HP-UX Reference

Section 7: Device (Special) Files
Section 9: General Information
Index

HP-UX 11i Version 3

Volume 10 of 10

O)

invent

Manufacturing Part Number : B2355-91026
E0207

Printed in USA
© Copyright 1983-2007 Hewlett-Packard Development Company LP.

Legal Notices

The information in this document is subject to change without notice.

Warranty

The only warranties for HP products and services are set forth in the
express warranty statements accompanying such products and services.
Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

U.S. Government License

Confidential computer software. Valid license from HP required for
possession, use, or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation,
and Technical Data forCommercial Items are licensed to the U.S.
Government under vendor’s standard commercial license.

Additional Copyright Notices

This document and the software it describes may also be protected under
one or more of the following copyrights. Additional copyrights are
acknowledged in some individual manpages.

© Copyright 1979, 1980, 1983, 1985-1993 The Regents of the University
of California.

© Copyright 1980, 1984, 1986 Novell, Inc.

© Copyright 1985, 1986, 1988 Massachusetts Institute of Technology
© Copyright 1986-2000 Sun Microsystems, Inc.

© Copyright 1988 Carnegie Mellon University

© Copyright 1989-1991 The University of Maryland

© Copyright 1989-1993 The Open Software Foundation, Inc.

© Copyright 1990 Motorola, Inc.

© Copyright 1990-1992 Cornell University

© Copyright 1991-2003 Mentat, Inc.

© Copyright 1996 Morning Star Technologies, Inc.
© Copyright 1996 Progressive Systems, Inc.

Trademark Notices

Intel and Itanium are registered trademarks of Intel Corporation in the
US and other countries and are used under license.

Java is a US trademark of Sun Microsystems, Inc.

Microsoft and MS-DOS are U.S. registered trademarks of Microsoft
Corporation.

OSF/Motif is a trademark of The Open Group in the US and other
countries.

UNIX is a registered trademark of The Open Group.
X Window System is a trademark of The Open Group.

General
Introduction

Section
Introductions

Preface

HP-UX is the Hewlett-Packard Company’s implementation of a UNIX®
operating system that is compatible with various industry standards. It
is based on the System V Release 4 operating system and includes
important features from the Fourth Berkeley Software Distribution.

The ten volumes of this manual contain the system reference
documentation, made up of individual entries called manpages, named
for the man command (see man (1)) that displays them on the system.
The entries are also known as manual pages or reference pages.

For a general introduction to HP-UX and the structure and format of the
manpages, please see the introduction (9) manpage in volume 9.

The manpages are divided into sections that also have introduction
(intro) manpages that describe the contents. These are:

intro (1) Section 1: User Commands
(A-M in volume 1; N-Z in volume 2)

intro (1M) Section 1M: System Administration Commands
(A-M in volume 3; N-Z in volume 4)
intro (2) Section 2: System Calls
(in volume 5)
intro (3C) Section 3: Library Functions
(A-M in volume 6; N-Z in volume 7)
intro (4) Section 4: File Formats
(in volume 8)
intro (5) Section 5: Miscellaneous Topics
(in volume 9)
intro (7) Section 7: Device (Special) Files
(in volume 10)
intro (9) Section 9: General Information
(in volume 10)
Index Index, All Volumes

(in volume 10)

Typographical Conventions

audit (5)

Book Title

Command

An HP-UX manpage reference. For example, audit is
the name and 5 is the section in the HP-UX Reference.
On the web and on the Instant Information CD, it may
be a hyperlink to the manpage itself. From the HP-UX
command line, you can enter “man audit” or “man 5
audit” to view the manpage. See man (1).

The title of a book. On the web and on the Instant
Information CD, it may be a hyperlink to the book
itself.

A command name or qualified command phrase.

ComputerOutput Text displayed by the computer.

Emphasis
Emphasis
ENVIRONVAR

[ERRORNAME]

KeyCap

Replaceable

Term
UserInput

$
#

Text that is emphasized.
Text that is strongly emphasized.
The name of an environment variable.

The name of an error number, usually returned in the
errno variable.

The name of a (usually) nonprinting keyboard key, such
as Ctrl-X or Tab. Note that Return and Enter both refer to
the same key.

The name for a value that you replace in a command or
function, or information in a display that represents
several possible values.

The defined use of an important word or phrase.
Commands and other text that you type.
User command prompt.

Superuser (root) command prompt.

Command Syntax

Literal

Replaceable

—-chars

-word

A word or character that you enter literally.

A word or phrase that you replace with an appropriate
value.

One or more grouped command options, such as -ikx.
The chars are usually a string of literal characters
that each represent a specific option. For example, the
entry -ikx is equivalent to the individual options -1,
-k, and -x. The plus character (+) is sometimes used as
an option prefix.

A single command option, such as -help. The wordis a
literal keyword. The difference from -chars is usually
obvious and is clarified in an Options description. The
plus character (+) and the double hyphen (--) are
sometimes used as option prefixes.

The bracket metacharacters enclose optional content in
formats and command descriptions.

The brace metacharacters enclose required content in
formats and command descriptions.

The bar metacharacter separates alternatives in a list
of choices, usually in brackets or braces.

The ellipsis metacharacter after a token (abc...) or a
right bracket ([]...) or a right brace ({ }...)
metacharacter indicates that the preceding element
and its preceding whitespace, if any, may be repeated
an arbitrary number of times.

Ellipsis is sometimes used to indicate omitted items in
a range.

Function General
Definition

Function Usage

Function Synopsis and Syntax

HP-UX functions are described in a definition format rather than a
usage format. The definition format includes type information that is
omitted when the function call is actually included in a program.

The function syntax elements are the same as for commands, except for
the options; see “Command Syntax” on page 7.

The general definition form is:

type func (type param [, type param ...);

For example:

int setuname (const char *name , size t namelen);

The usage form is:
func (param [, param]...);
For example:

setuname (name [, namelen]...);

Revision History

Part Number
B2355-60130

B2355-91017-26

B2355-60127

B2355-90902-11

B2355-60105

B2355-90839-48

B2355-60103

B2355-90779-87

B9106-90010

B9106-90007

B2355-90688
B2355-90166
B2355-90128
B2355-90052

Release; Date; Format; Distribution

HP-UX 11i Version 3; February 2007; one volume
HTML; http://docs.hp.com and Instant Information.

HP-UX 11i Version 3; February 2007; ten volumes
PDF; http://docs.hp.com, Instant Information and
print.

HP-UX 11i Version 1; September 2005 Update; one
volume HTML; http://docs.hp.com and Instant
Information.

HP-UX 11i Version 1; September 2005 Update; ten
volumes PDF; http://docs.hp.com and print.

HP-UX 11i Version 2; September 2004 Update; one
volume HTML; http://docs.hp.com and Instant
Information.

HP-UX 11i Version 2; September 2004 Update; ten
volumes PDF; http://docs.hp.com and print.

HP-UX 11i Version 2; August 2003; one volume HTML,;
http://docs.hp.com and Instant Information.

HP-UX 11i Version 2; August 2003; nine volumes PDF;
http://docs.hp.com and print.

HP-UX 11i Version 1.6; June 2002; one volume HTML;
http://docs.hp.com and Instant Information.

HP-UX 11i Version 1.5; June 2001; seven volumes
HTML; http://docs.hp.com and Instant Information.

HP-UX 11i Version 1; December 2000; nine volumes.
HP-UX 11.0; October 1997; five volumes.

HP-UX 10.X; July 1996; five volumes; online only.
HP-UX 10.0; July 1995; four volumes.

10

Volume Ten
Table of Contents

Section 7
Section 9

Index

Volume Ten
Table of Contents

Section 7
Section 9

Index

Table of Contents
Volume Ten

Section 7: Device (Special) Files

Entry Name(Section): name Description
INEPO(T7): ANETO tiiiiiiiiii i e et e e e e e e a e e e e e e e aaaaaas introduction to device special files

F Y T 0 Y < TSP PUPPN address resolution protocol
autochanger(7): schgr, eschgr SCSI interfaces for medium changer device
bIMOAE(7): DLMOGAEuieiiiiiiiiiiieeeeeeiiiieieeeeeeettt e e e eeeeartaaaeeeerarsnnnaeeeererrannaaaaes terminal block mode interface

L3 o N () = -1 SRS Centronics-compatible interface
clone(7) open a major and minor device pair on a STREAMS driver
console(7): console, SYSELY, SYSCOMouoiiiiiiiiiiiiie e eeeeeee e e e e e e e ereeeeeaas system console interface
ddfa(7): ddfacccccoeeviiiiiiiiinnnns Data Communications and Terminal Controller Device File Access software
AIAGO(7): QLAGO0 ..ueiiiiiiiiiiie e e e e e e et e e e e e e e e e e e erta e e e aerrraaaaas diagnostic interface to I/O subsystem
AIAGL(T): QLAGL ..oieiiiiiiiiiiie e e e e et e e e e e ettt e e e e ear e e e e eraraaaaaas diagnostic interface to I/O subsystem
AIAG2(7T): QLAG2 .oiiiiiiiiiieeiiiiiiiiee et e ettt eee e e e e ettt e e e e e ettt e e eeee ettt e aee ettt aaaerrrannaaaaareres diagnostic interface
L)) R = PSP direct disk access
AIpi(7): Q1P coooiiiiiiiiiie e data link provider interface
eschgr: SCSI interfaces for medium changer devicecccoevvviiiiiiiiieiiiiiiiiiiiee s see autochanger(7)
framebuf(7): framebuf information for raster frame-buffer devices
gang sched(7): gang SCREAccooviiiiiiiiiiie et e e e ettt e e e e et era e e e e eeraa e e aaeeaes Gang Scheduler
V1 G) - T e R PSPPI HP-HIL device driver

hilkbd(7): hilkbd HP-HIL mapped keyboard driver

b T G) I =) U UPUPPRPR Internet protocol family
iomap(7): iomap physical address mapping
TP(TP): TP oo Internet Protocol

ip6: Internet Protocol VEISION 6coiiiiiiiiiiiiiiiiiiieiiiiie e et e et e e eee e et e e e aaeeeeeaeeesaneeeanes see IPv6(7P)
IPVO(TP): TIPVE, DV, AD6 .cooevvniiiiiiiiiiiieeeiiie e et e eeteeeeaee e e et eeereeeaaeeseaaeesannaaeenas Internet Protocol Version 6
ipv6: Internet Protocol VEISION 6coiiiiiiiiiiiiiiiiiiie it e e e e e e e aaee e e e e e saaeeeanas see IPv6(7P)
kmem(7): kmem perform I/O on kernel memory, based on symbol name

JAN(T): LA (oo e e e e e e network I/O card access information
ldterm(7): 1dterm STREAMS terminal line discipline module
| o X T & - TP PPPPPPUPPPPPPPRE line printer
lvm(7): 1vm Logical Volume Manager (LVM)
IEM(T): MOIM ...ttt main memory image file

MOdem(7): MOAEMuuviiiiiiiiiiiiiiitee e e ettt e e e ettt e e e e e e ee e e e e aiieee asynchronous serial modem line control
mt(7): mt magnetic tape interface for stape and tape2
NAP(TP): DAD coiiiiiiiiiiiiie et e e e Neighbor Discovery Protocol, NDP
NES(T): NES, NFS oottt ettt e e e ettt et e e e e ettt et e e e e e aabba et e eeeeaaibtaeeeeeeanas network file system
o0t 1 L) T - s e RPN null file
PCRE(T): DPCRE ittt e s e e Packet Mode module for STREAMS pty
POLL(T): POLL ittt monitor I/O conditions on multiple file descriptors
Ps2(7): ps2, ps2kbd, PS2MOUSE ...cooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeennnn. PS/2 keyboard and mouse device driver and files
ptem(7): ptemccccceeiiiiinnnnnn. .. STREAMS pty (pseudo-terminal) Emulation module
PUM(7): DEIM oot STREAMS master pty (pseudo-terminal) driver
17T - XS TPT STREAMS slave pty driver
L G =1 -0 N pseudo-terminal driver
random(7): random, urandom, rng strong random number generator
rang: strong random NUMbEr GENETAtOrccoiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeee e eeee e e e eeeeeeeees see random(7)
TOULE(TP): TOUL@ ..oooiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee ettt e e eeeeeeeeeeees kernel packet forwarding database
routing(7): TOULINGcccouuuiiiiiiiiiiiiiiiiiiiiiiaae system support for local network packet routing
SAA(T) et e ettt e e e e et et e e eeeas STREAMS administrative driver
schgr: SCSI interfaces for medium changer deviceccccceeeviiiiiiiiii see autochanger(7)
schgr: SCSI media changer device driversccccccciiiiiiiiiiiiiiiie, see autochanger(7)
SCSI(T): SCSL .iiiiiiiiiiiiiiiiiiiiii e Small Computer System Interface (SCSI) device drivers
SCSL_CLL(T): SCSL_CEL it SCSI pass-through driver (esctl/sctl)
SCSL_ISK(7): SCSI ALK ouiiniiiii et SCSI direct access device driver
scsi_tape(7): scsi_tape ..o SCSI sequential access device driver
scsimgr_eschgr(7): scsimgr_eschgrccccceiiii. SCSI class driver eschgr plug-in for scsimgr
scsimgr_esdisk(7): scsimgr_esdiskccccccoiiiiiiiiiiiiiiiiiiininn, SCSI class driver esdisk plug-in for scsimgr

HP-UX 11i Version 3: February 2007 Hewlett-Packard Company 13

Table of Contents
Volume Ten

Entry Name(Section): name Description
scsimgr_estape(7): scsimgr estapecccccceeiieeeeiiiiiiiieeeeennnn, SCSI class driver estape plug-in for scsimgr
sioc_io(7): sioc_io SCSI pass-through interface
Slp_syntax(7): S1p_SYNEAX ..oooiiiiiiiiiiiiiiiie e e e e et e e e e et e e e e e e era e aaaanes SLP Service URL Syntax
SOCKEL(T): SOCKEL ..oiiiiiiiiii i e e e et e e e e e e et e e e e e aa e aas Interprocess communications
ssrfc: SCSI media changer device dTiVETrSeeeeieiiiiiiiiiieeeeeeiiiiieeeeeeeerireeeeeeeeeannnns see autochanger(7)
Streamio(7) ... STREAMS ioctl commands
1179 (oY G T -1 oF < =Y« USSP STREAMS log driver
stty: terminal interface for Version 6/PWB compatibilitycccovviiieiiiiiiiiiiiiniiiiiiiiiiee e see sttyv6(7)
StEYVO(T): SELY cooiiiiiiiiiiie e e terminal interface for Version 6/PWB compatibility
syscon: System console INTEITACEccceiiiiiiiiiiiieiiiiiiiiie e e e e e e e e e aaese e e e e eearnanaeeaas see console(7)
systty: system console INTEITACEcccciiiiiiiiiiiieiiiiiiiiiie et e e e e eerae e e e e eeeaanaaeeas see console(7)
TOP(TP): TCP ..o Internet Transmission Control Protocol
telm: STREAMS Telnet master AriVETcccciiiiiiiiiiiieeeeiiiiiiiieeeeeeiiiiiseeeeeeeeeiaaeeeeerenennaeseerensnnnaaesaes see tels(7)
tels(7): tels, telmccooeevviiivinnennnnnn. ... STREAMS slave and master drivers
termio(7): termio, E@IXMIOS ...occoiiiiiiiiiiiiiiiiii e general terminal interface
termios: general terminal iINterfaceccooviiiiiiiiiiiiiiiiie e see termio(7)
termioxX(7): EeXMIORK ..ooovvuiiiiiiiiiiiiiiie et et e et e e e e e e extended general terminal interface
timod(7)ccccceeeeeeiis ... STREAMS module for reads and writes by Transport Interface users
tirdwr(7) STREAMS module for reads and writes by Transport Interface users
By () By oo controlling terminal interface
UDP(TP): UAD oiiietiiiiieeeeeeiiiiieee e e eeetieee e e e e tttaaea e e e e e ettaaaneeeeeeaassanaeeeerenannnneaaes Internet user datagram protocol
UNIX(7TP): UNIX ..ooovvniiiiiiiiiiinininninnnnnnnennnnnnnes . local communication domain protocol
urandom: strong random NUMbETr GENETATOTccceiiiiiiieiiiiiiiiiiiie et ee et eeeeereaieeeeas see random(7)
VELAN(T): VLAN .ooiiiiiiiiiiee ettt ee e e e ettt e e e e e sttt e eeeesaaabbbeeeeeesaaaatteeeeessananbaneeeeesans virtual local area network
xopen_networking(7): xopen networkingccccccceciiiiiiiiiiiiiieininiiineeenn. X/Open Networking Interfaces
ZEYO(T): ZOIO cooniiiniiiiiie ettt e aaans /dev/zero special file

Section 9: General Information

Entry Name(Section): name Description
INtro(9): intTo ..oooooiiiiiiiiii i introduction to HP-UX general information section
€lossSary(9): GLOSSATY .cooiiiiiiiiiiie e e e aaae description of common HP-UX terms
introduction(9): introductionccccciiiiiiiiiiieiiiininnnn. HP-UX operating system and HP-UX Reference
Index: All Volumes

14 Hewlett-Packard Company HP-UX 11i Version 3: February 2007

Section 7

Device (Special) Files

Section 7

Device (Special) Files

intro(7) intro(7)

NAME

intro - introduction to device special files

DESCRIPTION
This section describes the device special files (DSFs) and hardware paths used to access HP peripherals and
device drivers. The names of the entries are generally derived from the type of device being described
(disk, tape, terminal, and so on.), not the names of the device special files or device drivers themselves.
Characteristics of both the hardware device and the corresponding HP-UX device driver are discussed
where applicable.

Device Types
Devices can be classified in two device access modes, raw and block. A raw or character-mode device, such
as a line printer, transfers data in an unbuffered stream and uses a character device special file.

A Dblock-mode device, as the name implies, transfers data in blocks by means of the system’s normal
buffering mechanism. Block devices use block device special files and may have a character device interface
too.

Device File Naming Convention
A device special file name becomes associated with a device when the file is created, either automatically by
the special file daemon s£d, or explicitly with the insf, mknod, or mksf command. When creating dev-
ice special files, it is recommended that the following standard naming convention be used:

/dev/ subdir/class#|options]

subdir An optional subdirectory for the device class (for example, rdisk for raw device special
files for disks, disk for block device special files for disks, rtape for raw tape devices).

class The class of device, such as tape, disk, or lan.

The instance number assigned by the operating system to the device. Each class of device
has its own set of instance numbers, so each combination of class and instance number
refers to exactly one device.

options Further qualifiers, such as disk partition (p#), tape density selection for a tape device, or
surface specification for magneto-optical media.

Naming conventions for each type of device are described in their respective manpage entries.

Legacy mass storage device special files have a different naming convention that encodes the hardware
path; this is described in the Device File Types (Mass Storage Devices) section.

Hardware Paths
Hardware path information, as well as class names and instance numbers, can be derived from ioscan
output; see ioscan(1M). There are three different types of paths to a device: legacy hardware path, lun-
path hardware path, and LUN hardware path. All three are numeric strings of hardware components,
notated sequentially from the system bus address to the device address. Each number typically represents
the location of a hardware component on the path to the device.

The legacy hardware path is composed of a series of bus-nexus addresses separated by slash (/) characters,
leading to a host bus adapter (HBA). Beneath the HBA, additional address elements are separated by
period (.) characters. All the elements are represented in decimal. This is the format printed by default
by the ioscan command for most devices. An example of a legacy hardware pathis 0/0/2/0.1.7.0.

The lunpath hardware path is used for mass storage devices, also known as logical units (LUNs). It is
identical in format to a legacy hardware path, up to the HBA. Beneath the HBA, additional elements are
printed in hexadecimal. The leading elements representing a transport-dependent target address, and the
final element is a LUN address, which is a 64-bit representation of the LUN identifier reported by the tar-
get. This format is printed by the ioscan command when the -N option is specified. The string
0/2/1/0.0x50001fel1500170ac.0x4017000000000000 is an example of a lunpath hardware
path.

Note that the address elements beneath the HBA may not correspond to physical hardware addresses;
instead, the lunpath hardware path should be considered a handle, not a physical path to the device.

The LUN hardware path is a virtualized path that can represent multiple hardware paths to a single mass
storage device. Instead of a series of bus-nexus addresses leading to the HBA, there is a virtual bus-nexus
(known as the virtual root node) with an address of 64000. Addressing beneath that virtual root node

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 17

intro(7) intro(7)

consists of a virtual bus address and a virtual LUN identifier, delimited by slash (/) characters. The string
64000/0xfa00/0x22 is an example of a LUN hardware path.

As a virtualized path, the LUN hardware path is only a handle to the LUN, and does not represent the
LUN’s physical location; rather, it is linked to the LUN’s World Wide Identifier (WWID). Thus, it remains
the same if new physical paths to the device are added, if existing physical paths are removed, or if any of
the physical paths changes. This LUN binding persists across reboots, but it is not guaranteed to persist
across installations — that is, reinstalling a system or installing an identically configured system may
create a different set of LUN hardware paths.

Device File Types (Mass Storage Devices)

Mass storage devices, such as disk devices and tape devices, have two types of device files, persistent device
special files and legacy device special files. Both can be used to access the mass storage device indepen-
dently, and can coexist on the same system.

A persistent device special file is associated with a LUN hardware path, and thus transparently supports
agile addressing and multipathing. In other words, a persistent device special file is unchanged if the LUN
is moved from one HBA to another, moved from one switch/hub port to another, presented via a different
target port to the host, or configured with multiple hardware paths. Like the LUN hardware path, the
binding of device special file to device persists across reboots, but is not guaranteed to persist across instal-
lations. The device special file name follows the standard naming convention above, and the minor number
contains no hardware path information.

A legacy device special file is locked to a particular physical hardware path, and does not support agile
addressing. Such a device special file contains hardware path information such as SCSI bus, target, and
LUN in the device file name and minor number. Specifically, the class and instance portions of the device
special file name indicate hardware path information and are in the format c#t#d# as follows:

c# The instance number assigned by the operating system to the interface card, in decimal. It
is a decimal number with a range of 0 to 255. There is no direct correlation between
instance number and physical slot number.

t# The target address on a remote bus (for example, SCSI address). It is a decimal number
with a typical range of 0 to 15.
da# The device unit number at the target address (for example, the LUN in a SCSI device). It

is a decimal number with a typical range of 0 to 7.

Note that the legacy naming convention supports a maximum of 256 external buses and a maximum of
32768 LUNs. Systems with mass storage devices beyond those limits will be unable to address them using
legacy naming conventions.

Legacy device special files are deprecated, and their support will be removed in a future release of HP-UX.

Viewing Mass Storage

With the advent of persistent and legacy device special files, commands dealing with mass storage can
choose between two views of the I/O system. A command presenting the legacy view uses legacy device
special files and legacy hardware paths. The agile view uses persistent device special files, lunpath
hardware paths, and LUN hardware paths.

Depending on the command, both views may be presented, or the choice of view may be controlled by a
command option or an environment variable. For example, the ioscan command shows the legacy view
by default, and switches to the agile view if the =N option is specified.

EXAMPLES
Example 1

The following is an example of a persistent device special file name:
/dev/disk/disk3

where disk indicates block disk access and disk3 indicates device class disk and instance number 3. The
absence of p# indicates access to the entire disk; see disk(7) for details.

Example 2

The following is an example of a legacy disk device special file name:
/dev/dsk/c0t6d0s2

Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

intro(7) intro(7)

where dsk indicates block disk access and c0t6d0 indicates logical disk access at interface card instance
0, target address 6, and unit 0. The s2 indicates access to section 2 of the disk.

Example 3
The following is an example of a persistent tape device special file name:
/dev/rtape/tape4QIC150
where rtape indicates raw magnetic tape, tape4 indicates tape device instance number 4, and QIC150
identifies the tape format as QIC150; see m¢(7) for details.

WARNINGS
The support of legacy device special files is deprecated and will be removed in a future release of HP-UX.

SEE ALSO
insf(1M), ioscan(1M), 1ssf(1M), mksf(1M), mknod(1M), hier(5), introduction(9).
System Administration’s Guide at http://docs.hp.com.

The Next Generation Mass Storage Stack whitepaper at:
http://docs.hp.com/en/netsys.html#Storage%20Area%20Management.

HP-UX 11i Version 3: February 2007 -3- Hewlett-Packard Company 19

a

arp (7P) arp(7P)

NAME

arp - Address Resolution Protocol

DESCRIPTION

ARP is a protocol used to dynamically map between DARPA Internet and hardware station addresses. It is
used by all LAN drivers.

ARP caches Internet-to-hardware station address mappings. When an interface requests a mapping for an
address not in the cache, ARP queues the message that requires the mapping, and broadcasts a message on
the associated network requesting the address mapping if the ether encapsulation method has been
enabled for the interface. If a response is provided, the new mapping is cached and any pending message is
transmitted. ARP queues at most one packet while waiting for a mapping request to be responded to; only
the most recently “transmitted” packet is kept.

To facilitate communications with systems that do not use ARP, ioctl calls are provided to enter and
delete entries in the Internet-to-hardware station address tables.

Application Usage:

#include <sys/ioctl.h>
#include <sys/socket.h>
#include <net/if.h>

#include <netinet/if_ether.h>
struct arpreq arpreq;

ioctl(s, SIOCSARP, (caddr_t)&arpreq):;
ioctl(s, SIOCGARP, (caddr_t)&arpreq):;
ioctl(s, SIOCDARP, (caddr_t)&arpreq):;

Each ioctl call takes the same structure as an argument. SIOCSARP sets an ARP entry, STOCGARP
gets an ARP entry, and SIOCDARP deletes an ARP entry. These ioctl calls can be applied to any socket
descriptor s, but only by the super-user. The arpreq structure contains:
/ *
* ARP ioctl request
*/
struct arpreq {
int32_t ifindex;
int32_t arp_flags; /* flags */
int32_t arp_hw_addr_len; /* hardware address length */
struct sockaddr arp_pa; /* protocol address */
struct sockaddr arp_ha; /* hardware address */

u_char arp_pad[242]; /* buffer for link specific info. */
};
/* arp_flags field values */
##define ATF_COM 0x02 /* ARP on ether */
##define ATF_PERM 0x04 /* permanent entry */
##define ATF_PUBL 0x08 /* publish entry */
##define ATF_SNAPFDDI 0x200 /* SNAP - FDDI */
##define ATF_SNAP8025 0x400 /* SNAP - 8025 */
##define ATF_IEEES8025 0x800 /* IEEE - 8025 */
##define ATF_FCSNAP 0x4000 /* Fibre Channel SNAP */

The address family for the arp_pa sockaddr must be AF_INET; for the arp_ha sockaddr it must be
AF_UNSPEC. The only flag bits that can be written are ATF_PERM, and ATF_PUBL. Fibre Channel
hosts only support the ATF_PERM flag. ATF_PERM causes the entry to be permanent. ATF_PUBL
specifies that the ARP code should respond to ARP requests for the indicated host coming from other
machines. This allows a host to act as an ARP server, which may be useful in convincing an ARP-only
machine to talk to a non-ARP machine.

ARP watches passively for hosts impersonating the local host (i.e., a host that responds to an ARP mapping
request for the local host’s address).

DIAGNOSTICS

duplicate IP address!! sent from ethernet address: %xX:%X:%X:%X:%X:%X.
This message printed on the console screen means that ARP has discovered another host on the local
network that responds to mapping requests for its own Internet address.

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

arp (7P) arp(7P)

WARNINGS
To enable the ether encapsulation method, use the ifconfig command (see ifconfig(1M)). -

AUTHOR
ARP was developed by the University of California, Berkeley.

SEE ALSO
ifconfig(1M), inet(3N), lan(7), arp(1M).

An Ethernet Address Resolution Protocol, RFC826, Dave Plummer, Network Information Center, SRI.

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 21

a

autochanger(7) autochanger(7)

NAME

autochanger: schgr, eschgr - SCSI interfaces for medium changer device

DESCRIPTION

An autochanger is a SCSI mass storage device, consisting of a mechanical changer device, one or more data
transfer devices (such as optical disk drives), and media (such as optical disks) for data storage. The
mechanical changer moves media between storage and usage locations within the autochanger.

Two medium changer drivers (schgr or eschgr) provide access to the medium changer device; eschgr
is the current preferred method of access and schgr is provided for legacy compatibility. The mechanical
changer device can be accessed via these drivers directly to move media within the autochanger.

The schgr and eschgr medium changer device drivers follow the SCSI specification for medium changer
devices to provide a generic medium changer interface, making it feasible to construct an application level
driver for any mechanical changer, jukebox, library, or autochanger device (MO, tape, CD-ROM).

Device Naming Convention

The device naming convention for the autochanger driver enables accessing the changer device.

Legacy character device file names reside in /dev/rac. Within this directory, names are derived from
the c#t#d# device naming convention (explained in intro(7)). Unique legacy device names are determined
by the card instance, target address of the SCSI changer device and LUN of the SCSI changer device.

Persistent device file names have the form /dev/rchgr/autochx for character devices. The card
instance, target address and LUN are no longer encoded in the persistent device file name itself (see
intro(7)).

Major and Minor Number Descriptions

The following shows the bit assignments (dev_t format) used by the schgr changer driver to access the
changer device using legacy device files:

0-7 8-15 16-19 20-22
MAJOR | INSTANCE | TARGET | LUN

MAJOR is the major number of the appropriate driver, INSTANCE is the card instance of the SCSI inter-
face to which the changer device is attached, TARGET is the SCSI target address of the changer device,
LUN is the SCSI LUN of the changer device.

All fields in the device number are specified in hexadecimal notation. Note that there is no support for
hard partitions (sections) in this minor number. If desired, partitioning can be achieved via LVM soft-
partitioning schemes.

Note: The major numbers used by the changer drivers are dynamically assigned starting with release HP-
UX 11iv3.

Following is a long listing showing the major and minor numbers associated with the device special file
name of the changer:

schgr:
crw-rw-rw- 1 root sys 231 0x015000 Apr 22 10:22 /dev/rac/clt5d40

SCSI MEDIUM CHANGER DEVICE DRIVER

22

The SCSI medium changer device driver performs moves between different media locations within an auto-
changer. Each potential media location has a specific element address and is one of the following element
types:

storage A location to hold a unit of media not currently in use. Typically most media will
be located in this type of element.

import/export A location for inserting and removing media from the device. Movement of a
unit of media to this type of location is in effect an eject operation. Movement of
a unit of media from this type of location is a load operation.

data transfer A location for accessing media data. This is generally the location of a device
that reads and/or writes data on the media being handled by the media changer
device. Movement to this type of location is a physical-media-mount operation.
Movement from this type of location is a physical-media-unmount operation.

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

autochanger(7)

media transport

autochanger(7)

type of element only during actual media movement.

Changer Control Requests
The following ioctl functions and structure definitions are included from <sys/scsi.h>:

#define
#define
#define
#define
#define
#define
#define

SIOC_INIT ELEM_ STAT

_Io(’s’,

SIOC_ELEMENT ADDRESSES _IOW(’S’,

SIOC_ELEMENT_STATUS

SIOC_RESERVE
SIOC_RELEASE
SIOC_MOVE_MEDIUM

SIOC_EXCHANGE_MEDIUM

_IOWR(’S’,
_Iow(’'s’,
_Iow(’'s’,
_Iow(’'s’,
_Iow(’'s’,

51)

52,
53,
54,
55,
56,
57,

struct element_addresses)
struct element_status)
struct reservation parms)
struct reservation parms)
struct move_medium parms)
struct exchange_medium_parms)

/* structure for SIOC_ELEMENT_ADDRESSES ioctl */
struct element_addresses {

};

/* stru
struct

short
short
short
short
short
short
short
short

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

cture for
element_status {

first_transport;

num_transports;

first_storage;

num_storages;

first_import_export;

num_import_exports;

first_data_transfer;

unsigned short element;

unsigned int resvl:2;

unsigned int import_enable:1l; /*
unsigned int export_enable:1l; /*
unsigned int access:1; /*
unsigned int except:1; /*
unsigned int operatr:1; /*
unsigned int full:1; /*
unsigned char resv2;

unsigned char sense_code; /*
unsigned char sense_qualifier; /*
unsigned int not_bus:1; /*
unsigned int resv3:1;

unsigned int id_valid:1; /*
unsigned int lu_valid:1; /*
unsigned int sublu valid:1; /*
unsigned int lun:3; /*
unsigned char bus_address; /*
unsigned char sub_lun; /*
unsigned int source_valid:1; /*
unsigned int invert:1; /*
unsigned int resv4:6;

unsigned short source_element;
char pri_vol_tagl[36]1; /*
char alt_vol_tagl[36]1; /*
unsigned char misc_bytes[168]; /*

};

num_data_transfers;

SIOC_ELEMENT_ STATUS ioctl */

/* element address */

allows media insertion (load) */
allows media removal (eject) */
transport element accessible */
is in an abnormal state */
medium positioned by operator */
holds a a unit of media */

info.
info.

about abnormal state */
about abnormal state */

transfer device SCSI bus differs */

bus_address is valid */

lun is valid */

sub_lun is valid */
transfer device SCSI LUN */

transfer device SCSI address */
sub-logical unit number */

source_element is valid */
media in element was inverted */

/* last storage medium location */

volume tag (device optional) */
volume tag (device optional) */
device specific */

/* structure for SIOC_RESERVE and SIOC_RELEASE ioctls */
struct reservation_parms {

HP-UX 11i Version 3: February 2007

—9-

Hewlett-Packard Company

A location for media movement. Media is generally temporarily located in this

23

a

autochanger(7) autochanger(7)

unsigned short element;

unsigned char identification;

unsigned char all_ elements;
};

/* structure for SIOC_MOVE_MEDIUM ioctl */
struct move_medium parms {
unsigned short transport;
unsigned short source;
unsigned short destination;
unsigned char invert;
};

/* structure for SIOC_EXCHANGE_ MEDIUM ioctl */
struct exchange_medium parms {
unsigned short transport;
unsigned short source;
unsigned short first_destination;
unsigned short second_destination;
unsigned char invert_first;
unsigned char invert_second;
};

SIOC_INIT_ ELEM_STAT
Cause the media changer device to take inventory. As a result, the media changer device determines
the status of each and every element address, including the presence or absence of a unit of media.
This is a mechanical operation which can take time. This function only necessary in the event of a
severe error of the media changer.

SIOC_ELEMENT_ ADDRESSES
Determine the element addresses supported by a media changer device. The first valid element
address and the number of elements is indicated for each element type. These element addresses may
be used as source and destination location arguments.

SIOC_ELEMENT_ STATUS
Determine the status of an element. The element address for which status information is requested is
specified via the element field. The resulting status data indicates the presence or absence of a
unit of media in that element address as well as other information about the element address.

SIOC_RESERVE and SIOC_RELEASE

Control access to element addresses. Depending on the device, reservations may limit operator con-
trol of those element addresses in the media changer device. Specific element addresses can be
reserved to handle interlocking between multiple requesters if each requester has a unique reserva-
tion identification. The value zero in the all_elements field specifies that a single element
address should be reserved or released. An element address reserved in this manner can not be
reserved by another single element address reservation using a different reservation identification.
The reservation field specifies the reservation identification. The element field specifies the
element address to be reserved.

The value "1" in the all_elements field indicates that all element addresses should be reserved.
The reservation and element fields should contain the value zero since these fields are not
meaningful when reserving all element addresses. Reserving all element addresses is primarily useful
for limiting operator control.

SIOC_MOVE_MEDIUM and SIOC_EXCHANGE_MEDIUM

Reposition unit(s) of media. Depending on the source and destination element types, this may result
in a media load, eject, or simple repositioning. Media can be "flipped" using values of "1" in the
invert, invert_first, or invert_second fields. The SIOC_EXCHANGE_MEDIUM ioctl
repositions two different units of media. One unit of media is moved from the element specified by the
source field to the element specified by the £irst_destination field. A second unit of media
is moved from the element specified by the £irst_destination field to the element specified by
the second_destination field. In an autochanger with multiple changer mechanisms, or a
media staging area, an exchange occurs if the source and second_destination fields are the
same.

24 Hewlett-Packard Company -3- HP-UX 11i Version 3: February 2007

autochanger(7) autochanger(7)

DEFAULT CONFIGURATIONS
By default, schgr and eschgr are not included in the system configuration (/ stand/system) file.

EXAMPLES
The following example uses the SIOC_ELEMENT_ADDRESSES and SIOC_ELEMENT_STATUS ioctl
functions to get bus address information about the drives in an autochanger device:

int last_drive_el;

struct element_addresses el addrs;

struct element_status el_stat; drive[1024];
int fd = -1, error = 0, i = 0;

fd = open("/dev/rchgr/autoch0",O_RDWR) ;
if ((error = ioctl(£4, SIOC_ELEMENT ADDRESSES, &el_addrs)) != 0) {
perror ("ioctl: SIOC_ELEMENT ADDRESSES");
return -1;
} else {
last_drive_el = el_addrs.first_data_transfer
+ el_addrs.num data_transfers - 1;
for (i = el_addrs.first_data_transfer; i <= last_drive_el; i++) {
el_stat.element = i;
if ((error = ioctl(£f4, SIOC_ELEMENT STATUS, &el_stat)) != 0) {
perror ("ioctl: SIOC_ELEMENT ADDRESSES");
return -1;
} else {
/*
* You may wish to also check some of the other fields
* in the el_stat structure to verify that the data is
* valid. Fields: el_stat.access (ac accessible),
* el stat.except (exception).
*/
if (! el_stat.not_bus && el_stat.id valid) {
drive[i] .bus_address = el_stat.bus_address;
if (! el_stat.lu_valid) {
drivel[i] .lun = 0;
} else {
drive[i] .1lun = el_stat.lun;
}

}

WARNINGS
Some non-HP media changer devices do not support the SIOC_INIT ELEM_STAT and
SIOC_ELEMENT_STATUS ioctls

Some older media changer devices do not support the SIOC_EXCHANGE_MEDIUM ioctl. For these
devices, multiple SIOC_MOVE_MEDIUM ioctl operations may be used to accomplish the same results, pro-
vided a suitable temporary element address may be found.

SEE ALSO
insf(1M), mknod(1M), scsictl(1M), ioctl(2), scsi(7), scsi_ctl(7), intro(7).

HP-UX 11i Version 3: February 2007 -4 - Hewlett-Packard Company 25

b

blmode(7) blmode(7)

NAME

blmode - terminal block mode interface

DESCRIPTION

26

This terminal interface adds functionality to the current termio(7) functionality to allow for efficient emula-
tion of MPE terminal driver functionality. Most importantly, it adds the necessary functionality to support
block mode transfers with HP terminals. The block mode interface only affects input processing and does
not affect write requests. Write requests are always processed as described in termio(7). In character
mode the terminal sends each character to the system as it is typed. However, in block mode data is
buffered and possibly edited locally in the terminal memory as it is typed, then sent as a block of data when
the Enter key is pressed on the terminal. During block mode data transmissions, the incoming data is not
echoed and no special character processing is performed, other than recognizing a data block terminator
character. For subsequent character mode transmissions, the existing termio state continues to determine
echo and character processing.

There are two parts of the block mode protocol. The first part is the block mode handshake, which works
as follows:

e At the beginning of a read, a trigger character is sent to the terminal to notify it that the system is
requesting a block of data. (The ¢rigger character, if defined, is sent at the beginning of all reads,
whether character or block. The trigger character must be defined for block mode reads.)

o After receiving the trigger character, the terminal waits until the user has typed data into the
terminal’s memory and pressed the terminal Enter key. The terminal then sends an alert charac-
ter to the system to notify it that the terminal has a block of data to send.

e The system may then send user-definable cursor positioning or other data sequences to the termi-
nal. When that is done, the system sends another ¢rigger character to the terminal, repeating the
cycle.

The second part of the block mode protocol is the block mode transmission. During this transmission of
data, the incoming data is not echoed and no special character processing is performed, other than recog-
nizing the data block termination character. It is possible to bypass the block mode handshake and have
the block mode transmission occur after the first trigger character is sent.

To prevent data loss, XON/XOFF flow control should be used between the system and the terminal. The
IXOFF bit should be set and the terminal strapped appropriately. If flow control is not used, it is possible
for incoming data to overflow and be lost. (Note: some older terminals do not deal correctly with this flow
control.)

It is possible to intermix both character mode and block mode data transmissions. If block mode transmis-
sions are enabled, all transfers are handled as block mode transfers. When block mode transmissions are
not enabled, character mode transmissions are processed as described in termio(7). If block mode transmis-
sions are not enabled, but an alert character is received anywhere in the input data, the transmission mode
is switched to block mode automatically for a single transmission.

Read requests that receive data from block mode transmissions will not be returned until the transmission
is complete; i.e., the terminal has transmitted all characters. If the read is satisfied by byte count or if a
data transmission error occurs, any subsequent data will be discarded. The read waits until completion of
the data transmission before returning.

The data block terminator character is included in the data returned to the user, and is included in the byte
count. If the number of bytes transferred by the terminal in a block mode transfer exceeds the number of
bytes requested by the user, the read returns the requested number of bytes, and the remaining bytes are
discarded. The user can determine if data was discarded by checking the last character of the returned
data. If the last character is not the terminator character, more data was received than was requested, and
data was discarded.

If desired, the application program can provide its own handshake mechanism in response to the alert char-
acter by selecting the OWNTERM mode. With this mode selected, the driver completes a read request when
the alert character is received. The second ¢rigger is sent by the driver when the application issues the
next read.

Several special characters (both input and output) are used with block mode. These characters and the nor-
mal values used for block mode are described below. The initial value for these characters is 0377, which
causes them to be disabled.

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

blmode(7) blmode(7)

CBTRIGI1C (DC1) is the initial ¢trigger character sent to the terminal at the beginning of a read
request.

CBTRIG2C (DC1) is the secondary trigger character sent to the terminal after the alert character
has been received.

CBALERTC (DC2) is the alert character sent by the terminal in response to the first ¢rigger char-
acter. It signifies that the terminal is ready to send the data block. The alert charac-
ter can be escaped by preceding it with a backslash (\).

CBTERMC (RS) is sent by the terminal after the block mode transfer is complete. It signifies the
end of the data block to the computer.

The two ioctl(2) requests that apply to block mode use the blmodeio structure, which defined in
<blmodeio.h>, and includes the following members:

unsigned long cb_flags; /* Modes */

unsigned char c¢b_triglc; /* First trigger */
unsigned char c¢b_trig2c; /* Second trigger */
unsigned char c¢b_alertc; /* Alert character */
unsigned char cb_termc; /* Terminating char */
unsigned char c¢b_replen; /* cb_reply length */
char cb_replyl]l; /* optional reply */

The cb_flags member controls the basic block mode protocol:

CB_BMTRANS 0000001 Enable mandatory block mode transmission.
CB_OWNTERM 0000002 Enable user control of handshake.

The CB_BMTRANS bit is only effective when the ICANON flag in termio(7) is set. If ICANON is clear,
all transfers are done in raw mode, regardless of the CB_ BMTRANS bit. If CB_BMTRANS is not set,
input processing is performed as described in termio(7). During this time, if the alert character is
defined and is detected anywhere in the input stream, the input buffer is flushed and block-mode
handshake is invoked. The system then sends the cb_trig2¢ character to the terminal, and a block
mode transfer follows. The alert character can be escaped by preceding it with a backslash (\).

If CB_BMTRANS is set, then all transmissions are processed as block mode transmissions. Block
mode handshake is not required and data read is processed as block mode transfer data. Block mode
handshake can still be invoked by receipt of an alert character as the first character received. Reads
issued while the CB_ BMTRANS bit is set cause any existing input buffer data to be flushed.

If CB_OWNTERM is set, reads are terminated upon receipt of a non-escaped alert character. No input
buffer flushing is performed and the alert character is returned in the data read. This allows applica-
tion code to perform its own block-mode handshaking. If the bit is clear, an alert character causes
normal block mode handshaking to be used.

The initial cb_£1lags value is all-bits-cleared.

The cb_triglc character is the initial trigger character sent to the terminal at the beginning of a read
request. The initial value is undefined (0377); i.e., no ¢rigger character is sent.

The ¢b_trig2c character is the secondary trigger character sent to the terminal after the alert character
has been received. The initial value is undefined (0377).

The cb_alertc character is the alert character sent by the terminal in response to the first ¢rigger char-
acter sent by the computer. It signifies that the terminal is ready to transmit data. The initial value is
undefined (0377).

The cb_termc character is sent by the terminal after the block mode transfer has completed. It signifies
the end of the data block to the computer. The initial value is undefined (0377).

The cb_replen member specifies the length in bytes of the cb_reply array. The maximum length of
the cb_reply array is NBREPLY bytes. If set to zero, the cb_reply string is not used. It is initially set to
Zero.

The cb_reply array contains a string to be sent out after receipt of the alert character but before the second
trigger character is sent by the computer. Any character can be included in the reply string. The number
of characters sent is specified by cb_replen. The maximum length of the cb_reply array is NBRE -
PLY bytes. The initial value of all characters in the cb_reply array is null.

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 27

blmode(7) blmode(7)

On systems that support process group control, ioctl requests are restricted from use by background
processes, unless otherwise noted for a specific request. An attempt to issue an ioctl request from a back-
ground process causes the process to block and may cause a SIGTTOU signal to be sent to the process
group.
The primary ioctl(2) calls have the form:

int ioctl(int fildes, int request, struct blmodeio *arg):;
Requests using this form include:

CBGETA Get the parameters associated with the block mode interface and store them in the
blmodeio structure referenced by arg. This request is allowed from a background pro-
cess. However, the information may be subsequently changed by a foreground pro-
cess.

CBSETA Set the parameters associated with the block mode interface from the blmodeio struc-
ture referenced by arg. The change is immediate.

RETURN VALUE

Refer to read(2), write(2), and ioctl(2).

ERRORS

If an error value is returned during a read, it is possible for the user’s buffer to be altered. In this case, the
data in the user’s buffer should be ignored because it is incomplete.

The global variable errno will be set to indicate the following error, in addition to those errors described on
read(2), write(2), and ioctl(2):

[EIO] A read error occurred during the transmission of the block mode data block.

WARNINGS

The [EIO] error that is returned for read errors can be caused by many events. The read returns [EIO] for
transmission, framing, parity, break, and overrun errors, or if the internal timer expires. The internal
timer starts when the second ¢rigger character is sent by the computer, and ends when the terminating
character is received by the computer. The length of this timer is determined by the number of bytes
requested in the read and the current baud rate, plus an additional ten seconds.

AUTHOR

The blmode driver was developed by HP.

SEE ALSO

28

termio(7).

Hewlett-Packard Company -3- HP-UX 11i Version 3: February 2007

cent(7) cent(7)
(Workstations Only)

NAME

cent - Centronics-compatible interface

DESCRIPTION
cent is a simple, widely used communication protocol most commonly associated with printers, plotters
and scanners. It is an eight-bit parallel data interface with additional control signals from the host com-
puter, and status signals from the peripheral.

The cent interface driver does no character processing; that is, it does not interpret the data being
transferred between computer and peripheral. Therefore, all bytes sent to or received from a device are
handled without alteration. The cent interface driver always operates in raw mode; therefore, any
desired data interpretation must be performed by a user program (such as the “lp” spooler in conjunction
with an appropriate model file). The cent driver supports six different handshake modes for data
transfer. The last four bits of the minor number of the device special file specify the mode used. The for-
mat of the device minor number is:

0xII000A

where each letter after the “Ox” prefix represents a single hexadecimal digit, as follows:

IT Specifies the instance number of the centronic interface.
000 Always zero.
A Specifies the handshake mode. The handshake modes are:

mode 1 Automatic handshaking using both ACK and BUSY.
Minor number format: 0xII0001.

mode 2 Automatic handshaking using only BUSY.
Minor number format: 0xII0002.

mode 3 Bidirectional read/write used for Scandet.
Minor number format: 0xII0003.

mode 4 Stream mode. Data is essentially transmitted to the peripheral without any
handshaking protocol.
Minor number format: 0xII0004.

mode 5 Pulsed mode using both ACK and BUSY for automatic handshaking. Similar to mode
1 except that the data strobe line, nSTROBE, is pulsed for a fixed amount of time by
the sender, then released.
Minor number format: 0xII0005.

mode 6 Pulsed mode, using only BUSY for automatic handshaking. Similar to mode 1 except
that the data strobe line, nSTROBE, is pulsed for a fixed amount of time by the
sender, then released.
Minor number format: 0xII0006.

Modes 1 and 2 support most HP *Jet series printers (LaserdJet, Deskdet, QuietdJet, etc.).

AUTHOR
cent was developed by HP.

SEE ALSO
Ip(1), ioctl(2), intro(7), Ip(7).

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 29

clone(7) clone(7)

NAME

clone - opens a major and minor device pair on a STREAMS driver

DESCRIPTION

The clone driver is a "pass through" device driver that allows other drivers to select unique minor device
numbers on each open (). In effect, the driver passes an open operation through to the other driver. This
mechanism allows for multiple instantiations of a driver, each with a different minor number, through a
single device file.

When the clone driver is opened, it is passed a major and minor device number by the operating system.
The major number is the clone driver’s major number (72), and the minor number is the major number of
the driver the user wishes to clone (referred to here as the target driver). The clone driver calls the open
routine of the target driver with the CLONEOPEN flag which specifies a clone open. The target driver’s
open routine allocates an unused minor number. The target driver must use makedev to make a new
device number for the newly created device, and must set *devp to the new device number returned by
makedev. The new device number is returned to the clone open through *devp. The clone open
then returns to the user a file descriptor that points to the new instantiation of the target driver.

The echo driver is an example of a clonable driver.

Notes

It is not possible to do multiple opens of a device with the same major and minor number using the clone
driver. This is because the clone driver is only given the major number of the driver to be cloned, and
that driver will then select a minor number which has not been opened.

When called with a pathname which corresponds to the clonable driver, stat () will return different
results than £stat () when it is called on a file descriptor returned from open () of the same clonable
driver pathname.

RETURN VALUES

If the clone driver is given an invalid minor number, or if the driver indicated is not a clonable driver, the
open () fails and errno is set to [ENXIO].

SEE ALSO

30

open(2), fstat(2).

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

console(7) console(7)

NAME

console, systty, syscon - system console interface

DESCRIPTION
/dev/console provides a termio interface to the device configured as the system console. The
init(1M) manpage discusses the uses of /dev/systty and /dev/syscon.

Output data normally sent to the console, either through /dev/console or generated by a kernel
printf (), may be redirected to another terminal or pseudo-terminal device through the TIOCCONS
ioctl (). See termio(7) for details.

C

FILES
/dev/console
/dev/systty
/dev/syscon

SEE ALSO
init(1M), termio(7).

STANDARDS CONFORMANCE
console: SVID2, SVID3, XPG2

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 31

ddfa(7) ddfa(7)

NAME

ddfa - Data Communications and Terminal Controller (DTC) Device File Access (DDFA) software

DESCRIPTION

The Data Communications and Terminal Controller (DTC) Device File Access (DDFA) software allows
access from HP-UX system utilities and user applications to terminal servers using standard HP-UX struc-
tures. DDFA provides an interface to remote LAN-connected terminal server ports that is similar to the
interface for local directly-connected ports.

The basic principle is that a daemon is created for each configured terminal server port based on informa-
tion in a configuration file (a Dedicated Ports file). When the daemon is spawned, it takes a pty from the
pool and creates a device file with the same major and minor number as the pty slave. The device file is
known as the "pseudonym" and utilities and applications use the pseudonym to access the terminal server
port by exercising standard HP-UX system functions (open(), close(), read(), write(), and
ioctl()). The daemon listens on the pty until an application does an open () on the pseudonym. It
then sets up and manages the connection to the terminal server port until the application does a close ()
on the pseudonym. The end result is that the terminal server port is addressed via a device file, but the
mechanism that makes it happen is transparent to the user. A second configuration file (a port
configuration file) contains information to profile the terminal server port.

DDFA consists of the following items:

dp Dedicated Ports file. This text file contains the information that DDFA needs to set
up and manage a connection between a pseudonym and a terminal server port.

The dp file is parsed by the Dedicated Port Parser (dpp) which spawns an Outbound
Connection Daemon (ocd) for each outbound connection specified in the file. The dp
file is also used by the HP-UX Telnet daemon (telnetd) to identify incoming connec-
tions from a DTC and map them to a pseudonym (the Telnet port identification
feature).

pcf Port Configuration File. This text file is used by DDFA to profile the terminal server
port. The generic name of the template file is pc£. A port configuration file is refer-
enced by an entry in the Dedicated Ports file (dp).

dpp Dedicated Port Parser. This command parses the Dedicated Ports file (dp) and
spawns an Outbound Connection Daemon (ocd) for each valid entry in the dp file. It
can be run from the shell or it can be included in a system initialization script to
automatically run the DDFA software each time the system is booted.

ocd Outbound Connection Daemon. This daemon manages the connection and data
transfer to the remote terminal server port. Normally, it is spawned by the Dedicated
Ports Parser (dpp), but it can be run directly from the shell.

As it starts, it creates its pseudonym for the connection. As it terminates normally, it
removes the pseudonym. If the pseudonym is removed while it is running, ocd will
terminate with an error condition.

ocdebug Outbound Connection Daemon debug mode. This is a special version of ocd that con-
tains debugging code. It must be run from the shell.

CONFIGURATION

32

There are two basic steps to configuring the DDFA software:
¢ Enter information in the dp file.

e Enter information in the port configuration files.

Configuring the dp File

The dp file contains one line for each outbound connection that is to be established and one line for each
incoming connection request. A default file /usr/examples/ddfa/dp should be copied to a new file
and the copy edited as needed. It is recommended that a directory be created to hold the dp file and the
port configuration files.

Each line of the dp file must contain the location of the terminal server port and the location of the pseu-
donym. In addition, for an outbound connection, the port configuration file must be specified and a logging
level may be specified.

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

ddfa(7) ddfa(7)

Configuring the Port Configuration Files
A port configuration file is used to configure individual terminal server ports. A master port configuration
file is /usr/examples/ddfa/pcf. In practice, it is renamed for each port that needs different
configuration values and the values are altered appropriately for the device attached to the port. It is
recommended that a directory be created to hold the port configuration files and the dp file.

Each line of a port configuration file must consist of a name of a variable and its value. The variable-value
pairs contain information on how to open a connection to a terminal server port, how to close a connection
to a terminal server port, and how to manage the data transfer to a terminal server port.

Configuring a System Initialization Script
DDFA can be run at boot time by including a reference to dpp in a system initialization script. It is recom-
mended that the -k option be used when running dpp in this environment.

KILLING DAEMONS
Note that ocd should be killed using kill =-15. Do not use kill =9 for this purpose as it does not
remove the device file. ocd verifies the validity of an existing pseudonym before trying to use it. dpp and
ocd use data stored in the file /var/adm/utmp.dfa to verify whether a process still owns a pseu-
donym before taking it over. If ocd finds an unowned pseudonym, it uses it.

ERROR HANDLING
When ocd receives a serious error condition, such as when the LAN goes down, it transmits the error con-
dition to the application by closing the pty. Any open(), close(), read(), or write() to the pseu-
donym returns the error condition 0 bytes read. If the pseudonym is the controlling terminal for the
group to which the application belongs, SIGHUP is sent to all the processes in the group, including the
application.

ioctl) LIMITATIONS
Not all ioctl () functionality is available, due to the lack of a protocol that allows the transmission of
such commands over the LAN to the remote port.

termio Attribute Limitations
The main restrictions on termio attributes (see termio(7)) include modem signal control and parity check-
ing. The following are not available:

CBAUD IGNPAR INPCK IXANY IXOFF PARMRK

ioctl() Request Limitations
The following ioctl () request limitations apply:

CSTOPB flag DTC only supports one stop bit.

CSIZE DTC only supports 8 bits per character. Value cannot be modified.

PARODD flag DTC offers static configuration to handle even or odd parity. It also handles auto
parity detection for even or odd parity.

PARENB flags Elx}a(lijling/disabling done via static configuration. No programmatic interface sup-
plied.

INPCK flag No way to separate input from output parity features.

IGNPAR flag Cannot be configured on DTC.

PARMRK Bad characters are forwarded to the system without marking them with OFFH
or OH.

CBAUD Speed is part of static configuration.

IXOFF flag Flow control is enabled if the DTC static configuration specifies an ASCII access

mode. If binary is selected, no flow control is provided.

IXON flags Pacing of output to a terminal via a programmatic interface is enabled when
ASCII mode is selected in static port configuration and disabled when binary
mode is selected.

IXANY flag DTC does not offer the ability to restart output on any character received if
XOFF was previously received.

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 33

d

ddfa(7) ddfa(7)

HUPCL flag DDFA does not support the hanging up of modem signals on the last close of the
device file. If the modem signals used on the DTC drop, the connection is closed.

CLOCAL flag Not supported.

c_flags IENQACK not supported.

OFILL, OFDEL, NLDLY, CRDLY, TABDLY, BSDLY, FFDLY not supported by
Telnet port identification software.

BINARY mode flags Part of static configuration is done in DTC Manager by selecting binary mode. If
switching is enabled, binary can be selected at user interface level. There is no
way to automatically negotiate binary mode when proper termio flags are reset
when using telnetd. Binary/ASCII switching is possible with DDFA. The
DTC cannot support large reads in pure binary mode, so transferred blocks of
data should not be more than 256 bytes. If half-duplex with remote ack-
nowledgement is implemented, binary applications can be supported.

ioctl() System Call Requests

The following 1octl () system call limitations apply:

TCSBRK The ability to send a break without waiting for previous data to be sent is not
provided at the system level in telnetd or DDFA. Receiving a Telnet break
command in the DTC allows it to generate a break on asynchronous ports.

TCFLSH The DTC output queue cannot be flushed.

Hardware handshake request
Not supported on DTC.

TCXONC Local handshake cannot be disabled on DTC.
MCGETA Not supported.

MCSETA, MCSETAF, MCSETAW
There is no way to separately set modem lines of a DTC port.

MCGETT Modem timers, CD timer, connect timer, and disconnect cannot be configured.

CCITT simple, and direct call-in/call-out modes
DTC cannot handle simple mode because there is programmatic interface for
modem signals. Call-in mode cannot be simulated if the port is opened, because
modem signals (or the call) must be present within 2 minutes or the connection
is cleared.

DACIDY get device adapter info
No way to get device adapter information.

Download ioctl() DACRADDR, DACDLADDR, DACDLGO, DACDLVER
No programmatic call to download the DTC.

DACHWSTATUS, DACSELFTEST, DACLOADED, DACISBROKE status
No programmatic interface to get such info.

DACLOOPBACK DACSUBTEST port test

WARNINGS

34

In order to ensure that commands (such as ps) display the correct device file name (that is, the pseu-
donym), all pseudonyms should be placed into the directory /dev/telnet. If pseudonyms are not
specified for placement in this directory, the correct display of device file names with many commands is
not guaranteed.

In addition, in order to ensure that commands (such as w, passwd, f£inger, and wall) work correctly,
each pseudonym must be unique in its first 17 characters (including the directory prefix /dev/telnet/).
If pseudonyms are not unique in their first 17 characters, the correct functioning of many commands is not
guaranteed.

Also, in order to reliably handle timing mark negotiations (and ensure that files printing on a printer
attached to a terminal server have been completely flushed to that printer), the following line must be
added near the end of each printer interface script for printers attached to a terminal server:

Hewlett-Packard Company -3- HP-UX 11i Version 3: February 2007

ddfa(7) ddfa(7)

stty exta <&l 2>/dev/null

The printer interface scripts reside in the directory /etc/1p/interface. The line must be added just
prior to the final exit command in each printer interface script.

If this line is not added as specified, the printing reliability of printers attached to a terminal server is not

guaranteed.
FILES
/usr/examples/ddfa/dp
/usr/examples/ddfa/pcf
/usr/sbin/dpp
/usr/sbin/ocd (1

/usr/sbin/ocdebug
/var/adm/dpp_login.bin
/var/adm/utmp.dfa

SEE ALSO
dpp(1M), ocd(1M), ocdebug(1M), ioctl(2), dp(4), pcf(4), ioctl(5), termio(7).

HP-UX 11i Version 3: February 2007 -4 - Hewlett-Packard Company 35

diag0(7) Series 800 Only diag0(7)

NAME
diag0 - diagnostic interface to HP-PB I/O subsystem

DESCRIPTION
diagO0 is a diagnostic pseudo-driver, which provides HP support tools with access to the HP-PB I/O sub-
system. This driver is used by hardware monitors and tools within the Support Tools Manager (STM), to
interact with peripherals connected to the system via HP-PB. The I/O drivers also send diagnostic events to
diag0 for diagnostic logging by the Support Tools Manager.

Without diag0, information that could help prevent a peripheral failure will be lost. In addition, if a
failure occurs, HP will not have the tools or data to diagnose the cause of the problem in a timely manner.
This may cause increased downtime and possible future failures.

AUTHOR
diag0 was developed by HP.

FILES
/stand/vmunix
/dev/diag/diag0
/dev/diag directory containing diagnostic device files

SEE ALSO
stm(1M) from the Support Tools Manager

36 Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

diag1 (7)

NAME
diagl - diagnostic interface to the PCI I/O subsystem

DESCRIPTION

diag1(7)

diagl is a diagnostic pseudo-driver, which provides support tools with access to the PCI I/O subsystem.
This driver is used by tools within the Support Tools Manager (STM) to interact with PCI cards connected
to the system. Without diagl, support tools for PCI cards will not be able to operate.

WARNINGS
diagl is not supported for HP-UX 11i Version 1.5.

AUTHOR
diagl was developed by HP.

FILES
/stand/vmunix
/dev/diag/diagl
/dev/diag directory containing diagnostic device files

SEE ALSO
stm(1M) from the Support Tools Manager.

HP-UX 11i Version 3: February 2007 -1-

Hewlett-Packard Company

37

d

diag2(7) diag2(7)

NAME
diag?2 - interface for diagnostic logging and interface to processors

DESCRIPTION
diag2 is used by hardware monitors and tools within the Support Tools Manager (STM), to interact with
processor hardware via Processor Dependent Code (PDC). Without diag2, support tools for processors will
not be able to operate.

diag2 is also the key component for the following support features:

I/O error logging

Low priority machine check (LPMC) logging
Memory error logging

Pro-active memory page deallocation.

Without the above, information that could help prevent a system or peripheral failure will be lost. In addi-
tion, if a failure occurs, HP will not have the tools or data to diagnose the cause of the problem in a timely
manner. This may cause increased downtime and possible future failures.

AUTHOR
diag2 was developed by HP.

FILES
/stand/vmunix
/dev/diag/diag2
/dev/diag2
/dev/diag directory containing diagnostic device files

SEE ALSO
stm(1M) from the Support Tools Manager

38 Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

disk(7) disk(7)

NAME
disk - direct disk access

DESCRIPTION
This entry describes the actions of HP-UX disk drivers when referring to a disk as either a block-special or
character-special (raw) device.

Device File Naming Conventions
Standard disk device files are named according to the following conventions (see intro(7)):

Block-mode Devices /dev/disk/diskN[_pX]
Character-mode Devices /dev/disk/diskN[_pX]
Legacy block-mode Devices /dev/dsk/cxtydn[sm]

Legacy character-mode Devices /dev/rdsk/cxtydn[sm]

Legacy device special filenames are those used on HP-UX 11i Version 2 and earlier releases. They can still
be used for backward compatibility, but only for part of the configuration within the limits of HP-UX 11i
Version 2.

The component parts of the device filename are constructed as follows:

N Required. A decimal number corresponding to the instance number assigned to the direct access
device by the operating system.

Required if _p is specified. A decimal number corresponding to a partition number.
¢ Required. Identifies the following hexadecimal digits as the "Instance" of the interface card.

Hexadecimal number identifying controlling bus interface, also known as the "Instance" of this
interface card. The instance value is displayed in the ioscan(1M) output, column "I" for the H/W
Type, "INTERFACE".

Required.

t Identifies the following hexadecimal digits as a "drive number" or "target".
Required.

y Hexadecimal number identifying the drive or target number (bus address).
Required.

d Identifies the following hexadecimal digits as a "unit number".
Required.

n Hexadecimal unit number within the device.
Required.

s Optional. Defaults to that corresponding to whole disk. Identifies the following value as a "sec-
tion number".

m Required if s is specified. Defaults to section 0 (zero), whole disk. Drive section number.

Assignment of controller, drive, logical unit and section numbers is described in the system administrator
manuals for your system.

Block-special access
Block-special device files access disks via the system’s block buffer cache mechanism. Buffering is done in
such a way that concurrent access through multiple opens and mounting the same physical device is
correctly handled to avoid operation sequencing errors. The block buffer cache permits the system to do
physical I/O operations when convenient. This means that physical write operations may occur substan-
tially later in time than their corresponding logical write requests. This also means that physical read
operations may occur substantially earlier in time than their corresponding logical read requests.

Block-special files can be read and written without regard to physical disk records. Block-special file
read () and write() calls requiring disk access result in one or more BLKDEV_IOSIZE byte (typically
2048 byte) transfers between the disk and the block buffer cache. Applications using the block-special dev-
ice should ensure that they do not read or write past the end of last BLKDEV_IOSIZE sized block in the
device file. Because the interface is buffered, accesses past this point behave unpredictably.

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 39

disk(7) disk(7)

Character-special access

Character-special device files access disks without buffering and support the direct transmission of data
between the disk and the user’s read or write buffer. Disk access through the character special file inter-
face causes all physical I/O operations to be completed before control returns from the call. A single read or
write operation up to MAXPHYS bytes (typically 64 Kbytes or 256 Kbytes) results in exactly one disk opera-
tion. Requests larger than this are broken up automatically by the operating system. Since large I/O
operations via character-special files avoid block buffer cache handling and result in fewer disk operations,
they are typically more efficient than similar block-special file operations.

There may be implementation-dependent restrictions on the alignment of the user buffer in memory for
character special file read() and write() calls. Also, each read and write operation must begin and
end on a logical block boundary and must be a whole number of logical blocks in size. The logical block size
is a hardware-dependent value that can be queried with the DIOC_DESCRIBE_EXT and
DIOC_DESCRIBE ioctl calls, which are described below.

In addition to reading and writing data, the character-special file interface can be used to obtain device
specific information and to perform special operations. These operations are controlled through use of ioctl
calls. Details related to these ioctls are contained in <sys/diskio.h>.

The DIOC_DESCRIBE_EXT and DIOC_DESCRIBE ioctl can be used to obtain device specific
identification information. The information returned includes the disk’s model identification, the disk inter-
face type, maximum offset address, device type, and the disk’s logical block size.

The DIOC_CAPACITY ioctl can be used to obtain the capacity of a disk device in DEV_BSIZE units.
(DEV_BSIZE is defined in <sys/param.h>).

The DIOC_EXCLUSIVE ioctl can be used to obtain and release exclusive access to a disk device. Exclusive
access is required for some special operations, such as media reformatting, and may be desirable in other
circumstances. The value one specifies that exclusive access is requested. The value zero specifies the
exclusive access should be released. Exclusive access causes other open requests to fail. Exclusive access
can only be granted when the device is not currently opened in block-mode and there is only one open file
table entry for that disk device (the one accessible to the exclusive access requester).

ERRORS
The following errors can be returned by a disk device driver call:

[EACCES] Required permission is denied for the the device or operation.
[EIO] I/O error (e.g., media defect or device communication problem).

[EINVAL] From an open() call: the device is not a disk device. For other calls: Invalid
request or parameter. Note that for legacy, 32-bit access, this error can result when
the size of the device overflows the argument of the DIOC_DESCRIBE or
DIOC_CAPACITY ioctls.

[ENXIO] If resulting from an open() call, this indicates there is no device at the specified
address. For other calls, this indicates the specified address is out of range or the dev-
ice can no longer be accessed.

WARNINGS
The interaction of block-special and character-special file access to the same BLKDEV__IOSIZE-sized block
is not specified, and in general is unpredictable.

On some systems, having both a mounted file system and a block special file open on the same device can
cause unpredictable results; this should be avoided if possible. This is because it may be possible for some
files to have private buffers in some systems.

Although disk devices have historically had small (typically 512-byte) block sizes, some disk devices (such as
optical disks and disk arrays) have relatively large block sizes. Applications using direct raw disk access
should use ioctl () calls to determine appropriate I/O operation sizes and alignments.

Any disk with removable media (for example, floppy or CD-ROM) containing a mounted file system should
not be removed prior to being unmounted. Removal of disk media containing mounted file systems is likely
to result in file system errors and system panics.

AUTHOR
disk was developed by HP and AT&T.

40 Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

disk(7) disk(7)

SEE ALSO
ioscan(1M), mknod(1M), intro(7).

System Administrator manuals included with your system.

HP-UX 11i Version 3: February 2007 -3- Hewlett-Packard Company 41

d

dlpi(7) dlpi(7)

NAME

dlpi - data link provider interface

DESCRIPTION

42

This manual page gives a brief description on DLPI (the data link provider interface) and how to interface
with the set of APT’s that are provided by DLPI.

HP-UX DLPI serves as a Layer 2 (Data Link Layer) of an OSI architecture. DLPI serves as an interface
between LAN device drivers and DLPI users. DLPI is intended for use by experienced network users only.

HP-UX DLPI has two broader sets of interface. The first set of interfaces are provided as per the DLPI 2.0
standard and the second set that are HP extensions to the standard.

HP-UX DLPI also provides interfaces to device drivers to interface with STREAMS modules and DLPI
applications.

For STREAMS Modules and DLPI Applications
Hewlett-Packard’s implementation of DLPI is a Style 2 service provider. The Style 2 provider requires a
DLS user to identify a PPA explicitly, using a special attach service primitive. Refer to the lan(7) manual
page for more information on PPA.

HP DLPI offers the following services to STREAMS modules and DLPI applications:
e Clone (maximum of 3992) and non-clone (maximum of 100) access.
e Support for Ethernet/IEEE802.3, FDDI and Token Ring interfaces.

e Support for connectionless and connection-mode services (connection-mode services are supported
only over IEEE802.3 and Token Ring).

e Supports raw-mode services.
e I_STR ioctl is supported for doing device-specific control and diagnostic requests.
e Support for third-party device drivers.
e Support for all levels of promiscuous mode.
HP DLPI does not offer the following for STREAMS modules and DLPI applications:
e Quality of Service (QOS) management.

e Connection Management STREAMS: DL_SUBS_BIND_REQ and DL_SUBS_UNBIND_REQ over
connection-oriented STREAMS.

e Acknowledged connectionless-mode services.
The DLPI requests based on DLPI 2.0 standard are defined in <d1lpi.h>; see dipi(4). HP extensions for
DLPI are defined in <d1pi_ext.h>; see dipi_ext(4).

Device File Format
To access LAN drivers via DLPI interface, DLS users must use the following device files:

Name Type Major # Minor # Access Type
/dev/dlpi c 72 0x77 Clone access
/dev/dlpiX c 119 0xX Non-Clone access

For Device Drivers
HP-UX DLPI is of non-native design. The drivers and DLPI are not coupled together and exists as indivi-
dual components on the system. The non-native DLPI supports two kinds of drivers. Tightly coupled and
loosely coupled drivers.

DLPI provides interfaces to tightly coupled and loosely coupled drivers. DLPI serves as a sole interface to
DLS users for tightly coupled drivers. Whereas, a loosely coupled driver depends on DLPI only to provide
information to user-space commands lanscan(1M) and nwmgr(1M) for display purposes.

The interfaces for device drivers is defined in <d1lpi_drv.h>, see dipi_drv(4).
DLPI provides the following functionality for tightly coupled drivers:
e Infrastructure that allows drivers to communicate with upper layer STREAMS modules or applica-
tions.

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

dlpi(7) dlpi(7)

e Infrastructure for protocol, multicast and promiscuous processing.
e Infrastructure for asynchronous processing of control.

e Inbound frame processing.

e Processing link up and down events.

e Repository for all registered interfaces and associated information.
e Qutbound processing before hand off to physical drivers.

DLPI provides its services through three header files that are exported. The header files <d1lpi.h> and
<dlpi_ext.h> are for user space applications and kernel level STREAMS modules. The header file
<dlpi_drv.h> is for physical and logical drivers.

WARNINGS
Various implementations of DLPI exists within HP-UX for special technologies like ATM, Hyper Fabric,
etc.; but the DLPI that supports LAN class drivers (tightly coupled) is the one covered by this manual page.

The lanadmin, lanscan, and 1inkloop commands are deprecated. These commands will be removed
in a future HP-UX release. HP recommends the use of replacement command nwmgr(1M) to perform all
network interface-related tasks.

AUTHOR
dlpi was developed by HP, based on DLPI 2.0 standard.

SEE ALSO
lanscan(1M), nwmgr(1M), dlpi(4), dlpi_drv(4), dlpi_ext(4), lan(7).

DLPI Programmer’s Guide, 2003, Hewlett-Packard
Driver Development Guide, Hewlett-Packard
Device Driver Reference, Hewlett-Packard

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 43

framebuf(7) framebuf(7)

NAME

framebuf - information for raster frame-buffer devices

SYNOPSIS
#include <sys/framebuf.h>

DESCRIPTION
Frame-buffer devices are raster-based displays. These devices use memory-mapped I/O to obtain much
higher performance than possible with tty-based graphic terminals. Frame-buffer devices can be accessed
directly using this interface, although access through the graphics libraries is recommended. Direct access
to frame-buffer devices entails precise knowledge of the frame-buffer architecture being used. Input cannot
be piped into or redirected to frame-buffer devices because they are not serial devices.

Each frame-buffer device is associated with a character special file. Major and minor numbers for frame-
buffer devices are implementation-dependent. The minor numbers for these devices denote different frame
buffers. Implementation-specific details are discussed in the appropriate systems administrator’s manuals.

Communication with a frame-buffer device begins with an open () system call. Multiple processes can
have the frame-buffer device open concurrently.

close () invalidates the file descriptor associated with the frame-buffer device. After a close () system
call, any access to the frame-buffer device address range might result in a memory fault and the signal SIG-
SEGYV being sent to the process (see signal(2)). A process cannot unmap the frame buffer from its address
space after the frame-buffer special file is closed. To unmap a frame buffer, use the GCUNMAP ioctl ()
call (see below).

Once a process acquires a lock for the frame-buffer device, it must unlock it explicitly before calling
close () ; see GCUNLOCK below.

read () and write() system calls are undefined and always return an error. In this case errno is set
to [ENODEV].

The ioctl () system call is used to control a frame-buffer device. The select () system call is used to
test the frame-buffer device for exceptional conditions. Interrupts from the graphic hardware are con-
sidered exceptional conditions. An exceptional condition is automatically cleared after any process that
opens the frame-buffer device is notified of the exception by a select () call. A call to select () for
read or write on the file descriptor associated with the frame-buffer device returns a false condition in the
read and write bit masks (see select(2)).

A frame-buffer device can be accessed by multiple processes at once. However, each process overwrites the
output of the others unless one of the lock mechanisms described here or some other synchronization
mechanism is used. The lock mechanisms described here are intended for cooperating processes only.

For all frame buffers, data bytes scan from left to right and from top to bottom. A pixel, which is a visible
dot on the screen, is associated with a location in the frame buffer. Each device maps one or more bits in
memory to a pixel on the screen, although the bits in the frame buffer might not be continuous. Informa-
tion describing the frame-buffer structure and attributes is found in the cxrt_frame_buffer_t data
structure. The crt_frame_buffer_ t data structure includes the following fields:

int crt_id; /*display identifier*/

unsigned int crt_attributes; /*flags denoting attributes*/

char *crt_frame_base; /*first byte in frame-buffer memory*/

char *crt_control_base; /*first byte of the control*/
/*registers*/

char *crt_region [CRT_MAX REGIONS]:;
/*other regions associated with the*/
/*frame-buffer device*/

The following are valid ioctl () requests:

GCDESCRIBE Describe the size, characteristics, and mapped regions of the frame buffer. The infor-
mation is returned to the calling process in a crt_frame_buffer_ t data struc-
ture, and the parameter is defined as crt_frame_buffer t *arg;. Although
some structure fields contain addresses of one or more frame-buffer device regions,
the values of these fields are not always defined. Only after a successful GCMAP com-
mand is issued (see below) are the correct addresses returned so the user can access
the frame-buffer regions directly using the returned addresses.

44 Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

framebuf(7)

GCID

GCON, GCOFF

GCAON, GCAOFF

GCMAP

GCUNMAP

GCLOCK

GCLOCK_NOWAIT

framebuf(7)

Provide a device identification number. The parameter is defined as int *arg;.
The information returned when using this command is a subset of the information
provided by GCDESCRIBE, and is provided here for backward compatibility only.

Turn graphics on or off. These operations are valid for devices whose
CRT_GRAPHICS_ON_OFF bit is set in the crt_attributes field of the
crt_frame_buffer_ t data structure returned by the GCDESCRIBE command.
Otherwise, these commands have no effect.

Turn alpha on or offf These operations are valid for devices whose
CRT_ALPHA_ON_OFF bit is set in the crt_attributes field of the
crt_frame_buffer_ t data structure returned by the GCDESCRIBE command.
Otherwise, these commands have no effect.

Make the frame-buffer memory, graphics control, and other device regions accessible
to the user process making the call. Only processes that request this can directly
access frame-buffer memory and control registers. After a successful GCMAP call, the
fields crt_frame_base and crt_control_base in the
crt_frame_buffer_ t data structure (returned by a subsequent GCDESCRIBE
ioctl () call), hold the valid addresses of these two regions of the frame buffer. If,
for a specific device, more than two regions are to be mapped to the user’s address
space, the base addresses of up to CRT_MAX_REGIONS extra device regions will be
placed in the array crt_region in successive order. Only the regions pertinent to
a specific frame buffer are mapped. Irrelevant region fields in the
crt_frame_buffer_ t data structure are set to 0. Use of the arg parameter is
implementation dependent (see DEPENDENCIES below). The base addresses for
frame-buffer regions are always page aligned.

Cause access to the frame-buffer memory, graphics control, and possibly other device
regions to be removed from the requesting process. The parameter arg is ignored and
should be set to 0. Any attempt to access these memory regions after a successful
GCUNMAP call results in a memory fault and sends the signal SIGSEGV to the pro-
cess.

Provide for exclusive use of the frame-buffer device by cooperating processes. The cal-
ling process either locks the device and continues or is blocked. Blocking in this case
means that the call returns only when the frame buffer is available or when the call is
interrupted by a signal. If the call is interrupted, it returns an error and errno is
set to [EINTR]. Waiting occurs if another process has previously locked this frame
buffer using the GCLOCK command and has not executed a GCUNLOCK command yet.
The GCLOCK command does not prevent other non-cooperating processes from writ-
ing to the frame buffer; thus, GCLOCK is an advisory lock only. The parameter arg is
ignored and should be set to 0.

This call prevents the Internal Terminal Emulator (ITE) from corrupting the state of
the graphics hardware (see termio(7)). On some systems, as long as the frame buffer
is locked with a GCLOCK command, the ITE does not output text to it (see DEPEN-
DENCIES below). Any attempt to lock the device more than once by the same pro-
cess fails, and causes errno to be set to [EBUSY].

Provide for exclusive use of the frame-buffer device by cooperating processes. This
request has the same effect on the frame-buffer device as does the GCLOCK request.
However, this call does not wait for the frame buffer to be released by other processes.
If the frame-buffer device is locked, the process is not blocked; instead, the system call
returns an error and causes errno to be set to [EAGAIN]. The parameter arg is
ignored and should be set to 0.

GCLOCK_BLOCKSIG

Provide for exclusive use of the frame-buffer device by cooperating processes while
blocking all incoming signals for the calling process that otherwise might have been
caught. This call is a superset of the GCLOCK call. The parameter arg is ignored and
should be set to 0. When the display is acquired for exclusive use (and thus locked),
all signals sent to the process that otherwise would have been caught by the process
"at the time of the' GCLOCK call are withheld (blocked) until GCUNLOCK is
requested. Any attempt to modify the signal mask of the process (see sigsetmask(2))
before a GCUNLOCK request is made will not have any effect on these blocked signals.

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 45

framebuf(7)

framebuf(7)

The signals are not blocked until the lock is actually acquired, and might be received
while still awaiting the lock.

The signal SIGTSTP is also blocked whether or not it is being caught. The signals
SIGTTIN and SIGTTOU are also blocked on frame-buffer devices where the ITE does
not output to the device while it is locked. See DEPENDENCIES below.

Except for the three signals mentioned above, this call does not block signals that the
process did not expect to catch, nor does it block signals that cannot be caught or
ignored. This command does not prevent other non-cooperating processes from writ-
ing to the frame buffer.

GCLOCK_BLOCKSIG_NOWAIT

GCUNLOCK

GCRESET

GCDMA_OUTPUT

Provide for exclusive use of the frame-buffer device by cooperating processes, while
blocking all incoming signals for the calling process that otherwise would have been
caught. This request has the same effect on the frame-buffer device as does the
GCLOCK_BLOCKSIG request. However, this call does not wait for the frame buffer
to be released by other processes. If the frame-buffer device is locked, the process is
not blocked, but the system call returns an error and causes errno to be set to
[EAGAIN]. The parameter arg is ignored and should be set to 0.

Relinquish exclusive use of the frame-buffer device. If the device is locked with a
GCLOCK_BLOCKSIG or GCLOCK_BLOCKSIG_NOWAIT ioctl () request, the sig-
nal mask of the calling process is restored to its state prior to the locking request.

Reset the graphic hardware associated with the frame-buffer device to a defined initial
state. The call enables the frame-buffer device to respond to the ioctl () requests
defined here.

Send DMA output to the frame-buffer device. This system call is used to transfer data
from a user’s array to a rectangular area of the graphics frame-buffer, or optionally, to
the device’s graphics control space.

The parameters for the DMA are passed in a cxrt_dma_ctrl_t data structure,
which includes the following fields:

char *mem_addr; /* Starting address of data
being transferred */

char *fb_addr; /* Address of framebuffer
destination */

int length; /* Number of bytes to transfer,
including those "skipped" */

int linelength; /* Number of bytes written
on each framebuffer row */

int skipcount; /* Number of source bytes to

ignore after each "linelength" */
unsigned int flags; /* Specified options to the driver */

To write to the graphics frame-buffer, set £b_addr to the address of the upper-left
corner of the rectangle to be drawn. The DMA will write 1inelength bytes on
each frame-buffer row, ignore the next skipcount bytes of memory data, then
resume writing at the same starting position on each succeeding frame-buffer row.
This is continued until 1length bytes are either written or ignored.

To write to the graphics control space, set £b_addr to the address of the first
graphics control register to write. In this case, l1inelength and skipcount are
ignored.

The £lags parameter specifies options for the DMA. Currently, there are no sup-
ported flags and this parameter should be set to zero, otherwise the system call will
fail and errno is set to [EINVAL]J.

The DMA has the same effect on the frame-buffer device as using store instructions to
write the data. Thus, various graphics control registers may affect the results of the
DMA. It is the responsibility of the user program to perform any necessary set-up of
the frame-buffer device so that the DMA has the desired results.

The skipcount parameter allows the user to refresh a portion of a window image
that the user has stored in memory for those cases where only a portion of the image

46 Hewlett-Packard Company -3- HP-UX 11i Version 3: February 2007

framebuf(7) framebuf(7)

needs to be refreshed. The window image is then a superset of the rectangle being
updated, and might thus have different dimensions. The skipcount specifies the
portion of the row in the larger window image that is excluded from the rectangle.
Thus, 1inelength plus skipcount would be the number of bytes in each row of
the larger window image array.

If a particular framebuffer device supports this system call, the CRT_DMA_OUTPUT
flag in the crt_attributes field of the crt_frame_buffer_ t structure is
set. Some framebuffer devices supporting DMA might restrict alignment of the vari-
ous parameters, and are specified in the DEPENDENCIES section below. The kernel
ensures that these restrictions are obeyed, and if they are not the system call will fail
and set errno to [EINVAL].

It is the responsibility of the application to guarantee that the system’s physical
memory is up-to-date by flushing the processor’s data cache. One should use the
GCDMA_DATAFLUSH ioctl to ensure that the data is consistent before initiating a
DMA transfer.

GCDMA_DATAFLUSH
Flush the specified data from the processor’s data cache to the system’s main memory.
This system call is intended to be used before DMA to ensure that an up-to-date ver-
sion of the data is transferred to the framebuffer or to control space.

The parameters for the flush are passed in a crt_£lush_t data structure, which
includes the following fields:

char *flush addr; /* Starting address of data
to be flushed */
int flush_len; /* Number of bytes to flush */

The kernel ensures that the £lush_len bytes starting at £lush_addr are con-
sistent in main memory with respect to the cache.

GCSLOT Provide pertinent information about the calling process’s participation in the system-
wide graphics locking mechanism (see the discussion under GCLOCK above). The
GCSLOT request does not carry out any actual locking functionality. The lock infor-
mation is returned to the calling process in a crt_gcslot_t data structure. The
parameter is defined as crt_gcslot_t *arg;. The crt_gcslot_t data
structure is defined in the file <sys/£framebuf .h>.

GCSTATIC_MAP Prevent the Internal Terminal Emulator (ITE) from modifying the devic€e’s color map.
GCVARIABLE_MAP
Allow the Internal Terminal Emulator (ITE) to modify the device’s color map.
DEPENDENCIES
When requesting GCMAP, the parameter arg is ignored and should be set to 0.
All supported ITEs ignore the frame buffer lock for output.

ERRORS
[EAGAIN] The operation would result in suspension of the calling process, but the request was either
GCLOCK_NOWAIT or GCLOCK_BLOCKSIG_NOWAIT.
EBUSY] Attempted to lock the device, which is already locked by the same process.
EINTR] A call to ioctl () was interrupted by a signal.

EINVAL] An invalid ioctl () command was made.

ENODEV] Attempted to use read () or write () system calls on the device.
ENOMEM] Sufficient memory for mapping could not be allocated.

ENOSPC] Required resources for mapping could not be allocated.

ENXIO] The minor number on the device file refers to a nonexistent device.
EPERM] Requested GCUNLOCK ioctl () command, but the device was locked by a different pro-
cess.

HP-UX 11i Version 3: February 2007 -4 - Hewlett-Packard Company 47

framebuf(7) framebuf(7)

AUTHOR
framebuf was developed by HP.

SEE ALSO
mknod(1M), close(2), ioctl(2), lockf(2), open(2), select(2), signal(2), sigsetmask(2), termio(7).

48 Hewlett-Packard Company -5- HP-UX 11i Version 3: February 2007

gang_sched(7) gang_sched(7)

NAME
gang_sched - Gang Scheduler

DESCRIPTION
The gang scheduler permits a set of MPI (Message Passing Interface) processes, or multiple threads from a
single process, to be scheduled concurrently as a group.

Gang scheduling is enabled and disabled by setting the MP_ GANG environment variable to ON or OFF.

The gang scheduling feature can significantly improve parallel application performance in loaded timeshare
environments that are oversubscribed. Oversubscription occurs when the total number of runnable parallel
threads, runnable MPI processes, and other runnable processes exceeds the number of processors in the
system.

Gang scheduling also permits low-latency interactions among threads in shared-memory parallel applica-
tions.

Only applications using the HP-UX V11.0 MPI or pthread libraries can be gang scheduled. Because HP
compiler parallelism is primarily built on the pthread library, programs compiled with HP compilers can
benefit from gang scheduling.

INTERFACE
The HP-UX gang scheduler is enabled and disabled using an environment variable. The variable is defined
as:

MP_GANG [ON | OFF]

Setting MP_ GANG to ON enables gang scheduling and setting it to OFF disables it. If MP_ GANG is not set,
or if it is set to an undefined value, no action is taken.

Gang scheduling is a process attribute that is inherited by child processes created by fork (see fork(2)).
The state of gang scheduling for a process can change only following a call to exec (see exec(2)).

BEHAVIOR
After the MP_GANG environment variable is set to ON, any MPI or pthread application to execute and find
this variable will enable gang scheduling for that process.

Only the pthread and MPI libraries query the MP_ GANG variable--the operating system does not.

Gang scheduling is an inherited process attribute. When a process with gang scheduling enabled creates a
child process, the following occurs:

e The child process inherits the gang scheduling attribute.
e A new gang is formed for the child process. The child does not become part of its parent’s gang.

The gang scheduler is engaged only when a gang consists of multiple threads. For a pthread application,
this is when a second thread is created. For an MPI application, it is when a second process is added.

As a process creates threads, the new threads are added to the process’s gang if gang scheduling is enabled
for the process. However, once the size of a gang equals the number of processors in the system, the follow-
ing occurs:

e New threads or processes are not added to the gang.
e The gang remains intact and continues to be gang scheduled.
e The spill-over threads are scheduled with the regular timeshare policies.

e If threads in the gang exit (thus making room available), the spill-over threads are not added into
the gang. However, newly created threads are added into the gang when room is available.

MPI processes are allocated statically at the beginning of execution. When MP_GANG is set to ON, all
processes in an MPI application are made part of the same gang.

Thread and process priorities for gangs are managed identically to timeshare policy. The timeshare priority
scheduler determines when to schedule a gang and adheres to the timeshare policies.

Although it is likely that scheduling a gang will preempt one or more higher priority timeshare threads,
over the long run the gang scheduler policy is generally fair. All threads in a gang will have been highest
priority by the time a gang is scheduled. Because all threads in a gang must execute concurrently, some
threads do not execute when they are highest priority (the threads must wait until all other threads have

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 49

gang_sched(7) gang_sched(7)

also been selected, allowing other processes to run first).

Gangs are scheduled for a single time-slice. The time-slice is the same for all threads in the system,
whether gang-scheduled or not.

When a single gang executes on a system, the gang’s threads are assigned to processors in the system and
are not migrated to different processors.

In an oversubscribed system with multiple gangs, all gangs are periodically moved in order to give an
equalized percentage of CPU time to each of the different threads. This rebalancing occurs every few
seconds.

EXTERNAL INFLUENCES
Environment Variables
The following environment variables affect gang scheduling of processes:

e MP_GANG enables (when set to ON) and disables (when set to OFF) gang scheduling of processes.
For details see the INTERFACE section of this man page.

e MP_NUMBER_OF_THREADS specifies the number of processors available to execute programs
compiled for parallel execution. If not set, the default is the number of processors in the system.

PERFORMANCE
Gang scheduling ensures that all runnable threads and processes in a gang are scheduled simultaneously.
This improves the synchronization latency in parallel applications. For instance, threads waiting at a bar-
rier do not have to wait for currently unscheduled threads.

However, applications with lengthy parallel regions and infrequent synchronization may perform best when
not gang scheduled. For those applications, some threads can be scheduled even if all threads are not
scheduled at once.

A gang-scheduled application’s performance can be affected by the number of gang-scheduled applications
on a system, and by the number of threads in each. The gang scheduler assigns parallel applications to
CPUs using a "best fit" algorithm that attempts to minimize CPU overlap among applications.

On systems with complex workloads including gangs of varying sizes, or odd combinations of sizes, the
workload may not optimally match the number of CPUs available. In this situation an application may per-
form better when not gang scheduled, thus enabling some threads to be scheduled rather than waiting for
all threads to be scheduled as a gang.

Scheduling Overhead
Gang scheduling incurs overhead when the scheduler collects a set of threads, assigns a set of processors to
the threads, and rendezvous the set of threads and processors to achieve concurrent execution.

On an idle system, the gang scheduling overhead can be seen in the execution time of a single parallel
application.

Kernel Blocking of Threads
If a thread from a gang blocks in the kernel, the thread’s processor is available to run other non-gang-
scheduled threads. When the blocked thread resumes and its gang is currently running, the thread can join
the other ganged threads without having to rendezvous again.

In a multi-gang environment, thread blocking can result in lower throughput. This occurs if an
application’s threads block often in the kernel for long periods of time.

Preempting by Realtime Threads
Gang-scheduled threads can be preempted from execution by realtime threads. This affects only the gang-
scheduled thread running on the processor being preempted by a realtime thread. The remaining threads of
the gang continue to run through the end of their time-slice.

RESTRICTIONS
For this implementation of gang scheduling, the following restrictions exist. Some of these may be removed
in future releases.

e Gang scheduling of processes being debugged is not supported. When a debugger attaches to a pro-
cess, gang scheduling for the process is disabled. This avoids gang scheduling processes with one or
more threads stopped by a debugger.

50 Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

gang_sched(7) gang_sched(7)

FILES

Gang scheduling is completely shut down when Process Resource Manager (PRM) is enabled.

If a gang-scheduled process is selected to be swapped out, the process will not be gang-scheduled
when it is swapped back in.

Realtime processes are not gang-scheduled.
Gang scheduling is only supported for processes with timeshare scheduling policies.

When a gang-scheduled process contains the maximum number of threads (or the maximum
number of processes, for MPI applications), threads or processes created after this point are not
scheduled as part of the gang. For details see the BEHAVIOR section of this man page.

Multiprocess applications that do not use MPI are not supported by the gang scheduler.

Gang scheduling is not supported for PTHREAD SCOPE_PROCESS threads. From release 11i
Version 1.6 of HP-UX, the default scheduling contention scope for threads is
PTHREAD SCOPE_PROCESS. If any PTHREAD_SCOPE_PROCESS threads are created by an
application, the initial thread will be treated as a PTHREAD_SCOPE_PROCESS.

The following are libraries used in providing gang scheduling:
/usr/lib/libpthread.1l The pthread library.
/opt/mpi The directory containing MPI libraries and MPI software. HP MPI is an optional product.

SEE ALSO

fork(2), exec(2).

HP-UX 11i Version 3: February 2007 -3- Hewlett-Packard Company 51

hil(7) hil(7)

NAME

hil - HP-HIL device driver

SYNOPSIS

#include <sys/hilioctl.h>

DESCRIPTION

52

HP-HIL, the Hewlett-Packard Human Interface Link, is the Hewlett-Packard standard for interfacing a
personal computer, terminal, or workstation to its input devices. hil supports devices such as keyboards,
mice, control knobs, ID modules, button boxes, digitizers, quadrature devices, bar code readers, and
touchscreens.

On systems with a single link, HP-HIL device file names use the following format:
/dev/hiln

where n represents a single digit that specifies the physical HP-HIL device address, which ranges from 1 to
7. For example, /dev/hil3 is used to access the third HP-HIL device.

On systems with more than one link, HP-HIL device file names use the following format:
/dev/hil_m.n

where m represents the instance number, and n represents the physical HP-HIL device address. For exam-
ple, /dev/hil_0.2 would be used to access the second device on the link which has an instance number
of zero. Likewise, /dev/hil_12.7 references the seventh device on the link with instance number
twelve.

Note that HP-HIL device addresses are determined only by the order in which devices are attached to the
link. The first device attached to the link becomes device one, the second device attached becomes device
two, etc.

HP-HIL devices are classified as "slow" devices. This means that system calls to hil can be interrupted by
caught signals (see signal(5)).

hil can only read HP-HIL keyboards in raw keycode mode. Raw keycode mode means that all keyboard
input is read unfiltered. HP-HIL keyboards return keycodes that represent key press and key release
events.

Use hilkbd(7) to read mapped keycodes from HP-HIL keyboards. Use the Internal Terminal Emulator
(ITE) described in termio(7) to read ASCII characters from HP-HIL keyboards.

System Calls
open(2) gives exclusive access to the specified HP-HIL device. Any previously queued input from the device
is discarded. If the device is a keyboard, it is opened in raw keycode mode. A side effect of opening a key-
board in raw keycode mode is that the ITE (see termio(7)) and mapped keyboard driver (see hilkbd(7)) lose
input from that keyboard until it is closed. Only device implemented auto-repeat functionality is available
while in raw keycode mode (see HILER1 and HILER2).

The file status flag, O_NDELAY, can be set to enable nonblocking reads (see open(2)).

close(2) returns an HP-HIL keyboard to mapped keycode mode, making its input available to the ITE or
mapped keyboard driver (see hilkbd(7)).

read(2) returns data from the specified HP-HIL device, in time-stamped packets:

unsigned char packet_length;

unsigned char time_stamp[4];

unsigned char poll_record_header;
unsigned char data[packet_length - 6];

packet_length specifies the number of bytes in the packet including itself, and can range from six to twenty
bytes. time_stamp, when repacked into an integer, specifies the time, in tens of milliseconds, that the sys-
tem has been running since the last system boot. The most significant byte of the time stamp is
time_stamp [0]. poll_record_header indicates the type and quantity of information to follow, and reports
simple device status information. The number of data bytes is device dependent. Refer to the text listed in
SEE ALSO for descriptions of the poll_record_header and device-specific data.

Usually two system calls are required to read each data packet, the first system call reads the data packet
length; the second system call reads the actual data packet. Some devices always return the same amount

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

hil(7)

hil(7)

of data in each packet, in which case the count and the packet can both be read in the same system call.
If the file status flag, O_NDELAY, is set and no data is available, read(2) returns 0 instead of blocking.
write(2) is not supported by hil.

select(2) can be used to poll for available input from HP-HIL devices. select(2) for write or for exception
conditions always returns a false indication in the file descriptor bit masks.

toctl(2) is used to perform special operations on HP-HIL devices. ioctl(2) system calls all have the form:

int ioctl(int fildes, int request, char *arg);

The following request codes are defined in <sys/hilioctl.h>:

HILID

HILPST

HILRR

HILWR

HILRN

HILRS

Identify and Describe

This request returns the Identify and Describe Record in the char variable to which arg
points, as supplied by the specified HP-HIL device. The Identify and Describe Record is
used to determine the type and characteristics of each device connected to the link. The
Identify and Describe Record can vary in length from 2 to 11 bytes. The record contains at
least:

e A Device ID byte, and
e A Describe Record Header byte.

The Device ID byte is used to identify the general class of a device, and its nationality in
the case of a keyboard or keypad. The Describe Record Header byte describes the position
report capabilities of the device. The Describe Record Header byte also indicates if an I/O
Descriptor byte follows at the end of the Describe Record. It also indicates support of the
Extended Describe and the Report Security Code requests. If the device is capable of
reporting any coordinates, the Describe Record contains the device resolution immediately
after the Describe Record Header byte. If the device reports absolute coordinates, the max-
imum count for each axis is specified after the device resolution. The I/O Descriptor byte
indicates how many buttons the device has. The I/O Descriptor byte also indicates device
proximity detection capabilities and specifies Prompt/Acknowledge functions. All HP-HIL
devices support the Identify and Describe request.

Perform Self Test

This request causes the addressed device to perform its self test, and returns the one-byte
test result in the char variable to which arg points. A test result of zero indicates a suc-
cessful test, non-zero results indicate device-specific failures. All HP-HIL devices support
the Self Test request.

Read Register

The Read Register request expects an HP-HIL device register address in the char variable
to which arg points, and returns the one-byte contents of that register in *arg. The
Extended Describe Record indicates whether a device supports the Read Register request.

Write Register

The Write Register request expects *arg to contain a record containing one or more packets
of data, each containing the HP-HIL device register address and one or more data bytes to
be written to that register. There are two types of Register Writes. Type 1 can be used to
write a single byte to each individual device register. Type 2 can be used to write several
bytes to one register. The Extended Describe Record indicates if a device supports either or
both types of register write requests.

Report Name

The Report Name request returns the device description string in the character array to
which arg points. The string may be up to fifteen characters long. The Extended Describe
Record indicates support of the Report Name request.

Report Status

The Report Status request returns the device-specific status information string in the char-
acter array to which arg points. The string can be up to fifteen bytes long. The Extended
Describe record indicates support of the Report Status request.

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 53

hil(7)

HILED

HILSC

HILER1

HILER2

HILDKR

HILP1..HILP7

HILP

hil(7)

Extended Describe

The Extended Describe request returns the Extended Describe Record in the character
array to which arg points. The Extended Describe Record may contain up to fifteen bytes
of additional device information. The first byte is the Extended Describe Header, which
indicates whether a device supports the Report Status, Report Name, Read Register, or
Write Register requests. If the device implements the Read Register request, the max-
imum readable register is specified. If the device supports the Write Register request, the
Extended Describe Record specifies whether the device implements either or both of the
two types of register writes and the maximum writeable register. If the device supports
Type 2 register writes, the maximum write buffer size is specified. The Extended Describe
Record can also contain the localization (language) code for a device. Support of the
Extended Describe request is indicated in the Describe Record Header byte.

Report Security Code

The Report Security Code request returns the Security Code Record in the character array
to which arg points. The Security Code Record can be between one and fifteen bytes of
data that uniquely identifies that particular device. Applications can use this request to
implement a hardware "key" that restricts each copy of the application to a single machine
or user. An application can read the Security Code Record from an HP-HIL ID Module and
then verify that the application is running on a specific machine or that the application is
being used by a legitimate user. Devices indicate support of the Report Security Code
request in the Describe Record Header.

Enable Auto Repeat Rate = 1/30 Second

This request is used to enable the "repeating keys" feature implemented by the firmware of
some HP-HIL keyboard and keypad devices. It also sets the cursor key repeat rate to 1/30
sec. This request does not use arg.

Enable Auto Repeat Rate = 1/60 Second

This request is used to enable the "repeating keys" feature implemented in the firmware of
some HP-HIL keyboard and keypad devices. It also sets the cursor key repeat rate to 1/60
sec. This request does not use arg.

Disable Keyswitch Auto Repeat

This request turns off the "repeating keys" feature implemented in the firmware of some
HP-HIL keyboard and keypad devices. This request does not use arg.

Prompt 1 through Prompt 7

These seven requests are supported by some HP-HIL devices to give an audio or visual
response to the user, perhaps indicating that the system is ready for some type of input. A
device specifies acceptance of these requests in the I/O Descriptor Byte in the Describe
Record. These requests do not use arg.

Prompt (General Purpose)

This request is intended as a general purpose stimulus to the user. Devices accepting this
request indicate so in the I/O Descriptor Byte in the Describe Record. This request does
not use arg.

HILA1.. HILA7 Acknowledge 1 through Acknowledge 7

HILA

ERRORS
[EBUSY]

These seven requests are intended to provide an audio or visual response to the user, gen-
erally to acknowledge a user’s input. The I/O Descriptor Byte in the Describe Record indi-
cates whether an HP-HIL device implements this request. These requests do not use arg.

Acknowledge (General Purpose)

The Acknowledge request is intended to provide an audio or visual response to the user.
Devices accepting this request indicate so in the I/O Descriptor Byte in the Describe
Record. This request does not use arg.

The specified HP-HIL device is already opened.

54 Hewlett-Packard Company -3- HP-UX 11i Version 3: February 2007

hil(7) hil(7)

EFAULT] A bad address was detected while attempting to use an argument to a system call.

[

[EINTR] A signal interrupted an open(2), read(2), or ioctl(2) system call.

[EINVAL] An invalid parameter was detected by ioctl(2).

[ENXIO] No device is present at the specified address; see the WARNINGS section.
[EIO] A hardware or software error occurred while executing an ioctl(2) system call.
[

ENODEV] write(2) is not implemented for HP-HIL devices.

WARNINGS
An [ENXIO] error is returned by open(2) and ioctl(2) if any attempt is made to access a device while hil is
reconfiguring the link during power-failure recovery.

hil cannot detect whether or not a device executed an ioctl(2) request.
HP-HIL devices have no status bit available to indicate whether they support the HILER1, HILERZ2, or
HILDKR requests.

AUTHOR
hil was developed by HP.

FILES
/dev/hil[1-7]
/dev/hil_*.[1-7]

SEE ALSO
close(2), errno(2), fentl(2), ioctl(2), open(2), read(2), select(2), signal(5), hilkbd(7), termio(7).

For detailed information about HP-HIL hardware and software in general, see the HP-HIL Technical Refer-
ence Manual.

HP-UX 11i Version 3: February 2007 -4 - Hewlett-Packard Company 55

h

hilkbd (7) hilkbd (7)

NAME

hilkbd - HP-HIL mapped keyboard driver

DESCRIPTION

56

HP-HIL, the Hewlett-Packard Human Interface Link, is the Hewlett-Packard standard for interfacing a
personal computer, terminal, or workstation to its input devices. hilkbd supplies input from all mapped
keyboards on a specified HP-HIL link.

hilkbd returns mapped keycodes, not ASCII characters. "Raw" keycodes are the individual key down-
strokes and upstrokes, and are different for each type of keyboard. hilkbd maps the raw input into the
keycodes and protocol expected by the HP-UX, Pascal Workstation, and BASIC/UX operating systems. The
hil driver can usurp a keyboard from hilkbd by changing it from mapped mode to raw mode.

System Calls

open () gives exclusive access to the keyboard. If there is an ITE (internal terminal emulator) associated
with the keyboard, the ITE loses input from the keyboard until the keyboard device is closed. Any previous
queued input for the keyboard device is flushed from the input queue.

close() returns control of the keyboard to the ITE, if present. Any unread input is discarded at that
time.

read () returns data from the keyboard in time-stamped packets:

unsigned char time_stamp [4];
unsigned char status;
unsigned char data;

time_stamp , when repacked into an integer data type of four or more bytes, specifies the time since an arbi-
trary point in the past (for example, system start-up time). This point does not change between packets,
but time during a power failure may or may not be counted. The time is in units of tens of milliseconds.

The status byte encodes the state of the keyboard Shift and Ctrl keys:

0x8X shift and control
0x9X control only
0xAX shift only

0xBX no shift or control

The data byte contains the actual keystroke.

If the file status flag O_NDELAY is set, read () returns 0 instead of blocking, when no data is available.
The read () system call on an HP-HIL keyboard is considered "slow"; that is, it can be interrupted by
caught signals (see signal(2)).

write() is not supported by hilkbd.

select () can be used to poll for input to read from hilkbd devices. select () for write or for excep-
tional conditions always returns a false indication in the bit masks.

ioctl () is used to perform special operations on the device. ioctl () system calls have the form:
int ioctl(int fildes, int request, char *arg);
The following hilkbd request codes are defined in <sys/hilioctl.h>:

KBD_READ_CONFIG
Read the configuration code.

This request returns a one-byte configuration code in the char variable to which arg
points. This contains a field, defined by KBD_IDCODE_MASK, which specifies the key-
board identification code. The possible values of this field are defined in the header file, and
this identification code affects interpretation of the language code. All other fields in the
configuration code are currently undefined.

KBD_READ_LANGUAGE
Read the language code.

This request returns a one-byte language code, as read from the keyboard, in the char
variable to which arg points. If there is more than one keyboard, the language is taken
from the first keyboard on the link. Interpretation of the language code is affected by the

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

hilkbd (7) hilkbd (7)

keyboard identification field within the configuration code.
KBD_STATUS Read the keyboard status register.

This request returns a one-byte value containing bit flags specifying the state of the shift
and control keys in the char variable to which arg points:

KBD_STAT LEFTSHIFT The left shift key is up
KBD_STAT RIGHTSHIFT The right shift key is up
KBD_STAT SHIFT Both shift keys are up
KBD_STAT CTRL The control key is up

Other bits are undefined.

KBD_REPEAT_ RATE
Set the keyboard auto-repeat rate.

The one-byte value to which arg points is the negative of the repeat period, in tens of mil-
liseconds. The repeat rate is the reciprocal of the repeat period. A parameter of zero dis-
ables auto-repeat.

KBD_REPEAT_ DELAY
Set the keyboard auto-repeat delay.

The one-byte value to which arg points is the negative of the repeat delay, in tens of mil-
liseconds.

KBD_ BEEP Cause an audible beep.

The one-byte value to which arg points specifies the volume of the beep, within the range 0
through KBD_MAXVOLUME. Implementations with fewer than KBD_ MAXVOLUME
discrete levels of volume will scale the parameter into the smaller range.

ERRORS
[EINVAL] An invalid parameter was detected by ioctl ().
[EINTR] A signal was caught during a read () system call.
[ENXIO] No keyboard is present on the HP-HIL link specified by the minor number.
[ENODEV] An attempt was made to use write () usinghilkbd.
[EBUSY] The device is already open.

AUTHOR
hilkbd was developed by the Hewlett-Packard Company.

FILES
/dev/hilkbd*

SEE ALSO

mknod(1M), select(2), signal(2), hil(7), termio(7).

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 57

inet(7F) inet(7F)

NAME

inet - Internet protocol family

SYNOPSIS

#include <sys/types.h>
#include <netinet/in.h>

DESCRIPTION

The internet protocol family is a collection of protocols layered on top of the Internet Protocol (IP) net-
work layer, which utilizes the internet address format. The internet family supports the SOCK_STREAM
and SOCK_DGRAM socket types.

Addressing

Internet addresses are four byte entities. The include file <netinet/in.h> defines this address as the
structure struct in_addr.

Sockets bound to the internet protocol family wutilize an addressing structure called struct
sockaddr_in. Pointers to this structure can be used in system calls wherever they ask for a pointer to a
struct sockaddr.

There are three fields of interest within this structure. The first is sin_family, which must be set to
AF_INET. The next is sin_port, which specifies the port number to be used on the desired host. The
third is sin_addr, which is of type struct in_addr, and specifies the address of the desired host.

Protocols

The internet protocol family is comprised of the IP network protocol, Internet Control Message Protocol
(ICMP), Transmission Control Protocol (TCP), and User Datagram Protocol (UDP). TCP is used to support the
SOCK_STREAM socket type while UDP is used to support the SOCK_DGRAM socket type. The ICMP mes-
sage protocol and IP network protocol are not directly accessible.

The local port address is selected from independent domains for TCP and UDP sockets. This means that
creating a TCP socket and binding it to local port number 10000, for example, does not interfere with creat-
ing a UDP socket and also binding it to local port number 10000 at the same time.

Port numbers in the range 1-1023 inclusive are reserved for use by the super-user only. Attempts to bind
to port numbers in this range by non-super-users fail and result in an error returned.

AUTHOR

inet was developed by the University of California, Berkeley.

SEE ALSO

58

TCP(7P), UDP(7P).

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

iomap (7) iomap (7)
(OBSOLETED)

NAME
iomap - physical I/O address mapping

SYNOPSIS
#include <sys/iomap.h>

DESCRIPTION
The iomap mechanism allows the mapping (thus direct access) of physical I/O addresses into the user pro-
cess address space. For PA-RISC machines, the physical I/O address space begins at 0x£0000000 and
extends to OXEE£E£E£E£EEE.

The special (device) files for iomap devices are character special files using the dynamic major number
allocation scheme.

The minor number for iomap devices is of the form:
0xAAAASM

The physical I/O address is formed by prefixing 0xAAAA with OxF, and by appending 0x000 (this forces the
I/O address to be page-aligned). The size of the region to be mapped is given by the expression M*(2°S) 4K
pages. For example, the minor number for a device starting at 0x£4000000 that occupies 64MB is
0x4000el.

The iomap driver must be explicitly added to the /stand/system file, the kernel rebuilt, and the sys-
tem subsequently rebooted prior to first using iomap.

I/O space is always mapped with both read and write access rights, regardless of the actual permissions on
the device special file.

Multiple processes can have concurrently a single iomap device opened and mapped. It is the responsibil-
ity of the processes to synchronize their access.

Successive calls to iomap to map the same I/O space must be identical to the first mapping. Identical
mappings have the same address and size.

Note that a process can additionally share I/O space (mapped by iomap) with a kernel driver. However,
this is only possible if the driver maps in the I/O space with user read/write access rights using the
appropriate driver I/O mapping services. Any I/O space mapped by drivers with kernel read/write access
rights cannot be concurrently mapped by processes using iomap.

No read () or write() system calls are supported by the iomap driver.
The ioctl () function is used to control the iomap device. The following ioctl () requests are defined
in <iomap.h>:

IOMAPMAP Map the iomap device into user address space at the location specified by the
pointer to which the (void **) third argument to ioctl () points. If the argu-
ment points to a variable containing a null pointer, the system selects an appropriate
address. ioctl () then returns the user address where the device was mapped,
storing it at the address pointed to by the third argument (see EXAMPLES below).
Multiple processes can concurrently have the same 1omap device mapped.

IOMAPUNMAP Unmap the iomap device from the user address space.

close () shuts down the file descriptor associated with the 1omap device. If the close is for the last sys-
tem wide open on the device, the iomap device is also unmapped from the user address space; otherwise it
is left mapped into the user address space (see IOMAPUNMAP above).

WARNINGS
Be extremely careful when creating and using iomap devices. Inappropriate accesses to I/O devices or
RAM can result in a system crash.

ERRORS
[EINVAL] The address field was out of range, or the 1octl request was invalid.

[ENOMEM] Not enough memory could be allocated for the mapping.

[EBUSY] Device was already mapped and this mapping was not identical to the initial mapping
(same address, size and access rights).

[ENODEV] Read and write calls are unsupported.

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 59

iomap (7) iomap (7)

(OBSOLETED)

[ENXIO] No such device at the address specified by the minor number.
[ENOSPC] Required resources for mapping could not be allocated.

[ENOTTY] Inappropriate ioctl request for this device type; fildes is not a file descriptor for an
iomap device file.

EXAMPLES
Consider the following code fragment:
#include <sys/iomap.h>
int Eildes;
void *addr;
;adr = REQUESTED_ADDRESS;

(void) ioctl(fildes, IOMAPMAP, &addr);
(void) printf("actual address = 0x%x\n", addr):;

where £ildes is an open file descriptor for the device special file and REQUESTED_ADDRESS is the
address originally requested by the program.

If addr is a null pointer, the system selects a suitable address then returns the selected address in addr.

If the value in addr is not a null pointer, it is used as a specified address for allocating memory. If the
specified address cannot be used, an error is returned (see ERRORS).

SEE ALSO
mknod(1M).

60 Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

IP(7P) IP(7P)

NAME
IP - Internet Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

s = socket (AF_INET, SOCK DGRAM, 0);

DESCRIPTION
IP is the network-layer protocol used by the Internet protocol family. It encapsulates TCP and UDP mes-
sages into datagrams to be transmitted by the network interface. Normally, applications do not need to
interface directly to IP. However, certain multicast socket options are controlled by passing options to the
IPPROTO_IP protocol level through a UDP socket, and IP Type of Service is controlled by passing an
option to the IPPROTO_IP protocol level through either a TCP or UDP socket. (See the getsockopt(2)
manual page.)

The following socket options are defined in the include file <netinet/in.h>. The type of the variable
pointed to by the optval parameter is indicated in parentheses. The data types struct ip_mreq and
struct in_addr are defined in <netinet/in.h>.

IP_TOS (unsigned int) Sets the IP Type of Service. Allowable values for optval
are 4 for high reliability, 8 for high throughput, and 16 for low delay.
Other values will not return an error, but may have unpredictable results.
Default: zero.

IP_ADD_MEMBERSHIP (struct ip_mreq) Requests that the system join a multicast group.

IP_DROP_MEMBERSHIP
(struct ip_mreq) Allows the system to leave a multicast group.

IP MULTICAST_ IF (struct in_addr) Specifies a network interface other than the default
to be used when sending multicast datagrams through this socket. Default:
multicast datagrams are sent from the interface associated with the specific
multicast group, with the default multicast route or with the default route.

IP_MULTICAST_ LOOP (unsigned char; boolean) Enables or disables loopback in the IP layer
for multicast datagrams sent through this socket. The value of the variable
pointed to by optval is zero (disable) or non-zero (enable). This option is
provided for compatibility only. Normally, multicast datagrams are always
looped back if the system has joined the group. See DEPENDENCIES
below. Default: enabled.

IP_MULTICAST TTL (unsigned char) Specifies the time-to-live value for multicast datagrams
sent through this socket. The value of the variable pointed to by optval can
be zero through 255. Default: one.

IP_ADD_MEMBERSHIP requests that the system join a multicast group on the specified interface. For
example:

struct ip_ mreq mreq;

mreq.imr multiaddr.s_addr net_addr("224.1.2.3");

mreq.imr_ interface.s_addr INADDR_ANY;

setsockopt (s, IPPROTO_IP, IP_ADD MEMBERSHIP, &mreq, sizeof (mreq)):;

A system must join a group on an interface in order to receive multicast datagrams sent on the network to
which that interface connects. If imr_ interface is set to INADDR_ANY, the system joins the specified
group on the interface that datagrams for that group would be sent from, based the routing configuration.
Otherwise, imr_interface should be the IP address of a local interface. An application can join up to
IP_MAX_ MEMBERSHIPS multicast groups on each socket. IP_MAX_ MEMBERSHIPS is defined in
<netinet/in.h>. However, each network interface may impose a smaller system-wide limit because of
interface resource limitations and because the system uses some link-layer multicast addresses.

The application must also bind to the destination port number in order to receive datagrams that are sent
to that port number. If the application binds to the address INADDR_ANY, it may receive all datagrams
that are sent to the port number. If the application binds to a multicast group address, it may receive only
datagrams sent to that group and port number. It is not necessary to join a multicast group in order to
send datagrams to it.

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 61

IP(7P) IP(7P)

IP_DROP_MEMBERSHIP allows the system to leave a multicast group. For example:

struct ip_mreq mreq;

mreq.imr multiaddr.s_addr net_addr("224.1.2.3");

mreq.imr_ interface.s_addr INADDR_ANY;

setsockopt (s, IPPROTO_IP, IP_DROP_MEMBERSHIP, &mreq, sizeof (mreq)):;

The system remains a member of the multicast group until the last socket that joined the group is closed or
has dropped membership in the group.

IP_MULTICAST_ IF specifies a local network interface to be used when sending multicast datagrams
through this socket. For example:

#include <arpa/inet.h>

struct in_addr addr;

addr.s_addr = inet_addr("192.1.2.3");

setsockopt (s, IPPROTO_IP, IP_MULTICAST IF, &addr, sizeof(addr)):;

Normally, applications do not need to specify the interface. By default, multicast datagrams are sent from
the interface specified by the routing configuration, namely the interface associated with the specific multi-
cast group, with the default multicast route or with the default route. If addr is set to the address
INADDR_ANY, the default interface is selected. Otherwise, addr should be the IP address of a local inter-
face.

IP_MULTICAST_ LOOP enables or disables loopback for multicast datagrams sent through this socket.
For example:

unsigned char loop = 1;
setsockopt (s, IPPROTO_IP, IP_MULTICAST LOOP, &loop, sizeof(loop)):;

Note that the type of the optval parameter is unsigned char instead of int, which is common for
boolean socket options. This option is provided for compatibility only. Normally, if a multicast datagram is
sent to a group that the system has joined, a copy of the datagram is always looped back and delivered to
any applications that are bound to the destination port. See DEPENDENCIES below.

IP_MULTICAST_ TTL controls the scope a multicast by setting the time-to-live value for multicast
datagrams sent through this socket. For example:

unsigned char ttl = 64;
setsockopt (s, IPPROTO_IP, IP_MULTICAST TTL, &ttl, sizeof(ttl)):;

Note that the type of optval parameter is unsigned char instead int, which is common for socket
options. By default, the time-to-live field (TTL) is one, which limits the multicast to the local network. If
the TTL is zero, the multicast is limited to the local system (loopback). If the TTL is two, the multicast can
be forwarded through at most one gateway; and so forth. Multicast datagrams can be forwarded to other
networks only if there are special multicast routers on the local and intermediate networks.

DEPENDENCIES

The behavior of IP_MULTICAST_ LOOP depends on the network driver and interface card. Normally,
loopback cannot be disabled, even if IP_ MULTICAST_LOOP is set to zero, because it occurs in the driver
or in the network interface. However, if the outbound interface is 1lo0 (127.0.0.1), or if
IP_MULTICAST_ TTL is set to zero, setting IP_MULTICAST_ LOOP to zero will disable loopback for
multicast datagrams sent through the socket.

ERRORS

62

One of the following errors may be returned if a call to setsockopt () or getsockopt () fails.
[EADDRINUSE] The specified multicast group has been joined already on socket.

[EADDRNOTAVAIL] The specified IP address is not a local interface address; or there is no route
for the specified multicast address; or the specified multicast group has not

been joined.

[EINVAL] The parameter level is not IPPROTO_IP; or optval is the NULL address; or
the specified multicast address is not valid.

[ENOBUFS] Insufficient memory is available for internal system data structures.

[ENOPROTOOPT] iI‘helparameter optname is not a valid socket option for the IPPROTO_IP
evel.

Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

IP(7P) IP(7P)

[EOPNOTSUPP] The socket type is not SOCK_DGRAM.
[ETOOMANYREFS] An attempt to join more than IP_MAX MEMBERSHIPS multicast groups on
a socket.
AUTHOR

The socket interfaces to IP were developed by the University of California, Berkeley. Multicast extensions
were developed by the Stanford University.

SEE ALSO
bind(2), getsockopt(2), recv(2), send(2), socket(2), inet(7F).

HP-UX 11i Version 3: February 2007 -3- Hewlett-Packard Company 63

IPv6(7P) IPv6(7P)

NAME

IPv6, ipv6, ip6 - Internet Protocol Version 6

SYNOPSIS

#include <sys/socket.h>
#include <netinet/in.h>

s = socket (AF_INET6, SOCK _DGRAM, 0);
s = socket (AF_INET6, SOCK_STREAM, 0);
DESCRIPTION

64

IPv6 is the next generation network-layer protocol designed to be the successor to the current Internet Pro-
tocol version 4 (IPv4). It provides the packet delivery service for TCP, UDP and ICMPv6.

IPv6 has significant advantages over IPv4 in terms of increased address space, simplified header format,
integrated QoS support and mandatory security. IPv6 also allows optional internet-layer information to be
encoded in separate headers called extension headers which are placed between the IPv6 header and upper
layer headers. Extension headers currently supported are hop-by-hop option header, destination option
header, fragment header and routing (type 0) header. An IPv6 packet may carry zero, one, or more exten-
sion headers, each identified by the next header field of the preceding header.

IPv6 has extended the address size from 32 bits to 128 bits and they are textually represented in hex-colon
notation as X:X:X:X:X:X:X:X, where the X’s are the hexadecimal values of the eight 16-bit pieces of
the address. For example fedc:83ff:fef6:417a:210:83ff:fef6:3dc0.

IPv6 has three types of addresses: unicast, anycast, and multicast.

e An unicast address is an identifier for a single interface. A packet sent to an unicast address is
delivered to the interface identified by that address.

e An anycast address is an identifier for a set of interfaces. A packet sent to an anycast address is
delivered to one of the interfaces identified by that address.

e A multicast address is an identifier for a set of interfaces. A packet sent to a multicast address is
delivered to all interfaces identified by that address.

There are no broadcast addresses in IPv6, their function is superseded by multicast addresses.

Every IPv6 address has a scope associated with it. A scope is a topological span within which the address
may be used as an unique identifier for an interface or set of interfaces.

An unicast address has three defined scopes: link-local, site-local and global.

e Link-local address uniquely identifies interfaces within a single link and it has a fixed prefix of
fe80::/10. For example, fe80::210:84c0:ef6f:cd30.

e Site-local address uniquely identifies interfaces within a single site only and it has a fixed prefix of
fec0::/10. For example, fec0::210:84c0:ef6f:cd30.

o Global address uniquely identifies interfaces anywhere in the internet.
There are 2 special unicast addresses which hold an embedded IPv4 address in the low order 32-bits.

e The first type is termed as IPv4-compatible IPv6 address and is of the form
0:0:0:0:0:0:d.d.d.d. This type of address is used by dual stack (IPv4/IPv6) nodes to perform
automatic IPv6-over-IPv4 tunneling where the IPv4 tunnel endpoint address is determined from the
IPv4 address embedded in the IPv4-compatible destination address of the IPv6 packet being tunneled.

e The second type 1is termed as IPv4-mapped IPv6 address and is of the form
0:0:0:0:0:ffff:d.d.d.d. This address facilitates IPv6 applications to interoperate with IPv4
applications. Applications can automatically generate this address using getaddrinfo() (see
getaddrinfo(3N)) when the specified host has only IPv4 address.

IPv6 Socket Options

New socket options are defined for IPv6 to send and receive extension headers and to exchange other
optional information between the kernel and application. The options are supported at the
IPPROTO_IPV6 protocol level. The type of the variable pointed to by the optval parameter is indicated in
parenthesis.

IPV6_UNICAST HOPS (integer) Set or get the hop limit used in outgoing unicast packets.
When this option is set using setsockopt () (see setsockopt(2)), the new

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

IPv6(7P) IPv6(7P)

option value specified is used as the hop limit for all subsequent unicast
packets sent via that socket. Valid values are in the range 0-255 (both
inclusive) and the default value is 64. For example,

int hoplimit = 50;
setsockopt (s, IPPROTO_IPV6, IPV6_UNICAST HOPS,
&hoplimit, sizeof (hoplimit));

This option can be used with getsockopt () (see getsockopt(2)) to deter-
mine the hop limit value the system will use for subsequent unicast packets
sent via that socket.

IPV6_MULTICAST_HOPS
(integer) Set or get the hop limit used in outgoing multicast packets.
When this option is set, the new option value specified is used as the hop
limit for all subsequent multicast packets sent via that socket. Valid values
are in the range 0-255 (both inclusive) and the default value is 1.

IPV6_MULTICAST IF (integer) Sets the interface to use for outgoing multicast packets. The
option value is the index of the selected outgoing interface. For example,

unsigned int index;

index = if_ nametoindex("lanO");

setsockopt (s, IPPROTO_IPV6, IPV6_MULTICAST_IF,
&index, sizeof (index));

IPV6_MULTICAST_LOOP
(boolean) Enables or disables loopback in the IP layer for multicast
datagrams sent through this socket. The value of the variable pointed to by
optval is zero (disable) or non-zero (enable). Default: enabled.

IPV6_JOIN_GROUP (struct ipv6_mreq) Join a multicast group on a specified local inter-
face. The IPv6 multicast address of the group to join and the index of the
interface on which to join should be specified using struct ipvé6_mreq
which is defined in <netinet/iné6.h> as:

struct ipvé6_mreq {
struct in6_addr ipvémr_multiaddr;
/* IPv6 multicast addr */
unsigned int ipvémr_interface;
/* interface index */
};

If the interface index is specified as 0 then the default multicast interface is
used.

IPV6_LEAVE_GROUP (struct ipvé6_mreq) Leave a multicast group on a specified local inter-
face. The IPv6 multicast address of the group to leave and the interface
index should be specified using struct ipvé6_mreq. The interface
index should match the index used while joining the group. Set index to 0,
to specify default interface.

IPV6_CHECKSUM (integer) When this option is set, kernel computes the checksum for out-
bound packets and verifies checksum on inbound packets. The option value
is the byte offset of the checksum location in the user data. This option is
not valid for IPPROTO_ICMPV6 since checksum computation is manda-
tory for IPPROTO_ICMPV6. The default value is -1 (checksums not com-
puted nor verified for protocols other than ITIPPROTO_ICMPV6).

IPV6_RECVPKTINFO (boolean) When this option is enabled, PKTINFO (destination IPv6
address and the arriving interface index) is returned as ancillary data by
recvmsg (). (See recvmsg(2)). The information is returned in struct

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 65

IPv6(7P)

66

IPV6_RECVHOPLIMIT

IPV6_RECVDSTOPTS

IPV6_RECVHOPOPTS

IPV6_RECVRTHDR

IPv6(7P)

in6_pktinfo structure and it is defined in <netinet/in6.h>as:

struct in6_pktinfo {
struct in6_addr ipi6_addr;
uint32_t ipi6_ifindex;
};

By default this option is disabled.

(boolean) When this option is enabled, inbound packet’s hoplimit is
returned as ancillary data by recvmsg () . For example,

int on = 1;
setsockopt (s, IPPROTO_IPV6, IPV6_RECVHOPLIMIT,
&on, sizeof(on));

By default this option is disabled.

(boolean) When this option is enabled, the inbound packet’s destination
options (when present) is returned as ancillary data by recvmsg (). By
default this option is disabled.

(boolean) When this option is enabled, the inbound packet’s hop-by-hop
options (when present) is returned as ancillary data by recvmsg (). By
default this option is disabled.

(integer; boolean) When this option is enabled, the inbound packet’s
routing options (when present) is returned as ancillary data by
recvmsg () . By default this option is disabled.

IPV6_RECVRTHDRDSTOPTS

(integer; boolean) When this option is enabled, the inbound packet’s
destination options appearing before a routing header (when present) is
returned as ancillary data by recvmsg () . By default this option is dis-
abled.

The next seven socket options can be used with both setsockopt () and as option name in ancillary data
to sendmsg () . (See sendmsg(2))

IPV6_PKTINFO

IPV6_HOPLIMIT

IPV6_NEXTHOP

IPV6_RTHDR

IPV6_DSTOPTS

IPV6_HOPOPTS

IPV6_RTHDRDSTOPTS

(struct in6_pktinfo) Used to set the source address and interface
index for outgoing packets.

(integer) Used to set the hop limit for outbound packets. This hop limit
is valid for only a single output operation. To set hop limit for all unicast or
multicast IPv6 packets use IPV6_UNICAST_ HOPS or
IPV6_MULTICAST_ HOPS options respectively.

(struct sockaddr_iné6) Used to set the next hop address. The node
identified by this address must be a neighbor of the sending host. When
this address is the same as the destination IPv6 address then this is
equivalent to SO_DONTROUTE socket option.

(variable length) Used to specify the routing header for outgoing
packets. Only Type 0 routing header is currently supported.

(variable length) Used to specify one or more destination options to
be sent in subsequent IPv6 packets.

(variable length) Used to specify one or more hop-by-hop options to
be sent in subsequent IPv6 packets.

(variable length) Used to specify one or more destination options
preceding a routing header. This option will be silently ignored when send-
ing packets unless a routing header is also specified.

IPv6 uses the enhanced version of ICMP called ICMPv6 to report errors encountered in processing packets
and for diagnostic purposes (like ping). ICMPv6 is an integral part of IPv6 and has a next header value of

58.

All the options and the associated structures are defined in <netinet/in6.h>, applications are not
required to include this header file explicitly, it is automatically included by <netinet/in.h>.

Hewlett-Packard Company

-3- HP-UX 11i Version 3: February 2007

IPv6(7P) IPv6(7P)

ERRORS
One of the following errors may be returned when a socket operation fails.

[EADDRINUSE] The specified multicast group has been joined already.

[EADDRNOTAVAIL] The specified IPv6 address is not a local interface address or there is no
route for the specified multicast address or the specified multicast group
has not been joined.

[EINVAL] The parameter ’level’ is not IPPROTO_IPV6, or optval is the NULL
address, or the specified multicast address is not valid, or the specified hop
limit is not in the range 0 <= x<= 255.

[ENOBUFS] Insufficient memory is available for internal system data structures.

[ENOPROTOOPT] The parameter optname is not a valid socket option for the
IPPROTO_IPV6 level.

AUTHOR
The socket interfaces to IP were developed by the University of California, Berkeley.

SEE ALSO
bind(2), getsockopt(2), recv(2), send(2), socket(2), inet6_opt_init(3N), inet6_rth_space(3N), inet(7F),
ndp(7P).

RFC 2460 Internet Protocol Version 6.
RFC 2553 Basic Socket Interface Extensions for IPv6.
RFC 2292 Advanced Socket Interface Extensions for IPv6.

HP-UX 11i Version 3: February 2007 -4 - Hewlett-Packard Company 67

kmem (7)

NAME

kmem - perform I/O on kernel memory, based on symbol name

SYNOPSIS
#include <sys/ksym.h>

int ioctl(
int kmemfd,
int command,
void *rks
)i

DESCRIPTION
When used with a valid file descriptor for /dev/kmem (kmemfd), ioctl can be used to manipulate ker-
nel memory. The specifics of this manipulation depend on the command given as follows:

MIOC_READKSYM

MIOC_IREADKSYM

MIOC_WRITEKSYM

MIOC_IWRITEKSYM

MIOC_LOCKSYM

MIOC_UNLOCKSYM

kmem (7)

Read mirk_buflen bytes of kernel memory starting at the address for
mirk_symname into mirk_buf. rks is a pointer to a mioc_xrksym structure,
defined below.

Indirect read. Read sizeof (void *) bytes of kernel memory starting at the
address for mirk_symname and use that as the address from which to read
mirk_buflen bytes of kernel memory into mirk_buf. rks is a pointer to a
mioc_rksym structure.

Write mirk_buflen bytes from mirk_buf into kernel memory starting at the
address for mirk_symname. rks is a pointer to a mioc_rksym structure.

Indirect write. Read sizeof (void *) bytes of kernel memory starting at
the address for mirk_symname and use that as the kernel memory address into
which mirk_buflen bytes from mirk_buf are written. rks is a pointer to a
mioc_rksym structure.

Increase the hold count by one for the dynamically loaded module whose name is
given by rks, a pointer to a character string, thereby preventing its unloading.

Decrease the hold count by one for the dynamically loaded module whose name
is given by rks, a pointer to a character string. If the count is thereby reduced to
0, the module becomes a candidate for unloading.

The struct mioc_rksym definition is:

struct mioc_rksym {
char * mirk modname; /* limit search for symname

to module modname; if NULL
use standard search order */

char * mirk symname; /* name of symbol whose address

is the basis for this
operation */

void * mirk buf; /* buffer into/from which

read/write takes place */

size_t mirk buflen; /* length (in bytes) of desired

};

RETURN VALUE

ioctl returns one of the following values:

operation */

0 Successful completion.

-1 Failure. errno is set to indicate the error.

ERRORS
In addition to the values described in ioctl(2), the kmem ioctl also sets errno to one of the following
values if the corresponding condition is detected.

68

[EINVAL] modname does not represent a currently loaded module or this is an MIOC_UNLOCKSYM
and the hold count is already 0.

Hewlett-Packard Company -1-

HP-UX 11i Version 3: February 2007

kmem (7) kmem (7)

ENXIO] kmem{fd open on wrong minor device (i.e., not /dev/kmem).
EBADF] kmem{fd open for reading and this is an MIOC_WRITEKSYM.
ENOMATCH] symname not found.

ENAMETOOLONG]
modname is greater than MODMAXNAMELEN characters long, or symname is greater that
MAXSYMNMLEN characters long.

[
[
[
[

SEE ALSO
getksym(2), ioctl(2), ioctl(5).

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 69

lan(7) lan(7)

NAME

lan - network I/O card access information

DESCRIPTION

This manual entry gives a brief description on how to access the LAN device driver at Layer 2 (Data Link
Layer) of the OSI architecture. The LAN device driver controls the various LAN interface cards (e.g,
Ethernet/TEEE 802.3, FDDI, Token Ring) at Layer 1 (Physical Layer).

The Data Link Provider Interface (DLPI) is the supported method for accessing the LAN device driver at
Layer 2. DLPI is intended for use by knowledgeable network users only. Refer to the DLPI Programmer’s
Guide for complete programming details.

There are HP and non-HP drivers and interface cards which will provide their own DLPI module. These
types of DLPI are referred to as "native" DLPI.

Overview
The Physical Point of Attachment (PPA) is a numerical value that uniquely identifies a particular device.
The PPA value can be obtained from the nwmgr and lanscan commands. The "ClassInstance" identifier
in the nwmgr output is the concatenation of the driver class (lan) and the PPA number. The "NamePPA"
identifier in the lanscan output is a concatenation of the interface name and the PPA number. The
card instance value for a lan device is equivalent to the PPA number for that device.

A single hardware device may have multiple "NamePPA" identifiers, which indicates multiple encapsulation
methods supported for to the device. For Ethernet/TEEE 802.3 links, the "Name" 1lan is used to designate
Ethernet encapsulation, and snap for IEEE 802.3 encapsulation. For other links (FDDI, Token Ring), only
the 1an encapsulation designation is used.

Methods of transfer over the DLPI interface through the lan devices include "raw", "connectionless", and
"connection-oriented" data transfers.

1 WARNINGS

The lanadmin, lanscan and linkloop commands are deprecated. These commands will be removed
in a future HP-UX release. HP recommends the use of replacement command nwmgr(1M) to perform all
network interface-related tasks.

AUTHOR

lan was developed by HP.

SEE ALSO

70

lanscan(1M), lanadmin(1M), linkloop(1M), nwmgr(1M).
DLPI Programmer’s Guide, 1995, Hewlett-Packard

The Ethernet, A LAN: Data Link Layer and Physical Specification, Version 2.0, November 1982, Digital
Equipment Corporation, Intel Corporation, Xerox Corporation

CSMA/CD Access Method and Physical Layer Specification, 1996, Institute of Electrical and Electronic
Engineers

Demand-Priority Access Method, Physical Layer & Repeater Specifications, 1996, Institute of Electrical and
Electronic Engineers

Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PMD), 1995, ANSI

Token Ring Access Method and Physical Layer Specification, 1995, Institute of Electrical and Electronic
Engineers

802.3u Media Access Control Parameters, Physical Layer, Medium Attachment Units, and Repeater for 100
Mb /s Operation, Type 100BASE-T, 1995, Institute of Electrical and Electronic Engineers

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

ldterm(7) ldterm(7)

NAME
ldterm - standard STREAMS terminal line discipline module

SYNOPSIS
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/termios.h>
#include <sys/bsdtty.h>
#include <sys/ttold.h>
#include <sys/strtio.h>
#include <sys/eucioctl.h>

int ioctl(£d, I_PUSH, "ldterm");

DESCRIPTION

ldterm is a STREAMS module that supplies the line discipline for streams-based terminal or pseudo-
terminal device drivers. This module provides most of the functions of the general terminal interface
described in termio (7). However, it does not perform the low-level device control functions specified by the
c_cflag word defined by the POSIX termios structure or the System V termio structure (defined in
termios.h and termio.h, respectively). Also, some operations require the cooperation of the modules
and drivers pushed below the 1dterm module in a tty or pty (slave) stream. This man page only covers
ldterm specific interface here and refers to the readers to termio(7) for the detail terminal interface.

Internally, the 1dterm module uses the Extended UNIX Code (EUC) character encoding scheme. This
encoding scheme enables the 1dterm module to process multibyte characters as well as simple 8-bit char-
acters. It correctly handles backspacing, word erasing, and tab expansion for multibyte EUC characters.

The 1dtexrm module provides standard terminal operation consistent with the behavior specified by POSIX
1003.1 and System V Interface Definition (SVID) Third Edition. It also provides compatibility with the
behavior of the BSD 4.3 line discipline. Notice that on other STREAMS systems, the BSD 4.3 compatibility
feature is usually provided by a separate STREAMS module called ttcompat. Hence, applications on
HP-UX need not push ttcompat on top of 1dterm to get BSD 4.3 compatibility. In fact, the ttcompat
module is not provided on the HP-UX system at all.

The 1dterm module normally sits above either a STREAMS tty driver or a STREAMS pty slave driver.
The user issues an STREAMS I_PUSH ioctl(2) system call to push 1dterm onto the stream once the
STREAMS tty or STREAMS pty slave device is opened.

STREAMS Messages
The 1dtexrm module processes various types of STREAMS messages. The line discipline will act on any of
the following message types. Any others that the module receives, however, are passed onto the next
module on the stream.

Read-side Behavior
ldterm processes the following STREAMS messages on its input stream:

M_FLUSH
If FLUSHR is set, the read put routine flushes the read queue, discards characters in the input
message buffers, and discards any partially buffered multibyte EUC characters. Then, it for-
wards the message upstream.

M_BREAK

The read put routine processes the message according to POSIX rules for processing BREAK
events, parity errors, and framing errors and signal generation (see termio(7) for detail). If
there is no data in the message, the message is assumed to represent an input BREAK event,
which is represented by a framing error with a character value of 0 (zero). If there is data in the
message, the data value is an integer that indicates the occurrence of an input BREAK event, or
a character received with a parity or framing error. The low-order 8 bits of the data value is the
byte that was read. If the TTY_PE flag is set in the higher-order bits of this integer, then a par-
ity error was detected. If the TTY_ FE flag is set in the higher-order bits of this integer, a fram-
ing error was detected.

After reading the data value, the read put routine discards the message.
M_DATA The read put routine processes the message according to the POSIX 1003.1 specification, using
multibyte processing for backspacing, word erasing, and tab expansion as appropriate.

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 71

ldterm(7)

ldterm(7)

It generates echo characters and places them in the output buffer to be sent downstream to the
write queue. While processing incoming data, it scans for START and STOP characters and
sends M_START, M_STOP messages downstream to the write queue, if needed.

If the total number of buffered input characters is more than the high-water mark and IXOFF is
set, the read put routine sends an M_STOPI message downstream. When the queue reduces its
backlog below the low water mark, it sends an M_ STARTI message downstream.

If the number of buffered input characters reaches MAX INPUT, and the IMAXBEL flag is set,
the read put routine discards new input characters and sends a BEL character (Ctr1l-G) down-
stream. If IMAXBEL is not set, it flushes the input queue.

If the ISIG flag is set, the read put routine sends M_PCSIG messages upstream when the
appropriate signal characters are encountered. Then it discards the characters.

If a character matching ¢_cc [VDISCARD] is encountered, and the IEXTEN flag is set, the
read put routine sends an M_FLUSH (FLUSHW) message upstream to flush all write queues.
The M_FLUSH message is reflected by the stream head and sent downstream through all the
write queues.

If the character signifies the logical termination of input, the read put routine sends the
currently buffered characters upstream to the stream head.

Logical termination of input depends on the state of the ICANON flag. If ICANON is set, the
ldterm module is in canonical input mode. In that case, the read put routine logically ter-
minates input at the end of a line of input. Canonical line termination characters are NEWLINE,
EOF, EOL, and EOL2. If ICANON is clear, the 1dterm discipline module is in noncanonical or
raw input mode. In that case, the read put routine terminates input when at least VMIN bytes
are present in the input message buffer or the timer specified by VI'IME expires (see termio(7)
for more details).

M_IOCACK

M_CTL

If the message acknowledges the POSIX termios TCGETS command, the read put routine
copies the c_cflag and speeds information, which is sent by the console driver downstream,
from the message into the internal POSIX termios structure. Then it copies the internal
POSIX termios structure into the message.

If the message acknowledges one of the POSIX termios set commands (i.e. TCSETS,
TCSETSW, and TCSETSF) the read put routine copies all of the data from the message into the
internal POSIX termios structure.

After this processing is done, the read put routine determines if the I/O control command was
originally a BSD 4.3 or System V I/O control command that was converted to a POSIX ter-
mios command by the write service routine. If so, it restores the original data so that the mes-
sage acknowledges the original I/O control command. Then it forwards the message upstream.

This message was sent by the driver to make special requests to 1dterm. The structure of
M_CTL messages is the same as that of M_IOCTL messages. The M_CTL message block points
to a message buffer containing an iocblk data structure (defined in <sys/stream.h>). The
ioc_cmd member of this structure contains a command, just as it does in an M_TIOCTL mes-
sage. The b_cont member of the M_CTL message block contains a pointer to an M_DATA mes-
sage block, which contains data associated with the M_ CTL message.

The read put routine processes M_CTL messages containing the following commands:

MC_NO_CANON
Turn off input processing normally performed on upstream M_DATA messages. This is for
the use of modules or drivers that perform their own input processing such as pseudo-
terminal (see ptm(7) and pts(7)) in REMOTE mode connected to a program that performs
the input processing.

MC_DO_CANON
Turn on input processing normally performed on upstream M_DATA messages. This mes-
sage is sent when the driver want 1dtexrm to exit the REMOTE mode.

Write-side Behavior
ldterm processes the following STREAMS messages on its output stream. Messages not listed here are
simply forwarded downstream.

72 Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

ldterm(7) ldterm(7)

M_FLUSH
The write put routine flushes the write queue and discards any buffered output data. Then, it
forwards the message downstream.

M_DATA The write service routine processes the data according to the POSIX 1003.1 specification output
flags. It sends the processed characters downstream to the driver when the output queue fills up
and all of the data is processed.

M_IOCTL
The write put routine validates the format of the M_IOCTL message and checks for known com-
mands. If the message format is invalid, it turns the M_IOCTL message into an M_IOCNAK
message, and returns the message upstream. If the I/O control command is not recognized, it
forwards the M_TOCTL message downstream for processing by other modules.

The write put routine determines if the command is one that must be processed in the proper
sequence relative to M_DATA messages. If so, it queues the M_TIOCTL message to the write
queue for later processing by the write service routine. Commands that require processing in
sequence are:

TCSETSW, TCSETSF, TCSETAW, TCSETAF, TCSBRK

Otherwise, the module’s write put routine processes the command immediately. Detailed
descriptions of the preceding ioctl commands are provided in the ioct/ Commands subsection,
below.

M_READ This message is sent by the stream head to notify downstream modules when an application has
issued a read request and there is not enough data queued at the stream head to satisfy the
request. The M_READ is sent downstream normally when ldterm is operating in non-
canonical input mode. If VI'IME is positive, the write put routine starts an input timer. When
the timer expires, it sends all buffered input upstream. Then, it forwards the M_READ message
downstream.

ioctl Commands
The 1dtexrm module acts on two categories of ioctl commands:

. Primary terminal I/O control commands
. BSD 4.3 compatibility terminal I/O control commands

Detail descriptions on how to use these ioctls can be found on the termio(7) man page. NOTE: the
FIO[xyz] ioctls documented on termio(7) are currently not supported on 1dterm.

Primary Terminal I/O Control Commands
The 1dtexrm module acts on the following primary terminal I/O commands:

TCSETS, TCSETSW, TCSETSF

When the 1dterm module receives any of these commands in an M_IOCTL message, it for-
wards them downstream. When it receives the M_IOCACK message in the read queue, it copies
the POSIX termios information from the message into the internal POSIX termios struc-
ture and forwards the message upstream. If a mode change requires options at the stream head
to be changed, an M_ SETOPTS message is sent upstream. If the ICANON flag is turned on or
off, the read mode at the stream head is changed to message-nondiscard (RMSGN) with read
notification on (SO_MREADON) or byte-stream mode (RNORM) with read notification off
(SO_MREADOFF), respectively. If the TOSTOP flag is turned on or off, the tostop mode at the
stream head is turned on (SO_TOSTOP) or off (SO_TONSTOP), respectively.

TCGETS The ldterm module forwards the M_TIOCTL message downstream. When it receives the
M_TOCACK message in the read queue, it copies the CLOCAL flags and speeds from the message
into the internal POSIX termios structure. Then, it copies the entire structure into the
M_TIOCACK message and forwards the message upstream.

TCSETA, TCSETAW, TCSETAF
These commands set the old System V termio information. The 1dtexrm module converts the
message to a POSIX termios M_IOCTL message, then forwards the message with a
corresponding POSIX termios command (i.e. TCSETS, TCSETSW, TCSETSF). The original
I/O control command and M_IOCTL message are stored for use on M_TIOCACK.

TCGETA This command get the old System V termio information. The 1dtexrm module converts the
message to a POSIX termios M_IOCTL message, then forwards the message with the

HP-UX 11i Version 3: February 2007 -3- Hewlett-Packard Company 73

ldterm(7) ldterm(7)

74

TCGETS command. The original I/O control command and M_IOCTL message are stored to be
used on M_TIOCACK. When it receives the matching M_ TOCACK message, the 1dterm module
processes it as for a TCGETS command, then converts the POSIX termios information into
the System V termio information and replies.

TCSBRK The 1ldterm module forwards this command downstream to be handled by the driver so that
the driver has a chance to drain the data before sending an M_IOCACK message upstream.

TCXONC This command controls the behavior of input/output flow control. If the argument is 0 and out-
put is not already stopped, an M_STOP message is sent downstream. If the argument is 1 and
the output is stopped, an M_START message is sent downstream. If the argument is 2 and
input is not already stopped, an M_STOPI message is sent downstream. If the argument is 3
and input is stopped, an M_STARTI message is sent downstream.

TCFLSH This command flush the input or/and output streams. If the argument is 0, an M_FLUSH mes-
sage with a flag byte of FLUSHR is sent downstream. This M_FLUSH (FLUSHR) message will be
reflected back upstream by the driver to flush the entire input stream. If the argument is 1, an
M_FLUSH message with a flag byte of FLUSHW is sent upstream. This M_FLUSH (FLUSHW)
message will be reflected downstream by the stream head to flush the entire output stream.

TIOCSWINSZ
This command sets the window size variables. The argument of this command takes a pointer to
a winsize structure. The 1dterm module does not use the window size variable, but main-
tains it here for any needed replies to TIOCGWINSZ commands. The module forwards the mes-
sage downstream.

TIOCGWINSZ
When the 1dterm module receives this command, it returns the window size variable that was
set by the last TIOCSWINSZ command. The argument of this command takes a pointer to a
winsize structure.

EUC_WSET
This command sets the character widths and screen widths for the EUC character sets. The
argument of this command takes a pointer to an eucioc structure which contains the informa-
tion for setting the character widths and screen widths of the EUC character sets. After process-
ing the command, 1dtexrm forwards this message downstream to the next module.

EUC_WGET
This command returns the character widths and screen widths for the EUC character sets. This
command takes a pointer to an eucioc structure via which the EUC character widths and
screen widths information will be returned.

EUC_SET_HP15
This command put 1dterm to the so called HP15 mode which enable 1dterm to recognize the
HP15_SJIS, HP15_BIG5, HP15_CCDC, and HP15_GB character sets and process them in such a
way that they behave like EUC characters. The argument for this command takes a pointer to
an integer value which specify on of the above-mentioned four supported HP15 character sets. If
the argument is set to HP15_ASCII, then 1dterm will switch back to normal ASCII processing.
EUC_WSET is mutually exclusive with EUC_SET_HP15.

EUC_GET_HP15
This command returns the current HP15 character that has been set via the EUC_SET_HP15
command. This command takes a pointer to an integer via which the result is returned. If no
previous EUC_SET_HP15 has been issued, then it will return HP15_ASCII.

BSD 4.3 Compatible Terminal I/O Commands

The 1dtexrm module acts on the following I/O commands, which are compatible with the BSD I/O environ-
ment:

TIOCEXCL
Set ‘exclusive-us€ mode. No further opens are permitted until the file has been closed.

TIOCNXCL
Turn off ‘exclusive-use’ mode.

TIOCSETD
The 1dterm module does nothing but reply to this command. In a BSD system, the command
is used to set the current line discipline type. It does not have much meaning in a STREAMS

Hewlett-Packard Company -4 - HP-UX 11i Version 3: February 2007

ldterm(7) ldterm(7)

environment, because line discipline modules are changed by popping the current module from
the stream and pushing a different one onto the stream.

TIOCGETD
In a BSD system, this command is used to get the current line discipline type. The command
does not have much meaning in a STREAMS environment. The 1dterm module replies with a
value of 2 for binary compatibility, since 1ldterm supports job control.

TIOCFLUSH

This command flush the input or/and output streams similar to that of the TCFLSH command.
The argument is a pointer to an int variable. If its value is zero, both the input and output
streams are flushed by sending the appropriate FLUSHR/FLUSHW M_FLUSH messages
upstream and downstream. Otherwise, the value of the int is treated as the logical OR of the
FREAD and FWRITE flags defined by <sys/file.h>. If the FREAD flag is set, the input
stream is flushed. If the FWRITE flag is set, the output stream is flushed. Then, 1dtexrm ack-
nowledges the message with M_IOCACK.

TIOCOUTQ
This command takes a pointer to an integer and returns the number of characters buffered up in
the 1dterm’s output buffer.

TIOCHPCL
This command sets the POSIX termios HUPCL flag to indicate that the terminal line should
be disconnected when the last file descriptor associated with that line is closed. The 1dterm
module converts the command into a compatible POSIX termios I/O control command by
sending an M_IOCTL message containing the TCSETS command with current termios set-
tings downstream.

TIOCSTART
The command restarts output. If the terminal was stopped, the 1dterm module sends an
M_START message downstream.

TIOCSTOP
This command stops output. The 1dterm module sends an M_STOP message downstream.

TIOCSBRK
This command sets the break condition on a line. The 1dterm module sends an M_BREAK
message containing a value of 1 as data to the driver, then replies with M_ IOCACK

TIOCCBRK
This command clears the break condition on a line. The 1dterm module sends an M_BREAK
message containing a value of 0 (zero) as data to the driver, then replies with M_IOCACK.

TIOCSETP, TIOCSETN
These commands set the sgttyb information, defined in <sys/ttold.h>. The argument is
a pointer to an sgttyb structure. The 1dterm module converts the message to a POSIX
termios M_IOCTL message. Then, it forwards the POSIX termios M_IOCTL message
with a corresponding POSIX termios command (i.e. TCSETSW, TCSETS). The original I/O
control command and M_IOCTL message are stored for use on M_IOCACK.

TIOCGETP
This command returns the sgttyb information based on the interpretation of the current con-
tent of the POSIX termios structure maintained in 1dterm. The argument is a pointer to an
sgttyb structure via where the information is returned.

TIOCSETC
This command sets the tchars information, defined in <sys/strtio.h>. The argument is
a pointer to an tchars structure. The 1dterm module converts the message to a POSIX
termios M_IOCTL message. Then, it forwards the POSIX termios M_IOCTL message
with a corresponding POSIX termios command (i.e. TCSETS). The original I/O control com-
mand and M_TIOCTL message are stored for use on M_IOCACK.

TIOCGETC
This command returns the tchars information based on the interpretation of the current con-
tent of the POSIX termios structure maintained in 1dterm. The argument is a pointer to an
tchars structure via where the information is returned.

TIOCSLTC
This command sets the 1tchars information defined in <sys/bsdtty.h>. The 1dterm

HP-UX 11i Version 3: February 2007 -5- Hewlett-Packard Company 75

1

ldterm (7) ldterm (7)
module converts the message to a POSIX termios M_IOCTL message. Then, it forwards the
POSIX termios M_IOCTL message with a corresponding POSIX termios command
(i.e. TCSETS). The original I/O control command and M_TIOCTL message are stored for use on
M_IOCACK.
TIOCGLTC

The ldterm module returns the ltchars information based on the interpretation of the
current content of the POSIX termios structure maintained in 1dtexrm.

TIOCLBIS, TIOCLBIC, TIOCLSET

These commands set the BSD 4.3 flags information, defined in <sys/strtio.h>. For
TIOCLBIS and TIOCLBIC, the argument is a pointer to an int whose value is a mask con-
taining flags to be set/clear. For TIOCLSET, the argument is a pointer to an int whose value
is a new set of flags to be set. The 1dterm module converts the message to a POSIX termios
M_IOCTL, then forwards the POSIX termios M_IOCTL message with a corresponding
POSIX termios command (i.e. TCSETS). It stores the original I/O control command and
M_TIOCTL message to be used on M_TIOCACK.

TIOCLGET

TIOCSTI

The 1dterm module returns the BSD 4.3 flags information based on the interpretation of the
current content of the POSIX termios structure maintained in 1dtexrm.

This command takes an argument of a pointer to a character and pretends that the character
was typed on the terminal. The user must either have the DEVOPS privilege or have read per-
mission on the controlling terminal against which the ioctl is issued. See privileges(5) for more
information about privileged access on systems that support fine-grained privileges.

FIONREAD

AUTHOR

This command takes an argument of a pointer to an integer and returns the number of immedi-
ately readable characters.

ldterm was developed by HP and OSF.

SEE ALSO

ioctl(2), privileges(5), ptem(7), ptm(7), pts(7), streamio(7), termio(7).

76 Hewlett-Packard Company -6- HP-UX 11i Version 3: February 2007

1p(7) Ip(7)
(Seires 800 Only)

NAME
Ip - line printer

SYNOPSIS
#include <sys/lprio.h>

Remarks
This manual entry applies only to a certain group of printers. For Series 800, it applies to printers con-
trolled by the device driver 1pr2. It does not apply to any printers on Series 700 systems.

DESCRIPTION
This section describes capabilities provided by many line printers supported by various versions of the HP-
UX operating system. A line printer is a character special device that may optionally have an interpreta-
tion applied to the data.

If the character special device file has been created with the raw option (see the HP-UX System Adminis-
trator manuals for information about creating device files with the raw option), data is sent to the printer
in raw mode (as, for example, when handling a graphics printing operation). In raw mode, no interpreta-
tion is done on the data to be printed, and no page formatting is performed. Data bytes are simply sent to
the printer and printed exactly as received.

If the device file does not contain the raw option, data can still be sent to the printer in raw mode. Raw
mode is set and cleared by the LPRSET request.

If the line printer device file does not contain the raw option, data is interpreted according to rules dis-
cussed below. The driver understands the concept of a printer page in that it has a page length (in lines),
line length (in characters), and offset from the left margin (in characters). The default line length, indent,
lines per page, open and close page eject, and handling of backspace are set to defaults determined when
the printer is opened and recognized by the system the first time. If the printer is not recognized, the
default line length is 132 characters, indent is 4 characters, lines per page is 66, one page is ejected on close
and none on open, and backspace is handled for a character printer.

The following rules describe the interpretation of the data stream:
e A form feed causes a page eject and resets the line counter to zero.
e Multiple consecutive form-feeds are treated as a single form-feed.

e The new-line character is mapped into a carriage-return/line-feed sequence, and if an offset is
specified a number of blanks are inserted after the carriage-return/line-feed sequence.

e A new-line that extends over the end of a page is turned into a form-feed.

e Tab characters are expanded into the appropriate number of blanks (tab stops are assumed to
occur every eight character positions as offset by the current indent value).

e Backspaces are interpreted to yield the appropriate overstrike either for a character printer or a
line printer.

e Lines longer than the line length minus the indent (i.e., 128 characters, using the above defaults)
are truncated.

e Carriage-return characters cause the line to be overstruck.
o When it is opened or closed, a suitable number of page ejects is generated.

Two ioctl(2) requests are available to control the lines per page, characters per line, indent, handling of
backspaces, and number of pages to be ejected at open and close times. At either open or close time, if no
page eject is requested the paper will not be moved. For opens, line and page counting will start assuming
a top-of-form condition.

The ioctl requests have the following form:

#include <sys/lprio.h>

int ioctl(int fildes, int request, struct lprio *arg);
The possible values of request are:

LPRGET Get the current printer status information and store in the lprio structure to which
arg points.

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 77

-

Ip(7) Ip(7)

(Seires 800 Only)

LPRSET Set the current printer status information from the structure to which arg points.

The lprio structure used in the LPRGET and LPRSET requests is defined in <sys/lprio.h>, and
includes the following members:

short int ind; /* indent */

short int col; /* columns per page */

short int 1line; /* lines per page */

short int Dbksp; /* backspace handling flag */
short int open_ej; /* pages to eject on open */

short int close_ej; /* pages to eject on close */
short int raw mode; /* raw mode flag */

These are remembered across opens, so the indent, page width, and page length can be set with an external
program. Ifthe col field is set to zero, the defaults are restored at the next open.

If the backspace handling flag is 0, a character printer is assumed and backspaces are passed through the
driver unchanged. If the flagis a 1, a line printer is assumed, and sufficient print operations are generated
to generate the appropriate overstruck characters.

If the raw mode flag is 0, data sent to the printer is formatted according to indent, columns per page, lines
per page, backspace handling, and pages to eject on open and close.

If the raw mode flag is 1, data sent to the printer is not formatted.

If the raw mode flag is changed from 1 to 0 (raw mode is turned off) and the format settings (indent,
columns per page, etc.) have not been modified, the data is formatted according to the prior format set-
tings.

AUTHOR
1p was developed by HP and AT&T.
FILES
/dev/1lp default or standard printer used by some HP-UX commands;

/dev/[r]lp* special files for printers

SEE ALSO

78

1p(1), slp(1), ioctl(2), cent(7), intro(7).

Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

lvin(7) lvim (7)

NAME
lvm - Logical Volume Manager (LVM)

DESCRIPTION
The Logical Volume Manager (LVM) is a subsystem for managing disk space. The HP LVM subsystem
offers value-added features, such as mirroring (with the optional HP MirrorDisk/UX software), high availa-
bility (with the optional HP ServiceGuard software), and striping, that enhance availability and perfor-
mance.

Unlike earlier arrangements where disks were divided into fixed-sized sections, LVM allows the user to
consider the disks, also known as physical volumes, as a pool (or volume) of data storage, consisting of
equal-sized extents. The default size of an extent is 4 MB.

An LVM system consists of arbitrary groupings of physical volumes, organized into volume groups. A
volume group can consist of one or more physical volumes. There can be more than one volume group in
the system. Once created, the volume group, and not the disk, is the basic unit of data storage. Thus,
whereas earlier one would move disks from one system to another, with LVM, one would move a volume
group from one system to another. For this reason it is often convenient to have multiple volume groups on
a system.

Volume groups can be subdivided into virtual disks, called logical volumes. A logical volume can span a
number of physical volumes or represent only a portion of one physical volume. The pool of disk space that
is represented by a volume group can be apportioned into logical volumes of various sizes. The size of a log-
ical volume is determined by its number of extents. Once created, logical volumes can be treated just like
disk partitions. Logical volumes can be assigned to file systems, used as swap or dump devices, or used for

raw access.

LVM information can be created, displayed, and manipulated with the following commands: 1
lvchange Change logical volume characteristics
lvcreate Stripe, create logical volume in volume group
lvdisplay Display information about logical volumes
lvextend Increase space, increase mirrors for logical volume
lvlinboot Prepare logical volume to be root, primary swap, or dump volume
lvreduce Decrease number of physical extents allocated to logical volume
lvremove Remove one or more logical volumes from volume group
lvrmboot Remove logical volume link to root, primary swap, or dump volume
pvchange Change characteristics of physical volume in volume group
pvcreate Create physical volume for use in volume group
pvdisplay Display information about physical volumes within volume group
pvmove Move allocated physical extents from one physical volume to other physical
volumes

vgcfgbackup Create or update volume group configuration backup file
vgcfgrestore Display or restore volume group configuration from backup file

vgchange Set volume group availability

vgcreate Create volume group

vgdisplay Display information about volume groups

vgexport Export a volume group and its associated logical volumes
vgextend Extend a volume group by adding physical volumes
vgimport Import a volume group onto the system

vgmodify Modify volume group attributes

vgreduce Remove physical volumes from a volume group
vgremove Remove volume group definition from the system
vgscan Scan physical volumes for volume groups

The following commands are also available if the HP MirrorDisk/UX software is installed:

lvmerge Merge two logical volumes into one logical volume
lvsplit Split mirrored logical volume into two logical volumes
lvsync Synchronize stale mirrors in logical volumes

vgsync Synchronize stale logical volume mirrors in volume groups

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 79

1

lvin(7) lvim (7)

Device Special Files

In this release of HP-UX 11i, the Mass Storage Stack supports two naming conventions for the device spe-
cial files used to identify devices (see intro(7)). Devices can be represented using:

o Persistent device special files, (/dev/disk/disk3), or
o Legacy device special file names, (/dev/dsk/c0t64d6).

While LVM supports the use of both conventions within the same volume group, the examples shown in the
LVM man pages are all using the legacy device special file convention.

Alternate Links (PVLinks)

In this release of HP-UX, LVM continues to support Alternate Links to a device to allow continued access to
the device, if the primary link fails. This multiple link or multipath solution increases data availability, but
continues disallowing the use of multiple paths simultaneously.

A new feature was introduced in the Mass Storage Subsystem on HP-UX 11i Version 3 that supports multi-
ple paths to a device and allows simultaneous access to these paths. The Mass Storage Subsystem will bal-
ance the I/O load across the valid paths. Multipathingis the default unless the sesimgr command is used
to enable legacy multipathing and also the active path is a legacy device special file. See scsimgr(1M) for
details.

Even though the Mass Storage Subsystem supports 32 multiple paths per physical volume on this version
of HP-UX, LVM does not support more than eight paths to any physical volume. As a result, commands
like vgcreate and vgextend will not succeed in adding more than eight paths per physical volume.
Additionally, vgimport and vgscan cannot write more than eight paths per physical volume in the
/etc/lvmtab file. If users want to use any specific path other than these eight paths, then they have to
vgreduce one of the alternate paths in the volume group and add that specific path using vgextend.

It is no longer required or recommended to configure LVM with alternate links. However, it is possible to
maintain the traditional LVM behavior. To do so, both of the following criteria must be met:

e Only the legacy device special file naming convention is used in the volume group configuration.

e The scsimgr command is used to enable the legacy multipath behavior for each physical volume
in the volume group.

EXAMPLES

80

The basic steps to take to begin using LVM are as follows:
o Identify the disks to be used for LVM.
e Create an LVM data structure on each identified disk (see pvcreate (1M)).
e Collect all the physical volumes to form a new volume group (see vgereate (1M)).
o Create logical volumes from the space in the volume group (see lvcreate (1M)).
e Use each logical volume as if it were a disk section (create a file system, or use for raw access).
To configure disk /dev/dsk/c0t0d0 as part of a new volume group named vg01:
First, initialize the disk for LVM with the pvcreate command.
pvcreate /dev/rdsk/c0t0d40
Then, create the pseudo device file that is used by the LVM subsystem.

mkdir /dev/vg0l
mknod /dev/vg0l/group c 64 0x010000

The minor number for the group file should be unique among all the volume groups on the system. It has
the format 0xNN0000, where NN ranges from 00 to ££.

Create the volume group, vg0l, containing the physical volume, /dev/dsk/c0t0d0, with the
vgcreate command.

vgcreate /dev/vg0l /dev/dsk/c0t0d40

You can view information about the newly created volume group with the vgdisplay command.
vgdisplay -v /dev/vg0l

Create a logical volume of size 100 MB, named usxrvol, on this volume group with the 1vcreate com-

mand.

Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

lvin(7) lvim (7)

lvcreate -L 100 -n usrvol /dev/vg0l

This creates two device files for the logical volume, /dev/vg01l/usrvol, which is the block device file,
and /dev/vg0l1l/rusrvol, which is the character (raw) device file.

You can view information about the newly created logical volume with the 1vdisplay command.
lvdisplay /dev/vg0l1l/l1lvoll

Any operation allowed on a disk partition is allowed on the logical volume. Thus, you can use usrvol to
hold a file system.

newfs /dev/vg0l/rusrvol
mount /dev/vg0l/usrvol /usr

SEE ALSO
Ivchange(1M), lvcreate(1M), lvdisplay(1M), lvextend(1M), Ivinboot(1M), Ivreduce(1M), lvremove(1M),
Ivrmboot(1M), pvchange(1M), pvereate(1M), pvdisplay(1M), pvmove(1M), vgefgbackup(1M),
vgefgrestore(1M), vgchange(1M), vgcereate(1M), vgdisplay(1M), vgexport(1M), vgextend(1M), vgimport(1M),
vgmodify(1M), vgreduce(1M), vgremove(1M), vgscan(1M), intro(7).

Managing Systems and Workgroups.
If HP MirrorDisk/UX is installed: lvmerge(1M), lvsplit(1M), lvsync(1M), vgsync(1M).
If HP ServiceGuard is installed: cmcheckconf(1M), cmquerycl(1M), Managing MC/ServiceGuard.

HP-UX 11i Version 3: February 2007 -3- Hewlett-Packard Company 81

mem (7) mem (7)

NAME

mem - main memory image file

DESCRIPTION
mem is a special file that is an image of the main memory of the computer. It may be used, for example, to
examine and patch the system.

Byte addresses in mem are interpreted as physical memory addresses. References to non-existent locations
cause errors to be returned.

File kmem is the same as mem except that kernel virtual memory rather than physical memory is accessed.
Please refer to kmem(7) for information about ioctl operations that are supported on /dev/kmem.

WARNINGS
Examining and patching device registers is likely to lead to unexpected results when read-only or write-
only bits are present.

FILES
/dev/mem

/dev/kmem

SEE ALSO
kmem(7).

82 Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

modem (7) modem (7)

NAME

modem - asynchronous serial modem line control

SYNOPSIS
#include <sys/modem.h>

DESCRIPTION
This section describes the two modes of modem line control and the three types of terminal port access. It
also discusses the effect of the bits of the termio structure that affect modem line control. The modem-
related ioctl () system calls (see ioctl(2)) are discussed at the end of the manpage.

Definitions
There are several terms that are used within the following discussion which will be defined here for refer-
ence.

"Modem control lines" (CONTROL) are generally defined as those outgoing modem lines that are automati-
cally controlled by the driver.

"Modem status lines" (STATUS) are generally defined as those incoming modem lines that are automati-
cally monitored by the driver.

CONTROL and STATUS for a terminal file vary according to the modem line control mode of the file (see
the Modem Line Control Modes section below).

An open () (see open(2)) to a port is considered to be BLOCKED if it is waiting for another file on the
same port to be closed.

An open () to a port is considered to be PENDING if it is waiting for the STATUS to be raised.

An open () to a port is considered to be SUCCESSFUL if the open () system call has returned to the cal-
ling process without error.

Open Flag Bits
Currently, the only open () flag bits recognized by the driver are the O_NDELAY and O_NONBLOCK bits.
When either of these bits is set, an open () call to the driver will never become blocked. If possible, the
open () will be returned immediately as SUCCESSFUL, and the driver will continue the process of open-
ing the tty file. If it is not possible, then the open () will be returned immediately with the appropriate
error code as described in the appropriate section.

Termio Bits

When set, the CLOCAL bit in the termios or termio structure (see termio(7)) is used to remove the driver’s
automatic monitoring of the modem lines. However, the user’s ability to control the modem lines is deter-
mined only by the mode in effect and does not depend on the state of CLOCAL. Normally, the driver will
monitor and require the STATUS to be raised. An open () system call will raise the CONTROL and wait
for the STATUS before completing unless the CLOCAL bit is set. (If the O_NDELAY or O_NONBLOCK bit
is set, the open () will be returned immediately, but the driver will otherwise continue to monitor the
modem lines as normal based on the state of the CLOCAL bit.) Normally, loss of the STATUS will cause
the driver to break the modem connection and lower the CONTROL. However, if CLOCAL is set, any
changes in the STATUS will be ignored. A connection is required before any data may be read or written,
unless CLOCAL is set. Any timers that would normally be in effect (see the Modem Line Control Modes
and Modem Timers sections below) will be stopped while CLOCAL is set.

When the CLOCAL bit is changed from clear to set, the driver will assume the existence of an active device
(such as a modem) on the port regardless of the STATUS. If any of the CONTROL are raised at that point
in time, they will continue in that state. The STATUS will no longer be actively monitored. When the
CLOCAL bit is changed from set to clear, the driver will resume actively monitoring the STATUS. If all of
the CONTROL and STATUS are raised at that point in time, the driver will continue the modem connec-
tion. If any of the STATUS are not raised, the driver will act as though those signals were lost (as
described in the Modem Line Control Modes section below) and, if the device is a controlling terminal, a
hangup signal will be sent to the controlling process. If any of the CONTROL are not raised, the driver will
break the modem connection by lowering all the CONTROL.

The HUPCL bit in the termios or termio structure determines the action of the driver regarding the CON-
TROL when the last close () system call (see close(2)) is issued to a terminal file. If the HUPCL bit is
set, the driver will lower the CONTROL at close() time and the modem connection will be broken. If
HUPCL is not set and a modem connection exists, it will continue to exist, even after the close () is

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 83

modem (7) modem (7)

84

issued. The driver will not change the CONTROL.

Terminal Port Access Types

There are three types of modem access: call-in connections, call-out connections, and direct (no modem con-
trol) connections. A given port may be accessed through all three types of connection by accessing different
files. The modem access type of a terminal file is determined by the fil€s major and/or minor device
numbers.

The call-in type of access is used when the connection is expected to be established by an incoming call.
This is the type that would be used by getty(1M) to accept logins over a modem. When an open() is
issued to such a file, the driver may wait for an incoming call and will then raise the CONTROL based on
the current mode (see below) of the port. When the port is closed, the driver may or may not lower the
CONTROL depending on the HUPCL bit.

The call-out type of access is used when the connection is expected to be established by an outgoing call.
This would be used by programs such as uucp(1). When an open () is issued to such a file, the driver will
immediately raise the CONTROL and wait for a connection based on the mode currently in effect. When
the port is closed, the driver may or may not lower the CONTROL depending on the HUPCL bit.

The direct type of access is used when no driver modem control is desired. This could then be used for
directly connected terminals that use a three-wire connection, or to talk to a modem before a connection
has been established. The second case allows a program to give dialing instructions to the modem. Neither
the CLOCAL nor the HUPCL bits have any effect on a port accessed through a direct file. (However, both
bits may be inherited by other types of files; see the Terminal Port Access Interlock section below.) An
open () to a direct file does not affect the CONTROL and does not depend on any particular state of the
STATUS to succeed. When the file is closed, the driver will not affect the state of the CONTROL. If a
modem connection has been established, it will continue to exist. Setting the speed of a direct file to BO
(see termio(7)) will be considered an impossible speed change and will be ignored. It will not affect the
CONTROL.

Modem Line Control Modes

There are two modes of modem line control: CCITT mode and simple mode. A given port may have only
one of these two modes in effect at any given point in time. An attempt to open a port with a mode other
than the one in effect (from a PENDING or SUCCESSFUL open() on a different file) will cause the
open () to be returned with an [ENXIO] error. The modem access type of a terminal file is determined by
the file’s major and/or minor device numbers.

CCITT mode is used for connections to switched line modems. The CONTROL for CCITT mode are Data
Terminal Ready (DTR) and Request to Send (RTS). The STATUS are Data Set Ready (DSR), Data Carrier
Detect (DCD), and Clear to Send (CTS). Additionally, the Ring Indicator (RI) signal indicates the presence
of an incoming call. When a connection is begun (an incoming call for a call-in file or an open () issued to
a call-out file), the CONTROL are raised and a connection timer (see the Modem Timers section below) is
started. If the STATUS become raised before the time period has elapsed, a connection is established and
the open () request is returned successfully. If the time period expires, the CONTROL are lowered and
the connection is aborted. For a call-in file, the driver will wait for another incoming call; for a call-out file,
the open () will be returned with an [EIO] error. Once a connection is established, loss of either DSR or
CTS will cause the CONTROL to be lowered and, if the device is a controlling terminal, a hangup signal
will be sent to the controlling process.

If DCD is lost, a timer is started. If DCD resumes before the time period has expired, the connection will
be maintained. However, no data transfer will occur during this time. The driver will stop transmitting
characters, and any characters received by the driver will be discarded. (However, on some implementa-
tions data transmission cannot be stopped. See the DEPENDENCIES section.) If DCD is not restored
within the allotted time, the connection will be broken as described above for DSR and CTS.

If the modem connection is to be broken when the close () system call is issued (i.e. HUPCL is set), then
the CONTROL will be lowered and the close () will be returned as successful. However, no further
open () s will be allowed until after both DSR and CTS have been lowered by the modem, and the hangup
timer (see the Modem Timers section below) has expired. The action taken in response to an open () dur-
ing this time will be the same as if the port were still open. (See the Terminal Port Access Interlock section
below.)

When a port is in CCITT mode, the driver has complete control of the modem lines and the user is not
allowed to change the setting of the CONTROL or affect which STATUS are actively monitored by the
driver (see the Modem Ioctls section below). This is to provide strict adherence with the CCITT recommen-
dations.

Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

modem (7) modem (7)

Simple mode is used for connections to devices which require only a simple method of modem line control.
This can include devices such as black boxes, data switches, or for system-to-system connections. It can
also be used with modems which cannot operate under the CCITT recommendations. The CONTROL for
simple mode consists of only DTR. The STATUS consists of only DCD. When an open () is issued, the
CONTROL is raised but no connection timer is started. When the STATUS becomes raised, a connection is
established and the open () request is returned as SUCCESSFUL. Once a connection is established, loss
of the STATUS will cause the CONTROL to be lowered and, if the device is a controlling terminal, a hangup
signal will be sent to the controlling process.

When a port is in simple mode, the driver will normally control the modem lines. However, the user is
allowed to change the setting of the CONTROL (see the Modem Ioctls section below).

Terminal Port Access Interlock
An interlock mechanism is provided between the three access types of terminal files. It prevents more than
one file from being successfully opened at a time, but allows certain open () s to succeed while others are
PENDING so that a port can be opened through a call-out connection while getty has a pending open () at
a call-in connection. The three access types are given a priority that determines which open() will
succeed if more than one file has an open () issued against it. The three access types are ordered from
lowest priority to highest as follows: call-in, call-out, and direct.

If an open () isissued to a port which already has a SUCCESSFUL open () on it of a lower priority type,

the new open () will be returned with an [EBUSY] error. ([EBUSY] will also be returned by an attempted

open() on a CCITT call-out file if an incoming call indication is currently being received. In this case, if

there is a PENDING open () on the corresponding CCITT call-in file, this PENDING open () will com-

plete.) If the lower priority open () is PENDING, the new open () will succeed if possible, or will be left

PENDING if waiting for the STATUS and the lower priority open () will become BLOCKED. If a higher

priority open() has succeeded or is PENDING, the new open() will be BLOCKED, unless the new

open() has the O_NDELAY flag bit set, in which case the open () will be returned with an [EBUSY]

error. Once an open () on one type of file is SUCCESSFUL, any PENDING opens on lower priority files -
will become BLOCKED.

When a file of one priority is closed, a BLOCKED open () on the next lower priority type file will become m
active. If all of the STATUS are raised, the open () will be SUCCESSFUL, otherwise the open () will

become PENDING waiting for the STATUS. If the lower priority open () is SUCCESSFUL (because the

connection was maintained when the higher priority file was closed), the port characteristics (speed, parity,

etc.) that were set by the higher priority file will be inherited by the lower priority file. If the connection is

not maintained through the close (), the port characteristics will be set to default values.

Modem Timers
There are four timers currently defined for use with modem connections. The first three of the timers are
applicable only to CCITT mode connections. In general, the effect of changing a timer value while the
timer is running is system dependent. However, setting the timer value to zero is guaranteed to disable
the timer even if it is running.

The connect timer is used to limit the amount of time to wait for a connection to be established once it has
been begun. This timer is started when an incoming call has been received on a call-in file, or when an
open () has been issued on a call-out file for which no opens are already pending. If the connection is
completed in time, the timer is aborted. If the time period expires, the connection is aborted. For a call-in
file, the driver will again wait for an incoming call and the open () will remain pending. For a call-out
file, the open () will be returned with an [EIO] error.

The carrier detect timer is used to limit the amount of time to wait before causing a disconnect if DCD
drops. If carrier is not re-established in this time, a disconnect will occur. If carrier is re-established before
the timeout, the timer will be aborted and the connection maintained. During the period when carrier is
not raised, no data will be transferred across the line.

The no activity timer is used to limit the amount of time a connection will remain open with no data
transfer across the line. When the data line becomes quiescent with no data transfer, this timer will be
started. If data is again transferred over the line in either direction before the time limit, the timer will be
aborted. If no activity occurs before the timeout has occurred, the driver will disconnect the line. This can
be used to avoid long and costly telephone connections when data transfer has been stopped either normally
or abnormally.

The last timer defined, the hangup timer, is used for both CCITT and simple modes. This timer controls
the amount of time to wait after disconnecting a modem line before allowing another open (). This time
period should be made long enough to guarantee that the connection has been terminated by the telephone

HP-UX 11i Version 3: February 2007 -3- Hewlett-Packard Company 85

modem (7) modem (7)

switching equipment. If this period is not long enough, the telephone connection may not be broken and a
succeeding open () may complete with the old connection.

HP-UX Modem Ioctls
Several ioctl () system calls apply to manipulation of modem lines. They use the following information
defined in <sys/modem.h>:

#define NMTIMER 6

typedef unsigned long mflag;

struct mtimer {
unsigned short m_ timers[NMTIMER];
};

Each bit of the mflag long corresponds to one of the modem lines as follows:

MRTS Request to Send outbound
McTS Clear to Send inbound
MDSR Data Set Ready inbound

MDCD Data Carrier Detect inbound
MDTR Data Terminal Ready outbound
MRI Ring Indicator inbound
MDRS Data Rate Select outbound

The timer values are defined in the array m_timexrs. The relative position of the timer and default initial
values and units for each timer are as follows:

0 MTCONNECT 25 s

1 MTCARRIER 400 ms
2 MTNOACTIVITY O min
3 MTHANGUP 250 ms
4 Reserved

5 Reserved

A value of zero for any timer will disable that timer.
The modem line ioctl () system calls have the form:
int ioctl (int fildes, int command, mflag *arg);

The commands using this form are:

MCGETA Get the current state of both inbound and outbound modem lines and store in the mflag
long referenced by arg. A raised line will be indicated by a one bit in the appropriate posi-
tion.

MCSETA Set the outbound modem lines from the mflag long referenced by arg. Setting an out-

bound bit to one causes that line to be raised and zero to be lowered. Setting bits for
inbound lines has no effect. Setting any bits while in CCITT mode has no effect. The
change to the modem lines is immediate and using this form while characters are still being
output may cause unpredictable results.

MCSETAW Wait for the output to drain and set the new parameters as described above.

MCSETAF Wait for the output to drain, then flush the input queue and set the new parameters as
described above.

The timer value ioctl () system calls have the form:
int ioctl (int fildes, int command, mtimer *arg);
The commands using this form are:
MCGETT Get the current timer value settings and store in the mé¢imer structure referenced by arg.
MCSETT Set the timer values from the structure referenced by arg.
For any timer, setting the timer value to its previous value has no effect.
SVID3 Modem Ioctls

System V Interface Definition, Third Edition (SVID3) specifies additional ioctl () system calls to mani-
pulate the modem lines. They use information defined in <termios.h>.

86 Hewlett-Packard Company -4 - HP-UX 11i Version 3: February 2007

modem (7) modem (7)

Each ioctl () passes an integer argument in which each of the following bit definitions correspond to one
of the modem lines as follows:

TIOCM_RTS Request to Send outbound
TI0CM CTS Clear to Send inbound
TIOCM_DSR Data Set Ready inbound

TIOCM CAR Data Carrier Detect inbound
TIOCM_DTR Data Terminal Ready outbound
TIOCM_RNG Ring Indicator inbound

Additionally, TTOCM_CD is equivalent to TIOCM_CAR, and TIOCM_RI is equivalent to TIOCM_RNG.
The modem line ioctl () system calls have the form:

int ioctl (int fildes, int command, int *arg);
The commands using this form are:

TIOCMGET Get the current state of both inbound and outbound modem lines and store in the int refer-
enced by arg. A raised line will be indicated by a one bit in the appropriate position.

TIOCMSET Set the outbound modem lines from the int referenced by arg.

TIOCMBIS Raise the control lines specified by a one in the corresponding bit positions of the int refer-
enced by arg.

TIOCMBIC Lower the control lines specified by a one in the corresponding bit positions of the int refer-
enced by arg.

Note that setting bits for inbound lines has no effect, and setting any bits while in CCITT mode has no
effect. Also, the change to the modem lines is immediate and using these ioctl’s while characters are still
being output may cause unpredictable results.

WARNINGS
Occasionally it is possible that a process may open a call-out file at approximately the same time as an
incoming call is received. In some cases, the call-out connection may be satisfied by the incoming call. In
general, however, the results are indeterminate. If necessary, the situation can be avoided by the use of
two modems and ports, one for call-out connections and the other for receiving incoming calls.

DEPENDENCIES
Some hardware implementations may not have access to all modem lines supported by MCSETA. If a par-
ticular hardware does not support a given line, attempts to set the value of a line will be ignored, and read-
ing the current state of the line will return zero. The appropriate I/O card manual should be referenced to
determine the lines supported by the hardware installed.

Some hardware implementations may not have access to all timers supported by MCSETT. Also, the
granularity of the individual timers may vary depending on the hardware and system in use. The effect of
setting a timer out of range or with a granularity outside the capability of a particular system should be
documented by that system. The effect of changing the value for a timer while that timer is running is sys-
tem dependent and should be documented by each system.

Setting the CLOCAL bit while a timer is running will cause the timer to be stopped. It is a system depen-
dency whether or not the timer is restarted, and if so, the value at which it is restarted when the CLOCAL
bit is subsequently cleared.

On those implementations supporting the HP27140A 6-Channel Multiplexer, transmission of characters
cannot be stopped during loss of DCD. The driver cannot detect loss of DCD until the connection is broken.
Also, the I/O card may still have characters in its internal buffers and will still try to transmit them.

AUTHOR
modem was developed by HP and AT&T.

FILES
/dev/cua*
/dev/cul*
/dev/tty*
/dev/ttyd*

HP-UX 11i Version 3: February 2007 -5- Hewlett-Packard Company 87

modem (7) modem (7)

SEE ALSO
stty(1), mknod(1M), ioctl(2), open(2), termio(7).

88 Hewlett-Packard Company -6- HP-UX 11i Version 3: February 2007

mt(7) mt(7)

NAME
mt - magnetic tape interface and controls for stape and estape

DESCRIPTION
This entry describes the behavior of HP magnetic tape interfaces and controls. The files /dev/rtape/*
refer to specific raw tape drives controlled by the estape driver. The major number of these device special
files is dynamically allocated and the minor number does not encode any device specific information.

The files /dev/xrmt/* refer to specific raw tape drives controlled by the legacy stape driver, and the
behavior of each given unit is specified in the major and minor numbers of the DSF. The legacy driver and
DSFs are deprecated and will be removed in a future version of HP-UX.

Naming Conventions
The device special files (referred to as DSFs) for the estape driver have the following naming conven-
tions:

/dev/rtape/tape#_BEST|[n][b]

There are four such files (referred to as persistent DSFs) corresponding to each of the four different permu-
tations of the n and b options. These are claimed by the estape driver. See intro(7) for more details on
persistent device special file names.

There are two naming conventions for legacy DSFs. The standard (preferred) convention is used on sys-
tems that support long file names. An alternate convention is provided for systems limited to short file
names. The following standard convention is recommended because it allows for all possible configuration
options in the device name and is used by mksf(1M) and insf(1M):

/dev/rmt/c#t#d#[o][z]le][p][s[#]][wIBEST[C[#]][n][b]

The following alternate naming convention is provided to support systems in which the /dev/rmt direc-
tory requires short file names. These DSF names are less descriptive, but guarantee unique device naming
and are used by mksf(1M) and insf(1M) where required.

/dev/rmt/c#t#d#[£#|i#][n][b]

For each tape device present, twelve DSFs are automatically created when the system is installed. If
legacy mode is disabled (via the =L option in xrms¥f), only four DSFs in /dev/rtape will be created post
installation. These are claimed by the estape driver.

Four legacy DSFs will be created in the /dev/rmt directory using the following naming convention.
These are legacy DSFs and are claimed by the stape driver.

/dev/rmt/c#t#A#BEST [n][b].

Four more legacy DSFs with the format /dev/xrmt/ #m[n][b] will be automatically created when the sys-
tem is installed using the pre-HP-UX 10.0 device file naming convention. This includes an arbitrary
number to distinguish this tape device from others in the system, followed by the letter m. There are four
such DSFs because each of the four different permutations of the n and b options (see below) are created.
These files are created for compatability with pre-HP-UX 10.0 scripts and for users who find the old conven-
tion easier to remember.

Each of the automatically created DSFs which utilize the standard or alternate naming conventions is
linked to a device file which utilizes the pre-HP-UX 10.0 naming convention. That is, the DSFs in the for-
mat /dev/rmt/ #m[n][b] are created as hardlinks to the corresponding /dev/rmt/c #t#d#BEST [n][b]
DSF's mentioned above.

Thus, the DSFs which utilize the pre-HP-UX 10.0 naming convention provide the same functionality as the
device files which contain the density specification BEST (standard naming convention).

Options
The options described here are common to all legacy tape drivers. The c#t#d# notation in the legacy DSF
name derives from ioscan output and is described in the manpages for ioscan(1M) and intro(7).

c# Instance number assigned by the operating system to the interface card.

t# Target address on a remote bus (for example, SCSI address)

da# Device unit number at the target address (for example, SCSI LUN).

w Writes wait for physical completion of the operation before returning status. The default

behavior (buffered mode or immediate reporting mode) requires the tape device to buffer the

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 89

mt(7) mt(7)

90

data and return immediately with successful status.
density Density or format used in writing data to tape. This field is designated by the following values:

BEST Highest-capacity density or format will be used, including data compression, if
the device supports compression.

NOMOD Maintains the density used for data previously written to the tape. Behavior
using this option is dependent on the type of device. This option is only sup-
ported on DDS drives.

DDS Selects one of the known DDS formats; can be used to specify DDS1 or DDS2, as
required.

DLT Selects one of the known DLT formats; can be used to specify DLT42500_24,
DLT42500_56, DLT62500_64, DLT81633_64, or DLT85937_52, as
required.

D#] Specifies density as a numeric value to be placed in the SCSI mode select block

descriptor. The header file <sys/mtio.h> contains a list of the standard den-
sity codes. The numeric value is used only for density codes which cannot be
found in this list.

C[#] Write data in compressed mode, on tape drives that support data compression. If a number is
included, use it to specify a compression algorithm specific to the device. Note, compression is
also provided when the density field is set to BEST.

n No rewind on close. Unless this mode is requested, the tape is automatically rewound upon
close.
b Specifies Berkeley-style tape behavior. When the b is absent, the tape drive follows AT&T-style

behavior. The details are described in Tape Behavioral Characteristics below.

£# Specify format (or density) value encoded in the minor number. The meaning of the value is
dependent on the type of tape device in use. (Used for short file name notation only.)

i# Specify an internal Property Table index value maintained by the tape driver, containing an
array of configuration options. The contents of this table are not directly accessible. Use the
Issf(1M) command to determine which configuration options are invoked. (Used for short file
name notation only.)

o Console message disabled. See mksf(1M).

z RTE compatible close. See mksf(1M).

e Exhaustive mode. See DEPENDENCIES section.

ho] Tape partition. See DEPENDENCIES section.

s Fixed-block mode. See DEPENDENCIES section.

#m For pre-HP-UX 10.x device file naming convention.

Sample Tape Device Special File Names

For a HP Ultrium-2 drive at card instance 1, target 2, LUN 3 the legacy DSFs would be
/dev/rmt/cl1lt2d3BEST[n|[b]. The corresponding persistent DSFs assuming an instance number "1"
allocated to the DSF would be /dev/rtape/tapel_ BEST[n]|[b]. Corresponding device special files in
the pre-HP-UX 10.0 naming convention would be /dev/rmt/Om[n][b]. In this particular example, 0
(zero) in Om[n][b] denotes an instance number of 0 (zero) assigned to the DSF. The files in the
/dev/rmt/#m[n][b] format are created as hardlinks to the corresponding
/dev/rmt/c#t#d#BEST [n][b] DSFs.

Use the Issf(1M) command to determine which configuration options are actually used with any device file.
The naming convention defined above should indicate the options used, but device files may be created with
any user defined name.

Tape Behavioral Characteristics

When opened for reading or writing, the tape is assumed to be positioned as desired.

When a file opened for writing is closed, two consecutive EOF (End of File) marks are written if, and only
if, one or more writes to the file have occurred. The tape is rewound unless the no-rewind mode has been
specified, in which case the tape is positioned before the second EOF just written.

Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

mt(7) mt(7)

When a file open for reading (only) is closed and the no-rewind bit is not set, the tape is rewound. If the
no-rewind bit is set, the behaviour depends on the style mode. For AT&T-style devices, the tape is posi-
tioned after the EOF following the data just read (unless already at BOT or Filemark). For Berkeley-style
devices, the tape is not repositioned in any way.

Each read(2) or write(2) call reads or writes the next record on the tape. For writes, the record has the
same length as the buffer given (within the limits of the hardware).

During a read, the record size is passed back as the number of bytes read, up to the buffer size specified.
Since the minimum read length on a tape device is a complete record (to the next record mark), the
number of bytes ignored (for records longer than the buffer size specified) is available in the mt_resid
field of the mtget structure via the MTIOCGET call of ioctl(2). Current restrictions require tape device
application programs to use 2-byte alignment for buffer locations and I/O sizes. To allow for more stringent
future restrictions (4-byte aligned, etc.) and to maximize performance, page alignment is suggested. For
example, if the target buffer is contained within a structure, care must be taken that structure elements
before the buffer allow the target buffer to begin on an even address. If need be, placing a filler integer
before the target buffer will insure its location on a 4-byte boundary.

The ascending hierarchy of tape marks is defined as follows: record mark, filemark (EOF), setmark and
EOD (End of Data). Not all devices support all types of tape marks but the positioning within the hierar-
chy holds true. Each type of mark is typically used to contain one or more of the lesser marks.

When spacing over a number of a particular type of tape mark, hierarchically superior marks (except EOD)
do not terminate tape motion and are included in the count. For instance, MTFSR can be used to pass over
record marks and filemarks.

Reading an EOF mark is returned as a successful zero-length read; that is, the data count returned is zero
and the tape is positioned after the EOF, enabling the next read to return the next record.

DDS devices also support setmarks, which are used to delineate a group (set) of files. Reading a setmark is
also returned as a zero-length read. Filemarks, setmarks and EOD can be distinguished by unique bits in
the mt_gstat field.

Spacing operations (back or forward space, setmark, file or record) position past the object being spaced to
in the direction of motion. For example, back-spacing a file leaves the tape positioned before the file mark;
forward-spacing a file leaves the tape positioned after the file mark. This is consistent with standard tape
usage.

Iseek(2) type seeks on a magnetic tape device are ignored. Instead, the ioct/(2) operations below can be
used to position the tape and determine its status.

The header file <sys/mtio.h> has useful information for tape handling.
Macros to Decode Options

The minor number of the device ID (dev_t) of persistent tape device special files no longer encode the
tape device options (such as, density, style of access and so on). Hence the macros given below, that are
defined in <sys/mtio.h> header file do not interpret the options correctly for persistent (agile) DSFs.
The macros are:

M_INSTANCE (dev) M_TARGET (dev)

M_LUN (dev) M_BERKELEY (dev)

M_NO_REWIND (dev) M_USER_CONFIG (dev)

M_INDEX (dev) M_INDEX_PUT (dev, index)

M_DFLT_ DENSITY (dev) M_DFLT_DENSITY PUT(dev,density)

M_TRANSPARENT MODE(dev) M_PROP_TBL_ACCESS (dev)
These macros continue to work on the legacy DSFs as before.

Applications should use the method described below to decode the tape device options from persistent dev-
ice files.

1ibIO(3X) API io_dev_to_options is used to decode the device options from the persistent device files
as given below:

#include <1ibIO.h>
#include <sys/_inttypes.h>
#include <fcntl.h>

Note: 1ibIO calls should be within calls to io_init () and io_end (). Refer to /ibIO(3X) manpage
for more details. Applications have to link with 1ibIO library to access these APIs.

HP-UX 11i Version 3: February 2007 -3- Hewlett-Packard Company 91

mt(7)

mt(7)

mt_get_newdev_options() and mt_check_newdev_options () are utility functions used by

the code snippets below.

uint64_t

mt_get_newdev_options(dev_t dev, int dev_type) {
uint64_t options;
int err;
err = io_dev_to_options(dev, dev_type, &options);
if (err == IO_ERROR)

return 0;
return (options);

}
uint64_t
mt_check_newdev_options(dev_t dev, int dev_type, uint64_t bitmask) {
uint64_t options;
int err;
err = io_dev_to_options(dev, dev_type, &options);
if (err == IO_ERROR)
return 0;
return (options & bitmask);
}

For example, the macro M_BERKELEY AGILE given below decodes the device options of both legacy and
persistent (agile) DSFs. This macro returns true if the device ID is that of a device special file supporting

Berkeley style of access.
Example

File test.c :

#include <stdlib.h>
#include <sys/1libIO.h>
#include <sys/_inttypes.h>
#include <sys/stat.h>
#include <sys/errno.h>
#include <fcntl.h>
#include <sys/mtio.h>

#define MT_IS_LEGACY DEV 1

#define M_BERKELEY AGILE (dev) \
((io_is_legacy dev(dev, D_CHR) == MT_IS LEGACY DEV) °? \
(dev & MT_BSD_MASK) H \

(mt_check_newdev_options(dev, D_CHR, MT_ BSD MASK)))

/ *
* Tt is assumed that definitions of mt_get_newdev_options() and
* mt_check_newdev_options() are defined by the application and
* available. Omitted here for the sake of simplicity.
*

/

int
main(int argc, char *argv([]) {

struct stat stbuf;
dev_t dev;

/* Device special file is passed as argv[l] */

if (stat(argv[l], &stbuf) < 0)
{

perror ("stat(): "):

exit (1);

Hewlett-Packard Company -4 - HP-UX 11i Version 3: February 2007

mt(7) mt(7)

}
dev = stbuf.st_rdev;
io_init (O_RDWR) ;

if (M_BERKELEY AGILE (dev))

printf (" This is a Berkeley style device file ");
else

printf (" This is not a Berkeley style device file ");

io_end():;

exit (0);
}

Compile Line: cc -Ae -0 test test.c -1I0

Sample Output:

./test /dev/rtape/tapel_ BESTn

This is not a Berkeley style device file
./test /dev/rtape/tapel_ BESTb

This is a Berkeley style device file

./test /dev/rmt/Omnb

This is a Berkeley style device file

./test /dev/rmt/c5t4d0BEST

This is not a Berkeley style device file
./test /dev/rmt/c5t4d0BESTnb

This is a Berkeley style device file

Macros similar to the one above, can be written in place of their respective legacy macros as follows:

#define M_INSTANCE_AGILE (dev) \
((io_is_legacy dev(dev, D_CHR) == MT_IS_LEGACY DEV) ? \
(((dev) >> MT _INSTANCE_BIT POS) & MT_INSTANCE_MASK) : \

(((mt_get_newdev_options(dev, D_CHR)) >> MT_INSTANCE BIT POS) \
& MT_INSTANCE_MASK))

#define M_TARGET AGILE (dev) \
((io_is_legacy dev(dev, D_CHR) == MT_IS_LEGACY DEV) ? \
(((dev) >> MT TARGET_BIT_ POS) & MT_TARGET_MASK) H \
((mt_get_newdev_options(dev, D_CHR)) >> MT_TARGET BIT_POS) \

& MT_TARGET MASK))

#define M_LUN_AGILE (dev) \
((io_is_legacy dev(dev, D_CHR) == MT_IS_LEGACY DEV) ? \
(((dev) >> MT _LUN_BIT_ POS) & MT_ LUN_MASK) H \
((mt_get_newdev_options(dev, D_CHR) >> MT_LUN_BIT POS) \

& MT_LUN_MASK))

##define M_USER_CONFIG_AGILE (dev) \
((io_is_legacy dev(dev, D_CHR) == MT_IS LEGACY DEV) ? \
(dev & MT_USER_CONFIG_MASK) H \
(mt_check_newdev_options(dev, D_CHR, MT_USER_CONFIG_MASK)))

#define M_INDEX AGILE (dev) \
((io_is_legacy dev(dev, D_CHR) == MT_IS LEGACY DEV) ? \
(((dev) & MT_INDEX_MASK) >> MT_INDEX_ BIT_ POS) H \
((mt_check_newdev_options(dev, D_CHR, MT_INDEX MASK)) >> \

MT_INDEX_BIT_POS));

#define M_INDEX PUT_ AGILE (dev, index) \

((io_is_legacy dev(dev, D_CHR) == MT_IS LEGACY DEV) ? \

HP-UX 11i Version 3: February 2007 -5- Hewlett-Packard Company 93

mt(7)

(((dev) & (“MT_INDEX MASK)) |

(index << MT_INDEX_BIT POS) |

MT_USER_CONFIG_MASK) :

((mt_check_newdev_options(dev, D_CHR, ~“MT_INDEX MASK)) |
(index << MT_INDEX BIT_POS)))

#define M_DFLT_DENSITY PUT AGILE (dev,density)
((io_is_legacy dev(dev, D_CHR) == MT_IS LEGACY DEV) ?
(((dev) & (“MT_DENSITY MASK)) |
(density << MT_DENSITY BIT POS)) H
((mt_check_newdev_options(dev, D_CHR, “MT_DENSITY MASK)) |
(density << MT_DENSITY BIT POS)))

#define M_TRANSPARENT MODE_AGILE (dev)
((io_is_legacy dev(dev, D_CHR) == MT_IS LEGACY DEV) °?
(((dev) & MT_TRANSPARENT MASK) ==
MT_TRANSPARENT_ VAL) H
((mt_check_newdev_options(dev, D_CHR, MT_TRANSPARENT MASK))
== MT_TRANSPARENT_ VAL))

The following is included from <sys/mtio.h> and describes the possible tape operations:

94 Hewlett-Packard Company -6-

/* mag tape I/O control requests */

#define MTIOCTOP _IOW(’m’, 1, struct mtop) /* do mag tape op */
#define MTIOCGET _IOR(’m’, 2, struct mtget) /* get tape status */

/* structure for MTIOCTOP - mag tape op command */
struct mtop {
short mt_op; /* operations defined below */
int32_t mt_count; /* how many of them */
};

/* operations */

#define MTWEOF
#define MTFSF

0 /* write filemark (end-of-file record) */

1 /* forward space file */

##define MTBSF 2 /* backward space file */

#define MTFSR 3 /* forward space record */

#define MTBSR 4 /* backward space record */

#define MTREW 5 /* rewind */

#define MTOFFL 6 /* rewind and put the drive offline (may eject) */
#define MTNOP 7 /* no operation, may set status */

#define MTEOD 8 /* DDS, QIC and 8MM only - seek to end-of-data */

#define MTWSS 9 /* DDS and 8MM only - write setmark(s) */

#define MTFSS 10 /* DDS and 8MM only - space forward setmark(s) */

#define MTBSS 11 /* DDS and 8MM only - space backward setmark(s) */
#define MTSTARTVOL 12 /* Start a new volume (for ATS) */

#define MTENDVOL 13 /* Terminate a volume (for ATS) */

#define MTRES 14 /* Reserve Device */

#define MTREL 15 /* Release Device */

#define MTERASE 16 /* Erase media */

/* structure for MTIOCGET - mag tape get status command */
struct mtget {
long mt_type; /* type of magtape device */

long mt_resid; /* residual count */

/* The following two registers are device dependent */

s s ~ s

s s

mt(7)

HP-UX 11i Version 3: February 2007

mt(7) mt(7)

/* status register (msb) */
/* status register (1lsb) */

long mt_dsregl;
long mt_dsreg2;

/* The following are device-independent status words */

long mt_gstat; /* generic status */
long mt_erreg; /* error register */
int32_t mt_fileno; /* No longer used - always set to -1 */
int32_t mt_blkno; /* No longer used - always set to -1 */

Information for decoding the mt_type field can be found in <sys/mtio.h>.
Tape operations work the same way for both legacy and agile devices.

Other Tape Status Characteristics
Efficient use of streaming tape drives with large internal buffers and immediate-reporting require the fol-
lowing end-of-tape procedures:

All writes near LEOT (Logical End of Tape) complete without error if actually written to the tape.
Once the tape driver determines that LEOT has been passed, subsequent writes do not occur and an
error message is returned.

To write beyond this point (keep in mind that streaming drives have already written well past LEOT),
simply ask for status using the MTIOCGET ioctl. If status reflects the EOT condition, the driver
drops all write barriers.

Both the estape and stape drivers will flush the device buffers when a write filemark (all devices)
or write setmark (devices that support setmarks) command is given with the count set to zero.

When immediate-reporting is disabled, the write encountering LEOT returns an error with the tape driver
automatically backing up over that record.

When reading near the end-of-tape, the user is not informed of LEOT. Instead, the typical double EOF
marks or a pre-arranged data pattern signals the logical end-of-tape.

Since magnetic tape drives vary in EOT sensing due to differences in the physical placement of sensors, any
application (such as multiple-tape cpio(1) backups) requiring that data be continued from the EOT area of
one tape to another tape must be restricted. Therefore, the tape drive type and mode should be identical
for the creation and reading of the tapes.

The following macros are defined in <sys/mtio.h> for decoding the status field mt_gstat returned from
MTIOCGET. For each macro, the input parameter x is the mt_gstat field.

GMT_BOT (x) Returns TRUE at beginning of tape.

GMT_EOD(x) Returns TRUE if End-of-Data is encountered for DDS, QIC or
8MM.

GMT_EOF (x) Returns TRUE at an End-of-File mark.

GMT_EOT (x) Returns TRUE at end of tape.

GMT_IM REP_EN (x)
GMT_ONLINE (x)
GMT_SM(x)
GMT_WR_PROT (x)
GMT_COMPRESS (x)
GMT_DENSITY (x)

GMT_D_800(x)
GMT_D_1600(x)
GMT_D_6250(x)

GMT_D_6250c(x)

HP-UX 11i Version 3: February 2007

Returns TRUE if immediate reporting mode is enabled.
Returns TRUE if drive is online.

Returns TRUE if setmark is encountered.

Returns TRUE if tape is write protected.

Returns TRUE if data compression is enabled.

Returns the currently configured 8-bit density value. Supported
values are defined in <sys/mtio.h>.

Returns TRUE if the density encoded in mt_gstat is 800 bpi.
Returns TRUE if the density encoded in mt_gstat is 1600 bpi.

Returns TRUE if the density encoded in mt_gstat is 6250 bpi
(with or without compression).

Returns TRUE if the density encoded in mt_gstat is 6250 bpi
plus compression.

-7- Hewlett-Packard Company 95

mt(7) mt(7)

GMT_D DDS1(x) Returns TRUE if the density encoded in mt_gstat is DDS1
(with or without compression).

GMT_D DDSlc(x) Returns TRUE if the density encoded in mt_gstat is DDS1
plus compression.

GMT_D DDS2(x) Returns TRUE if the density encoded in mt_gstat is DDS2
(with or without compression).

GMT_D DDS2c(x) Returns TRUE if the density encoded in mt_gstat is DDS2
plus compression.

GMT_ D DLT 42500_24(x) Returns TRUE if the density encoded in mt_gstat is 42500
bpi, 24 track pairs.

GMT_ D DLT 42500_56(x) Returns TRUE if the density encoded in mt_gstat is 42500
bpi, 56 track pairs.

GMT D DLT 62500_64(x) Returns TRUE if the density encoded in mt_gstat is 62500

bpi (with or without compression).

GMT_ D DLT_ 62500_64c(x) Returns TRUE if the density encoded in mt_gstat is 62500
bpi plus compression.

GMT D DLT 81633 _64(x) Returns TRUE if the density encoded in mt_gstat is 81633
bpi (with or without compression).

GMT D DLT 81633_64c(x) Returns TRUE if the density encoded in mt_gstat is 81633
bpi plus compression.

GMT_ D DLT 85937_52(x) Returns TRUE if the density encoded in mt_gstat is 85937
bpi (with or without compression).

GMT_ D DLT 85937_52c(x) Returns TRUE if the density encoded in mt_gstat is 85937
bpi plus compression.

GMT_D 3480(x) Returns TRUE if the density encoded in mt_gstat is for a
3480 device (with or without compression).

GMT_D 3480c(x) Returns TRUE if the density encoded in mt_gstat is for a
3480 device with compression.

GMT_DR_OPEN((x) Does not apply to any currently supported devices. Always
returns FALSE.

HP-UX silently enforces a tape record blocking factor (MAXPHYS) on large I/O requests. For example, a
user write request with a length of ten times MAXPHYS will actually reach the media as ten separate
records. A subsequent read (with ten times MAXPHYS as a length) will look like a single operation to the
user, even though HP-UX has broken it up into ten separate read requests to the driver. The blocking
function is transparent to the user during writes. It is also transparent during reads unless:

e The user picks an arbitrary read length greater than MAXPHYS.

e The user attempts to read a third-party tape containing records larger than MAXPHYS.
Since the value for MAXPHYS is relatively large (usually >= 256K bytes), this is typically not a problem.
The MTNOP operation does not set the device-independent status word.

EXAMPLES

Assuming that fd is a valid file descriptor, the following example writes two consecutive filemarks on the
tape:

#include <sys/types.h>
#include <sys/mtio.h>

struct mtop mtop;
mtop.mt_op = MTWEOF;

mtop.mt_count = 2;
ioctl(£fd, MTIOCTOP, &mtop):

Hewlett-Packard Company -8- HP-UX 11i Version 3: February 2007

mt(7) mt(7)

If fd is a valid file descriptor for an open DDS drive, the following example spaces forward to just past the
next setmark:

#include <sys/types.h>
#include <sys/mtio.h>

struct mtop mtop;

mtop.mt_op = MTFSS;
mtop.mt_count = 1;
ioctl(£fd, MTIOCTOP, &mtop):

Given that fd is a valid file descriptor for an opened tape device, and that it has just returned 0 from a
read(2) request. The following system call verifies that the tape has just read a filemark:

#include <sys/types.h>
#include <sys/mtio.h>

struct mtget mtget;

ioctl(£fd, MTIOCGET, &mtget):;

if (GMT_EOF (mtget.mt_gstat)) {
/* code for filemark detection */
}

WARNINGS
Density specification BEST (standard naming convention) activate data compression on tape devices which
support compression. This is also true for the files using the pre-HP-UX 10.0 naming convention which are
linked to these files (see "Naming Conventions" above).

For the persistent tape DSFs the minor number does not encode any configuration option. The minor
number represents an index into a persistent kernel database where the configuration options are stored.

It is recommended that all legacy tape device files be put in the /dev/rmt directory. Legacy Device files
using extended configuration options located outside the /dev/rmt directory may not provide consistent
behavior across system reboots.

Although persistent DSFs may be created in directories other than /dev/rtape, HP recommends that
persistent tape DSFs only be created in /dev/rtape.

Use the rmsf(1M) command to clean up unused device files. Otherwise, the property table may overflow
and cause the mksf(1M) command to fail.

Density codes listed in <sys/mtio.h> have device-dependent behaviors. See the hardware manual for
your tape device to find which densities are valid. For some devices, these values may be referred to as for-
mats instead of densities.

Use of unbuffered mode can reduce performance and increase media wear.

DEPENDENCIES
Driver-Specific Options for stape (Major Number 205)
The following options may be used in creating legacy DSF's for tape drives that access the stape driver:

e Exhaustive mode is enabled (default is disabled).

When exhaustive mode is enabled, the driver will, if necessary, attempt several different
configuration options when opening a device. The first attempt follows the minor number
configuration exactly, but if that fails, the driver attempts other likely configuration values.

With Exhaustive mode disabled, the driver makes only one attempt to configure a device using
the configuration indicated in the minor number.

ho] Specifies a partitioned tape whose currently active partition is partition 1 (closest to BOT (begin-
ning of tape)). Optional partition 1 is closest to BOT for possible use as a volume directory. The
default partition without this option is partition 0. If partitioning is unsupported, the entire tape
is referred to as partition 0.

s[#] Specifies fixed-block mode; the optional number indicates the block size. If the number is not
present, the driver selects a default block size appropriate to the device type.

HP-UX 11i Version 3: February 2007 -9- Hewlett-Packard Company 97

mt(7) mt(7)

AUTHOR
mt was developed by HP and the University of California, Berkeley.

FILES
/dev/rtape/* Persistent tape DSFs claimed by the estape driver
/dev/rmt/* Legacy tape DSFs
<sys/mtio.h> Constants and macros for use with tapes
/etc/mtconfig Configuration property table for tapes

/dev/rmt/*config Device files for accessing configuration properties table - for internal use only

SEE ALSO
dd(1), mt(1), insf(1M), ioscan(1M), 1ssf(1M), mksf(1M), rmsf(1M), ioctl(2), Iseek(2), 1ibIO(3X), intro(7).

Configuring HP-UX for Peripherals

98 Hewlett-Packard Company -10 - HP-UX 11i Version 3: February 2007

ndp (7P) ndp (7P)

NAME
ndp - Neighbor Discovery Protocol, NDP

DESCRIPTION

Neighbor Discovery Protocol (NDP) is a protocol used by hosts and routers to:
1. Find the link-layer address of the neighbors known to be attached to the same link.
2. Find the neighboring routers that are willing to forward packets on their behalf.
3. Actively keep track of which neighbors are reachable and which are not.
4. Search for alternate routers when the path to a router fails.

To accomplish the above mentioned tasks, NDP defines the following processes:

1. Router and Prefix Discovery

Router discovery is a process through which hosts locate the neighboring routers and learn prefix plus
other parameters necessary for address autoconfiguration.

Prefix discovery is used by the hosts to learn the range of IPv6 addresses that reside on-link and can
be reached without going through a router.

Routers send Router Advertisements which will make the hosts treat them as the default routers.
The Router Advertisements will also contain prefix information options that will identify the range of
IPv6 addresses that are on-link (Subnet prefix).

2. Router and Host Requirements
Router requirements in NDP specify a set of rules for host to act as a router. These rules include:
e Router configuration variables.

These configuration variables include intervals between successive unsolicited router advertise-
ments, etc.

e How to make an interface an advertising interface.

When an interface is made an advertising interface, it means that the node is going to send n
periodic router advertisements and is willing to forward packets on behalf of hosts on that link.

e Message content for router advertisements.

A router will send periodic as well as solicited Router Advertisements on an advertising inter-
face. NDP specifies the format of these messages.

e Sending unsolicited router advertisements.

Apart from sending solicited router advertisements in response to router solicitations, routers
can send unsolicited router advertisements. For example, unsolicited router advertisements can
be sent to expire a prefix or to advertise a new prefix, etc.

e Stopping router advertisements on an interface.

A router can stop advertising prefixes on an interface. This can happen due to system manage-
ment decisions when a router may be stopped from being one. NDP specifies what the router
should be doing under these circumstances.

e Processing router solicitation messages.

Hosts as part of the stateless autoconfiguration process will send Router Solicitations. Routers
should respond to such solicitations with a router advertisement.

e Steps to be taken when the link-local address for the router changes.

Normally the link-local address of a Router should not change. However, NDP still defines the
steps should be taken by the router when its link-local address changes for any of its interfaces.

Host requirements are a set of rules that apply for a IPv6 host. They are:
e IPv6 variables that have to be maintained.

These variables include the time between retransmissions of neighbor solicitations, link MTU for
each interface, etc.

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 99

ndp (7P) ndp (7P)

e Processing router advertisements.
This rule discusses what actions should be taken on receipt of router advertisements.
e Timing out prefixes and default routers.

Whenever routers send router advertisements, they include the lifetime of the router as well as
the prefixes that they advertise. NDP specifies what actions the host should take when these
lifetimes expire.

e Selecting a default router.

When there is more than one router in the link, the default router selection algorithm comes into
effect. This algorithm helps select the default router based on factors like reachability, etc.

e Sending a router solicitation.

When an interface is enabled, a host need not wait for the unsolicited router advertisement.
Instead, it can send a router solicitation and get a router advertisement as a response. This will
help in receiving the default router and prefix information as soon as the interface is enabled.

3. Algorithm for Sending a Packet

Any IPv6 host is required to maintain some data structures that will be used by the algorithm for
sending a packet. These data structures are:

Neighbor Cache
A set of entries that will maintain IPv6 Address to link-layer address mappings for neighbors to
which a packet has been sent recently. In addition to that it maintains information needed for
neighbor unreachability detection like the reachability state, etc.

Destination Cache
A set of entries for hosts to whom packets have been sent recently. This includes hosts which
are both on-link and off-link. It contains a level of indirection to the neighbor cache.

Prefix List
This is a list of prefixes which define the set of IPv6 address that are on-link. This information is
maintained on a per interface basis. Typically this list is built from Router Advertisements
received from the router.

Default Router List
A list of routers which will forward packets on behalf of this host. This list will again have a
pointer to a neighbor cache entry for the respective router.

A host will use the above data structures while sending a packet to a host. Following is the conceptual
algorithm for sending a packet to a unicast destination.

a. Before a packet is sent out, the next hop should be determined. Normally, next hop determina-
tion is not done on all packets. The results of a next hop determination are stored in the destina-
tion cache. The host should first check the destination cache for any entry that matches with the
current destination address. If it finds a match, then it proceeds to step ¢, below.

b. If there is no entry for the destination in the destination cache, a longest prefix match is made
with all prefixes in the prefix list. If there is a match, the destination is determined to be on-link
and the destination address will be considered as the next hop. Otherwise, the next hop is deter-
mined from the routing table.

c. Once the next hop is determined, the address resolution process and neighbor unreachability
detection are done for the next hop. This process is explained in the next section.

d. Once the neighbor is known to be reachable, the packet is sent to that destination.
4, Address Resolution and Neighbor Unreachability Detection

Address resolution is a process used to determine the link-layer address of a neighbor. The IPv6
Address to link-layer address mapping found through this process is cached in the Neighbor Cache.
Following are the steps involved in Address Resolution.

a. First, the neighbor cache is checked for an entry which matches the current destination address.
If the entry is not present, the host sends a Neighbor Solicitation Message to the solicited-node
multicast group. This multicast address is derived based on the destination IPv6 address and all
nodes with the particular IPv6 address are required to join that group.

100 Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

ndp (7P

) ndp(7P)

b. If a host with the specified IPv6 address is present in the network, it will reply this solicitation
with a Neighbor Advertisement Message.

c. On receiving the Neighbor Advertisement, the node will search for an entry in the neighbor
cache for the sender’s IPv6 address. A new entry is created in the neighbor cache and the
reachability flag is set to REACHABLE.

Once the Address resolution is completed, neighbor unreachability detection will be performed. This
process depends on the reachability field of the neighbor cache. An entry in the neighbor cache can
have any of the following states:

INCOMPLETE
The address resolution is in progress and the link-layer address of the destination is
yet to be determined.

REACHABLE The destination is reachable until recently.

STALE The destination is no longer known to be reachable, but reachability detection need
not be made until a packet has to be sent to that destination.

DELAY This state is an optimization that gives additional time for the upper layer protocols to
provide the reachability confirmation.

PROBE A reachability confirmation is actively requested by repeatedly sending Neighbor Soli-
citations.

During neighbor unreachability detection, the node checks for the state in the neighbor cache. If the
state for the destination is REACHABLE, the packet is sent. Otherwise, the following steps are
taken:

a. When an address resolution is made on a destination, an entry is created in the neighbor cache
for that destination and the reachability state will be set to INCOMPLETE. If the address reso-
lution fails, the entry is deleted.

b. When the address resolution passes, the entry will be filled with the destination’s link-layer
address and the state will be set to REACHABLE.

c. There is a timer maintained called the Reachability timer which will expire the state of an entry
in the neighbor cache. Once this timer expires, the reachability state changes from REACH-
ABLE to STALE.

d. When a packet is being sent to a destination whose state is STALE in the neighbor cache, the
node sets the state to DELAY and starts a timer associated with that state. By the time the
timer expires if the node received reachability confirmation, the state is set to REACHABLE.
Otherwise, it is set to PROBE.

e. Once the entry’s state is in PROBE, the node sends unicast neighbor solicitations to the link-
layer address specified in the entry. If it receives a neighbor advertisement in response the state
is set to REACHABLE. This solicitation will be sent repeatedly; the maximum number of times
is configurable. If the reachability confirmation is not received after maximum solicitations, the
entry is deleted from the neighbor cache and the address resolution is done again.

Note: Entries in the neighbor cache can also be created as a result of node receiving unsolicited
Neighbor Advertisements, Router Advertisements and Router Solicitations, etc. However, for the
entry created under these circumstances the reachability state will always be set to STALE.

5. Redirect Function
A router will send a host a redirect message when it finds that there is a better next-hop router on the
same link. This is a requirement for a router.
On receiving a router redirect message, a host should update its destination cache with the new next
hop address.
AUTHOR
NDP was developed by the IPng Working Group of the Internet Engineering Task Force.
SEE ALSO

ifconfig(1M), ndp(1M), IPv6(7P), lan(7).

HP-UX 11i Version 3: February 2007 -3- Hewlett-Packard Company 101

ndp (7P) ndp (7P)

Neighbor Discovery for IPv6, RFC2461, T. Narten et al. NDP Neighbor Discovery Protocol

102 Hewlett-Packard Company -4 - HP-UX 11i Version 3: February 2007

nfs(7) nfs(7)

NAME
nfs, NFS - network file system

DESCRIPTION
The Network File System (NFS) allows a client node to perform transparent file access over the network.
By using NFS, a client node operates on files residing on a variety of servers and server architectures, and
across a variety of operating systems. File access calls on the client (such as read requests) are converted
to NFS protocol requests and sent to the server system over the network. The server receives the request,
performs the actual file system operation, and sends a response back to the client.

NFS operates in a stateless manner using remote procedure calls (RPC) built on top of an external data
representation (XDR) protocol. The RPC protocol enables version and authentication parameters to be
exchanged for security over the network.

A server grants access to a specific file system to clients by adding an entry for that file system to the
server's /etc/dfs/dfstab file.

A client gains access to that file system using the mount command to request a file handle for the file sys-
tem (see mount(1M)). (A file handle is the means by which NFS identifies remote files.) Once a client
mounts the file system, the server issues a file handle to the client for each file (or directory) the client
accesses. If the file is removed on the server side, the file handle becomes stale (dissociated with a known
file), and the server returns an error with errno set to [ESTALE].

A server can also be a client with respect to file systems it has mounted over the network; however, its
clients cannot directly access those file systems. If a client attempts to mount a file system for which the
server is an NFS client, the server returns with errno set to [EREMOTE]. The client must mount the file
system directly from the server on which the file system resides.

The user ID and group ID mappings must be the same between client and server. However, the server
maps UID 0 (the superuser) to UID -2 before performing access checks for a client. This process prevents
gaining superuser privileges on remote file systems.

RETURN VALUE
Generally, physical disk I/O errors detected at the server are returned to the client for action. If the server
is down or inaccessible, the client receives the message:

NFS: file server xxx not responding: still trying.

where xxx is the hostname of the NFS server. The client continues resending the request until it receives
an acknowledgement from the server. Therefore, the server can crash or power down, and come back up
without any special action required by the client. The client process requesting the I/O will block, but
remains sensitive to signals (unless mounted with the nointr option) until the server recovers. However,
if mounted with the soft option, the client process returns an error instead of waiting indefinitely.

AUTHOR
nfs was developed by Sun Microsystems, Inc.

SEE ALSO
exportfs(1M), share(1M), mount(1M), mount_nfs(1M), nfsd(1M), mount(2), fstab(4), dfstab(4).

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 103

null(7) null(7)

NAME
null - null file

DESCRIPTION
Data written on a null special file is discarded.
Reads from a null special file always return 0 bytes.
EXAMPLES
To create a zero-length file, use either of the following:
cat /dev/null > file
cp /dev/null file

FILES
/dev/null

STANDARDS CONFORMANCE
null: AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, POSIX.2

104 Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

peckt(7) pekt(7)

NAME
pckt - Packet Mode module for STREAMS pty (pseudo-terminal)

SYNOPSIS
#include <sys/stropts.h>

int ioctl(fd_slave, I_PUSH, "pckt"):;

DESCRIPTION
The Packet Mode feature for STREAMS pty devices allows the user process on the master side of the
pty device to be informed of state changes in the pty. To enable Packet Mode in the STREAMS pty dev-
ice, the user process must push the pckt module onto the master side of the pty with a call to the
STREAMS I_PUSH ioctl(2) system call. When the pckt module is pushed onto a STREAMS pty master,
certain STREAMS messages going upstream on the master side will get packetized so they can be subse-
quently retrieved by the master side with a getmsg function.

When the user process writes data, the pckt module passes the message unchanged downstream on to
the next module or driver. When the user process reads data or when the pckt module receives certain
STREAMS message types, it constructs a packet out of the message for forwarding upstream. To construct
a message packet, the module creates an M_PROTO message. This M_PROTO message contains the origi-
nal message type in the first data block and the original message in as many data blocks as needed. The
user process can then retrieve the M_PROTO message with a call to the getmsg () function.

The pckt module packetizes the following STREAMS message types:

M_DATA, M_IOCTL, M PROTO, M PCPROTO, M_FLUSH, M _START, M STOP, M_STARTI, M_STOPI,
M_READ.

All other messages are passed unchanged upstream.

If the message is an M_FLUSH message, the pckt module looks at the flag and takes the following
actions:

e If the flag is FLUSHW, the module changes it to FLUSHR before creating the M_PROTO message
and passing the message upstream. This prevents the stream head’s read queue from being
flushed by the original M_ FLUSHmessage.

e If the flag is FLUSHR, the module changes it to FLUSHW before creating the M_PROTO message
and passing it upstream. To flush the write queues properly, the module also sends an M_FLUSH
message with the FLUSHW flag set.

o If the flag is FLUSHRW, the module changes it to FLUSHW before creating the M_PROTO message
and passing it upstream. To flush the write queues properly, the module also sends an M_FLUSH
message with the FLUSHW flag set.

AUTHOR
pckt (7) was developed by HP and OSF.

SEE ALSO
getmsg(2), ioctl(2), ptm(7), pts(7), ldterm(7), ptem(7), streamio(7).

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 105

p

poll(7) poll(7)

NAME

poll - monitor I/O conditions on multiple file descriptors

SYNOPSIS

#include <sys/devpoll.h> #include <fcntl.h>

int open("/dev/poll", O_RDWR);

int write(int filedes, const struct pollfd *buf, size_t nbyte);
int ioctl(int filedes, DP_POLL, struct dvpoll *arg);

int ioctl(int filedes, DP_ISPOLLED, struct pollfd *arg):;

DESCRIPTION

/dev/poll provides an interface to the event port driver allowing a user to synchronously monitor a
specific set of conditions associated with a registered set of file descriptors. Poll conditions include the abil-
ity to read or write data without blocking and certain exceptional conditions.

Access to /dev/poll is provided through the open (), write(), and ioctl () system calls.

The /dev/poll event port provides functionality comparable to the select (2) and poll(2) system
calls and supports the following types of file descriptors: network (AF_INET) and Unix Domain
(AF_UNIX) sockets, named FIFO files and pipes, XTI endpoints, and STREAMS devices.

General operations supported by the event port driver are:
-- Opening an event port.
-- Registering and deregistering file descriptors on an event port.
-- Polling registered file descriptors on an event port.
-- Retrieving registered poll conditions for a file descriptor.
-- Closing an event port.

Opening An Event Port
Each open of the /dev/poll device enables an event port from which a different set of file descriptors
can be polled. The file descriptor returned by the open () system call represents the event port. Users
wishing to monitor multiple sets of file descriptors should open the /dev/poll device multiple times.
For example:

int evpfd;
evpfd = open("/dev/poll", O_RDWR);

Only the process that performed the open() on /dev/poll can perform general event port operations.
Specifically, any event port file descriptor inherited by a child from its parent or that is received from
another process using the Unix Domain Sockets access rights can only be closed. (See sendmsg in the
send(2) man page or the STREAMS I_FDINSERT ioctl request in the streamio(7) man page.)

Registering and Deregistering File Descriptors

An interest set of file descriptors and poll conditions is registered with an event port by using the
write() system call. By writing an array of poll£d structures to an event port the user can register
multiple file descriptors in one write () service call. The poll£fd structure and related poll conditions
are defined in <poll.h>, (included by <sys/devpoll.h>). Other flags are defined in the
<sys/devpoll.h> file. See the poll(2) man page for the definition of the poll conditions.

To register a file descriptor, the £d field is set to the file descriptor to be registered, and the events field
is set to one or more poll conditions, such as POLLIN. Multiple poll conditions can be ORed together. A
given file descriptor can be registered with multiple event ports. Re-registering a file descriptor with the
same event port will cause the the specified poll conditions to join the previous conditions for the given file
descriptor.

To deregister, £d is set to the file descriptor to be deregistered, and events is set to POLLREMOVE.
POLLREMOVE is defined in <sys/devpoll.h>. POLLREMOVE must not be ORed together with any
other poll conditions.

When a polled file descriptor is closed, it is automatically deregistered.

Continuing our example, the following registers two file descriptors on the opened event port, £d1 and
£42:

106 Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

poll(7) poll(7)

struct pollfd pfd[2];
int err;

pfd[0].fd = £41;

pfd[0] .events = POLLIN;

pfdl[l].fd = £42;

pfd[l] .events = (POLLIN | POLLRDBAND) ;
err = write(evpfd, pfd, sizeof(pfd)):;

Polling File Descriptors
Polling an event port’s interest set is initiated by calling ioctl () specifying the DP_ POLL request.

The ioctl arg parameter is a pointer to a dvpoll structure, defined in <sys/devpoll.h>. It contains
the following members:

struct dvpoll {

pollfd_t *dp_£ds; /* pollfd[] to be used */
nfds_t dp_nfds; /* number of pollfd entries */
int dp_timeout; /* milliseconds or -1 */

}

dp_fds is a pointer to an array of poll£fd structures. dp_nfds is the maximum number of pollfd
structures to be returned in that array. dp_timeout is the maximum time, in milliseconds, to wait for at
least one of the registered poll conditions to be met in the event port.

When one or more registered poll conditions are met for any of the registered file descriptors, ioctl ()
stores the valid poll conditions in the revents of each poll£d structure in the array, one array element
for each active file descriptor. The return value of ioctl () is the number of valid pol1l£d structures.

If no poll conditions are met and if dp_timeout is -1, ioctl () sleeps until a poll condition is met on
any of the registered file descriptors. If dp_timeout is non-negative, ioctl() returns after
dp_timeout milliseconds expires or when a poll condition is met. If the time limit expires, the ioctl ()
return value is 0.

Retrieving Registered Poll Conditions for a File Descriptor
The registered poll conditions for a given file descriptor in an interest set can be determined by calling
ioctl () with the DP_ISPOLLED request. For example, for file descriptor £d1:

struct pollfd pfd;
int ispolled;

pfd.fd = £41;
ispolled = ioctl(evpfd, DP_ISPOLLED, &pfd):;

If the file descriptor is registered with the event port, the ioctl () return value is 1, and the registered
poll conditions are returned in the events member of the poll£d structure.

The ioctl () return value is 0 if the file descriptor is not registered or is not open.

Closing an Event Port
An event port is closed with the close () system call specifying the event port file descriptor. All file
descriptors registered with that event port are automatically deregistered from that event port.

RETURN VALUES
open () returns the event port file descriptor. If the open () system call fails, it returns -1, and errno
is set to the error condition.

write() returns the number of bytes in the array of the poll£d structure that was passed in buf. If
the write () returns -1, errno is set to the error condition.

ioctl (DP_POLL) returns the number of file descriptors for which one or more poll conditions are met.
ioctl (DP_POLL) returns 0 if a timeout occurred before any poll conditions were satisfied for any of the
registered file descriptors.

ioctl (DP_ISPOLLED) returns 1 if the file descriptor specified in the poll£d structure is registered.
ioctl (DP_ISPOLLED) returns 0 if the file descriptor is not registered or is closed.

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 107

poll(7) poll(7)

If ioctl () returns -1, errno is set to the error condition.

ERRORS

The following errors are returned by the event port driver.
If open () fails, errno is set to one of the following values.

[EACCES] The minor number of the device file name passed to open () is not 0.

[EAGAIN] Allocation of internal data structures failed due to a temporary condition. Calling
open () again might succeed.

[EMFILE] The maximum number of file descriptors allowed for the process is already open.

[ENFILE] The maximum number of files allowed for the system is already open.

[ENXIO] Some of the requisite file types are not supported by the /dev/poll driver. See the
WARNINGS section below.

Ifwrite() or ioctl () fails, errno is set to one of the following values.
[EACCES] The calling process did not open the event port.
[EBADF] The filedes argument passed to write () is not an open file descriptor.

[EFAULT] An attempt was made to access a poll£d structure whose location is outside the pro-
cess address space.

[EINTR] A signal interrupted the ioctl (DP_POLL) system call.
[EINVAL] The nbyte argument passed to write () isless than 0.
[ENODEV] The filedes argument passed to write () is not an event port file descriptor.

EXAMPLES

The following examples show how to use the /dev/poll driver to poll for events on network socket file
descriptors.

To register a TCP socket file descriptor (sd) so that ioctl (DP_POLL) will notify the application when a
new connection is established or when input data is available:

struct pollfd regpfd;
int err;

regpfd.fd = sd;
regpfd.events = POLLIN;
err = write(evpfd, ®pfd, sizeof (regpfd)):;

POLLRDBAND should be ORed with POLLIN if the application needs to distinguish the arrival of out-of-
band data.

To wait for events on one or more registered sockets, up to 100 connections:

struct pollfd pollpfd[100];
struct dvpoll dvp;
int npoll;

dvp.dp_fds = pollpfd;

dvp.dp_nfds = 100;

dvp.dp_timeout = -1;

npoll = ioctl(evpfd, DP_POLL, &dvp):;

If a non-blocking write to a socket is incomplete, the following can be used to register the socket so that
ioctl (DP_POLL) will notify the application when the socket is writable again later. Typically, the
socket is already registered to receive input notifications. The following will add the POLLOUT notification.

struct pollfd regpfd;
int err;

regpfd.fd = sd;
regpfd.events = POLLOUT;
err = write(evpfd, ®pfd, sizeof (regpfd)):;

Hewlett-Packard Company -3- HP-UX 11i Version 3: February 2007

poll(7) poll(7)

After the last non-blocking write succeeds, the following should be used to deregister for POLLOUT, but
continue to be registered for input notifications. Note that POLLREMOVE must be used in order to remove
the POLLOUT registration.

struct pollfd regpfdl[2];
int err;

regpfd[0] .fd = sd

regpfd[0] .events = POLLREMOVE;
regpfd[l] .£d = sd;
regpfd[1l] .events = POLLIN;

err = write(evpfd, regpfd, sizeof (regpfd)):;

The following uses ioctl (DP_ISPOLLED) to demonstrate how to accomplish the same thing in the
more general case, for example, when an application library might not know how the file descriptor is nor-
mally registered.

struct pollfd regpfdl[2];
int err;

regpfd[0] .fd = sd;
regpfd[0] .events =
regpfd[1l] .fd = sd;
err = ioctl(evpfd, DP_ISPOLLED, ®pfd[1l]);
regpfd[l] .events &= “POLLOUT; /* clear POLLOUT */
err = write(evpfd, regpfd, sizeof (regpfd)):;

POLLREMOVE;

WARNINGS
/dev/poll usually performs better than select () and poll () especially when the application has
registered a very large number of file descriptors. However, in cases where specified conditions are likely

to occur simultaneously on a large number of registered file descriptors, performance levels will be dimin-
ished.

If open() returns -1 and errno is set to [ENXIO], this indicates that some of the necessary system
patches have not been installed, and the system administrator must install the File System, Transport, and
STREAMS patches that support /dev/poll (event ports).

The write () system call does not return any error indication if one or more of the file descriptors in the
pollfd structure could not be registered or deregistered.

If POLLREMOVE is ORed with other poll conditions in a pollfd structure passed to write(),
POLLREMOVE is ignored. The other poll conditions will be ORed with any existing poll conditions for the
registered file descriptor.

The ioctl (DP_POLL) system call returns only the first dp_nfds active file descriptors. There is no indi-
cation if there are additional active file descriptors.

The ioctl (DP_ISPOLLED) system call also returns its result in the revents member of the poll£fd
structure, in order to be compatible with the implementation of the /dev/poll driver by some other ven-
dors.

The ioctl (DP_ISPOLLED) system call does not return any error indication if the file descriptor in the
pollfd structure is not open.

When an event port is closed, the close () system call might take a noticeable amount of time to com-
plete if a very large number of file descriptors is still registered.

AUTHOR
The event port driver was developed independently by HP.

FILES
/dev/poll driver device file
/sbin/init.d/devpoll start-up script that creates /dev/poll

/etc/rc.config.d/devpoll configuration parameters for start-up script

HP-UX 11i Version 3: February 2007 -4 - Hewlett-Packard Company 109

poll(7) poll(7)

SEE ALSO
ioctl(2), mknod(2), open(2), pipe(2), poll(2), select(2), send(2), socket(2), socketpair(2), write(2), t_open(3).

110 Hewlett-Packard Company -5- HP-UX 11i Version 3: February 2007

ps2(7) ps2(7)

NAME
ps2, ps2kbd, ps2mouse - PS/2 keyboard/mouse device driver and files

SYNOPSIS
#include <sys/ps2io.h>

DESCRIPTION
The ps2 driver allows the use of IBM Personal System/2 (PS/2) compatible keyboards and mouse devices
on Hewlett-Packard workstations equipped with PS/2 interface hardware.

On systems with a single interface, PS/2 device file names use the following format:
/dev/ps2_n

where n represents the interface port number, ranging from 0 to 15. For example, the device file
/dev/ps2_1 is used to access port one.

On systems with more than one interface, PS/2 device file names use the following format:
/dev/ps2_m.n

where m represents the interface number, and n represents the port number. For example, the device file
/dev/ps2_1.2 is used to access port two on interface one.

At boot time, the ps2 driver scans all interface ports from port zero to the maximum number of ports
implemented and attempts to identify attached PS/2 devices. The /dev/ps2mouse device file accesses
the first mouse detected by ps2. The /dev/ps2kbd device file accesses the first keyboard detected by
ps2.

PS/2 devices are classified as "slow" devices. This means that system calls to ps2 can be interrupted by
caught signals (see signal(5)).

The mouse may be placed in one of two output modes. In stream mode, the mouse generates a three-byte
report packet in response to mouse movement and/or button presses. These reports can be obtained with
the read () system call (see read(2)). In prompt mode, an ioctl () request polls the mouse, returning a
three-byte report packet in a buffer whose address is passed as an argument to the 1ioctl () call.

PS/2 keyboards return keycodes that represent key-press and key-release events. Use the Internal Termi-
nal Emulator (ITE) to read ASCII characters from PS/2 keyboards. The ASCII terminal interface used by
the ITE is described in termio(7).

The ps2 driver provides a low-level programming interface to PS/2 keyboards and mice. To access these
devices in a hardware independent way, use the X Window programming environment.

System Calls
The open () system call gives exclusive access to the specified PS/2 device (see open(2)). If a port is open,
all open () calls made on that port will fail with errno set to [EBUSY] (see errno(2)).

If an open is attempted on a nonexistent port, the open () call fails with errno set to [ENXIO].

If no keyboard is detected at system boot and an open () is attempted on /dev/ps2kbd, or if no mouse
is detected at system boot and an open () is attempted on /dev/ps2mouse, the open () call fails with
errno set to [ENXIO].

Attempts to open an existing ps2 port with no device connected will succeed.

Upon a successful open, any previously queued input from the device is discarded. Keystrokes are routed
to the ITE by default. While a keyboard is open, ITE does not receive keystrokes from that keyboard; until
the keyboard device is closed, it has exclusive access to keyboard input.

The file status flags O_ NDELAY and O_NONBLOCK can be set to enable nonblocking reads (see open(2)).

read () returns bytes from a PS/2 device. HP-UX maintains a 512-byte buffer for each port. When this
buffer is full, additional bytes received from the device are discarded.

If enough buffered data is available to satisfy the entire number of bytes requested, the read () call com-
pletes successfully, having read all of the data requested and returning the number of bytes read.

If there is not enough buffered data available to satisfy the entire request, but at least one byte is available,
the read () call completes successfully, having read all available data and returning the number of bytes
actually read.

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 111

ps2(7) ps2(7)

If both file status flags O_ NDELAY and O_NONBLOCK are clear and no data is available, the read () call
blocks until data becomes available or a signal is received.

If the file status flag O_ NDELAY is set and no data is available, the read () call returns zero instead of
blocking.

If the file status flag O_ NONBLOCK is set and no data is available, the read () call returns -1 with
errno set to [EAGAIN] (see errno(2)).

The write () system call is not supported by ps2.

The select () system call can be used to determine if data is currently available to be read from a ps2
port. Using select () for write or for exception conditions always returns a false indication in the file
descriptor bit masks (see select(2)).

The ioctl () system call is used to perform special operations on PS/2 mouse and keyboard devices (see
toctl(2)). The set of ps2 driver ioctl () requests are divided into three groups: general requests to both
mouse and keyboard, keyboard-specific requests, and mouse-specific requests. Mouse-specific requests used
on keyboards, and keyboard-specific requests used on mice, fail, returning -1 with errno set to [EIN-
VALJ.

Any ioctl () request (except PS2_PORTSTAT) used on a port not connected to a PS/2 device will time
out, returning -1 with errno set to [EIO].

All ioctl () system calls use the following syntax:
int ioctl(int fildes, int request, char *arg);

All requests that require parameters or return data use a 4-byte unsigned character buffer addressed by
the arg argument.

The request codes that follow are defined in <sys/ps2io.h>.

General ioctl() Requests for Both Keyboard and Mouse

PS2_ PORTSTAT Return driver status information.
Two bytes of data are returned in the character buffer addressed by arg.

Byte 0, which indicates the type of connected device, can have four possible
values:

PS2_NONE No device is detected.

PS2_ MOUSE Mouse is detected.

PS2_ KEYBD Keyboard is detected.

PS2_ UNKNOWN Unknown device is detected.

Byte 1 contains bit flags for various pieces of driver information. The following
bit masks for this byte are defined in the file
/usr/include/sys/ps2io.h:

INTERFACE_HAS ITE If set, the interface containing this port is
used by the Internal Terminal Emulator
(ITE) for keyboard input.

PORT_HAS_FIRST_ KEYBD If set, this port is connected to the first
keyboard detected by the driver.

PORT_HAS_FIRST MOUSE If set, this port is connected to the first
mouse detected by the driver.

All other bits are currently unused, and are cleared to zero.
PS2_ DISABLE Disable a PS/2 device.

Further output from the device is prevented by the device itself. This request
does not use arg. Certain devices perform actions in addition to disabling
themselves.

The keyboard resets its internal state to the default state, stops scanning the
keys, and waits for further commands.

The mouse stops transmission of reports, and then disables itself.

Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

ps2(7) ps2(7)

PS2_ ENABLE Enable a PS/2 device
Transmissions from the device are enabled. This request does not use arg.
PS2_IDENT Identify a PS/2 device.

A value identifying the type of device is returned in the 4-byte buffer
addressed by arg. The keyboard returns two bytes (arg[0]=0x%AB and
arg[1]1=0x83). The mouse returns one byte (arg[0]=0x00).

PS2_SETDEFAULT Set the device to its default (power-up) state.
The device is returned to its default internal state. This request does not use
arg.

PS2_RESET Reset a PS/2 device.

The device is told to execute its internal reset routine and execute its power-up
test. The result of the power-up test is returned in the 4-byte buffer addressed
by arg. The mouse returns two bytes to indicate a successful reset
(arg[0]1=0xAA and arg[1]1=0x00). The keyboard returns one byte
(arg[0]1=0xAA).

Keyboard-Specific ioctl() Requests
PS2_SCANCODE Select the keyboard scancode set

The scancode set to be used by the keyboard is passed as the first byte of the
buffer addressed by arg. The following are valid values for this byte:

SCANCODE_1 Selects scancode set 1.
SCANCODE_ 2 Selects scancode set 2.
SCANCODE_3 Selects scancode set 3.

GET_SCANCODE Returns the scancode used.

When GET_SCANCODE is specified, the scancode used by the keyboard is
returned as the first byte of the character buffer addressed by arg. Some key-
boards do not support all scancode sets.

PS2_ALL_TMAT Set all keys to typematic behavior.

This request can be made when the keyboard is using any scancode set; how-
ever, it affects only the operation of scancode set 3. The arg parameter is not
used. The typematic rate and delay are set via the PS2_RATEDELAY
ioctl () request.

PS2 ALL_ MK Set all keys to make-only behavior.

This request can be made when the keyboard is using any scancode set; how-
ever, it affects only the operation of scancode set 3. The arg parameter is not
used.

PS2_ ALL_MKBRK Set all keys to make/break behavior.

This request can be made when the keyboard is using any scancode set; how-
ever, it affects only the operation of scancode set 3. The arg parameter is not
used.

PS2_ALL_TMAT MKBRK Set all keys to typematic make/break behavior.

This request can be made when the keyboard is using any scancode set; how-
ever, it affects only the operation of scancode set 3. The arg parameter is not
used. The typematic rate and delay are set via the PS2_RATEDELAY
ioctl () request.

PS2_KEY TMAT Set typematic behavior for an individual key.

The key code from scancode set 3 for the individual key is passed as the first
byte in the character buffer addressed by arg. This request can be made when
the keyboard is using any scancode set; however, it affects only the operation
of scancode set 3. The typematic rate and delay are set via the
PS2_RATEDELAY ioctl () request. Because keyboards might be left in a
disabled state after this request, the PS2_ENABLE request should be

HP-UX 11i Version 3: February 2007 -3- Hewlett-Packard Company 113

ps2(7)

PS2_KEY_ MAKE

PS2_KEY_ MKBRK

PS2_INDICATORS

PS2_RATEDELAY

ps2(7)

performed after PS2_KEY TMAT.
Set make-only behavior for an individual key.

The key code from scancode set 3 for the individual key is passed as the first
byte in the character buffer addressed by arg. This request can be made when
the keyboard is using any scancode set; however, it affects only the operation
of scancode set 3. Because keyboards might be left in a disabled state after
this request, the PS2_ENABLE request should be performed after
PS2_KEY MAKE.

Set make/break for an individual key.

The key code from scancode set 3 for the individual key is passed as the first
byte in the character buffer addressed by arg. Make/break behavior will be set
for this key. This request can be made when the keyboard is using any scan-
code set; however, it affects only the operation of scancode set 3. Because key-
boards might be left in a disabled state after this request, the PS2_ENABLE
request should be performed after PS2_KEY_ MKBRK.

Set the state of keyboard indicators, Num Lock, Caps Lock, and Scroll Lock,
according to the value passed in the first byte of the character buffer addressed
by arg.

The indicators are bit-mapped as follows:

NONE_ LED No indicators active
CAPS_LED Caps Lock indicator active
NUM_LED Num Lock indicator active
SCROLL_LED Scroll Lock indicator active

Set the rate and delay for all typematic keys by specifying the value passed as
the first byte in the character buffer addressed by arg.

Bits zero through four give the rate. Bits five and six give the delay. Bit
seven (the most significant bit) is unused and should be set to zero. The delay
in milliseconds is determined by the following equation, where X is the
numeric value of bits five through six:

delay = (1+X) * 250 (+|-20%)

The period (interval from one output key code to the next) in seconds is deter-
mined by the following equation, where Y is the numeric value of bits zero
through two, and Z is the numeric value of bits three through four:

period = (8+Y) * (27Z) * 0.00417 (+|-20%)

The typematic rate (expressed in make codes per second) is one for each period
using the above equation. The default typematic rate is 10.9 characters per
second. The default delay is 500 milliseconds.

Mouse-Specific ioctl() Requests

PS2_SAMPLERATE

PS2_PROMPTMODE

Set the mouse sampling rate used in stream mode by specifying the value
passed as the first byte in the character buffer addressed by arg.

Seven specific rates are supported:

SAMPLE_10 10 reports/second maximum
SAMPLE_20 20 reports/second maximum
SAMPLE_40 40 reports/second maximum
SAMPLE_60 60 reports/second maximum
SAMPLE_80 80 reports/second maximum
SAMPLE_100 100 reports/second maximum
SAMPLE_200 200 reports/second maximum

The default rate is 100 reports/second maximum. This request updates the
mouse sampling rate only in stream mode. If the mouse is in prompt mode,
this request is ignored.

Put mouse into prompt mode.

114 Hewlett-Packard Company -4 - HP-UX 11i Version 3: February 2007

ps2(7) ps2(7)

In prompt mode, the mouse updates its internal values due to movement or
button presses, but issues reports only in response to the PS2_REPORT
ioctl () request. The arg parameter is not used.

PS2_REPORT Obtain a prompt mode mouse report.

This request polls the mouse, obtaining a three-byte report returned in the
character buffer addressed by the arg parameter. The report has the following
format:

Byte 1 A bit map of buttons, signs, and overflows

Bit 0 Left button (1=depressed)
Bit 1 Right button (1=depressed)
Bit 2 Center button (1=depressed)
Bit 3 Always 1

Bit 4 X data sign (1=negative)

Bit 5 Y data sign (1=negative)

Bit 6 X data overflow (1=overflow)
Bit 7 Y data overflow (1=overflow)

Byte 2 X-coordinate data byte
Byte 3 Y-coordinate data byte

The X and Y coordinate values are expressed in two's complement. The scaling
behavior specified via the PS2_2TO01_SCALING ioctl () request does not
apply to reports obtained with the PS2_REPORT ioctl() request.
PS2_2TO1_SCALING affects only reports sent in stream mode.

PS2_ STREAMMODE Put mouse into stream mode.

When in stream mode, the mouse sends a three-byte report whenever the
mouse is moved, or a button is pressed or released since the last report. The
maximum report rate is set with the PS2_SAMPLERATE ioctl () request.
If a button is both pressed and then released within a sample interval, it will
be reported as pressed at the end of that interval.

The stream-mode reports are obtained via the read() system call (see
read(2)). The format of the report is identical to reports returned by the
PS2_REPORT ioctl () request described above.

When in stream mode, the PS2_DISABLE request must be sent prior to any
other ioctl () requests.

The arg parameter is not used.
PS2_ STATUS Obtain mouse status.

This request polls the mouse, obtaining a three-byte report returned in the
character buffer addressed by the arg parameter.

The status report has the following format:
Byte 1 A bit map of buttons and mouse internal state

Bit 0 Right button (1=depressed)

Bit 1 Center button (1=depressed)

Bit 2 Left button (1=depressed)

Bit 3 Always 0

Bit 4 If 0, scaling 1:1; if 1, scaling 2:1

Bit 5 If 0, disabled; if 1, enabled

Bit 6 If 0, stream mode; if 1, prompt mode
Bit 7 Always 0

Byte 2 Current resolution setting
Byte 3 Current sampling rate

PS2_RESOLUTION Set mouse resolution for X and Y coordinate values by specifying the value
passed as the first byte in the character buffer addressed by arg. Four discrete
resolutions are supported:

HP-UX 11i Version 3: February 2007 -5- Hewlett-Packard Company 115

ps2(7) ps2(7)

Resolution 200 DPI 320 DPI

RES_ 1 1 count/mm 1 count/mm
RES_2 2 count/mm 3 count/mm
RES_3 4 count/mm 6 count/mm
RES_4 8 count/mm 12 count/mm

PS2_ 2TO1l SCALING Set mouse scaling at 2 to 1. The X and Y coordinate values returned in
stream-mode reports are doubled, except for absolute values less than six,
which are converted to new values in a nonlinear fashion. The conversion is

detailed in this table:

Mouse Internal Value Converted Value
0 0

+|-1 +|-1

+|-2 +|-1

+|-3 +|-3

+|-4 +|-6

+|-5 +1-9

All other n 2%n

This conversion does not apply to reports obtained via the PS2_REPORT
ioctl () request.

The arg parameter is not used.
PS2_1TO1l SCALING Set mouse scaling at 1 to 1.

The X and Y values returned in mouse reports are not scaled. This request
does not use the arg parameter.

ERRORS
If a system call fails, as noted above in the DESCRIPTION section errno is set to one of the following
values:
[EBUSY] The specified PS/2 device is already opened.
[EFAULT] A bad address was detected while attempting to use an argument to a system call.
[EINTR] A signal interrupted an open (), read (), or ioctl () system call.
[EINVAL] An invalid parameter was detected by ioctl ().
[EIO] A hardware or software error occurred while executing an ioctl () system call.
[ENODEV] write() is not implemented for PS/2 devices.
[ENXIO] No device is present at the specified address.

EXAMPLES

Assume that fildes is a valid file descriptor for a ps2 port connected to a keyboard. The first example
blinks the keyboard indicators, selects scancode set 3, and loops forever while printing keycodes.

#include <sys/ps2io.h>

unsigned char kbdbuf[4]; /* buffer for ioctl operations */
unsigned char inchar; /* keycode read */

/* flash the LED indicators */

kbdbuf [0] = CAPS_LED | SCROLL_LED | NUM_LED; /* all on */

if(ioctl(fildes, PS2_INDICATORS, &kbdbuf) < 0){
perror("ioctl PS2_INDICATORS failed"):;
exit(1);

}

printf("Indicators on\n");

sleep(1l);

kbdbuf[0] = NONE_LED; /* all off */
if(ioctl(fildes, PS2_INDICATORS, &kbdbuf) < 0)({
perror("ioctl PS2_INDICATORS failed"):;

116 Hewlett-Packard Company -6- HP-UX 11i Version 3: February 2007

ps2(7)

ps2(7)

exit(1);
}
printf ("Indicators off\n");

/* use scancode set 3 */

kbdbuf [0] = SCANCODE_3;

if(ioctl(fildes, PS2_SCANCODE, &kbdbuf) < 0){
perror("ioctl PS2_SCANCODE failed");
exit(1);

}

/* identify our scancode set */

kbdbuf [0] = GET_SCANCODE;

if(ioctl(fildes, PS2_SCANCODE, &kbdbuf) < 0)({
perror("ioctl PS2_SCANCODE failed");
exit(1);

}

printf ("Keyboard reports it is using scancode set %d\n",

(unsigned int) kbdbuf[0]);

/* now, loop forever while printing keycodes */
while(1){

read(fildes, &inchar, 1);

printf ("Keycode: %x\n", (unsigned int)inchar);
}

The following example puts the mouse in stream mode, sets the report limit to 80 per second, enables the
mouse, and then loops forever printing mouse reports. Assume that fildes is a valid file descriptor for a
ps2 port connected to a mouse.

#include <sys/ps2io.h>

unsigned char buf[3]; /* mouse report buffer */
unsigned char ioctl_buf[4]; /* mouse ioctl buffer */

/* first, disable the mouse */

if (ioctl(fildes, PS2_DISABLE) < 0){
perror("ioctl PS2_DISABLE failed\n");
exit(1);

}

printf ("Mouse disabled\n");

/* Put mouse in stream mode */

if (ioctl(fildes, PS2_STREAMMODE) < 0){
perror("ioctl PS2_STREAMMODE failed\n");
exit(1);

}

printf ("Mouse in stream mode\n");

/* set samplerate */

ioctl_buf[0] = SAMPLE 80;

if (ioctl(fildes, PS2_SAMPLERATE, ioctl_buf) < 0){
perror("ioctl PS2_SAMPLERATE failed\n"):;
exit(1l);

}

printf ("Mouse sample rate set to SAMPLE_80\n");

/* Enable mouse */

if (ioctl(fildes, PS2_ENABLE) < 0){
perror("ioctl PS2_ENABLE failed\n");
exit(1);

}

printf ("Mouse enabled.\n");

HP-UX 11i Version 3: February 2007 -7- Hewlett-Packard Company 117

ps2(7)

for (;;) {
if (read(fildes, &buf[0],
perror ("Read of report
return 1;

}
if (read(fildes, &buf[l],
perror ("Read of report
return 1;
}
if (read(fildes, &buf[3],
perror ("Read of report
return 1;
}
printf ("mouse: 0x%02x, %d
}
AUTHOR

ps2(7)

1) !'= 1){
byte 1 failed");

1) !'= 1){
byte 2 failed"):;

1) !'= 1){
byte 3 failed"):;

%d\n", buf[0], buf[l]l, buf[2]);

ps2 was developed by the Hewlett-Packard Company.
PS/2 and Personal System/2 are registered trademarks of International Business Machines, Incorporated,

in the U.S. and other countries.

FILES

SEE

118

/usr/include/sys/ps2io.h
/dev/ps2_[0-15]
/dev/ps2_*.[0-15]
/dev/ps2mouse
/dev/ps2kbd

ALSO

close(2), errno(2), fentl(2), ioctl(2), open(2), read(2), select(2), signal(5), termio(7).

SoftPC User’s Guide
SoftPC Installation Guide

Sun System Administrators Guide for the HP700/ RX

Hewlett-Packard Company

HP-UX 11i Version 3: February 2007

ptem(7) ptem(7)

NAME
ptem - STREAMS pty (pesudo-terminal) Emulation module

SYNOPSIS
#include <sys/stropts.h>

int ioctl(fd_slave, I_PUSH, "ptem");

DESCRIPTION
ptem is a STREAMS module that emulates a terminal when used in conjunction with ldterm
(STREAMS line discipline) and pts (STREAMS slave pty driver). The ptem module normally sits above
pts and below 1dterm. The user process must push the ptem module onto the slave side of the pty
with a call to the STREAMS I_PUSH ioctl(2) system call before 1dterm is pushed. ptem is responsi-
ble for processing all of the terminal ioctl commands that are passed downstream from ldterm or
from ptm (STREAMS pty master driver).

ldterm and ptem together provide a real terminal behavior for the STREAMS pty slave. However,
some of the terminal ioctl commands are ignored and cause only an acknowledgement of the command
since there is no real terminal or modem in the pty subsystem. In fact, none of the flags in the c¢_clfag
field of the termio or termios structures, (which is used by the TCSETA or TCSETS ioctls,
respectively), have any effect on the pty except if the baud rate is set to zero. Setting the baud rate to zero
will have the effect of hanging up the pty connection. Similarly, the parity or delay flags in the c_iflag
field will not have any effect at all on the pty.

As a summary, the ptem module performs the following tasks:

e The following ioctls are processed, if appropriate, and acknowledged by sending an
M_TIOCACK message upstream when they are received on ptem’s write queue:

TCSETA, TCSETAW, TCSETAF, TCSETS, TCSETSW, TCSETSF, TCGETA, TCGETS, and

TCSBRK.
o Keeps track of the window size needed for the TIOCSWINSZ, TIOCGWINSZ, and JWINSIZE
ioctls.
e Upon receiving any other ioctl on its write queue, ptem acknowledges them negatively by
sending an M_IOCNAK message upstream.
e The following ioctls are passed downstream by ptem after they have been processed:
TCSETA, TCSETAW, TCSETAF, TCSETS, TCSETSW, TCSETSF, TCSBRK, and TTIOCSWINSZ. p

e Any M_TIOCNAK message that is received on ptem’s read queue will be freed in case the pckt
module is not pushed on the ptm and the above ioctls get to the pty master STREAMS head,
which would then send an M_IOCNAK message downstream.

e When ptem is opened and all conditions for setting up a controlling terminal are met, it sends an
M_SETOPTS message (with the SO_ISATTY flag set) upstream to the STREAMS head to allo-
cate a controlling terminal.

e Upon receiving an M_IOCTL message of type TCSBRK on its read queue, ptem sends an
M_TIOCACK message downstream and an M_BREAK message upstream.

e When an ioctl message is received on its write queue to set the baud rate to zero (e.g. TCSETA
with CBAUD set to B0), ptem sends an M_IOCACK message upstream and a zero-length mes-
sage downstream to be read by the pty master process.

e When an M_IOCTL message of type TIOCSIGNAL is received on its read queue, ptem sends
an M_IOCACK message downstream and an M_PCSIG message upstream with the signal
number set to the same value used in the M_IOCTL message.

e When an M_IOCTL message of type TIOCREMOTE is received on its read queue, ptem sends
an M_TOCACK message downstream and an M_CTL message (with ioc_cmd set to
MC_DO_CANON or MC_NO_CANON) upstream to enable or disable the input processing on
ldterm.

e When an M_DELAY message is received on its read or write queue, ptem simply discards the
message without any action.

e When an M_TIOCTL message of type JWINSIZE is received on its write queue and if the values
in the jwinsize structure in ptem are not zero, ptem sends an M_IOCACK message

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 119

ptem(7)

AUTHOR

ptem(7)

upstream with the jwinsize structure. If the values are zero, ptem sends an M_IOCNAK
message upstream.

When an M_IOCTL message of type TIOCGWINSZ is received on its write queue and if the
values in the winsize structure in ptem are not zero, ptem sends an M_IOCACK message
upstream with the winsize structure. If the values are zero, ptem sends an M_IOCNAK mes-
sage upstream.

When an M_IOCTL message of type TIOCSWINSZ is received in its write queue, ptem saves
the information passed to it in the winsize structure and sends an M_PCSIG (with the signal
number set to SIGWINCH) upstream to the pty slave process if the window size is changed.

When an M_IOCTL message of type TIOCGWINSZ is received on its read queue and if the
values in the winsize structure in ptem are not zero, ptem sends an M_IOCACK message
downstream with the winsize structure. If the values are zero, ptem sends an M_IOCNAK
message downstream.

When an M_IOCTL message of type TIOCSWINSZ is received in its read queue, ptem saves
the information passed to it in the winsize structure and sends an M_PCSIG (with the signal
number is set to SIGWINCH) upstream to the pty slave process if the window size is changed.

All other messages not mentioned above are passed to the next module or driver.

ptem was developed by HP.

SEE ALSO

ioctl(2), streamio(7), ptm(7), pts(7), ldterm(7).

120 Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

ptm(7) ptm(7)

NAME
ptm - STREAMS master pty (pseudo-terminal) driver

SYNOPSIS
#include <sys/stropts.h>
#include <sys/ptyio.h>
#include <sys/strtio.h>

int open("/dev/ptmx", O_RDWR);

DESCRIPTION
A pseudo-terminal (pty) consists of a tightly-coupled pair of character devices, called the master device and
slave device. The pty master and slave device drivers work together to simulate a terminal connection
where the master provides a connection to the pseudo terminal server process and the slave provides a ter-
minal device special file access for the terminal application processes, as depicted below:
| pty functions |
Application <--> |-----—---omo--- | <--> server
Processes | slave | Master | Process
| (pts) | (ptm) |

The slave driver, pts with ptem (STREAMS pty emulation module) and 1dterm (STREAMS line discip-
line module) pushed on top (not shown for simplicity), provides a terminal interface as described in ter-
mio(7). Whereas devices that provide the terminal interface described in termio(7) have a hardware device
behind them; in contrast, the slave device has another process manipulating it through the master side of
the pty. Data written on the master device is given to the slave device as input and data written on the
slave device is presented as input on the master device.

In order to use the STREAMS pty subsystem, a node for the master pty driver /dev/ptmx and N number
of slave pty devices must be installed (see pts(7) for details on slave pty). There are no nodes in the file sys-
tem for each individual master device. Rather, the master driver is set up as a STREAMS clone driver (see
clone(7)) with its major device number set to the major for the clone driver and its minor device number set
to the major for the ptm driver. The master driver is opened using the open() system call with
/dev/ptmx as the device file parameter. The clone open finds the next available minor number for the
master device. The master device is available only if it and its corresponding slave device are not already
opened. Only one open is allowed on a master device whereas multiple open are allowed on the slave dev-
ice. When the master device is opened, the corresponding slave device is automatically locked out (see
pts(7) on how to unlock the slave and obtain the slave device name). After both the master and slave have
been opened, the user has two file descriptors which represent the end points of a full duplex connection
composed of two streams. These two streams are automatically connected by the master and slave devices
when they are opened. The user may then push the necessary modules on the master and slave streams
(e.g., ptem and 1dterm, on pts for terminal semantics, and pckt on ptm for Packet Mode feature).

The master and slave drivers pass all STREAMS messages to their adjacent drivers. Only the M_FLUSH
message needs some special processing because the read queue of the master is connected to the write
queue of the slave and vice versa. Hence, the FLUSHR flag is changed to FLUSHW flag and vice versa
whenever a M_FLUSH message travels across the master—slave link. When the master device is closed, an
M_HANGUP message is sent to the corresponding slave device which will render that slave device unusable.
The process on the slave side gets the errno [ENXIO] when attempting a write () system call on the
slave device but it will be able to read any data remaining on the slave stream. Finally, when all the data
have been read, the read () system call will return 0 (zero) indicating that the slave can no longer be
used. On the last close of the slave device, a zero-length M_DATA message is sent to the corresponding
master device. When the application on the master side issues a read () or getmsg () system calls and
a 0 is returned. The user of the master device decides whether to close the master device file which will
dismantle the streams on the master side. If the master device remains opened, the corresponding slave
device can be opened and used again by another user.

Unlike the slave device, the master device does not act like a terminal. If O_ NDELAY or O_NONBLOCK is
set, a read on the master device returns -1 with errno set to [EAGAIN] if no data is available, and a write
returns —1 with errno set to [EAGAIN] if there is internal flow control on the stream.

The master ptm driver supports the following ioctl () requests:

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 121

p

ptm(7)

ISPTM

UNLKPT

TIOCREMOTE

TIOCSIGNAL

AUTHOR

FILES

/dev/ptmx

/dev/pts/N

SEE ALSO
insf(1M), getmsg(2), ioctl(2), open(2), read(2), write(2), grantpt(3C), ptsname(3C), unlockpt(3C), clone(7),
1dterm(7), pckt(7), ptem(7), pts(7), streamio(7), termio(7).

122

Hewlett-Packard Company -2-

ptm(7)

Determines whether the file descriptor is that of an open master device. On success, it
returns the major and minor number (type dev_t) of the master device which can be used to
determine the name of the corresponding slave device. On failure, it returns —1 with errno
set to [EINVAL]. ISPTM on HP-UX can return valid device number with negative value.
For example, with major number of the STREAMS pty master being 0x9c¢c, ICPTM will
return 0x9C000000 which is a negative number. Therefore, it is imperative that applica-
tions check for an explicit —1 instead of "< 0" (less than 0) on the return value.

ISPTM is used by functions grantpt (), unlockpt (), and ptsname (). User appli-
cations normally do not need to invoke this ioctl. The format of this ioctl is:

int ioctl(master_ fd, ISPTM, O0)

Unlocks the master and the corresponding slave devices. On success, it returns 0. On
failure, it returns -1 with errno set to [EINVAL]. UNLKPT is used by function
unlockpt () . User applications normally do not need to invoke this ioctl. The format of
this ioctl is:

int ioctl(master_ f£fd, UNLKPT, 0)

This ioctl puts the STREAMS pty in and out of Remote Mode. When Remote Mode is on,
input data will be flow-controlled and passed through 1dterm without any input process-
ing regardless of the terminal mode. When the pty master driver receives this ioctl, it will
send an M_CTL message downstream to 1ldterm via ptm, pts, and ptem. The com-
mand in the M_CTL message is set to MC_NO_CANON or MC_DO_CANON depending
whether to turn on or off the Remote Mode. The format of this ioctl is:

int ioctl(master £fd, TIOCREMOTE, argument)

where the argument is set to 1 to turn on Remote Mode and 0 to turn it off. Remote Mode
is normally used when doing remote line editing in a window manager, or whenever flow-
controlled input is required. Each write to the master device produces a record boundary
for the process reading the slave devices. In normal usage, a write of data is like the data
typed as a line on the terminal; a write of 0 (zero) bytes is like typing an EOF (End-of-File)
character.

This ioctl allows the master process to send a signal to the slave process. The format of this
ioctl is:

int ioctl(master £fd, TIOCSIGNAL, argument)

where the argument is the signal number as defined in the header file
<sys/signal.h>. For example the master process can send an SIGINT signal to the
slave process by doing:

ioctl (master_fd, TIOCSIGNAL, SIGINT)

ptm was developed by HP and OSF.

Streams pty master clone device
Streams pty slave devices (0 <= N < NSTRPTY), where NSTRPTY is a kernel tunable
parameter which can be changed via SAM.

HP-UX 11i Version 3: February 2007

pts(7) pts(7)

NAME
pts - STREAMS slave pty (pseudo-terminal) driver

SYNOPSIS
#include <sys/stropts.h>
#include <sys/termios.h>
#include <sys/strtio.h>

int open("/dev/pts/N", O_RDWR);

DESCRIPTION
A pseudo-terminal (pty) consists of a tightly-coupled pair of character devices, called the master device and
slave device. The pty master and slave device drivers work together to simulate a terminal connection
where the master provides a connection to the pseudo terminal server process and the slave provides a ter-
minal device special file access for the terminal application processes, as depicted below:
| pty functions |
Application <--> |-----—---omo--- | <--> server
Processes | slave | Master | Process
| (pts) | (ptm) |

The slave driver, pts with ptem (STREAMS pty emulation module) and 1dterm (STREAMS line discip-
line module) pushed on top (not shown for simplicity), provides a terminal interface as described in ter-
mio(7). Whereas devices that provide the terminal interface described in termio(7) have a hardware device
behind them; in contrast, the slave device has another process manipulating it through the master side of
the pty. Data written on the master device is given to the slave device as input and data written on the
slave device is presented as input on the master device.

In order to use the STREAMS pty subsystem, a node for the master pty driver /dev/ptmx and N number
of slave pty devices must be installed (see ptm(7) for more details on master pty). When the master device
is opened, the corresponding slave device is automatically locked out. No user can open that slave device
until its permissions are changed (via the grantpt () function) and the device is unlocked (via the
unlockpt () function). The user then call the ptsname () function to obtain the name of the slave dev-
ice and invoke the open () system call to open the slave device. Although only one open is allowed on a
master device, multiple opens are allowed on the slave device. After both the master and slave have been
opened, the user has two file descriptors which represent the end points of a full duplex connection com-
posed of two streams that are automatically connected by the master and slave devices when they are
opened. The user may then push the desired modules (for example, ptem and 1dterm, on pts for ter-
minal semantics and pckt on ptm for Packet Mode feature).

The master and slave drivers pass all STREAMS messages to their adjacent drivers. Only the M_FLUSH
message needs some special processing because the read queue of the master is connected to the write
queue of the slave and vice versa. For example, the FLUSHR flag is changed to FLUSHW flag and vice
versa whenever a M_FLUSH message travels across the master—slave link. When the master device is
closed, an M_ HANGUP message is sent to the corresponding slave device which will render that slave device
unusable. The process on the slave side gets the errno [ENXIO] when attempting a write () system call
to the slave device file but it will be able to read any data remaining in the slave stream. Finally, when all
the data has been read, the read () system call will return 0, indicating that the slave can no longer be
used. On the last close of the slave device, a zero-length M_DATA message is sent to the corresponding
master device. When the application on the master side issues a read(2) or getmsg(2) system calls, a 0
(zero) is returned. The user of the master device may decide to close the master device file, which disman-
tles the stream on the master side. If the master device remains opened, the corresponding slave device
can be opened and used again by another user.

EXAMPLES
The following example shows how a STREAMS pty master and slave devices are typically opened.

int fd _master, £fd_slave;
char *slave;

fd_master = open("/dev/ptmx", O_RDWR);
grantpt (£d_master);
unlockpt (£d_master);

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 123

pts(7) pts(7)

slave = ptsname(fd master);
fd_slave = open(slave, O_RDWR);
ioctl(fd_slave, I_PUSH, "ptem");
ioctl(fd_slave, I_PUSH, "ldterm");

AUTHOR
pts was developed by HP and OSF.
FILES
/dev/ptmx Streams pty master clone device

/dev/pts/N Streams pty slave devices (0 <= N < NSTRPTY), where NSTRPTY is a kernel tunable
parameter which can be changed via SAM (see sam (1M)).

SEE ALSO
insf(1M), sam(1M), getmsg(2), ioctl(2), open(2), read(2), write(2), grantpt(3C), ptsname(3C), unlockpt(3C),
1dterm(7), ptem(7), ptm(7), streamio(7), termio(7).

124 Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

pty(7) pty(7)

NAME
pty - pseudo-terminal driver

DESCRIPTION

The pty driver provides support for a device-pair termed a pseudo terminal. A pseudo terminal is a pair of
character devices, a master device and a slave device. The slave device provides to application processes an
interface identical to that described in termio(7). Unlike all other devices that provide the interface
described in termio(7), the slave device does not have a hardware device behind it. Instead, it has another
process manipulating it through the master half of the pseudo terminal. Thus anything written on the
master device is given to the slave device as input, and anything written on the slave device is presented as
input on the master device.

| pty functions |

Application <--> |-----—---omo--- | <--> server
Processes | slave | Master | Process
| (pts) | (ptm) |

Open and Close Processing
The slave side of the pty interprets opening or closing the master side as a modem connection or discon-
nection on a real terminal. Only one open to the master side of a pty is permitted. An attempt to open an
already open master side returns -1 and sets the external variable errno to [EBUSY]. An attempt to
open the master side of a pty that has a slave with an open file descriptor returns -1 and sets errno to
[EBUSY]. The potential problem of ptys being found busy at opens can be avoided by using the clone open
functionality discussed in the next section.

An attempt to open a nonexistent pty returns -1 and sets errno to [ENXIO]. If O_NDELAY is not
specified, opens on the slave side hang until the master side is opened. If O_NDELAY is specified, opens on
the slave side return error if the master side is closed. Any ioctl () or write () request made on the
slave side of a pty after the master side is closed returns -1 and sets the external variable errno to
[EIO]. A read () request made on the slave side of a pty after the master side is closed returns 0 bytes.
Closing the master side of a pty sends a SIGHUP hangup signal to the tty process group number of the
corresponding slave side and flushes pending input and output.

Clone Open
In typical pty usage, there is no preference among pty pairs. Thus, it is useful to be able to issue a single
open () that internally opens any available pty. An open on /dev/ptym/clone returns an open file
descriptor of a free master pty device. If there are no free devices, the open returns -1 and sets errno
to [EBUSY]. The name of the slave device corresponding to the opened master device can be found through
a ptsname () request.

Processing ioctl() Requests

By default, any ioctl () request defined by termio(7) is recognized by both the master and slave sides of
a pty. These ioctl () requests are processed by the pty driver as specified by termio(7). In addition,
the ioctl () requests defined below are recognized by the master side of a pty. The slave side only
recognizes ioctl () requests defined by termio(7). An ioctl () request made on the slave side of a pty
after the master side is closed returns =1 and sets the external variable errno to [EIO]. An ioctl ()
request not recognized by the pty returns -1 and sets the external variable errno to [EINVAL]. Note
that some of the master-side-only ioctl () requests affect which ioctl () requests are recognized by
the master and slave side of the pty. These master-side-only ioctl () requests also affect the way
recognized ioctl () requests, open() requests, and close() requests are processed by the pty
driver.

The following 1octl () requests, defined in <sys/ptyio.h>, apply only to the master side of pty:

TIOCSIGSEND
Cause a signal to be sent from the slave side of the pty to the current tty process group of
the slave side. The value of the parameter is taken to be the signal number sent. An [EIN-
VAL] error is returned and no signal is sent if the specified signal number does not refer to
a legitimate signal (see signal(5)). Note that this request allows the server process to send
signals to processes not owned by the same user ID.

TIOCTTY Enable or disable all termio processing by a pty. termio processing is enabled if the
int addressed by arg is nonzero and disabled if the int addressed by arg is zero. By

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 125

pty(7)

pty(7)

default, termio processing is enabled. termio processing refers to processing of input
and output described by termio(7) (such as tab expansion), as well as the processing of the
ioctl() requests described by termio(7). When disabled, all input and output data is
passed through the pty without modification. Issuing a TIOCTTY ioctl() request
flushes all data buffered in the pseudo terminal and releases any processes blocked waiting
for data. Enabling and disabling TIOCTTY affects the operation of the following ioctl ()
requests: TIOCPKT, TIOCREMOTE, TIOCBREAK, TIOCSTOP, TIOCSTART, TIOC-
TRAP, and TIOCMONITOR.

When TIOCTTY is enabled, all termio ioctl() requests execute as specified in ter-
mio(7), regardless of the side from which the ioctl () request is made. When TIOCTTY
is disabled, master side termio ioctl () requests set and return the the external vari-
able errno to [EINVAL]. Slave side termio ioctl () requests are processed like any
other ioctl () request when TIOCTTY is disabled. In particular, slave side termio
ioctl() requests set and return the external variable errno to [EINVAL] when both
TIOCTTY and TIOCTRAP are disabled. (See the discussion of ioctl (), open(), and
close () trapping below). ioctl () requests not defined by termio(7) are not affected by
the state of TIOCTTY.

Data written through a pseudo terminal with TIOCTTY disabled is handled in a manner
similar to data flowing through a pipe. A write request blocks in the pty until all data has
been written into the pty. A read request blocks if there is no data available unless the
O_NDELAY flag is set (see fcntl(2)). When data is available to be read, the read request
returns whatever is available, and does not wait for the number of bytes requested to be
satisfied. The number of bytes a pty can contain in its internal memory is implementation
dependent, but is at least 256 bytes in each direction. For example, a write on the slave
side of a pty of 1024 bytes might be read on the master side by four read requests return-
ing 256 bytes each. The size of the chunks of data that are read is not guaranteed to be
consistent, but no data is lost.

The following ioctl () requests, defined in <sys/ptyio.h>, apply only to the master side of a pty.
In particular, these ioctl () requests enable/disable specific modes of pty driver operation. These
ioctl() requests work in series with TIOCTTY; that is, the mode must be enabled by its ioctl ()
request and TIOCTTY must be enabled for the mode to operate. The mode can be enabled or disabled
regardless of the state of TIOCTTY.

TIOCPKT

TIOCREMOTE

Enable or disable packet mode. Packet mode is enabled if the int addressed by arg is
nonzero and disabled if the int addressed by arg is zero. By default, packet mode is dis-
abled. When applied to the master side of a pseudo terminal, each subsequent read ()
from the master side returns data written on the slave part of the pseudo terminal pre-
ceded by a zero byte (symbolically defined as TIOCPKT_DATA), or a single byte reflecting
control status information. The value of such a status byte is composed of zero or more bit
flags:

TIOCPKT_ FLUSHREAD
The read queue for the slave side has been flushed.

TIOCPKT_FLUSHWRITE
The write queue for the slave side has been flushed.

TIOCPKT_STOP
Data flowing from the slave side of the pty to the master side has been stopped by
means of ~S, TIOCSTOP, or TCXONC.

TIOCPKT_ START
Data flowing from the slave side of the pty to the master side has been restarted.

TIOCPKT_DOSTOP
Stop and start characters have been set to “S or ~Q.

TIOCPKT_NOSTOP
Stop and start characters are set to something other than ~S or Q.

Enable or disable remote mode. Remote mode is enabled if the int value of arg is nonzero
and disabled if the int value of arg is zero. By default, remote mode is disabled. Remote
mode is independent of packet mode. This mode causes input to the pseudo terminal to be
flow controlled and not input edited (regardless of the terminal mode). Each write to the
master side produces a record boundary for the process reading the slave side. In normal

126 Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

pty(7) pty(7)

usage, writing data is like typing the data as a line on a terminal; writing zero bytes is
equivalent to typing an end-of-file character (that is, the EOF character as defined in ter-
mio(7)). The data read by the slave side is identical to the data written on the master side.
Data written on the slave side and read on the master side with TTOCREMOTE enabled is
still subject to the normal termio(7) processing. TIOCREMOTE can be used when doing
remote line editing in a window manager, or whenever flow-controlled input is required.
Issuing a TIOCMONITOR ioctl () request flushes all data buffered in the pseudo termi-
nal.

The following ioctl () requests, defined in <sys/ptyio.h>, apply only to the master side of pty. In
particular, these ioctl () requests are only recognized when TIOCTTY is enabled. When TIOCTTY is
disabled, these 1octl () requests set and return the external variable errno to [EINVAL].

TIOCBREAK Cause a break operation to be done on the slave side of the pty, as if a user had pressed
the break key on a real terminal. Takes no parameter.

TIOCSTOP Stop data flowing from the slave side of the pty to the master side (equivalent to typing
AS). Takes no parameter.

TIOCSTART Restart output (stopped by TIOCSTOP or by typing ~S). Takes no parameter.

Flow-Control Input and Output Processing
The following terms are used to describe the flow of data through pseudo terminals. INPUT refers to data
flowing from the master side of a pty to the slave side. OUTPUT refers to data flowing from the slave side
of a pty to the master side.

When packet mode (TIOCPKT) is disabled and INPUT is stopped (see IXOFF, input modes, in termio(7)),
the next read () from the master side of a pty returns a STOP character. When INPUT is restarted, the
next read () from the master side returns a START character. If packet mode (TIOCPKT) is enabled, the
STOP or START character is preceded by a data packet indicator (TTOCPKTDATA). select () should be
used by the master-side server before each write () request to properly handle INPUT flow control (see
select(2)).

When INPUT flow control is enabled, write () and select () are handled as follows: Write-selects on
the master side of a pty return true only if INPUT has not been stopped. If INPUT becomes stopped
while data is being written into the master side of a pty, the write returns with the number of bytes writ-
ten before INPUT was stopped. Writes done after INPUT is stopped return immediately with zero bytes
written.

When packet mode (TIOCPKT) is disabled and OUTPUT is stopped (see IXON, input modes in termio(7)),
each subsequent read () from the master side of a pty returns with no data read. When OUTPUT is res-
tarted, each subsequent read () from the master side returns data written on the slave side. If packet
mode (TIOCPKT) is enabled, the first read () after OUTPUT has been stopped returns a TIOCPKTSTOP
packet. All subsequent reads from the master side while OUTPUT is stopped returns a TIOCPKTDATA
packet with no data. When OUTPUT is restarted, the next read () from the master side returns a
TIOCPKTSTART packet. All subsequent reads from the master side return data written on the slave side
preceded by a TIOCPKTDATA packet. select () should be used by the master-side server before each
read () to properly handle OUTPUT flow control. Otherwise, reads from the master side of a pty will
not be prevented when OUTPUT is stopped.

Trapping ioctl(), open(), close() Requests
When trapping is enabled, the master side is notified when the application on its slave side makes an
ioctl(), open(), or close() request. For trapped ioctl() and open() requests, the slave side
is blocked (that is, the request does not complete) until the server on its master side acknowledges the
trapped request. For trapped close () requests, the slave slave does not block for an acknowledgement.

select () should be used by the master side server to receive notification of trapped ioctl(),
open(), and close () requests. When one of these requests is trapped, the select () returns with an
"exceptional condition" indicated for the slave sid€’s file descriptor. Other mechanisms for receiving
notification of trapped requests are defined below, but these mechanisms should be used only if select ()
is not available.

When trapping is disabled (default condition), unrecognized slave ioctl () requests return an error, with
the external variable errno set to [EINVAL]. The only ioctl () requests recognized by the slave side
are those defined by termio(7) and only when TIOCTTY is enabled. When TIOCTTY is disabled, no
ioctl() requests are recognized by the slave side. If trapping is enabled and the master side closes,
trapping is disabled. If the master closes during the middle of a handshake with the slave, the handshake

HP-UX 11i Version 3: February 2007 -3- Hewlett-Packard Company 127

pty(7) pty(7)

is done automatically.

Trapping occurs in two forms that are identified by the ioctl () requests that enable or disable them —
TIOCTRAP and TIOCMONITOR. These two forms are distinguished by the types of requests they affect
and by the capabilities they provide. Trapping open() and close() requests is enabled or disabled by
TIOCTRAP. Trapping ioctl () requests not defined by termio(7) are enabled or disabled by TIOCTRAP.
Trapping ioctl () requests defined by termio(7) are enabled or disabled by TIOCTRAP only when
TIOCTTY is also disabled. When TIOCTTY is enabled, trapping ioctl () requests defined by termio(7)
are enabled or disabled by TIOCMONITOR. Briefly, both TIOCTRAP and TIOCMONITOR trapping allow
the server on the master side to examine the request’s parameters, the pid making the request, etc. In
addition, TIOCTRAP trapping allows the server to modify the parameters and return values of an
ioctl () request.

The following ioctl () calls apply only to the master side of a pty and pertain to trapping ioctl (),
open (), and close() requests. They are defined in <sys/ptyio.h>:

TIOCTRAP Enable or disable trapping of ioctl (), open(), and close() requests made by the
application on the slave side of a pty. Trapping is enabled if the int addressed by arg is
nonzero and disabled if the int addressed by arg is zero. By default, TTOCTRAP trapping
is disabled.

TIOCTRAPSTATUS
Check for a pending ioctl (), open(), or close() trap. The argument points to an
int that is set to one if a trap is pending and to zero if nothing is pending. Use TIOC-
TRAPSTATUS when the preferred method of a select () "exceptional condition" is not
available.

TIOCREQCHECK
Return the trapped ioctl (), open(), or close() information to the master side. Use
TIOCREQCHECK in response to either a select () '"exceptional condition" or a TIOC-
TRAPSTATUS indicating that a trap is pending. A TIOCREQCHECK reads the pending
ioctl(), open(), or close() information into the memory pointed to by the arg of
TIOCREQCHECK. The information takes the form of the following request_info
structure, defined in <sys/ptyio.h>:

struct request_info {
int request;
int argget;
int argset;
pid_t pgrp;
pid_t pid;
int errno_error;
int return_value;

};

All elements of request_info refer to the slave side of the pty and include the follow-

ing:

request The ioctl () command received.

argget The ioctl() request applied to master side to receive the trapped
ioctl () structure, if one exists (a zero value means there is none).
(When nonzero, argget is a TIOCARGGET request with the size field
precomputed.)

argset The ioctl () request applied to master side to send back the resulting
ioctl () structure, if one exists (a zero value means there is none).
(When nonzero, argset is a TIOCARGSET request with the size field
precomputed.)

pIrp The process group number of the process doing the operation.

pid The process ID of the process doing the operation.

errno_error
The errno external variable error code (initialized to zero) returned by
ioctl() on the slave side. When open error mode is enabled,

128 Hewlett-Packard Company -4 - HP-UX 11i Version 3: February 2007

pty(7)

TIOCREQGET

TIOCREQSET

TIOCGFLAGS

pty(7)

errno_error can be used to return an error for trapped slave pty
open () requests. See the discussion of the TIOCSMODES ioctl () for
further information on open error mode.

return_value
The success value (initialized to zero) returned by ioctl () on the slave
side when errno_error is not set.

When the ioctl () argument received on the slave side is not a pointer,
its value is stored as four bytes retrievable with an ioctl () request to
the master side equal to argget.

When an open() or close() is being passed, request is set to
TIOCOPEN or TIOCCLOSE, respectively. For TIOCOPEN and TIOC-
CLOSE, both argget and argset are zero because there is no
ioctl () structure. When TIOCTTY is enabled, the termio(7) definition
of open/close is executed first before being passed to the master side. Note
that while all opens are trapped, only the last close on a particular inode for
a pty slave side is trapped by the pty.

A TIOCREQCHECK returns the external variable errno error [EINVAL]
if no ioctl (), open(), or close() trap is pending. Accordingly, a
TIOCREQCHECK that returns [EINVAL] in response to a select ()
"exceptional condition" indicates that the trapped ioctl (), open(), or
close () request was terminated by a signal after select () returned.

Identical to TTOCREQCHECK except when no ioctl (), open(), or close() trap is
pending. A TIOCREQGET blocks until a slave side ioctl (), open(), or close() is
trapped; whereas a TIOCREQCHECK returns [EINVAL]. Use TIOCREQGET when neither
the preferred method of a select() ‘'exceptional condition" nor the master side
ioctl () TIOCTRAPSTATUS is available.

Complete the handshake started by a previous TIOCREQCHECK or TIOCREQGET. The
argument should point to the request_info structure, as defined by the
TIOCREQCHECK.

Before doing this ioctl () request to complete the handshake, the server should set
errno_error to an external variable errno error value to be passed back to the slave
side. If there is no error, errno_error can be left alone because the pty initializes it to
zero. Also, when there is no error, return_value should be set if other than a zero
result is desired. The server can set return_value and errno_error if the trapped
request is an 1ioctl () and may set errno_error for a trapped open () if open error
mode is enabled. Setting either return_value or errno_error for a trapped
close () affects neither the return value of the request nor the external variable errno
value of the slave side. Setting either return_value or errno_error for a trapped
open () affects neither the return value of the request nor the external variable errno
value of the slave side unless open error mode is enabled. Open error mode allows the
server to return an error to a trapped slave open() by setting errno_error. Unlike
ioctl() requests, setting return_value never affects slave pty open() requests.
Further, setting either return_value or errno_error does not cause TTOCREQSET
to return an error to the server.

If the TIOCREQSET request is made and the request value in the passed
request_info structure does not equal the trapped value, the external variable errno
is set and returned as [EINVAL]. [EINVAL] is also returned if there are no trapped
ioctl(), open(), or close() requests. If the trapped request has been interrupted
by a signal between the time that the server has done the TIOCREQGET and the
TIOCREQSET, the TTOCREQSET request returns [EINVAL].

Get the file status flags associated with a trapped request. Upon successful return, the
ioctl() returns in an integer referenced by arg the file status flags for the trapped
request. The flag definitions in <sys/file.h> can be used to interpret the flags. If no
trap is currently pending, the TIOCGFLAGS ioctl () returns an error with the external
variable errno set to [EINVAL].

TIOCMONITOR

Enable or disable read-only trapping of termio ioctl() requests. TIOCMONITOR

HP-UX 11i Version 3: February 2007 -5- Hewlett-Packard Company 129

pty(7) pty(7)

130

trapping is enabled if the int addressed by arg is nonzero and disabled if the int
addressed by arg is zero. By default, TTOCMONITOR trapping is disabled. TIOCMONTI -
TOR works in series with TIOCTTY; that is, the TIOCMONITOR trapping must be enabled
and TIOCTTY must be enabled for termio ioctl () requests to be trapped by TIOC-
MONITOR. TIOCMONITOR trapping can be enabled or disabled regardless of the state of
TIOCTTY.

When TIOCTTY is disabled, termio ioctl () requests are not trapped by TTOCMONI -
TOR. However, ioctl () requests are trapped by TIOCTRAP if TIOCTTY is disabled
and TIOCTRAP is enabled. TIOCTRAP trapping allows the master side server to modify
the parameters and return values of an ioctl () request, whereas TIOCTMONITOR
trapping does not.

TIOCMONITOR trapping allows the server on the master side to know when characteris-
tics of the line discipline in the pty are changed by an application on its slave side. The
mechanism for handshaking termio requests trapped by TIOCMONITOR is the same as
the mechanism described above for requests trapped by TIOCTRAP. (It is recommended
that termio ioctl () requests be used on the master side to interrogate the configured
state of the line discipline in the pty. This compensates for the window of time before
TIOCMONITOR is enabled, when termio ioctl () requests are not trapped.)

When using select () on the master side of a pty, the "exceptional condition" refers to an open(),
close(), or ioctl() request pending on the slave side, while "ready for reading or writing" indicates
that the device can be read from or written to successfully.

Of the ioctl () requests subject to being trapped, only one-per-pty can be handled at a time. This means
that when an application does a non-termio ioctl() request to the slave side, all other ioctl ()
requests to the same pty slave side are blocked until the first one is handshaked back by the master side.
(ioctl () requests that are not trapped, such as termio when TIOCTTY is enabled and TIOCMONT -
TOR is disabled, are not blocked.) This permits the implementation of indivisible operations by an
ioctl () call on the slave side that is passed to the server process.

In summary, the following method of handling trapped ioctl (), open(), and close() requests is
preferred:

1. Call select (). This system call blocks the master side until a slave side ioctl (), open(),
or close () request is trapped.

2. Make TIOCREQCHECK ioctl() request. This step returns information about a trapped
ioctl(), open(), or close() request. If TIOCREQCHECK returns the external variable
errno error [EINVAL], loop back to the select () call.

3. Make argget ioctl () request. This optional step is used if argget is nonzero and the
server wants to do more than just reject the trapped slave ioctl () request.

4. Make argset ioctl() request. This optional step is done if argset is nonzero and the
server wants to pass back a modified ioctl () structure. It is done after the trapped
ioctl () request is processed via the server on the master side.

5. Set errno_error and return_value. If the trapped request is an ioctl(), set
errno_error appropriately. If the appropriate value for errno_error is zero,
return_value must be set. If open error mode is enabled, set errno_error to a nonzero
value to return an error to a trapped open () request.

6. Make TIOCREQSET ioctl () request. This step completes the trapped ioctl (), open(),
or close () request.

While a process is waiting in the slave side of the pty for the server to complete a handshake, it is suscep-
tible to receiving signals. The following master side ioctl () request allows the server process to control
how the pty responds when a signal attempts to interrupt a trapped open () or ioctl () request:

TIOCSIGMODE
Set the signal handling state of the pty to the mode specified as the argument. The mode
can have three values, which are TTIOCSIGBLOCK, TIOCSIGABORT, and TIOCSIGNOR -
MAL.
TIOCSIGBLOCK

Cause some signals to be postponed that are destined for the slave-side process whose
open() or ioctl() request is trapped. Signals are postponed if they would

Hewlett-Packard Company -6- HP-UX 11i Version 3: February 2007

pty(7)

pty(7)

otherwise cause the process to jump to an installed signal handler. Signals are not
postponed if they would otherwise cause the process to abort or if they are being
ignored. When the server process completes the handshake by means of the
TIOCREQSET ioctl () request, the process returns to the calling program and any
pending signals are then acted upon. Any signals that the user has blocked by means
of sigblock () continues to be blocked.

TIOCSIGABORT
Prevent a trapped open() or ioctl() request from being restarted. The server
process sets this mode when it wants the interrupted requests to return to the calling
program with an [EINTR] error.

TIOCSIGNORMAL

This is the default mode of the pty. If a signal interrupts a trapped open() or
ioctl () request, the user’s signal handler routine can specify whether the request
is to be restarted. If the request is restarted, it executes again from the beginning
and the server has to make another TIOCREQGET request to start the handshake
over again. If the user’s signal handler routine specifies that the interrupted request
should not be restarted, the request returns to the calling program with [EINTR]
upon completion of the signal handler. Note that the restarted request is not neces-
sarily the very next one to be trapped.

The following ioctl () requests, defined in <sys/ptyio.h>, provide a mechanism to get and set pty
modes. Five of the modes can also be manipulated using other ioctl () requests discussed previously.
See the bit definitions for the ioctl () equivalents. The effect of enabling or disabling them by either
means is identical. Commonly, an application would use the TIOCGMODES ioctl () to get the pty
modes currently in effect, set or clear the bits for the modes being changed, and issue a TIOCGMODES
ioctl () to effect the desired change.

TIOCGMODES

TIOCSMODES

WARNINGS

Get the pty modes currently in effect. The ioctl () returns in a long referenced by arg
bits indicating the states of various pty modes. If a bit is set, the associated mode is
enabled. If a bit is clear, the associated mode is disabled. Unused bits are clear. The
meaning of the bits is described under the description of the TIOCSMODES ioctl ().

Set the pty modes according to the value of type long referenced by arg. Unused bits are
ignored but should be set to zero. The bit values for pty modes are listed below.
PM_REMOTE

Enable or disable remote mode. See the discussion of the TIOCREMOTE ioctl ().
PM_TTY

Enable or disable tty mode. See the discussion of the TIOCTTY ioctl().
PM_PKT

Enable or disable packet mode. See the discussion of the TIOCPKT ioctl().
PM_TRAP

Enable or disable trap mode. See the discussion of the TIOCTRAP ioctl ().
PM_MONITOR

Enable or disable monitor mode. See the discussion of the TIOCMONITOR

ioctl().

PM_OPEN_ERROR

Enable or disable open error mode. Open error mode allows a server process to
return an error to a trapped slave pty open() through the TIOCREQSET
ioctl (). When open error mode is enabled, the server may return a trapped
open () with an error by setting the errno_error field in the request_info
structure passed to the TIOCREQSET ioctl (). When open error mode is disabled
(the default state), setting errno_error to handshake a slave open() has no
effect. Note that unlike the ioctl () trap handshaking, setting return_value
has no effect for a slave open () regardless of the state of open error mode. See the
discussion of the TIOCREQSET ioctl() for further details on handshaking a
trapped request.

The slave side cannot indicate an end-of-file condition to the master side.

HP-UX 11i Version 3: February 2007 -7- Hewlett-Packard Company 131

pty(7) pty(7)

When using TIOCREMOTE, a single write () request to the master side of greater than 256 bytes may
result in multiple smaller records being read from the slave side instead of only one record.

AUTHOR
pty was developed by the University of California, Berkeley.

FILES
/dev/ptym/ptyla-ce-su-z][0-9][0-9] master pseudo terminals
/dev/ptym/ptyla-ce-su-z][0-9][0-9][0-9] master pseudo terminals
/dev/ptym/ptyla-ce-su-z][0-9a-f] master pseudo terminals
/dev/pty[pgar][0-9a-£f] master pseudo terminals
/dev/pty/ttyla-ce-su-z][0-9][0-9] slave pseudo terminals
/dev/pty/ttyla-ce-su-z][0-9][0-9][0-9] slave pseudo terminals
/dev/pty/ttyla-ce-su-z][0-9a-£] slave pseudo terminals
/dev/tty[pgr][0-9a-£f] slave pseudo terminals

SEE ALSO

close(2), fentl(2), ioctl(2), open(2), read(2), select(2), sigblock(2), write(2), ptsname(3C), signal(5), termio(7).

132 Hewlett-Packard Company -8- HP-UX 11i Version 3: February 2007

random (7) random (7)

NAME

random, urandom, rng - strong random number generator

SYNOPSIS
#include <sys/random.h>

DESCRIPTION
The character special files /dev/random and /dev/urandom provide an interface to the kernel-
resident random number generator, rng. A read() from /dev/random is potentially blocking. A
read () from /dev/urandom is always nonblocking. Data from /dev/urandom can potentially have
lower entropy than data from /dev/random.

The rng module is a dynamically loadable kernel module (DLKM). That is, it can be dynamically
unconfigured or reconfigured by an administrator with root authority without rebooting the system.

A sequence from rng has unlimited entropy. In contrast, a sequence generated computationally by a pseu-
dorandom number generator, such as random(3M), has limited entropy, derived only from its initial seed.
The rng module should be considered a quality source for randomness. It has passed extensive statistical
testing, including the NIST (National Institute of Standards and Technology) tests for randomness.

The rng module uses the uncertainty in completion times of interrupt threads triggered by external
events. The rng module extracts a sequence of bits from the interrupt time stamps. Any existing bit bias
is removed to yield a sequence with uniform distribution of 0’s and 1’s. The resulting sequence is divided
between the holding buffers for the special files /dev/random and /dev/urandom. For each read ()
on /dev/random and /dev/urandom, data is retrieved from the corresponding holding buffer. A hash
function based on AES (Advanced Encryption Standard) is applied and the result is placed in the buffer pro-
vided by the user. All requests on the holding buffers are serialized to ensure that returned random data is
not shared between different requests even for simultaneous requests on a multiprocessor system.

There is no write () function associated with either /dev/random or /dev/urandom, and both dev-
ices are read-only by all users. A single ioctl () is defined for /dev/random to facilitate independent
verification of rng production.

The file /usr/include/sys/random.h contains the following definitions:
/* The maximum request size, for read() or ioctl(), in bytes */
#define RNG_READMAX 256
/* ioctl() to retrieve data from the entropy collector directly*/
#define RNG_GETRAW _IOR(’Q’, 0, uint8_t [RNG_READMAX])

If a read() request is for more than RNG_READMAX bytes, it is treated as if it was for exactly
RNG_READMAX bytes. This holds for both /dev/random and /dev/urandom.

Specific Information About /dev/irandom
When there are a large number of requests on /dev/random within a short time interval, the demand on
the holding buffer can exceed the rate at which data is supplied by rng. A read() on the
/dev/random device blocks the requesting thread if the random data stored in the holding buffer is too
low to complete the request. The thread blocks until the holding buffer has been updated with enough ran-
dom data to complete the request.

For /dev/random open() flags, only O_ NONBLOCK and O_NDELAY have device-specific actions. If
neither of these flags is set, a read () on /dev/random will block until the amount of data requested,
up to RNG_READMAX bytes, can be returned. When the requested number of bytes is not available and
either of the above flags are set, read () returns immediately. If the O_ NONBLOCK flag is set, read ()
returns -1 and errno is set to EAGAIN. If O_NONBLOCK is not set and O_NDELAY is set, read ()
returns zero.

The RNG_GETRAW ioctl() permits an application with superuser privilege to fetch RNG_READMAX
bytes of data directly from the /dev/random holding buffer, after bias has been removed but before the
AES hash. This interface is not intended to be used for cryptographic applications, rather, for statistical
testing of the randomness of the data in the /dev/random holding buffer. This RNG_GETRAW
ioctl () blocks for the same reason as a read on /dev/random. If the requesting thread does not have
superuser authority, EACCES is returned.

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 133

random (7) random (7)

Specific Information About /dev/urandom
To address the limited random data collection rate problem, the /dev/urandom device is strictly non-
blocking. The /dev/urandom holding buffer is regularly updated with random data, yet a high number
of reads can decrease the entropy in its holding buffer. Under this conditions, the entropy of the data from
/dev/urandom will be slightly lower that the one from /dev/random, yet /dev/urandom can still
be considered a good source of random numbers.

There are no open () flags that result in device-specific actions with /dev/urandom read ().
ERRORS

[EAGAIN] For /dev/random read(), O_NONBLOCK was set when /dev/random was opened,
and there is insufficient content in the holding buffer to complete the request.

[EACCES] For the /dev/random RNG_GETRAW ioctl(), the requesting thread did not have
superuser authority.
AUTHOR
The random number generator was developed by HP.
For bias removal, the generator uses an algorithm by Dr. Yuval Perez, University of California.
The secure hashing uses an AES implementation provided by Dr. Brian Gladman, UK.
The NIST statistical tests are available at http://csrc.nist.gov/rng.
FILES
/dev/random
/dev/urandom

SEE ALSO
random(3M).

134 Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

route (7P) route (7P)

NAME
route - kernel packet forwarding database

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <net/route.h>
#include <net/if.h>

s = socket (AF_ROUTE, SOCK_RAW, family);

DESCRIPTION
This manpage describes routing socket interface to read and write kernel routing messages.

The information on how to transmit network packets is maintained by the HP-UX kernel in the routing
information database, also known as the routing table. A user process can read or update information in
the routing table by sending routing messages to the kernel via an AF_ROUTE socket. The message types
are described in more detail in the Message Types section below.

The family parameter in the socket system call shown in the SYNOPSIS may be used to filter the rout-
ing messages the caller receives. The valid values for family are:

AF_INET get routing messages affecting the Internet Protocol.
AF_INET6 get routing messages affecting the Internet Protocol version 6.
AF_UNSPEC get routing messages affecting both AF_INET and AF_INETS6 protocols.

Entries in the routing table specify the appropriate remote host or gateway to use when transmitting pack-
ets. These entries are either host-specific, or are applicable to all hosts located on a generic subnetwork, as
specified by a netmask value.

After the system boots, each protocol family adds entries to the routing table for each network interface
configured and ready to transmit network traffic. Normally, the route entry is specified as a direct con-
nection to the destination host or network. For direct routes, the transport layer of the network stack
sends packets directly to the host specified in the packet header. For non-direct routes, the interface for-
wards the packet to the gateway listed in the routing entry for that interface.

When routing packets, the kernel attempts to find an optimal route for each destination. If more than one
entry matches the netmask of the destination, the kernel selects the route with the greater number of 1’s in
the netmask.

A default (wildcard) route is used if no other route to a particular remote host or network can be located. A
default route is specified with an all 0 destination address value and a netmask of all 0’s. Default routes, in
combination with routing redirects, provide an economical mechanism for routing network traffic.

If no routing entry is found, the destination is declared as unreachable, and a routing-miss message
(RTM_MISS) is generated to any user processes using the routing socket facilities, as described below.

Message Types
After creating a routing socket, the process can send commands to the kernel by writing to the socket. The
process can read information from the kernel by reading from the socket. The following message types can
be used to communicate routing information between the user process and the kernel:

RTM_ADD add route

RTM_CHANGE change gateway, metrics or flags
RTM_DELADDR address being removed from interface
RTM_DELETE delete route

RTM_GET report metrics and other information
RTM_IFINFO interface going up, down, etc.
RTM_LOSING kernel suspects route is failing
RTM_LOCK lock specified metrics

RTM_MISS lookup on this address failed
RTM_NEWADDR address being added to interface
RTM_REDIRECT kernel instructs to use different route
RTM_RESOLVE request to resolve destination to link-layer address

All 12 message types can be used to read information from the kernel. To write to the kernel, the process
can issue RTM_ADD, RTM_DELETE, or RTM_GET message types to update information in the routing
table.

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 135

route (7P)

route (7P)

Message types RTM_CHANGE and RTM_LOCK are not supported on HP-UX. If a user process issues
these messages, [EOPNOTSUPP] error will be returned.

Message Structure
Messages are formed by a message header followed by a small number of socket address structures.

136

What message header to use depends on the message type.

if msghdr header. The RTM_NEWADDR and RTM_DELADDR messages use the ifa_msghdr

header. All other message types use the rt_msghdr header.

The rt_msghdr structure contains the following members:

uintl6_t rtm msglen; /*
uint8 t rtm version; /*
uint8_t rtm_type; /*
uintl6_t rtm_ index; /*
int32_t rtm flags; /*

*
int32_t rtm addrs; /*

*
pid_t rtm pid; /*
int32_t rtm_seq; /*
int32_t rtm errno; /*
int32_t rtm use; /*
uint32_t rtm inits; /*

struct rt_metrics rtm rmx; /*

to skip over unrecognized messages */

future binary compatibility */

message type */

index for associated ifp */

flags,
e.g. DONE */

incl. kern & message,

bitmask identifying sockaddrs in

the message */
identify sender */

for sender to identify action */

error indicator */
from rtentry */

which metrics we are initializing */

metrics themselves */

The if_msghdr structure contains the following members:

uintl6_t ifm msglen; /*
uint8 t ifm version; /*
uint8_t ifm_type; /*
int32_t ifm addrs; /*

int32_t ifm flags;
uintl6_t ifm_ index;

*
/*
/*

struct if_data ifm data; /*

*

to skip over unrecognized messages */

future binary compatibility */

message type */

bitmask identifying sockaddrs in

the message */
value of if flags */

index for associated ifp */
statistics and other data about

interface */

The ifa_msghdr structure contains the following members:

uintl6_t ifam msglen; /*
uint8_ t ifam version; /*
uint8_t ifam_type; /*
int32_t ifam addrs; /*

*
int32_t ifam flags; /*

uintl6_t ifam index;

/*

to skip over unrecognized messages */

future binary compatibility */

message type */

bitmask identifying sockaddrs in

the message */
value of ifa flags */

index for associated ifp */

int32_t

ifam metric; /*

value of ifa_metric */

The RTM_IFINFO messages use the

To determine retransmission behavior, reliable protocols use the rt_metrics structure included in the

rt_msghdr message header. The rt_metrics structure contains the following members:

uint32_t rmx_locks; /*
uint32_t rmx mtu; /*
uint32_t rmx_hopcount; /*
uint32_t rmx_expire; /*
uint32_t rmx_recvpipe; /*
uint32_t rmx_sendpipe; /*
uint32_t rmx_ssthresh; /*

uint32_t rmx_rtt;
uint32_t rmx rttvar;
uint32_t rmx pksent;

Hewlett-Packard Company

/*
/*
/*

The i£_data structure included in the
face and contains the following members:

Kernel must leave these values alone */

MTU for this path */
max hops expected */
lifetime for route,

e.g.

redirect */

inbound delay-bandwidth product */
outbound delay-bandwidth product */
outbound gateway buffer limit */
estimated round trip time */
estimated rtt variance */

packets sent using this route */

if msghdr message header defines a queue for a network inter-

HP-UX 11i Version 3: February 2007

route (7P) route (7P)

/* generic interface information */

uint8_t ifi_type; /* ethernet, tokenring, etc */
uint8_t ifi_physical; /* AUI, Thinnet, l1lObase-T, etc */
uint8_t ifi_addrlen; /* media address length */

uint8_t ifi_ hdrlen; /* media header length */

uint8_t ifi_recvquota; /* polling quota for receive intrs */
uint8_t ifi_sxmitquota; /* polling quota for xmit intrs */
uint32_t ifi_mtu; /* maximum transmission unit */
uint32_t ifi_metric; /* routing metric (external only) */
uint32_t ifi_baudrate; /* linespeed */

/* volatile statistics */

uint32_t ifi_ipackets; /* packets received on interface */
uint32_t ifi_ierrors; /* input errors on interface */
uint32_t ifi_opackets; /* packets sent on interface */
uint32_t ifi_oerrors; /* output errors on interface */
uint32_t ifi_collisions; /* collisions on csma interfaces */
uint32_t ifi_ibytes; /* total number of octets received */
uint32_t ifi_obytes; /* total number of octets sent */
uint32_t ifi_imcasts; /* packets received via multicast */
uint32_t ifi_omcasts; /* packets sent via multicast */
uint32_t ifi_iqgdrops; /* dropped on input, this interface */
uint32_t ifi_ noproto; /* destined for unsupported protocol */
uint32_t ifi_ hwassist; /* HW offload capabilities */

uint32_t ifi_unused; /* XXX was ifi_sxmittiming */

struct timeval ifi_lastchange; /* time of last administrative change */

(Note that the position of items in all previously mentioned data structures does not necessarily reflect the
order of the members in the structure.)

The members rtm_addrs, ifm_addrs, and ifam addrs of the message headers are bitmasks that
specify what socket address structure(s) follow the message. When multiple sockaddrs follow the message,
they are interpreted based on their order in the message and the value stored in the bitmask. The
sequence is least significant to the most significant bit within the vector.

The following constants are defined to indicate which socket addresses are present in the routing message:

#define RTA_DST 0x01 /* destination sockaddr present */
#define RTA_GATEWAY 0x02 /* gateway sockaddr present */
#define RTA_ NETMASK 0x04 /* netmask sockaddr present */
#define RTA_ GENMASK 0x08 /* cloning mask sockaddr present */
#define RTA_IFP 0x10 /* interface name sockaddr present */

#define RTA_ IFA 0x20 /* interface address sockaddr present */ r
#define RTA_ AUTHOR 0x40 /* author of redirect sockaddr present */
#define RTA_ BRD 0x80 /* for NEWADDR, broadcast or

* point-to-point destination
* address */

Any messages sent to the kernel are returned back to the process issuing the command, and message
copies are sent to all interested listeners. The sender may provide its process ID to be stored in the mes-
sage header. An additional sequence field can be used to distinguish between outstanding messages. How-
ever, message replies may be lost when kernel buffers are exhausted.

Any messages generated by the kernel would have process ID and sequence field set to zero.

The kernel may spontaneously emit routing messages in response to external events, such as receipt of a
redirect command, or failure to locate an appropriate route for a request. A process may ignore all mes-
sages from the routing socket by doing a shutdown(2) system call for further input.

Security Restrictions
Only users with appropriate privileges can make changes to the routing table.

Notes
Some fields in the message header structures are not used on HP-UX. This means when the kernel gen-
erates routing messages it sets these fields to 0. Also, when the kernel receives routing messages, it
ignores any values contained in these fields. This applies to the following fields:

HP-UX 11i Version 3: February 2007 -3- Hewlett-Packard Company 137

route (7P)

Structure Fields Not Used

route (7P)

rt_msghdr rtm_use, rtm_inits, rtm_rmx, except for rtm_rmx.rmx_mtu and rtm_rmx.rmx_rtt

if msghdr ifm_data, except for ifm_data.ifi_mtu, ifm_data.ifi_metric, ifm_data.ifi_ipackets, and

ifm_data.ifi_opackets

ifa_msghdr ifam_metric

ERRORS
If the kernel rejects a routing message, the rtm_errno field in the rt_msghdr structure may be set to

one of the following values:

[EEXIST] The specified entry already exist. Requested to duplicate an existing entry.

[ENETUNREACH] Network is unreachable.

[ENOENT] The specified entry does not exist. Requested to delete non-existent entry.

[ENOBUFS] No buffer space is available. Insufficient resources were available to install a
new route.

[EOPNOTSUPP] Operation not supported. Message types RTM_CHANGE and RTM_LOCK are
not supported on HP-UX.

[EPERM] Permission to issue a command is denied. The user needs appropriate privileges

to make changes to the routing table.

EXAMPLES

The following sample program illustrates how a user process can add a route to the kernel’s routing table.

138

#include <sys/types.h>
#include <sys/socket.h>
#include <net/route.h>
#include <net/if.h>

#include <netinet/in.h>

int main(int argc, char **argv)
{
int s;
char buf[1024];
struct rt_msghdr *rtm;
struct sockaddr_in *sinl,

if (argec != 3) {

*sin2;

printf ("usage: %s <destinationIP> <gatewayIP>\n",

argv[0]);
return -1;
}

if ((s = socket (AF_ROUTE,

return -1;
}

rtm = (struct rt_msghdr *)buf;

SOCK_RAW,
perror ("failed to create socket");

AF_UNSPEC)) < 0) {

rtm->rtm msglen = sizeof (struct rt_msghdr) +
(2 * sizeof (struct sockaddr_in));

rtm->rtm version = RTM_VERSION;

rtm->rtm type = RTM_ADD;

rtm->rtm_addrs = (RTA_DST | RTA_GATEWAY) ;
rtm->rtm_rmx.rmx hopcount = 1;

rtm->rtm pid = getpid();
rtm->rtm _errno = 0;
rtm->rtm_seq = 0001;

Hewlett-Packard Company

HP-UX 11i Version 3: February 2007

route (7P) route (7P)

/*

* the destination address being added follows
* the routing header

*/

sinl = (struct sockaddr_in *) (rtm + 1);
sinl->sin_family = AF_INET;
sinl->sin_addr.s_addr = inet_addr(argv([1l]):;

/*
* the gateway address being added follows the
* destination address
*/
sin2 = (struct sockaddr_in *)(sinl + 1);
sin2->sin_family = AF_INET;
sin2->sin_addr.s_addr = inet_addr(argv([2]):;

if (write(s, (caddr_t)rtm, rtm->rtm msglen) < 0) {
perror ("Failed to send routing message");
return -1;

}

return 0;
AUTHOR
Routing socket interface was developed by HP and the University of California, Berkeley.

SEE ALSO
route(1M), ioctl(2), shutdown(2), socket(2), routing(7).

HP-UX 11i Version 3: February 2007 -5- Hewlett-Packard Company 139

routing(7) routing(7)

NAME

routing - system support for local network packet routing

DESCRIPTION

140

The network facilities for HP-UX provide general packet routing support. Routing table maintenance is
handled by application processes.

A routing table consists of a set of data structures used by the network facilities to select the appropriate
remote host or gateway when transmitting packets. The table contains a single entry for each route to a
specific network or host, as displayed by the netstat command with the -r or -rn options (see
netstat(1)). Routes that are not valid are not displayed.

netstat -r
Routing tables

Destination Gateway Flags Refs Use Interface Pmtu
hpindwr.cup.hp.com
localhost UH 1 39 100 4608
localhost localhost UH 0 68 1lo0 4608
147.253.56.195 1localhost UH 0 0 lo0 4608
147.253.144.66 1localhost UH 0 0 lo0 4608
default hpinsmh.cup.hp.com
UG 1 21 lan0 1500
15.13.136 hpindwr.cup.hp.com
U 1 92 lan0 1500
147.253.56 147.253.56.195 U 0 7 lan2 1500
147.253.144.64 147.253.144.66 U 0 7 lanl 1500
netstat -rn
Routing tables
Destination Gateway Flags Refs Use Interface Pmtu
15.13.136.66 127.0.0.1 UH 1 39 1lo0 4608
127.0.0.1 127.0.0.1 UH 0 68 lo0 4608
147.253.56.195 127.0.0.1 UH 0 0 lo0 4608
147.253.144.66 127.0.0.1 UH 0 0 lo0 4608
default 15.13.136.11 UG 2 30 lan0 1500
15.13.136.0 15.13.136.66 U 1 113 1lan0 1500
147.253.56.0 147.253.56.195 U 0 7 lan2 1500
147.253.144.64 147.253.144.66 U 0 7 lanl 1500
netstat -rv
Routing tables
Dest /Netmask Gateway Flags Refs Use Interface Pmtu
hpindwr.cup.hp.com/0Oxfff£ff£f
localhost UH 1 39 100 4608
localhost/Oxffffffff
localhost UH 0 68 1lo0 4608
147.253.56.195/0xfffFFFfff
localhost UH 0 0 100 4608
147.253.144.66/0xfEffFFFff
localhost UH 0 0 100 4608
default/0x00000000
hpinsmh.cup.hp.com
UG 2 31 lan0 1500
15.13.136/0x£££££800
hpindwr.cup.hp.com
U 1 129 lan0 1500
147.253.56/0xf£f£f££fe00
147.253.56.195 U 0 7 lan2 1500
147.253.144.64/0x£E£E£FFFFO
147.253.144.66 U 0 7 lanl 1500

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

routing(7) routing(7)

netstat -rnv
Routing tables

Dest/Netmask Gateway Flags Refs Use Interface Pmtu
15.13.136.66/255.255.255.255

127.0.0.1 UH 1 39 100 4608
127.0.0.1/255.255.255.255

127.0.0.1 UH 0 68 lo0 4608
147.253.56.195/255.255.255.255

127.0.0.1 UH 0 0 lo0 4608
147.253.144.66/255.255.255.255

127.0.0.1 UH 0 0 lo0 4608
default/0.0.0.0 15.13.136.11 UG 3 40 lanoO 1500
15.13.136.0/255.255.248.0

15.13.136.66 U 1 153 lan0 1500
147.253.56.0/255.255.254.0

147.253.56.195 U 0 8 lan2 1500
147.253.144.64/255.255.255.240

147.253.144.66 U 0 8 lanl 1500

The following columns are of particular interest:

Destination The destination Internet address: host name, network name, or default. The
default keyword indicates a wildcard route, used as a last resort if no route is
specified for a particular remote host or network. See Flags.

Netmask The netmask and the destination Internet address together define a range of IP
addresses that may be reached by the route’'s gateway. A host route by default
has a netmask of all 1’s. A default route by default has a netmask of all 0’s. The
netmask is also used in selecting a route to forward an IP packet. See the Rout-
ing Algorithm subsection.

Gateway The gateway to use to get to the destination: a remote gateway or the local host.
See Flags.
Flags The type of route:

U The route is "up" or available (see ifconfig(1M)).

G The route uses a remote host as a gateway; otherwise, the local host is
shown as the gateway (see route(1M)).

H The destination is a host; otherwise, the destination is a network (see

route(1M)).
Interface The interface connections:
100 The local loopback after system boot.
lan0, lanl,... The interface cards installed on the local host after
the ifconfig command is executed at boot time
(see ifconfig(1M)).

The values of the count and destination type fields in the route command determine the presence of the G
and H flags in the netstat -r display and thus the route type, as shown in the following table.

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 141

routing(7) routing(7)

Count Destination Type Flags Route Type
=0 network U Route to a network directly from the local host
>0 network UG Route to a network through a remote host gateway
=0 host UH Route to a remote host directly from the local host
>0 host UGH Route to a remote host through a remote host gate-
way
=0 default U Wildcard route directly from the local host
>0 default UG Wildcard route through a remote host gateway
Subnets

The network facilities support variable-length subnetting. An Internet address is made up of a network
address portion, and a host address portion of an address in the form:

192.34.17.0
Subnet addresses are defined as a portion of the network’s Internet address. This scheme provides for:

e Network addresses that identify physically distinct networks.
e Subnet addresses that identify physically distinct subnetworks of the same network.

A network manager can subdivide the Internet address of the local network into subnets using the host
number space. This facility allows several physical networks to share a single Internet address.

To allow for this, three Internet classes are defined, each accommodating a different amount of network
and host addresses. The address classes are defined by the most significant bit of the binary form of the
address.

The following table lists the number of networks, nodes, and the address ranges for each address class:

Nodes per
Class Networks Network Address Range
A 127 16777215 0.0.0.1 - 127.225.225.254
B 16383 65535 128.0.0.1 - 191.255.255.254
C 2097151 255 192.0.0.1 - 223.244.244.243
Reserved — — 224.0.0.0 - 255.255.255.255

The first 8 bits of a Class A network has network space for only 127, while accommodating the largest
number of nodes possible among the classes defined. A single class B network has the network address lim-
itation of 16 bits, and 16 bits to define the nodes.

For example, a Class C address space is as follows:

Indicates Class C
Class C subnet
networks portion

10000000.00000110.00000001.11100001

Network Address Host
= 192.6.1 Address
=1

A subnet for a given host is specified with the i fconfig command (see ifconfig(1M)), using the netmask
parameter with a 32-bit subnet mask.

The default masks for the three classes of Internet addresses are as follows:

Class A: 255.0.0.0
Class B: 255.255.0.0
Class C: 255.255.255.0

An example Class C network number is 192.34.17.0. The last field specifies the host number. Thus, all
hosts with the prefix 192.34.17 are recognized as being on the same logical and physical network.

142 Hewlett-Packard Company -3- HP-UX 11i Version 3: February 2007

routing(7) routing(7)

If subnets are not in use, the default mask used is 255.255.255.0.

If subnets are used and the 8-bit host field is partitioned into 3 bits of subnet and 5 bits of host as in the
above example, then the subnet mask would be 255.255.255.192.

If a host has multiple interfaces, then it can belong to different subnets. Unlike past releases, the subnets
can have different sizes even if they may have the same network address. This is accomplished by using a
different netmask on each of the host interfaces. For example, the 1anl and 1lan2 interface shown in the
netstat tables above are connected to two distinct subnets of the same network, 147.253. The subnet
that 1anl belongs to can have at most 14 hosts, because its netmask is 255.255.255.240.

Note:
The host portion of those IP addresses in the subnet cannot be all 1’s or all 0’s, therefore this subnet
can support only 14 hosts, not 16.

The subnet that 1an2 belongs to can have up to 510 hosts, because its netmask is 255.255.254.0.

Supernets

A supernet is a collection of smaller networks. Supernetting is a technique of using the netmask to aggre-
gate a collection of smaller networks into a supernet. This technique is particularly useful for class C net-
works. A Class C network can only have 254 hosts. This can be too restrictive for some companies. For
these companies, a netmask that only contains a portion of the network part can be applied to the hosts in
these class C networks to form a supernet. This supernet netmask should be applied to those interfaces
that connect to the supernet using the ifconfig command (see ifconfig(1M)). For example, a host can
configure its interface to connect to a class C supernet, for example, 192.6, by configuring an IP address of
192.6.1.1 and a netmask of 255.255.0.0 to its interface.

Routing Algorithm
The routing table entries are of three types:

e Entries for a specific host.
e Entries for all hosts on a specific network.
e Wildcard entries for any destination not matched by entries of the first two types.

To select a route for forwarding an IP packet, the network facilities select the complete set of "matching"
routing table entries from the routing table. A routing table entry is considered a match, if the result of the
bit-wise AND operation between the netmask in the routing entry and the IP packet’s destination address
equals the destination address in the routing entry.

The network facilities then select from the set the routing entries that have the longest netmask. The
length of a netmask is defined as the number of contiguous 1 bits starting from the leftmost bit position in
the 32-bit netmask field. In other words, the network facilities select the routing entry that specifies the
narrowest range of IP addresses. For example, the host route entry that has a destination/netmask pair of
(147.253.56.1, 0xFFFFFFFF), is more specific than the network route entry that has a destination/netmask
pair of (147.253.56.0, 0xFFFFFEQ0); therefore, the network facilities select the host route entry. The
default route by default has a destination/netmask pair of (0,0). Therefore, the default route matches all
destinations but it is also the least specific. The default route will be selected only if there is not a more
specific route.

There may still be multiple routing entries remaining. In that case, the IP packet is routed over the first
entry displayed by netstat -r. Such multiple routes include:

o Two or more routes to a host via different gateways.
e Two or more routes to a network via different gateways.

A superuser can change entries in the table by using the route command (see route(1M), or by informa-
tion received in Internet Control Message Protocol (ICMP) redirect messages.

If there are more than one default gateways for a particular net or subnet, each will be used in turn to
effect the even distribution of datagrams to the different gateways.

WARNINGS
Reciprocal route commands must be executed on the local host and the destination host, as well as all
intermediate hosts, if routing is to succeed in the cases of virtual circuit connections or bidirectional
datagram transfers.

HP-UX 11i Version 3: February 2007 -4 - Hewlett-Packard Company 143

routing(7) routing(7)

AUTHOR
routing was developed by the University of California, Berkeley.

FILES
/etc/hosts
/etc/networks

SEE ALSO
netstat(1), ifconfig(1M), route(1M), route(7P).

144 Hewlett-Packard Company -5- HP-UX 11i Version 3: February 2007

sad(7) sad (7)

NAME
sad - STREAMS Administrative Driver

SYNOPSIS
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/sad.h>
#include <stropts.h>

int ioctl(
int fildes,
int command,

'/“* arg */
)i

DESCRIPTION
The sad driver provides an interface to the autopush facility using the ioctl () function. As an inter-
face, the sad driver enables administrative tasks to be performed on STREAMS modules and drivers. By
specifying the command parameter to the ioctl () function, an administrator can configure autopush
information for a device, get information on a device, or check a list of modules.

fildes is a file descriptor obtained by opening /dev/sad using open(). command specifies the adminis-
trative function to be performed. arg points to a data structure. If command is SAD_SAP or SAD_GAP,
arg points to a struct of type strapush. If command is SAD_VML, arg points to a struct of type
str_list.

Security Restrictions
The SAD_SAP ioctl() is restricted to superusers or users with the NETADMIN privilege. See
privileges(5) for more information about privileged access on systems that support fine-grained privileges.

ioctl Commands
The commands used to perform administrative functions on a STREAMS module or driver are specified by
the following ioctl () commands:

SAD_SAP
Allows you to configure autopush information for a device. The arg parameter points to a
strapush structure (defined in the <sys/sad.h> header file), whose members are as fol-
lows:

struct strapush {
uint sap_cmd;
long sap_major;
long sap_minor;
long sap_lastminor;
long sap_npush;
char sap_list [MAXAPUSH] [FMNAMESZ+1];

sap_cmd
Allows you to specify the type of configuration to perform. This field can have the fol-
lowing values:

SAP_ALL
Configures all minor devices.

SAP_RANGE
Configures a range of minor devices.

SAP_ONE
Configures a single minor device.

SAP_CLEAR
Clears the previous settings. Specify only the sap_major and
sap_minor fields when using this command. If a previous entry specified

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 145

sad(7) sad (7)

SAP_ALL, set the sap_minor field to 0 (zero). If a previous entry was
specified as SAP_RANGE, set the sap_minor field to the lowest minor
device number in the range.

sap_major
Specifies the major device number.

sap_minor
Specifies the minor device number.

sap_lastminor
Specifies the range of minor devices.

sap_npush
Specifies the number of modules to push. This number must be no more than MAXA -
PUSH, which is defined in <sad.h>. Additionally, this number must not exceed
NSTRPUSH.

sap_list
Specifies, in order, the array of modules to push.

SAD_GAP
Lets you use the sad driver to obtain autopush configuration information for a device by set-
ting the sap_major and sap_minor fields of the strapush structure (see the SAD_SAP
command) to the major and minor device numbers of the device being queried.

arg should point to a struct of type strapush. Upon successful completion, the strapush
structure contains all of the information used to configure the device. Values of 0 (zero) will
appear in any unused entry in the module list.

SAD_VML
Enables you to check a list of modules. For example, you can determine if a specific module has
been installed. The arg parameter points to a str_list structure (defined in the
<stropts.h> header file), whose members are as follows:

struct str_list {

int sl_nmods;

struct str mlist *sl _modlist;
};

sl_nmods
Specifies the number of entries you have allocated in an array.

sl _modlist
Points to the array of module names. The str_mlist structure (also in the
<stropts.h> header file) is as follows:

struct str_mlist {
char 1_name [FMNAMESZ+1] ;
};
where 1_name specifies the array of module names.
If the 1_name array is valid, the SAD_VML command returns a value of 0 (zero). If

the array contains an invalid module name, the command returns a value of 1. Upon
failure, the command returns a value of -1.

Notes
As a STREAMS driver, sad also supports the normal STREAMS I_STR ioctl():

int ioctl(fildes, I_STR, strp):;
int fildes;
struct strioctl *strp;

In this form, specify the ic_cmd field in the strioctl structure to either SAD_SAP, SAD_GAP, or
SAD_VML. The ic_dp field points to the strapush structure (see the SAD_SAP command in the
DESCRIPTION section). Refer to the streamio(7) reference page for further details.

146 Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

sad(7)

RETURN VALUE

sad(7)

Unless specified otherwise, upon successful completion, the sad ioctl () commands return a value of 0
(zero). Otherwise, a value of -1 is returned.

ERRORS

If any of the following conditions occur, the sad ioctl commands return the corresponding value:

SAD_SAP
[EEXIST]

[EFAULT]
[EINVAL]

[ENODEV]

[ENOSR]
[ENOSTR]
[ERANGE]

[EACCES]

SAD_GAP
[EFAULT]
[EINVAL]
[ENODEV]
[ENOSTR]
SAD_VML

[EFAULT]

[EINVAL]
SEE ALSO

The specified major/minor device number pair (sad_major/sad_minor) has
already been configured.

The arg parameter points outside the allocated address space.

The major device number (sad_major) is invalid, the number of modules
(sap_list [MAXAPUSH] [FMNAMESZ+1]) is invalid, or the list of module
names is invalid.

The device is not configured for autopush. This value is returned from a
SAD GAP command.

A internal autopush data structure cannot be allocated.
The major device does not represent a STREAMS driver.

The sap_lastminor field is less than the sap_minor field when the com-
mand is SAP_RANGE, or the minor device specified in a SAP_ CLEAR command
does not exist.

Only a superuser or user with NETADMIN privilege is allowed to execute the
SAD_SAP ioctl().

The arg parameter points outside the allocated address space.
The major device number (sad_major) is invalid.

The device is not configured for autopush.

The major device does not represent a STREAMS driver.

The arg parameter points outside the allocated address space.

The list of module names is invalid.

autopush(1M), ioctl(2), open(2), privileges(5), streamio(7).

HP-UX 11i Version 3: February 2007 -3- Hewlett-Packard Company 147

scsi(7) scsi(7)

NAME

scsi - Small Computer System Interface device drivers

DESCRIPTION
The Small Computer System Interface (SCSI) is an American National Standard for interconnecting com-
puters and peripheral devices. HP-UX supports the SCSI device protocol on parallel SCSI interfaces (see
ANSI Std X3.131-199X, "SCSI-2"), Fibre Channel interfaces (see ANSI Std X3.269-199X, "Fibre Channel
Protocol for SCSI"), and Serial Attached SCSI interfaces (SAS).

The SCSI standard includes specifications for a variety of device types. This section describes the general
SCSI interface for all SCSI device drivers. Information about specific device types can be found in the
manual sections which describe SCSI peripheral device drivers for those device types.

The ioctls described here can be issued either on persistent device files or legacy devices (see intro(7)).
Legacy device files are deprecated with HP-UX release 11i V3. They are maintained for backward compati-
bility, and may be obsolete in future releases.

The behavior of some ioctls may differ depending on whether issued on persistent device files or legacy dev-
ice files, and whether multi-pathing is enabled on legacy device files. Typically ioctls issuing SCSI com-
mands to a device may use any available LUN path to send the commands. However, when multi-pathing
is disabled on legacy device files (see leg mpath_enable attribute in scsimgr(1M)), the ioctl only
attempts to use the LUN path corresponding to the legacy device file. If this LUN path is not available, the
ioctl will fail even if there are other LUN paths available. This behavior corresponds to the legacy
behavior.

The SIOC_INQUIRY ioctl is supported by all SCSI device drivers. This ioctl returns the SCSI device-
specific INQUIRY command data. This data contains device identification and capability information.
Since there have been multiple versions of the SCSI standard for inquiry data, multiple versions of the
inquiry data declaration are provided. The SCSI-1 version is provided for backward compatibility only. If
issued on a legacy device file, this ioctl only tries to use the LUN path corresponding to the legacy device
file even if multi-pathing is enabled on legacy device files.

The SIOC_CAPACITY ioctl indicates the current device size. A device size is defined to be a logical block
size and some number of logical blocks. The means of determining this device-size data is particular to the
specific device type. Logical block size and/or number of logical blocks equal to zero indicates: the device
size is unknown, the device is not currently capable of I/O operations, or I/O operations are not meaningful
for the device. Note that for very large devices, the ioctl argument can overflow,
SIOC_STORAGE_CAPACITY is a better choice, than SIOC_CAPACITY where devices can be large.
Also note that DIOC_CAPACITY is preferred (see disk(7)).

The header file <sys/scsi.h> has useful information for SCSI devices. The following is included from
<sys/scsi.h>:

##define SIOC_INQUIRY _IOR(’S’, 2, union inquiry data)
##define SIOC_CAPACITY _IOR(’S’, 3, struct capacity)
##define SIOC_STORAGE_CAPACITY _IOR(’S’, 101, storage_capacity t)

/* SCSI-1 inguiry structure */
struct inquiry {

unsigned char dev_type;
unsigned int rmb:1;

unsigned int dtqg:7;

unsigned int iso:2;

unsigned int ecma:3;

unsigned int ansi:3;

unsigned int resv:4;

unsigned int rdf:4;

unsigned char added_len;
unsigned char dev_class|[3];
char vendor_id|[8];
char product_id[16];
char rev_numl[4];
unsigned char vendor_spec[20];
unsigned char resv4[40];
unsigned char vendor_parm_ bytes[32];

}i
148 Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

scsi(7) scsi(7)

/* SCSI-2 inguiry structure */
struct inquiry 2 {

unsigned int periph_qualifier:3;
unsigned int dev_type:5;
unsigned int rmb:1;

unsigned int dtqg:7;

unsigned int iso:2;

unsigned int ecma:3;

unsigned int ansi:3;

unsigned int aenc:1;

unsigned int trmiop:1;
unsigned int resvl:2;
unsigned int rdf:4;

unsigned char added_len;
unsigned char resv2[2];
unsigned int reladr:1;
unsigned int wbus32:1;
unsigned int wbusl6:1;
unsigned int sync:1;

unsigned int linked:1;
unsigned int resv3:1;
unsigned int cmdque:1l;
unsigned int sftre:1;

char vendor_id|[8];
char product_id[16];
char rev_numl[4];
unsigned char vendor_spec[20];
unsigned char resv4[40];
unsigned char vendor_parm_ bytes[32];

} inquiry 2_t;

/* Definition for version description in SCSI-3 inquiry */
typedef uint8_t vdesc_t[2];

/* SCSI-3 inguiry structure */
typedef struct inquiry 3 {

uint32_t pg :3;
uint32 t pdt :5;
uint32 t rmb :1;
uint32_t rsvdl :7;
uint32_t version :8;
uint32_t aerc :1;
uint32_t obsltl :1;
uint32_t naca :1;
uint32_t hisup :1;
uint32 t rdf :4;
uint32_t added_len :8;
uint32_t sccs :1;
uint32_t rsvd2 :7;
uint32_t bqgue :1;
uint32_t encserv :1;
uint32_t vsl :1;
uint32_t multip :1;
uint32_t mchngr :1;
uint32_t obslt2 :1;
uint32_t obslt3 :1;
uint32_t addrile :1;
uint32_t reladr :1;
uint32_t obslt4 :1;
uint32 t wbusl6 :1;
uint32_t sync :1;
uint32_t linked :1;

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 149

scsi(7) scsi(7)

uint32_t obslt5 :1;
uint32_t cmdque :1;
uint32_t vs2 :1;
uint8_t vendor_id|[8];
uint8_t product_id[16];
uint8_t rev_numl[4];

uint8_t vendor_spec[20];
uintl6_t rsvd3 :4;
uintl6_t clcking :2;
uintl6_t gas :1;
uintl6_t ius :1;
uintl6_t rsvd4 :8;
vdesc_t vers_desc[8];
uint8_t rsvd6[22];

uint8_t vendor_parm_bytes[32];

} inquiry 3_¢t;

/* union for SIOC_INQUIRY ioctl */
union inquiry data {

struct inquiry ingl; /* SCSI-1 inguiry */
struct inquiry 2 ing2; /* SCSI-2 inguiry */
inquiry 3_t ing3; /* SCSI-3 inquiry */

};

/* structure for SIOC_CAPACITY ioctl */
struct capacity {

uint32_t 1lba;

uint32_t blksz;
};

/* structure for SIOC_STORAGE_CAPACITY ioctl */
typedef struct {

uint64_t 1lba;

uint32_t blksz;
} storage_capacity t;

The SIOC_XSENSE ioctl returns detailed information about device status and errors when such informa-
tion is available. Since there have been multiple versions of the SCSI standard for sense (status) data, mul-
tiple versions of the sense data declaration are provided. The SCSI-1 and non-aligned versions are pro-
vided for backward compatibility only. If no new CHECK-CONDITION-caused REQUEST SENSE com-
mand data has been obtained since the last SIOC_XSENSE joctl call, the
xsense_aligned.error_class and sense_2_aligned.error_code fields will contain the
value zero. Applications which require more accurate REQUEST SENSE data handling should use the
SCSI device-control driver (see scsi_ctl(7)).

The following information is included from <sys/scsi.h>:
#define SIOC_XSENSE _IOR(’S’, 7, union sense_data)

/* structure for SIOC_XSENSE ioctl */
typedef union sense_data {

xsense_aligned_t r_sensela; /* SCSI and CCS devices */
sense_2_aligned_t r_sensea; /* SCSI-2 devices */
xsense_t r_sensel; /* Do not use; for

* compatibility only

*/
sense_2_t r_sense2; /* Do not use; for

* compatibility only

*/

} sense_data_t;

/*
* Struct xsense_aligned is for examining the sense data of SCSI-1
* and CCS devices.

150 Hewlett-Packard Company -3- HP-UX 11i Version 3: February 2007

scsi(7) scsi(7)

*/

typedef struct xsense_aligned {
unsigned int valid :1;
unsigned int error_class :3;
unsigned int error_code :4;
unsigned char seg_num;
unsigned int parms:4;
unsigned int sense_key :4;

unsigned char lbal4];

unsigned char add_len;

unsigned char copysearch[4]; /* Unused by HP-UX */

unsigned char sense_code;

unsigned char resv;

unsigned char fru;

unsigned char field;

unsigned char field ptr[2];

unsigned char dev_error[4];

unsigned char misc_bytes[106];
} xsense_aligned t;

/*
* Struct sense_2 aligned is for examining the sense data
* of SCSI-2 devices

*/

typedef struct sense_2 aligned {
unsigned int info_valid :1;
unsigned int error_code :7;:
unsigned char seg_num;
unsigned int filemark :1;
unsigned int eom :1;
unsigned int ili :1;
unsigned int resv :1;
unsigned int key :4;

unsigned char info[4];

unsigned char add_len;

unsigned char cmd_infol[4];

unsigned char code;

unsigned char qualifier;

unsigned char fru;

unsigned char key_specific[3];

unsigned char add_sense_bytes[113];
} sense_2_aligned_t;

/*

* Struct xsense is provided for backward source code
* compatibility only.

* Struct xsense_aligned is the appropriate struct for
*

examining the sense
* data of SCSI-1 and CCS devices.

*/
typedef struct xsense {
unsigned int valid :1;
unsigned int error_class :3;
unsigned int error_code :4;
unsigned char seg_num;
unsigned int parms :4;
unsigned int sense_key :4;

unsigned char lbal4];

unsigned char add_len;

unsigned char copysearch[4]; /* Unused by HP-UX */
unsigned char sense_code;

unsigned char resv;

HP-UX 11i Version 3: February 2007 -4 - Hewlett-Packard Company 151

scsi(7)

scsi(7)

unsigned char fru;

unsigned char field;

unsigned short field_ ptr;
uint32_t dev_error;
unsigned char misc_bytes[106];

} xsense_t;

/

* ¥ * * *

Struct sense_2 is provided for backward source code
compatibility only.

Struct sense_2_ aligned is the appropriate struct for
examining the sense

* data of SCSI-2 devices.

*/

typedef struct sense_2 {

unsigned int info_valid :1;
unsigned int error_code :7;:
unsigned char seg_num;

unsigned int filemark :1;
unsigned int eom :1;
unsigned int ili :1;
unsigned int resv :1;
unsigned int key :4;
unsigned char infol[4];

unsigned char add_len;

unsigned int cmd_info;

unsigned char code;

unsigned char qualifier;

unsigned char fru;

unsigned char key_specific[3];
unsigned char add_sense_bytes[113];

} sense_2_¢t;

ERRORS

The following errors may result from a call to a SCSI device driver:

[EACCES]
[ENXIO]

[EINVAL]

[EBUSY]

[EIO]

Required permission is denied for the device or operation.

If resulting from an open call, this indicates there is no device at the specified address. For
other calls, this indicates the specified address is out of range or the device may no longer
be accessed.

If resulting from an open call, this indicates the device is not supported by the device driver
(e.g., incorrect device type). For other calls, this indicates the request or some request
argument is invalid. If resulting from the SIOC_CAPACITY ioctl, one or more of the
fields in the argument structure may have overflowed.

This indicates the device is not ready for use or that the requested operation conflicts with
other operations (e.g., the device is currently open via another device driver or exclusive
access is in effect).

Indicates a SCSI protocol or communication problem has occurred, or that a SCSI com-
mand resulted in a non-good status.

Manual entries that describe specific SCSI peripheral device drivers may provide additional qualification of

error results.

WARNINGS
Use of devices that are not officially supported can cause data loss, system panics and device damage. HP-
UX device drivers expect devices to be SCSI-2 compliant. Unsupported devices that are only SCSI-CCS
compliant may work but their use is discouraged. Use of unsupported devices that are only SCSI-1 compli-
ant is strongly discouraged.

152

Changing SCSI bus connectivity (recabling) while the system is running is not supported. Switching SCSI
device power on or off while the device is connected to a system that does not support powerfail recovery is
not supported. These activities are known to cause data loss and system panics.

Hewlett-Packard Company

-5- HP-UX 11i Version 3: February 2007

scsi(7) scsi(7)

On systems that support the scsi_ctl interface, the SIOC_CMD_MODE, SIOC_SET CMD, and
SIOC_RETURN_STATUS ioctls are obsolete (see scsi_ctl(7)). Direct manipulation of SCSI devices via the
scsi_ctl interface provides a more functionally complete and easier-to-use means of low level SCSI dev-
ice control (see scsi_ctl(7)).

Drivers that support only devices which have no meaningful size may not support the SIOC_CAPACITY
ioctl. Total device size in bytes may exceed 2°“~1 for some devices.

DEPENDENCIES
esdisk/estape/eschgr/sdisk/schgr/stape
The SIOC_EXCLUSIVE ioctl may be used to obtain and release exclusive access. Exclusive access, which
prevents simultaneous access by other applications, is required for some operations and may be desirable in
other circumstances. The following exclusive access control arguments are supported. The corresponding
values are defined in <sys/scsi.h> If the ioctl is issued on a persistent device file, target and bus
exclusive access actually result to LUN exclusive access.

SIOC_REL_LUN_EXCL Release exclusive access to logical unit (LUN).
SIOC_SET_LUN_EXCL Gain exclusive access to logical unit (LUN).
SIOC_REL_TGT_EXCL Release exclusive access to associated SCSI target.
SIOC_SET_TGT_EXCL Gain exclusive access to associated SCSI target.
SIOC_REL_BUS_EXCL Release exclusive access to associated SCSI bus.
SIOC_SET BUS_EXCL Gain exclusive access to associated SCSI bus.

The SIOC_MEDIUM_CHANGED ioctl indicates when the media in a removable-media device may have
changed. A value of "1" indicates the device media may have changed since the last
SIOC_MEDIUM_ CHANGED ioctl call. Note that only the first such call after a media change receives this
indication. This means that media changes are likely to be missed if multiple applications are attempting
to detect media changes. Exclusive access, obtained through use of the SIOC_EXCLUSIVE ioctl, can be
used to avoid this problem.

The following information is included from <sys/scsi.h>:

#define SIOC_MEDIUM_CHANGED _IOR(’S’, 42, int)
#define SIOC_EXCLUSIVE _IOR(’S’, 68, int)

disc3
The SIOC_VPD_INQUIRY ioctl allows access to detailed device specific information. The page_code
field specifies which SCSI vital product data page is requested. The page_buf field is filled with the
requested page data. This ioctl when issued on a legacy device file only attempts to send the INQUIRY
command through the LUN path corresponding to the legacy device file even if multi-pathing is enabled on
legacy device files.

The following information is included from <sys/scsi.h>: S
#define SIOC_VPD_INQUIRY _IOWR(’S’, 10, struct vpd_inquiry)
/* union for SIOC_VPD_INQUIRY ioctl */
struct vpd_inquiry {

char page_code; /* VPD page code */
char page_buf[126]; /* buffer for VPD page info */

FILES
/usr/include/sys/scsi.h

SEE ALSO
diskinfo(1M), ioctl(2), autochanger(7), intro(7), scsi_ctl(7), scsi_disk(7), scsi_tape(7).

HP-UX 11i Version 3: February 2007 -6- Hewlett-Packard Company 153

sesi_ctl(7) scsi_ctl(7)

NAME

scsi_ctl - SCSI pass-through driver (esctl/sctl)

DESCRIPTION

SCSI devices are controlled by a device-specific driver, when one exists. Device-specific drivers, such as
those for SCSI direct access (disk) and sequential access (tape) devices, coordinate device and driver states
to accomplish correct logical device behavior. The SCSI pass-through driver enables use of SCSI devices
and commands not normally supported by these device-specific drivers.

esctl is the SCSI pass-through driver and works with persistent device files (see intro(7)). sctl is the
SCSI pass-through driver already used on HP-UX releases prior to HP-UX 11i V3. It is maintained here for
backward compatibility, and works with legacy device files. In this document scsi_ctl refers to both
esctl and sctl.

Once the device is opened through scsi_ctl driver, ioctl calls can be used to change SCSI communica-
tion parameters or attempt SCSI commands and other SCSI operations. Since pass-through driver does
not attempt to logically understand the target device, read () and write () calls are not supported.

Except where noted, the ioctls described here are available through all SCSI device drivers (including
device-specific drivers). All resexrved fields in the data structures associated with these ioctls must be
zero-filled.

The following ioctls which are specific to parallel SCSI, are deprecated for issuance on LUN device special
files (DSF). They are not supported on persistent device special files. They continue to be supported on
legacy device special files for backward compatibility. But, it is recommended now to issue them or
equivalent ioctls introduced with HP-UX 11i V3, directly on the parallel SCSI HBA device special file
(DSF).

SIOC_GET_TGT_PARMS
SIOC_GET_BUS_PARMS
SIOC_GET_TGT_LIMITS
SIOC_GET_BUS_LIMITS
SIOC_SET_TGT_LIMITS
SIOC_SET_BUS_LIMITS

The following parallel SCSI specific ioctls introduced with HP-UX 11i V3 should be issued directly on the
parallel SCSI HBA DSF. They replace some existing ioctls, which can no longer be issued on LUN per-
sistent device files starting with HP-UX 11i V3:

PSIOC_GET_TGT_LIMITS replaces SIOC_GET_TGT_PARMS
PSIOC_GET_TGT_PARMS replaccs SIOC_GET_BUS_PARMS
PDIOC_RSTCLR replaces DIOC_RSTCLR
PSIOC_RESET_DEV replaces SIOC_RESET_DEV

Legacy device files are deprecated with HP-UX release 11i V3. They are maintained for backward compati-
bility, and may be obsolete in a future release (see intro(7) for details about legacy device file and persistent
device files). It is recommended to use persistent device files for new applications.

Most of the ioctls described here can be issued either on persistent device files or legacy device files. The
behavior of some ioctls may differ depending on whether issued on persistent device files or legacy device
files, and whether multi-pathing is enabled on legacy device files. Typically ioctls issuing SCSI commands
to a device may use any available LUN path to the device to send the commands. However, when multi-
pathing is disabled on legacy device files (see 1leg_mpath_enable attribute in scsimgr(1M)), the ioctl
only attempts to use the LUN path corresponding to the legacy device file. If this LUN path is not avail-
able, the ioctl will fail even if there are other LUN paths available. This behavior corresponds to the legacy
behavior.

Device Special File Minor Number

154

The pass-through driver (esctl/sctl) is the preferred method to perform the ioctls SIOC_IO_EXT
(esctl only) and SIOC_IO ioctls, rather than going through a device-specific driver (such as esdisk).
To do this, you must create the device special file for the pass-through driver. mksf(1M) is the recom-
mended method to create a pass-through device file for esctl. To create a device file for the legacy pass-
through driver sctl, use mknod(1M), substituting the values in the minor number as noted:

/usr/sbin/mknod name c¢ 203 O0xiit/0o

where component parts of the minor number are constructed as follows:

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

sesi_ctl(7) scsi_ctl(7)

ii Two hexadecimal digits, identifying the controlling interface card by its "Instance" number. The
Instance value is displayed in ioscan(1M) output, under column I for the "Interface" hardware
type.

One hexadecimal digit identifying the drive (target) address.
One hexadecimal digit identifying the logical unit number (LUN) within the device.

S~ =

Hexadecimal digit zero, for reserved portion of the minor of the minor number.
0 Optional values as follows:
0 To perform Inquiry on open to to ensure the device exists (recommended); or

2 To inhibit Inquiry on open. Starting with HP-UX 11i V3, option 2 is deprecated. It is main-
tained for binary compatibility with existing applications already setting it. Inquiry command
will actually be sent during open, regardless of this option being set or not to 2.

SCSI Communication Parameters
HP-UX supports the SCSI device protocol on parallel SCSI interfaces, Fibre Channel interfaces, and Serial
Attached SCSI interfaces. The SCSI communication parameters described here might only apply to certain
SCSI interfaces and are noted as such in the descriptions.

SCSI communication parameters control features related to communication for three different scope levels:
bus (link), target, and logical unit number (LUN). Bus communication parameters apply to all targets con-
nected to a specific bus. Target communication parameters apply to all LUNs associated with a specific tar-
get. LUN communication parameters apply to a specific LUN. SCSI communication parameters apply to
all device drivers (both device-specific and sesi_ctl).

At power-up and after being reset, all parallel SCSI devices and hosts communicate using asynchronous
data transfers. Asynchronous data transfers use request (REQ) and acknowledge (ACK) signaling. The
strict ordering of REQ and ACK signaling simplifies the communication protocol but limits I/O perfor-
mance. A SCSI target and host pair may agree to use synchronous data transfers to increase I/O perfor-
mance.

Synchronous data transfers improve I/O performance by lessening the ordering requirements on REQs and
ACKs. By allowing multiple outstanding REQs, signal propagation delays and temporary rate imbalances
are better tolerated. To make use of synchronous data transfers, a SCSI target and host must negotiate to
determine mutually acceptable maximum REQ-ACK-offset and data-transfer rate parameters.

The maximum REQ-ACK-offset parameter indicates the maximum allowable number of outstanding REQs.
The value zero is used to indicate asynchronous data transfer. Other values indicate synchronous data
transfer. The appropriate value is generally dependent on the size of the receive data FIFO. High values
tend to improve data transfer rates. The maximum data-transfer rate parameter indicates the "burst" data
transfer rate (minimum allowable time between successive synchronous data transfers). A SCSI synchro-
nous data transfer request (SDTR) message, used to initiate the negotiation process, is associated with the
processing of a SCSI command.

At power-up and after being reset, all parallel SCSI devices and hosts communicate using eight-bit data
transfers. A SCSI target and host pair may agree to use sixteen-bit (wide) data transfers to increase I/O
performance. To make use of wide data transfers, a SCSI target and host must negotiate to determine a
mutually acceptable data transfer width parameter. A SCSI wide data transfer request (WDTR) message,
used to initiate the negotiation process, is associated with the processing of a SCSI command.

Some SCSI devices are able to simultaneously manage multiple active commands. Such a device has a
command queue that holds commands for processing. Command queuing can improve I/O performance by
reducing the time spent by the device waiting for new commands from the host. Note that command queu-
ing might not improve I/O performance substantially for devices that support 'read-ahead" and
"immediate-reporting” (see scsi_disk(7) and scsi_tape(7)). The SCSI device and host use command tags to
correctly manage these multiple simultaneously active commands. At all times when command queuing is
in effect, each active command being handled by a specific LUN has a unique command tag.

SCSI devices indicate their ability to support the special communication features described above in their
SCSI INQUIRY command data. Normally the SCSI INQUIRY command data and negotiation protocols
allow hosts and devices to determine the optimal communication parameters so that I/O performance is
maximized.

The current operating communication parameters may be determined by wuse of the:
SIOC_GET_LUN_PARMS, PSIOC_GET_TGT_PARMS (recommended) or SIOC_GET_TGT_PARMS (for
backward compatibility), and SIOC_GET_BUS_PARMS ioctls.

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 155

sesi_ctl(7) scsi_ctl(7)

156

Occasionally, it is desirable to limit SCSI communication parameters to work around a communication
problem or to provide external insight in determining optimal parameters. SCSI communication parameter
limit suggestions can be specified by use of the: SIOC_SET_ LUN_LIMITS, SIOC_SET_TGT_LIMITS,
and SIOC_SET_BUS_LIMITS ioctls.

Note that there might be substantial differences between specified communication parameter limit sugges-
tions and the corresponding actual current communication parameters being used for communication.
These differences are a result of device-specific driver capabilities, interface driver capabilities, interface
hardware capabilities, device capabilities, delays due to the negotiation process, delays due to currently
active commands, and delays due to commands waiting to be sent to devices. Note that communication
parameter limit suggestions might not survive between close () and open () calls, when no SCSI device
drivers (device-specific or scsi_ctl) have associated LUN(s) open.

The current SCSI communication parameter limit suggestions may be determined by use of the
SIOC_GET_LUN_LIMITS, SIOC_GET_TGT_LIMITS, and SIOC_GET_BUS_LIMITS ioctls.

Logical unit communication parameters may be managed by use of the SIOC_GET_LUN_ PARMS,
SIOC_SET LUN_LIMITS, and SIOC_GET_LUN_LIMITS, SIOC_RESET DEV, SIOC_RESET_BUS
ioctls.

The SIOC_GET_LUN_PARMS ioctl indicates the current LUN communication parameter values. The
max_qg_depth field indicates whether or not tagged queuing is enabled, and if enabled, the maximum
number of simultaneously active commands allowed. When max_qg_depth is zero, tagged queuing is dis-
abled. When it is one, tags are being used but commands are still being serially processed. When it is
greater than one, tags are being used and max_g_depth specifies the maximum number of simultaneously
active commands allowed.

The STIOC_SET_LUN_LIMITS ioctl may be used to provide LUN communication parameter limit sugges-
tions. The max_qg_depth field indicates whether or not tagged queuing should be enabled, and if enabled,
the maximum number of simultaneously active commands that should be allowed. The
SIOC_GET_LUN_LIMITS ioctl indicates the current LUN communication parameter limit suggestions.

Target communication parameters may be managed by use of the PSIOC_GET_TGT_PARMS ioctl on any
associated HBA DSF, or SIOC_GET_TGT_PARMS, SIOC_SET_TGT_LIMITS, and
SIOC_GET_TGT_LIMITS ioctls to any associated LUN.

The PSIOC_GET_TGT_PARMS and SIOC_GET_TGT_PARMS ioctls indicate the current target commun-
ication parameter values. The width, reqack_offset, and xfer_rate fields indicate the currently negotiated
data transfer parameters. When width is eight, narrow transfers are in effect. When it is sixteen, wide
transfers are in effect. When reqack_offset is zero, asynchronous transfers are in effect and xfer_rate is
meaningless. When reqack_offset is non-zero, synchronous transfers are in effect and the maximum "burst"
data transfer rate is xfer_rate words per second, where the size of a word is as indicated in width.

The SIOC_SET_TGT_LIMITS ioctl specifies the target communication parameter limit suggestions. The
max_width field specifies maximum bus width that should be wused for data transfers. The
max_reqack_offset field specifies the maximum number of outstanding REQs that should be attempted dur-
ing data transfers. The max_xfer_rate field specifies the maximum "burst" data rate that should be allowed
during synchronous data transfers. The SIOC_GET_TGT_LIMITS ioctl indicates the current target com-
munication parameter limit suggestions. The width, reqack_offset, xfer_rate, max_width,
max_reqack_offset, max_xfer_rate fields only apply to parallel SCSI.

Bus communication parameters may be managed by use of the SIOC_GET_BUS_PARMS,
SIOC_SET_ BUS_LIMITS, and SIOC_GET_BUS_LIMITS ioctls to any associated LUN.

The SIOC_GET_BUS_PARMS ioctl indicates the current bus communication parameter values. The
max_width field indicates the maximum data transfer width that will be attempted for data transfers to
any target device connected to the associated bus. The max_reqack_offset field indicates the maximum
number of outstanding REQs that will be attempted during data transfers to any target device connected to
the associated bus. The max_xfer_rate field indicates the maximum "burst" data transfer rate that will be
attempted for data transfers to any target device connected to the associated bus.

The SIOC_SET_BUS_LIMITS ioctl specifies the bus communication parameter limit suggestions for tar-
gets connected to the associated bus. The max_width field specifies the suggested maximum data transfer
width that should be attempted for data transfers to any target device connected to the associated bus. The
max_reqack_offset field specifies the maximum number of outstanding REQs that should be attempted dur-
ing data transfers to any target device connected to the associated bus. The max_xfer_rate field specifies
the maximum synchronous "burst" data transfer rate that should be attempted for data transfers to any
target device connected to the associated bus. The SIOC_GET_BUS_LIMITS ioctl indicates the current

Hewlett-Packard Company -3- HP-UX 11i Version 3: February 2007

sesi_ctl(7)

bus communication parameter limit suggestions. The

fields only apply to parallel SCSI.
The following is included from <sys/scsi.h>:

/* SCSI communication parameter ioctls *
#define SIOC_GET_ LUN_PARMS _IOR(’S”’
#define SIOC_GET_ TGT_PARMS _IOR(’S”’
#define SIOC_GET_ BUS_PARMS _IOR(’S”’
#define SIOC_GET LUN_LIMITS _IOR(’S”’
#define SIOC_GET TGT_LIMITS _IOR(’S”’
#define SIOC_GET BUS_LIMITS _IOR(’S”’
#define SIOC_SET LUN_LIMITS _IOW(’s”’
#define SIOC_SET TGT_LIMITS _IOW(’s”’
#define SIOC_SET BUS_LIMITS _IOW(’s”’

struct sioc_lun parms {
unsigned int flags;
unsigned int max g depth;
unsigned int reserved[4];

} sioc_lun parms_t;

struct sioc_lun_ limits {
unsigned int flags;
unsigned int max g depth;
unsigned int reserved[4]:;

} sioc_lun_ limits_t;

typedef struct sioc_tgt_parms {
unsigned int flags;
unsigned int width;
unsigned int xfer rate;
unsigned int reqack_offset;
unsigned int tgt_id;
unsigned int reserved[3];

} sioc_tgt_parms_t;

typedef struct sioc_tgt_limits {
unsigned int flags;
unsigned int max width;
unsigned int max xfer_ rate;
unsigned int max reqack_offset;
unsigned int tgt_id;
unsigned int reserved[3];

} sioc_tgt_limits_t;

struct sioc_bus_parms {
unsigned int flags;

int
int
int
int

max_width;

max_ reqgack offset;
max xfer_ rate;
reserved[4];

unsigned
unsigned
unsigned
unsigned

HP-UX 11i Version 3: February 2007

scsi_ctl(7)

max_width, max_reqack_offset, and max_xfer_rate

/
, 58,
59,
60,
61,
62,
63,
64,
65,
66,

struct
struct
struct
struct
struct
struct
struct
struct
struct

sioc_lun_parms)
sioc_tgt_parms)
sioc_bus_parms)
sioc_lun_limits)
sioc_tgt_limits)
sioc_bus_limits)
sioc_lun_limits)
sioc_tgt_limits)
sioc_bus_limits)

7
7
7
7
7
7
7

7

/* maximum active I/O’s */
/* reserved for future

* use

*/

/* reserved for
* future use
*/

/*
/*
/*
/*
/*

bits per word */
words per second */
REQ/ACK offset */
target Id */
reserved

for future use

*/

/*
/*
/*
/*
/*

Bits per word */
Words per second */
REQ/ACK offset */
target Id */
Reserved for future
use

*/

/* reserved for future
* use
*/

/* bytes/sec */
/* reserved for future
* use

Hewlett-Packard Company 157

sesi_ctl(7) scsi_ctl(7)

*/
} sioc_bus_parms_t;
struct sioc_bus_limits {
unsigned int flags; /* reserved for future
* use
*/
unsigned int max width;
unsigned int max regack_offset;
unsigned int max xfer_ rate; /* bytes/sec */
unsigned int reserved[4]; /* reserved for future
* use
*/
} sioc_bus_limits_t;
The following is included from <sys/pscsi.h>:
#define PSIOC_GET_ TGT_PARMS _IOWR(’S’, 114, struct sioc_tgt_parms)
#define PSIOC_GET_ TGT_LIMITS _IOWR(’S’, 115, struct sioc_tgt_limits)
#define PSIOC_RESET_DEV _IOW(’s’, 116, int)
#define PDIOC_RSTCLR _IOwW(’s’, 117, int)

SCSI Commands and Operations

158

SIOC_IO_EXT and SIOC_IO ioctls allow an arbitrary SCSI command to be sent to a device. All details
of the SCSI command protocol are handled automatically. SIOC_IO_EXT should only be issued on per-
sistent device files. it allows to send the scsi command through any available LUN path or through a
selected LUN path. SIOC_IO is deprecated. It can be issued on both persistent and legacy device files.
When issued on a persistent device file, the SCSI command is sent through any available LUN path.

The following flags can be used to specify the flags field value of both SIOC_IO_EXT and SIOC_IO,
unless indicated otherwise:

SCTL_READ Data read operation is expected if data_length field is non-zero. The
absence of this flag implies that data write operation is expected if the
data_length field is non-zero.

SCTL_INIT SDTR Synchronous data transfer request negotiations should be attempted with
this command. This flag only applies to parallel SCSI and is maintained for
backward compatibility.

SCTL_INIT WDTR Wide data transfer request negotiations should be attempted with this com-
mand. This flag only applies to parallel SCSI and is maintained for back-
ward compatibility.

SCTL_NO_DISC discpriv bit in Identify message is not set. This flag only applies to parallel
SCSI and is maintained for backward compatibility.
ESCTL_IO_LPT The SCSI command is to be issued on a given LUN path. This flag can only

be specified with SIOC_IO_EXT ioctl. When specified the hardware path
of the LUN path to use is specified in field Ipt_hwp

The cdb field specifies the SCSI command bytes. The number of command bytes is specified by the
cdb_length field. These command bytes are sent to the target device during the SCSI command phase.

The address of the data area for the data phase of the SCSI command is specified by the data field. The
data_length field specifies the maximum number of data bytes to be transferred. A zero-valued data_length
indicates that no data phase should occur. Most SCSI commands with a data phase expect the data length
information to be included somewhere in the command bytes. The caller is responsible for correctly specify-
ing both the data_length field and any cdb data length values. The length may not be larger than
SCSI_MAXPHYS and some implementations further restrict this length.

The max_msecs field specifies the maximum time, in milliseconds, that the device should need to complete
the command. If this period of time expires without command completion, the system might attempt
recovery procedures to regain the devic€s attention. These recovery procedures might include abort tag,
abort, and device and bus reset operations. A zero value in the max_msecs field indicates that the timeout
period is infinite and the system should wait indefinitely for command completion.

When the SIO_TIO_EXT or SIOC_IO ioctl call returns, all command processing has been completed.
Most SIOC_IO_EXT/SIOC_IO ioctl calls will return zero (success). The resulting detailed ioctl data

Hewlett-Packard Company -5- HP-UX 11i Version 3: February 2007

sesi_ctl(7) scsi_ctl(7)

should be used to evaluate "success" or "failure" from the caller’s perspective. The cdb_status field indicates
the results of the cdb command. If the cdb_status field indicates a S_ CHECK_CONDITION status, the
sense_status field indicates the results of the SCSI REQUEST SENSE command used to collect the associ-
ated sense data. These status fields will contain one of the following values:

SCTL_INVALID_ REQUEST The SCSI command request is invalid and thus not attempted.

SCTL_SELECT_ TIMEOUT The target device does not answer to selection by the host SCSI inter-
face (the device does not exist or does not respond).

SCTL_INCOMPLETE The device answered selection but the command is not completed (the
device took too long or a communication failure occurred).

S_GOOD Device successfully completed the command.

S_CHECK_CONDITION Device indicated sense data is available.

S_CONDITION_ MET Device successfully completed the command and the requested (search
or pre-fetch) operation is satisfied.

S_BUSY Device indicated it is unable to accept the command because it is busy
doing other operations.

S_INTERMEDIATE Device successfully completed this command, which is one in a series
of linked commands (not supported, see WARNINGS).

S_I_CONDITION MET Device indicated both S_ INTERMEDIATE and S_ CONDITION MET
(not supported, see WARNINGS).

S_RESV_CONFLICT Device indicated the command conflicted with an existing reservation.

S_COMMAND_TERMINATED Device indicated the command is terminated early by the host system.

S_QUEUE_FULL Device indicated it is unable to accept the command because its com-

mand queue is currently full.

The data_xfer field indicates the number of data bytes actually transferred during the data phase of the
cdb command. This field is valid only when the cdb_status field contains one of the following values:
S_GOOD or S_CHECK_CONDITION. The sense_xfer field indicates the number of valid sense data bytes.
This field is valid only when the cdb_status field contains the value S_ CHECK_CONDITION and the
sense_status field contains the value S_GOOD.

The SIOC_ABORT ioctl causes a SCSI ABORT message to be sent to the LUN. This clears all active com-
mands to the LUN from this initiator.

The STIOC_TASK_MGMT ioctl causes a SCSI task management function to be performed if supported by
the SCSI transport. The following task management function values can be specified. They are defined in
<sys/scsi.h>:

SIOC_TM_LUN_RESET Lun Reset
SIOC_TM_WARM_TGT_RESET Warm Target Reset
SIOC_TM_ COLD_TGT_RESET Cold Target Reset

The SIOC_RESET_DEYV ioctl causes a SCSI device to be reset (including clearing all active commands).
On parallel SCSI a PSIOC_RESET_ DEV and SIOC_RESET_DEV ioctls cause a SCSI BUS DEVICE
RESET message to be sent to the associated target. On Fibre Channel a SIOC_RESET_DEV ioctl causes a
"TARGET RESET" task management function to be sent to the associated target followed by a Global Pro-
cess Logout (GPRLO).

The SIOC_RESET_ BUS ioctl causes the system to generate a SCSI bus reset condition on the associated
bus. A SCSI bus reset condition causes all devices on the bus to be reset (including clearing all active com-
mands on all devices). The SIOC_RESET_BUS ioctl does not apply to Fibre Channel.

Often it is necessary or useful to prohibit other SCSI commands while performing device-control opera-
tions. This should be done by gaining exclusive access via the STIOC_EXCLUSIVE ioctl. The associated
argument points to an integer with one of these values defined in <sys/scsi.h>. Note that if the ioctl
is issued on a persistent device file, target and bus exclusive access requests result to a LUN exclusive
access being performed.

SIOC_REL_LUN EXCL release exclusive access to logical unit
SIOC_SET LUN EXCL obtain exclusive access to logical unit

HP-UX 11i Version 3: February 2007 -6- Hewlett-Packard Company 159

sesi_ctl(7)

scsi_ctl(7)

SIOC_REL_TGT_ EXCL release exclusive access to target
SIOC_SET TGT_ EXCL obtain exclusive access to target
SIOC_REL_BUS_EXCL release exclusive access to bus
SIOC_SET BUS_EXCL obtain exclusive access to bus

The ioctl SIOC_PRIORITY_ MODE is deprecated with HP-UX release 11i V3. If called, it will just fake suc-
cess. This ioctl was used to workaround situations where it is not possible to set exclusive access to the
device. It put the device in "Priority mode". This caused all device-specific driver I/O operations (for exam-
ple, file system I/O and virtual memory page swapping) and all SCSI device driver open calls (including
pass-through driver open calls) to the associated LUN to block. These I/O operations and open calls were
blocked for the entire duration that priority mode was in effect. While priority mode was in effect only
SIOC_TIO operations could be attempted. (these operations will not be blocked). It was very easy to cause
system deadlock through incorrect use of the SIOC_PRIORITY_ MODE ioctl. It normally required to lock
the calling process into memory (see plock(2)) prior to enabling priority mode.

The header file <sys/scsi.h> has useful information for SCSI device control. The following is included
from <sys/scsi.h>:

/* SCSI
#define
#define
#define
#define

#define
#define

device control ioctls */

SIOC_IO _IOWR(’S’, 22, struct sctl_io)
SIOC_RESET_ DEV _Io(’s’, 16)
SIOC_RESET_BUS _Io(’s’, 9)

SIOC_PRIORITY MODE _IOW(’S’, 67, int)

SIOC_IO_EXT _IOWR(’S’, 102, esctl_io_t)
SIOC_TASK MGMT _IOWR(’S’, 104, sioc_task_mgmt_t)

/* Structure for SIOC_IO_EXT ioctl */

typedef

struct {

int version;

escsi_sctl_io_flags_t flags;

int max_msecs;

uint32_t cdb_length;

uint32_t data_length;

ptr64_t data;

union sense_data sense;

escsi_hw path_t lpt_hwp;

uint32_t data_xfer;

uint32_t sense_xfer;

uint32_t cdb_status;

uint32_t sense_status;

uint8_t cdb[ESCSI_MAX CDB_LEN];

uint32_t rsvd[32]; /* Reserved for
* future use
*/

} esctl_io_t;

/* Structure for SIOC_IO ioctl */
struct sctl_io

{

unsigned flags;
unsigned char cdb_length;
unsigned char cdb[16];

void *data;
unsigned data_length;
unsigned max_msecs;
unsigned data_xfer;
unsigned cdb_status;
unsigned char sense[256];
unsigned sense_status;

unsigned char sense_xfer;
unsigned char reserved|[64];

} sctl_io_t;

Hewlett-Packard Company -7- HP-UX 11i Version 3: February 2007

sesi_ctl(7) scsi_ctl(7)

Security Restrictions
Superuser or DEVOPS privilege, or device write permissions are required to use these ioctls. See
privileges(5) for more information about privileged access on systems that support fine-grained privileges.

EXAMPLES
Assume that fildes is a valid file descriptor for a persistent device file of a SCSI device, and leg_fildes is a
valid file descriptor for a legacy device file of a SCSI device, and Ipt_hwp contains a valid hardware path of
a LUN path to the device. The first example attempts a SCSI INQUIRY command:

#include <sys/scsi.h>
esctl_io_t esctl_io;

#define MAX LEN 255
unsigned char inquiry data[MAX_ LEN];

memset (&esctl_io, 0, sizeof(esctl_io)); /* clear reserved fields */
esctl_io.flags = SCTL_READ; /* input data expected */

esctl_io.cdb[0] = CMDinquiry;

esctl_io.cdb[l] = 0x00;

esctl_io.cdb[2] = 0x00;

esctl_io.cdb[3] = 0x00;

esctl_io.cdb[4] = MAX LEN; /* allocation length */
esctl_io.cdb[5] = 0x00;

esctl_io.cdb_length = 6; /* 6 byte command */
esctl_io.data = &inquiry datal[0]; /* data buffer location */
esctl_io.data_length = MAX LEN; /* maximum transfer length */
esctl_io.max msecs = 10000; /* allow 10 seconds for cmd */

if (ioctl(fildes, SIOC_IO_EXT, &esctl_io) < 0) {
/* request is invalid */

} else {
if (esctl_io.cdb_status == S_GOOD) {
/* success. display inquiry data */
else {
/* failure. process depending on cdb_status */
}
}

The second example attempts a SCSI INQUIRY command via a specific LUN path.
#include <sys/scsi.h>
esctl_io_t esctl_io;

#define MAX LEN 255
unsigned char inquiry data[MAX_ LEN];

memset (&esctl_io, 0, sizeof(esctl_io)); /* clear reserved fields */
esctl_io.flags = SCTL_READ | SCTL_IO_LPT; /* input data
* expected and commmand
* to be sent on given
* LUN path
*/
memcpy (&esctl_io.lpt_hwp, lpt_hwp, sizeof(lpt_hwp); /* specify
* the hardware path of
* LUN path through which
* command must be sent

*/
esctl_io.cdb[0] = CMDinquiry;
esctl_io.cdb[l] = 0x00;
esctl_io.cdb[2] = 0x00;
esctl_io.cdb[3] = 0x00;
esctl_io.cdb[4] = MAX LEN; /* allocation length */
esctl_io.cdb[5] = 0x00;
esctl_io.cdb_length = 6; /* 6 byte command */
esctl_io.data = &inquiry datal[0]; /* data buffer location */

HP-UX 11i Version 3: February 2007 -8- Hewlett-Packard Company 161

sesi_ctl(7) scsi_ctl(7)

esctl_io.data_length = MAX LEN; /* maximum transfer length */
esctl_io.max msecs = 10000; /* allow 10 seconds for cmd */
if (ioctl(fildes, SIOC_IO_EXT, &esctl_io) < 0) {

/* request is invalid */

} else {
if (esctl_io.cdb_status == S_GOOD) {
/* success. display inquiry data */
else {
/* failure. process depending on cdb_status */
}
}

The following example attempts a SCSI TEST UNIT READY command and checks to see if the device is
ready, not ready, or in some other state.

#include <sys/scsi.h>
struct sctl_io sctl_io;

memset (&sctl_io, 0, sizeof(sctl_io)); /* clear reserved fields */

sctl_io.flags = 0; /* no data transfer expected */
sctl_io.cdb[0] = 0x00; /* can use CMDtest_unit_ready */
sctl_io.cdb[1l] = 0x00;

sctl_io.cdb[2] = 0x00;

sctl_io.cdb[3] = 0x00;

sctl_io.cdb[4] = 0x00;

sctl_io.cdb[5] = 0x00;

sctl_io.cdb_length = 6; /* 6 byte command */
sctl_io.data = NULL; /* no data buffer is provided */
sctl_io.data_length = 0; /* do not transfer data */
sctl_io.max msecs = 10000; /* allow 10 seconds for cmd */

if (ioctl(leg fildes, SIOC_IO, &sctl_io) < 0) {
/* request is invalid */

} else if (sctl_io.cdb_status == S_GOOD) {
/* device is ready */

} else if (sctl_io.cdb_status == S_BUSY ||
(sctl_io.cdb_status == S_CHECK CONDITION &&
sctl_io.sense_status == S_GOOD &&
sctl_io.sense_xfer > 2 &&
(sctl_io.sense[2] & 0xOF) == 2)) {

/* can use sense_data */
/* device is not ready */
} else {
/* unknown state */
}

WARNINGS

162

Incorrect use of scsi_ctl operations (even those attempting access to non-existent devices) can cause
data loss, system panics, and device damage.

The SIOC_EXCLUSIVE ioctl should be used to gain exclusive access to a device prior to attempting
SIOC_IO commands. If exclusive access is not obtained, SIOC_IO commands will be intermixed with
device-specific driver commands, which can lead to undesirable results.

Device-specific drivers can reject inappropriate or troublesome SIOC_IO_EXT/SIOC_IO commands.
However, since not all such operations are known and detected, care should be exercised to avoid disrupt-
ing device-specific drivers when using commands that modify internal device states.

Most SCSI commands have a logical unit number (LUN) field. Parallel SCSI implementations on the HP-
UX operating system select logical units via the SCSI IDENTIFY message. The LUN portion of the cdb
should normally be set to zero, even when the LUN being accessed is not zero.

Use of linked commands is not supported.
Most SCSI commands with a data phase expect the data length information to be included somewhere in
the command bytes. Both the data_length field and any cdb data length values must be correctly specified

Hewlett-Packard Company -9- HP-UX 11i Version 3: February 2007

sesi_ctl(7) scsi_ctl(7)

to get correct command results.
Very large (or infinite) timeout values can cause a parallel SCSI bus (potentially the entire system) to hang.
Device and/or bus reset operations can be used to regain a device's attention when a timeout expires.

Resetting a device can cause I/O errors and/or loss of cached data. This can result in loss of data and/or
system panics.

Obtaining SCSI INQUIRY data by use of the STIOC_INQUIRY ioctl instead of by use of the SIOC_IO
ioctl is generally preferable since SCSI implementations on the HP-UX operating system synchronize access
of inquiry data during driver open calls.

Since communication parameters can be affected by device-specific driver capabilities, device-specific driver
use might result in communication parameter changes.

The SIOC_CAPACITY ioctl is not supported by scsi_ctl because the meaning of capacity is device-
specific.

FILES
/usr/include/sys/scsi.h
/usr/include/sys/scsi_ctl.h

SEE ALSO
mknod(1M), mksf(1M), ioctl(2), plock(2). privileges(5), intro(7), scsi(7).

HP-UX 11i Version 3: February 2007 -10 - Hewlett-Packard Company 163

secsi_disk(7) sesi_disk(7)

NAME

scsi_disk - SCSI direct access device drivers (esdisk/sdisk)

DESCRIPTION

164

This section describes the interface for access of SCSI disk, CD-ROM, and optical disk devices through the
character special device driver. esdisk is the default driver for direct access devices starting at HP-UX
11i Version 3. sdisk is the default driver used on HP-UX 11i Version 2 and earlier releases. It is main-
tained for backward compatibility.

SCSI direct access devices store a sequence of data blocks. Each direct access device has a specific device
size consisting of a number of data blocks and a logical block size. All data blocks have the same logical
block size.

Since I/0 operations must have a size that is an integral number of blocks, one logical block size is the
smallest possible I/O quantity. The device block size can be determined through use of the
DIOC_DESCRIBE, DIOC_CAPACITY, SIOC_CAPACITY, DIOC_DESCRIBE_EXT, and
SIOC_STORAGE_CAPACITY ioctls (see disk(7) and scsi(7); SIOC_CAPACITY is not supported on
disc3). A direct access device that is not ready for use, whether due to no media installed or another rea-
son, is interpreted to mean the device has zero size. An open () call to such a device succeeds, but subse-
quent read () andwrite() calls fail.

The ioctl(2) manpage explains how the operations and arguments are used. Note, the arg used is com-
monly the address of the parameter cited in the particular ioctl #define statement. See the EXAMPLES
section for sample code.

To improve performance, many SCSI disk devices have caches, which can be used for both read and write
operations.

Read cache use, called "read ahead", causes the disk drive to read data in anticipation of read requests.
Read ahead is only apparent to users in the increased performance that it produces.

Write cache use is called "immediate reporting”. Immediate reporting increases I/O performance by report-
ing a completed write status before the data being written is actually committed to media. If the subse-
quent physical write operation does not complete successfully, data may be lost.

Physical write failures due to media defects are largely eliminated by use of automatic sparing in disk
drives. Power failure between immediate reporting and media commit can result in cached data being lost.
However, the period of time between these events is typically relatively small, making such losses unlikely.

The SIOC_GET_IR ioctl can be used to determine if immediate-reporting functionality is currently being
used by the device. The value 1 indicates immediate reporting is enabled. The value zero indicates
immediate reporting is disabled. The SIOC_SET_IR ioctl can be used to enable or disable immediate
reporting. A zero value disables immediate reporting. The value 1 enables immediate reporting.

The SIOC_SYNC_CACHE ioctl can be used to force data cached in the device to media.

Most SCSI removable media disk devices support "prevent" and "allow" media-removal commands. To
avoid data corruption and data accessibility problems, media removal is prevented for the entire duration a
removable media disk device is open. Because media removal is mnot supported, the
SIOC_MEDIUM_ CHANGED ioctl is not supported.

The header file <sys/scsi.h> has useful information for direct access device control, including the fol-
lowing:

/* ioctl support for SCSI disk devices */

#define SIOC_GET_IR _IOR(’S’, 14, int)
#define SIOC_SET_IR _IOW(’s’, 15, int)
#idefine SIOC_SYNC_CACHE -IOW(’s’, 70, int)

The SIOC_FORMAT ioctl reformats the entire media surface. Exclusive access to the device, obtained
through use of the DIOC_EXCLUSIVE ioctl (see disk(7)), is required prior to reformatting to ensure that
other applications are not affected. The £mt_optn field can be used to select the desired media geometry.
Only one media geometry is supported on most devices. The value zero should be used for these devices.
The value zero can also be used to select the default geometry on devices that support multiple media
geometries. The interleave field can be used to specify sector interleaving. The value zero specifies that an
appropriate default interleave should be used.

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

secsi_disk(7)

EXAMPLES
The following sample code shows how to use ioctls that affect scsi_disk.

#include <stdio.h>
#include <fcntl.h>
#include <sys/errno.h>
#include <sys/diskio.h>
#include <sys/scsi.h>
Describe_ext (dfd)

sesi_disk(7)

int dfd4;
{

int ret;

disk_describe_type_ext_t disk_descr;

uint64_t capacity;

if ((ret = ioctl (dfd, DIOC_DESCRIBE_EXT, &descr_type)) != 0) {

exit(1l);

}

printf ("\nSuccessful ioctl DIOC_DESCRIBE_EXT \n");

printf(" model number: %s\n", disk descr.model_num);

printf(" interface: %d <20=scsi>\n", disk_descr.intf_type);

capacity = (disk_descr.maxsva_high << 32) + disk_descr.low_lba;

printf(" Capacity: %1llu (blocks)\n", capacity):;

printf(" Dblock size: %u (bytes)\n", disk _descr.lgblksz);

printf(" Device type: %u (0=disk,

disk descr.dev_type);
printf(" Write Protected: %s \n",
disk_descr.flags & WRITE_PROTECT_ FLAG ? "yes" : "No");

}
Describe (dfd)

int df4d;
{

int ret;

disk_describe_type descr_type;

if ((ret = ioctl (dfd, DIOC_DESCRIBE,

exit(1);
}

printf ("\nSuccessful ioctl DIOC_DESCRIBE \n");

&descr_type))

1= 0) {

printf (" model number: %s\n", descr_type.model_num);

printf (" interface: %d <20=scsi>\n",

}

Exclusive (dfd4)
int 4fd;

{
int ret, flag=1l;

if ((ret = ioctl (dfd, DIOC_EXCLUSIVE,

exit(1l);
}
}
Enable_WOE (dfd)
int d4f4;

{
int ret, flag=1;

if ((ret = ioctl (dfd, SIOC_WRITE_WOE,

exit(1);

}
printf ("\nSuccessful ioctl SIOC_WRITE_WOE \n");

}
main (argc, argv)
int argc;

HP-UX 11i Version 3: February 2007 -2-

descr_type.intf_type);

{

{

Hewlett-Packard Company 165

secsi_disk(7) sesi_disk(7)

char ** argv;
{ int ret, £d4; if (argc != 2) {
printf ("Usage: %s <disk _device> \n", argv[0]);
exit(1l);
}
if ((£4d = open (argv[l], O_RDWR)) < 0) {
exit (1);
}
Describe_ext (£4);
Describe (£fd);
Exclusive (£4);
Enable_WOE (£f4);
}

WARNINGS

Historically, disk devices have had small (typically 512 byte) block sizes; however, many newer disk devices
(such as optical disks and disk arrays) have relatively large block sizes. Applications using direct raw disk
access should wuse the DIOC_DESCRIBE, DIOC_CAPACITY, DIOC_DESCRIBE_EXT, or
SIOC_CAPACITY ioctl to determine the appropriate minimum I/O size.

Media removal and insertion while a disk device is open is unsupported and unpredictable. Do not attempt
to circumvent prevention of media removal. Device capacity changes resulting from such intervention may
not be recognized.

Often larger I/O operation sizes are expected to be more efficient. However, SCSI disk I/O operations that
are large relative to the device’s cache can result in insufficient cache space for the device to maintain full-
media-speed data transfer rates. This can result in decreased I/O performance relative to smaller I/O sizes.

DEPENDENCIES
Optical Disk Devices

166

The SIOC_VERIFY_ WRITES ioctl controls the write mode. Normally written data is assumed to be
correctly stored on the media. Verify-writes mode causes verification of written data to ensure that data
has been correctly written. Verification can substantially reduce write performance and is not generally
needed.

The SIOC_VERIFY WRITES ioctl can be used to enable or disable write verification. A zero value dis-
ables write verification. The value 1 enables write verification. Although write verification is primarily
intended for optical media, some systems may support write verification on normal disk devices.

The SIOC_VERIFY ioctl verifies that a media area contains valid data (that is, data that has been
correctly written). Verified media will not cause I/O errors when reading is attempted. The media area to
be verified is specified via the start_1lba and block_cnt fields. Although verification is intended pri-
marily for optical media, some systems may support verify operations on normal disk devices.

The SIOC_WRITE_WOE ioctl controls the write mode used for magneto-optical disk devices. Normally
magneto-optical write operations require two physical head passes. The first pass erases the media area to
be written. The second pass actually writes the data. Write-without-erase mode dramatically increases
write performance by skipping the first (erase media area) pass. To ensure that the correct data results, it
is essential that write-without-erase operations be performed only on media that is known to be blank (pre-
viously erased or never used). The SIOC_WRITE_WOE ioctl can be used to enable or disable write-
without-erase. A zero value disables write-without-erase. The value 1 enables write-without-erase.

The SIOC_ERASE ioctl allows media areas to be explicitly erased. The media area to be erased is specified
via the start_lba and block_cnt fields. Media areas erased in this manner can be written using
write-without-erase mode. Note that an erased media area is different from a media area written with
some data values (e.g. zeros). An erased media area should not be read. Attempting to read an erased
media area generally results in an I/O error.

The SIOC_VERIFY_ BLANK ioctl verifies that a media area has been erased and is suitable for being writ-
ten using write-without-erase mode. The media area to be verified is specified via the start_lba and
block_cnt fields.

The following optical disk device specific information is included from <sys/scsi.h>:

##define SIOC_WRITE_WOE _IOw(’s’, 17, int)
##define SIOC_VERIFY WRITES _IOwW(’s’, 18, int)
##define SIOC_ERASE _IOW(’sS’, 19, struct scsi_erase)

Hewlett-Packard Company -3- HP-UX 11i Version 3: February 2007

secsi_disk(7) sesi_disk(7)

##define SIOC_VERIFY_ BLANK _IOwW(’sS’, 20, struct scsi_verify)
##define SIOC_VERIFY _IOWw(’s’, 21, struct scsi_verify)

/* structure for SIOC_ERASE ioctl */
struct scsi_erase {
unsigned int start_1lba;
unsigned short block_cnt;
};

/* structure for SIOC_VERIFY BLANK and SIOC_VERIFY ioctls */
struct scsi_verify {

unsigned int start_1lba;

unsigned short block_cnt;

FILES
/usr/include/sys/scsi.h

SEE ALSO
mediainit(1), mknod(1M), ioctl(2), disk(7), scsi(7).

HP-UX 11i Version 3: February 2007 -4 - Hewlett-Packard Company 167

scsi_tape(7) scsi_tape(7)

NAME

scsi_tape - SCSI sequential access device driver

DESCRIPTION

168

SCSI sequential-access (tape) devices store a sequence of data blocks. Data can be read and written using
either fixed or variable sized block mode. If supported by the device, variable sized block mode is normally
used (even when all blocks are the same size). Fixed sized block mode is generally only used for tape dev-
ices which do not support variable sized blocks. Fixed sized block mode can be used on some tape devices
which support variable sized blocks to increase I/O performance.

Generally SCSI tape devices are controlled through the mt (see mt(7)) generic tape device interface. This
section describes features that are specific to SCSI tape devices.

The SIOC_CAPACITY ioctl (see scsi(7)) can be used to determine remaining tape capacity for some tape
devices. The blksz field indicates the "natural" block size of the device. This value may or may not be
the current block size of the device. The number of blocks, indicated by the lba field, is an estimate of
how much data can be written on the remaining media. A zero size is returned for devices that do not pro-
vide remaining-capacity information. The quantity of data that can actually be written may be higher or
lower than indicated, depending on such factors as block size, media defects, data compression, and ability
to maintain streaming.

To improve performance, most SCSI tape devices have caches. Read-cache use, called "read ahead", causes
the tape drive to read data in anticipation of read requests. Read ahead is only apparent to users in the
increased performance that it produces. Write-cache use is called "immediate reporting'. Immediate
reporting increases I/O performance by reporting a completed write status before the data being written is
actually committed to media. This allows the application program to supply additional data so that con-
tinuous media motion, called "streaming”, can be achieved. The SIOC_GET IR ioctl can be used to deter-
mine if immediate-reporting functionality is currently being used by the device. The value "1" indicates
immediate reporting is enabled. By default, the device driver attempts to enable immediate reporting. The
SIOC_SET_1IR ioctl can be used to explicitly enable or disable immediate reporting. A zero value disables
immediate reporting. The value "1" enables immediate reporting. The MTIOCTOP ioctl MTNOP com-
mand can be used to cause any cached data to be written (committed) to media. Note that the device
immediate reporting mode set by the SIOC_SET IR ioctl survives between close() and open()
calls, but not through system reboot.

The SIOC_GET_ BLOCK_SIZE ioctl indicates the device’s current block size. A block size of zero indi-
cates the device is in variable-sized-block mode. A non-zero block size indicates the device is in fixed-sized-
block mode.

The SIOC_SET_BLOCK_SIZE ioctl changes the current block size to the specified number of bytes. Set-
ting the block size to zero specifies that variable-sized-block mode should be used. Any non-zero block size
specifies that fixed-sized-block mode should be used. By default, the device driver attempts to set the block
size to zero during open. If variable-sized-block mode is not supported by the device, the driver selects an
appropriate block size for fixed-sized-block mode use. Note that the device block size set by the
SIOC_SET_ BLOCK_SIZE ioctl survives between close() and open() calls, but not through system
reboot.

The SIOC_GET_ BLOCK_LIMITS ioctl indicates the devices maximum and minimum fixed block-size
limits. The device's minimum fixed block size is indicated by the min_blk_size field. The
max_blk_size field contains the smaller of the maximum block size supported by the device and the
maximum block size supported by the system (MAXPHYS). This is the largest valid block size for the
specific combination of device, driver, and host system being used.

The SIOC_GET_POSITION ioctl can be used to determine the current media position for some devices.
For devices that support this capability, the resultant value can be used to reposition the media to the same
position in the future.

The SIOC_SET_POSITION ioctl can be used to cause media repositioning on some devices. For devices
that support this capability, media repositioning via this mechanism can generally be completed more
quickly than might be similarly accomplished using record, filemark, or setmark spacing. The argument
value specified should be the result of a previous SIOC_GET_POSITION for that media volume.

The following is included from <sys/scsi.h>:

/* ioctl support for SCSI tape commands */
#define SIOC_GET IR _IOR(’S’, 14, int)
#define SIOC_SET IR _IOwW(’s’, 15, int)

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

scsi_tape(7) scsi_tape(7)

#define SIOC_GET BLOCK_SIZE _IOR(’S’, 30, int)
#define SIOC_SET BLOCK_SIZE _IOW(’s’, 31, int)
##define SIOC_GET BLOCK_LIMITS _IOW(’S’, 32, struct scsi_block limits)
#define SIOC_GET_ POSITION _IOR(’S’, 33, int)
#define SIOC_SET POSITION _IOW(’s’, 34, int)

/* structure for SIOC_GET BLOCK_LIMITS ioctl */
struct scsi_block limits {

unsigned min_blk size;

unsigned max blk size;
};

WARNINGS
SCSI bus and device resets cause some devices to reposition media to beginning-of-tape (BOT). This unin-
tentional media repositioning can cause loss of data. The scsi_tape driver causes the first subsequent
open () attempt to fail as an indication of potential data loss.

The scsi_tape driver does not write filemarks at close if the media has been programmatically reposi-
tioned. Applications that reposition the media prior to closing the device should write any required tape-
marks.

SEE ALSO
mknod(1M), mt(7), scsi(7).

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 169

scsimgr_eschgr(7) scsimgr_eschgr(7)

NAME
scsimgr_eschgr - SCSI class driver eschgr plug-in for scsimgr

DESCRIPTION
The SCSI class driver eschgr plug-in for scsimgr implements management and diagnostic operations
specific to classes of devices bound to the eschgr driver. eschgr is the native HP-UX SCSI class driver
that handles, by default, all library/changer devices.

The plug-in handles the following operations for driver eschgr:

e Display and clear driver eschgr global statistics and the statistics it maintains on instances of LUNs
bound to it, and on related LUN paths.

o Display status and other information maintained by driver eschgr on LUNs bound to it.
e Get, set and save driver eschgr global and per-lun instance attributes.
Commands

The user can explicitly send the following sesimgr commands to driver eschgr plug-in by specifying the
-d eschgr option:

clear_stat Clears statistics.
get_attr Displays information on attributes.
get_info Displays status and other information.
get_stat Displays statistics.
save_attr Saves value of attributes in a persistent store.
set_attr Set current values of attributes.

Note: Refer to scsimgr(1M) for the syntax of the above commands.

However, the only instances where it is necessary to explicitly send a command to the plug-in is when per-
forming operations on objects global to driver eschgr: global statistics, attributes or status information.
In all the other cases, scsimgr automatically invokes the plug-in to perform the driver specific part of the
operation, when the operation applies to LUNs bound to driver eschgr or to their LUN paths.

Attributes
The following table lists driver eschgr specific attributes. For details on the concept of attribute refer to
sesimgr(1M).

Note: The following conventions are used:

e RO is Read Only.
e RW is Read Write.
e uint32is unsigned 32 bits integer.

Object Attribute Name RO/RW Type Description
Global version RO string Version of driver eschgr
LUN default_secs RW uint32 Timeout for all commands not referenced
below.
Default: 30
move_secs RW uint32 Timeout for the move command.
Default: 1200
readelem_ secs RW uint32 Timeout for the read element status com-
mand.
Default: 600
initelem secs RW uint32 Timeout for the initialize element status
command.

Default: 600

170 Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

scsimgr_eschgr(7)

scsimgr_eschgr(7)

readaddr_secs RW uint32 Timeout for modesense 0x1D command.
Default: 600
exchange_secs RW uint32 Timeout for the exchange command.

Default: 600

I/0 Load Balancing and Multi-Pathing Policies

The eschgr driver does not support load balancing and has minimal support for multi-pathing.

When the device is first opened after a system boot, a path is chosen and will remain fixed. If the path

fails, the next open will pick a new path.

EXAMPLES

To display scsimgr eschgr plug-in general help and supported commands:

scsimgr -h -d eschgr
To get eschgr driver global statistics:
scsimgr get_stat -d eschgr
To clear eschgr driver global statistics:
scsimgr clear_stat -d eschgr
To get eschgr driver global status information:
scsimgr get_info -d eschgr
To display information about eschgr driver global attributes:
scsimgr get_attr -d eschgr

AUTHOR

SCSI class driver eschgr plug-in for scsimgr was developed by HP.

SEE ALSO
sesictl(1M), sesimgr(1M), autochanger(7), intro(7), scsi(7).

HP-UX 11i Version 3: February 2007 -2-

Hewlett-Packard Company 171

scsimgr_esdisk(7) scsimgr_esdisk(7)

NAME

scsimgr_esdisk - SCSI class driver esdisk plug-in for scsimgr

DESCRIPTION

The SCSI class driver esdisk plug-in for scsimgr implements management and diagnostic operations
specific to classes of devices bound to the esdisk driver. esdisk is the native HP-UX SCSI class driver
that handles, by default, all block devices including the following types : direct access, CD/DVD, write-once
read-multiple (WORM), and optical memory (OM).

The plug-in handles the following operations for driver esdisk:

e Displays and clears driver esdisk global statistics and the statistics it maintains on instances of
LUNSs bound to it, and on related LUN paths.

e Displays status and other information maintained by driver esdisk on LUNSs bound to it.

o Gets, sets, and saves driver esdisk global, per-lun instance attributes or attributes for a set of dev-
ices bound to the driver.

Commands

The user can explicitly send the following secsimgr commands to driver esdisk plug-in by specifying the
-d esdisk option:

clear_stat Clears statistics.
get_attr Displays information on attributes.
get_info Displays status and other information.
get_stat Displays statistics.
save_attr Saves value of attributes in a persistent store.
set_attr Set current values of attributes.

Note: Refer to scsimgr(1M) for the syntax of the above commands.

However, the only instance when it is necessary to explicitly send a command to the plug-in is when per-
forming operations on objects global to driver esdisk: global statistics, attributes or status information.
In all the other cases, scsimgr automatically invokes the plug-in to perform the driver specific part of the
operation, when the operation applies to LUNs bound to driver esdisk or to their LUN paths.

Attributes

The following table lists driver esdisk specific attributes. Also, under the category "Device Set", it lists
the attributes the esdisk driver can set at scopes; including, device type, vendor identifier, product
identifier and product revision. On the concept of attribute and attribute scope, refer to scsimgr(1M).

Note: The following conventions are used :
e RO is Read Only.
e RW is Read Write.
e uint32is unsigned 32 bit integer.

e Range of values for applicable attributes is listed.

Object Attribute Name RO/RW Type Description
Global version RO string Version of driver esdisk
LUN capacity RO uint32 Device capacity in number of blocks
block_size RO uint32 Block size in bytes
path fail_ secs RW uint32 Delay in seconds before declaring a LUN path offline
after failure of first I/O.
Range: 0-600
load_bal policy RW string I/0 load balancing policy. May be:

round_robin,
least_cmd_load,
cl_round_robin,

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

scsimgr_esdisk(7) scsimgr_esdisk(7)

preferred_path.
infinite_retries RW boolean Enable or disable infinite retry of I/Os. May be:
_enable true: enable,

false: disable.
preferred_path RW string Hardware path of the lunpath to use preferably for

I/O transfer, when I/O load balancing policy is set to
preferred_path.

Device transient_secs RW uint32 Seconds to wait after a LUN transitioned out of
Set ONLINE state before failling I/Os.
Range: 0-600
format_secs RW uint32 Timeout in secs of SCSI command FORMAT.
Range: 0-0OxFFFFFFFF
start_unit_secs RW uint32 Timeout in secs of SCSI command START UNIT.
Range: 0-0OxFFFFFFFF
max_retries RW uint32 Maximum number of I/O retries.
Range: 1-0xFFFFFFFF
path fail_ secs RW uint32 Timeout in secs before declaring a LUN path offline.
Range: 0-600
esd_secs RW uint32 Maximum time in secs for the transmission of an I/0.
Range: 0-0OxFFFFFFFF
max_qg depth RW uint32 Maximum queue depth.
Range: 1-0xFFFFFFFE
load_bal policy RW string I/0 load balancing policy. May be:

round_robin,

least_cmd_load,
cl_round_robin,
preferred_path.

disable_flags RW string A set of flags representing SCSI task management
and other functions. If a flag is set, the corresponding
function is disabled for the set of devices. The follow-
ing flags are currently defined:
WCE: Write Cache Enable,
RW16: 16 bytes READ/WRITE CDB,
ABT: SCSI task management function Abort Task Set,
cTs: SCSI task management function Clear Task Set,
LR: SCSI task management function LUN Reset,
WTR: SCSI task management function Warm Target
Reset,
cTR: SCSI task management function Cold Target
Reset,
BR: Bus Reset,
PR: Persistent Reservation,
WERO: Persistent Reservation WERO (Write Exclusive

Read-Only),
AERO: Persistent Reservation AERO (Access Exclusive
Read-Only).
infinite_retries RW boolean Enable or disable infinite retries of I/Os. May be:
_enable true: enable,

false: disable.

I/0 Load Balancing Policy
The I/0 load balancing policy attribute, load_bal_policy, is a tunable that controls how I/Os are dis-
tributed across the paths to a LUN:

e round_robin

Paths are selected in a round robin manner. This is more appropriate when all the paths to the device
have similar I/O turn-around characteristics.

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 173

scsimgr_esdisk(7) scsimgr_esdisk(7)

e least_cmd_load

The LUN path with the least number of active I/O requests is selected to execute the next I/O. This
policy is appropriate when the paths to the LUN exhibit asymmetric latency characteristics. The load
is distributed to optimize the bandwidth on each LUN path.

e cl round_ robin (cell aware round robin)

This load balancing policy is applicable to HP cell-based platforms. The LUN paths are selected in a
round robin manner within the locality of CPU on which the I/O was initiated, to ensure that memory
access latencies are optimized.

e preferred_path

The I/O path set in the preferred_path attribute is preferrably used for I/O transfer. If this I/O path
is not available or if the preferred_path attribute was not set, any other path is selected for I/O
transfer. This policy is useful for certain disk arrays, which may exhibit some performance degrada-
tion if I/Os are transferred via several I/O paths to a LUN simultaneously.

EXAMPLES

To display scsimgr esdisk plug-in general help and supported commands:
scsimgr -h -d esdisk

To get esdisk driver global statistics
scsimgr get_stat -d esdisk

To clear esdisk driver global statistics
scsimgr clear_stat -d esdisk

To get esdisk driver global status information
scsimgr get_info -d esdisk

To display information about esdisk driver global attributes
scsimgr get_attr -d esdisk

To set the load balancing policy for disk0 to preferred_path and set the I/O path to be used preferably

scsimgr set_attr -D /dev/rdisk/disk0 -a load_bal_policy=preferred_path
-a preferred_path=0/3/1/0.0x21000020371972eb.0x0

To add a settable attribute scope corresponding to all disk devices from HP with product identifier "MSA
VOLUME'", for allowing modification of some settable attribute at this scope

scsimgr ddr_add -N "/escsi/esdisk/0x0/HP /MSA VOLUME "

To persistently change the default I/O load balancing policy, I/O timeout, and maximum concurrent I/O for
all disk devices from HP with product identifier "MSA VOLUME"

scsimgr save_attr -N "/escsi/esdisk/0x0/HP /MSA VOLUME "
-a load_bal_policy=least_cmd_load -a esd_secs=60
-a path_fail secs=60

To disable write cache, Persistent Reservation and 16 bytes read/write CDB for all disk devices bound to the
esdisk driver

scsimgr set_attr -N /escsi/esdisk -a disable_flags='WCE PR RW16’

AUTHOR
SCSI class driver esdisk plug-in for scsimgr was developed by Hewlett Packard Company.

SEE ALSO
diskinfo(1M), scsictl(1M), scsimgr(1M), intro(7), scsi(7), scsi_disk(7).

174 Hewlett-Packard Company -3- HP-UX 11i Version 3: February 2007

scsimgr_estape (7) scsimgr_estape(7)

NAME
scsimgr_estape - SCSI class driver estape plug-in for scsimgr

DESCRIPTION
The SCSI class driver estape plug-in for scsimgr implements management and diagnostic operations
specific to classes of devices bound to driver estape. estape is the native HP-UX SCSI class driver that
handles, by default, all tape devices.

The plug-in handles the following operations for driver estape:

e Display and clear driver estape global statistics and the statistics it maintains on instances of LUNs
bound to it, and on related LUN paths.

e Display status and other information maintained by driver estape on LUNs bound to it.
e Get, set and save driver estape global and per-lun instance attributes.
Commands

The user can explicitly send the following scsimgr commands to driver estape plug-in by specifying the
-d estape option:

clear_stat Clears statistics.
get_attr Displays information on attributes.
get_info Displays status and other information.
get_stat Displays statistics.
save_attr Saves value of attributes in a persistent store.
set_attr Set current values of attributes.

Note: Refer to scsimgr(1M) for syntax of the above commands.

However, the only instances where it is necessary to explicitly send a command to the plug-in is when per-
forming operations on objects global to driver estape: global statistics, attributes or status information.
In all the other cases, scsimgr automatically invokes the plug-in to perform the driver specific part of the
operation, when the operation applies to LUNs bound to driver estape or to their LUN paths.

Attributes
The following table lists driver estape specific attributes. For details on the concept of attribute refer to
sesimgr(1M).

Note: The following conventions are used:
e RO is Read Only.
e RW is Read Write.
e VBM is Variable Block Mode.
e uint32is unsigned 32 bits integer.
e uint64 is unsigned 64 bits integer.

e Range of values for applicable attributes is listed.

Object Attribute Name RO/RW Type Description
Global version RO string Version of driver estape.
norewind RW uint32 Disables the ability to open a "rewind" device.
close_disable Default: 0.
Values:
0 (disabled),
1 (enabled).
st_ats_enabled RW uint32 Determines whether to reserve the device on
open and release on close. See
st_ats_enabled(5).
Default: 1.

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 175

scsimgr_estape (7)

scsimgr_estape(7)

Values:
0 (disabled),
1 (enabled).

LUN

default_secs

RW

uint32

Timeout for all commands not referenced below.
Default: 30.

space_secs

RW

uint32

Timeout for the space command.
Default: 1200.

write_secs

RW

uint32

Timeout for the write command.
Default: 600.

read_secs

RW

uint32

Timeout for the read command.
Default: 600.

unload_secs

RW

uint32

Timeout for the unload command.
Default: 600.

rewind_secs

RW

uint32

Timeout for the rewind command.
Default: 600.

erase_secCs

RW

uint32

Timeout for the erase command.
Default: 18000.

mt_type

RW

uint32

The type of device a particular LUN is associ-
ated with.
Default: 0.
Values:
0 = unknown,
5 = HPIB 9-track,
6 = DDS1,
7 = All other DDS/DAT,
8 = SCSI 9-track,
9 = QIC,
10 = 8mm,
11 = IBM 3480, STK 9XXX, STK T10000,
12 = Quantum DLT,
13 = Sony AIT,
14 = IBM 3590,
15 = LTO.

default_blocksize

RW

uint32

Default blocksize.

Default: 0.

Values:

0 = variable, overridden by a custom DSF.

default_ir

RW

uint32

Default immediate reporting.
Default: 1.

Values:

0 (disabled),

1 (enabled).

close_marks

RW

uint32

Number of filemarks to indicate End of Data.
Default: 2.

num_ partitions
_supp

RW

uint32

Number of partitions supported
Default: 1.
Range: 1+

characteristics

176 Hewlett-Packard Company

RW

uint64

Driver characteristics bitwise ORed together
Default: 0.

Values:

1 = Device supports setmarks,

2 = Logpage 31 contains capacity information,
4 = Logpage 38 contains capacity information,
8 = Device supports Reserve/Release.

HP-UX 11i Version 3: February 2007

scsimgr_estape (7) scsimgr_estape(7)

best_density RW uint32 Tape density to write.
Default: 0x7F.
Values:
0xFFFFFFFF = Best density,
0x00 = Let the device choose the density,
0x7F = Do not modify tape density,
other = a valid density code for the Mode
Parameter Block Descriptor.

best_compression RW uint32 Compression Algorithm to use.
Default: 0.
Values:
0x00 = Compression Disabled,
0xDEF = default for drive,
other = a valid compression value for the Data
Compression Mode Page (0x0F).

clean_req_ RW uint32 The Key/Code/Qualifier representing "Cleaning
sns_info Required"
Default: 0OxFFFFFFFF.

I/0 Load Balancing and Multipathing Policies
The estape driver does not support load balancing and has minimal support for multipathing.

When the device is first opened after a system boot, a path is chosen and will remain fixed. If the path
fails, the next open will pick a new path.
EXAMPLES
To display scsimgr estape plug-in general help and supported commands:
scsimgr -h -d estape
To get estape driver global statistics:
scsimgr get_stat -d estape
To clear estape driver global statistics:
scsimgr clear_stat -d estape
To get estape driver global status information:
scsimgr get_info -d estape
To display information about estape driver global attributes:
scsimgr get_attr -d estape

AUTHOR
SCSI class driver estape plug-in for scsimgr was developed by HP.

SEE ALSO
scsictl(1M), sesimgr(1M), st_ats_enabled(5), intro(7), scsi(7), scsi_tape(7).

HP-UX 11i Version 3: February 2007 -3- Hewlett-Packard Company 177

sioc_1i0(7) sioc_i0(7)

NAME

sioc_io - SCSI pass-through interface

DESCRIPTION

178

SCSI devices are controlled by a device-specific driver, when one exists. Device-specific drivers, such as
those for SCSI direct access (disk) and sequential access (tape) devices, coordinate device and driver states
to accomplish correct logical device behavior. The sioc_io pass-through interface enables the use of
SCSI devices and commands not normally supported by these device-specific drivers. It is composed of two
ioctls: SIOC_IO_EXT, and SIOC_IO.

SIOC_IO_EXT is the pass-through interface introduced with HP-UX 11i V3 release. It is the recom-
mended interface. It should be issued on persistent device files (see intro(7)). It allows to send the SCSI
command through any of the available LUN paths or through a specific LUN path.

SIOC_IO is the pass-through interface that existed prior to HP-UX 11i V3. This interface is deprecated
with HP-UX 11i V3 release. It is maintained for backward compatibility. It can be used on persistent dev-
ice files or legacy device files. If issued on a persistent device file, the SCSI command is sent through any of
the available LUN paths. If issued on a legacy device file, the SCSI command will be sent through any
available LUN paths. However, if multi-pathing is disabled legacy device files (see 1leg_mpath_enable
in scsimgr(1M)), the SCSI command will be sent only through the LUN path corresponding to the legacy
device file.

All reserved fields in the data structure associated to the interface must be zero-filled.

The SIOC_IO_EXT/SIOC_IO ioctl allows an arbitrary SCSI command to be sent to a device. All details
of the SCSI command protocol are handled automatically.

The data structure for the SIOC_IO_EXT/SIOC_IO ioctl is included from <sys/scsi.h>:
/* SCSI device control ioctls */

#define SIOC_IO_EXT _IOWR(’S’, 102, esctl_io_t)
#define SIOC_IO _IOWR(’S’, 22, struct sctl_io)

/* Structure for SIOC_IO_EXT ioctl */
typedef struct {

int version;

escsi_sctl_io_flags_t flags;

int max_msecs;

uint32_t cdb_length;

uint32_t data_length;

ptr64_t data;

union sense_data sense;

escsi_hw path_t 1pt_hwp;

uint32_t data_xfer;

uint32_t sense_xfer;

uint32_t cdb_status;

uint32_t sense_status;

uint8_t cdb[ESCSI_MAX CDB_LEN];

uint32_t rsvd[32]; /* Reserved for
* future use
*/

} esctl_io_t;

/* Structure for SIOC_IO ioctl */
typedef struct sctl_io {
unsigned flags;
unsigned char cdb_length;
unsigned char cdb[16];

void *data;
unsigned data_length;
unsigned max_msecs;
unsigned data_xfer;
unsigned cdb_status;

unsigned char sense[256];

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

sioc_1i0(7) sioc_i0(7)

unsigned sense_status;

unsigned char sense_xfer;

unsigned char reserved[64];
} sctl_io_t;

The following flags can be used to specify the £lags field value of both STIOC_IO_EXT and SIOC_IO
unless indicated otherwise:

SCTL_READ Data-in phase expected if the data_length field is non-zero. The absence of this
flag implies that a data-out phase is expected if the data_length field is non-zero.

ESCTL_IO_LPT The SCSI command is to be issued on a given LUN path. This flag can only be
specified with SIOC_IO_EXT ioctl. When specified the hardware path of the
LUN path to use is specified in field Ipt_hwp

The cdb field specifies the SCSI command bytes. The number of command bytes is specified by the
cdb_length field. These command bytes are sent to the target device during the SCSI command phase.

The address of the data area for the data phase of the SCSI command is specified by the data field. The
data_length field specifies the maximum number of data bytes to be transferred. A zero-valued
data_length indicates that no data phase should occur. Most SCSI commands with a data phase expect the
data length information to be included somewhere in the command bytes. The caller is responsible for
correctly specifying both the data_length field and any cdb data length values. The length may not be
larger than SCSI_MAXPHYS and some implementations further restrict this length.

The max_msecs field specifies the maximum time, in milliseconds, that the device should need to complete
the command. If this period of time expires without command completion, the system might attempt
recovery procedures to regain the device€s attention. These recovery procedures might include abort tag,
abort, and device and bus reset operations. A zero value in the max_msec field indicates that the timeout
period is infinite and the system should wait indefinitely for command completion.

When the SIOC_IO_EXT/SIOC_IO ioctl call returns, all command processing has been completed. Most
SIOC_IO_EXT/SIOC_TIO ioctl calls will return zero (success). The resulting detailed ioctl data should be
used to evaluate "success" or "failure" from the caller’s perspective. The cdb_status field indicates the
results of the c¢db command. If the cdb_status field indicates a S_ CHECK_CONDITION status, the
sense_status field indicates the results of the SCSI REQUEST SENSE command used to collect the associ-
ated sense data. These status fields will contain one of the following values:

SCTL_INVALID_ REQUEST The SCSI command request is invalid and thus not attempted.

SCTL_SELECT_ TIMEOUT The target device does not answer to selection by the host SCSI interface
(the device does not exist or does not respond).

SCTL_INCOMPLETE The device answered selection but the command is not completed (the dev-
ice took too long or a communication failure occurred).

S_GOOD Device successfully completed the command.

S_CHECK_CONDITION Device indicated sense data is available.

S_CONDITION_ MET Device successfully completed the command and the requested (search or
pre-fetch) operation is satisfied.

S_BUSY Device indicated it is unable to accept the command because it is busy
doing other operations.

S_INTERMEDIATE Device successfully completed this command, which is one in a series of
linked commands (not supported, see WARNINGS).

S_I_CONDITION MET Device indicated both S_ INTERMEDIATE and S_CONDITION_MET (not
supported, see WARNINGS).

S_RESV_CONFLICT Device indicated the command conflicted with an existing reservation.

S_COMMAND_TERMINATED Device indicated the command is terminated early by the host system.

S_QUEUE_FULL Device indicated it is unable to accept the command because its command

queue is currently full.

The data_xfer field indicates the number of data bytes actually transferred during the data phase of the
cdb command. This field is valid only when the cdb_status field contains one of the following values:

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 179

sioc_1i0(7) sioc_i0(7)

S_GOOD or S_CHECK_CONDITION. The sense_xfer field indicates the number of valid sense data bytes.
This field is valid only when the cdb_status field contains the value S_ CHECK_CONDITION and the
sense_status field contains the value S_GOOD.

Security Restrictions
Use of the STOC_IO ioctl requires the superuser or DEVOPS privilege, or device write permissions. See
privileges(5) for more information about privileged access on systems that support fine-grained privileges.

EXAMPLES
Assume that fildes is a valid file descriptor for a persistent device file of a SCSI device, and leg_fildes is a
valid file descriptor for a legacy device file of a SCSI device, and Ipt_hwp contains a valid hardware path of
a LUN path to the device. The first example attempts a SCSI INQUIRY command:

#include <sys/scsi.h>
esctl_io_t esctl_io;

#define MAX LEN 255
unsigned char inquiry data[MAX_ LEN];

memset (&esctl_io, 0, sizeof(esctl_io)); /* clear reserved fields */
esctl_io.flags = SCTL_READ; /* input data expected */

esctl_io.cdb[0] = CMDinquiry;

esctl_io.cdb[l] = 0x00;

esctl_io.cdb[2] = 0x00;

esctl_io.cdb[3] = 0x00;

esctl_io.cdb[4] = MAX LEN; /* allocation length */
esctl_io.cdb[5] = 0x00;

esctl_io.cdb_length = 6; /* 6 byte command */
esctl_io.data = &inquiry datal[0]; /* data buffer location */
esctl_io.data_length = MAX LEN; /* maximum transfer length */
esctl_io.max msecs = 10000; /* allow 10 seconds for cmd */

if (ioctl(fildes, SIOC_IO_EXT, &esctl_io) < 0) {
/* request is invalid */

} else {
if (esctl_io.cdb_status == S_GOOD) {
/* success. display inquiry data */
else {
/* failure. process depending on cdb_status */
}
}
The second example attempts a SCSI INQUIRY command via a specific LUN path.
S #include <sys/scsi.h>

esctl_io_t esctl_io;
#define MAX LEN 255
unsigned char inquiry data[MAX_ LEN];
memset (&esctl_io, 0, sizeof(esctl_io)); /* clear reserved fields */
esctl_io.flags = SCTL_READ | SCTL_IO_LPT; /* input data
* expected and command
* to be sent on given
* LUN path
*/
memcpy (&esctl_io.lpt_hwp, lpt_hwp, sizeof(lpt_hwp); /* specify
* the hardware path of
* LUN path through which
* command must be sent

*/
esctl_io.cdb[0] = CMDinquiry;
esctl_io.cdb[l] = 0x00;
esctl_io.cdb[2] = 0x00;
esctl_io.cdb[3] = 0x00;
esctl_io.cdb[4] = MAX LEN; /* allocation length */

180 Hewlett-Packard Company -3- HP-UX 11i Version 3: February 2007

sioc_1i0(7) sioc_i0(7)

esctl_io.cdb[5] = 0x00;

esctl_io.cdb_length = 6; /* 6 byte command */
esctl_io.data = &inquiry datal[0]; /* data buffer location */
esctl_io.data_length = MAX LEN; /* maximum transfer length */
esctl_io.max msecs = 10000; /* allow 10 seconds for cmd */

if (ioctl(fildes, SIOC_IO_EXT, &esctl_io) < 0) {
/* request is invalid */

} else {
if (esctl_io.cdb_status == S_GOOD) {
/* success. display inquiry data */
else {
/* failure. process depending on cdb_status */
}
}

The following example attempts a SCSI TEST UNIT READY command and checks to see if the device is
ready, not ready, or in some other state.

#include <sys/scsi.h>
struct sctl_io sctl_io;

memset (&sctl_io, 0, sizeof(sctl_io)); /* clear reserved fields */

sctl_io.flags = 0; /* no data transfer expected */
sctl_io.cdb[0] = 0x00; /* can use CMDtest_unit_ready */
sctl_io.cdb[1l] = 0x00;

sctl_io.cdb[2] = 0x00;

sctl_io.cdb[3] = 0x00;

sctl_io.cdb[4] = 0x00;

sctl_io.cdb[5] = 0x00;

sctl_io.cdb_length = 6; /* 6 byte command */
sctl_io.data = NULL; /* no data buffer is provided */
sctl_io.data_length = 0; /* do not transfer data */
sctl_io.max msecs = 10000; /* allow 10 seconds for cmd */

if (ioctl(leg fildes, SIOC_IO, &sctl_io) < 0) {
/* request is invalid */

}
else if (sctl_io.cdb_status == S_GOOD) {
/* device is ready */

}

else if (sctl_io.cdb_status == S_BUSY ||
(sctl_io.cdb_status == S_CHECK CONDITION &&
sctl_io.sense_status == S_GOOD &&
sctl_io.sense_xfer > 2 &&
(sctl_io.sense[2] & O0xO0F) == 2)) {

/* can use sense_data */
/* device is not ready */
} else {
/* unknown state */
}

WARNINGS
Incorrect use of sioc_io operations (even those attempting access to non-existent devices) can cause data
loss, system panics, and device damage.

The SIOC_EXCLUSIVE ioctl should be used to gain exclusive access to a device prior to attempting
SIOC_IO commands. If exclusive access is not obtained, SIOC_IO commands will be intermixed with
device-specific driver commands, which can lead to undesirable results.

Device-specific drivers can reject inappropriate or troublesome SIOC_IO commands. However, since not
all such operations are known and detected, care should be exercised to avoid disrupting device-specific
drivers when using commands that modify internal device states.

Most SCSI commands have a logical unit number (LUN) field. Parallel SCSI implementations on the HP-
UX operating system select logical units via the SCSI IDENTIFY message. The LUN portion of the cdb

HP-UX 11i Version 3: February 2007 -4 - Hewlett-Packard Company 181

sioc_1i0(7) sioc_i0(7)

should normally be set to zero, even when the LUN being accessed is not zero.
Use of linked commands is not supported.

Most SCSI commands with a data phase expect the data length information to be included somewhere in
the command bytes. Both the data_length field and any cdb data length values must be correctly specified
to get correct command results.

Very large (or infinite) timeout values can cause a parallel SCSI bus (potentially the entire system) to hang.
Device and/or bus reset operations can be used to regain a device's attention when a timeout expires.

Resetting a device can cause I/O errors and/or loss of cached data. This can result in loss of data and/or
system panics.

Obtaining SCSI INQUIRY data by use of the STIOC_INQUIRY ioctl instead of by use of the SIOC_IO
ioctl is generally preferable since SCSI implementations on the HP-UX operating system synchronize access
of inquiry data during driver open calls.

Since communication parameters can be affected by device-specific driver capabilities, device-specific driver
use might result in communication parameter changes.

FILES

/usr/include/sys/scsi.h
/usr/include/sys/scsi_ctl.h

SEE ALSO

182

ioctl(2), privileges(5), intro(7), scsi(7), scsi_ctl(7).

Hewlett-Packard Company -5- HP-UX 11i Version 3: February 2007

slp_syntax(7) slp_syntax(7)

NAME
slp_syntax - SLP Service Type Syntax

DESCRIPTION
The SLP API expects service type information to be passed while querying for SLP service information and
also while registering and deregistering services. The SLP API accepts service type information in URL for-
mat also.

The service type string contains the following information.
Name of the service type.
Naming Authority responsible for the service name.
The service type string is of the form:
service : abstract-type.naming-authority s concrete-type
The abstract-type is a short descriptive string that describes the type of service.

The naming-authority is the name of the organization that named the service. The naming-authority is
optional, but if it is omitted, then IANA is assumed to be the naming authority and IANA requires service-
types to be registered (see RFC 2609).

concrete-type, also optional, is a kind of sub-type of the abstract-type.
For example,

printer is an abstract type (owned by IANA) and printer:1pr is a concrete type (owned by
TANA).

The official definition of Service Type strings can be found in RFC 2609, "Service Templates and Service
Schemes".

Examples of Service Type Strings
weather.nasa:wtp A (fictitious) weather service type owned by NASA that uses WTP protocol.
weather.nasa:swtp A (fictitious) weather service type owned by NASA that uses SWTP protocol.

chat.superchat A chat service type owned by SuperChat.
printer.samba A samba printer service type.

ftp An TANA ftp service type.

telnet An TANA telnet service type.

Comparing Service Types

Since service types are important in determining the URLs that are returned by the SLPFindSrvs ()
call, you should understand how services are compared. Suppose that three services were registered with
SLPReg () using a srutype of printer:1lpr, printer and printer.acme. If a client program calls
SLPFindSrvs () with a srvtype of service:printer, the urls for both printer:lpr and
printer are returned (printer.acme is not). However, if SLPFindSrvs () is called with srvtype of
printer:1lpr or printer.acme, then the urls for printer:1lpr or printer.acme would be
returned. In other words, if a concrete-type is used, only services with the same abstract and concrete-type
are returned. If only the abstract type is used, then all services of that abstract type (and naming author-
ity) are returned.

SLP Service URL Syntax
SLP APIs accept service type strings in URL syntax format. URL strings are passed as parameters to
SLPReg (), SLPDeReg (), SLPFindSrvs (), and SLPParseSrvURL () functions and returned as a
result to the SLPSrvURLCallback () callback function. SLP defines a special type of URL called a Ser-
vice URL that MUST be used when calling SLP API functions. The syntax of a service URL is:

SLP Service URL = service: service-type : //addrspec

service-type is a service type as explained above. addrspec can be any address that fits URL syntax and can
be translated as a network location. The service: and :// strings are required.

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 183

slp_syntax(7) slp_syntax(7)

Service URL Examples
service:weather.nasa:wtp://weather.nasa.com:12000
service:weather.nasa:swtp://weather.nasa.com:12001
service:chat.superchat://chat.superchat.com;auth=1dap

SLP requires you to use Service URLs. API functions will return SLP_PARSE_ERROR if you do not. Ser-
vice URLs are required because the SLP API designers do not allow the service-type to be passed in as a
parameter to the SLPDeReg () call. Without the service-type, SLPDeReg () does not allow the caller to
distinguish between services of varying types that were registered with the same standard URL.

The SLPFindSrvs () function expects the search strings to be passed in LDAPv3 Search Filter Syntax.

SEE ALSO
slpd(1M), libslp(3N), slp.reg(4).

184 Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

socket(7) socket(7)

NAME

socket - interprocess communications

DESCRIPTION
Sockets are communication endpoints that allow processes to communicate either locally or remotely. They
are accessed by means of a set of system calls (see socket(2)).

The following ioctl () requests are defined in <sys/ioctl.h> (see ioctl(2)):

FIOSNBIO If the int with the address arg is non-zero, the socket is put into non-blocking mode. Other-
wise, the socket is put into blocking mode. Blocking mode is the default. The FIONBIO
request is equivalent to the FIOSNBIO request, although using FIONBIO is not recom-
mended. See accept(2), connect(2), recv(2), and send(2) for an explanation of how non-
blocking mode is used.

FIONREAD For SOCK_STREAM sockets, the number of bytes currently readable from this socket is
returned in the integer with the address arg. For SOCK_DGRAM sockets, the number of
bytes currently readable, plus the size of the sockaddr structure (defined in
<sys/socket.h>), is returned in the integer with the address arg.

SIOCATMARK For SOCK_STREAM TCP sockets, on return the integer with the address arg is non-zero if
the inbound TCP stream has been read up to where the out-of-band data byte starts. Other-
wise, the inbound TCP stream has not yet been read up to where the out-of-band data byte
starts. For sockets other than SOCK_STREAM TCP sockets, on return the integer with the
address arg is always zero.

SIOCSPGRP This request sets the process group or process ID associated with the socket to be the value
of the integer with the address arg. A process group or process ID associated with the
socket in this manner is signaled when the state of the socket changes: SIGURG is
delivered upon the receipt of out-of-band data; SIGIO is delivered if the socket is asyn-
chronous, as described in FIOASYNC below. If the value of the integer with the address
arg is positive, the signal is sent to the process whose process ID matches the value
specified. If the value is negative, the signal is sent to all the processes that have a process
group equal to the absolute value of the value specified. If the value is zero, no signal is
sent to any process. It is necessary to issue this request with a non-zero integer value to
enable the signal delivery mechanism described above. The default for the process group or
process ID value is zero.

SIOCGPGRP This request returns the process group or process ID associated with the socket in the
integer with the address arg. See the explanation for SIOCSPGRP above for more details
on the meaning of the integer value returned.

FIOASYNC If the integer whose address is arg is non-zero, this request sets the state of the socket as
asynchronous. Otherwise, the socket is put into synchronous mode (the default). Asyn-
chronous mode enables the delivery of the SIGIO signal when either of the following con-
ditions is met.

e New data arrives.

e For connection-oriented protocols, whenever additional outgoing buffer space
becomes available or the connection is established or broken.

The process group or process ID associated with the socket must be non-zero in order for
SIGIO signals to be sent. The signal is delivered according to the semantics of
STIOCSPGRP described above.

The fentl(2) O_NDELAY and O_NONBLOCK flags (defined in <fcntl.h>) are supported by sockets. If
the O_NONBLOCK flag is set, the socket is put into POSIX-style non-blocking mode. If the O_NDELAY
flag is set, the socket is put into non-blocking mode. Otherwise, the socket is put into blocking mode.
Blocking mode is the default. See accept(2), connect(2), recv(2), and send(2) for an explanation of how these
forms of non-blocking mode are used.

Since the fentl() O_NONBLOCK and O_NDELAY flags and ioctl () FIOSNBIO requests are sup-
ported, the following clarifies on how these features interact. If the O_NONBLOCK or O_NDELAY flag
has been set, recv() and send () requests behave accordingly, regardless of any FIOSNBIO requests.
If neither the O_NONBLOCK flag nor the O_NDELAY flag has been set, FIOSNBIO requests control the
the behavior of recv () and send ().

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 185

socket(7) socket(7)

DEPENDENCIES
AF_CCITT Only
Only the FIOSNBIO, FIONREAD, STIOCGPGRP, and SIOCSPGRP ioctl() requests are defined for
af ccitt sockets.

AUTHOR
socket was developed by the University of California, Berkeley.

SEE ALSO
fentl(2), getsockopt(2), ioctl(2), socket(2).

186 Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

streamio(7) streamio(7)

NAME
streamio - STREAMS ioctl commands

SYNOPSIS
#include <sys/types.h>
#include <stropts.h>

int ioctl (int fildes, int command, ... /* arg */);

DESCRIPTION
STREAMS ioctl commands are a subset of the ioctl () system calls which perform a variety of control
functions on streams.

fildes is an open file descriptor that refers to a stream. command determines the control function to be per-
formed as described below. arg represents additional information that is needed by this command. The
type of arg depends upon the command, but it is generally an integer or a pointer to a command-specific
data structure. The command and arg are interpreted by the stream head. Certain combinations of these
arguments may be passed to a module or driver in the stream.

Since these STREAMS commands are a subset of ioctl, they are subject to the errors described there. In
addition to those errors, the call will fail with errno set to [EINVAL], without processing a control func-
tion, if the stream referenced by fildes is linked below a multiplexor, or if command is not a valid value for
a stream.

Also, as described in ioctl, STREAMS modules and drivers can detect errors. In this case, the module or
driver sends an error message to the stream head containing an error value. This causes subsequent sys-
tem calls to fail with errno set to this value.

The following ioctl commands, with error values indicated, are applicable to all STREAMS files:

I_ATMARK Allows the user to see if the current message on the stream head read queue is
"marked" by some module downstream. arg determines how the checking is done
when there are multiple marked messages on the stream head read queue. It may
take the following values:

ANYMARK Checks if the message is marked.

LASTMARK Checks if the message is the last one that is marked on the queue.
If both ANYMARK and LASTMARK are set, ANYMARK supersedes LASTMARK .
The return value is 1 if the mark condition is satisfied and 0 otherwise.

I_CANPUT Checks if a certain band is writable. arg is set to the priority band in question. The
return value is 0 if the priority band arg is flow controlled, 1 if the band is writable, or -

—1 on error.

I_CKBAND Check if the message of a given priority band exists on the stream head read queue.
This returns 1 if a message of a given priority exists, or —1 on error. arg should be an S
integer containing the value of the priority band in question.

I_FDINSERT Creates a message from user specified buffer(s), adds information about another
stream and sends the message downstream. The message contains a control part and
an optional data part. The data and control parts to be sent are distinguished by
placement in separate buffers, as described below.

arg points to a strfdinsert structure which contains the following members:

struct strbuf ctlbuf;
struct strbuf databuf;
long flags;

int fildes;
int offset;

The len field in the ctlbuf strbuf structure (see putmsg(2)) must be set to the
size of a pointer plus the number of bytes of control information to be sent with the
message. fildes in the strfdinsert structure specifies the file descriptor of the
other stream. offset, which must be word-aligned, specifies the number of bytes
beyond the beginning of the control buffer where I_FDINSERT will store a pointer.
This pointer will be the address of the read queue structure of the driver for the

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 187

streamio(7)

I_FIND

I_FLUSH

streamio(7)

streams corresponding to fildes in the strfdinsert structure. The len field in the
databuf strbuf structure must be set to the number of bytes of data information
to be sent with the message or zero if no data part is to be sent.

flags specifies the type of message to be created. An ordinary (non-priority) message
is created if flags is set to 0, a high priority message is created if flags is set to
RS_HIPRI. For normal messages, I_FDINSERT will block if the stream write
queue is full due to internal flow control conditions. For high priority messages,
I_FDINSERT does not block on this condition. For normal messages, I_ FDINSERT
does not block when the write queue is full and the O_ NONBLOCK is set. Instead, it
fails and sets errno to [EAGAIN].

I_FDINSERT also blocks, unless prevented by the lack of internal resources, waiting
for the availability of message blocks, regardless of priority or whether O_ NONBLOCK
has been specified. No partial message is sent.

I_FDINSERT can also fail if an error message was received by the stream head of
the stream corresponding to fildes in the strfdinsert structure. In this case,
errno will be set to the value in the message.

Compares the names of all modules currently present on the stream to the name
specified in arg. The command returns a value of 1 if the module is present and a
value of 0 (zero) if the module is not present.

This request flushes all input and/or output queues, depending on the value of arg.
Valid arg values are:

FLUSHRW Flush write and read queues.
FLUSHW Flush write queues.
FLUSHR Flush read queues.

If a pipe or FIFO does not have any modules pushed, the read queue of the streams
head on either end is flushed depending on the value of arg.

If FLUSHR is set and fildes is a pipe, the read queue for that end of the pipe is flushed
and the write queue for the other end is flushed. If fildes is a FIFO, both queues are
flushed.

If FLUSHW is set and fildes is a pipe and the other end of the pipe exists, the read
queue for the other end of the pipe is flushed and the write queue for this end is
flushed. If fildes is a FIFO, both queues of the FIFO are flushed.

If FLUSHRW is set, all read queues are flushed, that is the read queue for the FIFO
and the read queue of boths ends of the pipe are flushed.

Correct flushing handling of a pipe or FIFO with modules pushed is achieved via the
pipemod module. This module should be the first module pushed onto a pipe so that
it is at the midpoint of the pipe itself.

I_FLUSHBAND

I_GETBAND

Flushes a particular band of messages. arg points to a bandinfo structure that has
the following members:

unsigned char bi_ pri:
int bi_flag;

The value of the bi_flag field can be FLUSHR, FLUSHW, or FLUSHRW as described for
the I_FLUSH command.

Returns the priority band of the first message on the stream head read queue in the
integer referenced by arg.

I_GETCLTIME

Returns the close time delay in the long pointed by arg.

I_SETCLTIME

Allows the user to set the time that the stream head will delay when a stream is clos-
ing, and there is data on the write queues. Before closing each module and driver, the
stream head will delay for the specified amount of time to allow the data to drain. If,
after the delay, data is still present, data will be flushed. arg is a pointer to the

188 Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

streamio(7)

I_GETSIG

I_GRDOPT
I_GWROPT

I_LINK

I_LIST

I_LOOK

I_NREAD

I_PEEK

streamio(7)

number of milliseconds to delay, rounded up to the nearest valid value on the system.
The default is fifteen seconds.

Returns the events for which the calling process has registered to receive a SIG-
POLL signal. Events are returned as in arg bitmask as defined for the I_SETSIG
command.

Returns the current read mode setting in an int pointed to by the argument arg.
Read modes are described in read(2).

Returns the current write mode setting, as described in I_ SWROPT, in the int that is
pointed to by the argument arg.

Connects two streams, where fildes is the file descriptor of the stream connected to
the multiplexing driver, and arg is the file descriptor of the stream connected to
another driver. The stream designated by arg gets connected below the multiplexing
driver. I_LINK requires the multiplexing driver to send an acknowledgement mes-
sage to the stream head regarding the linking operation. This call returns a multi-
plexor ID number (an identifier used to disconnect the multiplexor, see I_UNLINK)
on success, and —1 on failure.

Allows the user to list all the module names on the stream, up to and including the
topmost driver name. If arg is NULL, the return value is the number of modules,
including the driver, that are on the stream pointed to by fildes. This allows the user
to allocate enough space for the module names. If arg is not NULL, it should point to a
str_list structure that has the following members:

int sl_nmods;
struct str_mlist *sl _modlist;

The str_mlist structure has the following member:
char 1l _name [FMNAMESZ+1] ;

sl_nmods indicates the number of entries the user has allocated in the array. On
success, the return value is 0, s1_modlist contains the list of module names, and
sl nmods indicates the number of entries that have been filled in.

Retrieves the name of the module located just below the streams head of the stream
pointed to by fildes, and places it in a null terminated character string pointed at by
arg. The buffer pointed to by arg should be at least FNAMESZ+1 bytes long. A
#include <stropts.h> declaration is required.

Counts the number of data bytes in data blocks in the first message on the stream
head read queue, and places this value in the location pointed to by arg. The return
value for the command is the number of messages on the stream head read queue.
For example, if zero is returned in arg, but the ioctl return value is greater than
zero, this indicates that a zero-length message is next on the queue.

Allows the user process to look (peek) at the contents of the first message on the
stream head read queue. This is done without taking the message off the queue. The
I_PEEK ioctl operates the same way as the getmsg () function, except that it
does not remove the message. The arg parameter points to a strpeek structure (in
the <stropts.h> header file) with the following members:

struct strbuf ctlbuf;
struct strbuf databuf;
long flags;

The strbuf structure pointed to by ctlbuf and databuf has the following
members:

int maxlen;
int len;
char *buf

The maxlen field of the stxrbuf structure must specify the number of bytes of con-
trol or data information to be retrieved. The flags field can be set to RS_HIPRI or 0
(zero). If this field is set to RS_HIPRI, the I_PEEK ioctl looks for a high prior-
ity message on the queue. If the field is set to 0, the I_PEEK ioctl looks at the

HP-UX 11i Version 3: February 2007 -3- Hewlett-Packard Company 189

streamio(7)

I_PLINK

I_POP

I_PUNLINK

I_PUSH

I_RECVFD

I_SENDFD

streamio(7)

first message on the queue.

The I_PEEK returns a 1 if a message was retrieved, and returns a value of 0 (zero) if
no message was found; it does not wait for a message. Upon successful completion,
ctlbuf specifies control information in the control buffer, databuf specifies data
information in the data buffer, and flags contains RS_HIPRI or 0 (zero).

Connects two streams, where fildes is the file descriptor of the stream connected to
the multiplexing driver, and arg is the file descriptor of the stream connected to
another driver. The stream designated by arg gets connected via a persistent link
below the multiplexing driver. I_PLINK requires the multiplexing driver to send an
acknowledgement message to the stream head regarding the linking operation. This
call creates a persistent link which can exist even if the file descriptor associated with
the upper stream to the multiplexing driver is closed. This call returns a multiplexor
ID number (an identifier that may be used to disconnect the multiplexor, see
I_PUNLINK) on success and —1 on failure.

The I_PLINK ioctl can also fail if it is waiting for the multiplexing driver to ack-
nowledge the link request and an error (M_ERROR) message, or hangup (M_HANGUP)
message is received at the stream head for fildes. In addition, an error can be
returned in an M_IOACK or M_IONAK message. When these occur, the I_PLINK
fails with errno set to the value in the message.

Removes the module just below the stream head of the stream pointed to by fildes. To
remove a module from a pipe requires that the module was pushed on the side it is
being removed from. arg should be 0 in an I_POP request.

Disconnects the two streams specified by fildes and arg that are connected with a per-
sistent link. fildes is the file descriptor of the stream connected to the multiplexing
driver. arg is the multiplexor ID number that was returned by I_PLINK when a
stream was linked below the multiplexing driver. If arg is MUXID_ALL, then all
streams which are persistent links to fildes are disconnected. As in I_PLINK, this
command requires the multiplexing driver to acknowledge the unlink.

Pushes the module whose name is pointed by arg onto the top of the current stream,
just below the stream head. If the stream is a pipe, the module will be inserted
between the streams heads of both ends of the pipe. It then calls the open routine of
the newly-pushed module.

Retrieves the file descriptor associated with the message sent by an I_SENDFD
ioctl over a stream pipe. arg is a pointer to a data buffer large enough to hold a
strrecv£fd data structure containing the following members:

int £4;
uid_t uid;
gid_t gid;
char £i11([8]

fd is an integer file descriptor. uid and gid are the user ID and group ID, respec-
tively, of the sending stream.

If O_NONBLOCK is clear, I_RECVFD will block until a message is present at the
stream head. If O_NONBLOCK is set, I_ RECVFD will fail with errno set to
[EAGAIN] if no message is present at the stream head.

If the message at the stream head is a message sent by a I_ SENDFD, a new user file
descriptor is allocated for the file pointer contained in the message. The new file
descriptor is placed in the fd field of the strrecvfd structure. The structure is
copied into the user data buffer pointed to by arg.

Requests the stream associated with fildes to send a message, containing a file
pointer, to the stream head at the other end of a stream pipe. The file pointer
corresponds to arg, which must be an open file descriptor.

I_SENDFD converts arg into the corresponding system file pointer. It allocates a
message block and inserts the file pointer in the block. The user ID and group ID
associated with the sending process are also inserted. This message is placed directly
on the read queue of the stream head at the other end of the stream pipe to which it is
connected.

190 Hewlett-Packard Company -4 - HP-UX 11i Version 3: February 2007

streamio(7) streamio(7)

I_SETCLTIME
Lets the user process set the time that the stream head delays when the stream is
closing and the write queues contain data. The arg parameter contains a pointer to
the number of milliseconds to delay, rounded up to the nearest legal value on the sys-
tem. The default time is 15 seconds.

Before STREAMS modules and drivers are closed, the stream head delays for the
specified amount of time. This allows the data on the write queues to drain. If data is
still present on the writes queues after the delay, the queues are flushed.

I_SETSIG Informs the stream head that the user wants the kernel to issue the SIGPOLL signal
(see signal(2)) when a particular event has occurred on the stream associated with
fildes. I_SETSIG supports an asynchronous processing capability in STREAMS.
The value of arg is a bitmask that specifies the events for which the user should be
signaled. It is the bitwise-OR of any combination, except where noted, of the following
constants:

S_BANDURG When used in conjunction with S_RDBAND, SIGURG is gen-
erated instead of SIGPOLL when a priority message reaches the
front of the stream head read queue.

S_ERROR An M_ERROR message has reached the stream head.

S_HANGUP An M_HANGUP message has reached the stream head.

S_HIPRI A high priority message is present on the stream head read
queue. This is set even if the message is of zero length.

S_INPUT Any message other than an M_PCPROTO has arrived on a

stream head read queue. This event is maintained for compati-
bility with prior releases. This is set even if the message is of
zero length.

S_MSG A STREAMS signal message that contains the SIGPOLL signal
has reached the front of the stream head read queue.

S_OUTPUT The write queue just below the stream head is no longer full.
This notifies the user that there is room on the queue for sending
(or writing) data downstream.

S_RDBAND A priority band message (band > 0) has arrived on a stream head
read queue. This is set even if the message is of zero-length.

S_RDNORM An ordinary (non-priority) message has arrived on a stream head
read queue. This is set even if the message is of zero-length.

S_WRBAND A priority band greater than 0 of a queue downstream exists and
is writable. This notifies the user that there is room on the
queue for sending (or writing) priority data downstream.

S_WRNORM This event is the same as S_ OUTPUT.

A user process may choose to be signaled only of high priority messages by setting arg
bitmask to the value S_ HIPRI.

Processes that want to receive SIGPOLL signals must explicitly register to receive
them using I_SETSIG. If several processes register to receive the signal for the
same event on the same stream, each process will be signaled when the event occurs.

If the value of arg is zero, the calling process will be unregistered and will not receive
further SIGPOLL signals.

I_SRDOPT Sets the read mode (see read(2)) using the value of the argument arg. Valid arg

values are:
RNORM Byte-stream mode (default).
RMSGD Message-discard mode.
RMSGN Message-nondiscard mode.

Setting both RMSGD and RMSGN is an error. RMSGD and RMSGN override NORM.

HP-UX 11i Version 3: February 2007 -5- Hewlett-Packard Company 191

streamio(7)

I_STR

I_SWROPT

I_UNLINK

RETURN VALUE

streamio(7)

In addition, treatment of control messages by the stream head may be changed by set-
ting the following flags in arg:

RPROTNORM Fail read with EBADMSG if a control message is at the front of
the stream head read queue. This is the default behavior.

RPROTDAT Deliver the control portion of a message as data when a user
issues read.

RPROTDIS Discard the control portion of a message, delivering any data
portion, when a user issues a read.

Constructs an internal STREAMS ioctl message from the data pointed to by arg,
and sends that message downstream.

This mechanism is provided to send user ioctl requests to downstream modules
and drivers. It allows information to be sent with the ioctl, and will return to the
user any information sent upstream by the downstream recipient. I_STR blocks
until the system responds with either a positive or negative acknowledgement mes-
sage, or until the request "times out" after some period of time. If the request times
out, it fails with errno set to ETIME.

At most, one I_STR can be active on a stream. Further I_STR calls will block until
the active I_STR completes at the stream head. The default timeout intervals for
these requests is 15 seconds. The O_NONBLOCK (see open(2)) flags have no effect on
this call.

To send requests downstream, arg must point to a strioctl structure which con-
tains the following members:

int ic_cmd;
int ic_timout;
int ic_len;
char *jic_dp;

ic_cmd is the internal ioctl command intended for the downstream module or
driver and ic_timout is the number of seconds (-1 =infinite, 0 = use default, >0 =
as specified) an I_STR request will wait for acknowledgement before timing out. The
default timeout is infinite. ic_len is the number of bytes in the data argument and
ic_dp is a pointer to the data argument. The ic_1len field has two uses: on input,
it contains the length of the data argument passed in, and on return from the com-
mand, it contains the number of bytes being returned to the user (the buffer pointed
to by ic_dp should be large enough to contain the maximum amount of data that
any module or driver in the stream can return). The stream head will convert the
information pointed to by strioctl structure to an internal ioctl command mes-
sage and send it downstream.

Sets the write mode using the value of the argument arg. Legal bit settings for arg
are:

SNDZERO Sends a zero-length message downstream when a write of 0
bytes occurs. To not send a zero-length message when a write of
0 bytes occurs, this bit must not be set in arg.

Disconnects the two streams specified by fildes and arg. fildes is the file descriptor of
the stream connected to the multiplexing driver. arg is the multiplexor ID number
that was returned by the I_LINK. If arg is MUXID_ALL, then all streams which
were linked to fildes are disconnected. As in I_LINK, this command requires the
multiplexing driver to acknowledge the unlink.

Unless specified differently for a command, the return value for a STREAMS ioctl () call is 0 (zero) on
success and —1 (minus one) on failure.

ERRORS

A STREAMS ioctl command fails without performing the function and with errno set to [EINVAL] if:

e The stream referred to by fildes is linked below a multiplexing driver.

192 Hewlett-Packard Company -6- HP-UX 11i Version 3: February 2007

streamio(7)

streamio(7)

e The command parameter is not a valid value for the stream.

In addition, if any of the following conditions occur, the STREAMS ioctl commands return the

corresponding value:

I_ATMARK

[EINVAL] arg has an illegal value.
I_CANPUT

[EINVAL] arg has an illegal value.
I_CKBAND

[EINVAL] arg has an illegal value.
I_FDINSERT

[EINVAL] The fildes parameter in the strfdinsert structure is an invalid open file descrip-
tor.

[EINVAL] The size of the pointer plus offset exceeds the value of the len field for the buffer
specified through ctiptr.

[EINVAL] offset does not specify a properly aligned location in the data buffer.

[EINVAL] flags contains an undefined value.

[EFAULT] arg points, or ctrlbuf or databuf is outside the allocated address space.

[EAGAIN] The ioctl request failed because a non-priority message was to be created, the
O_NONBLOCK option was set, and the stream’s write queue was full because of inter-
nal flow control conditions.

[ENOSR] Buffers could not be allocated for the message that was to be created due to
insufficient STREAMS memory resources.

[ENXIO] A hangup was received on the stream specified by fildes in the I_ FDINSERT ioctl
call or on the stream specified by fildes in the strfdinsert.

[ERANGE] The value of the len field for the buffer specified through databuf does not fall
within the range for the minimum and maximum sizes of packets for the top-most
module on the stream.

[ERANGE] The value of the len field for the buffer specified through databuf is larger than the
maximum allowable size for the data part of a message.

[ERANGE] The value of the len field for the buffer specified through ctlbuf is larger than the
maximum allowable size for the control part of a message.

The I_FDINSERT ioctl can also fail if an error (M_ERROR) message was received
by the stream specified by the fildes field in the strfdinsert structure. In this
case, errno is set to the error value in the error message.
I_FIND
[EINVAL] arg does not contain a valid module name.
[EFAULT] arg points outside the allocated address space.
I_FLUSH

[ENOSR] Could not allocate buffers for flush operation because of a lack of STREAMS memory
resources.

[EINVAL] The arg parameter is an invalid value.

[ENXIO] A hangup was received on fildes.

I_FLUSHBAND

[EINVAL] The bi_pri parameter value exceeds the maximum band, or the bi_flag parameter is

not FLUSHR, FLUSHW, or FLUSHRW.
I_GETBAND
HP-UX 11i Version 3: February 2007 -7- Hewlett-Packard Company 193

streamio(7)

[ENODATA]
I_GETSIG
[EINVAL]
[EFAULT]
I_GRDOPT
[EFAULT]

[ENOSR]
[ETIME]

streamio(7)

No message exists on the stream head read queue.

User process is not registered to receive the SIGPOLL signal.

arg points outside the allocated address space.

arg is pointing outside the allocated address space.

Temporarily unable to allocate storage to perform the linking operation.
The arg parameter not a valid open file descriptor.

A hangup was received on fildes.

The stream referred to by fildes does not support multiplexing.

The file referred to by arg is not a stream, or the stream is already linked under a
multiplexor.

The link operation would cause a "cycle" in the resulting multiplexing configuration.
In other words, the driver referred to by the arg parameter is linked into this
configuration at multiple places

Not enough STREAMS memory resources to allocate storage for this command.

Acknowledgement message not received at stream head before timeout.

The I_LINK ioctl can also fail if an M_ERROR or M_HANGUP message is received at the
stream head for fildes before receiving the driver acknowledgement. In addition, an error can be
returned in an M_TIOCACK or M_TIOCNAK message. When these occur, the I_LINK ioctl
fails with errno set to the value in the message.

I_LIST
[EINVAL]
[EAGAIN]

I_LOOK
[EINVAL]
[EFAULT]

I_NREAD
[EFAULT]

I_PEEK
[EINVAL]
[EFAULT]
[EBADMSG]

I_PLINK
[ENXIO]
[ETIME]

[EAGAIN]
[EBADF]

[EINVAL]
[EINVAL]

[EINVAL]

sl_nmods is less than 1.
Could not allocate buffers.

There are no modules in the stream.

arg points outside the allocated address space.

arg is pointing outside the allocated address space.

The flags parameter is an illegal value.
arg points, or ctrlbuf or databuf is, outside the allocated address space.
Message to be looked at is not valid for the I_PEEK command.

A hangup was received on the stream referred to by the fildes parameter.

A timeout occurred before an acknowledgement message was received at the stream
head.

Temporarily unable to allocate storage to perform the linking operation.
arg is not a valid open file descriptor.
The stream referred to by fildes does not support multiplexing.

The file referred to by arg is not a stream or is already linked under a multiplexing
driver.

The link operation would cause a "cycle" in the resulting multiplexing configuration.
In other words, the driver referred to by arg is linked into the configuration at

194 Hewlett-Packard Company -8- HP-UX 11i Version 3: February 2007

streamio(7) streamio(7)

multiple places.

I_POP
[EINVAL] There are not modules in the stream.
[ENXIO] Error value returned by the module being popped.
[ENXIO] A hangup was received on fildes.
I_PUNLINK
[ENXIO] A hangup was received on fildes.
[ETIME] ﬁ ti(rineout occurred before an acknowledgement message was received at the stream
ead.
[EAGAIN] Temporarily unable to allocate storage to perform the linking operation.
[EINVAL] arg is an invalid multiplexor ID number.
[EINVAL] fildes is the file descriptor of a pipe.
An I_PUNLINK ioctl can also fail if it is waiting for the multiplexor to acknowledge the
unlink request and an error (M_ERROR) message, or hangup (M_HANGUP) is received at the
stream head for fildes. In addition, an error can be returned in an M_IOCACK or M_IOCNAK
message. When these occur, the P_UNLINK ioctl fails with errno set to the value in the
message.
I_PUSH
[EINVAL] An invalid module name was used.
[EFAULT] arg points outside the allocated address space.
[ENXIO] Error value returned by the module being pushed. The push has failed.
[ENXIO] A hangup was received on fildes.
I_RECVFD
[EAGAIN] The O_NONBLOCK option was set, and a message was not present on the stream head
read queue.
[EFAULT] The arg parameter points outside the allocated address space.
[EBADMSG] The message present on the stream head read queue did not contain a passed file
descriptor.
[EMFILE] Too many open files. No more file descriptors are permitted to be opened.
[ENXIO] A hangup was received on fildes.
I_SENDFD
[EAGAIN] The sending stream head could not allocate a message block for the file pointer.
[EAGAIN] The read queue of the receiving stream head was full and could not accept the mes-
sage.
[EBADF] The arg parameter is not a valid open file descriptor.
[EINVAL] The fildes parameter does not refer to a stream.
[ENXIO] A hangup was received on fildes.
I_SETCLTIME
[EINVAL] arg has an illegal value.
I_SETSIG
[EINVAL] The user process is not registered to receive the SIGPOLL signal.
[EAGAIN] A data structure to store the signal request could not be allocated.
I_SRDOPT
[EINVAL] arg contains an illegal value.

HP-UX 11i Version 3: February 2007 -9- Hewlett-Packard Company 195

streamio(7)

I_STR
[EINVAL]

[EINVAL]
[EFAULT]

[ENOSR]

[ENXIO]
[ETIME]

streamio(7)

The ic_1len field is less than 0 (zero) bytes or larger than the maximum allowable
size of the data part of a message (ic_dp).

The ic_timout field is less than 1.

arg points, or the buffer area specified by ic_dp or ic_len is, outside the allocated
address space.

Buffers could not be allocated for the ioctl request because of a lack of STREAMS
memory resources.

A hangup was received on the stream referred to by fildes.

The ioctl request timed out before an acknowledgement was received.

The I_STR ioctl can also fail if the stream head receives a message indicating an error
(M_ERROR) or a hangup (M_HANGUP). In addition, an error can be returned in an M_IOCACK
or M_TIOCNAK message. In these cases, the ioctl fails with errno set to the error value in
the message.

I_SWROPT
[EINVAL]

I_UNLINK
[ENXIO]
[ETIME]

[EINVAL]

The arg parameter is an illegal value.

A hangup was received on fildes.

A timeout occurred before an acknowledgement message was received at the stream
head.

arg is an invalid multiplexor ID number, or fildes is already linked under a multiplex-
ing driver.

An I_UNLINK ioctl can also fail if it is waiting for the multiplexor to acknowledge the unlink
request and an error (M_ERROR) message, or hangup (M_HANGUP) is received at the stream
head for fildes. In addition, an error can be returned in M_TIOCACK or M_IOCNAK message.
When this occurs, the I_UNLINK ioctl fails with errno set to the value in the message.

SEE ALSO

close(2), fentl(2), getmsg(2), ioctl(2), open(2), poll(2), putmsg(2), read(2), write(2), signal(5).

196 Hewlett-Packard Company -10 - HP-UX 11i Version 3: February 2007

strlog(7) strlog(7)

NAME
strlog - STREAMS log driver

DESCRIPTION
The STREAMS log driver allows user-level processes and STREAMS drivers and modules to perform error
logging and event tracing. These tasks are done via a user interface and a kernel interface. Further, the
STREAMS log driver delivers error logging and event tracing messages to the Network Tracing and Log-
ging Facility (NetTL) (see nettl(1M), netfmt¢(1M), and nettliconf(1M)).

The interface that this driver presents to user-level processes is a subset of the ioctl () system calls and
STREAMS message formats. These processes can be error loggers, trace loggers, or other user processes,
that generate error or event messages. The user interface collects log messages from the log driver, and
also generates log messages from user processes.

The driver also accepts log messages from STREAMS drivers and modules in the kernel via its function call
interface. The kernel interface enters requests or calls from STREAMS drivers and modules into log mes-
sages.

The log messages accepted by the log driver are also delivered to NetTL. NetTL can be used to control
which types of messages to log, and to format and filter the logged messages.

Kernel Interface
STREAMS drivers and modules generate log messages by calls to the strlog function.

#include <sys/strlog.h>

int strlog (mid, sid, level, flags, fmt [, value]...);
short mid;

short sid;

char level;

ushort flags;

char *fmt;

int value;

mid specifies the STREAMS module ID number for the driver or module submitting the log message.
sid specifies the sub-ID number of a minor device associated with the STREAMS module or driver
identified by mid.
level specifies a level for screening lower-level event messages from a tracer.
flags contains several flags that can be set in various combinations. The flags are as follows:
SL_ERROR The message is for the error logger.
SL_TRACE The message is for the tracer. -
SL_CONSOLE The message will be printed to the console. S

SL_FATAL Provides a notification of a fatal error.
SL_NOTIFY Makes a request to mail a copy of a message to the system administrator.

The following are additional flags. These flags are not used by strerr or strace.
However, they are used to map STREAMS messages to NetTL messages as described below
in STREAMS-NetTL Link section.

SL_WARN The message is a warning.
SL_NOTE The message is a note.
fmt is a printf style format string. This accepts the %x, %1, %0, %u, %d, %c, and %s conversion
specifications.
values are numeric or character arguments for the format string. There is no maximum number of

arguments that can be specified.

User Interface
User processes access the log driver with an open () call to /dev/strlog. Each open to the device will
obtain a separate stream. After a process opens /dev/strlog, it indicates whether it is an error logger

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 197

strlog(7) strlog(7)

or trace logger. It does this by issuingan I_STR ioctl () system call with the appropriate value in the
ic_cmd field of the strioctl structure, and the appropriate data and control information in a
trace_ids structure:

struct trace_ids {
short ti_mid;
short ti_sid;
char ti_level;
short ti_flags;
};

The values for ic_cmd are:
I_ERRLOG Indicates an error logger. No trace_ids data is needed.

I_TRCLOG Indicates a trace logger. A data buffer consisting of an array of one or more trace_ids
structures must be included.

If any of the fields of the trace_ids structure contain a value of -1, /dev/strlog will accept what-
ever value it receives in that field. Otherwise, strlog only accepts messages only if the values of mid
and sid are the same as their counterparts in the trace_ids structure, and if the message’s level is
equal to or less than the level value in the trace_ids structure.

Once the logger process has sent the I_STR ioctl () call, the STREAMS log driver begins to send log
messages matching the restrictions to the logger process. The logger process obtains the log messages via
the getmsg() system call. The control part of the messages passed in this call includes a log_ctl
structure:

struct log ctl {
short mid;
short sid;

char level;
short flags;
long ltime;
long ttime;
int seq no;

};

The log_ctl structure indicates the mid, sid, and level time in ticks since the boot time that the mes-
sage was submitted, the corresponding time in seconds since January 1, 1970, and a sequence number. The
time in seconds since January 1, 1970 is provided so that the date and time of the message can be easily
computed. The time in ticks since boot time is provided so that the relative timing of log messages can be
determined.

A user process, other than an error or trace logger, can send a log message to strlog. The driver will
accept only the £lags and level fields of the log ctl structure in the control part of the message,
and a properly formatted data part of the message. The data part of the message is properly formatted if it
contains a null-terminated format string, followed by up to three arguments packed one word each after the
end of the string.

A different series of sequence numbers is provided for error and trace logging streams. These sequence
numbers are intended to help track the delivery of the messages. A gap in a sequence of numbers indicates
that the logger process did not successfully deliver them. This can happen if the logger process stops send-
ing messages for one reason or another (see strace(1M) and strerr(1M) command reference pages for more
information). The data part of messages contains text of the format string (null terminated), followed by up
to three arguments.

STREAMS-NetTL Link

198

Both STREAMS error logging and event tracing messages are mapped to NetTL logging messages, and are
delivered to NetTL. NetTL classifies messages into four log classes: DISASTER, ERROR, WARNING, and
INFORMATIVE. The NetTL log class is determined by the £lags according to the following rule:

If (flags & SL_ERROR) NetTL log class
then

if (flags & SL_FATAL) > DISASTER

if (flags & SL_WARN) ==== WARNING
if (flags & SL_NOTE) ==== INFORMATIVE
otherwise ==== ERROR

Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

strlog(7) strlog(7)

else
all messages ====> INFORMATIVE

As a default, only DISASTER and ERROR messages are logged. This setting can be altered by the nettl
command or the nettlconf command (see nett/(1M) and nettlconf(1M)).

The STREAMS subsystem ID used by NetTL is STREAMS.

The messages logged by NetTL facility can be formatted to a readable form by the netfmt command (see
netfmt(1M)). The netfmt accepts a filter configuration file, which can be used to filter on STREAMS
module ID and sub-ID. The filter configuration file syntax for STREAMS is the following:

STREAMS module_id sub_id
module_id and sub_id can be a decimal number or * as a wild card.
RETURN VALUE

Unless specified otherwise, upon successful completion, the strlog ioctl () commands return a value
of 0 (zero). Otherwise, a value of -1 is returned.

ERRORS
If any of the following conditions occurs, strlog driver's ioctl() command sets errno to the
corresponding value:

[ENXIO] The I_TRCLOG ioctl () call did not contain any trace_ids structures.

[ENXIO] The I_STR ioctl () call could not be recognized.

The driver does not return any errors for incorrectly formatted messages that user processes send.
EXAMPLES

The following examples illustrate some basic uses for the strlog interface.

This code example segment shows how a STREAMS module causes a message to be printed to the console:

strlog (TMUX,minor (mydev), 0, SL_CONSOLE | SL_FATAL,
"TMUX driver (minor:%d) suffers resource shortage.",
minor (mydev)) ;

This code example shows how a user process registers itself with the STREAMS log driver using the
ioctl() command, I_ERRLOG.

struct strioctl iocerr:
int logfd;

if ((logfd = open("/dev/strlog", O_RDWR)) == -1) {
printf ("Cannot open /dev/strlog\n");
exit(1);

}

iocerr.ic_cmd = I_ERRLOG;
iocerr.ic_timout = 0;
iocerr.ic_len = 0;
iocerr.ic_dp = NULL;
ioctl(logfd, I_STR, &iocerr);

This code example shows a user-level process sending a message to the strlog driver.

struct strbuf control, data;

struct log ctl log;

char *warning = "Fatal error for user level process";
int logfd;

if ((logfd = open("/dev/strlog", O_RDWR)) == -1) {
printf ("Cannot open /dev/strlog\n");
exit(1);

}

control.len = control.maxlen = sizeof (log);

HP-UX 11i Version 3: February 2007 -3- Hewlett-Packard Company 199

strlog(7)

control.buf

data.len
data.buf

lc.level
lc.flags

= (char *)&lc;

data.maxlen = strlen(warning);

warning;

2;
SL_FATAL | SL_CONSOLE;

putmsg(logfd, &control, &data, 0);

The following examples illustrate how to use the NetTL facility for the STREAMS. See nettl(1M),
netfmt(1M), nettlconf(1M) for the general NetTL usage. The STREAMS subsystem ID used by NetTL is

STREAMS.

strlog(7)

The netfmt accepts a filter configuration file as a command argument. The following filter configuration
file example is used to format the messages whose module ID is 1 and sub-ID is 100:

STREAMS

1 100

This filter configuration file example can be used to display all the messages whose module ID is 2 and all
the messages whose sub-ID is 101:

FILES

STREAMS 2 *

STREAMS * 101
/dev/strlog specifies the clone interface.
<sys/strlog.h> specifies the header file for streams logging.

<stropts.h>

SEE ALSO
netfmt(1M), nettl(1M), nettlconf(1M), strace(1M), strerr(1M), getmsg(2), ioctl(2), open(2), putmsg(2),
write(2), clone(7), streamio(7).

200

specifies the header file for STREAMS options and ioctl () commands.

Hewlett-Packard Company -4 -

HP-UX 11i Version 3: February 2007

sttyv6 (7) sttyv6 (7)

NAME
sttyve6: stty - terminal interface for Version 6/PWB compatibility

DESCRIPTION
These routines attempt to map the UNIX Time-Sharing System, Sixth Edition (Version 6), and PWB
stty () and gtty () calls into the current ioctls that perform the same functions. The mapping cannot
be perfect. The way the features are translated is described below. The reader should be familiar with
termio before studying this entry.

The following data structure is defined in the include file <sgtty.h>:

struct sgttyb {
char sg ispeed; /* input speed */
char sg ospeed; /* output speed */

char sg erase; /* erase character */
char sg kill; /* kill character */
int sg flags; /* mode flags */

}
The flags, as defined in sgtty.h, are:

HUPCL 01
XTABS 02
LCASE 04
ECHO 010
CRMOD 020
RAW 040
ODDP 0100
EVENP 0200
ANYP 0300

NLDELAY 001400
TBDELAY (002000
CRDELAY (030000
VTDELAY 040000
BSDELAY (0100000

CRO 0

CR1 010000
CR2 020000
CR3 030000
NLO 0

NL1 000400
NL2 001000
NL3 001400
TABO 0

TAB1 002000
NOAL 004000
FFO 0

FF1l 040000
BSO 0

BS1 0100000

When the stty command (ioct/ TIOCSETP) is executed, the flags in the old sgttyb structure are
mapped into their new equivalents in the termio structure. Then the TCSETA command is executed.

The following table shows the mapping between the old sgttyb flags and the current termio flags.
Note that flags contained in the termio structure that are not mentioned below are cleared.

HUPCL (if set) Sets the termio HUPCL flag.
HUPCL (if clear) Clears the termio HUPCL flag.
XTABS (if set) Sets the termio TAB3 flag.

XTABS (if clear) Clears the termio TABS3 flag.
TBDELAY (if set) Sets the termio TABI flag.

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 201

sttyv6 (7)

202

TBDELAY (if clear)
LCASE (if set)
LCASE (if clear)
ECHO (if set)
ECHO (if clear)
NOAL (if set)
NOAL (if clear)
CRMOD (if set)

CRMOD (if clear)

RAW (if set)

RAW (if clear)

ODDP (if set)

VTDELAY (if set)
VTDELAY (if clear)
BSDELAY (if set)
BSDELAY (if clear)

sttyv6 (7)

Clears the termio TABI flag.

Sets the termio IUCLC, OLCUC, and XCASE flags.
Clears the termio IUCLC, OLCUC, and XCASE flags.
Sets the termio ECHO flag.

Clears the termio ECHO flag.

Sets the termio ECHOK flag.

Clears the termio ECHOK flag.

Sets the termio ICRNL and ONLCR flags; also, if CR1 is set, the termio CRI1 flag
is set, and if CR2 is set, the termio ONOCR and CR2 flags are set.

sets the termio ONLRET flag; also, if NL1 is set, the termio CRI1 flag is set, and if
NL2 is set, the termio CR2 flag is set.

Sets the termio CS8 flag, and clears the termio ICRNL and IUCLC flags; also,
default values of 6 characters and 0.1 seconds are assigned to MIN and TIME, respec-
tively.

Sets the termio BRKINT, IGNPAR, ISTRIP, IXON, IXANY, OPOST, CS7,
PARENB, ICANON, and ISIG flags; also, the default values control-D and null are
assigned to the control characters EOF and EOL, respectively.

If EVENP is also set, clears the termio INPCK flag; otherwise, sets the termio
PARODD flag.

Sets the termio FFDLY flag.
Clears the termio FFDLY flag.
Sets the termio BSDLY flag.
Clears the termio BSDLY flag.

In addition, the termio CREAD bit is set, and, if the baud rate is 110, the CSTOPB bit is set.

When using TIOCSETP, the ispeed entry in the sgttyb structure is mapped into the appropriate speed
in the termio CBAUD field. The erase and kill sgttyb entries are mapped into the termio erase and

kill characters.

When the gtty (loct! TIOCGETP) command is executed, the termio TCGETA command is first exe-
cuted. The resulting termio structure is then mapped into the sgttyb structure, which is then

returned to the user.

The following table shows how the termio flags are mapped into the old sgttyb structure. Note that all
flags contained in the sgttyb structure that are not mentioned below are cleared.

HUPCL (if set)
HUPCL (if clear)
ICANON (if set)
ICANON (if clear)
XCASE (if set)
XCASE (if clear)
ECHO (if set)
ECHO (f clear)
ECHOK (if set)
ECHOK (if clear)
PARODD (if set)
PARODD (if clear)
INPCK (f set)

Hewlett-Packard Company

Sets the sgttyb HUPCL flag.
Clears the sgttyb HUPCL flag.
Sets the sgttyb RAW flag.
Clears the sgttyb RAW flag.
Sets the sgttyb LCASE flag.
Clears the sgttyb LCASE flag.
Sets the sgttyb ECHO flag.
Clears the sgttyb ECHO flag.
Sets the sgttyb NOAL flag.
Clears the sgttyb NOAL flag.
Sets the sgttyb ODDP flag.
Clears the sgttyb ODDP flag.
Sets the sgttyb EVENP flag.

-2- HP-UX 11i Version 3: February 2007

sttyv6 (7) sttyv6 (7)

PARODD, INPCK (if both clear)
Sets the sgttyb ODDP and EVENP flags.

ONLCR (Gf set) Sets the sgttyb CRMOD flag; also, if CR1 is set, the sgttyb CRI1 flag is set, and if
CR2 is set, the sgttyb CR2 flag is set.

ONLCR (f clear) If CR1 is set, the sgttyb NL1 flag is set, and if CR2 is set, the sgttyb NL2 flag is

set.
TAB3 (if set) Sets the sgttyb XTABS flag.
TABS3 (if clear) Clears the sgttyb XTABS flag.
TABI (if set) Sets the sgttyb TBDELAY flag.
TABLI (if clear) Clears the sgttyb TBDELAY flag.
FFDLY (if set) Sets the sgttyb VIDELAY flag.
FFDLY (if clear) Clears the sgttyb VITDELAY flag.
BSDLY (if set) Sets the sgttyb BSDELAY flag.

BSDLY (if clear) Clears the sgttyb BSDELAY flag.

When using TIOCGETP, the termio CBAUD field is mapped into the ispeed and ospeed entries of the
sgttyb structure. Also, the termio erase and kill characters are mapped into the erase and kill
sgttyb entries.

Note that, since there is not a one-to-one mapping between the sgttyb and termio structures, unex-
pected results may occur when using the older TIOCSETP and TIOCGETP calls. Thus, the TIOCSETP
and TIOCGETP calls should be replaced in all future code by the current equivalents, TCSETA and
TCGETA, respectively.

WARNINGS
These facilities are included to aid in conversion of old programs, and should not be used in new code. Use
the interface described in termio. Note that these conversions do not work for programs ported from
UNIX Time-Sharing System, Seventh Edition (Version 7), because some V7 flags are defined differently.

SEE ALSO
stty(2), termio(7).

HP-UX 11i Version 3: February 2007 -3- Hewlett-Packard Company 203

TCP(7P) TCP(7P)

NAME

TCP - Internet Transmission Control Protocol

SYNOPSIS

#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>

s = socket (AF_INET, SOCK_STREAM, O0);
s = socket (AF_INET6, SOCK_STREAM, 0);
DESCRIPTION

The TCP protocol provides reliable, flow-controlled, two-way transmission of data. It is a byte-stream pro-
tocol used to support the SOCK_STREAM socket type. TCP constructs virtual circuits between peer enti-
ties. A virtual circuit consists of remote Internet addresses, remote ports, local Internet addresses and
local ports. IP uses the Internet addresses to direct messages between hosts, and the port numbers to iden-
tify a TCP entity at a particular host.

Sockets using TCP are either active or passive. connect () creates active sockets, which initiate con-
nections to passive sockets (see connect(2)). To create a passive socket, use the 1listen() system call
after binding the socket with the bind () system call (see listen(2) and bind(2)). Only passive sockets can
use the accept () call to accept incoming connections (see accept(2)).

Passive sockets can underspecify their location to match incoming connection requests from multiple net-
works. This technique, called wildcard addressing, allows a single server to provide service to clients on
multiple networks. To create a socket that listens on all networks, the Internet address INADDR_ANY
must be bound for AF_INET family and in6addr_any for AF_INET6 family. The TCP port can still be
specified even if wildcard addressing is being used. If the port is specified as zero, the system assigns a
port.

Once accept () has a rendezvous with a connect request, a virtual circuit is established between peer
entities. bind () supplies the local port and local Internet address and accept () gathers the remote
port and remote Internet address from the peer requesting the connection.

Options

204

The system supports the following socket options: TCP_MAXSEG, TCP_NODELAY,
TCP_ABORT_THRESHOLD, TCP_CONN_ABORT_THRESHOLD, TCP_KEEPCNT, TCP_KEEPIDLE,
TCP_KEEPINTVL, TCP_TSOPTENA, and TCP_SACKENA (defined in the include file
<netinet/tcp.h>). The TCP_MAXSEG option can only be used with getsockopt (), while
TCP_NODELAY, TCP_ABORT_THRESHOLD, TCP_CONN_ABORT_THRESHOLD TCP_KEEPCNT,
TCP_KEEPIDLE, TCP_KEEPINTVL, TCP_TSOPTENA, and TCP_SACKENA can be set with set-
sockopt () and tested with getsockopt () (see getsockopt(2)). These options require level to be set to
IPPROTO_TCP in the getsockopt/setsockopt call.

TCP_MAXSEG (non-boolean option) lets an application to receive the current segment size of the TCP
SOCK_STREAM socket. The current segment size will be returned in optval.

TCP_NODELAY
(boolean option) causes small amounts of output to be sent immediately.

TCP_ABORT_THRESHOLD
(non-boolean option) sets the second threshold timer for the connections that are in
ESTABLISHED state. The option value is the threshold time in milliseconds.

When it must retransmit packets because a timer has expired, TCP first compares the
total time it has waited against the two thresholds, as described in RFC 1122, 4.2.3.5.
If it has waited longer than the second threshold (R2), TCP terminates the connection.
The default value for this option is the current value of the ndd tunable parameter
tcp_1ip_abort_interval. Refer to ndd(1M) online help for details on the
tcp_ip_abort_interval default value.

TCP_CONN_ABORT_THRESHOLD
(non-boolean option) sets the second threshold timer during connection establishment.
The option value is the threshold time in milliseconds.

This option is the same as TCP_ABORT_THRESHOLD, except that this value is used
during connection establishment. When it must retransmit the SYN packet because a

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

TCP(7P)

TCP(7P)

timer has expired, TCP first compares the total time it has waited against the two
thresholds. If it has waited longer than the second threshold, TCP terminates the
connection. The default value for this option is the current value of the ndd tunable
tcp_1ip_abort_cinterval. See ndd(1M) online help for details on the
tcp_ip_abort_cinterval default value.

TCP_KEEPCNT

(non-boolean option) When the SO_KEEPALIVE option is enabled, TCP probes a
connection that has been idle for some amount of time. If the remote system does not
respond to a keepalive probe, TCP retransmits the probe a certain number of times
before a connection is considered to be broken. The TCP_KEEPCNT option can be
used to affect this value for a given socket, and specifies the maximum number of
keepalive probes to be sent. This option takes an int value, with a range of 1 to
32767.

TCP_KEEPIDLE

(non-boolean option) When the SO_KEEPALIVE option is enabled, TCP probes a
connection that has been idle for some amount of time. The default value for this idle
period is 2 hours. The TCP_KEEPIDLE option can be used to affect this value for a
given socket, and specifies the number of seconds of idle time between keepalive
probes. This option takes an int value, with a range of 1 to 32767.

TCP_KEEPINIT

(non-boolean option) If a TCP connection cannot be established within some amount
of time, TCP will time out the connect attempt. The default value for this initial con-
nection establishment timeout is 75 seconds. The TCP_KEEPINIT option can be
used to affect this initial timeout period for a given socket, and specifies the number of
seconds to wait before the connect attempt is timed out. For passive connections, the
TCP_KEEPINIT option value is inherited from the listening socket. This option
takes an int value, with a range of 1 to 32767.

TCP_KEEPINTVL

(non-boolean option) When the SO_KEEPALIVE option is enabled, TCP probes a
connection that has been idle for some amount of time. If the remote system does not
respond to a keepalive probe, TCP retransmits the probe after some amount of time.
The default value for this retransmit interval is 75 seconds. The TCP_KEEPINTVL
option can be used to affect this value for a given socket, and specifies the number of
seconds to wait before retransmitting a keepalive probe. This option takes an int
value, with a range of 1 to 32767.

TCP_TSOPTENA

TCP_PAWS

(boolean option) When this option is enabled, the sender places a timestamp in each
data segment. The receiver, if configured to accept them, sends these timestamps
back in ACK segments. This provides the sender with a mechanism with which to
measure round-trip time. TCP provides a Boolean option, TCP_TSOPTENA (from the
<netinet/tcp.h> header file) to enable or disable this option. This option takes
an int value. When this option is enabled, the TCP_PAWS option is also enabled.

(boolean option) When the PAWS (Protect Against Wrapped Sequence numbers) option
is enabled, the receiver rejects any old duplicate segments that are received. This
option is used on synchronized TCP connections only. TCP provides a Boolean option,
TCP_PAWS (from the <netinet/tcp.h> header file) to enable or disable this
option. This option takes an int value. This option automatically turns the
TCP_TSOPTENA option on.

TCP_SACKENA

(boolean option) When the Selective Acknowledgment (SACK) option is enabled, the
data receiver can inform the sender about all segments that have arrived successfully.
In this way, the sender need retransmit only those segments that have actually been
lost. This option is useful in cases where multiple segments are dropped. TCP pro-
vides a Boolean option, TCP_SACKENA (from the <netinet/tcp.h> header file)
to enable or disable this option. This option takes an int value.

If TCP_NODELAY is set, the system sends small amounts of output immediately rather than gathering
them into a single packet after an acknowledgement is received. If TCP_NODELAY is not set, the system
sends data when it is presented, if there is no outstanding unacknowledged data. If there is outstanding

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 205

TCP(7P) TCP(7P)

unacknowledged data, the system gathers small amounts of data to be sent in a single packet once an ack-
nowledgement is received. For clients such as window managers that send a stream of mouse events which
receive no replies, this packetization may cause significant delays. The TCP_NODELAY option can be used
to avoid this situation. Note, however, that setting the TCP_NODELAY option may result in a large
number of small packets being sent over the network.

By default, TCP_NODELAY is not set when a socket is created.

The option level to use for accessing the TCP option with the setsockopt () or getsockopt () callsis
the protocol number for TCP which is available from getprotobyname () (see getprotoent (3N)).

If the SO_KEEPALIVE socket option is enabled on an established TCP connection and the connection has
been idle for two hours, TCP sends a packet to the remote socket, expecting the remote TCP to ack-
nowledge that the connection is still active. If the remote TCP does not respond in a timely manner, TCP
continues to send keepalive packets according to its normal retransmission algorithm. If the remote TCP
does not respond within a particular time limit, TCP drops the connection. The next socket system call (for
example, recv ()) returns an error, and errno is set to [ETIMEDOUT]. See getsockopt(2) for details on
enabling SO_KEEPALIVE.

The default send and receives buffer size is 32768 bytes (see WARNINGS below). The send and receive
buffer sizes for TCP stream sockets can be altered by using the SO_SNDBUF and SO_RCVBUF options of
the setsockopt () system call or the XTI_SNDBUF and XTI_RCVBUF options of the t_optmgmt ()
system call. Refer to getsockopt(2) or t_optmgmt(3) for details.

The maximum transmit buffer size for a TCP stream socket is 2147483647 bytes. The maximum receive
buffer size for a TCP stream socket is 1073725440 bytes. These maximum values can be lowered using the
ndd variables tcp_xmit_hiwater max and tcp_recv_hiwater_max.

ERRORS

One of the following errors may be returned in errno if a socket operation fails. For a more detailed list
of errors, see the man pages for specific system calls.

[EISCONN] The socket is already connected.
[ENOBUFS] No buffer space is available for an internal data structure.
[ETIMEDOUT]

Connection dropped due to excessive retransmissions.

[ECONNRESET]
The connection was forcibly closed by the peer socket.

[ECONNREFUSED]
Remote peer actively refuses connection establishment (usually because no process is
listening to the port).

[EADDRINUSE]
The specified address is already in use.

[EADDRNOTAVAIL]
The specified address is not available on this machine.

WARNINGS

The default socket buffer size might increase without notice in a future release or patch. Therefore, if an
application calls setsockopt () with SO_RCVBUF, it should do so before calling 1isten(), or it
should first call getsockopt () with SO_RCVBUF and ensure that the intended new receive buffer size
is not less than the current buffer size. These programming conventions are consistent with TCP protocol
restrictions against reducing the TCP receive window after a connection has been established.

AUTHOR

SEE ALSO

206

The socket interfaces to TCP were developed by the University of California, Berkeley.
ndd(1M), getsockopt(2), recv(2), send(2), socket(2), t_open(3), t_optmgmt(3), socket(7), inet(7F).
RFC 793 Transmission Control Protocol

RFC 1122 Requirements for Internet hosts

RFC 1323 TCP Extensions for High Performance

Hewlett-Packard Company -3- HP-UX 11i Version 3: February 2007

TCP(7P) TCP(7P)

RFC 1878 Variable Length Subnet Table for IPv4

RFC 2018 TCP Selective Acknowledgement Options

RFC 2414 Increasing TCP’s Initial Window

RFC 2582 NewReno Modifications to TCP’s Fast Recovery Algorithm

HP-UX 11i Version 3: February 2007 -4 - Hewlett-Packard Company 207

tels(7) tels(7)

NAME
tels, telm - STREAMS Telnet slave (pseudo-terminal) driver, STREAMS Telnet master driver (used by tel-
netd only), respectively

SYNOPSIS
#include <sys/termios.h>
#include <sys/strtio.h>

int open("/dev/pts/tN", O_RDWR);

DESCRIPTION
A Telnet pseudo-terminal consists of a tightly-coupled pair of character devices, called the master device
and slave device. The master and slave device drivers work together to provide a Telnet connection on the
server side where the master provides a connection to telnetd and the slave provides a terminal device
special file access for the Telnet application processes, as depicted below:
| Pseudo terminal functions|
Application <--> |-=—---—--mmmmmmmeem o | <--> telnetd
Processes | siave | Master |
| (tels) | (telm) |

The slave driver, tels with ptem (STREAMS pty emulation module) and 1dterm (STREAMS line dis-
cipline module) pushed on top (not shown for simplicity), provides a terminal interface as described in ter-
mio(7). Whereas devices that provide the terminal interface described in termio(7) have a hardware device
behind them; in contrast, the slave device has telnetd manipulating it through the master side of the
Telnet pseudo terminal.

There are no nodes in the file system for each individual master device. Rather, the master driver is set up
as a STREAMS clone(7) driver with its major device number set to the major for the clone driver and its
minor device number set to the major for the telm driver. The master driver is opened by telnetd using
the open(2) system call with /dev/telnetm as the device file parameter. The clone open finds the next
available minor number for the master device. The master device is available only if it and its correspond-
ing slave device are not already opened.

In order to use the STREAMS Telnet subsystem, a node for the master driver /dev/telnetm and N
number of Telnet slave devices must be installed.

The number of slave devices is set by a kernel tunable parameter called nstrtel. This can be modified
using SAM; its default and minimum value is 60. The value of nstrtel is the upper limit of the number
of telnet sessions that can be opened.

Multiple opens are allowed on the Telnet slave device.

The master and slave drivers pass all STREAMS messages to their adjacent drivers. When the connection
is closed from the Telnet client side, an M_HANGUP message is sent to the corresponding slave device
which will render that slave device unusable. The process on the slave side gets the errno ENXIO when
attempting a write(2) system call to the slave device file but it will be able to read any data remaining in
the slave stream. Finally, when all the data has been read, the read(2) system call will return 0, indicating
that the slave can no longer be used.

AUTHOR
tels () and telm() were developed by HP.
FILES
/dev/telnetm Streams Telnet master clone device
/dev/pts/tN Streams slave devices where N is the minor number of the slave device and 0 < N <
nstrtel.
SEE ALSO

insf(1M), open(2), ioctl(2), streamio(7), ldterm(7), telnetd(1M), ptem(7).

208 Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

termio(7) termio(7)

NAME

termio, termios - general terminal interface

DESCRIPTION
All HP-UX asynchronous communications ports use the same general interface, regardless of what
hardware is involved. Network connections such as rlogin (see rlogin(1) use the pseudo-terminal inter-
face (see pty (7).

This discussion centers around the common features of this interface.

Opening a Terminal File
When a terminal file is opened, it normally causes the process to wait until a connection is established. In
practice, users’ programs seldom open these files; they are opened by special programs such as getty (see
getty(1M)) and become a user’s standard input, standard output, and standard error files.

If both the O_NDELAY and O_NONBLOCK flags (see open(2)) are clear, an open blocks until the type of
modem connection requested (see modem (7)) is completed. If either the O_NDELAY or O_NONBLOCK
flag is set, an open succeeds and return immediately without waiting for the requested modem connection
to complete. The CLOCAL flag (see Control Modes) can also affect open(2).

Process Groups
A terminal can have a foreground process group associated with it. This foreground process group plays a
special role in handling signal-generating input characters.

Command interpreter processes can allocate the terminal to different jobs (process groups) by placing
related processes in a single process group and associating this process group with the terminal. A
terminal’s foreground process group can be set or examined by a process, assuming that the permission
requirements are met (see tcsetpgrp (3C) or tcgetpgrp(3C)). The terminal interface aids in this allocation by
restricting access to the terminal by processes that are not in the foreground process group.

A process group is considered orphaned when the parent of every member of the process group is either
itself a member of the process group or is not a member of the group’s session (see Sessions).

Sessions
A process that creates a session (see setsid(2) or setpgrp(2)) becomes a session leader. Every process group
belongs to exactly one session. A process is considered to be a member of the session of which its process
group is a member. A newly created process joins the session of its parent. A process can change its ses-
sion membership (see setpgid(2) or setpgrp(2)). Usually a session comprises all the processes (including
children) created as a result of a single login.

The Controlling Terminal

A terminal can belong to a process as its controlling terminal. Each process of a session that has a control-
ling terminal has the same controlling terminal. A terminal can be the controlling terminal for at most one
session. The controlling terminal for a session is allocated by the session leader. If a session leader has no
controlling terminal and opens a terminal device file that is not already associated with a session without
using the O_NOCTTY option (see open(2), the terminal becomes the controlling terminal of the session and
the controlling terminal’s foreground process group is set to the process group of the session leader. While
a controlling terminal is associated with a session, the session leader is said to be the controlling process of
the controlling terminal.

The controlling terminal is inherited by a child process during a fork() (see fork(2)). A process relinqu-
ishes its controlling terminal if it creates a new session with setsid() or setpgrp() (see setsid(2)
and setpgrp(2)), or when all file descriptors associated with the controlling terminal have been closed.

When the controlling process terminates, the controlling terminal is disassociated from the current session,
allowing it to be acquired by a new session leader. A SIGHUP signal is sent to all processes in the fore-
ground process group of the controlling terminal. Subsequent access to the terminal by other processes in
the earlier session can be denied (see Terminal Access Control) with attempts to access the terminal treated
as if a modem disconnect had been sensed.

Terminal Access Control
Read operations are allowed (see Input Processing and Reading Data) from processes in the foreground
process group of their controlling terminal. If a process is not in the foreground process group of its con-
trolling terminal, the process and all member’s of its process group are considered to be in a background
process group of this controlling terminal. All attempts by a process in a background process group to read

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 209

termio(7) termio(7)

from its controlling terminal will be denied. If denied and the reading process is ignoring or blocking the
SIGTTIN signal, or the process (on systems that implement vfork separately from fork) has made a call to
vfork(2) but has not yet made a call to exec(2), or the process group of the reading process is orphaned,
read () returns -1 with errno set to EIO and no signal is sent. In all other cases where the read is
denied, the process group of the reading process will be sent a SIGTTIN signal. The default action of the
SIGTTIN signalis to stop the process to which it is sent.

If the process is in the foreground process group of its controlling terminal, write operations are allowed
(see Writing Data and Output Processing). Attempts by a process in a background process group to write
to its controlling terminal are denied if TOSTOP (see Local Modes) is set, the process is not ignoring and
not blocking the SIGTTOU signal, and the process (on systems that implement vfork separately from fork)
has not made a call to vfork(2) without making a subsequent call to exec(2). If the write is denied and the
background process group is orphaned, the write () returns -1 with errno set to EIO. If the write is
denied and the background process group is not orphaned, the SIGTTOU signal is sent to the process
group of the writing process. The default action of the SIGTTOU signal is to stop the process to which it is
sent.

Certain calls that set terminal parameters are treated in the same fashion as write, except that TOSTOP is
ignored; that is, the effect is identical to that of terminal writes when TOSTOP is set.

Input Processing and Reading Data

210

A terminal device associated with a terminal device file can operate in full-duplex mode, so that data can
arrive, even while data output is occurring. Each terminal device file has an input queue associated with it
into which incoming data is stored by the system before being read by a process. The system imposes a
limit, MAX INPUT, on the number of characters that can be stored in the input queue. This limit is depen-
dent on the particular implementation, but is at least 256. When the input limit is reached, all saved char-
acters are discarded without notice.

All input is processed either in canonical mode or non-canonical mode (see Canonical Mode Input Process-
ing and Non-Canonical Mode Input Processing). Additionally, input characters are processed according to
the c_iflag (see Input Modes) and c_l£flag (see Local Modes) fields. For example, such processing
can include echoing, which in general means transmitting input characters immediately back to the termi-
nal when they are received from the terminal. This is useful for terminals that operate in full-duplex mode.

The manner in which data is provided to a process reading from a terminal device file depends on whether
the terminal device file is in canonical or non-canonical mode.

Another dependency is whether the O_NONBLOCK or O_NDELAY flag is set by either open(2) or fentl(2).
If the O_NONBLOCK and O_NDELAY flags are both clear, the read request is blocked until data is avail-
able or a signal is received. If either the O_NONBLOCK or O_NDELAY flag is set, the read request com-
pletes without blocking in one of three ways:

o If there is enough data available to satisfy the entire request, read () completes successfully, having
read all of the data requested, and returns the number of characters read.

e If there is not enough data available to satisfy the entire request, read () completes successfully,
having read as much data as possible, and returns the number of characters read.

e If there is no data available, read() returns -1, with errno set to EAGAIN when the
O_NONBLOCK flag is set. Otherwise, (flag O_NONBLOCK is clear and O_NDELAY is set) read ()
completes successfully, having read no data, and returns a count of 0.

The availability of data depends upon whether the input processing mode is canonical or non-canonical.
The following sections, Canonical Mode Input Processing and Non-Canonical Mode Input Processing,
describe each of these input processing modes.

Canonical Mode Input Processing (Erase and Kill Processing)

In canonical mode input processing, terminal input is processed in units of lines, where a line is delimited
by a new-line (NL) character, an end-of-file (EOF) character, or an end-of-line character (EOL) or (EOLZ2).
See Special Characters for more information on NL, EOF, EOL, and EOL2. This means that a read request
does not return until an entire line has been typed or a signal has been received. Also, no matter how
many characters are requested in the read call, at most one line will be returned. It is not, however, neces-
sary to read a whole line at once; any number of characters can be requested in a read, even one, without
losing information.

MAX_CANON is the limit on the number of characters in a line. This limit varies with each particular
implementation, but is at least 256.

Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

termio(7) termio(7)

When the MAX CANON limit is reached, all characters in the current undelimited line are discarded
without notice.

Erase and kill processing occur when any of three special characters, the ERASE, WERASE, or KILL char-
acters (see Special Characters), is received. This processing affects data in the input queue that has not yet
been delimited by a NL, EOF, EOL, or EOL2 character. This undelimited data makes up the current line.
The ERASE character deletes the last character in the current line, if one exists. The WERASE character
deletes the last word in the current line, if one exists. A word is defined as a series of non-blank characters
(tabs are equivalent to blanks). The KILL character deletes all data in the current line, if any, and option-
ally outputs a new-line (NL) character. These characters operate on a key-stroke basis, independent of any
backspacing or tabbing that may have preceded them. ERASE, WERASE, and KILL characters have no
effect if the current line is empty. ERASE, WERASE, and KILL characters are not placed in the input
queue.

Non-Canonical Mode Input Processing (MIN/TIME Interaction)

In non-canonical mode input processing, input characters are not assembled into lines, and erase and kill
processing does not occur. The values of the MIN and TIME members of the c_cc array (see termios
Structure) are used to determine how to process the characters received. MIN represents the minimum
number of characters that should be received before read () successfully returns. TIME is a timer of 0.10
second granularity that is used to timeout bursty and short term data transmissions. The four possible
cases for MIN and TIME and their interactions are described below.

Case A: MIN > 0, TIME > 0

In this case, TIME serves as an inter-character timer and is activated after the first character is received.
Since it is an inter-character timer, it is reset after each character is received. The interaction between
MIN and TIME is as follows:

e As soon as one character is received, the inter-character timer is started.

e If MIN characters are received before the inter-character timer expires (remember that the timer is
reset upon receipt of each character), the read is satisfied. If the timer expires before MIN characters
are received, the characters received to that point are returned to the user.

e Note that if TIME expires, at least one character will be returned because the timer would not have
been enabled unless a character was received. In this case (MIN > 0, TIME > 0) the read blocks until
the MIN and TIME mechanisms are activated by the receipt of the first character, or a signal is
received.

Case B: MIN > 0, TIME =0

In this case, since the value of TIME is zero, the timer plays no role and only MIN is significant. A pending
read is not satisfied until MIN characters are received after any previous read completes (that is, the pend-
ing read blocks until MIN characters are received), or a signal is received. A program that uses this case to
handle record-based terminal I/O can block indefinitely in the read operation.

Case C: MIN = 0, TIME > 0

In this case, since the value of MIN is zero, TIME no longer represents an inter-character timer. It now
serves as a read timer that is activated as soon as the read () function is processed. A read is satisfied as t
soon as a single character is received or the read timer expires. If the timer expires, no character is

returned. If the timer does not expire, the only way the read can be satisfied is by a character being

received. A read cannot block indefinitely waiting for a character because if no character is received within

TIME x 0.10 seconds after the read is initiated, read () returns a value of zero, having read no data.

Case D: MIN =0, TIME =0
The number of characters requested or the number of characters currently available, whichever is less, is

returned without waiting for more characters to be input. If no characters are available, read () returns
a value of zero, having read no data.

Some points to note about MIN and TIME:

1. In the above explanations, the interactions of MIN and TIME are not symmetric. For example, when
MIN > 0 and TIME = 0, TIME has no effect. However, in the opposite case where MIN = 0 and TIME
> 0, both MIN and TIME play a role in that MIN is satisfied with the receipt of a single character.

2. Also note that in case A (MIN > 0, TIME > 0), TIME represents an inter-character timer while in
case C (MIN = 0, TIME > 0), TIME represents a read timer.

HP-UX 11i Version 3: February 2007 -3- Hewlett-Packard Company 211

termio(7) termio(7)

These two points highlight the dual purpose of the MIN/TIME feature. Cases A and B (where MIN > 0)
exist to handle burst mode activity (such as file transfer programs) where a program would like to process
at least MIN characters at a time. In case A, the inter-character timer is activated by a user as a safety
measure while in case B it is turned off.

Cases C and D exist to handle single character timed transfers. These cases are readily adaptable to
screen-based applications that need to know if a character is present in the input queue before refreshing
the screen. In case C the read is timed, while in case D it is not.

Another important note is that MIN is always just a minimum. It does not denote a record length. For
example, if a program initiates a read of 20 characters when MIN is 10 and 25 characters are present, 20
characters will be returned to the user. Had the program requested all characters, all 25 characters would
be returned to the user.

Furthermore, if TIME is greater than zero and MIN is greater than MAX INPUT, the read will never ter-
minate as a result of MIN characters being received because all the saved characters are discarded without
notice when MAX INPUT is exceeded. If TIME is zero and MIN is greater than MAX INPUT, the read
will never terminate unless a signal is received.

Special Characters
Certain characters have special functions on input, output, or both. Unless specifically denied, each special
character can be changed or disabled. To disable a character, set its value to _POSIX_ VDISABLE (see
unistd(5)). These special functions and their default character values are:

INTR (Rubout or ASCII DEL) special character on input and is recognized if ISIG (see Local
Modes) is enabled. Generates a SIGINT signal which is sent to all processes in the
foreground process group for which the terminal is the controlling terminal. Normally,
each such process is forced to terminate, but arrangements can be made to either ignore
or hold the signal, or to receive a trap to an agreed-upon location; see signal(2) and sig-
nal(5). If ISIG is set, the INTR character is discarded when processed. If ISIG is
clear, the INTR character is processed as a normal data character, and no signal is sent.

QUIT (Control-\ or ASCII FS) special character on input. Recognized if ISIG (see Local
Modes) is set. The treatment of this character is identical to that of the INTR character
except that a SIGQUIT signal is generated and the processes that receive this signal
are not only terminated, but a core image file (called core) is created in the current
working directory if the implementation supports core files.

SWTCH (ASCII NUL) special character on input and is only used by the shell layers facility
shl(1). The shell layers facility is not part of the general terminal interface. No special
functions are performed by the general terminal interface when SWTCH characters are
encountered.

ERASE (#) special character on input and is recognized if ICANON (see Local Modes) is
enabled. Erases the preceding character. Does not erase beyond the start of a line, as
delimited by a NL, EOF, EOL, or EOL2 character. If ICANON is enabled, the ERASE
character is discarded when processed. If ICANON is not enabled, the ERASE charac-
ter is treated as a normal data character.

WERASE (disabled) special character on input and is recognized if ICANON (see Local Modes) is
enabled. Erases the preceding word. Does not erase beyond the start of a line, as del-
imited by a NL, EOF, EOL, or EOL2 character. If ICANON is enabled, the WERASE
character is discarded when processed. If ICANON is not enabled, the WERASE char-
acter is treated as a normal data character.

KILL (@) special character on input and is recognized if ICANON is enabled. KILL deletes
the entire line, as delimited by a NL, EOF, EOL, or EOL2 character. If ICANON is
enabled, the KILL character is discarded when processed. If ICANON is not enabled,
the KILL character is treated as a normal data character.

EOF (Control-D or ASCII EOT) special character on input and is recognized if ICANON is
enabled. EOF can be used to generate an end-of-file from a terminal. When received,
all the characters waiting to be read are immediately passed to the program without
waiting for a new-line, and the EOF is discarded. Thus, if there are no characters wait-
ing, (that is, the EOF occurred at the beginning of a line) a character count of zero is
returned from read (), representing an end-of-file indication. If ICANON is enabled,
the EOF character is discarded when processed. If ICANON is not enabled, the EOF

212 Hewlett-Packard Company -4 - HP-UX 11i Version 3: February 2007

termio(7)

NL

EOL

EOL2

SUSP

DSUSP

STOP

START

CR

LNEXT

termio(7)

character is treated as a normal data character.

(ASCII LF) special character on input and is recognized if TICANON flag is enabled. It is
the line delimiter (\n). If ICANON is not enabled, the NL character is treated as a nor-
mal data character.

(ASCII NUL) special character on input and is recognized if ICANON is enabled. EOL
is an additional line delimiter similar to NL. It is not normally used. If ICANON is not
enabled, the EOL character is treated as a normal data character.

(disabled) special character on input and is recognized if ICANON is enabled. EOL2 is
an additional line delimiter similar to EOL. It is not normally used. If ICANON is not
enabled, the EOL2 character is treated as a normal data character.

(disabled) special character recognized on input. If ISIG is enabled, receipt of the
SUSP character causes a SIGTSTP signal to be sent to all processes in the foreground
process group for which the terminal is the controlling terminal, and the SUSP charac-
ter is discarded when processed. If ISIG is not enabled, the SUSP character is treated
as a normal data character. Command interpreter processes typically set SUSP to
Control-Z.

(disabled) special character recognized on input. If ISIG is enabled, and a process in
the foreground process group attempts to read the DSUSP character, a SIGTSTP sig-
nal is sent to all processes in the foreground process group for which the terminal is the
controlling terminal, and the DSUSP character is then discarded. If ISIG is not
enabled, the DSUSP character is treated as a normal data character. Note that DSUSP
is similar to SUSP except that the signal is sent when a process in the foreground pro-
cess group attempts to read the DSUSP character, rather than when it is typed.

(Control-S or ASCII DC3) special character on both input and output. If IXON (output
control) is enabled, processing of the STOP character temporarily suspends output to
the terminal device. This is useful with CRT terminals to prevent output from disap-
pearing before it can be read. While output is suspended and IXON is enabled, STOP
characters are ignored and not read. If IXON is enabled, the STOP character is dis-
carded when processed. If IXON is not enabled, the STOP character is treated as a
normal data character. If IXOFF (input control) is enabled, the system sends a STOP
character to the terminal device when the number of unread characters in the input
queue is approaching a system specified limit. This is an attempt to prevent this buffer
from overflowing by telling the terminal device to stop sending data.

(Control-Q or ASCII DC1) special character on both input and output. If IXON (output
control) is enabled, processing of the START character resumes output that has been
suspended. While output is not suspended and IXON is enabled, START characters are
ignored and not read. If IXON is enabled, the START character is discarded when pro-
cessed. If IXON is not enabled, the START character is treated as a normal data char-
acter. If IXOFF (input control) is enabled, the system sends a START character to the
terminal device when the input queue has drained to a certain system-defined level.
This occurs when the input queue is no longer in danger of possibly overflowing.

(ASCII CR) special character on input is recognized if ICANON is enabled. When
ICANON and ICRNL are enabled and IGNCR is not enabled, this character is
translated into a NL, and has the same affect as the NL character. If ICANON and
IGNCR are enabled, the CR character is ignored. If ICANON is enabled and both
ICRNL and IGNCR are not enabled, the CR character is treated as a normal data char-
acter.

(disabled) special character recognized on input. Causes the special meaning of the next
character to be ignored. This works for all special characters specified above. It allows
characters to be input that would otherwise be interpreted by the system for a special
function.

The special characters are assigned their default character values when the terminal port is opened. The
default values used are those specified by the System V Interface Definition, Third Edition (SVID3), except
for the WERASE (Control-W) and LNEXT (Control-V) characters which are set to _POSIX VDISABLE to
maintain binary compatibility with previous releases of HP-UX. The default character values assigned
when the port is opened can be changed for all ports on a system wide basis through the use of the stty
command (see stty(1)). The character values may also be changed for a specific port after it is opened using

HP-UX 11i Version 3: February 2007 -5- Hewlett-Packard Company 213

termio(7) termio(7)

the stty command. The NL and CR characters cannot be changed or disabled. The character values for
the remaining special characters can be changed or disabled to suit individual tastes.

If ICANON is set (see Local Modes), the ERASE, KILL, and EOF characters can be escaped by a preceding
\ character, in which case no special function is performed. These characters, and the remaining special
characters, may also be escaped by preceding them with the LNEXT character (see LNEXT above).

If two or more special characters have the same value, the function performed when the character is pro-
cessed is undefined.

Modem Disconnect

If a modem disconnect is detected by the terminal interface for a controlling terminal, and if CLOCAL is
clear in the c_cflag field for the terminal (see Control Modes), the SIGHUP signal is sent to the con-
trolling process of the controlling terminal. Unless other arrangements have been made, this causes the
controlling process to terminate. Any subsequent read from the terminal device returns with an end-of-file
indication until the device is closed. Thus, processes that read a terminal file and test for end-of-file can
terminate appropriately after a disconnect. Any subsequent write () to the terminal device returns —1,
with errno set to EIO, until the device is closed.

Closing a Terminal Device File
The last process to close a terminal device file causes any output not already sent to the device to be sent to
the device even if output was suspended. This last close always blocks (even if non-blocking I/O has been
specified) until all output has been sent to the terminal device. Any input that has been received but not
read is discarded.

Writing Data and Output Processing
When characters are written, they are placed on the output queue. Characters on the output queue are
transmitted to the terminal as soon as previously-written characters are sent. These characters are pro-
cessed according to the c_oflag field (see Output Modes). Input characters are echoed by putting them
in the output queue as they arrive. If a process produces characters for output more rapidly than they can
be sent, the process is suspended when its output queue exceeds some limit. When the queue has drained
down to some threshold, the process is resumed.

termios Structure
Routines that need to control certain terminal I/O characteristics can do so by using the termios struc-
ture as defined in the header file <termios.h>. The structure is defined as follows:

#define NCCS 16
struct termios {
tcflag t c_iflag; /* input modes */
tcflag t c_oflag; /* output modes */
tcflag t c_cflag; /* control modes */
tcflag t c_1lflag; /* local modes */
tcflag t c_reserved; /* reserved for future use */
cc_t c_cc[NCCS]; /* control chars */
};

The special characters are defined by the array c¢_cc. The relative positions and default values for each
special character function are as follows:

INTR VINTR DEL
QUIT VQUIT Control- |
ERASE VERASE #

KILL VKILL @

EOF VEOF Control-D
EOL VEOL NUL
EOL2 VEOL2 disabled
MIN VMIN NUL
TIME VTIME Control-D
SUSP VSUSP disabled

214 Hewlett-Packard Company -6- HP-UX 11i Version 3: February 2007

termio(7) termio(7)

START VSTART Control-Q
STOP VSTOP Control-S
WERASE VWERASE disabled
LNEXT VLNEXT disabled
DSUSP VDSUSP disabled

termio Structure
The termio structure has been superseded by the termios structure and is provided for backward
compatibility with prior applications (see termio Caveats). The structure is defined in the header file
<termio.h> and is defined as follows:

#define NCC 8

struct termio ({
unsigned short c_iflag; /* input modes */
unsigned short c_oflag; /* output modes */
unsigned short c_cflag; /* control modes */
unsigned short c_1lflag; /* local modes */
char c_line; /* line discipline */
unsigned char c_cc[NCC]; /* control chars */

};

Modes

The next four sections describe the specific terminal characteristics that can be set using the termios and
termio structures (see termio Caveats). Any bits in the modes fields that are not explicitly defined below
are ignored. However, they should always be clear to prevent future compatibility problems.

Input Modes
The c_iflag field describes the basic terminal input control:

IGNBRK Ignore break condition.
BRKINT Signal interrupt on break.
IGNPAR Ignore characters with parity errors.
PARMRK Mark parity errors.
INPCK Enable input parity check.
ISTRIP Strip character.
INLCR Map NL to CR on input.
IGNCR Ignore CR.
ICRNL Map CR to NL on input.
IUCLC Map uppercase to lowercase on input.
IXON Enable start/stop output control.
IXANY Enable any character to restart output.
IXOFF Enable start/stop input control.

IMAXBEL Enable BEL on input line too long.

A break condition is defined as a sequence of zero-value bits that continues for more than the time to send
one character. For example, a character framing or parity error with data all zeros is interpreted as a sin-
gle break condition.

If IGNBRK is set, the break condition is ignored. Therefore the break condition cannot be read by any pro-
cess. If IGNBRK is clear and BRKINT is set, the break condition flushes both the input and output
queues and, if the terminal is the controlling terminal of a foreground process group, the break condition
generates a single SIGINT signal to that foreground process group. If neither IGNBRK nor BRKINT is
set, a break condition is read as a single \0 character, or if PARMRK is set, as the three-character
sequence \377, \0, \0.

If IGNPAR is set, characters with other framing and parity errors (other than break) are ignored.

If PARMRK is set, and IGNPAR is clear, a character with a framing or parity error (other than break) is
read as the three-character sequence: \377, \0, X, where X is the data of the character received in error.
To avoid ambiguity in this case, if ISTRIP is clear, a valid character of \377 is read as \377, \377. If
both PARMRK and IGNPAR are clear, a framing or parity error (other than break) is read as the character
\O.

If INPCK is set, input parity checking is enabled. If INPCK is clear, input parity checking is disabled.
Whether input parity checking is enabled or disabled is independent of whether parity detection is enabled
or disabled (see Control Modes). If PARENB is set (see Control Modes) and INPCK is clear, parity

HP-UX 11i Version 3: February 2007 -7- Hewlett-Packard Company 215

termio(7) termio(7)

216

generation is enabled but input parity checking is disabled; the hardware to which the terminal is con-
nected will recognize the parity bit, but the terminal special file will not check whether this bit is set
correctly or not.

The following table shows the interrelationship between the flags IGNBRK, BRKINT, IGNPAR, and
PARMRK. The column marked Input gives various types of input characters received, indicated as follows:

0 NUL character (\0)

C Character other than NUL
P Parity error detected

F Framing error detected

Items enclosed in brackets indicate one or more of the conditions are true.

If the INPCK flag is clear, characters received with parity errors are not processed according to this table,
but instead, as if no parity error had occurred. Under the flag columns, Set indicates the flag is set,
Clear indicates the flag is not set, and X indicates the flag may be set or clear. The column labeled
Read shows the results that will be passed to the application code. A — indicates that no character or con-
dition is passed to the application code. The value SIGINT indicates that no character is returned, but
that the SIGINT signalis sent to the foreground process group of the controlling terminal.

Input IGNBRK BRKINT IGNPAR PARMRK Read
O[PF] Set X X X —
O[PF] Clear Set X X SIGINT
0[PF] Clear Clear X Set N7 N0\
0[PF] Clear Clear X Clear O’
C[PF] X X Set X —
C[PF] X X Clear Set N\37T7T\0,C
C[PF] X X Clear Clear N\’
\377 X X X Set N7 \3TT

If ISTRIP is set, valid input characters are first stripped to 7-bits, otherwise all 8-bits are processed.

If INLCR is set, a received NL character is translated into a CR character. If IGNCR is set, a received
CR character is ignored (not read). If IGNCR is clear and ICRNL is set, a received CR character is
translated into a NL character.

If TUCLC is set, a received uppercase alphabetic character is translated into the corresponding lowercase
character.

If IXON is set, start/stop output control is enabled. A received STOP character suspends output and a
received START character restarts output. If IXANY and IXON are set, any input character without a
framing or parity error restarts output that has been suspended. When these three flags are set, output
suspended, and an input character received with a framing or parity error, output resumes if processing it
results in data being read. When IXON is set, START and STOP characters are not read, but merely per-
form flow control functions. When IXON is clear, the START and STOP characters are read.

If IXOFF is set, start/stop input control is enabled. The system transmits a STOP character when the
number of characters in the input queue exceeds a system defined value (high water mark). This is
intended to cause the terminal device to stop transmitting data in order to prevent the number of charac-
ters in the input queue from exceeding MAX INPUT. When enough characters have been read from the
input queue that the number of characters remaining is less than another system defined value (low water
mark), the system transmits a START character which is intended to cause the terminal device to resume
transmitting data (without risk of overflowing the input queue). In order to avoid potential deadlock,
IXOFF is ignored in canonical mode whenever there is no line delimiter in the input buffer. In this case,
the STOP character is not sent at the high water mark, but will be transmitted later if a delimiter is
received. If all complete lines are read from the input queue leaving only a partial line with no line delim-
iter, the START character is sent, even if the number of characters is still greater than the low water mark.
When ICANON is set and the input stream contains more characters between line delimiters than the high
water mark allows, there is no guarantee that IXOFF can prevent buffer overflow and data loss, because
the STOP character may not be sent in time, if at all.

If IMAXBEL is set, the ASCII BEL character is echoed if the input queue overflows. Further input is not
stored, but any input present in the input queue is not discarded. If IMAXBEL is clear, no ASCII BEL
character is echoed, and the input already present in the input queue is discarded when the input queue
overflows.

Hewlett-Packard Company -8- HP-UX 11i Version 3: February 2007

termio(7) termio(7)

The initial input control value is all bits clear.

Output Modes
The c_oflag field specifies the system treatment of output:

OPOST Postprocess output.
OLCUC Map lowercase to uppercase on output.
ONLCR Map NL to CR-NL on output.
OCRNL Map CR to NL on output.
ONOCR No CR output at column 0.
ONLRET NL performs CR function.
OFILL Use fill characters for delay.
OFDEL Fill is DEL, else NUL.
NLDLY Select new-line delays:
NLO No delay
NL1 Delay type 1
CRDLY Select carriage-return delays:
CRO No delay
CR1 Delay type 1
CR2 Delay type 2
CR3 Delay type 3
TABDLY Select horizontal-tab delays:
TABO No delay
TAB1 Delay type 1
TAB2 Delay type 2
TAB3 Expand tabs to spaces.
XTABS Expand tabs to spaces.
BSDLY Select backspace delays:
BSO No delay
BS1 Delay type 1
VTDLY Select vertical-tab delays:
VvTO0 No delay
VTl Delay type 1
FFDLY Select form-feed delays:
FFO No delay
FF1 Delay type 1

If OPOST is set, output characters are post-processed as indicated by the remaining flags; otherwise char-
acters are transmitted without change.

If OLCUC is set, a lowercase alphabetic character is transmitted as the corresponding uppercase character.
This function is often used in conjunction with TUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If OCRNL is set, the CR
character is transmitted as the NL character. If ONOCR is set, no CR character is transmitted when at
column O (first position). If ONLRET is set, the NL character is assumed to do the carriage-return func-
tion; the column pointer will be set to 0, and the delays specified for CR will be used. If ONLRET is clear,
the NL character is assumed to perform only the line-feed function; the delays specified for NL are used
and the column pointer remains unchanged. For all of these cases, the column pointer is always set to 0 if
the CR character is actually transmitted.

The delay bits specify how long transmission stops to allow for mechanical or other movement when certain
characters are sent to the terminal. The values of NLLO, CRO, TABO, BSO, VTO0, and FFO indicate no delay.
If OFILL is set, fill characters are transmitted for delay instead of a timed delay. This is useful for high
baud rate terminals, that need only a minimal delay. If OFDEL is set, the fill character is DEL; otherwise
NUL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

New-line delay lasts about 0.10 seconds. If ONLRET is set, carriage-return delays are used instead of the
new-line delays. If OFILL is set, two fill characters are transmitted.

Carriage-return delay type 1 depends on the current column position; type 2 is about 0.10 seconds; type 3
about 0.15 seconds. If OFILL is set, delay type 1 transmits two fill characters; type 2, four fill characters.

Horizontal-tab delay type 1 is depends on the current column position. Type 2 is about 0.10 seconds; type 3
specifies that tabs are to be expanded into spaces. If OFILL is set, two fill characters are transmitted for

HP-UX 11i Version 3: February 2007 -9- Hewlett-Packard Company 217

termio(7) termio(7)

any delay.
Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character is transmitted.
The actual delays depend on line speed and system load.

The initial output control value is all bits clear.

Control Modes

218

The c_c£lag field describes the hardware control of the terminal:
CBAUD Baud rate: CSIZE Character size:

BO Hang up CS5 5 bits

B50 50 baud CS6 6 bits

B75 75 baud CS7 7 bits

B110 110 baud CS8 8 bits

B134 134.5 baud

B150 150 baud CSTOPB Send two stop bits, else one.
B200 200 baud CREAD Enable receiver.

B300 300 baud PARENB Parity enable.

B600 600 baud PARODD Odd parity, else even.

B900 900 baud HUPCL Hang up on last close.

B1200 1200 baud CLOCAL Local line, else dial-up.
B1800 1800 baud LOBLK Reserved for use by shi(1).
B2400 2400 baud

B3600 3600 baud

B4800 4800 baud

B7200 7200 baud

B9600 9600 baud

B19200 19200 baud

B38400 38400 baud

EXTA External A

EXTB External B

The CBAUD bits specify the baud rate. The zero baud rate, B0, is used to hang up the connection. If BO
is specified, the modem control lines (see modem (7)) cease to be asserted. Normally, this disconnects the
line. For any particular hardware, impossible speed changes are ignored. CBAUD is provided for use with
the termio structure. When the termios structure is used, several routines are available for setting
and getting the input and output baud rates (see termios Structure Related Functions).

The CSIZE bits specify the character size in bits for both transmission and reception. This size does not
include the parity bit, if any. If CSTOPB is set, two stop bits are used; otherwise one stop bit. For exam-
ple, at 110 baud, many devices require two stop bits.

If PARENB is set, parity generation is enabled (a parity bit is added to each output character). Further-
more, parity detection is enabled (incoming characters are checked for the correct parity). If PARENB is
set, PARODD specifies odd parity if set; otherwise even parity is used. If PARENB is clear, both parity
generation and parity checking are disabled.

If CREAD is set, the receiver is enabled. Otherwise no characters can be received.

The specific effects of the HUPCL and CLOCAL bits depend on the mode and type of the modem control in
effect. See modem (7) for the details.

If HUPCL is set, the modem control lines for the port are lowered (disconnected) when the last process
using the open port closes it or terminates.

If CLOCAL is set, a connection does not depend on the state of the modem status lines. If CLOCAL is
clear, the modem status lines are monitored.

Under normal circumstances, a call to read() waits for a modem connection to complete. However, if
either the O_NDELAY or the O_NONBLOCK flags are set or CLOCAL is set, the open() returns
immediately without waiting for the connection. If CLOCAL is set, see Modem Disconnect for the effects of
read () and write () for those files for which the connection has not been established or has been lost.

LOBLK is used by the shell layers facility (see shl(1)). The shell layers facility is not part of the general ter-
minal interface, and the LOBLK bit is not examined by the general terminal interface.

Hewlett-Packard Company -10 - HP-UX 11i Version 3: February 2007

termio(7) termio(7)

The initial hardware control value after open is B300, CS8, CREAD, and HUPCL.

Local Modes

The c_1flag field is used to control terminal functions.
ISIG Enable signals.
ICANON Canonical input (erase and kill processing).
XCASE Canonical upper/lower presentation.
ECHO Enable echo.
ECHOE Echo ERASE as correcting backspace sequence.
ECHOK Echo NL after kill character.
ECHONL Echo NL.
NOFLSH Disable flush after interrupt, quit, or suspend.
TOSTOP Send SIGTTOU for background output.
ECHOCTL Echo control characters as "char, DEL as "?.
ECHOPRT Echo erased character as character is erased.
ECHOKE BS SP BS erase entire line on line kill.
FLUSHO Output is being flushed.
PENDIN Reprocess pending input at next read or input character.
IEXTEN Enable extended functions.

If ISIG is set, each input character is checked against the special control characters INTR, QUIT, SUSP,
and DSUSP (see Process Group Control IOCTL Commands). If an input character matches one of these
control characters, the function associated with that character is performed and the character is discarded.
If ISIG is clear, no checking is done and the character is treated as a normal data character. Thus these
special input functions are possible only if ISIG is set.

If ICANON is set, canonical processing is enabled. This enables the erase and kill edit functions, and the
assembly of input characters into lines delimited by NL, EOF, EOL, or EOL2. If ICANON is clear, read
requests are satisfied directly from the input queue. A read blocks until at least MIN characters have been
received or the timeout value TIME has expired between characters. (See Non-Canonical Mode Input Pro-
cessing (MIN/TIME Interaction)). This allows fast bursts of input to be read efficiently while still allowing
single-character input. The time value represents tenths of seconds.

If XCASE is set, and if ICANON is set, an uppercase letter is accepted on input by preceding it with a \
character, and is output preceded by a \ character. In this mode, the following escape sequences are gen-
erated on output and accepted on input:

To obtain: Use:

AY \l
| !
{ \(
} \)
\ \\

For example, A is input as \a, \n as \\n, and \N as \\\n. XCASE would normally be used in con-
junction with IUCLC and OLCUC for terminals that support only the first-sixty-four-character limited
character set. In this case, IUCLC processing is done before XCASE for input, and processing is done
after XCASE for output. Therefore typing A causes an a to be read because of TUCLC, and typing \A
causes an A to be read since TUCLC produces \a which is turned into A by the XCASE processing.

If ECHO is set, characters are echoed back to the terminal when received. If ECHO is clear, characters are
not echoed.

When ICANON is set, canonical processing is enabled. This enables the erase and kill edit functions, and
the assembly of input characters into lines delimited by NL, EOF, EOL and EOL2 as described in Canoni-
cal Mode Input Processing. Furthermore, the following echo functions are possible.

If ECHO and ECHOE are set, the ERASE and WERASE characters are echoed as the three-character
ASCII sequence BS SP BS, which clears the last character or word from the CRT screen.

If ECHO and ECHOPRT are set, and ECHOE is clear, the first ERASE and WERASE character in a
sequence echoes a backslash (\) followed by the characters being erased. Subsequent ERASE or WERASE
characters echo the characters being erased in reverse order. The next non-erase character causes a slash
(/) to be typed before it is echoed.

HP-UX 11i Version 3: February 2007 -11- Hewlett-Packard Company 219

termio(7) termio(7)

If ECHOKE and ECHO are set, the KILL character is echoed by erasing each character on the line from
the CRT screen using using the method selected by ECHOE and ECHOPRT.

If ECHOCTL and ECHO are set, all control characters (characters with codes between 0 and 37 octal) other
than ASCII TAB, ASCII NL, the START and STOP characters, ASCII CR, and ASCII BS are echoed as
“char, where char is the character given by adding 100 octal to the control character’s code.

If ECHOK is set and ECHOKE is not set, the NL character is echoed after the kill character to emphasize
that the line is being deleted.

If ECHONL is set, the NL character is echoed even if ECHO is clear. This is useful for terminals set to
local echo (that is, half duplex).

Unless escaped, the EOF character is not echoed. Because ASCII EOT is the default EOF character, this
prevents terminals that respond to EOT from hanging up.

If NOFLSH is set, the normal flush of the input and output queues associated with quit, interrupt, and
suspend characters is not done. However, NOFLSH does not affect the flushing of data upon receipt of a
break when BRKINT is set.

If the TOSTOP bit is set, an attempt by a process that is not in the foreground process group to write to its
controlling terminal will be denied when the process is not ignoring and not blocking the SIGTTOU signal.
If the write is denied and the process is a member of an orphaned process group write () returns —1 and
sets errno to EIO and no signal is sent. If the write is denied and the process is a not a member of an
orphaned process group, the SIGTTOU signal is sent to that process group.

If FLUSHO is set, data written to the terminal device is discarded. This bit is set by a program. A pro-
gram can cancel the FLUSHO effect by clearing FLUSHO.

If PENDIN is set, any input that has not been read is reprocessed and possibly re-echoed when the next
character arrives as input.

If ICANON is set, the ERASE, KILL, and EOF characters can be escaped by a preceding \ character, in
which case no special function is done.

IEXTEN must be set before the ECHOCTL, ECHOPRT, ECHOKE, FLUSHO, and PENDIN functions are
allowed. In addition, the special characters WERASE and LNEXT are allowed only if IEXTEN is set.
IEXTEN does not affect any other functions.

The initial local control value is all-bits-clear.

Special Control Characters
Special control characters are defined in the array c¢_cc. All of these special characters can be changed.
The subscript name and description for each element in both canonical and non-canonical mode are shown
in the following table.

Subscript Usage
Canonical Non-Canonical Description
VEOF EOF character
t VEOL EOL character
VEOL2 EOL2 character
VERASE ERASE character
VWERASE WERASE character
VINTR VINTR INTR character
VKILL KILL character
VMIN MIN value
VQUIT VQUIT QUIT character
VSTART VSTART START character
VSTOP VSTOP STOP character
VSUSP VSUSP SUSP character
VDSUSP VDSUSP DSUSP character
VTIME TIME value
VLNEXT VLNEXT LNEXT character

termios Structure-Related Functions
The following functions are provided when using the termios structure. Note that the effects on the termi-
nal device of the cfsetispeed() and cfsetospeed() functions do not become effective until the
tcsetattr () function is successfully called. Refer to the appropriate manual entries for details.

220 Hewlett-Packard Company -12 - HP-UX 11i Version 3: February 2007

termio(7) termio(7)

termios Structure Functions

Function Description
cfgetospeed () get output baud rate
cfgetispeed() get input baud rate
cfsetospeed() set output baud rate
cfsetispeed() set input baud rate
tcgetattr() get terminal state
tcsetattr() set terminal state

termio Structure-Related OCTL Commands
Several ioctl () system calls apply to terminal files that use the termio structure (see termio Struc-
ture). If a requested command is not recognized, the request returns —1 with errno set to [EINVAL].

ioctl () system calls that reference the termio structure have the form:

ioctl (fildes, command, arg)
struct termio *arg;

Commands using this form are:

TCGETA Get the parameters associated with the terminal and store them in the termio
structure referenced by arg. This command is allowed from a background process;
however, the information may be subsequently changed by a foreground process.

TCSETA Set the parameters associated with the terminal from the termio structure refer-
enced by arg. The change is immediate. If characters are being output when the
command is requested, results are undefined and the output may be garbled.

TCSETAW Wait for the output to drain before setting new parameters. This form should be used
when changing parameters that affect output.

TCSETAF Wait for the output to drain, then flush the input queue and set the new parameters.

termio Caveats
Only the first eight special control characters (see termios Structure) can be set or returned. The values of
indices VEOL and VEOF are the same as indices VTIME and VMIN respectively. Hence if ICANON is set,
VEOL or VTIME is the additional end-of-line character and VEOF or VMIN is the end-of-file character. If
ICANON is clear, VEOL or VTIME is the inter-character-timer value and VEOF or VMIN is the minimum
number of characters desired for reads.

Structure-Independent Functions
The following functions which are independent of both the termio and termios structures are pro-
vided for controlling terminals. Refer to the appropriate manual entries for details.

Structure-Independent Functions

Function Description

tcsendbreak () send a break

tcdrain() wait until output has drained
tcflush() flush input or output queue or both
tcflow() suspend or resume input or output
tcgetpgrp () get foreground process group id
tcsetpgrp () set foreground process group id
tcgetsid() get session id

System Asynchronous I/O IOCTL Commands
The following ioctl () system calls provide for system asynchronous I/O and have the form:

ioctl (fildes, command, arg)
int *arg;

Commands using this form are:

FIOSSAIOSTAT If the integer referenced by arg is non-zero, system asynchronous I/O is enabled;
that is, enable SIGIO to be sent to the process currently designated with
FIOSSAIOOWN (see below) whenever the terminal device file status changes
from "no read data available" to "read data available". If no process has been
designated with FIOSSAIOOWN, enable SIGIO to be sent to the first process
that opened the terminal device file.

HP-UX 11i Version 3: February 2007 -13 - Hewlett-Packard Company 221

termio(7)

termio(7)

If the designated process has exited, the SIGIO signal is not sent to any pro-
cess.

If the integer referenced by arg is 0, system asynchronous I/O is disabled.

The default on open of a terminal device file is that system asynchronous I/O is
disabled.

FIOGSAIOSTAT The integer referenced by arg is set to 1 if system asynchronous I/O is enabled.

Otherwise, the integer referenced by arg is set to 0.

FIOSSAIOOWN Set the process ID that will receive the SIGIO signals due to system asynchro-

nous I/O to the value of the integer referenced by arg. If no process can be found
corresponding to that specified by the integer referenced by arg, the call returns
-1 with errno set to [ESRCH]. A user with appropriate privileges can desig-
nate that any process receive the SIGIO signals. If the request is not made by
a user with appropriate privileges and the calling process does not either desig-
nate that itself or another process whose real, saved, or effective user ID
matches its real or effective user ID or the calling process does not designate a
process that is a descendant of the calling process to receive the SIGIO signals,
the call returns -1 with errno set to [EPERM]. See privileges(5) for more
information about privileged access on systems that support fine-grained
privileges.

If the designated process subsequently exits, the SIGIO signal is not sent to
any process.

The default on open of a terminal device file is that the process performing the
first open is set to receive the SIGIO signals.

FIOGSAIOOWN The integer referenced by arg is set to the process ID designated to receive

SIGIO signals.

Line Control IOCTL Commands
Several ioctl () system calls control input and output. Some of these calls have the form:

ioctl

(fildes, command, arg)
int arg;

Commands using this form are:

TCSBRK

TCXONC

TCFLSH

Wait for the output to drain. If arg is 0, send a break (zero bits for at least 0.25
seconds). The tcsendbreak() function performs the same function (see
tesendbreak(3C)).

Start/stop control. If arg is 0, suspend output; if 1, restart suspended output; if 2,
transmit a STOP character; if 3, transmit a START character. If any other value is
given for arg, the call returns —1 with errno set to [EINVAL]. The tcflow()
function performs the same functions (see tcflow (3C)).

If arg is 0, flush the input queue; if 1, flush the output queue; if 2, flush both the input
and output queues. If any other value is given for arg, the call returns -1 with
errno set to [EINVAL]. The tcflush() function performs the same functions
(see tcflush(3C)).

Sending a BREAK is accomplished by holding the data transmit line at a SPACE or
logical zero condition for at least 0.25 seconds. During this interval, data can be sent
to the device, but because of serial data interface limitations, the BREAK takes pre-
cedence over all data. Thus, all data sent to a device during a BREAK is lost. This
includes system-generated XON/XOFF characters used for input flow control. Note
also that a delay in transmission of the XOFF flow control character until after the
BREAK is terminated could still result in data overflow because the flow control char-
acter may not be sent soon enough.

Other calls have the form:

ioctl

(fildes, command, arg)
int *arg;

222 Hewlett-Packard Company -14 - HP-UX 11i Version 3: February 2007

termio(7) termio(7)

Commands using this form are:

FIONREAD Returns in the integer referenced by arg the number of characters immediately read-
able from the terminal device file. This command is allowed from a background pro-
cess; however, the data itself cannot be read from a background process.

Non-blocking I/O IOCTL Commands
Non-blocking I/O is easily provided via the O_NONBLOCK and O_NDELAY flags available in both open(2)
and fentl(2). The commands in this section are provided for backward compatibility with previously
developed applications. ioctl () system calls that provide a style of non-blocking I/O different from
O_NONBLOCK and O_NDELAY have the form:

ioctl (fildes, command, arg)
int *arg;

Commands using this form are:

FIOSNBIO If the integer referenced by arg is non-zero, FIOSNBIO-style non-blocking I/O is
enabled; that is, subsequent reads and writes to the terminal device file are handled in
a non-blocking manner (see below). If the integer referenced by arg is O,
FIOSNBIO-style non-blocking I/O is disabled.

For reads, FIOSNBIO-style non-blocking I/O prevents all read requests to that dev-
ice file from blocking, whether the requests succeed or fail. Such a read request com-
pletes in one of three ways:

o If there is enough data available to satisfy the entire request, the read completes
successfully, having read all of the data, and returns the number of characters
read;

e If there is not enough data available to satisfy the entire request, the read com-
pletes successfully, having read as much data as possible, and returns the
number of characters read,;

e If there is no data available, the read returns —1 with errno set to [EWOULD-
BLOCK].

For writes, FIOSNBIO-style non-blocking I/O prevents all write requests to that dev-
ice file from blocking, whether the requests succeed or fail. Such a write request com-
pletes in one of three ways:

e If there is enough space available in the system to buffer all the data, the write
completes successfully, having written out all of the data, and returns the
number of characters written;

e If there is not enough space in the buffer to write out the entire request, the
write completes successfully, having written as much data as possible, and
returns the number of characters written;

e If there is no space in the buffer, the write returns -1 with errno set to
[EWOULDBLOCK]I.

To prohibit FIOSNBIO-style non-blocking I/O from interfering with the
O_NONBLOCK and O_NDELAY flags (see open(2) and fentl(2)), the functionality of
O_NONBLOCK and O_NDELAY always supersedes the functionality of FIOSNBIO-
style non-blocking I/O. This means that if either O_NONBLOCK or O_NDELAY is
set, the driver performs read requests in accordance with the definition of
O_NDELAY or O_NONBLOCK. When both O_NONBLOCK and O_NDELAY are
clear, the definition of FIOSNBIO -style non-blocking I/O applies.

The default on open of a terminal device file is that FIOSNBIO-style non-blocking
I/0 is disabled.

FIOGSNBIO The integer referenced by arg is set to 1, if FIOSNBIO-style non-blocking I/O is
enabled. Otherwise, the integer referenced by arg is set to 0.

Process Group Control IOCTL Commands
The process group control features described here (except for setting and getting the delayed stop process
character) are easily implemented using the functions tcgetattr (), tcsetattr (), tcgetpgrp(),
tcsetpgrp (), and tcsetsid (), (see tcattribute(3C), tcgetpgrp(3C), tesetpgrp(3C), and tcgetsid(3C)

HP-UX 11i Version 3: February 2007 -15- Hewlett-Packard Company 223

termio(7) termio(7)

224

respectively).
The following structure, used with process group control, is defined in <bsdtty.h>:

struct ltchars ({
unsigned char t_suspc; /* stop process character*/
unsigned char t_dsuspc; /* delayed stop process character*/
unsigned char t_rprntc; /* reserved; must be ’_POSIX_ VDISABLE'*/
unsigned char t_flushc; /* reserved; must be ’_POSIX_ VDISABLE’*/
unsigned char t_werasc; /* reserved; must be ’_POSIX_ VDISABLE’*/
unsigned char t_lnextc; /* reserved; must be ’_POSIX_ VDISABLE’*/
};

The initial value for all these characters is _ POSIX_ VDISABLE, which causes them to be disabled. The
meaning for each character is as follows:

t_suspc Suspend the foreground process group. A suspend signal (SIGTSTP) is sent to all
processes in the foreground process group. Normally, each process is forced to stop,
but arrangements can be made to either ignore or block the signal, or to receive a trap
to an agreed-upon location; see signal(2) and signal(5). When enabled, the typical
value for this character is Control-Z or ASCII SUB. Setting or getting t_suspc is
equivalent to setting or getting the SUSP special control character.

t_dsuspc Same as t_suspe, except that the suspend signal (SIGTSTP) is sent when a process
reads the character, rather than when the character is typed. When enabled, the typ-
ical value for this character is Control-Y or ASCIT EM.

Attempts to set any of the reserved characters to a value other than _POSIX VDISABLE cause
ioctl() toreturn -1 with errno set to [EINVAL] with no change in value of the reserved character.

ioctl () system calls that use the above structure have the form:

ioctl (fildes, command, arg)
struct ltchars *arg;

Commands using this form are:

TIOCGLTC Get the process group control characters and store them in the ltchars structure refer-
enced by arg. This command is allowed from a background process. However, the
information may be subsequently changed by a foreground process.

TIOCSLTC Set the process group control characters from the structure referenced by arg.
Additional process group control ioctl () system calls have the form:
ioctl (fildes, command, arg)
unsigned int *arg;
Commands using this form are:
TIOCGPGRP Returns in the integer referenced by arg the foreground process group associated with
the terminal. This command is allowed from a background process. However, the

information may be subsequently changed by a foreground process. This feature is
easily implemented using the tcgetpgrp () function (see tcgetpgrp (3C)).

If the ioctl () call fails, it returns —1 and sets errno to one of the following
values:

[EBADF] fildes is not a valid file descriptor.

[ENOTTY] The file associated with fildes is not the controlling terminal, or the
calling process does not have a controlling terminal.

[EACCES] The file associated with fildes is the controlling terminal of the calling
process, however, there is no foreground process group defined for the
controlling terminal.

Note: [EACCES] may not be returned in future releases. Behavior in
cases where no foreground process group is defined for the controlling
terminal may change in future versions of the POSIX standard. Port-
able applications, therefore, should not rely on this error condition.

Hewlett-Packard Company -16 - HP-UX 11i Version 3: February 2007

termio(7)

TIOCSPGRP

TIOCGSID

TIOCLGET

TIOCLSET
TIOCLBIS

TIOCLBIC

termio(7)

Sets the foreground process group associated with the terminal to the value refer-
enced by arg. This feature is easily implemented using the tcsetpgrp () function
(see tcsetpgrp (30)).

If the ioctl () call fails, it returns —1 and sets errno to one of the following
values:

[EBADF] fildes is not a valid file descriptor.
[EINVAL] The process ID referenced by arg is not a supported value.

[ENOTTY] The calling process does not have a controlling terminal, or the fildes
is not the controlling terminal, or the controlling terminal is no longer
associated with the session of the calling process.

[EPERM] The process ID referenced by arg is a supported value but does not
match the process group ID of a process in the same session as the
calling process.

Returns in the integer referenced by arg the session ID of the terminal specified by
fildes. This feature is easily implemented using the tcgetsid() function (see
tegetsid(3C)).

If the ioctl () call fails, it returns —1 and sets errno to one of the following
values:

[EBADF] fildes is not a valid file descriptor.
[ENOTTY] The device associated with fildes is not a terminal.
[EACCES] The fildes is a terminal that is not allocated to a session.

Get the process group control mode word and store it in the int referenced by arg.
This command is allowed from a background process; however, the information may
be subsequently changed by a foreground process.

Set the process group control mode word to the value of the int referenced by arg.

Use the int referenced by arg as a mask of bits to set in the process group control
mode word.

Use the int referenced by arg as a mask of bits to clear in the process group control
mode word.

The following bit is defined in the process group control mode word:

LTOSTOP

Send SIGTTOU for background writes.

Setting or clearing LTOSTOP is equivalent to setting or clearing the TOSTOP flag (see Local Modes). If
LTOSTOP is set and a process is not in the foreground process group of its controlling terminal, a write by
the process to its controlling terminal may be denied (see Terminal Access Control).

Terminal Size IOCTL Commands
The following ioctl () system calls are used to get and set terminal size information for the terminal
referenced by fildes. These ioctl () system calls use the winsize structure to get and set the termi-
nal size information. The winsize structure, defined in <termios.h>, has the following members :

unsigned short ws_row; /* Rows, in characters */
unsigned short ws_col; /* Columns, in characters */
unsigned short ws_xpixel; /* Horizontal size, in pixels */
unsigned short ws_ypixel; /* Vertical size, in pixels */

The initial values for all elements of terminal size are zero. The values for terminal size are neither set nor
used by the general terminal interface, and have no effect on the functionality of the general terminal inter-
face. The values for terminal size are set and used only by applications that access them through the
terminal-size ioctl () system calls (see ioctl(2)).

ioctl () system calls that use the above structure have the form:

ioctl (fildes, command, arg)
struct winsize *arg;

HP-UX 11i Version 3: February 2007 -17- Hewlett-Packard Company 225

termio(7) termio(7)

Commands using this form are:

TIOCGWINSZ Get the terminal size values and store them in the winsize structure referenced by
arg. This command is allowed from a background process.

TIOCSWINSZ Set the terminal size values from the winsize structure referenced by arg. If any of
the new values differ from previous values, a SIGWINCH signal is sent to all
processes in the terminal’s foreground process group.

Console Output Redirection IOCTL Command
Output which would normally be sent to the system console may be redirected to any other TTY device or
pseudo-device in the system. The ioctl () system call used to control console output redirection has the
form:

ioctl (fildes, command, arg)
int arg;

The command using this form is:

TIOCCONS Redirect system console output. Any output that would normally be sent to the sys-
tem console, either through kernel printf requests, or through the console special file,
will instead be sent to the terminal referenced by fildes. The value of arg is ignored.
The user must have the DEVOPS privilege to execute this request. Otherwise, the
call returns -1 with errno set to [EPERM]. If the console output has not been
redirected to a different device by a later call to this command, it is redirected back to
the physical console device when fildes is closed.

WARNINGS
Various HP-UX implementations use non-serial interfaces that look like terminals (such as bit-mapped
graphics displays) or “smart cards” that cannot implement the exact capabilities described above. There-
fore, not all systems can exactly meet the standard stated above. Each implementation is required to state
any deviations from the standard as part of its system-specific documentation.

FIOSSAIOSTAT is similar to BSD 4.2 FIOASYNC, with the addition of provisions for security.

FIOGSAIOSTAT is of HP origin, complements FIOSSAIOSTAT, and allows saving and restoring
system asynchronous I/O TTY states for command interpreter processes.

FIOSSAIOOWN is similar to BSD 4.2 FIOSETOWN, with additional provisions for security.

FIOGSAIOOWN is similar to BSD FIOGETOWN. 4.2 Note also the difference that the BSD 4.2
version of this functionality used process groups, while the HP-UX version only
uses processes.

FIOSNBIO is the same as BSD FIONBIO, 4.2 except that it does not interfere with the
O_NDELAY or O_NONBLOCK open() and fcntl () flags.
FIOGNBIO is of HP origin, complements FIOSNBIO, and allows saving and restoring the

FIOSNBIO-style non-blocking I/O TTY state for command interpreter processes.

The general terminal interface uses a system resource known as a cblock to store data being transmitted
or received through a communications port. These cblocks are continuously used and freed for reuse as
data pass through the system. If too few cblocks are configured in the system, the cblock pool may be tem-
porarily or permanently exhausted, and data loss, system hangs, or reduced system performance can
result.

If cblock exhaustion is suspected, you can examine the system message buffer with dmesg (see dmesg(1M))
for messages indicating cblock exhaustion has occurred. Or, you can use adb (see adb(1)) if examining the
corefile of a dump. The message format is

WARNING: cblock exhaustion occurred n times

where n indicates the number of times the operating system has requested a cblock and none could be pro-
vided. If this message is observed, the kernel should be reconfigured to generate a larger number of
cblocks.

A cblock is 32 bytes in length. The default number of cblocks configured in the system is defined to be 8292.
This can be overridden by using the optional tunable system parameter nclist to specify the desired
number of cblocks to be used in the system.

226 Hewlett-Packard Company -18 - HP-UX 11i Version 3: February 2007

termio(7) termio(7)

SAM or kctune(1M) may be used to change the nclist value.

DEPENDENCIES
Workstations
Built-in serial ports on workstation machines support the following additional baud rate settings: 57600,
and 115200. An RS-232-t0-RS-422 converter may be required to achieve practical cable lengths at these
baud rates (because RS-232 only specifies up to 19200 baud).

Timed delays are not supported.

Built-in serial ports on workstation systems have RTS and CTS flow control capability, configurable receive
FIFO trigger levels, and a configurable transmit limit. RTS/CTS hardware handshaking can be enabled
through a bit in the device file minor number, through an ioctl () call (see termiox(7)), or through the
stty command (see stty(1)).

The receive FIFO trigger level is configurable through two bits in the device file minor number. The
receive FIFO trigger level is used to set the level at which a receive interrupt is generated to the system.
Setting a smaller value for the receive FIFO trigger level enables the system to react more quickly to
receipt of characters. However, using a smaller trigger level increases system overhead to process the
additional interrupts. A higher receive FIFO trigger level reduces the system interrupt overhead for heavy
inbound data traffic at the cost of less time for the system to read data from the hardware before receive
FIFOs are overrun. When using RTS flow control, the receive FIFO trigger level also determines the point
at which the hardware lowers RTS to protect the receive FIFO. Use of a higher receive FIFO trigger level
also reduces XOFF flow control responsiveness because, under light inbound data flow conditions, receipt of
the XOFF character by the system is slightly delayed. Choice of the appropriate receive FIFO trigger level
should be based upon how the serial port is to be used. For most applications a receive FIFO trigger level
of 8 (¢3,c2 = 10) is suggested.

Two bits in the device file minor number specify the transmit limit, the number of characters which are suc-
cessively loaded into the transmit FIFO. Setting a smaller transmit limit allows the transmitter to be more
responsive to flow control either from receipt of an XOFF character or de-assertion of CTS at the cost of
increased system interrupt overhead. Setting a larger transmit limit reduces interrupt overhead but is not
as responsive to flow control since the remainder of the transmit FIFO can be transmitted even after the
transmitter is flow controlled. When communicating with devices which have little tolerance for data
receipt after flow control, one must choose the transmit limit appropriately.

Device File Minor Number
Workstation device file minor numbers take the form:

0x/ICOHM
where:
I = Two hexadecimal digits (8 bits) to indicate the instance of the serial interface.
C = One hexadecimal digit (4 bits) for FIFO control. Values for each bit are as follows: -
Receive FIFO Trigger Level | Transmit Limit t
c3 c2 Level | ¢1 | ¢0 | Limit
0 0 1 0 0 1
0 1 4 0 1 4
1 0 8 1 0 8
1 1 14 1 1 12
H = One hexadecimal digit (4 bits) which controls diagnostic access and hardware flow control.
Bit Value
h3 Diagnostic telephony access
h2 Reserved
hl Reserved
ho Enables RTS/CTS hardware flow control
M = One hexadecimal digit (4 bits) to determine the port access type. Values for each bit are as
follows:

HP-UX 11i Version 3: February 2007 -19- Hewlett-Packard Company 227

termio(7) termio(7)

Bit Value
m3 TI/ALP

m2 0 = Simple protocol (U.S.),

1 = CCITT protocol (Europe)
mlmO | 00 = Direct

01 = Dial-out modem

10 = Dial-in modem

11 = Invalid

Servers

228

Timed output delays are not directly supported. If used, an appropriate number of fill characters (based on
the current baud rate) is output. The total time to output the fill characters is at least as long as the time
requested.

The system specified input flow control values are as follows: low water mark is 60, high water mark is
180, and maximum allowed input is 512.

The HP 98196A (formerly 27140A option 800) interface does not support the following hardware settings:
CBAUD B200,B38400, EXTA, EXTB.

The HP A1703-60003 and the HP 28639-60001 interfaces do not support baud rates above 9600. Further-
more, changing the following hardware settings on port 0 from the default (9600 baud, 8 bit characters, 1
stop bit, no parity) is not supported:

CBAUD, CSIZE, CSTOPB, PARENB, PARODD.
The HP J2094A interface does not support baud rates above 19200.

The HP J2094A supports RTS and CTS flow control. The RTS/CTS hardware handshaking can be enabled
through a bit in the device file minor number, through an ioctl () call (see termiox (7)), or through the
stty command (see stty(1)).

Device File Minor Number
Server device file minor numbers take the form:

0x/IPPHM
where:
I = Two hexadecimal digits (8 bits) to indicate the instance of the serial interface.
PP = Two hexadecimal digits (8 bits) to indicate the port number of this device on the serial
interface.
H = One hexadecimal digit (4 bits) which controls diagnostic access and hardware flow control
(HP J2094A only).
Bit Value
h3 Card diagnostic
h2 Port diagnostic
hl Reserved
ho Enables RTS/CTS hardware flow control
M = One hexadecimal digit (4 bits) for the port access type. Values for each bit are as follows:

Hewlett-Packard Company -20 - HP-UX 11i Version 3: February 2007

termio(7) termio(7)

Bit Value
m3 TI/ALP

m2 0 = Simple protocol (U.S.),

1 = CCITT protocol (Europe)
mlmO0 | 00 = Direct

01 = Dial-out modem

10 = Dial-in modem

11 = Invalid

AUTHOR
termios was developed by HP and the IEEE Computer Society.

termio was developed by HP, AT&T, and the University of California, Berkeley.

FILES
/dev/console
/dev/cua*
/dev/cul*
/dev/tty*
/dev/ttyd*

SEE ALSO
adb(1), shl(1), stty(1), dmesg(1M), kctune(1M), mknod(1M), fork(2), ioctl(2), setpgid(2), setsid(2), signal(2),

stty(2), cfspeed(3C), teattribute(3C), tccontrol(3C), tegetpgrp(3C), tegetsid(3C), tesetpgrp(3C), privileges(5),
signal(5), unistd(5), modem(7), sttyV6(7), termiox(7), tty(7).

STANDARDS CONFORMANCE
termio: SVID2, SVID3, XPG2

termios: AES, SVID3, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX 11i Version 3: February 2007 -21- Hewlett-Packard Company 229

termiox(7) termiox(7)

(HP-PB Only)

NAME

termiox - extended general terminal interface

SYNOPSIS

#include <sys/termiox.h>
ioctl (int fildes, int request, struct termiox * arg)

DESCRIPTION

The extended general terminal interface supplements the termio(7) general terminal interface by adding
support for asynchronous hardware flow control and local implementations of additional asynchronous
features. Some systems may not support all of these capabilities because of hardware or software limita-
tions. Other systems may not permit certain functions to be disabled. In such cases, the appropriate bits
are ignored. If the capabilities can be supported, the interface described here must be used.

Hardware Flow Control Modes

Hardware flow control supplements the termio IXON, IXOFF, and IXANY character flow control (see ter-
mio(7)). Character flow control occurs when one device controls the data transfer of another device by
inserting control characters in the data stream between devices. Hardware flow control occurs when one
device controls the data transfer of another device by using electrical control signals on wires (circuits) of
the asynchronous interface. Character flow control and hardware flow control can be simultaneously set.

In asynchronous, full duplex applications, the use of the Electronics Industries Association’s EIA-232-D
Request To Send (RTS) and Clear To Send (CTS) circuits is the preferred method of hardware flow control.

The EIA-232-D standard specified only unidirectional hardware flow control where the Data Circuit-
terminating Equipment or Data Communications Equipment (DCE) indicates to the Data Terminal Equip-
ment (DTE) to stop transmitting data. The termiox interface allows both unidirectional and bidirectional
hardware flow control; when bidirectional flow control is enabled, either the DCE or DTE can indicate to
each other to stop transmitting data across the interface.

Clock Modes

Isochronous flow control and clock mode communication are not supported.

Terminal Parameters

230

Parameters that control the behavior of devices providing the termiox interface are specified by the ter-
miox structure, defined in the <sys/termiox.h> header file. Several ioctl () system calls (see
toctl(5)) that fetch or change these parameters use the termiox structure which contains the following
members:

unsigned short x hflag; /* hardware flow control modes */
unsigned short x cflag; /* clock modes */

unsigned short x rflag; /* reserved modes */

unsigned short x sflag; /* spare local modes */

The x_hflag field describes hardware flow control modes:

RTSXOFF 0000001 Enable RTS hardware flow control on input.
CTSXON 0000002 Enable CTS hardware flow control on input.

The RTS and CTS circuits are involved in establishing CCITT modem connections. Since RTS and CTS cir-
cuits are used both by CCITT modem connections and by hardware flow control, CCITT modem and
hardware flow control cannot be simultaneously enabled.

Variations of different hardware flow control methods can be selected by setting the appropriate bits. For
example, bidirectional RTS/CTS flow control is selected by setting both the RTSXOFF and CTSXON bits.
Unidirectional CTS hardware flow control is selected by setting only the CTSXON bit.

If RTSXOFF is set, the Request to Send (RTS) circuit (line) is raised, and if the asynchronous port needs to
have its input stopped, it lowers the Request to Send (RTS) line. If the RTS line is lowered, it is assumed
that the connected device will stop its output until RTS is raised.

If CTSXON is set, output occurs only if the Clear To Send (CTS) circuit (line) is raised by the connected dev-
ice. If the CTS line is lowered by the connected device, output is suspended until CTS is raised.

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

termiox(7) termiox(7)
(HP-PB Only)

termiox Structure Related IOCTL Command
The ioctl () system calls that reference the termiox structure have the form:

ioctl (fildes, command, arg)
struct termiox *arg;

Commands using this form are:

TCGETX The argument is a pointer to a termiox structure. The current terminal parame-
ters are fetched and stored into that structure.

TCSETX The argument is a pointer to a termiox structure. The current terminal parame-
ters are set from the values stored in that structure. The change is immediate.
Errors that can be returned include:

[EINVAL] The port does not support hardware flow control.

[ENOTTY] The file descriptor for this port is configured for CCITT mode access.
Hardware flow control is not allowed on CCITT mode devices.

TCSETXW The argument is a pointer to a termiox structure. The current terminal parame-
ters are set from the values stored in that structure. The change occurs after all char-
acters queued for output have been transmitted. This form should be used when
changing parameters that affect output. Errors that can be returned include:

[EINVAL] The port does not support hardware flow control.

[ENOTTY] The file descriptor for this port is configured for CCITT mode access.
Hardware flow control is not allowed on CCITT mode devices.

TCSETXF The argument is a pointer to a termiox structure. The current terminal parame-
ters are set from the values stored in that structure. The change occurs after all char-
acters queued for output have been transmitted; all characters queued for input are
discarded, then the change occurs. Errors that can be returned include:

[EINVAL] The port does not support hardware flow control.

[ENOTTY] The file descriptor for this port is configured for CCITT mode access.
Hardware flow control is not allowed on CCITT mode devices.

AUTHOR
termiox was developed by HP and AT&T.

FILES
Files in or under /dev/tty*.

SEE ALSO
ioctl(2), termio(7), modem(7).

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 231

t

timod (7) timod (7)

NAME

timod - STREAMS module for converting ioctl() calls into Transport Interface messages

DESCRIPTION

The timod module is a STREAMS module that converts ioctl () calls from a transport user supporting
the Transport Interface (TI) into messages that a transport protocol provider supporting TI can consume.
This allows the user to initiate certain TI functions as atomic operations. This release of HP-UX no longer
automatically pushes timod whenever a ¢_open(3) is performed. The TLI and XTI libraries have been
modified to no longer require this module to perform the atomic operations described within this man page.
Binary compatibility is not a problem since the module will still exist within the kernel. But, any applica-
tion which is recompiled and expects the module to be automatically pushed, may not work without code
modification.

The user places and removes the timod module on a device stream by calling the STREAMS I_PUSH
ioctl() and I_POP ioctl () functions. (The TLI function t_open() pushes timod onto the device
stream for the user.) The timod module should only be pushed onto streams which are terminated by
transport providers which conform to the Transport Interface. #irdwr(7) is an alternative interface to
timod which supports the read () and write() system calls. If tirdwr has been pushed onto the
stream, the user should use the I_POP ioctl to remove the tirdwr module from the stream before
pushing timod.

The timod module transparently passes any STREAMS messages that are not generated by the
ioctl() commands described below to the neighboring module or driver. timod will act on an I_STR
ioctl() whose strioctl.ic_cmd field is one of the values below. (See streamio(7) for a description
of the I_STR ioctl and the strioctl structure.)

TI_BIND This TI command binds an address to the transport protocol provider. The STREAMS mes-
sage that the module issues to the TI_BIND ioctl () call is equivalent to the TI mes-
sage type T_bind_req. The STREAMS message that the module returns in response to
the successful completion of the TI_BIND ioctl () call is equivalent to the TI message
type T _bind_ack.

TI_UNBIND This TI command unbinds an address from the transport protocol provider. The STREAMS
message that the module issues to the TI_UNBIND ioctl () call is equivalent to the TI
message type T_unbind_req. The STREAMS message that the module returns in
response to the successful completion of the TI_UNBIND ioctl() call is equivalent to
the TT message type T_ok_ack.

TI_GETINFO This TI command gets the TI protocol-specific information from the transport protocol pro-
vider. The STREAMS message that the module issues to the TI_GETINFO ioctl () call
is equivalent to the TI message type T_info_reqg. The STREAMS message that the
module returns in response to the successful completion of the TI_GETINFO ioctl()
call is equivalent to the TI message type T_info_ack.

TI_OPTMGMT This TI command gets, sets, or negotiates TI protocol-specific options with the transport
protocol provider. The STREAMS message that the module issues to the TI_OPTMGMT
ioctl() call is equivalent to the TI message type T_optmgmt_req. The STREAMS
message that the module returns in response to the successful completion of the
TI_OPTMGMT ioctl () callis equivalent to the TI message type T_optmgmt_ack.

RETURN VALUES

If the timod module returns an error for an ioctl () call, the lower 8 bits of the return value will be one
of the TI error codes defined in the <tiuser.h> header file. If the TI error is of the type TSYERR, then
the second 8 bits of the return value will contain an error as defined in the <errno.h> header file. The
STREAMS message that the module issues when an 1octl () call results in an error is equivalent to the
TI message type T_error_ack.

FILES

232

<xti.h> defines the error codes for XTI functions.
<tiuser.h> defines the error codes for TI functions.
<tihdr.h> defines the message types for TI functions.

<errno.h> defines the error codes for system errors.

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

timod (7) timod (7)

SEE ALSO
ioctl(2), t_open(3), streamio(7), tirdwr(7).

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 233

tirdwr (7) tirdwr (7)

NAME

tirdwr - STREAMS module for reads and writes by Transport Interface users

DESCRIPTION

The tirdwr module is a STREAMS module that provides a transport user supporting the Transport Inter-
face (TI) with an alternate interface to a transport protocol provider supporting TI. This alternate interface
allows the transport user to communicate with the transport protocol provider using the read() and
write() functions. It can also continue to use the putmsg () and getmsg () functions, but these func-
tions will only transfer data messages between the user process and device stream. getpmsg() and
putpmsg () should not be used with tirdwr.

The user places the tirdwr module on a device stream by calling the STREAMS I_PUSH ioctl()
function. tirdwr is an alternative interface to timod (7). If timod has been pushed onto the stream, the
user should use the I_POP ioctl to remove the timod module from the stream before pushing
tirdwr. The tirdwr module should only be pushed onto streams which are terminated by transport
providers which conform to the Transport Interface. Once the module has been pushed on the device
stream the user cannot make further calls to TI functions. If the user attempts to do this, an error occurs
on the stream. After the error is detected, subsequent calls fail with errno set to [EPROTO]. The user
removes the tirdwr module from a device stream by calling the STREAMS I_POP ioctl () function.

Module Behavior When Pushed and Popped

When the tirdwr module is pushed on a device stream, it checks any existing messages that are destined
for the user to determine their message type. If existing messages are regular data messages, it forwards
the messages to the user. It ignores any messages related to process management, such as messages that
generate signals to the user. If any other messages are present, it returns an error to the user request
with errno set to [EPROTO].

When the tirdwr module is popped from a device stream, it checks whether an orderly release indication
has been previously received from the transport protocol provider. If an orderly release indication was
received, it sends an orderly release request to the remote side of the transport connection. The tirdwr
module also acts this way when the device stream is closed.

Module Behavior for Reads and Writes

When the tirdwr module receives messages from the transport protocol provider that do not contain a
control part (see the putmsg(2) and getmsg(2) reference pages), it transparently passes the messages to its
upstream neighbor. The exception is for zero-length data messages, where the module frees the message
and does not pass them to its upstream neighbor.

When the module receives messages from the transport protocol provider that contain a control part, it
takes one of the following actions:

For data messages with a control part, it removes this part, then passes the message to its upstream
neighbor.

For messages that represent expedited data, it generates an error. Further system calls will fail with
errno set to [EPROTO].

For messages that represent an orderly release indication from the transport protocol provider, it gen-
erates a zero-length data message, indicating the End-of-File (EOF), and sends this message upstream
to the reading process. The original message containing the orderly release indication is freed.

For messages that represent an abortive disconnect indication from the transport protocol provider, it
causes all further write () and putmsg() calls to fail with errno set to [ENXIO]. Subsequent
read() and getmsg() calls will return zero-length data messages indicating the End-of-File
(EOF), once all previous data has been read.

For all other messages, it generates an error, and further calls will fail with errno set to [EPROTO].

SEE ALSO

234

getmsg(2), putmsg(2), read(2), write(2), t_open(3), streamio(7), timod(7).

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

tty (7) tty (7)

NAME
tty - controlling terminal interface

DESCRIPTION
The file /dev/tty is, in each process, a synonym for the control terminal associated with the process
group of that process, if any. It is useful for programs or shell sequences that need to be sure of writing
messages on the terminal no matter how output has been redirected. It can also be used for programs that
demand the name of a file for output, when typed output is desired, and it is tiresome to find out what ter-
minal is currently in use.

FILES
/dev/tty
/dev/tty*

SEE ALSO
termio(7).

STANDARDS CONFORMANCE
tty: AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 235

u

UDP(7P) UDP(7P)

NAME

UDP - Internet User Datagram Protocol

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

s = socket (AF_INET, SOCK DGRAM, 0);
s = socket (AF_INET6, SOCK _DGRAM, 0);
DESCRIPTION

UDP is a simple, unreliable datagram protocol used to support the SOCK_DGRAM socket type for the inter-
net protocol family. UDP sockets are connectionless, and are normally used with the sendto() and
recvfrom() calls (see send(2) and recv(2). The connect () call can also be used to simulate a connec-
tion (see connect(2). When used in this manner, it fixes the destination for future transmitted packets (in
which case the send () or write () system calls can be used), as well as designating the source from
which packets are received. The recv () and read() calls can be used at any time if the source of the
message is unimportant.

UDP address formats are identical to those used by TCP. In particular, UDP requires a port identifier in
addition to the normal Internet address format. Note that the UDP port domain is separate from the TCP
port domain (in other words, a UDP port cannot be connected to a TCP port).

The default send buffer size for UDP sockets is 65535 bytes. The default receive buffer size for UDP sock-
ets is 2147483647 bytes. The send and receive buffer sizes for UDP sockets can be set by using the
SO_SNDBUF and SO_RCVBUF options of the setsockopt () system call or the XTI_SNDBUF and
XTI_RCVBUF options of the t_optmgmt () system call. The maximum size for these buffers is
2147483647 bytes. The maximum receive buffer size may be lowered using the ndd parameter
udp_recv_hiwater_ max.

The maximum message size for a UDP datagram socket is limited by the lesser of the maximum size of an
IP datagram and the size of the UDP datagram socket buffer. The maximum size of an IP datagram limits
the maximum message size of a UDP message to 65507 bytes. Therefore, using the maximum socket buffer
size will allow multiple maximum-sized messages to be placed on the send queue. The default inbound and
outbound message size limit for a UDP datagram socket is 65535 bytes.

The maximum message size for a UDP broadcast is limited by the MTU size of the underlying link.

ERRORS

One of the following errors may be returned in errno if a socket operation fails. For a more detailed list
of errors, see the man pages for specific system calls.

[EISCONN] Attempt to send a datagram with the destination address specified, when the
socket is already connected.

[ENOBUFS] No buffer space is available for an internal data structure.
[EADDRINUSE] Attempt to create a socket with a port which has already been allocated.

[EADDRNOTAVAIL] Attempt to create a socket with a network address for which no network inter-
face exists.

AUTHOR

The socket interfaces to UDP were developed by the University of California, Berkeley.

SEE ALSO

236

ndd(1M). getsockopt(2), recv(2), send(2), socket(2), t_open(3), t_optmgmt(3) inet(7F), socket(7),

RFC 768 User Datagram Protocol
RFC 1122 Requirements for Internet hosts

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

UNIX(7P) UNIX(7P)

NAME

UNIX - local communication domain protocol

SYNOPSIS
#include <sys/types.h>
#include <sys/un.h>

DESCRIPTION
The local communication domain protocol, commonly referred to in the industry as the Unix domain pro-
tocol, utilizes the path name address format and the AF_UNIX address family. This protocol can be used
as an alternative to the Internet protocol family (TCP/IP or UDP/IP) for communication between processes
executing on the same node. It has a significant throughput advantage when compared with local IP loop-
back, due primarily to its much lower code execution overhead. Data is looped back at the protocol layer
(OSI Level 4), rather than at the driver layer (OSI Level 2).

Only SOCK_STREAM is supported in the AF_UNIX address family.

The HP-UX implementation of the local communication domain protocol does not support the MSG_OOB
flag in recv () (see recv(2)) and send () (see send(2)).

Addressing
AF_UNIX socket addresses are path names. They are limited to 92 bytes in length, including a terminat-
ing null byte. Calls to bind() to an AF_UNIX socket utilize an addressing structure called
structsockaddr_un (see bind(2)). Pointers to this structure should be used in all AF_UNIX socket sys-
tem calls wherever they require a pointer to a struct sockaddr.

The include file <sys/un.h> defines this addressing structure. Within this structure are two notable
fields. The first is sun_family, which must be set to AF_UNIX. The next is sun_path, which is the null-
terminated character string that specifies the path name of the file associated with the socket (for example,
/tmp/mysocket).

Only the passive (listening) socket must bind to an address. The active socket connects to that address, but
it does not need an address of its own.

For additional information on using AF_UNIX sockets for interprocess communication, refer to the BSD
Sockets Interface Programmer’s Guide.

Socket Buffer Size
For stream and datagram sockets, the maximum send and receive buffer size is 262142 bytes. The default
buffer size is 32768 bytes. The send and receive buffer sizes can be altered by using the SO_SNDBUF and
SO_RCVBUF options of the setsockopt () system call. Refer to getsockopt(2) for details.

AUTHOR
AF_UNIX was developed by the University of California, Berkeley.

SEE ALSO
getsockopt(2), socket(2).

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 237

VLAN(7) VLAN(7)

NAME

VLAN - virtual local area network

DESCRIPTION

This manpage provides a brief overview of VLAN (virtual LAN) technology.

VLANSs are logical, or virtual, network segments that can span multiple physical network segments. A
primary benefit of VLANS is that they can isolate broadcast and multicast traffic by determining which des-
tinations should receive that traffic, thereby making better use of switch and end-station resources.

Logical separation using VLAN allows for the logical grouping of PCs, servers and other network resources
to behave as if they were connected to the same, physical segment, even if they are not.

HP-UX VLAN is an implementation of IEEE 802.1p/Q standards.

VLAN interfaces can be configured in HP-UX servers using the command nwmgr (see nwmgr_vlan(1M)) or
lanadmin (see lanadmin_vlan(1M)). HP recommends that you use nwmgr for HP-UX Release 11i Ver-
sion 3 and forward. Interfaces can also be configured using the web-based management tool HP-UX System
Management Homepage (HP SMH).

Each VLAN interface created is assigned a VLAN PPA (VPPA) that is unique across the system and a
VLAN ID, that identifies the virtual LAN it is part of. The VLAN ID is unique on the interface on which
the VLAN interface is created.

WARNINGS

The lanadmin, lanscan, and 1inkloop commands are deprecated. These commands will be removed
in a future HP-UX release. HP recommends the use of replacement command nwmgr(1M) to perform all
network interface-related tasks.

SEE ALSO

238

lanadmin(1M), lanadmin_vlan(1M), lanscan(1M), nwmgr(1M), nwmgr_vlan(1M), smh(1M).
HP-UX VLAN Administrator’s Guide
IEEE 802.1p, IEEE 802.1Q

Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

xopen_networking(7) xopen_networking(7)

NAME
xopen_networking - X/Open Networking Interfaces

DESCRIPTION
X/Open has defined Sockets and IP Address Resolution interfaces in X/Open CAE Specification, Net-
working Services, Issue 4 (UNIX 95), X/Open CAE Specification, Networking Services, Issue 5 (UNIX 98),
and The Single UNIX Specification, Version 3, System Interfaces (UNIX 03).

X/Open has also defined XTI in X/Open CAE Specification, Networking Services, Issue 4 (UNIX 95) and
X/0Open CAE Specification, Networking Services, Issue 5 (UNIX 98). Beginning in UNIX 03, XTI is no
longer part of The Single UNIX Specification.

For more information on the specifications or a detailed description of the X/Open Networking Interfaces,
please refer to the above specifications at The Open Group website,
http://www.opengroup.orgd.

Prior to HP-UX 11i v3, HP-UX is certified to UNIX 95 on PA-RISC and Integrity systems. Beginning with
HP-UX 11i v3, HP-UX is certified to UNIX 95 on PA-RISC systems and to UNIX 95 and UNIX 03 on
Integrity systems.

COMPILATION ENVIRONMENT
There are two ways to obtain X/Open Sockets functionality:

Method A is in compliance with X/Open compilation specification.

Method B slightly deviates from X/Open compilation specification. However, Method B allows a pro-
gram to include both objects compiled to X/Open Sockets specification and objects compiled to BSD
Sockets specification.

Either cc, ¢89 or ¢99 utilities can be used. Refer to cc(1) for details. Also note certain features in UNIX
03 are only available if ¢99 is used. For example, the "restrict" qualifier for pointers is only available if c99
is used.

Method A) Strict Compliance Method
An X/Open conforming application is one that has all its parts compiled and built according to X/Open
specifications. For such conforming applications, this compilation method would be appropriate.

Compilation

UNIX 03

Applications should ensure that the feature test macro _XOPEN_SOURCE is defined with the value 600.
To ensure portability, applications should define the macro either on the compilation command line, or at
the beginning of each source module prior to the inclusion of any headers.

For example, to compile a 64 bit object using HP ANSI Compiler:
c99 +DD64 -D_XOPEN_SOURCE=600 -c main.c -o main.o
c99 +DD64 -D_XOPEN_SOURCE=600 -c routines.c -o routines.o

UNIX 95

Applications should ensure that the feature test macros _XOPEN_SOURCE and
_XOPEN_SOURCE_EXTENDED are defined. To ensure portability, applications should define the macros
either on the compilation command line, or at the beginning of each source module prior to the inclusion of
any headers.

For example, to compile a 64 bit object using HP ANSI Compiler:

c89 +DD64 -D_XOPEN_SOURCE -D_XOPEN_SOURCE_EXTENDED -c¢ main.c -0
main.o

c89 +DD64 -D_XOPEN_SOURCE -D_ XOPEN SOURCE_EXTENDED -c routines.c -o
routines.o

Linkage
Link the program objects with Xnet library.

For example:

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 239

xopen_networking(7) xopen_networking(7)

1ld main.o routines.o -1lxnet -1lc -o prog

Note if the C library is also specified in the link line, the Xnet library has to be specified before the C
library. Otherwise, X/Open Sockets calls would have been resolved to BSD Sockets functions in the C
library instead of X/Open Sockets functions in the Xnet library.

Method B) Alternative Method
HP-UX provides two styles of Sockets API:

. default BSD Sockets
. X/Open Sockets

These two styles of Sockets API have the same function names but they have differences in semantics and
argument types. For example, the optlen field in X/Open getsockopt () is size_t type, while BSD
getsockopt () is int type. In 64 bit mode, size_t is 64 bit and int is still 32 bit.

Linking objects compiled to X/Open Sockets specification and objects compiled to BSD Sockets specification
in the same program using the linkage method in method A would erroneously resolve BSD Sockets calls to
X/Open Sockets functions in the Xnet library. As a result, the program may result in application core
dumps or unexpected Socket errors when it is run. These symptoms commonly occur when BSD Sockets
accept (), getpeername(), getsockname (), getsockopt(), recvfrom(), sendmsg(),
and recvmsg () are called.

For such mixed program configuration, the compilation and linkage methods described below in Compila-
tion should be used.

Compilation
Define _ HPUX_ALT XOPEN_SOCKET_ API, in addition to either defining _ XOPEN_SOURCE=600 in
UNIX 03 or _XOPEN_SOURCE and _ XOPEN_SOURCE_EXTENDED in UNIX 95.

For example to compile a 64-bit X/Open Sockets object and a 64-bit BSD Sockets object using HP ANSI
Compiler:

UNIX 03

c99 +DD64 -D_XOPEN_SOURCE=600 -D_HPUX ALT XOPEN_ SOCKET_API -c main.c -o
main.o

UNIX 95

c89 +DD64 -D_XOPEN_SOURCE -D_XOPEN_SOURCE_EXTENDED
-D_HPUX ALT_XOPEN_ SOCKET_API -c main.c -o main.o

BSD Sockets
cc -Ae +DD64 -c routines.c -o routines.o

With this method, X/Open Sockets calls are remapped by the static Sockets functions in <sys/socket.h> to
an alternative set of X/Open Sockets functions in C library. This alternative set has a prefix _xpg_ in its
function names, for example, _xpg_ getsockopt ().

Because the alternative set has different function names, X/Open Sockets calls are not confused with BSD
Sockets calls at link time.

Other than the naming difference, this alternative set is identical to the X/Open Sockets functions in Xnet
library. Other than adding an additional macro, _ HPUX_ALT_ XOPEN_SOCKET_API, this compilation
method is compliant to X/Open specifications.

%::fgvffh C library instead of Xnet library. Xnet library should not be included in the application link line.
For example:

1ld main.o routines.o -1lc -o prog

Because Xnet library is not in the link line, BSD Sockets calls are not erroneously resolved to X/Open Sock-

ets functions in Xnet library.

FUTURE DIRECTION
Method B might become the default method in a future release. At that time,
_HPUX_ALT_XOPEN_SOCKET_APTI would be defined by default.

240 Hewlett-Packard Company -2- HP-UX 11i Version 3: February 2007

xopen_networking(7) xopen_networking(7)

AUTHOR
X/Open XTI, Sockets and IP Address Resolution interfaces were developed by HP and X/Open
Company Limited.

SEE ALSO
XTI:

t_accept(3), t_alloc(3), t_bind(3), t_close(3), t_connect(3), t_error(3), t_free(3), t_getinfo(3), t_getprotaddr(3),
t_getstate(3), t_listen(3), t_look(3), t_open(3), t_optmgmt(3), t_rcv(3), t_rcvconnect(3), t_rcvdis(3),
t_revrel(3), t_rcvudata(3), t_rcvuderr(3), t_snd(3), t_snddis(3), t_sndrel(3), t_sndudata(3), t_strerror(3),
t_sync(3), t_unbind(3).

Sockets:

accept(2), bind(2), close(2), connect(2), fentl(2), fgetpos(3S), fsetpos(3S), ftell(3S), getpeername(2), getsock-
name(2), getsockopt(2), listen(2), lseek(2), poll(2), read(1), recv(2), recvfrom(2), recvmsg(2), select(2),
send(2), sendmsg(2), sendto(2), setsockopt(2), shutdown(2), sockatmark(3N), socket(2), socketpair(2),
write(1).

IP Address Resolution:

gethostname(2), endhostent(3N), endnetent(3N), endprotoent(3N), endservent(3N), freeaddrinfo(3N),
gai_strerror(3N), getaddrinfo(3N), gethostbyaddr(3N), getnameinfo(3N), getnetbyaddr(3N),
getprotobynumber(3N), getservbyport(3N), htonl(3N), if freenameindex(3N), if indextoname(3N),
if_nameindex(3N), if nametoindex(3N), inet_addr(3N), ntohl(3N), sethostent(3N), setnetent(3N),
setprotoent(3N), setservent(3N).

HP-UX 11i Version 3: February 2007 -3- Hewlett-Packard Company 241

zero(7) zero(7)

NAME

zero - /dev/zero special file

DESCRIPTION
/dev/zero is a zero special file. Reads from a zero special file always return characters whose value is 0
(\0 characters).

Data written on a zero special file is discarded or ignored.
Seeks on a zero special file always succeed.

When /dev/zero is memory mapped by calling mmap (), the associated memory object behaves as a
MAP_ANONYMOUS object. It is initialized to all zeros. Writes to the object modify the contents of the
object which are observed by subsequent reads to this object.

Both MAP_ SHARED and MAP_PRIVATE mmap () are allowed.

When it is mapped shared, the memory object can be shared only with the descendants of the current pro-
cess. Modifications made to the MAP_ SHARED object are visible only to the process and its descendants.

When it is mapped private, any modifications done after fork () are visible only to the process.
EXAMPLES
In the following example, the buffer buf is filled with 1en \0 characters.

fildes = open("/dev/zero",...)
read(fildes, buf, len)

In the following example, the process now has a range of 1en \0 characters at memory location address:

fildes = open("/dev/zero",...)
address = mmap(0, len, PROT READ | PROT_WRITE,
MAP_ PRIVATE, fildes, any offset)

FILES
/dev/zero

SEE ALSO
mmap(2), null(7).

242 Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

Section 9
General Information

Section 9
General Information

intro(9) intro(9)

NAME
intro - introduction to HP-UX general information section
DESCRIPTION -

This section contains general information about HP-UX, including an introduction to HP-UX and the
operating system and a glossary of common HP-UX terms.

SEE ALSO
glossary(9), introduction(9).

Web access to HP-UX documentation at http://docs.hp.com.

HP-UX 11i Version 3: February 2007 -1- Hewlett-Packard Company 245

glossary(9) glossary(9)

NAME

glossary - description of common HP-UX terms

DESCRIPTION

HP-UX and other UNIX-like systems use a specialized vocabulary in which certain words and terms have
very specific meanings. This glossary is intended as an aid in promoting exactness in use of these special-
ized terms whose meanings sometimes differ from those that might be encountered in other environments.
References to other HP-UX documentation are included as appropriate.

Entities in italics with a following parenthesized roman number (sometimes with a capital letter), such as
sh(1), wait(2), or fopen(3S) refer to entries in the other sections of this manual. Items in bold face refer to
other entries in this glossary. Items in computer font (bold face in the online manpages) are literals,
such as file names and environment variables. Any italicized manual names refer to separate manuals that
are either included with your system or available separately.

The definitions specifically reflect the HP-UX operating system, although some terms and definitions are
also derived from those in the emerging IEEE POSIX standards and the X/Open Portability Guide.
Differences in wording exist to more specifically reflect the characteristics of the HP-UX system.

GLOSSARY ENTRIES

. (dot)
A special file name that refers to the current directory. It can be used alone or at the beginning of a
directory path name. See also path name resolution. The dot also functions as a special command in
the POSIX, Bourne, and Korn shells, and has special meaning in text editors and formatters, in parsing
regular expressions and in designating file names.

. . (dot-dot)
A special file name that refers to the parent directory. If it begins a path name, dot-dot refers to the
parent of the current directory. If it occurs in a path name, dot-dot refers to the parent directory of the
directory preceding dot-dot in the path name string. As a special case, dot-dot refers to the current direc-
tory in any directory that has no parent (most often, the root directory). See also path name resolu-
tion.

.o (dot-oh)
The suffix customarily given to a relocatable object file. The term dot-oh file is sometimes used to refer to
a relocatable object file. The format of such files is sometimes called dot-oh format. See a.out(4).

a.out
The name customarily given to an executable object code file on HP-UX. The format is machine-dependent,
and is described in a.out(4) for each implementation. Object code that is not yet linked has the same for-
mat, but is referred to as a .o (dot-oh) file. a.out is also the default output file name used by the linker,
ld(1).

absolute path name
A path name beginning with a slash (/). It indicates that the fil€’s location is given relative to the root
directory (/), and that the search begins there.

access
The process of obtaining data from or placing data in storage, or the right to use system resources. Accessi-
bility is governed by three process characteristics: the effective user ID, the effective group ID, and the
group access list. The access(2) system call determines accessibility of a file according to the bit pattern
contained in its amode parameter, which is constructed to read, write, execute or check the existence of a
file. The access(2) system call uses the real user ID instead of the effective user ID and the real group
ID instead of the effective group ID.

access groups
The group access list is a set of supplementary group IDs used in determining resource accessibility.
Access checks are performed as described below in file access permissions.

access mode
An access mode is a form of access permitted to a file. Each implementation provides separate read, write,
and execute/search access modes.

246 Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

glossary(9) glossary(9)

address
A number used in information storage or retrieval to specify and identify memory location. An address is
used to mark, direct, indicate destination, instruct or otherwise communicate with computer elements.

In mail, address is a data structure whose format can be recognized by all elements involved in transmit-
ting information. On a local system, this might be as simple as the user’s login name, while in a
networked system, address specifies the location of the resource to the network software.

In a text editor (such as vi, ex, ed, or sed), an address locates the line in a file on which a given instruc-
tion is intended.

For adb, the address specifies at what assembly-language instruction to execute a given command.

In disk utilities such as £sdb, address might refer to a raw or block special file, the inode number,
volume header, or other file attribute.

In the context of peripheral devices, address refers to a set of values that specify the location of an I/O
device to the computer. The exact details of the formation of an address differ between systems.

address space
The range of memory locations to which a process can refer.

affiliation
See terminal affiliation.

agile addressing
An addressing scheme where an address or path to a logical unit that is independent of the physical path.
See intro(7) for more information.

appropriate privileges
Each implementation provides a means of associating privileges with a process for function calls and func-
tion call options requiring special privileges. In the HP-UX system, appropriate privileges refers either
to superuser status or to a privilege associated with privilege groups (see setprivgrp (1M)).

archive
A file comprised of the contents of other files, such as a group of object files (that is, . o) used by the linker,
ld(1)). An archive file is created and maintained by ar(1) or similar programs, such as tar(1) or cpio(1). An
archive is often called a library.

ASCII
An acronym for American Standard Code for Information Interchange. ASCII is the traditional System V
coded character set and defines 128 characters, including both control characters and graphic characters,
each of which is represented by 7-bit binary values ranging from 0 through 127 decimal.

background process group
Any process group that is a member of a session which has established a connection with a controlling ter-
minal that is not in the foreground process group.

backup
The process of making a copy of all or part of the file system in order to preserve it, in case a system crash
occurs (usually due to a power failure, hardware error, etc.). This is a highly recommended practice.

block
(1) The fundamental unit of information HP-UX uses for access and storage allocation on a mass storage
medium. The size of a block varies between implementations and between file systems. In order to
present a more uniform interface to the user, most system calls and utilities use block to mean 512
bytes, independent of the actual block size of the medium. This is the meaning of block unless other-
wise specified in the manual entry.

(2) On media such as 9-track tape that write variable length strings of data, the size of those strings.
Block is often used to distinguish from record; a block contains several records, whereas the number
of records denotes the blocking factor.

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 247

glossary(9) glossary(9)

block special file
A special file associated with a mass storage device (such as a hard disk or tape cartridge drive) that
transfers data in multiple-byte blocks, rather than by series of individual bytes (see character special
file). Block special files can be mounted. A block special file provides access to the device where
hardware characteristics of the device are not visible.

boot, boot-up
The process of loading, initializing, and running an operating system.

boot area
A portion of a mass storage medium on which the volume header and a "bootstrap" program used in booting
the operating system reside. The boot area is reserved exclusively for use by HP-UX.

boot ROM
A program residing in ROM (Read-Only Memory) that executes each time the computer is powered up and
is designed to bring the computer to a desired state by means of its own action. The first few instructions
of a bootstrap program are sufficient to bring the remainder of the program into the computer from an
input device and initiate functions necessary for computation. The function of the boot ROM is to run tests
on the computer’s hardware, find all devices accessible through the computer, and then load either a
specified operating system or the first operating system found according to a specific search algorithm.

bus address
A number which makes up part of the address HP-UX uses to locate a particular device. The bus address
is determined by a switch setting on a peripheral device which allows the computer to distinguish between
two devices connected to the same interface. A bus address is sometimes called a "device address".

character
An element used for the organization, control, or representation of text. Characters include graphic char-
acters and control characters.

character set
A set of characters used to communicate in a native or computer language.

character special file
A special file associated with I/O devices that transfer data byte-by-byte. Other byte-mode I/O devices
include printers, nine-track magnetic tape drives, and disk drives when accessed in "raw" mode (see raw
disk). A character special file has no predefined structure.

child process
A new process created by a pre-existing process via the fork(2) system call. The new process is thereafter
known to the pre-existing process as its child process. The pre-existing process is the parent process of
the new process. See parent process and fork.

clock tick
A rate used within the system for scheduling and accounting. It consists of the number of intervals per
second as defined by CLK_TCK that is used to express the value in type clock_t. CLK_TCK was previ-
ously known as the defined constant HZ.

coded character set
A set of unambiguous rules that establishes a character set and the one-to-one relationship between each
character of the set and its corresponding bit representation. ASCII is a coded character set.

collating element
The smallest entity used in collation to determine the logical ordering of strings (that is, the collation
sequence). To accommodate native languages, a collating element consists of either a single character, or
two or more characters collating as a single entity. The current value of the LANG environment variable
determines the current set of collating elements.

collation
The logical ordering of strings in a predefined sequence according to rules established by precedence. These
rules identify a collation sequence among the collating elements and also govern the ordering of strings con-
sisting of multiple collating elements, to accommodate native languages.

248 Hewlett-Packard Company -3- HP-UX 11i Version 3: February 2007

glossary(9) glossary(9)

collation sequence
The ordering sequence applied to collating elements when they are sorted. To accommodate native
languages, collation sequence can be thought of as the relative order of collating elements as set by the
current value of the LANG environment variable. Characters can be omitted from the collation sequence,
or two or more collating elements can be given the same relative order (see string(3C)).

command

A directive to perform a particular task. HP-UX commands are executed through a command inter-
preter called a shell. HP-UX supports several shells, including the POSIX shell (sh-posix(1)), the C shell
(csh(1)), and the Korn shell (ksh(1)). See sh(1) for more information about supported shells. Most com-
mands are carried out by an executable file, called a utility, which might take the form of a stand-alone
unit of executable object code (a program) or a file containing a list of other programs to execute in a given
order (a shell script). Scripts can contain references to other scripts, as well as to object-code programs. A
typical command consists of the utility name followed by arguments that are passed to the utility. For
example, in the command, 1s mydirectory, 1ls is the utility name and mydirectory is an argu-
ment passed to the 1s utility.

command interpreter
A program which reads lines of text from standard input (typed at the keyboard or read from a file), and
interprets them as requests to execute other programs. A command interpreter for HP-UX is called a
shell. See sh(1) and related manual entries.

Command Set 1980
See CS/80.

composite graphic symbol
A graphic symbol consisting of a combination of two or more other graphic symbols in a single character
position, such as a diacritical mark and a basic letter.

control character
A character other than a graphic character that affects the recording, processing, transmission, or interpre-
tation of text. In the ASCII character set, control characters are those in the range 0 through 31, and
127. Control characters can be generated by holding down the control key (which may be labeled CTRL,
CONTROL, or CNTL depending on your terminal), and pressing a character key (as you would use SHIFT).
These two-key sequences are often written as, for example, Control-D, Ctrl-D, or "D, where ~ stands for
the control key.

controlling process
The session leader that establishes the connection to the controlling terminal. Should the terminal sub-
sequently cease to be a controlling terminal for this session, the session leader ceases to be the controlling
process.

controlling terminal
A terminal that is associated with a session. Each session can have at most one controlling terminal associ-
ated with it and a controlling terminal is associated with exactly one session. Certain input sequences from
the controlling terminal cause signals to be sent to all processes in the foreground process group associated
with the controlling terminal.

Coordinated Universal Time (UTC)
See Epoch.

CS/80, CS-80
A family of mass storage devices that communicate with the controlling computer by means of a series of
commands and data transfer protocol referred to as the CS/80 (Command Set 1980) command set. This
command set was implemented in order to provide better forward/backward compatibility between models
and generations of mass storage devices as technological advances develop. Some mass storage devices
support only a subset of the full CS/80 command set, and are usually referred to as SS/80 (Subset 1980)
devices.

crash
The unexpected shutdown of a program or system. If the operating system crashes, this is a "system
crash', and requires the system to be rebooted.

HP-UX 11i Version 3: February 2007 -4 - Hewlett-Packard Company 249

glossary(9) glossary(9)

current directory
See working directory.

current working directory
See working directory.

daemon
A process which runs in the background, and which is usually immune to termination instructions from a
terminal. Its purpose is to perform various scheduling, clean-up, and maintenance jobs. I[psched(1M) is an
example of a daemon. It exists to perform these functions for line printer jobs queued by [p(1). An exam-
ple of a permanent daemon (that is, one that should never die) is cron(1M).

data encryption
A method for encoding information in order to protect sensitive or proprietary data. For example, HP-UX
automatically encrypts all users’ passwords. The encryption method used by HP-UX converts ASCII text
into a base-64 representation using the alphabet ., /, 0-9, A-Z, a-z. See passwd(4) for the numerical
equivalents associated with this alphabet.

default search path
The sequence of directory prefixes that sh(1), time(1), and other HP-UX commands apply in searching for a
file known by an relative path name (that is, a path name not beginning with a slash (/)). It is defined by
the environment variable PATH (see environ(5)). login(1) sets PATH equal to : /usr/bin, which means
that your working directory is the first directory searched, followed by /usxr/bin. The search path can be
redefined by modifying the value of PATH. This is usually done in /etc/profile, and/or in the .pro-
file file found in the home directory.

defunct process
See zombie process.

delta
A term used in the Source Code Control System (SCCS) to describe a unit of one or more textual
changes to an SCCS file. Each time an SCCS file is edited, changes made to the file are stored separately
as a delta. The get(1) command is then used to specify which deltas are to be applied to or excluded from
the SCCS file, thus yielding a particular version of the file. Contrast this with the vi or ed editor, which
incorporates changes into the file immediately, eliminating any possibility of obtaining a previous version of
that file. A similar capability is provided by RCS files (see rcsintro(5)).

demon
Improper spelling of the UNIX word daemon.

device
A computer peripheral or an object that appears to an application as such.

device address
See bus address.

device file
See special file.

directory

A file that provides the mapping between the names of files and their contents, and is manipulated by the
operating system alone. For every file name contained in a directory, that directory contains a pointer to
the file’s inode; The pointer is called a link. A file can have several links appearing anywhere on the same
file system. Each user is free to create as many directories as needed (using mkdir(1)), provided that the
parent directory of the new directory gives the permission to do so. Once a directory has been created, it
is ready to contain ordinary files and other directories. An HP-UX directory is named and behaves exactly
like an ordinary file, with one exception: no user (including the superuser) is allowed to write data on the
directory itself; this privilege is reserved for the HP-UX operating system.

By convention, a directory contains at least two links, . and .., referred to as dot and dot-dot respec-
tively. . refers to the directory itself and . . refers to its parent directory. A directory containing only .
and . . is considered empty.

250 Hewlett-Packard Company -5- HP-UX 11i Version 3: February 2007

glossary(9) glossary(9)

dot
See . (dot).

dot-dot
See . . (dot-dot).

dot-oh
See .o (dot-oh).

dot-oh file
See .o (dot-oh).

dot-oh format
See .o (dot-oh).

downshifting
The conversion of an uppercase character to its lowercase representation.

dynamic loader
A routine invoked at process startup time that loads shared libraries into a process’s address space. The
dynamic loader also resolves symbolic references between a program and the shared libraries, and initial-
izes the shared libraries’ linkage tables. See dld.sl(5) (PA-RISC systems) or did.so(5) (Itanium®-based sys-
tems) for details.

effective group ID

Every process has an effective group ID that is used to determine file access permissions. A process’s
effective group ID is determined by the file (command) that process is executing. If that file’s set-group-
ID bit is set (located in the mode of the file, see mode), the process’s effective group ID is set equal to the
file's group ID. This makes the process appear to belong to the fil€’s group, perhaps enabling the process to
access files that must be accessed in order for the program to execute successfully. If the fil€'s set-group-ID
bit is not set, the process’s effective group ID is inherited from the process’s parent. The setting of the
process’s effective group ID lasts only as long as the program is being executed, after which the process’s
effective group ID is set equal to its real group ID. See group, real group ID, and set-group-ID bit.

effective user ID

A process has an effective user ID that is used to determine file access permissions (and other permis-
sions with respect to system calls, if the effective user ID is 0, which means superuser). A process’s
effective user ID is determined by the file (command) that process is executing. If that file’s set-user-ID bit
is set (located in the mode of the file, see mode), the process’s effective user ID is set equal to the file’s user
ID. This makes the process appear to be the file’s owner, enabling the process to access files which must be
accessed in order for the program to execute successfully. (Many HP-UX commands which are owned by
root, such as mkdir and mail, have their set-user-ID bit set so other users can execute these com-
mands.) If the file's set-user-ID bit is not set, the process’s effective user ID is inherited from that process’s
parent. See real user ID and set-user-ID bit.

end-of-file (EOF)
(1) The data returned when attempting to read past the logical end of a file via stdio(3S) routines. In this
case, end-of-file is not properly a character.

(2) The ASCII character Ctrl-D.

(3) A character defined by stty(1) or ioctl(2) (see termio(7)) to act as end-of-file on your terminal. Usually
this is Ctrl-D.

(4) The return value from read(2) that indicates end of data.

environment

The set of defined shell variables (such as EXINIT, HOME, PATH, SHELL, TERM, and others) that define
the conditions under which user commands run. These conditions can include user terminal characteris-
tics, home directory, and default search path. Each shell variable setting in the current process is passed
on to all child processes that are created, provided that each shell variable setting has been exported via
the export command (see sh(1)). Unexported shell variable settings are meaningful only to the current
process, and any child processes created get the default settings of certain shell variables by executing
/etc/profile, $HOME/ .profile, or $HOME/.login.

HP-UX 11i Version 3: February 2007 -6- Hewlett-Packard Company 251

glossary(9) glossary(9)

EOF

See end-of-file.

Epoch

The time period beginning at 0 hours, 0 minutes, 0 seconds, Coordinated Universal Time (UTC) on
January 1, 1970. Increments quantify the amount of time elapsed from the Epoch to the referenced time.

Leap seconds, which occur at irregular intervals, are not reflected in the count of seconds between the
Epoch and the referenced time. (Fourteen leap seconds occurred in the years 1970 through 1988.)

FIFO special file

A type of file. Data written to a FIFO is read on a first-in-first-out basis. Other characteristics are
described in open(2), read(2), write(2) and lseek(2).

file

A stream of bytes that can be written to and/or read from. A file has certain attributes, including permis-
sions and type. File types include regular file, character special file, block special file, FIFO special
file, network special file, directory, and symbolic link. Every file must have a file name that enables
the user (and many of the HP-UX commands) to refer to the contents of the file. The system imposes no
particular structure on the contents of a file, although some programs do. Files can be accessed serially or
randomly (indexed by byte offset). The interpretation of file contents and structure is up to the programs
that access the file.

file access mode

A characteristic of an open file description that determines whether the described file is open for read-
ing, writing, or both. (See open(2).)

file access permissions

Every file in the file hierarchy has a set of access permissions. These permissions are used in determin-
ing whether a process can perform a requested operation on the file (such as opening a file for writing).
Access permissions are established when a file is created via the open(2) or creat(2) system calls, and can be
changed subsequently through the chmod(2) call. These permissions are read by stat(2) or fstat(2).

File access controls whether a file can be read, written, or executed. Directory files use the execute permis-
sion to control whether or not the directory can be searched.

File access permissions are interpreted by the system as they apply to three different classes of users:
the owner of the file, the users in the file's group, and anyone else ("other"). Every file has an indepen-
dent set of access permissions for each of these classes. When an access check is made, the system decides
if permission should be granted by checking the access information applicable to the caller.

Read, write, and execute/search permissions on a file are granted to a process if any of the following condi-
tions are met:

e The process’s effective user ID is superuser.

e The process’s effective user ID matches the user ID of the owner of the file and the appropriate
access bit of the owner portion (0700) of the file mode is set.

e The process’s effective user ID does not match the user ID of the owner of the file, and either the
process’s effective group ID matches the group ID of the file, or the group ID of the file is in the
process’s group access list, and the appropriate access bit of the group portion (070) of the file mode is
set.

e The process’s effective user ID does not match the user ID of the owner of the file, and the process’s
effective group ID does not match the group ID of the file, and the group ID of the file is not in the
process’s group access list, and the appropriate access bit of the "other" portion (07) of the file mode is
set.

Otherwise, the corresponding permissions are denied.

file descriptor

252

A small unique, per-process, nonnegative integer identifier that is used to refer to a file opened for reading
and/or writing. Each file descriptor refers to exactly one open file description.

A file descriptor is obtained through system calls such as creat(2), fentl(2), open(2), pipe(2), or dup(2).
The file descriptor is used as an argument by calls such as read(2), write(2), ioctl(2), and close(2).

Hewlett-Packard Company -7- HP-UX 11i Version 3: February 2007

glossary(9) glossary(9)

The value of a file descriptor has a range from 0 to one less than the system-defined maximum. The
system-defined maximum is the value NOFILE in <sys/param.h>.

file group class
A process is in the file group class of a file if the process is not the file owner class and if the effective
group ID or one of the supplementary group IDs of the process matches the group ID associated with
the file.

file hierarchy
The collection of one or more file systems available on a system. All files in these file systems are organ-
ized in a single hierarchical structure in which all of the nonterminal nodes are directories. Because mul-
tiple links can refer to the same file, the directory is properly described as a directed graph.

file name

A string of up to 14 bytes (or 255 bytes on file systems that support long file names) used to refer to an ordi-
nary file, special file, or directory. The byte values NUL (null) and slash (/) cannot be used as characters in
a file name. Note that it is generally unwise to use *, ?, ,, [, or] as part of file names because the shell
attaches special meaning to these characters (see sh(1), csh(1), or ksh(1)). Avoid beginning a file name with
-, +, or =, because to some programs, these characters signify that a command argument follows. A file
name is sometimes called a path name component. Although permitted, it is inadvisable to use characters
that do not have a printable graphic on the hardware you commonly use, or that are likely to confuse your
terminal.

file name portability
File names should be constructed from the portable file name character set because the use of other
characters can be confusing or ambiguous in certain contexts.

file offset
The file offset specifies the position in the file where the next I/O operation begins. Each open file
description associated with either a regular file or special file has a file offset. There is no file offset
specified for a pipe or FIFO.

file other class
A process is in the file other class if the process is not in the file owner class or file group class.

file owner class
A process is in the file owner class if the effective user ID of the process matches the user ID of the file.

file permission bits
See permission bits.

file pointer
A data element obtained through any of the fopen(3S) standard I/O library routines that "points to" (refers
to) a file opened for reading and/or writing, and which keeps track of where the next I/O operation will take
place in the file (in the form of a byte offset relative to the beginning of the file). After obtaining the file
pointer, it must thereafter be used to refer to the open file when using any of the standard I/O library rou-
tines. (See stdio(3S) for a list of these routines.)

file serial number
A file-system-unique identifier for a given file, also known as the fil€s inode number. Each file serial
number identifies exactly one inode. File serial numbers are not necessarily unique across file sys-
tems in the file hierarchy.

file status flags
Part of an open file description. These flags can be used to modify the behavior of system calls that
access the file described by the open file description.

file system
A collection of files and supporting data structures residing on a mass storage volume. A file system pro-
vides a name space for file serial numbers referring to those files. Refer to the System Administrator
manuals supplied with your system for details concerning file system implementation and maintenance.

HP-UX 11i Version 3: February 2007 -8- Hewlett-Packard Company 253

glossary(9) glossary(9)

file times update
Each file has three associated time values that are updated when file data is accessed or modified, or when
the file status is changed. These values are returned in the file characteristics structure, as described in
<sys/stat.h>. For each function in HP-UX that reads or writes file data or changes the file status, the
appropriate time-related files are noted as "marked-for-update". When an update point occurs, any marked
fields are set to the current time and the update marks are cleared. One such update point occurs when
the file is no longer open for any process. Updates are not performed for files on read-only file systems.

filter
A command that reads data from the standard input, performs a transformation on the data, and writes it
to the standard output.

foreground process group
Each session that has established a connection with a controlling terminal has exactly one process group of
the session as a foreground process group of that controlling terminal. The foreground process group has
certain privileges when accessing its controlling terminal that are denied to background process groups.
See read(2) and write(2).

foreground process group ID
The process group ID of the foreground process group.

fork
An HP-UX system call (see fork(2)), which, when invoked by an existing process, causes a new process to be
created. The new process is called the child process; the existing process is called the parent process.
The child process is created by making an exact copy of the parent process. The parent and child processes
are able to identify themselves by the value returned by their corresponding fork call (see fork(2) for
details).

graphic character
A character other than a control character that has a visual representation when hand-written, printed, or
displayed.

group
See group ID.

group ID

Associates zero or more users who must all be permitted to access the same set of files. The members of a
group are defined in the files /etc/passwd and /etc/logingroup (if it exists) via a numerical group
ID that must be between zero and UID_MAX, inclusive. Users with identical group IDs are members of the
same group. An ASCII group name is associated with each group ID in the file /etc/group. A group ID
is also associated with every file in the file hierarchy, and the mode of each file contains a set of permis-
sion bits that apply only to this group. Thus, if you belong to a group that is associated with a file, and if
the appropriate permissions are granted to your group in the file’s mode, you can access the file. When the
identity of a group is associated with a process, a group ID value is referred to as a real group ID, an
effective group ID, a supplementary group ID, or a saved group ID. See also privileged group and
set-group-ID bit.

group access list
A set of supplementary group IDs used in determining resource accessibility. Access checks are per-
formed as described in file access permissions.

hardware path
A numeric string associated to a system component (bus, card, attached I/O device, and so on) and provid-
ing information related to the component location.

hierarchical directory
A directory (or file system) structure in which each directory can contain other directories as well as files.

home directory
The directory name given by the value of the environment variable HOME. When you first log in, login(1)
automatically sets HOME to your login directory. You can change its value at any time. This is usually
done in the .profile file contained in your login directory. Setting HOME does not affect your login

254 Hewlett-Packard Company -9- HP-UX 11i Version 3: February 2007

glossary(9) glossary(9)

directory; it simply gives you a convenient way of referring to what is probably your most commonly used
directory.

host name
A string of bytes that uniquely identifies the system in the network. The host name for your system can be
viewed and/or set with the hostname(1) command. More information can be found in the hostname(5) man-
page. See also node name.

image
The current state of your computer (or your portion of the computer, on a multiuser system) during the
execution of a command. Often thought of as a "snapshot" of the state of the machine at any particular
moment during execution.

init
A system process that performs initialization, is the ancestor of every other process in the system, and is
used to start login processes. init usually has a process ID of 1. See init(1M).

interleave factor
A number that determines the order in which sectors on a mass storage medium are accessed. It can be
optimized to make data acquisition more efficient.

inode
An inode is a structure that describes a file and is identified in the system by a file serial number. Every
file or directory has associated with it an inode. Permissions that specify who can access the file and how
are kept in a 9-bit field that is part of the inode. The inode also contains the file size, the user and group
ID of the file, the number of links, and pointers to the disk blocks where the fil€’s contents can be found.
Each connection between an inode and its entry in one or more directories is called a link.

inode number
See file serial number.

Internal Terminal Emulator (ITE)
The "device driver" code contained in the HP-UX kernel that is associated with the computer’s built-in key-
board and display or with a particular keyboard and display connected to the computer, depending on the
Series and Model of system processor. See system console and the System Administrator manuals sup-
plied with your system for details.

internationalization
The concept of providing software with the ability to support the native language, local customs, and
coded character set of the user.

interrupt signal
The signal sent by SIGINT (see signal(2)). This signal generally terminates whatever program you are
running. The key which sends this signal can be redefined with ioctl(2) or stty(1) (see termio(7)). It is often
the ASCII DEL (rubout) character (the DEL key) or the BREAK key. Ctrl-C is often used instead.

intrinsic
See system call.

1/0 redirection
A mechanism provided by the HP-UX shell for changing the source of data for standard input and/or the
destination of data for standard output and standard error. See sh(1).

ITE
See Internal Terminal Emulator.

job control
Job control allows users to selectively stop (suspend) execution of processes and continue (resume) their
execution at a later time.

The user employs this facility via the interactive interface jointly supplied by the system terminal driver
and certain shells (see sh(1)). The terminal driver recognizes a user-defined "suspend character", which
causes the current foreground process group to stop and the user’s job control shell to resume. The job

HP-UX 11i Version 3: February 2007 -10 - Hewlett-Packard Company 255

glossary(9) glossary(9)

control shell provides commands that continue stopped process groups in either the foreground or back-
ground. The terminal driver also stops a background process group when any member of the background
process group attempts to read from or write to the user’s terminal. This allows the user to finish or
suspend the foreground process group without interruption and continue the stopped background
process group at a more convenient time.

See stty (1), sh(1), and related shell entries for usage and installation details, and the shell entries plus sig-
nal(2) and termio(7) for implementation details.

kernel
The HP-UX operating system. The kernel is the executable code responsible for managing the computer’s
resources, such as allocating memory, creating processes, and scheduling programs for execution. The ker-
nel resides in RAM (random access memory) whenever HP-UX is running.

LANG
An environment variable used to inform a computer process of the user’s requirements for native
language, local customs, and coded character set.

legacy device special file
A special file associated with an I/O device (tape, disk, and so on), locked to a particular physical
hardware path, containing hardware path information such as SCSI bus, target, and LUN in the device
file name and minor number. See intro(7) for more information.

legacy hardware path
A hardware path following the legacy format conventions, that is, a series of bus-nexus addresses separated
by / (slash) characters, leading to a host bus adapter (HBA). Beneath the HBA, additional address ele-
ments are separated by . (period) characters. All elements are represented in decimal. See intro(7) for
more information.

library
A file containing a set of subroutines and variables that can be accessed by user programs. Libraries can be
either archives or shared libraries. For example, /usr/lib/libc.a and /usr/lib/libc.sl are
libraries containings all functions of Section 2 and all functions of Section 3 that are marked (3C) and (3S)
in the HP-UX Reference. Similarly, /usr/1ib/libm.a and /usr/1lib/libm.s1 are libraries con-
taining all functions in Section 3 that are marked (3M) in the HP-UX Reference. See intro(2) and intro(3C).

LIF
See Logical Interchange Format.

line
A sequence of text characters consisting of zero or more nonnewline characters plus a terminating newline
character.

link

Link is a synonym for directory entry. It is an object that associates a file name with any type of file.
The information constituting a link includes the name of the file and where the contents of that file can be
found on a mass storage medium. One physical file can have several links to it. Several directory entries
can associate names with a given file. If the links appear in different directories, the file may or may not
have the same name in each. However, if the links appear in one directory, each link must have a unique
name in that directory. Multiple links to directories are not allowed (except as created by a user with
appropriate privileges). See In(1), link(2), unlink(2), and symbolic link.

Also, to prepare a program for execution; see linker.

link count
The number of directory entries that refer to a particular file.

linker
A program that combines one or more object programs into one program, searches libraries to resolve user
program references, and builds an executable file in a.out format. This executable file is ready to be exe-
cuted through the program loader, exec(2). The linker is invoked with the /d(1) command. The linker is
often called a link editor.

256 Hewlett-Packard Company -11- HP-UX 11i Version 3: February 2007

glossary(9) glossary(9)

local customs
The conventions of a geographical area or territory for such things as date, time and currency formats.

localization
The process of adapting existing software to meet the local language, customs, and character set require-
ments of a particular geographical area.

Logical Interchange Format (LIF)
A standard format for mass storage implemented on many Hewlett-Packard computers to aid in media
transportability. See /if(4) for more detail.

login
The process of gaining access to HP-UX. This consists of successful execution of the login sequence defined
by login(1), which varies depending on the system configuration. It requests a login name and possibly one
or more passwords.

login directory
The directory in which you are placed immediately after you log in. This directory is defined for each user
in the file /etc/passwd. The shell variable HOME is set automatically to your login directory by
login(1) immediately after you log in. See home directory.

LUN
LUN refers to an end device, such as a disk or tape or a piece of logical storage in a disk array (mass
storage term). Also known as a Logical Unit (LU).

LUN hardware path
A virtualized path that can represent multiple paths to a single mass storage device. It starts with a vir-
tual bus-nexus (known as the virtual root node) with an address of 64000. Addressing beneath that vir-
tual root node consists of a virtual bus address and a virtual LUN identifier, delimited by / (slash) charac-
ters. See intro(7) for more information.

lunpath hardware path
A hardware path to a LUN. It is composed of a series of bus-nexus addresses separated by / (slash) charac-
ters, leading to a host bus adopter (HBA). Beneath the HBA, additional address elements are represented
in hexadecimal. The first elements represent a transport-dependent target address. The final element is a
LUN address, which is the 64-bit representation of the LUN identifier reported by the target. See intro(7)
for more information.

magic number
The first word of an a.out format or archive file. This word contains the system ID, which states what
machine (hardware) the file will run on, and the file type (executable, sharable executable, archive, etc.).

major number
A number used exclusively to create special files that enable I/O to or from specific devices. This number
indicates which device driver to use for the device. Refer to mknod(2) and the System Administrator
manual supplied with your system for details.

message catalog
Program strings, such as program messages and prompts, are stored in a message catalog corresponding
to a particular geographical area. Retrieval of a string from a message catalog is based on the value of
the user’s LANG environment variable (see LANG).

message queue identifier (msqid)
A unique positive integer created by a msgget(2) system call. Each msqid has a message queue and a data
structure associated with it. The data structure is referred to as msgid_ds and contains the following

members:
struct
ipc_perm msg perm; /* operation permission */
msggnum_t msg gnum; /* number of msgs on q */

msglen_t msg gbytes; /* max number of bytes on q */
msglen_t msg cbytes; /* current number of bytes on q */
pid_t msg_lspid; /* pid of last msgsnd operation */

HP-UX 11i Version 3: February 2007 -12 - Hewlett-Packard Company 257

glossary(9) glossary(9)

pid_t msg_ lrpid; /* pid of last msgrcv operation */
time_t msg_stime; /* last msgsnd time */
time_t msg_rtime; /* last msgrcv time */
time_t msg_ctime; /* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

Message queue identifiers can be created using ftok(3C).

msg_perm is a ipc_perm structure that specifies the message operation permission (see below). This
structure includes the following members:

uid_t cuid; /* creator user id */
gid_t cgid; /* creator group id */
uid_t uid; /* user id */

gid_t gid; /* group id */

mode_t mode; /* r/w permission */

msg_qgnum is the number of messages currently on the queue. msg_gbytes is the maximum number of
bytes allowed on the queue. msg_1lspid is the process id of the last process that performed a msgsnd
operation. msg_lrpid is the process id of the last process that performed a msgrcv operation.
msg_stime is the time of the last msgsnd operation, msg rtime is the time of the last msgrcv
operation, and msg_ctime is the time of the last msgctl(2) operation that changed a member of the above
structure.

message operation permissions

In the msgop(2) and msgctl(2) system call descriptions, the permission required for an operation is indi-
cated for each operation. Whether a particular process has these permissions for an object is determined by
the object’s permission mode bits as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a ms@id are granted to a process if one or more of the following are true:
e The process’s effective user ID is superuser.

o The process’s effective user ID matches msg_perm. [cluid in the data structure associated with
msqgid and the appropriate bit of the "user" portion (0600) of msg_perm.mode is set.

e The process’s effective user ID does not match msg_perm. [c]luid and either the process’s effective
group ID matches msg_perm. [c]lgid or one of msg_perm. [c]gid is in the process’s group access
list and the appropriate bit of the "group" portion (00060) of msg_perm.mode is set.

e The process’s effective user ID does not match msg perm. [c]Juid and the process’s effective group
ID does not match msg_perm. [clgid and neither of msg_perm. [clgid is in the process’s group
access list and the appropriate bit of the "other" portion (06) of msg_perm.mode is set.

Otherwise, the corresponding permissions are denied.

metacharacter

A character that has special meaning to the HP-UX shell, as well as to commands such as ed, £ind, and
grep (see ed(1), find(1), and grep(1)). The set of metacharacters includes: !, ", &, ', *,;,<,>, 2, [, 1,
', and |. Refer to sh(1) and the related shell manual entries for the meaning associated with each. See
also regular expression.

minor number

258

A number that is an attribute of special files, specified during their creation and used whenever they are
accessed, to enable I/O to or from specific devices. This number is passed to the device driver and is used to
select which device in a family of devices is to be used, and possibly some operational modes. The exact for-
mat and meaning of the minor number depends both on the driver and on the addressing format (legacy
or agile) being used. In legacy format, the minor number encodes path information, but in agile format, the
minor number is opaque and based on the WWID.

Hewlett-Packard Company -13 - HP-UX 11i Version 3: February 2007

glossary(9) glossary(9)

mode
A 16-bit word associated with every file in the file system, stored in the inode. The least-significant 12 bits
of the mode determine the read, write, and execute permissions for the file owner, file group, and all oth-
ers, and contain the set-user-ID, set-group-ID, and sticky bits. The least-significant 12 bits can be set by
the chmod(1) command if you are the file's owner or the superuser. These 12 bits are sometimes referred
to as permission bits. The most-significant 4 bits specify the file type for the associated file and are set as
the result of open(2) or mknod(2) system calls.

mountable file system
A removable blocked file system contained on some mass storage medium with its own root directory and
an independent hierarchy of directories and files. See block special file and mount(1M).

msqid
See message queue identifier.

Multiplexer (MUX)
Multiplexer (MUX) is a high-speed serial communication multiple port product. It combines various signals
for transmission over a single channel and provides intelligent communication functions to off-load CPU
serial communication processing tasks.

multiuser state

The condition of the HP-UX operating system in which terminals (in addition to the system console) allow
communication between the system and its users. By convention, multiuser run level is set at state 2,
which is usually defined to contain all the terminal processes and daemons needed in a multiuser environ-
ment. Run levels are table driven, and are specified by init(1M), which sets the run level by looking at the
file /etc/inittab. Do not confuse the multiuser system with the multiuser state. A multiuser system
is a system which can have more than one user actively communicating with the system when it is in the
multiuser state. The multiuser state removes the single-user restriction imposed by the single-user state
(see single-user state, inittab(4)).

native language
A computer user’s spoken or written language, such as Chinese, Dutch, English, French, German, Greek,
Italian, Katakana, Korean, Spanish, Swedish, Turkish, and so on.

Network File System (NF'S)
The Network File System (NFS) allows a client node to perform transparent file access over the network.

By using NFS, a client node operates on files residing on a variety of servers and server architectures, and
across a variety of operating systems. File access calls on the client (such as read requests) are converted
to NFS protocol requests and sent to the server system over the network. The server receives the request,
performs the actual file system operation, and sends a response back to the client.

NFS operates in a stateless manner using remote procedure calls (RPC) built on top of an external data
representation (XDR) protocol. The RPC protocol enables version and authentication parameters to be
exchanged for security over the network.

A server grants access to a specific file system to clients by adding an entry for that file system to the
server's /etc/dfs/dfstab file.

Native Language Support (NLS)
A feature of HP-UX that provides the user with internationalized software and the application programmer
with tools to develop this software.

newline character
The character with an ASCII value of 10 (line feed) used to separate lines of characters. It is represented
by \n in the C language and in various utilities. The terminal driver normally interprets a carriage-
return/line-feed sequence sent by a terminal as a single newline character (but see ¢ty (7) for full details)

NLS
See Native Language Support.

NLSPATH
An environment variable used to indicate the search path for message catalogs (see message catalog).

HP-UX 11i Version 3: February 2007 -14 - Hewlett-Packard Company 259

glossary(9) glossary(9)

node name
A string of bytes which uniquely identifies the system in the local network. Unlike the host name, the
node name cannot include domain names. It can be viewed and/or set with the uname(1) command. The
node and host names are usually set to the same value as application programs sometimes use the node
and host names interchangeably.

nonspacing characters
Characters, such as a diacritical mark or accents, that are used in combination with other characters to
form composite graphic symbols commonly found in non-English languages.

open file
A file that is currently associated with a file descriptor.

open file description
A record of how a process or a group of processes is accessing a file. Each file descriptor refers to exactly
one open file description, but an open file description can be referred to by more than one file descrip-
tor. The file offset, file status flags, and file access modes are attributes of an open file description.

ordinary file
A type of HP-UX file containing ASCII text (for example, program source), binary data (for example, exe-
cutable code), etc. Ordinary files can be created by the user through I/O redirection, editors, or HP-UX
commands.

orphan process
A child process that is left behind when a parent process terminates for any reason. The init process
(see init(1M)) inherits (that is, becomes the effective parent of) all orphan processes.

orphaned process group
A process group in which the parent of every member is either itself a member of the group or is not a
member of the group’s session.

owner
The owner of a file is usually the creator of that file. However, the ownership of a file can be changed by
the superuser or the current owner with the chown(1l) command or the chown(2) system call. The file
owner is able to do whatever he wants with his files, including remove them, copy them, move them,
change their contents, etc. The owner can also change the files’ modes.

parent directory
The directory one level above a directory in the file hierarchy. All directories except the root directory
(/) have one (and only one) parent directory. The root directory has no parent. See also dot and dot-
dot.

parent process
Whenever a new process is created by a currently-existing process (via fork(2)), the currently existing pro-
cess is said to be the parent process of the newly created process. Every process has exactly one parent
process (except the init process, see init), but each process can create several new processes with the
fork(2) system call. The parent process ID of any process is the process ID of its creator.

parent process ID
A new process is created by a currently active process. The parent process ID of a process is the process
ID of its creator for the lifetime of the creator. After the creator’s lifetime has ended, the parent process
ID is the process ID of init.

password
A string of ASCII characters used to verify the identity of a user. Passwords can be associated with users
and groups. If a user has a password, it is automatically encrypted and entered in the second field of that
user’s line in the /etc/passwd file. A user can create or change his or her own password by using the
passwd (1) command.

path name
A sequence of directory names separated by slashes, and ending with any file name. All file names except
the last in the sequence must be directories. If a path name begins with a slash (/), it is an absolute

260 Hewlett-Packard Company -15- HP-UX 11i Version 3: February 2007

glossary(9) glossary(9)

path name; otherwise, it is a relative path name. A path name defines the path to be followed through
the hierarchical file system in order to find a particular file.

More precisely, a path name is a null-terminated character string constructed as follows:

<path-name>::=<file-name> | <path-prefix><file-name> |/
<path-prefix>::=<rtprefix> | / <rtprefix>
<rtprefix>::=<dirname>/ | <rtprefix><dirname>/

where <file-name> is a string of one or more characters other than the ASCII slash and null, and <dir-
name> is a string of one or more characters (other than the ASCII slash and null) that names a directory.
File and directory names can consist of up to 14 characters on systems supporting short file names and up
to 255 characters on systems supporting long file names.

A slash (/) by itself names the root directory. Two or more slashes in succession (////...) are treated
as a single slash.

Unless specifically stated otherwise, the null or zero-length path name is treated as though it named a
nonexistent file.

path name resolution
The process that resolves a path name to a particular file in a file hierarchy. Multiple path names can
resolve to the same file, depending on whether resolution is sought in absolute or relative terms (see
below). Each file name in the path name is located in the directory specified by its predecessor (for exam-
ple, in the path name fragment a/b, file b is located in directory a). Path name resolution fails if this
cannot be accomplished.

If the path name begins with a slash, the predecessor of the first file name in the path name is understood
to be the root directory of the process, and the path name is referred to as an absolute path name. If
the path name does not begin with a slash, the predecessor of the first file name of the path name is under-
stood to be the current working directory of the process, and the path name is referred to as a relative
path name. A path name consisting of a single slash resolves to the root directory of the process.

path prefix
A path name with an optional ending slash that refers to a directory.

permission bits
The nine least-significant bits of a file€'s mode are referred to as file permission bits. These bits deter-
mine read, write, and execute permissions for the fil€s owner, the file's group, and all others. The bits
are divided into three parts: owner, group and other. Each part is used with the corresponding file class of p
processes. The bits are contained in the file mode, as described in sta#(5). The detailed usage of the file
permission bits in access decisions is described in file access permissions.

persistent device special file
A device file for mass storage devices, which is associated with a LUN hardware path, and thus tran-
sparently supports agile addressing and multipathing. In other words, a persistent device special file is
unchanged if the LUN is moved from one host bus adapter (HBA) to another, moved from one switch/hub
port to another, presented via a different target port to the host, or configured with multiple hardware
paths. See intro(7) for more information on device special files.

PIC
See position-independent code.

pipe
An interprocess I/O channel used to pass data between two processes. It is commonly used by the shell to
transfer data from the standard output of one process to the standard input of another. On a command
line, a pipe is signaled by a vertical bar (|). Output from the command to the left of the vertical bar is
channeled directly into the standard input of the command on the right.

portable file name character set
The following set of graphical characters are portable across conforming implementations of IEEE Standard
P1003.1:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz
01234567890._-

HP-UX 11i Version 3: February 2007 -16 - Hewlett-Packard Company 261

glossary(9) glossary(9)

The last three characters are the dot, underscore and hyphen characters, respectively. The hyphen should
not be used as the first character of a portable file name.

position-independent code (PIC)
Object code that can run unmodified at any virtual address. Position-independent code can use PC-relative
addressing modes and/or linkage tables. It is most often used in shared libraries, in which case the linkage
tables are initialized by the dynamic loader. Position-independent code is generated when the +z or +2Z
compiler option is specified.

privileged groups
A privileged group is a group that has had a setprivgrp (see getprivgrp(2)) operation performed on
it, giving it access to some system calls otherwise reserved for the superuser. See appropriate
privileges.

process
An invocation of a program, or the execution of an image (see image). Although all commands and utilities
are executed within processes, not all commands or utilities have a one-to-one correspondence with
processes. Some commands (such as e¢d) execute within a process, but do not create any new processes.
Others (such as in the case of 1s | we -1) create multiple processes. Several processes can be running
the same program, but each can be different data and be in different stages of execution. A process can also
be thought of as an address space and single thread of control that executes within that address space
and its required system resources. A process is created by another process issuing the fork(2) function.
The process that issues fork(2) is known as the parent process and the new process created by the fork(2)
as the child process.

process 1
See init.

process group
Each process in the system is a member of a process group. This grouping permits the signaling of
related processes. A newly created process joins the process group of its creator.

process group ID
Each process group in the system is uniquely identified during its lifetime by a process group ID, a posi-
tive integer less than or equal to PIC_MAX. A process group ID cannot be reused by the system until
the process group lifetime ends.

process group leader
A process group leader is a process whose process ID is the same as its process group ID.

process group lifetime
A period of time that begins when a process group is created and ends when the last remaining process in
the group leaves the group, either due to process termination or by calling the setsid(2) or setpgid(2) func-
tions.

process ID
Each active process in the system is uniquely identified during its lifetime by a positive integer less than or
equal to PID_MAX called a process ID. A process ID cannot be reused by the system until after the pro-
cess lifetime ends. In addition, if there exists a process group whose process group ID is equal to that pro-
cess ID, the process ID cannot be reused by the system until the process group lifetime ends.

process lifetime
After a process is created with a fork(2) function, it is considered active. Its thread of control and address
space exist until it terminates. It then enters an inactive state where certain resources may be returned
to the system, although some resources, such as the process ID are still in use. When another process
executes a wait (), wait3 (), or waitpid() function (see wait(2)) for an inactive process, the remain-
ing resources are returned to the system. The last resource to be returned to the system is the process ID.
At this time, the lifetime of the process ends.

program
A sequence of instructions to the computer in the form of binary code (resulting from the compilation and
assembly of program source).

262 Hewlett-Packard Company -17- HP-UX 11i Version 3: February 2007

glossary(9) glossary(9)

prompt
The characters displayed by the shell on the terminal indicating that the system is ready for a command.
The prompt is usually a dollar sign ($) for ordinary users (% in the C shell) and a pound sign (#) for the
superuser, but you can redefine it to be any string by setting the appropriate shell variable (see sh(1) and
related entries). See also secondary prompt.

quit signal
The SIGQUIT signal (see signal(2). The quit signal is generated by typing the character defined by the
teletype handler as your quit signal. (See stty(1), ioctl(2), and termio(7).) The default is the ASCII FS
character (ASCII value 28) generated by typing Ctrl-\. This signal usually causes a running program to
terminate and generates a file containing the "core image" of the terminated process. The core image is
useful for debugging purposes. (Some systems do not support core images, and on those systems no such
file is generated.)

radix character
The character that separates the integer part of a number from the fractional part. For example, in Ameri-
can usage, the radix character is a decimal point, while in Europe, a comma is used.

raw disk
The name given to a disk for which there exists a character special file that allows direct transmission
between the disk and the user’s read or write buffer. A single read or write call results in exactly one I/O
call.

read-only file system
A characteristic of a file system that prevents file system modifications.

real group ID
A positive integer which is assigned to every user on the system. The association of a user and his or her
real group ID is done in the file /etc/passwd. The modifier "real" is used because a user can also have
an effective group ID. The real group ID can then be mapped to a group name in the file /etc/group,
although it need not be. Thus, every user is a member of some group (which can be nameless), even if that
group has only one member.

Every time a process creates a child process (via fork(2)), that process has a real group ID equal to the
parent process’s real group ID. This is useful for determining file access privileges within the process.

real user ID p
A positive integer which is assigned to every user on the system. A real user ID is assigned to every valid
login name in the file /etc/passwd. The modifier "real" is used because a user can also have an
effective user ID (see effective user ID).

Every time a process creates a child process (via fork(2)), that process has a real user ID equal to the
parent process’s real user ID. This is useful for determining file access privileges within the process.

regular expression

A string of zero or more characters that selects text. All the characters contained in the string might be
literal, meaning that the regular expression matches itself only; or one or more of the characters might be a
metacharacter, meaning that a single regular expression could match several literal strings. Regular
expressions are most often encountered in text editors (such as ed(1), ex(1), or vi(1)), where searches are
performed for a specific piece of text, or in commands that were created to search for a particular string in
a file (most notably grep(1)). Regular expressions are also encountered in the shell, especially when refer-
ring to file names on command lines.

regular file
A type of file that is a randomly accessible sequence of bytes, with no further structure imposed by the sys-
tem. Its size can be extended. A regular file is also called an ordinary file.

relative path name
A path name that does not begin with a slash (/). It indicates that a fil€’s location is given relative to
your current working directory, and that the search begins there (instead of at the root directory). For
example, dirl/file2 searches for the directory dirl in your current working directory; then dir1l is
searched for the file file2.

HP-UX 11i Version 3: February 2007 -18 - Hewlett-Packard Company 263

glossary(9) glossary(9)

__restrict
A macro that is optionally applied to the function prototype when the application developer directly or
indirectly selects C99 conformance. If the user chooses C99 conformance, the __restrict macro is changed
to the restrict keyword. Otherwise, the __restrict macro is expanded to an empty string.

root directory
(1) The highest level directory of the hierarchical file system, from which all other files branch. In HP-
UX, the slash (/) character refers to the root directory. The root directory is the only directory in
the file system that is its own parent directory.

(2) Each process has associated with it a concept of a root directory for the purpose of resolving path
name searches for those paths beginning with slash (/). A process’s root directory need not be the
root directory of the root file system, and can be changed by the chroot(1M) command or chroot(2) sys-
tem call. Such a directory appears to the process involved to be its own parent directory.

root volume
The mass storage volume which contains the boot area (which contains the HP-UX kernel) and the root
directory of the HP-UX file system.

saved group ID

Every process has a saved group ID that retains the process’s effective group ID from the last successful
exec(2) or setresgid() (see setresuid(2)), or from the last superuser call to setgid() (see setuid(2))
or setresuid(2). setgid () permits a process to set its effective group ID to this remembered value. Con-
sequently, a process that executes a program with the set-group-ID bit set and with a group ID of 5 (for
example) can set its effective group ID to 5 at any time until the program terminates. See exec(2),
setuid(2), saved user ID, effective group ID, and set-group-ID bit. The saved group ID is also known
as the saved set-group-ID.

saved process group ID
Every process has a saved process group ID that retains the process’s group ID from the last successful
exec(2). See setpgrp(2), termio(7), and process group ID.

saved user ID
Every process has a saved user ID that retains the process’s effective user ID from the last successful
exec(2) or setresuid(2), or from the last superuser call to setuid(2). setuid(2) permits a process to set its
effective user ID to this remembered value. Consequently, a process which executes a program with the
set-user-ID bit set and with an owner ID of 5 (for example) can set its effective user ID to 5 at any time
until the program terminates. See exec(2), setuid(2), saved group ID, effective user ID, and set-user-
ID bit. The saved user ID is also known as the saved set-user-ID.

saved set-group-ID
See saved group ID.

saved set-user-ID
See saved user ID.

SCCS
See Source Code Control System.

Source Code Control System (SCCS)
A set of HP-UX commands that enables you to store changes to an SCCS file as separate "units" (called
deltas). These units, each of which contains one or more textual changes to the file, can then be applied to
or excluded from the SCCS file to obtain different versions of the file. The commands that make up SCCS
are admin(1), cde(1), delta(1), get(1), prs(1), rmdel(1), sact(1), scesdiff(1), unget(1), val(1), and what(1).

SCCS file
An ordinary text file that has been modified so the Source Code Control System (SCCS) can be used
with it. This modification is done automatically by the admin(1) command. See also delta.

secondary prompt
One or more characters that the shell prints on the display, indicating that more input is needed. This
prompt is not encountered nearly as frequently as the shell’s primary prompt (see prompt). When it
occurs, it is usually caused by an omitted right quote on a string (which confuses the shell), or when you

264 Hewlett-Packard Company -19- HP-UX 11i Version 3: February 2007

glossary(9) glossary(9)

enter a shell programming language control-flow construct (such as a for construct) from the command
line. By default, the shell’s secondary prompt is the greater-than sign (>), but you can re-define it by set-
ting the shell variable PS2 appropriately in your .profile file. (The C shell has no secondary prompt.)

semaphore identifier (semid)
A unique positive integer created by a semget(2) system call. Each semid has a set of semaphores and a
data structure associated with it. The data structure is referred to as semid_ds and contains the follow-
ing members:

struct

ipc_perm sem_perm; /* operation permission */
ushort sem_nsems; /* number of sems in set */
time_t sem_otime; /* last operation time */
time_t sem_ctime; /* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

Semaphore identifiers can be created using ftok(3C).

sem_perm is a ipc_perm structure that specifies the semaphore operation permission (see below). This
structure includes the following members:

uid_t cuid; /* creator user id */
gid_t cgid; /* creator group id */
uid_t uid; /* user id */

gid_t gid; /* group id */

mode_t mode; /* r/a permission */

The value of sem_nsems is equal to the number of semaphores in the set. Each semaphore in the set is
referenced by a positive integer referred to as a sem_num. sem_num values run sequentially from 0 to
the value of sem_nsems minus 1. sem_otime is the time of the last semop(2) operation, and
sem_ctime is the time of the last semctl(2) operation that changed a member of the above structure.

semaphore operation permissions
In the semop(2) and semctl(2) system call descriptions, the permission required for an operation is indicated
for each operation. Whether a particular process has these permissions for an object is determined by the
object’s permission mode bits as follows:

00400 Read by user
00200 Alter by user
00060 Read, Alter by group
00006 Read, Alter by others

Read and Alter permissions on a semid are granted to a process if one or more of the following are true:
e The process’s effective user ID is superuser.

e The process’s effective user ID matches sem_perm. [cluid in the data structure associated with
semid and the appropriate bit of the "user" portion (0600) of sem_perm.mode is set.

e The process’s effective user ID does not match sem_perm. [cluid and the appropriate bit of the
"group” portion (060) of sem_perm.mode is set.

e The process’s effective user ID does not match sem_perm. [c]luid and the process’s effective group
ID does not match sem_perm. [clgid and neither of sem_perm. [c]gid is in the process’s group
access list and the appropriate bit of the "other" portion (06) of sem_perm.mode is set.

Otherwise, the corresponding permissions are denied.

semid
See semaphore identifier.

session
Each process group is a member of a session. A process is considered to be a member of the session of
which its process group is a member. A newly created process joins the session of its creator. A process
can alter its session membership (see setsid(2)). A session can have multiple process groups (see
setpgid(2)).

HP-UX 11i Version 3: February 2007 -20 - Hewlett-Packard Company 265

glossary(9) glossary(9)

session leader
A process that has created a session (see setsid(2)).

session lifetime
The period between when a session is created and the end of the lifetime of all process groups that remain
as members of the session.

set-group-ID bit
A single bit in the mode of every file in the file system. If a file is executed whose set-group-ID bit is set,
the effective group ID of the process which executed the file is set equal to the real group ID of the
owner of the file. See also group.

set-user-ID bit
A single bit in the mode of every file in the file system. If a file is executed whose set-user-ID bit is set,
the effective user ID of the process that executed the file is set equal to the real user ID of the owner of
the file.

shared library
An executable file that can be shared between several different programs. Code from a shared library is
not linked into the program by /d(1), but is instead mapped into the process’s address space at run time by
the dynamic loader. Shared libraries must contain position-independent code, and are created by Id(1).
They typically have the file name suffix .s1.

shared memory identifier (shmid)
A unique positive integer created by a shmget(2) system call. Each shmid has a segment of memory
(referred to as a shared memory segment) and a data structure associated with it. The data structure is
referred to as shmid_ds and contains the following members:

struct

ipc_perm shm perm; /* operation permission struct */
size_t shm_segsz; /* size of segment */

pid_t shm_cpid; /* creator pid */

pid_t shm lpid; /* pid of last operation */
shmatt_t shm_nattch; /* number of current attaches */
time_t shm atime; /* last attach time */

time_t shm dtime; /* last detach time */

time_t shm_ctime; /* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

Shared memory identifiers can be created using ftok(3C).

shm_perm is a ipc_perm structure that specifies the permission for a shmop(2) or shmectl(2) operation
(see below). This structure includes the following members:

uid_t cuid; /* creator user id */
gid_t cgid; /* creator group id */
uid_t uid; /* user id */

gid_t gid; /* group id */

mode_t mode; /* r/w permission */

shm_segsz specifies the size of the shared memory segment. shm_cpid is the process id of the process
that created the shared memory identifier. shm_1pid is the process id of the last process that performed
a shmop(2) operation. shm_nattch is the number of processes that currently have this segment
attached. shm_atime is the time of the last shmat operation, shm_dtime is the time of the last
shmdt operation, and shm_ctime is the time of the last shmctl(2) operation that changed one of the
members of the above structure.

shared memory operation permissions
In the shmop(2) and shmectl(2) system call descriptions, the permission required for an operation is indi-
cated for each operation. Whether a particular process has the permission to perform a shmop(2) or
shmctl(2) operation on an object is determined by the object’s permission mode bits as follows:

00400 Read by user

266 Hewlett-Packard Company -21- HP-UX 11i Version 3: February 2007

glossary(9) glossary(9)

00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions for a shmop(2) or shmctl(2) operation on a shared memory identifier
(shmid) are granted to a process if one or more of the following are true:

e The process’s effective user ID is superuser.

e The process’s effective user ID matches shm_perm. [c]uid in the data structure associated with the
shmid and the appropriate bit of the "user" portion (0600) of shm_perm.mode is set.

e The process’s effective user ID does not match shm_perm. [c]Juid and either the process’s effective
group ID matches shm_perm. [c]lgid or one of shm_perm. [c]gid is in the process’s group access
list and the appropriate bit of the "group" portion (060) of shm_perm.mode is set.

e The process’s effective user ID does not match shm_perm. [c]Juid and the process’s effective group
ID does not match shm_perm. [c]lgid and neither of shm_perm. [c]gid is in the process’s group
access list and the appropriate bit of the "other" portion (06) of shm_perm.mode is set.

Otherwise, the corresponding permissions are denied.

shell
A user interface to the HP-UX operating system. A shell often functions as both a command interpreter
and an interpretive programming language. A shell is automatically invoked for every user who logs in.
See sh(1) and its related manual entries plus the tutorials supplied with your system for details.

shell program
See shell script.

shell script
A sequence of shell commands and shell programming language constructs stored in a file and invoked as a
user command (program). No compilation is needed prior to execution because the shell recognizes the
commands and constructs that make up the shell programming language. A shell script is often called a
shell program or a command file. See the Shells User Guide.

shmid
See shared memory identifier.

signal
A software interrupt sent to a process, informing it of special situations or events. Also, the event itself.
See signal(2).

single-user state
A condition of the HP-UX operating system in which the system console provides the only communication
mechanism between the system and its user. By convention, single-user state is usually specified by S
init(1M) as run-level S or s. Do not confuse single-user state, in which the software is limiting a mul-
tiuser system to a single-user communication, with a single-user system, which can never communicate
with more than one fixed terminal. See also multiuser state.

slash
The literal character /. A path name consisting of a single slash resolves to the root directory of the
process. See also path name resolution.

solidus
See slash.

source code
The fundamental high-level information (program) written in the syntax of a specified computer language.
Object (machine-language) code is derived from source code. When dealing with an HP-UX shell command
language, source code is input to the command language interpreter. The term shell script is
synonymous with this meaning. When dealing with the C Language, source code is input to the cc(1)
command. Source code can also refer to a collection of sources meeting any of the above conditions.

HP-UX 11i Version 3: February 2007 -22 - Hewlett-Packard Company 267

glossary(9) glossary(9)

special file
A file associated with an I/O device. Often called a device file. Special files are read and written the same
as ordinary files, but requests to read or write result in activation of the associated device. Due to con-
vention and consistency, these files should always reside in the /dev directory. See also file.

special system processes
Special system processes are those which are critical to basic system operation. They include: the
scheduler, the initialization process (also known as init) and the pager.

SS/80
See CS/80.

standard error
The destination of error and special messages from a program, intended to be used for diagnostic messages.
The standard error output is often called stderr, and is automatically opened for writing on file descriptor
2 for every command invoked. By default, the user’s terminal is the destination of all data written to stan-
dard error, but it can be redirected elsewhere. Unlike standard input and standard output, which are
never used for data transfer in the "wrong" direction, standard error is occasionally read. This is not
recommended practice, since I/O redirection is likely to break a program doing this.

standard input
The source of input data for a program. The standard input file is often called stdin, and is automatically
opened for reading on file descriptor 0 for every command invoked. By default, the user’s terminal is the
source of all data read from standard input, but it can be redirected from another source.

standard output
The destination of output data from a program. The standard output file is often called stdout, and is
automatically opened for writing on file descriptor 1 for every command invoked. By default, the user’s ter-
minal is the destination of all data written to standard output, but it can be redirected elsewhere.

stderr
See standard error.

stdin
See standard input.

stdout
See standard output.

stream
A term most often used in conjunction with the standard I/O library routines documented in Section 3 of
this manual. A stream is simply a file pointer (declared as FILE *stream) returned by the fopen(3S)
library routines. It may or may not have buffering associated with it (by default, buffering is assigned, but
this can be modified with setbuf(3S)).

sticky bit
A single bit in the mode of every file in the file system. The sticky bit has no significance if it is set on a
regular file.

If set on a directory, the files in that directory can be removed or renamed only by the owner of the file, the
owner of the directory containing the file, or superuser. See also chmod(2), rename(2), rmdir(2), and
unlink(2).

subdirectory
A directory that is one or more levels lower in the file system hierarchy than a given directory. Sometimes
called a subordinate directory.

subordinate directory
See subdirectory.

Subset 1980
See CS/80.

268 Hewlett-Packard Company -23 - HP-UX 11i Version 3: February 2007

glossary(9) glossary(9)

superblock
A block on each file system’s mass storage medium which describes the file system. The contents of the
superblock vary between implementations. Refer to the system administrator manuals supplied with your
system for details.

superuser
The HP-UX system administrator. This user has access to all files, and can perform privileged operations.
superuser has a real user ID and effective user ID of 0, and, by convention, the user name of root.

superior directory
See parent directory.

supplementary group ID
A process has up to sysconf (_SC_NGROUPS_MAX) supplementary group IDs used in determining file
access permissions, in addition to the effective group ID. The supplementary group IDs of a process are set
to the supplementary group IDs of the parent process when the process is created. Note that the value
returned from sysconf (_SC_NGROUPS_MAX) may be larger than the value of NGROUPS_MAX found
in <limits.h> on certain HP-UX systems.

symbolic link
A type of file that indirectly refers to a path name. See symlink(4).

system
The HP-UX operating system. See also kernel.

system asynchronous I/0
A method of performing I/O whereby a process informs a driver or subsystem that it wants to know when
data has arrived or when it is possible to perform a write request. The driver or subsystem maintains a set
of buffers through which the process performs I/O. See ioctl(2), read(2), select(2), and write(2) for more
information.

system call
An HP-UX operating system kernel function available to the user through a high-level language (such as
FORTRAN, Pascal, or C). Also called an "intrinsic" or a "system intrinsic." The available system calls are
documented in Section 2 of the HP-UX Reference.

system console
A keyboard and display (or terminal) given a unique status by HP-UX and associated with the special file
/dev/console. All boot ROM error messages, HP-UX system error messages, and certain system
status messages are sent to the system console. Under certain conditions (such as the single-user state),
the system console provides the only mechanism for communicating with HP-UX. See the System Adminis-
trator manuals and user guides provided with your system for details on configuration and use of the sys-
tem console.

system process
A system process is a process that runs on behalf of the system. It may have special implementation-
defined characteristics.

terminal
A character special file that obeys the specifications of termio (7).

terminal affiliation

The process by which a process group leader establishes an association between itself and a particular ter-
minal. A terminal becomes affiliated with a process group leader (and subsequently all processes created by
the process group leader, see terminal group) whenever the process group leader executes (either directly
or indirectly) an open(2) or creat(2) system call to open a terminal. Then, if the process which is executing
open(2) or creat(2) is a process group leader, and if that process group leader is not yet affiliated with a ter-
minal, and if the terminal being opened is not yet affiliated with a process group, the affiliation is esta-
blished (however, see open(2) description of O_ NOCTTY).

An affiliated terminal keeps track of its process group affiliation by storing the process group’s process
group ID in an internal structure.

HP-UX 11i Version 3: February 2007 -24 - Hewlett-Packard Company 269

glossary(9) glossary(9)

Two benefits are realized by terminal affiliation. First, all signals sent from the terminal are sent to all
processes in the terminal group. Second, all processes in the terminal group can perform I/O to/from the
generic terminal driver /dev/tty, which automatically selects the affiliated terminal.

Terminal affiliation is broken with a terminal group when the process group leader terminates, after which
the hangup signal is sent to all processes remaining in the process group. Also, if a process (which is not a
process group leader) in the terminal group becomes a process group leader via the setpgrp(2) system call,
its terminal affiliation is broken.

See process group, process group leader, terminal group, and setpgrp(2).

terminal device
See terminal.

text file
A file that contains characters organized into one or more lines. The lines cannot contain NUL characters,
and none can exceed LINE_MAX bytes in length including the terminating newline character. Although
neither the kernel nor the C language implementation distinguishes between text files and binary files (see
ANSI C Standard X3-159-19xx), many utilities behave predictably only when operating on text files.

tty
Originally, an abbreviation for teletypewriter; now, generally, a terminal.

upshifting
The conversion of a lowercase character to its uppercase representation.

user ID
Each system user is identified by an integer known as a user ID, which is in the range of zero to
UID_MAX, inclusive. Depending on how the user is identified with a process, a user ID value is referred
to as a real user ID, an effective user ID, or a saved user ID.

UTC
See Epoch.

utility
An executable file, which might contain executable object code (that is, a program), or a list of commands
to execute in a given order (that is, a shell script). You can write your own utilities, either as executable
programs or shell scripts (which are written in the shell programming language).

volume number
Part of an address used for devices. A number whose meaning is software- and device-dependent, but
which is often used to specify a particular volume on a multivolume disk drive. See the System Adminis-
trator manuals supplied with your system for details.

whitespace
One or more characters which, when displayed, cause a movement of the cursor or print head, but do not
result in the display of any visible graphic. The whitespace characters in the ASCII code set are space, tab,
newline, form feed, carriage return, and vertical tab. A particular command or routine might interpret
some, but not necessarily all, whitespace characters as delimiters for fields, words, or command options.

working directory
Each process has associated with it the concept of a current working directory. For a shell, this appears as
the directory in which you currently "reside". This is the directory in which relative path name (that is, a
path name that does not begin with /) searches begin. It is sometimes referred to as the current direc-
tory, or the current working directory.

zombie process
The name given to a process which terminates for any reason, but whose parent process has not yet waited
for it to terminate (via wait(2)). The process which terminated continues to occupy a slot in the process
table until its parent process waits for it. Because it has terminated, however, there is no other space allo-
cated to it either in user or kernel space. It is therefore a relatively harmless occurrence which will rectify
itself the next time its parent process waits. The ps(1) command lists zombie processes as defunct.

270 Hewlett-Packard Company - 25— HP-UX 11i Version 3: February 2007

glossary(9) glossary(9)

SEE ALSO

introduction(9).

HP-UX 11i Version 3: February 2007 - 26 - Hewlett-Packard Company 271

introduction (9) introduction (9)

NAME
introduction - HP-UX operating system and HP-UX Reference

INTRODUCTION
HP-UX is the Hewlett-Packard Company’s implementation of a UNIX® operating system that is compatible
with various industry standards. It is based on the System V Release 4 operating system (SVR4) and
includes important features from the Fourth Berkeley Software Distribution (4BSD).

Improvements include enhanced capabilities and other features, developed by HP to make HP-UX a very
powerful, useful, and reliable operating system, capable of supporting a wide range of applications ranging
from simple text processing to sophisticated engineering graphics and design. It can readily be used to con-
trol instruments and other peripheral devices. Real-time capabilities further expand the flexibility of HP-
UX as a powerful tool for solving tough problems in design, manufacturing, business, and other areas where
responsiveness and performance are important.

Extensive international language support enables HP-UX to interact with users in any of dozens of human
languages. HP-UX interfaces easily with local area networks and resource-sharing facilities. By using
industry-standard protocols, HP-UX provides flexible interaction with other computers and operating sys-
tems. Optional software products extend HP-UX capabilities into a broad range of specialized needs.

The HP-UX Reference is not a learning tool for beginners. It is primarily a reference tool that is most use-
ful for experienced users of UNIX or UNIX-like systems. If you are not already familiar with UNIX or HP-
UX, refer to the series of Beginner’s Guides, tutorial manuals, and other learning documents supplied with
your system or available separately. System implementation and maintenance details are explained in the
HP-UX System Administrator’s Guide.

OTHER MANPAGES
This introduction and the section intro manpages describe the "core" manpages that are delivered with HP-
UX. Other manpages may be delivered separately with optional HP-UX and third-party software and may
reside in the same directories as the core manpages, or in other directories.

MANPAGE ORGANIZATION
The contents of the HP-UX Reference and its on-line counterpart are a number of independent entries
called manpages. These are also called manual entries or reference pages.

For convenient reference, the manpages are divided into eight specialized sections. The printed manual
also has a table of contents for each volume and a composite index.

Each manpage consists of one or more printed pages, with the manpage name and section number printed
in the upper corners. Manpages are arranged alphabetically within each section of the reference, except for
the intro page at the beginning of each section. Manpages are referred to by name and section number, in
the form pagename(section).

The manpages are available on-line through the man command if the manpages are present on the system.
Refer to the man(1) manpage in Section 1 for more information.

Each page in the printed manual has two page numbers, printed at the bottom of the page. The center
page number starts over with page 1 at the beginning of each new manpage; it is placed between two
dashes in normal typeface. The number printed at the outside corner on each page is the sequence number
of the page within the volume. Users usually locate manpages by the alphabetic headings at the top of the
page as when reading a dictionary.

Some manpages describe two or more commands or routines. In such cases, the manpage is usually named
for the first command or function that appears in the NAME section. Occasionally, a manpage name
appears as a group descriptor in the NAME section. In such instances, the name describes the commands
or functions in more general terms. For example, the acct(1M) manpage with group descriptor acct:
describes the acctdisk, acctdusg, accton, and other commands, while the string(3C) manpage with
group descriptor string: describes many character string functions.

SECTIONS OF THE HP-UX REFERENCE
The HP-UX Reference contains the following sections:
Volume Table of Contents (Printed Volumes)

A complete listing of all manpages in the order they appear in each section, as well as alphabetically
intermixed lists of all command, function, and feature names that are different from the manpage
where they appear.

272 Hewlett-Packard Company -1- HP-UX 11i Version 3: February 2007

introduction (9) introduction (9)

Section 1: User Commands
Programs that are usually invoked directly by users or from command language procedures (scripts).
Section 1M: System Administration Commands

Commands used for system installation and maintenance, including boot processes, crash recovery,
system integrity testing, and other needs. Most commands in this section require the superuser
privilege.

Section 2: System Calls

Entries into the HP-UX kernel, including the C-language interface. These topics are primarily of
interest to programmers.

Section 3: Library Functions

Available subroutines that reside (in binary form) in various system libraries. These topics are pri-
marily of interest to programmers.

Section 4: File Formats

The structure of various types of files, such as header files, primarily of interest to administrators and
programmers. For example, the link editor output file format is described in a.out(4). Files that are
used only by a single command (such as intermediate files used by assemblers) are not described. C-
language declarations corresponding to the formats in Section 4 can be found in the directories
/usr/include and /usr/include/sys.

Section 5: Miscellaneous Topics

A variety of information, such as descriptions of character sets, macro packages, and kernel tunables.
Section 6 (Unused)

This section was traditionally used for games. None are shipped with HP-UX.
Section 7: Device Special Files

The characteristics of device special files (DSF) that provide the link between HP-UX and system I/O
devices. The names for each topic usually refer to the type of I/O device rather than to the names of
individual special files.

Section 8: System Administration Commands

Some UNIX and Linux vendors put system administration commands here. Some third party vendors
install commands in this section in HP-UX.

Section 9: General Information
General introductions (such as this) and a glossary of terms used in the HP-UX environment.

This section is also used by the Driver Development Kit to store its function and structure manpages,
using the section numbers 9E, 9F, and 9S.

Composite Index (Printed Manual)

An alphabetical listing of keywords and topics based on the NAME section near the beginning of each
manpage as well as other information, cross-referenced to manpage names and sections. The index
also contains references to built-in features in the various command interpreters ("shells").

MANPAGE FORMATS
All manpages follow an established section heading format, but not all section headings are included in each
manpage. A few manpages have self-explanatory specialized headings.

NAME

Gives the names of the commands, functions, or features and briefly states the purpose.

SYNOPSIS
Summarizes the syntax of the command or program entity. A few conventions are used:

Constant-width characters indicate literal characters that should be entered exactly as they
appear. These characters appear in bold in the online manpages.

Italic strings represent variable elements that should be replaced with appropriate values.

HP-UX 11i Version 3: February 2007 -2- Hewlett-Packard Company 273

introduction (9) introduction (9)

274

Roman square brackets ([]) indicate that the contents are optional.
Roman braces ({}) indicate a required element, usually in a choice.
Ellipses (...) indicate that the previous element and its preceding whitespace (if any) can be repeated.

Note: An argument beginning with a dash (=), a plus sign (+), or an equal sign (=) is often defined as
a command option, even if it appears in a position where a file name could appear. Therefore, it is
unwise to have files names that begin with -, +, or =.

Optional subsections can include the following:

Parameters For functions, a description of the parameters in the preceding syntax.
Structure Members For structures, a description of the structure elements in the preced-
ing syntax.
Remarks Information about special software or hardware requirements.
DESCRIPTION

Discusses the function and behavior of each entry.

Optional subsections can include the following:

Options For commands, a description of the switch arguments.
Operands For commands, a description of the nonswitch arguments and key-
words.

Access Control Lists
Multithread Usage
Security Restrictions Information on restrictions and privileges required to use the item.

EXTERNAL INFLUENCES
Information on what external factors, such as environment variables, may affect system behavior.

Optional subsections can include the following:

Environment Variables The effect of language-related and other environment variables on sys-
tem behavior,

International Code Set Support
Whether there is support for single- and multibyte characters,

NETWORKING FEATURES
Information under this heading is applicable only if you are using the network feature described there.

Optional subsections can include the following:
NFS Information on the network file system.

RETURN VALUE
Describes the values returned by function calls or in the return code ($?) by commands.

DIAGNOSTICS
For commands, the diagnostic information that may be produced. Self-explanatory messages are not
listed.

Optional subsections can include the following:
Errors
Warnings

ERRORS
For functions, the function error values (set in errno) and their corresponding error conditions.

EXAMPLES
Examples of typical usage.

WARNINGS
Potential problems and deficiencies.

DEPENDENCIES
Variations in HP-UX operation that are related to the use of specific hardware, software, or

Hewlett-Packard Company -3- HP-UX 11i Version 3: February 2007

introduction (9) introduction (9)

combinations of hardware and software.

AUTHOR
Indicates the principal developer of the software documented by the manpage. Unless noted other-
wise, the source of an entry is System V.

FILES
The file names that are used or affected by the program or command.

SEE ALSO

Provides references to related manpages and other documentation.

STANDARDS CONFORMANCE
For each command or subroutine entry point addressed by one or more of the following industry stan-
dards, the standard specifications to which that HP-UX component conforms.

The various standards are:

AES OSF Application Environment Specification

ANSIC ANSI X3.159-1989

FIPS 151-1 Federal Information Processing Standard 151-1 (National Institute of Standards and
Technology)

FIPS 151-2 Federal Information Processing Standard 151-2 (National Institute of Standards and
Technology)

POSIX.1 IEEE Standard 1003.1-1988 (IEEE Computer Society) (Portable Operating System
Interface for Computer Environments)

POSIX.2 IEEE Standard 1003.2-1990 (IEEE Computer Society) (Portable Operating System
Interface for Computer Environments)

POSIX .4 IEEE Standard 1003.1b-1993 (IEEE Computer Society) (Portable Operating System
Interface for Computer Environments)

SVID2 System V Interface Definition Issue 2

SVID3 System V Interface Definition Issue 3

XPG2 X/Open Portability Guide Issue 2 (X/Open, Ltd.)

XPG3 X/Open Portability Guide Issue 3 (X/Open, Ltd.)

XPG4 X/Open Portability Guide Issue 4 (X/Open, Ltd.)

XPG4.2 X/Open Portability Guide Issue 4 Version 2 (X/Open, Ltd.)

GETTING STARTED WITH HP-UX
This is a very brief overview of how to use the HP-UX system: how to log in and log out, how to communi-
cate through your machine, and how to run a program.

HP-UX uses control characters to perform certain functions. Control characters are generally shown in
the form “x, such as "D for Control-D. Hold down the Control (Ctrl) key while you press the character
key.

Note: The key names Enter and Return refer to the same key.
Logging In

To log in you must have a valid user name and password, which can be obtained from your system adminis-
trator.

When a connection has been established, the system displays login: on your terminal. Type your user
name and press the Enter key. Enter your password (it is not echoed by the system) and press Enter.

A list of copyright notices and a message-of-the-day may greet you before the first prompt.

It is important that you type your login name with lowercase letters, if possible. If you type uppercase
letters, HP-UX assumes that your terminal cannot generate lowercase letters, and treats subsequent
uppercase input as lowercase.

When you log in successfully, the system starts your login shell. The default is the POSIX shell,
/usr/bin/sh. The POSIX shell (and its predecessors, the Korn and Bourne shells) use $ as the default

HP-UX 11i Version 3: February 2007 -4 - Hewlett-Packard Company 275

introduction (9) introduction (9)

prompt for users. The C shell uses %. All the shells use # as the default superuser prompt.
See login(1) for more on login, passwd(1) to change your password, chsh(1) to change your login shell.

Logging Out

You can log out of the shells by typing an exit command or the eof (end-of-file) character (see the Spe-
cial Interactive Characters subsection below). The shell terminates and the login: prompt appears
again. (If you are using the C, Korn, or POSIX shells, respectively, see csh(1), ksh(1), or sh-posix(1) for
information about the ignoreeof special command.)

How to Communicate Through Your Terminal

HP-UX gathers keyboard input characters and saves them in a buffer. The accumulated characters are not
passed to the shell or other program until you type Enter.

HP-UX terminal input/output is full-duplex. It has full read-ahead, which means that you can type at any
time, even while a program is printing on your display or terminal. Of course, if you type during output,
the output display will have the input characters interspersed in it. However, whatever you type will be
saved and interpreted in the correct sequence. There is a limit to the amount of read-ahead, but it is gen-
erous and not likely to be exceeded unless the system is severely overloaded or operating abnormally.
When the read-ahead limit is exceeded, the system throws away all the saved characters.

The stty(1) manpage tells you how to describe the characteristics of your terminal to the system. The
profile(4) manpage explains how to accomplish this task automatically every time you log in.

Special Interactive Characters

276

A number of special characters are used to control the input and output of your terminal. These characters
have defaults and can be redefined with the stty command (see stty(1)). Definitions of the stty names
are in termio(7) and termiox (7).

Note: The system administrator can modify the system login defaults by changing the characteristics of the
/dev/ttyconf device file with the stty command.

stty System Default At Login Common User
Name Character (ASCII Name; Key Names) Redefinition
eof 4D (EOT)

erase # ~H (BS; Backspace)
kill e AU (NAK), “x (CAN)
intr ~? (DEL; Delete, Rub, Rubout) Ac (ETX)

quit “\ (FS)

start ~Q (DC1; X-ON)
stop ~s (DC3; X-OFF)

The eof character terminates "file" input from the terminal, as read by programs and scripts. By exten-
sion, eof can also terminate the shell (see the Logging Out subsection above).

The erase character erases the last character typed. Successive uses of erase will erase characters
back to, but not beyond, the beginning of the input line.

The kill character deletes all characters typed before it on a terminal input line.

The intr character generates an interrupt signal that bypasses the input buffer. This signal generally
causes whatever program you are running to terminate. It can be used to stop a long printout that you
don’t want. However, programs can arrange either to ignore this signal altogether, or to be notified when it
happens (instead of being terminated). For example, the vi editor catches interrupts and stops what it is
doing, instead of terminating, so that an interrupt can be used to halt an editing operation without losing
the file being edited.

The quit character generates a quit signal that bypasses the input buffer and most program traps and
causes a running program to terminate. It can cause a core dump in the current directory.

The stop character can be used to pause output to the terminal. It is commonly used on video terminals
to suspend output to the display while you read what is already being displayed. You can then resume out-
put by typing the start character. When stop and start are used to suspend or resume output, they
bypass the keyboard command-line buffer and are not passed to the program. However, any other charac-
ters typed on the keyboard are saved and used as input later in the program.

Hewlett-Packard Company -5- HP-UX 11i Version 3: February 2007

introduction (9) introduction (9)

The eof, erase, and kill characters can be used as normal text characters if you escape them with a
preceding \, as in \ "D. Therefore, to erase a \, you need two erases.

The intr, quit, start, and stop characters cannot be escaped on the input line.

End-of-Line and Tab Characters
Besides adapting to the speed of the terminal, HP-UX tries to be intelligent as to whether you have a termi-
nal with a newline (line-feed) key, or whether it must be simulated with a return/line-feed character pair.
In the latter case, all incoming return characters are changed to line-feed characters (the standard line del-
imiter), and a return/line-feed pair is echoed to the terminal. If you get into the wrong mode, use the
stty command to correct it (see sty (1)).

Tab characters are used freely in HP-UX source programs. If your terminal does not have the tab function,
you can arrange to have tab characters changed into spaces during output, and echoed as spaces during
input. The stty command sets or resets this mode. By default, the system assumes that tabs are set
every eight character positions. The tabs command (see tabs(1)) can set tab stops on your terminal, if the
terminal supports tabs.

How to Run a Program
When you have successfully logged into HP-UX, the shell monitors input from your terminal. The shell
accepts typed lines from the terminal, splits them into command names and arguments, then executes the
command. The command can be the name of a shell built-in, an executable script of commands, or an exe-
cutable program. There is nothing special about system-provided commands, except that they are kept in
directories where the shell can find them. You can also keep commands in your own directories and
arrange for the shell to find them there.

The command name is the first word on an input line to the shell; the command and its arguments are
separated from one another by blanks (one or more space and/or tab characters).

When a program terminates, the shell ordinarily regains control and prompts you to indicate that it is
ready for another command. The shell has many other capabilities, which are described in detail in the
appropriate manpages: sh-posix(1) for the POSIX shell, £sh(1) for the Korn shell, or csh(1) for the C shell.

The Current Directory

HP-UX has a file system arranged in a hierarchy of directories. When the system administrator gave you a
user name, he or she also created a directory for you (ordinarily with the same name as your user name,
and known as your login or home directory). When you log in, that directory becomes your current or work-
ing directory, and any file name you type is assumed to be in that directory by default. Because you are the
owner of this directory, you have full permission to read, write, alter, or destroy its contents. The permis-
sions you have for other directories and files will have been granted or denied to you by their respective
owners, or by the system administrator. To change the current working directory use the ¢d command
(see cd(1)).

Path Names
To refer to files not in the current directory, you must use a path name. Full (absolute) path names begin
with /, which is the name of the root directory of the whole file system. After the slash comes the name of
each directory containing the next subdirectory (followed by a /), until finally the file name is reached (for
example, /usr/ae/£filex refers to file filex in directory ae, while ae is itself a subdirectory of usr;
usr is a subdirectory of the root directory). See glossary(9) for a formal definition of path name.

If your current directory contains subdirectories, the path names of files in them begin with the name of
the corresponding subdirectory (without a prefixed /). Generally, a path name can be used anywhere a file
name is required.

Important commands that modify the contents of directories are cp, mv, and rm which respectively copy,
move (that is, rename, relocate, or both), and remove files. To determine the status of files or the contents
of directories, use the 1s command. Use mkdir to make directories, rmdir to destroy them, and mv to
rename them. See cp(1), Is(1), mkdir(1), mv (1), rm (1), and rmdir(1).

Writing a Program
To enter the text of a source program into an HP-UX file, use a text editing program such as vi, ex, or ed
(see vi(1), ex(1), and ed(1)). The three principal languages available under HP-UX are C (see cc_bundled(1)
and cc(1)), FORTRAN (see f77(1)), and aC++ (see aCC(1)). After the program text has been entered with
the editor and written into a file (whose name has the appropriate suffix), you can give the name of that file
to the appropriate language processor as an argument. Normally, the output of the language processor will

HP-UX 11i Version 3: February 2007 -6- Hewlett-Packard Company 277

introduction (9) introduction (9)

be left in a file named a.out in the current directory. Since the results of a subsequent compilation may
also be placed in a.out, thus overwriting the current output, you may want to use mv to give the output a
unique name. If the program is written in assembly language, you will probably need to link library sub-
routines with it (see [d(1)). FORTRAN, C, and aC++ call the linker automatically.

When you have gone through this entire process without encountering any diagnostics, the resulting pro-
gram can be run by giving its name to the shell in response to the prompt.

Your programs can receive arguments from the command line just as system programs do by using the argc
and argv parameters. For more information, see your language’s Programmer’s Guide.

Text Processing

Almost all text is entered through a text editor. The editor preferred above all others provided with HP-UX
is the vi editor. For batch-processing text files, the sed editor is very efficient. The ex editor is useful for
handling certain situations while using vi but most other editors are rarely used except in various scripts.

The following editors are the same program masquerading under various names: vi, view, and vedit
(see vi(1)) and ex and edit (see ex(1)). For information about the sed stream editor, see sed(1). The ed
line editor is described in ed(1).

The commands most often used to display text on a terminal are cat, more, and pr. See cat(1), more(1),
and pr(1). The cat command simply copies ASCII text to the terminal, with no processing at all. The
more command displays text on the terminal a screenful at a time, pausing for an acknowledgement from
the user before continuing. The pr command paginates text, supplies headings, and has a facility for mul-
ticolumn output. pr is most commonly used in conjunction with the 1p command (see [p(1)) to pipe for-
matted text to a line printer.

Interuser Communication

Certain commands provide interuser communication. Even if you do not plan to use them, it could be
beneficial to learn about them, because someone else may direct them toward you. To communicate with
another user that is currently logged in, you can use write to transfer text directly to that user’s terminal
display (if permission to do so has been granted by the other user). Otherwise, elm, mailx, or mail (in
order of ease of use) can send a message to another user’s mailbox. The user is then informed by HP-UX
that mail has arrived (if currently logged in) or mail is present (when the user next logs in). Refer to
elm(1), mail(1), mailx(1), and write(1) for explanations of how these commands are used.

ACKNOWLEDGEMENTS

UNIX is a registered trademark of The Open Group.

SEE ALSO

278

cat(1), cc_bundled(1), ed(1), chsh(1), e¢p(1), esh(1), ed(1), ex(1), ksh(1), 1d(1), login(1), 1p(1), 1s(1), mail(1),
mailx(1), man(1), mkdir(1), more(1), mv(1), passwd(1), pr(1), rm(1), rmdir(1), sed(1), sh(1), sh-posix(1),
stty(1), tabs(1), vi(1), write(1), a.out(4), profile(4), glossary(9).

The HP Technical Documentation website at: http://docs.hp.com.

Hewlett-Packard Company -7- HP-UX 11i Version 3: February 2007

Index

All Volumes

Index

All Volumes

Index
All Volumes

Description Entry Name(Section)
ettt et etteeeeeeeeetteieeeeesstsssseeeesssssssseeeessessssiseeeeetetttnnaaeeetetttnnaaeettttttaaaaeetttttaaaeeeettttaaeeerratraaaaaarrres glossary(9)
. - execute file commands in current shell sh-posix(1)
glossary(9)

cforward file ... sendmail (1M)
.netrc - login information for £tp, rexec, and XE@XEC ()cccceiiiiiiiiiiieeiiiiiiiiiie e e e e e e e eeene netrc(4)
T = J SRR glossary(9)
eDTOE L L f11E Lo e aaaeeas login(1)
.profile - shell script to set up user’s environment at login profile(4)
eEROSE S F11E e e e e e e e e e e e e e e e e e e aaaeaas login(1)
.rhosts - security files authorizing access by remote hosts and users on local host hosts.equiv(4)
.80'S from nrof £ INPut, ElIMINATEccovviiiiieiiiiiiiiee e e e e e et e e e e e etraaaeeeeeeesannaaeeeeeeees soelim(1)
/dev/console - system console interface console(7)
/dev/syscon - system Console INTEITACEccciiiiiiiiiieiiiiiiiiiiiie et e e e eerise e e e e eraeaaaeees console(7)
/dev/systty - system console INTErTACEcccoiiiiiiiiiiiiiiiiiiiiiie e e e e e e console(7)
/dev/ttyconf - file for default terminal control characterscccccccccciiiiiiiiiiiiiiiiiiiiiieieeeeeees stty(1)
/8eV/Zexo SPECIAL Il ..oiuuiiiiiiiiiiiie et e ettt e e e e e ee it e e e e e eaaba e eeeaaees zero(7)
/etc/default/usermod - list of home directory namesccccoceeeiiiiiiiiiiiiinniiiiiiiee e usermod(4)
/etc/dfs/sharetab - shared file system tableccccovviiiiiiiiiiiiiiiiii e sharetab(4)
/etc/issue identification filecccccccoiiiiiiiiiiiiiiiie e issue(4)
/etc/lvmpvg - LVM physical volume group information file lvmpvg(4)
/etc/named.conf - configuration file for Internet domain name serverceeeeeeeeeeeenn.... named.conf(4)
/etc/protocols - protocol NAME dAtADASEuuuuuuuuuiuiuiiiiiiiiiiiiiiiiiieeeeeieeeaaeeaaeaaaaeae e eaenaes protocols(4)
/etc/rndc.conf - rndc configuration filecccccoiiiiiiiiiiiiiiiiiiiii e rndc.conf(4)
/etc/services.window; extract window IDs of user processes from getmemwindow(1M)
/etc/shadow file; install, update or check the ... pwconv(1M)
/sbin/set_parms special initialization Scriptcccccvvvvvvvviiiiiinennnn. hostname(1)
/usr/lib/tztab - time zone adjustment table for date and ctime ()cccccccvviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeees tztab(4)
/usr/share/lib/termcap access routines, emulatecoeeeeiiiiiiiiiiiiiii termcap(3X)
/var/adm/userdb; display information residing in the user database,cccccoeeeiuininnnnnnnnnn. userdbget(1M)
/var/adm/userdb; modify information in the user database, userdbset(1M)
/var/adm/userdb, read, write or delete information in the user database, userdb_read(3)
/var/adm/userdb, verify or fix information in the user database,ccccceeeeeiiiiiiiin.. userdbck(1M)
1 KB blocks; swap chunk SI1Ze Incooeeiiiiiiiiiiiiiiii swchunk(5)
3000-mode packed-decimal LHbrary, HP ... hppac(3X)
32-bit DMA pool; the amount of memory to reserve for the dma32_pool_size(5)
4.2 BSD-compatible process control fAcilitiesuuuuuuuuuiuiiiii e killpg(2)
6/PWB compatibility; terminal interface for Versioncccccccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeees sttyv6(7)
64-bit shared library with explicit load address; open an HP 9000 ... dlopen_pa(3C)
6; Internet ProtoCol VEISIONc.ooviiiiiiieiiiiiiiiiiie e e e e eeeieee e e e ettt cee e e e e e e e et eeeeeeeeaasaaeeeeeseassaaeeeeseessaaaaas IPv6(7P)
: - expand Shell PATAMETETSoiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee ettt e e et e e e e e e e e e eeeeeeeeeeeeeees sh-posix(1)
<term.h> - terminal CAPADIIIEIESuuuuiiiiiiiiiiiiiiiiii et term(5)
<unctrl.h> - definition for unctrl() unctrl(5)
<complex.h> - complex functions and macros complex(5)
<math.h> - math functions and cONStANTSoeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e math(5)
<pwd.h> PASSWOTd file fOTTNALuuiiiiiiii s passwd(4)

<regexp.h> - regular expression and pattern matching notation definitions regexp(5)
<shadow.h> password file format shadow(4)
[[- evaluate DOO0Llean EXPIESSIONuuuuuuuiieiiiiiiiii e eeenen sh-posix(1)
[EOVERFLOW] if values do not fit in fields; causes uname () system function to return

.. uname_eoverflow(5)
__data_start - last 10cations in Programooooeiiiiiiiiiiiiiii end(3C)
__pset_rtctl() - real-time processor set control __pset_rtctl(2)
L T@SETLCE TIACKO ..o e aaaaaaaaaaaaaaaaaaaaaaans glossary(9)

__text_start - last 1ocations in Programccoeeeiiiiiiiiiiiii end(3C)
__uc_get_ar() - user context access (ucontext_t) uc_access(3)
__uc_get_ar_bsp() - user context access (UCONEEXE_£) ...cooovviiiiiiiiiiiiiiiiiieeeieeeee e uc_access(3)

HP-UX 11i Version 3: February 2007 Hewlett-Packard Company 281

Index

All Volumes
Description Entry Name(Section)
__uc_get_ar_bspstore() - user context access (UCONLEXE_£) ...cccouviiuiiiiiiiniiiiiiiiiieeieeieeieeenns uc_access(3)

.. uc_access(3)
.. uc_access(3)
.. uc_access(3)
.. uc_access(3)
.. uc_access(3)
uc_access(3)

__uc_get_ar_ccv() - user context access (ucontext_t)
__uc_get_ar_csd() - user context access (ucontext_t) ..
__uc_get_ar_ec() - user context access (ucontext_t)
__uc_get_ar_fpsr() - user context access (ucontext_t)
__uc_get_ar_lc() - user context access (ucontext_t)
__uc_get_ar_pfs() - user context access (ucontext_t)
__uc_get_ar_rsc() - user context access (ucontext_t) uc_access(3)
__uc_get_ar_ssd() - user context access (ucontext_t) .. uc_access(3)
__uc_get_ar_unat () - user context access (UCONLE@XE_£) ...cccouiiiniiiniiiiiiiiiiiieieeieeeeeieeaeeeans uc_access(3)
__uc_get_brs () - user context access (UCONLEXE_£) ...oouiiiniiiiiiiiiiiie e e eenns uc_access(3)
__uc_get_cfm() - user context access (ucontext_t) uc_access(3)
__uc_get_cr() - user context access (ucontext_t) uc_access(3)

__uc_get_ed() - user context access (ucontext_t) uc_access(3)
__uc_get_frs () - user context access (UCONLEXE_£) ...oouiiiiiiiiiiiieiie e e eaans uc_access(3)
__uc_get_grs() - user context access (UCONLEXE_£) ...ooouiiiniiiiiiiiiiiieiie e e e eenns uc_access(3)
__uc_get_ip() - user context access (ucontext_t) .. uc_access(3)
__uc_get_prs() - user context access (UCONLEXE_£) ...ooouiiiiiiiiiiiiieiie e eanes uc_access(3)
__uc_get_reason() - user context access (WCONEEXE_T)cocovviiiiiiiiiiiiiiiiiee e eaaes uc_access(3)

__uc_get_rsebs () - user context access (ucontext_t) uc_access(3)
__uc_get_rsebs64 () - user context access (ucontext_t) .. uc_access(3)
__uc_get_um() - user context access (ucontext_t) uc_access(3)
__uc_set_ar () - user context access (UCONEERE_£)cooeiiiiiiiiiiiieiiiiiiiiiiie et eeeerii e e eeeene uc_access(3)
__uc_set_ar_ccv() - user context access (ucontext_t) uc_access(3)
__uc_set_ar_csd() - user context access (ucontext_t) uc_access(3)
__uc_set_ar_ec() - user context access (ucontext_t) uc_access(3)
__uc_set_ar_f£fpsr() - user context access (ucontext_t) uc_access(3)
__uc_set_ar_lc() - user context access (ucontext_t) uc_access(3)
_ _uc_set_ar_pfs() - user context access (ucontext_t) uc_access(3)
__uc_set_ar_rsc() - user context access (ucontext_t) uc_access(3)
__uc_set_ar_ssd() - user context access (ucontext_t) uc_access(3)
__uc_set_ar_unat () - user context access (ucontext_t) .. uc_access(3)
__uc_set_brs() - user context access (ucontext_t) uc_access(3)

__uc_set_cfm() - user context access (UCONLEIE_£) ...ocouviiiiiiiiiiiiiieiiie e eaans uc_access(3)
__uc_set_ed() - user context access (WCONEERE_T)cooiuiiiiiiiiiiiiiiiiie e eaans uc_access(3)
__uc_set_£frs() - user context access (ucontext_t) uc_access(3)
__uc_set_grs() - user context access (MCONEERE_£) ...oooouviiiiiiiiiiiiiiiieeiie et ee e e eaans uc_access(3)
__uc_set_ip () - user context access (MCOMEE@XE_T)oiiiieiiiiiiiiiiiiie e ee e et e e e e eaans uc_access(3)

.. uc_access(3)
.. uc_access(3)
.. uc_access(3)

__uc_set_prs() - user context access (ucontext_t) ...
__uc_set_rsebs() - user context access (ucontext_t)
__uc_set_rsebs64() - user context access (ucontext_t)

__uc_set_um() - user context acCeSS (WCOMEERE_) ..oouuiiuniiiniiieeie ettt ettt et e e e e et e eraeeraeennns uc_access(3)
_EXIt () - UOTTNINATE & PTOCESS ..vvvvrvruuuuuruuennunuunaenesessasaeeesnssnssasssssesssssessssssssssssssssssssssssssssssssssnssnssssnnnnnsnnnnnns exit(2)
@RIt () - LOTTNIINIATE & PTOCESS ..vvvvrvruuiuueuuennuuuusaeaeanteteaeeeaesssssasssssessnsssnen exit(2)

_ldecvt (), _ldfecvt (), _ldgevt () - convert long double to stringccccccevviiiiiiiiiiiiiiiiiiiiiiiiiennnnn. 1devt(8C)
_longjmp () - restore stack environment after non-local g0t0ccevviiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieeeees setjmp(3C)
_pututline() - update or create entry in utmp fileccccciiiiiiiiiiiiiiiiiiie getut(3C)

_setjmp () - save stack environment for non-local goto . .. setjmp(3C)
_UNW_clear () - manipulate values in unwind library data structure _currentContext(3X)
_UNW_clearAlertCode () - query values in unwind library data structurecccccu... _UNW_getGR(3X)
_UNW_createContext () - allocate and deallocate unwind library data structure
.. _UNW_createContextForSelf(3X)
_UNW_createContextForSelf () - allocate and deallocate unwind library data structure
.. _UNW_createContextForSelf(3X)
_UNW_currentContext () - manipulate values in unwind library data structure .. _.UNW_currentContext(3X)
_UNW_destroyContext () - allocate and deallocate unwind library data structure
.. _UNW_createContextForSelf(3X)
_UNW_FR_PhysicalNumber () - manipulate values in unwind library data structure
.. _UNW_currentContext(3X)
_UNW_getAlertCode () - query values in unwind library data structurecccccccccuunnnnn. _UNW_getGR(3X)
_UNW_getAR() - query values in unwind library data structurecccccoeeiiiiiiiiiiinnnnnnnnn. _UNW_getGR(3X)

282 Hewlett-Packard Company HP-UX 11i Version 3: February 2007

Index

All Volumes
Description Entry Name(Section)
_UNW_getBR () - query values in unwind library data structureccccooeeeeeiiiiiiiinnnnnnnnn, _UNW_getGR(3X)

.... _UNW_getGR(3X)
... _UNW_getGR(3X)
.... _UNW_getGR(3X)
.... _UNW_getGR(3X)

.. _UNW_getGR(3X)

_UNW_getCFM() - query values in unwind library data structure ..
_UNW_getFR () - query values in unwind library data structure
_UNW_getGR () - query values in unwind library data structure
_UNW_getGR_NaT () - query values in unwind library data structure
_UNW_getIP () - query values in unwind library data structurecccccceel .
_UNW_getKernelSavedContext () - query values in unwind library data structure _UNW_getGR(3X)
_UNW_getPR () - query values in unwind library data structurecccccceel _UNW_getGR(3X)
_UNW_getPreds () - query values in unwind library data structurecccceeeevivviiiennnnnnnn. _UNW_getGR(3X)
_UNW_GR_PhysicalNumber () - manipulate values in unwind library data structure
.. _UNW_currentContext(3X)
_UNW_jmpbufContext () - manipulate values in unwind library data structure _.UNW_currentContext(3X)
_UNW_PR_PhysicalNumber () - manipulate values in unwind library data structure
.. _UNW_currentContext(3X)
_UNW_setAR () - manipulate values in unwind library data structure ... _UNW_currentContext(3X)
_UNW_setBR() - manipulate values in unwind library data structure _UNW_currentContext(3X)
_UNW_setCFM() - manipulate values in unwind library data structure _UNW_currentContext(3X)
_UNW_setFR() - manipulate values in unwind library data structure _UNW_currentContext(3X)
_UNW_setGR () - manipulate values in unwind library data structure _UNW_currentContext(3X)

_UNW_setGR_NaT () - manipulate values in unwind library data structure _UNW_currentContext(3X)
_UNW_setIP () - manipulate values in unwind library data structure _UNW_currentContext(3X)
_UNW_setPR() - manipulate values in unwind library data structure _UNW_currentContext(3X)

_UNW_setPreds () - manipulate values in unwind library data structure _UNW_currentContext(3X)

_UNW_STACK_TRACE () - produce a trace back of the procedure call stack using the unwind library
.. U_STACK_TRACE(3X)

_UNW_step () - manipulate values in unwind library data structure _UNW_currentContext(3X)

LT =1 OSSP UUPUPPPRRRPRE glossary(9)
a.out - assembler and link editor output formatcccoiiiiiiiiiiiiiii e a.out(4)
a641 () - convert base-64 value to long integer ASCII Stringccceuumemiimiiiiiiiiiiiiiiiiiii a641(3C)

abbreviation of function keys, enable/diSableccuuuiiieiiiiiiiiiiiieeeeeeiiicre e e eaeeee keypad(3X)

ABI and context code from current context, return uwx_get_abi_context_code(3X)
ADOTT 8 PEI-PIrOCESS LITMET ...uuuuiiiiiiiiiiiiiie e et it e e e e ettt eee e e e e ettt e e e eeeeataaaeeeeeesannaaeseeransnnnnaeseeeessnnnns rmtimer(3C)
abort () - generate an IOT fAULLcocoviiiiieiiiiiicie et e e e e e ee e e e e e eeataaeeeeeeaasaaaaeeaeennes abort(3C)

about EVM; provide informationcccceeeiiiiiiiiiiieiiiiiiiiiciee e evminfo(1)

abs (), labs (), 11labs (), imaxabs () - return integer absolute value abs(3C)
BT 110 D cle 1Y o1 0Ty =y SO USPPN adb(1)
absolute Path NAMEoooiiiiiiii e e e et e e e e e ar e e e e erra s glossary(9)
absolute system time, add a specific time interval to the currentccccceeel get_expiration_time(3T)
absolute value fUNCEIONScoooiiiiiieeeeeeeee e fabs(3M)
absolute value, return integer abs(3C)
accept a connection on a socket accept(2)
accept () - accept a connection on a socket accept(2)
accept - allow LP printer queuing requests accept(1M)
ACCESS ..oeviiiiieeieiiiiiiee e e ettt e ettt eee ... glossary(9)
access and manage the pathalias databasecoooviiiiiiiiiiiiiiiiie e uupath(1)
access and modification times, Set fOr fleSoeiiiiiiiiiiiiiiiiie s utimes(2)
access and update routines for user-accounting database maintained by utmpd getuts(3C)
access checks server; NS ..o . mountd(1M)
access control facility for INtErnet SEIVICESccieiiiiiiiiiiiie e e et e e e e et e e e e e reranaeeeeeeeasnnnns tepd (1M)
access control language extensions; hostueiiiiiiiiiiiiiii e hosts_options(5)
ACCESS CONEIOL LIDTATY ..oieiiiiiiieiiiiiiiiieee ettt e e e eetee e e e e ettt ee e e e e e eeaana e eeeeeasannnneeaeeenannnnaeaaeeenes hosts_access(3)
access control list (ACL), change owner and/or group inccccceeivviiiiieeeeeeiriiiiieeeeeeeevieeeeeeeeveeeenns chownacl(3C)
access control list (ACL), copy to another file cpacl(3C)
access control list (ACL) information, etccuuiuiiieiiiiiiiiiiie e e e e e e e e e e e e eraa e e aaeaae getacl(2)
Access Control List (ACL) information; JFS File Systems only; set a fil€sccooeiiiiiiiiiiiieiiiiiiiieee e, acl(2)
access control list (ACL) information; STuiiiiieiiiiiie i e e e e e e erae e setacl(2)
access control list (ACL) structure, convert to string formcccoeeiiiiiiiiiiiiiiiiiicee e acltostr(3C)
access control list (ACL) structure, HFS file system only; convert string form tocccccceeeeeeennn. strtoacl(3C)
access control list; add, modify, or delete entrycoovviiiiiiiiiiiiiiiiiee e .. setaclentry(3C)
access control lists (ACLs); introduction to HES ... aas acl(5)
access control lists (ACLS); introduction to JFSo aclv(5)

HP-UX 11i Version 3: February 2007 Hewlett-Packard Company 283

Index

All Volumes

Description Entry Name(Section)
access control lists (ACLS) Of fI1€8, LISu.iiiuuiiiiiie et e e e eeaaanas Isacl(1)
Access Control Lists, view oF MOyccoiiiiiiiieiiiiiiiiiiie e e e e e e e e e e e e rraeeeeeeeeraeaanns swacl(1M)
access control lists; add, modify, delete, cOpy, OF SUMMATIZEcccceevviiiiiiieeeieiiiiiiiie e e eeerieee e e e eevieeeeeas chacl(1)
access coNtrol POLICY SWItCRcoiiiiiiiiii et e e e e e et e e e e e ear e e e e e earaa e aaaaanes acps(3)

Access Control Policy Switch (ACPS); configuration file for the ..
Access Control Policy Switch Configurationccccoeeeieieiiiiiiiieeneeennn.

.. acps.conf(4)
..... acps.conf(4)

Access Control (RBAC) database files, verify the syntax of the Role-Based rbacdbchk(1M)
acCess CONEIOL, TOLE-DASEUuiiiiiiiiiiiie et et e e e e et e e e e s e e e e e eaaeerar e rbac(5)
access control; let authorized users edit files that are undercccccceeeiiiiiiiiiiiin e privedit(1M)
access () - determine accessibility of @ fileccoeiiiiiiiiiiiiiiiiii e access(2)
access device driver, SCSI dirEChcoivvuieiiiiieiiiiie et e e e e e e e eeeateeeeeaeeesaaeeseaaaaes scsi_disk(7)
access file information; change WU-FTPD group privatepw(1)
ACCESS BT OULPS ..ovvuuunneeeriiiiuunneeeertetennnaaseereaeennsaeseesenssnnseseesesssnssneeeessssssnnesesesssssssnnsesseesssnnanesseeessnnsnesens glossary(9)
access information in the user database, /var/adm/userdbcccoooiiiiiiiiiiiiiiiiiiiieeiie e, userdb_read(3)
ACCESS LIS, GET SIOUD ..eveiiiiiiiiiiiiiti getgroups(2)
access list, INITIALIZE GTOUDoviviiiiiiiiie ettt e e e e e et b e e e e e eeebaaaaeeeeeeansnnnaeeeeeeees initgroups(3C)
ACCESS LIS, SET GIOUD 1iiiiiiiiiieiiiiiiiie e e ettt e e e e ettt e e e e ettt e e e e e eaaa e e eeeeatrnaaaas setgroups(2)
access modeooevviiiineeeennn. glossary(9)
access or build a binary search tree tsearch(3C)
access path of physical volume in LVM volume group, changeccccoeeiiii. pvchange(1M)
access permissions mode mask for file-creation, Setcccccvviiiiiiiiiiiiiiiiiiiii e umask(1)
access permissions; change file mode chmod(1)
access permissions; change file MOAEoooeeiiiiiiiiiiiiiiiii chmod(2)
access privileges for group, listcccccceiiiiiiiiiiiiii .. getprivgrp(1)
access protected password database entry; trusted systems . . getprpwent(3)
access rights to a file, get a user’s effective getaccess(2)
access TIGhts 10 fIle(S), LISt coiiiiiiieiiiiieeecececeeeeeeeeeeee e getaccess(1)
access routines, emulate /usr/share/lib/termeapcovvviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e eeeeeeeeeeeees termcap(3X)

Access software, Data Communications and Terminal Controller Device File . ddfa(7)

access the terminfo databasecooiiiiiiiiiiiiiiiie e tput(1)
access times, set Or UPAAte fIleooiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeee e eeeaaees utime(2)
access to /etc/passwd and /ete/shadow files, control ... lckpwdf(3C)
access to audio on a workstation; OBSOLETED; control asecure(1M)
access (ucontext_t); user contextccceeeeeeeeeriiivineennn. uc_access(3)
access utmp file entry getut(3C)
access utmpx file entrycccccoeiiiiiiiiii . getutx(3C)
access, modification, and/or change times of file; updatecccoeeeiiiiiii touch(1)
accessibility of @ file, dELEITIINEuuuiiiiii e access(2)
accessing and ordering HP-UX documentationccceeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeeeeeeeees manuals(5)
according to type; classify ChATACTETSiiiiiiii s ctype(3C)

account validation procedures; perform PAMcccccooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiienens .. pam_acct_mgmt(3)

account, authentication, session and password management PAM modules for UNIX pam_unix(5)
account, password, and session service module for HP-UX, extended authentication, pam_hpsec(5)
account, session, and password management PAM modules for LDAP; authentication, pam_ldap(5)
accountable user for the current process, retrieve theco getauduser(3)

.. acct(1M)
..... acct(1M)

accounting and miscellaneous accounting commands; overview of ...
accounting commands; overview of accounting and miscellaneous ...

accounting data, disk usage by user IDccccceeeiurnnnnnnnnnnnnnnnnnn. . diskusg(1M)
accounting database daemOn, USETcccciiiiiiiiiiiieieieiiiiiie e e e e e eriieieeeeeeettt e e eeeeassenaaeeeeerrennnaaeaaennes utmpd(1M)
accounting file size, defines the MaXIMUMcooeiiiiiiiiiiiiei e max_acct_file_size(5)
accounting files, process, convert to ASCII text formatccceeeiiiiiiiiiiiieiiiiiiiiee e acctprc(1M)

accounting files, process, summarize by user ID and NAmMecevvvuieereeeriiiiiiieeeeerriiiieeeeeeerenennns acctprc(1M)
accounting files, total, merge or add acctmerg(1M)

accounting files; search and print process ... acctcom(1M)
accounting records, MANIPULALEcceiiiiiiiiiiiee i e e et e e e e e e et e e e e e e earaeaeeeeeraraaaaaas fwtmp(1M)
accounting records, per-process, command SUMMATY frOMcuuuieeeeriiiiiiiieeeeeririiiieeeeeerrriiaeeeeas acctems(1M)
accounting when available disk space reaches threshold, suspend and resume acctsuspend(5)
accounting: acctems - command summary from per-process accounting recordseeeennns acctems(1M)
accounting: accteconl - convert login/logoff records to per-session accounting records acctcon(1M)
accounting: acctcon2 - convert per-session records to total accounting records acctcon(1M)
accounting: acctmerg - merge or add total accounting filesccoeeeiiiiiiiiiieriiiiiiiiiiie e acctmerg(1M)

284 Hewlett-Packard Company HP-UX 11i Version 3: February 2007

Index

All Volumes
Description Entry Name(Section)
accounting: acetprel - convert process accounting files to ASCII text formatccccceeeeeerinnnnnnn. acctprc(1M)

accounting: acectpre2 - summarize process accounting files created by acctprel acctpre(1M)
accounting: daily accounting shell procedurecccoeeeeiiiiiiiiiieeeriiiiiiiie e . runacct(1M)
accounting: enable or disable Process aCCOUNTINGccciiiiiiiiiieieiiiiiiiiie e e et e e e e et e e e eeeeraeeeeeeeeenenanns acct(2)
accounting: per-process accounting file formatooooiiiiiiiiiiiiiiiii e acct(4)
accounts; check status of local user userstat(1M)
acct () - enable or disable Process aCCOUNTINEZieiiiiiiiiiiiieeeeiiiiiiiee e e e e eetiereeeeeeerte e e eeeeeasaneaeeeeeeenennnns acct(2)
acct - overview of accounting and miscellaneous accounting commands . .. acct(1M)
acct - per-process accounting file formatuuuiieiiiiiiiiiiie e e e e acct(4)
acctems - command summary from per-process accounting recordsceeeererririiiiieeeerrrriiiiiaenens acctems(1M)

.. acctcom(1M)

acctcom - search and print process accounting filescccoeeeevviiiiinennn .
.. acctcon(1M)

acctconl - convert login/logoff records to per-session accounting records ...

acctcon2 - convert per-session records to total accounting records acctcon(1M)
acctdisk - create disk usage accouNting reCOTASccvuvuuierriiiiiiiiieeeeeeeiiiiieeeeererareaeeeeeeerrnnneeeeaennes acct(1M)
acctdusg - compute disk usage by login NAMEcceviiiiiiiiiiieriiiiiiiiie e e e e e e eeerae e e eaaaees acct(1M)
acctmerg - merge or add total accounting filesueeieiiiiiiiiiiiin i acctmerg(1M)
accton - define kernel process accounting output file or disable accountingcccccceevevriiiiiiinerenennn. acct(1M)

acctpre - convert process accounting files to ASCII text format .
acctprcl - convert process accounting files to ASCII text format .

acctprc2 - summarize process accounting files created by acetprelooovvviiiiieiiiiiiiiiiee e, acctprc(1M)
acctresume - suspend and resume accounting when available disk space reaches threshold acctsuspend(5)
acctsh - shell procedures for system accoOUNtINGcoovviiiiiieiiiiiiiiiiiee e e e e e eraae s acctsh(1M)
acctsuspend - suspend and resume accounting when available disk space reaches threshold ... acctsuspend(5)
acctwtmp - write utmp record and reason for WIitingccccceiiiiiiiiiieeieeiiiiiiiee e e e e e e e e eerreeeeeeenaes acct(1M)
ACL entries on JFS, SOTTcoovieiiiiie e aclsort(3C)
ACL information; JF'S File Systems only; set a file’s Access Control Listcceeeeiiiiiiiiiiiieeiiiiiiiiieeeeeeenns acl(2)
ACL information; set access CONEIOl LIStuiiiiiiiiiiiiiiiiiie e e e aaanes setacl(2)
acl - introduction to HFS access control 1ists (ACLS)ccvviuiiieiiiiiiiiiiiiee e eeeeeiiiie e e e e eeveeee e e e e eeveaea e e e e eeeannaans acl(5)
acl() - set a file’s Access Control List (ACL) information; JF'S File Systems onlycccoovviiieniirennnnnen. acl(2)

ACL structure, HFS file system only; convert string form to access control list strtoacl(3C)

ACL, VIEW OF TNOMITY ...uiiiiiiiiiiiie e e e et e e ettt eee e e e e ettt ee e e eeeettaae e eeeaeeaaananaeeeeesssnnnaeeeesrssnnnaeaeeesssnnnns swacl(1M)

aclentrystart - convert string form to access control list (ACL) structure, HF'S file system only
.. strtoacl(3C)

ACLs; introduction to HFS access control 1iStSccuuuiieeiiiiiiiiiiiie it e et eeeeevae e e e e eeevaeneeeeeeeees acl(5)

ACLs; introduction to JFS access Control LISEScoiivuieiiiiiiiiiiiie e aclv(5)
aclsort - sort ACL entries on JFS ..o ... aclsort(3C)
acltostr () - convert access control list (ACL) structure to string form .. acltostr(3C)
aclv - introduction to JF'S access control lists (ACLS)ccvuuuiieiiiiiiiiiiie e eeieiicee e eeeertee e e e e e eeraea e e e eeeenananns aclv(5)
acos () - arccosine fUNCLIONoooiiiiiiiiiiii acos(3M)
acosd () - degree-valued arccosine fUNCEIONccoeeiiiiiiiiiiieeeeiiiiiiie e e e et eeeeeaeanaeees acosd(3M)
acosdf () - degree-valued arccosine function (loat)ccccoeeiiiiiiiiiiiiniiiiie s acosd(3M)
acosdl () - degree-valued arccosine function (Ilong double)covvuiiiiiiiiiiiiiiiiniiiicre s acosd(3M)
acosdq () - degree-valued arccosine function (QUAad)uuieeieiiiiiiiiiireereiiirre e e e e e eerrae e es acosd(3M)
acosdw () - degree-valued arccosine function (extended)coevuiiiriiiiiiiiiiiieeeeiiiiire e acosd(3M)
acosf () - arccosine function (loat) ... acos(3M)
acosh () - arc hyperbolic coSIne fUNCEIONcccoiiiiiiiiiieiiiiiiiiiiie e e e e e errase e e e e eeaeanaeees acosh(3M)
acoshf () - arc hyperbolic cosine function (float) acosh(3M)
acoshl () - arc hyperbolic cosine function (long double) . .. acosh(3M)
acoshq () - arc hyperbolic cosine function (QUAd)ccoeeeiiiiiiieriiiiiiiiiiie e e e e e ereaaeeees acosh(3M)
acoshw () - arc hyperbolic cosine function (€xtended)cceeriiiiiiiiiiieiiriiiiiiiee e e e rrrineeees acosh(3M)
acosl () - arccosine function (long double) acos(3M)
acosq() - arccosine function (quad) acos(3M)
acosw () - arccosine function (€Xtended)cceeiiiiiiiiiiiriiiiiiiiiire e e e e e e e acos(3M)

acpm_getenvattrs () - ACPS Service Provider Interface acps_spi(3)
acpm_getobj () - ACPS Service Provider Interface acps_spi(3)
acpm_getobjattrs () - ACPS Service Provider INterfaceccooovviviiiiiiiiiiiiiiiieiie e acps_spi(3)
acpm_getop () - ACPS Service Provider INterfaceccouuviiuiiiiiiiiiiii e acps_spi(3)
acpm_getopattrs () - ACPS Service Provider Interface acps_spi(3)
acpm_getsubattrs () - ACPS Service Provider Interface acps_spi(3)
acpm_getsubcreds () - ACPS Service Provider Interface acps_spi(3)
acpm_getsubid () - ACPS Service Provider INterfacecooovuviiuiiiiiiiiiiieeeiee e acps_spi(3)

HP-UX 11i Version 3: February 2007 Hewlett-Packard Company 285

Index

All Volumes

Description Entry Name(Section)
ACPS Application Programming INterfaceccccooiiiiiiiiiiiiiiiiiiiiiiee e e e e e e e e acps_api(3)
ACPS Service Provider Interface acps_spi(3)
acps.conf - configuration file for the Access Control Policy Switch (ACPS)cooevviiiviiiiieeeeeeeennenn. acps.conf(4)
ACPS; configuration file for the Access Control Policy Switchccovviiiiiiiiiiiiiiiiieeirecicee e acps.conf(4)

acps_addenvattr () - ACPS Application Programming Interface ...
acps_addobjattr () - ACPS Application Programming Interface
acps_addopattr () - ACPS Application Programming Interface

acps_addsubattr () - ACPS Application Programming Interface
acps_addsubcred () - ACPS Application Programming Interface

acps_api(3)
acps_api(3)
acps_api(3)
acps_api(3)
acps_api(3)

acps_api - ACPS Application Programming Interfacecccccoeeeiiiiiiiiiiiieiiiiiiiiiciee e acps_api(3)
acps_checkauth () - ACPS Application Programming Interfacecccoovvviiiiiiiiiiiiiiinneeeieennnnnn. acps_api(3)
acps_end () - ACPS Application Programming Interfacecccccovieiieiiiiiiiiiine e acps_api(3)
acps_setobj () - ACPS Application Programming Interfacecccccceeeeiiiiiiiiiinniiiiiiiiiiiene e, acps_api(3)
acps_setop () - ACPS Application Programming Interfacecccccoeeeeeiiiiiiiiiiiniiiiiiiiiiee e, acps_api(3)
acps_setsubid () - ACPS Application Programming Interfacecccccooeiiiiiiiinniiiiiiiiiiinnneieiniiennn. acps_api(3)
acps_spi - ACPS Service Provider INterfaceoooouviiiiiiiiiiiiiiieeieiiiiiiie e ee e eeeeeaeeans acps_spi(3)
acps_start () - ACPS Application Programming Interfaceccccooeeeeeiiiiiiiiiinniiiiiiiiiiiene e, acps_api(3)
acquire handle for credentialccoeiiiiiiiiiiiiiiiii e gss_accept_sec_context(3)
across NFS, enable SWaPPINGcoovuiiiiiieiiiiiiiiiiieeeeetitiiiee e e eeeteiiiseeeeeeetatanaeeeeeeerannneseaeeenes remote_nfs_swap(5)
activation of a cell from nPartition; cancel online cell operation; monitor online cell operation; reset

hung cell during cell activation; onlinecooviiiiiiiiiiiiiiiiiin e parolrad(1M)
activation; online activation of a cell from nPartition; cancel online cell operation; monitor online cell

operation; reset hung cell during cellouiiiiiiiiiiiiiiiiii e parolrad(1M)
active processes, Kill (terminate) allooooiiiiiiiiiiiiiiiie e killall(1M)
activity report package; system ... sal(1M)
ACTIVILY T@POTTET; SYSTOIM oiiiiiiiiiiiiiiiiiiiiee et e e e ettt e e e e e eetaa e e e eeeetbaaaaeseeeasssnnnneseeeensnnnnnaaees sar(1M)
activity, print current SCCS file @ditingcouuuiieiiiiiiiiiiiie e e e e ert e e e e e eaaaeeeeesenranaaaas sact(1)
Adapter, Native Agent, for SINIMPcoiiiiiiiiiiiii et e e e e e e et e e e e e eeaaeaeeeeeeasennnns naaagt(1M)
Adapters; Fibre Channel Mass Storage Utility Command for TACHYON TL, TACHYON XL2,

FCD Driver-Based and FC/GigE Combo Fibre Channel Host Buscccccceeeeeiiiiiiiiicennns femsutil (1M)
Y I oY 110 DR el 1=y o1 0Py PRSPPI adb(1)
add a complex character and rendition to a window .. add_wch(3X)
add a new group t0 the SYStEIMccoiiiiiiiiiiie et e e e e e ar s groupadd(1M)
add a new user 10gin to the SYStemMcoiiiiiiiiiiiiiii e e useradd(1M)
add a printer for use With £8moooiiiiiiiiii e e e e ar e tsm.lpadmin(1M)
add a single-byte character and rendition to a window and advance the cursorcccccceeeeeeeeeenn. addch(3X)

add a string of multi-byte characters without rendition to a window and advance cursor addnstr(3X)
add a wide-character string to a window and advance the cursorcccccceeeeeeeieiiiiiiieneeeeennnnnnn. addnwstr(3X)
add an array of complex characters and renditions to @ Windowccceeeeiiiiiiiiieeeeieiviiiiinnnns add_wchnstr(3X)
add an Object Identifier (OID) to an OID Stcccccevvvvviiieeieiiiiiiiiieeeeeeeviicie e gss_add_oid_set_member(3)
add length limited string of single-byte characters and renditions to a windowc.cccceeeeeeen. addchnstr(3X)

add new commands t0 SYSEEIMeeiiiiiiiiiiiie i e ... install(1M)
add or merge total accounting filescccccn.ns

add physical volumes to extend an LVM volume group vgextend(1M)
add string of single-byte characters and renditions to @ Windowccceeeiiiiiiiiiiiineeiriiiiiiineeeeeenns addchstr(3X)
add value t0 ENVITONIMENTciiiiiiiiieee it e e et e e e e e ettt e e e eeeeeteaeaeeeeseaasnnnaeeeerassnnnaeeeesesssnnnneaees putenv(3C)
add value t0 ENVITONIMENTieiiiiiiiiiiiee e ettt e e e et e e e e ettt e e eeeeeaseaaaeeeeeeessnnsaeeeeeesnnnnaeseeeeessnnnns setenv(3C)
add, modify, and delete entries in an LDAP directory; simple ldapentry(1)
add, modify, delete, copy, or summarize file access control lists (ACLS)ccevvvvriiieeeiiiiiiiiiieeeeeeeriiiieeens chacl(1)
add, modify, or delete access control list €ntrycccoeeiiiiiiiiiiiieiiiiiiccie e setaclentry(3C)
add, remove and list gsscred table ENtIIESoeiiiiiiiiiiiieiiee e gsscred(1M)
add, set, remove, and retrieve a process’ PrivVIlEZEsuieieieiiiiiiiiiieeeeeeiiiiie e e e e errrere e e e e eearaaaees priv_add(3)
add_wch () - add a complex character and rendition to a window add_wch(3X)
add_wchnstr () - add an array of complex characters and renditions to a window add_wchnstr(3X)
add_wchstr () - add an array of complex characters and renditions to a window add_wchnstr(3X)
addch() - add a single-byte character and rendition to a window and advance the cursor addch(3X)
addchnstr () - add length limited string of single-byte characters and renditions to a window ... addchnstr(3X)
addchstr () - add string of single-byte characters and renditions to a windowcccccceeeeeeennnn. addchstr(3X)
Addition of I/O chassis; command for Online Addition/Replacement/Deletion of PCI I/O cards and Online
... olrad(1M)

Addition/Replacement/Deletion of PCI I/O cards and Online Addition of I/O chassis; command for Online

286 Hewlett-Packard Company HP-UX 11i Version 3: February 2007

Index

All Volumes
Description Entry Name(Section)
... olrad(1M)
additional cursor and window coordinates, Zetcccceeeiiiiiiiiiiiiiieiei e getbegyx(3X)
additional SEVETities, AEIINEccoovuiiiiiii i et e e e e e e e aaas addsev(3C)
addmntent () - add entry to open file system descriptor filecoovviiiieriiiiiiiiiiiee e getmntent(3X)
addnstr () - add a string of multi-byte characters without rendition to a window and
AAVAIICE CUTSOT ..eeetiiiiiiiiiiiiiititititittte ettt ettt ettt ee e ettt ettt ettt et ettt ettt ettt ettt ettt ettt ettt e ettt et eeeeeeeeeeeeeeeees addnstr(3X)
addnwstr () - add a wide-character string to a window and advance the cursor . .. addnwstr(3X)
AAATESSuuiiiiiiiiiiie et e e ettt e e e e e ettt eaeeee ettt eeeetttt e eeeetttta—aaeeettttaaaeeertttnaaaeeeerrrnaaaaaas glossary(9)
address entry; get hostname andcccccceeeeeiiiiiiiiiiine e, . getaddrinfo(3N)
address information and open file descriptors; diSplays ProCESSccceeerivvriuiiieeereriiiiiiieeereeriieaeeeeeeerennnnns pmap(1)
address manipulation routines, INTErNetccoeiiiiiiiiiiiiiiii e inet6(3N)
address manipulation routines; Internet inet(3N)
address mapping, PhySiCal MEIMOTYcceeiiiiiiiiiiieeeeeiiiiiiieeeeeetiiieaeeeeerttaanaeeeeererennaaeeeseersnnnaseeeeessnnnns i
address of connected peer; get
address resolution display and control
address resolution ProtoCOLceiiiiiiiiiiiei ettt e e ettt e e e e eb bt e e e e e eataa e e e e eeaaannans arp(7P)
Address TOUter, ElECEIOMICciiiiiiiiiiie e ee et e e ettt e e e e ettt e e e e e eeatae e e e eeeraaaaaaaas pathalias(1)
address SPaACeooovviiiiiiiiiiiiiiiiiieeeeees glossary(9)
address space, get Information fOr @ PrOCESS’Svviiiiiiiiiiiiiiiiiiiiiiiieieieeeeeereeeeeeeeereeeeeeeeeeeeerereererrereeeeeeree pstat(2)
address string conversion routines, network Stationcccciiiiiiiiiiiiiin net_aton(3C)
address t0 @ SOCKEt; DINA AI1oeiiiiiiiiiiiiee e e e e e e e e e e e s bind(2)
address, symbolic INfOrmation Ofccoiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeee e dladdr(3C)
address; get SOCKEtociiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e getsockname(2)
address; open an HP 9000 64-bit shared library with explicit 1oadcccccceeiiiinniiiiiiiiniiiiiiinnnn. dlopen_pa(3C)
adds a header to the current messageceeeeeeeeeeeeeinnnnnnnn.... .. smfi_addheader(3N)
adds a recipient for the Current MeSSAZEuuuuuuiuiiiiiiiiiiiiiiiiiiii e eaeeeenanes smfi_addrcpt(3N)
addsev () - define additional SEVETILIESoiiiiuniiiiiiiiiie et e et e et e e e e e e et e e eaaneeeaans addsev(3C)
addstr () - add a string of multi-byte characters without rendition to a window and
AAVATICE CUTSOT ..uuiivenniiitan ettt e et e et ee e e e e e e e taeesaaa e ettt eesaan e saaaeseanneesaaneessaneesssnneesanneeees addnstr(3X)
addwstr () - add a wide-character string to a window and advance the cursorccccceeevveeeee. addnwstr(3X)
adjtime () - correct the time to synchronize the system clock adjtime(2)
admin - create and admINISEET SCCS IlES ..ouuiiuniiiniiie ettt e e e te et et e e e e eraeeraeennns admin(1)
admIniSter and CTeate SCCS flES ..ovuniiuiiiiii ettt ettt ettt e et e e e et et e e e e e eaeeeneenans admin(1)
administer disk space used for caching file systems with CacheF'Sccccccccvviiiiiiiiiiiiiiiiiiiinnnn. cfsadmin(1M)
administer SCCS files; create andccccoooiiiiiiiiieiiiiiiiieee e e e et ee e e e e e e e eeeeeeaaaans admin(1)
administration command for file SYStEIMooiiiiiiiiiiiiiiiiiiiiiiiiiiieeee e fsadm(1M)
administration command for HFS file systemccccccviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee fsadm_hfs(1M)
administration commands, file system configuration and binary filesccccccceeiiiiiiiiiiinnnnnnnnn. fs_wrapper(5)
Administration Manager Daemon for IPV6; ROULEuuuuiieiiieee ramd(1M)
administration manager; systemeeeeeeeeeeenn... sam(1M)
administration: STREAMS Administrative DIIVETiiieeeaeees sad(7)
administration; local area NEtWOTKccoiiiiiiiiiiiiiie e e e e et eeeeeeaaaaans lanadmin(1M)
AdmINIStrator, SYSEEIMLccooiiiiiiiii i passwd(1)
advance () - regular expression substring comparison routinesccccceeeeeeiiiiiiiiiiiiiiiiiieeeeeeeeeeen. regexp(3X)
AdvanceLink server, Basic Serial and HP peserver(1M)
advertisement daemon for IPV6, ROULETcccciiiiiiiiiiieiiiiiiicee e e e e et e e e e e e eaaaaans rtradvd(1M)
advertisement daemon; configuration file for routerccccceiiii rtradvd.conf(4)
advise system of process’s expected paging behaviorcccoeeiiiiiiiiii madvise(2)
AdVISOTY INFOrMAtiON; fIlEiuiiiiiiiiiiiiiiii e fadvise(2)
advisory information; fileccceei . posix_fadvise(2)
advisory or enforced lock on an open file; apply or remove an flock(2)
affiliation glossary(9)
affirmative reSPONSes, TEPELITIVELYuuiiiiiiiiiii e yes(1)
Agent Adapter, Native, for SNMP naaagt(1M)
agents; configuration file for SLP ..ot slp.conf(4)
agile addressingcccccciiiiiiiiiiiiiiin ... glossary(9)
(aid) for the current process; get the audit ID getaudid(2)
(aid) for the current process; set the audit ID setaudid(2)
AIO async I/O operations, maximum number Ofccooeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeees aio_proc_max(5)
ATIO async /O, maximum S1Ze Ofcooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeee et aio_iosize_max(5)
AIO pool, maximum number of process threads allowed incceeeeiiiii. aio_proc_threads(5)

HP-UX 11i Version 3: February 2007 Hewlett-Packard Company 287

Index

All Volumes

Description Entry Name(Section)
AIO pool, percentage of all process threads allowed incccccvveeeeiiiiiiiiiine e, aio_proc_thread_pct(5)
aio() - POSIX asynchronous I/O facilityccoeiiiiiiiiiiiiieiiiiiiiiie et e e e e e e e e evt e e e e e e enaaaaaaees aio(5)
AIO requests and servicing threads, desirable ratio between number of pending aio_req_per_thread(5)
AIO thread pool monitor execution (in seconds), frequency ofccccceeeererrrnnnnnn. .. aio_monitor_run_sec(5)
aio_cancel () - cancel asynchronous I/O 0perationccccccoeeeieeeiiiiiiiiiieneeeeiiieie e e eeeriiae s aio_cancel(2)

aio_error () - return error status of asynchronous I/O operation aio_error(2)
aio_£fsync () - bring asynchronous I/O operations to synchronized stateccccceeeeeiiiiiiiincnnnns aio_fsync(2)
aio_iosize_max - maximum size of any AIO asynchronous /Occccoceeieeiiiiiiiiiiieneennnnn, aio_iosize_max(5)
aio_listio_max - maximum number of asynchronous I/O operation allowed in a listio call .. aio_listio_max(5)
aio_max_ops - maximum number of POSIX async I/O operations that can be queued at any time

.. aio_max_ops(5)
aio_monitor_run_sec - frequency of AIO thread pool monitor execution (in seconds)

.. aio_monitor_run_sec(5)
aio_physmem pct - percentage of physical memory lockable for request call-back POSIX asynchronous I/O

(0] 0<3 2 1 (o) = PSP aio_physmem_pct(5)

aio_prio_delta_max - greatest delta (slowdown factor) allowed in POSIX async IO request priorities

... aio_prio_delta(5)
aio_proc_thread_pct - percentage of all process threads allowed in AIO pool aio_proc_thread_pct(5)

aio_proc_threads - maximum number of process threads allowed in AIO pool aio_proc_threads(5)
aio_read() - start asynchronous read operationccccccceeeeiiiiiiiiiiiineeriiiiiiine e eeeriie e e eeeereeaans aio_read(2)
aio_reap () - wait for multiple asynchronous I/O requestsccovvviiiiriiiiiiiiiiineieieeiiieee e aio_reap(2)

aio_reqg per_ thread - desirable ratio between number of pending AIO requests and servicing threads
.. aio_req_per_thread(5)
aio_return() - return asynchronous I/O operation statuscccccceeeeriiiiiiiiiiinririiiiiiiinneeeeeeeieenn. aio_return(2)
aio_suspend() - suspend for asynchronous I/O completion aio_suspend(2)
aio_suspend () - wait for asynchronous I/O completion aio_suspend(2)

aio_write() - start asynchronous write Operationcccccceeeeeeiiiiiiiiiiineeeeeiiiiiiee e eeeeiiieneeeeeeene aio_write(2)
alarm ClOCK, SEE & PIOCESS'S iivvuuuiieiiiiiiiiiiie ettt ettt e e e et etiee e e e e e eetta e eeeeeeatanaaeeeeeeessnnneseeeesssnnnneesesressnnnns alarm(2)
alarm() — set a process’s alarm clock .. alarm(2)
AL1AS AALADASE ...ttt elm(1)

alias - substitute command and/or file name sh-posix(1)

alias - substitute command and/or filenamecceeeiiiiiiii csh(1)
alias - substitute command and/or filename ksh(1)
F YT 7= <A 11 LY PRSP elm(1)
alias: install new elm aliases for user or system newalias(1)
aliases - aliases file for SENAMAIlcooiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee e aliases(5)
aliases and paths; locate a program file including which(1)
aliases file for SENAMAILooiiiiiiiiiiiiiiiiiiiiiiieeee e et ee e eeeaaees aliases(5)
aliases file, for mail, rebuild the databasec..ccooivviiiiiiiiiiiiiiiiee e newaliases(1M)
aliases, elm user and system, verify and diSplaycooviiiiiiiiiiiiiiiiiiiiiieeeeeeeee e elmalias(1)

aliases, print system-wide sendmailccooiiiiiiiiiiiiiiiiiiiiiiiii e praliases(1)

aligned memory; allocate memalign(3C)
all users over a NEEWOTK, WITEE $0uuiiiiiiiiiiiiiiie e e e e et eee e e e e e et eeeeeeeesaaeeeeeeeerasaanns rwall(1M)
alloc - Show dyNnamiC MEMOTY USAZE ...cceeeriirurrrrteeeeriiiiitteeeeeeaaitttteeeesaaaataeteeeesaaattateeeessaasteaeeeeessannnareeeeas csh(l)
alloca() - allocate space from the Stackoooeiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e malloc(3C)
allocate @ PEr-PrOCESS LIMETccceeeiiiiiiiieeiieeeeeeeeeeeeee eeeeeeeaaeaeaeeeeens mktimer(3C)
allocate aligned MeMOTYccccccuuuuuiiuiiniiiiiiiiiiiiiiiiinnnnn. e memalign(3C)

allocate and deallocate unwind library data structure W_createContextForSelf(3X)
allocate data and stack space then lock process into Memorycccevvviiiiiiiiiiiiiiiiiiiiiieiieieeeeeeeeens datalock(3C)
allocate reserved space for a disk storage fileccceeiiiiii prealloc(1)
allocate transport function lIDrary SEIUCEUIEuuuiiiuiiiiiiiiiiiiiiiiiiiiii e t_alloc(3)
allocate_fs_swapmap - determines when swapmap structures are allocated for

FlESYSEEIM SWAD 1iiiiiiiiiiiiiiiiiii allocate_fs_swapmap(5)
allocated for filesystem swap, determines when swapmap structures are allocate_fs_swapmap(5)
allocated physical extents, move from one LVM physical volume to other physical volumes pvmove(1M)
allocated program regions; first locations beyondoeeiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeee e end(3C)
allocated, system-wide limit of queued signals that can becccccccoiiiiiiiiiiiiiiiiiiiiennnne ksi_alloc_max(5)
allocation policy on cell-based HP-UX servers; physical memory ... numa_policy(5)
allocation space of object files, print SECtion S1ZEeS ANduuuuuuiiiiiiiiiiiiiiiii e size(1)
allocation, change data SEZMENT SPACE ...cccceeeeeeiieeiiieeeeeeeeeeeeeeeeeeeee aaaeeens brk(2)
allocator fOr MAIN MEINOTYiiiiiiiiiiiiiiiiiiiiiieiiiieeeeeeeeeee e eeeeeeeeeeeeeeee et eeeeeeeee et eeeeeeeeeeeeeeeeeeeeeeeereeaereeee malloc(38C)

288 Hewlett-Packard Company HP-UX 11i Version 3: February 2007

Index

All Volumes
Description Entry Name(Section)
allow signals to Interrupt fUNCEIONScoeiiiiiiiiiiie e e e e e e e e e e eaaaeees siginterrupt(2)

allowed 10gin Shells, LISt Ofccooiiiiiiiiiiiie e e e e e e e e e e e e e e e e eaaaaeeeeeeaaananaeeeeennes shells(4)
allowed per process, defines the maximum number of threadscccovvvueenl .. max_thread_proc(5)
allowed, maximum number of system-wide System V IPC message queues (IDS)cceevvvveieeeeennns msgmni(5)
F2 Y0 o) o F= T o 1= = 1o V=PRIt kermit(1)
alphasort () - sort a directory pointer arrayeee i scandir(3C)
alter contents of and copy @ (FAPE) fIlecovvuuieiiiiiiiiiiie e e e e e e e e e ar e e e e earaanans dd(1)
alter SElected CRATACTET'S ... tr(1)
alternate stack context, set/get signal alternate stack contextccccciieeiiiiiiiiiiiiiniiiiiiiiciees sigaltstack(2)
alwaysdump - defines which classes of kernel memory pages are dumped when

A KEINIEL PANIC OCCUTSiiiiiiiiiiieeeeeiiiiiiiee e e e e etiieae e e e e eettaaaeeeeeaerannnaeeeeeeasnnnnaeesaeessnnnnaaeees alwaysdump(5)
amount of memory to reserve for the 32-bit DMA pool; the dma32_pool_size(5)
an array of complex characters and renditions to a window, add add_wchnstr(3X)
analysis information; display LP spooler performanceccccocoiiiiiiiiinieiiiiiiiiiineeeeeiiiiine e e eeeniiineeeeas lpana(1M)
analyzer; system configuration drift bastille_drift(1M)
annuity () - present value factor for annuUitycccoeeeiiiiiiiiiiiiiin e annuity(3M)
annuityf () - present value factor for annuity (float)ccccoceeeiiiiiiiiiiiiinniii e annuity(3M)
annuityl () - present value factor for annuity (long double) annuity(3M)
annuityq() - present value factor for annuity (quad) annuity(3M)
annuityw () - present value factor for annuity (extended)cccoeeviiiiiiiiiiriiiiiiiiiiiie e annuity(3M)
anonymous memory region, initialize semaphore in mapped file orc...ooovviiiiiniiiiiiiiiiinnnnennn. msem_init(2)
anonymous region, remove semaphore in mapped file or msem_remove(2)
another system over LAN, L0Z I OI1ccouiiiiiieiiiiiiiiiieeeeeeiiiiiieeeee e ettt e e eeeeeataaaaaeeeerassnnnaeaeessssnnnaaeseessssnnnns vt(1)
another (UNIX) system, terminal emulator; callcoooiiiiiiiiiiiiiiiiiiie e e e e e e eeaaaeans cu(l)
answer - phone message transcription Systemccccevvviiieeeiiiiiiiiiineens .. answer(1)
any time, maximum number of System V IPC messages in the system atccoevviiiiieiiiiiiiiiiiinnns msgtql(5)
API interfaces to support large files, non-POSIX standardccoevviiiiiiiiiiiiiiiiineeeeericee e creat64(2)
APIs, PAM Service Module APIScoouuiiiiiiiiiiie et et e e e e e eae e e e e aaes pam_sm(3)
Application Programming Interface; ACPScccceoiiiiviiieenns ... acps_api(3)
Application Programming Interface; Generic Security Serviceccccccccovoiiiuimiiiiiiiiiiiiiiiiiiiiiiiieiiaeens gssapi(5)
application versions; coordinate ELF Library andcccccoeeiiiiiiiiiiiinieeiiiiiiiee e elf_version(3E)
application with privileges after performing appropriate authorization checks and optionally

reauthenticating the user; invoke anotherccccccooeiiiiiiiiiiiinn i privrun(1M)
application, explicit locking of streams within a multi-threadccccocceieiiiiiiiiiiiie e, flockfile(3S)
application, header file for future apPliCationscccvvuiiiiiiiiiiiiiiie e e e e e v e e e e e eaaaeanns portal(5)
applications and their associated memory window ID; file containing services.window(4)
applications on Itanium-based systems running HP-UX; emulate PA-RISC HP-UXcccceeevvviiiiennns Aries(5)
applications, number of priority values to support for POSIX.1b realtimeccce...... rtsched_numpri(5)
apply a diff file to an original file; Program t0ccceeiiiiiiiiiiieeiee e e e e eeerra e e e aeaees patch(1)
apply or remove an advisory or enforced lock on an open fileccceeeiiiiiiiiiiiiiiiiiii s flock(2)
appropriate privilegesccccceeeiiiiiiiiiiiiiie glossary(9)
ar - archive and library maintainer for portable archivesccccooiiiiiiiiiiiiiiiiiiiie e ar(1)
ar - common archive file format ... ar(4)
arbitrary-precision arithmetic languagecouuiieiiiiiiiiiiiie e e e e e e be(1)
arc hyperbolic coSine fUNCEIONSuuuiiiiiiiiiiiiie e e e e et e e e e e e earaaseeeeeeeassnnnaeeaas acosh(3M)
arc hyperbolic SINe fUNCEIONScovuiiiiiiiiiiiiiiiee e e e e e et e e e e e eeaaaeaeeeeeeeassnnaeeeeeeensnnnns asinh(3M)
arc hyperbolic tangent functions .. atanh(3M)
arccosine functions acos(3M)
ATCHEVE ...ooiiiiiiii et e e e ettt e e e e e ettt e e eee ettt e eeee ettt aeaaaearanaaaaas glossary(9)
archive and library maintainer for portable archivescccceeeeiiiiiiiiiiiiie e e e e ar(1l)
archive exchange, portableccccoooeeiiiiiiiiiiinnnnn. ... pax(1)
archive file format, COMIMONccoiiiiiiiiiiiii e e e e e e e e et e e e eaeeesataeesaaeesssaneesaaeerannnns ar(4)
archive files; copies files and directory hierarchies; extracts, writes, and lists pax(1)
archive format, BAX tAPEoouuiiiiiiiiiiiiiie e e e e ettt e e e e e et e e e e e ettt e e eeeeattn e eeeaararnaaaaas tar(4)
archive member access for ELF fIles ...ttt elf rand(3E)
archive member header for ELF files, retri€vecceeeiiiiiiiiiiiieiiiiiiiiiieee e elf getarhdr(3E)
archive package, MAKE Acccoiiiiiiiiiieiiiiiiiiie e e e e ettt ee e e e e e eeta e e e eeeeetaa e eeeaeerennaaeeeaeeaannaaaaas shar(1)
archive Symbol table, TEZENETAtEccuuiiiiiiiiiiiiiiiiee e eeeee e e e ettt s e e e eeeereaaaeeeeeerasanaaeeeaeeees ranlib(1)
archive symbol table; retrieve elf_getarsym(3E)
archive the file SYStEMooiiiiiiiiiiiiiiiiiiiii ettt backup(1M)

archive; format Of CPIOiiiiiiiiiei i e ettt ee e e e et ettt e e e eeeeaaaa e e eaeeaasnnnaeeeeeerennnaaaaes cpio(4)

HP-UX 11i Version 3: February 2007 Hewlett-Packard Company 289

Index

All Volumes

Description Entry Name(Section)
BN VA ey o 21 oY 1 LS UUPPURRIRt
archives in and out; copy file

archives in and out; duplicate directory trees; CopPY fileccoviiiiieriiiiiiiiiiiee e cpio(1)
ATCSINE TUNCEIONS i e asin(3M)
arctangent functions atan(3M)
arctangent-and-quadrant functions atan2(3M)
area Network; VIrtUAl 10CALuiiiiiiiiiiii e raanas VLAN(7)
argument lists and execute command; CONSEIUCEoooeviiiiiiiiiiiiiii xargs(1)
argument lists, variable, macros for handling varargs(5)
argument lists, variable, macros for handling stdarg(5)
argument vector; get option letter from getopt(3C)
argument, varargs, formatted input conversion to a vscanf(3S)
arguments as an expPression; EVAITATEouiuiiiriiiiiiiiiiie et e e e ettt eeeeeettre e e e e eettt e e eeeraaanaaaaas expr(1)
arguments, echo (print) echo(1)
arguments; format and print . . printf(1)
arguments; Print formattedcccoeeeiiiiiiiiiieeeeeeeeee e e printf(1)
Aries - emulate PA-RISC HP-UX applications on Itanium-based systems running HP-UX Aries(5)
arithmetic desk Caleulatoruiiiiiiiii e e ettt e e e e ettt e e e s ettt e e e e e e aaneee de(1)
arithmetic language, arbitrary-PreCiSIONuiiiiiiiiiiiiiiiiiiitiiiieeeeerereeeeeeeeereeeeeeerreerereeererererrerrrrrrrrrrrere. be(1)
arm a per-process timer, relatively reltimer(3C)
arp - address resolution display and control arp(1M)
arp - address reSOIUtION PIrOLOCOLuuuiiiiiiiiiiiiiiiiie e aeessseesssesasssseas arp(7P)
array of complex characters and renditions, input from a window in_wchnstr(3X)
array of single-byte characters and renditions, input from a windowcccceeeeeiiiiiinnnnnnnnnnnnnn... inchnstr(3X)
array of wide characters and function key codes from a terminal; get ancccccevviiiiieeiennnn. getn_wstr(3X)
array, sOrt & direCtory POIMTETceiiiiiiiiiiiiiee ettt e ettt e e e e ettt e e e e e sttt e eeesaaabbraeeeeesaaaanane scandir(3C)
S - ASSCINDIT ettt ettt e e ettt e ettt ——a———. as(1)
as - assembler for INteGrity SYSTEIMSuuuiiiiiiiiiii e eeeeeeesenes as_ia(1)
as - assembler for PA-RISC SYSTEINSuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiasssesssenes as_pa(1)
as_ia - assembler for INtegrity SYSTOIMSuuuuuiiiiiiiiiiiiiii e eeeeeeeeeees as_ia(1)
as_pa - assembler for PA-RISC SYSTEINSuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeaeseeseeeeeesesneenen as_pa(1)
ASA carriage control characters; INterPretooeeeieiiiiiiii i asa(l)
asa - interpret ASA carriage control charactersccccccviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee e asa(1)
ASCII e aaaaaaaaaaaaaaaaaaaaaaaaaaaaaens glossary(9)
ASCII file format between HP-UX and DOS formats; CONVETrtcooeviviieeeeeiiiiiiiieeeeeeeiiiieeeeeeeeeennenn. dos2ux(1)
ASCII format, dump iconv translation tables toccccccc.... .. dmpxlt(1)
ascii - map of ASCIT ChATACEET SELuuuuiiiiiii e eseeeees ascii(5)
ASCII string, convert between long integer and base-64coooiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee a641(3C)
ASCII string, convert long integer t0cccccceeuunnnnne. ... Itostr(3C)
ASCII, 7-bit, translate Characters 10iiviiiiiieeee e e e e et e e e e e e ee e e e e e e eaabaeeeeeeearsaaaaas conv(3C)
ASCII, convert binary file to, for transmission by mailer uuencode(1)
asctime(), asctime_r () - convert tm structure date and time to string ctime(3C)
asecure - control access to audio on a workstation; OBSOLETED asecure(1M)
Aserver - start the audio SEIVETccoooiiiiiiiiie aserver(1M)
@sin() - arcsine fUNCEIONooooiiiiiiieieeeceeee e asin(3M)
asind () - degree-valued arcsine fUnCEIONcooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeee e asind(3M)
asindf () - degree-valued arcsine function (loat)ccccccoiiiiiiiiiiiiiiiiiiiiieeeeeee asind(3M)
asindl () - degree-valued arcsine function (long double)ccccccviiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeee asind(3M)
asindq() - degree-valued arcsine function (QUAA)ccccueieiiiiiiiiiiiiiiieiiie e asind(3M)
asindw() - degree-valued arcsine function (extended)cccccceviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee asind(3M)
asinf () - arcsine function (float)ooooiiiiiiiiiiii i asin(3M)
asinh () - arc hyperbolic sine functionccccoeiiiiiii asinh(3M)
asinhf () - arc hyperbolic sine function (float) ... asinh(3M)
asinhl () - arc hyperbolic sine function (long double) ... asinh(3M)
asinhq() - arc hyperbolic sine function (QUAaA)coooociiiiiiiiiiiiiiiie e asinh(3M)
asinhw() - arc hyperbolic sine function (extended)cccceiiiiiiiiiiii asinh(3M)
asinl () - arcsine function (long double)coooiiiiiiiiiiii i asin(3M)
asing() - arcsine function (QUAA)ooooiiiiiiiiiiiiiie asin(3M)
asinw() - arcsine function (extended)oooiiiiiiiiiiiiiiiii asin(3M)
ask for help on SCCS COMMEANASuuuuuiiiiiiiiiiiiiii s sceshelp(1)
ask for user response for SD-UX s swask(1M)

290 Hewlett-Packard Company HP-UX 11i Version 3: February 2007

Index

All Volumes
Description Entry Name(Section)
F T3 o] (<5 PP PPPTPPPPPPPPPPPPRE as(1)
assembler and link editor output format a.out(4)
assembler debuggercccoeeeiiiiiiiiiennn. ... adb(1)
assembler for Integrity systems as_ia(1)
assembler for PA-RISC SYSTEIMScciiiiiiiiieiiiiiiiiiie e et e e e ettt e e e e e ettt e e eeeeeassanaaeeaeraassnnaeeesensnnnnns as_pa(1)
assert () - VErify Program aSSEITIONcciiiueiieeeeiiiiiiiieeeeeeeiitiiaeeeeeetteneaeeeeeereannnaaeeeerernnnnaaeeseeenes assert(3X)
FETSTSTSY o) T e i i 01 oY= =1 o 1 WP UUPPN assert(3X)
assign buffering to @ stream flleoooviiiiiriiiiiiiii e e e e e raa e setbuf(3S)
assignment database entry for a trusted system; manipulate devicecccccvvieeeiiiiiiiiiiinnnneennn. getdvagent(3)
assignment database file for a trusted system; devicecccoeviiiiiiiiiniiiiiiiiiiiie s devassign(4)
associated attributes; change login password andcoooiiiiiiiiieiiiiiiiiiiee e passwd(1)
associated memory window ID; file containing applications and their .. . services.window(4)
ASYNC CANCEL SATEuoiiiiiiiiiiie e e e et e e e ee it eeeeeaaaaaaaas thread_safety(5)
async I/O operations, maximum number that can be queued by any process that uses
F Y L0 T 1 + 1) P UPPPR aio_proc_max(5)
ASYNC SIGNALSATE ...uuiiiiiiiiiiie et eeee e e e e e araa e aas thread_safety(5)
asynchronous disk ports that can be open at any time; maximum number max_async_ports(5)
asynchronous I/O for the NFS version 2 client; control the number of kernel threads that perform
... nfs2 max threads(5)
asynchronous I/O for the NFS version 3 client; control the number of kernel threads that perform
... nfs3_max_threads(5)
asynchronous I/O for the NFS version 4 client; control the number of kernel threads
10 0T A 013 (o) o o o KPP PPPPPPPPPPPPPIN nfs4_max_threads(5)
asynchronous I/O operations; percentage of physical memory lockable for request call-back POSIX
... aio_physmem_pct(5)
asynchronous I/O, error status aio_error(2)
asynchronous I/O, initiate list of 0Perationscccccceiiiiiiiiiiiiiiii lio_listio(2)
asynchronous I/O, maximum S1Z€ Ofuuuuuuuuiuiiiiiiiiiiiiiiiiiiieaaeaaaeeeaaaeea e aio_iosize_max(5)
asynchronous I/O, POSIX ... eeeeeeaeeeeeaeaaaaaaaaaaaaaaeens aio(5)
asynchronous I/O, start write .. aio_write(2)
asynchronous /O, status, TEEUITLooiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e e e eeeees aio_return(2)
asynchronous I/O, suspend for completionccccoooiiiiiiiiiiiiiiieie e aio_suspend(2)
asynchronous /O, SYNCITONIZEcoiiiiiiiiiiiiiiiiiiiiiiiieiieeereeeeeeeeeereeeees aio_fsync(2)
asynchronous I/O, wait for completion aio_suspend(2)
asynchronous I/O, wait for multiple requests aio_reap(2)
asynchronous serial modem line controlccccooiiiiiiiiiiiiii modem(7)
ASYINICATONOUS WITEES oiiiieiieiiiiiieiieeeeeee et et et eeeeeeeeeaaeeeaeaaaeeens fs_async(5)
asynchronous, CANCEL I/u i nenen aio_cancel(2)
asynchronous, Start TEAAooooviiiiiiiiiiii aio_read(2)
at, batch, and crontab queue description file ... queuedefs(4)
at; prototype Job file fOroooiiiiiiiiiii e proto(4)
at - execute commands at a later time ...ttt at(1)
atan() - arctangent functioncccccceeeeeii. atan(3M)
atan2 () - arctangent-and-quadrant fUNCEIONuiuiiiiiiii e atan2(3M)
atan2d() - degree-valued arctangent-and-quadrant function atan2d(3M)
atan2df () - degree-valued arctangent-and-quadrant function (float) atan2d(3M)
atan2dl () - degree-valued arctangent-and-quadrant function (long double) ... atan2d(3M)
atan2dq() - degree-valued arctangent-and-quadrant function (quad) atan2d(3M)
atan2dw() - degree-valued arctangent-and-quadrant function (extended)coeeeeeiiiinnn. atan2d(3M)
atan2f () - arctangent-and-quadrant function (float)cccccooiiiiiiiiiiiiiii atan2(3M)
atan21 () - arctangent-and-quadrant function (long double)ccccceiiiiiiiiiiiiiiiiie atan2(3M)
atan2q() - arctangent-and-quadrant function (QUA)cccvveeiiiiiiiiiiiii e atan2(3M)
atan2w() - arctangent-and-quadrant function (extended)cccccooiiiiiiiiiiiiiiiii atan2(3M)
atand () - degree-valued arctangent function atand(3M)
atandf () - degree-valued arctangent function (float) atand(3M)
atandl () - degree-valued arctangent function (long double)ccoeeeiiiiiiiiiii atand(3M)
atandq() - degree-valued arctangent function (QUAA)ccccueeeeiiiiiiiiiiiiiiiii e atand(3M)
atandw() - degree-valued arctangent function (extended) . .. atand(3M)
atanf () - arctangent function (float)ccccccevviiiiiiini. atan(3M)
atanh () - arc hyperbolic tangent fUnCtion ... atanh(3M)
atanhf () - arc hyperbolic tangent function (loat)cooiiiiiiiiiiiiiiiiiee atanh(3M)

HP-UX 11i Version 3: February 2007 Hewlett-Packard Company 291

Index

All Volumes

Description Entry Name(Section)
atanhl () - arc hyperbolic tangent function (long double)uueieiiiiiiiiiiiieieeeeeee e atanh(3M)
atanhq() - arc hyperbolic tangent function (quad) . atanh(3M)
atanhw () - arc hyperbolic tangent function (extended)ccoovviieiiiiiiiiiiiiiiee e atanh(3M)
atanl () - arctangent function (Iong double)coeiiiiiiiiiiiiii e atan(3M)
atang() - arctangent function (quad) atan(3M)
atanw () - arctangent function (extended)ccccceeeiriiiiiiiiiiinnnnnnnn, atan(3M)

atexit () — register a function to be called at program terminationcccccvviieeriieiiiiiiieneeeeeeienenn. atexit(3)
atof () - convert string to double-precision number strtod(3C)

atoi () - convert string to long integer strtol(3C)
atol() - convert string to long integer strtol(3C)
atoll () - convert String to 1oNg INTEZETcieiiiiiiiiiiiiei e e e e e e e e e eaaaaeeas strtol(3C)
atomically release blocked signals and wait for interruptccccceeeiiiiiiiiiiine i sigpause(3C)
attach a STREAMS file descriptor to an object in the file system name spaceccccvveeeererreennnnnn. fattach(3C)
attach shared memory to data Segmentooviiiiiiiiiiiiiiiiiie e shmop(2)
attempt to lock a read-write lock for writing . pthread)rwlock_wrlock(3T)
attempts to create the interface socket that MTAs use to connect to the filter smfi_opensocket(3N)
attention button events daemon, PCI I/O hotplugcccuuiiriiiiiiiiiiniiiiiiiicie et hotplugd(1M)
attention LEDs (cell, cabinet and I/O chassis attention LEDs); flash/turn offccccoiiiiiiiininnnnn.. fruled(1)
attr_get () - window attribute control functionsccccoevvvviiiniiiniiinnnnnn. .. attr_get(3X)
attr_off () - window attribute control functionscccceeeriiiiiiiiiiiiniiicc s attr_get(3X)
attr_on() - window attribute control fUnCtionscccccoiiiiiiiiiiiiiiiie e attr_get(3X)
attr_set () - window attribute control functionscccccccviiiiiiiiiiiiiiiiiee attr_get(3X)

attribute object, initialize or destroy thread pthread_attr_dinit(3T)

attribute of a system complex; MOdify anoooiiiiiiiiriiiiiiiiiiee e cplxmodify(1M)
attribute, for window, control fUnCtionScovvuieeeiiiiiiiiiiiee e ens .. attr_get(3X)
attributes and storage formats; all objects that Software Distributor (SD) uses, theircccccceeeiiiiinnnnn. sd(4)
attributes associated with a message queue, Zetooiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e mq_getattr(2)
Attributes Configuration tool; invokes the HP-UX SeCUritycccceeeeuuuuumumiumiiiiiiiiiiiiiinneniiiinnnnnnnnnns secweb(1M)

attributes - describe an audio file ... attributes(1)
attributes for group, Zet SPECIAlcc..uiiiiiiiii e getprivgrp(1)
attributes on a binary file; set extended security setfilexsec(1M)
attributes on Integrity systems; change program’s internalcceeeeeiiiiiiiiiiiiiiiiiee, chatr_ia(1)
attributes on PA-RISC systems; change program’s internalcccccooiiiiiiiiiiiiniiiiiieeeinniieeeee e, chatr_pa(1)
attributes, Change ROS fIl€uuuiuiiiiiiiiiiiiiiiiiiiiiei e aaeaaataaetaasesssssssssssssssssssssssssssssssssssssssnns res(l)
attributes, set and get for pthread pthread_attr_getdetachstate(3T)
attributes, Window, Set and CLEAToovuiiiiiiiiiiiiiiiie e e standend(3X)

attributes; change login password and associatedccccceeeiiiiiiiiiiii passwd(1)
attributes; change program’s INEEITIALuuuiuuiiiiiiiiiiiiii e aeaaeaaeaeaeeaeeneaseeeennnnes chatr(1)
attributes; manage processor Setccccceeeeeiiiiiiiiiiiiiiienennenn. pset_getattr(2)

attributes; search or kill processes based on process name andcceeeiiiiiiiii pgrep(1)
attroff () - restricted window attribute control functions attroff(3X)
attron() - restricted window attribute control fUNCEIONScouiivniiiniiieeie ettt e eaans attroff(3X)
attrset () - restricted window attribute control fUNCEIONScouviiniiiniiie ittt eaans attroff(3X)
audctl () - start or halt the auditing system and set or get audit filesccccoeeiiiiiiiniiiiiiiiinnnna. audctl(2)
audevent - change or display profile, event, or system call audit status audevent(1M)
audeventstab - define and describe audit system eventscccccceeiiiiiiiiiiiiiiiiiis audeventstab(4)
AUAIDLE SIZIIAL ...ttt nnen beep(3X)
Audio - audio tools available through HP VUE (OBSOLETED) Audio(5)
audio control panel (OBSOLETED)cccociuiiiiiiiiiiiiiiiiiiinnnn. . Audio(5)

audio editor (OBSOLETED)c............ . Audio(5)

audio file and data formats (OBSOLETED) Audio(5)
audio file; convert ancccceeeeeeiiininnnn. convert(1)
audio file; describe an attributes(1)

audio file; play an send_sound(1)

audio library (OBSOLETED)uuiiiiiiiiitiiiiiiiiiittitataeaeeeaaeaaaeeeeeaeeaaeeeaeeeeaaeaeeeaeeeeeaeseseseeanesnessesnnnnnnnnnnnnnns Audio(5)
audio on a workstation; OBSOLETED; control access to . . asecure(1M)
audio security (OBSOLETED)uuiiiiiiiiiiiiiiiiiiitiietiiieaeaeaaaaaaaeeaeaeeeeeaeaaaaeaaeeaaeeeeeeeeeseenessesaneseeassnsnssnsnnnns Audio(5)
audio server; start the aserver(1M)
audio SEtUP (OBSOLETED)uuitiiiitiiiiiiiiiiiieiiiiiititeaieaeaaiaeaaaaaaeeaaeeseaeaeeeeassasesassesssssssssssssssssssessesessssseenen Audio(5)
audio tools available through HP VUE (OBSOLETED)uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiiiiiiiieeeeeenneees Audio(5)
audisp - display the requested audit iINfOrmMationccccocoiiiiiiiii e audisp(1M)

292 Hewlett-Packard Company HP-UX 11i Version 3: February 2007

Index

All Volumes
Description Entry Name(Section)
audit files; start or halt the auditing system and set or getcccoeeiiiiiiiiiieiiiiiiiicee e audctl(2)
audit ID (aid) for the current process; get the getaudid(2)
audit ID (aid) for the current process; set the setaudid(2)
audit information; display requested audisp(1M)
audit - introduction to HP-UX Auditing SYStemcccciiiiiiiiiiiieiieiiiiiiiie e eeeevieee e e e evvvese e e e eeevnaneaeeas audit(5)
audit overflow monitor daemon audomon(1M)
audit process flag for calling process; get getaudproc(2)
audit record for self-auditing Process; WITteieeeeeiiiiiiiiiiieeeriiiiiieeeeeeeerieaeeeeererreaeeeeeeenennnns audwrite(2)
audit records; determine time interval (in secs) for flushingcccevvieennninnnn. diskaudit_flush_interval(5)
audit status; change or display profile, event, or system callcccoeeiiiiiiiiiiiniiiiiiiiiiee e, audevent(1M)
audit subsystem; percentage of physical memory that can be used by audit_memory_usage(5)
audit system events, define and describeieieiiiiiiiiiiiiie i audeventstab(4)

audit.conf - file containing event mapping informationccceeeiiiiiiiiinriiiiiiiiiin e audit.conf(4)
audit: file format and other information for auditingcouuiiiiiiiiiiiiiiii e audit(4)
audit: set or get audit filescccoeeviiiiiiiiiinniiiiiiinnn. audctl(2)
audit: start or halt auditing SYSEEIMiiiiiiiiiiiie e e aaaaans audctl(2)
audit; get events and system calls currently being auditedcooeviiiiiiniiiiiiiiiiiinn s getevent(2)
audit; select USErs t0coovveiiiiiiiiiiiieieiie e audusr(1M)
audit; set current events and system calls to be audited setevent(2)

audit_memory usage - percentage of physical memory that can be used by audit subsystem
... audit_memory_usage(5)

audit_site.conf - file containing site-specific event mapping informationcccevveeerernnnn. audit.conf(4)

audit_track_paths - enable/disable tracking of current and root directories for auditing subsystem

.... audit_track_paths(5)

auditing level for the current process and its decendentscccccceuueureininiuieiiniiniiiiieiiieeenaeennn setaudproc(2)
auditing on the current process; SUSPENA OF TESUINEuuuuuuumuuuunnnniinnnnniinnnnnnnnnnnennnnnnnnnnnnnnnnnnnnnes audswitch(2)
auditing subsystem; enable/disable tracking of current and root directories for audit_track_paths(5)
auditing system and set or get audit files; start or halt theccccoooiiiiiiiiiiiiiiiiiiiies audctl(2)
Auditing System; introduction t0 HP-UX ... eeeeeeseeaaeeeeeennes audit(5)
auditing system; set or display audit trail information audsys(1M)
auditing system; start or halt ... e e audsys(1M)
auditing the current process as owned by a given user, Startcccocccveeieiiiiiiiiieeeeeiniiieeee e setauduser(3)
audomon - audit overflow monitor daemoncccooeeiiiiiiiiiiniiiinnnenn. . audomon (1M)
audswitch() - suspend or resume auditing on the current process audswitch(2)
audsys - start/halt the auditing system; set/display audit trail information audsys(1M)
audusr - select users to aUditcooviiviiiiiiiiiiii e .. audusr(1M)
audwrite () - write audit record for self-auditing Processccccccevviiiiiiiiiiiiiiiiiie, audwrite(2)
auth_destroy () - library routines for client side remote procedure call authentication rpc_clnt_auth(3N)
authadm - non-interactive editing of the authorization information in the RBAC databases authadm(1M)
authcap - security databases for trusted SYStemsooocuiiiiiiiiiiiiiii authcap(4)
authck - check internal consistency of Authentication database authek(1M)

authdes_create () - obsolete library routines for RPCcccceiiiii rpc_soc(3N)

authdes_getucred () - library routines for secure remote procedure callsccccceevvvrerennnni. secure_rpc(3N)
authdes_seccreate() - library routines for secure remote procedure callscooevvereeenni. secure_rpc(3N)
authentication and authorization; secure internet services with Kerberosccccoeeeeiiiiiiiiiiineiiiiiiiiiinneens sis(5)
authentication and print request server; PC-NFS penfsd (1M)
authentication database for trusted systems; protected passwordcccccvvviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeees prpwd4)
Authentication database; check internal consistency of authek(1M)
authentication file format; PPPccooiiiiiiiiiiiiii e pPpp-Auth(4)
authentication information routines for PANoiuuiieiiiieie ettt e e e eaans pam_set_item(3)
authentication module, configuration file for pluggable authentication module pam.conf(4)
authentication module, Pluggableoooiiiiiiiiiiiiiiiiiie e pam(3)
authentication modules; user configuration file for pluggableccoeeeeiiil. pam_user.conf(4)

authentication service, modify and delete user credentials for an authentication service pam_setcred(3)
authentication transaction routines for PAIMcoouciiiiiuiii ettt ettt et e e e eaeeeaaeenans pam_start(3)
authentication within the PAM framework, performccccccccvvviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeenn. pam_authenticate(3)
authentication, account, password, and session service module for HP-UX, extended pam_hpsec(5)
authentication, account, session and password management PAM modules for UNIX pam_unix(5)

authentication, account, session, and password management PAM modules for LDAP pam_ldap(5)
authnone_create () - library routines for client side remote procedure call authentication rpc_clnt_auth(3N)
authorization and privilege information in the privrun database; noninteractive editing of a

HP-UX 11i Version 3: February 2007 Hewlett-Packard Company 293

Index

All Volumes
Description Entry Name(Section)
COTMMINATIA’S ©.uuuieiiiiiiiiieeeeeetttti e eeeeeerataeaeeeesssaennnaeeesssssnnnaeeeessssnnnnasessssssnnnaeesssssssnnnnaeees cmdprivadm(1M)
authorization checks and optionally reauthenticating the user; invoke another application with privileges
after performing apProPIriateccoiiiieeiiiiiiiiie e e e et re e e e e e ear e e e e e eaaaraeeaeeaees privrun(1M)
authorization file; EVM evm.auth(4)
authorization file; eVIMAAGINONooiiiiiiiiiiiii e aanas evm.auth(4)
authorization information in the RBAC databases, non-interactive editing of the authadm(1M)
authorization; PAM module that provides USETceeeeiiiiiiiiiiieeeeeeiiiiiie e e eeviiee e e eeeaeeiaeees pam_authz(5)
authorization; secure internet services with Kerberos authentication andcccooeeiiviiiiiiiieiiiiieeiiinnnnn, sis(5)
authorized users edit files that are under access control; letcoooviiiiiiiiiiiiiiiiiien e privedit(1M)

authsys_create() - library routines for client side remote procedure call authentication .. rpc_clnt_auth(3N)
authsys_default () - library routines for client side remote procedure call authentication rpec_clnt_auth(3N)
authunix_create() - obsolete library routines for RPCccccooiiiiiiiiiiiiiiiiiiiiie e rpc_soc(3N)

authunix create_default () - obsolete library routines for RPCcc, rpc_soc(3N)
auto_parms - initial system configuration plus DHCP support command auto_parms(1M)
AUEODOOL SEQUEIICE ...eiieeieeeeeeee e et e e et eeeeeeeeeeeaaaeeaaaaaaeaaaaaaaaaaaaaeaeaaaaaaeaaeeeas pdc(1M)
autochanger - SCSI interfaces for medium changer devicec..cooevviiiiiieiiiiiiiiiiiieeeeeeeiiiieeees autochanger(7)
AULOES Looiiiiiiiiiiiiii ettt automountd(1M)
autofs - file containing parameter values for automountd daemon and automount command autofs(4)
automatic mount points; INStAllouuiiiiiiiiiiii s automount(1M)
automatic PCI Error Recovery; time interval, in minutes, between two PCI errors at a I/O slot that will

TESULE TN 1oiiiiiii e e et eeeaeees pci_error_tolerance_time(5)
automount command; file containing parameter values forcccccoeeiiiiiiiiiiiiiiiiiiiiiiiee e autofs(4)
automount - install automatic mount points automount(1M)
automountd - autofs mount/unmount daemonccccccceiiiiiiiiiiiiiiiiieeeee automountd(1M)
automountd daemon,; file containing parameter values forccccceoeiiiiiiiiiiiiniiiiiiii e autofs(4)
autopush - manage system database of automatically pushed STREAMS modules autopush(1M)
available disk space reaches threshold, suspend and resume accounting when acctsuspend(5)
available through HP VUE (OBSOLETED); audio t00lScceviiiiiiiiiiiiriiiiiiiiiiiee e eeeeeiiiiee e eeeeviiee e eeeenes Audio(5)
awk - pattern-directed scanning and processing languagecceeeiiiiiiiiiiiieiiiiiiiiiiee s awk(1)
back into input stream, push character ungetc(3S)

... ungetwc(3C)
TACK_TRACE((3X)

back into input stream, push wide character ...
back of the procedure call stack using the unwind library, produce a trace ..

back UP fIles; SELECTIVELY ...cciiiiieieieiieeeceeeeece e e e e e fbackup(1M)
background batch EXECULIONiiiiiiiiiiiiiie et e e ettt e e e e e sttt e e e e s s baeeeeeeeannaeee at(1)
background character and rendition using a complex character bkgrnd(3X)
background character and rendition using a single-byte charactercccccccoiiiiiiiiiiiiiiiiiiiiinnns bkgd(3X)
background process Sroupcccoccceceeeeiiniiiiiieeeeninniiieeees ... glossary(9)
background processes to complete, Wait fOrcooiiiiiiiiiiiiiiiiiie e wait(1)
backing store pointer arithmeticcccccciiiieiiii e uwx_add_to_bsp(3X)
backlog value of the filter, for sendmail; sets the listen .. smfi_setbacklog(3N)
backspaces and reverse line-feeds, remove from tEXEuuuuiuiiiiiiiiiiieees col(1)
BACKUDP ...oooiiiiiiiiiiiiiii e ... glossary(9)
backup - backup or archive the file SYStEmoooiiiiiiiiiiiiiiii e backup(1M)
backup file, create or update LVM volume group configuration vgefgbackup(1M)
backup, incremental file system dumpcccoeeiiiiiiiiiiii dump(1M)
backup, incremental file system dump over network dump(1M)
banner - make posters in 1arge 1etters ... banner(1)
base offset for an object file, get elf_getbase(3E)
base-10 exponential fUNCIONScooiiiiiiiiiiiiii expl0(3M)
base-2 eXponential fUNCEIONScccoeoiiiiiiiie e exp2(3M)
base-64 ASCII string, convert 1ong iNteZer 0ccoeeviiiiiiiiiiiiiiiiieeee e a641(3C)
basename, dirname - extract portions of path names basename(1)
basename () - return final component of path name basename(3C)
basic INtEZEr dAta LYPESeviiiiiiiiiiiiiiiiiiiiiiiiieiee ettt ettt ettt ettt et ettt e ettt et et teeeeeeereeaeeaeae inttypes(5)
Basic Serial and HP AdvanceLink server . .. peserver(1M)
bastille - system locKAOWN t00]cooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e bastille(1M)
bastille_drift - system configuration drift analyzercccccooiiiiiiiiiiiiiiiiiiiiees bastille_drift(1M)
batch, at, and crontab queue description file queuedefs(4)
batch - execute commands IMMEIALELYuuuuiuiiiiiiiiiiiiiiiiiii e at(1)
DatCh MATL INEETTACEuueiiiiiiiii s fastmail(1)
baud rate, get terminal ...ttt baudrate(3X)

294 Hewlett-Packard Company HP-UX 11i Version 3: February 2007

Index

All Volumes
Description Entry Name(Section)
baud rate, thy, SEt OF O ..oiiiiiiiiie i e e et e e e e e e et e e e eeara— e aaaaaaas cfspeed(3C)
baudrate () - get terminal baud rate .. baudrate(3X)
be - arbitrary-precision arithmetic [anguageccuuuiieiiiiiiiiiiiie et e e e e e eer e e e e e eaaa e eaaaaaes be(1)
bemp () - BSD MEMOTY COMPATE ...cccovviiieiiiiiiiiiieeeeeeeiiiieeeeeeeetiieeeeeeeeaaaeaaaeeeesersnnnaeeeessssnnnaaseserenes memory(3C)
beopy () - BSD memory Copyccevvvveieereeriiiiiiieeeeeeeiiiieeeens memory(3C)

bdf - report number of free disk blocks (Berkeley version)ccccuueeiieriiiiiiiiiiieeeeeiiiiiiieeeeeeeviieneeees bdf(1M)

bAiff -bigdiff bdiff(1)
beep () - AUAIDIE SIZNALcoiiiiiiiiiiiiie e e e e e et et e e e e ettt e e e e e eataa e aeaeraranaaaaas beep(3X)
beginning of file, list first few LINES Atcoeiiiiiiiiiiie e e e aaaeaaas head(1)
behalf of an NFS client, clear locks held on clear_locks(1M)

behavior on HP-UX; UNIX Standardsc.cceueeeiiiiieeiiiieeiiiie et eeeiie e e eesaieeeeaeeessneessnneesenns standards(5)

behavior, advise system of process’s expected paging madvise(2)
Bessel functions of the first KIndocouuiiiriiiiiiii et e e e e e et e e e e e eeaaaaans jo(3M)
Bessel functions of the second Kindoouuiiiiiiiiiiiiiiiee e e et e e e ettt e e e e e eeaaa e eeeaeaes yO0(3M)
bg - put jobs into background sh-posix(1)
bgets () - read stream up to next delimiteroooiiiiiiiiiiiiiiiiiiii e bgets(3G)
BGP routing daemon for TPVooooiiiiiiiiiiiiii bgpd(1M)
bgpd - BGP routing daemon for IPv6 bgpd(1M)

03T U PSPPSR PP PRI bdiff(1)
bigcrypt () - generate hashing encryption on large strings .. bigerypt(3C)
binary directories; install 0bJect fIleS 1M ...cceeeiieiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e cpset(1M)
binary executable(s); display security attributes of getfilexsec(1M)
binary file, convert to ASCII for transmission by mailerccccceeiiunuunniiiiniiiiiiiiiiiiiiiiiiiiienennnnes uuencode(1)
binary file; set extended security attributeson a setfilexsec(1M)
binary files used by file system administration commandscccceeeeiiiiiiiiieeiniii e fs_wrapper(5)
binary files, format tracing and LOZZINGcooiiiiiiiiiiiiiiii e netfmt(1M)
binary input/output to a stream file; buffered fread(3S)
binary or object file, find the printable strings in an strings(1)
binary program files for given name, find location ofccccceoiiiiiiiiiiiiiiiiii whereis(1)
binary search routine for sorted tablescoooiiiiiiiiiiiiii bsearch(3C)
binary search tree, MANAZE @&ccoviiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeee ettt e e e et e et et e ettt e e aeeaeees tsearch(3C)
bind a driver t0 @ deviCeccoveevieeiieiiiiiiieeieeeeeeeeeans ... iobind (1M)
bind address to transport endpoint (X/OPEN TLI-XTI)uuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeenneeeeennenees t_bind(3)
biNd an Address t0 @ SOCKET ..cvunieniiiiie ettt ettt et e e et e et e et et et et e e e et e eaeeaaanans bind(2)
bind () - bind an address t0 @ SOCKEL ...c.uuiieniieiiie ettt e et e et e e e et e et e et e eraanans bind(2)
bind process or thread t0 @ ProCesSSOT SOtiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeee et e e eeeeeeeeeeeeees pset_bind(2)
bind services, library routines for RPCccccciiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e rpcbind(3N)
bind threads to locality domainccoeeeiiiiiiiiiii pthread_processor_bind_np(3T)
bind threads to ProCeSSOTScoovviiiiiiiiiiiiieeieeeeeeeeee e pthread_processor_bind_np(3T)
bind to particular Network Information Service SErverccccccccoiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeees ypset(1M)
binder, and transfer processes; Network Information Service (NIS) server,cccccceeeviiiiinnnnnnnn... ypserv(1M)
biod - NEFS daemomncooooiiiiiiiiiiiii biod(1M)
DIE DULCKEL ... null(7)
DIt DUCKEL oiiiiiiiiiiiiiii ettt ... zero(7)

bkgd () - set or get background character and rendition using a single-byte character bkgd(3X)
bkgrnd () - set or get background character and rendition using omplex characterccccccceeeeee. bkgrnd(3X)
blank lines, reduce multiple adjacent to single blank line ...t ssp(1)
blank lines, remove all from fIlecoooiiiiiiiiiiiiiiie e e e e e e bt e aaaeaaes rmnl(1)
blmode - terminal block mode INtEIACEccciiiiiiiiiiiiiiiiiiii e blmode(7)

bBIOCKoooiiiiiiiiiiiii e
block count and checksum of a file, print

.. glossary(9)

block count and checksum of a file, print sum(1)
block mode terminal INtETTACEcciiiiiiiiiiiiiiiiii e e e blmode(7)
block size, dump file system dumpfs(1M)
DLOCK SPECIAL fI1E€oiiiiiiiiiiiiiiiiiiiii e glossary(9)
block, enable or disable dUTING TAAuiuiiiii e nodelay(3X)
blocked signals, examine and changecccccccccvviiiiiiiii. .. sigprocmask(2)
blocked signals, release and atomically wait for interruptccooei sigpause(3C)
blocking on input, CONEIOLciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieee ettt ettt ettt eeeeae notimeout(3X)
blocking status of a message queue associated with a descriptor, setccccccceiiiiiiiiiiiiiiiininnn. mq_setattr(2)
IIOOL ...ttt glossary(9)

HP-UX 11i Version 3: February 2007 Hewlett-Packard Company 295

Index

All Volumes

Description Entry Name(Section)
DOOL AT@Aoooiiiiiiiiiiiiiiie e e e e et e e e e ettt e e e e ettt e eeeetattt e aaeeerttaaaaaeerrraaaaas glossary(9)
boot device configuration table ... bootconf(4)
boot programs from disk; install, update or removeccooviiiiiieriiiiiiiiiiie e mkboot(1M)
Boot Protocol server; INEEINEtuuiiiiiiiiiiiiiiee e e e e e et e e e e e eeaaa e e e eeeeersnanaeeaeeenes bootpd(1M)
boot ROMocevvvviiieeeeen, ... glossary(9)
DOOL - TUN DOOLSEIAD PIOCESS ..oiiivviiiiieieiiiiiiiieeeeeeeititieeeeeetttte e eeeeetrtennaaeeearersnnnnaeeeesesssnnnaaesesesssnnnaeeeerenes boot(1M)
oot the SYSEEmM ...ccovviiiieiiiiiiie e e ... reboot(2)
boot time (OBSOLETE); enable or disable System V IPC messages atcccceeeeeiiiiiiiiiiineeeiiiiiiiineeeeeenns mesg(5)
boot time, enable or disable System V IPC semaphores atcccuuiiieiiiiiiiiiiiieeeiiiiiiieee e eeeees sema(5)
boot variables in stable storage; display and modifycccceeieriiiiiiiiiiinn i setboot(1M)
boot, primary swap, or dump volume; prepare LVM logical volume to be root,cccccvvuveererennn. lvinboot(1M)
L0203 7 S PSP UUPUPPPRRPRE glossary(9)
bootconf - boot device configuration tableooiiiiiiiiiiiiiiiiiiiiie e e bootconf(4)
BOOTP server, send BOOTREQUEST to bootpquery(1M)
bootpd, command line tools for DHCP elements of dhcptools(1M)
bootpquery - send BOOTREQUEST to BOOTP SEIrVercccooeivvieiiiiieeiiiiieeeiiieeeeiieeeveneeeenns bootpquery(1M)
bootptab entry, et OF PULccooiiiiiiiiie et e e e e e eaaes getbootpent(3X)
BOOTREQUEST, send to BOOTP server ... bootpquery(1M)
bootstrap and installation utility, HP-UXccciiiiiiiiiiiiiiiiiiiiiiiiiieieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeeee hpux(1M)
bootstrap for Itanium-based systems, HP-UX ... hpux.efi(1M)
DOOLSETAD PIOCESS, TUI .oeeiiiiiiiiiieiiieeieee eeaeeeens boot(1M)
border () - draw borders from single-byte characters and renditionsceeeeeeeeeiininnnnnnnnn... border(3X)
border_set () - draw borders from complex characters and renditions border_set(3X)
borders, draw from complex characters and renditions border_set(3X)
borders, draw from complex characters and renditionsccccceeeeeiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e, box_set(3X)
borders, draw from single-byte characters and renditions border(3X)
borders, draw from single-byte characters and renditionscccceeeiiiiiiiiiii box(3X)
box () - draw borders from single-byte characters and renditionsccccccceeeiiiiiiiiii, box(3X)
box_set () - draw borders from complex characters and renditionsccccceeeeeieeieieinnennnnnnnnnnn.... box_set(3X)
break a file into Multiple 72-1iN€ PIECEScuuuiiiiiiiiiiiiiiiiii e e et e e e e split(1)
break - exit from enclosing for, select, until, or while loop sh-posix(1)
break - exit from enclosing for/Mext 100Dcooiiiiiiiiiiiiiiiiiiiiiiiieeee e csh(1)
break - exit from enclosing for/mext 100Pooiiiiiiiiiiii ksh(1)
break value and file size limits, Gt OF SEccoiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e ulimit(2)
breaksw - break from switch and resume after ENASWvieniieiiii et eaaas csh(1)
brk (), sbrk() — change data segment space allocationcccccceeiiiiiiiiiiiii brk(2)
broadcast message simultaneously to all users wall(1M)
bs - a compiler/interpreter for modest-sized Programsccccceeiiiiiiiiiiiiiiiii bs(1)
BSD pseudo terminals (ptys), maximum number ofccccceiiiiiiiiiii npty(5)
BSD-4.2-compatible kill (), and signal () system calls bsdproc(3C)
BSD-compatible process control fACilities, 4.2 i killpg(2)
bsearch () - binary search routine for sorted tables . . bsearch(3C)
bss (uninitialized data) allocation space of object files, print section sizes andceeeeeeeieiiiiinnnnnnnnn... size(1)
btlan driver; network interface management command forccccccuuunnnne. ... nwmgr_btlan(1M)
btmp - user 10gin record fOrMAtooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie ittt eeeeereees utmp(4)
btmps database, write records into new Wtmps andcoooeeiiiiiiiiiiiiii bwtmps(3C)
DI F118 L.ttt enen login(1)
btmps - user 10gin INfOrmation ..ottt eeeees wtmps(4)
btowc () - conversion between single-byte and wide characterccccocoiiiiiiiiiiiiiiiiiiieae btowc(3C)
bufcache_max_pct - OBSOLETED kernel tunable parameter .. . dbc_max_pct(5)
bufcall, maximum number of outstanding STREAMSuuuuiiiiimiiiiiiiiiiiiiiiiiiieeeee nstrevent(5)
Buffer Cache Pages used by sendfile, maximum number ofcccccoouumiiiiiiiiiiiiiiiiiiiiiiiiinnnn. sendfile_max(5)
buffer, free storage associated withccccccccoiiiiiii gss_release_buffer(3)
buffer; SPIt iNto fIELAS ..o bufsplit(3G)
buffered binary input/output to a stream file ... fread(3S)
buffered input/output standard stream file PACKAZEuuuuuuiiiiiiiiiiiiiii e stdio(3S)
buffering to a stream file; assignccccccceuunnnnn. .. setbuf(3S)
buffers, flush unwritten system buffers t0 disk ...t sync(1M)
buffers, periodically flush unwritten system buffers to diskcccccccciiiiiiiiiiiiiiiieeee syncer(1M)
bufpages - OBSOLETED kernel tunable parameterccccccoeiiiiiiiiiiii, dbc_max_pct(5)
bufsplit () - split buffer into leldscooeeeeiiiiieee bufsplit(3G)

296 Hewlett-Packard Company HP-UX 11i Version 3: February 2007

Index

All Volumes

Description Entry Name(Section)

DUild @ MAKETILEeeviiiiieeeiiiiiie ettt e e et e e e e et e e e e e st eeeeeeaantaaaeaeeeannnraeeeeeeeannnteans mkmf(1)

build and install Network Information Service databasesccceeeiiiiiiiiiieiiiiiiiiiiie e ypinit(1M)

build or access a binary Search treeceieiiiiiiiiiiiie e e e e e e e eraaaaan tsearch(3C)
Bus Adapters; Fibre Channel Mass Storage Utility Command for TACHYON TL,

TACHYON XL2, FCD Driver-Based and FC/GigE Combo Fibre Channel Host femsutil (1M)

LoD TR Ve s b LT USRS glossary(9)

bwtmpname () - write records into new wtmps and btmps database ...
bwtmps - write records into new wtmps and btmps database .

. bwtmps(3C)
... bwtmps(3C)

byte order, network and host, convert values between byteorder(3N)
byte; compare memory contents with Specifiedccouiiiiiriiiiiiiiiiiie s memory(3C)
byte; find location of iN MEMOTYccuuiiiiieiiiiiiiiiiee e et e e e e e eeaae e e e eeeeateneeeeeeesannnaaaaes memory(3C)
byte; set contents of memory area to SPECIfiedcciiiiiiiiieiiiiiiiiiire e memory(3C)
bytes in a character; get NUMDET Ofoooiiiiiiiiiiiii e e e e e erar e e e e e eeaannans mbrlen(3C)
bytes in @ fIle; COUNL ...ccceiiiiiiiiiiiiiiiie e e ettt e e e e e ettae s e e eeeeeeaanaeeeeeeaassnnneeeasessnnnneeeesessnnnes we(l)
bytes on a single System V IPC message queue, maximum number ofcccccceeevriiiiiiiiinnnrrennnnnnn. msgmnb(5)
bytes or characters in a file; count words, lines, andcoiiiiiiiiiiiiiin e we(l)
o) AT 2= o SRS UPPPPRRRIN swab(3C)
bzero () - BSD MeMOTY CLEAToiiiiiiiiiiiiieie ittt e e ettt e e e e e eetaae e e e e e eaatasaeeeeeassnnnnneeaes memory(3C)
C compiler; bundled cc_bundled(1)
C header files, ENETAtEoiiiiiiiiieiiiiiiiiiiee e e ettt e e e e ettt e e e e e e etataa e e eeeeaataaeeeeeeartanaeeeaeaees rpcgen(1)
C 1anGUAZE PIEPIOCESSOT ...ceevirviinneeetiiiiiiaeeeeettuueeeeeeettttnnseeeererennssseeesesnnnnsssseeesssnnnasseeeesssnnnesseesesmmnnnesees cpp(1)
C language, process include and conditional inStructionsccoeeveeeiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e, cpp(1)

C library, list of pthread calls for which the stubs are provided in the .. pthread_stubs(5)
C INACTO PIOCESSOT ..eeeiiiiiiiiiiiieieieeeeeeeeteeeee et e eee et et ettt ettt et eaeeeetaeaaaeeeaaaeaaaaeetaaaeaeaaeeeaaeeaaaaeeeaeaeeeeeeeaeeeeeeeeeaeeeaeeens m4(1)
C source into a file; extract error messages fromcccccceeeunnnnennnnnnnnnnn. mkstr(1)
C-Kermit 8.0 communications software for serial and network connections kermit(1)
C-like syntax; a shell (command interpreter) withccccci csh(1)
cabinet LEDs; flash/turn off fruled(1)
cabs () - complex absolute value fUNCEIONcouiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeee e e e e eeeeeeeeeees cabs(3M)
cabsf () - complex absolute value function (float)ccevviiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeree e cabs(3M)
cabsl () - complex absolute value function (long double) cabs(3M)
cabsq() - complex absolute value function (quad) cabs(3M)
cabsw () - complex absolute value function (extended)cccceviiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeee e cabs(3M)
cache display and control, IPv6 Neighbor DiSCOVETYcocuuiiiiiiiiiiiiiiiiee ittt e e eee e ndp(1M)
Cache (DNLC); number of locks for the Directory Name Lookup . .. dnlc_hash_locks(5)
Cache File SYStem SEATISTICSuuuuuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiitieaaeeaaaaeeeeeessessseseeseessnnnenes cachefsstat(1M)
cache in the SCSI subsystem (OBSOLETE); enable and disable use of device’s write default_disk_ir(5)
cache of recently looked-up names, get entries from SYStemccccceevviiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeees pstat(2)
Cache Pages used by sendfile, maximum number of Buffercccccccccviiiiiiiiiiiiiiiiiiiiiiiiinnn. sendfile_max(5)
cache that can be consumed by sequential accesses, per system-wide limit; percentage of file
.. fcache_seqlimit_system(5)
cache that can be consumed by sequential accesses, per-file limit; percent of file
.. fcache_seqlimit_file(5)
cache the Kerberos ticket-granting ticket; obtain andccociiiiiiiiiiiiiiiiiiieeae kinit(1)
cache; pack files and file systemscccccecuuuininnnnnnn. .. cachefspack(1M)
cached Kerberos tICKEtS; LISuuuiieiiiiiiiiiiiie e e e e ettt eee e e e e e e ettt eeeeeeeeeesataeeeeaseesstaaaeaaaeeees klist(1)
CacheFsS file systems; mount and unmountoeeviiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeees mount_cachefs(1M)
CacheF'S; administer disk space used for caching file systems withcccccccciiiiiii. cfsadmin(1M)
CacheFS; check integrity of data cached with fsck_cachefs(1M)
cachefs; PACKING TULES fIlEuuuiiiiiiiiii s packingrules(4)
cachefspack - pack files and file systems in the cache cachefspack(1M)
cachefsstat - Cache File System statistics cachefsstat(1M)
caching and hashing daemon, password and Groupccccceeeeiiiiiiiiiiiiiiii pwgrd(1M)
caching and hashing statistics, password and groupcccccceeeeiiiiiiiiiiiiiii pwgr_stat(1M)
caching file I/O data; maximum or minimum amount of physical memory used for filecache_max(5)
caching file systems with CacheF'S; administercccccceviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee cfsadmin(1M)
cacos () - complex arcCoSINe fUNCEIONuuuuiiiiiiiiiiiii e eeeeeeeaes cacos(3M)
cacosf () - complex arccosine function (lOAt)uueuiuiiiiiiiiii e cacos(3M)
cacosh() - complex arc hyperbolic coSINe fUnNCEIONuuuuuiuiiiiiiiiiiieeee cacosh(3M)
cacoshf () - complex arc hyperbolic cosine function (float)ccccecoiiiiiiiiiiiiiiieee cacosh(3M)
cacoshl () - complex arc hyperbolic cosine function (long double)cccccoeiiiiiiiiiiiiiiiiiiiiiiiinnn. cacosh(3M)

HP-UX 11i Version 3: February 2007 Hewlett-Packard Company 297

Index

All Volumes
Description Entry Name(Section)
cacoshqg() - complex arc hyperbolic cosine function (quad)ccccccoiiiiiiiiiiiiiiiiiiie cacosh(3M)
cacoshw () - complex arc hyperbolic cosine function (extended)cccccceeeeieiiiiiiiiiiereeeeiiiiiieeeeeenens cacosh(3M)
cacosl () - complex arccosine function (1ong double)cccceeiiiiiiiiiieiiiiiiiiiee e cacos(3M)
cacosq() - complex arccosine function (QUAA)euueueuuiiuiiiiiiii cacos(3M)
cacosw () - complex arccosine function (extended)ceeeiiiiiiiiiiiieieiiiiee e cacos(3M)
L A o o721 (<Y 0 Vo P PSPPIt cal(1)
calculate default disk section sizes .. disksecn(1M)
(=1 (0] = 7o) e 1=Y-] - PN UPPPRTON de(1)
calendar - reminder service . calendar(1)
1o 123 T PN gl) o X PSP cal(1)
call an initialization routine only once pthread_once(3T)
call another (UNIX) system, terminal emulatorcoooiiiiiiiiiiiiiiiiiiie e e e e e eeneeeans cu(l)
call graph execution profile data, diSPLAYccouiuiieriiiiiiiiiiee e e e e e e eeranaans gprof(1)
call stack using the unwind library, produce a trace back of the procedure . U_STACK_TRACE@3X)
call terminal- spawn getty to remote terminalcccooeiiiiiiiiiiiiin i e eeae ct(1)
call-back POSIX asynchronous I/O operations; percentage of physical memory lockable for request
... aio_physmem_pct(5)

callback daemon; NF'S VEISION 4cciiviiiiiiiiieiiiiiee et e e et e e et ee e e et e e sateeseseeesaaeessnnnns nfs4cbd(1M)
callback for context, specifyccccooeeeenrrnnnnns ... rpc_gss_set_callback(3N)
callback function; event management (EVIM)ccccccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeees EvmCallback(5)
callback routines for stack unwind, regiStEerccccoeeeeiiriiiiuunnnniiniiiiiiiinieiieneennnns uwx_register_callbacks(3X)
callbacks for sendmail; registers a set of filtercccccvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e smfi_register(3N)
calling Process, SUSPEIAccoeiiiiiiiiiiiiiiie e napms(3X)
calling process; get audit process flag for getaudproc(2)
calloc() - allocate memory for array malloc(3C)
callrpc() - obsolete library routines for RPC rpc_soc(3N)
calls currently being audited; get events and systemcccceeiiiiiiii getevent(2)
calls for which the stubs are provided in the C library, list of pthreadccccccoooiiiiiiiinnnnin. pthread_stubs(5)
calls to be audited; set current events and SYStEMcoeeeeiiiiiiiiiiiiiiiiiii setevent(2)
calls without error checking; execute 1ink () and unlink () SYStEmMcccccceeeiiiiiiiiieiiiiiiiinneneneeennnnnn. link(1M)
calls, library routines for secure remote procedurecccceeeeernnunnne .. secure_rpc(3N)
calls, system, BSD-4.2-compatible kill (), and signal ()cccccceriiiiiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeenn bsdproc(3C)
can_change_color() - color manipulation functionsccccceevviivviiiiiiiiieiieieiieeeeeennnns can_change_color(3X)
cancel a notification request with a message queue; register orcccccevviiiiiiiiiiiniiiiieee e mq_notify(2)
cancel a per-process timercccceeeeieiiiiiiiiiiiiiiiiieeeeeeee, rmtimer(3C)
cancel asynchronous I/Occccceecinnnnnnnn. ... aio_cancel(2)
cancel - cancel requests on an LP Printercccoiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 1p(1)
cancel execution of a threadc.covviviiiiiiiiiiiieiieieeeeeen pthread_cancel(3T)
cancel LP requests from spooling queue on remote SyStemcccceeeiiiiiiiiiiiiiiiiiniiiiiiiiieieeeeeeeennn. rcancel(1M)
cancel online cell operation; monitor online cell operation; reset hung cell during cell activation;

online activation of a cell from NPartition;cccooviiiiieiiiiiiiiiiiie e parolrad(1M)
cancel pending changes to complex or partition configuration data;

unlock stable complex Profile 0Toeviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee e parunlock(1M)
cancel requests on an LP Printer ... eeees 1p(1)
CaNCEL SATE ..ieniiie i thread_safety(5)
cancelability state and type, set and retrieve the current thread’sccccc...... pthread_setcancelstate(3T)
cancellation cleanup handler, register or remove threadccccccccvviiiiiiiiiiiiiiiinnnn. pthread_cleanup_pop(3T)
CanCellation POINTS ...ieniieiie ettt ettt e et e et e e e e e et e et e eaeereeraeaans thread_safety(5)
cancellation requests, process any pending pthread_testcancel(3T)
capabilities, terminal, get from terminfo databaSeuuuuuuuuuiuiiiiiiiiiiiiiiiiiiii e tput(1)
captoinfo - convert a termcap description into a terminfo descriptionccceeeeiiiiil captoinfo(1M)
card access information, NEtWOrk I/Qooiiiiiiiiiiiiiiiie e e e e e et e aaaaaae lan(7)
cards and Online Addition of I/O chassis; command for Online Addition/Replacement/Deletion of PCI I/O

... olrad(1M)

carg () - complex argument funCEIONc...uiiiiiiiiiiiii e carg(3M)
cargf () - complex argument function (FlOAt)ueiiuuiiiiii e carg(3M)
cargl () - complex argument function (1ong double)cciiiiiiii e carg(3M)
cargq() - complex argument function (QUA)ccceeeeeiiiiiiiiiiiiiiiii e carg(3M)
cargw() - complex argument function (€Xtended)ccccovioiiiiiiiiiiiiiiiiii e carg(3M)
carriage control characters; Interpret ASAt eeeees asa(l)
case - execute commands based on pattern match ... sh-posix(1)

298 Hewlett-Packard Company HP-UX 11i Version 3: February 2007

Index

All Volumes
Description Entry Name(Section)
case - execute [ist associated with pattern that matches wordcccoceeeeeiiiiiiiiiiie e ksh(1)
case - label in a switch statement csh(1)
casin() - complex arcsine fUNCEIONcceeiiiiiiiiiiieeeeeiiiicie e e e e ettt eee e e e e eerre s e e eeeeeasaaaeeeeeeessennaeaaasnnes casin(3M)
casinf () - complex arcsine function (loat)ccceciiiiiiiiiiiiiiiiiiiii e e e casin(3M)
casinh () - complex arc hyperbolic sine function casinh(3M)
casinhf () - complex arc hyperbolic sine function (float) casinh(3M)
casinhl () - complex arc hyperbolic sine function (long double)c.cveeeeiiiiiiiiiiiinneiiiiiccie e, casinh(3M)
casinhg () - complex arc hyperbolic sine function (quad)cccceeeeiiiiiiiiiiieiieiicee e casinh(3M)
casinhw () - complex arc hyperbolic sine function (extended) casinh(3M)
casinl () - complex arcsine function (1ong double)eieiiiiiiiiiiiieee e casin(3M)
casing() - complex arcsine function (quad) casin(3M)
casinw () - complex arcsine function (€Xtended)ccceeieiiiiiiiiiiiieeeriiirre e e eeeee casin(3M)
cat after uncompacting Huffman coded files (see pack ... compact(1)
cat and whatis files for online manpages; create catman(1M)
cat - concatenate, copy, and Print fileScouuuiiriiiiiiiiiiiii et e e e ar e cat(1)
catalog file, generate a formatted MESSAZEcccevviiiiiiiiieiiiiiiiiiie e gencat(1)
catalog file, message, create for modificationccooeiiiiiiiiiiiiiiiiiiiiiie e findmsg(1)
catalog path, configure messagec........... ... chnlspath(1M)
catalog, set the default MESSAZEccooviuiiiiiiiii e e setcat(3)
catalogs, message, find strings for iNCIUSION INuuiiiiiiiiiiiiiiiie e e e e e e e eeaaaeeeees findstr(1)
catan () - complex arctangent funCtioncc.oooiiiiiiiiiiiiiiiiiii e catan(3M)
catanf () - complex arctangent function (float)cccceeiiiiiiiiiiiiiii e catan(3M)
catanh () - complex arc hyperbolic tangent function catanh(3M)
catanhf () - complex arc hyperbolic tangent function (float) catanh(3M)
catanhl () - complex arc hyperbolic tangent function (long double) catanh(3M)
catanhqg() - complex arc hyperbolic tangent function (quad) catanh(3M)
catanhw () - complex arc hyperbolic tangent function (extended) catanh(3M)
catanl () - complex arctangent function (long double)ccoeeeiiiiiiii catan(3M)
catang() - complex arctangent function (qUad)ccccceeeiiiiiiiiiii catan(3M)
catanw () - complex arctangent function (extended)cceeeiiiiiiiiiii catan(3M)
catclose() - close message catalog for reading catopen(3C)
categories of events; lists different evweb_list(1)
catgets(3C), insert calls to based on findstr(1) outPULeeeeiiiiiiiiiiiiiiiii e insertmsg(1)
catgets () - get an NLS Program MESSAZEuceeeeeeeuruuuueeeeeeemtuuueeeerettnuaeeeeeeeenmaeeeeemmmmeeeeeemmmnnns catgets(3C)
catman - create cat and whatis files for online manpages catman(1M)
catopen () - open message catalog for readingccccceeiiiiiiiiiiiieeiiiiiiere e e eaae catopen(3C)
cause the calling thread to terminate pthread_exit(3T)
cblocks for pty and tty data transfers; number ofccooeiiiiiiiiiiiii e neclist(5)
cbreak() - input mode control functions cbreak(3X)
cbrt () - cube root fUNCEION ..ocoeeeeeieeeeee e cbrt(3M)
cbrtf () - cube root function (l0at)cooeiiiiiiiiiii i cbrt(3M)
cbrtl () - cube root function (10ng doUDIE)cceiiiiiiiiiiieiie e e e e e e rrra e cbrt(3M)
cbrtq() - cube root function (QUA)cceiiiiiiiereei e e e e e et e e e e e eara e e e eeeearsnaeeeeeearannaaaaes cbrt(3M)
cbrtw() - cube root function (extended)oooiiiiiiiiiiiiii i cbrt(3M)
cC - bundled C COMPILETccoviiiiieieiiiiiiiie e et e e e ettt ere e e e e eteaa e e e eeeeaaasnaeeeaeesnsnnnneeeeeensnnnnaaaees cc_bundled(1)
cc_bundled - bundled C COMPILEToouuiiiiiiiiiiiiiee e et e e e et eee e e e eeerae e e e eeeearaanaeseeerarannaaaees cc_bundled(1)
ccat - uncompact and cat files using Huffman code (s€€ pack)cceeeeiiiiiiiiiiiniiiiiiiiiieeeeeecviiieeeens compact(1)
cchar_t; get a wide-character string and rendition from getcchar(3X)
cchar_t from a wide-character string and rendition; setccooviiiiieiiiiiiiiiiiie e setcchar(3X)
ccNUMA system, returns system-wide or per-process information of &ccccvveeeenennn. pstat_getlocality(2)
ccos () - complex COSINE FUNCEIONcuviuiieeiiiiiiiiiie e e e e eeiiieee e e e e ettt eeeeeeeeeataaaeeeeesesannnaeeeeeensnnnnaeeeeressnnnns ccos(3M)
ccosf () - complex cosine function (float)eeeeiiiiiiiiiiii e aeaaas ccos(3M)
ccosh () - complex hyperbolic coSINe fUNCHIONccovviiiiiieiiiiiiiiiiie et e e e e eereraeeeeeeeenees ccosh(3M)
ccoshf () - complex hyperbolic cosine function (loat)coeviiiiieriiiiiiiiiiie e ccosh(3M)
ccoshl () - complex hyperbolic cosine function (long double)ccceeiiiiiiiiiiieiiiiiiiiiiiee e ccosh(3M)
ccoshg () - complex hyperbolic cosine function (QUA)ccceeeiiiiiiiiieeeiiiiiiiiiee e e e e e eeeeees ccosh(3M)
ccoshw () - complex hyperbolic cosine function (extended)ccceeeiiiiiiiiiiieeriiiiiiiiiee e e eeeeees ccosh(3M)
ccosl () - complex cosine function (10ng dOUDLE)cuuuiiiiiiiiiiiiiiiee e e e e e e e ccos(3M)
ccosq () - complex cosine function (QUA)uueeeeiiiiiiiiiiieeeee e e e ettt rre e e eeeeraeaeeeeeeeraeneeeeeennnnnnns ccos(3M)
ccosw () - complex cosine function (extended) ccos(3M)
cd - change WOTKING QITECEOTYuuuueeiiiiiiiiiiee e et iiiiiiee e e e ettt ere e e e eettaa e e eeeeetaannaaeeeerarsnnnnaeeeeeassnnnnaseeeressnnnneeees cd(1)

HP-UX 11i Version 3: February 2007 Hewlett-Packard Company 299

Index

All Volumes
Description Entry Name(Section)
cd - change working directory csh(1)
cd - change working directory ksh(1)
cd - change WOrKINg QITECEOTYcccvviuiiieeiiiiiiiiiiie e e e e eeeieie e e e e ettt ereeeeeetaraeaaeeeeeraasnnnaeeeesesssnnaaaaaerenes sh-posix(1)
CD-ROM: background infOrmationccoeiiiiiiiiiiiieeeeeeiiiiiieeeeeeeiiieeeeeeeeettaeaaeeeesersnnnaeesaressnnnnaeeeeeenes cdrom(4)
CD-ROM: format of a CDFS cdnodec.ccceeeeeeeennnnen. .. cdnode(4)
cde - change the delta commentary of an SCCS deltacouvvuiieiiiiiiiiiiiiee e cde(1)
CDF'S cdnode, fOrmat Of @ccovuuiiiiiieiiiiie ettt e et e e et e e e te e e e eesateeeereeesaaeeeenes cdnode(4)
CDFS file system disk blocks, report number of freecceeeeiiiiiiiiiiiieiiiiiiee e df_hfs(1M)
CDFS file systems; mount and unmount mount_cdfs(1M)
cdnode - format of @ CDFS ¢dnodecccooiiiiiiiiiiiiiiiiiiiiiiiiieeteeeeeteeteeeeeeeeeeeeeeee e cdnode(4)
cdrom - CD-ROM background information cdrom(4)
[ST=% B I I T 1B = U o Lo o) o PSPPI ceil(3M)
ceilf () - ceiling function (float)ccccooiiiiiiiiiiiiiieeee e ceil(3M)
CEIING TUNCEIONS 1oiiiiiiiiiiiiiiie et e e e ettt e e e e e etaaa e e e e eeeeaannaaeeeeeesannnneeeeennsnnnnsseaenns ceil(3M)
ceill () - ceiling function (10ng dOUDLE)coeiiiiiiiiiiiieiieiiiie e e e e e e e eeraa e e eeeaees ceil(3M)
ceilq() - ceiling function (QUA)cocveeiiiieiiiiiiite e e ettt e e e et e e e e et ee e e e ceil(3M)
ceilw() - ceiling function (EXtENAEd)cciiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeee e ceil(3M)
cell activation; online activation of a cell from nPartition; cancel online cell operation; monitor online

cell operation; reset hung cell duringccooeeeiiiiiiiiiiiiiii parolrad(1M)

cell from nPartition; cancel online cell operation; monitor online cell operation; reset hung cell during

cell activation; online activation of a parolrad(1M)
cell LEDs; flash/tUurnn Offoooiiiiiiiiiiiiiiiiiiiie et e ettt e e e e ettt e e e e e e e aaaeeeeeeeeeasaaeeeeeaeeees fruled(1)
cell operation; monitor online cell operation; reset hung cell during cell activation; online activation

of a cell from nPartition; cancel ONLINeccoeeiiiiiiiiiiiieiiiiiiiieee e e parolrad(1M)
cell operation; reset hung cell during cell activation; online activation of a cell from nPartition;

cancel online cell operation; monitor ONlinecccoeeeeiiiiiiiiiiiiiiiieeeeeeeeee, parolrad(1M)
cell-based HP-UX servers; physical memory allocation policy oncccccceeeviiiiiiieeeeennninineeeen. numa_policy(5)
cells and I/O chassis; turn on/off or display current status of power forccccccccevviiniiiiieiinnnn. frupower(1M)
cells; turn on/off or display current status of POWEToocciiiiiiiiiiiiiiiiiieeiiiieee e frupower(1M)
cent - Centronics-compatible INterfaceccccciiiiiiiiiiiiiiiiiiieeeeeeeeeeee e cent(7)
Centronics-compatible INEEITACEcoiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e ee et e e e e e ereeees cent(7)
CER (Common Error Repository); provide displaying options for HP-UX errors defined in the emtui(l)
cerupdate - update the Common Error Repository (CER) with error metadata cerupdate(1)
cexp () - complex exponential fUNCIONuieiiiiiiiiiiiiii e e cexp(3M)
cexpf () - complex exponential function (float) cexp(3M)

cexpl () - complex exponential function (long double) cexp(3M)
cexpq () - complex exponential function (quad) cexp(3M)
cexpw () - complex exponential function (extended) cexp(3M)
cfgetispeed () - get tty INPut baud Tate ... cfspeed(3C)
cfgetospeed () - get tty output baud ratecccccoiiiiiiiiiiii e cfspeed(3C)
cfsadmin - administer disk space used for caching file systems with CacheF'S
... cfsadmin(1M)
cfsetispeed () - set tty INPut baud Tatecccoiiiiiiiiiiiii e cfspeed(3C)
cfsetospeed () - set tty output baud ratecccccoiiiiiiiiiiiii e cfspeed(3C)
ch_rc - change system configuration filecccccccvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieee ch_rc(1M)
chacl - add, modify, delete, copy, or summarize file access control lists (ACLs)ooeeeel. chacl(1)
change a user’s Kerberos PASSWOTAcieeiiiiiiiiiiieeeeeeiiiiiieeeeeeeritiiaeeeeeeaseneaeeseerarennaaesesesrnnnnaaaaes kpasswd(1)
change characteristics of physical volume in LVM volume group . . pvchange(1M)
change core file Settings 0f @ PrOCESSuuieiiiiiiiiiiie e e e e e e e eer e e e e e eraanaaeees coreadm(1M)
change core file Settings 0f @ PrOCESSuieiiiiiiiiiiiie e e e e et e e e e e e eate e e e e eeeaanaaaeeeaeenes coreadm(2)
change current 10gin t0 @ NEW ZTOUDceeiiiiiiiiiiiiei et eiiiieiee e e e eerieeeeeee ettt aeeeeeeeaaaaaaeeeeeersnnnaeeeesessnnnns newgrp(1)
change data format of and copy a (£aPe) fIlecoeviiiiieiiiiiiiiiee e e e e e e e e e e e eaaaaaans dd(1)
change data segment space allocation brk(2)
change default login shellcccccee..l . chsh(1)
change delta commentary of an SCCS deltacovuiiiiiiiiiiiiiiiie e e e e e e e e e eeaaeaeeeeaeenes cde(1)
change (delta) to an SCCS file, MAKE @uuuieeiiiiiiiiiiie et e e e ee e e e e e eerare e e eeeeeaanaaeeeeaeeees delta(1)
change file MO0de ACCESS PETITMISSIONS .vvvuuueieeeriiiiiieeeeeettteiiieeeeertrtenaaeeeerrrrnnnaaeeererssnnaaeeeessssnnaasessesssnnnns chmod(1)
change file MO0de ACCESS PETITISSIONS ..vvvuuuieririiiiiieeeeerttiiiiaeeeeeettenaaeeeerrrrnnaaaeeeresssnnaaeesresssnnaaseesesssnnnns chmod(2)
Change file OWINET OF GTOUDcciiiiiiiiiiiieeeieiiiiiiee e e e ettt e e e eeeeeata e e eeeeeeaaenaaaeaesersnnnnaaeeeerssnnnnaeeesessnnnaaaaes chown(1)
change global search path for dynamically loadable kernel modules modpath(2)
I =N o Vet oy o N 1 = 10 o L= S SRRt su(l)

300 Hewlett-Packard Company HP-UX 11i Version 3: February 2007

Index

All Volumes
Description Entry Name(Section)
change 10N PASSWOITuuiieiiiiiiiiiiiie e e e e ettt iire e e e e ettt ereeeeeeatta e eeeeeeaaaeaaaeeeeesssnanaaeeessrssnnnaaeeeessssnnnns passwd(1)
change login password and associated attributes passwd(1)
change login password in Network Information System (NIS)cccooiiiiiiiiiiiiiiiiiiiiie s yppasswd(1)
change LVM logical volume characteriStiCsuuuiiieriiiiiiiiiiieeeeeeiiiiiieeeeeeevieseeeeeernsnnneeeeeeenes lvehange(1M)
change machine information setuname(1M)
change or add a variable to environment ...t setenv(3C)
change or add value t0 eNVITONINENTuuiieiiiiiiiiiiiee e e e e etrire e e e e eerte e e eeeeeaeanaeeeaeeasnnnaaaaes putenv(3C)
change or examine blocked SIZNALSccciiiiiiiiiiiieeiiiiiiiiiie et e e e et e e e e eerae e e e e e eearanaeaes sigprocmask(2)
change or examine SigNal ACLIONuuiiiiiiiiiiiiiiee e ettt e e e e ettt eee e e eeeertt e e eeeeeaeennaeeeeeeassnnneseesressnnnns sigwait(2)
change or query stream configuration strchg(1M)
change or reformat a text file newform(1)

change owner and group 0f @ fIlecciiiiiiiiiiiiiie e e e e e e e eaaraaaaaas chown(2)
change owner and/or group in access control list (ACL) . .. chownacl(3C)

Chang@e PriOTILY Of @ PIOCESS ..vvuuueeiiiiiiiiiiiee et eeitiiiiaeeeeettti e eeeeetttteaaaeeeeersannnaaeeseessssnnaaseesssssnnnaaeesessssnnnnaaees nice(2)
change priority Of TUNNING PrOCESSES ...uuuueieiiiriiiiiieeeeeertttiiiaeeeeertteeaaaeeeerereenaaeeeerrrrnnaaeessrssssnsaeeeseeenes renice(1M)
change processor Set aSSIZNIMENTcieiiiiiiiiiiie e eeeiiiciee e e e eettee e e e e e erae e e eeeeraaanaaeeeeeensnnnnaeaeareees pset_assign(2)
change program’s internal attribULescccooiiiiiiiiiieiiiiie e e e e e e e e e a e e e e earannans chatr(1)

... chatr_ia(1)
.. chatr_pa(1)

change program’s internal attributes on Integrity systems ..
change program’s internal attributes on PA-RISC systems .

change RCS file attribUtesouuuuieiiiiiiiiiiie e e ettt e e e e et et e e e e e e eeeaaaeeeeeeassnnneeeesesssnnnnaaaes res(1)
change real-time PIIOTILYcccciiiiiiiiiieree it e e ettt ree e e e e ettt eaeeeeeteraeaaaseeerassnnnnaeeeerenssnnnaeeeeersssnnnaaeees rtprio(2)
change renditions of characters in a window chgat(3X)

(6o N e T 0o A <Y o1) USSP chroot(2)
change root directory for a command chroot(1M)
change Selected ChATACEISieiiiiiiiiiiie e e e e e ettt e e e e e e ettt e e eeeeeeetnnaeeaeeessnnnneeeeeessnnnnaeeseeeees tr(1)
change service, QOP for a session rpc_gss_set_defaults(3N)
I oV e Fed oSy Tea n FoY = Tetn (o) o PSPPIt sigaction(2)
change state, wait for child ProCess t0ccoviiiiiiiiiiiiiiiie e e e e e e e et e e e e e raaaaeeaas wait3(2)
change state, wait for child ProCess t0cooviiiieiiiiiiiiiiie e e e e e e e et e e e e e e earaaeeaes wait4(2)
change state, wait for child process to waitid(2)
change system configuration fileoouuiiiiiiiiiiiiiiiie e e e e e e e e e aes ch_rc(1M)
change the default stacksizeceeeiiiiiiiiiiiiiiiiieee e, pthread_default_stacksize_np(3T)
change the default stacksize.ccooeeiieiiiiiiiiiiiniiiiiiee s pthread_default_rsestacksize_np(3T)
change the Name of @ fIleuiiiiiiiiii et e e ettt e e e e e et b e e e e eeraaaaaaas mv(1)
change the Name of @ fIleccoiiiiiiiiiiiii e e et e e e e et e e e e e eara e rename(2)
change the signal mask of the calling thread pthread_sigmask(3T)
change times of file; update access, modification, and/orccoeeiiiiiiiiiiieiiiiiiiiiie e touch(1)
change user information used by finger commandchfn(1)
change user’s SECUre RPC KEYccoiiiiiiiiiiiiiiiiiiiiieie e e e ettt e e e e e e et e e s e e eeeaaaeeeeeeeeesnnnns chkey(1)
change window ID of running program or start program in particular memory window setmemwindow(1M)
change WOTKING QIr@CEOTYccouuiuuiieiiiiiiiiiiiee ettt e e e e ettt e e e e e ettt s e e eeeeattaneeeeeeassnnnaeeeeeessnnnessereesnnnnneaees cd(1)
change working directory chdir(2)
change WU-FTPD group access file informationcccccccveviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeees privatepw(1)
changer device driver, SCSI mediacccceeiiiiiiiiiiiii autochanger(7)
changes NIS informationcooooiiiiiiiiiiiii ypupdate(3C)
changes or deletes a message headeroeeeeeiiiiiiiiii smfi_chgheader()(3N)
changes per System V IPC semop () call, maximum cumulative valueccccoeeiiiiinniiiiiiiiinnnnnn. semaem(5)
changing NIS information, SErver fOrcccccciiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeee e eeeeeeeeeeeees ypupdated(1M)
channel configuration file; EIVIMuuuuiiiuiiiiiiiiiiiiiiiiiiiiiiieiiieeeeeaeieaaeeeeneennneaeanneennnnnnnennnnnns evimchannel.conf(4)
Channel (Fibre) Mass Storage Utility Command for TACHYON TL, TACHYON X1.2,

FCD Driver-Based and FC/GigE Combo Fibre Channel Host Bus Adapterscccccuu..... femsutil(1M)
Channel Host Bus Adapters; Fibre Channel Mass Storage Utility Command for TACHYON TL,

TACHYON XIL2, FCD Driver-Based and FC/GigE Combo Fibrecccccccceiioiuininnnnnnnnnnnn. femsutil(1M)
channel manager; Event Manageroouuiiiiiiiiiiiiiiiiee et e et e e et e e e eeeee s evmchmgr(1M)
channel; create an INTEIPIOCESSc.uuiiiiiiiiiiiiiiiee et e ettt e e e s et e e e e e e s st bt e eeeeeeaabbaaeeeas pipe(2)
chang_hash_1locks - size of hashed pool of spinlocks protecting the channel queue

NASH LADIES oovniiiiii ettt eaaas chanq_hash_locks(5)
character glossary(9)
character and rendition to a window, add & COMPLEXuuuuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiieeeaeeaaes add_wch(3X)
character and rendition, complex, input from a Windowccccceviiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeee e in_wch(3X)
character and rendition, complex, insert into @ WindoWcceeviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeees ins wch(3X)

HP-UX 11i Version 3: February 2007 Hewlett-Packard Company 301

Index

All Volumes

Description Entry Name(Section)
character and rendition, input a single-byte from a Windowccccceeeiiiiiiiiiiiie e inch(3X)
character and rendition, single-byte, insert into a window insch(3X)
character back into input stream, pushc.cccco.oeeinnnn. ungetc(3S)
character code set, convert to another iconv(3C)
character codeset conversion iconv(1)

character device special file, control ioctl(2)
character or word from a stream file; get getc(3S)
character or word, Put 0N @ SEF@AIMNceiiiiiiiiiiiii e e e e e e et e e e e e eeaataaeeeeeeassanaeeeeeeessnnnns putc(3S)
character rendition, write and immediately refresh the padccoovviiiieiiiiiiiiiiie e pechochar(3X)
character (restartable); convert a wide-character code to accooevvieiiiiiiiiiiiieiiiiie e wertomb(3C)
character sequences for display/keyboard, convert file data ordercccccceeeeriiiiiiiiiiienriiiiiiiiineeeeeenes forder(1)
character setoooiiiiiiiiiiiiii e ... glossary(9)
character specialfileccccooeiiiiiiiiiiiiiiii ... glossary(9)
character string and rendition from a cchar_t getcchar(3X)
character String OPEratiOonNScieiiiiiiiiiiiie e e et e e e ettt e e eeeeataa e eeeeeeaanneeeeeeensnnnnaeeees string(3C)
character string operations; Widecccoviuiiirriiiiiiiiiiiereeeiiiiieeeeeeeeeeenanns westring(3C)
character string or stream file; read from with formatted input conversioncccccceeeeiiiiiiiiiinnnnnnnn. scanf(3S)
character string to a wide-character string (restartable); convert a mbsrtowcs(3C)
character string, multi-byte, input from a windowccccciiiiiiiiiiii innstr(3X)
character to a wide-character code; CONVETtccoeeiiiiiiiiiiiieeiiiiiiiiieee e e e e mbrtowc(3C)
character transliterationccciiiiiiiiiiie e et e e e towctrans(3C)
character, generate printable representation ofccocoeiiiiiiiiiiiiiiiiiiiiee unctrl(3X)

... getnstr(3X)
.. getstr(3X)

character, get a multi-byte character length limited string from the terminal
character, get a multi-byte character string from the terminal ...

character, get a wide character from a terminalcccoeeeiiiiiii get_wch(3X)
character, insert a wide-character string into a window ins_nwstr(3X)
character, multi-byte, insert into & WINAOWccooeiiiiiiiiiiiiiiiii e insnstr(3X)
character, push onto the INPUt QUEUEccooiiiiiiiiiiiiiii e ungetch(3X)
character, single-byte, get from the terminal getch(3X)
character-set translationcc...cccoeeevivnnnnnn. kermit(1)
character-string login name of the user, Getccciiiiiii cuserid(3S)
character; conversion between single-byte and Wideceeviiiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeee e btowe(3C)
character; get number of bytesin mbrlen(3C)
characteristics of a disk device, describecc..cooevvviieeeeeenieinnnn.. ... diskinfo(1M)
characteristics of physical volume in LVM volume group, change pvchange(1M)
characteristics, change LVM logical volumeccccccoeiiiiiiiiiiiiiii, lvechange(1M)
characters according to tyPe; CLASSITYuuuuiuiii s ctype(3C)
characters and function key codes from a terminal; get an array of widecccccceeeunnniiinnnnnnnnn. getn_wstr(3X)
characters and renditions, an array of single-byte, input from a windoweeeeeeeeiiiinn... inchnstr(3X)
characters and renditions, complex, draw lines fromccccccevvvvvieiiinini. hline_set(3X)
characters and renditions, draw lines from Single-DYteuuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiieeaeae hline(3X)
characters and strings conversions; multibyte multibyte(3C)
characters in a file, unprintable and non-ASCII, make visible or invisiblecccccccoiiiiiiiiiiiiiiiinne vis(1)
characters in a file; CoUNtoooiiiiiiiieiiiiiiiiiee e ... we(l)
characters in a file; count words, lines, and bytes or we(l)
characters, alter, delete, modify, substitute, or translatecceeeeiiiiiiiiiiii tr(1)
characters, how t0 tyPe CONTIOL i e ascii(5)
characters, renditions of, change in a windowcccccccuunne. ... chgat(3X)
characters, translate to upper-case, lower-case, or 7-bit ASCIIccooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeees conv(3C)
characters, wide, input a string of, from a Windowccccceiiiiiii innwstr(3X)
characters; classify widecccccceeiiiiiiiiiiiininnnnn. ... wetype(3C)
characters; interpret ASA carriage CONtrol ...ttt asa(1)
chargefee - charge fee to user based on system usage acctsh(1M)
charmap - symbolic translation file for localedef SCTIPtsuuuuiiiiiiiiiiiiiiiiiiiiiiie charmap(4)
chassis; command for Online Addition/Replacement/Deletion of PCI I/O cards and Online Addition of I/O
... olrad(1M)
chassis; turn on/off or display current status of power for cells and I/Occccccoiiiiiiiiiiiinnnnnnn. frupower(1M)
chatr - change program’s internal attributesuuuiiiiiiiiiiii e chatr(1)
chatr - change program’s internal attributes on Integrity systems chatr_ia(1)
chatr - change program’s internal attributes on PA-RISC systemsccccoeeiiiiiiiiiiiiiin.. chatr_pa(1)
chatr_ia - change program’s internal attributes on Integrity systemsccccoeeiiiii. chatr_ia(1)

302 Hewlett-Packard Company HP-UX 11i Version 3: February 2007

Index

All Volumes
Description Entry Name(Section)
chatr_pa - change program’s internal attributes on PA-RISC systemsccccccoevvviiiiieeeiiiiiiiieeeeeennn, chatr_pa(1)
chdir - change current working directory csh(1)
chdir () - change WOrKing dir€CtOTYccceiiiiiiiiiiiieiiiiiiiiie e e e e et e e e e e ert e e e e eeeaaaaeeeeeearannnaeeeeeersnnnns chdir(2)
check if disk volume is under HP Logical Volume Manager (LVM) controlcccccceeeeniiiiiriinnnnnns lvinchk(1M)
check if system has been converted to a trusted systemccccennnn.is .. iscomsec(2)
1LY o B S O I 3 5 103 o F PP PPPPPPPPPPPP ci(1)
check integrity of data cached with CacheFS fsck_cachefs(1M)
check internal consistency of Authentication database authck(1M)
check memory region for VAlIAITYccccciiiiiiiiiieeiiiiiiiiiiie e e e e et e e e e e erae e e e e eeeaeaaaeeeeeaaennnaeeaes mvalid(3)
check nroff/Aroff flles ... checknr(1)
check on an event; perform a data integrity EvmEventValidate(3)
check or print documents formatted with the mm macrosccccooiiiiiiiiiiriiiiiii e mm(1)
check or repair a physical volume in LVM vOlume Zroupcceeeiiiiiiiiiiiineeeiieiiiiiieeeeeeeeiiinneeeeeeeennnnns pvek(1M)
check out RCS TeVISIONS ..ooooiiiiiiiiiiiie e co(1l)
check security-bulletin compliance state of HP-UX 11.x system or depot security_patch_check(1M)
check status of local USer acCOUNLScooeiiiiiiiiiiiii userstat(1M)
check tep Wrapper cONfIgUTAtIONcieiiiiiiiiiiiie et e ettt e e e e eetaaeeeeeeeerananeeeeeeeees tepdchk(1)
check the /etc/shadow file; install, UPAate Ouuuuuuuuiiiiiniiiiiiiiiiiiiieeeeeeeaeeeeeeeeaeeennnes pwconv(1M)
check the network, scatter data t0ccovviiiiiiiiiiie e e s spray(3N)
check the uucp directories and permissions fileccoceeeriiiiiiiiiiiniiiii e uucheck(1M)
check_patches - HP-UX 11i V3 patch check utility . . check_patches(1M)
checker, file system qUOtA CONSISTENCY ...cceeeeeeieieeeiieieeieeeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e e e e e e e e e quotacheck(1M)
checkers; password/group fIleccooeiiiiiiiiiiiiiiii e pweck(1M)
checking tool; named configuration file syntaxcccccocciiiiiiii named-checkconf(1)
checking t00l; zone validitycooeiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e named-checkzone(1)
checking; copy HF'S file system with label .. volcopy_hfs(1M)
checknr - cheCk NIOMI/ATOMT fIlESiiiieiiii ettt et e e e e et e s e e e eaaneee checknr(1)
checks and optionally reauthenticating the user; invoke another application with privileges after
performing appropriate authoriZationcccccceiiiiiiiiieieiiiiiee e e e privrun(1M)
checks the consistency of compartment rules for files with multiple hardlinks vhardlinks(1M)

checksum and block count of a file, print sum(1)

checksum and block count of a file, print sum(1l)
cheduling policy and associated parameters, get and setcccceevriiiieeeeinnninnne pthread_getschedparam(3T)
chfn - change user information used by finger commandccccceiiiiiiiiiiiiiieiii e chfn(1)
chgat () - change renditions of characters in @ Windowccccccooiiiiiiiiiiiiiiiaeee chgat(3X)
chgrp - change group Of flleooiiiiiiiiiiiiiiiee e chown(1)
child processc........ ... glossary(9)
child processcccceeueeeeereiennnnnnnn. fork(2)
child process and Process times; Otoiiiiiiiiiiiiiiiiiiiieiieeeeeeee et e eraaees times(2)
child process to change state, Wait fOorcoooiiiiiiiiiiiiiiii wait3(2)
child process to change state, Wait forcoooiiiiiiiiiiiiiii wait4(2)
child process to stop or terminate; WaIt fOTuuuuiuueiiiii e wait(2)
child process, wait to Change StAteceeiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee e waitid(2)
children; synchronize a window with its parents or syncok(3X)
chkey - change user’s secure RPC KEYccooeiiiiiiiiiiiicieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e chkey(1)
chmod () - change file mode ACCESS PETMISSIONS ..cceeeeeieeiiiieieieiieeeeeeee e e e e e e e e e e ee e chmod(2)
chmod - change file mode ACCESS PEIMISSIONS ..ceeeeeeieiiiiieieieeeeeeeeeeeeeeeeeeeeeee e e e e e e e e e e e e e eeeeeans chmod(1)
chnlspath - configure message catalog path.cccceiiiiiiiii chnlspath(1M)
chown - change flle OWIETcoiiiiiiiiiiiiiiiiiiiiieee ettt ettt ettt ettt e et e et eeeeeeeeeeeeeees chown(1)
chown () - change owner and group of @ filecccccciiiiiiiiiiiiiiiiieeeee chown(2)
chownacl () - change owner and/or group in access control list (ACL)ccccccvveeriiiiiiiireeeeninnnns chownacl(3C)
chroot () — change o0t dir€CHOTYuuuiieiiiiiiiiiiee et e e e et e e e e e ettt ee e e e e eeaaaaeaeeeeeerssnnnnaeeaeennes chroot(2)

chroot - change root directory for a command chroot(1M)

chsh - change default 10gin Shellcoooiiiiiiiiiiii e e e e e e et e e e e e e eaaa e eaeeanes chsh(1)
chunk size in 1 KB DIOCKS; SWAD ...ueiiiiiiiiiiiieeeieiiiiiiee e e et e e e e e evttse e e e e e eesaaaeeeeesesssanaeeeeeessnnnnaaaaes swchunk(5)
Ci - CheCk in ROS TOVISIONS .eiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiit ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ee ettt eeeeeeeeeeeeeees ci(1)
cimag () - complex imaginary-part function cimag(3M)
cimagf () - complex imaginary-part function (float)coovviiiieiiiiiiiiiiiie e cimag(3M)
cimagl () - complex imaginary-part function (long double)ccccceiviiiiiiiiiiiiiiiiiiiee e cimag(3M)
cimagq() - complex imaginary-part function (quad)oooeeiiiiiiiiii cimag(3M)
cimagw() - complex imaginary-part function (extended)oooeeiiiiiiiii cimag(3M)

HP-UX 11i Version 3: February 2007 Hewlett-Packard Company 303

Index

All Volumes

Description Entry Name(Section)
circuit, X.25 switched VIrtual, CLEATcccoouiiiiiiiiiiiiii ettt eeaaanas clrsve(1M)
cis() - cosine plusi times sine cis(3M)
cisf () - cosine plus i times SiNe (lOAL)cceiiiiiiiiiiiei i e e e e e e e e e e e eaae e e e e e eaaannnns cis(3M)
cisl() - cosine plusi times sine (10ng double)eeiiiiiiiiiiiii e cis(3M)
cisqg() - cosine plusi times sine (quad) cis(3M)
cisw() - cosine plus i times Sine (EXLENAE)uueeeiiiiiiiiiiiieie e e et e e e e e eriee e e e e e eera e e e e eaaanaans cis(3M)
ckconfig - verify path names of all FTP configuration files ... ckconfig(1)
ckpacct - check size of process accounting file . acctsh(1M)

cksum - print file checksum and SIZESccooiiiiiiiiiiieeee e sum(1)
class driver eschgr plug-in for scsimgr; SCSI scsimgr_eschgr(7)
class driver esdisk plug-in for scsimgr; SCSI scsimgr_esdisk(7)
class driver estape plug-in for scsimgr; SCSI scsimgr_estape(7)

class-dependent data translation of ELF filesccccuuiiiiiiiiiiiiiiiee i eeeevvee e e e e elf xlate(3E)
class-dependent object file header for elf32 or elf64 file; retrieve .. . elf_getehdr(3E)
class-dependent program header table for ELF files, retrieve elf_getphdr(3E)
class-dependent section header for ELF files, retrievecccccoevviiiiiiiiiiieiiiiiiiiiiiee e elf getshdr(3E)
classes of kernel memory pages are not dumped when a kernel panic occurs,

defines WHiChcoooiiiiiiiiii e e e e e e ee e e e eaaaes dontdump(5)
classification macro, loating-Pointcuuuiiiiiiiiiiiiiiiiee e e eeeeaeaans fpclassify(3M)
classify characters according to tFPEceeiiiiiiiiiiiiiiiiiiicie e et e ettt e e e e aaanans ctype(3C)
classify Wide Charactersouuuiiiiiiiiii e e ettt e e e et e e e e e eta e e eaeeees wetype(3C)

.. uucleanup(1M)
.... cleanup(1M)

clean-up, uucp spool directory
cleanup - HP-UX patch cleanup utility ..

clear a windowcoeeeeiiiiiiinnnnn. clear(3X)
clear() - clear a window clear(3X)
clear - clear terMUINAl SCTEEILciiivueiiiiie ittt et e et e et e e et e e e et e e taaeeeaaeetannessanneaees clear(1)
clear from cursor t0 €Nd OF LINEcoiivuiiiiiiii ettt ee clrtoeol(3X)
clear from cursor to end of window . . clrtobot(3X)
LI E=T= Y 1 o Vo e (= TR clri(1M)
clear locks held on behalf of an NFS CHENtccuiiiiiiiiiiiii e clear_locks(1M)
clear the Process ENVITONIMENTcoooeiiiiiiiiiiiiiiiiie e e e e e e e clearenv(3C)
Clear WINAOW AbETIDULES ..oeuuiieeiie ittt et ettt e et et e e et e e e e e et e et e et eete e e eeneens standend(3X)
clear X.25 switched VIrtual CITCUILuuuuuueiiiiiiiiiiiiiii e eeaaeeteeaeaaaeeeeaeaneeenenennnnnen clrsve(1M)
clear_locks - clear locks held on behalf of an NFS clientcccoovivoiiiiiiiiiiiiiiiieiieceieeieeenns clear_locks(1M)
clearenv () - clear the Process ENVIrONMENTouuuiieeiiiiiiiiiiie e e e e e eeriere e e e e eeraeaeeeeeeenes clearenv(3C)
clearerr () - clear I/O error on Streamooooiiiiiiiiiiiiiiiii ferror(3S)
clearerr_unlocked () - stream StAtUs INQUITIESceeeeeiiiiiiiiieeerreiiiiiieeeeeeerrereeeeeeerrenaeeeeeersennnns ferror(3S)
clearok () - terminal output control fUNCEIONSccceeiiiiiiiiiieiiiiiiiieie e e e e e erae e clearok(3X)
client configuration file, PPPoE (Point to Point Protocol over Ethernet) pppoec.conf(4)
client configuration information file, diSKIESSouuiieiiiiiiiiiiiie i e e e et e e e e e erran e e eeeeeees info(4)
client daemon Process; LDAPcooiiiiiiiiiiiie it e e e e e et e e e e e ear e e e e eaaaaaans ldapclientd (1M)
client daemon, DHOCPVGccooiiiiiiiiiiiiiiiiiiie et e e e e e et e e e e eevaaaeeeeeeasnnannaaaas dhcpvéclientd (1M)
Client for Dynamic Host Configuration Protocol Serverccccceeeieiiiiiiiiiiieeeeeeiiiicieeeeeeeeveeennn dhcpclient(1M)
CLIENT handles, library routines for dealing with creation and manipulation of rpc_clnt_create(3N)
client interface for requesting configuration parameters from the DHCPv6 server, DHCPv6
... dhcpvéclient_ui(1)
client interface; Network Information ServiCecccceeiiiiiiiiiiiieieiiiiiiiiee e e et e e e eeraeee e e eeeeeeaeenns ypclnt(3C)
client lIDraries; KKEIDEIOScciivuuiiiiiie ettt e e ee e et e e ee e et eeeae e e e et eeeraeesaaneeeenns libkrb5(3)
client side, library routines for client side calls, TPCuueieriiiiiiiiiiieieeeiiee e rpc_cint_calls(3N)
client, clear locks held on behalf of an NFScoooviiiiiiiiiii e clear_locks(1M)
client, get credentialS Ofcccoiiiiiiiiie i e e e e e e e aranaans rpc_gss_getcred(3N)
client, library routines for client side remote procedure call authenticationccccccc..... rpc_clnt_auth(3N)

client, PPPoE (Point to Point Protocol over Ethernet)cccccooiiiiiiiiiiiiiiiiiiiiie e pppoec(1)

clients, directories to eXport 10 NE'So e e e e e et e e e e e rra e aes exports(4)
clnt_broadcast () - obsolete library routines for RPCccoooiiiiiiiiiiiniiiiicee e rpc_soc(3N)
clnt_call() - library routines for client side callsccoeeviiiiiiiiiiiiiiiiiiiiiie e, rpc_clnt_calls(3N)
clnt_control() - library routines for dealing with CLIENT handlescccccceeeeeeeeenn. rpc_clnt_create(3N)
clnt_create() - library routines for dealing with CLIENT handlesccccuvveeeeennnn. rpc_clnt_create(3N)
clnt_create_vers() - library routines for dealing with CLIENT handles rpc_clnt_create(3N)
clnt_destroy () - library routines for dealing with CLIENT handlescccccceeeeeeeeenn. rpc_clnt_create(3N)
clnt_dg_create() - library routines for dealing with CLIENT handlesccccceeeeee. rpc_clnt_create(3N)

304 Hewlett-Packard Company HP-UX 11i Version 3: February 2007

Index

All Volumes
Description Entry Name(Section)
clnt_freeres () - library routines for client side callsccccocieieiiiiiiiiiiiineeeeceee e, rpc_clnt_calls(3N)
clnt_geterr () - library routines for client side callsccevvviiiieiiiiiiiiiiiie e, rpc_clnt_calls(3N)
clnt_pcreateerror () - library routines for dealing with CLIENT handles rpc_clnt_create(3N)
clnt_perrno() - library routines for client side callscoeevviiiieiiiiiiiiiiiie e, rpc_clnt_calls(3N)
clnt_perror () - library routines for client side callsc.ccoevviiiiiieiiiiiiiiiiiiee e rpc_clnt_calls(3N)
clnt_raw_create() - library routines for dealing with CLIENT handles rpc_clnt_create(3N)
clnt_spcreateerror () - library routines for dealing with CLIENT handles rpc_clnt_create(3N)
clnt_sperrno() - library routines for client side calls rpc_clnt_calls(3N)
clnt_sperror () - library routines for client side calls rpc_clnt_calls(3N)
clnt_tli_create() - library routines for dealing with CLIENT handles rpc_clnt_create(3N)
clnt_tp_create() - library routines for dealing with CLIENT handlesccccceeeeeee. rpc_clnt_create(3N)
clnt_ve_create() - library routines for dealing with CLIENT handlesccccceeeeeee. rpc_clnt_create(3N)
clntraw_create() - obsolete library routines for RPCcccoooiiiiiiiiiiniiiiiiiiiee e rpc_soc(3N)
clnttep_create() - obsolete library routines for RPCcccooiiiiiiiiiiiiniiiiiicee e rpc_soc(3N)
clntudp_bufcreate () - obsolete library routines for RPCccccocoiiiiiiiiiiiiiinceee e, rpc_soc(3N)
clntupd_create() - obsolete library routines for RPCcccooiiiiiiiiiiiiiiiiiiiiiee e rpc_soc(3N)
1o (06T Qe 1= 11 o) WO UPPTPPR cron(1M)
clock operationsccccceeeeerreennns ... clocks(2)
clock() - report CPU time used clock(3C)
ClOCK T@SOIULION, ZEE ..iiiiiiiiiie it e e e e ettt e e e e e et ettt e e e eeeaasanaeeeaeeasnnnaeeeaeenes clocks(2)
CLOCK TICK ...ttt e e e e e ettt e e e e e e ettt e e eeeeettaaeeeeeeaatnneeeearetannneaaas glossary(9)
clock ticks per second, scheduling interval inccouuiiiiiiiiiiiiiiiiie e e e timeslice(5)
Clock time VAIUE, GEE ..oieiiiiiiei i e ettt e e e ettt e e e e e ettt e e e e eatbaa e eeaeaees clocks(2)
ClOCK tIME VAIUE, SO ...cevviniiiiiiiiiie et et e et e e e ee e e et e e ea e e e et e e aa e e eaaaeeaneerraaeeaaanns clocks(2)
clock, get current value of SYStEM-Wideccouuiiiiiriiiiiiiiiiiie e eera s getclock(3C)
clock, set value of system-widecccccoeeururrnnnnnnn. setclock(3C)
clock; correct the time to synchronize the systemccccccciiiiiiiiiii adjtime(2)
clock_getres () - get lock TeSOIULIONcciiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee e eeeeee e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeees clocks(2)
clock_gettime () - get clock time VAlUEcooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e clocks(2)
clock_settime () - set clock time VAlUEooviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee e clocks(2)
clocks - clock operationscccccceeeeeeeens clocks(2)
clog() - complex logarithm function clog(3M)
clogf () - complex logarithm function (FlOAt)ueeuuiueeeiiiiiiiiiiiiiiii e eeeeeeaeeeees clog(3M)
clogl () - complex logarithm function (1ong double)euuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeaeeanaes clog(3M)
clogq() - complex logarithm function (quad) clog(3M)
clogw() - complex logarithm function (extended) . clog(3M)
clone driver: STREAMS dAIivVercccooeviiiiiiiiiiiiiiiiieeiiiieeeiieeeeiinnes .. clone(7)
clone - open a major and minor device pair on a STREAMS driverccccceeeiiiiiiiiiiiiiiiiiieeeeeeeeeee, clone(7)
cloned DLPI streams allowed on the system; maximum number of dlpi_max_clones(5)
close a crash dUumMP dESCIAPEOTuuuuiiiiii s nessnnan cr_close(3)
close a message qUEUE dESCIIPLOToiiiiiiiiiiiiiiiiiiiiiiiiiiiieeereeeeeeeeeeeeeeeeeees mq_close(2)
close a named semaphore sem_close(2)
ClOSE 8 SNATEA OBJECE ...ttt nnen dlclose(3C)
close and open message catalog for reading catopen(3C)

Close () — CloSE @ file AESCIIPEOTuuuueiiiiiiiiiiitiiti e ssnes close(2)
close legal uSer Shells fIle getusershell(3C)
close or flush @ SEEAINoiiiiiiiiiiii ettt e e et e e e fclose(3S)
close or open pipe I/O to or from a processcccceeeeeeeeeennnn. .. popen(3S)

close() - STREAMS enhancements to standard system calls stream(2)

close system 10g fileccooeviiiiiiiiiiiiiii . syslog(3C)
close transport endpoint (X/OPEN TLI-XTT)ccoiitiiiiiiiiiiiiiiiiiiiiiiiiiieeieee ... t_close(3)
close_secdef () - security defaults configuration file routinesccccceeeeiiiii secdef(3)
closedir () - close a currently open directoryccccccceeeeis .. directory(3C)
closelog () - control SYStem 10gccceeimiiiiiiiiiiiiiiiiiie e ... syslog(3C)
closewtmp - overview of accounting and miscellaneous accounting commands acct(1M)
CLIL - CLOAT TTIOAE ..ttt clri(1M)
clrsve - clear X.25 switched virtual circuit clrsve(1M)
clrtobot () - clear from cursor to end of window clrtobot(3X)
clrtoeol () - clear from cursor to end of lineccoeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee clrtoeol(3X)
clusters; report NUMDET Of fre@ AISKcouuuiiieiiiiiiiiiiie et e e e et e e e e e et e e e eeeeaaaaeeeeeeaassaaaeeaaeenes dosdf(1)

cmdprivadm - noninteractive editing of a command’s authorization and privilege information in the

HP-UX 11i Version 3: February 2007 Hewlett-Packard Company 305

Index

All Volumes
Description Entry Name(Section)
PLAVEUD AALADASE ..uiiiniiiiiiiii ettt ettt ettt et e et aaneaas cmdprivadm(1M)
CIMP - COMPATE EWO TS ...iiiiiiiiiiie i e e e e ettt e e e e e e eat it e e eeeeaaaaa e eeaeeaarnnaaaeeeeerraanaaaaas cmp(1)
cmpt_change () - set and get process’ compartmentceeuvueiieeeriiiiiiiineeee e e e eeeeeeeenn cmpt_change(3)
cmpt_endent () - map compartment name to number or number to name cmpt_getbynum(3)
cmpt_get () - set and get process’ compPartmenteeeeeiiiiiiiiiiieeereiiiiiiee e e e e e e eeaeeean cmpt_change(3)
cmpt_get_addrcid() - get the compartment IDs associated with a network interfaces
... cmpt_get_ifcid(3)
cmpt_get_endpoint_cid() - get the compartment IDs of socket endpoints. cmpt_get_peer_cid(3)
cmpt_get_ifcid() - get the compartment IDs associated with a network interfaces cmpt_get_ifcid(3)
cmpt_get_peer_cid() - get the compartment IDs of socket endpoints.cco...... cmpt_get_peer_cid(3)
cmpt_getbyname () - map compartment name to number or number to name cmpt_getbynum(3)
cmpt_getbynum() - map compartment name to number or number to name cmpt_getbynum(3)
cmpt_getent () - map compartment name to number or number to name cmpt_getbynum(3)
cmpt_setent () - map compartment name to number or number to name cmpt_getbynum(3)
cmpt_tune - query, enable, or disable compartmentalization featurecccccceeeeeiiiiiiiiinnnnn. cmpt_tune(1M)
€0 - check Ut RCS TOVISIONS ..oooiiiiiiiiiiiiie e co(1l)
code files, object, in a library, find optimum sequence forcccoeiiiiiiiiiiiniiiiiiiiiiee e lorder(1)
code Set CONVETrSION, CRATACEETeiiviiieiiiieeeiiiieee et ee e e et ee e e e e et e e e e e eeeaeeesaaeesaaeesenneessaeerrnnnaees iconv(3C)
code to a character (restartable); convert a wide-character wertomb(3C)
code widths; set and get EUC for 1dtermcooviiiiiiiiiiiiiiiiiee e e eeeeeviese e e e e eeaaaseeeeeeeees eucset(1)
code, processor-dependent (FIFMWATE)c.uuuiieriiiiiiiiiiieeeeeiiiiee e e ee ettt e e eeeetreisaeeeeeeatannaeeeeeerrnnnaaeaes pdc(1M)
code; compress and expand files using Huffmanccoooiiiiiiiiiiiiiiiiii e pack(l)

code; format text version of EVM status EvimStatusTextGet(3)

coded character Stoooiiiiiiiiiiiiiiiiiiiee s ... glossary(9)
codes from a terminal; get an array of wide characters and function key .. . getn_wstr(3X)
codes; Service Location Protocol (SLP) errorcccoeevvveeeivieeiiinieerinnnnnn, . SLPError(3N)
COAESEE COMMVETSION. ...ttt iconv(l)
codeSet CONVETSION TOULINESuuuuiiiiiiiiiiii s iconv(3C)
codeset CONVETrSION; CRATACEETciiiiiiiiiiiiiiiiiie e et e et e et e e e et e e e et e e eaeesateeeeseeesnneesannaesenns iconv(1)
col - filter reverse line-feeds and backspaces from teXtcoeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeees col(1)
collating elementoooviiiiiiiiiiiiiiiiii ... glossary(9)
collation glossary(9)
collation sequencecccccevvviiiiiiiiiiiiiiiiiiiinen, ... glossary(9)
collect system diagnostic messages to form error Logeeeeeeueuiiiiiniueieiniiieiieeeeieeeeeeeenneeneenaeann dmesg(1M)
color manipulation fUNCHIONScciiiiiiiiiiiiiiiiii e e can_change_color(3X)
color_content () - color manipulation functionsccccceeeiiiiiiiiiiiiiiniiiieeee can_change_color(3X)
color_set () - window attribute control fUNCEIONSoiiiiiiiiiiii e attr_get(3X)
COLS () - number of columns on terminal SCTEEILouuiiiiuiiiiie et e et e e et e e e e eaannes COLS(8X)
columns, number of, 0N termMinAal SCIEEIcccceiiiiiiiiieeiiiiiiiiieeeeeeeeeeee e e e e et e eeeeeeateeeeeeeserraaeaeeas COLS(3X)
comb - combIne SCCS deltascoiivuniiiiiiiiiiie e ... comb(1)
combine corresponding lines of several files or subsequent lines of one file ... paste(1)
COMDINE SCCS Aeltas coueeniiniie ettt e e ... comb(1)
combine two LVM logical volumes into one logical volumeccceuuuuiiiiiiiiiniiiiiiiiiiiiiiiiiieinnenens vmerge(1M)
Combo Fibre Channel Host Bus Adapters; Fibre Channel Mass Storage Utility Command for

TACHYON TL, TACHYON XL2, FCD Driver-Based and FC/GigEccccccoeiiiiiirninnnnnnn. femsutil(1M)
comm - select/reject lines common to two sorted filescooeeeeiiiiiiiiiiiiiiii comm(1)
COMMAN ...oooiinniiiiiiie e glossary(9)
command - execute command without lookup sh-posix(1)
command execution, set (modify or redefine) environment forcceeeeiiiiiiiiiiiii env(l)
command execution, UNIX system t0 UNIX SYSLEITLuuuuuuuuuuuuuunnuunnnnunnennnnnnnnsnennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnes uux(1)
command for LAN and RDMA interfaces; network interface managementccccceeeeeiviiviinnneens nwmgr(1M)

command for TACHYON TL, TACHYON XL2, FCD Driver-Based and FC/GigE Combo

Fibre Channel Host Bus Adapters; Fibre Channel Mass Storage Utility fcmsutil(1M)

command history for interactive programs; input editor andcoooiiiiiieiiiiiiiii s ied(1)
command interpreterccccoeeiiiiiiiiiiiieeeeiiias glossary(9)
command interpreter (shell) with C-liKe SYNtaXcceeiiiiiiiiiiiiiee e e e e e e e e eeaareeeeaeeaes csh(1)
Command Line Interface; display information about the Partitioncvviiiiiiiiiiiiiiiieneenen, partition(5)
command line 0f @ PrOCESS, GOvuuuuieeiiiiiiiiiiee e ettt iee e e e ettt ee e e e e ettt e e e eeeeeaataaeeeeeersennaaeeeeerannnaeaeereees pstat(2)

command line tool for DHCP elements of bootpd . dheptools(1M)
command on a remote hoSt, EXECULEc.ooouiiiiiiiiiiie et e e e e e e e e e e on(1)
COMMANA OPLIOTIS, PATSE ..uueeeeiriiiiieeeeeettrtiaeeeeertteneaaeeeerrssnnnaaeeeessssnnnasessssssssnaeesssssssnnsaeesesesssnnasesesenes getopts(1)

306 Hewlett-Packard Company HP-UX 11i Version 3: February 2007

Index

All Volumes
Description Entry Name(Section)
COMMANA OPLIOTIS] PATSE ...eeeerriiiieeeeeetitiiiaeeeeetttanaaeeeereraenaaesasssssnnnnaaesesssssnnnaeeesssssnnnaesesssssnnnaasesssesssnnns getopt(1l)

Command Set 1980 glossary(9)
command shells; standard and restricted POSIX.2-conformant sh-posix(1)
command summary from per-process acCOUNtING TECOTASceeeeeerriruieeerreriiiiaeeeeeerrinaaeeeerrrrnnnaaaaes acctems(1M)
command’s authorization and privilege information in the privrun database; noninteractive editing of

B et cmdprivadm(1M)
command, change ro0t AiTECLOTYuuuuiieiiiiiiiiiiiee e e ettt e e e e ettt e e eeeeettaaaeeeeeeeasennaeeeeesssnnnaaeaaennes chroot(1M)
command, fix manpages for faster viewing withmanccccccoeeiiiiiiiiiiinnienennnnnnn. ... fixman(1M)
command, report execution time of, process accounting data and system activityccevvvvviierennnnnn timex(1)
command, run at NONAefault PIIOTILYccceiiiiiiiiiieeiiiiiiiie e e et e e e e e etit e e e eeeeaasnnaeeeeeersnnnnaaaaes nice(1)
command, run immune to hangups nohup(1)
command, shell, issue acoeeeiiiiiiiiiiieiiiieeiinnn. . system(3S)
command; change user information used by fiNgercooviiiiiiiiiiiiiiiiie e chfn(1)
command; construct argument lists and eXecuteoooviiiiiiiii xargs(1)
command; execute a SImpleccceeeeeveriiiinninnnns command(1)
command; measure time USed t0 EXECULE Auueiiiiiiiiiiiiiiiiie e e et e et e e e e e e e e e aa e ea e eaaas time(1)
command; return Stream t0 8 FEMOLEccciiuuieiiiiiiiiiiii et et ee e e ereeeeereeeeaeeeerteeeareeeesneeraanaees rexec(3N)
COMMANA; TIINIE @ ..ievviniiiiiiiiii e e et e et e ettt e et e e et ee e e et e ee et e e saa e e aaaneesatneesssaeessaneessaneessnnesssnneessnneessnneersnen time(1)
commands for sharing resources across a network; file containing dfstab(4)
commands to the Terminal Session Manager, TSM; Sendcccvvvveiiiiiiiiiiiiiiiiiiereeeeeeeeeeeeeens tsm.command(1)
commands, file system administration configuration and binary filesccccceeeviiiiiniiinnnnnnnnnn. fs_wrapper(5)
commands, INSEALLIIEWceiiiiiiiiiiiiei i e e e e et e e e e e e et ee e e e e e e e e et eeeeeeer b aaaas install(1M)
commands, output to the terminalooooiiiiiiiiiiiiii putp(3X)
commands, show last executed in reverse order lastcomm(1)
commands: STREAMS ioctl commands streamio(7)
commands; ask for help on SCCS sceshelp(1)
commands; description of RCSiiiiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeee ettt e e eeeeeeeeeeeeeeeeeeeeeeeeeereereraeereae resintro(5)
commands; execute at @ 1ater tIMeoooiiiiiiiiiiiiiiiii e at(1)
commands; generic device control
commentary of an SCCS delta, change delta . .
common archive file formatccoeiiiiiiii
Common Error Repository (CER); provide displaying options for HP-UX errors defined in the emtui(l)
Common Error Repository (CER); update with error metadatacoooeeeiii . cerupdate(1)
common HP-UX terms; description ofcccccovvvviiiiiiiiiinnnnnn. ... glossary(9)
common logarithm functionsccccccecuunnnnne. ... log10(3M)
common to two sorted files, reject/select lines comm(1)
communicate interactively with another user write(1)
communication domain protocol, 1ocalcooiiiiiiiii UNIX(7P)
communication facilities, iINterprocess, rePOrt SEALUSuuuuuiuuuiiiiiii e ipes(1)
communication facilities; report status of POSIX interprocess pipes(1)
communication identifier, create INtEIProCESSccovvieiiiiiiiieiieieeeeeeeee e ftok(3C)
communication; create an endpoint for socket(2)
communications software for serial and network connections kermit(1)
commUNICAtIONS, INTETPIOCESSeviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie ettt ettt ettt eeeeeeeeeeeeeeeeeeeereeeeeeeeeeeeeees socket(7)

compact - compact files using Huffman code (see pack) compact(1)

compact files using Huffman code (see pack) ... compact(1)
compact list of users currently on the systemcccccooiiiiiiiiiiiiieee users(1)
compaction; copy HFS file system with dcopy(1M)
comparator; HP-UX installed SOftWATreccooeeiiiiiiiieeiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e sysdiff(1)
compare contents of memory with byteccccccociiiiiiiiiiiiiiieeeeeee memory(3C)
compare contents of tWo dir€CtOTIESciiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee ettt ee e direcmp(1)
compare or print out terminfo descriptions . infocmp(1M)
compare RCS FeVISIONSccoiiiiiiiiiiiiii resdiff(1)
compare sorted files; reject/select common lNeSccoooviiiiiiiiiiiiiiiii comm(1)
compare three files and find differences diff3(1)
COMPATE EWO FILES . e aaaaaaans
compare two files and find differencesccccoooiiiiiii
compare two files and mark differences

compare two files and show differences side-by-side .

COMPATE EWO SEIITIZS ©.etiiiiiiiiiiiiiiiiiiiiiiiiiititt ettt ettt ettt ettt et ettt ettt et ettt ettt e ettt ettt ettt e et et ettt e e et et et eeeeeeeeeeeeeeeees string(3C)
compare two thread identifiersooooiiiiiiiiiiiiii pthread_equal(3T)

HP-UX 11i Version 3: February 2007 Hewlett-Packard Company 307

Index

All Volumes
Description Entry Name(Section)
compare two versions of an SCCS Ilcouiiiiieiiiiiiiiiiie e e e et e e e e e e ar e e e e e eeaaeaaans scesdiff(1)

comparison macro, floating-point ()iiieiiiiiiiiiiie e e e e et e e e e e er e e e eaaaa s isless(3M)
comparison macro, floating-point (<=) islessequal (3M)
comparison macro, floating-point (<>) islessgreater(3M)
comparison macro, floating-point (5)uiiiiiiiiiiiiiiiee e e e e e e e araaaaas isgreater(3M)
comparison macro, floating-point (>=) isgreaterequal (3M)
comparison macro, floating-point (Unordered)coeuviiieeiiiiiiiiiiiie e isunordered(3M)
comparison routines for regular EXPreSSIONScceiiiiiiiiueiieeeeeeiiiiiieeeeeereteiaaeeeeeerrrnnaeeeeererennaaeeseeenes regexp(3X)
compartment IDs associated with a network interfaces; get thecoovviiiiiiiiiiiiinnnnn. cmpt_get_ifcid(3)
compartment IDs of socket endpoints.; get theccooiiiiiiiiiiiiiiiiiiiin e, cmpt_get_peer_cid(3)
compartment name to number or number to NAME; MAPccevveiviiiiereriiiiiiiieeeeeeeiieeeeeeeeenes cmpt_getbynum(3)
compartment rules for files with multiple hardlinks; checks the consistency ofccccccce... vhardlinks(1M)
compartment rules; diSPLAYccoeiiiiiiiiiiee i e e et e e e e et e e e e eeaan e aaaaeaes getrules(1M)
COMPATtMENT TULES; ST ...eiiiiiiiiiiie e e e et eee e e e e e ettt e e e eeeeataaaaeeeeeeasnnnneeeeeensnnnnneeeeeeees setrules(1M)
compartment; set and getccceeeeiiiiiiiiiiinnini cmpt_change(3)
compartmentalization feature; query, enable, or diSableccoeviiiiiiiiiiiiniiiiiiiee s cmpt_tune(1M)
compartments - description of HP-UX compartmentscccueeereriiiiiiiinreriiiiiiiineeeeeeenennnn. compartments(5)
compartments - HP-UX compartments files .. compartments(4)
compartments; description of HP-UX compartments(5)
compartments; HP-TUX ...t e ettt e e e e e eetaas e e e e e eaeaaneeeeeeeeannnns compartments(4)
compatibility; terminal interface for Version 6/PWBccccciiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e sttyv6(7)
compile and match routines for regular expressions regexp(3X)
compile() - regular expression compile routine regexp(3X)
compiled terminfo file formatccccceeuuriiiiiiiinnnnnnnn. term(4)
compiler footprint records; summarize information from ootprints(1)
compiler/interpreter for modest-SiZed PrOZTAIMSuuuuuuuuuuuununiiiiiiiiieieieieaaaaeaaaeaeaanaannnnnennnnnnnnnnnnnnnnnnnnnnnnnnes bs(1)
COMPILEr; DUNALEA Couiiiiiiiiiiiiiiiii s sstssssssessnnnen cc_bundled(1)
compilers, rpcgen; generate RPC protocols, C header filesooeviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeens rpcgen(1)
compilers: terminfo data base COMPILETooiiuiiiiiiiiiiiiiiie e e e e tic(1M)
compiling routines, regular expression regcomp(3C)
10300 o1 1S3 00 T=) oL =N A =3 0 LR R et (o) o =SSR erf(3M)
complete, wait for background ProCeSSES 10oiviiiiiiiiiiiiiiiiiee et e et e e e e wait(1)
complex absolute value fUNCEIONSiiiiiiiiiiiiiiiiiiiiiiiiiieiieeieeeeee e e e e e ee e eeeeeeeeeeeeeeeeeeeeeeeeeeeeees cabs(3M)
complex arc hyperbolic cosine functions cacosh(3M)
complex arc hyperbolic sine functions casinh(3M)
complex arc hyperbolic tangent functions catanh(3M)
COMPLEX ATCCOSINE FUTNICEIONISuuiiiiiiiiiiiiiiiiiiiii e sssnnen cacos(3M)
COMPLEX ATCSINE FUNCEIOILS L..uvttiiiiiiiiiiiiiiiiiiiitiiieitttitttt ettt ssssssnen casin(3M)
complex arctangent fUNCHIONSoooiiiiiiiiiiii catan(3M)
cOMPlexX ArgumMeENt FUNCEIONSuiiiiiiiii s carg(3M)

complex character and rendition, add to a window add_wch(8X)

complex character and rendition, input from a Windowcccccceviiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeees in_wch(8X)
complex character and rendition, insert into a windowcccccceeveeienine. . ins_wch(3X)
complex character, set or get background character and rendition usingcccccoeeeeeiiiinnnnnnn... bkgrnd(3X)
complex character, write and immediately refresh the window echo_wchar(3X)
complex characters and renditions, add an array of, to a window add_wchnstr(3X)
complex characters and renditions, draw borderscooviiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeees border_set(3X)

complex characters and renditions, draw borders fromcccccoiiiiiiiiiiiiiiiis box_set(3X)
complex characters and renditions, draw lines fromcccccccvviiiiiiiiiiiiiiiiiiiiiiiiieeeeee hline_set(3X)
complex characters and renditions, input an array of, from a windowcccccceeiiiiiininnnnnnnnn. in_wchnstr(3X)
complex - complex functions and MACTOSuuuuuuuuuuuiiiiiiiiiiiiiiiiaeaea e aaeeaeaeeeaeaaaeaaeaeaeeeeaeeaenanes complex(5)
complex conjugate functions conj(3M)
complex cosine functions ccos(3M)
complex exponential functions cexp(3M)
complex functions and macros complex(5)
complex hyperbolic coSINe fUNCEIONSuuuuiiiii s ccosh(3M)
complex hyperbolic SINe fUNCEIONSuuiiiiiiiiii s csinh(3M)
complex hyperbolic tangent functions ... ctanh(3M)
complex imaginary-part functions cimag(3M)

complex 10Zarithm fUNCEIONSiiiiiiiiiiiiiiii e eeees clog(3M)
complex or partition configuration data; unlock stable complex profile or

308 Hewlett-Packard Company HP-UX 11i Version 3: February 2007

Index

All Volumes

Description Entry Name(Section)

cancel pending Changes £0coivviiiiiiiiiiiiiie e et e e e e e et e e e e e er e aaaeaaes parunlock(1M)

complex power functions cpow (3M)
complex profile or cancel pending changes to complex or partition configuration data;

LON a1 (o o)1 = 1 o) LR parunlock(1M)
complex Projection fUNCEIONSieiiiiiiiiiiie e e e eeere e e e e ettt ee e e e e e eeaaa s e eeeeseasnnaaeeeesessnnnnaeaeasnees cproj(3M)
complex real-part functions creal(3M)
(02 0] 0 1S3 1 T= 0N Lot o) 0 V=SSN csin(3M)
complex square root functions csqrt(3M)
comPlex tan@ent fUNCEIONSieiiiiiiiiiiie e e e ettt ee e e e e e etaaa e e eeeeeaasnaaeeeeeeassnnnnaeeseensnnnnnaaees ctan(3M)
complex: complex absolute value fUNCEIONSouuiiiiiiiiiiiie e e e e e e e eeeee cabs(3M)
complex; display information about a hardware partitionablecccccceeeiiiiiiiiiiiiieeiniiiicee e, parstatus(1)
complex; modify an attribute of a SYStemcoiiiiiiiiiiiiiiiiii e cplxmodify(1M)
compliance state of HP-UX 11.x system or depot; check security-bulletin security_patch_check(1M)
composite graphic SYMDOLcooooiiiiiiiii e e e e e erra e aes glossary(9)
compound () - compound interest factoruueeeiiiiiiiiiiiiiii compound(3M)
compound INTETESt FACTOTccoiiiiiiiiiiiiiii et e e e e e e eaeaaans compound(3M)
compoundf () - compound interest factor (float)cccoviiiiiiiiiiiiiiiin s compound(3M)
compoundl () - compound interest factor (long double) .. compound(3M)
compoundq () - compound interest factor (quad) compound (3M)
compoundw () - compound interest factor (extended)uuuuuuuuuiiiuiiiiiiiiiiiiiiiiiiaae compound(3M)
compress, uncompress, zcat - compress or eXpand datacccccceeeeiiiiiiiiiiiii compress(1)
compress and expand files using Huffman codeccooeeiiiiiiiiiiiiiiiiiiiieccccceeeeeeeeeeeeee e pack(l)
compress OF eXPANA AATAuuuuuuuuiiiiiiiiiiiiiiiiiiiiiiaieeieaeeaiaeeeeeaeaeeeaeeeeaaaaaananes . compress(1)
compressdir, uncompressdir - compress or expand files in a directory compress(1)
compute hash value for ELF filescccouiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieeeeeeeeeeeeens elf_hash(3E)
compute shortest path and route between hostscoeviiiiiiiiiiiiiiiiiiiiiiiieeeeeee e pathalias(1)
computer system information, diSPLayccoiiiuiiiiiiiiiiiiiiii e e e uname(1)
computer system, Set NOAE NAIMEoeiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee e e eeeeeeeeeeeeeeeeeeeererereereereeerreererrerreeeee uname(1)
computer system; get information about uname(2)
computer system; set node name (SyStem NAME)ceovviiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeereeeeeeeeeeeeerereereereeeee uname(2)
CONCALENALE TWO SEIINIZS Loiiuiiiiiiiiiiii ettt e e ettt e e e e e ettt e e e e e eeteaaneeeeeeeaananneeaas string(3C)
concatenate, copy, and PIINt fIlESccoeiiiiiiiiiiiieiiceieeeeeeeeeeeeee e e e e e e e cat(1)
concurrency level of unbound threads, get and set pthread_getconcurrency(3T)
condition variable attributes object, initialize or destroycccccceeevurrninnnnnnnnnnnn. pthread_condattr_init(3T)
condition variable, unblock one or all threads waiting on a conditional variable pthread_cond_signal(3T)

condition variable; initialize or deStroycccccceiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeees pthread_cond_init(3T)
condition variable; wait or timed wait on a pthread_cond_wait(3T)
condition, evaluate for trUe/TAlSEoooiiiiiieiiiiiiiiiiee e e e e e eee e e e e e et e e e e e e aa e eaaaaaes test(1)
conditions on multiple file descriptors, MONItor I/O ... poll(7)
conditions on multiple file descriptors; MONItOr I/Ouuiiiiiiiiiiiiii e poll(2)

configurable path name variables, get pathconf(2)

configurable system variables; etoooiiiiiiiiiiiiiii sysconf(2)
Configuration and Network Services Configuration tools of HP System Management Homepage (HP SMH);

launch the Network INterfacesccccuveeiiiiiiiiiiiiiiii e ncweb(1M)
configuration and status, diSplay LAN deVICEuuuuuuuuuuumuuuiiiiiiiiiiiiiiiiiiiiiaaaaeaaneenanaenannnnnnnnnneannnes lanscan(1M)
configuration backup file, create or update LVM volume group vgefgbackup(1M)
configuration command; NFS environment ..o setoncenv(1M)
configuration commands; introduction to Kernelcccccoiiiiiiiiiiiiiiiii e kconfig(5)
configuration data; unlock stable complex profile or cancel pending changes to

COmMPLEX OF PATEILION 1.eiiiiiiiiiiiiiii i parunlock(1M)
configuration database, NEEWOTKoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeee ettt et et e et ee e e e eeeeeeeeeeeeeaees netconfig(4)
configuration drift analyzer; system .. . bastille_drift(1M)
configuration file for ANeEAooiiiiiiiiiiiiiiiii e inetd.conf(4)
configuration file for Internet domain name server named.conf(4)
configuration file for NIS updatingcoooeiiiiiiiiiiii updaters(1M)
configuration file for pluggable authentication moduleccccciiiiii pam.conf(4)
configuration file for pluggable authentication modules; usercccceeeeeeiiiiiii . pam_user.conf(4)
configuration file for router advertisement daemonccccoeeeiiiiiiii rtradvd.conf(4)
configuration file for secure internet services inetsves.conf(4)
configuration file for SLP agentscoooiiiiiiiiiiiiiii slp.conf(4)
configuration file fOr DAoiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeee ettt e e e ee e eeeereeaaes tepd.conf(4)

HP-UX 11i Version 3: February 2007 Hewlett-Packard Company 309

Index

All Volumes
Description Entry Name(Section)
configuration file for the Access Control Policy Switch (ACPS)ccoovviiiiiieiiiiiiiiciee e acps.conf(4)
configuration file for the LDAP client daemon process .. ldapclientd.conf(4)
configuration file for the name-service SWItChceeiiiiiiiiiiiie e nsswitch.conf(4)
configuration file for the SNIMP agentcccccoiiiiiiiiieiiiiiiiiie et e e e e e e e eeeaeaans snmpd.conf(4)
configuration file routines, security defaultsccouuiiiiiiiiiiiiiiiie e secdef(3)
configuration file syntax checking tool; named named-checkconf(1)
configuration file, Change SYSTEIMNccciiiiiiiiiiie i e e e et e e e e e e eaaes e e e e e eeaannnaeeaes ch_rc(1M)
configuration file, @VIMCAMGTccoiuiiiiiiiiiiiiiiiee e eciiire e e e e e ettt e e e e e eeraaa e e eeeeeaaanaeeeaeearanaaaas evmchmgr(1M)
configuration file, evmlogger evimlogger (1M)
configuration file, NLSPATHcouuiiiiiiiiiiiiiiie e e ettt e e e e e et tieaeeeeeeaaaanaeeeeeeasannaeeeaeerssnnnaeaes nlspath(4)
configuration file, PPPoE (Point to Point Protocol over Ethernet) clientcccccccceviiiiiiii. pppoec.conf(4)
configuration file, PPPoE (Point to Point Protocol over Ethernet) relayccccccceeeeeiiinnnnnnnn. pppoerd.conf(4)
configuration file, PPPoE (Point to Point Protocol over Ethernet) server pppoesd.conf(4)
configuration file, used by DDFA SOFEWATEcccoviuiiiiiiiiiiiiie et e e e e e ertaee e e e e eeraannneeees pcf(4)
configuration file; EVM channel evmchannel.conf(4)
configuration file; EVM channel managercccoeeiiiiiiiiiiineiieiiiiiiieeeeeeeiiiiee e eeeeveiiieeees evmchannel.conf(4)
configuration file; EVIM daemonccceeviiiiiiiiiniiiiiiiiiiineeeeeiiiiee e e eeeeviie e e e e eeevanaeeeeeeeaeennnns evmdaemon.conf(4)
configuration file; EVIML I0ZZETcouuuiiiiiiiiiiiiiiie i e et e e e et e e e e eeaasn e e e evmlogger.conf(4)
configuration file; evmchmgr evimchannel.conf(4)
configuration file; FEPAooeiiiiiiiiiii e e e e et e e e eeaaaaans ftpaccess(4)
configuration file; KErDEIoScoooiiiiiiiiiiiiiiiiiiie et e ettt e e e e e eeaaae e e e e eeaaaanaeeeeeeanes krb5.conf(4)
configuration file; network tracing and 1oggingcccceeviiiiiiiiiii nettlgen.conf(4)
configuration file; NFS SErver LoZZINgccoiiiiiiiuuiiiiiiiiiiiiaaeaeaeaaaaeeeeeeaensennnnnnnes nfslog.conf(4)
CONFIGUTALION fIl€; TESOLVETuuuiiiiiiiiiiiiiiiiiiiiiiiteititieat ettt ssssssssessssssesssssssenen resolver(4)
configuration file; TIAC ...ccoeeeeeeeeeeeceeee e rndc.conf(4)
configuration file; Route Administration Manager Daemon (RAMD) ramd.conf(4)
configuration file; security defaults ..ottt e security(4)
configuration files used by file system administration commands fs_wrapper(5)
configuration files, FTP ...ttt e e e ettt e e e e ee s ckconfig(1)
configuration files; reload Event Managercccccoeeeiiiiiiiiiiiiiiiieeeeeeeeeee e evmreload(1M)
configuration files; system deSCIiPLIONcouiiiiiiiiiiiiiiiiiee et e e e et e e e e e system(4)
Configuration Guide; GateDaGIMONuuuuuuuuuiiiiiiiiiiiiiiiiieaaeaaaaaaaaaneeaeenennennnnnnnennnnnnnnnnes gated.conf(4)
configuration information file, diskless Clientcccccceiiiiiiiiiiiiiii info(4)
configuration information tool, multicast routingcccceeiiiiiiiiiii mrinfo(1M)
configuration of the system; manage the INEErTUPLuuuuuiiiiiiiiiiiiiiiiieeeaes intetl(1M)
configuration parameters from the DHCPv6 server, DHCPv6 client interface for requesting

... dhcepvéclient_ui(1)
configuration pathnames; print Kernelcooooiiiiiiiiiiiiiiiii kepath(1M)
configuration specification file ftpservers(4)
configuration table; DOOL dEVICEeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitee ettt ee e eeeeeeee e e e eeeeeeeeeeeeeeeeeeeeaeeee bootconf(4)
Configuration tool; invokes the HP-UX Security Attributesccccceviiiiiiiii, secweb(1M)
configuration tool; starts the HP-UX user and group accountccccccevvviiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeens ugweb(1M)
Configuration tools of HP System Management Homepage (HP SMH);

launch the Network Interfaces Configuration and Network Servicescccccccvvviiiiiiiiiiiinnnnn. ncweb(1M)
configuration utility for psfontpf; model SCriptcccccovueueeiiiiiiiiiiiiiiiiiiiiiinnnns .. psmsgen(1M)
configuration values, get POSIXooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee ettt e e e e e e e ee e eereeeeeeeees getconf(1)
configuration values; get String-valued ... confstr(3C)
configuration, get information for a system’s crash dumpcccccccviiiiiiiiiiiiiiiiiiee pstat(2)
configuration, resStore VOIUINE GIOUDuuuuuuuuuuuuuiiiiiiiiiiiiaieeeeneeeeneeeeeeen vgcfgrestore(1M)
configurations; Manage KeINEL kconfig(1M)
configure message catalog path. chnlspath(1M)
configure network interface PATAMELETSccooiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeee e ifconfig(1M)
configure network tracing and logging subsystem database .. nettlconf(1M)
configure system crash dumpsccccceeuiiiiiiiiiiiiinnnnnnnnn. crashconf(1M)
configure system crash dumpscccccccvviviiiiiiiinninn. crashconf(2)
configure system language on multi-language systems . geocustoms(1M)
configure system SWap SPACE; MANAZE ATIAuuuuuuuuuuuuieitiiiietiieieiiiaaaaeaaaaaaaaeaaeeaaaeeeeaeaeaeaaaaaaaaaeaenaeenannan swapctl(2)
configure the LP SPOOLING SYSTEIMuuuuiiiiiiiiiiiiiiiiiii s lpadmin(1M)
configure the system to use fast symbolic inks ... create_fastlinks(5)
configure, SOftWare ProdUCESeuiiiiiiiiiiiiiiiiiiiiiiiiiiiiie ettt ettt ettt et et eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees swinstall(1M)

configures the startup mode of the HPSMH server and of the Tomcat instance used by HPSMH

310 Hewlett-Packard Company HP-UX 11i Version 3: February 2007

Index

All Volumes

Description Entry Name(Section)
... smhstartconfig(1M)
configures, and stops Live Dump, initiates,cccoceiiiiiiiiiiieiiiiiiiiiiee e e e e e e eevrae e livedump(1M)
confirmation from connect request (X/OPEN TLI-XTI) . . t_rcveconnect(3)
confstr () - get string-valued configuration valuesccccooiiiiiiiiiiiiiiiii confstr(3C)
conj () - complex conjuate FUNCEIONuuuuuiueiiiiiiiiiiiiiiiiii ettt aeateaaaaaaeaaeaaaaeeeannnennnnnnnnnnes conj(3M)
conjf () - complex conjugate function (float) conj(3M)

conjl() - complex conjugate function (long double) conj(3M)
conjq() - complex conjugate function (quad) conj(3M)
conjw() - complex conjugate function (eXtended)cceeeeiiiiiiiiiiieeiiiiiiire e e e e conj(3M)
connect accounting records, MANIPULALEcceeiiiiiiiiiiieiiiiiiiiiiie e et e e e e e e e e e rara e aas fwtmp(1M)
connect () - initiate a connection on a socketccccccennnnn. connect(2)

connect request issued by a transport user (X OPEN TLI-XTI) t_accept(3)
connect request (X/OPEN TLI-XTI) ..uuuuiiiiiiiiiiiiieeeeeiiiiiiie e e eeeeiiieseeeeeeteaanaeeeeeesssnnnaeeeesersnnnnnesessesssnnnns t_listen(3)
connected peer; get address of getpeername(2)
connected sockets; create a PAIT Ofciiiiiiiiiiiiiie e e e ee e ees socketpair(2)
connection daemon debug utility used by DDFA software, outboundccceeeiviiiiiiiiiinniinininnnnn. ocdebug(1M)
connection daemon used by DDFA software, outboundccouuiiieiiiiiiiiiiiiniiiiicee e ocd(1M)
connection mapper, multicast routercceeennnnn. ... map-mbone(1M)
connection on a SOCKET; ACCEPTE @ ..ivvvvuuiiiiiiiiiiiiiiee et e ettt e e e e e e etta e e e e e eeeat e e e eeeaaaaaeaaes accept(2)
connection on a SOCKet; INItIATE Auiiiiiiiiiiiiie e a e connect(2)
connection to the EVM (Event Management) dQemoncceeuueeennnnnnnnnnnnnnnnnnnnnnnnnnnnnnes EvmConnection(5)
connection with another transport user (X/OPEN TLI-XTI)cccoiiiiiiiiiiiiiiiiiiiiieeeeeiniiieeeee e t_connect(3)
connection with the EVM daemon; establish or destroy EvimConnCreate(3)
connection with the EVM daemon; maintainccceeeeeevvvvvunen... .. EvmConnCheck(3)
connection-specific data pointer for the sendmail connection; getscoeeeeeeeeiiieeinnnnnnnnnn... smfi_getpriv(3N)
connection; control information for an EVMooviieeeiiinnn, .. EvmConnControl(3)
connection; receive data (X/OPEN TLI-XTI)ccoovviiiiiiiiiiiiiiiieee et e et e e e e e e e vaaeeeeeaeeeae t_rev(3)
connection; send data (X/OPEN TLI-XTI)coooiiiiiiiieiiiiiiiiiiie ettt e e e e eaeeee e e e e eeaae e e eeeeeraanans t_snd(3)
connections on a SOCKEt; LISEEI FOTooiiiiiiiiiiiiiiiiiiiiie e e et e e e e et e e e e e e ea e eeeeaaas listen(2)
connectivity, verify LAN with link-level loopbackuuuuuiuiiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieneenees linkloop(1M)
consistency checker, file SyStem qUOTAc..uviiiiiiiiiiiiiii e quotacheck(1M)
consistency of Authentication database; check internalccccooiuiuiiiiiiiiiiiiiiieeee authck(1M)
console and standard error, displays formatted message on fmtmsg(3C)
CONSO0LE INEETTACE; SYSTEITL ...ttt ssssssnnen console(7)
console - SyStem CONSO0LE INEETTACEuuuuuiuiiiiiiiiiii s seaeeseennen console(7)
console, search for during boot PrOCESSccoeveiiiiiiiiiiiiieieee e pdec(1M)
constants; IMPlemMentation-SPECITICuuuuuuuuueiiiiiii e eeneannenneen limits(5)
constants; 1anguage INFOTTIATIONuuuuuuiiiiiiiiiiiiie it aasaeeaeaeseesaseeseeeseenenanes langinfo(5)
constants; math funNCtionNs ANouuiiiiiiiiiiiiii e et e e e e e et e e e e e e et eeaeaaaaaan math(5)
construct a file SYStem (ZEINETIC)ciiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiee ettt e e e e et e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeereeaees mkfs(1M)
ConStruct @ NEW fle SYSTEIM ..ooeeiiiiieiiiiieee e newfs(1M)
construct a new HFS file system newfs_hfs(1M)
construct an HE'S file SYSEemcooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee ettt mkfs_hfs(1M)
construct argument lists and execute commandcoooeiiiiiiiiii xargs(1)
constructs, nroff/troff, tbl, and NEQN, TEMOVEuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiie e eeeaeeeeeeeeeeeeenes deroff(1)
contention scope of threads, list of external options to specify the scheduling
.. pthread_scope_options(5)
contents of a file through a socket; send the sendfile(2)
contents of a Large File through a socket; send theccccccoiiiiiiiiiiiiiiiiiie sendfile64(2)
coNtents Of diTECLOTIES; LIST ...oeuuuuiiiiiiiiiiiiee e e e ettt cee e e e e e ettt ee e e e e e e ebaaaeeeeessasataeeessssssnaaeaaaseees 1s(1)
contents of two directories, COMPATEcciiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeee ettt ettt e ettt et eeeeeeeeeeeeeeeeeeeeeeeeeeeees direcmp(1)

context access (UCONEEXE_£); USET ...iiiiiiiiiiiiiiieeeeeiiiiiieeee e ettt eee e e e e e ettt eeeeeeeeeastaaeeaeeeassaaaeeeeeerssaanns uc_access(3)

context code from current context, return ABI and uwx_get_abi_context_code(3X)
context initiator and context acceptor, establish security contextccceeeeiiinnnil. gss_init_sec_context(3)
context using the RPCSEC_GSS protocol, create a security rpc_gss_seccreate(3N)
context, specify callback for ..o rpc_gss_set_callback(3N)
context-sensitive softkey shell ... keysh(1)
context; DEPRECATED; get and set current user getcontext(2)
contexts; DEPRECATED; manipulate userccccooeeeiiiiiiiininnnnnnn... . makecontext(2)
continue - go to next iteration of enclosing for, select, until, or while loop ...l sh-posix(1)
continue - resume execution of nearest while or foreachoc csh(1)

HP-UX 11i Version 3: February 2007 Hewlett-Packard Company 311

Index

All Volumes

Description Entry Name(Section)
continue - resume next iteration of enclosing for/mext 100Deeeiiiiiiiiiiiiei i ksh(1)
continue, resume, or suspend execution of a thread pthread_resume_np(3T)
control a file descriptor for ELF fIlesccouuiiiiiiiiiiiiiiiie e e et e e e e e evv e e e e e eeaaennnns elf_cntl(3E)
control a SCSI devicecooeeviiiiiiiiiiiii ... sesictl(1M)

control access to audio on a workstation; OBSOLETED . . asecure(1M)
control address resolution ...

control blocking on input notimeout(3X)

CONLIOl CHATACEEYooiiiiiiiiii e e e ettt ee e e e e et taaa e e e e e e eaaannaeeeaeereannnaaeaes glossary(9)
control character device SPecial fllecccoiiiiiiiiiiiiiiiiiiiiie e e e e e e e e e e e e aa e e e e eaaaaaans ioctl(2)
control characters, NOW £0 tYPE ...ccoiiiiiiiiiiii i e ettt e e e e e ettt e e e e e eart e e e e e aaaanaaaaas ascii(5)
control characters; iNterpret ASA CATTIAZEccivvviuiiieeiiiiiiiiiee e e eeetiiee e e e e eettieaeeeeettraenaeeeeeerasnnnaeeeeaerssnnnns asa(l)

control checking for typeahead typeahead(3X)

control commMands; GENETIC AEVICEuueeeeeeririiiuiieeeeettiieiaaeeeertutenaaeeeerrrennnaeeeeeressnnaesessesssnsneseeseessnnnns ioctl(5)
control database file for trusted systems; terminal ... ttys(4)
control device driver, SCSI devicec.ccevvneervnnnnnen ... sioc_io(7)
control facilities, 4.2 BSD-compatible ProCeSsceiitieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeees killpg(2)
control facility for iNternet SEIVICES, ACCESSiiiiiiiiiriiitetiiiiiiiteeeeeriitre e eeeeaibeteeeesessnbtreeeeessaaneneeeeas tepd (1M)
control function, for window refresh touchwin(3X)
control functions for Window attribDULEoiiiiiiiiiiiiiiiiiiiiiiiiiieiieiireeeeeeeeee e e eeeeeeeeaees attr_get(3X)
control functions, INPUL MOAEuuuiiiiiiiiiiiiiiiiiiiiiii et aaaaeaaaeaaessesassssesessessnnesennnsnnnn cbreak(3X)
control functions, restricted Window attributeccccooiiiiiiiiiiiiiiiiiiiieee e attroff(3X)
control functions, terminal OULPULuuuiuuiiiiiiiiiiiiiiiiiii i aaeaaaeeaeaeaeseeaaeenaeeesennenen clearok(3X)
control functions, tEY LiNecooiiiiiiiiiiiiiie et e e st e e e e e e tccontrol(3C)
control functions, window refreshccccoeeeiiiiiiiiiii is_linetouched(3X)
control information for an EVM connection .. EvmConnControl(3)
control INitialiZation; PIrOCESSciiiiiiiiiiiiiiiiiiiieiieeeeeeee ettt e e e e e e e e e e et ee e e et ee e e et eeeeeeeeereeeeeeeeeeeaaaees init(1M)
control input character delay mModeoooociiiiiiiiiiiiii e halfdelay(3X)
control list (ACL) information; SEL ACCESS ...uuieeiiiiiiiiiiieeeeeeietiiiieeeeeeeetiiieeeeeeeeetieeeeeeeeeasteaeeeesseaaaaaaeeaseenes setacl(2)
control list (ACL) structure, HFS file system only; convert string form to access .. strtoacl(3C)
control lists (ACLs); introduction t0 HES ACCESSuuuiieiiiiiiiiiiiee ettt e e e e e eeaaaans acl(5)
control Maximum reSOUTCE CONMSUIMPEIONLuuuuuuuuueuuueuteuaeanaaaeeaaeeseanaensneeeneeeensnnnnsnnnnnnnnnnsnnnnnnnsnnnnnnnnnns getrlimit(2)
CONEIOL OPETALIONS, TNIESSAZE ..vvvvvvvvvrrirtritinauueuteeetaaeaaeeeaeaetessesaesseessessssesssssssssssss st sssssssssssssnen msgctl(2)
control operations, semaphore semctl(2)
control operations, shared memory ... shmetl(2)
control routines for OPEN fIlESiiiiiiiiiiiiiiiiiiiiiiiiiiiiieee ettt e e e e eeeeaees fentl(2)
control system 10gccooeeeeeiiiiiiiiii .. syslog(3C)
control terminal device (Bell Version 6 compatibility)cccooeeiiiiiiiiiiiiiiiiiiii stty(2)
CONEIOL TEY AOVICE .iiiiiiiiiiiiiiiiiiiiiiee ettt ettt ettt e e e et ettt e e et e e