27 35 49
Harriet Myrle 84 78 93 95 97 92 84 93
Pete Hartley 67 54 58 71 93 58

Chapter 8 201

I/O and file handling
Example programs

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 nonadvance.f90
$ a.out
 Name Average

 Sandra Delford 86
 Joan Arunsoelton 57
 Herman Pritchard 68
 Felicity Holmes 78
 Anita Jayson 85
 Phil Atley 30
 Harriet Myrle 89
 Pete Hartley 66

202 Chapter 8

I/O and file handling
Example programs

File access
The following example, file_access.f90, illustrates both sequential and
direct access on external files. The file opened for direct access is a
scratch file. The comments explain what the program does.

file_access.f90

! This program uses an external file and a scratch file to
! insert a number into a list of numerically sorted numbers.
! The sorted list is held in a external file. The program uses
! the scratch file as a temporary holding place. The program
! uses direct access method with the scratch file.
PROGRAM main
 REAL :: number_to_insert, number_in_list
 INTEGER :: rec_num, ios1, ios2, i

 ! Initialize counter.
 rec_num = 0

 ! ios1 must be initialized to 0 so that the error-handling
 ! section at the end of the program will work correctly
 ios1= 0

 ! Open the scratch file and the sequential data file
 OPEN (18, FILE='list', STATUS='UNKNOWN', IOSTAT=ios1, ERR=99)
 OPEN (17, STATUS='SCRATCH', ACCESS='DIRECT', FORM='FORMATTED',
 &
 IOSTAT=ios1, ERR=99, RECL=16)
 ! Use nonadvancing I/O to suppress newline at the end of output
 ! record, thus keeping the prompt on the same line with the
 ! input.
 WRITE (6, FMT='(A)', ADVANCE='NO') &
 ' Enter number to insert in list: '
 READ *, number_to_insert

 ! Read from sorted list and write to scratch file until we find
 ! where to insert number; then, write number_to_insert, and
 ! continue writing remaining sorted numbers to scratch file.
 DO WHILE (ios1 >= 0) ! loop only if OPEN didn’t encounter EOF
 ! The END=15 specifier in the READ statement gets us out of
 ! the loop, once we’re in it.
 READ (18, *, END=10, IOSTAT=ios2, ERR=99) number_in_list
 IF (number_to_insert <= number_in_list) THEN
 rec_num = rec_num + 1 ! add the new record
 WRITE(17, 100, REC=rec_num) number_to_insert
 DO
 rec_num = rec_num + 1
 WRITE(17, 100, REC=rec_num) number_in_list
 READ (18, *, END=15, IOSTAT=ios2, ERR=99) number_in_list
 END DO
 ELSE
 rec_num = rec_num + 1
 WRITE (17, 100, REC=rec_num) number_in_list
 END IF

Chapter 8 203

I/O and file handling
Example programs

 END DO
 ! The file is empty or the item goes at the end of file. Add 1
 ! to rec_num for the record to be inserted.
10 rec_num = rec_num + 1
 WRITE (17, 100, REC=rec_num) number_to_insert

 ! Copy the scratch file to the data file. But first rewind
 ! so that we start writing at beginning of the data file.
15 REWIND 18

 ! Read from scratch file and write to data file
 DO i = 1, rec_num
 READ (17, 100, REC=i) number_in_list
 WRITE (18, *) number_in_list
 END DO
 CLOSE (18)
 CLOSE (17)
 STOP 'Inserted!'

 ! Error handling section
99 IF (ios1 /= 0) THEN
 WRITE (7, 200) ”Open error = ”, ios1
 ELSE
 WRITE (7, 200) ”Read error = ”, ios2
 END IF

100 FORMAT (F16.6)
200 FORMAT (A, 2I6)
END PROGRAM main

Here are the command lines to compile and execute the program, along
with the output from a sample run. Output from the cat command
shows the contents of the list file before and after executing the
program:

$ f90 file_access.f90
$ cat list
 0.5
 1.2
 2.5
 3.5
 26.15
$ a.out
 Enter number to insert in list: 4.7
STOP Inserted!
$ cat list
 0.5
 1.2
 2.5
 3.5
 4.7
 26.15

204 Chapter 8

I/O and file handling
Example programs

205

9 I/O formatting

I/O formatting occurs during data transfer operations when data is
converted between its machine-readable binary representation and
human-readable character format. Although unformatted data transfers
are faster because they do not incur the overhead of data conversion, I/O
formatting is useful for displaying data in a human-readable form and
for transferring data between machines with different machine
representations for a data type.

I/O formatting can be implicit or explicit. Implicit formatting occurs
during list-directed and namelist-directed I/O: data is converted without
programmer intervention, based on the data types of the I/O list items;
see “List-directed I/O” on page 179 and “Namelist-directed I/O” on
page 183. Explicit formatting occurs under the control of the
programmer, who specifies how the data is to be converted.

This chapter describes explicit I/O formatting and includes information
about the following:

• FORMAT statement

• Format specification

• Edit descriptors

• Embedded format specification

• Nested format specifications

• Format specification and I/O data list

206 Chapter 9

I/O formatting
FORMAT statement

FORMAT statement
The function of the FORMAT statement is to specify formatting
information that can be used by one or more of the following data
transfer statements:

• ACCEPT (extension)

• DECODE (extension)

• ENCODE (extension)

• PRINT

• READ

• TYPE (extension)

• WRITE

The syntax of the FORMAT statement is:

label FORMAT (format-spec)

where:

label is a statement label.

format-spec is a format specification consisting of a comma-
separated list of edit descriptors. For detailed
information about edit descriptors, see the next section.

The FORMAT statement must include label so that the data transfer
statements can reference it. One FORMAT statement can be referenced by
many data transfer statements. In the following example, both the READ
and WRITE statements reference the same FORMAT statement:

READ(UNIT=22, FMT=10)ivar, fvar
WRITE(17, 10)ivar, fvar
...
10 FORMAT(I7, F14.3)

For additional information about the FORMAT statement and data
transfer statements, see Chapter 10, “HP Fortran statements,” on
page 241.

Chapter 9 207

I/O formatting
Format specification

Format specification
A format specification consists of a list of edit descriptors that define the
format of data to be read with a READ statement, or written with a WRITE
or PRINT statement. A format specification can appear either in a
FORMAT statement or in a character expression in a data transfer
statement.

The syntax of a format specification is:

[descriptor1[, descriptor2...]]

where:

descriptor is an edit descriptor that is used to convert data
between its internal (binary) format and an external
(character) format. Edit descriptors are described in
detail in the following section.

Note that format specifications are not used in list-directed and
namelist-directed I/O.

208 Chapter 9

I/O formatting
Edit descriptors

Edit descriptors
Edit descriptors are encoded characters that describe data conversion
between an internal (binary) format and an external (character) format.
There are three types of edit descriptors:

• Data edit descriptors define the format of data to be read or written,
such as its type and width (in characters). All data edit descriptors
are repeatable; that is, they can be preceded by a positive integer that
specifies the number of times the edit descriptor is to be replicated.

• Control edit descriptors specify editing information, such as the
number of spaces between input items, treatment of blanks in input,
and scale factors. Of the control edit descriptors, only the slash (/) is
repeatable.

• Character string edit descriptors output text. None of these is
repeatable.

All of the edit descriptors supported by HP Fortran are listed in
Table 25. As indicated by the syntax descriptions included in the table,
the field width specification (w) is optional for all data edit descriptors in
HP Fortran. Note that the Fortran 90 Standard defines the field width
specifier to be optional only for the A edit descriptor. The table also
identifies which edit descriptors are repeatable and which can be used on
input, output, or both.

Table 25 Edit descriptors

Descriptor Type Repeatable? I/O use Function

”...” or '...' Character
string

No Output Output enclosed string.

$ Control No Output Suppress newline at end of
output.

/ (slash) Control Yes Input/output End current record and begin
new record.

: (colon) Control No Input/output Stop formatting if I/O list is
exhausted.

Chapter 9 209

I/O formatting
Edit descriptors

A[w] or R[w] Data Yes Input/output Convert character data.

B[w[.m]] Data Yes Input/output Convert integer data, using
binary base.

BN Control No Input/output Ignore blanks in numeric
input data.

BZ Control No Input/output Treat blanks as zeroes in
numeric input data.

D[w.d] Data Yes Input/output Convert real type data with
exponent.

E[w.d[Ee]] Data Yes Input/output Convert real type data with
exponent.

EN[w.d[Ee]] Data Yes Input/output Convert real type data, using
engineering notation.

ES[w.d[Ee]] Data Yes Input/output Convert real type data, using
scientific notation.

F[w.d] Data Yes Input/output Convert real type data without
exponent.

G[w.d[Ee]] Data Yes Input/output Convert numeric data, all
types.

Q[w.d] Data Yes Input/output Convert real type data with
exponent.

nHs Character
String

No Output Output following n characters.

I[w[.m]] Data Yes Input/output Convert integer numeric data.

L[w] Data Yes Input/output Convert logical data.

O[w[.m]] Data Yes Input/output Convert integer data, using
octal base.

kP Control No Input/output Set scale factor to k.

Descriptor Type Repeatable? I/O use Function

210 Chapter 9

I/O formatting
Edit descriptors

The following sections describe the edit descriptors.

NOTE There is no single edit descriptor that defines a field for complex data.
Instead, you must use two real edit descriptors—the first for the real part of
the number, and the second for the imaginary part. The two edit descriptors
may be different or the same, and you can insert control and character string
edit descriptors between them.

Likewise, there are no edit descriptors for formatting derived types and
pointers. For derived types, you must specify the appropriate sequence of
edit descriptors that match the data types of the derived type’s components.
For pointers, you must specify the edit descriptor that matches the type of
the target object.

Character string (’...’ or ”...”) edit descriptor
The character string edit descriptor is used to write a character constant
to a formatted output record. It cannot be used to format input. You can
use either apostrophes or quotation marks to delimit the constant.
Whichever you use, they must be balanced. That is, if you begin with an
apostrophe, you must also end with it. If the enclosed character constant
includes a delimiting character, it must be of the other type; or you can
escape the delimiter by giving another of the same type. The width of the
field is the number of characters enclosed by the character string edit
descriptors, including any blanks.

Q Control No Input Return number of bytes
remaining to be read in
current input record.

S or SP Control No Output Print optional plus sign.

SS Control No Output Do not print optional plus sign.

Tc Control No Input/output Move to column c.

TLc Control No Input/output Move c columns to the left.

TRc or cX Control No Input/output Move c columns to the right.

Z[w[.m]] Data Yes Input/output Convert integer data, using
hexadecimal base.

Descriptor Type Repeatable? I/O use Function

Chapter 9 211

I/O formatting
Edit descriptors

Table 26 provides examples of the character string edit descriptor on
output. Note that b represents a blank.

Table 26 Character string edit descriptor output examples

Newline ($) edit descriptor
The newline edit descriptor is an HP extension that suppresses the
generation of the newline character (that is, the carriage-return/linefeed
sequence) during formatted, sequential output. By default, the cursor
moves to a newline after each output statement. The newline edit
descriptor causes the cursor to remain on the same line, immediately to
the right of the last character output.

NOTE Nonadvancing I/O also suppresses the newline at the end of a record. Unlike
the newline ($) edit descriptor, it is a standard feature of Fortran 90, and can
be used on input and output. For more information, see “Nonadvancing I/O”
on page 187 and the ADVANCE= I/O specifier in “OPEN” on page 379.

Descriptor Field width Output

'Enter data:' 11 Enter data:

”David's turn” 12 David's turn

”bbbSpacesbbb” 12 bbbSpacesbbb

'That''ll do.' 11 That'll do.

”””That'll do!””” 13 ”That'll do!”

”””” 1 ”

'”' 1 ”

212 Chapter 9

I/O formatting
Edit descriptors

Slash (/) edit descriptor
The slash edit descriptor terminates the current record and begins
processing a new record (such as a new line on a terminal). This edit
descriptor has the same result for both input and output: it terminates
the current record and begins a new one. For example, on output a
newline character is printed, and on input a new line is read.

Keep in mind the following considerations when using the slash edit
descriptor:

• If a series of two or more slashes are written at the beginning of a
format specification, the number of records skipped is equal to the
number of slashes.

• If n slashes appear other than at the beginning of a format
specification (where n is greater than 1), processing of the current
record terminates and n - 1 records are skipped.

• If a format contains only n slashes (and no other format specifiers), n
+ 1 records are skipped.

The / edit descriptor does not need to be separated from other
descriptors by commas.

Colon (:) edit descriptor
The colon edit descriptor (:) is used when performing formatted I/O to
terminate format control when the I/O list has been exhausted. If all
items in an I/O list have been read or written, the colon edit descriptor
stops any further format processing. If more items remain in the list, the
colon edit descriptor has no effect.

Consider the following example:

WRITE (*, 40) 1, 2
WRITE (*, 50) 1, 2
40 FORMAT(3(' value =', I2))
50 FORMAT(3(:, ' value =', I2))

The first WRITE statement outputs the line:

 value = 1 value = 2 value =

The descriptor 'value =' is repeated a third time because format control is
not terminated until the descriptor I2 is reached and not satisfied.

Chapter 9 213

I/O formatting
Edit descriptors

The second WRITE statement outputs the line:

 value = 1 value = 2

This time, the colon descriptor terminates format control before the
string ' value=' is output a third time.

A and R (character) edit descriptors
The A and R edit descriptors define fields for character data. The A edit
descriptor specifies left-justification, and the R edit descriptor specifies
right-justification.

The R edit descriptor is an HP extension.

The syntax for the character edit descriptors is:

[r]A[w]

[r]R[w]

where:

r is a positive integer constant, specifying the repeat
factor.

w is the field width. If w is not specified, the default is the
length in bytes of the corresponding I/O list item.

As a portability extension, the list item can be of any data type.

When the A and R edit descriptors are used for input and output, the
results can differ according to whether the width (w) specified for the
edit descriptor is less than, greater than, or equal to the length of the I/O
list item. The results on input are summarized in Table 27; the results on
output are summarized in Table 28.

214 Chapter 9

I/O formatting
Edit descriptors

Table 27 Contents of character data fields on input

Table 28 Contents of character data fields on output

Examples of the use of character edit descriptors on input are provided
in Table 29. In the table, b represents a blank and z represents a Null.

Descriptor Width/length
relationship Result

A width < length Data is left-justified in
variable, followed by blanks.

width >= length Data is taken from rightmost
characters in the field.

R width < length Data is right-justified in
variable, preceded by nulls.

width >= length Data is taken from rightmost
characters in the field.

Descriptor Width/length
relationship Result

A width <= length Data is taken from leftmost
characters in the field.

width > length Output the value, preceded by
blanks.

R width <= length Data is taken from rightmost
characters in the field.

width > length Output the value, preceded by
blanks.

Chapter 9 215

I/O formatting
Edit descriptors

Table 29 A and R edit descriptors: input examples

Table 30 provides examples of character edit descriptors on output. In
the table, b represents a blank and z represents a Null.

Table 30 A and R Edit descriptors: output examples

Descriptor Input field Variable length Value stored

A3 XYZ 3 XYZ

R3 XYZ 4 zXYZ

A5 ABCbb 10 ABCbbbbbbb

R9 RIGHTMOST 4 MOST

R8 CHAIRbbb 8 CHAIRbbb

R4 CHAIR 8 zzzzCHAI

A4 ABCD 2 CD

Descriptor Internal
characters

Variable
length Output

A6 ABCDEF 6 ABCDEF

R4 ABCDEFGH 8 EFGH

A4 ABCDE 5 ABCD

A8 STATUS 6 bbSTATUS

R8 STATUS 6 bbSTATUS

R8 STATUS 8 STATUSbb

216 Chapter 9

I/O formatting
Edit descriptors

B (binary) edit descriptor
The B edit descriptor defines a field for binary data. It provides for
conversion between an external binary number and its internal
representation.

The syntax for the binary edit descriptor is:

[r]B[w[.m]]

where:

r is a positive integer constant, specifying the repeat
factor.

w is a positive integer constant, specifying the field
width.

m is an unsigned integer constant, specifying the
minimum number of digits that must be in the field
and forcing leading zeroes as necessary up to the first
nonzero digit. The m value is ignored on input. If m is
not specified, a default value of 1 is assumed. If m is
larger than w, the field is filled with w asterisks.

Input Variables to receive binary input must be of type integer. The only legal
characters are 0s and 1s. Nonleading blanks are ignored, unless the file
is opened with BLANK='ZERO'.

If the file is opened with BLANK='ZERO', nonleading blanks are treated
as zeroes. For more information about the BLANK= specifier, see “OPEN”
on page 379. Plus and minus signs, commas, or any other symbols are
not permitted. If a nonbinary digit appears, an error occurs. The
presence of too many digits for the integer variable (or I/O list item) is
illegal.

Chapter 9 217

I/O formatting
Edit descriptors

Table 31 provides examples of the binary edit descriptor on input.

Table 31 B Edit descriptor: input examples

Output Unlike input, list items on output may be of any type, though character
values are output only as the binary equivalent of their ASCII
representation (without a length descriptor). If w is greater than the
number of converted binary digits (excluding leading zeroes), the binary
digits are right-justified in the output field.

If w is less than the number of converted binary digits, the field is filled
with w asterisks. This primarily affects the output of negative values.
Because negative values are output in twos complement form, their high-
order bits are nonzero and cause the field to be filled with asterisks when
w is less than the number of binary digits in the entire output value.

The field width required to fully represent the binary value of an item is
eight times its size in bytes. For example, an INTEGER*4 item could
require a field w of up to 32 characters.

Only 1s and 0s are printed on output.

Table 32 provides examples of the binary edit descriptor on output.

Table 32 B Edit descriptor: output examples

Descriptor Input field (binary) Value stored (binary)

B8 1111 1111

B8 01111 1111

B4 10101 1010

B8 1.1 error: illegal character

Descriptor Internal value Output

B5 27 11011

B8 27 bbb11011

B8.6 27 bb011011

B8 -27 ********

218 Chapter 9

I/O formatting
Edit descriptors

BN and BZ (blank) edit descriptors
The BN and BZ edit descriptors control the interpretation of embedded
and trailing blanks in numeric input fields. The syntax of the blank edit
descriptors is:

BN

BZ

At the beginning of the execution of an input statement, blank
characters within numbers are ignored except when the unit is
connected with BLANK='ZERO' specified in the OPEN statement. BN and
BZ override the BLANK= I/O specifier for the current READ statement. For
more details about the BLANK= I/O specifier, see “OPEN” on page 379.

If a BZ edit descriptor is encountered in the format specification, trailing
and embedded blanks in succeeding numeric fields are treated as zeroes.
The BZ edit descriptor remains in effect until a BN edit descriptor or the
end of the format specification is encountered. If BN is specified, all
embedded blanks are removed and the input number is right justified
within the field width.

The BN and BZ edit descriptors affect only I, B, O, F, D, E, EN, ES, G, and Z
format descriptors during the execution of an input statement. The BN
and BZ edit descriptors do not affect character and logical edit
descriptors.

Table 33 provides examples of the BN and BZ edit descriptors on input.

Table 33 BN and BZ edit descriptors: input examples

The BN and BZ edit descriptors are ignored during the execution of an
output statement.

Descriptor Input
characters

BN editing in
effect

BZ editing in
effect

I4 1b2b 12 1020

F6.2 b4b.b2 4.2 40.02

E7.1 5b.bE1b 5.0 x 101 5.0 x 1011

E5.0 3E4bb 3.0 x 104 3.0 x 10400
(overflow)

Chapter 9 219

I/O formatting
Edit descriptors

D, E, EN, ES, F, G, and Q (real) edit descriptors
The D, E, EN, ES, F, G, and Q edit descriptors define fields for real
numbers. The I/O list item corresponding to a real descriptor must be a
numeric type. (The Standard permits real and complex types only; as an
extension, HP Fortran allows integers.)

The syntax for these edit descriptors is:

[r]D[w.d]

[r]E[w.d[{E|D|Q}e]]

[r]EN[w.d[Ee]]

[r]ES[w.d[Ee]]

[r]F[w.d]

[r]G[w.d[{E|D|Q}e]]

[r]Q[w.d]

where:

r is a positive integer constant, specifying the repeat
factor.

w is a positive integer constant, specifying the field
width.

d is a nonnegative integer constant, specifying the
number of decimal places on output.

e is a positive integer constant, specifying the number of
digits in the exponent.

For formatting complex data, you can use two real edit descriptors—the
first for the real part of the number and the second for the imaginary
part. The two edit descriptors may be different or the same, and you can
insert control and character string edit descriptors between them.

220 Chapter 9

I/O formatting
Edit descriptors

Real edit descriptors on input
The input field for the real descriptors consists of an optional plus or
minus sign followed by a string of digits that may contain a decimal
point. If the decimal point is omitted in the input string, then the
number of digits equal to d from the right of the string are interpreted to
be to the right of the decimal point. If a decimal point appears in the
input string and conflicts with the edit descriptor, the decimal point in
the input string takes precedence. This basic form can be followed by an
exponent in one of the following forms:

• A signed integer constant

• An E followed by an optionally signed integer constant

• A D followed by an optionally signed integer constant

• A Q followed by an optionally signed integer constant

All four exponent forms are processed in the same way. Note, however,
that e has no effect on input.

The EN and ES edit descriptors are the same as the F edit descriptor on
input. The Q edit descriptor (an HP Fortran extension) is the same as the
E edit descriptor on input.

Table 34 provides examples of the real edit descriptors on input. The BZ
edit descriptor listed in the “Descriptor” column treats nonleading
blanks in numeric fields as zeroes.

Table 34 D, E, F, and G edit descriptors: input examples

Descriptor Input field Value stored

F6.5 4.51E4 45100

G4.2 51-3 .00051

E8.3 7.1bEb5 710000

D9.4 bbb45E+35 .0045 x 1035

BZ, F6.1 -54E3b -5.4 x 1030

Chapter 9 221

I/O formatting
Edit descriptors

Real edit descriptors on output
The output field for the real descriptors consists of w character positions,
filled with leading blanks (if necessary) and an optionally signed real
constant with a decimal point, rounded to d digits after the decimal
point. The following sections describe the real edit descriptors on output
in detail.

D and E edit descriptors
The D and E edit descriptors define a normalized floating-point field for
real and complex values. The value is rounded to d digits. The exponent
part consists of e digits. If Ee is omitted in a D or E edit descriptor, then
the exponent occupies two or three positions, depending on its
magnitude. The field width, w, should follow the general rule: w is
greater than or equal to d+7. If Ee is used, w is greater than or equal to
d+e+5. This rule provides positions for a leading blank, the sign of the
value, the decimal point, d digits, the exponent letter (D, E, or Q), the sign
of the exponent, and the exponent. The Ee, De, and Qe specifications,
which are available with the E edit descriptor, control which exponent
letter is output.

Table 35 provides examples of the E and D edit descriptors on output.

Table 35 D and E edit descriptors: output examples

Descriptor Internal value Output

D10.3 +12.342 bb.123D+02

E10.3E3 -12.3454 -.123E+002

E12.4 +12.34 bbb.1234E+02

D12.4 -.00456532 bb-.4565D-02

D10.10 +99.99913 **********

E11.5 +999.997 b.10000E+04

E10.3E4 +.624 x 10-30 .624E-0030

222 Chapter 9

I/O formatting
Edit descriptors

EN and ES edit descriptors
The EN and ES descriptors format floating-point values, using
engineering and scientific notation, respectively. They are similar in
form to the E descriptor, except:

• The field produced by the EN descriptor has an exponent that is
divisible by 3 and a significand that is in the range 1 to 999.

• The field produced by the ES descriptor has one digit before the
decimal point.

Table 36 provides examples of the EN and ES edit descriptors on output.

Table 36 EN and ES edit descriptors: output examples

Descriptor Internal value Output

EN12.3 +3.141 bbb3.141E+00

ES12.3 +3.141 bbb3.141E+00

EN12.3 +.00123 bbb1.230E-03

ES12.3 +.00123 bbb1.230E-03

EN12.3 -.7 -700.000E-03

ES12.3 -.7 bb-7.000E-01

EN12.3 +1234.5 bbb1.235E+03

ES12.3 +1234.5 bbb1.235E+03

Chapter 9 223

I/O formatting
Edit descriptors

F edit descriptor
The F edit descriptor defines a field for real and complex values. The
value is rounded to d digits to the right of the decimal point. The field
width, w, should be four greater than the expected length of the number
to provide positions for a leading blank, the sign, the decimal point, and
a roll-over digit for rounding if needed.

Table 37 provides examples of the F edit descriptor on output.

Table 37 F edit descriptor: output examples

G edit descriptor
The G edit descriptor can be used with any data type but is commonly
used to define a field for real and complex values.

According to the magnitude of the data, the G edit descriptor is
interpreted as either an E or F descriptor. (For more information on these
edit descriptors, refer to “D and E edit descriptors” on page 221 and “F
edit descriptor” on page 223.) The E edit descriptor is used when one of
the following conditions is true:

• The magnitude is less than 0.1 but not zero.

• The magnitude is greater than or equal to 10**d (after rounding to d
digits).

If the magnitude does not fit either of these rules, the F edit descriptor is
used. When F is used, trailing blanks are included in the field where the
exponent would have been.

Descriptor Internal value Output

F5.2 +10.567 10.57

F3.1 -254.2 ***

F6.3 +5.66791432 b5.668

F8.2 +999.997 b1000.00

F8.2 -999.998 -1000.00

F7.2 -999.997 *******

F4.1 +23 23.0

224 Chapter 9

I/O formatting
Edit descriptors

For fixed- or floating-point format descriptors, the field width is w. The
value is rounded to d digits, and the exponent consists of e digits. If Ee is
omitted, the exponent occupies two positions. If Ee is omitted and the
exponent is greater than 99 (that is, it requires three digits), the
exponent letter is dropped from the output. The field width, w, should
follow the general rule: w is greater than or equal to the sum of d+7; or, if
Ee is specified, w is greater than or equal to the sum of d+e+5. This rule
provides positions for a leading blank, the sign of the value, d digits, the
decimal point, and, if needed, the exponent letter (D, E, or Q), the sign of
the exponent, and the exponent. Note that the Ee, De, and Qe
specifications control which exponent letter is output.

When used to specify I/O fields for integer, character, and logical data,
the G edit descriptor has the same syntax and same effect as the integer,
character, and logical edit descriptors. The d and e values (if specified)
have no effect.

Table 38 provides examples of the G edit descriptor on output.

Table 38 G edit descriptor: output examples

Descriptor Internal value Interpretation Output

G10.3 +1234.0 E10.3 b0.123E+04

G10.3 -1234.0 E10.3 -0.123E+04

G12.4 +12345.0 E12.4 bb0.1235E+05

G12.4 +9999.0 F8.0, 4X bbb9999.bbbb

G12.4 -999.0 F8.1, 4X bb-999.0bbbb

G7.1 +.09 E7.1 0.9E-01

G5.1 -.09 E5.1 *****

G11.1 +9999.0 E11.1 bbbb0.1E+05

G8.2 +9999.0 E8.2 0.10E+05

G7.2 -999.0 E7.2 *******

Chapter 9 225

I/O formatting
Edit descriptors

Q edit descriptor
The Q edit descriptor (an HP extension) has the same effect as the E edit
descriptor on output, except that it outputs a Q for the exponent instead
of an E.

The Q edit descriptor can also be used to determine the number of bytes
remaining to be read in an input record; see “Q (bytes remaining) edit
descriptor” on page 233.

H (Hollerith) edit descriptor
The H edit descriptor outputs a specified number of characters. The
syntax is:

nHcharacter-sequence

where:

n
is a positive integer that specifies the number of
characters to output. This number must exactly match
the actual number of characters in character-sequence.

character-sequence
is the string of representable characters (including
blanks) to output.

Table 39 provides examples of the Hollerith edit descriptor on output.

Table 39 H edit descriptor: output examples

Descriptor Field width Output

12HbbbSpacesbbb 12 bbbSpacesbbb

14H”Itbisn'tbso.” 14 ”Itbisn'tbso.”

226 Chapter 9

I/O formatting
Edit descriptors

I (Integer) edit descriptor
The I edit descriptor defines a field for an integer number. As an HP
extension, it can also be used on real and logical data. The corresponding
I/O list item must be a numeric or logical type.

The syntax of the integer edit descriptor is:

[rI][w[.m]]

where:

r is a positive integer constant, specifying the repeat
factor.

w is a positive integer constant, specifying the field
width.

m is a nonnegative integer constant, specifying the
minimum number of digits that must be in the field
and forcing leading zeroes as necessary up to the first
nonzero digit. The m value is ignored on input. If m is
not specified, a default value of 1 is assumed. If m is
larger than w, the field is filled with w asterisks. If m =
0 and the list item is zero, only blanks are output.

Input The integer edit descriptor causes the interpretation of the next w
positions of the input record. The number is converted to match the type
of the list item currently using the descriptor. A plus sign is optional for
positive values. A decimal point must not appear in the field.

Table 40 provides examples of the integer edit descriptor on input.

Table 40 I edit descriptor: input examples

Descriptor Input field Value stored

I4 b1bb 1

I5 bbbbb 0

I5 bbbbb1 0

I2 -1 -1

I4 -123 -123

I3 b12 12

Chapter 9 227

I/O formatting
Edit descriptors

Output The integer edit descriptor outputs a numeric variable as a right-
justified integer value (truncated, if necessary). The field width, w,
should be one greater than the expected number of digits to allow a
position for a minus sign for negative values. If m is set to 0, a zero value
is output as all blanks.

Table 41 provides examples of the integer edit descriptor on output.

Table 41 I edit descriptor: output examples

I3 12b 12

I3 12b 120

I3 1.1 error: illegal character

Descriptor Input field Value stored

Descriptor Internal value Output

I4 +452.25 b452

I2 +6234 **

I3 -11.92 -11

I5 -52 bb-52

I10 123456.5 bbbb123456

I6.3 3 bbb003

I3.0 0 bbb

I3 0 bb0

228 Chapter 9

I/O formatting
Edit descriptors

L (Logical) edit descriptor
The L edit descriptor defines a field for logical data. Its syntax is:

[r]L[w]

where:

r is a positive integer constant, specifying the repeat
factor.

w is a positive integer constant, specifying the field
width.

The I/O list item corresponding to an L edit descriptor must be of type
logical, short logical, or byte.

Input The field width is scanned for optional blanks followed by an optional
decimal point, followed by T (or t) for true or F (or f) for false. The first
nonblank character in the input field (excluding the optional decimal
point) determines the value to be stored in the declared logical variable.
It is an error if the first nonblank character is not T, t, F, f, or a period(.).

Table 42 provides examples of the logical edit descriptor on input.

Table 42 L edit descriptor: input examples

Output The character T or F is right-justified in the output field, depending on
whether the value of the list item is true or false. Table 43 provides
examples of the logical edit descriptor on output.

Descriptor Input field Value dtored

L1 T .TRUE.

L1 f .FALSE.

L6 .TRUE. .TRUE.

L7 .false. .FALSE.

L2 .t .TRUE.

L8 bbbbTRUE .TRUE.

L3 ABC error: illegal character

Chapter 9 229

I/O formatting
Edit descriptors

Table 43 L edit descriptor: output examples

O (Octal) edit descriptor
The O edit descriptor defines a field for octal data. It provides conversion
between an external octal number and its internal representation.

The syntax for the octal edit descriptor is:

[r]O[w[.m]]

where:

r is a positive integer constant, specifying the repeat
factor.

w is a positive integer constant, specifying the field
width.

m is a nonnegative integer constant, specifying the
minimum number of digits that must be in the field
and forcing leading zeroes as necessary up to the first
nonzero digit. The m value is ignored on input. If m is
not specified, a default value of 1 is assumed. If m is
larger than w, the field is filled with w asterisks.

Input The presence of too many digits for the integer variable (or list item) to
receive produces undefined results. Legal octal digits are 0 through 7.
Plus and minus signs are illegal.

Descriptor Internal value Output (logical)

L5 false bbbbF

L4 true bbbT

L1 true T

230 Chapter 9

I/O formatting
Edit descriptors

Table 44 provides examples of the octal edit descriptors on input.

Table 44 O edit descriptor: input examples

Output List items may be of any type, though character variables are output
only as the octal equivalent of their ASCII representation (no length
descriptor).

If w is greater than the number of converted octal digits (including
blanks between words but excluding leading zeroes), the octal digits are
right-justified in the output field. If w is less than the number of
converted octal digits, the field is filled with asterisks. This primarily
affects the output of negative values. Because negative values are output
in twos complement form, their high-order bits are nonzero and cause
the field to be filled with asterisks when w is less than the number of
octal digits in the entire output value. If m is set to 0, a zero value is
output as all blanks.

Table 45 provides examples of the octal edit descriptors on output.

Table 45 O edit descriptor: output examples

Descriptor Input field (octal) Value stored (octal)

O8 12345670 12345670

O2 77 77

O3 064 64

O8 45r error: illegal character

Descriptor Internal value Output (Octal)

O6 80 bbb120

O2 80 **

O14 -9 bbb37777777767

O11 32767 bbbbbb77777

O6.4 79 bb0117

Chapter 9 231

I/O formatting
Edit descriptors

P (scale factor) edit descriptor
The kP edit descriptor causes a scale factor of k to be applied to all
subsequent F, D, E, EN, ES, and G edit descriptors in the format
specification.

If the P edit descriptor does not precede an F, D, E, EN, ES, or G edit
descriptor, it should be separated from other edit descriptors by a
comma. If the P edit descriptor immediately precedes an F, D, E, EN, ES,
or G edit descriptor, the comma is optional.

For example, the format specification

(3P, I2, F4.1, E5.2)

is equivalent to

(I2, 3PF4.1, E5.2)

When a format specification is interpreted, the scale factor is initially set
to 0. When a P edit descriptor is encountered, the specified scale factor
takes effect for the format specification and remains in effect until
another P edit descriptor is encountered.

The effect of the scale factor differs for input and output as follows:

Input If the value in the input field does not have an exponent, the internal
number is equal to the field value multiplied by 10-k. If the value in the
input field has an exponent, the scale factor has no effect. See Table 46
for examples of the scale factor on input.

Output The scale factor has no effect on the EN, ES, F and G (interpreted as F)
edit descriptors. For the D, E, and G (interpreted as E) edit descriptors,
the value of the list item is multiplied by 10k as it is output but the
exponent part is decreased by k.

O12 1.1 bb7743146315

O12 'A' b101

O12 'ABC' b101b102b103

Descriptor Internal value Output (Octal)

232 Chapter 9

I/O formatting
Edit descriptors

The value specified for the scale factor (k) must be in the range:

-d < k < (d + 2)

where:

d is the number of digits in the fractional part of the
number being written.

k is a signed integer that specifies the scale factor.

Table 46 provides examples of the scale factor on output.

Table 46 P edit descriptor: input and output examples

When part or all of a format specification is repeated, the current scale
factor is not changed until another scale factor is encountered.

Format
specification

Input
field Internal value Output

(-2PG15.5) 1.97E-4 1.97 x 10-4 bbbbb.00197E-01

(2P, F15.5) 27.982 .2798199 bbbbbbb27.98200

(2P,ES15.5) 3518. 35.18 bbbb3.51800E+01

(-2P,EN15.5) 7.91E+5 7.91 x 105 bb791.00000E+03

(-2PE15.5) .17694 17.694 bbbbb.00177E+04

Chapter 9 233

I/O formatting
Edit descriptors

Q (bytes remaining) edit descriptor
The Q edit descriptor is an HP extension that returns the number of
bytes remaining to be read in the input record, placing the result into the
corresponding integer variable in the I/O list. The return value can be
used to control the remaining input items.

The Q edit descriptor is valid on input only; it is ignored on output. It can
be used for reading formatted, sequential, and direct-access files. The
following program segment reads variable-length strings from a
sequential file:

CHARACTER(LEN=80) :: string
INTEGER :: n, i
...
READ (11,'(Q,80A1)') n, (string (i:i), i=1, n)

For information about the Qw.d edit descriptor for editing real data, see
“D, E, EN, ES, F, G, and Q (real) edit descriptors” on page 219.

S, SP, and SS (plus sign) edit descriptors
The S, SP, and SS edit descriptors control printing of the plus sign
character in numeric output. The default behavior of HP Fortran is not to
print the plus sign. However, an SP edit descriptor in the format
specification causes the plus sign to appear in any subsequent numeric
output where the value is positive. The SS descriptor suppresses the plus
sign in subsequent numeric output. The S edit descriptor restores the
default behavior.

The sign edit descriptors have no effect on input.

234 Chapter 9

I/O formatting
Edit descriptors

T, TL, TR, and X (tab) edit descriptors
The tab edit descriptors position the cursor on the input or output record.
Their syntax is:

Tn

TLn

TRn

nX

where:

n is a positive integer constant, specifying the number of
column positions to skip for positioning within the
current output or input record.

The T edit descriptor references an absolute column number, while the
descriptors TL and TR reference a relative number of column positions to
the left (TL) or right (TR) of the current cursor position. Note that the TR
descriptor is identical to the X edit descriptor.

Z (hexadecimal) edit descriptor
The Z edit descriptor defines a field for hexadecimal data. This descriptor
provides for conversion between an external hexadecimal number and its
internal representation.

The syntax for the hexadecimal edit descriptor is:

[r]Z[w [.m]]

where:

r is a positive integer constant, specifying the repeat
factor.

w is a positive integer constant, specifying the field
width.

m is a nonnegative integer constant, specifying the
minimum number of digits that must be in the field
and forcing leading zeroes as necessary up to the first
nonzero digit. The m value is ignored on input. If m is
not specified, a default value of 1 is assumed. If m is
larger than w, the field is filled with w asterisks.

Chapter 9 235

I/O formatting
Edit descriptors

Input Variables to receive hexadecimal input must be of type integer. Legal
hexadecimal digits are 0 through 9, and A through F (or a through f).
Nonleading blanks are ignored, unless the file is opened with
BLANK='ZERO'. If the file is opened with BLANK='ZERO', nonleading
blanks are treated as zeroes. For more information about the BLANK=
specifier see “OPEN” on page 379. Plus and minus signs, commas, or any
other symbols are neither permitted on input nor printed on output. The
presence of too many digits for the integer variable (or list item) produces
undefined results.

Table 47 provides examples of the hexadecimal edit descriptor on input.

Table 47 Z edit descriptor: input examples

Output List items may be of any type, though character variables are output
only as the hexadecimal equivalent of their ASCII representation
(without a length descriptor). If w is greater than the number of
converted hexadecimal digits (excluding leading zeroes), the hexadecimal
digits are right-justified in the output field. If w is less than the number
of converted hexadecimal digits, the field is filled with asterisks. This
primarily affects the output of negative values. Because negative values
are output in twos complement form, their high-order bits are nonzero
and cause the field to be filled with asterisks when w is less than the
number of hexadecimal digits in the entire output value. If m is set to 0,
a zero value is output as all blanks.

The field width required to fully represent the hexadecimal value of an
item is twice its size in bytes. For example, a CHARACTER*12 item would
require a field width of 24 characters.

Table 48 provides examples of the hexadecimal edit descriptor on output.

Descriptor Input field
(hexadecimal)

Value stored
(hexadecimal)

Z4 FF3B FF3B

Z4 fFfF FFFF

Z2 ABCD AB

Z3 1.1 error: illegal character

236 Chapter 9

I/O formatting
Edit descriptors

Table 48 Z edit descriptor: output examples

Descriptor Internal value Output

Z2 27 1B

Z6.4 27 bb001B

Z 'A' b41

Z8 'ABCD' 41424344

Z8 1.1 3F8CCCCD

Chapter 9 237

I/O formatting
Embedded format specification

Embedded format specification
A format specification can be embedded in a data transfer statement as a
character expression. Parentheses are included in the expression, and
the first nonblank character must be a left parenthesis. The matching
right parenthesis must also be in the expression. A list of edit descriptors
appears between the parentheses. Any characters appearing after the
matching right parenthesis are ignored.

If the character expression is a character constant, it must be delimited
by either apostrophes or quotation marks. If the character constant
contains another character constant, the nested character constant must
also be delimited. If the inner set of delimiters is the same as the outer
set they must be doubled. Each of the following statements is correct and
will produce the same results:

PRINT ”('i = ', i2)”, i
PRINT ”(””i = ””, i2)”, i
PRINT '(”i = ”, i2)', i
PRINT '(''i = '', i2)', i
WRITE (6, ”('i = ', i2)”) i

If the character expression is an array element, the entire specification
must be within that element. If the expression is a whole character array,
the format specification is the concatenation of the array elements in
array element order. (As an extension, HP Fortran allows the use of an
integer array to contain a format specification.)

The following illustrates the use of a character array to hold the format
specification:

CHARACTER(LEN=6), DIMENSION(2) :: fspec
fspec(1) = '(F8.3,'
fspec(2) = ' I5)'
PRINT fspec, fvar, ivar

If the value of fvar is 12.34567 and ivar is 123, the output would be:

bb12.346bb123

238 Chapter 9

I/O formatting
Nested format specifications

Nested format specifications
A format specification can include a nested format specification (another
set of edit descriptors, enclosed in parentheses). You can also precede the
nested format specification with a repeat factor, as in the following
example:

(1H , 2(I5, F10.5))

This is equivalent to:

(1H , I5, F10.5, I5, F10.5)

Each nested specification is known as a group at nested level n. The
value of n begins at 1. For each successive level of nesting, n is
incremented by 1. Each group at nested level 1 can contain one or more
groups at nested level 2, and so on.

For example:

(E9.3,I6,(2X,I4))

contains one group at nested level 1.

(L2,A3/(E10.3,4(A2,L4)))

has one group at nested level 1 and one at nested level 2.

(A,(3X,(I2,(A3)),I3),A)

contains one group at nested level 1, one at level 2, and one at level 3.

A nested format specification can be preceded by a repeat specification.
For example, the following input record

b26b6.4336b373.86b39bb49.79bb4bbb4395.4972

could be accessed with the following FORMAT statement:

10 FORMAT (I3,F7.4,2(F7.2,I3),F12.4)

The list of variables following READ statement corresponds to the
preceding FORMAT statement:

READ 10,i,a,b,j,d,k,f

The READ statement would read values for i and a; repeat the nested
format specification F7.2,I3 twice to read values for b, j, d, and k; and,
finally, read a value for f.

Chapter 9 239

I/O formatting
Format specification and I/O data list

Format specification and I/O data list
A formatted I/O statement references each item in an I/O list, and the
corresponding format specification is scanned to find a format descriptor
for each item. As long as an item is matched to an edit descriptor, normal
execution continues.

If there are more edit descriptors than list items, format control
terminates with the last list item. If there are fewer edit descriptors than
list items, the following three steps are performed:

1 The current record is terminated.

2 A new record is started.

3 Format control is returned to the format specification based upon the
following hierarchy:

a Control returns to the repeat specification for the rightmost group
at nested level 1. For information about nested levels, see “Nested
format specifications” on page 238.

b If no repeat specification exists in the rightmost group at nested
level 1, control returns to the group itself.

c If there is no group at nested level 1, control returns to the first
descriptor in the format specification.

240 Chapter 9

I/O formatting
Format specification and I/O data list

Table 49 provides examples showing how control is returned to the
format specification in different circumstances.

Table 49 Format control and nested format specifications

Format specification Control
returns to: Explanation

(I5,2(3X,I2,(I4))) 2(3X,I2,(I4)) The rightmost group at nested level 1 is
3X,I2,(I4). Control returns to the repeat
specifier for this group.

(F4.1,I2) (F4.1,I2) There is no group at nested level 1. Control
returns to the first descriptor in the format
specification.

(A3,(3X,I2),4X,I4) (3X,I2),4X,I4 Control returns to the group at nested level 1.

241

10 HP Fortran statements

This chapter describes the HP Fortran statements and attributes,
arranged in alphabetical order. The descriptions provide syntax
information, applicable rules and restrictions, and examples.

The following descriptions for specific type declarations are located in
this chapter. Generic type declaration information is described in “Type
declaration for intrinsic types” on page 24:

• BYTE

• CHARACTER

• COMPLEX

• DOUBLE COMPLEX

• DOUBLE PRECISION

• INTEGER

• LOGICAL

• REAL

• RECORD

• TYPE(type-name)

This chapter does not describe the following:

• Assignment statements (instead, see “Assignment” on page 95)

• Statement functions (instead, see “Statement functions” on page 137)

• Constructs (instead, see “Data types and data objects” on page 21)

242 Chapter 10

HP Fortran statements
Attributes

Attributes
Table 50 lists all the attributes that an HP Fortran entity can have and
indicates their compatibility. If the box at the intersection of two
attributes contains a check mark, the attributes are mutually compatible
and can be held simultaneously by an entity. The attributes are referred
to throughout this chapter as well as in the rest of the book.

Table 50 Attribute compatibility

A
L
L
O
C
A
T
A
B
L
E

A
U
T
O
M
A
T
I
C

D
I
M
E
N
S
I
O
N

E
X
T
E
R
N
A
L

In
itia

lization

I
N
T
E
N
T

I
N
T
R
I
N
S
I
C

O
P
T
I
O
N
A
L

P
A
R
A
M
E
T
E
R

P
O
I
N
T
E
R

P
R
I
V
A
T
E

P
U
B
L
I
C

S
A
V
E

S
T
A
T
I
C

T
A
R
G
E
T

V
O
L
A
T
I
L
E

ALLOCATABLE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

AUTOMATIC ✓ ✓ ✓ ✓ ✓ ✓

DIMENSION ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

EXTERNAL ✓ ✓ ✓ ✓

Initialization ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

INTENT ✓ ✓ ✓ ✓ ✓

INTRINSIC ✓ ✓ ✓

OPTIONAL ✓ ✓ ✓ ✓ ✓ ✓ ✓

PARAMETER ✓ ✓ ✓ ✓ ✓

POINTER ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PRIVATE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PUBLIC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SAVE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Chapter 10 243

HP Fortran statements
Attributes

NOTE AUTOMATIC, STATIC, and VOLATILE may be specified in a statement of
the same name but not as attributes in a type declaration statement.

STATIC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TARGET ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VOLATILE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

A
L
L
O
C
A
T
A
B
L
E

A
U
T
O
M
A
T
I
C

D
I
M
E
N
S
I
O
N

E
X
T
E
R
N
A
L

In
itia

liza
tion

I
N
T
E
N
T

I
N
T
R
I
N
S
I
C

O
P
T
I
O
N
A
L

P
A
R
A
M
E
T
E
R

P
O
I
N
T
E
R

P
R
I
V
A
T
E

P
U
B
L
I
C

S
A
V
E

S
T
A
T
I
C

T
A
R
G
E
T

V
O
L
A
T
I
L
E

244 Chapter 10

HP Fortran statements
Statements and attributes

Statements and attributes
The remainder of this chapter describes all of the statements and
attributes that you can use in an HP Fortran program. The statement
and attribute descriptions are listed in alphabetical order. For general
information about statements—including the order in which statements
must appear in a legal program—see “Statements” on page 11.

Chapter 10 245

HP Fortran statements
ACCEPT (extension)

ACCEPT (extension)
Reads from standard input.

Syntax The syntax of the ACCEPT statement can take one of two forms:

• Formatted and list-directed syntax:

ACCEPT format [, input-list]

• Namelist-directed syntax:

ACCEPT name

format
is one of the following:

• An asterisk (*), specifying list-directed I/O.

• The label of a FORMAT statement containing the format
specification.

• An integer variable that has been assigned the label of a
FORMAT statement.

• An embedded format specification.

input-list

is a comma-separated list of data items. The data items
can include variables and implied-DO lists.

name

is the name of a namelist group, as previously defined
by a NAMELIST statement. Using this syntax, the
ACCEPT statement accepts data from standard input
and transfers it to the namelist group. To perform
namelist-directed I/O with a connected file, you must
use the READ statement and include the NML= specifier.

Description The ACCEPT statement is an HP Fortran extension and is provided for
compatibility with other versions of Fortran. The standard READ
statement performs the same function, and standard-conforming
programs should use it.

246 Chapter 10

HP Fortran statements
ACCEPT (extension)

The ACCEPT statement transfers data from standard input to internal
storage. (Unit 5 is preconnected to the HP-UX standard input.) The
ACCEPT statement can be used to perform formatted, list-directed, and
namelist-directed I/O only.

To read data from a connected file, use the READ statement.

Examples The following example of the ACCEPT statement reads an integer and a
floating-point value from standard input, using list-directed formatting:

INTEGER :: i
REAL :: x
ACCEPT *, i, x

Related statements FORMAT, NAMELIST, PRINT and READ

Related concepts For related information, see the following:

• “List-directed I/O” on page 179

• “Implied-DO loop” on page 194

• “Embedded format specification” on page 237

Chapter 10 247

HP Fortran statements
ALLOCATABLE (statement and attribute)

ALLOCATABLE (statement and attribute)
Declares an allocatable array with deferred shape.

Syntax The syntax of a type declaration statement with the ALLOCATABLE
attribute is:

type, attrib-list :: entity-list

type
is a valid type specification (INTEGER, REAL, LOGICAL,
CHARACTER, TYPE(type-name), etc.), as described in Chapter 3,
“Data types and data objects,” on page 21.

attrib-list
is a comma-separated list of attributes including ALLOCATABLE
and optionally those attributes compatible with it, namely:

entity-list
is a comma-separated list of entities. Each entity is of the form:

array-name [(deferred-shape-spec-list)]

If (deferred-shape-spec-list) is omitted, it must be
specified in another declaration statement.

array-name

is the name of an array being given the attribute
ALLOCATABLE.

deferred-shape-spec-list

is a comma-separated list of colons, each colon
representing one dimension. Thus the rank of the array
is equal to the number of colons specified.

DIMENSION PUBLIC TARGET

PRIVATE SAVE

248 Chapter 10

HP Fortran statements
ALLOCATABLE (statement and attribute)

The syntax of the ALLOCATABLE statement is:

ALLOCATABLE [::] array-name [(deferred-shape-spec-list)]

 [,array-name [(deferred-shape-spec-list)]]...

If (deferred-shape-spec-list) is omitted from the ALLOCATABLE
statement, it must be specified in another declaration statement, such as
a type or DIMENSION statement.

The ALLOCATED intrinsic inquiry function is described in
“ALLOCATED(ARRAY)” on page 493. It can be used to determine
whether an allocatable array is currently allocated.

Description The ALLOCATABLE attribute or statement is used to declare an array
whose extents in all its dimensions will be specified when an ALLOCATE
statement is executed at run-time; for this reason it is known as
“deferred-shape”. When an allocatable array is declared, only its name
and rank are given.

Examples The following statements declare a rank-one deferred-shape array and
illustrate its use with different extents.

! mls is deferred shape.
INTEGER, ALLOCATABLE :: mls(:)
ALLOCATE (mls (3)) ! Allocate 3 elements.
DEALLOCATE (mls) ! mls is no longer allocated
ALLOCATE (mls (-n:n)) ! Allocate with different extent

Related statements ALLOCATE and DEALLOCATE

Related concepts See “Allocatable arrays” on page 59 for more information about
allocatable arrays and the conditions applying to their use.

Array pointers provide a more general mechanism for the manipulation
of deferred-shape arrays; see “Array pointers” on page 59.

Chapter 10 249

HP Fortran statements
ALLOCATE

ALLOCATE
Provides storage space for allocatable arrays and pointer targets.

Syntax ALLOCATE (allocation-list[, STAT= scalar-integer-variable])

allocation-list
is a comma-separated list of allocation.

allocation
is allocate-object [(allocate-shape-spec-list)].

allocate-object

is variable-name or derived-type-component. Each
allocate-object must be an allocatable array or a
pointer.

allocate-shape-spec-list

is a comma-separated list of allocate-shape-spec.

allocate-shape-spec

is [lower-bound:]upper-bound. The bounds in an
allocate-shape-spec must be scalar integer expressions.

STAT=scalar-integer-variable
returns the error status after the statement executes. If given, it
is set to zero if the statement successfully executed, and to one
of the following nonzero values if an error occurred:

1 Error occurred after the array was allocated; for
example, an attempt to allocate a previously
allocated array.

2 Dynamic memory allocation failure (memory not
available) or invalid size (array too large).

3 Errors of both types 1 and 2 have occurred. This
kind of an error can only occur if the same
ALLOCATE statement is used to allocate more
than one array, and both kinds of errors occur.

If there is no scalar-integer-variable, the occurrence of an error
causes the program to terminate.

250 Chapter 10

HP Fortran statements
ALLOCATE

Description The ALLOCATE statement creates space for allocatable arrays and
targets for variables (scalars or arrays) with the POINTER attribute. The
ALLOCATE and DEALLOCATE statements give the user the ability to
manage space dynamically at execution time.

For allocatable arrays, an error occurs when an attempt is made to
allocate an already allocated array or to deallocate an array that is not
allocated. The ALLOCATED intrinsic function may be used to determine
whether an allocatable array is allocated.

A pointer can be associated with a target, either with the pointer
assignment statement or by use of the ALLOCATE statement. It is not an
error to allocate an already associated pointer; its old target connection
is replaced by a connection to the newly allocated space. However, if the
previous target was allocated and no other pointer became associated
with it, the space is no longer accessible.

Examples In the following example, a complex array with the POINTER attribute is
declared. Target space is allocated to it at run-time, the amount being
determined by two integer values read in. Later in the program, the
space is recovered by use of the DEALLOCATE statement.

COMPLEX, POINTER :: hermitian (:, :)
READ *, m, n
ALLOCATE (hermitian (m, n))
DEALLOCATE (hermitian, STAT = ierr)

In the next example, a real allocatable array is declared. The amount of
space allocated to it depends on how much is available.

! Rank-2 allocatable array
REAL, ALLOCATABLE :: intense(:,:)

CALL init_i_j(i, j)
DO
 ALLOCATE (intense(i, j), STAT = ierr4)
 ! ierr4 will be positive if there is not enough space to
 ! allocate this array
 IF (ierr4 == 0) EXIT
 i = i/2; j = j/2
END DO

The derived type node in the next example is the basis of a binary tree
structure. It consists of a real value component (val) and two pointer
components, left and right, both of type node. The variable top (of
type node) is declared, and space is allocated for targets for the pointers
top%left and top%right.

Chapter 10 251

HP Fortran statements
ALLOCATE

The ALLOCATE and DEALLOCATE statements and pointer variables of
type node make it possible to allocate space for nodes in such a tree
structure, traverse it as required, and then recover the space when it is
no longer needed.

TYPE node
 REAL val
 TYPE(node), POINTER :: left, right ! Pointer components
END TYPE node
TYPE(node) top
ALLOCATE (top % left, top % right)

In the final example, two CHARACTER arrays, para and key, are declared
with the POINTER attribute. para is allocated space; key is made to
point at a section of para.

! Pointers to char arrays
CHARACTER, POINTER :: para(:), key(:)

CALL init_k_m(k, m)
ALLOCATE (para(1000))
key => para (k : k + m)

Related statements ALLOCATABLE (statement and attribute), DEALLOCATE, NULLIFY, and
POINTER (statement and attribute)

Related concepts For related information, see the following:

• The descriptions of the ALLOCATED and ASSOCIATED intrinsics in
Chapter 11, “Intrinsic procedures,” on page 475

• “Pointers” on page 47

252 Chapter 10

HP Fortran statements
ASSIGN

ASSIGN
Assigns statement label to integer variable.

Syntax ASSIGN stmt-label TO integer-variable

stmt-label
is the statement label for an executable statement or a FORMAT
statement in the same scoping unit as the ASSIGN statement.

integer-variable
is a scalar variable of the default integer type. It cannot be a
field of a derived type or record, or an array element.

Description Once a variable is defined by an ASSIGN statement, it can be used in an
assigned GO TO statement or as a format specifier in an input/output
statement. It should not be used in any other way.

A variable that has been assigned a statement label can be reassigned
another label or an integer value. If integer-variable is subsequently
assigned an integer value, it no longer refers to a label.

Examples ASSIGN 20 TO last1
 GO TO last1
 ...
 ! ASSIGN used with FORMAT statement
 ASSIGN 10 TO form1
10 FORMAT(F6.1,2X,I5/F6.1
 READ(5,form1)sum,k1,ave1
20 ...

Related statements GO TO (assigned)

Related concepts For related information, see the following:

• “Statement labels” on page 10

• “Assigned GO TO statement” on page 115

Chapter 10 253

HP Fortran statements
AUTOMATIC (extension)

AUTOMATIC (extension)
Makes procedure variables and arrays automatic.

Syntax AUTOMATIC var-name-list

var-name-list
is a comma-separated list of names of variables and arrays to be
declared as automatic. Array names may be followed by an
optional explicit-shape-spec.

Description The AUTOMATIC statement is provided as an HP extension.

If a variable or array declared within a procedure is declared as
automatic, then there is one copy of it for each invocation of the
procedure. Space is allocated on entry to the procedure and deallocated
on exit. This is also the default for variables that do not have the SAVE or
STATIC attribute, unless the +save option has been specified.

If it is required to have the same copy of a variable available to each
invocation of the routine (for example, to keep a record of the depth of
recursion), then the variable should have the SAVE attribute.

Note the following:

• The AUTOMATIC statement may only be used within a procedure.

• Local variables are AUTOMATIC by default.

• Arguments and function values are AUTOMATIC.

• Automatic variables may not appear in EQUIVALENCE, DATA or SAVE
statements.

• The AUTOMATIC attribute is not the same as automatic arrays and
automatic character strings.

Examples AUTOMATIC r, s, u, v, w(10)

Related statements SAVE and STATIC

Related concepts For information about automatic and static variables, refer to the
HP Fortran Programmer’s Guide.

254 Chapter 10

HP Fortran statements
BACKSPACE

BACKSPACE
Positions file at preceding record.

Syntax The syntax of the BACKSPACE statement can take one of two forms:

• Short form:

BACKSPACE integer-expression

• Long form:

BACKSPACE (io-specifier-list)

integer-expression
is the number of the unit connected to a sequential file.

io-specifier-list
is a list of the following comma-separated I/O specifiers:

[UNIT=] unit

specifies the unit connected to an external file opened
for sequential access. unit must be an integer
expression that evaluates to a number greater than 0.
If the optional keyword UNIT= is omitted, unit must be
the first item in io-specifier-list.

ERR=stmt-label

specifies the label of an executable statement to which
control passes if an error occurs during statement
execution.

IOSTAT=integer-variable

returns the I/O status after the statement executes. If
the statement executes successfully, integer-variable is
set to zero. If an error occurs, it is set to a positive
integer that indicates which error occurred.

Description The BACKSPACE statement causes the external file connected to unit to
be positioned just before the preceding record of the file. The file must be
connected for sequential access.

Chapter 10 255

HP Fortran statements
BACKSPACE

Examples The following statement causes the file connected to unit 10 to be
positioned just before the preceding record:

BACKSPACE 10

The following statement causes the file connected to unit 17 to be
positioned just before the preceding record. If an error occurs during the
execution of the statement, control passes to the statement at label 99,
and the error code is returned in ios:

BACKSPACE (17, ERR=99, IOSTAT=ios)

Related statements ENDFILE, OPEN, and REWIND

Related concepts For information about I/O concepts, see Chapter 8, “I/O and file
handling,” on page 171, which lists example programs that use I/O. For
information about I/O formatting, see Chapter 11, “Intrinsic procedures,”
on page 475.

256 Chapter 10

HP Fortran statements
BLOCK DATA

BLOCK DATA
Introduces a block data program unit.

Syntax BLOCK DATA [block-data-name]

block-data-name
is an optional name. If a name is given in the END BLOCK DATA
statement terminating a block data program unit, it must be the
same as the block-data-name given in the BLOCK DATA
statement introducing the program unit.

Description A block data program unit is used to give initial values to variables in a
named common blocks by means of DATA statements and must start with
a BLOCK DATA statement. The block data program unit is an obsolescent
feature of Fortran 90 and is effectively superseded by the module, as
described in “Modules” on page 161.

As an extension, HP Fortran allows blank—or unnamed—common
blocks to be initialized.

Examples The following block data program unit gives initial values to variables in
the common blocks cb1 and cb2. All variables in each common block are
specified completely.

BLOCK DATA
 REAL b(4) DOUBLE PRECISION z(3)
 COMPLEX c
 COMMON /cb1/c,a,b /cb2/z,y
 DATA b, z, c /1.0, 1.2 ,2*1.3, 3*7.654321D0, (2.4,3.76)/
END

Related statements COMMON, DATA, and END

Related concepts The structure and syntax of the block data program unit is described in
“Block data program unit” on page 169.

Chapter 10 257

HP Fortran statements
BUFFER IN (extension)

BUFFER IN (extension)
Provided for compatibility with the BUFFER IN Cray statement.

NOTE Asynchronous I/O with the BUFFER IN statements is not supported. HP
Fortran 90 V2.0 supports these statements for synchronous I/O only.

Syntax BUFFER IN (unit, mode) (begin-loc, end-loc)

unit
is a unit identifier (integer expression).

mode
is ignored.

begin-loc, end-loc
are symbolic names of the variables, arrays, or array elements
that mark the beginning and end locations of the BUFFER IN
operation. begin-loc and end-loc must be either elements of a
single array (or equivalenced to an array) or members of the
same common block.

Description The BUFFER IN statement is an HP Fortran extension that provides
compatibility with the Cray BUFFER IN feature. The statement causes data
to be transferred while allowing any subsequent statements to execute
concurrently.

The BUFFER IN statement is provided as a porting aid for existing Cray
code; it typically will not produce superior performance compared to
conventional Fortran 90 I/O methods.

• Other Fortran I/O statements (i.e., READ, WRITE, PRINT, ACCEPT, and
TYPE) cannot be used on the same unit as the BUFFER IN statement.
Mixing the standard Fortran 90 I/O operations with BUFFER IN on the
same logical unit number can confuse the input stream (READ) or corrupt
the data file (WRITE).

• The BACKSPACE statement cannot be used with files that are capable of
being transferred by the BUFFER IN statement. Such files are referred to
as pure-data (unblocked) files.

Examples The following program shows how to use the BUFFER IN and BUFFER OUT
statements. The program must be compiled with the +autodbl option; see
“Option Descriptions” on page 576.

258 Chapter 10

HP Fortran statements
BUFFER IN (extension)

PROGRAM bufferedIoTest
! buffered i/o example: compile with +autodbl

INTEGER a(10)
OPEN (UNIT = 7, NAME = ’test.dat’, FORM = ’UNFORMATTED’)
a = (/ (i,i=1,10) /) ! initialize the array A
BUFFER OUT (7, 0) (a, a(10)) ! write out A twice
CALL unit (7)
BUFFER OUT (7, 0) (a, a(10))
CALL unit (7)
! now position the file 40 bytes (5 integer values) into the
file
CALL setpos (7, 5)
! read the remainder of the 1st record, and half of the second
BUFFER IN (7, 0) (a, a(10))
WRITE(6,*) a
CLOSE (7)

END PROGRAM bufferedIoTest

Related statements BUFFER OUT

Chapter 10 259

HP Fortran statements
BUFFER OUT (extension)

BUFFER OUT (extension)
Provided for compatibility with Cray BUFFER OUT statement.

NOTE Asynchronous I/O with the BUFFER OUT statements is not supported. HP
Fortran 90 V2.0 supports these statements for synchronous I/O only.

Syntax BUFFER OUT (unit, mode) (begin-loc, end-loc)

unit
is a unit identifier (integer expression).

mode
is ignored.

begin-loc, end-loc
are symbolic names of the variables, arrays, or array elements
that mark the beginning and end locations of the BUFFER IN
operation. begin-loc and end-loc must be either elements of a
single array (or equivalenced to an array) or members of the
same common block.

Description The BUFFER OUT statement is an HP Fortran extension that provides
compatibility with the Cray BUFFER OUT feature. The statement causes data
to be transferred while allowing any subsequent statements to execute
concurrently.

The BUFFER OUT statement is provided as a porting aid for existing Cray
code; it typically will not produce noticeably superior performance
compared to conventional Fortran 90 I/O methods. In fact, the BUFFER OUT
statement will always be slightly slower than unformatted fixed record
length I/O.

• Other Fortran I/O statements (for example, READ, WRITE, PRINT,
ACCEPT, and TYPE) cannot be used on the same unit as the BUFFER OUT
statement. Mixing the standard Fortran 90 I/O operations with
BUFFER OUT on the same logical unit number can confuse the input
stream (READ) or corrupt the data file (WRITE).

• The BACKSPACE statement cannot be used with files that are capable of
being transferred by the BUFFER OUT statement. Such files are referred
to as pure-data (unblocked) files.

Examples For an example of BUFFER IN, see “BUFFER IN (extension)” on page 257.

260 Chapter 10

HP Fortran statements
BUFFER OUT (extension)

Related statements BUFFER IN

Chapter 10 261

HP Fortran statements
BYTE (extension)

BYTE (extension)
Declares entities of type integer.

Syntax BYTE [[, attrib-list] ::] entity-list

attrib-list
is a comma-separated list of one or more of the following
attributes:

If attrib-list is present, it must be followed by the
double colon. For information about individual
attributes, see the corresponding statement in this
chapter.

entity-list
is a list of entities, separated by commas. Each entity takes the
form:

name [(array-spec)] [= initialization-expr]

where:

name

is the name of a variable or function

array-spec

is a comma-separated list of dimension bounds

initialization-expr

is a integer constant integer expression. If
initialization-expr is present, entity-list must be
preceded by the double colon.

ALLOCATABLE INTRINSIC PRIVATE

DIMENSION OPTIONAL PUBLIC

EXTERNAL PARAMETER SAVE

INTENT POINTER TARGET

262 Chapter 10

HP Fortran statements
BYTE (extension)

Description The BYTE statement is an HP extension that is used to declare the
properties of entities. The entities can take values that are whole
numbers and can be represented in one byte. It is equivalent to the
INTEGER(KIND=1) statement.

The BYTE statement is constrained by the rules for all type declaration
statements, including the requirement that it precede all executable
statements. Note, however, that the BYTE statement does not have a kind
parameter.

Example The following are valid declarations:

BYTE i, j
BYTE :: k
BYTE, PARAMETER :: limit=120
! use an array constructor to initialize an array
BYTE, DIMENSION(4) :: bvec=(/1,2,3,4/)
! use slashes as initialization delimiters, an HP extension
BYTE b/12/, bb/27/ ! note, no double colon

Related statements INTEGER

Related concepts For related information, see the following:

• “Type declaration for intrinsic types” on page 24

• “Implicit typing” on page 28

• “Array declarations” on page 54

• “Array constructors” on page 71

• “Expressions” on page 80

Chapter 10 263

HP Fortran statements
CALL

CALL
Invokes a subroutine.

Syntax CALL subr-name[([subr-act-arg-spec-list])]

subr-name
is the name of the subroutine being invoked.

actual-argument-list
is a comma-separated list of entities of the form:
[keyword =]actual-argument
actual-argument
is one of the following:

• expression

• variable

• procedure-name

• *label or &label

keyword

is one of the dummy argument names of the subroutine being
invoked. If any keyword is specified, the subroutine interface
must be explicit.

Description A CALL statement is used to invoke (call) a subroutine, and to specify
actual arguments, if any. Execution of the subroutine begins with the
first executable statement. The following sequence of events occurs when
a CALL statement executes:

1 Actual arguments that are expressions are evaluated.

2 The actual arguments are associated with the corresponding dummy
arguments.

3 Control transfers to the subroutine being called, and the subroutine
executes.

264 Chapter 10

HP Fortran statements
CALL

4 Control returns from the subroutine, normally to the statement
following the CALL statement, or to a statement label indicated by an
alternate return argument—*label or &label. (The & label form is
provided as a compatibility extension and can be used in fixed source
form only.)

A subroutine can call itself, directly or indirectly; in this case the
keyword RECURSIVE must be specified in the SUBROUTINE statement of
the subroutine definition.

The %VAL and %REF built-in functions are provided as HP extensions.
They can be used to change argument-passing conventions calling a
routine written in another language.

The only subroutine invocation other than by the CALL statement in
Fortran 90 is through “defined assignment”, where a defined type
assignment operator that has been defined by means of a subroutine is
used.

Examples ! Interface for subroutine draw
INTERFACE
 SUBROUTINE draw (x_start, y_start, x_end, y_end, form, scale)
 REAL x_start, y_start, x_end, y_end
 CHARACTER (LEN = 6), OPTIONAL :: form
 REAL, OPTIONAL :: scale
 END SUBROUTINE draw
END INTERFACE

! References to draw
! arguments given by position; optional argument scale omitted
CALL draw (5., -4., 2., .6, ”DASHED”)
! arguments given by keyword; optional argument form omitted
CALL draw (scale=.4, x_end=0., y_end=0., x_start=.5, y_start=.3)

Related statements INTERFACE and SUBROUTINE

Related concepts For related information, see the following:

• “Recursive reference” on page 131

• “Referencing a subroutine” on page 130

• “Arguments” on page 139

• “%VAL and %REF built-in functions” on page 148

• “Defined assignment” on page 157

Chapter 10 265

HP Fortran statements
CASE

CASE
Marks start of statement block in a CASE construct.

Syntax CASE (case-selector) [construct-name]

case-selector
is a comma-separated list of ranges of values that are
candidates for matching against the case index specified by the
SELECT CASE statement. Each item in the list can take one of
the following forms:

• case-value

• low:

• :high

• low:high

• DEFAULT

where:

 case-value, low, and high

are scalar initialization expressions of type integer,
character, or logical

DEFAULT

indicates the statement block to execute if none of the
other CASE statements in the CASE construct produces
a match.

construct-name
is the name given to the CASE construct.

Description The CASE statement is used in a CASE construct to mark the start of a
statement block. The CASE construct can consist of multiple blocks; at
most, one is selected for execution. Selection is determined by comparing
the case index produced by the SELECT CASE statement to the case-
selector in each CASE statement. If a match is found, the statement block

266 Chapter 10

HP Fortran statements
CASE

under the matching case-selector executes. A match between the case
index (c) and case-selector is determined for each form of case-selector, as
follows:

case-value
For integer and character types, a match occurs if c .EQ. case-
value.
For logical types, a match occurs if c .EQV. case-value.

low:
For integer and character types, a match occurs if c .GE. low.

:high
For integer and character types, a match occurs if c .LE. high.

low : high
For integer and character types, a match occurs if c .GE. low
.AND. c .LE. high.

DEFAULT

For integer, character, and logical types, a match occurs if no
match is found with any other case-selector and DEFAULT is
specified as a case-selector.

If CASE DEFAULT is not present and no match is found with any of the
other CASE statements, none of the statement blocks within the CASE
construct executes and execution resumes with the first executable
statement following the END SELECT statement.

At most only one DEFAULT selector can appear within a CASE construct.

Each CASE statement must specify a unique value or range of values
within a particular CASE construct. Only one match can occur, and only
one statement block can execute.

All case-selectors and the case index within a particular CASE construct
must be of the same type: integer, character, or logical. However, the
lengths of character types can differ.

The colon forms—low:, :high, or low:high—are not permitted for a
logical type.

Although putting the CASE statements in order according to range may
improve readability, it is not necessary for correct or optimal execution of
the CASE construct. In particular, DEFAULT can appear anywhere among
the CASE statements and need not be the last.

Chapter 10 267

HP Fortran statements
CASE

CASE statements inside a named CASE construct need not specify
construct-name; but if they do, the name they specify must match that of
the SELECT CASE.

A CASE statement can have an empty statement block.

Examples The following example considers a person’s credits and debits and prints
a message indicating whether a resulting account balance will be
overdrawn, empty, uncomfortably small, or sufficient:

INTEGER :: credits, debits

SELECT CASE (credits - debits)
CASE (:-1)
 PRINT *, 'OVERDRAWN'
 CALL TRANSFERFUNDS
CASE (0)
 PRINT *, 'NO MONEY LEFT'
CASE (1:50)
 PRINT *, 'BALANCE LOW'
CASE (51:)
 PRINT *, 'BALANCE OKAY'
END SELECT

Related statements SELECT CASE and END (construct)

Related concepts The CASE construct is described in “CASE construct” on page 105.

268 Chapter 10

HP Fortran statements
CHARACTER

CHARACTER
Declares entities of type character.

Syntax CHARACTER [char-selector] [[, attrib-list] ::] entity-list

char-selector
specifies the length and kind of the character variable. It takes
one of the following forms:

• ([LEN=]len-spec[, KIND=kind-param])

• (len-spec, [KIND=]kind-param)

• (KIND=kind-param[, LEN=len-spec])

• *len-const [,]

• *(len-spec[) ,]

where kind-param (if specified) must be 1, the default;
len-spec is either an asterisk (*) or a specification
expression; and len-const is an integer constant. In the
last form, len-param is enclosed in parentheses, and
the optional comma may be included only if the double
colon does not appear in the type declaration
statement. If len-spec evaluates to a negative value, a
zero-length string is declared. If len-spec is unspecified,
the default is 1.

attrib-list
is a list of one or more of the following attributes, separated by
commas:

ALLOCATABLE INTRINSIC PRIVATE

DIMENSION OPTIONAL PUBLIC

EXTERNAL PARAMETER SAVE

INTENT POINTER TARGET

Chapter 10 269

HP Fortran statements
CHARACTER

If attrib-list is present, it must be followed by the
double colon. For information about individual
attributes, see the corresponding statement in this
chapter.

entity-list
is a list of entities, separated by commas. Each entity takes the
form:

name[(array-spec)][*len-spec][= initialization-expr]

where name is the name of a variable or function,
array-spec is a comma-separated list of dimension
bounds, len-spec is either an asterisk (*) or a
specification expression, and initialization-expr is a
character constant expression. If initialization-expr is
present, entity-list must be preceded by the double
colon.

Description The CHARACTER statement is used to declare the length and properties of
character data. It is constrained by the rules for all type declaration
statements, including the requirement that it precede all executable
statements.

To indicate that the length of a character can vary, you may use an
assumed character length parameter by specifying an asterisk (*) for
len-param. The asterisk may be used only when doing the following:

• Declaring the type of a function. The function must not be an internal
or module function, nor must it be array-valued, pointer-valued, or
recursive.

• Declaring a dummy argument of a procedure.

• Declaring a named constant (see the PARAMETER statement).

Examples The following are valid declarations:

CHARACTER c1, c2
CHARACTER(LEN=80) :: text(0:25)
CHARACTER(2, 1), PARAMETER :: limit='ZZ'
! initialize an array, using an array constructor
CHARACTER(4) :: response(3) = (/"Yes.", "No!!", "Huh?"/)
! use slashes as initialization delimiters, an HP extension
CHARACTER*10 c1/'Tom'/,c2/'Jones'/ ! note, no double colon

270 Chapter 10

HP Fortran statements
CHARACTER

The following are valid uses of the assumed length parameter:

CHARACTER(*) dummy_arg_name
CHARACTER(*), PARAMETER :: hello=”Hi Sam”
CHARACTER(LEN=*), PARAMETER :: hello=”Hi Sam”

Assuming that c is an ordinary variable and not the dummy argument to
a procedure, the following declaration is an illegal use of the assumed
length parameter:

CHARACTER*(*) c ! illegal

Related concepts For related information, see the following:

• “Type declaration for intrinsic types” on page 24

• “Implicit typing” on page 28

• “Character strings as automatic data objects” on page 37

• “Array declarations” on page 54

• “Array constructors” on page 71

• “Expressions” on page 80

• “LEN(STRING)” on page 539

Chapter 10 271

HP Fortran statements
CLOSE

CLOSE
Terminates file connection.

Syntax CLOSE (io-specifier-list)

io-specifier-list
is a list of the following comma-separated I/O specifiers:

[UNIT=]unit

specifies the unit connected to an external file. unit
must be a positive integer-valued expression. If the
optional keyword UNIT= is omitted, unit must be the
first item in io-specifier-list.

ERR=stmt-label

specifies the label of the executable statement to which
control passes if an error occurs during statement
execution. If neither IOSTAT= or ERR= is specified and
an error occurs, the program aborts and a system error
message is issued. stmt-label must be in the same
scoping unit as the CLOSE statement with the ERR=
specifier.

IOSTAT=integer-variable

returns the I/O status after the statement executes. If
the statement executes successfully, integer-variable is
set to zero. If an error occurs, it is set to a positive
integer that indicates which error occurred. If neither
IOSTAT= or ERR= is specified and an error occurs, the
program aborts and a system error message is issued.

STATUS=character-expression

specifies the state of the file after it is closed. character-
expression can be one of the following arguments:

'KEEP'Preserve the file after it is closed (default).

'DELETE'Do not preserve the file after it is closed.

272 Chapter 10

HP Fortran statements
CLOSE

The STATUS= specifier is ignored if the file was opened as a
scratch file. See “OPEN” on page 379 for a description of the
OPEN statement.

Description The CLOSE statement closes the file whose unit number was obtained
from an OPEN statement. A CLOSE statement must contain a unit
number and at most one each of the other I/O specifiers.

A CLOSE statement need not be in the same program unit as the OPEN
statement that connected the file to the specified unit. If a CLOSE
statement specifies a unit that does not exist or has no file connected to
it, no action occurs.

Examples The following examples illustrate different uses of the CLOSE statement.
In the first example, the CLOSE statement closes the file connected to
unit 10; after it is closed, the file will continue to exist, unless it was
opened with the STATUS='SCRATCH' specifier:

CLOSE (10)

In the next example, after the file connected to unit 6 is closed, it will
cease to exist:

CLOSE(UNIT=6,STATUS='DELETE')

The following code produces the same results as the previous example:

CHARACTER(LEN=6) cstat
cstat='delete'
CLOSE(UNIT=6,STATUS=cstat)

The following example closes the file connected to unit 5. If an error
occurs, control is transferred to the executable statement labeled 100,
and the error code is stored in the variable ios:

CLOSE(5,IOSTAT=ios,ERR=100)

Related statements OPEN

Related concepts For information about I/O concepts, see Chapter 8, “I/O and file
handling,” on page 171, which also lists example programs that use I/O.

Chapter 10 273

HP Fortran statements
COMMON

COMMON
Specifies common blocks.

Syntax COMMON [/[[common-block-name]]/] object-list

[,]/[common-block-name]/ object-list]...

common-block-name
is the name of a labeled common block.

object-list
is a comma-separated list of scalar variables, arrays, records,
and derived-type objects. If an array is specified, it may be
followed by an explicit-shape specification expression.

Description The COMMON statement defines one or more storage areas to be shared by
different program units. It also identifies the objects—that is, variables,
arrays, records, and derived-type objects—to be stored in those areas.
Objects in common that are shared by different program units are made
accessible by storage association.

Each object following a common-block name is declared to be in that
common block. If /common-block-name/ is omitted, all objects in the
corresponding object-list are specified to be in blank common. It is also
possible to declare variables in blank common by specifying two slashes
without common-block-name. Consider the following examples:

!Declare variables a, b, c in blank common.
COMMON a, b, c

! Declare pay and time in blank common,
! and red in the named common block color.
COMMON pay, time, /color/red

! Variables a1 and a2 are in common block a; array x and variable
! are in blank common; and variable d is in common block c
COMMON/a/a1,a2,//x(10),y,/c/d

Any common block name or blank common specification can appear more
than once in one or more COMMON statements within the same program
unit. The variable list following each successive appearance of the same
common block name is treated as a continuation of the list for that
common block name. For example, the following COMMON statements:

COMMON a,b,c /x/y,x,d //w,r
COMMON /cap/hat,visor, //tax, /x/o,t

274 Chapter 10

HP Fortran statements
COMMON

are equivalent to:

COMMON a,b,c,w,r,tax
COMMON /x/y,x,d,o,t
COMMON /cap/hat,visor

Unlike named common blocks, blank common can differ in size in
different scoping units. However, blank common cannot be initialized.

As an extension, HP Fortran saves all common blocks in static memory.

The following restrictions apply to the use of common blocks:

• All common block names must be distinct from subprogram names.

• The size of a named common block must be the same in all program
units where it is declared. Note, however, that the size of blank
common can differ.

• The following data items must not appear in a COMMON statement:

– Dummy arguments in a subprogram

– Functions, subroutines, or intrinsic functions

– Pointees declared by Cray-style pointers

– Variables accessible by use association

– Automatic entities, including automatic character strings

– Allocatable arrays

• Derived-type objects may appear in common if they have been defined
with the SEQUENCE attribute.

• A variable can only appear in one COMMON statement within a
program unit.

• Zero-sized common blocks are allowed. Zero-sized common blocks
with the same name are storage associated.

• Array bounds in a COMMON statement must be constant specification
expressions.

• A pointer may appear in common if it has the same type, type
parameter, and rank in every instance of that common block.

Chapter 10 275

HP Fortran statements
COMMON

Initializing common blocks

As an extension to the Standard, HP Fortran allows common blocks to be
initialized outside of a block data program unit; for example, in a
subroutine. However, note that all data initialization for a given common
block must occur in the same compilation unit.

HP Fortran also allows blank—or unnamed—common to be initialized.

Common block size

The size of a common block is determined by the number and type of the
variables it contains. In the following example, the common block
my_block takes 20 bytes of storage: b uses 8 (2 bytes per element) and
arr uses 12 (4 bytes per element):

INTEGER(2) b(4)
INTEGER(4) arr(3)
COMMON /cb/b, arr

Data space within the common area for arrays b and arr shown in this
example is allocated as follows:

Allocation common block storage

Common block storage is allocated at link time. It is not local to any one
program unit.

Each program unit that uses the common block must include a COMMON
statement that contains the block name, if a name was specified.
Variables assigned to the common block by the program unit need not
correspond by name, type, or number of elements with those of any other
program unit. The only consideration is the size of the common blocks

Bytes Common block variables

0, 1, 2, 3 b(1), b(2)

4, 5, 6, 7 b(3), b(4)

8, 9, 10, 11 arr(1)

12, 13, 14, 15 arr(2)

16, 17, 18, 19 arr(3)

276 Chapter 10

HP Fortran statements
COMMON

referenced by the different program units. Correspondence between
objects in different instances of the same common block is established by
storage association.

Note the following for HP Fortran: when types with different alignment
restrictions are mixed in a common block, the compiler may insert
padding bytes as necessary.

Examples The following example illustrates how the same common block can be
declared in different program units with different variables but the same
size:

! common declaration for program unit 1
INTEGER i, j, k
COMMON /my_block/ i, j, k

! common declaration for program unit 2
INTEGER n(3)
COMMON /my_block/ n(3)

The variables i, j, and k in program unit 1 share the same storage with
the array n in program unit 2: i in program unit 1 matches up with n(1)
in program unit 2, j with n(2), and k with n(3).

Related statements EQUIVALENCE

Related concepts For information about data alignment, see Table 5 and “Alignment of
derived-type objects” on page 44.

Chapter 10 277

HP Fortran statements
COMPLEX

COMPLEX
Declares entities of type complex.

Syntax COMPLEX [kind-spec] [[, attrib-list] ::] entity-list

kind-spec
is the kind type parameter that specifies the range and
precision of the entities in entity-list. kind-spec takes the form:

([KIND=]kind-param)

where kind-param represents the kind of both the real
and imaginary parts of the complex number. It can be a
named constant or a constant expression that has the
integer value of 4 or 8. The size of the default type is 4.

As an extension, kind-spec can take the form:

*len-param

where len-param is the integer 8 or 16 (default = 8),
which represents the size of the whole complex entity.

attrib-list
is a list of one or more of the following attributes, separated by
commas:

If attrib-list is present, it must be followed by the double colon.
For information about individual attributes, see the
corresponding statement in this chapter.

ALLOCATABLE INTRINSIC PRIVATE

DIMENSION OPTIONAL PUBLIC

EXTERNAL PARAMETER SAVE

INTENT POINTER TARGET

278 Chapter 10

HP Fortran statements
COMPLEX

entity-list
is a list of entities, separated by commas. Each entity takes the
form:

name [(array-spec)] [= initialization-expr]

where name is the name of a variable or function,
array-spec is a comma-separated list of dimension
bounds, and initialization-expr is a complex constant
expression. If initialization-expr is present, entity-list
must be preceded by the double colon.

Description The COMPLEX statement is used to declare the length and properties of
data that are approximations to the mathematical complex numbers. A
complex number consists of a real part and an imaginary part. A kind
parameter (if specified) indicates the representation method.

The COMPLEX statement is constrained by the rules for type declaration
statements, including the requirement that it precede all executable
statements.

As a portability extension, HP Fortran allows the following syntax for
specifying the length of an entity:

name [*len] [(array-spec)] [= initialization-expr]

If array-spec is specified, *len may appear on either side of array-spec. If
name appears with *len, it overrides the length specified by kind-spec.

Examples The following are valid declarations:

COMPLEX x, y
COMPLEX(KIND=8) :: z
COMPLEX,PARAMETER :: t1(2)=(/(3.2, 0), (.04, -1.1)/)
! initialize an array, using an array constructor
COMPLEX, DIMENSION(2) :: &
 cvec=(/(2.294, 6.288E-2), (-1.0096E7, 0)/)
! use slashes as initialization delimiters, an HP extension
COMPLEX cx/(2.294, 6.288E-2)/ ! note, no double colon
! the following declarations are equivalent; the second uses the
! HP length specification extension
COMPLEX(KIND = 8) x
COMPLEX(8) x*16

Related statements DOUBLE COMPLEX

Chapter 10 279

HP Fortran statements
COMPLEX

Related concepts For related information, see the following:

• “Type declaration for intrinsic types” on page 24

• “Implicit typing” on page 28

• “Array declarations” on page 54

• “Array constructors” on page 71

• “Expressions” on page 80

• “KIND(X)” on page 537

280 Chapter 10

HP Fortran statements
CONTAINS

CONTAINS
Introduces an internal procedure or a module procedure.

Syntax CONTAINS

Description The CONTAINS statement introduces an internal procedure or a module
procedure, separating it from the program unit that contains it. The
statement can be used in:

• A main program, external subprogram, or module subprogram; in
each case, it precedes one or more internal procedures.

• A module, where it precedes any module procedures.

When a CONTAINS statement is present, at least one subprogram must
follow it.

Examples The first example illustrates CONTAINS introducing an internal
subroutine. It also illustrates how the internal subroutine mechanism
can provide an alternative to the FORTRAN 77 statement function
mechanism.

PRINT *, double_real(6.6)
CONTAINS
 FUNCTION double_real (x); REAL x
 double_real = 2.0 * x
 END FUNCTION
END

The next example illustrates a main program with an internal procedure
part.

PROGRAM electric ! Program header
 REAL current ! Specification part
 current = 100.5 ! Execution part begins
 CALL compute_resistance(voltage, current, resistance)
 CONTAINS ! Internal procedure part
 SUBROUTINE compute_resistance(v, i, r)
 REAL i
 r = v / i
 END SUBROUTINE
END PROGRAM electric

The third example is of a module that contains a module subprogram,
which in turn contains an internal subprogram.

Chapter 10 281

HP Fortran statements
CONTAINS

MODULE one
 CONTAINS
 SUBROUTINE two(x) ! Module subprogram
 CONTAINS
 LOGICAL FUNCTION three(y) !Internal subprogram
 END FUNCTION three
 END SUBROUTINE two
END MODULE one

Related statements SUBROUTINE and FUNCTION

Related concepts For related information, see the following:

• “Program units” on page 122

• “Internal procedures” on page 135

• “Module program unit” on page 161

282 Chapter 10

HP Fortran statements
CONTINUE

CONTINUE
Establishes reference point within a program unit.

Syntax CONTINUE

Description The CONTINUE statement has no effect on program execution. Control
passes to the next executable statement. The CONTINUE statement is
generally used to mark a place for a statement label, especially when it
occurs as the terminal statement of a FORTRAN 77-style DO loop.

Examples count = 0
DO 20 i = 1, 10
 count = count + i
20 CONTINUE
PRINT *, count

Related statements DO

Related concepts For related information, see the following:

• “DO construct” on page 107

• “Flow control statements” on page 112

Chapter 10 283

HP Fortran statements
CYCLE

CYCLE
Interrupts current iteration of a DO loop.

Syntax CYCLE [do-construct-name]

do-construct-name
is the name of a DO construct that must contain this CYCLE
statement.

Description The CYCLE statement is used to control the execution of a DO loop. When
it executes, it interrupts a currently executing loop iteration and passes
control to the next iteration, making the appropriate adjustments to the
loop index. It may be used with either the DO construct or the FORTRAN
77-style DO loop.

A CYCLE statement belongs to a particular DO loop. If do-construct-name
is not given, the CYCLE statement resumes the immediately enclosing DO
loop. If do-construct-name is given, the CYCLE statement resumes an
enclosing named DO loop with the same name.

Examples The following example uses the CYCLE statement to control a bubble
sort:

LOGICAL :: swap
INTEGER :: i, j
outer: DO i = 1, n-1
 swap = .FALSE.
 inner: DO j = n, i+1, -1
 IF (a(j) >= a(j-1)) CYCLE inner
 swap = .TRUE.
 atmp = a(j)
 a(j) = a(j-1)
 a(j-1) = atmp
 END DO inner
 IF (.NOT. swap) EXIT outer
END DO outer

Related statements DO and EXIT

Related concepts For related information, see the following:

• “DO construct” on page 107

• “Flow control statements” on page 112

284 Chapter 10

HP Fortran statements
DATA

DATA
Initializes program variables.

Syntax DATA var-list1 / val-list1 / [[,]var-list2 / val-list2 /]...

var-list
is a comma-separated list of entities, including the following:

• A variable name

• An array name

• An array triplet section; for example:

• points(1:10:2)

• An array element reference; for example:

• scores(0)

• A substring name; for example:

• name(1:10)

• An implied-DO loop; for example:

• ((matrix(i,j),i=0,5),j=5,10)

• An object of a derived type

• A component of a derived-type object

The following cannot appear in var-list:

• Pointer-based variables

• Records and record field references. However, you can
initialize a record’s fields in the record’s structure definition.
See “RECORD (extension)” on page 420.

• Automatic objects, including automatic character strings

• Dummy arguments

• Allocatable arrays: that is, arrays declared with a specified
rank, but no specified bounds within each dimension

Chapter 10 285

HP Fortran statements
DATA

• The result variable of a function

• Objects made available by use or host association

• Procedure names

val-list
is a list of constant values, separated by commas. Each constant
in the list represents a value to be assigned to the corresponding
variable in var-list. A constant value can be optionally repeated
by preceding the constant with a repetition factor. The syntax of
a repeated constant is:

r*val

where r is a positive integer specifying the number of
times that val, the constant value, is to be specified.

Description The DATA statement initializes variables local to a program unit before
the program unit begins execution. Initialization occurs as follows:

The var-list is expanded to form a sequence of scalar variables, and the
val-list is expanded to form a sequence of scalar constants. The number
of items in each expanded sequence must be the same, and there must be
a one-to-one correspondence between the items in the two expanded lists.
The variables in the expanded sequence of var-list are initialized on the
basis of the correspondence.

If var-list contains an array name, the expanded sequence of constants
must contain a constant for every element in the array.

A zero-sized array or an implied-DO list with an iteration count of zero in
var-list contributes no variables to the expanded sequence of variables.
However, a zero-length character variable does contribute a variable to
the list.

If a constant is of any numeric or logical type, the corresponding variable
can be of any numeric type. If an object is of derived type, the
corresponding constant must be of the same type. If the type of the
constant does not agree with the type of the variable, type conversion is
performed, as described in Table 14.

Variables can be initialized with binary, octal, or hexadecimal constants.

A variable or array element must not appear in a DATA statement more
than once. If two variables share the same storage space through an
EQUIVALENCE statement, only one can appear in a DATA statement. If a

286 Chapter 10

HP Fortran statements
DATA

substring of a character variable or other array element appears in a
DATA statement, no overlapping substring (including the entire variable
or array element) can appear in any DATA statement.

The length of a character constant and the declared length of its
corresponding character variable need not be the same. If the constant is
shorter than the variable, blank characters are placed in the remaining
positions. If the constant is longer than the variable, the constant is
truncated from the right until it is the same length as the variable

If a subscripted array element appears in var-list, then the subscript
must be a specification expression.

DATA statements can be interspersed among executable statements.
However, they initialize prior to runtime and, therefore, cannot be used
as executable assignment statements.

Fortran 90 extensions

A variable of type other than integer may be initialized with a binary,
octal, or hexadecimal constant. The data type for a constant is
determined from the type of the corresponding variable. The size (in
bytes) of the variable determines how many digits of the octal or
hexadecimal constant are used. If the constant lacks enough digits, the
value is padded on the left with zeros. If the constant has too many
digits, it is truncated on the left.

An integer, binary, octal, or hexadecimal constant can initialize a
character variable of length one, as long as the value of the constant is in
the range 0 to 255.

Examples The following DATA statement initializes integer, logical, and character
variables:

INTEGER i
LOGICAL done
CHARACTER(LEN=5) prompt
DATA i, done, prompt/10, .FALSE., 'Next?'/

The next DATA statement specifies a repetition factor of 3 to assign the
value of 2 to all three elements of array i:

INTEGER, DIMENSION(3) :: i
DATA i/3*2/

The next DATA statement uses two nested implied-DO loops to assign the
literal value X to each element of an array of 50 elements, k(10,5):

CHARACTER, DIMENSION(10,5) :: k
DATA ((k(i,j),i=1,10),j=1,5)/50*'X'/

Chapter 10 287

HP Fortran statements
DATA

Related statements BYTE, CHARACTER, COMPLEX, DOUBLE COMPLEX, DOUBLE PRECISION,
INTEGER, LOGICAL, and REAL

Related concepts For related information, see the following:

• “Initialization expressions” on page 90

• “Assignment statement” on page 95

• “Implied-DO loop” on page 194

288 Chapter 10

HP Fortran statements
DEALLOCATE

DEALLOCATE
Deallocates allocatable arrays and pointer targets.

Syntax DEALLOCATE (alloc-obj-list[, STAT=scalar-int-var])

alloc-obj-list
is a comma-separated list of pointers or allocatable arrays.

STAT=scalar-int-var
returns the error status after the statement executes. If given, it
is set to a positive value if an error is detected, and to zero
otherwise. If there is no status variable, the occurrence of an
error causes the program to terminate.

Description The DEALLOCATE statement deallocates allocatable arrays and pointer
targets, making the memory available for reuse. A specified allocatable
array then becomes not allocated (as reported by the ALLOCATED
intrinsic), while a specified pointer becomes disassociated (as reported by
the ASSOCIATED intrinsic).

An error occurs if an attempt is made to deallocate an allocatable array
that is not currently allocated or a pointer that is not associated. Errors
in the operation of DEALLOCATE can be reported by means of the optional
STAT= specifier.

You can deallocate an allocatable array by specifying the name of the
array with the DEALLOCATE statement. You cannot deallocate a pointer
that points to an object that was not allocated.

Some or all of a target associated with a pointer by means of the
ALLOCATE statement can also be associated subsequently with other
pointers. However, it is not permitted to deallocate a pointer that is not
currently associated with the whole of an allocated target object.

Deallocation of a pointer target causes the association status of any other
pointer associated with all or part of the target to become undefined.
When a pointer is deallocated, its association status becomes
disassociated, as if a NULLIFY statement had been executed.

Chapter 10 289

HP Fortran statements
DEALLOCATE

Examples The following example declares a complex array with the POINTER
attribute. The ALLOCATE statement allocates target space to the array at
run-time; the amount is determined by the input values to the READ
statement. Later in the program, the DEALLOCATE statement will
recover the space.

COMPLEX, POINTER :: hermitian (:, :)
...
READ *, m, n
ALLOCATE (hermitian (m, n))
...
DEALLOCATE (hermitian, STAT = ierr)

Related statements ALLOCATABLE, ALLOCATE, NULLIFY, and POINTER

Related concepts For related information, see the following:

• “Pointers” on page 47

• “Allocatable arrays” on page 59

• The descriptions of the ALLOCATED and ASSOCIATED intrinsics are
described in Chapter 11, “Intrinsic procedures,” on page 475.

290 Chapter 10

HP Fortran statements
DECODE (extension)

DECODE (extension)
Inputs formatted data from internal storage.

Syntax DECODE (count, format, unit, io-specifier-list) [in-list]

count
is an integer expression that specifies the number of characters
(bytes) to translate from character format to internal (binary)
format. cnt must precede format.

format
specifies the format specification for formatting the data. format
can be one of the following:

• The label of a FORMAT statement containing the format
specification.

• An integer variable that has been assigned the label of a
FORMAT statement.

• An embedded format specification.

format must be the second of the parenthesized items,
immediately following count. Note that the keyword FMT= is not
used.

unit
is the internal storage designator. It must be a scalar variable or
array name. Assumed-size and adjustable-size arrays are not
permitted. Note that char-var-name is not a unit number and
that the keyword UNIT= is not used.
unit must be the third of the parenthesized items, immediately
following format.

Chapter 10 291

HP Fortran statements
DECODE (extension)

io-specifier-list
is a comma-separated list of I/O specifiers. Note that the unit
and format specifiers are required; the other I/O specifiers are
optional. The following I/O specifiers can appear in io-specifier-
list:

ERR=stmt-label

specifies the label of the executable statement to which
control passes if an error occurs during statement
execution.

IOSTAT=integer-variable

returns the I/O status after the statement executes. If
the statement successfully executes, integer-variable is
set to zero. If an end-of-file record is encountered
without an error condition, it is set to a negative
integer. If an error occurs, integer-variable is set to a
positive integer that indicates which error occurred.

in-list
is a comma-separated list of data items for input. The data
items can include expressions and implied-DO lists.

Description The DECODE statement is an HP extension that is provided for
compatibility with other versions of Fortran. The internal-I/O
capabilities of the standard READ statement provide similar functionality
and should be used to ensure portability.

The DECODE statement translates formatted character data into its
binary (internal) representation.

Examples The following example program illustrates the DECODE statement:

PROGRAM decode_example
 CHARACTER(LEN=20) :: buf
 INTEGER i, j, k
 buf = 'XX1234 45 -12XXXXXX'
 DECODE (15,'(2X,3I4,1X)', buf) i, j, k
 ! The equivalent READ statement is:
 ! READ (buf, '(2X,3I4,1X)') i, j, k
 PRINT *, i, j, k
END PROGRAM decode_example

292 Chapter 10

HP Fortran statements
DECODE (extension)

When compiled and executed, this program produces the following
output:

 1234 45 -12

Related statements ENCODE and READ

Related concepts For related information, see the following:

• “Internal files” on page 174

• “Performing I/O on internal files” on page 176

• “Implied-DO loop” on page 194

• “Embedded format specification” on page 237

Chapter 10 293

HP Fortran statements
DIMENSION (statement and attribute)

DIMENSION (statement and attribute)
Declares a variable to be an array.

Syntax A type declaration statement with the DIMENSION attribute is:

type, DIMENSION (array-spec) [[, attrib-list]::] entity-list

type
is a valid type specification (INTEGER, REAL, LOGICAL,
CHARACTER, TYPE(type-name), etc.).

array-spec
is one of the following:

• explicit-shape-spec-list

• assumed-shape-spec-list

• deferred-shape-spec-list

• assumed-size-spec

explicit-shape-spec

is

[lower-bound :] upper-bound

lower-bound, upper-bound

are specification expressions.

assumed-shape-spec

is

[lower-bound] :

deferred-shape-spec

is

:

294 Chapter 10

HP Fortran statements
DIMENSION (statement and attribute)

assumed-size-spec

is

[explicit-shape-spec-list ,] [lower-bound :] *

That is, assumed-size-spec is explicit-shape-spec-list with the
final upper bound specified as *.

attrib-list
is a comma-separated list of attributes including DIMENSION
and optionally those attributes compatible with it, namely:

entity-list
is
object-name[(array-spec)]
If (array-spec) is present, it overrides the (array-spec) given
with the DIMENSION keyword in attribute-list; see the example
below.

The syntax of the DIMENSION statement is:

DIMENSION [::] array-name (array-spec)
 [, array-name (array-spec)]...

Description An array consists of a set of objects called the array elements, all of the
same type and type parameters, arranged in a pattern involving
columns, and possibly rows, planes, and higher dimensioned
configurations. The type of the array elements may be intrinsic or user-
defined. In HP Fortran, an array may have up to seven dimensions. The
number of dimensions is called the rank of the array and is fixed when
the array is declared. Each dimension has an extent that is the size in
that dimension (upper bound minus lower bound plus one). The size of an
array is the product of its extents. The shape of an array is the vector of
its extents in each dimension. Two arrays that have the same shape are
said to be conformable.

ALLOCATABLE PARAMETER PUBLIC

INTENT POINTER SAVE

OPTIONAL PRIVATE TARGET

Chapter 10 295

HP Fortran statements
DIMENSION (statement and attribute)

It is not necessary for the keyword DIMENSION to appear in the
declaration of a variable to give it the DIMENSION attribute. This
attribute, as well as the rank, and possibly the extents and the bounds of
an array, may be specified in the entity declaration part of any of the
following statements:

• type declaration

• DIMENSION

• ALLOCATABLE

• COMMON

• POINTER

• TARGET

The array-spec (see Syntax, above) determines the category of the array
being declared. “Array declarations” on page 54, describes these
categories as:

• Explicit-shape array

• Assumed-shape array

• Assumed-size array

• Deferred-shape array

Examples ! These 2 declaration statements are equivalent.
REAL a (20,2), b (20,2), c (20,2)
REAL, DIMENSION (20,2) :: a, b, c

DIMENSION x(100), y(100) ! x and y are 1-dimensional

! lower bounds specified for jj (if not given, they default to 1)
INTEGER jj (0:100, -1:1)

! l is a 4-dimensional, allocatable, deferred shape logical array
LOGICAL l
ALLOCATABLE l(:,:,:,:)

COMPLEX s ! s has explicit shape and
TARGET :: s(10,2) ! the target attribute

DOUBLE PRECISION d
! d has 5 dimensions and is declared in common
COMMON /stuff/ d(2,3,5,9,8)

! arr1 is an adjustable array, arr2 an automatic array

296 Chapter 10

HP Fortran statements
DIMENSION (statement and attribute)

SUBROUTINE calc(arr1, ib1, ib2)
REAL, DIMENSION (ib1, ib2) :: arr1, arr2

! arr3 is a deferred-shape array with the pointer attribute
REAL, POINTER, DIMENSION(:,:) :: arr3

! all three arrays have explicit shape; array specifier (10,10)
! overrides specifier (10,20) for tb declaration only
LOGICAL, DIMENSION(10,20) :: ta, tb(10,10), tc

Related statements ALLOCATABLE, COMMON, POINTER, TARGET, TYPE, and the type
declaration statements

Related concepts For related information, see the following:

• “Type declaration for intrinsic types” on page 24

• Chapter 11, “Intrinsic procedures,” on page 475

• The following array-inquiry intrinsics described in Chapter 11:

– LBOUND

– RESHAPE

– SHAPE

– SIZE

– UBOUND

Chapter 10 297

HP Fortran statements
DO

DO
Controls execution of DO loop.

Syntax [construct-name :] DO [label] [loop-control]

construct-name
is the name given to the DO construct. If construct-name is
specified, an END DO statement must appear at the end of the
DO construct and have the same construct-name.

label
is the label of an executable statement that terminates the DO
loop. If you specify label, you can terminate the DO loop either
with an END DO statement or with an executable statement; the
terminating statement must include label. If you do not specify
label, you must terminate the DO loop with the END DO
statement.

loop-control
is information used by the DO statement to control the loop. It
can take one of the following forms:

• index = init, limit [, step]

• WHILE (logical-expression)

• loop-control is omitted

In the first form, index is a scalar variable of type integer or
real; init, limit, and step are scalar expressions of type integer or
real. In the second form, logical-expression is a scalar logical
expression. In the third form, loop-control is omitted. If you use
the second or third form, you must terminate the DO loop with
the END DO statement.

Description The syntax of the DO statement allows for the following types of DO loops:

• Counter-controlled loop: a loop count is calculated that controls the
number of times the block is executed, unless a prior exit occurs. A
loop variable is incremented or decremented after each execution.

298 Chapter 10

HP Fortran statements
DO

• While loop: a condition (logical-expression) is tested before each
execution of the block; when it is false, execution ceases. An exit may
occur at any time.

• Infinite loop: there is no loop-control; repeated execution of the block
ceases only when an exit from the loop occurs.

When label is present in the DO statement, it specifies the label of the
terminating statement of the DO loop. The terminating statement cannot
be any of the following statements:

• GO TO (unconditional)

• GO TO (assigned)

• IF (arithmetic)

• IF (block)

• ELSE or ELSE IF

• END, END IF, END SELECT, or END WHERE

• RETURN

• STOP

• DO

• Any nonexecutable statement

Note, however, that the terminating statement can be an IF (logical) or
an END DO statement.

To maintain compatibility with some older versions of Fortran, you can
use the +onetrip compile-line option to ensure that every counter-
controlled DO loop in the program executes at least once.

Extended-range DO loops

Extended-range DO loops—a compatibility extension—allow a program
to transfer control outside the DO loop’s range and then back into the DO
loop. Extended-range DO loops work as follows: if a control statement
inside a DO loop transfers control to a statement outside the DO loop, then
any subsequent statement can transfer control back into the body of the
DO loop.

Chapter 10 299

HP Fortran statements
DO

For example, in the following code, the range of the DO loop is extended to
include the statement GOTO 20, which transfers control back to the body
of the DO loop:

 DO 50 i = 1, 10
20 n = n + 1
 IF (n > 10) GOTO 60
50 CONTINUE ! normally, the range ends here
60 n = n + 100 ! this is the extended range,
 GOTO 20 ! which extends down to this line

Examples The following DO construct displays the integers 1 through 10:

DO i = 1, 10
 WRITE (*, *) i
END DO

The next example is a FORTRAN 77-style DO loop that does the same as
the preceding example:

 DO 50 i = 1, 10
 WRITE (*, *) i
50 CONTINUE

The following DO construct iterates 5 times, decrementing the loop index
from 10 to 2:

DO i = 10, 1, -2
END DO

The following is an example of a DO WHILE loop:

DO WHILE (sum < 100.0)
 sum = sum + get_num(unit)
END DO

The following example illustrates the use of the EXIT statement to exit
from a nested DO loop. The loops are named to control which loop is
exited. Note that loop-control is missing from both the inner and outer
loops, which therefore can be exited only by means of one of the EXIT
statements:

outer:DO
 READ *, val
 new_val = 0
 inner:DO
 new_val = new_val + proc_val(val)
 IF (new_val >= max_val) EXIT inner
 IF (new_val == 0) EXIT outer
 END DO inner
END DO outer

300 Chapter 10

HP Fortran statements
DO

The next DO construct never executes:

DO i = 10, 1
END DO

Related statements CONTINUE, CYCLE, END (construct), and EXIT

Related concepts For related information, see the following:

• “DO construct” on page 107

• “EXIT statement” on page 114

Chapter 10 301

HP Fortran statements
DOUBLE COMPLEX (extension)

DOUBLE COMPLEX (extension)
Declares entities of type double complex.

Syntax DOUBLE COMPLEX [[, attrib-list] ::] entity-list

attrib-list
is a list of one or more of the following attributes, separated by
commas:

If attrib-list is present, it must be followed by the
double colon. For information about individual
attributes, see the corresponding statement in this
chapter.

entity-list
is a list of entities, separated by commas. Each entity takes the
form:
name [(array-spec)] [= initialization-expr]

where:

name

is the name of a variable or function

array-spec

is a comma-separated list of dimension bounds

initialization-expr

is a complex constant expression. If initialization-expr
is present, entity-list must be preceded by the double
colon.

ALLOCATABLE INTRINSIC PRIVATE

DIMENSION OPTIONAL PUBLIC

EXTERNAL PARAMETER SAVE

INTENT POINTER TARGET

302 Chapter 10

HP Fortran statements
DOUBLE COMPLEX (extension)

Description The DOUBLE COMPLEX statement is an HP Fortran extension that
declares the properties of complex data that has greater precision than
data of default type complex. The two parts of a double complex value are
each a double precision value.

The DOUBLE COMPLEX statement is constrained by the rules for type
declaration statements, including the requirement that it precede all
executable statements. Note however, that the DOUBLE COMPLEX
statement does not have a kind parameter.

Examples The following are valid declarations:

DOUBLE COMPLEX x, y
DOUBLE COMPLEX, PARAMETER :: t1(2)=(/(1.2, 0), (-1.01, 0.0009)/)
! use an array constructor to initialize a double complex array
DOUBLE COMPLEX, DIMENSION(2) :: dc_vec = &
 (/(2.294D-8, 6.288D-4), (-4.817D4, 0)/)
! use slashes as initialization delimiters, an HP extension
DOUBLE COMPLEX dcx/(2.294D-8, 6.288D-4)/ ! note, no double colon

Related statements COMPLEX

Related concepts For related information, see the following:

• “Type declaration for intrinsic types” on page 24

• “Implicit typing” on page 28

• “Array declarations” on page 54

• “Array constructors” on page 71

• “Expressions” on page 80

Chapter 10 303

HP Fortran statements
DOUBLE PRECISION

DOUBLE PRECISION
Declares entities of type double precision.

Syntax DOUBLE PRECISION [[, attrib-list] ::] entity-list

attrib-list
is a list of one or more of the following attributes, separated by
commas:

If attrib-list is present, it must be followed by the double colon.
For information about individual attributes, see the
corresponding statement in this chapter.

entity-list
is a list of entities, separated by commas. Each entity takes the
form:
name [(array-spec)] [= initialization-expr]

where:

name

is the name of a variable or function

array-spec

is a comma-separated list of dimension bounds

initialization-expr

is a real constant expression that can be evaluated at
compile time. If initialization-expr is present, entity-list
must be preceded by the double colon.

ALLOCATABLE INTRINSIC PRIVATE

DIMENSION OPTIONAL PUBLIC

EXTERNAL PARAMETER SAVE

INTENT POINTER TARGET

304 Chapter 10

HP Fortran statements
DOUBLE PRECISION

Description The DOUBLE PRECISION statement is used to declare the properties of
real data that has greater precision than data of default type real. By
default, the DOUBLE PRECISION statement is equivalent to the
REAL(KIND=8) statement.

The DOUBLE PRECISION statement is constrained by the rules for type
declaration statements, including the requirement that it precede all
executable statements. Note, however, that the DOUBLE PRECISION
statement does not have a kind parameter.

Examples The following are valid declarations:

DOUBLE PRECISION x, y
DOUBLE PRECISION, PARAMETER :: pi=3.1415927D0
! use an array constructor to initialize a double precision array
DOUBLE PRECISION, DIMENSION(4) :: dp_vec= &
 (/4.7D0, 5.2D0, 3.3D0, 2.9D0/)
! use slashes as initialization delimiters, an HP extension
DOUBLE PRECISION dp1/5.28D0/, dp2/72.3D0/ ! note, no double
colon

Related statements REAL

Related concepts For related information, see the following:

• “Type declaration for intrinsic types” on page 24

• “Implicit typing” on page 28

• “Array declarations” on page 54

• “Array constructors” on page 71

• “Expressions” on page 80

Chapter 10 305

HP Fortran statements
ELSE

ELSE
Provides a default path of execution for IF construct.

Syntax ELSE [construct-name]

construct-name
is the name given to the IF construct. If construct-name is
specified, the same name must also appear in the IF statement
and in the END IF statement.

Description The ELSE statement is used in an IF construct to provide a statement
block for execution if none of the logical expressions in the IF and ELSE
IF statements in the IF construct evaluates to true.

An IF construct may contain (at most) one ELSE statement. If present, it
must follow all ELSE IF statements within the IF construct.

Examples IF (a > b) THEN
 max = a
ELSE IF (b > max) THEN
 max = b
ELSE
 PRINT *, 'The two numbers are equal.'
 STOP 'Done'
END IF

Related statements ELSE IF, END IF, and IF (construct)

Related concepts See “IF construct” on page 111.

306 Chapter 10

HP Fortran statements
ELSE IF

ELSE IF
Provides alternate path of execution for IF construct.

Syntax ELSE IF (logical-expression) THEN [construct-name]

logical-expression
is a scalar logical expression.

construct-name
is the name given to the IF construct. If construct-name is
specified, the same name must also appear in the IF statement
and in the END IF statement.

Description The ELSE IF statement executes the immediately following statement
block, if the following conditions are met:

• None of the logical expressions in the IF statement and any previous
ELSE IF statements evaluates to true.

• logical-expression evaluates to true.

Branching to an ELSE IF statement is illegal.

Examples INTEGER temperature
INTEGER, PARAMETER :: hot=1, cold=2
IF (temperature == hot) THEN
 PRINT *, 'Turn down your thermostat.'
ELSE IF (temperature == cold) THEN
 PRINT *, 'Turn up your thermostat.'
ELSE
 PRINT *, 'Your thermostat is working OK.'
END IF

Related statements ELSE, END IF, and IF (construct)

Related concepts See “IF construct” on page 111.

Chapter 10 307

HP Fortran statements
ELSEWHERE

ELSEWHERE
Introduces optional ELSEWHERE block within a WHERE construct.

Syntax ELSEWHERE

Description The ELSEWHERE statement introduces an ELSEWHERE block, which is an
optional component of the WHERE construct. The ELSEWHERE statement
executes on the complement of the WHERE condition. For additional
information, see “WHERE (statement and construct)” on page 466.

Examples WHERE(b .GE. 0.0)
 ! Assign to sqrt_b only where logical array b is 0 or positive
 sqrt_b = SQRT(b)
ELSEWHERE
 sqrt_b = 0.0 ! Assign sqrt_b where b is negative
END WHERE

Related statements WHERE and END (construct)

Related concepts For information about the WHERE construct, see “Masked array
assignment” on page 99.

308 Chapter 10

HP Fortran statements
ENCODE (extension)

ENCODE (extension)
Outputs formatted data to internal storage.

Syntax ENCODE (count, format, unit, io-specifier-list) [out-list]

count
is an integer expression that specifies the number of characters
(bytes) to translate from character format to internal (binary)
format. count must precede format.

format
specifies the format specification for formatting the data. format
can be one of the following:

• The label of a FORMAT statement containing the format
specification.

• An integer variable that has been assigned the label of a
FORMAT statement.

• An embedded format specification. For information about
embedded format specifications, see “Embedded format
specification” on page 237.

format must be the second of the parenthesized items,
immediately following count. Note that the keyword FMT= is not
used.

unit
is the internal storage designator. It must be a scalar variable or
array name. Assumed-size and adjustable-size arrays are not
permitted. Note that char-var-name is not a unit number and
that the keyword UNIT= is not used.
unit must be the third of the parenthesized items, immediately
following format.

io-specifier-list
is a comma-separated list of I/O specifiers. Note that the unit
and format specifiers are required; the other I/O specifiers are
optional. The following I/O specifiers can appear in io-specifier-
list:

Chapter 10 309

HP Fortran statements
ENCODE (extension)

ERR=stmt-label

specifies the label of the executable statement to which
control passes if an error occurs during statement
execution.

IOSTAT=integer-variable

returns the I/O status after the statement executes. If
the statement successfully executes, integer-variable is
set to zero. If an end-of-file record is encountered
without an error condition, it is set to a negative
integer. If an error occurs, integer-variable is set to a
positive integer that indicates which error occurred.

out-list
is a comma-separated list of data items for output. The data
items can include expressions and implied-DO lists (see
“Implied-DO loop” on page 194).

Description The ENCODE statement is a nonstandard feature of HP Fortran and is
provided for compatibility with other versions of Fortran. The
internal-I/O capabilities of the standard WRITE statement provide
similar functionality and should be used to ensure portability.

The ENCODE statement translates data from its internal (binary)
representation into formatted character data.

Examples The following example program uses the ENCODE statement to write to
an internal file:

PROGRAM encode_example
 CHARACTER(LEN=20) :: buf
 ENCODE (LEN(buf), '(2X, 3I4, 1X)', buf) 1234, 45, -12
 PRINT *, buf
END PROGRAM encode_example

When compiled and executed, this program outputs the following (where
b represents a blank character):

bb1234bb45b-12bbbbb

Related statements DECODE and WRITE

310 Chapter 10

HP Fortran statements
ENCODE (extension)

Related concepts For related information, see the following:

• “Internal files” on page 174

• “Performing I/O on internal files” on page 176

• “Implied-DO loop” on page 194

• “Embedded format specification” on page 237

Chapter 10 311

HP Fortran statements
END

END
Marks the end of a program unit or procedure.

Syntax END [keyword [name]]

keyword
is one of the keywords BLOCK DATA, FUNCTION, MODULE,
PROGRAM, or SUBROUTINE. When the END statement is used for
an internal procedure or module procedure, the FUNCTION or
SUBROUTINE keyword is required.

name
is the name given to the program unit. If name is specified,
keyword must also be specified.

Description The END statement is the last statement of a program unit (that is, a
main program, function, subroutine, module, or block data subprogram),
an internal procedure, or a module procedure. It is the only statement
that is required within a program unit.

Examples The following example illustrates the use of the END statement to
indicate the end of a main program. Notice that, even though the main
program unit is given a name, the END PROGRAM statement does not
require it:

PROGRAM main_prog
...
END PROGRAM

In the next example, the END statement marks the end of an internal
function and must therefore specify the keyword FUNCTION. However, it
is not required that the name, get_args, be also specified:

FUNCTION get_args (arg1, arg2)
...
END FUNCTION get_args

The following example uses the END statement to indicate the end of a
block data subprogram. Because the END statement specifies the
program unit name, it must also specify the keyword BLOCK DATA:

BLOCK DATA main_data
...
END BLOCK DATA main_data

312 Chapter 10

HP Fortran statements
END

Related statements BLOCK DATA, FUNCTION, MODULE, PROGRAM, and SUBROUTINE

Related concepts For information about program units, see “Program units” on page 122.

Chapter 10 313

HP Fortran statements
END (construct)

END (construct)
Terminates a CASE, DO, IF, or WHERE construct.

Syntax END construct-keyword [construct-name]

construct-keyword
is one of the keywords DO, IF, SELECT CASE, or WHERE.

construct-name
is the name given to the construct terminated by this statement.

Description The END (construct) statement terminates a CASE, DO, IF, or WHERE
construct. If construct-name appears in the statement that introduces
the construct, the same name must also appear in the END statement. If
no construct-name is given in the introducing statement, none must
appear in the END statement.

Examples For examples of the END (construct) statement, see the descriptions of the
DO, IF, SELECT, or WHERE statements throughout this chapter.

Related statements DO, IF, SELECT CASE, and WHERE

Related concepts For related information, see the following:

• “Masked array assignment” on page 99

• “Control constructs and statement blocks” on page 104

314 Chapter 10

HP Fortran statements
END (structure definition, extension)

END (structure definition, extension)
Terminates the definition of a structure or union.

Syntax END record-keyword

record-keyword
is one of the keywords MAP, STRUCTURE, or UNION.

Description The END (record definition) statement is an HP Fortran extension that is
used to delimit the definition of a structure (END STRUCTURE) or a union
within a structure (END UNION and END MAP). For more information,
refer to “STRUCTURE (extension)” on page 437.

Related statements INTERFACE, STRUCTURE, and UNION

Chapter 10 315

HP Fortran statements
END INTERFACE

END INTERFACE
Terminates a procedure interface block.

Syntax END INTERFACE

Description In Fortran 90, external procedures may be given explicit interfaces by
means of procedure interface blocks. Such a block is always terminated
by the END INTERFACE statement.

Examples The following makes the interface of function r_ave explicit, giving it
the generic name g_ave.

INTERFACE g_ave
 FUNCTION r_ave(x)
 ! get the size of array x from module ave_stuff
 USE ave_stuff, ONLY: n
 REAL r_ave, x(n)
 END FUNCTION r_ave
END INTERFACE

Related statements INTERFACE

Related concepts Interface blocks are described in “Interface blocks” on page 152.

316 Chapter 10

HP Fortran statements
END TYPE

END TYPE
Terminates a derived type definition.

Syntax END TYPE [type-name]

type-name
is the name of the derived type being defined. type-name is
optional. If given, it must be the same as the type-name
specified in the TYPE statement introducing the derived type
definition.

Description The END TYPE statement terminates the definition of a derived type.

Examples The following is a simple example of a derived type with two components,
high and low:

TYPE temp_range
 INTEGER high, low
END TYPE temp_range

Related statements TYPE (definition)

Related concepts Derived types are described in “Derived types” on page 39.

Chapter 10 317

HP Fortran statements
ENDFILE

ENDFILE
Writes end-of-file record to file.

Syntax The syntax of the ENDFILE statement can take one of the following
forms:

• Short form:

ENDFILE integer-expression

• Long form:

ENDFILE (io-specifier-list)

integer-expression
is the number of the unit connected to a sequential file.

io-specifier-list
is a list of the following comma-separated I/O specifiers:

[UNIT=]unit

specifies the unit connected to a device or external file
opened for sequential access. unit must be an integer
expression that evaluates to a nonnegative number. If
the optional keyword UNIT= is omitted, unit must be
the first item in io-specifier-list.

ERR=stmt-label

specifies the label of the executable statement to which
control passes if an error occurs during statement
execution.

IOSTAT=integer-variable

returns the I/O status after the statement executes. If
the statement executes successfully, integer-variable is
set to zero. If an error occurs, it is set to a positive
integer that indicates which error occurred.

Description The ENDFILE statement writes an end-of-file record to the file or device
connected to the specified unit at the current position and positions the
file after the end-of-file record.

318 Chapter 10

HP Fortran statements
ENDFILE

An end-of-file record can occur only as the last record of a disk file. After
execution of an ENDFILE statement, the file is positioned beyond the end-
of-file record; any records beyond the current position are lost—that is,
the file is truncated.

Some devices (for example, magnetic tape units) can have multiple end-
of-file records, with or without intervening data records.

An end-of-file record can be written to a sequential file only.

Examples The following statement writes an end-of-file record to the file connected
to unit 10:

ENDFILE 10

The following statement writes an end-of-file record to the file connected
to unit 17. If an error occurs during the execution of the statement,
control passes to the statement at label 99, and the error code is returned
in ios:

INTEGER :: ios
...
ENDFILE (17, ERR=99, IOSTAT=ios)

Related statements BACKSPACE, OPEN, and REWIND

Related concepts For information about I/O concepts, see Chapter 8, “I/O and file
handling,” on page 171, which also lists example programs that use I/O.
For information about I/O formatting, see Chapter 9, “I/O formatting,” on
page 205.

Chapter 10 319

HP Fortran statements
ENTRY

ENTRY
Provides an additional external or module subprogram entry point.

Syntax ENTRY entry-name [([dummy-arg-list])

 [RESULT (result-name)]]

entry-name
is the name of the entry point (subroutine or function) defined
by the ENTRY statement. It must differ from the original
subroutine or function name, and from other ENTRY statement
entry-names specified in the subprogram in which it appears.

dummy-arg-list
is a comma-separated list of dummy arguments for the
subroutine or function defined by the ENTRY statement. The
same rules and restrictions apply as for subroutine dummy
arguments or function dummy arguments, as appropriate.

result-name
is the result variable for a function defined by an ENTRY
statement. result-name is optional; if not specified, the result
variable is entry-name.
The RESULT (result-name) clause can only be specified when
the ENTRY statement is included in a function subprogram.

Description When an ENTRY statement appears in a function subprogram, it
effectively provides an additional FUNCTION statement in the
subprogram: execution starts from the ENTRY statement when the entry-
name is invoked (by being used). Similarly, an ENTRY statement in a
subroutine subprogram effectively provides an additional SUBROUTINE
statement in the subprogram, and execution starts from the ENTRY
statement when the entry-name is called.

The following restrictions apply to the ENTRY statement:

• The ENTRY statement can appear in an external subprogram or a
module subprogram; it may not appear in an internal subprogram. If
the ENTRY statement appears in a function subprogram, it defines an
additional function; if it appears in a subroutine subprogram, it
defines an additional subroutine. The entry points thus defined can
be referenced in the same way as for a normal function name or
subroutine name, as appropriate. Execution starts at the ENTRY

320 Chapter 10

HP Fortran statements
ENTRY

statement, and continues in the normal manner, ignoring any ENTRY
statements subsequently encountered, until a RETURN statement or
the end of the procedure is reached.

• The RESULT (result-name) clause can only be specified when the
ENTRY statement is included in a function subprogram. If specified,
result-name must differ from entry-name, and entry-name must not
appear in any specification statement in the scoping unit of the
function subprogram; entry-name assumes all the attributes of result-
name. The RESULT clause in an ENTRY statement has the same
syntax and semantics as in a FUNCTION statement.

• If the ENTRY statement appears in a function, the result variable is
that specified in the FUNCTION statement; if none is specified, the
result variable is entry-name.

• If the characteristics of the result variable specified in the ENTRY
statement are the same as those of the result variable specified in the
FUNCTION statement, then the result variable is the same, even
though the names are different. If the characteristics are different,
then the result variables must be:

– Nonpointer scalars of intrinsic type

– Storage associated

– If any is of character type, they must all be of character type and
must all have the same length. If any is of noncharacter type, they
must all be of noncharacter type.

• The result variable may not appear in a COMMON, DATA, or
EQUIVALENCE statement. Also, the result variable may not have the
ALLOCATABLE, INTENT, OPTIONAL, PARAMETER, or SAVE attribute.

• If RECURSIVE is specified on the FUNCTION statement at the start of a
function subprogram, and RESULT is specified on an ENTRY statement
within the subprogram, then the interface of the function defined by
the ENTRY statement is explicit within the function subprogram; the
function can thus be invoked recursively. (Note that the keyword
RECURSIVE is not given on the ENTRY statement, but only on the
FUNCTION statement.)

Chapter 10 321

HP Fortran statements
ENTRY

• If RECURSIVE is specified on the SUBROUTINE statement at the start
of a subroutine subprogram, the interface of the subroutine defined
by an ENTRY statement within the subprogram is explicit within the
subprogram; the subroutine can thus be called recursively.

• A dummy argument in an ENTRY statement must not appear in an
executable statement preceding the ENTRY statement, unless it also
appears in a FUNCTION, SUBROUTINE, or ENTRY statement preceding
the executable statement.

• If a dummy argument in a subprogram—that is, as specified in a
FUNCTION or SUBROUTINE statement at the start of the subprogram
or in any ENTRY statements within the subprogram—is used in an
executable statement, then the statement may only be executed if the
dummy argument appears in the dummy argument list of the
procedure name actually referenced in the current call. The same
restrictions apply when you use a dummy argument in a specification
expression to specify an array bound or character length.

• A procedure defined by an ENTRY statement may be given an explicit
interface by use of an INTERFACE block. The procedure header in the
interface body must be a FUNCTION statement for an entry to a
function subprogram, and a SUBROUTINE statement for an entry to a
subroutine subprogram.

The ENTRY statement was often used in FORTRAN 77 programs in
situations where a set of subroutines or functions had slightly different
dummy argument lists but entailed computations involving identical
data and code. In Fortran 90 the use of the ENTRY statement in such
situations can be replaced by the use of optional arguments.

Examples The following example defines a subroutine subprogram with two
dummy arguments. The subprogram also contains an ENTRY statement
that takes only the first dummy argument specified in the SUBROUTINE
statement.

SUBROUTINE Full_Name (first_name, surname)
CHARACTER(20) :: first_name, surname
...
ENTRY Part_Name (first_name)

The following example creates a stack. It shows the use of ENTRY to
group the definition of a data structure together with the code that
accesses it, a technique known as encapsulation. (This example could
alternatively be programmed as a module, which would be preferable in
that it does not rely on storage association.)

322 Chapter 10

HP Fortran statements
ENTRY

SUBROUTINE manipulate_stack
 IMPLICIT NONE
 INTEGER size, top /0/, value
 PARAMETER (size = 100)
 INTEGER, DIMENSION(size) :: stack
 SAVE stack, top

 ENTRY push(value) ! Push value onto the stack
 IF (top == size) STOP 'Stack Overflow'
 top = top + 1
 stack(top) = value
 RETURN

 ENTRY pop(value) ! Pop top of stack and place in value
 IF (top == 0) STOP 'Stack Underflow'
 value = stack(top)
 top = top - 1
 RETURN
END SUBROUTINE manipulate_stack

Here are examples of CALL statements associated with the preceding
example:

CALL push(10)
CALL push(15)
CALL pop(I)
CALL pop(J)

Related statements FUNCTION, SUBROUTINE, and CALL

Related concepts For information about external procedures, see “External procedures” on
page 128.

Chapter 10 323

HP Fortran statements
EQUIVALENCE

EQUIVALENCE
Associates different objects with same storage area.

Syntax EQUIVALENCE (equivalence-list1) [, (equivalence-list2)]...

equivalence-list
is a comma-separated list of two or more object names to be
storage associated. Objects can include simple variables, array
elements, array names, and character substrings.

Description All objects in each equivalence-list share the same storage area. Such
objects become storage associated and are equivalenced to each other.
Equivalencing may also cause other objects to become storage associated.

The following items must not appear in equivalence-list:

• Automatic objects, including character variables whose length is
specified with a nonconstant

• Allocatable arrays

• Function names, result names, or entry names

• Dummy arguments

• Records or record field references

• Nonsequenced derived-type objects

• Derived-type components

• Pointers or derived-type objects containing pointers

• Named constants

Derived-type objects may appear in an EQUIVALENCE statement if they
have been defined with the SEQUENCE attribute.

The following restrictions apply to objects that can appear in an
EQUIVALENCE statement:

• Objects in the same equivalence-list must be explicitly or implicitly
declared in the same scoping unit.

324 Chapter 10

HP Fortran statements
EQUIVALENCE

• The name of an equivalenced object must not be made available by
use association.

The Fortran 90 standard imposes the following type restrictions on
equivalenced objects:

• If one of the objects in equivalence-list is of type default integer,
default real, double precision real, default complex, double complex,
default logical, or numeric sequence type, then all objects in
equivalence-list must be one of these types.

HP Fortran relaxes this restriction and allows character and
noncharacter items to be equivalenced. Note, however, that use of this
extension can impact portability.

• If one of the objects in equivalence-list is of derived type that is not a
numeric sequence or character sequence type, then all objects in
equivalence-list must be of the same type.

• If one of the objects in equivalence-list is of intrinsic type other than
default integer, default real, double precision real, default complex,
double complex, default logical, or default character, then all objects
in equivalence-list must be of the same type with the same kind type
parameter value.

HP Fortran relaxes this restriction.

The EQUIVALENCE statement does not cause type conversion or imply
mathematical equivalence. If an array and a scalar share the same
storage space through the EQUIVALENCE statement, the array does not
have the characteristics of a scalar and the scalar does not have the
characteristics of an array. They only share the same storage space.

Care should be taken when data types of different sizes share the same
storage space, because the EQUIVALENCE statement specifies that each
data item in equivalence-list has the same first storage unit. For
example, if a 4-byte integer variable and a double-precision variable are
equivalenced, the integer variable shares the same space as the 4 most
significant bytes of the 8-byte double-precision variable.

Proper alignment of data types is always enforced. The compiler will
issue a diagnostic if incorrect alignment is forced through an
EQUIVALENCE statement. For data type alignment rules, see “Intrinsic
data types” on page 22.

The lengths of the equivalenced objects need not be the same.

Chapter 10 325

HP Fortran statements
EQUIVALENCE

Equivalencing character data

An EQUIVALENCE statement specifies that the storage sequences of
character data items whose names are specified in equivalence-list have
the same first character storage unit. This causes the association of the
data items in equivalence-list and can cause association of other data
items as well. Consider the following example:

CHARACTER(LEN=4) :: a, b
CHARACTER(LEN=3) :: c(2)
EQUIVALENCE (a, c(1)), (b, c(2))

As a result of this EQUIVALENCE statement, the fourth character in a,
the first character in b, and the first character in c(2) share the same
storage.

Strings of the same or different lengths can be equivalenced to start on
the first element, and you can use substring notation to specify other
associations, as in the following:

CHARACTER (10) :: s1, s2
EQUIVALENCE (s1(2:2), s2(3:3)

Substring subscripts must be integer initialization expressions, and the
substring length must be nonzero.

Equivalencing arrays

To determine equivalence between arrays with different dimensions, HP
Fortran views all elements of an array in linear sequence. Each array is
stored as if it were a one-dimensional array. Array elements are stored in
ascending sequential, column-major order; for information about how
arrays are laid out in memory, see “Array fundamentals” on page 52.

Array elements can be equivalenced with elements of a different array or
with scalars. No equivalence occurs outside the bounds of any of the
equivalenced arrays.

If equivalenced arrays are not of the same type, they may not line up
element by element.

If an array name appears without subscripts in an EQUIVALENCE
statement, it has the same effect as specifying an array name with the
subscript of its first element.

It is illegal to equivalence different elements of the same array to the
same storage area. For example, the following is illegal:

INTEGER :: a(2), b
EQUIVALENCE (a(1), b), (a(2), b)

326 Chapter 10

HP Fortran statements
EQUIVALENCE

Likewise, it is illegal to use the EQUIVALENCE statement to force
consecutive array elements to be noncontiguous, as in the following
example:

REAL :: a(2), r(3)
EQUIVALENCE (a(1), r(1)), (a(2), r(3))

Array subscripts must be integer initialization expressions.

Equivalence in common blocks

An EQUIVALENCE statement must not cause two common blocks to be
associated. However, you can use the EQUIVALENCE statement to place
objects in common by equivalencing them to objects already in common.
If one element of an array is equivalenced to an object in common, the
whole array is placed in common with equivalence maintained for
storage units preceding and following the data element in common. The
common block is always extended when it is necessary to fit an array
that shares storage space in the common block. It may be extended after
the last entry, but not before the first.

Consider the following example, which puts array i in blank common
and equivalences array element j(2) to i(3):

INTEGER :: i(6), j(6)
COMMON i
EQUIVALENCE (i(3), j(2))

The effect of the EQUIVALENCE statement is to extend blank common to
include element j(6). This is entirely legal because the extension occurs
at the end of the common block.

But if the EQUIVALENCE statement were changed as follows:

EQUIVALENCE (i(1), j(2)) ! illegal

it would result in an illegal equivalence, because storage would have to
be inserted in front of the block in order to accommodate element j(1).

Examples In the following example, the variables a, b, and c share the same
storage space; array elements d(2) and e(5) share the same storage
space; variables f, g, and h share the same storage:

INTEGER :: a, b, c, d(20), e(30), f, g, h
EQUIVALENCE (a, b, c), (d(2), e(5)), (f, g, h)

Related statements COMMON

Related concepts For information about data alignment, see Table 5 and “Alignment of
derived-type objects” on page 44.

Chapter 10 327

HP Fortran statements
EXIT

EXIT
Terminates a DO loop.

Syntax EXIT [do-construct-name]

do-construct-name
is the name given to the DO construct. If do-construct-name is
specified, it must be the name of a DO construct that contains
the EXIT statement.

Description If you do not specify do-construct-name, the EXIT statement terminates
the immediately enclosing DO loop. If you do specify it, the EXIT
statement terminates the enclosing DO loop with the same name.

Examples DO i = 1, 20
 n(i) = 0
 READ *, j
 IF (j < 0) EXIT
 n(i) = j
END DO

Related statements CYCLE and DO

Related concepts For related information, see the following:

• “DO construct” on page 107

• “Flow control statements” on page 112

328 Chapter 10

HP Fortran statements
EXTERNAL (statement and attribute)

EXTERNAL (statement and attribute)
Declares a name to be external.

Syntax A type declaration statement with the EXTERNAL attribute is:

type , attrib-list :: function-name-list

type
is a valid type specification (INTEGER, REAL, LOGICAL,
CHARACTER, TYPE (name), etc.).

attrib-list
is a comma-separated list of attributes including EXTERNAL and
optionally those attributes compatible with it, namely:

function-name-list
is a comma-separated list of function names to be designated
EXTERNAL.

The syntax of the EXTERNAL statement is:

EXTERNAL external-name-list

Note that the syntax of the EXTERNAL statement does not permit
optional colons.

Description An EXTERNAL attribute or statement specifies that a name may be used
as an actual argument in subroutine calls and function references. The
name is either an external procedure, a dummy procedure, or a block
data program unit.

A name that appears in a type statement specifying the EXTERNAL
attribute must be the name of an external procedure or of a dummy
argument that is a procedure.

The following rules and restrictions apply:

• A name can appear once in an EXTERNAL statement, in a declaration
statement with an EXTERNAL attribute, or in an interface body, but
not in more than one of these.

OPTIONAL PRIVATE PUBLIC

Chapter 10 329

HP Fortran statements
EXTERNAL (statement and attribute)

• The EXTERNAL attribute cannot be used with subroutines. To declare
a subroutine as EXTERNAL, use the statement form.

• If the name is a dummy argument, an EXTERNAL statement declares
it to be a dummy procedure.

• If a user-defined procedure or library routine has the same name as
an intrinsic procedure, then it must either be declared to have the
EXTERNAL attribute or have an explicit interface. The intrinsic
procedure is then no longer available in such program units.

• The INTRINSIC and EXTERNAL attributes are mutually exclusive.

Examples SUBROUTINE sub (fourier)
! fourier is a dummy procedure; actual argument corresponding to
! to fourier can be external, intrinsic, or module procedure
 REAL fourier
 EXTERNAL fourier ! statement form
REAL, EXTERNAL :: SIN, COS, TAN ! attribute form
! SIN, COS, and TAN are no longer intrinsic procedures; functions
! with these names must be defined in the program
...
END SUBROUTINE sub
SUBROUTINE gratx (x, y)
! Specify init_block_a as the block data
! subprogram that initializes common block a
EXTERNAL init_block_a
! Common block available in subroutine gratx
COMMON /a/ temp, pressure
END SUBROUTINE gratx

BLOCK DATA init_block_a
! init_block_a initializes the objects in common block a
COMMON /a/ temp, pressure
DATA temp, pressure/ 98.6, 15.5 /
END BLOCK DATA init_block_a

Related statements INTRINSIC

Related concepts For related information, see the following:

• “Type declaration for intrinsic types” on page 24

• “Procedures” on page 123

• “Declaring library routines as EXTERNAL” on page 590

330 Chapter 10

HP Fortran statements
FORMAT

FORMAT
Describes how I/O data is to be formatted.

Syntax label FORMAT (format-list)

label
is a statement label.

format-list
is a comma-separated list of format items, where each item in
the list can be either one of the edit descriptors described in
Table 25 or (format-list). If format-list is a list item, it may be
optionally preceded by a repeat specification—a positive integer
that specifies how may times format-list is to be repeated.

Description The FORMAT statement holds the format specification that indicates how
data in formatted I/O is to be translated between internal (binary)
representation and formatted (ASCII) representation. The translation
makes it possible to represent data in a humanly readable format.

Although a format specification can be embedded within a data transfer
statement, the point to using a FORMAT statement is to make it available
to any number of data transfer statements. Several data transfer
statements can use the same format specification contained in a FORMAT
statement by referencing label.

Another advantage of the FORMAT statement over the use of embedded
format specifications is that it is ”pre-compiled”, reducing the runtime
overhead of processing the format specification and providing compile-
time error checking of the FMT= specifier.

Examples PROGRAM format_example
 WRITE (15,FMT=20) 1234, 45, -12
20 FORMAT (I6, 2I4)
 END PROGRAM format_example

When compiled and executed, this program outputs the following (where
b represents the blank character):

bb1234bb45b-12

Chapter 10 331

HP Fortran statements
FORMAT

Related statements READ and WRITE

Related concepts For information about I/O formatting, see Chapter 9, “I/O formatting,” on
page 205.

332 Chapter 10

HP Fortran statements
FUNCTION

FUNCTION
Introduces a function subprogram.

Syntax [RECURSIVE] [type-spec] FUNCTION

 function-name ([dummy-arg-name-list])

 [RESULT (result-name)]

RECURSIVE

is a keyword that must be specified in the FUNCTION statement
if the function is either directly or indirectly recursive. The
RECURSIVE clause can appear at most once, either before or
after type-spec. It is not an error to specify RECURSIVE for a
nonrecursive function.
A recursive function that calls itself directly must also have the
RESULT clause specified (see below).

type-spec
is a valid type specification (INTEGER, REAL, LOGICAL,
CHARACTER, TYPE (name), etc.). The type and type parameters
of the function result can be specified by type-spec or by
declaring the result variable within the function subprogram,
but not by both. The implicit typing rules apply if the function is
not typed explicitly.
If the function result is array-valued or a pointer, the
appropriate attributes for the result variable (which is function-
name, or result-name if specified) must be specified within the
function subprogram.

function-name
is the name of the function subprogram being defined.

dummy-arg-name-list
is a comma-separated list of dummy argument names for the
function.

result-name
is the result variable. If the RESULT clause is not specified,
function-name becomes the result variable. If result-name is
given, it must differ from function-name, and function-name
must not then be declared within the function subprogram.

Chapter 10 333

HP Fortran statements
FUNCTION

As noted above, a recursive function that calls itself directly
must have the RESULT clause specified. For other functions, the
RESULT clause is optional.

Description A FUNCTION statement introduces an external, module, or internal
function subprogram.

Examples PROGRAM main
...
CONTAINS
 ! f is an internal function
 FUNCTION f(x)
 f = 2*x + 3
 END FUNCTION f
 ! recursive function, which must specify RESULT clause
 RECURSIVE INTEGER FUNCTION factorial (n) &
 RESULT (factorial_value)
 IMPLICIT INTEGER (a-z)
 IF (n <= 0) THEN
 factorial_value = 1
 ELSE
 factorial_value = n * factorial (n-1)
 END IF
 END FUNCTION factorial
END PROGRAM main

Related statements CONTAINS, END, INTENT, INTERFACE, OPTIONAL, and the type
declaration statements

Related concepts For related information, see the following:

• “Type declaration for intrinsic types” on page 24

• “External procedures” on page 128

• “Arguments” on page 139

• “Defined operators” on page 155

334 Chapter 10

HP Fortran statements
GO TO (assigned)

GO TO (assigned)
Transfers control to a variable that was assigned a label.

Syntax GO TO integer-variable [[,] (label-list)]

integer-variable
is a scalar variable of default type integer.

label-list
is a list of statement labels, separated by commas.

Description The assigned GO TO statement transfers control to the statement whose
label was most recently assigned to a variable with the ASSIGN
statement.

integer-variable must be given a label value of an executable statement
through an ASSIGN statement prior to execution of the GO TO statement.
When the assigned GO TO statement is executed, control is transferred to
the statement whose label matches the label value of integer-variable.

label-list is a list of labels that integer-variable might assume.

integer-variable must not be an array element or an integer component of
a derived type.

The use of this statement can hinder the ability of the compiler to
optimize the program in which it occurs.

Examples ASSIGN 10 TO out
GO TO out

Related statements ASSIGN, GO TO (computed), and GO TO (unconditional)

Related concepts For information about flow control statements, see “Flow control
statements” on page 112.

Chapter 10 335

HP Fortran statements
GO TO (computed)

GO TO (computed)
Transfers control to one of several labels.

Syntax GO TO (label-list) [,] arithmetic-expression

label-list
is a list of statement labels, separated by commas.

arithmetic-expression
is a scalar integer expression. As an extension, HP Fortran also
allows the expression to be of type real or double precision.

Description The computed GO TO statement transfers control to one of several
labeled statements, depending on the value of arithmetic-expression.
After arithmetic-expression is evaluated (and, if necessary, truncated to
an integer value), control transfers to the statement label whose position
in label-list corresponds to the truncated value of arithmetic-expression.

If the value of arithmetic-expression is less than 1 or greater than the
total number of labels in label-list, control transfers to the executable
statement immediately following the computed GO TO statement.

Examples index = 3
! Branch made to the statement labeled 30.
GO TO (10, 20, 30, 40) index

Related statements SELECT CASE, GO TO (assigned), and GO TO (unconditional)

Related concepts For information about flow control statements, see “Flow control
statements” on page 112.

336 Chapter 10

HP Fortran statements
GO TO (unconditional)

GO TO (unconditional)
Transfers control to a specified label.

Syntax GO TO label

label
is the label of an executable statement.

Description The unconditional GO TO statement transfers control directly to the
statement at the specified label. The executable statement with label can
occur before or after the GO TO statement, but it must be within the
same scoping unit.

Examples GO TO 30
30 CONTINUE

Related statements GO TO (assigned) and GO TO (computed)

Related concepts For information about flow control statements, see “Flow control
statements” on page 112.

Chapter 10 337

HP Fortran statements
IF (arithmetic)

IF (arithmetic)
Transfers control to one of three labels.

Syntax IF (arithmetic-expression) labelN, labelZ, labelP

arithmetic-expression
is an arithmetic expression of any numeric type except complex
and double complex.

label
is a label of an executable statement.

Description The arithmetic IF statement transfers control to the statement whose
label is determined by arithmetic-expression. If arithmetic-expression
evaluates to a negative value, control transfers to labelN; if it evaluates
to 0, control transfers to labelZ; and if it evaluates to a positive value,
control transfers to labelP.

The same label may appear more than once in the same arithmetic IF
statement.

Each label must be that of an executable statement in the same scoping
unit as the arithmetic IF.

Examples i = -1

! Branch to statement labeled 10
IF (i) 10, 20, 30

Related statements IF (construct) and IF (logical)

Related concepts For information about flow control statements, see “Flow control
statements” on page 112.

338 Chapter 10

HP Fortran statements
IF (block)

IF (block)
Begins an IF construct.

Syntax [construct-name :] IF (logical-expression) THEN

construct-name
is the name given to the IF construct. If construct-name is
specified, the same name must also appear in the END IF
statement.

logical-expression
is a scalar logical expression.

Description The IF statement executes the immediately following statement block if
logical-expression evaluates to true.

The IF construct, which the IF statement begins, may include ELSE IF
statements and an ELSE statement to provide alternate statement blocks
for execution.

The block following the IF statement may be empty.

As an extension, HP Fortran allows the transfer of control into an IF
construct from outside the construct.

Examples IF (x <= 0.0 .AND. y > 1.0) THEN
 CALL fix_coord(x, y)
END IF

Related statements ELSE, ELSE IF, IF (arithmetic), IF (logical), and END (construct)

Related concepts For information about the IF construct, see “IF construct” on page 111.

Chapter 10 339

HP Fortran statements
IF (logical)

IF (logical)
Conditionally executes a statement.

Syntax IF (logical-expression) statement

logical-expression
is a logical expression.

statement
is any executable statement other than the following:

• A statement used to begin a construct

• Any END statement

• Any IF statement

Description The logical IF statement is a two-way decision maker. If logical-
expression evaluates to is true, statement executes and control passes to
the next statement. If logical-expression evaluates to false, statement
does not execute and control passes to the next statement in the
program.

Examples IF (a .EQ. b) PRINT *, 'They are equal.'

Related statements IF (arithmetic) and IF (construct)

Related concepts For information about flow control statements, see “Flow control
statements” on page 112.

340 Chapter 10

HP Fortran statements
IMPLICIT

IMPLICIT
Changes or voids default typing rules.

Syntax The IMPLICIT statement can take either of the following forms:

• First form:

IMPLICIT type (range-list)[, type (range-list) ,]...

• Second form:

IMPLICIT NONE

type
is the data type to be associated with the corresponding letters
in range-list.

range-list
is a comma-separated list of letters or ranges of letters (for
example, A-Z or I-N) to be associated with type. Writing a range
of letters has the same effect as writing a list of single letters.

Description The IMPLICIT statement can be used either to change or void the
default typing rules within the program unit in which it appears,
depending on which of the two forms the statement takes.

First form

This form of the IMPLICIT statement specifies type as the data type for
all variables, arrays, named constants, function subprograms, ENTRY
names in function subprograms, and statement functions that begin with
any letter in range-list and that are not explicitly given a type.

Within the specification statements of a program unit, IMPLICIT
statements must precede all other specification statements, except
possibly the DATA and PARAMETER statements.

The same letter must not appear as a single letter or be included in a
range of letters, more than once in all of the IMPLICIT statements in a
scoping unit.

For information on how the IMPLICIT and PARAMETER statements
interact, refer to “PARAMETER (statement and attribute)” on page 391.

Chapter 10 341

HP Fortran statements
IMPLICIT

Second form

The IMPLICIT NONE statement disables the default typing rules for all
variables, arrays, named constants, function subprograms, ENTRY
names, and statement functions (but not intrinsic functions). All such
objects must be explicitly typed. The IMPLICIT NONE statement must be
the only IMPLICIT statement in the scoping unit, and it must precede
any PARAMETER statement. Types of intrinsic functions are not affected.

You can also use the +implicit_none compile-line option to void the
default typing rules. A program compiled with this option may include
IMPLICIT statements, which the compiler will honor.

Examples The following statement causes all variables and function names
beginning with I, J, or K to be of type complex, and all data items
beginning with A, B, or C to be of type integer:

IMPLICIT COMPLEX (I, J, K), INTEGER (A-C)

Related concepts For related information, see the following:

• “Implicit typing” on page 28

342 Chapter 10

HP Fortran statements
INCLUDE

INCLUDE
Imports text from a specified file.

Syntax INCLUDE character-literal-constant

character-literal-constant
is the name of the file to include.

Description The keyword INCLUDE and character-literal-constant form an INCLUDE
line, which is used to insert text into a program prior to compilation. The
inserted text replaces the INCLUDE line; the INCLUDE line should
therefore appear in your program where you want the inserted text.
When the end of an included file is reached, the compiler continues
processing with the line following the INCLUDE line.

character-literal-constant can be either a file name or a device name. It
must not have a kind parameter that is a named constant.

The INCLUDE line must appear on one line with no other text except
possibly a trailing comment. It should not have a statement label. Thus,
you cannot branch to it, and it cannot be an action statement that is part
of a Fortran 90 IF statement. You cannot use the “;” operator to add a
second INCLUDE line, nor can you use the “&” operator to continue it over
another line.

The compiler searches directories for the named include files in the
following order:

1 The current source directory

2 Directories specified by the -I compile-line option, in the order
specified

3 The current working directory

4 The directory /usr/include

INCLUDE lines can be nested to a maximum of ten levels. However, they
must be nested nonrecursively. That is, inserted text must not specify an
INCLUDE line that was encountered at an earlier level of nesting.

Line numbering within the listing of an included file begins at 1. When
the included file listing ends, the include level decreases appropriately,
and the previous line numbering resumes.

Chapter 10 343

HP Fortran statements
INCLUDE

Examples INCLUDE 'my_common_blocks'
INCLUDE ”/my_stuff/declarations.h”

Related concepts For related information, see the following:

• “INCLUDE line” on page 19

344 Chapter 10

HP Fortran statements
INQUIRE

INQUIRE
Returns information about file properties.

Syntax The syntax of the INQUIRE statement has two forms:

• Inquiry by output list:

INQUIRE (IOLENGTH= integer-variable) output-list

• Inquiry by unit or file:

INQUIRE (io-specifier-list)

integer-variable
is the length of the unformatted record that would result from
writing output-list to a direct-access file. The value returned in
integer-variable can be used with the RECL= specifier in an OPEN
statement to specify the length of each record in an unformatted
direct-access file that will hold the data in output-list.

output-list
is a comma-separated list of data items, similar to what would
be included with the WRITE or PRINT statement. The data items
can include variables and implied-DO lists (see “Implied-DO
loop” on page 194).

io-specifier-list
is a list of comma-separated I/O specifiers. As noted in the
following descriptions, most of the specifiers return information
about the specified unit or file. io-specifier-list must include
either the UNIT= or FILE= specifier, but not both. The following
paragraphs describe all the I/O specifiers that can appear in io-
specifier-list:

[UNIT=]unit

specifies the unit connected to an external file. unit
must be an integer expression that evaluates to a
number greater than 0. If the optional keyword UNIT=
is omitted, unit must be the first item in io-specifier-
list. If unit appears in io-specifier-list, the FILE=
specifier must not be used.

Chapter 10 345

HP Fortran statements
INQUIRE

ACCESS=character

returns the following values, indicating the method of
access:

ACTION=character-variable

returns the following values, indicating the direction of
the transfer:

BLANK=character-variable

returns the type of blank control that is in effect. For
information about blank control, see the BLANK=
specifier for the OPEN statement. The values returned
by the BLANK= specifier are:

'SEQUENTIAL' File is connected for sequential
access.

'DIRECT' File is connected for direct
access.

'UNDEFINED' File is not connected.

'READ' File is connected for reading
only.

'WRITE' File is connected for writing
only.

'READWRITE' File is connected for reading
and writing.

'UNDEFINED' File is not connected.

'NULL' Null blank control is in effect.

'ZERO' Zero blank control is in effect.

'UNDEFINED' File is not connected for
formatted I/O.

346 Chapter 10

HP Fortran statements
INQUIRE

DELIM=character-variable

returns the following values, indicating the character
to use (if any) to delimit character values in list-
directed and namelist formatting:

DIRECT=character-variable

returns the following values, indicating whether or not
the file is connected for direct access:

ERR=stmt-label

specifies the label of the executable statement to which
control passes if an error occurs during statement
execution.

'APOSTROPHE' An apostrophe is used as the
delimiter.

'QUOTE' The double quotation mark is
used as the delimiter.

'NONE' There is no delimiting
character.

'UNDEFINED' File is not connected for
formatted I/O.

'YES' File is connected for direct
access.

'NO' File is not connected for direct
access.

'UNKNOWN' It cannot be determined
whether or not file is connected
for direct access.

Chapter 10 347

HP Fortran statements
INQUIRE

EXIST=logical-variable

returns the following values, indicating whether or not
the file or unit exists:

FILE=character-expression

specifies the name of a file for inquiry. The file does not
have to be connected or even exist. If the FILE=
specifier appears in io-specifier-list, the UNIT= specifier
must not be used.

FORM=character-variable

returns the following values, indicating whether the
file is connected for formatted or unformatted I/O:

'TRUE' File exists or unit is connected.

'FALSE' File does not exist or unit is not
connected.

'FORMATTED' File is connected for
formatted I/O.

'UNFORMATTED' File is connected for
unformatted I/O.

'UNDEFINED' File is not connected.

348 Chapter 10

HP Fortran statements
INQUIRE

FORMATTED=character-variable

returns the following values, indicating whether or not
the file is connected for formatted I/O:

IOSTAT=integer-variable

returns the I/O status after the statement executes. If
the statement successfully executes, integer-variable is
set to zero. If an error occurs, it is set to a positive
integer that indicates which error occurred..

NAME=character-variable

returns the name of file connected to the specified unit.
If the file has no name or is not connected, NAME=
returns the string UNDEFINED.

NAMED=logical-variable

returns the following values, indicating whether or not
the file has a name:

NEXTREC=integer-variable

returns the number of the next record to be read or
written in a file connected for direct access. The value
is the last record read or written +1. A value of 1

'YES' File is connected for formatted
I/O.

'NO' File is not connected for
formatted I/O.

'UNKNOWN' It cannot be determined
whether or not file is connected
for formatted I/O.

'TRUE' File has a name.

'FALSE' File does not have a name.

Chapter 10 349

HP Fortran statements
INQUIRE

indicates that no records have been processed. If the
file is not connected or it is a device file or its status
cannot be determined, integer-variable is undefined.

NUMBER=integer-variable

returns the unit number that is connected to the
specified file. If no unit is connected to the named file,
integer-variable is undefined.

OPENED=logical-variable

returns the following values, indicating whether or not
the file has been opened (that is, is connected):

PAD=character-variable

returns a value indicating whether or not input records
are padded with blanks. For more information about
padding, see the PAD= specifier for the OPEN statement.
The return values are:

'TRUE' File is connected.

'FALSE' File is not connected.

'YES' File or unit is connected with
PAD='YES' in OPEN statement.

'NO' File or unit is connected with
PAD='NO' in OPEN statement.

350 Chapter 10

HP Fortran statements
INQUIRE

POSITION=character-variable

returns the following values, indicating the file
position:

READ=character-variable

returns the following values, indicating whether or not
reading is an allowed action for the file:

'REWIND' File is connected with its
position at the start of the first
record.

'APPEND' File is connected with its
position at the end-of-file
record.

'ASIS' File is connected without
changing its position.

'UNDEFINED' File is not connected or is
connected for direct access.

'YES' Reading is allowed for file.

'NO' Reading is not allowed for file.

'UNKNOWN' It cannot be determined
whether or not reading is
allowed for file.

Chapter 10 351

HP Fortran statements
INQUIRE

READWRITE=character-variable

returns the following values, indicating whether or not
reading and writing are allowed actions for the file:

RECL=integer-variable

returns the record length of the specified unit or file,
measured in bytes. The file must be a direct-access file.
If the file is not a direct-access file or does not exist,
integer-variable is undefined.

SEQUENTIAL=character-variable

returns the following values, indicating whether or not
the file is connected for direct access:

'YES' Both reading and writing are
allowed for file.

'NO' Reading and writing are not
both allowed for file.

'UNKNOWN' It cannot be determined
whether or not reading and
writing are both allowed for file.

'YES' File is connected for sequential
access.

'NO' File is not connected for
sequential access.

'UNKNOWN' It cannot be determined
whether or not file is connected
for sequential access.

352 Chapter 10

HP Fortran statements
INQUIRE

UNFORMATTED=character-variable

returns the following values, indicating whether or not
the file is connected for formatted I/O:

WRITE=character-variable

returns the following values, indicating whether or not
writing is an allowed action for the file:

Description The INQUIRE statement returns selected properties of a specified file or
unit number. (It is illegal to include both the UNIT= specifier and the
FILE= specifier in the same INQUIRE statement.) Inquiring by unit
number should be used on connected files; inquiring by filename is
typically used on unconnected files.

In addition, the INQUIRE statement can also be used to determine the
record length of a new or existing file. That is, you can use INQUIRE to
obtain the record length before creating the file and then use the return
value as the argument to the RECL= specifier in an OPEN statement.

'YES' File is connected for
unformatted I/O.

'NO' File is not connected for
unformatted I/O.

'UNKNOWN' It cannot be determined
whether or not file is connected
for unformatted I/O.

'YES' Writing is allowed for file.

'NO' Writing is not allowed for file.

'UNKNOWN' It cannot be determined
whether or not writing is
allowed for file.

Chapter 10 353

HP Fortran statements
INQUIRE

Examples The following examples illustrate different uses of the INQUIRE
statement.

Inquiry by file

The INQUIRE statement in this example returns the following
information about the file named my_file:

• The EXIST= specifier determines if the file is connected.

• The DIRECT= specifier determines if it is connected for direct access.

• The READWRITE= specifier determines if it can be read and written.

LOGICAL :: exist
CHARACTER(LEN=9) :: dir_acc, rw_sts
INQUIRE (FILE='my_file', EXIST=exist, &
 DIRECT=dir_acc, READWRITE=rw_sts)

Inquiry by unit

The following INQUIRE statement returns the following information
about the file connected to the unit in u_num:

• The OPENED= specifier determines if the file is connected to u_num.

• The NAMED= specifier determines if it is a named file or a scratch file.

• The NAME= specifier returns its name.

LOGICAL :: opened, named
INTEGER :: u_num
CHARACTER(LEN=80) :: fname
...
INQUIRE (UNIT=u_num, NAMED=named, OPENED=opened, NAME=fname)

Inquiry by output list

When using the OPEN statement to create a direct-access file, you must
specify the record length for the file with the RECL= specifier. Previous to
Fortran 90, you had to resort to a nonportable strategy to determine
record length. The Fortran 90 INQUIRE statement provides a portable
solution: use the INQUIRE statement to inquire by output list, and
specify the return value from the INQUIRE statement as the argument to
the OPEN statement. The following is an example:

INTEGER :: rec_len, ios

INQUIRE (IOLENGTH=rec_len) x, y, i, j
OPEN (UNIT=32, FILE='new_file', IOSTAT=ios, &
 ACCESS='DIRECT', RECL=rec_len)

354 Chapter 10

HP Fortran statements
INQUIRE

Related statements OPEN

Related concepts For information about I/O concepts, see Chapter 8, “I/O and file
handling,” on page 171.

Chapter 10 355

HP Fortran statements
INTEGER

INTEGER
Declares entities of type integer.

Syntax INTEGER [kind-spec] [[, attrib-list] ::] entity-list

kind-spec
is the kind type parameter that specifies the range of the
entities in entity-list. kind-spec takes the form:

([KIND=] kind-param)

where kind-param can be a named constant or a
constant expression that has the integer value of 1, 2,
4, or 8. The size of the default type is 4.

As an extension, kind-spec can take the form:

*len-param

where len-param is the integer 1, 2, 4, or 8
(default = 4).

attrib-list
is a list of one or more of the following attributes, separated by
commas:

If attrib-list is present, it must be followed by the double colon.
For information about individual attributes, see the
corresponding statement in this chapter.

ALLOCATABLE INTRINSIC PRIVATE

DIMENSION OPTIONAL PUBLIC

EXTERNAL PARAMETER SAVE

INTENT POINTER TARGET

356 Chapter 10

HP Fortran statements
INTEGER

entity-list
is a list of entities, separated by commas. Each entity takes the
form:
name [(array-spec)] [= initialization-expr]

where:

name

is the name of a variable or function

array-spec

is a comma-separated list of dimension bounds

initialization-expr

is an integer constant expression. If initialization-expr
is present, entity-list must be preceded by the double
colon.

Description The INTEGER statement is used to declare the length and properties of
data that are whole numbers. A kind parameter (if present) indicates the
representation method.

The INTEGER statement is constrained by the rules for all type
declaration statements, including the requirement that it precede all
executable statements.

As a portability extension, HP Fortran allows the following syntax for
specifying the length of an entity:

name [*len] [(array-spec)] [= initialization-expr]

If (array-spec) is specified, *len may appear on either side of (array-
spec). If name appears with *len, it overrides the length specified by
INTEGER*size.

Examples The following are valid declarations:

INTEGER i, j
INTEGER(KIND=2) :: k
INTEGER(2), PARAMETER :: limit=420
! initialize an array, using an array constructor
INTEGER, DIMENSION(4) :: ivec = (/1, 2, 3, 4 /)
! use the slash notation (an HP extension) to initialize
INTEGER i/-1/, j/-2/, k/-7/ ! note, no double colon
! the following declarations are equivalent; the second uses the
! HP length specification extension
INTEGER (KIND = 8) int1
INTEGER*4 int1*8

Chapter 10 357

HP Fortran statements
INTEGER

Related statements BYTE

Related concepts For related information, see the following:

• “Type declaration for intrinsic types” on page 24

• “Implicit typing” on page 28

• “Array declarations” on page 54

• “Array constructors” on page 71

• “Expressions” on page 80

• “KIND(X)” on page 537

358 Chapter 10

HP Fortran statements
INTENT (statement and attribute)

INTENT (statement and attribute)
Specifies the intended use of dummy arguments.

Syntax A type declaration statement with the INTENT attribute is:7

type , attrib-list :: dummy-arg-name-list

type
is a valid type specification (INTEGER, REAL, LOGICAL,
CHARACTER, TYPE (name), etc.).

attrib-list
is a comma-separated list of attributes including
INTENT(intent-spec) and the optional attributes compatible
with it, shown below:

intent-spec

is one of IN, OUT, or INOUT. (The form IN OUT is valid.)

dummy-arg-name-list
is a comma-separated list of subprogram dummy arguments to
which intent-spec is to apply.

The syntax of the INTENT statement is:

INTENT (intent-spec) [::] dummy-arg-name-list

Description The INTENT attribute declares whether a dummy argument is intended
for transferring a value into a procedure, or out of it, or both. The
INTENT attribute helps detect the use of arguments inconsistent with
their intended use, and may also assist the compiler in generating more
efficient code.

If a dummy argument has intent IN, the procedure must not change it or
cause it to become undefined. If the actual argument is defined, this
value is passed in as the value of the dummy argument.

DIMENSION OPTIONAL TARGET

Chapter 10 359

HP Fortran statements
INTENT (statement and attribute)

If a dummy argument has intent OUT, the corresponding actual
argument must be definable; that is, it cannot be a constant. When
execution of the procedure begins, the dummy argument is undefined;
thus it must be given a value before it is referenced. The dummy
argument need not be given a value by the procedure.

If a dummy argument has intent INOUT, the corresponding actual
argument must be definable. If the actual argument is defined, this
value is passed in as the value of the dummy argument. The dummy
argument need not be given a value by the procedure.

The following points should also be noted:

• Intent specifications apply only to dummy arguments and may only
appear in the specification part of a subprogram or interface body.

• If there is no intent specified for an argument in a subprogram, the
limitations imposed by the actual argument apply to the dummy
argument. For example, if the actual argument is an expression that
is not a variable, the dummy argument must not redefine its value.

• The intent of a pointer dummy argument must not be specified.

Examples ! x, y, and z are dummy arguments
SUBROUTINE electric (x, y, z)
 REAL, INTENT (IN) :: x, y ! x and y are used only for input
 ! z is used for input and output
 COMPLEX, INTENT (INOUT), TARGET :: z(1000)
 ...
SUBROUTINE pressure (true, tape, a, b)
 USE a_module
 TYPE(ace), INTENT(IN) :: a, b ! a and b are only for input
 INTENT (OUT) true, tape ! true and tape are for output
 ...
SUBROUTINE lab_ten (degrees, x, y, z)
 COMPLEX, INTENT(INOUT) :: degrees
 REAL, INTENT(IN), OPTIONAL :: x, y
 INTENT(IN) z
 ...
PROGRAM pxx
 CALL electric (a+1, h*c, d) ! First subroutine defined above
 CALL lab_ten (dg, e, f, g+1.0)
END PROGRAM pxx

Related statements FUNCTION and SUBROUTINE

360 Chapter 10

HP Fortran statements
INTENT (statement and attribute)

Related concepts For related information, see the following:

• “Type declaration for intrinsic types” on page 24

• “INTENT attribute” on page 148

Chapter 10 361

HP Fortran statements
INTERFACE

INTERFACE
Introduces an interface block.

Syntax INTERFACE [generic-spec]

generic-spec
is one of:

• generic-name

• OPERATOR(defined-operator)

• ASSIGNMENT(=)

generic-name

is the name of a generic procedure.

defined-operator

is one of:

• An intrinsic operator

• .operator., where operator is a user-defined name

Description The INTERFACE statement is the first statement of an interface block.
Interface blocks constitute the mechanism by which external procedures
may be given explicit interfaces and also provide additional functionality,
as described below.

The INTERFACE generic-name form defines a generic interface for the
procedures in the interface block.

The INTERFACE OPERATOR (defined-operator) form is used to define a
new operator or to extend the meaning of an existing operator.

The INTERFACE ASSIGNMENT(=) form is used to extend the assignment
operator so that it can be used (for example) with derived-type objects.

Examples The following examples illustrate different forms of the interface block:

! make explicit the interfaces of external function spline
! and external subroutine sp2
INTERFACE
 REAL FUNCTION spline(x,y,z)
 END FUNCTION spline

362 Chapter 10

HP Fortran statements
INTERFACE

 SUBROUTINE sp2(x,z)
 END SUBROUTINE sp2
END INTERFACE

! Make the interface of function r_ave explicit and give
! it the generic name g_ave
INTERFACE g_ave
 FUNCTION r_ave(x)
 ! Get the size of x from the module ave_stuff
 USE ave_stuff, ONLY: n
 REAL r_ave, x(n)
 END FUNCTION r_ave
END INTERFACE

! Make the interface of external function b_or explicit, and
use! it to extend the + operator
INTERFACE OPERATOR (+)
 FUNCTION b_or(p, q)
 LOGICAL b_or, p, q
 INTENT (IN) p, q
 END FUNCTION b_or
END INTERFACE

Related statements END INTERFACE, FUNCTION, and SUBROUTINE

Related concepts For related information, see the following:

• “Derived types” on page 39

• “Interface blocks” on page 152

Chapter 10 363

HP Fortran statements
INTRINSIC (statement and attribute)

INTRINSIC (statement and attribute)
Identifies an intrinsic procedure.

Syntax The syntax of the type declaration statement with the INTRINSIC
attribute is:

type , attrib-list :: intrinsic-function-name-list

type
is a valid type specification (INTEGER, REAL, LOGICAL,
CHARACTER, TYPE(name), etc.).

attrib-list
is a comma-separated list of attributes including INTRINSIC
and optionally those attributes compatible with it, namely:

intrinsic-function-name-list
is a comma-separated list of intrinsic-function-names. (Note
that subroutine names cannot appear in type statements, so
that intrinsic subroutine names can only be identified as such
by use of the INTRINSIC statement, described below.)

The syntax of the INTRINSIC statement is:

INTRINSIC intrinsic-procedure-name-list

where intrinsic-procedure-name-list is a comma-separated list of
procedure names.

Note that, like the EXTERNAL statement, the INTRINSIC statement does
not have optional colons.

Description The INTRINSIC statement and attribute identifies a specific or generic
name as that of an intrinsic procedure, enabling it to be used as an
actual argument. (Only a specific function name—or a generic name that
is the same as the specific name—can be used as an actual argument; see
“Procedure dummy argument” on page 142.) The INTRINSIC statement
is necessary to inform the compiler that a name is intrinsic and is not the
name of a variable. Whenever an intrinsic name is passed as an actual
argument and no other appearance of the name in the same scoping unit

PRIVATE PUBLIC

364 Chapter 10

HP Fortran statements
INTRINSIC (statement and attribute)

indicates that it is a procedure, it must be specified by the calling
program in an INTRINSIC statement, or (if a function name) in a type
declaration statement that includes the INTRINSIC attribute.

Each name can appear only once in an INTRINSIC statement and in at
most one INTRINSIC statement within the same scoping unit. Also, a
name cannot appear in both an EXTERNAL and an INTRINSIC statement
within the same scoping unit.

Examples SUBROUTINE subr ! caller
 DOUBLE PRECISION :: dsin,x,y,func
 INTRINSIC dsin
 ...
 y = func(dsin,x)
 ...
END SUBROUTINE subr

DOUBLE PRECISION FUNCTION func(proc,y) ! callee
 DOUBLE PRECISION :: y, proc
 ...
 func = proc(y)
 ...
END FUNCTION func

Related statements EXTERNAL

Related concepts For additional information about passing user-defined and intrinsic
procedures as arguments, see “Procedure dummy argument” on
page 142. Intrinsic procedures are described in “Intrinsic procedure
specifications” on page 487.

Chapter 10 365

HP Fortran statements
LOGICAL

LOGICAL
Declares entities of type logical.

Syntax LOGICAL [kind-spec] [[, attrib-list] ::] entity-list

kind-spec
specifies the size of the logical entity in bytes. kind-spec takes
the form:

([KIND=] kind-param)

where kind-param can be a named constant or a
constant expression that has the integer value of 1, 2,
4, or 8. The size of the default type is 4.

As an extension, kind-spec can take the form:

*len-param

where len-param is the integer 1, 2, 4, or 8 (default =
4).

attrib-list
is a list of one or more of the following attributes, separated by
commas:

If attrib-list is present, it must be followed by the double colon.
For information about individual attributes, see the
corresponding statement in this chapter.

ALLOCATABLE INTRINSIC PRIVATE

DIMENSION OPTIONAL PUBLIC

EXTERNAL PARAMETER SAVE

INTENT POINTER TARGET

366 Chapter 10

HP Fortran statements
LOGICAL

entity-list
is a list of entities, separated by commas. Each entity takes the
form:
name [(array-spec)] [= initialization-expr]

where:

name

is the name of a variable or function

array-spec

is a comma-separated list of dimension bounds

initialization-expr

is a logical constant expression. If initialization-expr is
present, entity-list must be preceded by the double
colon.

Description The LOGICAL statement is constrained by the rules for type declaration
statements, including the requirement that it precede all executable
statements.

As a portability extension, HP Fortran allows the following syntax for
specifying the length of an entity:

name [*len] [(array-spec)] [= initialization-expr]

If (array-spec) is specified, *len may appear on either side of (array-
spec). If name appears with *len, it overrides the length specified by
LOGICAL*size.

Examples The following are valid declarations:

LOGICAL log1, log2
LOGICAL(KIND=2) :: log3
LOGICAL(2), PARAMETER :: test=.TRUE.
! initialize an array, using an array constructor
LOGICAL, DIMENSION(2) :: lvec=(/.TRUE.,.FALSE./)
! use the slash notation (an HP extension) to initialize
LOGICAL log1/.TRUE./, log2/.FALSE./ ! note, no double colon
! the following declarations are equivalent; the second uses the
! HP length specification extension
LOGICAL (KIND = 8) log8
LOGICAL*4 log8*8

Related statements INTEGER

Chapter 10 367

HP Fortran statements
LOGICAL

Related concepts For related information, see the following:

• “Type declaration for intrinsic types” on page 24

• “Implicit typing” on page 28

• “Array declarations” on page 54

• “Array constructors” on page 71

• “Expressions” on page 80

• “KIND(X)” on page 537

368 Chapter 10

HP Fortran statements
MAP (extension)

MAP (extension)
Defines a union within a structure.

Syntax MAP

 field-def

 ...

END MAP

field-def
is one of the following:

• A type declaration statement

• Another nested structure

• A nested record

• A union definition

Description The MAP statement is an HP compatibility extension that is used with
the UNION statement to define a union within a structure. For detailed
information about the MAP and UNION statements, see “STRUCTURE
(extension)” on page 437.

Chapter 10 369

HP Fortran statements
MODULE

MODULE
Introduces a module.

Syntax MODULE module-name

module-name
is a unique module name.

Description Modules are nonexecutable program units that can contain type
definitions, object declarations, procedure definitions (module
procedures), external procedure interfaces, user-defined generic names,
and user-defined operators and assignments. Any such definitions not
specified to be private to the module containing them are available to
those program units that specify the module in a USE statement.
Modules provide a convenient sharing and encapsulation mechanism for
data, types, procedures, and procedure interfaces.

Examples ! Make data objects and a data type sharable via a module
MODULE shared
 COMPLEX gtx (100, 6)
 REAL, ALLOCATABLE :: y(:), z(:,:)
 TYPE peak_item
 REAL peak_val, energy
 TYPE(peak_item), POINTER :: next
 END TYPE peak_item
END MODULE shared

! Define a data abstraction for rational arithmetic via a module
MODULE rational_arithmetic
 TYPE rational
 PRIVATE
 INTEGER numerator, denominator
 END TYPE rational ! Generic extension of =
 INTERFACE ASSIGNMENT (=)
 MODULE PROCEDURE eqrr, eqri, eqir
 END INTERFACE
 INTERFACE OPERATOR (+) ! Generic extension of +
 MODULE PROCEDURE addrr, addri, addir
 END INTERFACE
 ...
 CONTAINS
 FUNCTION eqrr (. . .) ! A specific definition of =
 ...
 FUNCTION addrr (. . .) ! A specific definition of +
 ...
END MODULE rational_arithmetic

370 Chapter 10

HP Fortran statements
MODULE

Related statements CONTAINS, END, PRIVATE, PUBLIC, and USE

Related concepts For more information about modules, see “Modules” on page 161.

Chapter 10 371

HP Fortran statements
MODULE PROCEDURE

MODULE PROCEDURE
Specifies module procedures in a generic interface.

Syntax MODULE PROCEDURE module-procedure-name-list

module-procedure-name-list
is a comma-separated list of module-procedure-names.

Description A MODULE PROCEDURE statement appears within an interface block. It is
used when the specification is generic and a specific procedure is defined
within the module rather than as an external procedure. The MODULE
PROCEDURE statement only names the subprograms; it does not contain
the definition of the interface. The named subprograms must be defined
within the current module or within another module that is accessible by
use association.

Examples MODULE path
! module data environment; module procedures contained in this
! module have access to this data environment
REAL x, y, z
! Generic name substance for procedures air and water
INTERFACE substance
 MODULE PROCEDURE air, water
END INTERFACE
INTERFACE OPERATOR (*)
 MODULE PROCEDURE rational_multiply
END INTERFACE
...
! Module procedures are preceded by CONTAINS
CONTAINS
 SUBROUTINE air (contents)
 ...
 END SUBROUTINE air
 SUBROUTINE water (x, a, z)
 ! x is a dummy argument, y is from the module data
 ! environment
 a = x + y
 ...
 END SUBROUTINE water
 FUNCTION rational_multiply (x, y)
 TYPE (rational) :: rational_multiply
 TYPE (rational), INTENT (IN) :: x, y
 rational_multiply = ...
 ...
 END FUNCTION rational_multiply
END MODULE path

372 Chapter 10

HP Fortran statements
MODULE PROCEDURE

Related statements FUNCTION, SUBROUTINE, and INTERFACE

Related concepts For information about module procedures, see “Module program unit” on
page 161.

Chapter 10 373

HP Fortran statements
NAMELIST

NAMELIST
Names a group of variables for I/O processing.

Syntax NAMELIST /group-name/var-list [[,]/group-name/var-list]...

group-name
is a unique namelist group name.

var-list
is a comma-separated list of scalar and array variable names.

Description The NAMELIST statement declares var-list as a namelist group and
associates the group with group-name.

Variables appearing in var-list may be of any type, including objects of
derived types or their components, saved variables, variables on the local
stack, and subroutine parameters. The following, however, are not
allowed:

• Record or composite references

• Pointers or their targets

• Automatic objects

• Allocatable array

• Character substrings

• Assumed-size array parameters

• Adjustable-size array parameters

• Assumed-size character parameters

• Individual components of a derived type object

The var-list explicitly defines which items may be read or written in a
namelist-directed I/O statement. It is not necessary for every item in var-
list to be defined in namelist-directed input, but every input item must
belong to the namelist group. The order of items in var-list determines
the order of the values written in namelist-directed output.

374 Chapter 10

HP Fortran statements
NAMELIST

More than one NAMELIST statement with the same group-name may
appear within the same scoping unit. Each successive var-list in multiple
NAMELIST statements with the same group-name is treated as a
continuation of the list for group-name.

The same variable name may appear in different NAMELIST statements
within the same scoping unit.

Examples PROGRAM
 INTEGER i, j(10)
 CHARACTER*10 c
 NAMELIST /n1/ i, j, c
 ! Define the namelist group n1
 READ (UNIT=5,NML=n1)
 WRITE (6, n1)
END

When this program is compiled and executed with the following input
record:

&n1
j(8) = 6, 7, 8
i = 5c = 'xxxxxxxxx'
j = 5*0, -1, 2
c(2:6) = 'abcde'
/

its output is:

 &n1
 I = 5
 J = 0 0 0 0 0 -1 2 6 7 8
 C ='xabcdexxx'
 /

Related statements ACCEPT, OPEN, INQUIRE, PRINT, READ, and WRITE

Related concepts Namelist-directed I/O is described in “Namelist-directed I/O” on
page 183.

Chapter 10 375

HP Fortran statements
NULLIFY

NULLIFY
Disassociates a pointer from a target.

Syntax NULLIFY (pointer-object-list)

pointer-object-list
is a comma-separated list of variable names and derived-type
components.

Description The NULLIFY statement disassociates a pointer from any target. A
NULLIFY statement is also used to change the status of a pointer from
undefined to disassociated.

Examples The following example shows the declaration and use of a variable with
the pointer attribute:

REAL, TARGET :: value ! value can be target
REAL, POINTER :: pt ! for the pointer
pt.pt => value ! Associate pt with value
NULLIFY (pt) ! Disassociate pt

! ASSOCIATED intrinsic is valid in next statement if (and only
! if) pt has been previously allocated, assigned (as above), or
! nullified (as above)
IF (.NOT.ASSOCIATED(pt)) pt => x

The next example shows how a derived type can be used in list
processing applications:

TYPE list_node
 INTEGER value
 TYPE (list_node), POINTER :: next
END TYPE list_node
TYPE (list_node), POINTER :: list
ALLOCATE (list) ! Create new list node
list % value = 28 ! Initialize data field
NULLIFY (list % next) ! Nullify pointer to the next node

Related statements ALLOCATE, DEALLOCATE, POINTER, and TARGET

Related concepts For information about pointers, see “Pointers” on page 47.

376 Chapter 10

HP Fortran statements
ON (extension)

ON (extension)
Specifies the action to take when program execution is interrupted.

Syntax ON interrupt-condition action

interrupt-condition
is the interrupt to be handled, either an arithmetic error or a
keyboard interrupt.

action
is one of the following:

• CALL trap-routine

• ABORT

• IGNORE

where:

trap-routine

is an external subroutine name.

Description The ON statement is an HP extension. It is an executable statement that
specifies the action to be taken after the occurrence of an exception that
interrupts program execution.

For each interrupt-condition, you can specify one of the following actions:

• CALL: specifies a subroutine to be called.

• ABORT: causes the program to abort.

• IGNORE: causes the interrupt to be ignored.

Table 51 lists the range of values for interrupt-condition. The first
column identifies the type of trap; the second gives the keywords that
must appear on the ON statement, immediately following the word ON;
and the third column gives equivalent keywords you can specify instead
of those in the second column. For example, the following ON statement
causes the program to trap an attempt to divide by zero with 8-byte
floating-point operands, passing control to a user-written trap handler
called div_zero_trap:

Chapter 10 377

HP Fortran statements
ON (extension)

ON REAL(8) DIV 0 CALL trap_div_by_zero

The following ON statement does the same thing, but it specifies the
equivalent keywords from the third column of the table:

ON DOUBLE PRECISION DIV 0 CALL trap_div_by_zero

Table 51 Exceptions handled by the ON statement

Exceptions Exception keywords Alternate keywords

Division by zero REAL(4) DIV 0 REAL DIV 0

REAL(8) DIV 0 DOUBLE PRECISION DIV 0

REAL(16) DIV 0 (none)

INTEGER(2) DIV 0 INTEGER*2 DIV 0

INTEGER(4) DIV 0 INTEGER DIV 0

Overflow REAL(4) OVERFLOW REAL OVERFLOW

REAL(8) OVERFLOW DOUBLE PRECISION OVERFLOW

REAL(16) OVERFLOW (none)

INTEGER(2) OVERFLOW INTEGER*2 OVERFLOW

INTEGER(4) OVERFLOW INTEGER OVERFLOW

Underflow REAL(4) UNDERFLOW REAL UNDERFLOW

REAL(8) UNDERFLOW DOUBLE PRECISION UNDERFLOW

REAL(16) UNDERFLOW (none)

Invalid (illegal) operation REAL(4) ILLEGAL REAL ILLEGAL

REAL(8) ILLEGAL DOUBLE PRECISION ILLEGAL

REAL(16) ILLEGAL (none)

Inexact result REAL(16) INEXACT (none)

REAL(4) INEXACT REAL INEXACT

REAL(8) INEXACT DOUBLE PRECISION INEXACT

Control-C CONTROLC (none)

378 Chapter 10

HP Fortran statements
ON (extension)

To use the ON statement to trap for integer overflow, you must also
include the HP CHECK_OVERFLOW directive. This is described in the
HP Fortran Programmer’s Guide.

Using the ON statement at optimization levels 2 and above is restricted.
When compiling at optimization level 2 or above, the optimizer makes
assumptions about the program that do not take into account the
behavior of procedures called by the ON statement. Such procedures must
therefore be “well-behaved”—in particular, they must meet the following
criteria:

• The ON procedure must not assume that any variable in the interrupted
procedure or in its caller has its current value. (The optimizer may have
placed the variable in a register to be stored there until after the call to
the interrupted procedure is complete.)

• The ON procedure must not change the value of any variable in the
interrupted procedure or in its caller if the effect of the ON procedure is to
return program control to the point of interrupt.

NOTE If you include the ON statement in a program that is compiled at optimization
level 2 or higher and the program takes an exception, the results may vary
from those you would get from the unoptimized program or from the same
program without the ON statement.

Examples The following example uses the ON statement to call the procedure
trap_div_by_zero if the function do_div is passed 0 in argument y. If
trap_div_by_zero is called, it prints an error message and assigns 0 to
the result.

REAL FUNCTION do_div(x, y)
 REAL :: x, y
 ON REAL DIV 0 CALL trap
 do_div = x/y ! causes an interrupt if y = 0
 RETURN
END FUNCTION do_div

SUBROUTINE trap(res)
 REAL :: res
 PRINT *, "Don’t do that."
 res = 0
END SUBROUTINE trap

Related concepts The HP Fortran Programmer’s Guide provides detailed information
about using the ON statement, including example programs that use the
ON statement.

Chapter 10 379

HP Fortran statements
OPEN

OPEN
Connects file to a unit.

Syntax OPEN (io-specifier-list)

io-specifier-list
is a list of the following comma-separated I/O specifiers:

[UNIT=]unit

specifies the unit to connect to an external file. unit
must be an integer expression that evaluates to a
number greater than 0. If the optional keyword UNIT=
is omitted, unit must be the first item in io-specifier-
list.

ACCESS=character-expression

specifies the method of file access. character-expression
can be one of the following arguments:

'DIRECT' Open file for direct access.

'SEQUENTIAL' Open file for sequential access
(default).

' POSITION=
APPEND'

To open a file for append (to
position the file just before the
end-of-file record)

380 Chapter 10

HP Fortran statements
OPEN

ACTION=character-expression

specifies the allowed data-transfer operations.
character-expression can be one of the following
arguments:

BLANK=character-expression

specifies treatment of blanks within numeric data on
input. This specifier is applicable to formatted input
only. character-expression can be one of the following
arguments:

'READ' Do not allow WRITE and
ENDFILE statements.

'WRITE' Do not allow READ statements.

'READWRITE' Allow any data transfer
statement (default).

'NULL' Ignore blanks (default).

'ZERO' Substitute zeroes for blanks.

Chapter 10 381

HP Fortran statements
OPEN

DELIM=character-expression

specifies the delimiter to use (if any) when delimiting
character constants in list-directed and namelist-
directed formatting. This specifier is applicable to
formatted output only. character-expression can be one
of the following arguments:

ERR=stmt-label

specifies the label of the executable statement to which
control passes if an error occurs during statement
execution.

FILE=character-expression

specifies the name of the file to be connected to unit.
character-expression can also be the ASCII
representation of a device file. If this specifier does not
appear in the OPEN statement, a temporary scratch file
is created.

'APOSTROPHE' Use the apostrophe to delimit
character constants in list-
directed and namelist-directed
formatting.

'QUOTE' Use double-quotation marks to
delimit character constants in
list-directed and namelist-
directed formatting.

'NONE' Use no delimiter to delimit
character constants in list-
directed and namelist-directed
formatting (default).

382 Chapter 10

HP Fortran statements
OPEN

FORM=character-expression

specifies whether the file is connected for formatted or
unformatted I/O. character-expression can be one of the
following arguments:

IOSTAT=integer-variable

returns the I/O status after the statement executes. If
the statement successfully executes, integer-variable is
set to zero. If an error occurs, it is set to a positive
integer that indicates which error occurred.

PAD=character-expression

specifies whether or not to pad the input record with
blanks if the record contains fewer characters than
required by the format specification. This specifier is
applicable to formatted input only. character-expression
can be one of the following arguments:

'FORMATTED' Specify formatted I/O. If the file
is to be opened for sequential
access, this is the default.

'UNFORMATTED' Specify unformatted I/O. If the
file is to be opened for direct
access, this is the default.

'YES' Pad input records with blanks
(if necessary) to fill it out to
length required by format
specification (default).

'NO' Do not pad input record with
blanks if it is not as long as
record specified by format
specification.

Chapter 10 383

HP Fortran statements
OPEN

POSITION=character-expression

specifies the position of an existing file to be opened for
sequential access. character-expression can be one of
the following arguments:

If the file to be opened does not exist, this specifier is
ignored. New files are always positioned at their start.

RECL=integer-expression

specifies the length of each record in a file to be opened
for direct access. The length is measured in characters
(bytes). This specifier must be present when a file is
opened for direct access and is ignored if file is opened
for sequential access.

'ASIS' Leave file position unchanged
(default).

'REWIND' Position the file at its start.

'APPEND' Position the file just before the
end-of-file record.

384 Chapter 10

HP Fortran statements
OPEN

STATUS=character-expression

specifies the state of the file when it is opened.
character-expression can be one of the following
arguments:

Description The OPEN statement connects a unit to a file so that data can be read
from or written to that file. Once a file is connected to a unit, the unit can
be referenced by any program unit in the program.

I/O specifiers do not have to appear in any specific order in the OPEN
statement. However, if the optional keyword UNIT= is omitted, unit must
be the first item in the list.

'OLD' Open an existing file. FILE=
must also be specified and the
named file must exist.

'NEW' Create a new file. FILE= must
also be specified and the named
file must not exist.

'UNKNOWN' If the file named in FILE=
exists, open it with the status of
OLD; if it does not exist, open it
with the status of NEW. This is
the default status.

'REPLACE' If the file does not exist, create
it with a status of OLD; if it does
exist, delete it and open it with
a status of NEW. If
STATUS='REPLACE' is
specified, FILE= must also be
specified.

'SCRATCH' Create a scratch file. FILE=
specifier must not be specified.
For information about scratch
files, see “Scratch files” on
page 173.

Chapter 10 385

HP Fortran statements
OPEN

Only one unit can be connected to a file at a time. That is, the same file
cannot be connected to two different units. Attempting to open a file that
is connected to a different unit will produce undefined results.

However, multiple OPENs can be performed on the same unit. In other
words, if a unit is connected to a file that exists, it is permissible to
execute another OPEN statement for the same unit. If FILE= specifies a
different file, the previously opened file is automatically closed before the
second file is connected to the unit. If FILE= specifies the same file, the
file remains connected in the same position; the values of the BLANK=,
DELIM=, PAD=, ERR=, and IOSTAT= specifiers can be changed, but
attempts to change the values of any of the other specifiers will be
ignored.

Examples The following examples illustrate different uses of the OPEN statement.

Opening a file for sequential access

The following OPEN statement connects the existing file inv to unit 10
and opens it (by default) for sequential access. Only READ statements are
permitted to perform data transfers. If an error occurs, control passes to
the executable statement labeled 100 and the error code is placed in the
variable ios:

OPEN(10, FILE='inv', ERR=100, I0STAT=ios, &
 ACTION='READ', STATUS='OLD')

Opening a file for direct access

The following OPEN statement opens the file whose name is contained in
the variable next1, connecting it to unit 4 as a formatted, direct-access
file with a record length of 50 characters:

OPEN(ACCESS=”DIRECT”, UNIT=4, RECL=50, &
 FORM=”FORMATTED”, FILE=next1)

Opening a device for I/O transfers

The next example connects the system device /dev/console to unit 6;
all data transfers that specify unit 6 will go to this device:

OPEN(6,FILE='/DEV/CONSOLE')

386 Chapter 10

HP Fortran statements
OPEN

Opening a scratch file

The following two OPEN statements produce the same results: open a
scratch file that is connected to unit 19 (if the FILE=name specifier had
appeared in the first statement, the named file would have been opened
instead):

OPEN (UNIT=19)
OPEN (UNIT=19, STATUS=”SCRATCH”)

I/O specifiers in an OPEN statement

Because the I/O specifiers that can be used in an OPEN statement do not
have to appear in any specific order, the following three OPEN statements
are all equivalent:

OPEN(UNIT=3, STATUS='NEW', FILE='OUT.DAT')
OPEN(3, STATUS='NEW', FILE='OUT.DAT')
OPEN(STATUS='NEW', FILE='OUT.DAT', UNIT=3)

Note, however, that in the second OPEN statement the number 3 must
appear first because of the omission of the optional keyword UNIT=.
Thus, the following OPEN statement is illegal:

OPEN(STATUS='NEW', 3, FILE='OUT.DAT') ! illegal

Related statements CLOSE, INQUIRE, READ, and WRITE

Related concepts For information about I/O concepts and examples of programs that
perform I/O, see Chapter 8, “I/O and file handling,” on page 171. For
information about I/O formatting, see Chapter 9, “I/O formatting,” on
page 205.

Chapter 10 387

HP Fortran statements
OPTIONAL (statement and attribute)

OPTIONAL (statement and attribute)
Identifies optional arguments for procedures.

Syntax The syntax of the type declaration statement with the OPTIONAL
attribute is:

type , attrib-list :: dummy-argument-name-list

type
is a valid type specification (INTEGER, REAL, LOGICAL,
CHARACTER, TYPE (name), etc.).

attrib-list
is a comma-separated list of attributes including OPTIONAL and
optionally those attributes compatible with it, namely:

dummy-argument-name-list
is a comma-separated list of dummy-argument-names.

The syntax of the OPTIONAL statement is:

OPTIONAL [::] dummy-argument-name-list

Description If a dummy argument has the OPTIONAL attribute, the corresponding
actual argument need not appear in a procedure reference. In cases
where there are arguments that generally do not change from one
reference to another, it is convenient to specify that the arguments are
optional and provide default values for them. They can then be omitted
from references in these general cases. The presence of an optional
argument in a procedure may be determined by using the PRESENT
intrinsic function.

Many uses of the ENTRY statement in FORTRAN 77 programs can be
replaced by the use of optional arguments.

The following restrictions apply to the use of the OPTIONAL attribute:

DIMENSION INTENT TARGET

EXTERNAL POINTER VOLATILE

388 Chapter 10

HP Fortran statements
OPTIONAL (statement and attribute)

• The OPTIONAL attribute may be specified only for dummy arguments.
It may occur in a subprogram and in any corresponding interface
body.

• An optional dummy argument whose actual argument is not present
may not be referenced or defined (or invoked if it is a dummy
procedure), except that it may be passed to another procedure as an
optional argument and will be considered not present.

• When an argument is omitted in a procedure reference, all arguments
that follow it must use the keyword form.

• If a procedure has an optional argument, the procedure interface
must be explicit.

Examples The following are two examples of the OPTIONAL statement. In the first
example, the call to the subroutine trip can legally omit the path
argument because it has the OPTIONAL attribute:

CALL TRIP (distance = 17.0) ! path is omitted
SUBROUTINE trip (distance, path)
 OPTIONAL distance, path

In the next example, the subroutine plot uses the PRESENT function to
determine whether or not to execute code that depends on the presence of
arguments that have the OPTIONAL attribute:

SUBROUTINE plot (pts, o_xaxis, o_yaxis, smooth)
 TYPE (point) pts
 REAL, OPTIONAL :: o_xaxis, o_yaxis
 ! Origin - default (0.,0.)
 LOGICAL, OPTIONAL :: smooth
 REAL ox, oy
 IF (PRESENT (o_xaxis)) THEN
 ox = o_xaxis
 ELSE
 ox = 0.
 ! Note that the o_xaxis dummy argument cannot be referenced if
 ! the actual argument is not present. The same applies
 ! to o_yaxis (below).
 END IF
 IF (PRESENT (o_yaxis)) THEN
 oy = o_yaxis
 ELSE
 oy = 0.
 END IF
 IF (PRESENT(smooth)) THEN
 IF (smooth) THEN
 ... ! Smooth algorithm
 RETURN
 END IF
 END IF

Chapter 10 389

HP Fortran statements
OPTIONAL (statement and attribute)

 ... ! Plot points
END SUBROUTINE plot

! Some valid calls to plot.
CALL plot (points)
CALL plot (observed, o_xaxis = 100., o_yaxis = 1000.)
CALL plot (random_pts, smooth = .TRUE.)

Related statements SUBROUTINE and FUNCTION

Related concepts For related information, see the following:

• “Type declaration for intrinsic types” on page 24

• “Arguments” on page 139

• The description of the PRESENT intrinsic in Chapter 11, “Intrinsic
procedures,” on page 475

390 Chapter 10

HP Fortran statements
OPTIONS (extension)

OPTIONS (extension)
Lowers the optimization level used by the HP Fortran compiler.

Syntax OPTIONS +On

where +On (or -On) specifies a level of optimization that is equal to or
less than the level specified on the command line.

Description The OPTIONS statement is an extension of HP Fortran and is used to
specify a level of optimization that is equal to or less than the level
specified on the command line. If the level specified by the OPTIONS
statement is higher than that specified on the command line, the
statement is ignored.

The OPTIONS statement must be placed outside all program units. The
changed level of optimization applies to the beginning of the next program
unit and remains in effect for all succeeding program units or until
superseded by another OPTIONS statement or by the !HP OPTIMIZE
directive.

The OPTIONS statement differs from the OPTIMIZE directive in that the
OPTIMIZE directive enables or disables optimization but does not change
the optimization level. The !HP OPTIMIZE directive is described in the
HP Fortran Programmer’s Guide.

The OPTIMIZE directive takes precedence over the OPTIONS statement:
when the OPTIMIZE directive is used to disable optimization, any
subsequent OPTIONS statement has no effect until a later directive enables
optimization.

Examples In the following example, the first OPTIONS statement optimizes the
subroutine go_fast at optimization level 3. The second OPTIONS
statement lowers the optimization level to 2.

OPTIONS +O3
SUBROUTINE go_fast
...
END SUBROUTINE go_fast

OPTIONS +O2
SUBROUTINE not_so_fast
...
END SUBROUTINE not_so_fast

Chapter 10 391

HP Fortran statements
PARAMETER (statement and attribute)

PARAMETER (statement and attribute)
Defines a named constant.

Syntax A type declaration statement with the PARAMETER attribute is:

type, attrib-list :: cname1 = cexpr1[, cname2 = cexpr2]...

type
is a valid type specification (INTEGER, REAL, LOGICAL,
CHARACTER, TYPE (name), etc.).

attrib-list
is a comma-separated list of attributes including PARAMETER
and optionally those attributes compatible with it, namely:

Specifying the SAVE attribute in a PARAMETER statement has no
effect.

cname
is the name that will represent the constant.

cexpr
is an initialization expression that evaluates to the constant
represented by cname. In the case of an array constant, cexpr
must be an array constructor. In the case of a derived type
constant, cexpr must be a structure constructor.

The syntax of the PARAMETER statement is:

PARAMETER (cname1 = cexpr1 [, cname2 = cexpr2]...)

DIMENSION PUBLIC

PRIVATE SAVE

392 Chapter 10

HP Fortran statements
PARAMETER (statement and attribute)

Description The PARAMETER statement associates a symbolic name with a constant.
A symbolic name defined in a PARAMETER statement is known as a
named constant. A named constant must not become defined more
than once in a program unit. Once defined, it can be used only as a
named constant. This means that a named constant cannot be assigned a
value like a variable.

When the PARAMETER attribute is used, the value of the named constant
must be provided by the initialization part of the statement in which the
PARAMETER attribute appears.

The type of a named constant is determined by the implicit typing rules,
unless its type is specified by a type declaration statement prior to its
first appearance in a PARAMETER statement or by a type declaration
statement that includes PARAMETER as one of its attributes. If a
PARAMETER statement declares and implicitly types a named constant,
the named constant may appear in a subsequent type declaration or
IMPLICIT statement, but only to confirm the type of the named
constant.

When the type of the symbolic name and the constant do not agree, the
value of the named constant is assigned in accordance with assignment
statement type-conversion rules, as given in Table 14.

The following rules apply to type agreement between the constant and
the symbolic name:

• If cname is of numeric type, cexpr must be an arithmetic constant
expression.

• If cname is of type character, the corresponding cexpr must be a
character constant expression.

• If cname is of type logical, the corresponding cexpr may be either an
arithmetic or logical constant expression.

Any symbolic name of a constant that appears in cexpr must have been
defined previously in the same or a different PARAMETER statement in
the same program unit. For example, the expression in the second
PARAMETER statement below is built from the expression in the first
PARAMETER statement, and is legal:

PARAMETER (limit = 1000)
PARAMETER (limit_plus_1 = limit + 1)

Chapter 10 393

HP Fortran statements
PARAMETER (statement and attribute)

The logical operators (.EQ., .NE., .LT., .LE., .GT., and .GE.), as well
as the following intrinsic functions, can appear in the PARAMETER
statement:

If these intrinsic functions are used in a PARAMETER statement, their
arguments must be constants.

If the named constant is of type character and its length is not specified,
the length must be specified in a type declaration statement or
IMPLICIT statement prior to the first appearance of the named constant.
Its type and/or length must not be changed by subsequent statements,
including IMPLICIT statements. If a symbolic name of type
CHARACTER*(*) is defined in a PARAMETER statement, its length
becomes the length of the expression assigned to it.

If the named constant is an array, the bounds must be explicit and
determined by an initialization expression.

Once such a symbolic name is defined, that name can appear in any
subsequent statement of the defining program unit as a constant in an
expression or DATA statement.

Examples ! PARAMETER used in a type declaration statement as an attribute
REAL, DIMENSION(4), PARAMETER :: const = &
 (/1.2, 1.45, 0.9, 24.3/)

INTEGER year
! PARAMETER used as a statement
PARAMETER year = 1996

! Type declaration statement declaring a derived-type constant
TYPE (postal_info), PARAMETER :: package = &
 postal_info (9.5, (/10.0, 5.5, 2.25/))

ABS IAND IXOR MAX

CHAR ICHAR LEN MIN

CMPLX IEOR LGE MOD

CONJB IMAG LGT NINT

DIM IOR LLE NOT

DPROD ISHFT LLT

394 Chapter 10

HP Fortran statements
PARAMETER (statement and attribute)

Related concepts For information about the type declaration statement, see “Type
declaration for intrinsic types” on page 24.

Chapter 10 395

HP Fortran statements
PAUSE

PAUSE
Temporarily stops program execution.

Syntax PAUSE pause-code

pause-code
is a character constant or a list of up to 5 digits.

Description The PAUSE statement suspends program execution and prints a message,
depending on whether digits, characters, or nothing has been specified in
the PAUSE statement:

• If digits, the message “PAUSE digits” is written to standard error.

• If a character expression, the message “PAUSE character-expression”
is written to standard error.

• If nothing appears after PAUSE, the word “PAUSE” is written to
standard error.

After displaying the appropriate message, the PAUSE statement writes to
standard output one of two messages that give information on resuming
the program. If the standard input device is a terminal, the message is:

To resume program execution, type GO.

At this point the program is suspended and remains so until the operator
types the word GO and presses the Return key. The program will
terminate if anything other than GO is entered.

If the standard input device is other than a terminal, the message is:

To resume execution, execute a kill -15 pid &

command

where pid is the unique process identification number of the suspended
program. This command can be issued at any terminal at which the user
is logged in.

396 Chapter 10

HP Fortran statements
PAUSE

Examples ! Write ”PAUSE 7777” to standard error
PAUSE 7777

! Write ”PAUSE MOUNT TAPE” to standard error
PAUSE 'MOUNT TAPE'

! Write ”PAUSE” to standard error
PAUSE

Related statements STOP

Related concepts For information about flow control statements, see “Flow control
statements” on page 112.

Chapter 10 397

HP Fortran statements
POINTER (Cray-style extension)

POINTER (Cray-style extension)
Declares Cray-style pointers and their objects.

Syntax POINTER (pointer1, pointee1) [, (pointer2, pointee2)]...

pointer
is a pointer.

pointee
is a variable name or array declarator.

Description HP Fortran supports both the standard Fortran 90 POINTER statement
as well as the Cray-style POINTER statement. The Cray-style POINTER
statement is supported for compatibility with older, FORTRAN 77
programs. The following information applies only to the Cray-style
POINTER statement; the Fortran 90 POINTER statement is described in
“POINTER (statement and attribute)” on page 400.

The following restrictions apply to pointer:

• It should be of type INTEGER(4). If it is not, the compiler interprets
its type as INTEGER(4) regardless of other implicit or explicit type
declarations.

• It cannot be declared of any other data type.

• Another pointer cannot point to it.

• It cannot appear in a PARAMETER or DATA statement.

• It cannot be in a derived type object.

You can increase the size of pointer with the +autodbl or +autodbl4
option; see “Option Descriptions” on page 576.

pointee may be of any type, including an array, a derived type, a record,
or a character string.

The following restrictions apply to pointee:

• It cannot be a dummy argument, function name, function value,
common block element, automatic object, generic interface block
name, or derived type.

398 Chapter 10

HP Fortran statements
POINTER (Cray-style extension)

• It cannot be used in a COMMON, DATA, EQUIVALENCE, or NAMELIST
statement.

• It cannot have any of the following attributes: ALLOCATABLE,
EXTERNAL, INTENT, INTRINSIC, OPTIONAL, PARAMETER, POINTER,
SAVE, and TARGET.

• Pointees that are arrays with nonconstant bounds can be used only in
subroutines and functions, not in main programs.

• Variables used in an array-bound expression that appears in a
POINTER statement must be either subprogram formal arguments or
common block variables. The value of the expression cannot change
after subprogram entry.

You associate memory with a pointer by assigning it the address of an
object. Typically, this is done with the libU77 function, LOC. The LOC
function returns the address of its argument, which can be assigned to a
pointer. The following example assigns 0 to the pointee i:

INTEGER i, j
POINTER (p, i)

p = LOC(j)
j = 0

You can also use the MALLOC intrinsic to allocate memory from the heap
and assign its return value to a pointer. Once you are done with the
allocated memory, you should use the FREE intrinsic to release the
memory so that it is available for reuse.

If you are using the pointer to manipulate a device that resides at a fixed
address, you can assign the address to the pointer, using either an
integer constant or integer expression.

Under certain circumstances, Cray-style pointers can cause erratic
program behavior—especially if the program has been optimized. To
ensure correct behavior, observe the following:

• Subroutines and functions must not save the address of any of their
arguments between calls.

• A function must not return the address of any of its arguments.

• Only those variables whose addresses are explicitly taken with the
LOC function must be referenced through a pointer.

Chapter 10 399

HP Fortran statements
POINTER (Cray-style extension)

Examples In the following example, the intrinsic MALLOC returns either the
address of the block of memory it allocated or 0 if MALLOC was unable to
allocate enough memory. The formal argument nelem contains the
number of array elements and is multiplied by 4 to obtain the number of
bytes that MALLOC is to allocate. The FREE intrinsic returns memory to
the heap for reuse.

SUBROUTINE print_iarr(nelem)
 POINTER (p, iarr(nelem))

 p = MALLOC(4*nelem)

 IF (p.EQ.0) THEN
 PRINT *, 'MALLOC failed.'
 ELSE
 DO i = 1,nelem
 iarr(i) = i
 END DO

 PRINT *, (iarr(i),i=1,nelem)
 CALL FREE(p)
 ENDIF
 RETURN
END SUBROUTINE print_iarr

Related statements POINTER (standard Fortran 90)

Related concepts For related information, see the following:

• “Pointers” on page 47

• The description of the LOC routine in Table 64

• The descriptions of the MALLOC and FREE intrinsics in Chapter 11,
“Intrinsic procedures,” on page 475

400 Chapter 10

HP Fortran statements
POINTER (statement and attribute)

POINTER (statement and attribute)
Specifies variables with the POINTER attribute.

Syntax The syntax of a type declaration statement with the POINTER attribute
is:

type, attrib-list :: dummy-argument-name-list

type
is a valid type specification (INTEGER, REAL, LOGICAL,
CHARACTER, TYPE (name), etc.).

attrib-list
is a comma-separated list of attributes including POINTER and
optionally those attributes compatible with it, namely:

dummy-argument-name-list
is a comma-separated list of dummy-argument-names.

The syntax of the POINTER statement is:

POINTER [::] object-name [(deferred-shape-spec-list)]

 [,object-name [(deferred-shape-spec-list)]]...

object-name
is a data object or function result.

deferred-shape-spec-list
is a comma-separated list of colons.

Description A POINTER attribute or statement specifies that the named variables
may be pointers to some target object. Pointers provide a capability for
creating dynamic objects, such as dynamic-sized arrays and linked lists.
An object with a pointer attribute initially has no space reserved for its
target. A pointer is assigned space for its target when an ALLOCATE
statement is executed or when it is assigned to point to a target using a
pointer assignment statement.

Examples In the first example, two array pointers are declared and used.

DIMENSION PRIVATE SAVE

OPTIONAL PUBLIC

Chapter 10 401

HP Fortran statements
POINTER (statement and attribute)

! Extents are not specified; they are determined during execution
REAL, POINTER :: weight (:,:,:)
REAL, POINTER :: w_reg (:,:,:)

READ *, i, j, k
ALLOCATE (weight (i, j, k)) ! create weight

! w_reg is an alias for an array section
w_reg => weight (3:i-2, 3:j-2, 3:k-2)
avg_w = sum (w_reg) / ((i-4) * (j-4) * (k-4))

DEALLOCATE (weight) ! weight no longer needed

The next example illustrates the use of pointers in a list-processing
application.

TYPE link
 REAL value
 TYPE (link), POINTER :: next
END TYPE link

TYPE(link), POINTER :: list, save_list
NULLIFY (list) ! Initialize list
DO
 READ (*, *, IOSTAT = no_more) value
 IF (no_more /= 0) EXIT
 save_list => list
 ALLOCATE (list) ! Add link to head of list
 list % value = value
 list % next => save_list
END DO
! Linked list removed when no longer needed
DO
 IF (.NOT.ASSOCIATED (list)) EXIT
 save_list => list % next
 DEALLOCATE (list)
 list => save_list
END DO

Related statements ALLOCATE, DEALLOCATE, NULLIFY and TARGET

Related concepts For related information, see the following:

• “Pointers” on page 47

• “Pointer assignment” on page 97

• The description of the ASSOCIATED intrinsic in Chapter 11, “Intrinsic
procedures,” on page 475.

402 Chapter 10

HP Fortran statements
PRINT

PRINT
Writes to standard output.

Syntax The syntax of the PRINT statement can take one of two forms:

• Formatted and list-directed syntax:

PRINT format [, output-list]

• Namelist-directed syntax:

PRINT name

format
is one of the following:

• An asterisk (*), specifying list-directed I/O.

• The label of a FORMAT statement containing the format
specification.

• An integer variable that has been assigned the label of a
FORMAT statement.

• An embedded format specification.

name
is the name of a namelist group, as previously defined by a
NAMELIST statement . Using the namelist-directed syntax, the
PRINT statement sends data in the namelist group to standard
output. To direct output to a connected file, you must use the
WRITE statement and include the NML= specifier.

output-list
is a comma-separated list of data items for output. The data
items can include expressions and implied-DO lists.

Description The PRINT statement transfers data from memory to standard output.
(Unit 6 is preconnected to the HP-UX standard output.) The PRINT
statement can be used to perform formatted, list-directed, and namelist-
directed I/O only.

To direct output to a connected file, use the WRITE statement.

Chapter 10 403

HP Fortran statements
PRINT

Examples The examples in this section illustrate different uses of the PRINT
statement.

Formatted output

The following statement writes the contents of the variables num and
des to standard output, using the format specification in the FORMAT
statement at label 10:

PRINT 10, num, des

List-directed output

The following statement uses list-directed formatting to print the literal
string x= and the value of the variable x:

PRINT *, 'x=', x

Embedded format specification

The following statement uses an embedded format specification to print
the same output:

PRINT '(A2, F8.2)', 'x=', x

Namelist-directed output

The following statement prints all variables in the namelist group
coord, using namelist-directed formatting:

PRINT coord

Related statements FORMAT and WRITE

Related concepts For related information, see the following:

• “List-directed I/O” on page 179

• “Embedded format specification” on page 237

• “Implied-DO loop” on page 194

404 Chapter 10

HP Fortran statements
PRIVATE (statement and attribute)

PRIVATE (statement and attribute)
Prevents access to module entities by use association.

Syntax The syntax of a type declaration statement with the PRIVATE attribute
is:

type, attrib-list :: access-id-list

type
is a valid type specification (INTEGER, REAL, LOGICAL,
CHARACTER, TYPE (name), etc.).

attrib-list
is a comma-separated list of attributes including PRIVATE and
optionally those attributes compatible with it, namely:

access-id-list
is a comma-separated list of one or more of the following:

• constant-name

• variable-name

• procedure-name

• defined-type-name

• namelist-group-name

• OPERATOR (operator)

• ASSIGNMENT (=)

ALLOCATABLE INTRINSIC SAVE

DIMENSION PARAMETER TARGET

EXTERNAL POINTER

Chapter 10 405

HP Fortran statements
PRIVATE (statement and attribute)

The syntax of the PRIVATE statement is:

PRIVATE [[::] access-id-list]

Description The PRIVATE attribute may appear only in the specification part of a
module. The default accessibility in a module is PUBLIC; it can be
changed to PRIVATE using a statement without a list. However, only one
PRIVATE accessibility statement without a list is permitted in a module.

The PRIVATE attribute in a type statement or in an accessibility
statement restricts the accessibility of entities such as module variables,
type definitions, functions, and named constants. USE statements may
restrict accessibility further.

A derived type may contain a PRIVATE attribute or an internal PRIVATE
statement, if it is defined in a module. The internal PRIVATE statement
in a type definition makes the components unavailable outside the
module even though the type itself might be available.

The PRIVATE statement may also be used to restrict access to
subroutines, generic specifiers, and namelist groups.

The PRIVATE specification for a generic name, operator, or assignment
does not apply to any specific name unless the specific name is the same
as the generic name.

Examples MODULE fourier
 REAL :: x, y, z ! PUBLIC (default)
 COMPLEX, PRIVATE :: fft ! PRIVATE, accessible only in module
 TYPE (structure_name), PRIVATE :: structure_a, structure_b
 ! a, b and c are accessible only within this module
 PRIVATE a, b, c
 ! r, s, and t are accessible outside the module
 PUBLIC r, s, t
END MODULE fourier

MODULE place
 PRIVATE ! Change default accessibility to PRIVATE
 INTERFACE OPERATOR (.st.)
 MODULE PROCEDURE xst
 END INTERFACE

 ! make .st. public; everything else is private
 PUBLIC OPERATOR (.st.)
 LOGICAL, DIMENSION (100) :: lt
 CHARACTER(20) :: name
 INTEGER ix, iy
END MODULE place

Related statements PUBLIC and USE

406 Chapter 10

HP Fortran statements
PRIVATE (statement and attribute)

Related concepts For related information, see the following:

• “Type declaration for intrinsic types” on page 24

• “Modules” on page 161

Chapter 10 407

HP Fortran statements
PROGRAM

PROGRAM
Identifies the main program unit.

Syntax PROGRAM name

name
is the name of the program.

Description The optional PROGRAM statement assigns a name to the main program
unit. name does not have to match the main program’s filename.
However, if the corresponding END PROGRAM statement specifies a name,
it must match name.

If the PROGRAM statement is specified, it must be the first statement in
the main program unit.

Examples ! A program with a name
PROGRAM main_program
PRINT *, 'This program doesn't do much.'
END PROGRAM main_program

Related statements END

Related concepts For information about the main program unit, see “Main program” on
page 125.

408 Chapter 10

HP Fortran statements
PUBLIC (statement and attribute)

PUBLIC (statement and attribute)
Enables access to module entities by use association.

Syntax The syntax of a type declaration statement with the PUBLIC attribute is:

type, attrib-list :: access-id-list

type
is a valid type specification (INTEGER, REAL, LOGICAL,
CHARACTER, TYPE (name), etc.).

attrib-list
is a comma-separated list of attributes including PUBLIC and
optionally those attributes compatible with it, namely:

access-id-list
is a comma-separated list of one or more of the following:

• constant-name

• variable-name

• procedure-name

• defined-type-name

• namelist-group-name

• OPERATOR (operator)

• ASSIGNMENT (=)

ALLOCATABLE INTRINSIC SAVE

DIMENSION PARAMETER TARGET

EXTERNAL POINTER VOLATILE

Chapter 10 409

HP Fortran statements
PUBLIC (statement and attribute)

The syntax of the PUBLIC statement is:

PUBLIC [[::] access-id-list]

Description The PUBLIC attribute may appear only in the specification part of a
module. The default accessibility in a module is PUBLIC; it can be
reaffirmed using a PUBLIC statement without a list. However, only one
PUBLIC accessibility statement without a list is permit ted in a module.

The PUBLIC attribute in a type statement or in an accessibility
statement permits access to entities such as module variables, type
definitions, functions, and named constants. USE statements may control
accessibility further.

A derived type may contain a PUBLIC attribute or an internal PUBLIC
statement, if it is defined in a module.

The PUBLIC statement may also be used to permit access to sub routines,
generic specifiers, and namelist groups.

The PUBLIC specification for a generic name, operator, or assignment
does not apply to any specific name unless the specific name is the same
as the generic name.

Examples MODULE fourier
 PUBLIC ! PUBLIC unless explicitly PRIVATE
 COMPLEX, PRIVATE :: fft ! fft accessible only in module
 PRIVATE a, b, c ! accessible only in module
 PUBLIC r, s, t ! accessible outside the module
END MODULE fourier

MODULE place
 PRIVATE ! Change default accessibility to PRIVATE
 INTERFACE OPERATOR (.st.)
 MODULE PROCEDURE xst
 END INTERFACE

 ! Make .st. public; everything else is private
 PUBLIC OPERATOR (.st.)
 LOGICAL, DIMENSION (100) :: lt
 CHARACTER(20) :: name
 INTEGER ix, iy
END MODULE PLACE

Related statements PRIVATE and USE

410 Chapter 10

HP Fortran statements
PUBLIC (statement and attribute)

Related concepts For related information, see the following:

• “Type declaration for intrinsic types” on page 24

• “Modules” on page 161

Chapter 10 411

HP Fortran statements
READ

READ
Inputs data from external and internal files.

Syntax The syntax of the READ statement can take one of the following forms:

• Long form (for use when reading from a connected file):

READ (io-specifier-list) [input-list]

• Short form (for use when reading from standard input):

READ format [, input-list]

• Short namelist-directed form (for use when reading from standard
input into a namelist group):

READ name

io-specifier-list
is a list of the following comma-separated I/O specifiers:

[UNIT=]unit

specifies the unit connected to the input file. unit can
be one of the following:

• The name of a character variable, indicating an internal file

• An integer expression that evaluates to the unit connected to
an external file

• An asterisk, indicating a pre-connection to unit 5 (standard
input)

If the optional keyword UNIT= is omitted, unit must be
the first item in io-specifier-list.

[FMT=]format

specifies the format specification for formatting the
data. format can be one of the following:

• An asterisk (*), specifying list-directed I/O.

• The label of a FORMAT statement containing the format
specification.

412 Chapter 10

HP Fortran statements
READ

• An integer variable that has been assigned the label of a
FORMAT statement.

• A character expression that provides the format
specification.

If the optional keyword FMT= is omitted, format must
be the second item in io-specifier-list.

NOTE The NML= and FMT= specifier may not both appear in the same
io-specifier-list.

[NML=]name

specifies the name of a namelist group for namelist-
directed input. name must have been defined in a
NAMELIST statement. If the optional keyword NML= is
omitted, name must be the second item in the list. The
first item must be the unit specifier without the
optional keyword UNIT=.

The NML= and FMT= specifier may not both appear in
the same io-specifier-list.

ADVANCE=character-expression

specifies whether to use advancing I/O for this
statement. character-expression can be one of the
following arguments:

If the ADVANCE= specifier appears in io-specifier-list,
unit must be connected to an external file opened for
formatted sequential I/O. Also, ADVANCE='NO' must be
specified if the EOR= or SIZE= specifier appear in the
list. Nonadvancing I/O is incompatible with list-
directed and namelist I/O.

END=stmt-label

'YES' Use advancing formatted
sequential I/O (default).

'NO' Use nonadvancing formatted
sequential I/O.

Chapter 10 413

HP Fortran statements
READ

specifies the label of the executable statement to which
control passes if an end-of-file record is encountered.
This specifier is only valid for reading files opened for
sequential access.

EOR=stmt-label

specifies the label of the executable statement to which
control passes if an end-of-record condition is
encountered. This specifier may appear in io-specifier-
list only if ADVANCE='NO' also appears in the list.

IOSTAT=integer-variable

returns the I/O status after the statement executes. If
the statement successfully executes, integer-variable is
set to zero. If an end-of-file record is encountered
without an error condition, it is set to a negative
integer. If an error occurs, integer-variable is set to a
positive integer that indicates which error occurred.

REC=integer-expression

specifies the number of the record to be read from a file
connected for direct access. This specifier cannot
appear in io-specifier-list with the NML=, ADVANCE=,
SIZE=, and EOR= specifiers, nor with FMT=* (for list-
directed I/O).

SIZE=integer-variable

returns the number of characters that have been read
by this READ statement. This specifier may appear in
io-specifier-list only if ADVANCE='NO' also appears in
the list.

input-list
is a comma-separated list of data items for input. The data
items can include variables and implied-DO lists.

414 Chapter 10

HP Fortran statements
READ

format
is one of the following:

• An asterisk (*), specifying list-directed I/O.

• The label of a FORMAT statement containing the format
specification.

• An integer variable that has been assigned the label of a
FORMAT statement.

• An embedded format specification.

name
is the name of a namelist group, as previously defined by a
NAMELIST statement. Using the namelist-directed syntax, the
READ statement takes its input from standard input. To read
from a connected file, you must use the NML= specifier with the
full syntax form, as described below.

Description The READ statement transfers data from an external or internal file to
internal storage. An external file can be opened for sequential access or
direct access. If it is opened for sequential access, the READ statement
can perform the following types of I/O:

• Formatted

• Unformatted

• List-directed

• Namelist-directed

If the file is opened for direct access, the READ statement can perform
formatted or unformatted I/O.

READ statements operating on internal files can perform formatted or
list-directed I/O.

Chapter 10 415

HP Fortran statements
READ

Examples The following examples illustrate different uses of the READ statement.

Formatted sequential I/O

The following READ statement reads 10 formatted records from a file
opened for sequential access, using an implied-DO list to read the data
into the array x_array. If the end-of-file record is encountered before
the array is filled, execution control passes to the statement at label 99.

READ (41, '(F10.2)', END=99) (x_array(i),i=1,10)

Nonadvancing I/O

The following READ statement takes its input from a file that was opened
for sequential access and is connected to unit 9. It uses nonadvancing I/O
to read an integer into the variable key. If the statement encounters the
end-of-record condition before it can complete execution, control will pass
to the executable statement at label 100. After the statement executes,
the number of characters that have been read will be stored in cnt.

INTEGER :: key
READ (UNIT=9, '(I4)', ADVANCE='NO', SIZE=cnt, EOR=100) key

Internal file

The following statement inputs a string of characters from the internal
file cfile, uses an embedded format specification to perform format
conversion, and stores the results in the variables i and x:

READ (cfile, FMT='(I5, F10.5)') i, x

Namelist-directed I/O

Each of the four READ statements in the next example uses a different
style of syntax to do exactly the same thing:

NAMELIST /nl/ a, b, c
READ (UNIT=5, NML=nl) ! 5 = standard input
READ (5, nl)
READ (*, NML=nl) ! * = standard input
READ nl ! assume standard input

List-directed I/O

The following statement takes its data from standard input, storing the
converted value in int_var. The format conversion is based on the type
of int_var.

READ *, int_var

416 Chapter 10

HP Fortran statements
READ

If you knew the format, you could substitute for the asterisk one of the
following:

• The label of the FORMAT statement with the format specification, as in
the following:

 READ 100, int_var
 100 FORMAT(I4)

• An embedded format specification, as in the following:

 READ '(I4)', int_var

Unformatted direct-access I/O

The following statement takes its input from the file connected to unit
31. The REC= specifier indicates that the file has been opened for direct
access and that this statement will read the record whose number is
stored in the variable rec_num. If an I/O error occurs during the
execution of the statement, an error number will be stored in ios, and
execution control will branch to the executable statement at label 99.

READ (31, REC=rec_num, ERR=99, IOSTAT=ios) a, b

Related statements CLOSE, OPEN, and WRITE.

Related concepts For more about I/O concepts, including information about files and
different types of I/O, see Chapter 8, “I/O and file handling,” on page 171.
This chapter also lists example programs that use I/O. For information
about I/O formatting, see Chapter 9, “I/O formatting,” on page 205.

Chapter 10 417

HP Fortran statements
REAL

REAL
Declares entities of type real.

Syntax REAL [kind-spec] [[, attrib-list] ::] entity-list

kind-spec
is the kind type parameter that specifies the range and
precision of the entities in entity-list. kind-spec takes the form:

([KIND=]kind-param)

where kind-param can be a named constant or a
constant expression that has the integer value of 4, 8,
or 16. The size of the default type is 4.

As an extension, kind-spec can take the form:

* len-param

where len-param is the integer 4, 8, or 16 (default = 4).

attrib-list
is a list of one or more of the following attributes, separated by
commas:

If attrib-list is present, it must be followed by the double colon.
For information about individual attributes, see the
corresponding statement in this chapter.

ALLOCATABLE INTRINSIC PRIVATE

DIMENSION OPTIONAL PUBLIC

EXTERNAL PARAMETER SAVE

INTENT POINTER TARGET

418 Chapter 10

HP Fortran statements
REAL

entity-list
is a list of entities, separated by commas. Each entity takes the
form:

name [(array-spec)] [= initialization-expr]

where name is the name of a variable or function,
array-spec is a comma-separated list of dimension
bounds, and initialization-expr is a real constant
expression. If initialization-expr is present, entity-list
must be preceded by the double colon.

Description The REAL statement is used to declare the length and properties of data
that approximate the mathematical real numbers. A kind parameter (if
present) indicates the representation method.

The REAL statement is constrained by the rules for all type declaration
statements, including the requirement that it precede all executable
statements.

As a portability extension, HP Fortran allows the following syntax for
specifying the length of an entity:

name [*len] [(array-spec)] [= initialization-expr]

If (array-spec) is specified, *len may appear on either side of (array-
spec). If name appears with *len, it overrides the length specified by
REAL*size.

Examples The following are valid declarations:

REAL, TARGET :: x, y
REAL(KIND=16) :: z
REAL(4), PARAMETER :: pi=3.14
! initialize an array, using an array constructor
REAL, DIMENSION(4) :: rvec=(/ 1.1,2.2,3.3,4.4 /)
! use the slash notation (an HP extension) to initialize
REAL x/2.87/, y/93.34/, z/13.99/ ! note, no double colon
! the following declarations are equivalent; the second uses the
! HP length specification extension
REAL (KIND = 8) x
REAL*4 x*8

Related statements DOUBLE PRECISION

Chapter 10 419

HP Fortran statements
REAL

Related concepts For related information, see the following:

• “Type declaration for intrinsic types” on page 24

• “Implicit typing” on page 28

• “Array declarations” on page 54

• “Array constructors” on page 71

• “Expressions” on page 80

• “KIND(X)” on page 537

420 Chapter 10

HP Fortran statements
RECORD (extension)

RECORD (extension)
Declares a record of a previously defined structure.

Syntax RECORD /struct-name/rec-name [, rec-name]...
 [/struct-name/rec-name [, rec-name]]...

struct-name
is the name of a structure declared in a previous structure
definition.

rec-name
is a record name.

Description HP Fortran supports the RECORD statement as a compatibility extension.
New programs should use the derived type, a standard feature of Fortran
90. For more information about derived types, see “Derived types” on
page 39 and “TYPE (definition)” on page 457.

The RECORD statement declares a record variable of a structure that has
been previously defined by a STRUCTURE statement. A record variable
can consist of multiple data items, called fields. The STRUCTURE
statement is described in “STRUCTURE (extension)” on page 437.

Referencing record fields

The syntax for referencing a field in a record depends on whether the
field itself is another record (a composite reference) or not (a simple
reference). Composite references have the following syntax:

rec-name [. substruct-fieldname]...

Simple references have the following syntax:

rec-name [. substruct-fieldname]... simple-fieldname

rec-name
is the name of the record in which a composite or simple field is
being referenced.

substruct-field-name
is the name of a nested structure or nested record field name, if
applicable.

Chapter 10 421

HP Fortran statements
RECORD (extension)

simple-field-name
is the name of a lowest-level field, defined with a type
declaration statement. As indicated by the syntax, the field
could be part of a nested structure or nested record.

Given the following structure definition and record declarations:

STRUCTURE /abc/
 REAL a, b, c(5)
 STRUCTURE /xyz/ xyz, xyzs(5)
 INTEGER x, y, z(3)
 END STRUCTURE
END STRUCTURE

RECORD /abc/ abc, abcs(100)
RECORD /xyz/ xyz

the following are composite references:

abc !composite record references
abcs(1)
xyz
abcs(idx)

abc.xyz !composite field references
abc.xyzs(3)

and the following are simple references:

abc.a
abc.c(1)
xyz.x
xyz.z(1)
abc.xyz.x
abcs(idx).xyz.y(1)
abcs(2).xyzs(3).z(1)

Composite references can be either to an entire record or to a record field
that is itself a structure or record.

Rules for record field

Arrays of records can be created as follows:

RECORD /student/ students(1000)

or

RECORD /student/ students
DIMENSION students (1000)

In either case a 1000-record array called students of structure
student is declared.

422 Chapter 10

HP Fortran statements
RECORD (extension)

Records can be placed in common blocks. The following code places the
students array (declared above) in the common block frosh, along with
variables a, b, and c:

COMMON /frosh/ a, b, c, students

Simple field references can appear wherever a variable can appear. The
following assigns values to the fields of record r of structure struct:

STRUCTURE /struct/
 INTEGER i
 REAL a
END STRUCTURE

RECORD /struct/ r
r.i = r.i + 1
r.a = FLOAT(r.i) - 2.7

Composite assignment is allowed for two records or two composite fields
of the same structure—that is, the record declaration statements for both
records must have specified the same struct-name. For example, the
following is legal:

STRUCTURE /string/
 BYTE len
 CHARACTER*1 str(254)
END STRUCTURE
RECORD /string/ str1, str2
str1 = str2

The following example is also valid and uses composite assignment to
assign the value of the record edate of structure date to a field of the
same structure (when) in the record event:

STRUCTURE /event/
 CHARACTER*20 desc
 STRUCTURE /date/ when
 BYTE month, day
 INTEGER*2 year
 END STRUCTURE
END STRUCTURE

RECORD /date/ edate
RECORD /event/ event
edate.month = 1
edate.day = 6edate.year = 62
event.desc = 'Party for Joanne'
! composite assignment of record to field
! of record--both have same structure
event.when = edate

Chapter 10 423

HP Fortran statements
RECORD (extension)

Even though the following records are of identical structures—that is,
the fields of both structures have the same type, size, and format—the
code is invalid because the structures have a different name:

STRUCTURE /intarray/
 BYTE elem_count
 INTEGER arr(100)
END STRUCTURE

STRUCTURE /iarray/
 BYTE elem_count
 INTEGER arr(100)
END STRUCTURE

RECORD /intarray/ iarray1
RECORD /iarray/ iarray2
! The next assignment won't work. The two
! records are not of the same structure.
iarray1 = iarray2 ! Invalid

When performing I/O on structures and records, composite record and
field references can appear only in unformatted I/O statements. They are
not allowed in formatted, list-directed, or namelist-directed I/O
statements. However, simple field references can appear in all types of I/
O statements. For information about I/O, see Chapter 9, “I/O formatting,”
on page 205.

A record name or composite field reference can appear as either a formal
or an actual argument to a subroutine or function. Formal and actual
arguments must have the same size as well as the same number, type,
and order of fields.

Composite record and field arguments to subroutines and functions are
passed by reference, just like other HP Fortran arguments.

Adjustable arrays are allowed in RECORD statements that declare formal
arguments.

Do not name a field with any of the following:

• Logical constants, .TRUE. and .FALSE.

• Logical operators, such as .OR., .AND., and .NOT.

• Relational operators, such as .EQ., .LT., and .NEQV.

• The name of a defined operator

Related statements STRUCTURE and TYPE

424 Chapter 10

HP Fortran statements
RECORD (extension)

Related concepts For related information, see the following:

• “Derived types” on page 39

• “Allocatable arrays” on page 59

• “Arguments” on page 139

• “Procedures” on page 123

Chapter 10 425

HP Fortran statements
RETURN

RETURN
Returns control from a subprogram.

Syntax RETURN [scalar-integer-expression]

scalar-integer-expression
is an optional scalar integer expression that is evaluated when
the RETURN statement is executed. It determines which
alternate return is used.

Description A RETURN statement can appear only in a subprogram.

An expression may appear in a RETURN statement only if alternate
returns (one or more asterisks) are specified as dummy arguments in the
relevant FUNCTION, SUBROUTINE, or ENTRY statement of the
subprogram. An expression with a value i in the range will return to the
ith asterisk argument (specified as *label) in the actual argument list. A
normal return is executed if i is not in the range 1 to n, where n is the
number of dummy argument alternate returns specified.

Examples SUBROUTINE calc (y, z)
! Subroutine calc checks the range of y. If
! it exceeds the permitted range, it calls
! an error handler and stops the program
 IF (y > ymax) GO TO 303
 RETURN
! It returns to the caller of calc if the
! calculation proceeds to normal completion.
303 CALL err (3, ”OUT OF RANGE”)
 STOP 303
END

Related statements SUBROUTINE and FUNCTION

Related concepts For more information about returning from a procedure call, see
“Returning from a procedure reference” on page 132.

426 Chapter 10

HP Fortran statements
REWIND

REWIND
Positions file at its initial point.

Syntax The syntax of the REWIND statement can take one of the following forms:

• Short form:

integer-expression

• Long form:

REWIND (io-specifier-list)

integer-expression
is the unit connected to a sequential file or device.

io-specifier-list
is a list of the following comma-separated I/O specifiers:

[UNIT=]unit

specifies the unit connected to an external file opened
for sequential access. unit must be an integer
expression that evaluates to a number greater than 0.
If the optional keyword UNIT= is omitted, unit must be
the first item in io-specifier-list.

ERR=stmt-label

specifies the label of the executable statement to which
control passes if an error occurs during statement
execution.

IOSTAT=integer-variable

returns the I/O status after the statement executes. If
the statement executes successfully, integer-variable is
set to zero. If an error occurs, it is set to a positive
integer that indicates which error occurred.

Description The REWIND statement repositions the file connected to the specified unit
at the start of the first record. If the file is already at its starting point or
if the unit is not connected to a file, the REWIND statement has no effect.

Chapter 10 427

HP Fortran statements
REWIND

Examples The following example of the REWIND statement repositions the file
connected to unit 10 to its initial point:

REWIND 10

The next example repositions to its initial point the file connected to unit
21. If an error occurs during the execution of the statement, control
passes to the statement at label 99, and the error code is returned in
ios:

REWIND (21, ERR=99, IOSTAT=ios)

Related statements BACKSPACE, ENDFILE, and OPEN

Related concepts For information about I/O concepts, see Chapter 8, “I/O and file
handling,” on page 171. This chapter also lists example programs that
use I/O.

428 Chapter 10

HP Fortran statements
SAVE (statement and attribute)

SAVE (statement and attribute)
Stores variables in static memory.

Syntax A type declaration statement with the SAVE attribute is:

type , attrib-list :: save-list

type
is a valid type specification (INTEGER, REAL, LOGICAL,
CHARACTER, TYPE (name), etc.).

attrib-list
A comma-separated list of attributes including SAVE and
optionally those attributes compatible with it, namely:

save-list
is a comma-separated list of names of objects to save.

The syntax of the SAVE statement is:

SAVE [[::] save-list]

Description The SAVE statement and attribute cause objects in a subroutine or
function to be stored in static memory, instead of being dynamically
allocated whenever the procedure is invoked (the default case). A saved
object retains its value and definition, association, and allocation status
between invocations of the program unit in which the saved object is
declared.

If save-list is omitted, everything in the scoping unit that can be saved is
saved. No other explicit occurrences of the SAVE attribute or the SAVE
statement are allowed.

ALLOCATABLE PRIVATE TARGET

DIMENSION PUBLIC VOLATILE

POINTER STATIC

Chapter 10 429

HP Fortran statements
SAVE (statement and attribute)

The names of the following may appear in save-list:

• Scalar variables

• Arrays

• Named common blocks

• Derived type objects

• Records

If the name of a common block appears in save-list, it must be delimited
by slashes (for example, /my_block/); all variables in the named
common block are saved. If a common block is saved in one program unit,
it must be saved in all program units (except main) where it appears.

HP Fortran always saves all common blocks.

The following must not appear in save-list:

• Formal argument names

• Procedure names

• Selected items in a common block

• Variables declared with the AUTOMATIC statement or attribute

• Function results

• Automatic data objects (such as automatic arrays, allocatable arrays,
automatic character strings, and Fortran 90 pointers)

Initializing a variable in a DATA statement or in a type declaration
statement implies that the variable has the SAVE attribute, unless the
variable is in a named common block in a block data subprogram.

A SAVE statement in a main program unit has no effect.

Examples The SAVE statement in the following example saves the variables a, b,
and c, as well as the variables in the common block dot:

SUBROUTINE matrix
SAVE a, b, c, /dot/
RETURN

430 Chapter 10

HP Fortran statements
SAVE (statement and attribute)

The SAVE statement in the next example saves the values of all of the
variables in the subroutine fixit:

SUBROUTINE fixit
SAVE
RETURN

Related statements AUTOMATIC and STATIC

Related concepts For related information, see the following:

• “Type declaration for intrinsic types” on page 24

• “Recursive reference” on page 131

• Information about automatic and static variables, in the HP Fortran
Programmer’s Guide

Chapter 10 431

HP Fortran statements
SELECT CASE

SELECT CASE
Begins CASE construct.

Syntax [construct-name :] SELECT CASE (case-expr)

construct-name
is the name given to the CASE construct.

case-expr
is a scalar expression of type integer, character, or logical.

Description The SELECT CASE statement, the first statement of a CASE construct,
causes case-expr to be evaluated, resulting in the case index. The CASE
construct uses the case index to determine which of its statement blocks
to execute.

If construct-name is specified, it must also appear in the END SELECT
statement.

Examples For an example of the SELECT CASE statement, see “CASE” on page 265.

Related statements CASE and END (construct)

Related concepts For information about the CASE construct, see “CASE construct” on
page 105.

432 Chapter 10

HP Fortran statements
SEQUENCE

SEQUENCE
Imposes storage sequence on components of derived type object.

Syntax SEQUENCE

Description The SEQUENCE statement can appear once within any derived type
definition; its presence specifies that a storage sequence on the
components that is the same as their definition order. A derived type that
includes the SEQUENCE statement in its definition is known as a
sequence derived type. Sequence derived types are used:

• To allow objects of sequence derived type to be storage associated
with the COMMON and EQUIVALENCE statements.

• To allow actual and dummy arguments to have the same type without
use or host association. The corresponding actual and dummy
arguments of derived types are of the same derived type if the
derived-type objects refer to the same type definition. Alternatively,
they are of the same type if all of the following are true:

– They refer to different type definitions with the same name.

– They have the SEQUENCE statement in their definitions.

– The components have the same names and types and are in the
same order.

– None of the components is of a private type or of a type that has
private access.

The following restrictions apply to the use of the SEQUENCE statement:

• No more than one SEQUENCE statement may appear in the definition
of a derived type.

• If a derived type definition includes the SEQUENCE statement, each
component that is of derived type must also include the SEQUENCE
statement.

Chapter 10 433

HP Fortran statements
SEQUENCE

Examples TYPE weather
! weather is a sequence derived type with two
! character components and two integer components
 SEQUENCE
 CHARACTER(LEN=32) place
 INTEGER high_temp, low_temp
 CHARACTER(LEN=16) conditions
END TYPE weather

Related statements TYPE, COMMON, and EQUIVALENCE

Related concepts For information about sequence derived types, see “Sequence derived
type” on page 41.

434 Chapter 10

HP Fortran statements
STATIC (statement, attribute, extension)

STATIC (statement, attribute, extension)
Gives variables and arrays static storage.

Syntax The syntax of a type declaration statement with the STATIC attribute is:

type, attribute-list :: entity-list

type
is a valid type specification (INTEGER, REAL, LOGICAL,
CHARACTER, TYPE (name), etc.), as described in Chapter 3,
“Data types and data objects,” on page 21.

attribute-list
is a comma-separated list of attributes including STATIC and
optionally those attributes compatible with it, namely:

entity-list
is a comma-separated list of variables and arrays.

The syntax of the STATIC statement is:

STATIC [::] entity-list

Description The STATIC statement and attribute is an HP Fortran extension.
Variables possessing the STATIC attribute retain their storage location
for the duration of the program. A STATIC variable declared within a
procedure will therefore retain its value between calls of the procedure.

The STATIC statement and attribute has the same functionality as the
SAVE statement and attribute; it is provided for compatibility with other
vendors’ Fortran 90.

ALLOCATABLE PRIVATE VOLATILE

DIMENSION SAVE

POINTER TARGET

Chapter 10 435

HP Fortran statements
STATIC (statement, attribute, extension)

Examples SUBROUTINE work_out(first_call)
 LOGICAL first_call
 INTEGER, STATIC :: ncalls

 IF (first_call) ncalls = 0
 ncalls = ncalls + 1 ! record how often work_out is called
 ...
END SUBROUTINE work_out

Related statements AUTOMATIC and SAVE

Related concepts For related information, see the following:

• “Type declaration for intrinsic types” on page 24

• Information about automatic and static variables, in the HP Fortran
Programmer’s Guide

436 Chapter 10

HP Fortran statements
STOP

STOP
Terminates program execution.

Syntax STOP [stop-code]

stop-code
is a character constant, a named constant, or a list of up to 5
digits.

Description The STOP statement terminates program execution and optionally prints
a message to standard error or standard list.

STOP also sends a message to standard error, dependent on whether
digits, characters, or nothing was specified with the STOP statement:

• If digits are specified, the message “STOP digits” is written to
standard error.

• If a character expression is specified, the message “STOP character-
expression” is written.

• If nothing appears after STOP, nothing is written.

Examples IF (b .LT. c) STOP 'BAD VALUE!'

Related statements PAUSE

Related concepts For information about flow control statements, see “Flow control
statements” on page 112.

Chapter 10 437

HP Fortran statements
STRUCTURE (extension)

STRUCTURE (extension)
Defines a named structure.

Syntax STRUCTURE /struct-name/
 field-def
 ...
END STRUCTURE

struct-name
is the structure’s name, delimited by slashes. struct-name can
be used later to declare a record.

field-def
is a field definition.

Description HP Fortran supports the STRUCTURE statement as a compatibility
extension. New programs should use the derived type, a standard feature
of Fortran 90; derived types provide the same functionality as named
structures. For more information about derived types, see “Derived
types” on page 39 and “TYPE (declaration)” on page 454.

The STRUCTURE statement defines the type, size, and layout of a
structure’s fields, and assigns a name to the structure. Once a structure
is defined, you can declare records of that structure using the RECORD
statement and can manipulate the record’s fields.

A structure definition pertains only to the program unit in which it is
defined. For example, you cannot define a structure in the main program
unit and then declare a record of that structure in a subprogram unit.
Instead, the structure must be explicitly defined again in the
subprogram unit.

field-def can be any of the following:

• A type declaration statement

• A nested structure definition

• A nested record declaration

• A union definition

Each type of field definition is described in the remaining sections.

438 Chapter 10

HP Fortran statements
STRUCTURE (extension)

Field definition as type declaration

At the simplest level, field-def can be a type declaration statement. As
such, field-def has the same syntax as a standard Fortran 90 type
declaration statement, except that the only attribute that can be
specified is the DIMENSION attribute. A variable defined with a type
declaration statement is called a field.

The following code uses simple type declaration statements to define a
structure named date with three fields: month and day of type BYTE,
and year of type INTEGER(KIND=2):

STRUCTURE /date/
 BYTE :: month, day
 INTEGER(KIND=2) :: year
END STRUCTURE

A type declaration statement in a structure definition can optionally
define initial values for the fields. For example:

STRUCTURE /xyz/
 REAL :: x = 1.0, y = 2.0, z = 3.0
END STRUCTURE

Thereafter, any record declared of structure xyz will have its x, y, and z
fields initially set to 1.0, 2.0, and 3.0 respectively. Consider the
following:

RECORD /xyz/ xyz
PRINT *, xyz.x, xyz.y, xyz.z

Even though no values have been assigned to the fields of xyz with an
assignment statement, the above code will display:

 1.0 2.0 3.0

Implicit typing is not allowed in a structure definition. For example, the
following code would cause a compile error:

STRUCTURE /dimensions/
 x, y, z ! illegal
END STRUCTURE

A correct way to code this would be:

STRUCTURE /dimensions/
 REAL(KIND=8) :: x, y, z ! legal
END STRUCTURE

Chapter 10 439

HP Fortran statements
STRUCTURE (extension)

A field type declaration statement can also define an array, as in the
following:

STRUCTURE /foo_bar/
 INTEGER foo(10)
END STRUCTURE

or, using Fortran 90 syntax:

STRUCTURE /foo_bar/
 REAL, DIMENSION(30, 50) :: bar
END STRUCTURE

The array’s dimensions must in any case appear in the type statement.
The DIMENSION statement (but not the DIMENSION attribute) is illegal
in a structure definition. The following code defines the structure,
string, which uses a type declaration statement to define an array field
str of type CHARACTER(LEN=1), containing 254 elements:

STRUCTURE /string/
 CHARACTER(LEN=1) :: str(254)! Contains string
 INTEGER :: length ! string’s length
END STRUCTURE

As mentioned, the DIMENSION statement cannot be used in a structure
definition. For example, the following code would cause a compile-time
error:

STRUCTURE /real_array/
 REAL :: rarray
 DIMENSION arr(100) ! illegal example
END STRUCTURE

A correct way to code this would be:

STRUCTURE /real_array/
 REAL :: rarray(100)
END STRUCTURE

or

STRUCTURE /real_array/
 REAL, DIMENSION(100) :: arr
END STRUCTURE

Assumed-size and adjustable arrays are also illegal in structure
definitions. For example, the following is illegal:

STRUCTURE /assumed_size/ ! illegal example
 CHARACTER*(*) :: carray
END STRUCTURE

440 Chapter 10

HP Fortran statements
STRUCTURE (extension)

The following is also illegal:

STRUCTURE /adj_array/ ! illegal example
 INTEGER :: size
 REAL :: iarray(size)
END STRUCTURE

For alignment purposes, HP Fortran provides the %FILL field name. It
enables the programmer to pad a record to ensure proper alignment. The
padding does not have a name and is therefore not accessible. For
example, the following structure, sixbytes, creates a 6-byte structure,
of which 4 bytes are inaccessible filler bytes:

STRUCTURE /sixbytes/
 INTEGER(KIND=2) :: twobytes
 CHARACTER(LEN=4) :: %FILL
END STRUCTURE

%FILL can be of any type and may appear more than once in a structure.

%FILL should not be needed in normal usage. The compiler
automatically adds padding to ensure proper alignment.

Nested structures

A field-def can itself be a structure definition, known as a nested
structure. The syntax of a nested structure definition is:

STRUCTURE /struct-name/struct-field-list
 field-def
 ...
END STRUCTURE

struct-name
is the structure’s name (delimited by slashes), which can be
used later to declare a record.

struct-field-list
is a comma-separated list of one or more names of nested
structure field names.

field-def
can be one of the following regular field definitions (defined in
the same way as an unnested structure field):

• A type declaration statement

• Another nested structure

• A nested record

• A union definition

Chapter 10 441

HP Fortran statements
STRUCTURE (extension)

NOTE Note that a structure definition allows multiple levels of nesting.

A nested structure definition is the same as an unnested structure
definition, with two exceptions:

• /struct-name/ is optional in a nested structure.

• A nested structure definition must include a list of one or more
structure field names (struct-field-list).

If /struct-name/ is present in a nested structure definition, the structure
struct-name can also be used in subsequent record declarations. For
example, the following code defines a structure named person, which
contains a nested structure named name. The structure’s field name is
nm and contains three CHARACTER*10 fields: last, first, and mid.

STRUCTURE /person/
 INTEGER :: person_id
 ! Define the nested structure 'name' with the field name 'nm'.
 STRUCTURE /name/ nm
 CHARACTER(LEN=10) :: last, first, mid
 END STRUCTURE
END STRUCTURE

Given this definition, the following code defines the record p of structure
person and the record n of structure name:

RECORD /person/p
RECORD /name/n

If /struct-name/ is not present, then the structure can be used only in this
declaration. For example, we could redefine the person structure so that
the nested structure no longer has a name:

STRUCTURE /person/
 INTEGER :: person_id
 STRUCTURE nm
 CHARACTER(LEN=10) :: last, first, mid
 END STRUCTURE
END STRUCTURE

There is no way to declare a separate record of the nested structure
because it has no name. Note, however, that the nested structure still has
a field name, nm. The field name is required.

To declare an array of nested structures, simply specify a dimension
declarator with the structure’s field name. For example, the following
structure definition contains a nested, 3-element array of structures with
field name phones of structure phone:

442 Chapter 10

HP Fortran statements
STRUCTURE (extension)

STRUCTURE /person/
 INTEGER :: person_id
 ! Define the nested structure 'name' with the field name 'nm'.
 STRUCTURE /name/ nm
 CHARACTER(LEN=10) :: last, first, mid
 END STRUCTURE

! Nested array of structures.
 STRUCTURE /phone/ phones(3)
 INTEGER(KIND=2) :: area_code
 INTEGER :: number
 END STRUCTURE
END STRUCTURE

Nested records

A field-def can be a record declaration, known as a nested record. See
“RECORD (extension)” on page 420 for information about record
declarations.) A nested record declaration must use a structure that has
already been defined. The following code first defines the structure date.
It then declares the structure event, which contains the nested record
when of structure date:

STRUCTURE /date/
 BYTE :: month, day
 INTEGER :: year
END STRUCTURE
STRUCTURE /event/
 CHARACTER :: what, where
 RECORD /date/ when
END STRUCTURE

A structure definition can also declare an array of nested records. For
example, the following code defines the structure calendar, which
contains a 100-element array of records of structure event:

STRUCTURE /calendar/
 ! number of events
 INTEGER(KIND=2) :: event_count
 RECORD /event/ events(100) ! array of event records
END STRUCTURE

Chapter 10 443

HP Fortran statements
STRUCTURE (extension)

Unions

A field-def can be a union—a form of nested structure in which two or
more map blocks share memory space. The UNION and MAP statements
together define a union. The syntax of a union definition is:

UNION
 map-block
 map-block
 ...
END UNION

where map-block is defined by a MAP statement and one or more field
definitions. All map blocks within the enclosing UNION statement share
the same memory space in a record. The syntax for defining a map block
is:

MAP
 field-def
 ...
END MAP

where field-def can be one of the following:

• A type declaration statement

• Another nested structure

• A nested record

• A union definition

Note that a structure definition allows multiple levels of nesting.

For programmers who are familiar with C or Pascal, HP Fortran unions
are similar to unions in C and variant records in Pascal. HP Fortran
unions differ from C unions in that they must be defined inside a
structure definition.

The structure below contains a union with two map blocks. The first
contains the integer field int; the second contains the real field float.

STRUCTURE /var/
 INTEGER :: type ! 1=INTEGER, 2=REAL
 UNION
 MAP
 INTEGER :: int
 END MAP
 MAP
 REAL :: float
 END MAP
 END UNION
END STRUCTURE

444 Chapter 10

HP Fortran statements
STRUCTURE (extension)

To declare a record of this structure named v, use the following RECORD
statement:

RECORD /var/ v

The declaration of the record v reserves 8 bytes of storage: 4 bytes for the
type field and 4 bytes to be shared by int and float. If you use the int
field to access the 4 bytes, they will be interpreted as an integer; if you
use the float field, they will be interpreted as a real.

It is the programmer’s responsibility to ensure that appropriate values
are assigned to each field in a union. For instance, given the previous
declaration of v, the following assignments make sense:

v.type =1 ! set the type to integer
! access the storage shared by 'int' and 'float' as an integer
v.int = 3

In contrast, the following code would yield unexpected results, although
it would compile without errors:

v.type = 1 ! set the type to integer
! the next statement contradicts the previous statement
v.float = 3.14

Once a value is assigned to a map block, all other map blocks become
undefined. The reason is that all map blocks share memory space within
a union; therefore, the values of one map block may become altered if you
assign a value to a field in another map block. Consider the following
definition of a structure called struct and the declaration of a record
called rec:

STRUCTURE /struct/
 UNION
 MAP
 CHARACTER*8 :: s
 END MAP
 MAP
 CHARACTER*1 :: c(8)
 END MAP
 END UNION
END STRUCTURE

RECORD /struct/ rec

If we made the following assignment to the s field:

rec.s = 'ABCDEFGH'

and then executed the next two PRINT statements:

PRINT *, rec.s
PRINT *, rec.c

Chapter 10 445

HP Fortran statements
STRUCTURE (extension)

the output would be:

ABCDEFGH
ABCDEFGH

Now, if we set values in the c field and display both fields again

rec.c(1) = '1'
rec.c(8) = '8'
PRINT *, rec.s
PRINT *, rec.c

the output would be:

1BCDEFG8
1BCDEFG8

Note how the s field has changed, even though it was not directly
assigned any new values. This is a result of the s and c field sharing the
same storage space in the union. Although this is valid coding—that is, it
will not cause a compiler or runtime error—it may cause unexpected
results.

However, you can also use shared memory mapping to your benefit. The
fact that map blocks share space within a union makes unions useful for
equivalencing data within a record. For example, the following structure
could be used to mask off individual bytes in a 4-byte word:

STRUCTURE /wordmask/
 UNION
 MAP
 INTEGER(KIND=4) :: word
 END MAP
 MAP
 BYTE :: byte0, byte1, byte2, byte3
 END MAP
 END UNION
END STRUCTURE RECORD /wordmask/ maskrec

If we assign a value to the word field of maskrec, we can then get the
individual values of all four bytes in maskrec by looking at the fields
byte0, byte1, byte2, and byte3. To see how the integer variable word
maps onto the byte variables byte0, byte1, byte2, and byte3, use the
following statements:

 maskrec.word = 32767
 WRITE(*, fmt=100) 'word = ', maskrec.word
 WRITE(*, 200) 'byte 0 = ', maskrec.byte0
 WRITE(*, 200) 'byte 1 = ', maskrec.byte1
 WRITE(*, 200) 'byte 2 = ', maskrec.byte2
 WRITE(*, 200) “byte 3 = ', maskrec.byte3
100 FORMAT(A, Z8.8)
200 FORMAT(A, Z2.2)

446 Chapter 10

HP Fortran statements
STRUCTURE (extension)

This code displays the following output:

word = 00007FFF
byte 0 = 00
byte 1 = 00
byte 2 = 7F
byte 3 = FF

Such code, depending as it does on a specific word size, is inherently
nonportable.

Related statements RECORD and TYPE

Related concepts Derived types are described in “Derived types” on page 39.

Chapter 10 447

HP Fortran statements
SUBROUTINE

SUBROUTINE
Begins the definition of a subroutine subprogram.

Syntax [RECURSIVE] SUBROUTINE subr-name [([dummy-arg-list])]

subr-name
is the name of a subroutine.

dummy-arg-list
is a comma-separated list of zero or more of dummy-arg-name or
the asterisk character (*).
As indicated by the syntax, the parentheses surrounding the
dummy arguments may be omitted if there are no dummy
arguments.

Description The SUBROUTINE statement is the first statement of a subroutine
subprogram.

The following rules and restrictions apply to subroutines:

• A subroutine is either an external, module, or internal subprogram.

• If a subroutine calls itself directly or indirectly, the word RECURSIVE
must appear in the SUBROUTINE statement. If the keyword
RECURSIVE is specified, the subroutine interface is explicit within the
subprogram.

• The keyword SUBROUTINE must appear on the END statement if the
subroutine is a module or internal procedure.

• An asterisk in a subroutine dummy argument list designates an
alternate return.

• The interface of an internal subroutine is explicit in its host. The
interface of a module subroutine is explicit within the module, and if
it is public, it is explicit in all program units using the module. The
interface of an external subroutine is implicit, but may be made
explicit by the use of an interface block.

448 Chapter 10

HP Fortran statements
SUBROUTINE

Examples Consider the following subroutines:

! A subroutine definition with two arguments.
SUBROUTINE exchange (x, y)
 temp = x; x = y; y = temp
END SUBROUTINE exchange

SUBROUTINE altitude (*, long, lat)
 ! asterisk (*) indicates alternate return
 IMPLICIT NONE
 INTEGER, OPTIONAL :: long, lat
 RETURN 1
END SUBROUTINE altitude

The preceding subroutines may be referenced with the CALL statement,
as in the following program:

PROGRAM reject
 CALL exchange (a,t) ! A subroutine reference
 ! subroutine reference, including an alternate return label,
 ! missing optional argument, and an argument keyword
 CALL altitude (*90, lat = 49)
END PROGRAM reject

Following are some other examples of subroutine statements:

SUBROUTINE pressure_surface ! No arguments
SUBROUTINE taffy () ! Also no arguments
RECURSIVE SUBROUTINE fact (n, x)

Related statements CALL, END, ENTRY, FUNCTION, and RETURN

Related concepts For related information, see the following:

• “External procedures” on page 128

• “Arguments” on page 139

Chapter 10 449

HP Fortran statements
TARGET (statement and attribute)

TARGET (statement and attribute)
Allows variables and arrays to be pointer targets.

Syntax The syntax of a type declaration statement with the TARGET attribute is:

type, attrib-list :: entity-list

type
is a valid type specification (INTEGER, REAL, LOGICAL,
CHARACTER, TYPE (name), etc.).

attrib-list
is a comma-separated list of attributes including TARGET and
optionally those attributes compatible with it, namely:

entity-list
is a comma-separated list of entities. Each entity is of the form:
array-name [(deferred-shape-spec-list)]
If (deferred-shape-spec-list) is omitted, it must be specified in
another declaration statement.

array-name

is the name of an array being given the attribute
ALLOCATABLE.

deferred-shape-spec-list

is a comma-separated list of colons, each colon
representing one dimension. Thus the rank of the array
is equal to the number of colons specified.

ALLOCATABLE OPTIONAL SAVE

DIMENSION PRIVATE

INTENT PUBLIC

450 Chapter 10

HP Fortran statements
TARGET (statement and attribute)

The syntax of the TARGET statement is:

TARGET [::] object-name [(array-spec)]
 [, object-name [(array-spec)]]...

array-spec

That is, an assumed-size-spec is an explicit-shape-spec-list with
the final upper bound given as *.

Description The TARGET attribute or statement specifies that name is a target that
may be pointed at by a pointer. A target may be either a scalar or an
array.

The TARGET attribute allows the compiler to generate efficient code
because only those objects specified with the TARGET or POINTER
attribute can be dynamically aliased.

If the target in a pointer assignment is a variable, then one of the
following must be true:

• It must have the TARGET attribute.

• It must be the component of a derived-type, the element of an array
variable, or the substring of a character variable that has the TARGET
attribute.

• It must have the POINTER attribute.

If the target of a pointer assignment is an array section, the array must
have either the TARGET or the POINTER attribute.

Examples ! p is a pointer array
INTEGER, POINTER, DIMENSION(:,:) :: p
! declare t as an array with the TARGET attribute
INTEGER, TARGET :: t(10, 20, 30)
! make p point to a rank-2 section of t

explicit-shape-spec is [lower-bound :] upper-
bound

assumed-shape-spec is [lower-bound] :

deferred-shape-spec is :

assumed-size-spec is [explicit-shape-spec-list ,]
[lower-bound :] *

Chapter 10 451

HP Fortran statements
TARGET (statement and attribute)

p => t(10,1:10,2:5)

REAL, POINTER :: nootka(:), talk(:)
REAL, ALLOCATABLE, TARGET :: x(:)
ALLOCATE (x(1:100), STAT = is)
nootka => x(51:100)
! Pointer assignment statements
talk => x(1:50)

REAL r, p1, p2
TARGET r
POINTER p1, p2
r = 4.7
! make both p1 and p2 aliases of r
p1 => r
p2 => p1
...
ALLOCATE (p1)
p1 = 9.4

Related statements POINTER, ALLOCATE, DEALLOCATE, and NULLIFY

Related concepts For related information, see the following:

• “Pointers” on page 47

• “Pointer assignment” on page 97

• The description of the ASSOCIATED intrinsic in Chapter 11, “Intrinsic
procedures,” on page 475.

452 Chapter 10

HP Fortran statements
TASK COMMON (extension)

TASK COMMON (extension)
Declares a common block to be local to a thread during parallel
execution.

NOTE A program that uses the TASK COMMON statement should be compiled with
the +Oparallel or +parallel option; otherwise, the compiler treats the
TASK COMMON statement as a COMMON statement.

Syntax TASK COMMON /cbn/nlist[,/cbn/nlist...]

cbn
is a symbolic name for a common block that is declared in a
TASK COMMON statement. Unnamed common blocks are not
allowed in a TASK COMMON statement.

nlist
is a list of variable names, array names, and array declarators.
These variables cannot appear in a DATA statement, but
otherwise can be used like other variables in common storage.

Description The TASK COMMON statement is an extension to the Fortran 90 standard and
is provided for compatibility with programs that use the Cray TASK
COMMON feature. TASK COMMON blocks can only be declared in functions and
subroutines.

A program should already be running multiple threads before calling a
subroutine that contains a TASK COMMON block.

When used in a program executing multiple threads, the TASK COMMON
statement declares all variables in a common block as local to a thread (also
called a task). If multiple threads execute code that uses the same TASK
COMMON block, each thread has a private copy of the block.

All occurrences of the TASK COMMON block must be declared with the TASK
COMMON statement; a common block cannot be declared in both a COMMON
statement and a TASK COMMON statement.

Related statements COMMON

Chapter 10 453

HP Fortran statements
TASK COMMON (extension)

Related concepts For related information, see the following:

• “Type declaration for intrinsic types” on page 24

• “Implicit typing” on page 28

• “Array declarations” on page 54

• “Array constructors” on page 71

• “Expressions” on page 80

454 Chapter 10

HP Fortran statements
TYPE (declaration)

TYPE (declaration)
Declares a variable of derived type.

Syntax TYPE (type-name) [[, attrib-list] ::] entity-list

type-name
is the name of a previously defined derived type.

attrib-list
is a comma-separated list of one or more of the following
attributes:

If attrib-list is present, it must be followed by the double colon.
For information about individual attributes, see the
corresponding statement in this chapter.

entity-list
is a list of entities, separated by commas. Each entity takes the
form:
name [(array-spec)] [= initialization-expr]

where:

name

is the name of a variable or function

array-spec

is a comma-separated list of dimension bounds

ALLOCATABLE INTRINSIC PRIVATE

DIMENSION OPTIONAL PUBLIC

EXTERNAL PARAMETER SAVE

INTENT POINTER TARGET

Chapter 10 455

HP Fortran statements
TYPE (declaration)

initialization-expr

is a structure constructor

initialization-expr

is present

entity-list

must be preceded by the double colon.

Description The TYPE declaration statement specifies the type and attributes of
derived-type objects. A derived-type object may be an array, which may
be deferred shape (pointer or allocatable), assumed shape (dummy
argument), or assumed size (dummy argument).

Assignment is intrinsically defined for each derived type but may be
redefined by the user. Operators appropriate to a derived type may be
defined by procedures with the appropriate interfaces.

When a derived-type object is used as a procedure argument, the types of
the associated actual and dummy arguments must be the same. For
sequence derived types different physical type definitions may be used
for the actual and dummy arguments, as long as both type definitions
specify identical type names, components, and component order. For
nonsequenced types the same physical type definition must be used,
typically accessed via host or use association, for both the actual and
dummy arguments.

Examples ! Weather is a simple derived type with two
! character components and two integer components.
TYPE Weather
 CHARACTER(LEN=32) Place
 INTEGER High_temp, Low_temp
 CHARACTER(LEN=16) Conditions
END TYPE Weather

TYPE (Weather) July(num_ws, 31)
! A two-dimensional Weather array for July
July(:,:) % Low_temp = -40
! Initialize all low temps in July
TYPE Polar
! Polar is a derived type with two real components that cannot be
! directly accessed in Polar objects outside the module
 PRIVATE
 REAL rho, theta
END TYPE Polar

! Point is a derived type with three components, one of which is
! itself of derived type

456 Chapter 10

HP Fortran statements
TYPE (declaration)

TYPE Point
 REAL x, y
 TYPE (Polar) p
END TYPE Point

TYPE (Polar) r, q(500)
! Two variables of type Polar
TYPE (Point) a, b, t(100,100)
! Three variables of type Point
b = Point(0.,0.,Polar(0.,0.))
! Use of nested structure constructors.

Related statements INTERFACE, PRIVATE, PUBLIC, SEQUENCE, and TYPE (definition)

Related concepts For information about derived types, see “Derived types” on page 39.

Chapter 10 457

HP Fortran statements
TYPE (definition)

TYPE (definition)
The first statement of a derived type definition.

Syntax TYPE [[, access-spec] ::] derived-type-name

access-spec
is the keyword PUBLIC or PRIVATE.

derived-type-name
is a legal Fortran 90 name.

Description The TYPE statement introduces the definition of a derived type. A
derived type name may be any legal Fortran 90 name, as long as it is not
the same as an intrinsic type name or another local name (except
component names and actual argument keyword names) in that scoping
unit.

A derived type may contain an access specification (PUBLIC or PRIVATE
attribute) or an internal PRIVATE statement only if it is in a module.

Examples ! This is a simple example of a derived type
! with two components, high and low.
TYPE temp_range
 INTEGER high, low
END TYPE temp_range

! This type uses the previous definition for one of its
! components
TYPE temp_record
 CHARACTER(LEN=40) city
 TYPE (temp_range) extremes(1950:2050)
END TYPE temp_record
! This type has a pointer component to provide links to other
! objects of the same type, thus providing linked lists.
TYPE linked_list
 REAL value
 TYPE(linked_list),POINTER :: next
END TYPE linked_list
! This is a public type whose components are private; defined
! operations provide all functionality.
TYPE, PUBLIC :: set; PRIVATE
 INTEGER cardinality
 INTEGER element (max_set_size)
END TYPE set
! Declare scalar and array of type set.
TYPE (set) :: baker, fox(1:size(hh))

458 Chapter 10

HP Fortran statements
TYPE (definition)

Related statements INTERFACE, PRIVATE, PUBLIC, SEQUENCE, and TYPE (declaration)

Related concepts For information about derived types, see “Derived types” on page 39.

Chapter 10 459

HP Fortran statements
TYPE (I/O) (extension)

TYPE (I/O) (extension)
Writes to standard output.

Description The TYPE statement is a synonym for the PRINT statement and has the
same functionality and syntax. It is provided as an HP extension for
compatibility with earlier versions of Fortran. For more information, see
“PRINT” on page 402.

460 Chapter 10

HP Fortran statements
UNION (extension)

UNION (extension)
Defines a union within a structure.

Syntax UNION
 map-block
 map-block
 ...
END UNION

map-block
is one or more of the following:

• A type declaration statement

• Another nested structure

• A nested record

• A union definition

Description The UNION statement is an HP Fortran extension that is used with the
MAP statement to define a union within a structure. For detailed
information about the MAP and UNION statements, see “STRUCTURE
(extension)” on page 437.

Chapter 10 461

HP Fortran statements
USE

USE
Provides controlled access to module entities.

Syntax A USE statement has one of the following forms:

• USE module-name [, rename-list]

• USE module-name, ONLY : access-list

rename-list
is a comma-separated list of rename

rename
is local-name => module-entity-name

access-list
is a comma-separated list of the following:

• [local-name =>] module-entity-name

• OPERATOR (operator)

• ASSIGNMENT (=)

Description The USE statement provides access to a module’s public specifications
and definitions. These include declared variables, named constants,
derived-type definitions, procedure interfaces, procedures, generic
identifiers, and namelist groups. The method of access is called use
association. Such access may be limited by an ONLY clause on the USE
statement, or the accessed entities may be renamed.

All USE statements must appear after the program unit header
statement and before any other statements. More than one USE
statement may be present, including more than one referring to the same
module.

Modules may contain USE statements referring to other modules;
however, references must not directly or indirectly be recursive.

The local-name in a renaming operation is not declared: it assumes the
attributes of the module entity being renamed.

462 Chapter 10

HP Fortran statements
USE

The first two forms of the USE statement make available by use
association all publicly accessible entities in the module, except that the
USE statement may rename some module entities. The third form makes
available only those entities specified in access-list, with possible
renaming of some module entities.

Entities made accessible by a USE statement include public entities from
other modules referenced by USE statements within the referenced
module.

The same name or specifier may be made accessible by means of two or
more USE statements. Such an entity must not be referenced in the
scoping unit containing the USE statements, except where specific
procedures can be distinguished by the overload rules. A rename or ONLY
clause may be used to restrict access to one name or to rename one entity
so that both are accessible.

Examples MODULE rat_arith
 TYPE rat
 INTEGER n, d
 END TYPE

 ! Make all entities public except zero.
 TYPE(rat), PRIVATE, PARAMETER :: zero = rat(0,1)
 TYPE(rat), PUBLIC, PARAMETER :: one = rat(1,1)
 TYPE(rat) r1, r2
 NAMELIST /nml_rat/ r1, r2
 INTERFACE OPERATOR(+)
 MODULE PROCEDURE rat_plus_rat, int_plus_rat
 END INTERFACE

CONTAINS
 FUNCTION rat_plus_rat(l, r)
 END FUNCTION
END MODULE

PROGRAM Mine
 ! From the module rat_arith, access only the entities rat,
 ! one, r1, r2, nml_rat but use the name one_rat for the
 ! rational value one.
 USE rat_arith, ONLY: rat, one_rat => one, r1, r2, nml_rat

 ! The OPERATOR + for rationals and the procedures rat_plus_rat
 ! and int_plus_rat are not available because of the ONLY
clause
 READ *, r2; r1 = one_rat
 WRITE(*, NML = nml_rat)
END PROGRAM

Chapter 10 463

HP Fortran statements
USE

Related statements MODULE

Related concepts For information about modules, see “Modules” on page 161.

464 Chapter 10

HP Fortran statements
VIRTUAL (extension)

VIRTUAL (extension)
Declares an array.

Syntax VIRTUAL array-declarator-list

array-declarator-list
is a comma-separated list of array declarators.

Description The VIRTUAL statement is an HP extension in HP Fortran for
compatibility with earlier versions of Fortran. It is an alternative to the
DIMENSION statement. VIRTUAL cannot be used as an attribute in type
declaration statements.

Examples VIRTUAL A(10), B(1:5,2:6)

Related statements DIMENSION

Related concepts Arrays are discussed in Chapter 4, “Arrays,” on page 51.

Chapter 10 465

HP Fortran statements
VOLATILE (extension)

VOLATILE (extension)
Provides for data sharing between asynchronous processes.

Syntax VOLATILE [::] object-name-list

object-name-list
is a comma-separated list of the following:

• variable-name

• array-name

• common-block-name

Description It is only necessary to declare an object as VOLATILE when its value may
be altered by an independent asynchronous process or event (for
example, a signal handler). All optimization processes are inhibited for
objects with the VOLATILE attribute. Data objects declared as VOLATILE
are addressable by otherwise independent processes.

If an array or common block is declared as VOLATILE, then all of the
array elements or common block variables become VOLATILE. Similarly,
use of EQUIVALENCE with a VOLATILE object implies that any associated
object is also volatile.

Examples INTEGER alarm, trem
EXTERNAL wakeup
COMMON/FLAGS/ialarm
VOLATILE ialarm
trem = ALARM(60,wakeup) ! Set an alarm to execute in 60 seconds
wakeup
IALARM = 0
DO
 IF (ialarm.NE.0) EXIT
END DO
SUBROUTINE wakeup
 COMMON/flags/ialarm
 VOLATILE ialarm
 ialarm=1
END

466 Chapter 10

HP Fortran statements
WHERE (statement and construct)

WHERE (statement and construct)
Performs masked array assignments.

Syntax WHERE (array-logical-expr) [array-assignment-statement]

If the optional array-assignment clause is present, the WHERE statement
is syntactically complete and does not require the END WHERE statement.

If the array-assignment clause is not present, the WHERE statement is the
first statement of a WHERE construct. The syntax of the WHERE construct
is:

WHERE (array-logical-expr)
 array-assignment-statement
 ...
[ELSEWHERE
 array-assignment-statement
 ...]
END WHERE

array-logical-expr
is a logical array expression.

array-assignment-statement
is an array assignment statement.

Description Certain array elements can be selected by a mask and assigned in array-
assignment statements using the WHERE statement or WHERE construct.
array-logical-expr establishes the mask.

For any elemental operation in the array assignments, only the elements
selected by the mask participate in the computation. The elemental
operations include the usual intrinsic operations and the elemental
intrinsic functions such as ABS. Masked array assignments are useful
when certain elemental operations involving arrays need to be avoided
because of program exceptions.

The following rules and restrictions apply:

• The shape of the result of array-logical-expr and the arrays in each
array-assignment-statement must be the same; they may be of size
zero.

• array-assignment-statement must be an intrinsic array assignment
statement; no defined assignment statements are permitted.

Chapter 10 467

HP Fortran statements
WHERE (statement and construct)

• Each elemental operation in array-assignment-statement is masked
by the array logical expression.

• The elements of the arrays that are used in the WHERE part (the
assignments after the WHERE keyword) are those corresponding to the
true elements of the array logical expression. The elements of the
arrays that are used in the ELSEWHERE part (the assignments after
the ELSEWHERE keyword and before the END WHERE keywords) are
those corresponding to the false elements of the array logical
expression.

• Each array-assignment-statement executes in the order in which it
appears in both the WHERE and ELSEWHERE part of the WHERE
construct.

• In a WHERE construct, only the WHERE statement may be a branch
target statement.

Examples REAL, DIMENSION(150) :: a, recip_a
REAL(DOUBLE), DIMENSION(10,20,30) :: b, sqrt_b
! Assign 1.0/a to recip_a only where a is nonzero
WHERE(a /= 0.0) recip_a = 1.0 / a

WHERE(b .GE. 0.0)
 ! Assign to sqrt_b only where b is nonnegative
 sqrt_b = SQRT(b)
ELSEWHERE ! Set sqrt_b to 0.0 where b is -ve.
 sqrt_b = 0.0
END WHERE

INTEGER, DIMENSION(no_of_tests, student):: score
CHARACTER, DIMENSION(no_of_tests, student) :: letter_grade
! Assign letter grades for numeric scores
WHERE(score >= 92) letter_grade = 'A'
WHERE(score >= 82 .AND. score <= 91) letter_grade = 'B'
WHERE(score >= 72 .AND. score <= 81) letter_grade = 'C'
WHERE(score >= 62 .AND. score <= 71) letter_grade = 'D'
WHERE(score >= 0 .AND. score <= 61) letter_grade = 'E'

In the next example, the arrays values, delta, and count must all be
of the same shape:

WHERE (ABS(values) .LT. 10.0)
 values = ABS(values) + delta
 count = count + 1
ELSEWHERE
 values = 0
 count = count + 1
ENDWHERE

468 Chapter 10

HP Fortran statements
WHERE (statement and construct)

The first two assignment statements are processed for elements
corresponding to true elements of the mask. The second two assignment
statements are processed for elements corresponding to false elements of
the mask. Unlike the ELSE clause of an IF statement, the assignment
statements in both the WHERE and ELSEWHERE parts are processed.

Note the different behavior of the calls to ABS. In evaluating the mask
expression, the entire VALUES array is passed to ABS, producing an array
result whose elements are then compared to 10. In the assignment
statement, however, ABS is only invoked for those particular elements of
VALUES corresponding to true elements of the mask. Also, note the mixed
use of arrays and scalars in the assignment statement expressions.

The mask expression must have the same shape as the arrays in the
assignment statements, but it might involve completely separate arrays.
In the following example, A, B, and C can be independent of D and E, as
long as they are all conformable:

WHERE (a+b .EQ. c) d = SIN(e)

The following example illustrates why the order of processing is
important for dependency reasons:

REAL a(100)
REAL b(100)
EQUIVALENCE b, a
WHERE(a(1:20:1) .GT. 0) a(20:1:-1) = -1.0
WHERE(a(61:100:2) .LT. 1) b(20:1:-1) = a(1:20:1) * 100.0

In the first WHERE statement, changing elements of a in the assignment
might be thought to affect the mask expression. However, because the
mask is evaluated before the assignment is processed, the behavior of
this statement is well defined. A similar situation arises in the second
WHERE statement. Assignment values to elements of the assignment
variable b alter the elements of the assignment expression a * 100.0.
Because the assignment expression is evaluated for all true elements of
the mask before any transfer of values to B, the behavior is again well
defined.

It is important to note that assignment statements in a WHERE construct
are processed sequentially. In the next example, the second assignment
is not processed until the first is completely finished. This means that
the values of b used in the second assignment have been modified by the
first statement:

WHERE (SQRT(ABS(a)) .gt. 3.0)
 b = SIN(a)
 c = SQRT(b)
ENDWHERE

Chapter 10 469

HP Fortran statements
WHERE (statement and construct)

Related statements END (construct) and ELSEWHERE

Related concepts For related information, see the following:

• The discussion of arrays in Chapter 4, “Arrays,” on page 51

• “Masked array assignment” on page 99

470 Chapter 10

HP Fortran statements
WRITE

WRITE
Outputs data to external and internal files.

Syntax WRITE (io-specifier-list) [output-list]

output-list
is a list of comma-separated data items for output. The data
items can include expressions and implied-DO.

io-specifier-list
is a list of the following comma-separated I/O specifiers:

[UNIT=]unit

specifies the unit connected to the output file. unit can
be one of the following:

• The name of a character variable, indicating
an internal file

• An integer expression that evaluates to the
unit connected to an external file

• An asterisk, indicating the preconnected unit
6 (standard output)

If the optional keyword UNIT= is omitted, unit must be
the first item in io-specifier-list. This is the only
specifier required in io-specifier-list.

[FMT=] format

specifies the format specification for formatting the
data. format can be one of the following:

• An asterisk (*), specifying list-directed I/O

• The label of a FORMAT statement containing
the format specification

• An integer variable that has been assigned
the label of a FORMAT statement

• An embedded format specification

Chapter 10 471

HP Fortran statements
WRITE

If the optional keyword FMT= is omitted, format must
be the second item in io-specifier-list.

NOTE The NML= and FMT= specifier may not both appear in the same io-
specifier-list.

[NML=]name

specifies the name of a namelist group for namelist-
directed output. name must have been defined in a
NAMELIST statement. If the optional keyword NML= is
omitted, name must be the second item in the list. The
first item must be the unit specifier without the
optional keyword UNIT=.

The NML= and FMT= specifier may not both appear in
the same io-specifier-list.

ADVANCE=character-expression

specifies whether to use advancing I/O for this
statement. character-expression can be one of the
following arguments:

If the ADVANCE= specifier appears in io-specifier-list,
unit must be connected to an external file opened for
formatted sequential I/O. Nonadvancing I/O is
incompatible with list-directed and namelist I/O.

ERR=stmt-label

specifies the label of the executable statement to which
control passes if an error occurs during statement
execution.

'YES' Use advancing formatted
sequential I/O default.

'NO' Use nonadvancing formatted
sequential I/O.

472 Chapter 10

HP Fortran statements
WRITE

IOSTAT=integer-variable

returns the I/O status after the statement executes. If
the statement executes successfully, integer-variable is
set to zero. If an error occurs, it is set to a positive
integer that indicates which error occurred.

REC=integer-expression

specifies the number of the record to be written to the
file connected for direct access. This specifier cannot
appear in io-specifier-list with the NML= and ADVANCE=
specifiers, nor with FMT=* (for list-directed I/O).

Description The WRITE statement transfers data from internal storage to an external
or internal file. An external file can be opened for sequential access or
direct access I/O. If it is opened for sequential access, the WRITE
statement can perform the following types of I/O:

• Formatted

• Unformatted

• List-directed

• Namelist-directed

If the file is opened for direct access, the WRITE statement can perform
formatted or unformatted I/O.

WRITE statements operating on internal files can perform formatted or
list-directed I/O.

For detailed information about files and different types of I/O, see
Chapter 8, “I/O and file handling,” on page 171.

Examples The examples in this section illustrate different uses of the WRITE
statement.

Chapter 10 473

HP Fortran statements
WRITE

Nonadvancing I/O

CHARACTER(LEN=17) :: prompt = 'Enter a number: '
WRITE (6, '(A)', ADVANCE='NO') prompt

The WRITE statement outputs to the file connected to unit 6, which is
preconnected to standard output. The ADVANCE='NO' specifier indicates
the following:

• The file has been opened for formatted sequential I/O.

• The statement uses nonadvancing I/O to read an integer formatted as
four characters into the variable prompt.

The effect of the nonadvancing WRITE is to output the character string in
prompt to standard output without a terminating newline. This means
that anything subsequently entered by the user will appear on the same
line.

Internal file

CHARACTER(LEN=80) :: cfile
WRITE (cfile, '(I5, F10.5)') i, x

The statement writes a string of characters into the internal file cfile,
using the embedded format specification to perform the format
conversion.

Namelist-directed I/O

In the next example, each of the four WRITE statements following the
NAMELIST statement uses a different style of syntax to do exactly the
same thing:

NAMELIST /nl/ a, b, c
WRITE (UNIT=6, NML=nl) ! 6 = standard output
WRITE (6, nl)
WRITE (*, NML=nl) ! * = standard output
WRITE nl ! assume standard output

List-directed I/O

WRITE (6, *) int_var

This statement converts the value of int_var to character format and
outputs the character string to standard output. The format conversion
is based on the type of int_var. If you knew the format, you could
substitute for the asterisk one of the following:

474 Chapter 10

HP Fortran statements
WRITE

• The label of the FORMAT statement with the format specification, as
in:

WRITE (6, 100) int_var
100 FORMAT(I4)

• An embedded format specification itself, as in:

WRITE (6, '(I4)') int_var

Unformatted direct-access I/O

WRITE (31, REC=rec_num, ERR=99, IOSTAT=ios) a, b

This statement outputs to the file connected to unit 31. The REC=
specifier indicates that the file has been opened for direct access and that
this statement will output to the record whose number is stored in the
variable rec_num. If an I/O error occurs during the execution of the
statement, an error number will be stored in ios, and execution control
will branch to the executable statement at label 99.

Related statements CLOSE, OPEN, PRINT, and READ

Related concepts For information about I/O concepts, see Chapter 8, “I/O and file
handling,” on page 171, which also lists example programs that use I/O.
For information about I/O formatting, see Chapter 9, “I/O formatting,” on
page 205.

475

11 Intrinsic procedures

Intrinsic procedures are built-in functions and subroutines that are
available by default to every Fortran 90 program and procedure. This
chapter describes the intrinsic procedures provided by HP Fortran. All
intrinsic procedures defined by the Fortran 90 Standard are supported in
HP Fortran.

The following topics are described in this chapter:

• Basic terms and concepts

• Nonstandard intrinsic procedures

• Data representation models

• Functional categories of intrinsic procedures

• Intrinsic procedure specifications

NOTE HP Fortran intrinsic procedures are provided in the libraries
/opt/fortran90/lib/libF90.a and /usr/lib/libcl.a.
/usr/lib/libcl.2 is used instead of libcl.a if using shared libraries
(the default).

476 Chapter 11

Intrinsic procedures
Basic terms and concepts

Basic terms and concepts
The following sections describe the terms and concepts that are used in
this chapter to describe intrinsic procedures.

Availability of intrinsics
An intrinsic procedure is available in every Fortran 90 program unit
except when an intrinsic and a user-defined procedure (or a library
procedure) have the same name, and the user-defined procedure:

• Has the EXTERNAL attribute; see “EXTERNAL (statement and
attribute)” on page 328 for more information. Library routines are
declared in the user program with the EXTERNAL attribute so that
they will be called instead of intrinsics that have the same name.

• Has an explicit interface; see “Procedure interface” on page 151 for a
description. A statement function has an explicit interface and
therefore, if it has the same name as an intrinsic, will be recognized
instead of the intrinsic.

Both a user-defined procedure and an intrinsic may have the same
name when the user-defined procedure is used to extend a generic
intrinsic and the argument types differ. See “Generic procedures” on
page 154 for a description of this.

Subroutine and function intrinsics
Intrinsic procedures are available as functions and subroutines. In
general, they behave the same as user-defined subroutines and
functions. Intrinsic subroutines are invoked by the CALL statement and
can return values through arguments passed to the intrinsic. Intrinsic
functions can be referenced as part of an expression or in a statement
that expects a value.

All interface intrinsic subroutines and functions have an explicit
interface.

Chapter 11 477

Intrinsic procedures
Basic terms and concepts

Generic and specific function names
The names of intrinsic functions can be either generic or specific. The
name is generic—for example, ABS—if it permits arguments of different
types. A name is specific—for example, IABS—if it permits arguments of
one data type only.

A specific intrinsic function can be passed as an argument if it has the
INTRINSIC attribute. A generic intrinsic function can have the
INTRINSIC attribute if it is also the specific name, as in the case of the
SIN intrinsic. See “Procedure dummy argument” on page 142 and the
description of “INTRINSIC (statement and attribute)” on page 363.

NOTE Some compile-line options—for example, +autodbl—change the default
data type sizes and can cause different or invalid intrinsic procedure
references.

Classes of intrinsics
Intrinsic procedures are classified as:

• Elemental intrinsics

• Transformational functions

• Inquiry functions

The following sections describe each class. The descriptions in “Intrinsic
procedure specifications” on page 487 identify the class of each intrinsic.

Elemental intrinsics
An intrinsic procedure is elemental if it is specified as having scalar
arguments but will actual arguments that are arrays. Calling an
elemental intrinsic with an array argument causes the function to
perform the scalar operation on each element of the array. MVBITS is the
only elemental subroutine. All other intrinsic subroutines are
nonelemental.

An elemental function that is called with all scalar dummy arguments
delivers a scalar result. Calling an elemental function with conformable
array arguments, however, results in a conformable array result. If both
array and scalar arguments are specified to an elemental function, each
scalar is treated as an array in which all elements have the scalar value.
The “scalar array” is conformable with the array arguments.

478 Chapter 11

Intrinsic procedures
Basic terms and concepts

Transformational functions
Transformational intrinsic functions are nonelemental. Such functions
require at least one array argument and return either a scalar or array
result based on actual arguments that cannot be evaluated elementally.
Often, an array result will be of a different shape than the argument(s).
For example, SUM returns a scalar result that represents the sum of all
the elements of the array argument.

Inquiry functions
Inquiry intrinsic functions return information based on the properties of
the principal argument—its value is irrelevant, and the argument need
not be defined. For example, the SIZE inquiry function can be used to
return the extent of an array along one dimension or the total number of
elements in the array.

Optimized intrinsic functions
The following intrinsics are available in millicode versions, which are
optimized for performance. To get access the millicode intrinsics, you
must optimize at level 2 or higher, or compile with the +Olibcalls
option. See the Fortran 90 Programmer’s Guide for information on this.

acos cos pow

asin exp sin

atan log tan

atan2 log10

Chapter 11 479

Intrinsic procedures
Nonstandard intrinsic procedures

Nonstandard intrinsic procedures
HP Fortran 90 supports all intrinsic procedures defined by the
Fortran 90 Standard. In addition, it supports the nonstandard intrinsic
procedures listed in Table 53 on page 485. Like the standard intrinsics,
the nonstandard intrinsics are part of the HP Fortran 90 language: their
recognition is not enabled by compile-line options, and their generic
nature, types, and dummy argument attributes are known to the
compiler.

The nonstandard intrinsics provide:

• Additional functionality not defined in the Standard

• Compatibility with other Fortran 90 implementations

• Specific routines for data types beyond those in the Standard

Both standard and nonstandard intrinsics are described in “Intrinsic
procedure specifications” on page 487.

480 Chapter 11

Intrinsic procedures
Data representation models

Data representation models
The Fortran 90 Standard specifies data representation models that
suggest how data are represented in the computer and how computations
are performed on the data. The computations performed by some Fortran
90 intrinsic functions are described in terms of these models.

There are three data representation models in Fortran 90:

• “The Bit Model” on page 481

• “The Integer Number System Model” on page 482

• “The Real Number System Model” on page 482

In any given implementation, the model parameters are chosen to match
the implementation as closely as possible. However, an exact match is
not required, and the model does not impose any particular arithmetic on
the implementation.

Data representation model intrinsics
Several intrinsic functions provide information about the three data
representation models. These intrinsics are listed in Table 52.

Table 52 Intrinsic functions and data representation models

Intrinsic function Description

“BIT_SIZE(I)” on page 500 Number of bits in an integer of the kind of I (I is an
object, not a kind number)

“DIGITS(X)” on page 510 Base digits of precision in integer or real model for X

“EPSILON(X)” on page 515 Small value compared to 1 in real model for X

“EXPONENT(X)” on page 516 Real model exponent value for X

“FRACTION(X)” on page 517 Real model fraction value for X

“HUGE(X)” on page 519 Largest model number in integer or real model for X

“MAXEXPONENT(X)” on page 547 Maximum exponent value in real model for X

“MINEXPONENT(X)” on page 551 Minimum exponent value in real model for X

Chapter 11 481

Intrinsic procedures
Data representation models

The Bit Model
The bit model interprets a nonnegative scalar data object a of type
integer as a sequence of binary digits (bits), based upon the model:

where n is the number of bits, given by the intrinsic function BIT_SIZE
and each b has a bit value of 0 or 1. The bits are numbered from right to
left beginning with 0.

“NEAREST(X, S)” on page 556 Nearest processor real value

“PRECISION(X)” on page 559 Decimal precision in real model for X

“RADIX(X)” on page 562 Base (radix) in integer or real model for X

“RANGE(X)” on page 564 Decimal exponent range in integer or real model for
X

“RRSPACING(X)” on page 567 1/(relative spacing near X)

“SCALE(X, I)” on page 568 X with real model exponent changed by I

“SET_EXPONENT(X, I)” on
page 571

Set the real model exponent of X to I

“SPACING(X)” on page 575 Absolute spacing near X

“TINY(X)” on page 581 Smallest number in real model for X

Intrinsic function Description

a bk2k

k 0=

n 1–
∑=

482 Chapter 11

Intrinsic procedures
Data representation models

The Integer Number System Model
The integer number system is modeled by:

where

i is the integer value.

s is the sign (+1 or –1).

r is the radix given by the intrinsic function RADIX
(always 2 for HP systems).

q is the number of digits (integer greater than 0), given
by the intrinsic function DIGITS.

d is the kth digit and is an integer 0 <= d< r. The digits
are numbered left to right, beginning with 1.

The Real Number System Model
The real number system is modeled by:

where

x is the real value.

s is the sign (+1 or –1).

b is the base (real radix) and is an integer greater than 1,
given by the intrinsic function RADIX (always 2 for HP
systems).

i s dkrk

k 0=

q 1–
∑=

x sbe fkb k–

k 1=

p
∑=

Chapter 11 483

Intrinsic procedures
Data representation models

e is an integer between some minimum value (lmin) and
maximum value (lmax), given by the intrinsic functions
MINEXPONENT and MAXEXPONENT.

p is the number of mantissa digits and is an integer
greater than 1, given by the intrinsic function DIGITS.

fk is the kth digit and is an integer 0 <= fk < b, but f1 may
be zero only if all the fk are zero. The digits are
numbered left to right, beginning with 1.

484 Chapter 11

Intrinsic procedures
Functional categories of intrinsic procedures

Functional categories of intrinsic
procedures
This section categorizes HP Fortran intrinsic procedures based on their
functionality. The procedures are divided into the following categories:

• Array construction, array inquiry, array location, array
manipulation, array reduction, array reshape

• Bit inquiry, bit manipulation

• Character computation, character inquiry

• Floating-point manipulation, mathematical computation, matrix
multiply, numeric computation, numeric inquiry, and vector multiply

• Kind

• Logical

• Nonstandard intrinsic procedures

• Pointer inquiry

• Presence inquiry

• Pseudorandom number

• Time

• Transfer

A listing of intrinsic procedures, ordered alphabetically by category,
appears in “Intrinsic procedures by category” on page 485. More
complete information on the individual intrinsic procedures is provided
in “Intrinsic procedure specifications” on page 487.

Chapter 11 485

Intrinsic procedures
Functional categories of intrinsic procedures

Table 53 Intrinsic procedures by category

Category Intrinsic routines

Array construction MERGE, PACK, SPREAD, UNPACK

Array inquiry ALLOCATED, LBOUND, SHAPE, SIZE, UBOUND

Array location MAXLOC, MINLOC

Array manipulation CSHIFT, EOSHIFT, TRANSPOSE

Array reduction ALL, ANY, COUNT, MAXVAL, MINVAL, PRODUCT, SUM

Array reshape RESHAPE

Bit inquiry BIT_SIZE

Bit manipulation BTEST, IAND, IBCLR, IBITS, IBSET, IEOR, IOR, ISHFT,
ISHFTC, MVBITS, NOT

Character computation ACHAR, ADJUSTL, ADJUSTR, CHAR, IACHAR, ICHAR, INDEX,
LEN_TRIM, LGE, LGT, LLE, LLT, REPEAT, SCAN, TRIM,
VERIFY

Character inquiry LEN

Floating-point manipulation EXPONENT, FRACTION, NEAREST, RRSPACING, SCALE,
SET_EXPONENT, SPACING

Kind KIND, SELECT_INT_KIND, SELECTED_REAL_KIND

Logical LOGICAL

Mathematical computation ACOS, ASIN, ATAN, ATAN2, COS, COSH, EXP, LOG, LOG10,
SIN, SINH, SQRT, TAN, TANH

Matrix multiply MATMUL

486 Chapter 11

Intrinsic procedures
Functional categories of intrinsic procedures

Nonstandard intrinsic
procedures

ABORT, ACOSD, ACOSH, AND, ASIND, ASINH, ATAN2D, ATAND,
ATANH, BADDRESS, COSD, DATE, DCMPLX, DFLOAT, DNUM,
DREAL, EXIT, FLUSH, FNUM, FREE, FSET, FSTREAM, GETARG,
GETENV, GRAN, HFIX, IACHAR, IADDR, IARGC, IDATE, IDIM,
IGETARG, IJINT, IMAG, INT1, INT2, INT4, INT8, INUM,
IOMSG, IQINT, IRAND, IRANP, ISIGN, ISNAN, IXOR, JNUM,
LOC, LSHFT, LSHIFT, MALLOC, MCLOCK, OR, QEXT, QFLOAT,
QNUM, QPROD, RAN, RAND, RNUM, RSHFT, RSHIFT, SECNDS,
SIND, SIZEOF, SRAND, SYSTEM, TAND, TIME, XOR, ZEXT

Numeric computation ABS, AIMAG, AINT, ANINT, CEILING, CMPLX, CONJG, DBLE,
DIM, DPROD, FLOOR, INT, MAX, MIN, MOD, MODULO, NINT,
REAL, SIGN

Numeric inquiry DIGITS, EPSILON, HUGE, MAXEXPONENTS, MINEXPONENTS,
PRECISION, RADIX, RANGE, TINY

Pointer inquiry ASSOCIATED

Optional argument inquiry PRESENT

Pseudorandom number RANDOM_NUMBER, RANDOM_SEED

Time DATE_AND_TIME, SYSTEM_CLOCK

Transfer TRANSFER

Vector multiply DOT_PRODUCT

Category Intrinsic routines

Chapter 11 487

Intrinsic procedures
Intrinsic procedure specifications

Intrinsic procedure specifications
The following sections describe the HP Fortran intrinsic procedures. The
descriptions are ordered alphabetically, by intrinsic name. All of the
intrinsics are generic. This means that the type, kind, and rank of the
actual arguments can differ for each reference to the same intrinsic. In
many cases, the kind and type of intrinsic function results are the same
as that of the principal argument. For example, the SIN function may be
called with any kind of real argument or any kind of complex argument,
and the result has the type and kind of the argument.

Intrinsic procedure references may use keyword option. The actual
argument expression is preceded by the dummy argument name—the
argument keyword—and the equals sign (=). The argument keywords
are shown in the descriptions.

Some intrinsic procedure’s arguments are optional. Optional arguments
are noted as such in the following descriptions.

488 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

ABORT()

Description Close all files, terminate the program, and cause an exception to create a
core file.

Class Nonstandard subroutine.

ABS(A)

Description Absolute value.

Class Elemental function.

Argument A must be of type integer, real, or complex.

Result type/
type parameters

The same as A except that if A is complex, the result is real.

Result value(s) • If A is of type integer or real, the value of the result is |A|.

• If A is complex with value (x, y), the result is equal to a processor-
dependent approximation to the square root of (x2 + y2).

Specific forms BABS, CABS, CDABS, DABS, HABS, QABS, ZABS.

ACHAR(I)

Description Returns the character in a specified position of the ASCII collating
sequence. It is the inverse of the IACHAR function.

Class Elemental function.

Argument I must be of type integer.

Result type/
type parameters

Character of length one with kind type parameter value KIND(’A’).

Result value If I has a value in the range 0 <= I <= 127, the result is the character in
position I of the ASCII collating sequence, provided the processor is
capable of representing that character; otherwise, the result is processor-
dependent.

Chapter 11 489

Intrinsic procedures
Intrinsic procedure specifications

If the processor is not capable of representing both uppercase and
lowercase letters and I corresponds to a letter in a case that the
processor is not capable of representing, the result is the letter in the
case that the processor is capable of representing.

ACHAR(IACHAR(C)) must have the value C for any character C capable
of representation in the processor.

ACOS(X)

Description Arccosine (inverse cosine) function in radians.

Class Elemental function.

Argument X must be of type real with a value that satisfies the inequality |X| <=
1.

Result type/
type parameters

Same as X.

Result value The result has a value equal to a processor-dependent approximation to
arccos(X), expressed in radians. It lies in the range 0 <= ACOS(X) <= Pi.

Specific forms DCOS, QACOS.

ACOSD(X)

Description Arccosine (inverse cosine) function in degrees.

Class Elemental nonstandard function.

Argument X must be of type real with a value that satisfies the inequality |X| <= 1.

Result type/
type parameters

Same as X.

Result value The result has a value equal to a processor-dependent approximation to
arccos(X), expressed in degrees. It lies in the range 0 <= ACOSD(X) <=
180.

Specific forms DACOSD, QACOSD.

490 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

ACOSH(X)

Description Hyperbolic arccosine of radians.

Class Elemental nonstandard function.

Argument X must be of type real with a value X >= 1.

Result type/
type parameters

Same as X.

Result value The result has a value equal to a processor-dependent approximation to
the hyperbolic arccosine of X. It lies in the range 0 <= ACOSH(X).

Specific forms DACOSH, QACOSH.

ADJUSTL(STRING)

Description Adjust to the left, removing leading blanks and inserting trailing blanks.

Class Elemental function.

Argument STRING must be of type character.

Result type Character of the same length and kind type parameter as STRING.

Result value The value of the result is the same as STRING except that any leading
blanks have been deleted and the same number of trailing blanks have
been inserted.

ADJUSTR(STRING)

Description Adjust to the right, removing trailing blanks and inserting leading
blanks.

Class Elemental function.

Argument STRING must be of type character.

Result type Character of the same length and kind type parameter as STRING.

Chapter 11 491

Intrinsic procedures
Intrinsic procedure specifications

Result value The value of the result is the same as STRING except that any trailing
blanks have been deleted and the same number of leading blanks have
been inserted.

AIMAG(Z)

Description Imaginary part of a complex number.

Class Elemental function.

Argument Z must be of type complex.

Result type/
type parameters

Real with the same kind type parameter as Z.

Result value If Z has the value (x, y), the result has value y.

AINT(A, KIND)

Optional argument KIND

Description Truncation to a whole number.

Class Elemental function.

Arguments A must be of type real.

KIND (optional) must be a scalar integer initialization expression.

Result type/
type parameters

The result is of type real. If KIND is present, the kind type parameter is
that specified by KIND; otherwise, the kind type parameter is that of A.

Result value If |A| < 1, AINT(A) has the value 0; if A >= 1, AINT(A) has a value
equal to the integer whose magnitude is the largest integer that does not
exceed the magnitude of A and whose sign is the same as the sign of A.

Specific forms DDINT,DINT,QINT.

492 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

ALL(MASK, DIM)

Optional argument DIM

Description Determine whether all values are .TRUE. in MASK along dimension DIM.

Class Transformational function.

Arguments MASK must be of type logical. It must not be scalar.

DIM (optional) must be scalar and of type integer with value in the
range 1 <= DIM <= n where n is the rank of MASK. The
corresponding actual argument must not be an optional
dummy argument.

Result type,
 type parameters,
and shape

 The result is of type logical with the same kind type parameter as MASK.
It is scalar if DIM is absent or MASK has rank one; otherwise, the result is
an array of rank n-1 and of shape (d1, d2, ..., dDIM-1, dDIM+1, ..., dn) where
(d1, d2, ..., dn) is the shape of MASK.

Result value Case 1 The result of ALL(MASK) has the value .TRUE. if all
elements of MASK are .TRUE. or if MASK has size zero,
and the result has value .FALSE. if any element of
MASK is .FALSE..

Case 2 If MASK has rank one, ALL(MASK, DIM) has a value
equal to that of ALL(MASK). Otherwise, the value of
element (s1, s2, ..., sDIM-1, sDIM+1, ..., sn) of ALL(MASK,
DIM) is equal to ALL(MASK (s1, s2, ..., sDIM-1, :, sDIM+1,
..., sn)).

Chapter 11 493

Intrinsic procedures
Intrinsic procedure specifications

ALLOCATED(ARRAY)

Description Indicate whether or not an allocatable array is currently allocated.

Class Inquiry function.

Argument ARRAY must be an allocatable array.

Result type,
 type parameters,
and shape

Default logical scalar.

Result value The result has the value .TRUE. if ARRAY is currently allocated and has
the value .FALSE. if ARRAY is not currently allocated. The result is
undefined if the allocation status of the array is undefined.

AND(I, J)

Description Logical AND.

Class Elemental nonstandard function.

Arguments I must be of type integer.

J must be of type integer with the same kind type
parameter as I.

Result type/
type parameters

Same as I.

Result value The result has the value obtained by performing a logical AND on I and J
bit-by-bit according to Table 54.

Table 54 Truth table for AND intrinsic

I J AND(I, J)

1 1 1

494 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

The model for interpreting an integer value as a sequence of bits is
described in “The Bit Model” on page 481.

ANINT(A, KIND)

Optional argument KIND

Description Nearest whole number.

Class Elemental function.

Arguments A must be of type real.

KIND (optional) must be a scalar integer initialization expression.

Result type/
type parameters

The result is of type real. If KIND is present, the kind type parameter is
that specified by KIND; otherwise, the kind type parameter is that of A.

Result value If A>0, ANINT(A) has the value AINT(A+0.5); if A <= 0, ANINT(A) has
the value AINT(A–0.5).

Specific forms DNINT, QNINT.

1 0 0

0 1 0

0 0 1

I J AND(I, J)

Chapter 11 495

Intrinsic procedures
Intrinsic procedure specifications

ANY(MASK, DIM)

Optional argument DIM

Description Determine whether any value is .TRUE. in MASK along dimension DIM.

Class Transformational function.

Arguments MASK must be of type logical. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 <= DIM <= n, where n is the rank of MASK. The
corresponding actual argument must not be an optional
dummy argument.

Result type,
 type parameters,
and shape

The result is of type logical with the same kind type parameter as MASK.
It is scalar if DIM is absent or MASK has rank one; otherwise, the result is
an array of rank n-1 and of shape (d1, d2, ..., dDIM-1, dDIM+1, ..., dn) where
(d1, d2, ..., dn) is the shape of MASK.

Result value Case 1 The result of ANY(MASK) has the value .TRUE. if any
element of MASK is .TRUE. and has the value .FALSE.
if no elements are .TRUE. or if MASK has size zero.

Case 2 If MASK has rank one, ANY(MASK,DIM) has a value
equal to that of ANY(MASK). Otherwise, the value of
element (s1, s2, ..., sDIM-1, sDIM+1, ..., sn) of ANY(MASK,
DIM) is equal to ANY(MASK(s1, s2, ..., sDIM-1, :, sDIM+1,
..., sn)).

496 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

ASIN(X)

Description Arcsine (inverse sine) function in radians.

Class Elemental function.

Argument X must be of type real. Its value must satisfy the inequality |X| >= 1.

Result type/
type parameters

Same as X.

Result value The result has a value equal to a processor-dependent approximation to
arcsin(X), expressed in radians. It lies in the range -Pi/2 <= ASIN(X) <=
Pi/2.

Specific forms DASIN, QASIN.

ASIND(X)

Description Arcsine (inverse sine) function in degrees.

Class Elemental nonstandard function.

Argument X must be of type real. Its value must satisfy the inequality |X| <= 1.

Result type/
type parameters

Same as X.

Result value The result has a value equal to a processor-dependent approximation to
arcsin(X), expressed in degrees. It lies in the range
-90 <= ASIN(X) <= 90.

Specific forms DASIND, QASIND.

Chapter 11 497

Intrinsic procedures
Intrinsic procedure specifications

ASINH(X)

Description Hyperbolic arcsine of radians.

Class Elemental nonstandard function.

Argument X must be of type real.

Result type/
type parameters

Same as X.

Result value The result has a value equal to a processor-dependent approximation to
the hyperbolic arcsine of X.

Specific forms DASINH, QASINH.

ASSOCIATED(POINTER, TARGET)

Optional argument TARGET

Description Returns the association status of its pointer argument or indicates the
pointer is associated with the target.

Class Inquiry function.

Arguments POINTER must be a pointer and may be of any type. Its pointer
association status must not be undefined.

TARGET
(optional) must be a pointer or target. If it is a pointer, its pointer

association status must not be undefined.

Result type The result is scalar of type default logical.

Result value Case 1 If TARGET is absent, the result is .TRUE. if POINTER is
currently associated with a target and .FALSE. if it is
not.

Case 2 If TARGET is present and is a target, the result is
.TRUE. if POINTER is currently associated with
TARGET and .FALSE. if it is not.

498 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

Case 3 If TARGET is present and is a pointer, the result is
.TRUE. if both POINTER and TARGET are currently
associated with the same target, and is .FALSE.
otherwise. If either POINTER or TARGET is
disassociated, the result is .FALSE..

ATAN(X)

Description Arctangent (inverse tangent) function in radians.

Class Elemental function.

Argument X must be of type real.

Result type/
type parameters

Same as X.

Result value The result has a value equal to a processor-dependent approximation to
arctan(X), expressed in radians, that lies in the range -Pi/2 <= ATAN(X)
<= Pi/2.

Specific forms DATAN, QATAN.

ATAN2(Y, X)

Description Arctangent (inverse tangent) function in radians. The result is the
principal value of the argument of the nonzero complex number (X, Y).

Class Elemental function.

Arguments Y must be of type real.

X must be of the same type and kind type parameter as Y.
If Y has the value zero, X must not have the value zero.

Result type/
type parameters

Same as X.

Result value The result has a value equal to a processor-dependent approximation to
the principal value of the argument of the complex number (X, Y),
expressed in radians.

Chapter 11 499

Intrinsic procedures
Intrinsic procedure specifications

The result lies in the range -Pi <= ATAN2(Y, X) <= Pi and is equal to a
processor-dependent approximation to a value of arctan(Y/X) if X is not 0.

If Y>0, the result is positive. If Y=0, the result is zero if X>0 and the
result is Pi if X<0. If Y<0, the result is negative. If X=0, the absolute value
of the result is Pi/2.

Specific forms DATAN2,QATAN2.

ATAN2D(Y, X)

Description Arctangent (inverse tangent) function in degrees.

Class Elemental nonstandard function.

Arguments Y must be of type real.

X must be of the same type and kind type parameter as Y.

Result type/
type parameters

Same as X.

Result value The result has a value equal to a processor-dependent approximation to
the principal value of the argument of the complex number (X, Y),
expressed in degrees, that lies in the range
-90 < ATAN2D(Y,X) < 90.

Specific forms DATAN2D,QATAN2D.

ATAND(X)

Description Arctangent (inverse tangent) function in degrees.

Class Elemental nonstandard function.

Argument X must be of type real.

Result type/
type parameters

Same as X.

500 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

Result value The result has a value equal to a processor-dependent approximation to
arctan(X), expressed in degrees, that lies in the range
-90 < ATAND(X) < 90.

Specific forms DATAND,QATAND.

ATANH(X)

Description Hyperbolic arctangent of radians.

Class Elemental nonstandard function.

Argument X must be of type real.

Result type/
type parameters

Same as X.

Result value The result has a value equal to a processor-dependent approximation to
the hyperbolic arctangent of X.

Specific forms DATANH, QATANH.

BADDRESS(X)

Description Return the address of X.

Class Inquiry nonstandard function.

Argument X may be of any type.

Result type The result is of type default integer.

BIT_SIZE(I)

Description Returns the number of bits n, defined by the model described in “The Bit
Model” on page 481, for integers with the kind parameter of the
argument.

Class Inquiry function.

Chapter 11 501

Intrinsic procedures
Intrinsic procedure specifications

Argument I must be of type integer.

Result type,
 type parameters,
and shape

Scalar integer with the same kind type parameter as I.

Result value The result has the value of the number of bits n in the model integer,
defined for bit manipulation contexts in “The Bit Model” on page 481, for
integers with the kind parameter of the argument.

BTEST(I, POS)

Description Tests a bit of an integer value.

Class Elemental function.

Arguments I must be of type integer.

POS must be of type integer. It must be nonnegative and be
less than BIT_SIZE(I).

Result type The result is of type default logical.

Result value The result has the value .TRUE. if bit POS of I has the value 1 and has
the value .FALSE. if bit POS of I has the value 0. The model for the
interpretation of an integer value as a sequence of bits is described in
“The Bit Model” on page 481.

Specific forms BBTEST, BITEST, BJTEST, BKTEST, HTEST.

CEILING(A)

Description Returns the least integer greater than or equal to its argument.

Class Elemental function.

Argument A must be of type real.

Result type/
type parameters

Default integer.

502 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

Result value The result has a value equal to the least integer greater than or equal to
A. The result is undefined if the processor cannot represent this value in
the default integer type.

CHAR(I, KIND)

Optional argument KIND

Description Returns the character in a given position of the processor collating
sequence associated with the specified kind type parameter. It is the
inverse of the function ICHAR.

Class Elemental function.

Arguments I must be of type integer with a value in the range 0 <= I
<= n-1, where n is the number of characters in the
collating sequence associated with the specified kind
type parameter.

KIND (optional) must be a scalar integer initialization expression.

Result type/
type parameters

Character of length one. If KIND is present, the kind type parameter is
that specified by KIND; otherwise, the kind type parameter is that of
default character type.

Result value The result is the character in position I of the collating sequence
associated with the specified kind type parameter.

ICHAR(CHAR(I, KIND(C))) must have the value I for 0 <= I <= n-1
and CHAR(ICHAR(C), KIND(C)) must have the value C for any
character C capable of representation in the processor.

CMPLX(X, Y, KIND)

Optional arguments Y, KIND

Description Convert to complex type.

Class Elemental function.

Arguments X must be of type integer, real, or complex.

Chapter 11 503

Intrinsic procedures
Intrinsic procedure specifications

Y (optional) must be of type integer or real. It must not be present if
X is of type complex.

KIND (optional) must be a scalar integer initialization expression.

Result type/
type parameters

The result is of type complex. If KIND is present, the kind type parameter
is that specified by KIND; otherwise, the kind type parameter is that of
default real type.

Result value • If Y is absent and X is not complex, it is as if Y were present with the
value zero.

• If Y is absent and X is complex, it is as if Y were present with the
value AIMAG(X).

CMPLX(X,Y,KIND) has the complex value whose real part is
REAL(X,KIND) and whose imaginary part is REAL(Y,KIND).

CONJG(Z)

Description Conjugate of a complex number.

Class Elemental function.

Argument Z must be of type complex.

Result type/
type parameters

Same as Z.

Result value If Z has the value (x, y), the result has the value (x, -y).

Specific forms DCONJG.

COS(X)

Description Cosine function in radians.

Class Elemental function.

Argument X must be of type real or complex.

504 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

Result type/
type parameters

 Same as X.

Result value The result has a value equal to a processor-dependent approximation to
cos(X). If X is of type real, it is regarded as a value in radians. If X is of
type complex, its real part is regarded as a value in radians.

Specific forms CCOS, CDCOS, DCOS, QCOS, ZCOS.

COSD(X)

Description Cosine function in degrees.

Class Elemental nonstandard function.

Argument X must be of type real.

Result type/
type parameters

Same as X.

Result value The result has a value equal to a processor-dependent approximation to
cos(X).

Specific forms DCOSD, QCOSD.

COSH(X)

Description Hyperbolic cosine function.

Class Elemental function.

Argument X must be of type real.

Result type/
type parameters

Same as X.

Result value The result has a value equal to a processor-dependent approximation to
cosh(X).

Specific forms DCOSH, QCOSH.

Chapter 11 505

Intrinsic procedures
Intrinsic procedure specifications

COUNT(MASK, DIM)

Optional argument DIM

Description Count the number of .TRUE. elements of MASK along dimension DIM.

Class Transformational function.

Arguments MASK must be of type logical. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range

1 <= DIM <= n, where n is the rank of MASK. The
corresponding actual argument must not be an optional
dummy argument.

Result type,
type parameters,
and shape

The result is of type default integer. It is scalar if DIM is absent or MASK
has rank one; otherwise, the result is an array of rank n-1 and of shape
(d1, d2, ..., dDIM-1, dDIM+1, ..., dn) where (d1, d2, ..., dn) is the shape of
MASK.

Result value Case 1 The result of COUNT(MASK) has a value equal to the
number of .TRUE. elements of MASK or has the value
zero if MASK has size zero.

Case 2 If MASK has rank one, COUNT(MASK, DIM) has a value
equal to that of COUNT(MASK). Otherwise, the value of
element (s1, s2, ..., sDIM-1, sDIM+1, ..., sn) of
COUNT(MASK, DIM) is equal to COUNT(MASK(s1, s2,
..., sDIM-1, :, sDIM+1, ..., sn)).

Specific forms KCOUNT.

506 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

CSHIFT(ARRAY, SHIFT, DIM)

Optional argument DIM

Description Perform a circular shift on an array expression of rank one, or perform
circular shifts on all the complete rank one sections along a given
dimension of an array expression of rank two or greater.

Elements shifted out at one end of a section are shifted in at the other
end. Different sections may be shifted by different amounts and in
different directions (positive for left shifts, negative for right shifts).

Class Transformational function.

Arguments ARRAY may be of any type. It must not be scalar.

SHIFT must be of type integer and must be scalar if ARRAY has
rank one; otherwise, it must be scalar or of rank n-1
and of shape (d1, d2, ..., dDIM-1, dDIM+1, ..., dn) where
(d1, d2, ..., dn) is the shape of ARRAY.

DIM (optional) must be a scalar and of type integer with a value in the
range 1 <= DIM <= n, where n is the rank of ARRAY. If
DIM is omitted, it is as if it were present with the value
1.

Result type,
type parameters,
and shape

The result is of the type and type parameters of ARRAY, and has the
shape of ARRAY.

Result value Case 1 If ARRAY has rank one, element i of the result is
ARRAY(1 + MODULO(i + SHIFT – 1,
SIZE(ARRAY))).

Case 2 If ARRAY has rank greater than one, section (s1, s2, ...,
sDIM-1, :, sDIM+1,, sn) of the result has a value equal
to CSHIFT(ARRAY(s1, s2, ..., sDIM-1, :, sDIM+1,
...., sn), sh, 1), where sh is SHIFT or SHIFT(s1,
s2, ..., sDIM-1, sDIM+1, ..., sn).

Specific forms KCSHIFT.

Chapter 11 507

Intrinsic procedures
Intrinsic procedure specifications

DATE(DATESTR)

Description Return current system date.

Class Nonstandard subroutine.

Argument DATESTR must be of type character. It must be a character string of
length 9 or more.

DATE_AND_TIME(DATE, TIME, ZONE,
VALUES)

Optional arguments DATE, TIME, ZONE, VALUES

Description Returns data on the real-time clock and date in a form compatible with
the representations defined in ISO 8601:1988 (“Data elements and
interchange formats — Information interchange — Representation of
dates and times”).

Class Subroutine.

Arguments DATE (optional) must be scalar and of type default character, and must
be of length at least 8 in order to contain the complete
value. It is an INTENT(OUT) argument. Its leftmost 8
characters are set to a value of the form CCYYMMDD,
where CC is the century, YY the year within the
century, MM the month within the year, and DD the
day within the month. If there is no date available,
they are set to blank.

TIME (optional) must be scalar and of type default character, and must
be of length at least 10 in order to contain the complete
value. It is an INTENT(OUT) argument. Its leftmost 10
characters are set to a value of the form hhmmss.sss,
where hh is the hour of the day, mm is the minutes of
the hour, and ss.sss is the seconds and milliseconds of
the minute. If there is no clock available, they are set to
blank.

ZONE (optional) must be scalar and of type default character, and must
be of length at least 5 in order to contain the complete
value. It is an INTENT(OUT) argument. Its leftmost 5

508 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

characters are set to a value of the form (+/-)hhmm,
where hh and mm are the time difference with respect
to Coordinated Universal Time (UTC) in hours and
parts of an hour expressed in minutes, respectively. If
there is no clock available, they are set to blank.

VALUES
(optional) must be of type default integer and of rank one. It is an

INTENT(OUT) argument. Its size must be at least 8.
The values returned in VALUES are as follows:

VALUES(1) the year (for example, 1990), or –
HUGE(0) if there is no date available;

VALUES(2) the month of the year, or –HUGE(0) if
there is no date available;

VALUES(3) the day of the month, or –HUGE(0) if
there is no date available;

VALUES(4) the time difference with respect to
Coordinated Universal Time (UTC) in
minutes, or –HUGE(0) if this
information is not available;

VALUES(5) the hour of the day, in the range of 0
to 23, or –HUGE(0) if there is no
clock;

VALUES(6) the minutes of the hour, in the range
0 to 59, or –HUGE(0) if there is no
clock;

VALUES(7) the seconds of the minute, in the
range 0 to 60, or –HUGE(0) if there is
no clock;

VALUES(8) the milliseconds of the second, in the
range 0 to 999, or –HUGE(0) if there
is no clock.

The HUGE intrinsic function is described in “HUGE(X)”
on page 519.

Chapter 11 509

Intrinsic procedures
Intrinsic procedure specifications

DBLE(A)

Description Convert to double precision real type.

Class Elemental function.

Argument A must be of type integer, real, or complex.

Result type/
type parameters

Double precision real.

Result value Case 1 If A is of type double precision real, DBLE(A) = A.

Case 2 If A is of type integer or real, the result is as much
precision of the significant part of A as a double
precision real datum can contain.

Case 3 If A is of type complex, the result is as much precision
of the significant part of the real part of A as a double
precision real datum can contain.

Specific forms DBLEQ.

DCMPLX(X,Y)

Optional argument Y

Description Convert to double precision complex type.

Class Elemental nonstandard function.

Arguments X must be of type integer, real, or complex.

Y must not be supplied if X is of type complex; otherwise
is optional and must be of the same type and kind type
parameter as X.

Result type/
type parameters

Double precision complex.

510 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

DFLOAT(A)

Description Convert to double precision type.

Class Elemental nonstandard function.

Argument A must be of type integer.

Result type/
type parameters

Double precision.

Specific forms DFLOTI, DFLOTJ, DFLOTK.

DIGITS(X)

Description Returns the number of significant digits in the model representing
numbers of the same type and kind type parameter as the argument.

Class Inquiry function.

Argument X must be of type integer or real. It may be scalar or array valued.

Result type,
 type parameters,
and shape

Default integer scalar.

Result value The result has the value q if X is of type integer and p if X is of type real,
where q and p are as defined in “Data representation models” on
page 480 for the model representing numbers of the same type and kind
type parameter as X.

Chapter 11 511

Intrinsic procedures
Intrinsic procedure specifications

DIM(X, Y)

Description The difference X–Y if it is positive; otherwise zero.

Class Elemental function.

Arguments X must be of type integer or real.

Y must be of the same type and kind type parameter as X.

Result type/
type parameters

Same as X.

Result value The value of the result is X–Y if X > Y and zero otherwise.

Specific forms BDIM, DDIM, HDIM, QDIM.

DNUM(I)

Description Convert to double precision.

Class Elemental nonstandard function.

Argument I must be of type character.

Result type Double precision.

DOT_PRODUCT(VECTOR_A, VECTOR_B)

Description Performs dot-product multiplication of numeric or logical vectors.

Class Transformational function.

Arguments VECTOR_A must be of numeric type (integer, real, or complex) or of
logical type. It must be array valued and of rank one.

VECTOR_B must be of numeric type if VECTOR_A is of numeric type
or of type logical if VECTOR_A is of type logical. It must
be array valued and of rank one. It must be of the same
size as VECTOR_A.

512 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

Result type,
 type parameters,
and shape

The result is scalar.

If the arguments are of numeric type, the type and kind type parameter
of the result are those of the expression VECTOR_A * VECTOR_B
determined by the types of the arguments.

If the arguments are of type logical, the result is of type logical with the
kind type parameter of the expression VECTOR_A .AND. VECTOR_B.

Result value Case 1 If VECTOR_A is of type integer or real, the result has
the value SUM(VECTOR_A*VECTOR_B). If the vectors
have size zero, the result has the value zero.

Case 2 If VECTOR_A is of type complex, the result has the
value SUM(CONJG(VECTOR_A)*VECTOR_B). If the
vectors have size zero, the result has the value zero.

Case 3 If VECTOR_A is of type logical, the result has the value
ANY(VECTOR_A .AND. VECTOR_B). If the vectors
have size zero, the result has the value .FALSE..

DPROD(X, Y)

Description Double precision real product.

Class Elemental function.

Arguments X must be of type default real.

Y must be of type default real.

Result type/
type parameters

Double precision real.

Result value The result has a value equal to a processor-dependent approximation to
the product of X and Y.

Chapter 11 513

Intrinsic procedures
Intrinsic procedure specifications

DREAL(A)

Description Convert to double precision.

Class Elemental nonstandard function.

Argument A must be of type integer, real, or complex.

Result Double precision.

EOSHIFT(ARRAY, SHIFT, BOUNDARY, DIM)

Optional arguments BOUNDARY, DIM

Description Perform an end-off shift on an array expression of rank one or perform
end-off shifts on all the complete rank-one sections along a given
dimension of an array expression of rank two or greater.

Elements are shifted off at one end of a section and copies of a boundary
value are shifted in at the other end.

Different sections may have different boundary values and may be
shifted by different amounts and in different directions (positive for left
shifts, negative for right shifts).

Class Transformational function.

Arguments ARRAY

may be of any type. It must not be scalar.
SHIFT

must be of type integer and must be scalar if ARRAY has
rank one; otherwise, it must be scalar or of rank n-1
and of shape (d1, d2, ..., dDIM-1, dDIM+1, ..., dn) where
(d1, d2, ..., dn) is the shape of ARRAY.

BOUNDARY (optional)
must be of the same type and type parameters as
ARRAY and must be scalar if ARRAY has rank one;
otherwise, it must be either scalar or of rank n-1 and of
shape (d1, d2, ..., dDIM-1, dDIM+1, ..., dn). BOUNDARY may
be omitted for the data types listed in Table 55, which
lists the default values of BOUNDARY for each data type.

514 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

Table 55 Default values for the BOUNDARY argument

DIM (optional) must be scalar and of type integer with a value in the
range 1 <= DIM <= n, where n is the rank of ARRAY. If
DIM is omitted, it is as if it were present with the value
1.

Result type,
type parameters,
and shape

The result has the type, type parameters, and shape of ARRAY.

Result value Element (s1, s1, ..., sn) of the result has the value ARRAY (s1, s2, ..., sDIM-1,
sDIM + sh, sDIM+1, ..., sn) where sh is SHIFT or SHIFT(s1, s2, ..., sDIM-1,
sDIM+1, ..., sn) provided the inequality LBOUND(ARRAY, DIM) <= sDIM +
sh <= UBOUND(ARRAY, DIM) holds and is otherwise BOUNDARY or
BOUNDARY(s1, s2, ..., sDIM-1, sDIM+1, ..., sn).

Specific forms KEOSHIFT.

Data type of ARRAY Default value of BOUNDARY

Integer 0

Real 0.0

Complex (0.0, 0.0)

Logical .FALSE.

Character (len) len blanks

Chapter 11 515

Intrinsic procedures
Intrinsic procedure specifications

EPSILON(X)

Description Returns a positive model number that is almost negligible compared to
unity in the model representing numbers of the same type and kind type
parameter as the argument.

Class Inquiry function.

Argument X must be of type real. It may be scalar or array valued.

Result type,
type parameters, and
shape

Scalar of the same type and kind type parameter as X.

Result value The result has the value b1-p where b and p are as defined in “The Real
Number System Model” on page 482 for the model representing numbers
of the same type and kind type parameter as X.

EXIT(STATUS)

Optional argument STATUS

Description Close all files and terminate the program.

Class Nonstandard subroutine.

Argument STATUS must be of type integer.

If STATUS is supplied, the calling program exits with a return code status
of STATUS. Otherwise the return code status is indeterminate.

In csh the $status environment variable holds the return code for the
last executed command. In ksh, the $? environment variable holds the
return code.

516 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

EXP(X)

Description Exponential.

Class Elemental function.

Argument X must be of type real or complex.

Result type/
type parameters

Same as X.

Result value The result has a value equal to a processor-dependent approximation to
ex. If X is of type complex, its imaginary part is regarded as a value in
radians.

Specific forms CEXP,CDEXP, DEXP, QEXP,ZEXP.

EXPONENT(X)

Description Returns the exponent part of the argument when represented as a model
number.

Class Elemental function.

Argument X must be of type real.

Result type Default integer.

Result value The result has a value equal to the exponent e of the model
representation (see “The Real Number System Model” on page 482) for
the value of X, provided X is nonzero and e is within the range for default
integers. The result is undefined if the processor cannot represent e in
the default integer type. EXPONENT(X) has the value zero if X is zero.

Chapter 11 517

Intrinsic procedures
Intrinsic procedure specifications

FLOOR(A)

Description Returns the greatest integer less than or equal to its argument.

Class Elemental function.

Argument A must be of type real.

Result type/
type parameters

Default integer.

Result value The result has a value equal to the greatest integer less than or equal to
A. The result is undefined if the processor cannot represent this value in
the default integer type.

FLUSH(LUNIT)

Description Flush pending I/O on a logical unit.

Class Nonstandard subroutine.

FNUM(UNIT)

Description Get an operating system file descriptor.

Class Inquiry nonstandard function.

FRACTION(X)

Description Returns the fractional part of the model representation of the argument
value.

Class Elemental function.

Argument X must be of type real.

Result type/
type parameters

 Same as X.

518 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

Result value The result has the value X * b-e, where b and e are as defined in “The
Real Number System Model” on page 482. If X has the value zero, the
result has the value zero.

FREE(P)

Description Free a block of memory.

Class Nonstandard subroutine.

FSET(UNIT, NEWFD, OLDFD)

Description Attach a system file descriptor to a logical unit.

Class Nonstandard subroutine.

FSTREAM(UNIT)

Description Retrieve a C language FILE stream pointer.

Class Inquiry nonstandard function.

GETARG(N, STRING)

Description Get the arguments passed to the program.

Class Nonstandard subroutine.

Arguments N must be of type integer. N specifies which command-
line argument is requested. When N=1, it returns the
program name. When N=0, it returns all blanks.

STRING must be a character variable. It is assigned the
requested command-line argument, padded with
blanks on the end. If the requested argument is longer
than STRING, a truncated version is assigned to
STRING.

Chapter 11 519

Intrinsic procedures
Intrinsic procedure specifications

GETENV(VAR, VALUE)

Description Return the value of a system environment variable.

Class Nonstandard subroutine.

Arguments VAR and VALUE are of type character. VAR specifies the environment
variable name. The character variable VALUE is assigned the
environment variable’s value. VALUE must be declared large enough to
hold the value. If the environment variable is not defined VALUE is set to
all blanks.

GRAN()

Description Generate Gaussian normal random numbers.

Class Elemental nonstandard function.

Result REAL(4). The numbers generated by GRAN have a mean of 0.0, a
standard deviation of 1.0, and a range of approximately -5.0 through
+5.0.

HFIX(A)

Description Convert to INTEGER(2) type.

Class Elemental nonstandard function.

Argument A must be of type integer, real, double precision, or complex.

Result INTEGER(2) type.

HUGE(X)

Description Returns the largest number in the model representing numbers of the
same type and kind type parameter as the argument.

Class Inquiry function.

Argument X must be of type integer or real. It may be scalar or array valued.

520 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

Result type,
type parameters,
and shape

Scalar of the same type and kind type parameter as X.

Result value The result has the value rq - 1 if X is of type integer and

(1 - b-p) b ** emax

if X is of type real, where r, q, b, p, and emax are as defined in “The Real
Number System Model” on page 482.

IACHAR(C)

Description Returns the position of a character in the ASCII collating sequence.

Class Elemental function.

Argument C must be of type default character and of length one.

Result type/
type parameters

Default integer.

Result value If C is in the collating sequence defined by the codes specified in ISO
646:1983 (“Information technology — ISO 7-bit coded character set for
information interchange”), the result is the position of C in that sequence
and satisfies the inequality (0 <= IACHAR(C) <= 127).

A processor-dependent value is returned if C is not in the ASCII collating
sequence. The results are consistent with the LGE, LGT, LLE, and LLT
lexical comparison functions. For example, if LLE(C, D) is .TRUE.,
IACHAR(C) .LE. IACHAR(D) is .TRUE. where C and D are any two
characters representable by the processor.

IADDR(X)

Description Return the address of X.

Class Inquiry nonstandard function.

Argument X may be of any type.

Result type The result is of type default integer.

Chapter 11 521

Intrinsic procedures
Intrinsic procedure specifications

See “BADDRESS(X)” on page 500 for examples.

IAND(I, J)

Description Performs a bitwise logical AND.

Class Elemental function.

Arguments I must be of type integer.

J must be of type integer with the same kind type
parameter as I.

Result type/
type parameters

Same as I.

Result value The result has the value obtained by combining I and J bit-by-bit
according to Table 56.

Table 56 Truth table for IAND intrinsic

The model for the interpretation of an integer value as a sequence of bits
is in “The Bit Model” on page 481.

Specific forms BIAND, HIAND, IIAND, JIAND, KIAND.

 I J IAND(I, J)

1 1 1

1 0 0

0 1 0

0 0 0

522 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

IARGC()

Description Get the number of arguments passed to the program.

Class Elemental nonstandard function.

Result type Integer.

Result value If no arguments are passed to the program, IARGC returns zero.
Otherwise IARGC returns a count of the arguments that follow the
program name on the command line.

IBCLR(I, POS)

Description Clears a bit to zero.

Class Elemental function.

Arguments I must be of type integer.

POS must be of type integer. It must be nonnegative and
less than BIT_SIZE(I).

Result type/
type parameters

Same as I.

Result value The result has the value of the sequence of bits of I, except that bit POS
of I is set to zero. The model for the interpretation of an integer value as
a sequence of bits is in “The Bit Model” on page 481.

Specific forms BBCLR, HBCLR, IIBCLR, JIBCLR, KIBCLR.

Chapter 11 523

Intrinsic procedures
Intrinsic procedure specifications

IBITS(I, POS, LEN)

Description Extracts a sequence of bits.

Class Elemental function.

Arguments I must be of type integer.

POS must be of type integer. It must be nonnegative and
POS + LEN must be less than or equal to
BIT_SIZE(I).

LEN must be of type integer and nonnegative.

Result type/
type parameters

 Same as I.

Result value The result has the value of the sequence of LEN bits in I beginning at bit
POS, right-adjusted and with all other bits zero. The model for the
interpretation of an integer value as a sequence of bits is in “The Bit
Model” on page 481.

Specific forms BBITS, HBITS, IIBITS, JIBITS, KIBITS.

IBSET(I, POS)

Description Sets a bit to one.

Class Elemental function.

Arguments I must be of type integer.

POS must be of type integer. It must be nonnegative and
less than BIT_SIZE(I).

Result type/
type parameters

Same as I.

Result value The result has the value of the sequence of bits of I, except that bit POS
of I is set to one. The model for the interpretation of an integer value as
a sequence of bits is in “The Bit Model” on page 481.

Specific forms HBSET, IIBSET,JIBSET,KIBSET.

524 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

ICHAR(C)

Description Returns the position of a character in the processor collating sequence
associated with the kind type parameter of the character.

Class Elemental function.

Argument C must be of type character and of length one. Its value must be that of a
character capable of representation in the processor.

Result type/
type parameters

Default integer.

Result value The result is the position of C in the processor collating sequence
associated with the kind type parameter of C and is in the range 0 <=
IACHAR(C) <n-1, where n is the number of characters in the collating
sequence.

For any characters C and D capable of representation in the processor,
C.LE.D is .TRUE. if and only if ICHAR(C) .LE. ICHAR(D) is .TRUE.,
and C.EQ.D is .TRUE. if and only if ICHAR(C).EQ. ICHAR(D) is
.TRUE..

IDATE(MONTH, DAY, YEAR)

Description Return the month, day, and year of current system.

Class Nonstandard subroutine.

Arguments MONTH, DAY, and YEAR must be of type integer.

Chapter 11 525

Intrinsic procedures
Intrinsic procedure specifications

IDIM(X, Y)

Description Integer positive difference.

Class Nonstandard function.

Arguments X must be of type integer.

Y must be of type integer with the same kind type
parameter as X.

Result type/
type parameters

Integer of same kind type parameter as X.

Result value If X > Y, IDIM(X, Y) is X-Y. If X <= Y, IDIM(X, Y) is zero.

Specific forms IIDIM,JIDIM. KIDIM.

IEOR(I, J)

Description Performs a bitwise exclusive OR.

Class Elemental function.

Arguments I must be of type integer.

J must be of type integer with the same kind type
parameter as I.

Result type/
type parameters

Same as I.

Result value The result has the value obtained by combining I and J bit-by-bit
according to Table 57.

526 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

Table 57 Truth table for IEOR intrinsic

The model for the interpretation of an integer value as a sequence of bits
is in “The Bit Model” on page 481.

Specific forms BIEOR, HIEOR, IIEOR, JIEOR, KIEOR.

IGETARG(N, STR, STRLEN)

Description Get command-line argument.

Class Inquiry nonstandard function.

Arguments N must be of type integer. N specifies which command-
line argument is requested. When N=0, it returns the
program name.

STR must be a character variable. It is assigned first
STRLEN characters of the requested command-line
argument, padded with blanks on the end. If the
requested argument is longer than STR, a truncated
version is assigned to STR.

STRLEN must be of type integer. STRLEN specifies the number
of characters of argument N to assign to STR.

Result value IGETARG returns an integer value, either -1 if the requested argument
was not found, or a positive integer that indicates the number of
characters copied from the command line to STR.

I J IEOR(I, J)

1 1 0

1 0 1

0 1 1

0 0 0

Chapter 11 527

Intrinsic procedures
Intrinsic procedure specifications

IJINT(A)

Description Convert to INTEGER(2) type.

Class Elemental nonstandard function.

Argument A must be of type INTEGER(4).

Result INTEGER(2) type.

IMAG(A)

Description Imaginary part of complex number.

Class Elemental nonstandard function.

Argument A must be of type complex or double complex.

Result Real if A is complex. Double precision if A is double complex.

INDEX(STRING, SUBSTRING, BACK)

Optional argument BACK

Description Returns the starting position of a substring within a string.

Class Elemental function.

Arguments STRING must be of type character.

SUBSTRING must be of type character with the same kind type
parameter as STRING.

BACK (optional) must be of type logical.

Result type/
type parameters

Default integer.

Result value Case 1 If BACK is absent or present with the value .FALSE.,
the result is the minimum positive value of I such that
STRING(I : I + LEN(SUBSTRING) – 1) =
SUBSTRING or zero if there is no such value.

528 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

Zero is returned if LEN(STRING) < LEN(SUBSTRING)
and one is returned if LEN(SUBSTRING) = 0.

Case 2 If BACK is present with the value .TRUE., the result is
the maximum value of I less than or equal to
LEN(STRING) – LEN(SUBSTRING) + 1 such that
STRING(I : I + LEN(SUBSTRING) – 1) =
SUBSTRING or zero if there is no such value.

Zero is returned if LEN(STRING) < LEN(SUBSTRING)
and LEN(STRING) + 1 is returned if LEN(SUBSTRING)
= 0.

Specific forms KINDEX.

INT(A, KIND)

Optional argument KIND

Description Convert to integer type.

Class Elemental function.

Arguments A must be of type integer, real, or complex.

KIND (optional) must be a scalar integer initialization expression.

Result type/
type parameters

Integer. If KIND is present, the kind type parameter is that specified by
KIND; otherwise, the kind type parameter is that of default integer type.

Result value Case 1 If A is of type integer, INT(A) = A.

Case 2 If A is of type real, there are two cases: if |A| < 1,
INT(A) has the value 0; if |A| >= 1, INT(A) is the
integer whose magnitude is the largest integer that
does not exceed the magnitude of A and whose sign is
the same as the sign of A.

Case 3 If A is of type complex, INT(A) is the value obtained by
applying the above rules (for reals) to the real part of A.
The result is undefined if the processor cannot
represent the result in the specified integer type.

Specific forms IFIX, IIFIX, IINT, JIFIX, JINT, KIFIX, KINT.

Chapter 11 529

Intrinsic procedures
Intrinsic procedure specifications

INT1(A)

Description Convert to INTEGER(1) type.

Class Elemental nonstandard function.

Argument A must be of type integer, real, or complex.

Result INTEGER(1) type. If A is complex, INT1(A) is equal to the truncated
real portion of A.

INT2(A)

Description Convert to INTEGER(2) type.

Class Elemental nonstandard function.

Argument A must be of type integer, real, or complex.

Result INTEGER(2) type. If A is complex, INT2(A) is equal to the truncated
real portion of A.

INT4(A)

Description Convert to INTEGER(4) type.

Class Elemental nonstandard function.

Argument A must be of type integer, real, or complex.

Result INTEGER(4) type. If A is complex, INT4(A) is equal to the truncated
real portion of A.

530 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

INT8(A)

Description Convert to INTEGER(8) type.

Class Elemental nonstandard function.

Argument A must be of type integer, real, or complex.

Result INTEGER(8) type. If A is complex, INT8(A) is equal to the truncated
real portion of A.

Specific forms IDINT.

INUM(I)

Description Convert character to INTEGER(2) type.

Class Elemental nonstandard function.

Argument I must be of type character.

Result INTEGER(2) type.

IOMSG(N, MSG)

Description Print the text for an I/O message.

Class Nonstandard subroutine.

IOR(I, J)

Description Performs a bitwise inclusive OR.

Class Elemental function.

Arguments I must be of type integer.

J must be of type integer with the same kind type
parameter as I.

Chapter 11 531

Intrinsic procedures
Intrinsic procedure specifications

Result type/
type parameters

Same as I.

Result value The result has the value obtained by combining I and J bit-by-bit
according to Table 58.

Table 58 Truth table for IOR intrinsic

The model for the interpretation of an integer value as a sequence of bits
is in “The Bit Model” on page 481.

Specific forms BIOR, HIOR, IIOR, JIOR, KIOR

IQINT(A)

Description Convert to integer type.

Class Elemental nonstandard function.

Argument A must be of type REAL(16).

Result Integer type.

Specific forms IIQINT, JIQINT,KIQINT.

I J IOR(I, J)

1 1 1

1 0 1

0 1 1

0 0 0

532 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

IRAND()

Description Generate pseudorandom numbers.

Class Elemental nonstandard function.

Result type/
type parameters

INTEGER(4) type.

Result value RAND generates numbers in the range 0 through 215-1.

NOTE For details about restarting the pseudorandom number generator used by
IRAND and RAND, see “SRAND(ISEED)” on page 577.

IRANP(X)

Description Generate Poisson-distributed random numbers.

Class Elemental nonstandard function.

Argument X must be of REAL(4) type and must be in the range 0.0 through 87.33.
For better performance, it is recommended that X be less than 50.0 (see
“Result value” below).

Result type/
type parameters

INTEGER(4) type.

Result value IRANP returns an error code of -1 if X <= 0.0.

IRANP returns an error code of -2 if X > 87.33.

IRANP calculates exponentially distributed random numbers until the
product is less than exp(-X). The random number returned by IRANP is
the number of exponentials needed, minus 1. IRANP makes an average of
X+1 calls to RAND, so it is recommended that X be less than 50.

Chapter 11 533

Intrinsic procedures
Intrinsic procedure specifications

ISHFT(I, SHIFT)

Description Performs a logical shift.

Class Elemental function.

Arguments I must be of type integer.

SHIFT must be of type integer. The absolute value of SHIFT
must be less than or equal to BIT_SIZE(I).

Result type/
type parameters

 Same as I.

Result value The result has the value obtained by shifting the bits of I by SHIFT
positions.

If SHIFT is positive, the shift is to the left; if SHIFT is negative, the shift
is to the right; and if SHIFT is zero, no shift is performed. Bits shifted out
from the left or from the right, as appropriate, are lost. Zeros are shifted
in from the opposite end.

The model for the interpretation of an integer value as a sequence of bits
is described in “The Bit Model” on page 481.

Specific forms BSHFT, HSHFT, IISHFT, JISHFT, KISHFT.

ISHFTC(I, SHIFT, SIZE)

Optional argument SIZE

Description Performs a circular shift of the rightmost bits.

Class Elemental function.

Arguments I must be of type integer.

SHIFT must be of type integer. The absolute value of SHIFT
must be less than or equal to SIZE.

SIZE (optional) must be of type integer. The value of SIZE must be
positive and must not exceed BIT_SIZE(I). If SIZE is
absent, it is as if it were present with the value of
BIT_SIZE(I).

534 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

Result type/
type parameters

 Same as I.

Result value The result has the value obtained by shifting the SIZE rightmost bits of
I circularly by SHIFT positions.

If SHIFT is positive, the shift is to the left; if SHIFT is negative, the shift
is to the right; and if SHIFT is zero, no shift is performed. No bits are
lost. The unshifted bits are unaltered.

The model for the interpretation of an integer value as a sequence of bits
is described in “The Bit Model” on page 481.

Specific forms HSHFTC,ISHFTC, JISHFTC, KISHFTC.

ISIGN(A, B)

Description Absolute value of A times the sign of B.

Class Elemental nonstandard function.

Arguments A must be of type integer.

B must be of type integer with the same kind type
parameter as A.

Result type/
type parameters

 Same as A.

Result value The value of the result is |A| if B>= 0 and -|A| if B < 0.

ISNAN(X)

Description Determine if a value is NaN (not a number).

Class Elemental nonstandard function.

Argument X must be of type real.

Result type Logical.

Chapter 11 535

Intrinsic procedures
Intrinsic procedure specifications

IXOR(I, J)

Description Exclusive OR.

Class Elemental nonstandard function.

Arguments I must be of type integer.

J must be of type integer with the same kind type
parameter as I.

Result type/
type parameters

Same as I.

Result value The result has the value obtained by performing an exclusive OR on I
and J bit-by-bit according to Table 59.

Table 59 Truth table for IXOR intrinsic

The model for interpreting an integer value as a sequence of bits is
described in “The Bit Model” on page 481.

Specific forms BIXOR, HIXOR, IIXOR, JIXOR.

I J IXOR(I, J)

1 1 0

1 0 1

0 1 1

0 0 0

536 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

IZEXT(A)

Description Zero extend.

Class Generic elemental nonstandard function.

Argument A must be of type INTEGER(1), INTEGER(2),
LOGICAL(1), or LOGICAL(2).

Result type/
type parameters

The result is of type INTEGER(2).

Result IZEXT converts A to INTEGER(2) by sign-extending zeroes instead of the
actual sign bit.

JNUM(I)

Description Convert character to integer type.

Class Elemental nonstandard function.

Argument I must be of type character.

Result Integer type.

JZEXT(A)

Description Zero extend.

Class Generic elemental nonstandard function.

Argument A must be of type INTEGER(1), INTEGER(2),
INTEGER(4), LOGICAL(1), LOGICAL(2), or
LOGICAL(4).

Result type/
type parameters

The result is of type INTEGER(4).

Result JZEXT converts A to INTEGER(4) by sign-extending zeroes instead of the
actual sign bit.

Chapter 11 537

Intrinsic procedures
Intrinsic procedure specifications

KIND(X)

Description Returns the value of the kind type parameter of X.

Class Inquiry function.

Argument X may be of any intrinsic type.

Result type,
type parameters,
and shape

 Default integer scalar.

Result value The result has a value equal to the kind type parameter value of X.

KZEXT(A)

Description Zero extend.

Class Generic elemental nonstandard function.

Argument A must be of type INTEGER(1), INTEGER(2),
INTEGER(4), INTEGER(8), LOGICAL(1),
LOGICAL(2), LOGICAL(4), or LOGICAL(8).

Result type/
type parameters

The result is of type INTEGER(8).

Result KZEXT converts A to INTEGER(8) by sign-extending zeroes instead of the
actual sign bit.

538 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

LBOUND(ARRAY, DIM)

Optional argument DIM

Description Returns all the lower bounds or a specified lower bound of an array.

Class Inquiry function.

Arguments ARRAY may be of any type. It must not be scalar. It must not
be a pointer that is disassociated or an allocatable
array that is not allocated.

DIM (optional) must be scalar and of type integer with a value in the
range 1 <= DIM <= n, where n is the rank of ARRAY. The
corresponding actual argument must not be an optional
dummy argument.

Result type,
type parameters,
and shape

The result is of type default integer. It is scalar if DIM is present;
otherwise, the result is an array of rank one and size n, where n is the
rank of ARRAY.

Result value Case 1 For an array section or for an array expression other
than a whole array or array structure component,
LBOUND(ARRAY, DIM) has the value 1. For a whole
array or array structure component, LBOUND(ARRAY,
DIM) has the value:

• equal to the lower bound for subscript DIM of ARRAY
if dimension DIM of ARRAY does not have extent zero
or if ARRAY is an assumed-size array of rank DIM

or

• one (1), otherwise.

Case 2 LBOUND(ARRAY) has a value whose ith component is
equal to LBOUND(ARRAY, i), for i= 1, 2, ..., n, where n
is the rank of ARRAY.

Specific forms KLBOUND.

Chapter 11 539

Intrinsic procedures
Intrinsic procedure specifications

LEN(STRING)

Description Returns the length of a character entity.

Class Inquiry function.

Argument STRING must be of type character. It may be scalar or array valued.

Result type,
type parameters,
and shape

Default integer scalar.

Result value The result has a value equal to the number of characters in STRING if it
is scalar or in an element of STRING if it is array valued.

Specific forms KLEN.

LEN_TRIM(STRING)

Description Returns the length of the character argument without counting trailing
blank characters.

Class Elemental function.

Argument STRING must be of type character.

Result type/
type parameter

Default integer.

Result value The result has a value equal to the number of characters remaining after
any trailing blanks in STRING are removed. If the argument contains no
nonblank characters, the result is zero.

Specific forms KLEN_TRIM.

540 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

LGE(STRING_A, STRING_B)

Description Tests whether a string is lexically greater than or equal to another
string, based on the ASCII collating sequence.

Class Elemental function.

Arguments STRING_A must be of type default character.

STRING_B must be of type default character.

Result type/
type parameters

Default logical.

Result value If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks to the length of the
longer string.

If either string contains a character not in the ASCII character set, the
result is processor dependent.

The result is .TRUE. if the strings are equal or if STRING_A follows
STRING_B in the ASCII collating sequence; otherwise, the result is
.FALSE. Note that the result is .TRUE. if both STRING_A and
STRING_B are of zero length.

LGT(STRING_A, STRING_B)

Description Tests whether a string is lexically greater than another string, based on
the ASCII collating sequence.

Class Elemental function.

Arguments STRING_A must be of type default character.

STRING_B must be of type default character.

Result type/
type parameters

Default logical.

Result value If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks to the length of the
longer string.

Chapter 11 541

Intrinsic procedures
Intrinsic procedure specifications

If either string contains a character not in the ASCII character set, the
result is processor-dependent.

The result is .TRUE. if STRING_A follows STRING_B in the ASCII
collating sequence; otherwise, the result is .FALSE.. Note that the result
is .FALSE. if both STRING_A and STRING_B are of zero length.

LLE(STRING_A, STRING_B)

Description Tests whether a string is lexically less than or equal to another string,
based on the ASCII collating sequence.

Class Elemental function.

Arguments STRING_A must be of type default character.

STRING_B must be of type default character.

Result type/
type parameters

Default logical.

Result value If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks to the length of the
longer string.

If either string contains a character not in the ASCII character set, the
result is processor dependent.

The result is .TRUE. if the strings are equal or if STRING_A precedes
STRING_B in the ASCII collating sequence; otherwise, the result is
.FALSE.. Note that the result is .TRUE. if both STRING_A and
STRING_B are of zero length.

542 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

LLT(STRING_A, STRING_B)

Description Tests whether a string is lexically less than another string, based on the
ASCII collating sequence.

Class Elemental function.

Arguments STRING_A must be of type default character.

STRING_B must be of type default character.

Result type/
type parameters

Default logical.

Result value If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks to the length of the
longer string.

If either string contains a character not in the ASCII character set, the
result is processor-dependent.

The result is .TRUE. if STRING_A precedes STRING_B in the ASCII
collating sequence; otherwise, the result is .FALSE.. Note that the result
is .FALSE. if both STRING_A and STRING_B are of zero length.

LOC(X)

Description Return the address of the argument.

Class Inquiry nonstandard function.

Chapter 11 543

Intrinsic procedures
Intrinsic procedure specifications

LOG(X)

Description Natural logarithm.

Class Elemental function.

Argument X must be of type real or complex. If X is real, its value must be greater
than zero. If X is complex, its value must not be zero.

Result type/
type parameters

Same as X.

Result value The result has a value equal to a processor-dependent approximation to
logex. A result of type complex is the principal value with imaginary part
w in the range -Pi < w <= Pi. The imaginary part of the result is Pi only
when the real part of the argument is less than zero and the imaginary
part of the argument is zero.

Specific forms ALOG, CDLOG, CLOG, DLOG, QLOG, ZLOG.

LOG10(X)

Description Common logarithm.

Class Elemental function.

Argument X must be of type real. The value of X must be greater than zero.

Result type/
type parameters

Same as X.

Result value The result has a value equal to a processor-dependent approximation to
log10X.

Specific forms ALOG10, DLOG10, QLOG10.

544 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

LOGICAL(L, KIND)

Optional argument KIND

Description Converts between kinds of logical.

Class Elemental function.

Arguments L must be of type logical.

KIND (optional) must be a scalar integer initialization expression.

Result type/
type parameters

Logical. If KIND is present, the kind type parameter is that specified by
KIND; otherwise, the kind type parameter is that of default logical.

Result value The value is that of L.

LSHFT(I, SHIFT)

Description Left shift.

Class Elemental nonstandard function.

LSHIFT(I, SHIFT)

Description Left shift.

Class Elemental nonstandard function.

MALLOC(SIZE)

Description Allocate a block of memory.

Class Transformational nonstandard function.

Chapter 11 545

Intrinsic procedures
Intrinsic procedure specifications

MATMUL(MATRIX_A, MATRIX_B)

Description Performs matrix multiplication of numeric or logical matrices.

Class Transformational function.

Arguments MATRIX_A must be of numeric type (integer, real, or complex) or of
logical type. It must be array valued and of rank one or
two.

MATRIX_B must be of numeric type if MATRIX_A is of numeric type
and of logical type if MATRIX_A is of logical type. It
must be array valued and of rank one or two.

If MATRIX_A has rank one, MATRIX_B must have rank
two. If MATRIX_B has rank one, MATRIX_A must have
rank two. The size of the first (or only) dimension of
MATRIX_B must equal the size of the last (or only)
dimension of MATRIX_A.

Result type,
type parameters,
and shape

If the arguments are of numeric type, the type and kind type parameter
of the result are determined by the types of MATRIX_A and MATRIX_B.

If the arguments are of type logical, the result is of type logical with the
kind type parameter of the arguments.

The shape of the result depends on the shapes of the arguments as
follows:

Case 1 If MATRIX_A has shape [n, m] and MATRIX_B has shape
[m, k], the result has shape [n, k].

Case 2 If MATRIX_A has shape [m] and MATRIX_B has shape
[m, k], the result has shape [k].

Case 3 If MATRIX_A has shape [n, m] and MATRIX_B has shape
[m], the result has shape [n].

Result value Case 1 Element (i, j) of the result has the value
SUM(MATRIX_A(i,:) * MATRIX_B(:, j)) if the
arguments are of numeric type and has the value
ANY(MATRIX_A(i, :) .AND. MATRIX_B(:, j)) if
the arguments are of logical type.

546 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

Case 2 Element (j) of the result has the value
SUM(MATRIX_A(:) * MATRIX_B(:, j)) if the
arguments are of numeric type and has the value
ANY(MATRIX_A(:) .AND. MATRIX_B(:, j)) if the
arguments are of logical type.

Case 3 Element (i) of the result has the value
SUM(MATRIX_A(i, :) * MATRIX_B(:)) if the
arguments are of numeric type and has the value
ANY(MATRIX_A(i, :) .AND. MATRIX_B(:)) if the
arguments are of logical type.

MAX(A1, A2, A3, ...)

Optional arguments A3, ...

Description Maximum value.

Class Elemental function.

Arguments The arguments must all have the same type which must be integer or
real, and they must all have the same kind type parameter.

Result type/
type parameters

Same as the arguments.

Result value The value of the result is that of the largest argument.

Specific forms AIMAX0,AJMAX0, AKMAX0, AMAX0, AMAX1, DMAX1, IMAX0, IMAX1, JMAX0,
JMAX1, KMAX0, KMAX1, MAX0, MAX1, QMAX1.

Chapter 11 547

Intrinsic procedures
Intrinsic procedure specifications

MAXEXPONENT(X)

Description Returns the maximum exponent in the model representing numbers of
the same type and kind type parameter as the argument.

Class Inquiry function.

Argument X must be of type real. It may be scalar or array valued.

Result type,
type parameters,
and shape

Default integer scalar.

Result value The result has the value emax, as defined in “The Real Number System
Model” on page 482.

Specific forms KMAXLOC.

MAXLOC(ARRAY, MASK)

Optional argument MASK

Description Returns the location of the first element of ARRAY having the maximum
value of the elements identified by MASK.

Class Transformational function.

Arguments ARRAY must be of type integer or real. It must not be scalar.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

Result type,
type parameters,
and shape

The result is of type default integer; it is an array of rank one and of size
equal to the rank of ARRAY.

Result value Case 1 If MASK is absent, the result is a rank-one array whose
element values are the values of the subscripts of an
element of ARRAY whose value equals the maximum
value of all of the elements of ARRAY.

The ith subscript returned lies in the range 1 to ei,
where ei is the extent of the ith dimension of ARRAY.

548 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

If more than one element has the maximum value, the
element whose subscripts are returned is the first such
element, taken in array element order. If ARRAY has
size zero, the value of the result is processor-
dependent.

Case 2 If MASK is present, the result is a rank-one array whose
element values are the values of the subscripts of an
element of ARRAY, corresponding to a .TRUE. element
of MASK, whose value equals the maximum value of all
such elements of ARRAY.

The ith subscript returned lies in the range 1 to ei,
where ei is the extent of the ith dimension of ARRAY.

If more than one such element has the maximum
value, the element whose subscripts are returned is the
first such element taken in array element order.

If there are no such elements (that is, if ARRAY has size
zero or every element of MASK has the value .FALSE.),
the value of the result is processor-dependent.

In both cases, an element of the result is undefined if the processor
cannot represent the value as a default integer.

MAXVAL(ARRAY, DIM, MASK)

Optional arguments DIM, MASK

Description Maximum value of the elements of ARRAY along dimension DIM that
correspond to the .TRUE. elements of MASK.

Class Transformational function.

Arguments ARRAY must be of type integer or real. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 <= DIM <= n where n is the rank of ARRAY. The
corresponding actual argument must not be an optional
dummy argument.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

Chapter 11 549

Intrinsic procedures
Intrinsic procedure specifications

Result type,
type parameters,
and shape

The result is of the same type and kind type parameter as ARRAY.

It is scalar if DIM is absent or ARRAY has rank one; otherwise, the result
is an array of rank n-1 and of shape (d1, d2, ..., dDIM-1, dDIM+1, ..., dn)
where (d1, d2, ..., dn) is the shape of ARRAY.

Result value Case 1 The result of MAXVAL(ARRAY) has a value equal to the
maximum value of all the elements of ARRAY or has the
value of the negative number of the largest magnitude
supported by the processor for numbers of the type and
kind type parameter of ARRAY if ARRAY has size zero.

Case 2 The result of MAXVAL(ARRAY, MASK = MASK) has a
value equal to the maximum value of the elements of
ARRAY corresponding to .TRUE. elements of MASK or
has the value of the negative number of the largest
magnitude supported by the processor for numbers of
the same type and kind type parameter as ARRAY if
there are no .TRUE. elements.

Case 3 If ARRAY has rank one, MAXVAL(ARRAY, DIM
[,MASK]) has a value equal to that of MAXVAL(ARRAY
[,MASK = MASK]). Otherwise, the value of element
(s1, s2, ..., sDIM-1, sDIM+1, ..., sn) of MAXVAL(ARRAY,
DIM [,MASK]) is equal to the following:

MAXVAL(ARRAY(s1, s2, ..., sDIM-1, :, sDIM+1,
..., sn) [, MASK = MASK(s1, s2, ..., sDIM-1,
:, sDIM+1, ..., sn)])

MCLOCK()

Description Return time accounting for a program.

Class Inquiry nonstandard function.

Result type Integer.

Result value The value returned, in units of microseconds, is the sum of the current
process’s user time and the user and system time of all its child
processes.

550 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

MERGE(TSOURCE, FSOURCE, MASK)

Description Choose alternative value according to the value of a mask.

Class Elemental function.

Arguments TSOURCE may be of any type.

FSOURCE must be of the same type and type parameters as
TSOURCE.

MASK must be of type logical.

Result type/
type parameters

Same as TSOURCE.

Result value The result is TSOURCE if MASK is .TRUE. and FSOURCE otherwise.

MIN(A1, A2, A3, ...)

Optional arguments A3, ...

Description Minimum value.

Class Elemental function.

Arguments The arguments must all be of the same type, which must be integer or
real, and they must all have the same kind type parameter.

Result type/
type parameters

Same as the arguments.

Result value The value of the result is that of the smallest argument.

Specific forms AIMIN0, AJMIN0, AKMIN0, AMIN0, AMIN1, DMIN1, IMIN0, IMIN1,
JMIN0, JMIN1, KMIN0, KMIN1, MIN0, MIN1, QMIN1.

Chapter 11 551

Intrinsic procedures
Intrinsic procedure specifications

MINEXPONENT(X)

Description Returns the minimum exponent in the model representing numbers of
the same type and kind type parameter as the argument.

Class Inquiry function.

Argument X must be of type real. It may be scalar or array valued.

Result type,
type parameters,
and shape

Default integer scalar.

Result value The result has the value emin, as defined in “The Real Number System
Model” on page 482.

MINLOC(ARRAY, MASK)

Optional argument MASK

Description Returns the location of the first element of ARRAY having the minimum
value of the elements identified by MASK.

Class Transformational function.

Arguments ARRAY must be of type integer or real. It must not be scalar.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

Result type,
type parameters,
and shape

The result is of type default integer; it is an array of rank one and of size
equal to the rank of ARRAY.

Result value Case 1 If MASK is absent, the result is a rank-one array whose
element values are the values of the subscripts of an
element of ARRAY whose value equals the minimum
value of all the elements of ARRAY.

The ith subscript returned lies in the range 1 to ei,
where ei is the extent of the ith dimension of ARRAY.

552 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

If more than one element has the minimum value, the
element whose subscripts are returned is the first such
element, taken in array element order. If ARRAY has
size zero, the value of the result is processor-
dependent.

Case 2 If MASK is present, the result is a rank-one array whose
element values are the values of the subscripts of an
element of ARRAY, corresponding to a .TRUE. element
of MASK, whose value equals the minimum value of all
such elements of ARRAY.

The ith subscript returned lies in the range 1 to ei,
where ei is the extent of the ith dimension of ARRAY. If
more than one such element has the minimum value,
the element whose subscripts are returned is the first
such element taken in array element order.

If ARRAY has size zero or every element of MASK has the
value .FALSE., the value of the result is processor-
dependent.

In both cases, an element of the result is undefined if the processor
cannot represent the value as a default integer.

Specific forms KMINLOC.

Chapter 11 553

Intrinsic procedures
Intrinsic procedure specifications

MINVAL(ARRAY, DIM, MASK)

Optional argument DIM, MASK

Description Minimum value of all the elements of ARRAY along dimension DIM
corresponding to .TRUE. elements of MASK.

Class Transformational function.

Arguments ARRAY must be of type integer or real. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 <= DIM <= n, where n is the rank of ARRAY. The
corresponding actual argument must not be an optional
dummy argument.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

Result type,
type parameters,
and shape

The result is of the same type and kind type parameter as ARRAY. It is
scalar if DIM is absent or ARRAY has rank one; otherwise, the result is an
array of rank n-1 and of shape (d1, d2, ..., dDIM-1, dDIM+1, ..., dn) where
(d1, d2, ..., dn) is the shape of ARRAY.

Result value Case 1 The result of MINVAL(ARRAY) has a value equal to the
minimum value of all the elements of ARRAY or has the
value of the positive number of the largest magnitude
supported by the processor for numbers of the type and
kind type parameter of ARRAY if ARRAY has size zero.

Case 2 The result of MINVAL(ARRAY, MASK = MASK) has a
value equal to the minimum value of the elements of
ARRAY corresponding to .TRUE. elements of MASK or
has the value of the positive number of the largest
magnitude supported by the processor for numbers of
the same type and kind type parameter as ARRAY if
there are no .TRUE. elements.

Case 3 If ARRAY has rank one, MINVAL(ARRAY, DIM
[,MASK]) has a value equal to that of MINVAL(ARRAY
[,MASK = MASK]). Otherwise, the value of element
(s1, s2, ..., sDIM-1, sDIM+1, ..., sn) of MINVAL(ARRAY,
DIM [,MASK]) is equal to the following:

554 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

MINVAL(ARRAY(s1, s2, ..., sDIM-1, :, sDIM+1,
..., sn) [, MASK= MASK(s1, s2, ..., sDIM-1, :,
sDIM+1, ..., sn)])

MOD(A, P)

Description Remainder function.

Class Elemental function.

Arguments A must be of type integer or real.

P must be of the same type and kind type parameter as A.

Result type/
type parameters

Same as A.

Result value If P is not 0, the value of the result is A – INT(A/P) * P. If P=0, the
result is processor-dependent.

Specific forms AMOD, BMOD, DMOD, HMOD, IMOD, JMOD, KMOD, QMOD.

MODULO(A, P)

Description Modulo function.

Class Elemental function.

Arguments A must be of type integer or real.

P must be of the same type and kind type parameter as A.

Result type/
type parameters

Same as A.

Result value Case 1 A is of type integer. If P is not 0, MODULO(A, P) has the
value R such that A = Q * P + R, where Q is an
integer, the inequalities 0 <= R<P hold if P>0, and P<R
<= 0 hold if P<0. If P=0, the result is processor-
dependent.

Chapter 11 555

Intrinsic procedures
Intrinsic procedure specifications

Case 2 A is of type real. If P is not 0, the value of the result is A
–FLOOR (A / P) * P. If P=0, the result is processor-
dependent.

MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)

Description Copies a sequence of bits from one data object to another.

Class Elemental subroutine.

Arguments FROM must be of type integer. It is an INTENT(IN)
argument.

FROMPOS must be of type integer and nonnegative. It is an
INTENT(IN) argument. FROMPOS + LEN must be less
than or equal to BIT_SIZE(FROM). The model for the
interpretation of an integer value as a sequence of bits
is described in “The Bit Model” on page 481.

LEN must be of type integer and nonnegative. It is an
INTENT(IN) argument.

TO must be a variable of type integer with the same kind
type parameter value as FROM and may be the same
variable as FROM. It is an INTENT(INOUT) argument.

TO is set by copying the sequence of bits of length LEN,
starting at position FROMPOS of FROM to position TOPOS
of TO. No other bits of TO are altered. On return, the
LEN bits of TO starting at TOPOS are equal to the value
that the LEN bits of FROM starting at FROMPOS had on
entry.

The model for the interpretation of an integer value as
a sequence of bits is described in “The Bit Model” on
page 481.

TOPOS must be of type integer and nonnegative. It is an
INTENT(IN) argument. TOPOS + LEN must be less
than or equal to BIT_SIZE(TO).

Specific forms BMVBITS, HMVBITS.

556 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

NEAREST(X, S)

Description Returns the nearest different machine representable number in a given
direction.

Class Elemental function.

Arguments X must be of type real.

S must be of type real and not equal to zero.

Result type/
type parameters

Same as X.

Result value The result has a value equal to the machine representable number
distinct from X and nearest to it in the direction of the infinity with the
same sign as S.

NINT(A, KIND)

Optional argument KIND

Description Nearest integer.

Class Elemental function.

Arguments A must be of type real.

KIND (optional) must be a scalar integer initialization expression.

Result type/
type parameters

Integer. If KIND is present, the kind type parameter is that specified by
KIND; otherwise, the kind type parameter is that of default integer type.

Result value If A>0, NINT(A) has the value INT(A+0.5); if A <= 0, NINT(A) has the
value INT(A–0.5). The result is undefined if the processor cannot
represent the result in the specified integer type.

Specific forms IDNINT, IIDNNT,IIQNNT, ININT, IQNINT, JIDNNT,JIQNNT, JNINT,
KIDNNT, KIQNNT, KNINT.

Chapter 11 557

Intrinsic procedures
Intrinsic procedure specifications

NOT(I)

Description Performs a bitwise logical complement.

Class Elemental function.

Argument I must be of type integer.

Result type/
type parameters

Same as I.

Result value The result has the value obtained by complementing I bit-by-bit
according to the following truth table:

Table 60 Truth table for NOT intrinsic

The model for the interpretation of an integer value as a sequence of bits
is described in “The Bit Model” on page 481.

Specific forms BNOT, HNOT, INOT, JNOT, KNOT.

OR(I, J)

Description Bitwise logical OR.

Class Elemental nonstandard function.

Arguments I must be of type integer.

J must be of type integer with the same kind type
parameter as I.

Result type/
type parameters

Same as I.

I NOT(I)

1 0

0 1

558 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

Result value The result has the value obtained by performing an OR on I and J bit-
by-bit according to the following truth table:

Table 61 Truth table for OR intrinsic

The model for interpreting an integer value as a sequence of bits is
described in “The Bit Model” on page 481.

PACK(ARRAY, MASK, VECTOR)

Optional argument VECTOR

Description Pack an array into an array of rank one under the control of a mask.

Class Transformational function.

Arguments ARRAY may be of any type. It must not be scalar.

MASK must be of type logical and must be conformable with
ARRAY.

VECTOR
(optional) must be of the same type and type parameters as

ARRAY and must have rank one. VECTOR must have at
least as many elements as there are .TRUE. elements
in MASK. If MASK is scalar with the value .TRUE.,
VECTOR must have at least as many elements as there
are in ARRAY.

Result type,
type parameters,
and shape

The result is an array of rank one with the same type and type
parameters as ARRAY. If VECTOR is present, the result size is that of
VECTOR; otherwise, the result size is the number t of .TRUE. elements in
MASK unless MASK is scalar with the value .TRUE., in which case the
result size is the size of ARRAY.

I J OR(I, J)

1 1 1

1 0 1

0 1 1

0 0 0

Chapter 11 559

Intrinsic procedures
Intrinsic procedure specifications

Result value Element i of the result is the element of ARRAY that corresponds to the
ith .TRUE. element of MASK, taking elements in array element order, for
i= 1, 2, ..., t. If VECTOR is present and has size n>t, element i of the result
has the value VECTOR (i), for i= t+1, ..., n.

Specific forms KPACK.

PRECISION(X)

Description Returns the decimal precision in the model representing real numbers
with the same kind type parameter as the argument.

Class Inquiry function.

Argument X must be of type real or complex. It may be scalar or array valued.

Result type,
type parameters,
and shape

Default integer scalar.

Result value The result has the value INT((p-1) * LOG10(b))+k. The values of b
and p are as defined in “The Real Number System Model” on page 482
for the model representing real numbers with the same kind type
parameter as X. The value of k is 1 if b is an integral power of 10 and 0
otherwise.

PRESENT(A)

Description Determine whether an optional argument is present.

Class Inquiry function.

Argument A must be the name of an optional dummy argument that is accessible in
the procedure in which the PRESENT function reference appears.

Result type/
type parameters

Default logical scalar.

Result value The result has the value .TRUE. if A is present and otherwise has the
value .FALSE.

560 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

PRODUCT(ARRAY, DIM, MASK)

Optional arguments DIM, MASK

Description Product of all the elements of ARRAY along dimension DIM corresponding
to the .TRUE. elements of MASK.

Class Transformational function.

Arguments ARRAY must be of type integer, real, or complex. It must not be
scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 <= DIM <= n, where n is the rank of ARRAY.
The corresponding actual argument must not be an
optional dummy argument.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

Result type,
type parameters,
and shape

The result is of the same type and kind type parameter as ARRAY. It is
scalar if DIM is absent or ARRAY has rank one; otherwise, the result is an
array of rank n-1 and of shape (d1, d2, ..., dDIM-1, dDIM+1, ..., dn) where
(d1, d2, ..., dn) is the shape of ARRAY.

Result value Case 1 The result of PRODUCT(ARRAY) has a value equal to a
processor-dependent approximation to the product of
all the elements of ARRAY or has the value one if ARRAY
has size zero.

Case 2 The result of PRODUCT(ARRAY, MASK = msk) has a
value equal to a processor-dependent approximation to
the product of the elements of ARRAY corresponding to
the .TRUE. elements of msk or has the value one if
there are no .TRUE. elements.

Case 3 If ARRAY has rank one, PRODUCT(ARRAY, DIM
[,msk]) has a value equal to that of PRODUCT(ARRAY
[,MASK = msk]). Otherwise, the value of element (s1,
s2, ..., sDIM-1, sDIM+1, ..., sn) of PRODUCT(ARRAY, DIM
[,msk]) is equal to the following:

Chapter 11 561

Intrinsic procedures
Intrinsic procedure specifications

PRODUCT(ARRAY(s1, s2, ..., sDIM-1, :, sDIM+1,
..., sn) &
 [, MASK = msk(s1, s2, ..., sDIM-1, :,
sDIM+1, ..., sn)])

QEXT(A)

Description Convert to REAL(16) type.

Class Elemental nonstandard function.

Argument A must be of type integer, real, double precision, or complex.

Result REAL(16).

Specific forms QEXTD.

QFLOAT(A)

Description Convert to REAL(16) type.

Class Elemental nonstandard function.

Argument A must be of type integer or REAL(4).

Result REAL(16).

Specific forms QFLOATI, QFLOTI, QFLOTJ, QFLOTK.

QNUM(I)

Description Convert character to REAL(16) type.

Class Elemental nonstandard function.

Argument I must be of type character.

Result REAL(16) type.

562 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

QPROD(X, Y)

Description Double precision product.

Class Elemental nonstandard function.

Arguments X and Y must be of type double precision.

Result REAL(16) type.

RADIX(X)

Description Returns the base of the model representing numbers of the same type
and kind type parameter as the argument.

Class Inquiry function.

Argument X must be of type integer or real. It may be scalar or array valued.

Result type,
type parameters,
and shape

Default integer scalar.

Result value The result has the value r if X is of type integer and the value b if X is of
type real, where r and b are as defined in “The Real Number System
Model” on page 482.

RAN(ISEED)

Description Multiplicative congruent random number generator.

Class Elemental nonstandard function.

Argument ISEED must be an INTEGER(4) variable or array element. RAN stores a
number in ISEED to be used by the next call to RAN.

ISEED should initially be set to an odd number, preferably very large; see
the following example.

Result type/
type parameters

REAL(4) type.

Chapter 11 563

Intrinsic procedures
Intrinsic procedure specifications

NOTE To ensure different random values for each run of a program, ISEED should
be set to a different value each time the program is run. One way to
implement this would be to have the user enter the seed at the start of the
program. Another way would be to compute a value from the current year,
day, and month (returned by IDATE) and the number of seconds since
midnight (returned by SECNDS).

RAND()

Description Generate successive pseudorandom numbers uniformly distributed in
the range of 0.0 to 1.0.

Class Elemental nonstandard function.

Result type/
type parameters

REAL(4) type.

NOTE For details about restarting the pseudorandom number generator used by
IRAND and RAND, see “SRAND(ISEED)” on page 577 section.

RANDOM_NUMBER(HARVEST)

Description Returns one pseudorandom number or an array of pseudorandom
numbers from the uniform distribution over the range 0 <= x < 1.

Class Subroutine.

Argument HARVEST must be of type real. It is an INTENT(OUT) argument. It may
be a scalar or an array variable. It is set to contain pseudorandom
numbers from the uniform distribution in the interval 0 <= x < 1.

RANDOM_SEED(SIZE, PUT, GET)

Optional arguments SIZE, PUT, GET

Description Restarts or queries the pseudorandom number generator used by
RANDOM_NUMBER.

Class Subroutine.

Arguments There must either be exactly one or no arguments present.

564 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

SIZE (optional) must be scalar and of type default integer. It is an
INTENT(OUT) argument. It is set to the number N of
integers that the processor uses to hold the value of the
seed.

PUT (optional) must be a default integer array of rank one and size >=
N. It is an INTENT(IN) argument. It is used by the
processor to set the seed value.

GET (optional) must be a default integer array of rank one and size >=
N. It is an INTENT(OUT) argument. It is set by the
processor to the current value of the seed. If no
argument is present, the processor sets the seed to a
processor-dependent value.

RANGE(X)

Description Returns the decimal exponent range in the model representing integer or
real numbers with the same kind type parameter as the argument.

Class Inquiry function.

Argument X must be of type integer, real, or complex. It may be scalar or array
valued.

Result type,
type parameters,
and shape

Default integer scalar.

Result value Case 1 For an integer argument, the result has the value
INT(LOG10(huge)), where huge is the largest positive
integer in the model representing integer numbers
with same kind type parameter as X. See “The Integer
Number System Model” on page 482 for more
information.

Case 2 For a real or complex argument, the result has the
value INT(MIN(LOG10(huge), –LOG10(tiny))),
where huge and tiny are the largest and smallest
positive numbers in the model representing real
numbers with the same value for the kind type
parameter as X. See “The Real Number System Model”
on page 482 for more information.

Chapter 11 565

Intrinsic procedures
Intrinsic procedure specifications

Example RANGE(X) has the value 38 for real X, whose model is described in “The
Real Number System Model” on page 482, because in this case huge= (1 -
2-24) * 2127 and tiny = 2-127.

Specific forms SNGL, SNGLQ.

REAL(A, KIND)

Optional argument KIND

Description Convert to real type.

Class Elemental function.

Arguments A must be of type integer, real, or complex.

KIND (optional) must be a scalar integer initialization expression.

Result type/
type parameters

Real.

Case 1 If A is of type integer or real and KIND is present, the
kind type parameter is that specified by KIND.

If A is of type integer or real and KIND is not present,
the kind type parameter is the processor-dependent
kind type parameter for the default real type.

Case 2 If A is of type complex and KIND is present, the kind
type parameter is that specified by KIND.

If A is of type complex and KIND is not present, the kind
type parameter is the kind type parameter of A.

Result value Case 1 If A is of type integer or real, the result is equal to a
processor-dependent approximation to A.

Case 2 If A is of type complex, the result is equal to a
processor-dependent approximation to the real part of
A.

Specific forms FLOAT, FLOATI, FLOATJ, FLOATK.

566 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

REPEAT(STRING, NCOPIES)

Description Concatenate several copies of a string.

Class Transformational function.

Arguments STRING must be scalar and of type character.

NCOPIES must be scalar and of type integer. Its value must not
be negative.

Result type,
type parameters,
and shape

Character scalar of length NCOPIES times that of STRING, with the same
kind type parameter as STRING.

Result value The value of the result is the concatenation of NCOPIES copies of STRING.

Specific forms KREPEAT.

RESHAPE(SOURCE, SHAPE, PAD, ORDER)

Optional arguments PAD, ORDER

Description Constructs an array of a specified shape from the elements of a given
array.

Class Transformational function.

Arguments SOURCE may be of any type. It must be array valued. If PAD is
absent or of size zero, the size of SOURCE must be
greater than or equal to PRODUCT(SHAPE). The size of
the result is the product of the values of the elements of
SHAPE.

SHAPE must be of type integer, rank one, and constant size. Its
size must be positive and less than 8. It must not have
an element whose value is negative.

PAD (optional) must be of the same type and type parameters as
SOURCE. PAD must be array valued.

Chapter 11 567

Intrinsic procedures
Intrinsic procedure specifications

ORDER (optional) must be of type integer, must have the same shape as
SHAPE, and its value must be a permutation of [1, 2, ...,
n], where n is the size of SHAPE. If absent, it is as if it
were present with value [1, 2, ..., n].

Result type,
type parameters,
and shape

The result is an array of shape SHAPE (that is,
SHAPE(RESHAPE(SOURCE, SHAPE, PAD, ORDER)) is equal to SHAPE)
with the same type and type parameters as SOURCE.

Result value The elements of the result, taken in permuted subscript order
ORDER(1), ..., ORDER(n), are those of SOURCE in normal array element
order followed if necessary by those of PAD in array element order,
followed if necessary by additional copies of PAD in array element order.

Specific forms KRESHAPE.

RNUM(I)

Description Convert character to real type.

Class Elemental nonstandard function.

Argument I must be of type character.

Result Default real type.

RRSPACING(X)

Description Returns the reciprocal of the relative spacing of model numbers near the
argument value.

Class Elemental function.

Argument X must be of type real.

Result type/
type parameters

 Same as X.

Result value The result has the value |X * b-e| * bp, where b, e, and p are as defined in
“The Real Number System Model” on page 482.

568 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

RSHFT(I, SHIFT)

Description Bitwise right shift.

Class Elemental nonstandard function.

RSHIFT(I, SHIFT)

Description Bitwise right shift.

Class Elemental nonstandard function.

SCALE(X, I)

Description Returns X * bI where b is the base in the model representation of X. See
“The Real Number System Model” on page 482 for a description of this.

Class Elemental function.

Arguments X must be of type real.

I must be of type integer.

Result type/
type parameters

Same as X.

Result value The result has the value X * bI, where b is defined in “The Real Number
System Model” on page 482, provided this result is within range; if not,
the result is processor dependent.

SCAN(STRING, SET, BACK)

Optional argument BACK

Description Scan a string for any one of the characters in a set of characters.

Class Elemental function.

Arguments STRING must be of type character.

Chapter 11 569

Intrinsic procedures
Intrinsic procedure specifications

SET must be of type character with the same kind type
parameter as STRING.

BACK (optional) must be of type logical.

Result type/
type parameters

Default integer.

Result value Case 1 If BACK is absent or is present with the value .FALSE.
and if STRING contains at least one character that is in
SET, the value of the result is the position of the
leftmost character of STRING that is in SET.

Case 2 If BACK is present with the value .TRUE. and if
STRING contains at least one character that is in SET,
the value of the result is the position of the rightmost
character of STRING that is in SET.

Case 3 The value of the result is zero if no character of STRING
is in SET or if the length of STRING or SET is zero.

SECNDS(X)

Description Return the number of seconds that have elapsed since midnight, less the
value of the argument.

Class Elemental nonstandard function.

Argument X must be of type REAL(4).

Result type/
type parameters

REAL(4).

NOTE SECNDS is accurate to one one-hundredth of a second (0.01 second). The
SECNDS routine is useful for computing elapsed time for a code’s execution.

570 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

SELECTED_INT_KIND(R)

Description Returns a value of the kind type parameter of an integer data type that
represents all integer values n with -10R < n < 10R.

Class Transformational function.

Argument R must be scalar and of type integer.

Result type,
type parameters,
and shape

Default integer scalar.

Result value The result has a value equal to the value of the kind type parameter of
an integer data type that represents all values n in the range of values n
with -10R < n < 10R, or if no such kind type parameter is available on the
processor, the result is –1.

If more than one kind type parameter meets the criteria, the value
returned is the one with the smallest decimal exponent range, unless
there are several such values, in which case the smallest of these kind
values is returned.

SELECTED_REAL_KIND(P, R)

Optional arguments P, R

Description Returns a value of the kind type parameter of a real data type with
decimal precision of at least P digits and a decimal exponent range of at
least R.

Class Transformational function.

Arguments At least one argument must be present.

P (optional) must be scalar and of type integer.

R (optional) must be scalar and of type integer.

Result type,
type parameters,
and shape

Default integer scalar.

Chapter 11 571

Intrinsic procedures
Intrinsic procedure specifications

Result value The result has a value equal to a value of the kind type parameter of a
real data type with decimal precision, as returned by the function
PRECISION, of at least P digits and a decimal exponent range, as
returned by the function RANGE, of at least R.

If no such kind type parameter is available on the processor, the result is
–1 if the precision is not available, –2 if the exponent range is not
available, and –3 if neither is available.

If more than one kind type parameter value meets the criteria, the value
returned is the one with the smallest decimal precision, unless there are
several such values, in which case the smallest of these kind values is
returned.

SET_EXPONENT(X, I)

Description Returns the model number whose exponent is I and whose fractional
part is the fractional part of X.

Class Elemental function.

Arguments X must be of type real.

I must be of type integer.

Result type/
type parameters

 Same as X.

Result value The result has the value X * bI-e, where b and e are as defined in “The
Real Number System Model” on page 482, provided this result is within
range; if not, the result is processor-dependent.

If X has value zero, the result has value zero.

572 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

SHAPE(SOURCE)

Description Returns the shape of an array or a scalar.

Class Inquiry function.

Argument SOURCE may be of any type. It may be array valued or scalar. It must not
be a pointer that is disassociated or an allocatable array that is not
allocated. It must not be an assumed-size array.

Result type,
type parameters,
and shape

The result is a default integer array of rank one whose size is equal to
the rank of SOURCE.

Result value The value of the result is the shape of SOURCE.

Specific forms KSHAPE.

SIGN(A, B)

Description Absolute value of A times the sign of B.

Class Elemental function.

Arguments A must be of type integer or real.

B must be of the same type and kind type parameter as A.

Result type/
type parameters

Same as A.

Result value The value of the result is |A| if B>= 0 and –|A| if B < 0.

Specific forms BSIGN, DSIGN, HSIGN, IISIGN, JSIGN, QSIGN, KISIGN.

Chapter 11 573

Intrinsic procedures
Intrinsic procedure specifications

SIN(X)

Description Sine function in radians.

Class Elemental function.

Argument X must be of type real or complex.

Result type/
type parameters

 Same as X.

Result value The result has a value equal to a processor-dependent approximation to
sin(X).

• If X is of type real, it is regarded as a value in radians.

• If X is of type complex, its real part is regarded as a value in radians.

Specific forms CDSIN, CSIN, DSIN, QSIN, ZSIN.

SIND(X)

Description Sine function in degrees.

Class Elemental nonstandard function.

Argument X must be of type real.

Result type/
type parameters

 Same as X.

Result value The result has a value equal to a processor-dependent approximation to
sin(X).

Specific forms QSIND.

574 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

SINH(X)

Description Hyperbolic sine function.

Class Elemental function.

Argument X must be of type real.

Result type/
type parameters

Same as X.

Result value The result has a value equal to a processor-dependent approximation to
sinh(X).

Specific forms QSINH.

SIZE(ARRAY, DIM)

Optional argument DIM

Description Returns the extent of an array along a specified dimension or the total
number of elements in the array.

Class Inquiry function.

Arguments ARRAY may be of any type. It must not be scalar. It must not
be a pointer that is disassociated or an allocatable
array that is not allocated. If ARRAY is an assumed-size
array, DIM must be present with a value less than the
rank of ARRAY.

DIM (optional) must be scalar and of type integer with a value in the
range 1 <= DIM <= n, where n is the rank of ARRAY.

Result type,
type parameters,
and shape

Default integer scalar.

Result value The result has a value equal to the extent of dimension DIM of ARRAY or,
if DIM is absent, the total number of elements of ARRAY.

Specific forms KSIZE.

Chapter 11 575

Intrinsic procedures
Intrinsic procedure specifications

SIZEOF(A)

Description Return the number of bytes of storage used by the argument.

Class Inquiry nonstandard function.

Argument A may be of any type (except assumed-size arrays or passed-length
character arguments).

Result type Integer.

SPACING(X)

Description Returns the absolute spacing of model numbers near the argument
value.

Class Elemental function.

Argument X must be of type real.

Result type/
type parameters

Same as X.

Result value If X is not zero, the result has the value be-p, where b, e, and p are as
defined in “The Real Number System Model” on page 482, provided this
result is within range; otherwise, the result is the same as that of
TINY(X).

SPREAD(SOURCE, DIM, NCOPIES)

Description Replicates an array by adding a dimension. Broadcasts several copies of
SOURCE along a specified dimension (as in forming a book from copies of
a single page) and thus forms an array of rank one greater.

Class Transformational function.

Arguments SOURCE may be of any type. It may be scalar or array valued.
The rank of SOURCE must be less than 7.

576 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

DIM must be scalar and of type integer with value in the
range 1 <= DIM <= n + 1, where n is the rank of
SOURCE.

NCOPIES must be scalar and of type integer.

Result type,
type parameters,
and shape

The result is an array of the same type and type parameters as SOURCE
and of rank n + 1, where n is the rank of SOURCE.

Case 1 If SOURCE is scalar, the shape of the result is
(MAX(NCOPIES, 0)).

Case 2 If SOURCE is array valued with shape (d1, d2, ..., dn),
the shape of the result is (d1, d2, ..., dDIM-1,
MAX(NCOPIES, 0), dDIM, ..., dn).

Result value Case 1 If SOURCE is scalar, each element of the result has a
value equal to SOURCE.

Case 2 If SOURCE is array valued, the element of the result
with subscripts (r1, r2, ..., rn+1) has the value
SOURCE(r1, r2, ..., rDIM-1, rDIM+1, ..., rn+1).

SQRT(X)

Description Square root.

Class Elemental function.

Argument X must be of type real or complex. If X is real, its value must be greater
than or equal to zero.

Result type/
type parameters

Same as X.

Result value The result has a value equal to a processor-dependent approximation to
the square root of X.

A result of type complex is the principal value with the real part greater
than or equal to zero. When the real part of the result is zero, the
imaginary part is greater than or equal to zero.

Specific forms CDSQRT,CSQRT, DSQRT, QSQRT, ZSQRT.

Chapter 11 577

Intrinsic procedures
Intrinsic procedure specifications

SRAND(ISEED)

Description Restart the pseudorandom number generator used by IRAND and RAND.

Class Elemental nonstandard subroutine.

Argument ISEED must be of INTEGER(4) type.

The same value for ISEED generates the same sequence of random
numbers. To vary the sequence, call SRAND with a different ISEED value
each time the program is executed. The default for ISEED is 1.

SUM(ARRAY, DIM, MASK)

Optional arguments DIM, MASK

Description Sum all the elements of ARRAY along dimension DIM corresponding to the
.TRUE. elements of MASK.

Class Transformational function.

Arguments ARRAY must be of type integer, real, or complex. It must not be
scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 <= DIM <= n, where n is the rank of ARRAY. The
corresponding actual argument must not be an optional
dummy argument.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

Result type,
type parameters,
and shape

The result is of the same type and kind type parameter as ARRAY. It is
scalar if DIM is absent of ARRAY has rank one; otherwise, the result is an
array of rank n-1 and of shape (d1, d2, ..., dDIM-1, dDIM+1, ..., dn) where
(d1, d2, ..., dn) is the shape of ARRAY.

Result value Case 1 The result of SUM(ARRAY) has a value equal to a
processor-dependent approximation to the sum of all
the elements of ARRAY or has the value zero if ARRAY
has size zero.

578 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

Case 2 The result of SUM(ARRAY, MASK = msk) has a value
equal to a processor-dependent approximation to the
sum of the elements of ARRAY corresponding to the
.TRUE. elements of msk or has the value zero if there
are no .TRUE. elements.

Case 3 If ARRAY has rank one, SUM(ARRAY, DIM [,msk])
has a value equal to that of SUM(ARRAY [,MASK =
msk]). Otherwise, the value of element (s1, s2, ..., sDIM-
1, sDIM+1, ..., sn) of SUM(ARRAY, DIM [,msk]) is equal
to the following:

SUM(ARRAY(s1, s2, ..., sDIM-1, :, sDIM+1, ...,
sn) &
 [, MASK=msk(s1, s2, ..., sDIM-1, :,
sDIM+1, ..., sn)])

SYSTEM(STR)

Description Issue a shell command from a Fortran 90 program.

Class Nonstandard subroutine.

Argument STR must be of type character. SYSTEM gives STR to the default shell (/
bin/sh) as input, as if the string were entered at a terminal. When the
shell has completed, the process continues.

Chapter 11 579

Intrinsic procedures
Intrinsic procedure specifications

SYSTEM_CLOCK(COUNT, COUNT_RATE,
COUNT_MAX)

Optional arguments COUNT, COUNT_RATE, COUNT_MAX

Description Returns integer data from a real-time clock.

Class Subroutine.

Arguments COUNT (optional) must be scalar and of type default integer. It is an
INTENT(OUT) argument. It is set to a processor-
dependent value based on the current value of the
processor clock or to –HUGE(0) if there is no clock. The
processor-dependent value is incremented by one for
each clock count until the value COUNT_MAX is reached
and is reset to zero at the next count. It lies in the
range 0 to COUNT_MAX if there is a clock.

COUNT_RATE
(optional) must be scalar and of type default integer. It is an

INTENT(OUT) argument. It is set to the number of
processor clock counts per second, or to zero if there is
no clock.

COUNT_MAX
(optional) must be scalar and of type default integer. It is an

INTENT(OUT) argument. It is set to the maximum
value that COUNT can have, or to zero if there is no
clock.

TAN(X)

Description Tangent function in radians.

Class Elemental function.

Argument X must be of type real.

Result type/
 type parameters

Same as X.

580 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

Result value The result has a value equal to a processor-dependent approximation to
tan(X), with X regarded as a value in radians.

Specific forms CTAN,DTAN,QTAN,ZTAN.

TAND(X)

Description Tangent function in degrees.

Class Elemental nonstandard function.

Argument X must be of type real.

Result type/
 type parameters

Same as X.

Result value The result has a value equal to a processor-dependent approximation to
tan(X).

Specific forms DTAND, QTAND.

TANH(X)

Description Hyperbolic tangent function.

Class Elemental function.

Argument X must be of type real.

Result type/
 type parameters

Same as X.

Result value The result has a value equal to a processor-dependent approximation to
tanh(X).

Specific forms DTANH, QTANH.

Chapter 11 581

Intrinsic procedures
Intrinsic procedure specifications

TIME(TIMESTR)

Description Return the current system time.

Class Nonstandard subroutine.

Argument TIMESTR must be of type character and must provide at least 8 bytes of
storage.

Result value TIME fills TIMESTR with an 8-byte character string of the form
hh:mm:ss (hh is the current hour, mm the current minute, ss the
number of seconds past the minute).

TINY(X)

Description Returns the smallest positive number in the model representing
numbers of the same type and kind type parameter as the argument.

Class Inquiry function.

Argument X must be of type real. It may be scalar or array valued.

Result type,
type parameters,
and shape

Scalar with the same type and kind type parameter as X.

Result value The result has the value b
emin-1

where b and emin are as defined in “The Real Number System Model” on
page 482.

582 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

TRANSFER(SOURCE, MOLD, SIZE)

Optional argument SIZE

Description Returns a result with a physical representation identical to that of
SOURCE but interpreted with the type and type parameters of MOLD.

Class Transformational function.

Arguments SOURCE may be of any type and may be scalar or array valued.

MOLD may be of any type and may be scalar or array valued.

SIZE (optional) must be scalar and of type integer. The corresponding
actual argument must not be an optional dummy
argument.

Result type,
type parameters,
and shape

The result is of the same type and type parameters as MOLD.

Case 1 If MOLD is a scalar and SIZE is absent, the result is a
scalar.

Case 2 If MOLD is array valued and SIZE is absent, the result
is array valued and of rank one. Its size is as small as
possible such that its physical representation is not
shorter than that of SOURCE.

Case 3 If SIZE is present, the result is array valued of rank
one and size SIZE.

Result value If the physical representation of the result has the same length as that of
SOURCE, the physical representation of the result is that of SOURCE.

• If the physical representation of the result is longer than that of
SOURCE, the physical representation of the leading part is that of
SOURCE and the remainder is undefined.

• If the physical representation of the result is shorter than that of
SOURCE, the physical representation of the result is the leading part
of SOURCE. If D and E are scalar variables such that the physical
representation of D is as long as or longer than that of E, the value of
TRANSFER(TRANSFER(E, D), E) must be the value of E.

• If D is an array and E is an array of rank one, the value of
TRANSFER(TRANSFER(E, D), E, SIZE(E)) must be the value of E.

Chapter 11 583

Intrinsic procedures
Intrinsic procedure specifications

TRANSPOSE(MATRIX)

Description Transpose an array of rank two.

Class Transformational function.

Result type,
type parameters,
and shape

MATRIX may be of any type and must have rank two.

The result is an array of the same type and type parameters as MATRIX
and with rank two and shape (n, m) where (m, n) is the shape of MATRIX.

Result value Element (i, j) of the result has the value MATRIX(j, i), i= 1, 2, ..., n; j= 1, 2,
..., m.

TRIM(STRING)

Description Returns the argument with trailing blank characters removed.

Class Transformational function.

Argument STRING must be of type character and must be a scalar.

Result type/
type parameters

Character with the same kind type parameter value as STRING and with
a length that is the length of STRING less the number of trailing blanks
in STRING.

Result value The value of the result is the same as STRING except any trailing blanks
are removed. If STRING contains no nonblank characters, the result has
zero length.

UBOUND(ARRAY, DIM)

Optional argument DIM

Description Returns all the upper bounds of an array or a specified upper bound.

Class Inquiry function.

584 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

Arguments ARRAY may be of any type. It must not be scalar. It must not be
a pointer that is disassociated or an allocatable array
that is not allocated. If ARRAY is an assumed-size array,
DIM must be present with a value less than the rank of
ARRAY.

DIM (optional) must be scalar and of type integer with a value in the
range 1 <= DIM <= n, where n is the rank of ARRAY. The
corresponding actual argument must not be an optional
dummy argument.

Result type,
type parameters,
and shape

 The result is of type default integer. It is scalar if DIM is present;
otherwise, the result is an array of rank one and size n, where n is the
rank of ARRAY.

Result value Case 1 For an array section or for an array expression, other
than a whole array or array structure component,
UBOUND(ARRAY, DIM) has a value equal to the
number of elements in the given dimension; otherwise,
it has a value equal to the upper bound for subscript
DIM of ARRAY if dimension DIM of ARRAY does not have
size zero and has the value zero if dimension DIM has
size zero.

Case 2 UBOUND(ARRAY) has a value whose ith component is
equal to UBOUND(ARRAY, i), for i= 1, 2, ..., n, where n is
the rank of ARRAY.

Specific forms KUBOUND.

UNPACK(VECTOR, MASK, FIELD)

Description Unpack an array of rank one into an array under the control of a mask.

Class Transformational function.

Arguments VECTOR may be of any type. It must have rank one. Its size
must be at least t where t is the number of .TRUE.
elements in MASK.

MASK must be array valued and of type logical.

FIELD must be of the same type and type parameters as
VECTOR and must be conformable with MASK.

Chapter 11 585

Intrinsic procedures
Intrinsic procedure specifications

Result type,
type parameters,
and shape

The result is an array of the same type and type parameters as VECTOR
and the same shape as MASK.

Result value The element of the result that corresponds to the ith .TRUE. element of
MASK, in array element order, has the value VECTOR(i) for i=1, 2, ..., t,
where t is the number of .TRUE. values in MASK. Each other element has
a value equal to FIELD if FIELD is scalar or to the corresponding element
of FIELD if it is an array.

VERIFY(STRING, SET, BACK)

Optional argument BACK

Description Verify that a set of characters contains all the characters in a string by
identifying the position of the first character in a string of characters
that does not appear in a given set of characters.

Class Elemental function.

Arguments STRING must be of type character.

SET must be of type character with the same kind type
parameter as STRING.

BACK (optional) must be of type logical.

Result type/
type parameters

Default integer.

Result value Case 1 If BACK is absent or present with the value .FALSE.
and if STRING contains at least one character that is
not in SET, the value of the result is the position of the
leftmost character of STRING that is not in SET.

Case 2 If BACK is present with the value .TRUE. and if
STRING contains at least one character that is not in
SET, the value of the result is the position of the
rightmost character of STRING that is not in SET.

Case 3 The value of the result is zero if each character in
STRING is in SET or if STRING has zero length.

586 Chapter 11

Intrinsic procedures
Intrinsic procedure specifications

XOR(I, J)

Description Bitwise exclusive OR.

Class Elemental nonstandard function.

Arguments I must be of type integer.

J must be of type integer with the same kind type
parameter as I.

Result type/
type parameters

Same as I.

Result value The result has the value obtained by performing an exclusive OR on I
and J bit-by-bit according to Table 59.

The model for interpreting an integer value as a sequence of bits is
described in “The Bit Model” on page 481.

ZEXT(A)

Description Zero extend.

Class Elemental nonstandard function.

Argument A must be of type integer or logical.

Result ZEXT converts a 1-, 2-, or 4-byte logical or integer to a 2- or 4-byte integer
by sign-extending zeroes instead of the actual sign bit.

587

12 BLAS and libU77 libraries

This chapter describes the Basic Linear Algebra Subroutines (BLAS) and
the BSD 3f (libU77) libraries that are shipped with HP Fortran.

The libU77 library provides routines that have a Fortran 90 interface
for system routines in the libc library. The libU77 routines make it
easier to call HP-UX system-level routines from Fortran 90 programs
because they use Fortran 90 argument-passing conventions. The libU77
routines are also compatible with other Fortran implementations that
supply these routines by default.

NOTE Even though system routines use different argument-passing rules from
HP Fortran programs, you can call these routines from HP Fortran programs
by using the %VAL and %REF built-in functions to change how arguments are
passed. For more information about %VAL and %REF, see “%VAL and %REF
built-in functions” on page 148.

The Basic Linear Algebra Subroutine (BLAS) library consists of a set of
routines that perform low-level vector and matrix operations. These
routines have been tuned for maximum performance and are callable
from HP Fortran programs. For information about the background and
significance of the BLAS library, refer to the LAPACK User’s Guide, by E.
Anderson et al (SIAM Press, 1992).

The following sections considerations to keep in mind when writing and
compiling a program that calls routines from the BLAS or libU77
library, and briefly describes the routines in the libraries. For
information about other libraries that are shipped with
HP Fortran, including how to create and link libraries with your
programs—refer to the HP Fortran Programmer’s Guide.

588 Chapter 12

BLAS and libU77 libraries
Calling libU77 and BLAS routines

Calling libU77 and BLAS routines
This section discusses considerations pertinent to writing and compiling
programs that call libU77 and BLAS routines, including:

• The compile-line options that make libU77 and BLAS routines
available to your programs

• Declaring the type of return type of library functions

• Declaring library functions with the EXTERNAL attribute

• BLAS and libU77 man pages

Compile-line options
The following sections describe the compile-line options to use to access
routines from the libU77 and BLAS libraries.

+U77 option
To access libU77 routines, compile with the +U77 option. The entry-
point name of each libU77 routine has an appended underscore, which
must also be added to the external name of any libU77 routine that your
program calls. The +U77 option does this. For example, if your program
contains the following call:

CALL FLUSH(unit_no)

compiling with +U77 causes the compiler to generate the external name
access_. The +ppu and +uppercase options have no effect on libU77
external names.

-lblas option
To access BLAS routines, compile with the -lblas option. Unlike most
compile-line options, the -l option must appear at the end of the
command line, following any source files that call BLAS routines; see
“General Compiler Syntax” on page 572. Here is an example command
line for compiling do_math.f90 to access BLAS routines:

$ f90 do_math.f90 -lblas

Chapter 12 589

BLAS and libU77 libraries
Calling libU77 and BLAS routines

Year-2000 compatibility
Two new libU77 routines (DATEY2K and IDATEY2K, both described in
this chapter) are provided in the Fortran 90 compiler to handle
Year-2000 (Y2K) date-related issues on HP-UX 10.x and HP-UX 11.x.
The +U77 flag must be used with both of these routines.

Although both are provided for Y2K compliance, it is recommended that
the standard DATE_AND_TIME intrinsic be used instead of these
functions, when possible.

The guidelines for changing code which uses the date or idate libU77
routines are as follows:

• In code where date is referenced, replace DATE with DATEY2K. Also,
make sure that DATEY2K's argument is at least 11 characters in
length.

• In code where the idate intrinsic (not the libU77 idate routine) is
used, replace IDATE with IDATEY2K.

Declaring library functions
Unlike intrinsics, library routines do not have an explicit interface
within your program. This means (among other things) that, if the
routine is a function, the compiler applies the implicit typing rules to the
return value. When these rules are in effect, the return value is likely to
be meaningless if the type implied by the function name does not agree
with the type of the returned value or if the return type is not explicitly
declared within the program unit that calls the routine.

Consider the following program, call_ttynam.f90. The program
consists of two subroutines, both of which call the libU77 function
TTYNAM. This function returns a character value—the path name of a
terminal device associated. But the return type is declared in only one of
the subroutines; in the other subroutine, the type is undeclared, and the
compiler therefore assumes—applying the rules of implicit typing—that
the return value is of type real. The consequences of this assumption are
illustrated in the output, below.

590 Chapter 12

BLAS and libU77 libraries
Calling libU77 and BLAS routines

call_ttynam.f90

PROGRAM main
! illustrates the consequences of failure to declare
! the return type of a library function. Both
! subroutines do the same thing--invoke the libU77
! function TTYNAM. But only the second subroutine
! declares the return type of the function.
! This program must be compiled with the +U77 option.

 CALL without_decl
 CALL with_decl
END PROGRAM main

SUBROUTINE without_decl
 PRINT *, TTYNAM(6) ! implicit typing is in effect
END SUBROUTINE without_decl

SUBROUTINE with_decl
 ! declare the return type of TTYNAM
 CHARACTER(LEN=80), EXTERNAL :: TTYNAM

 PRINT *, TTYNAM(6)
END SUBROUTINE with_decl

Here are the command lines to compile and execute the program, along
with the output from a sample run:

$ f90 +U77 call_ttynam.f90
$ a.out
 0.0
 /dev/pts/0

For information about explicit interface, see “Procedure interface” on
page 151. See “Implicit typing” on page 28 for the rules of implicit
typing.

Declaring library routines as EXTERNAL
There are two cases when you should declare a library routine with the
EXTERNAL attribute:

• The routine name is passed to a procedure as an actual argument

• The routine name is the same as an intrinsic name

The first case applies to both libU77 and BLAS routines. The second
applies only to libU77 routines; as shown in Table 62, several of the
names of libU77 routines are also those of intrinsics. Unless you declare
these routines with the EXTERNAL attribute, the compiler will map the
call to the intrinsic library.

Chapter 12 591

BLAS and libU77 libraries
Calling libU77 and BLAS routines

Table 62 libU77 naming conflicts

For example, if a program unit makes a call to FLUSH, the compiler will
make a call to the intrinsic, unless the program unit includes the
following statement:

EXTERNAL FLUSH

See “EXTERNAL (statement and attribute)” on page 328 for a description
of the EXTERNAL statement and attribute. As noted in the description,
the attribute form of EXTERNAL cannot be used with subroutines, which
must therefore be specified in the statement form.

Man pages
You can get detailed, online information for any libU77 or BLAS routine
by using the man command to display an online reference page for that
routine. The command-line syntax for the man command is:

man section_number routine_name

where section_number is either 3f (for libU77) man pages or 3x (for
BLAS); and routine_name is the name of the libU77 or BLAS routine.
For example, to display the man page for the libU77 routine FLUSH,
give the command:

$ man 3f flush

To display the man page for the BLAS routine SAXPY, give the command:

$ man 3x saxpy

Two of the BLAS man pages provide general information about the
BLAS routines: blas1(3x) describes basic vector operations, and blas2(3x)
describes basic matrix operations.

FLUSH FREE GETARG

GETENV IARGC IDATE

LOC MALLOC SYSTEM

TIME

592 Chapter 12

BLAS and libU77 libraries
libU77 routines

libU77 routines
Table 63 lists the libU77 routines by category, and Table 64 briefly
describes each routine, including signature and argument information.
The sizes of the data types listed in Table 64 are the default sizes, unless
indicated otherwise. See Table 5 for the sizes of the default data types.

Table 63 Categories of libU77 routines

Category libU77 routines

Date and time CTIME, DATEY2K,DTIME, ETIME, FDATE,
GMTIME, IDATE, IDATEY2K,ITIME, LTIME,
TIME

Error handling GERROR, IERRNO, PERROR

File system functions ACCESS, CHDIR, CHMOD, FSTAT, ISATTY,
LINK, LSTAT, RENAME, STAT, SYMLNK,
TTYNAM, UNLINK

Information retrieval GETARG, GETCWD, GETENV, GETGID, GETLOG,
GETPID, GETUID, HOSTNM, IARGC

Input/Output FGETC, FPUTC, FSEEK, FTELL, GETC, PUTC

Memory allocation FALLOC, FREE, MALLOC

Miscellaneous LOC, QSORT, SYSTEM

Process control ALARM, FORK, KILL, SIGNAL, SLEEP, WAIT

Tape input/output TCLOSE , TOPEN, TREAD, TREWIN, TSKIPF,
TSTATE, TWRITE

Chapter 12 593

BLAS and libU77 libraries
libU77 routines

Table 64 libU77 routines

Name Description and signature

ACCESS Determines the accessibility of a file.
INTEGER FUNCTION ACCESS(name,mode)
CHARACTER(LEN=*) :: name, mode

ALARM Executes a subroutine after a specified time.
INTEGER FUNCTION ALARM (time, proc)
INTEGER :: time
EXTERNAL proc

CHDIR Changes the default directory.
INTEGER FUNCTION CHDIR(dir_name)
CHARACTER(LEN=*) :: dir_name

CHMOD Changes the mode of a file.
INTEGER FUNCTION CHMOD (name,mode)
CHARACTER(LEN=*) :: name, mode

CTIME Converts a system time to a 24-character ASCII string.
CHARACTER(LEN=*) FUNCTION CTIME (stime)
INTEGER :: stime

DATEY2K Designed to replace the f90 DATE instrinsic. Its function and arguments are
the same as the date intrinsic’s ecept that the returned string contains a
four-digit year in mm-dd-yyyy format instead of a two-digit year in
mm-dd--yy format.
SUBROUTINE DATEY2K(DATE)
CHARACTER*11 DATE

The +U77 flag (described in “+U77 option” on page 588) must be used with
DATEY2K.

DTIME Returns elapsed execution time since the last call to dtime or since the start
of execution on the first call.
REAL FUNCTION DTIME(tarray)
REAL :: tarray(2)

ETIME Returns the elapsed execution time, in seconds, for the calling process.
REAL FUNCTION ETIME (tarray)
REAL :: tarray (2)

594 Chapter 12

BLAS and libU77 libraries
libU77 routines

FALLOC Allocates array space in memory.
SUBROUTINE FALLOC (nelem, elsize, clean, basevec, addr, offset)
INTEGER :: nelem, elsize, clean, addr, offset

basevec must be declared as an array whose elements are elsize bytes in
size. FALLOC allocates space for basevec to contain nelem elements.

FDATE Returns the date and time as an ASCII string; available as a subroutine:
SUBROUTINE FDATE (string)
CHARACTER(LEN=*) :: string

And as a function:
CHARACTER(LEN=*) :: FUNCTION FDATE()

FGETC Retrieves a character from a file specified by an HP Fortran logical unit.
INTEGER FUNCTION FGETC (lunit, char)
INTEGER :: lunit
CHARACTER char

FLUSH Flushes file for specified unit number.
SUBROUTINE FLUSH (unit)
INTEGER :: unit

FORK Creates a copy of the calling process.
INTEGER FUNCTION FORK()

FPUTC Writes a character to the file specified by an HP Fortran logical unit,
bypassing normal HP Fortran I/O.
INTEGER FUNCTION FPUTC (lunit, char)
INTEGER :: lunit
CHARACTER :: char

FREE Releases memory previously allocated with MALLOC or FALLOC.
SUBROUTINE FREE (addr)
INTEGER :: addr

FSEEK Repositions a file specified by an HP Fortran logical unit.
INTEGER FUNCTION FSEEK (lunit, offset, from)
INTEGER :: lunit, offset, from

FSTAT Returns detailed information about a file by logical unit number.
INTEGER FUNCTION FSTAT (lunit, statb)
INTEGER :: lunit, statb(12)

Name Description and signature

Chapter 12 595

BLAS and libU77 libraries
libU77 routines

FTELL Returns the current position of the file associated with the specified logical
unit.
INTEGER FUNCTION FTELL (lunit)
INTEGER :: lunit

GERROR Returns the system error message to string; available as a subroutine:
CHARACTER(LEN=*) :: string
SUBROUTINE GERROR (string)

And as a function:
CHARACTER(LEN=*) FUNCTION GERROR()

GETARG Returns command-line arguments.
SUBROUTINE GETARG (k, arg)
INTEGER :: k
CHARACTER(LEN=*) :: arg

GETC Retrieves a character from HP Fortran logical unit 5.
INTEGER FUNCTION GETC (char)
CHARACTER char

GETCWD Retrieves the pathname of the current working directory.
INTEGER FUNCTION GETCWD (dir_name)
CHARACTER(LEN=*) :: dir_name

GETENV Retrieves the value of an environment variable.
SUBROUTINE GETENV (ename, evalue)
CHARACTER(LEN=*) :: ename, evalue

GETGID Retrieves the group ID of the user of the process.
INTEGER FUNCTION GETGID()

GETLOG Retrieves the user’s login name; available as a subroutine:
SUBROUTINE GETLOG (name)
CHARACTER(LEN=*) :: name

And as a function:
CHARACTER(LEN=*) FUNCTION GETLOG()

GETPID Returns the process ID of the current process.
INTEGER FUNCTION GETPID()

GETUID Returns the user ID of the user of the process.
INTEGER FUNCTION GETUID()

Name Description and signature

596 Chapter 12

BLAS and libU77 libraries
libU77 routines

GMTIME Returns the Greenwich mean time in HP-UX format within an array of
time elements.
SUBROUTINE GMTIME (stime, tarray)
INTEGER :: stime, tarray(9)

HOSTNM Retrieves the name of the current host.
INTEGER FUNCTION HOSTNM (name)
CHARACTER(LEN=*) :: name

IARGC Returns the index of the last command-line argument.
INTEGER FUNCTION IARGC()

IDATE Returns the date in numerical form.
SUBROUTINE IDATE (iarray)
INTEGER :: iarray(3)

IDATEY2K Designed to replace the HP f90 IDATE intrinsic. This returns the true year
in its third argument, as opposed to the idate intrinsic, which returns the
number of years since 1900 in its third argument.
SUBROUTEIN IDATEY2K(MONTH,DATE,YEAR)
INTEGER MONTH,DAY,YEAR

The +U77 flag (described in “+U77 option” on page 588) must be used with
IDATEY2K.

IERRNO Returns the error number of the last detected system error.
INTEGER FUNCTION IERRNO()

ISATTY Checks whether a logical unit is associated with a terminal device.
LOGICAL FUNCTION ISATTY (lunit)
INTEGER :: lunit

ITIME Returns the time in numerical form.
SUBROUTINE ITIME (iarray)
INTEGER :: iarray(3)

KILL Sends a signal number to a user’s process.
INTEGER FUNCTION KILL (pid, signum)
INTEGER :: pid, signum

LINK Creates a link to an existing file.
INTEGER FUNCTION LINK (name1, name2)
CHARACTER(LEN=*) :: name1, name2

LOC Returns the address of an object.
INTEGER FUNCTION LOC (arg)

Name Description and signature

Chapter 12 597

BLAS and libU77 libraries
libU77 routines

LSTAT Returns detailed information about the symbolic link to a specified file.
(Use STAT to obtain information about the file to which the link points.)
INTEGER FUNCTION LSTAT (name, statb)
CHARACTER(LEN=*) :: name
INTEGER :: statb(12)

LTIME Returns the local time in HP-UX format within an array of time elements.
SUBROUTINE LTIME (stime, tarray)
INTEGER :: stime, tarray(9)

MALLOC Allocates memory.
SUBROUTINE MALLOC (size, addr)
INTEGER :: size, addr

NUM_PROCS Returns the total number of processors on which the process has initiated
threads.
INTEGER FUNCTION NUM_PROCS()

NUM_
THREADS

Returns the total number of threads that the process creates at initiation,
regardless of how many are idle or active.
INTEGER FUNCTION NUM_THREADS()

PERROR Retrieves system error messages. PERROR writes a message to HP Fortran
logical unit 7 for the last detected system error.
SUBROUTINE PERROR (string)
CHARACTER(LEN=*) :: string

PUTC Writes a character to the file specified by HP Fortran logical unit number 6,
bypassing normal HP Fortran I/O.
INTEGER FUNCTION PUTC (char)

CHARACTER char

QSORT Uses the quick-sort algorithm to sort the elements in a one-dimensional
array.
SUBROUTINE QSORT (array, len, isize, compar)
INTEGER :: len, isize
EXTERNAL compar
INTEGER(2) compar

RENAME Renames a file to the specified new name.
INTEGER FUNCTION RENAME (from, to)
CHARACTER(LEN=*) :: from, to

Name Description and signature

598 Chapter 12

BLAS and libU77 libraries
libU77 routines

SIGNAL Allows you to change the action for a signal.
INTEGER FUNCTION SIGNAL (signum, proc, flag)
INTEGER :: signum, flag
EXTERNAL proc

SLEEP Suspends the execution of a process for a specified interval.
SUBROUTINE SLEEP (itime)
INTEGER :: itime

STAT Returns detailed information about a file by name. When the named file is
a symbolic link, STAT returns information about the file to which the link
points.
INTEGER FUNCTION STAT (name, statb)
CHARACTER(LEN=*) :: name
INTEGER :: statb (12)

SYMLNK Creates a symbolic link to an existing file.
INTEGER FUNCTION SYMLNK (name1, name2)
CHARACTER(LEN=*) :: name1, name2

SYSTEM Executes an HP-UX command.
INTEGER FUNCTION SYSTEM (string)
CHARACTER(LEN=*) :: string

TCLOSE Closes the tape device channel and removes its association with tlu.
INTEGER FUNCTION TCLOSE (tlu)
INTEGER :: tlu

TIME Returns the system time (in seconds) since 00:00:00 Greenwich mean time,
January 1, 1970.
INTEGER FUNCTION TIME()

TOPEN Associates a device name with a tape logical unit.
INTEGER FUNCTION TOPEN (tlu, devnam, label)
INTEGER :: tlu
CHARACTER(LEN=*) :: devnam

TREAD Reads the next physical record from tape to a buffer.
INTEGER FUNCTION TREAD (tlu, buffer)
INTEGER :: tlu
CHARACTER(LEN=*) :: buffer

TREWIN Rewinds the specified tape to the beginning of the first data file.
INTEGER FUNCTION TREWIN (tlu)
INTEGER :: tlu

Name Description and signature

Chapter 12 599

BLAS and libU77 libraries
libU77 routines

TSKIPF Allows the user to skip over files and records.
INTEGER FUNCTION TSKIPF (tlu, nfiles, nrecs)
INTEGER :: tlu, nfiles, nrecs

TSTATE Allows the user to determine the logical state of the tape I/O channel and to
see the tape drive control status register.
INTEGER FUNCTION TSTATE (tlu, fileno, recno, errf, eoff, eotf, tcsr)
INTEGER :: tlu, fileno, recno, tcsr
LOGICAL :: errf, eoff, eotf

TTYNAM Returns a blank padded path name of the terminal device associated with a
specified logical unit number.
CHARACTER(LEN=*) FUNCTION TTYNAM (lunit)
INTEGER :: lunit

TWRITE Writes a physical record to tape from the specified buffer.
INTEGER FUNCTION TWRITE (tlu, buffer)
INTEGER :: tlu
CHARACTER(LEN=*) :: buffer

UNLINK Removes a specified directory entry.
INTEGER FUNCTION UNLINK (name)
CHARACTER(LEN=*) :: name

WAIT Waits for a process to terminate.
INTEGER FUNCTION WAIT (status)
INTEGER :: status

Name Description and signature

600 Chapter 12

BLAS and libU77 libraries
BLAS routines

BLAS routines
Table 65 lists the routines in the BLAS library and briefly summarizes
the calculations they perform.

Table 65 BLAS routines

Routine name Calculation performed

ISAMAX, IDAMAX, ICAMAX,
IZAMAX

Return index of largest element in vector.

SASUM, DASUM, SCASUM,
DZASUM

Sum absolute values.

SAXPY, DAXPY,
CAXPY,ZAXPY

Add scalar multiple of vector to vector.

SCOPY, DCOPY, CCOPY,
ZCOPY

Copy a vector.

SDOT, DDOT, CDOTC,CDOTU,
ZDOTC, ZDOTU

Compute dot product of two vectors.

SGBMV, DGBMV, CGBMV,
ZGBMV

Multiply band matrix times vector.

SGEMM, DGEMM, CGEMM,
ZGEMM

Multiply two general matrices.

SGEMV, DGEMV, CGEMV,
ZGEMV

Multiply general matrix times vector.

SGER, DGER, CGERC, CGERU,
ZGERC, ZGERU

Compute dyadic product of two vectors.

SNRM2, DNRM2, SCNRM2,
DZNRM2

Compute Euclidean norm of vector.

SROT, DROT, CROT, ZROT Apply Givens plane rotation.

SROTM, DROTM Apply a modified Givens rotation.

SROTG, DROTG, CROTG,
ZROTG

Construct Givens plane rotation.

Chapter 12 601

BLAS and libU77 libraries
BLAS routines

SROTMG, DROTMG Construct modified Givens plane rotation.

SSBMV, DSBMV, CHBMV,
ZHBMV

Multiply symmetric/Hermitian band matrix times vector.

SSCAL, DSCAL, CSCAL,
CSSCAL, ZSCAL, ZDSCAL

Scale vector.

SSPMV, DSPMV, CHPMV,
ZHPMV

Multiply symmetric/Hermitian packed matrix times vector.

SSPR, DSPR, CHPR, ZHPR Compute symmetric/Hermitian dyadic product of vector
with itself, leaving result in packed form.

SSPR2, DSPR2, CHPR2,
ZHPR2

Compute symmetric/Hermitian dyadic product of two
vectors, leaving result in packed form.

SSWAP, DSWAP, CSWAP,
ZSWAP

Swap two vectors.

SSYMM, DSYMM, CHEMM,
CSYMM, ZHEMM, ZSYMM

Multiply two symmetric matrices.

SSYMV, DSYMV, CHEMV,
ZHEMV

Multiply symmetric/Hermitian matrix times vector.

SSYR, DSYR, CHER, ZHER Compute symmetric/Hermitian dyadic product of vector
with itself.

SSYR2, DSYR2, CHER2,
ZHER2

Compute symmetric/Hermitian dyadic product of two
vectors.

SSYR2K, DSYR2K, CHER2K,
CSYR2K, ZHER2K, ZSYR2K

Compute symmetric product of matrix and transpose or
adjoint of second matrix.

SSYRK, DSYRK, CHERK,
CSYRK, ZHERK, ZSYRK

Compute product of matrix and its transpose or adjoint.

STBMV, DTBMV, CTBMV,
ZTBMV

Multiply triangular band matrix times vector.

STBSV, DTBSV, CTBSV,
ZTBSV

Multiply inverse of triangular band matrix times vector.

Routine name Calculation performed

602 Chapter 12

BLAS and libU77 libraries
BLAS routines

STPMV, DTPMV, CTPMV,
ZTPMV

Multiply triangular packed matrix times vector.

STPSV, DTPSV, CTPSV,
ZTPSV

Multiply inverse of packed triangular matrix times vector.

STRMM, DTRMM, CTRMM,
ZTRMM

Multiply triangular matrix by general matrix.

STRMV, DTRMV, CTRMV,
ZTRMV

Multiply triangular matrix times vector.

STRSM, DTRSM, CTRSM,
ZTRSM

Multiply inverse of triangular matrix by general matrix.

STRSV, DSTRSV,CTRSV,
ZTRSV

Multiply inverse of triangular matrix times vector.

XERBLA Handle errors for BLAS matrix operations (Level 2 and
Level 3 routines).

Routine name Calculation performed

603

A I/O runtime error messages

This appendix lists and describes the I/O runtime error messages that
can be returned by the IOSTAT=integer-variable specifier. If an I/O error
occurs during the execution of an I/O statement, and the statement
includes the IOSTAT= integer-variable specifier, the status code for the
error will be returned in integer-variable. Consider the following
example:

INTEGER ios
.
.
.
OPEN (10, FILE='data_file', ERR=99, IOSTAT=ios)

If data_file is successfully opened, ios will return 0; if for any reason
the file cannot be opened, a nonzero status code will be returned in ios.
By referring to this appendix, you can get information about the error
and how to correct it.

604 Appendix A

I/O runtime error messages
Runtime I/O errors

Runtime I/O errors
The error information listed in this section includes the codes returned
by IOSTAT=, plus the following:

• The message that the runtime system would send to standard error if
you did not include the IOSTAT= specifier.

• A diagnosis of the conditions that might have resulted in the error.

• Actions that the programmer can take to correct the error.

Table 66 Runtime I/O errors

Error
no. Error message Description Action

900 ERROR IN FORMAT FORMAT statement
syntax contains an error.

See the “I/O and file
handling” chapter for the
syntax of the format
specification and edit
descriptors.

901 NEGATIVE UNIT
NUMBER SPECIFIED

Unit number was not
greater than or equal to
zero.

Use a nonnegative unit
number.

902 FORMATTED I/O
ATTEMPTED ON
UNFORMATTED FILE

Formatted I/O was
attempted on a file
opened for unformatted
I/O.

Open the file for
formatted I/O or perform
unformatted I/O on this
file.

903 UNFORMATTED I/O
ATTEMPTED ON
FORMATTED FILE

Unformatted I/O was
attempted on a file
opened for formatted I/O.

Open the file for
unformatted I/O or
perform formatted I/O on
this file.

904 DIRECT I/O
ATTEMPTED ON
SEQUENTIAL FILE

Direct operation
attempted on sequential
file, direct operation
attempted on opened file
connected to a terminal.

Use sequential
operations on this file,
open file for direct access,
or do not do direct I/O on
a file connected to a
terminal.

Appendix A 605

I/O runtime error messages
Runtime I/O errors

905 ERROR IN LIST-
DIRECTED READ OF
LOGICAL DATA

Found repeat value, but
no asterisk. First
character after optional
decimal point was not T
or F.

Change input data to
correspond to syntax
expected by list-directed
input of logicals, or use
input statement that
corresponds to syntax of
input data.

907 ERROR IN LIST-
DIRECTED READ OF
CHARACTER DATA

Found repeat value, but
no asterisk. Characters
not delimited by
quotation marks.

Change input data to
correspond to syntax
expected by list-directed
input of characters, or
use input statement that
corresponds to syntax of
input data.

908 COULD NOT OPEN
FILE SPECIFIED

Tried to open a file that
the system would not
allow for one of the
following reasons: access
to the file was denied by
the file system due to
access restriction; the
named file does not exist;
or the type of access
request is impossible.

Correct the pathname to
open the intended file.

909 SEQUENTIAL I/O
ATTEMPTED ON
DIRECT ACCESS FILE

Attempted a
BACKSPACE, REWIND,
or ENDFILE on a
terminal or other device
for which these
operations are not
defined.

Do not use the
BACKSPACE, REWIND,
and ENDFILE
statements.

910 ACCESS PAST END OF
RECORD ATTEMPTED

Tried to do I/O on record
of a file past beginning or
end of record.

Perform I/O operation
within bounds of the
record, or increase record
length.

Error
no. Error message Description Action

606 Appendix A

I/O runtime error messages
Runtime I/O errors

912 ERROR IN LIST I/O
READ OF COMPLEX
DATA

While reading complex
data, one of the following
problems has occurred:
no left parenthesis and
no repeat value; repeat
value was found but no
asterisk; or no closing
right parenthesis.

Change input data to
correspond to syntax
expected by list-directed
input of complex
numbers, or use input
statement corresponding
to syntax of input data.

913 OUT OF FREE SPACE Library cannot allocate
an I/O block (from an
OPEN statement), parse
array (for formats
assembled at run-time),
file name string (from
OPEN) characters from
list-directed read, or file
buffer. The program may
be trying to overwrite a
shared memory segment
defined by another
process.

Allocate more free space
in the heap area, open
fewer files, use FORMAT
statements in place of
assembling formats at
run time in character
arrays, or reduce the
maximum size of file
records.

914 ACCESS OF
UNCONNECTED UNIT
ATTEMPTED

Unit specified in I/O
statement has not
previously been
connected to anything.

Connect unit using the
OPEN statement before
attempting I/O on it, or
perform I/O on another,
already connected, unit.

915 READ UNEXPECTED
CHARACTER

Read a character that is
not admissible for the
type of conversion being
performed. Input value
was too large for the type
of the variable.

Remove from input data
any characters that are
illegal in integers or real
numbers.

Error
no. Error message Description Action

Appendix A 607

I/O runtime error messages
Runtime I/O errors

916 ERROR IN READ OF
LOGICAL DATA

An illegal character was
read when logical data
was expected.

Change input data to
correspond to syntax
expected when reading
logical data or use input
statement corresponding
to syntax of input data.

917 OPEN WITH NAMED
SCRATCH FILE
ATTEMPTED

Executed OPEN
statement with
STATUS='SCRATCH',
but also named the file.
Scratch files must not be
named.

Either remove the FILE=
specifier, or open the file
with a status other than
STATUS='SCRATCH'.

918 OPEN OF EXISTING
FILE WITH
STATUS='NEW'
ATTEMPTED

Executed OPEN
statement with
STATUS='NEW', but file
already exists.

Either remove the
STATUS= specifier from
the OPEN statement, or
use the STATUS='OLD';
STATUS='UNKNOWN';
or STATUS='REPLACE'
specifier.

920 OPEN OF FILE
CONNECTED TO
DIFFERENT UNIT
ATTEMPTED

You attempted to open a
file that is already open
with a different unit
number.

Close the file with the
current unit number
before attempting to open
it with a different unit
number.

921 UNFORMATTED
OPEN WITH BLANK
SPECIFIER
ATTEMPTED

OPEN statement
specified
FORM='UNFORMATTE
D' and BLANK=xx.

Either use
FORM='FORMATTED'
or remove BLANK=xx.

922 READ ON ILLEGAL
RECORD ATTEMPTED

Attempted to read a
record of a formatted or
unformatted direct file
that is beyond the
current end-of-file.

Read records that are
within the bounds of the
file.

Error
no. Error message Description Action

608 Appendix A

I/O runtime error messages
Runtime I/O errors

923 OPEN WITH ILLEGAL
FORM SPECIFIER
ATTEMPTED

FORM= specified string
other than
'FORMATTED' or
'UNFORMATTED'.

Use either
'FORMATTED' or
'UNFORMATTED' for
the FORM= specifier in
an OPEN statement.

924 CLOSE OF SCRATCH
FILE WITH
STATUS='KEEP'
ATTEMPTED

The file specified in the
CLOSE statement was
previously opened with
'SCRATCH' specified in
the STATUS= specifier.

Open the file with a
STATUS= , specifying a
string other than
'SCRATCH' or do not
specify STATUS='KEEP'
in the CLOSE statement
for this scratch file.

925 OPEN WITH ILLEGAL
STATUS SPECIFIER
ATTEMPTED

STATUS= specified
string other than 'OLD'
'NEW' 'UNKNOWN'
'REPLACE' or
'SCRATCH'.

Use 'OLD’, 'NEW',
'UNKNOWN',
'REPLACE' or
'SCRATCH' for the
STATUS= specifier in
OPEN statement.

926 CLOSE WITH
ILLEGAL STATUS
SPECIFIER
ATTEMPTED

STATUS= specified
string other than 'KEEP'
or 'DELETE'.

Use 'KEEP' or 'DELETE'
for the STATUS=
specifier in a CLOSE
statement.

927 OPEN WITH ILLEGAL
ACCESS SPECIFIER
ATTEMPTED

ACCESS= specified
string other than
'SEQUENTIAL' or
'DIRECT'.

Use 'SEQUENTIAL' or
'DIRECT' for the
ACCESS= specifier in an
OPEN statement.

929 OPEN OF DIRECT
FILE WITH NO RECL
SPECIFIER
ATTEMPTED

OPEN statement has
ACCESS='DIRECT', but
no RECL= specifier.

Add RECL= specifier to
OPEN statement, or
specify ACCESS=
'SEQUENTIAL'.

930 OPEN WITH RECL
LESS THAN 1
ATTEMPTED

RECL= specifier in
OPEN statement was
less than or equal to zero.

Specify a positive number
for RECL= specifier in
OPEN statement.

Error
no. Error message Description Action

Appendix A 609

I/O runtime error messages
Runtime I/O errors

931 OPEN WITH ILLEGAL
BLANK SPECIFIER
ATTEMPTED

BLANK= specified string
other than 'NULL' or
'ZERO'

Use 'NULL' or 'ZERO' for
BLANK= specifier in
OPEN statement.

933 END (OR BEGIN) OF
FILE WITH NO END=x
SPECIFIER

End-of-file mark read by
a READ statement with
no END= specifier to
indicate label to which to
jump.

Use the END= specifier
to handle EOF, or check
logic.

937 ILLEGAL RECORD
NUMBER SPECIFIED

A record number less
than one was specified
for direct I/O.

Use record numbers
greater than zero.

942 ERROR IN LIST-
DIRECTED READ -
CHARACTER DATA
READ FOR
ASSIGNMENT TO
NONCHARACTER
VARIABLE

A character string was
read for a numerical or
logical variable.

Check input data and
input variable type.

944 RECORD TOO LONG
IN DIRECT
UNFORMATTED I/O

Output requested is too
long for specified (or pre-
existing) record length.

Make the number of
bytes output by WRITE
less than or equal to the
file record size.

945 ERROR IN
FORMATTED I/O

More bytes of I/O were
requested than exist in
the current record.

Match the format to the
data record.

953 NO REPEATABLE
EDIT DESCRIPTOR IN
FORMAT STRING

No format descriptor was
found to match I/O list
items.

Add at least one
repeatable edit descriptor
to the format statement.

956 FILE SYSTEM ERROR The file system returned
an error status during an
I/O operation.

See the associated file
system error message.

Error
no. Error message Description Action

610 Appendix A

I/O runtime error messages
Runtime I/O errors

957 FORMAT
DESCRIPTOR
INCOMPATIBLE WITH
NUMERIC ITEM IN I/O
LIST

A numeric item in the I/O
list was matched with a
nonnumeric edit
descriptor.

Match format descriptors
to I/O list.

958 FORMAT
DESCRIPTOR
INCOMPATIBLE WITH
CHARACTER ITEM IN
I/O LIST

A character item in the I/
O list was matched with
an edit descriptor other
than A or R.

Match format descriptors
to I/O list.

959 FORMAT
DESCRIPTOR
INCOMPATIBLE WITH
LOGICAL ITEM IN I/O
LIST

A logical item in the I/O
list was matched with a
edit descriptor other
than L.

Match format descriptors
to I/O list.

973 RECORD LENGTH
DIFFERENT IN
SUBSEQUENT OPEN

Record length specified
in second OPEN
conflicted with the value
as opened.

Only BLANK=, DELIM=,
and PAD= specifiers may
be changed by a
redundant OPEN.

974 RECORD ACCESSED
PAST END OF
INTERNAL FILE
RECORD (VARIABLE)

An attempt was made to
transfer more characters
than internal file length.

Match READ or WRITE
statement with internal
file size.

975 ILLEGAL NEW FILE
NUMBER
REQUESTED IN FSET
FUNCTION

The file number
requested to be set was
not a legal file system file
number.

Check that the OPEN
succeeded and the file
number is correct.

976 UNEXPECTED
CHARACTER IN
”NAMELIST” READ

An illegal character was
found in namelist-
directed input.

Be sure input data
conforms to the syntax
rules for namelist-
directed input, or remove
illegal character from
data.

Error
no. Error message Description Action

Appendix A 611

I/O runtime error messages
Runtime I/O errors

977 ILLEGAL SUBSCRIPT
OR SUBSTRING IN
”NAMELIST” READ

An invalid subscript or
substring specifier was
found in namelist-
directed input. Possible
causes include bad
syntax, subscript/
substring component out-
of-bounds, wrong number
of subscripts and
substring on non-
character variable.

Check input data for
syntax errors. Be sure
subscript/substring
specifiers are correct for
data type. Specify only
array elements within
the bounds of the array
being read.

978 TOO MANY VALUES
IN “NAMELIST" READ

Too many input values
were found during a
namelist-directed READ.
This message will be
generated by attempts to
fill variables beyond their
memory limits.

Supply only as many
values as the length of
the array.

979 VARIABLE NOT IN
NAMELIST GROUP

A variable name was
encountered in the input
stream that was not
declared as part of the
current namelist group.

Read only the variables
in this namelist.

980 NAMELIST I/O
ATTEMPTED ON
UNFORMATTED FILE

An illegal namelist-
directed I/O operation
was attempted on an
unformatted (binary) file.

Specify
FORM='FORMATTED'
in OPEN statement, or
use namelist-directed
I/O only on formatted
files.

1010 OPEN WITH ILLEGAL
PAD SPECIFIER
ATTEMPTED

An attempt was made to
open a file with an illegal
value specified for the
PAD= specifier.

Specify either PAD='YES'
or PAD='NO'.

Error
no. Error message Description Action

612 Appendix A

I/O runtime error messages
Runtime I/O errors

1011 OPEN WITH ILLEGAL
POSITION SPECIFIER
ATTEMPTED

An attempt was made to
open a file with an illegal
value specified for the
POSITION= specifier.

Specify
POSITION='ASIS',
POSITION='REWIND' or
POSITION='APPEND'.

1012 OPEN WITH ILLEGAL
DELIM SPECIFIER
ATTEMPTED

An attempt was made to
open a file with an illegal
value specified for the
DELIM= specifier.

Specify DELIM=
'APOSTROPHE',
DELIM='QUOTE' or
DELIM='NONE'.

1013 OPEN WITH ILLEGAL
ACTION SPECIFIER
ATTEMPTED

An attempt was made to
open a file with an illegal
value specified for the
ACTION= specifier.

Specify
ACTION='READ',
ACTION='WRITE' or
ACTION='READWRITE'.

Error
no. Error message Description Action

Glossary 613

Glossary

A

actual argument A value,
variable, or procedure that is
passed by a call to a procedure
(function or subroutine). The
actual argument appears in the
source of the calling procedure. See
also dummy argument.

adjustable array A dummy
argument that is an array
having at least one nonconstant
dimension.

allocatable array A named
array with the ALLOCATABLE
attribute whose rank is specified
at compile time, but whose
bounds are determined at run
time. Storage for the array must be
explicitly allocated before the
array may be referenced.

archive library A library of
routines that can be linked to an
executable program at link-time.
See also shared library.

argument (1) A variable,
declared in the argument list of a
procedure or ENTRY statement,
that receives a value when the
procedure is called (a dummy
argument). (2) The variable,
expression, or procedure that is
passed by a call to a procedure (an
actual argument).

argument association The
correspondence between an actual
argument and a dummy
argument during execution of a
procedure reference.

argument keyword A dummy
argument name. Argument
keywords can be used to pass
actual arguments to a
procedure in any order if the
procedure has an explicit interface.

array A rectangular pattern of
elements of the same data type.
The properties of an array include
its rank, shape, extent, and data
type. See also bounds and
dimension.

array constructor A rank-one
array represented as a sequence
of scalar or array values that may
be constant or variable.

array element An individual,
scalar component of an array
that is specified by the array name
and, in parenthesis, one or more
subscripts that identify the
element’s position in the array.

array element order The order
in arrays are laid out in memory.
The array element order for
HP Fortran 90 arrays is column-
major order. Array element order
can also be used to determine
sequence association.

614 Glossary

array pointer An array that
has the POINTER attribute and
may therefore be used to point to a
target object.

array section A subset of an
array specified by a subscript
triplet or vector subscript in
one or more dimensions. For an
array a(4,4), a(2:4:2,2:4:2)
is an array section containing only
the evenly indexed elements
a(2,2), a(4,2), a(2,4), and
a(4,4).

array-valued Having the
property of being an array. For
example, an array-valued
function has a return value that
is an array.

association The mechanism by
which two or more names may
refer to the same entity. See also
argument association, host
association, pointer
association, sequence
association, storage
association, and use
association.

assumed-shape array An
array that is a dummy
argument to a procedure and
whose shape is assumed (taken)
from that of the associated actual
argument. An assumed-shape
array’s upper bound in each
dimension is represented by a
colon (:). See also assumed-size
array.

assumed-size array An older
FORTRAN 77 feature. An array
that is a dummy argument to a
procedure and whose size (but
not necessarily its shape) is

assumed (taken) from that of the
associated actual argument. The
upper bound of an assumed-size
array’s last dimension is specified
by an asterisk (*). See also
assumed-shape array.

attribute A property of a
constant or variable that may be
specified in a type declaration
statement. Most attributes may
alternately be specified in a
separate statement. For instance,
the ALLOCATABLE statement has
the same meaning as the
ALLOCATABLE attribute, which
appears in a type declaration
statement.

automatic array An explicit-
shape array that is local to a
procedure and is not a dummy
argument. One or more of an
automatic array’s bounds is
determined upon entry to the
procedure, allowing automatic
arrays to have a different size and
shape each time the procedure is
invoked.

automatic data object A data
object declared in a subprogram
whose storage space is dynamically
allocated when the subprogram is
invoked; its storage is released on
return from the subprogram.
Fortran 90 supports automatic
arrays and automatic character
string variables.

B

bit A binary digit, either 1 or 0.
See also byte.

Glossary 615

blank common A common
block that is not associated with a
name.

block A series of consecutive
statements that are treated as a
complete unit and are within a
SELECT CASE, DO, IF, or WHERE
construct.

block data program unit A
procedure that establishes initial
values for variables in named
common blocks and contains no
executable statements. A block
data program unit begins with a
BLOCK DATA statement.

bounds The minimum and
maximum values permitted as a
subscript of an array for each
dimension. For each dimension,
there are two bounds—the upper
and lower bounds—that define the
range of values for subscripts.

BOZ constants A literal
constant that can be formatted as
binary, octal, or hexadecimal. See
also typeless constant.

built-in functions %REF and
%VAL—HP extensions that can be
used to change argument-passing
rules in procedure references.

byte A group of contiguous bits
starting on an addressable
boundary. In HP machines, a byte
is 8 bits in length.

C

character A digit, letter, or
other symbol in the character set.
See Appendix B, “Character set”.

character string A sequence of
zero or more consecutive
characters.

column-major order The
default storage method for arrays
in HP Fortran 90. Memory
representation of an array is such
that the columns are stored
contiguously. For example, given
the array a(2,3), element
a(1,1) would be stored in the first
location, element a(2,1)in the
second location, element a(1,2)in
the third location, and so on. See
also row-major order.

common block A block of
memory for storing variables. A
common block is a global entity
that may be referenced by one or
more program units.

compile-line option A flag that
can be specified with the f90
command line to override the
default actions of the HP Fortran
compiler.

compiler directive A specially-
formatted comment within a
source program that affects how
the program is compiled. Compiler
directives are not part of the
Fortran 90 Standard. In
HP Fortran 90, compiler directives
provide control over source listing,
optimization, and other features.

component A constituent that is
part of a derived type. A derived
type may consist of one or more
components. For example,
time%hour refers to the hour
component of time (and time is a

616 Glossary

variable whose data type is a
derived type defined in the
program).

conformable Two arrays are
conformable if both arrays have
the same rank (number of
dimensions) and the same extent
(number of elements for each
dimension). A scalar is
conformable with any array.

connected (1) A unit is
connected if it refers to an
external file. (2) An external file
is connected if a unit refers to it. In
both cases, connection is
established either by the OPEN
statement or by preconnection. See
also preconnected.

constant A data object that
retains the same value during a
program’s execution. A constant’s
value is established when a
program is compiled. A constant is
either a literal constant or a
named constant.

constant expression An
expression whose value does not
vary during the program’s
execution. A constant expression’s
operands are all constants.

construct A series of
statements that begins with a
SELECT CASE, DO, IF, or WHERE
statement and ends with a
corresponding END SELECT,
END DO, END IF, or ENDWHERE
statement.

D

data type A named category of
data that has a set of values, a way
to denote its values, and a set of
operations for interpreting and
manipulating the values. Fortran
90 intrinsic data types include
character, complex, double
precision, integer, logical, and real.
HP Fortran 90 also provides the
byte and double complex data
types as extensions. See also
derived type.

deferred-shape array An
allocatable array or a pointer
array (an array with the
ALLOCATABLE or POINTER
attribute).

defined assignment A non-
intrinsic assignment statement
that is defined by an
ASSIGNMENT(=) interface block
and a subroutine.

defined operator An operator
that is present in an INTERFACE
statement and has its operation
implemented by one or more user-
defined functions.

demand-loadable A process is
demand-loadable if its pages are
brought into physical memory only
when they are accessed.

derived type A user-defined
(non-intrinsic) data type that
consists of one or more
components. Each component of
a derived type is either an
intrinsic data type or another
derived type.

Glossary 617

dimension Each subscript of
an array corresponds to a
dimension of the array; arrays
may have from one to seven
dimensions. The number of
dimensions is an array’s rank. See
also extent.

directive See compiler
directive.

disassociated A pointer that is
disassociated points to no target. A
pointer becomes disassociated
following a DEALLOCATE or
NULLIFY statement involving the
pointer or by the pointer being
associated with (pointing to) a
disassociated pointer.

dummy argument An entity
whose name appears in the
argument list of a procedure or
ENTRY statement. It is associated
with an actual argument when
the procedure is called. The
dummy argument appears in the
source of the called procedure.

dummy array A dummy
argument that is an explicit-
shape array.

dusty deck program An older,
pre-FORTRAN 77 program.
Presumably called a “dusty deck”
program because it was stored on
punched cards and has not been
changed since. Such programs
generally rely on nonstructured
programming techniques such as
the GOTO statement.

E

element See array element.

elemental To be elemental, an
intrinsic operation, procedure,
or assignment must apply
independently to every element of
an array or apply independently
to the corresponding elements of a
set of conformable arrays and
scalars

equivalencing The process of
sharing storage units among two
or more data objects by means of
the EQUIVALENCE statement.

executable statement An
instruction that causes the
program to perform one or more
computational or branching
actions.

explicit interface A
procedure interface whose
properties (including the name and
attributes of the procedure and the
order and attributes of its
arguments) are known by the
calling program unit. A
procedure may have an explicit
interface in a scoping unit if it is
any of the following:

• Described by an interface
block

• An internal procedure

• A module procedure

• A statement function

explicit-shape array An array
with explicitly-declared bounds for
each dimension.

expression A series of
operands and (optionally)
operators and parentheses that
forms either a data reference or a
computation. See also constant

618 Glossary

expression, initialization
expression, and specification
expression.

extended operator See
defined operator.

extent The number of elements
in one dimension of an array.

external file A file that is
stored on a medium external to the
executing program.

external name The name of an
object referenced by a program
unit, as it appears to the linker.
Case is not significant in the
names that appear in Fortran
source files; but it is significant in
external names.

external procedure A
procedure that is not contained in
a main program, module, or
another subprogram.

F - H

file A sequence of records
(characters or values processed
as a unit).

See also external file and
internal file.

function A procedure that
returns a value (the function
result) and that can be referenced
in an expression.

function result The data object
returned from a call to a function.

generic procedure A
procedure in which at least one
actual argument may have more

than one data type. Generic
procedures may be intrinsic or
user-defined.

global entity A program unit,
common block, or external
procedure whose scope is the
entire executable program.

High Performance Fortran
(HPF) An extension to the
Fortran 90 Standard that provides
user-directed data distribution and
alignment. HPF is not a standard,
but rather a set of features
desirable for parallel
programming.

host A program unit or
subprogram that contains an
internal procedure or module.

host association The process by
which an internal procedure,
module procedure, or derived
type definition accesses the
entities of its host.

I - K

initialization expression A
more restricted form of constant
expression that is used to
initialize data.

inquiry function An intrinsic
function whose return value
provides information based on the
principal arguments’ properties
and not the arguments’ values.

intent An attribute of a
dummy argument that indicates
whether the argument is used for
transferring data into the
procedure, out of the procedure,
or both.

Glossary 619

internal file A variable that is
used as a file storage medium for
formatted I/O. Internal files are
stored in memory and typically are
used to convert data from a
machine representation to a
character representation by use
of edit descriptors.

internal procedure A
procedure contained in a main
program or another
subprogram.

intrinsic Assignment
statements, data types,
operations, and procedures are
intrinsic if they are defined in the
Fortran 90 Standard and may be
used, without being defined, in any
scoping unit.

keyword option A Fortran 90
feature that allows an actual
argument to appear anywhere in
the argument list to a procedure
reference.

kind type parameter An
integer parameter whose value
determines the range for an
intrinsic data type; for example
INTEGER(KIND=2). The kind type
parameter also determines the
precision for complex and real
data types.

L - M

label An integer, one to five
digits long, that precedes a
statement and identifies it with a
unique number. A statement’s
label provides a way to transfer
control to the statement or to
reference it as a FORMAT
statement.

library A file that contains
object code for subroutines and
data that can be used by programs
written in Fortran 90, among other
languages. See also linker.

linker The ld utility. The linker
resolves references in a program’s
source to routines that are not in
the source file being compiled. The
linker matches each reference, if
possible, to the corresponding
library routine.

literal constant A constant
that does not have a name. A
literal constant’s value is written
directly into a program. See also
named constant.

lower bounds See bounds.

main program The first
program unit that starts
executing when a program is run.
The first statement of a main
program usually is the PROGRAM
statement.

module A program unit that
contains definitions of derived
types, procedures, namelists,
and variables that are made
accessible to other program units.
A module begins with the MODULE
statement and its public
definitions are made available to
other program units by means of
the USE statement.

module procedure A
procedure that is contained in a
module and is not an internal
procedure.

620 Glossary

N - O

name A letter followed by up to
254 alphanumeric characters
(letters, digits, underscores, and $)
that identifies an entity in an
HP Fortran 90 program unit,
such as a common block,
dummy argument, procedure,
program unit, or variable.

named constant A constant
that has a name. See also literal
constant.

numeric type A complex,
double precision, integer, or real
data type.

obsolescent feature A feature
defined in the FORTRAN 77
Standard that still is in common
use but is considered to be
redundant, such as the arithmetic
IF statement.

The use of obsolescent features is
discouraged. The Fortran 90
Standard summarizes the
obsolescent features.

operand An expression that
precedes or follows an operator.
For example, in a + b, both a and
b are operands.

operator A sequence of one or
more characters in an expression
that specifies an operation. For
example, in a + b, + is an
operator.

option See compile-line
option.

optional argument A dummy
argument that does not require a
corresponding actual argument
to be supplied when its procedure
is invoked.

P - R

pointer A variable that has the
POINTER attribute, which enables
it to reference (point to) variables
of a specified data type (rather
than storing the data itself).

pointer association The
process by which a pointer
becomes associated with the
storage space of its target. Pointer
association occurs during pointer
assignment or a valid ALLOCATE
statement.

preconnected Three input/
output units are preconnected to
files by the operating system and
need not be connected by the
OPEN statement. The preconnected
units are:

• Unit 5 (standard input)

• Unit 6 (standard output)

• Unit 7 (standard error)

procedure A unit of program
code that may be invoked. A
procedure can be either a
function or a subroutine.

program A sequence of
instructions for execution by a
computer to perform a specific
task. A program is executable after
successful compilation and
linking.

Glossary 621

program unit A main
program, a module, an external
procedure, or a block data
subprogram.

rank The number of
dimensions of an array. Scalars
have a rank of zero.

record A sequence of values
treated as a whole within a file.

renaming feature A feature of
the USE statement that allows
module entities to be renamed
within the program unit having
access to the entities by use
association.

return value See function
result.

row-major order The default
storage method for arrays in C.
Memory representation is such
that the rows of an array are
stored contiguously. For example,
given the array a[3][2], the
element a[0][0] would be stored
in the first location, element
a[0][1] in the second location,
element a[1][0] in the third
location, and so on. See also
column-major order.

S

scalar A data item that has a
rank of zero and therefore is not
an array.

scope The part of a program in
which a name or declaration has a
single interpretation.

scoping unit A derived-type
definition, an interface body
(excluding derived-type definitions

or interface bodies it contains), or a
program unit or subprogram
(excluding any derived-type
definitions, interface bodies, or
subprograms it contains).

sequence association The
association between dummy
argument and actual argument
that occurs when the two differ in
rank or character length. Dummy
and actual arguments are matched
element by element or character
by character, starting with the first
and proceeding in order. See also
array element order and
column-major order.

sequence derived type A
derived type whose definition
includes the SEQUENCE
statement. The components of a
sequence derived type are in the
storage sequence as specified in
the definition of the derived type.

shape An array’s extent
(number of elements) in each
dimension and rank (number of
dimensions).

shared library A library of
routines that can be linked to an
executable program at runtime,
allowing the shared library to be
used by several programs
simultaneously. See also archive
library.

size The total number of
elements in an array; the product
of all its extents.

specific procedure A procedure
for which each actual argument
must be of a specific data type. See
also generic procedure.

622 Glossary

specification expression A
limited form of an expression
that can appear in a specification
statement—for example, a type
declaration statement—and can
be evaluated on entry to a
procedure.

statement A sequence of
characters that represents an
instruction or step in a program.
A single statement usually, but not
always, occupies one line of a
program.

statement function A
function that returns a scalar
value and is defined by a single
scalar expression.

statement label See label.

storage association The
association of different Fortran
objects with the same storage.
Storage association is achieved by
means of common blocks and
equivalencing.

storage sequence The order in
which Fortran objects are laid out
in memory. Programmers can
control storage sequence by means
of common blocks and
equivalencing, and by defining
sequence derived types. The
storage sequence of arrays is
determined by array element
order.

stride The increment that may
optionally be specified in a
subscript triplet. If it is not
specified, the stride has a value of
one.

structure A data object that is
scalar and is of derived type.

structure component See
component.

subprogram See procedure.

subroutine A procedure that
is referenced by a CALL statement;
values returned by a subroutine
are usually provided through the
subroutine’s arguments.

subscript A scalar value within
the bounds of one dimension of an
array. To specify a single array
element, a subscript must be
specified for each of the array’s
dimensions.

subscript triplet An array
section specification that consists
of a starting element, an ending
element, and (optionally) a stride
separated by colons (:).

substring A contiguous segment
of a scalar character string. Note
that a substring is not an array
section.

T - Z

target A named data object that
may be associated with a pointer.
A target is specified in a TARGET
statement or in a type
declaration statement that has
the TARGET attribute.

type See data type.

type declaration statement A
statement that specifies the data
type and, optionally, attributes
for one or more constants,
functions, or variables.

typeless constants A literal
constant that is formatted to
represent a bit pattern and

Glossary 623

therefore does not imply the type
of the constant. BOZ constants
and Hollerith constants are both
typeless.

unit number A logical number
that can be connected to a file to
provide a means for referring to
the file in input/output
statements.

upper bounds See bounds.

use association The association
of names among different
scoping units as specified by a
USE statement. See also module.

user-defined operator See
defined operator.

user-defined assignment See
defined assignment.

variable A data object whose
value may be defined and
redefined during a program’s
execution. For example, array
elements or array sections,
named data objects, structure
components, and substrings all
can be variables.

vector subscript A method of
referencing multiple, possibly
discontinuous elements of an
array by using a rank-one array
of integer values as a subscript.

whole array An array
reference—for example, in a type
declaration statement—that
consists of the array name alone,
without the subscript notation.
Whole array operations affect
every element in the array, not
just a single, subscripted element.

zero-sized array An array with
at least one dimension that has
at least one extent of zero. A zero-
sized array has a size of zero and
contains no elements.

624 Glossary

Index

Index 625

A
+autodbl option

type declaration statement, 24
A edit descriptor, 213

errors, 610
ABORT clause

ON statement, 376
ABORT intrinsic subroutine,

488
ABS intrinsic function, 488
ACCEPT statement, 245

data list items, 193
ACCESS routine, 593
access to entities, limiting, 405,

409
ACCESS= specifier

errors, 609
INQUIRE statement, 345
OPEN statement, 379

accessing files, 178
direct, 185
examples, 202
list-directed, 179
namelist I/O, 183
sequential, 178

ACHAR intrinsic function, 488
ACOS intrinsic function, 489
ACOSD intrinsic function, 489
ACOSH intrinsic function, 490
ACTION= specifier

errors, 612
INQUIRE statement, 345
OPEN statement, 380

actual arguments, 139
agreement with dummy

arguments, 139
alternate return argument,

132
assumed-shape arrays, 56
glossary, 613
INTENT statement, 358
keyword option, 144
module procedures, 162

procedure reference syntax,
130

adjustable arrays, 55
glossary, 613

ADJUSTL intrinsic function,
490

ADJUSTR intrinsic function,
490

ADVANCE= specifier
nonadvancing I/O, 187
READ statement, 412
WRITE statement, 471

AIMAG intrinsic function, 491
AIMAXO intrinsics function, 546
AIMINO intrinsics function, 550
AINT intrinsic function, 491
AJMAXO intrinsics function,

546
AJMINO intrinsics function, 550
AKMAXO intrinsics function,

546
AKMINO intrinsics function,

550
ALARM routine, 593
algebraic subroutines (BLAS),

587
alignment

%FILL field name, 440
arrays, 22
derived types, 44
EQUIVALENCE statement,

324
intrinsic types, 22

ALL intrinsic function, 492
allocatable arrays, 59, 248, 249,

250, 288
DATA statement, 284
glossary, 613
initialization, 91

ALLOCATABLE statement and
attribute, 247

allocatable arrays, 59
deferred-shape arrays, 58

TARGET statement, 449
ALLOCATE statement, 249

allocatable arrays, 59
ALLOCATABLE statement,

248
array pointers, 59
POINTER statement, 400

ALLOCATED intrinsic
allocatable arrays, 60
arrays, 78

ALLOCATED intrinsic function,
493

allocatable arrays, 59
arrays, 78
DEALLOCATE statement, 288
in expressions, 93

allocating objects, 250
allocation status, 59
ALOG intrinsics function, 543
ALOG10 intrinsics function, 543
alternate entry points, 134

ENTRY statement, 319
alternate returns, 132

function reference, 131
in RETURN statement, 132
procedure reference syntax,

130
RETURN statement, 425
SUBROUTINE statement, 447

AMAX1 intrinsics function, 546
AMAXO intrinsics function, 546
AMIN1 intrinsics function, 550
AMINO intrinsics function, 550
AMOD intrinsics function, 554
ampersand (&) character

alternate return, 130
continuation character, 15

AND intrinsic function, 493
AND operator, 84
ANINT intrinsic function, 494
ANY intrinsic function, 495
archive libraries

glossary, 613

626 Index

Index

argument-checking, 148, 152
argument-passing rules, 148
arguments, 139

actual, 130, 139, 358
agreement, 139
arrays, 140
association, 124, 139, 263, 613
bit manipulation intrinsics, 85
defined operation, 155
derived types, 142
dummy, 128, 139, 358, 388
glossary, 613
in generic procedures, 154
initialization, 91
internal procedure, 135
intrinsic procedures, 142, 484
keyword option, 144, 613, 619
modifying operands, 88
optional, 145, 387, 487
OPTIONAL statement, 387
pointer dummy argument, 142
presence, 388
procedures as, 142
scalars, 140
sequence association, 140, 141

arithmetic
expressions, 82
operands, 83
operators, 82

arithmetic IF statement, 337
execution control, 117

array constructors
PARAMETER statement, 391
RESHAPE intrinsic, 73
specification expression, 92
typeless constants, 31
vector subscripts, 65

array pointer
glossary, 614

array pointers, 47
deferred-shape array, 59

array sections, 63
assignment, 96

expressions, 81
glossary, 614
pointer assignment, 98
subscript triplet, 64
vector subscript, 65

arrays, 51
actual arguments, 56
adjustable, 55
allocatable, 59, 248, 249, 288
ALLOCATED intrinsic, 78
array constructors, 71
array pointers, 47, 59, 614
array-valued component

reference, 68
array-valued functions, 76
as operands, 81
assignment, masked, 466
ASSOCIATED intrinsic, 78
assumed-shape, 56
assumed-size, 61
automatic, 55
bounds, 52, 294, 615
conformable, 52
constructors, 613
deallocating, 288
declaration, 54
deferred-shape, 58
derived type definition, 41
DIMENSION statement, 54,

293
dimensions, 52
dummy arguments, 55, 56, 61,

140, 617
element, 294, 613
element order, 53, 613
elemental intrinsic functions,

477
elements, 52
EQUIVALENCE statement,

325
examples, 53, 56, 57, 59, 60,

62, 65, 66, 69, 72, 74, 77
explicit-shape, 55

expressions, 74
extent, 52
fundamentals, 52
glossary, 613
I/O restrictions, 194
initialization, 72, 91
inquiry intrinsics, 478
intrinsics, 76, 78, 484
masked array assignment, 99
operands, 74
POINTER attribute, 56
properties, 52
rank, 52
rank-one arrays, 63, 65, 71, 78
scalar assignment, 96
scalars in array expressions,

74
sections, 63
sequence association, 140
shape, 52
SHAPE intrinsic, 78
size, 52
SIZE intrinsic, 78
storage order, 53
stride, 64
subscripts, 52
substring, 63, 65
type declaration statement, 26
UBOUND intrinsic, 78
VIRTUAL statement, 464
VOLATILE statement, 465
WHERE construct, 466
whole array, 52, 623
zero-sized, 52, 64, 74

array-valued
glossary, 614
intrinsic functions, 76
structure-component

reference, 68
user-defined functions, 76

ASA carriage control, 197
asa command, 197
blanks, 182

Index

Index 627

ASCII collating sequence
ACHAR intrinsic, 488
IACHAR intrinsic, 520
LGE intrinsic, 540, 541
LGT intrinsic, 540
LLT intrinsic, 542

ASIN intrinsic function, 496
ASIND intrinsic function, 496
ASINH intrinsic function, 497
ASSIGN statement, 252

assigned GO TO statement,
334

assigned GO TO statement, 334
ASSIGN statement, 252
execution control, 115

assigning space to pointers, 400
assignment, 79, 95

array sections, 96
assignment statement, 95
defined, 157
examples, 97
intrinsic, 95
masked array, 99
mixed expressions, 96
pointer assignment, 97, 450
pointers, 95
type conversion, 95
WHERE construct, 99

ASSIGNMENT clause, 404, 408
defined assignment, 157
interface block syntax, 152
INTERFACE statement, 361
USE statement, 461

ASSOCIATED intrinsic
function, 497

DEALLOCATE statement, 288
disassociated pointers, 49
in expressions, 93

associated status (pointers), 48
association, 124

argument, 124, 139, 263
arguments, 613
duplicated, 146

glossary, 614
host, 124, 455, 618
pointer, 97, 124, 288, 620
sequence, 124, 140, 141, 621
status, 288
storage, 124, 273, 323, 432,

622
use, 124, 161, 371, 405, 409,

455, 461, 623
assumed-shape arrays, 56

dummy argument, 140
explicit interface, 151
glossary, 614

assumed-size arrays, 61
dummy argument, 140
expressions, 81
glossary, 614
pointer assignment, 98

asterisk (*) character
alternate return, 132
comment character, 17
variable character length, 269

asynchronous process and
VOLATILE statement, 465

ATAN intrinsic function, 498
ATAN2 intrinsic function, 498
ATAN2D intrinsic function, 499
ATAND intrinsic function, 499
ATANH intrinsic function, 500
attributes, 25, 241

ALLOCATABLE, 247
compatibility, 242
DIMENSION, 293
EXTERNAL, 328
glossary, 614
INTENT, 358
INTRINSIC, 363
OPTIONAL, 387
PARAMETER, 391
POINTER, 400
PRIVATE, 404
PUBLIC, 408
SAVE, 428

STATIC, 434
TARGET, 449
VOLATILE, 465

automatic arrays, 55
glossary, 614

automatic data objects
automatic arrays, 55
AUTOMATIC statement, 253
character strings, 37
DATA statement, 284
glossary, 614
initializing, 91

AUTOMATIC statement and
attribute, 253

procedure definition syntax,
129

automatic variables, 253
automatically opened unit

numbers, 177
auxiliary I/O statements, 188
availability of intrinsic

procedures, 476

B
B edit descriptor, 216
BABS intrinsic function, 488
backslash character

C escape sequences, 34
BACKSPACE statement, 254
BADDRESS intrinsic function,

500
Basic Linear Algebra Subroutine

library, 587
BBCLR intrinsics function, 522
BBITS intrinsics function, 523
BBTEST intrinsics function, 501
BDIM intrinsics function, 511
BIAND intrinsics function, 521
BIEOR intrinsics function, 526
binary

constants, 30
edit descriptor, 216

628 Index

Index

BIOR intrinsics function, 531
bit

bit model, 481
bitwise intrinsics, 484
bitwise operators, 85
glossary, 614
manipulation intrinsics, 85

BIT_SIZE intrinsic function, 500
BITEST intrinsics function, 501
BIXOR intrinsics function, 535
BJTEST intrinsics function, 501
BKTEST intrinsics function, 501
blank

comment line, 17
blank common

block data program unit, 170
BLOCK DATA statement, 256
COMMON statement, 275
glossary, 615

blank common blocks
COMMON statement, 273

blank edit descriptor, 218
BLANK= specifier, 235

B edit descriptor, 216
BN and BZ edit descriptors,

218
errors, 608, 609
INQUIRE statement, 345
OPEN statement, 380

blanks
fixed format, 16
free format, 14
padding, 84, 540, 541, 542

BLAS
errors, 602

BLAS routines, 587
accessing, 588
CAXPY, 600
CCOPY, 600
CDOTC, 600
CDOTU, 600
CGBMV, 600
CGEMM, 600

CGEMV, 600
CGERC, 600
CGERU, 600
CHBMV, 601
CHEMM, 601
CHEMV, 601
CHER, 601
CHER2, 601
CHER2K, 601
CHERK, 601
CHPMV, 601
CHPR, 601
CHPR2, 601
classified, 600
CROT, 600
CROTG, 600
CSCAL, 601
CSSCAL, 601
CSWAP, 601
CSYMM, 601
CSYR2K, 601
CSYRK, 601
CTBMV, 601
CTBSV, 601
CTPMV, 602
CTPSV, 602
CTRMM, 602
CTRMV, 602
CTRSM, 602
CTRSV, 602
DASUM, 600
DAXPY, 600
DCOPY, 600
DDOT, 600
DGBMV, 600
DGEMM, 600
DGEMV, 600
DGER, 600
DNRM2, 600
DROT, 600
DROTG, 600
DROTM, 600
DROTMG, 601

DSBMV, 601
DSCAL, 601
DSPMV, 601
DSPR, 601
DSPR2, 601
DSTRSV, 602
DSWAP, 601
DSYMM, 601
DSYMV, 601
DSYR, 601
DSYR2, 601
DSYR2K, 601
DSYRK, 601
DTBMV, 601
DTBSV, 601
DTPMV, 602
DTPSV, 602
DTRMM, 602
DTRMV, 602
DTRSM, 602
DZASUM, 600
DZNRM2, 600
ICAMAX, 600
IDAMAX, 600
ISAMAX, 600
IZAMAX, 600
-lblas option, 588
listed, 600
man pages, 591
passing routine as argument,

590
SASUM, 600
SAXPY, 600
SCASUM, 600
SCNRM2, 600
SCOPY, 600
SDOT, 600
SGBMV, 600
SGEMM, 600
SGEMV, 600
SGER, 600
SNRM2, 600
SROT, 600

Index

Index 629

SROTG, 600
SROTM, 600
SROTMG, 601
SSBMV, 601
SSCAL, 601
SSPMV, 601
SSPR, 601
SSPR2, 601
SSWAP, 601
SSYMM, 601
SSYMV, 601
SSYR, 601
SSYR2, 601
SSYR2K, 601
SSYRK, 601
STBMV, 601
STBSV, 601
STPMV, 602
STPSV, 602
STRMM, 602
STRMV, 602
STRSM, 602
STRSV, 602
XERBLA, 602
ZAXPY, 600
ZCOPY, 600
ZDOTC, 600
ZDOTU routine, 600
ZDSCAL, 601
ZGBMV, 600
ZGEMM, 600
ZGEMV, 600
ZGERC, 600
ZGERU, 600
ZHBMV, 601
ZHEMM, 601
ZHEMV, 601
ZHER, 601
ZHER2, 601
ZHER2K, 601
ZHERK, 601
ZHPMV, 601
ZHPR, 601

ZHPR2, 601
ZROT, 600
ZROTG, 600
ZSCAL, 601
ZSWAP, 601
ZSYMM, 601
ZSYR2K, 601
ZSYRK, 601
ZTBMV, 601
ZTBSV, 601
ZTPMV, 602
ZTPSV, 602
ZTRMM, 602
ZTRMV, 602
ZTRSM, 602
ZTRSV, 602

block data program unit, 169,
328

glossary, 615
BLOCK DATA statement, 256

block data program unit
syntax, 169

END statement, 311
statement order, 11

block IF statement, 338
blocks, statement, 104

glossary, 615
BMOD intrinsics function, 554
BMVBITS intrinsics function,

555
BN edit descriptor, 218
BNOT intrinsics function, 557
bold monospace, xxii
bounds

array, 52, 55, 294
glossary, 615

BOZ constants, 30
glossary, 615
typeless constants, 31
typing rules, 31, 32

brackets, xxii
curly, xxii

branching, 115

BSHFT intrinsics function, 533
BSIGN intrinsics function, 572
BTEST intrinsic function, 501
BUFFER IN statement, 257
BUFFER OUT statement, 259
built-in functions, 148

argument-passing rules, 148
glossary, 615
use with CALL statement, 264

byte
alignment, 22
BYTE statement, 261
data representation, 22
glossary, 615
type declaration, 24

BYTE statement, 261
type declaration statement, 24

bytes-remaining edit descriptor,
233

BZ edit descriptor, 218

C
C language

argument-passing rules, 149
C preprocessor

directives, 8, 18
CABS intrinsics function, 488
CALL clause

ON statement, 376
CALL statement, 263, 264

alternate returns, 131
subroutine reference syntax,

130
calling a procedure, 130
carriage control and ASA, 197
CASE construct, 105

CASE statement, 265
END SELECT statement, 313
SELECT CASE statement, 431

CASE statement, 265
CASE construct, 105
initialization expressions, 91

630 Index

Index

categories
BLAS routines, 600
intrinsic procedures, 484
libU77 routines, 592

CAXPY routine, 600
CCOPY routine, 600
CCOS intrinsics function, 504
CDABS intrinsics function, 488
CDCOS intrinsics function, 504
CDEXP intrinsics function, 516
CDLOG intrinsics function, 543
CDOTC routine, 600
CDOTU routine, 600
CDSIN intrinsics function, 573
CDSQRT intrinsics function,

576
CEILING intrinsic function, 501
CEXP intrinsics function, 516
CGBMV routine, 600
CGEMM routine, 600
CGEMV routine, 600
CGERC routine, 600
CGERU routine, 600
CHAR intrinsic function, 502
character, 22

actual argument, 148
alignment, 22
CHARACTER statement, 268
character string edit

descriptor, 210
concatenation operator, 84
constants, 34
data representation, 22
declaring, 24
edit descriptor, 210
equivalencing, 325
glossary, 615
hidden length parameter, 148
HP character set, 8
I/O errors, 605, 609, 610
intrinsic procedures, 484
list-directed I/O, 180, 181
padding, 84

relational expressions, 84
sequence association, 141
specifying length of variable,

25
string, 37, 615
string (C language), 34
substrings, 36
type declaration, 24, 268
variable length, 269

character edit descriptor (A and
R), 213

CHARACTER statement, 268
type declaration statement, 24

characters
ampersand (&), 15, 130
asterisk (*), 17, 132, 269
backslash, 34
blank, 17
comment characters, 15, 17
control characters, 8
dollar sign ($), 9
double quote, 34
escape, 34
exclamation mark (!), 15, 17
pound sign (#), 8, 18
semicolon, 14, 16
single quote, 34
slash (/), 26
tab, 18
underscore (_), 588
white space, 8

CHBMV routine, 601
CHDIR routine, 593
CHECK_OVERFLOW directive

ON statement, 378
checking, argument, 148, 152
CHEMM routine, 601
CHEMV routine, 601
CHER routine, 601
CHER2 routine, 601
CHER2K routine, 601
CHERK routine, 601
CHMOD routine, 593

CHPMV routine, 601
CHPR routine, 601
CHPR2 routine, 601
clauses

ABORT, 376
ASSIGNMENT, 404, 408, 461
CALL, 376
DEFAULT, 265
IGNORE, 376
IN, 358
INOUT, 358
NONE, 340
ONLY, 461
OPERATOR, 404, 408, 461
OUT, 358
RECURSIVE, 320, 332, 447
RESULT, 319, 320, 332
THEN, 338
TO, 252
WHILE, 297

CLOG intrinsics function, 543
CLOSE statement, 271

errors, 608
CMPLX intrinsic function, 502
collating sequence, ASCII, 541

ACHAR intrinsic, 488
IACHAR intrinsic, 520
LGE intrinsic, 540
LGT intrinsic, 540
LLT intrinsic, 542

colon edit descriptor, 212
column position in fixed format,

16
column-major order, 53

glossary, 615
command syntax, xxiii
comment character, 8, 18
comments

C preprocessor directives as, 8,
18

extensions, 8, 18
fixed format, 17
free format, 15

Index

Index 631

statement order, 12
common block

blank, 615
common blocks

blank, 170, 256, 273, 275
block data progam unit, 169
BLOCK DATA statement, 256
COMMON statement, 273
Cray-style pointers, 274
derived types, 41
dummy arguments, 274
equivalencing, 323, 326
glossary, 615
initializing, 256
pointers, 397
record extension, 422
result variables, 320
SAVE statement, 429
saved variables, 429
scope, 123
sequence derived types, 432
unnamed, 170, 256, 275
VOLATILE statement, 465

COMMON statement, 273
block data program unit, 169
Cray-style pointers, 398
SEQUENCE statement, 432
storage association, 124

compatibility, attribute, 242
compile-line options

+onetrip, 108
glossary, 615

compiler directives
glossary, 615
statement order, 12

complex, 22
alignment, 22
assigning constants, 32
COMPLEX statement, 277
constants, 34
data representation, 22
declaring, 24

DOUBLE COMPLEX
statement, 301

edit descriptors, 210
expressions, 82
I/O errors, 606
list-directed I/O, 180, 181
type declaration, 24, 277

COMPLEX statement, 277
type declaration statement, 24

component, 41
array-valued component

reference, 68
glossary, 615

composite record references, 420
computed GO TO statement,

116, 335
concatenation operator, 84
conformable arrays, 52

DIMENSION statement, 294
glossary, 616
WHERE construct, 99

CONJG intrinsic function, 503
connecting files for I/O, 175

glossary, 616
constants, 29

binary, 30
BOZ, 30, 615
character, 34
complex, 34
examples, 90
expressions, 89, 616
format, 29
glossary, 616
hexadecimal, 30
Hollerith, 30
integer, 29
intrinsic types, 29
logical, 35
named, 29, 92
octal, 30
PARAMETER statement, 391
real, 33
specification expressions, 92

truncation, 32
typeless, 31, 622

constructors
array, 65, 71
structure, 43

constructs
CASE, 105, 431
DO, 107
END DO, 313
END IF, 313
END SELECT, 313
END WHERE, 313
execution control, 104
glossary, 616
IF, 111, 338
names, 9
WHERE, 99, 466

CONTAINS statement, 280
internal procedure, 135
main program unit syntax, 126
module syntax, 162
procedure definition syntax,

129
scoping units, 12
statement order, 11

continuation lines
fixed format, 17
free format, 15

CONTINUE statement, 282
execution control, 113

control characters, 8
control constructs, 103, 107

CASE, 105
DO, 107
IF, 111
nested, 104

conversion, type, 82, 84
COS intrinsic function, 503
COSD intrinsic function, 504
COSH intrinsic function, 504
COUNT intrinsic function, 505
Cray-style pointers, 397

common blocks, 274

632 Index

Index

restrictions, 397
syntax, 397

CROT routine, 600
CROTG routine, 600
CSCAL routine, 601
CSHIFT intrinsic function, 506
CSIN intrinsics function, 573
CSQRT intrinsics function, 576
CSSCAL routine, 601
CSWAP routine, 601
CSYMM routine, 601
CSYR2K routine, 601
CSYRK routine, 601
CTAN intrinsics function, 580
CTBMV routine, 601
CTBSV routine, 601
CTIME routine, 593
CTPMV routine, 602
CTPSV routine, 602
CTRMM routine, 602
CTRMV routine, 602
CTRSM routine, 602
CTRSV routine, 602
curly brackets, xxii
CYCLE statement, 283

execution control, 113

D
+dlines option

debugging lines, 17
D edit descriptor, 219
DABS intrinsics function, 488
DACOSD intrinsics function,

489
DACOSH intrinsics function,

490
DASIN intrinsics function, 496
DASIND intrinsics function, 496
DASINH intrinsics function, 497
DASUM routine, 600
data declaration statements

BYTE, 24, 261

CHARACTER, 24, 268
COMPLEX, 24, 277
DOUBLE COMPLEX, 24, 301
DOUBLE PRECISION, 303
INTEGER, 24, 355
LOGICAL, 365
REAL, 24, 417

data initialization
BLOCK DATA statement, 256
DATA statement, 284

data list, I/O, 192
data representation

models, 480
selecting, 22

DATA statement, 26, 284
array constructors, 72
automatic variables, 253
BLOCK DATA statement, 256
BOZ constants, 30
Cray-style pointers, 397
IMPLICIT statement, 340
initialization expressions, 91
PARAMETER statement, 393
scoping units, 12
statement order, 11

data transfer statements, 188
ACCEPT, 245
DECODE, 290
ENCODE, 308
FORMAT, 330
NAMELIST, 373
PRINT, 402
READ, 411
WRITE, 470

data types, 21
bit representation, 481
BYTE statement, 261
character, 22
CHARACTER statement, 268
complex, 22
COMPLEX statement, 277
data representation models,

480

derived types, 39
DOUBLE COMPLEX

statement, 301
DOUBLE PRECISION

statement, 303
glossary, 616
integer, 22
integer representation, 482
INTEGER statement, 355
logical, 22
LOGICAL statement, 365
pointers, 47
real, 22
real representation, 482
REAL statement, 417

DATAN intrinsics function, 498
DATAN2 intrinsics function, 499
DATAN2D intrinsics function,

499
DATAND intrinsics function,

500
DATANH intrinsics function,

500
date and time

intrinsic procedures, 484
libU77 routines, 592

DATE intrinsic subroutine, 507
DATE_AND_TIME intrinsic

subroutine, 507
DATEY2K, 593
DAXPY routine, 600
DBLE intrinsic function, 509
DBLEQ intrinsics function, 509
DCMPLX intrinsic function, 509
DCONJG intrinsics function,

503
DCOPY routine, 600
DCOS intrinsics function, 489,

504
DCOSD intrinsics function, 504
DCOSH intrinsics function, 504
DDIM intrinsics function, 511
DDINT intrinsics function, 491

Index

Index 633

DDOT routine, 600
DEALLOCATE statement, 288

allocatable arrays, 59
ALLOCATE statement, 250

deallocating objects, 288
debugging lines, 17
declaring data

arrays, 54
BYTE statement, 24, 261
CHARACTER statement, 24,

268
COMPLEX statement, 24, 277
derived types, 43
DOUBLE COMPLEX

statement, 24, 301
DOUBLE PRECISION

statement, 24, 303
INTEGER statement, 24, 355
intrinsic types, 24
LOGICAL statement, 24, 365
REAL statement, 24, 417

DECODE statement, 290
ENCODE statement, 309

DEFAULT clause
CASE statement, 265

deferred-shape arrays, 58
glossary, 616

defined assignment, 157
glossary, 616

defined operators, 155
glossary, 616

definition
derived types, 40
procedures, 128

DELIM= specifier
errors, 612
INQUIRE statement, 346
list-directed I/O, 181
list-directed output, 181
OPEN statement, 381

delimiters for character
constants, 34

demand-loadable

glossary, 616
derived types, 39

arguments, 142
array-valued component

reference, 68
basic operations, 39
common blocks, 41
components of same type, 42
declaration, 454
defining, 40, 457
edit descriptor, 210
EQUIVALENCE statement,

323
equivalencing, 41
example program, 45
glossary, 616
naming, 457
PRIVATE statement, 40, 405,

457
PUBLIC statement, 40, 409,

457
sequence derived type, 41, 432,

621
SEQUENCE statement, 40,

41, 432
structure component, 41
structure constructor, 43
TYPE statement, 454, 457

DEXP intrinsics function, 516
DFLOAT intrinsic function, 510
DFLOTI intrinsics function, 510
DFLOTJ intrinsics function, 510
DFLOTK intrinsics function,

510
DGBMV routine, 600
DGEMM routine, 600
DGEMV routine, 600
DGER routine, 600
diagnostic I/O messages, 603
DIGITS intrinsic function, 510
DIM intrinsic function, 511
dimension, 52

glossary, 617

DIMENSION statement and
attribute, 293

ALLOCATABLE statement,
248

array declaration, 54
derived types, 40

DINT intrinsics function, 491
direct access, 185

errors, 605, 609
example, 202
REC= specifier, 185, 186

DIRECT= specifier and
INQUIRE statement, 346

disassociated pointers
ASSOCIATED intrinsic, 49
DEALLOCATE statement, 288
glossary, 617
NULLIFY statement, 375

division, integer, 83
DLOG intrinsics function, 543
DLOG10 intrinsics function, 543
DMAX1 intrinsics function, 546
DMIN1 intrinsics function, 550
DMOD intrinsics function, 554
DNINT intrinsics function, 494
DNRM2 routine, 600
DNUM intrinsic function, 511
DO loops, 107

conditional, 109
CONTINUE statement, 282
counter-controlled, 107
CYCLE statement, 283
DO statement syntax, 297
END DO statement, 313
EXIT statement, 327
extended range, 298
FORTRAN77-style, 107, 113,

282, 283, 299
implied, 71, 73, 92, 194
infinite, 110
terminal statement, 109
WHILE clause, 297

DO statement, 297

634 Index

Index

DO construct, 107
dollar sign ($) character

names, 9
DOT_PRODUCT intrinsic

function, 511
double colon separator, 26
double complex

alignment, 22
data representation, 22
declaring, 24
list-directed I/O, 180, 181
type declaration, 24, 301

DOUBLE COMPLEX statement,
301

type declaration statement, 24
double precision

alignment, 22
data representation, 22
declaring, 24
type declaration, 24, 303

DOUBLE PRECISION
statement, 303

type declaration statement, 24
double quote character, 34
DPROD intrinsic function, 512
DREAL intrinsic function, 513
DROT routine, 600
DROTG routine, 600
DROTM routine, 600
DROTMG routine, 601
DSBMV routine, 601
DSCAL routine, 601
DSIGN intrinsics function, 572
DSIN intrinsics function, 573
DSPMV routine, 601
DSPR routine, 601
DSPR2 routine, 601
DSQRT intrinsics function, 576
DSTRSV routine, 602
DSWAP routine, 601
DSYMM routine, 601
DSYMV routine, 601
DSYR routine, 601

DSYR2 routine, 601
DSYR2K routine, 601
DSYRK routine, 601
DTAN intrinsics function, 580
DTAND intrinsics function, 580
DTANH intrinsics function, 580
DTBMV routine, 601
DTBSV routine, 601
DTIME routine, 593
DTPMV routine, 602
DTPSV routine, 602
DTRMM routine, 602
DTRMV routine, 602
DTRSM routine, 602
dummy arguments, 139

agreement with actual
arguments, 139

alternate return argument,
132

arrays, 55, 61, 140, 617
assumed-shape arrays, 56
CALL statement, 263
COMMON statement, 274
Cray-style pointer, 397
DATA statement, 284
derived types, 142
duplicated association, 146
ENTRY statement, 319, 321
EQUIVALENCE statement,

323
explicit-shape arrays, 55
EXTERNAL attribute, 328
FUNCTION statement, 332
glossary, 617
in generic procedures, 154
in statement function, 137
initialization, 91
INTENT statement, 148, 358
OPTIONAL statement, 387,

388
pointers, 142
procedure definition syntax,

128

procedures, 142, 328
RETURN statement, 425
scalars, 140
SEQUENCE statement, 432
specification expressions, 92
SUBROUTINE statement, 447
TYPE statement, 454

duplicated association, 146
dusty deck programs, 617
dynamic objects, creating, 400
DZASUM routine, 600
DZNRM2 routine, 600

E
+escape option

escape characters, 34
+extend_source option

fixed format, 16
free format, 14

E edit descriptor, 219
edit descriptors

A, 213
B, 216
binary, 216
blank, 218
BN, 218
byte remaining, 233
BZ, 218
character (A and R), 213
character string, 210
colon, 212
complex data type, 210
D, 219
derived types, 210
E, 219
EN, 219
errors, 604
ES, 219
F, 219
G, 219
H, 225
hexadecimal, 234

Index

Index 635

Hollerith, 225
I, 226
integers, 226
L, 228
logicals, 228
newline, 211
O, 229
octal, 229
overview, 208
P, 231
plus sign, 233
pointers, 210
Q, 233
R, 213
real, 219
repeat factor, 208
S, 233
scale factor, 231
slash, 212
SP, 233
SS, 233
T, 234
tab, 234
TL, 234
TR, 234
X, 234
Z, 234

elemental intrinsics, 477
glossary, 617
in expressions, 93
initialization expressions, 91
WHERE statement, 466

elements, array, 52
array element order, 53, 613
glossary, 617

ellipses, vertical, xxiii
ELSE IF statement, 306
ELSE statement, 305
ELSEWHERE statement, 307

WHERE construct, 100
embedded format specification,

237
ACCEPT statement, 245

DECODE statement, 290, 308
FORMAT statement, 330
internal file, 415
PRINT statement, 402, 403
READ statement, 414, 415
WRITE statement, 470

EN edit descriptor, 219
ENCODE statement, 308

DECODE statement, 291
END BLOCK DATA statement,

311
END DO statement, 313
END FUNCTION statement,

311
procedure definition syntax,

129
END IF statement, 313
END MODULE statement, 311

module syntax, 161
END PROCEDURE statement

interface block, 152
END PROGRAM statement, 311

main program unit syntax, 125
END SELECT CASE statement,

313
END statement

CASE construct, 313
DO construct, 313
IF construct, 313
interface block, 315
internal procedure, 311
map, 314
module procedure, 311
only required statement, 127
program units, 311
statement order, 11
structure definition, 314
union, 314
WHERE construct, 313

END SUBROUTINE statement,
311

procedure definition syntax,
129

END TYPE statement, 316
END WHERE statement, 313
END= specifier

errors, 609
READ statement, 413

ENDFILE statement, 317
end-of-file record, 172

end-of-file
errors, 608, 609
record, 172

engineering notation formatting,
222

entry points, alternate, 134, 319
ENTRY statement, 319

alternate entry points, 134
internal procedure, 135
OPTIONAL statement, 387
procedure definition syntax,

129
RETURN statement, 425
scoping units, 12
statement order, 11

EOF errors, 608, 609
EOR= specifier, 413
EOSHIFT intrinsic function, 513
EPSILON intrinsic function, 515
EQUIVALENCE statement, 323

automatic variables, 253
block data program unit, 169
Cray-style pointers, 398
DATA statement, 285
initialization expressions, 91
SEQUENCE statement, 432
storage association, 124
VOLATILE statement, 465

equivalencing, 323
alignment, 324
arrays, 325
automatic variables, 253
character data, 324
common blocks, 326
DATA statement, 285
derived types, 41

636 Index

Index

glossary, 617
result variables, 320
sequence derived types, 432
union extension, 445
VOLATILE statement, 465

EQV operator, 84
ERR= specifier

BACKSPACE statement, 254
CLOSE statement, 271
DECODE statement, 291, 309
ENDFILE statement, 317
INQUIRE statement, 346
OPEN statement, 381
REWIND statement, 426
WRITE statement, 471

error codes
IOSTAT= specifier, 603
runtime I/O, 603
STAT= specifier, 249

error handling
libU77 routines, 592

errors
BLAS, 602

ES edit descriptor, 219
escape characters in C, 34
ETIME routine, 593
EUC, 8
evaluation of expressions, 88
example programs

alloc_array.f90, 60
alt_return.f90, 132
array_val_ref.f90, 69
assumed_size.f90, 62
call_ttynam.f90, 589
def_assign.f90, 158
def_op.f90, 156
get_args.c, 149
int_file.f90, 198
int_func.f90, 135
intrinsic_arg.f90, 142
lin_eq_slv.f90, 165
main.f90, 165
nonadvance.f90, 199

optional_arg.f90, 145
pass_args.f90, 149
precision.f90, 165
proc_interface.f90, 153
ptr_assign.f90, 98
ptr_sts.f90, 49
score2grade.f90, 101
stmt_func.f90, 137
substring.f90, 36
swap_names.f90, 37
traffic.f90, 45
vector_sub.f90, 66

exception handling, ON
statement, 377

exclamation mark (!) character
comment character, 15, 17

executable
program units, 122
statements, 126, 617

execution control, 103
ASSIGN statement, 252
CALL statement, 263
CASE construct, 105
CONTINUE statement, 113,

282
CYCLE statement, 113, 283
DO construct, 107
DO statement, 297
ENTRY statement, 319
EXIT statement, 114, 327
FUNCTION statement, 332
GO TO (assigned) statement,

115, 334
GO TO (computed) statement,

116, 335
GO TO (unconditional)

statement, 117, 336
IF (arithmetic) statement, 117,

337
IF (block) statement, 338
IF (logical) statement, 118, 339
IF construct, 111
PAUSE statement, 118, 395

RETURN statement, 425
SELECT CASE statement, 431
STOP statement, 119, 436
SUBROUTINE statement, 447

execution time, computing, 569
execution time, measuring, 549
EXIST= specifier

INQUIRE statement, 347
EXIT intrinsic subroutine, 515
EXIT statement, 299, 327

execution control, 114
exit status, obtaining, 515
EXP intrinsic function, 516
explicit interface, 151

assumed-shape arrays, 57
ENTRY statement, 321
glossary, 617
internal procedure, 135
intrinsic procedures, 476
library routines, 589
module procedures, 162
optional arguments, 145, 388
recursive procedures, 131
statement function, 137
when required, 151

explicit-shape arrays, 55
dummy argument, 140
glossary, 617

EXPONENT intrinsic function,
516

exponentiation
initialization expression, 90
negative integers, 83
operator precedence, 86

expressions, 79
arguments modifying

operands, 88
arrays, 74, 81
assumed-size arrays, 81
constant, 89
evaluation in assignment, 96
examples, 94
glossary, 617

Index

Index 637

initialization, 90, 94, 618
logical, 84
mixed, 82, 83, 84
operands, 80
operators, 81
order of evaluation, 88
pointers, 81
reordering, 88
scalars, 81
specification, 92, 94, 622
syntax, 80
types, 89

extended operator, 155
glossary, 618

extended range DO loop, 298
Extended UNIX Code, 8
extending source lines, 14, 16
extensions

$ and namelist I/O, 184
$EDIT and namelist I/O, 184
%REF, 148
%VAL, 148
ACCEPT statement, 245
adjacent operators, 83
alternate return syntax, 130,

132
arithmetic operators, 83
array constructor delimiters,

72
AUTOMATIC statement, 253
bit manipulation intrinsics, 85
bitwise operators, 85
BUFFER IN statement, 257
BUFFER OUT statement, 259
BYTE statement, 261
character set, 8
comment character, 8, 18
comments, 17
common blocks, saving, 274
constants, 30
continuation lines, 15, 17
control transfer, 104, 105, 338
Cray-style, 397

Cray-style pointers, 397
debugging lines, 17
DECODE statement, 290
DOUBLE COMPLEX

statement, 24, 301
ENCODE statement, 308
END MAP, 314
END STRUCTURE, 314
END structure definition,

statement, 314
END UNION, 314
equivalencing character data,

324
equivalencing derived types,

41
exception handler, 376
exponentiation operator, 83
extended range DO loop, 298
Hollerith constants, 31
I edit descriptor and other

types, 226
I/O list items, 213
initialization delimiters, 26
initializing common blocks,

170, 256, 275
initializing integers, 286
integer array as format

specification, 237
integer operands in logical

expression, 84
intrinsic procedures, 479, 484
kind syntax, 277, 355, 365,

417
length specification, 278, 356,

366, 418
line length, 14, 16
logical values, 35
MAP statement, 368
mixed assignment, 96
name length, 9
names, 9
newline ($) edit descriptor,

187, 211

numeric array as internal file,
174

ON statement, 376
OPTIONS statement, 390
padding common, 276
POINTER statement, 397
prefix to alternate-return

argument, 131
PRINT and namelist I/O, 183
Q (bytes remaining) edit

descriptor, 233
Q (real) edit descriptor, 219,

220
R edit descriptor, 213
real edit descriptors and

integers, 219
RECORD statement, 420
saving common blocks, 274
sequence derived type, 41
sequential I/O statements and

direct access, 186
STATIC statement and

attribute, 434
STRUCTURE statement, 437
trap facility, 376
TYPE (I/O) statement, 459
type declaration statement, 25
typeless constants, 31
UNION statement, 460
unnamed common, initializing,

170, 256, 275
VIRTUAL statement, 464
VOLATILE statement, 465
XOR operator, 84

extensions, filename, 13
extent, 52

DIMENSION statement, 294
glossary, 618

external files, 173, 175
glossary, 618

external names
glossary, 618
initializing, 91

638 Index

Index

libU77 routines, 588
external procedures, 123

defining, 128
glossary, 618
referencing, 130
scoping unit, 12

EXTERNAL statement and
attribute, 328, 476

example program, 142
INTRINSIC statement, 364
library routines, 590
procedure dummy argument,

142

F
%FILL field name, 440
F edit descriptor, 219
FALLOC routine, 594
FALSE, value of, 35, 85
FDATE routine, 594
FGETC routine, 594
field name, %FILL, 440
file control statements

BACKSPACE, 254
CLOSE, 271
ENDFILE, 317
INQUIRE, 344
OPEN, 379
READ, 411
REWIND, 426
WRITE, 470

file positioning statements
BACKSPACE, 254
ENDFILE, 317
REWIND, 426

file system
errors, 610
libU77 routines, 592

FILE= specifier
INQUIRE statement, 347
OPEN statement, 381

files, 173

accessing, 178
external, 173
filename extensions, 13
glossary, 618
handling, 171
internal, 174
positioning, 188
scratch, 173

fixed source form, 16
alternate return character, 131
alternate return syntax, 131,

132
FLOAT intrinsics function, 565
FLOATI intrinsics function, 565
floating-point

exception handling, 377
intrinsic procedures, 484

FLOATJ intrinsics function, 565
FLOATK intrinsics function, 565
FLOOR intrinsic function, 517
flow control statements, 112

arithmetic IF, 117, 337
assigned GO TO, 115, 334
block IF, 338
CALL, 263
computed GO TO, 116, 335
CONTINUE, 113, 282
CYCLE, 113, 283
DO, 297
EXIT, 114, 327
logical IF, 118, 339
PAUSE, 118, 395
RETURN, 425
SELECT CASE, 431
STOP, 119, 436
unconditional GO TO, 117, 336

flow of execution, 103
FLUSH

intrinsic subroutine, 517
FLUSH routine, 594
FMT= specifier

READ statement, 411
WRITE statement, 470

FNUM intrinsic function, 517
FORK routine, 594
FORM= specifier

errors, 608
INQUIRE statement, 347
OPEN statement, 382

format specification
character arrays, 237
DECODE statement, 290
embedded, 237
ENCODE statement, 308
errors, 604
FORMAT statement, 330
interaction with I/O list, 239,

240
nested, 238
overview, 205
PRINT statement, 403
READ statement, 411
syntax, 207
WRITE statement, 470

FORMAT statement, 330
errors, 604
formatted I/O, 206
labels, 10
module syntax, 161, 162
scoping units, 12
statement order, 11

formatted (I/O)
records, 172

formatted I/O
direct-access files, 186
edit descriptors, 208
errors, 604, 610
format specification, 206
PRINT statement, 403
READ statement, 415
sequential files, 178
WRITE statement, 472

FORMATTED= specifier
INQUIRE statement, 348

formatting data, 205
binary, 216

Index

Index 639

blanks, 218
bytes remaining, 233
character, 213
engineering notation, 222
FORMAT statement, 206
hexadecimal, 234
Hollerith, 225
incompatibility errors, 610
integers, 226, 228
newline, 211
octal data, 229
plus sign, 233
reals, 219
record termination, 212
repeat specification, 240
scale factor, 231
scientific notation, 222
tab, 234

formatting rules
list-directed I/O, 179
namelist I/O, 184

FORTRAN 77
block data program unit, 256
Cray-style pointer, 397
DO loop, 107, 282, 283, 299
ENTRY statement, 321, 387
statement function, 137, 280

FPUTC routine, 594
FRACTION intrinsic function,

517
FREE intrinsic, 518

Cray-style pointer, 398
FREE routine, 594
free source form, 13
free space errors, 606
FSEEK routine, 594
FSET intrinsic subroutine, 518

errors, 611
FSTAT routine, 594
FSTREAM intrinsic function,

518
FTELL routine, 595
ftnXX, 177

FUNCTION statement, 332
END statement, 311
ENTRY statement, 319
module syntax, 162
OPTIONAL statement, 387
procedure definition, 128
recursive procedures, 131
RETURN statement, 425
statement order, 11

functions, 128
array-valued, 76
built-in, 148, 264
defined operation, 155
defining, 128
explicit interface, 151
generic and specific intrinsics,

477
glossary, 618
in logical expressions, 84
inquiry intrinsics, 478
intrinsic, 476
recursive, 131
referencing, 131
restrictions in expressions, 88
result, 91, 425, 618
returning from, 132, 425
transformational intrinsics,

478

G
G edit descriptor, 223
generic intrinsic function, 477
generic procedures, 154

explicit interface, 151
glossary, 618

GERROR routine, 595
GETARG

intrinsic subroutine, 518
GETARG routine, 595
GETC routine, 595
GETCWD routine, 595
GETENV

intrinsic subroutine, 519
GETENV routine, 595
GETGID routine, 595
GETLOG routine, 595
GETPID routine, 595
GETUID routine, 595
global scope, 123

glossary, 618
GMTIME routine, 596
GO TO statements

assigned, 115, 334
computed, 116, 335
unconditional, 117, 336

GRAN intrinsic function, 519

H
HP CHECK_OVERFLOW

directive
H edit descriptor, 225
HABS intrinsics function, 488
HBCLR intrinsics function, 522
HBITS intrinsics function, 523
HBSET intrinsics function, 523
HDIM intrinsics function, 511
hexadecimal

constants, 30
edit descriptor, 234

HFIX intrinsic function, 519
HIAND intrinsics function, 521
hidden length parameter, 148
HIEOR intrinsics function, 526
High Performance Fortran, 618
HIOR intrinsics function, 531
HIXOR intrinsics function, 535
HMOD intrinsics function, 554
HMVBITS intrinsics function,

555
HNOT intrinsics function, 557
Hollerith

constants, 30
edit descriptor, 225

horizontal ellipses, xxiii

640 Index

Index

host
glossary, 618
nested scoping units, 124

host association, 124
arguments, 455
DATA statement, 284, 285
glossary, 618
internal procedure, 135

HOSTNM routine, 596
HP character set, 8
HSHFT intrinsics function, 533
HSHFTC intrinsics function,

534
HSIGN intrinsics function, 572
HTEST intrinsics function, 501
HUGE intrinsic function, 519

I
+implicit_none option

IMPLICIT statement, 28, 341
-I option

INCLUDE line, 342
interaction with INCLUDE, 19

I edit descriptor, 226
I/O, 171
I/O runtime errors, 603
I/O specifiers, 190

ACCESS=, 345
ACTION=, 345, 380
ADVANCE=, 412, 471
BLANK=, 216, 218, 235, 345,

380
DELIM=, 346, 381
DIRECT=, 346
END=, 413
EOR=, 413
ERR=, 254, 271, 291, 309,

317, 346, 381, 426, 471
EXIST=, 347
FILE=, 347, 381
FMT=, 290, 411, 470
FORM=, 347, 382

FORMATTED=, 348
IOSTAT=, 254, 271, 291, 309,

317, 348, 382, 413, 426,
472, 603

NAME=, 348
NAMED=, 348
NEXTREC=, 348
NML=, 412, 471
NUMBER=, 349
OPENED=, 349
PAD=, 349, 382
POSITION=, 350, 383
READ=, 350
READWRITE=, 351
REC=, 413, 472
RECL=, 351, 383
SEQUENTIAL=, 351
SIZE=, 413
STAT=, 249, 288
STATUS=, 271, 384
UNFORMATTED=, 352
UNIT=, 254, 271, 290, 308,

317, 344, 379, 411, 426,
470

WRITE=, 352
IACHAR intrinsic function, 520
IADDR intrinsic function, 520
IAND intrinsic function, 521
IARGC

intrinsic function, 522
IARGC routine, 596
IBCLR intrinsic function, 522
IBITS intrinsic function, 523
IBSET intrinsic function, 523
ICAMAX routine, 600
ICHAR intrinsic function, 524
IDAMAX routine, 600
IDATE

intrinsic subroutine, 524
IDATE routine, 596
IDATEY2K, 596
IDIM intrinsic function, 525
IDINT intrinsics function, 530

IDNINT intrinsics function, 556
IEOR intrinsic function, 525
IERRNO routine, 596
IF construct, 111

ELSE IF statement, 306
ELSE statement, 305
END IF statement, 313
IF statement, 338
vs. WHERE construct, 100

IF statements
arithmetic, 117, 337
block, 111, 338
ELSE IF statement, 306
ELSE statement, 305
IF construct, 111
logical, 118, 339

IFIX intrinsics function, 528
IGETARG intrinsic function,

526
IGNORE clause

ON statement, 376
IIAND intrinsics function, 521
IIBCLR intrinsics function, 522
IIBITS intrinsics function, 523
IIBSET intrinsics function, 523
IIDIM intrinsics function, 525
IIDNNT intrinsics function, 556
IIEOR intrinsics function, 526
IIFIX intrinsics function, 528
IINT intrinsics function, 528
IIOR intrinsics function, 531
IIQINT intrinsics function, 531
IIQNNT intrinsics function, 556
IISHFT intrinsics function, 533
IISIGN intrinsics function, 572
IIXOR intrinsics function, 535
IJINT intrinsic function, 527
IMAG intrinsic function, 527
IMAX1 intrinsics function, 546
IMAXO intrinsics function, 546
IMIN1 intrinsics function, 550
IMINO intrinsics function, 550
IMOD intrinsics function, 554

Index

Index 641

implicit interface, 151
IMPLICIT statement, 340

NONE clause, 341
PARAMETER statement, 393
scoping units, 12
statement order, 11
typing rules, 28

implicit typing, 28
library routines, 589
overriding, 24

implied DO loops
scope, 123

implied-DO loops
array constructor, 71, 73
I/O data list, 194
nested, 286
specification expression, 92

IN clause
access control, 148
defined assignment, 157
INTENT statement, 358

IN intent
user-defined operator, 155

INCLUDE line, 19, 342
labels, 10
statement order, 12

INDEX intrinsic function, 527
infinite DO loop, 110
information retrieval libU77

routines, 592
ININT intrinsics function, 556
initial line, 17
initialization

arrays, 72
block data progam unit, 169
BLOCK DATA statement, 256
COMMON statement, 275
DATA statement, 284, 285
EQUIVALENCE statement,

325
examples, 92
expression, 90, 618
extension, 26

PARAMETER statement, 392
restrictions, 91
type declaration, 26

INOT intrinsics function, 557
INOUT clause

access control, 148
defined assignment, 157
INTENT statement, 358

input data
list-directed I/O, 179
namelist I/O, 184

input/output, 171
accessing files, 178
ASA carriage control, 197
data list, 192, 239
edit descriptors, 208
ENDFILE statement, 172
example programs, 198
files, 173
format specifications, 205
formatted, 178
formatting, 205
libU77 routines, 592
list-directed, 179
namelist-directed, 183
nonadvancing I/O, 187
overview of statements, 188
records, 172
runtime errors, 603
specifiers, 190
statement syntax, 190
unit number, 175

input/output statements
ACCEPT, 245
BACKSPACE, 254
CLOSE, 271
DECODE, 290
ENCODE, 308
ENDFILE, 317
FORMAT, 330
INQUIRE, 344
NAMELIST, 373
OPEN, 379

PRINT, 402
READ, 411
REWIND, 426
summary, 188
WRITE, 470

INQUIRE statement, 344
inquiry intrinsics, 478

glossary, 618
in expressions, 93
initialization expressions, 91
restrictions, 93

inserting text in source
INCLUDE line, 19

instrinsic procedures
KUBOUND, 584

INT intrinsic function, 528
INT1 intrinsic function, 529
INT2 intrinsic function, 529
INT4 intrinsic function, 529
INT8 intrinsic function, 530
integer, 22

alignment, 22
arguments to intrinsics, 85
bitwise expressions, 85
BYTE statement, 261
constants, 29
data representation, 22
declaring, 24
division, 83
edit descriptor, 226
exponentiation, 83
expressions, 82
INTEGER statement, 355
list-directed I/O, 180
overflow, trapping, 378
representation of, 482
type declaration, 24, 355

INTEGER statement, 355
type declaration statement, 24

INTENT statement and
attribute, 358

arguments, 148
defined assignment, 157

642 Index

Index

specification expressions, 92
user-defined operator, 155
vector subscripts, 66

intents
glossary, 618
INTENT statement, 358

interface
explicit, 151
implicit, 151
procedure, 151

interface block, 152, 371
generic procedure, 154
MODULE PROCEDURE

statement, 371
syntax, 152

interface body
block data program unit, 12
scoping unit, 12

INTERFACE statement, 361
declaring generic name, 154
defined assignment, 157
defined operators, 155
END INTERFACE statement,

315
example program, 153
interface block syntax, 152
MODULE PROCEDURE

statement, 371
internal files, 174

connecting to unit number, 176
DECODE statement, 290
ENCODE statement, 308
errors, 610
example, 198
glossary, 619
READ statement, 415
WRITE statement, 473

internal procedures, 123, 135
glossary, 619
procedure definition syntax,

129
scoping unit, 12
vs. statement function, 280

interrupt handling, ON
statement, 377

intrinsic
assignment, 95
data types, 22
functions, 475
glossary, 619
names, initializing, 91
operators, 81
procedures, 475

INTRINSIC attribute and
statement, 477

intrinsic procedures, 475
ABORT, 488
ABS, 488
ACHAR, 488
ACOS, 489
ACOSD, 489
ACOSH, 490
ADJUSTL, 490
ADJUSTR, 490
AIMAG, 491
AIMAXO, 546
AIMINO, 550
AINT, 491
AJMAXO, 546
AJMINO, 550
AKMAXO, 546
AKMINO, 550
ALL, 492
ALLOCATED, 60, 493
ALOG, 543
ALOG10, 543
AMAX1, 546
AMAXO, 546
AMIN1, 550
AMINO, 550
AMOD, 554
AND, 493
ANINT, 494
ANY, 495
arguments as initialization

expressions, 90

array inquiry, 78
array procedures, 484
array-valued, 76
ASIN, 496
ASIND, 496
ASINH, 497
ASSOCIATED, 497
ATAN, 498
ATAN2, 498
ATAN2D, 499
ATAND, 499
ATANH, 500
availability, 476
BABS, 488
BADDRESS, 500
BBCLR, 522
BBITS, 523
BBTEST, 501
BDIM, 511
BIAND, 521
BIEOR, 526
bit intrinsics, 484
BIT_SIZE, 500
BITEST, 501
BIXOR, 535
BJTEST, 501
BKTEST, 501
BMOD, 554
BMVBITS, 555
BNOT, 557
BOZ constants, 32
BSHFT, 533
BSIGN, 572
BTEST, 501
CABS, 488
categories, 484
CCOS, 504
CDABS, 488
CDCOS, 504
CDEXP, 516
CDLOG, 543
CDSIN, 573
CDSQRT, 576

Index

Index 643

CEILING, 501
CEXP, 516
CHAR, 502
character intrinsics, 484
CLOG, 543
CMPLX, 502
CONJG, 503
COS, 503
COSD, 504
COSH, 504
COUNT, 505
CSHIFT, 506
CSIN, 573
CSQRT, 576
CTAN, 580
DABS, 488
DACOSD, 489
DACOSH, 490
DASIN, 496
DASIND, 496
DASINH, 497
data type representation, 480
DATAN, 498
DATAN2, 499
DATAN2D, 499
DATAND, 500
DATANH, 500
DATE, 507
date and time intrinsics, 484
DATE_AND_TIME, 507
DBLE, 509
DBLEQ, 509
DCMPLX, 509
DCONJG, 503
DCOS, 489, 504
DCOSD, 504
DCOSH, 504
DDIM, 511
DDINT, 491
DEXP, 516
DFLOAT, 510
DFLOTI, 510
DFLOTJ, 510

DFLOTK, 510
DIGITS, 510
DIM, 511
DINT, 491
DLOG, 543
DLOG10, 543
DMAX1, 546
DMIN1, 550
DMOD, 554
DNINT, 494
DNUM, 511
DOT_PRODUCT, 511
DPROD, 512
DREAL, 513
DSIGN, 572
DSIN, 573
DSQRT, 576
DTAN, 580
DTAND, 580
DTANH, 580
elemental, 477
EOSHIFT, 513
EPSILON, 515
EXIT, 515
EXP, 516
EXPONENT, 516
EXTERNAL statement, 329,

476
FLOAT, 565
FLOATI, 565
floating-point intrinsics, 484
FLOATJ, 565
FLOATK, 565
FLOOR, 517
FLUSH, 517
FNUM, 517
FRACTION, 517
FREE, 518
FSET, 518
FSTREAM, 518
generic and specific, 477
GETARG, 518
GETENV, 519

GRAN, 519
HABS, 488
HBCLR, 522
HBITS, 523
HBSET, 523
HDIM, 511
HFIX, 519
HIAND, 521
HIEOR, 526
HIXOR, 535
HMOD, 554
HMVBITS, 555
HNOT, 557
HSHFT, 533
HSHFTC, 534
HSIGN, 572
HTEST, 501
HUGE, 519
IACHAR, 520
IADDR, 520
IAND, 521
IARGC, 522
IBCLR, 522
IBITS, 523
IBSET, 523
ICHAR, 524
IDATE, 524
IDIM, 525
IDINT, 530
IDNINT, 556
IEOR, 525
IFIX, 528
IGETARG, 526
IIAND, 521
IIBCLR, 522
IIBITS, 523
IIBSET, 523
IIDIM, 525
IIDNNT, 556
IIEOR, 526
IIFIX, 528
IINT, 528
IIQINT, 531

644 Index

Index

IIQNNT, 556
IISHFT, 533
IISIGN, 572
IIXOR, 535
IJINT, 527
IMAG, 527
IMAX1, 546
IMAXO, 546
IMIN1, 550
IMINO, 550
IMOD, 554
INDEX, 527
ININT, 556
INOT, 557
inquiry function, 478
INT, 528
INT1, 529
INT2, 529
INT4, 529
INT8, 530
INTRINSIC statement, 477
INUM, 530
IOMSG, 530
IOR, 530
IQINT, 531
IQNINT, 556
IRAND, 532
IRANP, 532
ISHFT, 533
ISHFTC, 533, 534
ISIGN, 534
ISNAN, 534
IXOR, 535
IZEXT, 536
JIAND, 521
JIBCLR, 522
JIBITS, 523
JIBSET, 523
JIDIM, 525
JIDNNT, 556
JIEOR, 526
JIFIX, 528
JINT, 528

JIQINT, 531
JIQNNT, 556
JISHFT, 533
JISHFTC, 534
JIXOR, 535
JMAX1, 546
JMAXO, 546
JMIN0, 550
JMIN1, 550
JMOD, 554
JNINT, 556
JNOT, 557
JNUM, 536
JSIGN, 572
JZEXT, 536
KCOUNT, 505
KCSHIFT, 506
KEOSHIFT, 514
keywords, 487
KIAND, 521
KIBCLR, 522
KIBITS, 523
KIBSET, 523
KIDIM, 525
KIDNNT, 556
KIEOR, 526
KIFIX, 528
KIND, 537
KINDEX, 528
KINT, 528
KIQINT, 531
KIQNNT, 556
KISHFT, 533
KISHFTC, 534
KLBOUND, 538
KLEN, 539
KLEN_TRIM, 539
KMAX1, 546
KMAXLOC, 547
KMAXO, 546
KMIN0, 550
KMIN1, 550
KMINLOC, 552

KMOD, 554
KNINT, 556
KNOT, 557
KPACK, 559
KREPEAT, 566
KRESHAPE, 567
KSHAPE, 572
KSIGN, 572
KSIZE, 574
KZEXT, 537
LBOUND, 538
LEN, 539
LEN_TRIM, 539
LGE, 540
LGT, 540
libU77 names, 590
LLE, 541
LLT, 542
LOC, 542
LOG, 543
LOG10, 543
LOGICAL, 544
LSHFT, 544
LSHIFT, 544
MALLOC, 544
mathematical intrinsics, 484
MATMUL, 545
MAX, 546
MAX0, 546
MAX1, 546
MAXEXPONENT, 547
MAXLOC, 547
MAXVAL, 548
MCLOCK, 549
MERGE, 550
millicode versions, 478
MIN, 550
MIN0, 550
MIN1, 550
MINEXPONENT, 551
MINLOC, 551
MINVAL, 553
MOD, 554

Index

Index 645

MODULO, 554
MVBITS, 555
naming conflicts, 151, 476, 590
NEAREST, 556
NINT, 556
nonstandard, 479, 484
NOT, 557
numeric intrinsics, 484
optimized versions, 478
OR, 557
PACK, 558
PARAMETER statement, 393
passing as argument, 142
pointer intrinsics, 484
PRECISION, 559
PRESENT, 387, 559
PRODUCT, 560
QABS, 488
QACOS, 489
QACOSD, 489
QASIN, 496
QASIND, 496
QATAN, 498
QATAN2, 499
QATAN2D, 499
QATAND, 500
QATANH, 500
QCOS, 504
QCOSD, 504
QCOSH, 504
QDIM, 511
QEXP, 516
QEXT, 561
QEXTD, 561
QFLOAT, 561
QFLOATI, 561
QFLOT1, 561
QFLOTJ, 561
QFLOTK, 561
QINT, 491
QLOG, 543
QLOG10, 543
QMAX1, 546

QMIN1, 550
QMOD, 554
QNINT, 494
QNUM, 561
QPROD, 562
QSIGN, 572
QSIN, 573
QSIND, 573
QSINH, 574
QSQRT, 576
QTAN, 580
QTAND, 580
QTANH, 580
RADIX, 562
RAN, 562
RAND, 563
RANDOM_NUMBER, 563
RANDOM_SEED, 563
RANGE, 564
REAL, 565
REPEAT, 566
RESHAPE, 566
resolving name conflicts, 476
RNUM, 567
RRSPACING, 567
RSHFT, 568
RSHIFT, 568
SCALE, 568
SCAN, 568
SECNDS, 569
SELECTED_INT_KIND, 570
SELECTED_REAL_KIND,

570
SET_EXPONENT, 571
SHAPE, 572
SIGN, 572
SIN, 573
SIND, 573
SINH, 574
SIZE, 574
SIZEOF, 575
SNGL, 565
SNGLQ, 565

SPACING, 575
specific and generic, 477
specification expressions, 92
SPREAD, 575
SQRT, 576
SRAND, 577
SUM, 577
SYSTEM, 578
SYSTEM_CLOCK, 579
TAN, 579
TAND, 580
TANH, 580
TIME, 581
time and date intrinsics, 484
TINY, 581
TRANSFER, 582
transformational function, 478
TRANSPOSE, 583
TRIM, 583
UBOUND, 583
unavailability of, 476
UNPACK, 584
VERIFY, 585
XOR, 586
ZABS, 488
ZCOS, 504
ZEXP, 516
ZEXT, 586
ZLOG, 543
ZSIN, 573
ZSQRT, 576
ZTAN, 580

INTRINSIC statement and
attribute, 363

example program, 142
EXTERNAL statement, 329
intrinsic dummy argument,

142
intrinsics procedures

BIOR, 531
HIOR, 531
IIOR, 531
JIOR, 531

646 Index

Index

KIOR, 531
INUM intrinsic function, 530
IOLENGTH= specifier

INQUIRE statement, 344, 353
IOMSG intrinsic subroutine, 530
IOR intrinsic function, 530
IOSTAT= specifier

BACKSPACE statement, 254
CLOSE statement, 271
DECODE statement, 291, 309
ENDFILE statement, 317
INQUIRE statement, 348
OPEN statement, 382
READ statement, 413
return codes, 603
REWIND statement, 426
WRITE statement, 472

IQINT intrinsic function, 531
IQNINT intrinsics function, 556
IRAND intrinsic function, 532
IRANP intrinsic function, 532
ISAMAX routine, 600
ISATTY routine, 596
ISHFT intrinsic function, 533
ISHFTC intrinsic function, 533
ISHFTC intrinsics function, 534
ISIGN intrinsic function, 534
ISNAN intrinsic function, 534
italic, xxii
ITIME routine, 596
IXOR intrinsic function, 535
IZAMAX routine, 600
IZEXT intrinsic function, 536

J
JIAND intrinsics function, 521
JIBCLR intrinsics function, 522
JIBITS intrinsics function, 523
JIBSET intrinsics function, 523
JIDIM intrinsics function, 525
JIDNNT intrinsics function, 556
JIEOR intrinsics function, 526

JIFIX intrinsics function, 528
JINT intrinsics function, 528
JIOR intrinsics function, 531
JIQINT intrinsics function, 531
JIQNNT intrinsics function, 556
JISHFT intrinsics function, 533
JISHFTC intrinsics function,

534
JIXOR intrinsics function, 535
JMAX1 intrinsics function, 546
JMAXO intrinsics function, 546
JMIN0 intrinsics function, 550
JMIN1 intrinsics function, 550
JMOD intrinsics function, 554
JNINT intrinsics function, 556
JNOT intrinsics function, 557
JNUM intrinsic function, 536
JSIGN intrinsics function, 572
JZEXT intrinsic function, 536

K
KCOUNT, 505
KCSHIFT, 506
KEOSHIFT, 514
keyword option, 144

explicit interface, 151
glossary, 619
in intrinsic procedures, 487
optional arguments, 388
procedure reference syntax,

130
keywords

ON statement, 377
spaces, 14

KIAND intrinsics function, 521
KIBCLR intrinsics function, 522
KIBITS intrinsics function, 523
KIBSET intrinsics function, 523
KIDIM intrinsics function, 525
KIDNNT intrinsics function, 556
KIEOR intrinsics function, 526
KIFIX intrinsics function, 528

kill command, 119
KILL routine, 596
KIND intrinsic function, 537
kind parameter, 22

glossary, 619
initialization expressions, 91
syntax, 25

KINDEX, 528
KINT intrinsics function, 528
KIOR intrinsics function, 531
KIQINT intrinsics function, 531
KIQNNT intrinsics function, 556
KISHFT intrinsics function, 533
KISHFTC intrinsics function,

534
KLBOUND, 538
KLEN, 539
KLEN_TRIM, 539
KMAX1 intrinsics function, 546
KMAXLOC, 547
KMAXO intrinsics function, 546
KMIN0 intrinsics function, 550
KMIN1 intrinsics function, 550
KMINLOC, 552
KMOD intrinsics function, 554
KNINT intrinsics function, 556
KNOT intrinsics function, 557
KPACK, 559
KREPEAT, 566
KRESHAPE, 567
KSHAPE, 572
KSIGN intrinsics function, 572
KSIZE, 574
KUBOUND, 584
KZEXT intrinsic function, 537

L
+libU77 option

+ppu option, 588
+uppercase option, 588

L edit descriptor, 228
labels, 10

Index

Index 647

fixed format, 17
free format, 14
glossary, 619

language elements, 7
-lblas option

accessing BLAS routines, 588
LBOUND intrinsic function, 538

arrays, 78
left-justifying character data,

213
LEN intrinsic function, 539
LEN_TRIM intrinsic function,

539
length of line

fixed format, 16
free format, 14

length, inquiring, 353
lexical tokens, 9
LGE intrinsic function, 540
LGT intrinsic function, 540
libraries, 587

BLAS, 587
BSD 3f, 587
glossary, 619
libblas, 587
libU77, 587

library routines
declaring return value, 589
implicit typing, 589

libU77 routines, 587
+U77 option, 588
ACCESS, 593
accessing, 588
ALARM, 593
CHDIR, 593
CHMOD, 593
classified, 592
CTIME, 593
date and time routines, 592
DATEY2K, 593
DTIME, 593
error handling routines, 592
ETIME, 593

example program, 589
FALLOC, 594
FDATE, 594
FGETC, 594
file system routines, 592
FLUSH, 594
FORK, 594
FPUTC, 594
FREE, 594
FSEEK, 594
FSTAT, 594
FTELL, 595
GERROR, 595
GETARG, 595
GETC, 595
GETCWD, 595
GETENV, 595
GETGID, 595
GETLOG, 595
GETPID, 595
GETUID, 595
GMTIME, 596
HOSTNM, 596
IARGC, 596
IDATE, 596
IDATEY2K, 596
IERRNO, 596
information retrieval routines,

592
input/output routines, 592
intrinsic procedure names, 590
ISATTY, 596
ITIME, 596
KILL, 596
LINK, 596
listed, 592
LOC, 398, 596
LSTAT, 597
LTIME, 597
MALLOC, 597
man pages, 591
memory allocation routines,

592

naming conflicts, 590
NUM_PROC, 597
NUM_THREADS, 597
passing as argument, 590
PERROR, 597
process control routines, 592
PUTC, 597
QSORT, 597
RENAME, 597
SIGNAL, 598
SLEEP, 598
STAT, 598
SYMLNK, 598
SYSTEM, 598
tape input/output routines,

592
TCLOSE, 598
TIME, 598
TOPEN, 598
TREAD, 598
TREWIN, 598
TSKIPF, 599
TSTATE, 599
TTYNAM, 589, 599
TWRITE, 599
UNLINK, 599
WAIT, 599
Y2K, 589
Year-2000, 589

limiting access to entities, 405,
409

limits
array dimensions, 294
continuation lines, 15, 17
length of formatted record, 172
line length, 14, 16
names, 9
nested INCLUDE lines, 19,

342
number of dimensions, 294
statement length, 15

line length
fixed format, 16

648 Index

Index

free format, 14
linear algebra routines (BLAS),

587
lines

comments, 15, 17
continuation, 15, 17
debugging, 17
fixed format, 14, 16
tab format, 18

LINK routine, 596
linking

glossary, 619
list-directed I/O, 179

DELIM= specifier, 181
errors, 605, 609
format, 180
input, 179
output, 181
PRINT statement, 403
READ statement, 415
sequential access, 179
WRITE statement, 473

literal constants, 92
glossary, 619

LLE intrinsic function, 541
LLT intrinsic function, 542
LOC

intrinsic function, 542
libU77 routine, 398

LOC routine, 596
LOG intrinsic function, 543
LOG10 intrinsic function, 543
logical, 22

alignment, 22
arguments to intrinsics, 85
bitwise operations, 85
constants, 35
data representation, 22
declaring, 24
edit descriptor, 228
examples, 85
I/O errors, 605, 607, 609, 610
IF statement, 118

in integer expressions, 83
intrinsic procedures, 484
list-directed I/O, 180
operators, 84, 393
PARAMETER statement, 393
truth table, 84
type declaration, 24, 365
values, 35, 85

LOGICAL intrinsic function, 544
LOGICAL statement, 365

type declaration statement, 24
LSHFT intrinsic function, 544
LSHIFT intrinsic function, 544
LSTAT routine, 597
LTIME routine, 597

M
main program

scoping unit, 12
main program unit, 125

glossary, 619
syntax, 125

MALLOC
intrinsic function, 398, 544

MALLOC routine, 597
man pages, xxiii

BLAS routines, 591
libU77 routines, 591

many-one array section, 66
map block

MAP statement, 368
STRUCTURE statement, 443

MAP statement, 368, 443
END statement, 314

masked array assignment, 99
restrictions, 466

mathematical intrinsic
procedures, 484

MATMUL intrinsic function, 545
matrix operations, 587
MAX intrinsic function, 546
MAX0 intrinsics function, 546

MAX1 intrinsics function, 546
MAXEXPONENT intrinsic

function, 547
MAXLOC intrinsic function, 547
MAXVAL intrinsic function, 548
MCLOCK intrinsic function, 549
measuring performance, 549
measuring program speed, 569
memory

allocation libU77 routines, 592
MERGE intrinsic function, 550
messages

I/O errors, 603
MIN intrinsic function, 550
MIN0 intrinsics function, 550
MIN1 intrinsics function, 550
MINEXPONENT intrinsic

function, 551
MINLOC intrinsic function, 551
MINVAL intrinsic function, 553
mixed expressions

arithmetic operation, 82
bitwise operation, 85
logical operation, 84
relational operation, 84

MOD intrinsic function, 554
MODULE PROCEDURE

statement, 371
interface block, 152
listing specific procedures, 154

module procedures, 123
glossary, 619
scoping unit, 12
use association, 371

MODULE statement, 369
END statement, 311
module syntax, 161
statement order, 11

modules, 161, 369
compile-line order, 168
example program, 165
glossary, 619

Index

Index 649

precautions when compiling,
161, 168

PRIVATE statement, 405
PUBLIC statement, 409
scoping unit, 12
syntax, 161
USE statement, 461

MODULO intrinsic function,
554

monospace, xxii
multi-language programs, 149
multiple OPENs, 385
multiple statements

fixed format, 16
free format, 14

MVBITS intrinsic subroutine,
555

elemental, 477

N
NAME= specifier, 348
named constants, 29, 92

glossary, 620
initialization expressions, 91
intrinsic procedures, 393
PARAMETER statement, 391,

392
rules for defining, 392

named DO loops, 299
NAMED= specifier, 348
NAMELIST statement, 373

ACCEPT statement, 245
Cray-style pointers, 398
PRINT statement, 402
READ statement, 414
WRITE statement, 471

namelist-directed I/O, 183
errors, 611, 612
example, 183
input, 184
NAMELIST statement, 373
NML= specifier, 183

output, 185
PRINT statement, 402, 403
READ statement, 412, 415
sequential access, 183
WRITE statement, 471, 473

names, 9
block data program unit, 169
constants, 29, 92
constructs, 9
derived types, 457
DO loops, 297
external, 618
generic, 154
glossary, 620
initializing, 91
main program unit, 125

naming conflicts
explicit interface, 151
intrinsics, 476
resolving, 164, 476, 590

NaN (not a number), 534
NEAREST intrinsic function,

556
NEQV operator, 84
nesting

DO loops, 299
host association, 124
implied-DO loops, 286
INCLUDE lines, 342
records, 420, 442
scoping units, 124
structures, 437, 440

new features of Fortran 90, 2
newline edit descriptor, 211
NEXTREC= specifier and

INQUIRE statement, 348
NINT intrinsic function, 556
NML= specifier

namelist-directed I/O, 183
READ statement, 412
WRITE statement, 471

nonadvancing I/O, 187
ADVANCE= specifier, 187

example, 199
READ statement, 412, 415
WRITE statement, 471, 473

NONE clause
IMPLICIT statement, 340, 341

nonexecutable program units,
122

nonsequenced types, 455
nonstandard intrinsics, 479
NOT intrinsic function, 557
NOT operator, 84
notational conventions, xxii
NULLIFY statement, 375

disassociated pointer status,
49

disassociating pointers, 288
NUM_PROC routine, 597
NUM_THREADS routine, 597
NUMBER= specifier

INQUIRE statement, 349
numeric types, 22

BYTE statement, 261
COMPLEX statement, 277
DOUBLE COMPLEX

statement, 301
DOUBLE PRECISION

statement, 303
edit descriptors, 219, 226
glossary, 620
I/O errors, 609, 610
INTEGER statement, 355
intrinsics, 484
REAL statement, 417

O
+onetrip option

DO loops, 108
O edit descriptor, 229
objects

allocating, 249
deallocating, 288

obsolescent feature

650 Index

Index

glossary, 620
octal

constants, 30
edit descriptor, 229

ON statement, 376, 378
ONLY clause

module access control, 164
USE statement, 461

OPEN statement, 379
errors, 605, 606, 607, 608,

609, 610, 612
INQUIRE statement, 344

OPENED= specifier
INQUIRE statement, 349

opening files, 175, 176
operands, 80

arrays, 74, 81
function arguments, 88
glossary, 620
logical, 83
pointers, 81
whole array, 81

OPERATOR clause, 404, 408
defined operators, 155
interface block syntax, 152
INTERFACE statement, 361
USE statement, 461

operators
arithmetic, 82
bitwise, 85
character, 84
concatenation, 84
defined, 155
glossary, 620
interface block, 152
intrinsic, 81
logical, 84
overloading, 155
precedence, 86
relational, 84

optimization
measuring performance, 549
timing execution speed, 549

optional argument, 487
optional arguments, 144, 145

explicit interface, 388
glossary, 620
keyword option, 388
restrictions, 387

OPTIONAL statement and
attribute, 387

explicit interface, 151
optional arguments, 145
specification expressions, 92

OR intrinsic function, 557
OR operator, 84
order, statement, 11
OUT clause

access control, 148
defined assignment, 157
INTENT statement, 358

output data
list-directed I/O, 181
namelist I/O, 185

overflow, integer
ON statement, 378

overloading operators, 155

P
+ppu option

libU77 routines, 588
P edit descriptor, 231
PACK intrinsic function, 558
PAD= specifier

errors, 612
INQUIRE statement, 349
OPEN statement, 382

padding
%FILL field name, 440
blank, 540, 541, 542

PARAMETER statement and
attribute, 391

CHARACTER statement, 269
Cray-style pointers, 397
IMPLICIT statement, 340

initialization expressions, 91
named constants, 29
scoping units, 12
statement order, 11

parentheses
operator precedence, 86

PAUSE statement, 395
execution control, 118

performance
measuring, 549

permitting access, 409
PERROR routine, 597
plus sign edit descriptor, 233
pointer assignment

association status, 98
example, 98
rules, 98
syntax, 98
target requirements, 450
vector subscripts, 66

POINTER statement and
attribute, 400

ALLOCATE statement, 250
array pointers, 59
assumed-shape arrays, 56
DEALLOCATE statement, 289
declaring pointers, 47
deferred-shape arrays, 58
derived types, 40
operands as pointers, 81
pointer assignment, 97
pointer dummy argument, 142
POINTER statement, 449

pointers, 47
ALLOCATE statement, 47
allocating, 47, 249
arguments, 142, 151
array pointers, 47, 59
assigning to target, 47
assignment statement, 95
association, 124, 288, 620
association status, 48
Cray-style, 397

Index

Index 651

DATA statement, 284
DEALLOCATE statement, 47,

288
deallocating, 288
declaring, 47
disassociated, 49, 288, 617
edit descriptors, 210
example program, 49
glossary, 620
initialization, 91
intrinsic procedures, 484
NULLIFY statement, 375
operands in expressions, 81
pointer assignment, 97
pointer association, 124
POINTER statement, 400
target, 47
TARGET statement, 449

POSITION= specifier
errors, 612
INQUIRE statement, 350
OPEN statement, 383

positional arguments, 139
positioning a file

BACKSPACE, 254
ENDFILE, 317
REWIND, 426

positions, column, 16
pound sign (#) character

comment character, 8, 18
precedence, operator, 86
PRECISION intrinsic function,

559
preconnected unit numbers, 176

glossary, 620
PRESENT intrinsic function,

387, 559
example, 145
in expressions, 93
optional argument, 145

PRINT statement, 402
data list items, 193
format specification, 403

formatted I/O, 403
list-directed I/O, 181, 403
namelist-directed I/O, 403

PRIVATE statement and
attribute, 404

derived type definition, 40
module access control, 164
module syntax, 162
PUBLIC statement, 408
TYPE statement, 457

procedures, 121
alternate entry points, 134
arguments, 139
assumed-shape arrays, 57
calling, 130
concepts, 123
defining, 128
definition syntax, 128
dummy, 328
external, 123, 128, 328
FUNCTION statement, 332
generic, 154, 618
glossary, 620
interface, 151
internal, 123, 135
intrinsic, 123, 475
module, 123
name conflicts with intrinsics,

151
passing as arguments, 142
recursive, 131, 320, 332
referencing, 130
returning from a call, 132
statement function, 137
SUBROUTINE statement, 447
terminology, 123

process control libU77 routines,
592

PRODUCT intrinsic function,
560

program
execution control, 103
glossary, 620

pausing execution, 118
structure, 10
terminating execution, 119

PROGRAM statement, 407
END statement, 311
main program unit syntax, 125
statement order, 11

program units, 121
block data, 169, 328
concepts, 122
executable, 122
external procedure, 128
function, 332
functions, 128
glossary, 621
main program, 125, 407
module, 161, 369, 371
nonexecutable, 122
statement order, 11
subroutine, 447
subroutines, 128
terminology, 122
types, 10, 122

PUBLIC statement and
attribute, 408

derived type definition, 40
module access control, 164
module syntax, 162
PRIVATE statement, 405
TYPE statement, 457

PUTC routine, 597

Q
Q edit descriptor, 219, 225, 233
QABS intrinsics function, 488
QACOS intrinsics function, 489
QACOSD intrinsics function,

489
QASIN intrinsics function, 496
QASIND intrinsics function, 496
QATAN intrinsics function, 498
QATAN2 intrinsics function, 499

652 Index

Index

QATAN2D intrinsics function,
499

QATAND intrinsics function,
500

QATANH intrinsics function,
500

QCOS intrinsics function, 504
QCOSD intrinsics function, 504
QCOSH intrinsics function, 504
QDIM intrinsics function, 511
QEXP intrinsics function, 516
QEXT intrinsic function, 561
QEXTD intrinsics function, 561
QFLOAT intrinsic function, 561
QFLOATI intrinsics function,

561
QFLOT1 intrinsics function, 561
QFLOTJ intrinsics function, 561
QFLOTK intrinsics function,

561
QINT intrinsics function, 491
QLOG intrinsics function, 543
QLOG10 intrinsics function, 543
QMAX1 intrinsics function, 546
QMIN1 intrinsics function, 550
QMOD intrinsics function, 554
QNINT intrinsics function, 494
QNUM intrinsic function, 561
QPROD intrinsic function, 562
QSIGN intrinsics function, 572
QSIN intrinsics function, 573
QSIND intrinsics function, 573
QSINH intrinsics function, 574
QSORT routine, 597
QSQRT intrinsics function, 576
QTAN intrinsics function, 580
QTAND intrinsics function, 580
QTANH intrinsics function, 580

R
%REF built-in function, 148
R edit descriptor, 213

errors, 610
RADIX intrinsic function, 562
RAN intrinsic function, 562
RAND intrinsic function, 563
random number intrinsic

procedures, 484
RANDOM_NUMBER intrinsic

subroutine, 563
RANDOM_SEED intrinsic

subroutine, 563
RANGE intrinsic function, 564
range, extended (DO loops), 298
rank, 294

glossary, 621
rank-one arrays, 63, 65, 71, 78

READ statement, 411
ACCEPT statement, 245
data list items, 193
formatted I/O, 415
internal files, 415
list-directed I/O, 179, 415
namelist-directed I/O, 415
nonadvancing I/O, 187, 415
READ statement, 291
unformatted I/O, 416

READ= specifier
INQUIRE statement, 350

READWRITE= specifier
INQUIRE statement, 351

real, 22
alignment, 22
constants, 33
data representation, 22
declaring, 24
DOUBLE PRECISION

statement, 303
edit descriptors, 219
exponentiation, 83
expressions, 82
list-directed I/O, 180
REAL statement, 417
representation of, 482
type declaration, 24, 417

REAL intrinsic function, 565
REAL statement, 417

type declaration statement, 24
REC= specifier

direct access, 185
READ statement, 413
WRITE statement, 472

RECL= specifier
errors, 609
INQUIRE statement, 351
OPEN statement, 383

RECORD statement, 420
records (extension)

composite references, 420
nested, 420, 442
RECORD statement, 420
referencing, 420
restrictions on I/O, 194
simple references, 420
STRUCTURE statement, 437
structures (extension)., 420

records (I/O), 172
access errors, 606, 610
determining length, 352
end-of-file errors, 608
end-of-file record, 172
formatted, 172
glossary, 621
number errors, 609
size errors, 606, 609, 610
unformatted, 172

RECURSIVE clause
ENTRY statement, 320
FUNCTION statement, 332
procedure definition syntax,

128
recursive procedures, 131
SUBROUTINE statement, 447

recursive procedures, 131, 332,
447

REF built-in function, 148
CALL statement, 264

referencing

Index

Index 653

functions, 131
subroutines, 130

relational operators, 84
RENAME routine, 597
renaming feature, 164, 461

glossary, 621
REPEAT intrinsic function, 566

in expressions, 90, 93
repeatable edit descriptors, 208

errors, 610
repeating format specifications,

240
RESHAPE intrinsic function,

566
array constructors, 71, 73
in expressions, 90, 93

RESULT clause, 319
ENTRY statement, 320
FUNCTION statement, 332
procedure definition syntax,

128
recursive procedures, 131

result of mixed expressions, 82,
84, 85

result variables
ENTRY statement, 320
FUNCTION statement, 332
restrictions, 320

RETURN statement, 425
procedure definition syntax,

129
returning from a call, 132

return value
glossary, 621
library functions, 589
procedure reference, 132
RETURN statement, 425

returns, alternate, 132
REWIND statement, 426
right-justifying character data,

213
RNUM intrinsic function, 567
routines, library, 587

naming conflicts, 590
row-major order, 621
RRSPACING intrinsic function,

567
RSHFT intrinsic function, 568
RSHIFT intrinsic function, 568
rules, implicit typing, 28
runtime I/O errors, 603

S
+save option

AUTOMATIC statement, 253
+source option, 13
S edit descriptor, 233
SASUM routine, 600
SAVE statement and attribute,

428
allocatable arrays, 60
automatic arrays, 55
automatic variables, 253
module syntax, 161, 162
PARAMETER statement, 391
restrictions, 429
STATIC statement, 434

saving variables, 428
SAXPY routine, 600
scalars

array assignment, 96
array expressions, 74
dummy arguments, 140
elemental intrinsic functions,

477
glossary, 621
statement function arguments,

137
scale factor edit descriptor, 231
SCALE intrinsic function, 568
SCAN intrinsic function, 568
SCASUM routine, 600
scientific notation formatting,

222
SCNRM2 routine, 600

scope, 123
global, 123
glossary, 621

scope of this manual, xxi
scoping units, 123

allowable statements, 12
glossary, 621
implicit typing, 28

SCOPY routine, 600
scratch files, 173

closing, 272
errors, 607
opening, 384

SDOT routine, 600
search paths

include files, 342
SECNDS intrinsic function, 569
section, array, 63
SELECT CASE statement, 431

CASE construct, 105
SELECTED_INT_KIND

intrinsic function, 570
in expressions, 90, 93

SELECTED_REAL_KIND
intrinsic function, 570

in expressions, 90, 93
semicolon character

statement separator, 14, 16
sequence association, 124, 140

arrays, 140, 141
glossary, 621

sequence derived type, 41
glossary, 621
SEQUENCE statement, 432

SEQUENCE statement and
attribute, 432

derived type definition, 40
EQUIVALENCE statement,

323
sequence derived type, 41

sequence, storage
glossary, 622
sequence derived type, 432

654 Index

Index

sequential access, 178
errors, 606
example, 202
formatted I/O, 178
list-directed I/O, 179
namelist I/O, 183

SEQUENTIAL= specifier
INQUIRE statement, 351

SET_EXPONENT intrinsic
function, 571

SGBMV routine, 600
SGEMM routine, 600
SGEMV routine, 600
SGER routine, 600
shape, 294

glossary, 621
SHAPE intrinsic and function

arrays, 78
SHAPE intrinsic function, 572
shared libraries

glossary, 621
Shift-JIS encoding, 8
SIGN intrinsic function, 572
SIGNAL routine, 598
simple record references, 420
SIN intrinsic function, 573
SIND intrinsic function, 573
single quote character, 34
SINH intrinsic function, 574
SIZE intrinsic

arrays, 78
SIZE intrinsic function, 574
size of arrays, 294

glossary, 621
SIZE= specifier

READ statement, 413
SIZEOF intrinsic function, 575
slash (/) character

delimiting data values, 26
list-directed I/O, 180

slash edit descriptor, 212
SLEEP routine, 598
SNGL intrinsics function, 565

SNGLQ intrinsics function, 565
SNRM2 routine, 600
source format, 13

filename extensions, 13
fixed, 16
free, 13

SP edit descriptor, 233
spaces

fixed format, 16
free format, 14

SPACING intrinsic function, 575
specific intrinsic function, 477
specific procedures, 154

glossary, 621
specification

expression, 622
expressions, 92
statements, 125, 169

specifiers, I/O, 173
SPREAD intrinsic function, 575
SQRT intrinsic function, 576
SRAND intrinsic subroutine,

577
SROT routine, 600
SROTG routine, 600
SROTM routine, 600
SROTMG routine, 601
SS edit descriptor, 233
SSBMV routine, 601
SSCAL routine, 601
SSPMV routine, 601
SSPR routine, 601
SSPR2 routine, 601
SSWAP routine, 601
SSYMM routine, 601
SSYMV routine, 601
SSYR routine, 601
SSYR2 routine, 601
SSYR2K routine, 601
SSYRK routine, 601
standard error, 176
standard input, 176
standard output, 176

STAT routine, 598
STAT= specifier

ALLOCATE statement, 249
DEALLOCATE statement, 288

statement blocks, 104
statement functions, 137

glossary, 622
internal procedure as

alternative, 280
intrinsic names, 476

statement labels, 10
fixed format, 17
free format, 14
glossary, 619

statement lines
fixed format, 16
fixed source form, 16
free format, 14

statements, 241
ACCEPT, 245
ALLOCATABLE, 247
ALLOCATE, 249
arithmetic IF, 337
ASSIGN, 252
assignment, 95
AUTOMATIC, 253
BACKSPACE, 254
BLOCK DATA, 256
block IF, 338
BUFFER IN, 257
BUFFER OUT, 259
BYTE, 261
CALL, 263
CASE, 265
CHARACTER, 268
CLOSE, 271
COMMON, 273
COMPLEX, 277
CONTAINS, 280
continuation, 15, 17
CONTINUE, 282
CYCLE, 283
DATA, 284

Index

Index 655

DEALLOCATE, 288
DECODE, 290
DIMENSION, 293
DO, 297
DOUBLE COMPLEX, 301
DOUBLE PRECISION, 303
ELSE, 305
ELSE IF, 306
ELSEWHERE, 307
ENCODE, 308
END (construct), 313
END (program unit), 311
END (structure definition),

314
END DO, 313
END IF, 313
END INTERFACE, 315
END MAP, 314
END SELECT, 313
END STRUCTURE, 314
END TYPE, 316
END UNION, 314
END WHERE, 313
ENDFILE, 172, 317
ENTRY, 319
EQUIVALENCE, 323
executable, 126
EXIT, 299, 327
EXTERNAL, 328
FORMAT, 330
FUNCTION, 332
glossary, 622
GO TO (assigned), 334
GO TO (computed), 335
GO TO (unconditional), 336
IF (arithmetic), 337
IF (block), 338
IF (logical), 339
IMPLICIT, 340
INCLUDE, 19, 342
INQUIRE, 344
INTEGER, 355
INTENT, 358

INTERFACE, 361
INTRINSIC, 363
length, 15, 16
LOGICAL, 365
logical IF, 339
MAP, 368, 443
MODULE, 369
MODULE PROCEDURE, 371
NAMELIST, 373
NULLIFY, 375
ON, 376
OPEN, 379
OPTIONAL, 387
ordering requirements, 11
PARAMETER, 391
PAUSE, 395
POINTER, 400
POINTER (Cray-style), 397
PRINT, 402
PRIVATE, 404
PROGRAM, 407
PUBLIC, 408
READ, 411
REAL, 417
RECORD, 420
RETURN, 425
REWIND, 426
SAVE, 428
SELECT CASE, 431
SEQUENCE, 432
specification, 125, 169
STATIC, 434
STOP, 436
STRUCTURE, 437
SUBROUTINE, 447
TARGET, 449
TASK COMMON, 452
TYPE (declaration), 454
TYPE (definition), 457
TYPE (I/O), 459
type declaration, 24, 43, 241,

261, 268, 277, 355, 420,
454

UNION, 443, 460
USE, 461
VIRTUAL, 464
VOLATILE, 465
WHERE, 466
WRITE, 470

STATIC statement and
attribute, 434

SAVE statement, 428
static storage

SAVE statement, 428
STATIC statement, 434

status
allocation, 59
association, 288
pointer association, 48

STATUS= specifier
CLOSE statement, 271
errors, 607, 608
OPEN statement, 384
scratch file, 173

STBMV routine, 601
STBSV routine, 601
STOP statement, 436

execution control, 119
storage association, 124

COMMON statement, 273
derived types, 432
EQUIVALENCE statement,

323
glossary, 622
modules, 321

storage sequence
glossary, 622
sequence derived type, 432

STPMV routine, 602
STPSV routine, 602
stride, 64

glossary, 622
string

glossary, 615
string, character, 37
strings

656 Index

Index

C language, 34
edit descriptor, 210

STRMM routine, 602
STRMV routine, 602
STRSM routine, 602
STRSV routine, 602
structure constructors, 43

in expressions, 91, 92
typeless constants, 31

structure of a program, 10
STRUCTURE statement, 437

END statement, 314
MAP statement, 368

structures
array-valued component

reference, 68
component, 41

structures (extension)
derived types, 437
I/O restrictions, 194
MAP statement, 443
nested, 437, 440
RECORD statement, 420
records (extension), 437
STRUCTURE statement, 437
UNION statement, 443

subprograms
arguments, 139
function, 332
module procedure, 371
subroutine, 447

SUBROUTINE statement, 447
END statement, 311
module syntax, 162
OPTIONAL statement, 387
procedure definition, 128
recursive procedures, 131
RETURN statement, 425
statement order, 11

subroutines, 128
alternate returns, 447
calling, 130
defined assignment, 157

defining, 128
glossary, 622
intrinsic, 476
recursive, 131
referencing, 130
SUBROUTINE statement, 447

subscripts, 52
errors, 611
glossary, 622
initialization expressions, 91
triplet, 64, 622
vector, 65

substring
array, 65
initialization expressions, 91

substrings, 36
errors, 611
glossary, 622

SUM intrinsic function, 577
example, 144

SYMLNK routine, 598
syntax

array constructor, 71
array section, 63
asa command, 197
assumed-shape array, 56
assumed-size array, 61
attributes, 241
binary edit descriptor, 216
blank edit descriptor, 218
block data program unit, 169
BOZ constants, 30
CASE construct, 105
character constant, 34
character edit descriptor, 213
character substring, 36
complex constant, 34
conditional DO loop, 109
counter-controlled DO loop,

107
deferred-shape array, 58
derived-type declaration, 43
derived-type definition, 40

edit descriptors, 205
explicit-shape array, 55
expressions, 80
format specification, 207
functions, 128, 131
hexadecimal edit descriptor,

234
Hollerith constants, 30
Hollerith edit descriptor, 225
I/O data list, 192
I/O statements, 190
IF loop, 111
implied-DO loop, 71, 194
implied-DO loop, nested, 196
infinite DO loop, 110
integer constant, 29
integer edit descriptor, 226
interface block, 152
logical constant, 35
logical edit descriptor, 228
module program unit, 161
octal edit descriptor, 229
procedures, 128, 130
real constant, 33
real edit descriptor, 219
statements, 241
structure constructor, 43
structure-component

reference, 42
subroutines, 128, 130
subscript triplet, 63
tab edit descriptor, 234
type declaration statement, 24
vector subscript, 63
WHERE construct, 99

syntax, command, xxiii
SYSTEM intrinsic subroutine,

578
SYSTEM routine, 598
system routines

tempnam, 173
SYSTEM_CLOCK intrinsic

subroutine, 579

Index

Index 657

T
T edit descriptor, 234
tab character

formatting, 18
tab edit descriptor, 234
TAN intrinsic function, 579
TAND intrinsic function, 580
TANH intrinsic function, 580
tape input/output libU77

routines, 592
target, 47

assignment statement, 95
glossary, 622
NULLIFY statement, 375
pointer assignment, 97
pointer association, 124
rules, 450

TARGET statement and
attribute, 449

pointer assignment, 98
TASK COMMON statement, 452
TCLOSE routine, 598
tempnam system routine, 173
terminal statement for DO loop,

109
terminating

DO loops, 282, 298
list-directed input, 180
program execution, 119

THEN clause
IF (block) statement, 338

TIME
intrinsic subroutine, 581

time and date
intrinsic procedures, 484
libU77 routines, 592

time for program execution, 569
TIME routine, 598
timing execution speed, 549
TINY intrinsic function, 581
TL edit descriptor, 234
TO clause

ASSIGN statement, 252

tokens, lexical, 9
TOPEN routine, 598
TR edit descriptor, 234
trailing comments, 15, 17
TRANSFER intrinsic function,

582
in expressions, 90, 93

transferring control
between procedures, 122
within program, 104

transformational intrinsics, 478
in expressions, 90, 93

TRANSPOSE intrinsic function,
583

trap handling
ON statement, 376

TREAD routine, 598
TREWIN routine, 598
TRIM intrinsic function, 583

in expressions, 90, 93
triplet, subscript, 64
TRUE, value of, 35, 85
truncating constants, 32
truth table, 84
TSCKIPF routine, 599
TSTATE routine, 599
TTYNAM routine, 599

example program, 589
TWRITE routine, 599
type conversion

assignment statement, 95
EQUIVALENCE statement,

324
in expressions, 82, 84

type declaration statements, 241
array specification, 26
BYTE, 24, 261
CHARACTER, 268
COMPLEX, 24, 277
derived types, 43
DOUBLE COMPLEX, 24, 301
DOUBLE PRECISION, 24,

303

examples, 27
glossary, 622
implicit typing, 28
initialization, 26
initialization expressions, 91
INTEGER, 24, 355
intrinsic types, 24
LOGICAL, 24, 365
REAL, 24, 417
RECORD, 420
syntax, 24
TYPE (definition), 457

TYPE statement
declaration, 454
definition, 457
derived type declaration, 43
derived type definition, 40
END TYPE statement, 316
I/O, 459

typeless constants, 31
glossary, 622

types, data
derived, 39
glossary, 616
intrinsic, 22

typing rules
implicit, 28
IMPLICIT statement, 341
library routines, 589
logicals in integer expressions,

83
mixed expressions, 82, 84
overriding, 25, 341
type declaration, 25
typeless constants, 31

U
+U77 option

accessing libU77 routines, 588
+uppercase option

libU77 routines, 588
/usr/include, 342

658 Index

Index

UBOUND intrinsic function, 583
arrays, 78

unconditional GO TO statement,
336

execution control, 117
undefined status (pointers), 48
underscore (_) character

appended by +libU77, 588
unformatted I/O, 185

direct-access files, 186
errors, 604, 608, 609, 612
READ statement, 416
sequential files, 178
WRITE statement, 474

unformatted record, 172
UNFORMATTED= specifier

INQUIRE statement, 352
UNION statement, 443, 460

END statement, 314
MAP statement, 368

unions, 443, 460
unit numbers, 175

automatically opened, 177
errors, 604, 607
external files, 175
glossary, 623
internal files, 176
preconnected, 176

UNIT= specifier
BACKSPACE statement, 254
CLOSE statement, 271
ENDFILE statement, 317
errors, 604, 607
INQUIRE statement, 344
OPEN statement, 379
READ statement, 411
REWIND statement, 426
WRITE statement, 470

UNLINK routine, 599
unnamed common blocks

block data program unit, 170
BLOCK DATA statement, 256

COMMON statement, 273,
275

UNPACK intrinsic function, 584
use association, 124

accessing derived type
definition, 45

accessing entities, 163
arguments, 455
COMMON statement, 274
DATA statement, 284, 285
EQUIVALENCE statement,

323
glossary, 623
module procedures, 371
modules, 161
PRIVATE statement, 405
PUBLIC, 409
USE statement, 461

USE statement, 461
accessing module entities, 163
block data program unit, 169
example program, 156, 158
module access control, 164
modules, 161
PRIVATE statement, 405
PUBLIC statement, 409
renaming feature, 164, 621
scoping units, 12
statement order, 11
use association, 124

user-defined
assignment, 151, 157, 623
operator, 151, 155, 623

V
%VAL built-in function, 148
VAL built-in function, 148
values, logical, 35, 85
variables

assigning to, 95
automatic, 253
AUTOMATIC statement, 253

glossary, 623
SAVE statement, 429
scope, 123
specification expressions, 92

vector operations, 587
vector subscripts

array constructors, 65
expressions, 81
glossary, 623
pointer assignment, 98

VERIFY intrinsic function, 585
vertical ellipses, xxiii
VIRTUAL statement, 464
VOLATILE statement and

attribute, 465

W
WAIT routine, 599
WHERE construct, 99

END WHERE statement, 313
WHERE statement, 466

WHERE statement, 466
ELSEWHERE statement, 307
masked array assignment, 99

WHILE clause, 297
white space, 8

fixed format, 16
free format, 14

whole array, 52
expressions, 81
glossary, 623

WRITE statement, 470
data list items, 193
ENCODE statement, 309
internal files, 473
list-directed I/O, 179, 473
namelist-directed I/O, 471, 473
nonadvancing I/O, 187, 471,

473
nonformatted I/O, 474
PRINT statement, 402

WRITE= specifier

Index

Index 659

INQUIRE statement, 352

X
X edit descriptor, 234
XERBLA routine, 602
XOR intrinsic function, 586
XOR operator, 84

Y
Y2K issues, 589
Year-2000, 589

Z
Z edit descriptor, 234
ZABS intrinsics function, 488
ZAXPY routine, 600
ZCOPY routine, 600
ZCOS intrinsics function, 504
ZDOTC routine, 600
ZDSCAL routine, 601
zero-sized arrays, 52, 64, 74

DATA statement, 285
glossary, 623

ZEXP intrinsics function, 516
ZEXT intrinsic function, 586
ZGBMV routine, 600
ZGEMM routine, 600
ZGEMV routine, 600
ZGERC routine, 600
ZGERU routine, 600
ZHBMV routine, 601
ZHEMM routine, 601
ZHEMV routine, 601
ZHER routine, 601
ZHER2 routine, 601
ZHER2K routine, 601
ZHERK routine, 601
ZHPMV routine, 601
ZHPR routine, 601
ZHPR2 routine, 601
ZLOG intrinsics function, 543
ZROT routine, 600

ZROTG routine, 600
ZSCAL routine, 601
ZSIN intrinsics function, 573
ZSQRT intrinsics function, 576
ZSWAP routine, 601
ZSYMM routine, 601
ZSYR2K routine, 601
ZSYRK routine, 601
ZTAN intrinsics function, 580
ZTBMV routine, 601
ZTBSV routine, 601
ZTPMV routine, 602
ZTPSV routine, 602
ZTRMM routine, 602
ZTRMV routine, 602
ZTRSM routine, 602
ZTRSV routine, 602

660 Index

Index

