

--------- - ------- - ---- - - -------- Application System/400n <1
SC21-9608-1

--_.-
Programming:
Structured Query Language/400 Reference

Second Edition (September 1989)

This major revision makes obsolete SC21-960B-0.

This edition applies to Release 2 Modification Level 0 of the IBM Operating System/400 Licensed
Program (Program 572B-ST1). and to all subsequent releases and modifications until otherwise
indicated in new editions or technical newsletters.

See About This Manual for a summary of major changes to this edition. Changes are periodically
made to the information herein; any such changes will be reported in subsequent revisions or technical
newsletters.

This publication contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands,
and products. All of these names are fictitious and any similarity to the names and addresses used by
an actual business enterprise is entirely coincidental.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed
program in this publication is not intended to state or imply that only IBM's licensed program may be
used. Any functionally equivalent program may be used instead.

Publications are not stocked at the address given below. Requests for IBM publications should be
made to your IBM representative or to your IBM-approved remarketer.

This publication could contain technical inaccuracies or typographical errors.

A form for readers' comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Information Development, Department 245,
Rochester, Minnesota, U.S.A. 55901. IBM may use or distribute whatever information you supply in any
way it believes appropriate without incurring any obligation to you.

Application System/400, AS/400, COBOLl400, OS/400, RPG/400, and SQL/400 are trademarks of the
International Business Machines Corporation.

OS/2 and 400 are registered trad('llarks of the International Business Machines Corporation.

© Copyright International Business Machines Corporation 1988, 1989. All rights reserved.

J

J

J

About this Manual

This manual contains reference information for the tasks of system
administration, database administration, application programming, and
operation. It presents detailed information on Structured Query Language/400
(SQL/400), including syntax, usage notes, keywords, and examples for each of
the SQL statements implemented on the AS/400 system.

This manual may refer to products announced but not yet available.

Who Should Use This Manual
This book is intended for programmers who want to write applications that will
use SQL to access an AS/400 system database.

What You Should Know
It is assumed that you possess an understanding of system administration,
database administration, or application programming in the AS/400 system
environment, as provided by the SQLl400 Programmer's Guide, and that you
have some knowledge of the following:

o A programming language (RPGIII, COBOL/400, C, and/or PL/I)
o Structured Query Language (SQL)

This book is a reference rather than a tutorial. It assumes you are already
familiar with SQL programming. This book also assumes that you will be
writing applications solely for the AS/400 system environment and therefore
presents the full functions of the AS/400 system. Should you be planning
applications which will be ported to other Systems Applications Architecture
(SAA) environments, it will be necessary for you to reference the appropriate
SAA books in addition to this one.

How This Manual Is Organized
This book has the following sections:

o Chapter 1 discusses the basic concepts of relational databases and SQL.

o Chapter 2 describes the baSic syntax of SQL and the language elements
that are common to many SQL statements.

o Chapter 3 contains syntax diagrams, semantic descriptions, rules, and
usage examples of SQL column and scalar functions.

o Chapter 4 describes the various forms of a query, which is a component of
various SQL statements.

o Chapter 5 contains syntax diagrams, semantic descriptions, rules, and
examples of all SQL statements.

o The appendixes contain information about SQL limits, a description of the
SQLCA and SQLDA control blocks, and a list of reserved words.

~J Copyright I BM Corp. 1988, 1989 About this Manual iii

This manual also contains a glossary of terms and abbreviations, and an index.

Related Online Information

Help for Displays

Index Search

The following online information is available on the AS/400 system. You can
press the Help key a second time to see an explanation of how the online
information works, including the index search function.

You can press the Help key on any display to see information about the display.
There are two types of help available:

General
Specific

General help explains the purpose of the display. General help appears if you
press the Help key when the cursor is outside the areas for which specific helP. '\,
is available. ,...",

Specific help explains the field on which the cursor is positioned when you
press the Help key. For example, it describes the choices available for a
prompt. If a system message appears at the bottom of the display, position the
cursor on the message and press the Help key to see information about the
cause of the message and the appropriate action to take.

To exit the online information, press F3 (Exit). You return to the display on
which you pressed the Help key.

Index search allows you to specify the words or phrases you want to see
information about. To use index search, press the Help key, then press F11
(Search index).

Help for Control Language Commands

Online Education

To see prompts for parameters for a control language command, type the
command, then press the Help key or F4 (Prompt) instead of the Enter key.

AS/400 system online education provides tutorials on a wide variety of topics.
To use the online education, press F13 (User support) on any system menu to
show the User Support menu. Then select the option to use online education.

Question-and-Answer Function

iv SQU400 Reference

The question-and-answer (Q & A) function provides answers to questions you
may have about using an AS/400 system. To use the Q & A function, press F13
(User support) on any system menu to show the User Support menu. Then
select the option to use the question-and-answer function.

L

Related Printed Information
If you need more information about using SQL statements, statement syntax
and parameters, see Programming: Structured Query Language/400
Programmer's Guide, SC21-9609.

If you need more information about the interactive data definition utility, see
Utilities: Interactive Data Definition Utility User's Guide, SC21-9657.

For more information about AS/400 system security, see Programming:
Security Concepts and Planning, SC21-BOB3.

For more information about entering source and syntax checking of host
language and SQL statements, see Application Development Tools: Source
Entry Utility User's Guide and Reference, SC09-1172.

For more information about AS/400 system control language commands and
AS/400 system programming, see the following:

• Languages: COBOU400 User's Guide, SC09-115B
• Languages: COBOU400 Reference, SC09-1240
• Languages: COBOU400 Reference Summary, SX09-1049
• Languages: PUI Reference Summary, SX09-1051
• Languages: PUI User's Guide and Reference, SC09-1156
• Languages: C User's Guide
• Languages: RPG/400 Reference, SC09-1161
• Programming: Command Reference Summary, SC21-B076
• Programming: Control Language Programmer's Guide, SC21-B077
• Programming: Control Language Reference, SBOF-04B1

For more information about databases, see the following:

• Programming: Backup and Recovery Guide, SC21-B079
• Programming: Database Guide, SC21-9659
• Programming: Data Description Specifications Reference, SC21-9620

How This Manual Has Changed
The following is a list of the major changes or additions that have been made to
this manual:

• CREATE DATABASE has been replaced by CREATE COLLECTION.
• DROP DATABASE has been replaced by DROP COLLECTION.
• Chapter 1, "Concepts" on page 1, has been expanded to include a section

on collections.
• The section "How SQL Statements Are Invoked" on page 50 has been

expanded to include the following sections:
Embedding a Statement in an Application Program
Dynamic Preparation and Execution
Static Invocation of a select-statement
Dynamic Invocation of a select-statement
Interactive Invocation

• Information on support for the C programming language has been added
where appropriate throughout the book. This includes changes to the
following sections:

About this Manual V

vi SQLl400 Reference

- INCLUDE SQLCA, on pages 91 and 131.
- INCLUDE SQLDA, on page 137 .

• A list of reserved words, included in Appendix C, "Reserved Words" on
page 139, has been added.

Changes since the previous edition of this manual are indicated by a vertical
line to the left of the change.

J

J

L
Contents

Chapter 1. Concepts
Static SQL ..
Dynamic SQL
Collections
Tables
Indexes
Views
Catalog
Application Processes, Concurrency, and Recovery

Chapter 2. language Elements
Characters
Tokens
Identifiers

SQL Identifiers
Host Identifiers

Naming Conventions
SQL Names and System Names: Special Considerations

Authorization IDs
Data Types

Character Strings
Numbers

Basic Operations
Numeric Assignments
String Assignments
Numeric Comparisons
String Comparisons

Constants
Integer Constants .
Floating-Point Constants
Decimal Constants
Character String Constants

Alternative Syntax
Decimal Point
Delimiters

Special Registers
USER

Column Names .
Qualified Column Names

Host Variables
Host Structures in PLlI, C, and COBOL
Host Structures in COBOL, PLlI, C, and RPG

Expressions ...
Without Operators
With the Concatenation Operator
With Arithmetic Operators
Two Integer Operands
Integer and Decimal or Numeric Operands
Two Decimal or Numeric Operands
Decimal Arithmetic in SQL
Floating-Point Operands ..

© Copyright IBM Corp. 1988, 1989

2
2
2
2
3

5
5
5
7
7
8
8

10
10
11
11
12
13
13
15
15
16
16
16
16
17
17
17
17
18
18
18
18
19
21
22
22
23
23
23
24
24
24
24
25
25

Contents vii

viii SQLl400 Reference

Precedence of Operations
Host Variables

Predicates
Basic Predicate ..
BETWEEN Predicate
LIKE Predicate
IN Predicate

Search Conditions

Chapter 3. Functions
Column Functions

AVG ..
COUNT
MAX
MIN
SUM

Scalar Functions
DECIMAL
DIGITS
FLOAT
INTEGER
LENGTH
SUBSTR

Chapter 4. Queries
subselect

select-clause
from-clause
where-clause
9 rou p-by-cla use
having-clause

fullselect
select-statement

order-by-clause
update-clause

Chapter 5. Statements
How SQL Statements Are Invoked
BEGIN DECLARE SECTION
CLOSE
COMMENT ON
COMMIT
CREATE COLLECTION
CREATE INDEX
CREATE TABLE
CREATE VIEW
DECLARE CURSOR
DECLARE STATEMENT
DELETE
DESCRIBE
DROP
END DECLARE SECTION
EXECUTE
EXECUTE IMMEDIATE
FETCH

25
26
26
26
27
27
29
29

31
31
32
32
32
33
33
34
34
35
35
36
36
36

39
39
40
42
43
43
44
45
47
47
48

49
50
53
55
57
59
61
63
65
69
72
75
76
79
81
83
85
88
90

J

J

GRANT . 93
INCLUDE 96
INSERT . 98
LABEL ON 102
LOCK TABLE 104
OPEN .. 106
PREPARE 109
REVOKE 113
ROLLBACK 115
SELECT INTO 117
UPDATE 119
WHENEVER 123

Appendix A. SQL Limits 125

Appendix B. SQLCA and SQLDA Control Blocks 127
SQL Communication Area (SQLCA) 127
The SQL Descriptor Area (SQLDA) 133

Appendix C. Reserved Words 139

Glossary 141

Index .. 145

Contents ix

J

x SQLl400 Reference

L

L

Chapter 1. Concepts

Static SQL

Dynamic SQL

Collections

Structured Query Language (SQL) is the language used to access data in a
relational database. SQL is unlike many programming and data languages
because you do not have to code a sequence of instructions explaining how to
access the data. SQL allows you to select data by using a single statement
directed to the database manager. It is the function of the database manager to
access and to maintain the data.

SQL provides full data definition and data manipulation capabilities. You can
use it to define objects such as indexes, tables, and views. You can also
retrieve, insert, update, and delete data, and control access authorization to
data.

The SQL statements can be:

• Embedded inside application programs written in other languages, such as
RPG, COBOL, C, and PLII.

This is called static SQL. The SQL statements are present in the program
at the time it is precompiled.

• Typed in from a terminal or built by a program.

This is termed interactive or dynamic SQL. The SQL statements are not
provided to the database manager until the program runs.

SQL programmers can write source programs containing static SQL statements.
Before a COBOL, RPG, C, or PL/I program containing static SQL statements is
compiled, the SQL precompiler flags the SQL statements as comments and
includes the code necessary to invoke the database manager. Then the
compiler can process the program. The precompiler also checks the syntax of
the SQL statements.

A capability to enter SQL statements from a terminal is part of the architecture
of SQL. You can write programs that read SQL statements from terminals.
Programs that you write use dynamic SQL to process SQL statements and
present the results to users. Dynamic SQL allows you to create your own query
programs, tailored to your users and designed for your specific needs.

The objects in a relational database are organized into sets called collections.
A collection provides a logical classification of objects in the database.

When a table, view, or index is created, it is assigned to exactly one collection.
The collection to which an object is assigned is determined by the name of the
object. For example, CREATE TABLE C.X creates table X in collection C.

if; COPYright IBM Corp. 1988, 1989 Chapter 1. Concepts 1

Tables

Indexes

Views

Catalog

2 SQLl400 Reference

A relational database is a set of tables. Tables are logical structures
maintained by the database manager. Tables are made up of columns and
rows. There is no inherent order of the rows within a table. At the intersection
of every column and row is a specific data item called a value. A column is a
set of values of the same type. A row is a sequence of values such that the nth
value is a value of the nth column of the table.

A base table is created with the CREATE TABLE statement and is used to hold
persistent user data. A result table is a set of rows that the database manager
selects or generates from one or more base tables.

An index is an ordered set of pointers to rows of a base table. Each index is
based on the values of data in one or more table columns. An index is an
object that is separate from the data in the table. When you request an index
the database manager builds this structure and maintains it automatically.

Indexes are used by the database manager to:

• Improve performance. In most cases, access to data is faster than without
an index .

• Ensure uniqueness. A table with a unique index cannot have rows with
identical keys. (A key is a column, or an ordered collection of columns, on
which the index is created)

Views provide an alternative way of looking at the data in one or more tables.

Like tables, views have rows and columns with no inherent order of rows. You
specify view names in the FROM clause of the SELECT statement just as you
specify table names. You can create views and authorize usage for table-like
operations. Certain operations are not valid on views; otherwise, users never
need know they are working with a view and not with a table.

A table has a storage representation, but a view does not. When a view is
created, its definition is stored in the catalog. No data is stored and, therefore,
no index can be created for a view. However, an index created for a table on
which a view is based may improve the performance of operations on the view.

The database manager maintains a set of tables containing information about
the data in the database. These tables are collectively known as the catalog.
The catalog tables contain information about tables, views, and indexes.

Tables and views in the catalog are like any other database tables and views.
If you have authorization, you can use SQL statements to look at data in the
catalog views in the same way you retrieve data from any other table in the

J

J

J

AS/400 system. The database manager ensures that the catalog contains
accurate descriptions of the databases at all times.

Application Processes, Concurrency, and Recovery
All SQL programs execute as part of an application process. An application
process involves the execution of one or more programs, and is the unit to
which the database manager allocates resources and locks.

More than one application process may request access to the same data at the
same time. Locking is the mechanism used to maintain data integrity under
such conditions, preventing, for example, two application processes from
updating the same row of data simultaneously.

The database manager acquires locks in order to prevent uncommitted changes
made by one application process from being perceived by any other. The
database manager will release all locks it has acquired on behalf of an
application process when that process terminates, but an application process
itself can also explicitly request that locks be released sooner. This operation
is called commit.

The recovery facilities of the database manager provide a means of "backing
out" uncommitted changes made by an application process. This might be
necessary in the event of a failure on the part of an application process. An
application process itself, however, can explicitly request that its database
changes be backed out. This operation is called rollback.

A unit of recovery (also known as a logical unit of work) is a recoverable
sequence of operations within an application process. An application process
represents a single unit of recovery, but may be broken down into many shorter
units of recovery by means of commit or rollback operations. Thus, a unit of
recovery is effectively begun by the initiation of an application process, or by
the termination of a previous unit of recovery. A unit of recovery is terminated
by a commit operation, a rollback operation, or the termination of a process. A
commit or rollback operation affects only the database changes made within
the unit of recovery it terminates. While these changes remain uncommitted,
other application processes are unable to perceive them and they can be
backed out. Once committed, these database changes are accessible by other
application processes and can no longer be backed out by a rollback.

Locks acquired by the database manager on behalf of an application process
are held until the termination of a unit of recovery. A lock explicitly acquired by
a LOCK TABLE statement may be held past the termination of a unit of
recovery if COMMIT HOLD or ROLLBACK HOLD is used to terminate the unit of
recovery. A cursor may implicitly lock the row at which it is positioned. This
lock will prevent another cursor in the same application process (or a DELETE
or UPDATE statement not associated with that cursor) from acquiring a lock on
the same row.

The initiation and termination of a unit of recovery define points of consistency
within an application process. For example, a banking transaction might
involve the transfer of funds from one account to another. Such a transaction
would require that these funds be subtracted from the first account, and added
to the second. Following the subtraction step, the data is inconsistent. Only

Chapter 1. Concepts 3

4 SQLl400 Reference

after the funds have been added to the second account is consistency
reestablished. When both steps are complete, the commit operation can be
used to terminate the unit of recovery, thereby making the changes available to
other application processes. If a failure occurs before the unit of recovery
terminates, the database manager will back out uncommitted changes in order
to restore the consistency of the data that it assumes existed when the unit of
recovery was initiated.

Chapter 2. Language Elements

Characters

Tokens

This chapter defines the basic syntax of SQL and language elements that are
common to many SQL statements. Although examples are shown and most
terms are defined before they are used, this chapter is not a tutorial. It is
intended for those who require a definition of the following language elements:

• "Characters"
• "Tokens"
• "Identifiers" on page 7
• "Naming Conventions" on page 8
• "Authorization IDs" on page 10
• "Data Types" on page 11
• "Basic Operations" on page 13
• "Constants" on page 16
• "Special Registers" on page 18
• "Column Names" on page 18

• "Host Variables" on page 21
• "Expressions" on page 23
• " Pred icates" on page 26
• "Search Conditions" on page 29.

The basic symbols of the language are characters from the EBCDIC collating
sequence and code points. Characters are classified as letters, digits, or
special characters. A letter is anyone of the uppercase or lowercase
characters A through Z plus the three characters reserved as alphabetic
extenders for national languages (#, @, and $ in the United States) A digit is
anyone of the characters 0 through 9. A special character is any character
other than a letter or a digit.

The basic syntactical units of the language are called tokens. A token consists
of one or more characters, excluding blanks and characters within a string
constant or delimited identifier. (These terms are defined later.)

Tokens are classified as ordinary or delimiter tokens:

• An ordinary token is a numeric constant, an ordinary identifier, a host
identifier, or a keyword.

• A delimiter token is a string constant, a delimited identifier, an operator
symbol, or any of the special characters shown in the syntax diagrams. A
question mark is also a delimiter token when it serves as a parameter
marker, as explained under "PREPARE" on page 109.

It') Copyright IBM Corp. 1988, 1989 Chapter 2. Language Elements 5

Spaces
A space is a sequence of one or more blank characters. Tokens, other than
string constants, must not include a space. Any token may be followed by a
space. Every ordinary token must be followed by a delimiter token or a space.
If the syntax does not allow an ordinary token to be followed by a delimiter
token, that ordinary token must be followed by a space. The following
examples illustrate the rule stated in this paragraph.

Here are some examples of ordinary tokens:

1 .1 +2 SELECT E 3

Here are some examples of combinations of the above ordinary tokens that, in
effect, change the tokens:

1.1 .1+2 SELECTE .1E E3 SELECTI

This demonstrates why ordinary tokens must be followed by a delimiter token
or a space.

Here are some examples of delimiter tokens:

'string' "fl d I"

Here are some examples of combinations of the above ordinary tokens and the
above delimiter tokens that, in effect, change the tokens:

1. .3

The dot (.) is a delimiter token when it is used as a separator in the
qualification of names. Here the dot is used in combination with an ordinary
token of a numeric constant. Thus, the syntax does not allow an ordinary token
to be followed by a delimiter token. Instead, the ordinary token must be
followed by a space

If the system value QDECFMT is set to the value J, as described in "Decimal
Point" on page 17, the comma is interpreted as a decimal point. Here are
some examples of these numeric constants:

1,2 ,1 1, 1, e 1

If the '1, l' or '1 ,e1' were meant to be two items, both the ordinary token (1)
and the delimiter token (,) must be followed by a space, to prevent the comma
from being interpreted as a decimal point. Although the comma is usually a
delimiter token, the comma is part of the number when it is interpreted as a
decimal point. Therefore, the syntax does not allow an ordinary token (1) to be
followed by a delimiter token (,). Instead, an ordinary token must be followed
by a space.

Uppercase and Lowercase

6 SQl!400 Reference

Ordinary tokens are folded to uppercase. Delimiter tokens are never folded to
uppercase. Thus, the statement:

select * from CORPDATA.TEMPL where lastname = 'Smith';

is equivalent, after folding, to:

SELECT * FROI·I CORPDATA. THIPL l'IHERE LASH1Af.1E = 'Smi th';

J

J

\

Identifiers

L
SQL Identifiers

An identifier is a token that is used to form a name. An identifier in an SOL
statement is either an SOL identifier or a host identifier.

There are two types of SOL identifiers: ordinary identifiers and delimited
identifiers.

• An ordinary identifier is a letter followed by zero or more characters, each
of which is a letter, a digit, or the underscore character. Note that ordinary
identifiers are converted to uppercase. An ordinary identifier must not be
identical to a reserved word. (See Appendix C, "Reserved Words" on
page 139 for a list of reserved words.)

• A delimited identifier is a sequence of one or more characters of the
standard character set enclosed within SOL escape characters. Note that
delimited identifiers are not converted to uppercase. The escape character
is the quotation mark (") except for:

Dynamic SOL when the SOL string delimiter is set to the quotation
mark. Here the SOL escape character is the apostrophe (').

COBOL application programs. A COBOL precompiler option specifies
whether the escape character is the quotation mark (") or the
apostrophe (').

The following characters are not allowed within delimited identifiers:

A blank (X'40')
An asterisk (X' 5C')
An apostrophe (X' 70')
A question mark (X' 5F')
A quotation mark (X'7F')
X'OO' through X'3F' and X'FF'

Identifiers are also classified according to their maximum length. A short
identifier has a maximum length of 10 bytes. A long identifier has a maximum
length of 18 bytes. Long identifiers are valid for cursor-name and
statement-name.

For delimited identifiers, the bytes required for the escape characters are
included in the length of the identifier, unless the characters within the
delimiters would form an ordinary identifier.

For example, "PRIVILEGES" is in uppercase and the characters within the
delimiters form an ordinary identifier; therefore, it has a length of 10 bytes and
is a valid short identifier. On the other hand, "privileges" is in lowercase, has a
length of 12 bytes, and is not a valid short identifier, because the bytes required
for the delimiters must be included in the length of the identifier.

Examples: \'!EEKLYSAL \'!EEKL Y SAL "\'!EEKLY • SAL" $500

Chapter 2. Language Elements 7

Host Identifiers
A host-identifier is a name declared in the host program. The rules for forming
a host-identifier are the rules of the host language. For example, the rules for
forming a host-identifier in a COBOL program are the same as the rules for
forming a user-defined word in COBOL, except that host-identifiers must begin
with a letter. Double-byte character set (DBCS) identifiers are not supported.

Naming Conventions

8 SQLl400 Reference

The rules for forming a name depend on the type of the object designated by
the name. The syntax diagrams use different terms for different types of
names. The following list defines these terms.

authorization-name A short identifier that designates a user. An
authorization-name is a user profile name on the AS/400
system. An authorization-name containing a period (.)
cannot be used as a qualifier unless it is enclosed in
delimiters. SQL will use ten characters of the name, but
only eight are allowed for the special register USER. If
more than eight characters are found for USER, a
negative value is returned in the SQLCODE field of the
SQLCA.

collection-name

column-name

correlation-name

cursor-name

descriptor-name

host-label

host-variable

A short identifier that designates a collection.

A qualified or unqualified name that designates a column
of a table or a view. The unqualified form of a column
name is a short identifier. The qualified form is a
qualifier followed by a period and a short identifier. The
qualifier is a table name, a view name, or a correlation
name.

Column names cannot be qualified with system names in
the form col/ection-nameltable-name.column-name, except
in the COMMENT ON and LABEL ON statements. If
column names need to be qualified, and correlation
names are allowed in the statement, a correlation must
be used to qualify the column. Column names can be
SQL delimited identifiers, but the characters within the
delimiters must not include special characters.

A short identifier that designates a table, a view, or
individual rows of a table or view.

An long identifier that designates an SQL cursor.

A host-identifier that designates an SQL descriptor area
(SQLDA). See "Host Variables" on page 21 for a
description of a host identifier. A host variable that
designates an SQLdescriptor area must be of the form
:host-variable. The form :host-variable:indicator-variable
is not allowed.

A token that designates a label in a host program.

A sequence of tokens that designates a host variable. A
host-variable includes at least one host-identifier, as
explained in "Host Variables" on page 21.

J

index-name

statement-name

table-name

view-name

A qualified or unqualified name that designates an index.
The unqualified form of an index-name is a short
identifier. The qualified form of an index-name depends
on whether the naming option ('SOL or *SYS) was
specified on the STRSOL or CRTSOLxxx command (where
xxx is RPG, CBL, C, or PLI).

For SOL names, the unqualified index-name in an SOL
statement is implicitly qualified by the authorization 10 of
the statement. The qualified form is the collection-name
followed by a period (.) and a short identifier.

For system names, the unqualified index-name in an SOL
statement is implicitly qualified by 'LlBL (user library list).
The qualified form is a collection-name followed by a
slash (/) and a short identifier.

A long identifier that designates a prepared SOL
statement.

A qualified or unqualified name that designates a table.
The unqualified form of a table-name is a short identifier.
The qualified form of a table-name depends on whether
the naming option ('SOL or *SYS) was specified on the
STRSOL or CRTSOLxxx command (where xxx is RPG,
CBL, C, or PLI).

For SOL names, the unqualified table-name in an SOL
statement is implicitly qualified by the authorization 10 of
the statement. The qualified form is the collection-name
followed by a period (.) and a short identifier.

For system names, the unqualified table-name in an SOL
statement is implicitly qualified by *LlBL (user library list)
The qualified form is a collection-name followed by a
slash (I) and a short identifier.

A qualified or unqualified name that deSignates a view.
The unqualified form of a view-name is a short identifier.
The qualified form of a view-name depends on whether
the naming option (*SOL or *SYS) was specified on the
STRSOL or CRTSOLxxx command (where xxx is RPG,
CBL, C, or PLI).

For SOL names, the unqualified view-name in an SOL
statement is implicitly qualified by the authorization 10 of
the statement. The qualified form is the collection-name
followed by a period (.) and a short identifier.

For system names, the unqualified view-name in an SOL
statement is implicitly qualified by *LlBL (user library list).
The qualified form is a collection-name followed by a
slash (/) and a short identifier.

Chapter 2. Language Elements 9

SQL Names and System Names: Special Considerations
An override CL command (OVRDBF) may be specified that overrides an SQL or
system name to another object name for data manipulation SQL statements.
Overrides are ignored for data definition SQL statements. See Programming:
Data Management Guide for more information about the override function.

You can access tables or views using either SQL names or system names. If
you choose to use SQL names:

• If a qualified name is specified, SQLl400 attempts to find the object in the
specified collection.

• If an object is unqualified, it is implicitly qualified by the authorization ID of
the statement. Because the authorization ID can change based on user,
most SQL syntax names should be qualified.

If you choose to use system names, the following rules apply:

• If a qualified name is specified, SQLl400 attempts to find the object in the
specified library.

• If an unqualified object name is specified, SQL/400 searches the library list
(*UBL).

Authorization IDs

10 SQLl400 Reference

An authorization ID is a user profile. It is a character string of not more than 10
characters that designates a set of privileges.

The database manager uses authorization IDs to provide:

1. Authorization checking of SQL statements, and

2. Implicit qualifiers for the names of tables, views, and indexes.

An authorization ID applies to every SQL statement. The authorization ID that
applies to a static SQL statement is the authorization ID of the owner of the
program. The authorization ID that applies to a dynamic SQL statement is the
authorization ID of the user running the program. This is called the run-time
authorization ID.

An authorization-name specified in an SQL statement should not be confused
with the authorization ID of the statement. For example, assume that SMITH is
your user profile and you execute the following statement interactively:

GRANT SELECT ON TDEPT TO KEENE

SMITH is the run-time authorization ID, and the database manager therefore
checks to ensure that SMITH is authorized to issue the statement. KEENE is the
authorization-name specified in the statement. A group user profile may also
be used when checking authority for an SQL statement. For information on
group user profiles, see Programming: Security Concepts and Planning.

Examples: fJArIEl St·1 I TH. NAt,IEI

If you choose to use SQL names and SMITH is the authorization ID of the
statement that contains NAME1, then NAME1 identifies the same object as
SMITH.NAME1. Otherwise NAME1 and SMITH.NAME1 identify different objects.

Data Types

Character Strings

For information about specifying the data types of columns, see "CREATE
TABLE" on page 65.

The smallest unit of data that can be manipulated in SQL is called a value.
How values are interpreted depends on the data type of their source. The
sources of values are constants, columns, host variables, functions,
expressions, and special registers.

The basic data types are character string, integer, floating-point, numeric, and
decimal. Floating-point values are further classified as single precision and
double precision, while integers are further classified as small integer and
large integer. Integers may be specified in some host variables as having
precision and scale.

All data types include the null value. The null value is a special value that is
distinct from all nonnull values and thereby denotes the absence of a (nonnulI)
value. In SQLl400, a column of a table cannot contain a null value.

A character string is a sequence of bytes. The length of the string is the
number of bytes in the sequence. If the length is zero, the value is called the
empty string. This value should not be confused with the null value.

Fixed-Length Strings

String Variables

All values of a fixed-length string column have the same length, which is
determined by the length attribute of the column. The length attribute must be
between 1 and 32766 inclusive.

Fixed-length string variables can be defined in all host languages.
Varying-length string variables can be defined in all host languages except
RPG. Null-terminated string variables can be defined in host language C.

Mixed Data in Character Strings
Character strings may contain sequences of double-byte characters, each
sequence preceded by a "shift-out" character and followed by a "shift-in"
character. A string containing one or more such sequences is called "mixed."
The principal use of mixed data is to represent national language texts.

SQL does not recognize subclasses of double-byte characters, and does not
assign any specific meaning to particular double-byte codes. However, if you
choose to use mixed data, then two single-byte EBCDIC codes are given special
meanings:

• X 'OE', the "shift-out" character, is used to mark the beginning of a
sequence of double-byte codes .

• X'OF', the "shift-in" character, is used to mark the end of a sequence of
double-byte codes.

In order for SQLl400 to recognize double-byte characters in a mixed string, the
following condition must be met:

Chapter 2. Language Elements 11

Numbers

Small Integer

Large Integer

• Within the string, the double-byte characters must be enclosed between
paired shift-out and shift-in characters.

The pairing is detected as the string is read from left to right. The code
X'OE' is interpreted as a shift-out character if X'OF' occurs later; otherwise
it is invalid. The first X'OF' following the X'OE' is the paired shift-in
character.

There must be an even number of bytes between the paired characters, and
each pair of bytes is considered to be a double-byte character. There may
be more than one set of paired shift-out and shift-in characters in the string.

The length of a mixed string is its total number of bytes, counting two bytes for
each double-byte character and one byte for each shift-out or shift-in character.

When the system value QIGC indicates that DBCS is allowed, CREATE TABLE
will create character columns as OPEN fields, unless FOR BIT DATA or FOR
SBCS is specified. The SQL user will see these as character fields, but the
system database support will see them as DBCS-Open fields. For a definition
of the DBCS-Open field, see Programming: Data Description Specifications
Reference.

You can define small integer and large integer variables in all languages.
Decimal and numeric variables can be defined in PUI, COBOL, and RPG.
Floating-point variables can be defined in PUI and C.

All numbers have a sign and a precision. The precision is the total number of
binary or decimal digits excluding the sign. The sign is positive if the value is
zero.

A small integer is a binary integer with a precision of 15 bits. The range of
small integers is -32768 to 32767.

For small integers, precision and scale are supported by AS/400 system host
variables in languages and by AS/400 system physical and logical files. For
information concerning the precision and scale of binary integers, see
Programming: Data Description Specifications Reference.

A large integer is a binary integer with a precision of 31 bits. The range of
large integers is -2147483648 to +2147483647.

For large integers, precision and scale are supported by AS/400 system host
variables in languages and by AS/400 system physical and logical files. For
information concerning the precision and scale of binary integers, see
Programming: Data Description Specifications Reference.

Single Precision Floating-Point

12 SQL!400 Reference

A single precision floating-point number is an IEEE short (32 bits) floating-point
number. The range of magnitude is approximately 1.17549436 X10-38 to
3.40282356 X1038.

J

J

J

Double Precision Floating-Point

Decimal

Numeric

A double precision floating-point number is 64 bits long. The range of
mag n itude is approximately 2.2250738585072014 x 1 0-308 to 1.7976931348623158
X1030B

A decimal value is a packed decimal number with an implicit decimal point.
The position of the decimal point is determined by the precision and the scale
of the number. The scale. which is the number of digits in the fractional part of
the number, cannot be negative or greater than the precision. The maximum
precision is 31 digits.

All values of a decimal column have the same precision and scale. The range
of a decimal variable or the numbers in a decimal column is -n to + n, where
the absolute value of n is the largest number that can be represented with the
applicable precision and scale. The maximum range is -1031 +1 to 1031-1.

A numeric number is a zoned decimal number with an implicit decimal point.
The position of the decimal point is determined by the precision and the scale
of the number. The scale, which is the number of digits in the fractional part of
the number, cannot be negative or greater than the preCision. The maximum
precision is 31 digits.

All values of a numeric column have the same precision and scale. The range
of a numeric variable or the numbers in a numeric column is -n to + n, where
the absolute value of n is the largest number that can be represented with the
applicable precision and scale. The maximum range is -1031 +1 to 1031-1.

Basic Operations
The basic operations of SQL are assignment and comparison. Assignment
operations are performed during the execution of INSERT, UPDATE, FETCH, and
SELECT INTO statements. Comparison operations are performed during the
execution of statements that include predicates and other language elements
such as MAX, MIN, DISTINCT, GROUP BY, and ORDER BY.

The basic rule for both operations is that numbers and strings are not
compatible. Thus, numbers and strings cannot be compared, numbers cannot
be assigned to string columns or variables. and strings cannot be assigned to
numeric columns or variables.

For assignment operations, a null value cannot be assigned to a column, nor to
a host variable that does not have an associated indicator variable. (See "Host
Variables" on page 21 for a discussion of indicator variables.)

Numeric Assignments
The basic rule for numeric assignments is that the whole part of a number is
never truncated. If the whole part is truncated, a negative value is returned in
the SQLCODE field of the SQLCA. If the target of the assignment cannot
contain the entire fractional part of a number, the fractional part of the number
is truncated.

Chapter 2. Language Elements 13

Decimal, Numeric, or Integer to Floating-Point
Floating-point numbers are approximations of real numbers. Hence, when a
decimal, numeric, or integer number is assigned to a floating-point column or
variable, the result may not be identical to the original number.

Because of the added length of double precision floating-point numbers (64 bits
rather than the 32 bits of a single precision value), the approximation will be
more accurate if the receiving column or variable is defined as double precision
rather than single precision.

Decimal, Numeric, or Floating-Point to Integer
When a decimal, numeric, or floating-point number is assigned to a binary
integer column or variable, the number is converted, if necessary, to the
precision and the scale of the target. If the scale of the target is zero, the
fractional part of the number is lost. The necessary number of leading zeros is
appended or eliminated, and, in the fractional part of the number, the necessary
number of trailing zeros is appended, or the necessary number of trailing digits
is eliminated.

Decimal or Numeric to Decimal or Numeric
When a decimal or numeric number is assigned to a decimal or numeric
column or variable, the number is converted, if necessary, to the precision and
the scale of the target. The necessary number of leading zeros is appended or
eliminated, and, in the fractional part of the number, the necessary number of
trailing zeros is appended, or the necessary number of trailing digits is
eliminated.

Integer to Decimal or Numeric
When an integer is assigned to a decimal or numeric column or variable, the
number is converted first to a temporary decimal number and then, if
necessary, to the precision and scale of the target. If the scale of the integer is
zero, the precision of the temporary decimal number is 5,0 for a small integer,
or 11,0 for a large integer.

Floating-Point to Decimal or Numeric

To COBOL Integers

14 SQLl400 Reference

When a single or double precision floating-point number is converted to
decimal or numeric, the number is first converted to a temporary decimal
number of precision 31 and then, if necessary, truncated to the precision and
scale of the target. In this conversion, the number is rounded (using
floating-point arithmetic) to a precision of 31 decimal digits. As a result, a
number less than 0.5*10-31 is reduced to O. The scale is given the largest
possible value that allows the whole part of the number to be represented
without loss of significance.

Assignment to integer host variables takes into account any scale specified for
the host variable. However, assignment to integer host variables uses the full
size of the integer. Thus, the value placed in the data item may be larger than
the maximum precision specified for the host variable.

For example, if column 1 contains a value of 12345, the COBOL statements:

J

J

J

01 A PIC 59999 COMP-4.
EXEC SQL SELECT COLI

INTO : A
FROJ:1 T ABLEX

END-EXEC.

result in the value 12345 being placed in A, even though A has been defined with
only 4 digits.

Notice that the following COBOL statement:

1·IOVE 12345 TO A.

results in 2345 being placed in A.

String Assignments
The basic rule for string assignments is that the length of a string assigned to a
column must not be greater than the length attribute of the column. (Trailing
blanks are included in the length of the string.)

When a string is assigned to a fixed-length string column or variable and the
length of the string is less than the length attribute of the target, the string is
padded on the right with the necessary number of EBCDIC or double-byte
blanks.

When a string of length n is assigned to a varying-length string variable with a
maximum length greater than n, the characters after the nth character of the
variable are undefined.

When a string is assigned to a variable and the string is longer than the length
attribute of the variable, the string is truncated on the right by the necessary
number of characters. When this occurs, the value 'W' is assigned to the
SQLWARN1 field of the SQLCA. When a string is assigned to a column and the
string is longer than the length attribute of that column, an error occurs. For a
description of the SQLCA, see "SQL Communication Area (SQLCA)" on
page 127.

If the string contains mixed data, the assignment rules may require truncation
within a sequence of double-byte codes. To prevent the loss of the shift-in
character that ends the double-byte sequence, additional characters may be cut
from the end of the string; then a shift-in character is appended before the
assignment is made. In the truncated result, there is always an even number of
bytes between each shift-out character and its matching shift-in character.

Numeric Comparisons
Numbers are compared algebraically; that is, with regard to sign. -2, for
example, is less than +1. Conversion for the comparison is handled internally,
and packed decimal is used if the numbers are any combination of decimal and
numeric numbers.

If one number is an integer and the other is decimal or numeric, the
comparison is made with a temporary copy of the integer, which has been
converted to decimal.

When decimal numbers with different scales are compared, the comparison is
made with a temporary copy of one of the numbers that has been extended

Chapter 2. Language Elements 15

with trailing zeros so that its fractional part has the same number of digits as
the other number.

If one number is floating-point and the other is integer, decimal, or numeric, the
comparison is made with a temporary copy of the other number, which has
been converted to double precision floating-point.

Two floating-point numbers are equal only if the bit configurations of their
normalized forms are identical.

String Comparisons

Constants

Integer Constants

The comparison of two strings is determined by the comparison of the
corresponding bytes of each string. The strings must not be longer than 32,766
bytes. If the strings do not have the same length, the comparison is made with
a temporary copy of the shorter string that has been padded on the right with
blanks so that it has the same length as the other string.

Two strings are equal if they are both empty or if all corresponding bytes are
equal. Varying-length strings that differ only in the number of trailing blanks
are considered equal. If two strings are not equal, their relationship is
determined by the comparison of the first pair of unequal bytes from the left
end of the strings. This comparison is made according to the EBCDIC collating
sequence.

A constant (sometimes called a literal) specifies a value. Constants are
classified as string constants or numeric constants. Numeric constants are
further classified as integer, floating-point, or decimal.

All constants have the attribute NOT NULL. A negative sign in a numeric
constant with a value of zero is ignored.

An integer constant specifies an integer as a signed or unsigned number with a
maximum of 10 digits that does not include a decimal point. The data type of
an integer constant is large integer, and its value must be within the range of a
large integer.

Examples: 64 -15 +188 32767 728176

In syntax diagrams the term' integer' is used for an integer constant that must
not include a sign.

Floating-Point Constants

16 SQLl400 Reference

A floating-point constant specifies a floating-point number as two numbers
separated by an E. The first number may include a sign and a decimal point;
the second number may include a sign but not a decimal point. The value of
the constant is the product of the first number and the power of 10 specified by
the second number; it must be within the range of floating-point numbers. The
number of characters in the constant must not exceed 24. Excluding leading
zeros, the number of digits in the first number must not exceed 17 and the

J

L

number of digits in the second must not exceed 3. The data type of a
floating-point constant is double precision floating-point.

Examples: 15El 2. E5 2.2E-l +5.E+2

Decimal Constants
A decimal constant specifies a decimal number as a signed or unsigned
number that includes a decimal point and at most 31 digits. The precision is
the total number of digits (including leading and trailing zeros) rounded to the
next highest odd integer; the scale is the number of digits to the right of the
decimal point (including trailing zeros).

Examples: 25.5 1000. -15. +37589.3333333333

Character String Constants
There are two forms of character string constant:

• A sequence of characters that starts and ends with a string delimiter (I).
This form of string constant specifies the character string contained
between the string delimiters. The length of the character string must not
be greater than 32765. Two consecutive string delimiters are used to
represent one string delimiter within the character string.

• An X followed by a sequence of characters that starts and ends with a
string delimiter. The characters between the string delimiters must be an
even number of hexadecimal digits. The number of hexadecimal digits
must not exceed 32764. A hexadecimal digit is a digit or any of the letters
A through F (upper or lower case). Under the conventions of hexadecimal
notation, each pair of hexadecimal digits represents a character. This form
of string constant allows you to specify characters that do not have a
keyboard representation.

Examples:

112/14/1985 1
1321
IDONIIT CHANGE I
II

XIFFFF I

Alternative Syntax

I Decimal Point
You have the option of specifying whether the decimal point in a numeric
constant is represented by a period or a comma. The default value for
Interactive SOL is indicated by the system value ODECFMT. This value can be
set through the CL command CHGSYSVAL. For information on this command,
see Programming: Control Language Reference.

'PERIOD, 'COMMA, and 'SYSVAL are mutually exclusive COBOL and RPG
precompiler options that specify the character that represents the decimal point
in SOL statements embedded in the program. If 'PERIOD is specified, the
decimal point is the period; if 'COMMA is specified, the decimal point is the

Chapter 2. Language Elements 17

Delimiters

comma; if *SYSVAL is specified, the decimal point is determined by the system
value QDECFMT.

In PL/I and in C, the usage is fixed. The decimal point is always the period.

*APOST and *QUOTE are mutually exclusive COBOL precompiler options that
name the string delimiter within COBOL statements. *APOST names the
apostrophe (') as the string delimiter; *QUOTE names the quotation mark (").
*APOSTSQL and *QUOTESQL are mutually exclusive COBOL precompiler
options that playa similar role for SQL statements embedded in COBOL
programs. *APOSTSQL names the apostrophe (') as the SQL string delimiter;
with this option, the quotation mark (") is the SQL escape character.
*QUOTESQL names the quotation mark as the SQL string delimiter; with this
option, the apostrophe is the SQL escape character. The values of *APOSTSQL
and *QUOTESQL are respectively the same as the values of *APOST and
*QUOTE.

In host languages other than COBOL, the usages are fixed. The string delimiter
for the host language and for static SQL statements is the apostrophe ('); the
SQL escape character is the quotation mark (").

Special Registers

USER

Column Names

18 SQU400 Reference

A special register is a storage area whose primary use is to store information
produced with the use of specific features of the database manager.

The USER special register is 8 characters in length; it specifies the run-time
authorization ID. Thus, if you execute SQL statements interactively, USER
specifies your user profile name. USER is padded on the right with blanks, if
necessary, so that the value of USER is always a fixed-length character string of
length 8. The value in USER cannot be changed.

Example:

SELECT * FROM SYSIBM.SYSTABLES
WHERE CREATOR = USER

The meaning of a column name depends on its context. A column name can be
used to:

• Declare the name of a column, as in a CREATE TABLE statement.

• Identify a column, as in a CREATE INDEX statement.

• Specify values of the column, as in the following contexts:

In a column function, a column name specifies all values of the column
in the group or intermediate result table to which the function is
applied. (Groups and intermediate result tables are explained under
"SELECT INTO" on page 117.) For example, MAX(SALARY) applies the
function MAX to all values of the column SALARY in a group.

In a GROUP BY or ORDER BY clause, a column name specifies all
values in the intermediate result table to which the clause is applied.
For example, ORDER BY DEPT orders an intermediate result table by
the values of the column DEPT.

In an expression, a search condition, or a scalar function, a column
name specifies a value for each row or group to which the construct is
applied. For example, when the search condition CODE = 20 is applied
to some row, the value specified by the column name CODE is the value
of the column CODE in that row.

Qualified Column Names

Correlation Names

Whether a column name may be qualified depends, like its meaning, on its
context:

• In some forms of the COMMENT ON and LABEL ON statements, a column
name must be qualified. This is shown in the syntax diagrams.

• Where the column name specifies values of the column, it may be qualified
at the user's option.

• In aI/ other contexts, a column name must not be qualified.

Where a qualifier is optional, it can serve as a correlation, as described under
"Column Name Qualifiers to Avoid Ambiguity" on page 20.

A correlation name can be defined in the FROM clause of a query and in the
first clause of an UPDATE or DELETE statement. For example, the clause FROM
X.MYTABLE Z establishes Z as a correlation name for X.MYTABLE.

With Z defined as a correlation name for X.MYTABLE, only Z should be used to
qualify a reference to a column of X.MYTABLE in that statement.

A correlation name is associated with a table or view only within the context in
which it is defined. Hence, the same correlation name can be defined for
different purposes in different statements.

If a correlation name is not specified, a name that is the same as the table or
view name is implicitly assigned. If SQL naming is specified, the implicit
correlation name is the qualified table name after any implicit qualification. If
system naming is specified and the table name is qualified, the implicit
correlation name is the table name portion of the qualified name. No two
correlation names, whether implicitly or explicitly assigned, may be the same.
Thus, while a correlation name may be the same as the name of another table,
the other table cannot be referenced in the same statement unless a different
correlation name has been assigned to it.

A correlation name can be used as a qualifier to avoid ambiguity or to establish
a correlated reference. It can also be used as a shorter name for a table or
view. In the example, I Z I might have been used merely to avoid having to
enter X.MYTABLE more than once.

Chapter 2. Language Elements 19

Column Name Qualifiers to Avoid Ambiguity

20 SQLl400 Reference

In the context of a function, a GROUP BY clause, ORDER BY clause, an
expression, or a search condition, a column name refers to values of a column
in some table or view. The tables and views that might contain the column are
called the object tables of the context. Two or more object tables might contain
columns with the same name; one reason for qualifying a column name is to
designate the table from which the column comes.

Table Designators: A qualifier that designates a specific object table is called a
table designator. The clause that identifies the object tables also establishes
the table designators for them. For example, the object tables of an expression
in a SELECT clause are named in the FROM clause that follows it, as in this
partial statement:

SELECT Z.CODE, MYTABLE.CODE
FROM NYTABLE Z, MYTABLE
\'JHERE ...

This example illustrates how to establish table designators in the FROM clause:

1. A name that follows a table or view name is both a correlation name and a
table designator. Thus, Z is a table designator, and qualifies the first
column name after SELECT.

2. A table name or view name that is not followed by a correlation name is a
table designator. Thus, MYTABLE is a designator and qualifies the second
column name after SELECT.

Avoiding undefined or ambiguous references: When a column name refers to
values of a column, exactly one object table must include a column with that
name. The following situations are considered errors:

• No object table contains a column with the specified name. The reference
is undefined.

• The column name is qualified by a table designator, but the table
designated does not include a column with the specified name. Again the
reference is undefined.

• The name is unqualified, and more than one object table includes a column
with that name. The reference is ambiguous.

Avoid ambiguous references by qualifying a column name with a uniquely
defined table designator. If the column is contained in several object tables
with different names, the table names can be used as designators.

Two or more object tables can be instances of the same table. In this case,
distinct correlation names must be used to unambiguously designate the
particular instances of the table.

In the following FROM clause, for example, X and Yare defined to refer,
respectively, to the first and second instances of the table TEMPL.

FROM CORPDATA.EMP X, CORPDATA.EMP Y

J

Host Variables
A host variable is a PLlI, C, or RPG variable, or a COBOL group data item, that
is referenced in an SQL statement. Host variables can only be referenced in
static SQL statements. Host variables should not begin with the characters
I SQL I, I sql', or I RDI'. Host variables are defined by statements of the host
language.

The term host-variable, as used in the syntax diagrams, shows a reference to a
host variable. A host-variable in the INTO clause of a FETCH or a SELECT INTO
statement identifies a host variable to which a value from a column of a row is
assigned. In all other contexts a host-variable specifies a value to be passed to
the database manager from the application program.

The general form of a host-variable reference is:

-:host-identifier:host-identifier --------------..

The variable designated by the second host-identifier must have a data type of
small integer with zero scale. One purpose of the indicator variable is to
specify the null value. A negative value in the indicator variable specifies the
null value.

For example, if :V1V2 is specified in a FETCH or SELECT INTO statement, and if
the value returned is nUll, V1 is not changed, and V2 is set to a negative value,
either to -1 if the value selected was the null value, or to -2 if the null value was
returned because of numeric conversion errors or arithmetic expression errors
met in the SELECT list of an outer SELECT statement. If the value returned is
not nUll, that value is assigned to V1, and V2 is set to zero (unless the
assignment to V1 requires string truncation in which case V2 is set to the
original length of the string). If an indicator variable used in other than a
FETCH statement or an INTO clause contains a negative value, a negative value
is returned in the SQLCODE field of the SQLCA.

Another form of host-variable reference is:

:host-identifier

If this form is used, the host-variable does not have an indicator variable. The
value specified by the host-variable reference :V1 is always the value of V1, and
null values cannot be assigned to the variable. Thus this form should not be
used in an INTO clause unless the corresponding column cannot contain null
values.

If a null value is returned, and you have not provided an indicator variable, a
negative value is returned in the SQLCODE field of the SQLCA. If your data is
truncated and there is no indicator variable, no error condition results.

Chapter 2. Language Elements 21

A host variable must always be preceded by a colon when it is used in an SQL
statement.

In PLJI and C, an SQL statement that references host variables must be within
the scope of the declaration of those host variables. For host variables
referenced in the SELECT statement of a cursor, this rule applies to the OPEN
statement rather than to the DECLARE CURSOR statement.

Host Structures in PLlI, C, and COBOL
A host structure is a PLJI structure, C structure, or COBOL group that is
referenced in an SQL statement. Host structures are defined by statements of
the host language.

Host Structures in COBOL, PLlI, C, and RPG

22 SQLl400 Reference

A host structure is a COBOL group, PLJI, or C structure, or RPG data structure
that is referenced in an SQL statement. Host structures are defined by
statements of the host language, as explained in the Programming: Structured
Query Language/400 Programmer's Guide. As used here, the term "host
structure" does not include an 8QLCA or 8QLDA.

The form of a host structure reference is identical to the form of a host variable
reference. The reference :81:82 is a host structure reference if 81 designates a
host structure. If 82 designates a host structure, it must be defined as a vector
of small integer variables. 81 is the main structur~ and 82 is its indicator
structure.

A host structure may be referenced in any context where a list of host variables
may be referenced. A host structure reference is equivalent to a reference to
each of the host variables contained within the structure in the order which they
are defined in the host language structure declaration. The nth variable of the
indicator structure is the indicator variable for the nth variable of the main
structure.

In COBOL, for example, if V1, V2, and V3 are declared as variables within the
structu re S1, the statement:

EXEC SQL FETCH CURSORI INTO :SI END-EXEC.

is equivalent to:

EXEC SQL FETCH CURSOR 1 INTO :Vl, :V2, :V3 END-EXEC.

If the main structure has m more variables than the indicator structure, the last
m variables of the main structure do not have indicator variables. If the main
structure has m less variables than the indicator structure, the last m variables
of the indicator structure are ignored. These rules also apply if a reference to a
host structure includes an indicator variable or if a reference to a host variable
includes an indicator structure. If an indicator structure or variable is not
specified, no variable of the main structure has an indicator variable.

In addition to structure references, individual host variables or indicator
variables in PLJI, C, and COBOL may be referenced by qualified names. The
qualified form is a host identifier followed by a period and another host
identifier. The first host identifier must designate a structure, and the second
host identifier must designate a host variable within that structure.

L
The following diagram specifies the syntax of references to host variables and
host structures:

~:-~-----------r--hos t-i dent i fi er------------------..-~

~host-identifier.~

L. -'L--------J-,--hOS t-i dent i fi erJ

host-identifier.

Expressions
An expression specifies a value. The form of an expression is as follows:

II
I-

.-------~- * -r-----,
+-
--

funct i on-----,
(express i on)---t

~---r---,-~-constant----~L-------------------~

co 1 umn-name---1
host-variable-----
special-register-

Without Operators
If no operators are used the result of the expression is the specified value.

Examples: SALARY : SALARY 'SALARY' r·IAX (SALARY)

With the Concatenation Operator
If the concatenation operator (Ill is used, the result of the expression is a string.
The operands of concatenation must both be the result of an expression, and
both must be character strings. The sum of their lengths must not exceed
32,766.

If either operand can be nUll, the result can be nUll, and if either is nUll, the
result is the null value. Otherwise, the result consists of the first operand string
followed by the second. With mixed data this result will not have redundant
shift codes "at the seam." Thus, if the first operand is a string ending with a
"shift-in" character (X'OF'), while the second operand is a character string
beginning with a "shift:.out" character (X'OE'), these two bytes are eliminated
from the result.

Chapter 2. Language Elements 23

Example: FI RSTNtlE II' 'II LASTNAf.1E

With Arithmetic Operators
If arithmetic operators are used, the result of the expression is a number
derived from the application of the operators to the values of the operands, If
any operand can be null, or the expression is used in an outer SELECT list, the
result can be null, If any operand has the null value, the result of the
expression is the null value, Arithmetic operators must not be applied to
character strings, For example, USER + 2 is invalid_

The prefix operator + (unary plus) does not change its operand_ The prefix
operator - (unary minus) reverses the sign of a nonzero operand; and if the data
type of A is small integer, then the data type of -A is large integer. The first
character of the token following a prefix operator must not be a plus or minus
sign.

The infix operators +, -, ., and / specify addition, subtraction, multiplication,
and division, respectively_ The value of the second operand of division must
not be zero.

Two Integer Operands
If both operands of an arithmetic operator are integers with zero scale, the
operation is performed in binary, and the result is a large integer. Any
remainder of division is lost. The result of an integer arithmetic operation
(including unary minus) must be within the range of large integers. If either
integer operand has nonzero scale, it is converted to a decimal operand with
the same precision and scale.

Integer and Decimal or Numeric Operands
If one operand is an integer with zero scale and the other is decimal or
numeric, the operation is performed in decimal using a temporary copy of the
integer which has been converted to a decimal number with zero scale and
precision as defined in the following table:

Operand Precision of decimal copy

Column or variable: large integer 11

Column or variable: small integer 5

Constant (including leading zeros) same as the number of digits in
the constant

If one operand is an integer with nonzero scale, it is first converted to a
decimal operand with the same precision and scale.

Two Decimal or Numeric Operands

24 SQLl400 Reference

If both operands are decimal or numeric, the operation is performed in decimal,
The result of any decimal arithmetic operation is a decimal number with a
precision and scale that are dependent on the operation and the precision and
scale of the operands. If the operation is addition or subtraction and the
operands do not have the same scale, the operation is performed with a
temporary copy of one of the operands that has been extended with trailing

L

L:

zeros so that its fractional part has the same number of digits as the other

operand.

The result of a decimal operation must not have a precision greater than 31.
The result of decimal addition, subtraction, and multiplication is derived from a
temporary result which may have a precision greater than 31. If the precision
of the temporary result is not greater than 31, the final result is the same as the
temporary result. If the precision of the temporary result is greater than 31, the
final result is derived from the temporary result by the elimination of leading
zeros so the final result has a precision of 31.

Decimal Arithmetic in SQL
The following formulas define the precision and scale of the result of decimal
operations in SOL. The symbols p and s denote the precision and scale of the
first operand and the symbols p I and s I denote the precision and scale of the
second operand.

The precision of the result of addition and subtraction is
min(31, max(p-s, p'-s')+max(s, s')+1) and the scale is max(s, s'lo

The precision of the result of multiplication is min(31, p + p') and the scale is
min(31, S+S').

The precision of the result of division is 31 and the scale is 31-p + s-s I. If the
scale is negative, a negative value is returned in the SOLCODE field of the
SOLCA.

Floating-Point Operands
If either operand of an arithmetic operator is floating-point, the operation is
performed in floating-point, the operands having first been converted to double
precision floating-point numbers, if necessary. Thus, if any element of an
expression is a floating-point number, the result of the expression is a double
precision floating-point number.

An operation involving a floating-point number and an integer is performed with
a temporary copy of the integer which has been converted to double precision
floating-point. An operation involving a floating-point number and a decimal or
numeric number is performed with a temporary copy of the decimal or numeric
number which has been converted to double precision floating-point. The result
of a floating-point operation must be within the range of floating-point numbers.

Precedence of Operations
Expressions within parentheses are evaluated first. When the order of
evaluation is not specified by parentheses, prefix operators are applied before
multiplication and division, and multiplication and division are applied before
addition and subtraction. Operators at the same precedence level are applied
from left to rig ht.

Example: 1.10 * (SALARY + BONUS)

Chapter 2. Language Elements 25

Host Variables

Predicates

~---,--expression

A host variable in an expression must identify a host variable (not a structure)
described in the program according to the rules for declaring host variables.
For further information about declaring host variables, see Programming:
Structured Query Language/400 Programmer's Guide.

A predicate specifies a condition that is "true," "false," or "unknown" about a
given row or group.

The general form of a predicate is as follows:

<>

>

~> --~--expression----------------------------~----------~

<

>=

<=

express i on--,L----i--.----BEHJEEN--express i on--AND--express i on-
NOT---.l

col umn-n ame--r-------.----LI KE h os t -va ri a b 1 e-----+ 11---------+ -fUSER

LNOT~ string-constant~

expres s i on--'L----i--.----I N~"Pce",_i _on ______ ---,I

NOT--' L,~
(t=host-variable)--

Basic Predicate

26 SQLl400 Reference

cons tant------l
USER------'

All values specified in a predicate must be compatible. The value of a host
variable must not be a string longer than 32766 bytes. The value of a host
variable must not be null (that is, the variable may not have a negative
indicator variable).

A view column referenced in a predicate must not be derived from a column
function.

A basic predicate compares two values. The format of a basic predicate is an
expression followed by a comparison operator and another expression.

If the value of either operand is nUll, the result of the predicate is unknown.
Otherwise the result is either true or false.

J

L
For values x and y:

Predicate
x = y
r=y
x<> y
x < y
x>y
x>= y
x<= y
x~< y
x~> y

Examples:

Is True If and Only If...
x is equal to y
x is not equal to y
x is not equal to y
x is less than y
x is greater than y
x is greater than or equal to y
x is less than or equal to y
x is not less than y
x is not greater than y

EI·1PNO = '528671'
SALARY < 20000
PRSTAFF<>:VARI

BETWEEN Predicate
The BETWEEN predicate compares a value with a range of values. The format
of a BETWEEN predicate is as follows:

~express i on-Lr---i---r---BEHJEEN--express i on--AND--express i on-------~.
NOT ---.J

LIKE Predicate

The BETWEEN predicate:

valuel BETWEEN value2 AND value3

is equivalent to the search condition:
valuel >= value2 AND valuel <= value3

The BETWEEN predicate:

valuel NOT BETWEEN value2 AND value3

is equivalent to the search condition:
NOT (va 1 ue 1 BEHJEEN val ue2 AND value 3); that is,
valuel < value2 or valuel > value3.

Example: SALARY BETl:JEEN 20000 AND 40000

The LIKE predicate searches for strings that have a certain pattern. The pattern
is specified by a string in which the underscore and percent sign have special
meanings. The format of the LIKE predicate is as follows:

~co 1 umn-name-r-----r---LI KE hos t-vari ab 1 e-~-+-------------~. -fUSER

LNOT~ string-constant~

Chapter 2. Language Elements 27

28 SQlI400 Reference

The column-name must identify a string column. If a host variable is specified,
it must identify a character variable (not a structure) that is described in the
program under the rules for declaring string host variables; it cannot have an
indicator variable. The terms "character", "percent sign", and "underscore" in
the following discussion refer to EBCDIC characters. The following description
is intended for those who require a rigorous definition. The description uses x
to denote a value of the column and y to denote the string specified by the
second operand.

The string y is interpreted as a sequence of the minimum number of substring
specifiers so each character of y is part of exactly one substring specifier. A
substring specifier is an underscore, a percent sign, or any nonempty sequence
of characters other than an underscore or a percent sign.

The result of the predicate is either true or false. The result is true if there
exists a partitioning of x into substrings such that:

• A substring of x is a sequence of zero or more contiguous characters and
each character of x is part of exactly one substring.

• If the nth substring specifier is an underscore, the nth substring of x is any
single character.

• If the nth substring specifier is a percent sign, the nth substring of x is any
sequence of zero or more characters.

• If the nth substring specifier is neither an underscore nor a percent sign,
the nth substring of x is equal to that substring specifier and has the same
length as that substring specifier.

• The number of substrings of x is the ·same as the number of substring
specifiers.

The predicate ~ NOT LIKE Y. is equivalent to the search condition NOT(~ LIKE y.).

With Mixed Data: If the column identified by column-name allows mixed data,
the column may contain double-byte characters, as may the host variable or
string constant. In that case the special characters in yare interpreted as
follows:

• A EBCDIC underscore refers to one EBCDIC character; a double-byte
underscore refers to one double-byte character.

• A percent sign, either EBCDIC or double-byte, refers to any number of
characters of any type, either EBCDIC or double-byte.

Examples:

NAME LIKE '%SMITH%'
STATUS LIKE 'N I

The first example is true if I SMITH I appears anywhere within NAME. The
second example is true if the value of STATUS has a length of two and the first
character is I N I .

IN Predicate
The IN predicate compares a value with a collection of values. The format of
the IN predicate is as follows:

~express i on-'L--i-r--I NTEexpress ion ~
NOT --.J

(~~ host-v:riable--O-....J....l_)
cons tant-----1
USER----~

Each host variable specified must identify a structure or variable that is
described in the program under the rules for declaring host structures and
variables.

An IN predicate of the form:

expression IN expression

is equivalent to a basic predicate of the form:

expression = expression

In the other form of the IN predicate, the second operand is a collection of one
or more values specified by any combination of host variables, constants, or
special registers. This form of the IN predicate is equivalent to the form
specified above. except that the second operand consists of the specified
values rather than the values returned by a subselect.

Example: DEPHJO IN ('D0l', 'B0l', 'C01')

Search Conditions
A search condition specifies a condition that is "true," "false," or "unknown"
about a given row or group. The form of a search condition is as follows:

L~~T
Lpredicate ~

(search-condition)

The result of a search condition is derived by application of the specified logical
operators (AND, OR, NOT) to the result of each specified predicate. If logical
operators are not specified. the result of the search condition is the result of the
specified predicate.

Examples: SALARY> 2000 NM-IE LIKE :VAR4 AVG(SALARY) < 30000

AND and OR are defined in Table 1 on page 30, in which P and Q are any
predicates:

Chapter 2. Language Elements 29

30 SQL!400 Reference

Table 1. Truth Tables for AND and OR

p Q PAND Q P OR Q

True True True True

True False False True

True Unknown Unknown True

False True False True

False False False False

False Unknown False Unknown

Unknown True Unknown True

Unknown False False Unknown

Unknown Unknown Unknown Unknown

NOT(true) is false, NOT(false) is true, and NOT(unknown) is unknown.

Search conditions within parentheses are evaluated first. If the order of
evaluation is not specified by parentheses, NOT is applied before AND, and
AND is applied before OR. The order in which operators at the same
precedence level are evaluated is undefined to allow for optimization of search
cond itions.

Example: t·IAJPROJ 'MA2100' AND (DEPT NO 'DU' OR DEPTNO 'B03')

J

L
Chapter 3. Functions

A function is an operation denoted by a function name followed by a pair of
parentheses enclosing the specification of one or more operands. The
operands of functions are called arguments. Most functions have a single
argument that is specified by an expression. The result of a function is a single
value derived by the application of the function to the result of the expression

Functions are classified as scalar functions or column functions. The argument
of a column function is a collection of values. An argument of a scalar function
is a single value.

In the syntax of SQL, the only use of the term "function" is in the definition of
an expression. Thus a function can be used only where an expression can be
used. Additional restrictions apply to the use of column functions as specified
below and in Chapter 4, "Queries" on page 39.

Column Functions
The argument of COUNT(*) is a group or an intermediate result table as
explained in Chapter 4, "Queries" on page 39. The following applies to all
column functions other than COUNT(*).

The argument of a column function is a set of values derived from one or more
columns. The scope of the set is a group or an intermediate result table as
explained in Chapter 4, "Queries" on page 39. For example, the result of the
following SELECT statement is the number of employees in department 001:

SELECT COUNT(*)
FROM CORPDATA.EMP
WHERE WORKDEPT = 'DB1'

The values of the argument are specified by an expression. This expression
must not include a column function, and must include at least one
column-name.

e Copyright IBM Corp. 1988, 1989 Chapter 3. Functions 31

AVG

Following, in alphabetical order, is a definition of each of the column functions.

The AVG function returns the average of a set of numbers. The form of the
fu nction is:

I ~AVG-(----;L-A-L-L-~-,---express i on-)---------------------~

COUNT

The argument values must be numbers and their sum must be within the range
of the data type of the result.

The data type of the result is the same as the data type of the argument values,
except that the result is double precision floating-point if the argument values
are single precision floating-point, and the result is decimal if the argument
values are nonzero scale binary. If the data type of the argument values is
decimal, numeric, or nonzero scale binary with precision p and scale s, the
precision of the result is 31 and the scale is 31-p +s. The result can be null.

The function is applied to the set of values derived from the argument values. If
this set is empty, the result of the function is the null value. Otherwise, the
result is the average value of the set.

Example: AVG (SALARY)

The COUNT function returns the number of rows or values in a set of rows or
values. The form of the function is:

~COUr1T-(*)----------------------------.~

MAX

The argument of COUNT(*) is a set of rows. The result is the number of rows in
the set.

The MAX function returns the maximum value in a set of values. The form of
the function is:

~r'lAX-(---,Lr----,-.---express i on-)----------------------....
ALL ---.J

32 SQLl400 Reference

The argument values can be any values other than character strings whose
maximum lengths are greater than 256.

J

J

MIN

The data type and length attribute of the result are the same as the data type
and length attribute of the argument values. The result can be null.

The function is applied to the set of values derived from the argument values. If
this set is empty, the result of the function is the null value. Otherwise, the
result is the maximum value in the set.

Example: 1·1AX(SALARY)

The MIN function returns the minimum value in a set of values. The form of the
fu nction is:

~1'11 N- (---,---,-express i on-)----------------------....
LALLOOJ

SUM

The argument values can be any values other than character strings whose
maximum lengths are greater than 256.

The data type and length attribute of the result are the same as the data type
and length attribute of the argument values. The result can be null.

The function is applied to the set of values derived from the argument values. If
this set is empty, the result of the function is the null value. Otherwise, the
result is the minimum value in the set.

Example: HIN(SALARY)

The SUM function returns the sum of a set of numbers. The form of the function
is:

~SUlil-(-r-L--,---r-express i on-) ----------------------....
ALL --.J

The argument values must be numbers and their sum must be within the range
of the data type of the result.

The data type of the result is the same as the data type of the argument values
except that the result is double precision floating-point if the argument values
are single precision floating-point, large integers if the argument values are
small integers, and decimal if the argument values are nonzero scale binary. If
the data type of the argument values is numeric, decimal, or nonzero scale
binary, the precision of the result is 31 and the scale is the same as the scale
of the argument values. The result can be null.

Chapter 3. Functions 33

The function is applied to the set of values derived from the argument values. If
this set is empty, the result of the function is the null value. Otherwise, the
result is the sum of the values in the set.

Exa mple: SUI·' (SALARY)

Scalar Functions

DECIMAL

A scalar function can be used wherever an expression can be used. The
restrictions on the use of column functions do not apply to scalar functions. For
example, the argument of a scalar function can be a function. However, the
restrictions that apply to the use of expressions and column functions also
apply when an expression or column function is used within a scalar function.
For example, the argument of a scalar function can be a column function only if
a column function is allowed in the context in which the scalar function is used.

The restrictions on the use of column functions do not apply to scalar functions
because a scalar function is applied to a single value rather than a collection of
values. For example, the result of the following SELECT statement has as many
rows as there are employees in department 001:

SELECT EMPNO, LASTNAME, YEAR(CURRENT DATE - BRTHOATE)
FROM CORPOATA.TEMPL
WHERE WORKOEPT = '081'

Following in alphabetical order is the definition of each of the scalar functions.

The DECIMAL function returns a packed decimal representation of a numeric
value. The form of the function is:

~DECIf.IAL - (express i on-rL----------~-,- ----------------..

, integer L
,integer

34 SQLl400 Reference

The first argument must be a number. The second argument, if specified, must
be in the range of 1 to 31. The third argument, if specified, must be in the
range of 0 to p, where p is the second argument. Omission of the third
argument is an implicit specification of zero.

The default for the second argument depends on the data type of the first
argument:

• 15 for floating-point, decimal, numeric, or nonzero scale binary
• 11 for large integer
• 5 for small integer

The result of the function is a decimal number with precision of p and scale of
S, where p and S are the second and third arguments.

The result is the same number that would occur if the first argument were
assigned to a decimal column or variable with a precision of p and a scale of s.

J

DIGITS

An error occurs if the number of significant decimal digits required to represent
the whole part of the number is greater than p-s.

Example: DECH'IAL(AVG(SALARY) ,8,2)

The DIGITS function returns a character string representation of a number. The
form of the function is:

~DIGITS---(expression)--~~

FLOAT

The argument must be an integer, decimal, or numeric value.

The result of the function is a fixed-length character string.

The result is a string of digits that represents the absolute value of the
argument without regard to its scale. Thus. the result does not include a sign
or a decimal point. The result includes any necessary leading zeros so that the
length of the string is:

• 5 if the argument is a small zero scale integer
• 10 if the argument is a large zero scale integer
• p if the argument is a decimal, numeric, or nonzero scale integer with a

precision of p.

Example: DIGITS(JOBCODE) '6'

The FLOAT function returns a floating-point representation of a number. The
form of the function is:

~FLOAT---(expression)--••

The argument must be a number.

The result of the function is a double precision floating-point number.

The result is the same number that would occur if the argument were assigned
to a double precision floating-point column or variable.

Example: FLOAT(ACSTAFF)/2

Chapter 3. Functions 35

INTEGER
The INTEGER function returns an integer representation of a number. The form
of the function is:

I >--INTEGER--(expressi on)

LENGTH

The argument must be a number.

The result of the function is a large integer with zero scale.

The result is the same number that would occur if the argument were assigned
to a large integer column or variable. If the whole part of the argument is not
within the range of integers, a negative value is returned in the SQLCODE field
of the SQLCA.

Example: INTEGER (SUll (H1PTIf'lE) +.5)

The LENGTH function returns the length of a value. The form of the function is:

~LENGTH--(express ion) ---------------------------~

SUBSTR

36 SQL!400 Reference

The argument can be any value.

The result of the function is a large integer with zero scale.

The result is the length of the argument. The length is the number of bytes
used to represent the value:

• the length of the string for character strings
• 2 for small integer
• 4 for large integer
• 4 for single precision floating-point
• 8 for double precision floating-point
• INTEGER(p/2) + 1 for decimal numbers with precision p.
• p for numeric numbers with precision p

Example: LENGTH(STRING)-:N

The SUBSTR function returns a substring of a string. The form of the function
is:

J

J

~SUBST R- (5 tri ng, -5 tart-r-L----~-.-- ------------------.....
,1 ength---1

string
The first argument must be a string expression.

A substring of string is one or more contiguous characters of string. The
SUBSTR function does not recognize mixed data, so if string contains mixed
data, the result may not be a well-formed mixed data string.

start
start must be an integer between 1 and the length of string. start specifies
the first character of the result.

length
length specifies the length of the result. If specified, length must be an
integer in the range 1 to n, where n is the length attribute of string - start +
1. Omission of length is an implicit specification of LENGTH(string) - start +
1. The default for length is the number of characters from the character
specified by start to the last character of string.

Example: SUBSTR(FIRSTNM1E, 1, 1)

Chapter 3. Functions 37

J

J

38 SQLl400 Reference

Chapter 4. Queries

Authorization

subselect

A query specifies a result table or intermediate result table.

In a program, a query is a component of other SQL statements. The three
forms of a query described in this chapter are:

• The subselect.
• The fullselect. and
• The select-statement

Note that there is another form of select, described under "'SELECT INTO" on
page 117.

Note: Where the syntax outlined in these descriptions is specifically limited to
a column-name, (rather than to an expression), the column you identify must not
be a column of a view derived from an expression, function, or constant.

For any form of a query, the privileges held by the authorization 10 of the
statement must include the SELECT privilege on every table and view identified
in the statement.

You have the SELECT privilege on a table if any of the following apply:

• You are the owner of the table.
• You have been granted the SELECT privilege on the table.
• You have been granted the system authorities 'OBJOPR and 'READ on the

table.

You have the SELECT privilege on a view if any of the following apply:

• You have been granted the SELECT privilege on the view.
• You created the view, you had the SELECT privilege on its base table when

the view was created, and you still have that SELECT privilege.
• You have been granted the system authority 'OBJOPR on the view and the

system authority 'READ on the base table.

~se 1 ec t-c 1 ause-from-c 1 ause-,------,--,--------,--,-------...-... ~
Lwhere-cl auseJ LgrOUp-bY-Cl auseJ L havi ng-cl auseJ

The subselect is a component of the fullselect, the CREATE VIEW statement, and
the INSERT statement. It is also a component of certain predicates which, in
turn, are components of a subselect.

A subselect specifies a result table derived from the tables or views identified
in the FROM clause. The derivation can be described as a sequence of
operations in which the result of each operation is input for the next. (This is

CD Copyright IBM Corp. 1988, 1989 Chapter 4. Queries 39

select-clause

40 SQLl400 Reference

only a way of describing the subselect. The method used to perform the
derivation may be quite different from this description.)

The sequence of the (hypothetical) operations is:

1. FROM clause
2. WHERE clause
3. GROUP BY clause
4. HAVING clause
5. SELECT clause

,------------*--------------,

+ .--expressiOI;------JlJ-.
table-name ~

r-V i e;v-n ame ~ *
'---correlation-name

~SELECT~ I
All------j
DISTIJJCT~

Produces a final result table by selecting only the columns indicated by the
select list from R, where R is the result of the previolJs operation.

ALL
Retains all rows of the final result table, and does not eliminate redundant
duplicates. This is the default.

DISTINCT
Eliminates all but one of each set of duplicate rows of the final result table.
DISTINCT must not be used more than once in a subselect.

Two rows are duplicates of one another only if each value in the first is
equal to the corresponding value of the second.

Select List Notation

Represents a list of names that identify the columns of table R. The first
name in the list identifies the first column of R, the second name identifies
the second column of R, and so on. The list is established when the
program is prepared and does not represent any columns that have been
added to the table later.

expression
May be any expression of the type described in Chapter 2, but commonly
the expressions used include column names. Each column name used in
the select list must unambiguously identify a column of R.

name.'
Represents a list of names that identify the columns of name. name may be
a table name, view name, or correlation name, and must designate a table
or view named in the FROM clause, but must not be of the form
data-base/table-name. The first name in the list identifies the first column of
name, the second name identifies the second column, and so forth. The list
is established when the program is prepared and does not represent any
columns that have been added to the table later.

J

J

J

J

The number of columns in the result of SELECT is the same as the number of
expressions in the operational form of the select list (that is, the list established
at prepare time), and may not exceed 8000.

Other Limitations: The select list must not include column functions if R is
derived from a view whose subselect includes DISTINCT, GROUP BY, or
HAVING. Furthermore, if R is derived from a view whose subselect includes
DISTINCT, the select list must identify all columns of the view (possibly by
SELECT ') and must not include DISTINCT or arithmetic expressions.

Applying the Select List: Some of the results of applying the select list to R
depend on whether or not GROUP BY or HAVING is used. Those results are
described separately.

If neither GROUP BY nor HAVING is used:

• The select list must not include any column functions, or it must be entirely
a list of column functions.

• If the select does not include column functions, then the select list is
applied to each row of R and the result contains as many rows as there are
rows in R.

• If the select list is a list of column functions, then R is the source of the
arguments of the functions and the result of applying the select list is one
row.

If GROUP BY or HAVING is used:

• Each column-name in the select list must either identify a grouping column
or be specified within a column function.

• The select list is applied to each group of R, and the result contains as
many rows as there are groups in R. When the select list is applied to a
group of R, that group is the source of the arguments of the column
functions in the select list.

In either case the nth column of the result contains the values specified by
applying the nth expression in the operational form of the select list.

Null attributes of result columns: Result columns do not allow null values if
they are derived from:

• A column
• A constant
• The COUNT function
• A host variable
• A scalar function or expression that does not allow null values.

Result columns do allow null values if they are derived from:

• Any column function but COUNT
• An arith metic expression
• A scalar function that allows null values.

Names of result columns: A result column derived from a column name
acquires the unqualified name of that column. All other result columns have no
names.

Chapter 4. Queries 41

from-clause

42 SQLl400 Reference

Data types of result columns: Each column of the result of SELECT acquires a
data type from the expression from which it is derived.

When the The data type
expression is ... of the result column is ...

the name of any the same as the data type of the column, with the
numeric column same precision and scale for decimal, numeric, or

binary columns.

an integer constant INTEGER

a decimal or the same as the data type of the constant. For a
floating-point decimal constant, the precision and scale of the
constant result are the same as the constant. For a

floating-point constant, the data type is double
precision.

the name of any the same as the data type of the variable, with the
numeric host same precision and scale for decimal, numeric, or
variable binary variables.

an arithmetic the same as the data type of the result, with the
expression same precision and scale for numeric results as

described under 'Expressions" on page 23.

any function (see Chapter 3 to determine the data type of the
result.)

the name of any the same as the data type of the column, with the
string column same length attribute.

the name of any the same as the data type of the variable, with a
string variable length attribute equal to the length of the variable.

a character string variable length of length n.
constant of length n

-FRm.l----,L-t~b 1 e-nam::J
Vl ev;'-name Lcorre 1 at ion-name:=]

Names a single table or view, or produces an intermediate result table. The
intermediate result table contains all possible combinations of the rows of the
named tables or views. Each row of the result is a row from the first table or
view concatenated with a row from the second table or view, concatenated in
turn with a row from the third, and so on. The number of rows in the result is
the product of the number of rows in ali the named tables or views.

The list of names in the FROM clause must conform to these rules:

• Each table-name and view-name must name a table or view described in the
collection.

J

where-ci a use

group-by-clause

• If the FROM clause specifies a view that contains a GROUP BY, HAVING, or
DISTINCT clause, no other tables or views can be specified in that FROM
clause.

The FROM clause also defines the meaning of correlation names. A
correlation-name applies to the table or view named by the immediately
preceding table-name or view-name. If a correlation name is specified, then
that correlation name must be used elsewhere in the subselect statement to
designate that table or view. For rules governing the use of correlation names,
see "Qualified Column Names" on page 19.

Each correlation name specified in the same FROM clause must be unique and
must not be the same as a table name or view name specified in the clause.
When the same table name or view name is specified more than once in a
FROM clause, a correlation name must be specified after each occurrence of
the replicated name If a correlation name is specified for a table or view, any
qualified reference to a column of that table or view in the subselect must use
that correlation name.

-\iHERE--searcil-condition----------------· ..

Produces an intermediate result table by applying search-condition to each row
of R, where R is the result of the FROM clause. The result table contains the
rows of R for which the search condition is true.

search-condition describes a search condition that conforms to these rules:

• The condition is formed as described in Chapter 2.

• Each column-name in the search condition unambiguously identifies a
column of R.

• A column-name in the search condition does not identify a column that is
derived from a column function. (A column of a view can be derived from a
column function.)

-GROUP BY-C:I~:J-~----------------~

Produces an intermediate result table by grouping the rows of R, where R is the
result of the previous clause.

column-name unambiguously names a column of R. Each column named is
called a grouping column.

Chapter 4. Queries 43

having-clause

The result of GROUP BY is a set of groups of rows. In each group of more than
one row, all values of each grouping column are equal; and all rows with the
same set of values of the grouping columns are in the same group.

Because every row of a group contains the same value of any grouping column,
the name of a grouping column can be used in a search condition in a HAVING
clause or an expression in a SELECT clause: in each case, the reference
specifies only one value for each group.

I >------jjAVIHG--searcil-condi ti on

Produces an intermediate result table by applying search-condition to each
group of R where R is the result of the previous clause. If that claus~ is not
GROUP BY, all rows of R are considered as one group. The result table
contains those groups of R for which the search condition is true.

The search-condition describes a search condition that conforms to these rules:

• The condition is formed as described in Chapter 2 .

• Each column-name in the search-condition must do one of the fol19win9:

Unambiguously identify a grouping column of R
Be specified within a column function. 1

A group of R to which the search condition is applied supplies the argument for
each function in the search condition.

Examples of a subselect
Example 1: Show all rows of CORPDATA.EMP

SELECT * FRON CORPDATA.EMP

Example 2: Show the job code, maximum salary, and minimum salary for each
group of rows of CORPDATA.EMP with the same job code, but only for groups
with more than one row and with a maximum salary greater than $50,000.

SELECT JOBCODE, MAX (SALARY) , MIN(SALARY)
FRON CORPDATA.ENP
GROUP BY JOBCODE
HAVING COUNT(*) > 1 AND MAX (SALARY) > 50000

1 See Chapter 3, "Functions" on page 31 for restrictions that apply to the use of column functions.

44 SQL!400 Reference

J

J

fullselect

UNION ALL-----1 F
u~nON

~subselect ~
(fullselect)

A fu/lselect specifies a result table. If UNION is not used, the result of the
fullselect is the result of the specified subselect.

UNION or UNION ALL

Derives a result table by combining two other result tables (R1 and R2.). If
UNION ALL is specified, the result consists of all rows in R1 and R2. If
UNION is specified without the ALL option, the result is the set of all rows in
either R1 or R2, with duplicate rows eliminated. In either case, however,
each row of the UNION table is either a row from R1 or a row from R2. The
columns of the result are not named.

Two rows are duplicates of one another only if each value in the first is equal to
the corresponding value of the second.

Note that the UNION ALL operation is associative, and that

(SELECT PROJNO FROM CORPDATA.PROJ
UNION ALL
SELECT PROJNO FROM CORPDATA.TPROJEC)
UNION ALL
SELECT PROJNO FROII CORPDATA. EIIPPROJA

will return the same results as

SELECT PROJNO FROM CORPDATA.PROJ
UNION ALL
(SELECT PROJNO FROM CORPDATA.TPROJEC
UNION ALL
SELECT PROJNO FROM CORPDATA.EMPPROJA)

When you include the UNION ALL operator in the same SQL statement as a
UNION operator, however, the result of the operation depends on the order of
evaluation. Where there are no parentheses, evaluation is from left to right.
Where parentheses are included, the parenthesized subselect is evaluated first,
followed, from left to right, by the other components of the statement.

Rules for columns: R1 and R2 must have the same number of columns. The
description of the first column of R1 must be compatible with the description of
the first column of R2, the description of the second column of R1 must be
compatible with the description of the second column of R2, and so on.

In the following explanations, let Column 1 denote the nth column of R1,
Column2 the nth column of R2, and Column3 the nth column of the result of a
UNION or UNION ALL.

Chapter 4. Queries 45

• String Columns: Column3 will be a character string. If both Column1 and
Column2 are fixed-length, Column3 will be fixed-length. Otherwise,
Column3 will be varying-length. In either case, the length attribute of
Column3 will be the greater of the length attributes of Column 1 and
Column2 .

• Numeric Columns: Columnl and Column2 must both be numeric. The
following rules govern the data type of Column3:

If Column 1 or Column2 is floating-point, Column3 is floating-point.
If Columnl or Column2 is floating-point, and the other is integer,
numeric, or decimal, Column3 is floating-point.
If Column 1 and Column2 are decimal, Column3 is decimal, If p and s
are the precision and scale of Column 1, and p' and s' are the precision
and scale of Column2, the precision of Column3 is
MAX(s,s')+MAX(p-s,p'-s') and the scale of Column3 is MAX(s,s'). The
precision of Column3 must not be greater than 31.
If Column 1 and Column2 are numeric, Column3 is numeric. The
precision and scale of Column3 can be calculated using the formulas
above.
If Column 1 or Column2 is decimal, and the other is integer or numeric,
Column3 is decimal, The precision and scale of Column3 can be
calculated using the formulas above.
If Column1 or Column2 is numeric, and the other is integer, Column3 is
numeric. The precision and scale of Column3 can be calculated using
the formulas above.
If Column1 and Column2 are large integer, Column3 is large integer.
If Columnl or Column2 is large integer, and the other is small integer,
Column3 is large integer.
If Column! and Column2 are small integer, Column3 is small integer.
If Columnl or Column2 is nonzero scale binary, both Column1 and
Column2 must be binary with the same scale.

In all cases, if Column1 and Column2 do not allow null values, Column3 will not
allow null values. Otherwise, Column3 will permit null values. If the values of
Column 1 or Column2 must be converted to conform to Column3, the conversion
operation is exactly the same as if the values were assigned to Column3. For
example, if Column 1 is CHAR(10) and Column2 is CHAR(S), Column3 is
CHAR(10) and values of Column3 derived from Column2 are padded on the right
with five blanks.

Examples of a ful/select

46 SOLl400 Reference

Example 1: Show all the rows from CORPDATA.EMP.

SELECT * FROM CORPOATA.EMP

Example 2: List the employee numbers of all employees whose department
number begins with D (as determined from the employee table) OR who are
assigned to projects whose project number begins with AD (as determined from
the Employee-to-Project-Activity table).

SELECT EMPNO FROM CORPOATA.EMP
WHERE WORKOEPT LIKE '0%'
UNION
SELECT EMPNO FROM CORPDATA.EMP.PROJA
WHERE PROJNO LIKE 'AO%'

J

J

select-statement

--""- --------

~fullselect-,--------_,-_.-------_,------------~.

~Order-bY-clauSe~ ~uPdate-clauSe~

order-by-clause

The select-statement is the form of a query that can be prepared and
subsequently executed by the use of an OPEN statemenL It can also be issued
interactively, using the interactive fa~ility (STRSQL command), causing a result
table to be displayed at your terminal. In either case, the table specified by a
select-statement is the result of the fullselecL

-ORDER BY---'-L-~o 1 UI1lIl-~
lilteger

Puts the rows of the result table in order by the values of the columns you
identify" If you identify more than one column, the rows are ordered by the
values of the first column you identify, then by the values of the second column,
and so on"

column-name
Must unambiguously identify a column of the result table"

integer
Must be greater than 0 and not greater than the number of columns in the
result table. The integer n identifies the nth column of the result table"

A named column may be identified by an integer or a column-name" An
unnamed column must be identified by an integeL A column is unnamed if
it is derived from a constant, an arithmetic expression, or a function" If the
fullselect includes a UNION operator, every column of the result table is
unnamed"

ASC
Uses the values of the column in ascending ordeL This is the defaulL

DESC
Uses the values of the column in descending ordeL

Ordering is performed in accordance with the comparison rules described in
Chapter 2" If your ordering specification does not determine a complete
ordering, rows with duplicate values of the last identified column have an
arbitrary order"

Chapter 4" Queries 47

update-ci a use

With dynamic SOL, the ORDER BY clause, like the FOR UPDATE OF clause,
must be specified when the SELECT statement is prepared, rather than on the
DECLARE CURSOR statement.

The ORDER BY clause can contain up to 256 columns or 256 bytes. If the
ORDER BY clause contains floating-point columns, only 120 columns or 120
bytes are allowed.

-FOR UPDATE OF-L:I~:J-,----------------.~

The UPDATE statement can update only columns in the column-name list.
Those columns must belong to the table or view named in the FROM clause of
the fullselect. The column names must not be qualified.

If the FOR UPDATE OF clause is not specified and the ORDER BY clause is not
specified, all columns can be updated.

With dynamic SOL, the FOR UPDATE OF clause, like the ORDER BY clause,
must be specified when the SELECT statement is prepared, rather than on the
DECLARE CURSOR statement.

The FOR UPDATE OF clause cannot be used if the result is read-only.

Examples of a select-statement

48 SQL/400 Reference

Example 1: Select all the rows from CORPDATA.TEMPL.

SELECT * FROM CORPDATA.TEMPL

Example 2: Select all the rows from CORPDAT A.TEMPL in order by date of
hiring.

SELECT * FROM CORPDATA.TEMPL ORDER BY HIREDATE

Chapter 5. Statements

This chapter contains syntax diagrams, semantic descriptions, rules, and
examples of the use of the SQL statements listed in the table below.

Table 2 (Page 1 of 2). SOL Statements

SQL Statement Function Refer to

BEGIN DECLARE Marks the beginning of a host variable p. 53
SECTION declaration section.

CLOSE Closes a cursor. p. 55

COMMENT ON Replaces or adds a comment to the p.57
description of a table, view, or column.

COMMIT Terminates a unit of recovery and commits p. 59
the database changes made by that unit of
recovery.

CREATE COLLECTION Defines a collection. p.61

CREATE INDEX Defines an index on a table. p. 63

CREATE TABLE Defines a table. p. 65

CREATE VIEW Defines a view of one or more tables or p. 69
views.

DECLARE CURSOR Defines an SOL cursor. p.72

DECLARE Declares names used to identify prepared p. 75
STATEMENT SOL statements.

DELETE Deletes one or more rows from a table. p. 76

DESCRIBE Describes the result columns of a prepared p. 79
statement.

--

DROP Deletes a collection, table, index, or view. p.81

END DECLARE Marks the end of a host variable declaration p. 83
SECTION section.

EXECUTE Executes a prepared SOL statement. p. 85

EXECUTE IMMEDIATE Prepares and executes an SOL statement. p. 88

FETCH Assigns values of a row to host variables. p. 90

GRANT Grants privileges on a table or view. p. 93

INCLUDE Inserts declarations into a source program. p. 96

INSERT Inserts one or more rows into a table. p. 98

LABEL ON Replaces or adds a label on the description of p. 102
a table, view, or column.

LOCK TABLE Locks a table in shared or exclusive mode. p. 104

OPEN Opens a cursor. p. 106

PREPARE Prepares an SOL statement for execution. p. 109

REVOKE Revokes privileges on a table or view. p. 113

ROLLBACK Terminates a unit of recovery and backs out p. 115
the database changes made by that unit of
recovery.

SELECT INTO Specifies a result table of no more than one p. 117
row and assigns the values to host variables.

tr; Copyright IBM Corp. 1988, 1989 Chapter 5. Statements 49

Table 2 (Page 2 of 2). SOL Statements

SQL Statement Function Refer to

UPDATE Updates the values of one or more columns p. 119
in one or more rows of a table.

WHENEVER Defines actions to be taken on the basi s of p.123
SOL return codes.

How SQl Statements Are Invoked

Invocation
The SQL statements described in this chapter are classified as executable or
nonexecutable. The 'Invocation' section in the description of each statement
indicates whether or not the statement is executable.

An executable statement can be invoked in three ways:

• Embedded in an application program.
• Dynamically prepared and executed.
• Issued interactively.

Depending on the statement. you can use some or all of these methods. The
'Invocation' section in the description of each statement tells you which
methods can be used.

A nonexecutable statement can only be embedded in an application program.

Besides the statements described in this chapter, there is one more SQL
statement construct: the select-statement, as described under
·'select-statement" on page 47. It is not included in this chapter because it is
used in a way different from other statements. A select-statement can be
invoked in three ways:

• Included in DECLARE CURSOR and implicitly executed by OPEN.
• Dynamically prepared, referenced in DECLARE CURSOR, and implicitly

executed by OPEN.
• Issued interactively.

The first two methods are called, respectively, the static and the dynamic
invocation of select-statement.

The different methods of invoking an SQL statement are discussed below in
more detail. For each method, the discussion includes: the mechanism of
execution, the interaction with host variables, and testing whether the execution
was successful or not.

Embedding a Statement in an Application Program

50 SOL!400 Reference

You may include SQL statements in a source program that will be submitted to
the precompiler (by using the CRTSQLRPG, CRTSQLPLI, CRTSQLC, or
CRTSQLCBL commands). Such statements are said to be embedded in the
program. An embedded statement can be placed anywhere in the program
where a host language statement would be allowed. You must precede each
embedded statement with EXEC SQL.

J

J

J

Executable statements: An executable statement embedded in an application
program is executed every time a statement of the host language would be
executed if specified in the same place. (Thus, for example, a statement within
a loop is executed every ti me the loop is executed, and a statement within a
conditional construct is executed only when the condition is satisfied.)

An embedded statement may contain references to host variables. A host
variable referenced in this way may be used in two ways:

• As input (the current value of the host variable is used in the execution of
the statement) .

• As output (the variable is assigned a new value as a result of executing the
statement).

In particular, all references to host variables in expressions and predicates are
effectively replaced by current values of the variables, i.e., the variables are
used as input. The treatment of other references is described individually for
each statement.

The successful or unsuccessful execution of the statement is indicated by
setting of the SQLCODE field in SQLCA. You should therefore follow all
executable statements by a test of SQLCODE. Alternatively, you can use the
WHENEVER statement (which is itself nonexecutable) to change the flow of
control immediately after the execution of an embedded statement.

Nonexecutable statements: An embedded nonexecutable statement is
processed only by the precompiler. The precompiler reports any errors
encountered in such statement. The statement is never executed, and acts as a
no-operation if placed among executable statements of the application program.
You should not, therefore, follow such statements by a test of the SQLCODE
field in SQLCA.

Dynamic Preparation and Execution
Your application program may dynamically build an SQL statement in the form
of a character string placed in a host variable. In general, the statement is built
from some data available to the program (for example, obtained from a
terminal). The statement so constructed can be prepared for execution by
means of the (embedded) statement PREPARE, and executed by means of the
(embedded) statement EXECUTE. Alternatively, you can use the (embedded)
statement EXECUTE IMMEDIATE to prepare and execute a statement in one
step.

A statement to be prepared must not contain references to host variables. It
may instead contain parameter markers. (See "PREPARE" on page 109 for
rules concerning the parameter markers.) When the prepared statement is
executed, the parameter markers are effectively replaced by current values of
the host variables specified in the EXECUTE statement. (See 'EXECUTE" on
page 85 for rules concerning this replacement.) Note that, once prepared, a
statement can be executed several times. with different values of host
variables.

The parameter markers are not allowed by EXECUTE IMMEDIATE.

The successful or unsuccessful execution of the statement is indicated by
setting of the SQLCODE field in SQLCA after the EXECUTE (or EXECUTE

Chapter 5. Statements 51

IMMEDIATE) statement. You should check it as described above for embedded
statements.

Static Invocation of a select-statement
You may include a select-statement as a part of the (nonexecutable) statement
DECLARE CURSOR. Such a statement is executed every time you open the
cursor by means of the (embedded) statement OPEN.

The select-statement used in this way may contain references to host variables.
These references are effectively replaced by the values that the variables have
at the moment of executing OPEN.

The successful or unsuccessful execution of select-statement is indicated by
setting of the SQLCODE field in SQLCA after the OPEN. You should check it as
described above for embedded statements.

Dynamic Invocation of a select-statement
Your application program may dynamically build a select-statement in the form
of a character string placed in a host variable. In general, the statement is built
from some data available to the program (for example, a query expressed in
terms of your application, obtained from a terminal). The statement so
constructed may be prepared for execution by means of the (embedded)
statement PREPARE, and referenced by a (nonexecutable) statement DECLARE
CURSOR. The statement is then executed every time you open the cursor by
means of the (embedded) statement OPEN.

The select-statement used in this way must not contain references to host
variables. It may instead contain parameter markers. (See"' PREPARE" on
page 109 for rules concerning the parameter markers.) The parameter
markers are effectively replaced by the values of the host variables specified in
the OPEN statement. (See "OPEN" on page 106 for rules concerning this
replacement.)

The successful or unsuccessful execution of select-statement is indicated by
setting of the SQLCODE field in SQLCA after the OPEN. You should check it as
described above for embedded statements.

Interactive Invocation

52 SQLl400 Reference

A capability for entering SQL statements from a terminal is part of the
architecture of the database manager. AS/400 system provides the STRSQL
command for this facility. Other products are also available. A statement
entered in this way is said to be issued interactively.

A statement issued interactively must not contain parameter markers or
references to host variables, since these make sense only in the context of an
application program. For the same reason, there is no SQLCA involved.
Interactive SQL statements are processed using dynamic SQL and are therefore
similarly restricted.

J

BEGIN DECLARE SECTION

BEGIN DECLARE SECTION

Invocation

Authorization

The BEGIN DECLARE SECTION statement marks the beginning of a host
variable declare section.

This statement can only be embedded in an application program. It is not an
executable statement.

None required.

~BEGIN DECLARE SECTION--------------------------.-<IIoli

Description

Notes

The BEGIN DECLARE SECTION statement may be coded in the application
program wherever variable declarations can appear in accordance with the
rules of the host language. The exception, however, is that it may not be coded
in the middle of a host structure. The BEGIN DECLARE SECTION statement is
used to indicate the beginning of a host variable declaration section. A host
variable section ends with an END DECLARE SECTION statement, described on
page 83.

If declare sections are specified in the program, only the variables declared
within the declare sections can be used as host variables. If declare sections
are not specified in the program. all variables in the program are eligible for
use as host variables.

Host variable declaration sections should be specified for host languages so
that the source program conforms to the SAA definition of SOL.

The BEGIN DECLARE SECTION and the END DECLARE SECTION statements
must be paired and may not be nested.

No other SOL statements should be included within a declare section.

Variables referenced in SOL statements should be declared in a declare section
and the section should appear before the first reference to the variable.

Variables declared outside a declare section should not have the same name
as variables declared within a declare section.

More than one declare section can be specified in the program.

The BEGIN DECLARE SECTION and the END DECLARE SECTION statements
must not be specified in RPG programs.

Chapter 5. Statements 53

BEGIN DECLARE SECTION

Example
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

(host variable declarations)

EXEC SQL END DECLARE SECTION END-EXEC.

54 SQLl400 Reference

L·

L·

CLOSE

Invocation

Authorization

CLOSE

The CLOSE statement closes a cursor.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

See "DECLARE CURSOR" on page 72 for the authorization required to use a
cursor.

~CLOSE--cursor-name---------------------------""'.""

Description

Notes

cursor-name
Identifies the cursor to be closed. The cursor-name must identify a declared
cursor as explained in the DECLARE CURSOR statement. When the CLOSE
statement is executed, the cursor must be in the open state.

If cursors are not explicitly closed, the open cursors of an application process
are implicitly closed:

• At the end of a unit of recovery unless HOLD is specified on the COMMIT or
ROLLBACK statement.

• At the end of the first SOL program in the program stack. For example, if
SOL program A calls SOL program B. any cursors opened by program B will
be closed when program A ends.

• At the end of the job.

Explicitly closing cursors as soon as possible can improve performance.
CLOSE is not a COMMIT or ROLLBACK operation.

Chapter 5. Statements 55

CLOSE

Example

56 SQLl400 Reference

A cursor is used to fetch one row at a time into the program variables DNUM.
DNAME. and MNUM. Finally, the cursor is closed. If the cursor is reopened, it
is again located at the beginning of the rows to be fetched.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM CORPDATA.DEPT
WHERE ADMRDEPT = 'ADO'
END-EXEC.

EXEC SQL OPEN C1 END-EXEC.

EXEC SQL FETCH C1 INTO :DNUM, :DNAME, :MNUM END-EXEC.

IF SQLCODE = 100
PERFORM DATA-NOT-FOUND

ELSE
PERFORM GET-REST-OF-DEPT
UNTIL SQLCODE IS NOT EQUAL TO ZERO.

EXEC SQL CLOSE C1 END-EXEC.

GET-REST-OF-DEPT.
EXEC SQL FETCH Cl INTO :DNUM, :DNAME, :MNUM END-EXEC.

COMMENT ON

COMMENT ON

Invocation

The COMMENT ON statement adds or replaces comments in the catalog
descriptions of tables, views, or columns.

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include:

• The system authority "READ on the library containing the table or view, and
• Ownership of the table or view, or the system authorities of both "OBJOPR

and "OBJMGT on the referenced table or view.

~COlll·1ENT ON------------------------------....

TABLELt~ble-name--, I----:~---,--IS--string-Constant-;---------j~
vlew-name--1

-COLUI.HJ-r-t~b 1 e-name. co 1 unm-name
~vlew-name.column-name

Description

~ , ~
t~bl e-nam~(--col umn-name-IS-stri ng-constant)----'
Vlew-name

TABLE
Indicates that you want to comment on a table or view.

table-name or view-name
Identifies the table or view to which the comment applies. The table or
view must be described in the catalog.

COLUMN
Indicates that you want to comment on a column.

table-name. column-name or view-name. column-name
Is the name of the column, qualified by the name of the table or view in
which it appears.

To comment on more than one column in a table or view, do not use TABLE
or COLUMN. Give the table or view name and then, in parentheses, a list
of this form:

column-name IS string-constant,
column-name IS string-constant,

The column named must be described in the catalog, and in the referenced
table or view.

Chapter 5. Statements 57

COMMENT ON

Notes

Examples

58 SQLl400 Reference

IS
Introduces the comment you want to make.

string-constant
Can be any SQL character string constant of up to 254 characters. The
constant may contain double-byte characters as well as EBCDIC
characters.

The library that contains the object must be an SQL database.

Example 1: Enter a comment on table CORPDATA.EMP.

COMMENT ON TABLE CORPDATA.EMP
IS 'REFLECTS 1ST QTR 81 REORG'

Example 2: Enter a comment on view CORPDAT A.VDEPT.

COMMENT ON TABLE CORPDATA.VDEPT
IS 'VIEW OF TABLE CORPDATA.DEPT'

Example 3: Enter a comment on the DEPTNO column of table
CORPDATA.DEPT.

COMMENT ON COLUMN CORPDATA.DEPT.DEPTNO
IS 'DEPARTMENT ID - UNIQUE'

Example 4: Enter comments on two columns in table CORPDATA.DEPT.

CO~mENT ON CORPDATA.DEPT
(1'1GRNO IS I EIWLOYEE NUf-IBER OF DEPARH1ENT [,IMAGER',

ADMRDEPT IS 'DEPARTMENT NUMBER OF ADMINISTERING DEPARTMENT')

J

J

J

COMMIT

Invocation

Authorization

COMMIT

The COMMIT statement terminates a unit of recovery and commits the
database changes that were made by that unit of recovery. The moment in the
sequence of operations when that is done is called a commit point.

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

None required.

~COI'II.IIT--'L-\'!-OR-K-::J---'---rL-H-OL-D-::J-'-------------------------.......

Description

Notes

The unit of recovery in which the COMMIT statement is executed is terminated
and a new unit of recovery is initiated. All changes made by DELETE, INSERT,
and UPDATE statements executed during the unit of recovery are committed.

All locks acquired by the unit of recovery are released. All cursors that were
opened during the unit of recovery are closed. All statements that were
prepared during the unit of recovery are destroyed, and any cursors associated
with the prepared statements are invalidated.

WORK
COMMIT WORK has the same effect as COMMIT. SQLl400 accepts the
keyword WORK for compatibility with other database products.

HOLD
Indicates a hold on resources. If specified, currently open cursors are not
closed, prepared SQL statements are preserved, and all resources acquired
during the unit of recovery are held. Locks on specific rows acquired
during the transaction, however, are released. If HOLD is omitted, open
cursors are closed, prepared SQL statements discarded, and held
resources released.

The termination of an application process is an implicit rollback. Thus, an
explicit COMMIT or ROLLBACK should be issued before termination.

A unit of recovery (see "Application Processes, Concurrency, and Recovery" on
page 3 for description) may include the processing of up to 4096 rows,
including rows retrieved during a SELECT or FETCH statemenF, and rows
inserted, deleted, or updated as part of INSERT, DELETE, and UPDATE

2 Unless you specified COMMIT("CHG), in which case these rows are not included in this total.

Chapter 5. Statements 59

COMMIT

Example

operations. 3 A unit of recovery is initiated by the initiation of a unit of work or by
the termination of a previous unit of recovery. It is terminated by a commit
operation, a rollback operation, or the termination of a unit of work. The
commit and rollback operations do not affect any data definition statements,
and these statements are not, therefore. allowed in an application program that
also specifies COMMIT(*CHG) or COMMIT(*ALL). The data definition
statements are:

• COMMENT
• CREATE COLLECTION
• CREATE INDEX
• CREATE TABLE
• CREATE VIEW
• DROP COLLECTION
• DROP INDEX
• DROP TABLE
• DROP VIEW
• GRANT
• LABEL
• REVOKE

Commitment control is implicitly started by SQL, if necessary, using the system
CL command STRCMTCTL. The lock level used is based on the COMMIT option
specified on either the CRTSQLxxx (where xxx is RPG, CBL, C, or PLI) or the
STRSQL command.

A COMMIT is not automatically performed when an application terminates or
when interactive SQL terminates. In order to commit work performed by an
application, you must issue a COMMIT from within the application, or from
outside the application with the CL command COMMIT.

When a job ends, an implicit ROLLBACK is issued.

Commit alterations to the database made since the last commit point.

COm-lIT 1'!ORK

3 This limit also includes any records accessed or changed through files opened under commitment control
through high-level language file processing.

60 SQLl400 Reference

J

L

CREATE COLLECTION

CREATE COLLECTION

Invocation

Authorization

The CREATE COLLECTION4 statement defines a collection in which tables,
views, and indexes may later be created.

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

The privileges held by the authorization ID of the statement must include:

• Authority to the CL command CRTLlB, and
• Authority to the CL command CRTDTADCT (create data dictionary).

~CREATE---COLLECTI ON---co 11 ect i on-name------------------I~~ ..

Description

Notes

collection-name
Names the collection. The name you supply must not be the name of an
existing SQL collection or a library.

A collection is created as:

• A library: a library groups related objects, and allows you to find objects by
name.

• A catalog: a catalog contains descriptions of the tables, views, and indexes
in the collection. A catalog consists of a data dictionary and a set of views
and logical files. For more information, see SQLl400 Programmer's Guide.

• A journal and journal receiver: a journal QSQJRN and journal receiver
QSQ cJRN0001 is created in the collection, and is used to record changes to
all tables subsequently created in the collection. For more information, see
Backup and Recovery Guide.

If SQL names have been specified, the owner of the collection is the
authorization ID of the statement. If SYSTEM names have been specified, the
owner of the collection is the user profile (or the group user profile of the job)
invoking the statement.

When it is created, the system authority *EXCLUDE is initially given to ·PUBLIC.
The owner is the only user having any authority to the collection. If other users
require authority to the collection, the owner can grant authority to the objects
created, using the CL command GRTOBJAUT (grant object authority). For more
information on AS/400 system security, see Programming: Security Concepts
and Planning and Programming: Control Language Reference.

I 4 CREATE DATABASE may be used as a synonym to provide compatibility with a previous release.

Chapter 5. Statements 61

CREATE COLLECTION

Example
Create collection DBTEMP.

CREATE COLLECTION DBTEMP J

J

J

J

62 SQLl400 Reference

L
CREATE INDEX

Invocation

Authorization

CREATE INDEX

The CREATE INDEX statement creates an index on a table.

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

The privileges held by the authorization ID of the statement must include:

• Authority to the CL command CRTLF, and
• Authorities of *OBJOPR and * ADD on the library and data dictionary

containing the referenced table, and
• The INDEX privilege, and one of the following privileges on the referenced

table:
DELETE
INSERT
SELECT
UPDATE

If SQL names are specified and the authorization ID is explicitly specified and is
different from the authorization ID of the statement, you must have' ADD
system authority to the user profile named by the authorization ID qualifier.

~CREATE-r------r--Ir1DEX--index-name--Or1--table-name----------~

LUNIQUE~

~ g-~(--column-name)--------------------------------~~~4

ASC
DESC

Description
UNIQUE

Prevents the table from containing two or more rows with the same value of
the index key. The constraint is enforced when rows of the table are
updated or new rows are inserted.

The constraint is also checked during the execution of the CREATE INDEX
statement. If the table already contains rows with duplicate key values, the
index is not created.

INDEX index-name
Names the index. If the index-name is qualified, the index will be created in
the specified collection. Otherwise the index will be created in the
collection specified by the implicit or explicit qualifier of the specified table.
The name you give must not be the name of an index, table, view, or file
that already exists in the collection.

Chapter 5. Statements 63

CREATE INDEX

Notes

Example

64 SQLl400 Reference

If SQL naming is specified and the implicit or explicit qualifier also identifies
a user profile, the "owner" of the index is that user profile. Otherwise the
"owner" is the user profile or group user profile of the job invoking the
statement.

ON table-name
Names the table on which you want the index to be created. The
table-name must name a table (not a view) described in the catalog.

(column-name)
Names a column that is to be part of the index key.

Each column-name identifies a column of the table. Do not name more than
120 columns. The same column may be specified more than once. Do not
qualify the column-name.

ASC
Puts the index entries in ascending order by the column. This is the
default.

DESC
Puts the index entries in descending order by the column.

An index is created as a keyed logical file. Indexes are created with the system
authority of 'EXCLUDE on 'PUBLIC. The maximum length of an index entry is
120 bytes.

If the named table already contains data, CREATE INDEX creates the index
entries for it. If the table does not yet contain data, CREATE INDEX creates a
description of the index; the index entries are created when data is inserted
into the table. The index always reflects the current condition of the table.

Create a unique index, named XDEPT1, on table CORPDATA.DEPT. Index
entries are to be in ascending order by the single column DEPTNO.

CREATE UNIQUE INDEX CORPDATA.XDEPTl
ON CORPDATA.DEPT

(DEPTNO ASC)

CREATE TABLE

Invocation

Authorization

CREATE TABLE

The CREATE TABLE statement defines a table. You provide the name of the
table and the names and attributes of its columns.

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

The privileges held by the authorization 10 of the statement must include:

• The system authorities of 'OBJOPR and 'ADD on the library and data
dictionary, and

• Authority to the CL command CRTPF.

If SQL names are specified and the authorization 10 is explicitly specified and is
different from the authorization 10 of the statement, you must have' ADD
system authority to the user profile named by the authorization 10 qualifier.

~CREAT E TABLE--tab 1 e-name-------------------------.

~ l
~(--col umn-name-data-type~NOT NULL-------.----,---------r-.L..-)-+01

Description
table-name

LNOT NULL \'iITH DEFAULT~ f-FOR BIT DATA
f-FOR SBCS DATA--
'---FOR [·IIXED DATA-

Is the name of the table. The name you supply, including the implicit or
explicit qualifier, must not identify an index, table, view, or file that already
exists in the collection.

If SQL names have been specified, the table will be created in the collection
specified by the implicit or explicit qualifier. The qualifier is the "owner" of
the table if a user profile with that name exists. Otherwise, the "owner" of
the table is the user profile or group user profile of the job invoking the
statement.

If system names have been specified, the table name must be qualified.
The table will be created in the collection specified by the qualifier. The
"owner" of the table is the user profile or group user profile of the job
invoking the statement.

column-name
Is the name of a column of the table. Do not qualify column-name and do
not use the same name for more than one column of the table.

You may define up to 8000 columns. The sum of the byte counts of the
columns must not be greater than 32766. For information on the byte
counts of columns according to data type see "Notes" on page 70.

Chapter 5. Statements 65

CREATE TABLE

66 SQLl400 Reference

data-type
Is one of the types in the following list. Use:

INTEGER or INT
For a large integer.

SMALLINT
For a small integer.

FLOAT(integer) or FLOAT
For a floating-point number. If the integer is between 1 and 24
inclusive, the format is that of single precision floating-point. If the
integer is between 25 and 53 inclusive, the format is that of double
precision floating-point. If the integer is omitted from the specification,
a value of 53 is assumed, and the number is double precision.

You may also specify:

REAL for single precision floating-point
DOUBLE PRECISION for double precision floating-point

NUMERIC(integer,integer)
NUMERIC(integer)
NUMERIC

For a zoned decimal number. The first integer is the precision of the
number, that is, the total number of digits; it may ~ange from 1 to 31.
The second integer is the scale of the number, that is, the number of
digits to the right of the decimal point; it may range from 0 to the
precision.

You may use NUMERIC(p) for NUMERIC(p,O), and NUMERIC for
NUMERIC(5,O).

DECIMAL(integer,integer) or DEC(integer,integer)
DECIMAL(integer) or DEC(integer)
DECIMAL or DEC

For a packed decimal number. The first integer is the precision of the
number; that is, the total number of digits; it may range from 1 to 31.
The second integer is the scale of the number; that is, the number of
digits to the right of the decimal point; it may range from 0 to the
precision.

You may use DECIMAL(p) for DECIMAL(p,O), and DECIMAL for
DECIMAL(5,O). You may also specify DEC for decimal.

CHARACTER(integer) or CHAR(integer)
CHARACTER or CHAR

For a fixed-length character string of length integer, which may range
from 1 to 32766. If FOR MIXED DATA is specified, the range is 4 to
32766. If the length specification is omitted, a length of 1 character is
assumed.

NOT NULL
Prevents the column from containing null values.

NOT NULL WITH DEFAULT
Prevents the column from containing null values, and allows a default value
other than the null value. The default value used depends on the data type
of the column, as follows: J

Notes

Data type
Numeric
Character

Default value
o
blanks

CREATE TABLE

FOR BIT DATA
Specifies that the character column contains hex data (that is, data that is
not text of a particular code page). A zero is returned for the character set
and code page in the SQL Descriptor Area (SQLDA) on a DESCRIBE or
PREPARE statement for a character column defined with FOR BIT DATA.

FOR SBCS DATA
Specifies that the character column contains SBCS (single-byte character
set) data. The system value QCHRID specifies the character set and code
page of all SBCS data on the system. The character set and code page of a
character column is returned in the SQL Descriptor Area (SQLDA) on
DESCRIBE and PREPARE statements. FOR SBCS DATA is the default for
CHAR columns if the system is not DBCS-capable or if the length of the
column is less than 4. This is determined using the QIGC system value.

FOR MIXED DATA
Specifies that the character column contains both SBCS (single-byte
character set) data, and DBCS (double-byte character set) data. The system
value QCHRID specifies the character set and code page of the SBCS data.
The character set and code page of a character column is returned in the
SQL Descriptor Area (SQLDA) on DESCRIBE and PREPARE statements.
FOR MIXED DATA is the default for CHAR columns if the system is
DBCS-capable and the length of the column is greater than 3. This is
determined using the QIGC system value. If the system is not
DBCS-capable, and FOR MIXED DATA is specified, an error occurs. A FOR
MIXED DATA column is used as a DBCS-Open database field.

Tables are created as physical files with the system authority of 'EXCLUDE to
'PUBLIC. When a table is created, journaling is automatically started on the
journal named QSQJRN in the database.

Maximum record size: The '·maximum record size" referred to in the
description of column-name is 32766. To determine the length of a record, add
the length of each column of that record based on the byte count of the data
type.

The list that follows gives the byte counts of columns by data type.

Data type Byte count

INTEGER 4

INT 4

SMALLINT 2

FLOAT(n) If n is between 1 and 24, the byte count is 4. If n is
between 25 and 53, the byte count is 8.

DOUBLE PRECISION 8

REAL 4

DECIMAL(p, s) the integral part of (p/2) +

Chapter 5. Statements 67

CREATE TABLE

Examples

68 SQL!400 Reference

NUMERIC(p, s)

CHAR(n)

p

n

Precision as described to the database:

o Floating point fields are defined in the AS/400 system database with a
decimal precision, not a bit precision. The algorithm used to convert the
number of bits to decimal is decimal precision = x(n/3.31), where x is the
smallest integer greater than or equal to the argument, and n is the number
of bits to convert. The decimal precision is used to determine how many
digits to display using interactive SQL.

o SMALLINT fields are stored with a decimal precision of 4,0.

o INTEGER fields are stored with a decimal precision of 9,0.

Example 1: Create CORPDATA.DEPT. DEPTNO, DEPTNAME, MGRNO, and
ADMRDEPT are column names. CHAR means the column will contain
character data. NOT NULL means that the column cannot contain a null value.

CREATE TABLE CORPDATA.DEPT
(DEPT NO CHAR(3) NOT NULL WITH DEFAULT,

DEPTNAME CHAR(36) NOT NULL WITH DEFAULT,
MGRNO CHAR(6) NOT NULL WITH DEFAULT,
ADMRDEPT CHAR(3) NOT NULL WITH DEFAULT)

Example 2: Create CORPDATA.PROJ. PROJNO, PRO.INAME, DEPTNO,
RESPEMP, PRSTAFF, PRSTDATE, PRENDATE, and MAJPROJ are column
names. CHAR means the column will contain character data. DECIMAL means
the column will contain packed decimal data. 5,2 means the following: 5
indicates the number of decimal digits, and 2 indicates the number of digits to
the right of the decimal point. NOT NULL means that the column cannot
contain a null value.

CREATE TABLE CORPDATA.PROJ
(PROJNO CHAR(6) NOT NULL WITH DEFAULT,

PROJNAME CHAR(24) NOT NULL WITH DEFAULT,
DEPTNO CHAR(3) NOT NULL WITH DEFAULT,
RESPEMP CHAR(6) NOT NULL WITH DEFAULT,
PRSTAFF DECIMAL(5,2) NOT NULL WITH DEFAULT,
PRSTDATE DECIMAL(6) NOT NULL WITH DEFAULT,
PRENDATE DECIMAL(6) NOT NULL WITH DEFAULT,
MAJPROJ CHAR(6) NOT NULL WITH DEFAULT)

CREATE VIEW

Invocation

Authorization

CREATE VIEW

The CREATE VIEW statement creates a view on one or more tables or views.

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared

The privileges held by the authorization 10 of the statement must include:

• Authority to the CL command CRTLF (create logical files). and
• The system authorities 'OBJOPR and 'ADD on the library and data

dictionary containing the referenced tables, and
• The SELECT, UPDATE, DELETE, or INSERT privilege on all the tables

referenced either directly through the SELECT statement, or indirectly
through views referenced in the SELECT statement.

If SQL names are specified and the authorization 10 that is explicitly specified is
different from the authorization 10 of the statement, you must have 'ADD
authority on the user profile named by the authorization 10 qualifier.

~CREATE VI E\'J--v; ew-name-'-L-(-~--C-O-l u-m-~-_-n-am-e-I-)-J---r----------------.·

~AS--subselect-----------------------------~·~

Description
view-name

Is the unqualified or qualified name of the view. The unqualified name must
not be the same as any table, view, index, or file that already exists in the
collection.

If SQL names have been specified, the view will be created in the collection
specified by the implicit or explicit qualifier. If a user profile with the SQL
name exists, the qualifier is the "owner" of the view. If a user profile with
the SQL name does not exist, the ;;owner" of the view is the user profile (or
group user profile of the job) invoking the statement.

If SQL names have been specified, the view will be created in the collection
specified by the explicit qualifier. If the view name is not explicitly qualified,
the view is created in the collection that contains the first table referenced
in the subselect.

column-name
Is a list of one or more names for columns in the view. If you specify the
list, it must consist of as many names as there are columns in the result
table of the subselect. Each name must be unique and unqualified. If you
do not specify a list of column names, the columns of the view inherit the
names of the columns of the result table of the subselect.

Chapter 5. Statements 69

CREATE VIEW

Notes

70 SQLl400 Reference

You must specify a list of column names if the result table of the subselect
has duplicate column names or an unnamed column (a column derived
from a constant, function, or expression).

AS subs elect
Defines the view. At any time, the view consists of the rows that would
result if the subselect were executed.

subselect must not reference host variables. For an explanation of
subselect, see Chapter 4, "Queries" on page 39.

Views are created as non-keyed logical files with system authority of *EXCLUDE
to *PUBLIC.

Read-only views: A view is read-only if its definition involves any of the
following:

• The first FROM clause identifies more than one table or view
• The keyword DISTINCT in the first SELECT clause
• A GROUP BY clause in the outer subselect
• A HAVING clause in the outer subselect
• A column function in the first SELECT clause
• The first FROM clause identifies a read-only view.

A read-only view cannot be the object of an INSERT, UPDATE, or DELETE
statement.

A view cannot reference more than 32 real tables, including real tables
referenced by underlying views.

A view cannot address more than 8000 columns. The number of referenced
tables, the column name lengths. and the length of the WHERE clause further
reduce this number.

Limitations

• FOR UPDATE OF, ORDER BY, and UNION cannot be used in the definition of
a view.

• Host variables are not allowed in the definition of a view.
• USER or LENGTH cannot be used in the definition of a view.

Testing a view definition: You can test the semantics of your view definition by
executing SELECT' FROM view-name.

J

Example

CREATE VIEW

Create the view CORPDATA.VPROJRE1. PROJNO, PROJNAME, PROJDEP,
RESPEMP, EMPNO, FIRSTNME, MIDINIT, and LASTNAME are column names.
The view is a join of tables PROJ and CORPDATA.EMP, where a value in the
RESPEMP column is equal to a value in the EMPNO column.

CREATE VIEW CORPDATA.VPROJREI
(PROJNO,PROJNAME,PROJDEP,RESPEMP,
FIRSTNME,MIDINIT,LASTNAME)

AS SELECT ALL
PROJNO,PROJNAME,DEPTNO,EMPNO,
FIRSTNME,MIDINIT,LASTNAME
FROM CORPDATA.PROJ, CORPDATA.EMP
\'JHERE RESPE~1P = Et,lPNO

Chapter 5. Statements 71

DECLARE CURSOR

DECLARE CURSOR

Invocation

Authorization

The DECLARE CURSOR statement defines a cursor.

This statement can only be embedded in an application program. It is not an
executable statement.

No authorization is required to use this statement. However, to use OPEN or
FETCH for the cursor, the privileges held by the authorization 10 of the
statement must include the SELECT privilege on every table and view identified
in the SELECT statement of the cursor. Authority is checked at execution time
during OPEN and during the processing of the statements that reference the
open cursor.

The SELECT statement of the cursor is either:

• The SELECT statement identified by select-statement, in which case the
authorization 10 is the owner of the program, or

• The prepared SELECT statement identified by a statement-name clause, in
which case the authorization 10 is the run-time authorization 10.

~DECLARE--cursor-name--CURSOR FOR--------------------~.

c==select-stateme~
statement-name

Description

72 SQLl400 Reference

A cursor with the specified name is defined. The name must not be the same
as the name of another cursor declared in your source program.

A cursor in the open state designates a result table and a position relative to
the rows of that table. The table is the result table specified by the SELECT
statement of the cursor.

The result table is read-only if:

• The SELECT statement includes:

The keyword DISTINCT in the first SELECT clause
A UNION operator
A column function in the first SELECT clause
A GROUP BY or HAVING clause.

• The first FROM clause of the SELECT statement identifies:

More than one table or view
A read-only view.

Specifying the SELECT Statement: If select-statement is specified, it identifies
the SELECT statement of the cursor.

Notes

DECLARE CURSOR

The select-statement must not include parameter markers, but may include
references to host variables. The declarations of the host variables must
precede the DECLARE CURSOR statement in the source program. See
"select-statement" on page 47 for an explanation of fullselect.

If the ORDER BY clause is not specified, the rows of the result table have an
arbitrary order.

Naming the SELECT Statement: If a statement-name is specified, the SELECT
statement of the cursor is the prepared SELECT statement identified by the
statement-name when the cursor is opened. The statement-name must not be
identical to a statement-name specified in another DECLARE CURSOR
statement of your source program.

For an explanation of prepared SELECT statements, see "PREPARE" on
page 109.

A SELECT statement is evaluated at the time the cursor is opened. If the same
cursor is opened, closed, and then opened again, the results may be different.
Multiple cursors using the same SELECT statement may be opened
concurrently. They are each considered independent activities.

A cursor is automatically closed when the job terminates. A cursor is also
closed whenever a COMMIT (no HOLD) or ROLLBACK (no HOLD) statement is
issued, or when the last SQL program in the program stack ends.

If ORDER BY is specified and FOR UPDATE OF is not specified, the cursor is
read-only. If ORDER BY is specified and FOR UPDATE OF is specified, the
columns in the FOR UPDATE OF clause can not be the same as any columns
specified in the ORDER BY clause.

The ORDER BY clause can contain up to 256 columns or 256 bytes. If the
ORDER BY clause contains floating-point columns, only 120 columns or 120
bytes are allowed. If more than 120 bytes are used, the cursor is read-only.

If the FOR UPDATE OF clause is omitted, only the columns in the SELECT
clause of the subselect that can be updated can be changed.

The DECLARE CURSOR statement must precede all statements that explicitly
reference the cursor by name.

The scope of cursor-name is the source program in which it is defined; that is,
the program submitted to the precompiler. Thus, you can only reference a
cursor by statements that are precompiled with the cursor declaration. For
example, a program called from another separately compiled program cannot
use a cursor that was opened by the calling program.

Chapter 5. Statements 73

DECLARE CURSOR

Examples

74 SQL!400 Reference

Example 1: The DECLARE CURSOR statement associates the cursor name C1
with the results of the SELECT

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM CORPDATA.DEPT
WHERE ADMRDEPT = 'AOO'
ErJD- EXEC.

Example 2: The DECLARE CURSOR statement associates the cursor name C1
with the results of the SELECT. MGRNO and MGRNAME may be updated FOR
UPDATE OF can specify a column that is not in the select list.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM CORPDATA.DEPT
WHERE ADMRDEPT = 'AOO'
FOR UPDATE OF MGRNO, MGRNAME
END-EXEC. J

L

DECLARE STATEMENT

DECLARE STATEMENT

Invocation

Authorization

The DECLARE STATEMENT statement is used for program documentation. It
declares names that are used to identify prepared SQL statements.

This statement can only be embedded in an application program. It is not an
executable statement.

None required.

~ '~
~DECLARE--statement-name~STATEI'IENT-----------------~~ ...

Description

Example

statement-name STATEMENT
Lists one or more names that are used in your program to identify prepared
SQ L statements.

This example shows the use of the DECLARE STATEMENT statement in a PUI
program.

EXEC SQL DECLARE 08J_STMT STATEMENT;

(SOURCE_STATEMENT is "SELECT DEPTNO, DEPTNAME,
MGRNO FROM CORPDATA.DEPT WHERE ADMRDEPT = 'AGG'·

EXEC SQL INCLUDE SQLDA;
EXEC SQL DECLARE C1 CURSOR FOR OBJ_STMT;

EXEC SQL PREPARE OBJ_Snn FRat:! SRCE_Snn;
EXEC SQL DESCRIBE OBJ_STMT INTO SQLDA;

(Examine SQLDA)

EXEC SQL OPEN C1;

DO WHILE (SQLCODE = G);
EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA;

(Print results)

END;

EXEC SQL CLOSE C1;

Chapter 5. Statements 75

DELETE

DELETE

Invocation

Authorization

searched delete

The DELETE statement deletes rows from a table or view. Deleting a row from
a view deletes the row from the table on which the view is based.

There are two forms of this statement:

• The searched DELETE form is used to delete one or more rows (optionally
determined by a search condition).

• The positioned DELETE form is used to delete exactly one row (as
determined by the current position of a cursor).

A searched DELETE statement can be embedded in an application program or
issued interactively. A positioned DELETE must be embedded in an application
program.

Both forms are executable statements that can be dynamically prepared.

The privileges held by the authorization 10 of the statement must include the
DELETE privilege on the specified table or view.

You have the DELETE privilege on a table if any of the following apply:

• You are the owner of the table
• You have been granted the DELETE privilege on the table
• You have been granted the system authorities *OBJOPR and *DLT on the

table.

You have the DELETE privilege on a view if any of the following apply:

• You have been granted the DELETE privilege on the view
• You created the view, you had the DELETE privilege on its base table when

the view was created, and you still have that DELETE privilege
• You have been granted the system authority *OBJOPR on the view and the

system authority *DL T on the base table.

C==correlat;on-name:=J

C==\'iHERE-search-condi t i on::J

...

positioned delete

~l'!HERE CURRENT OF--cursor-name-------------------------..

76 SQLl400 Reference

J

Description

L

Notes

DELETE

FROM table-name or view-name
Names the table or view from which you want to delete. It must have been
created previously, but must not be a catalog table, a view of a catalog
table, or a read-only view. (For an explanation of read-only views, see
"CREATE VIEW" on page 69.)

correlation-name
May be used within the search-condition to designate the table or view.
(For an explanation of correlation-name, see Chapter 2.)

WHERE
Specifies a condition that selects the rows to be deleted. You can omit the
clause, give a search condition, or name a cursor. If you omit the clause,
all rows of the table or view are deleted.

search-condition
Is any search condition as described in Chapter 2. Each column-name
in the search condition must name a column of the table or view.

The search-condition is applied to each row of the table or view and the
deleted rows are those for which the result of the search-condition is
true.

CURRENT OF cursor-name
Identifies the cursor to be used in the delete operation. The
cursor-name must identify a declared cursor as explained in the Notes
for the DECLARE CURSOR statement.

The table or view named must also be named in the FROM clause of
the SELECT statement of the cursor, and the result table of the cursor
must not be read-only. (For an explanation of read-only result tables,
see "DECLARE CURSOR" on page 72.)

When the DELETE statement is executed, the cursor must be positioned
on a row: that row is the one deleted. After the deletion, the cursor is
positioned before the next row of its result table. If there is no next
row, the cursor is positioned after the last row.

Note that the deletion of a row WHERE CURRENT OF a specified cursor
may leave other cursors pointing to the deleted record.

A maximum of 4096 rows may be deleted in any single DELETE operation when
COMMIT(*ALL) or COMMIT(*CHG) has been specified.

If an error occurs during the execution of a DELETE statement and
COMMIT(*ALL) or COMMIT(*CHG) was specified, all chang.es made during the
execution of the statement are backed out. However, other changes in the unit
of recovery made prior to the error are not backed out. If COMMIT(*NONE) is
specified, changes are not backed out.

When a DELETE statement is completed, the number of rows deleted is
returned in SQLERRD(3) in the SQLCA. (For a description of the SQLCA, see
"SQL Communication Area (SQLCA)" on page 127.)

One or more exclusive locks are acquired by the successful execution of a
DELETE statement. Until the locks are released, they may prevent other
application processes from performing operations on the table. For further

Chapter 5. Statements 77

DELETE

Examples

78 SQLl400 Reference

information about locking, see the description of the COMMIT, ROLLBACK, and
LOCK TABLE statements. Refer also to Database Guide.

Example 1: Delete one row from table CORPDAT A.DEPT.

DELETE FROM CORPDATA.DEPT
WHERE DEPT NO = 'D11'

Example 2: From the table CORPDAT A.EMP, delete all rows for departments
E11 and 021.

DELETE FROM CORPDATA.EMP
WHERE WORKDEPT = 'Ell'
OR WORKDEPT = 'D21'

J

DESCRIBE

Invocation

Authorization

DESCRIBE

The DESCRIBE statement obtains information about a prepared statement. For
an explanation of prepared statements, see "PREPARE" on page 109.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

None required. See "PREPARE" on page 109 for the authorization required to
create a prepared statement.

~DESCRIBE--statement-name--INTO--descriptor-name L, J
USING LABELS-f NA1'1ES-

Description

ANY
BOTH-

statement-name
Names the statement about which you want to obtain information. When
the DESCRIBE statement is executed, the name must identify a prepared
statement.

INTO descriptor-name
Names an SQL descriptor area (SQLDA). When the DESCRIBE statement is
executed, values are assigned to the variables of the SQLDA. For
information about the format of an SQLDA, see "The SQL Descriptor Area
(SQLDA)" on page 133.

USING
Indicates what value to assign to each SQLNAME variable in the SQLDA. If
the requested value does not exist, SQLNAME is set to a length of O.

NAMES
Assigns the name of the column. This is the default.

LABELS
Assigns the label of the column. (Column labels are defined by the
LABEL ON statement.)

ANY
Assigns the column label, and if the column has no label, the column
name.

BOTH
Assigns both the label and name of the column. In this case, two
occurrences of SQLVAR per column will be needed to accommodate the
additional information. To specify this expansion of the SQLVAR array,
set SQLN to 2*n on the PREPARE statement (where n is the number of
columns in the result table). Then, on any later FETCH statement, set
SQLN to n. The first n occurrences of SQLVAR for each of the columns

Chapter 5. Statements 79

DESCRIBE

Notes

Example

80 SQL!400 Reference

in the result table contain the column names. The second n
occurrences contain the column labels.

Information about a prepared statement can also be obtained by using the INTO
clause of the PREPARE statement.

Before the DESCRIBE or PREPARE INTO statement is executed, the value of
SQLN must be set to a value greater than or equal to zero to indicate how
many occurrences of SQLVAR are provided in the SQLDA. (Enough storage
must be allocated to allow for all occurrences of SQLN.) To obtain the
description of the columns of the result table of a prepared SELECT statement,
the number of occurrences of SQLVAR must not be less than the number of
columns.

If USING BOTH is specified and SQLN is less than 2*SQLD, then SQLD is set to
2 • (number of columns). If USING BOTH is specified and SQLN is greater than
or equal to 2*SQLD, then SQLD is set to the number of columns.

Because the maximum number of columns is 8000, a simple technique is to
provide an SQLDA with 8000 occurrences of SQLVAR. However, such an
SQLDA will occupy a good deal of space, and most of this space will not be
needed for most prepared statements. Thus you might want to consider
another technique, such as the following:

Execute a DESCRIBE or PREPARE INTO statement with an SQLDA that has
no occurrences of SQLVAR. If SQLD is greater than zero, use the value to
allocate an SQLDA with the necessary number of occurrences of SQLVAR
and then execute a DESCRIBE statement using that SQLDA.

This PLII example uses the technique described above. SOURCE is a
varying-length string variable and SHORTDA is an SQLDA with no occurrences
of SQLVAR.

EXEC SQL INCLUDE SQLDA;

(Read an SQL statement into SOURCE)

EXEC SQL PREPARE OBJSTATE INTO :SHORTDA
FRat·1 : SOURCE;

(Check for successful execution. If the value of SQLN is greater than 0, the
source statement was SELECT; use the value of SQLN to allocate and initialize
SQLDA.)

EXEC SQL DESCRIBE OBJSTATE INTO :SQLDA;

L'
DROP

Invocation

Authorization

DROP

The DROp5 statement deletes an object. Any objects that are directly or
indirectly dependent on that object are also deleted. Whenever an object is
deleted, its description is deleted from the catalog.

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

To drop a table, view, or index, the privileges held by the authorization 10 of the
statement must include:

• The system authorities *OBJOPR and *DL T on the referenced library, and
• The system authority *OBJEXIST on the object to be dropped. For tables,

you will also need the *OBJEXIST authority on all views, indexes, and
logical files that reference the table.

To drop a collection. the privileges held by the authorization 10 of the statement
must include:

• The system authority *OBJEXIST on the collection to be dropped, and
• The system authority *OBJEXIST on all objects in the collection, and to any

views, indexes, and logical files that reference those objects.

f
COLLECTION-COllection-name~

~DROP I rJDEX-i ndex-name-------t--------------------~ .. HI ..

TABLE-tab 1 e-name-------i
V I El'j-v i eVl-n ame---------'

Description
COLLECTION collection-name

Identifies the collection you want to drop. All objects in the collection and
the library are dropped. Any access plans that exist in programs that have
dependencies on any object in the collection will be recreated when the
program that contains the access plan is next invoked. If the referenced
collection does not exist at that time, a negative value will be returned in
the SQLCODE field of the SQLCA.

INDEX index-name
Identifies an index described in the catalog. Indexes can be dropped at any
time except when they are in use. Any access plans that exist in programs
that have dependencies on the index will be recreated when the program
that contains the access plan is next run. If the referenced index does not

I 5 DROP DATABASE may be used as a synonym for DROP COLLECTION to provide compatibility with a previous
I release.

Chapter S. Statements 81

DROP

Examples

82 SQLl400 Reference

exist at that time, a negative value will be returned in the SQLCODE field of
the SQLCA.

TABLE table-name
Identifies the table you want to drop. The table specified must be described
in the catalog and cannot be a catalog table. The specified table is deleted
from the collection. All indexes, views, and logical files defined on the table
are dropped. Any access plans that exist in programs that have
dependencies on the table will be recreated when the program that
contains the access plan is next run. If the referenced table does not exist
at that time, a negative value will be returned in the SQLCODE field of the
SQLCA.

VIEW view-name
Identifies an existing view other than a catalog view. The definition of the
view is deleted from the catalog. The definition of any view that is directly
or indirectly dependent on that view is also deleted. Any access plans that
exist in programs that have dependencies on the view will be recreated
when the program that contains the access plan is next run. If the
referenced view does not exist at that time, a negative value will be
returned in the SQLCODE field of the SQLCA.

Example 1: Drop table CORPDATA.DEPT.

DROP TABLE CORPDATA.DEPT

Example 2: Drop the view VDEPT.

DROP VIEt-! VDEPT

J

END DECLARE SECTION

END DECLARE SECTION

Invocation

Authorization

The END DECLARE SECTION statement marks the end of a host variable
declare section.

This statement Can only be embedded in an application program. It is not an
executable statement.

None required.

~END DECLARE SECTION----------------------------+<4.OI

Description

Notes

The END DECLARE SECTION statement may be coded in the application
program wherever declarations can appear in accordance with the rules of the
host language. It is used to indicate the end of a host variable declaration
section. A host variable section starts with a BEGIN DECLARE SECTION
statement described on page 53. If a BEGIN DECLARE SECTION is specified in
the program, an END DECLARE SECTION is required.

If declare sections are specified in the program, only the variables declared
within the declare sections can be used as host variables. When declare
sections are not specified, all variables in the program are eligible for use as
host variables.

Host variable declaration sections should be specified for host languages so
that the source program conforms to the SAA definition of SOL.

The BEGIN DECLARE SECTION and the END DECLARE SECTION statements
must be paired and may not be nested.

No other SOL statements should be included in the declare section.

Variables referenced in SOL statements should be declared in a declare section
and the section should appear before the first reference to the variable

Variables declared outside a declare section should not have the same name
as variables declared within a declare section.

More than one declare section can be specified in the program.

The BEGIN DECLARE SECTION and END DECLARE SECTION statements must
not be specified in RPG programs.

Chapter 5. Statements 83

END DECLARE SECTION

Example
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

(host variable declarations)

EXEC SQL END DECLARE SECTION END-EXEC.

84 SQLl400 Reference

EXECUTE

Invocation

Authorization

EXECUTE

The EXECUTE statement executes a prepared SQL statement.

This statement can only be embedded in an application program It is an
executable statement that cannot be dynamically prepared.

The authorization rules are those defined for the dynamic preparation of the
SQL statement specified by EXECUTE. For example, see the description of
INSERT for the authorization rules that apply when an INSERT statement is
executed using EXECUTE.

---EXECUTE--s tatement-name-------------------------....

lumGC:,ri'ble I =-
US I r~G OESCRI PTOR-descri ptor-name

Description
statement-name

Identifies the prepared statement to be executed. statement-name must
identify a statement that was previously prepared within the unit of recovery
and the prepared statement must not be a SELECT statement. The
prepared statement may have been prepared in a previous unit of recovery
if COMMIT HOLD or ROLLBACK HOLD have been used to preserve the
prepared statement.

USING
Introduces a list of host variables whose values are substituted for the
parameter markers (question marks) in the prepared statement. (For an
explanation of parameter markers, see "PREPARE" on page 109.) If the
prepared statement includes parameter markers, you must use USING.
USING is ignored if there are no parameter markers.

host-variable
Identifies a variable that is described in the program in accordance with
the rules for declaring host variables. The number of variables must be
the same as the number of parameter markers in the prepared
statement. The nth variable corresponds to the nth parameter marker
in the prepared statement.

DESCR IPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of zero or
more host variables.

Before the EXECUTE statement is executed, the value of SQLN must be
set to indicate how many occurrences of SQLVAR are provided in the
SQLDA, and SQLDABC must be set to indicate the number of bytes of
storage allocated for the SQLDA. Enough storage must be allocated to

Chapter 5. Statements 85

EXECUTE

Notes

Example

86 SQLl400 Reference

allow for all occurrences of SQLN. Thus, SQLDABC must be greater
than or equal to 16 + SQLN*(N), where N is the length of an SQLVAR
occurrence, which is implementation-defined.

SQLD must be set to a value greater than or equal to 0 and less than or
equal to SQLN. SQLD indicates the number of variables used in the
SQLDA when executing this statement and must be the same as the
number of parameter markers in the prepared statement. The nth
variable described by the SQLDA corresponds to the nth parameter
marker in the prepared statement. (For a description of the values that
must be set in the SQLVAR occurrences of the SQLDA, see "The SQL
Descriptor Area (SQLDA)" on page 133.)

Note tllat because RPG and COBOL do not provide the facility for
setting pointers, and the SQLDA uses pointers to locate the appropriate
host variables, you will have to set these pointers outside your RPG or
COBOL application.

Before the prepared statement is executed, each parameter marker is
effectively replaced by the value of its corresponding host variable. Each value
that replaces a parameter marker must be compatible with operations applied
to it during the execution of the prepared statement, as follows:

• If the parameter marker appears as the operand of an arithmetic operator,
its value is converted to conform to the description of the other operand, if
necessary, according to the rules described in Chapter 2. In the case of
unary minus, the value is converted to double precision floating-point.

• If a parameter marker appears in place of a numeric value to be inserted in
a column, its value is the number that would result if the host variable were
assigned to the column, and the value must conform to the rules for
assignments.

• If a parameter value is used as the operand of a comparison operator, it
must be compatible with the other operand of that operator, and its length
must not be greater than that of the other operand.

In this example, an INSERT statement with parameter markers is prepared and
executed.

J

J

L

EXECUTE

NOVE 'INSERT INTO CORPDATA.QUOTATIONS VALUES(?,?,?,?)' TO HOLDER.

EXEC SQL PREPARE QUOTES FROM :HOLDER END-EXEC.

IF SQLCODE = 8
PERFORM EXECUTE-INSERT

ELSE
PERFORII ERROR-COND I T ION.

EXECUTE-INSERT.
MOVE 51 TO SUPPNO.
MOVE 221 TO PARTNO.
MOVE 8.38 TO PRICE.
MOVE 58 TO QONORDER.

EXEC SQL EXECUTE QUOTES USING :SUPPNO,
:PARTNO, :PRICE, :QONORDER

END-EXEC.

Chapter 5. Statements 87

EXECUTE IMMEDIATE

EXECUTE IMMEDIATE

Invocation

Authorization

The EXECUTE IMMEDIATE statement:

• Prepares an executable form of an SOL statement from a character string
form of the statement.

• Executes the SOL statement.

• Destroys the executable form.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

The authorization rules are those defined for the dynamic preparation of the
SOL statement specified by EXECUTE IMMEDIATE. For example, see "INSERT"
on page 98 for the authorization rules that apply when an INSERT statement is
executed using EXECUTE IMMEDIATE.

The run-time authorization 10 must have the authorization required to execute
the statement specified by the EXECUTE IMMEDIATE statement.

~EXECUTE HH.1EDIATE-cstri ng-expres~
host-variable

Description

Notes

88 SQLl400 Reference

string-expression
A string-expression is any expression that yields a character string. Note
that a string-expression may be specified only in PLII.

host-variable
Must identify a host variable that is described in the program in accordance
with the rules for declaring character string variables.

The host variable must be of the form : host-vari ab 1 e. The form
:host-variable:indicator-variable is not allowed.

The character string form of the statement is called a statement-string. The
statement string is the value of the specified string-expression or the identified
host variable.

The statement string must be one of the following SOL statements: COMMENT
ON, COMMIT, CREATE COLLECTION, CREATE INDEX, CREATE TABLE, CREATE
VIEW, DELETE, DROP, GRANT, INSERT, LABEL ON, LOCK TABLE, REVOKE,
ROLLBACK, or UPDATE.

The statement string must not include parameter markers or references to host
variables, must not begin with EXEC SOL, and must not terminate with
END-EXEC or a semicolon.

J

L

Example

EXECUTE IMMEDIATE

When an EXECUTE IMMEDIATE statement is executed, the specified statement
string is parsed and checked for errors. If the SQL statement is invalid, it is not
executed and the error condition that prevents its execution is reported in the
SQLCA. If the SQL statement is valid, but an error occurs during its execution,
that error condition is reported in the SQLCA.

If the same SQL statement is to be executed more than once, it is more efficient
to use the PREPARE and EXECUTE statements rather than the EXECUTE
IMMEDIATE statement.

In this COBOL example, the EXECUTE IMMEDIATE statement is used to execute
a DELETE statement.

~OVE 'DELETE FROM QUOTATIONS WHERE
PRICE> 1.00' TO HOLDER.

EXEC SQL EXECUTE IMMEDIATE :HOLDER END-EXEC.

Chapter 5. Statements 89

FETCH

FETCH

Invocation

Authorization

The FETCH statement positions a cursor on the next row of its result table and
assigns the values of that row to host variables.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

The privileges held by the authorization ID of the statement must include the
SELECT privilege on every table or view identified in the SELECT statement of
the cursor.

~FETCH--,""oc~",meL J NTolhO>H'" 'h 1 ,---'-I ____ ~---,,-----------..-... ...
USING DESCRIPTOR-descriptor-name

Description

90 SQL!400 Reference

cursor-name
Identifies the cursor to be used in the fetch operation. The cursor-name
must identify a declared cursor as explained in the Notes for the DECLARE
CURSOR statement. When the FETCH statement is executed, the cursor
must be in the open state.

If the cursor is currently positioned on or after the last row of its result
table, the SQLCODE field of the SQLCA is set to + 100, the cursor is
positioned" after the last row," and values are not assig ned to host
variables.

If the cursor is currently positioned before a row, the cursor is positioned on
that row and values from that row are assigned to the host variables
specified by INTO or USING.

If the cursor is currently positioned on a row other than the last row, the
cursor is positioned on the next row and values of that row are assigned to
the host variables specified by INTO or USING.

INTO host-variable
If INTO is used, each host variable must identify a variable that is described
in your program in accordance with the rules for declaring host variables.

The first value of a row corresponds to the first variable, the second value
corresponds to the second variable, and so on.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of zero or more
host variables.

Before the FETCH statement is executed, the value of SQLN must be set to
indicate how many occurrences of SQLVAR are provided in the SQLDA, and
SQLDABC must be set to indicate the number of bytes of storage allocated
for the SQLDA. Enough storage must be allocated to allow for all

L

Notes

FETCH

occurrences of SQLN. Thus, SQLDABC must be greater than or equal to 16
+ SQLW(N), where N is the length of an SQLVAR occurrence, which is
im pie mentation-defined .

SQLD must be set to a value greater than or equal to 0 and less than or
equal to SQLN. SQLD indicates the number of variables used in the SQLDA
when executing this statement and must be the same as the number of
parameter markers in the prepared statement. The nth variable described
by the SQLDA corresponds to the nth parameter marker in the prepared
statement. (For a description of the values that must be set in the SQLVAR
occurrences of the SQLDA, see "The SQL Descriptor Area (SQLDA)" on
page 133)

Note that because RPG and COBOL do not provide the facility for setting
pointers, and the SQLDA uses pointers to locate the appropriate host
variables, you will have to set these pointers outside your RPG or COBOL
application.

The data type of a host variable must be compatible with its corresponding
value. If the value is numeric, the variable must have the capacity to represent
the whole part of the value. If the value is nUll, an indicator variable must be
specified.

Assignments are made in sequence through the list. Each assignment to a
variable is made according to the rules described in Chapter 2, <; Language
Elements" on page 5. If the number of variables is less than the number of
values in the row, the SQLWARN3 field of the SQLDA is set to 'W'.

If an error occurs as the result of an arithmetic expression in the SELECT list
(division by zero, overflow etc.) or a numeric conversion error occurs, the
result is the null value. As in any other case of a null value, an indicator
variable must be provided and the main variable is unchanged. In this case,
however, the indicator variable is set to -2. Processing of the statement
continues as if the error had not occurred. If you do not provide an indicator
variable, a negative value is returned in the SQLCODE field of the SQLCA.
Processing of the statement terminates when the error is encountered. No
value is assigned to the host variable or to later variables, though any values
that have already been assigned to variables remain assigned.

If the specified host variable is character and is not large enough to contain the
result, 'W' is assigned to SQLWARN1 in the SQLCA. The actual length is
returned in the indicator variable, if provided.

In C, if the specified host variable is null-terminated, and if the host variable is
large enough to contain the result but not large enough to contain the
null-terminator, then' N' is assigned to SQLWARN1 in the SQLCA.

Chapter 5. Statements 91

FETCH

Example

92 SQL!400 Reference

The FETCH statement fetches the results of the SELECT statement into the
program variables DNUM, DNAME, and MNUM.

EXEC SQL DECLARE Cl CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO FROM CORPOATA.OEPT
\'IHERE ADr·1RDEPT = I ADO I

END-EXEC.

EXEC SQL OPEN C1 END-EXEC.

EXEC SQL FETCH C1 INTO :ONUM, :DNAME, :MNUM END-EXEC.

IF SQLCODE = 100
PERFORM DATA-NOT-FOUND

ELSE
PERFORM GET-REST-OF-DEPT
UNTIL SQLCODE IS NOT EQUAL TO ZERO.

EXEC SQL CLOSE Cl END-EXEC.

GET-REST-OF-DEPT.
EXEC SQL FETCH C1 INTO :DNUll, :DNAt-1E, :HNLIt·1 END-EXEC.

L'

GRANT

Invocation

Authorization

GRANT

The GRANT statement grants table and view privileges to users.

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

The privileges held by the authorization 10 of the statement must include:

• Every privilege specified, and ownership of the object, or
• Every privilege specified, and the system authorities 'OBJMGT and

'OBJOPR on the table or view.

To have every privilege you specify, you must:

• Be the owner of the object, or
• Have been granted the privileges.

~~GRANT--,-ALL

~PRIVILEGES~

*' I DELETE
f--INDEX-
~INSERT-

-SELECT-
UPDATE

~
,

I ~ON

~TABLE~
~table-nam~ •

view-name

~
~TO

Description

,

I ~authorization-name
I

...
PUBLIC

ALL or ALL PRIVILEGES
Grants all table or view privileges you currently have for all tables or views
named in the ON clause. Note that granting ALL PRIVILEGES on a table or
view is not the same as granting the system authority of • ALL.

If you do not use ALL, you must use one or more of the keywords in the
following list.

Each keyword grants the privilege described, but only to the table or view
named in the ON clause.

Chapter 5. Statements 93

GRANT

Notes

94 SQL!400 Reference

DELETE
Grants the privilege to use the DELETE statement.

INDEX
Grants the privilege to use the CREATE INDEX statement. This privilege
cannot be granted on a view.

INSERT
Grants the privilege to use the INSERT statement.

SELECT
Grants the privilege to use the SELECT statement.

UPDATE
Grants the privilege to use the UPDATE statement.

ON or ON TABLE

TO

Names the tables or views on which you are granting the privileges.

Indicates to whom the privileges are granted.

authorization-name
Lists one or more authorization IDs.

PUBLIC
Grants the privileges to all users that have no privately granted
privilege on the table or view.

Because the GRANT and REVOKE statements assign and remove AS/400
system security authorities for SOL objects, each SOL privilege can be said to
correspond to specific AS/400 system rights. The tables that follow outline this
correspondence; the left column lists all grantable SOL privileges, and the right
column, or columns, list the equivalent AS/400 system object and data rights for
views and for tables. System data rights are assigned to and removed from
either the table specified or, if a view is specified, to the base table or tables on
which the view is specified and on which the view is dependent.

Example

GRANT

Table 3. Privileges Granted to Tables

SQL Privilege Corresponding AS/400 System Rights when Granting to a
Table

ALL (GRANT 'OBJMGT
of ALL only 'OBJOPR
g ra nts those 'ADD
privileges you 'DLT
cu rrently 'READ
have) *UPD

DELETE *OBJOPR
*DLT

INDEX *OBJMGT
*OBJOPR

INSERT 'OBJOPR
'ADD

SELECT 'OBJOPR
'READ

UPDATE 'OBJOPR
'UPD

Table 4. Privileges Granted to Views

SQL Privilege Corresponding AS/400 Corresponding AS/400
System Rights Granted to System Rights Granted to
View Base Table

ALL (GRANT 'OBJOPR 'ADD
of ALL only 'DLT
g ra nts those 'READ
privileges you *UPD
currently
have)

DELETE *OBJOPR *DLT

INDEX N/A N/A

INSERT *OBJOPR 'ADD

SELECT *OBJOPR 'READ

UPDATE *OBJOPR 'UPD

If a view is read-only, only the SQL authority of SELECT can be granted on it. If
inserts are not allowed on a view, the SQL authority of INSERT cannot be
g ra nted on it.

Grant SELECT privileges on table CORPDATA.EMP to user PULASKI.

GRANT SELECT
ON CORPDATA.EHP
TO PULASKI

Chapter 5. Statements 95

INCLUDE

INCLUDE

Invocation

Authorization

The INCLUDE statement inserts declarations into a source program.

This statement can only be embedded in an application program. It is not an
executable statement.

None required.

--I1JCLUDE SOLDA---~-t-------------------------J.""''' --ESOLCA

mernber-narne~

Description

Notes

96 SQL!400 Reference

SQLCA
Indicates the description of an SQL Communication Area (SQLCA) is to be
included. INCLUDE SQLCA must not be specified more than once in the
same program.

The SQLCA may be specified for COBOL, C, and PLII. If the SQLCA is not
specified, then the variable SQLCODE must appear in the program. The
variable SQLCODE must be an elementary item and must have the attribute
of integer.

The SQLCA must not be specified for RPG programs. The variable
SQLCOD cannot be specified in an RPG program.

For a description of the SQLCA, see "SQL Communication Area (SQLCA)"
on page 127.

SQLDA
Indicates the description of an SQL Descriptor Area (SQLDA) is to be
included. It must not be specified in a COBOL or RPG program. For a
description of the SQLDA, see "The SQL Descriptor Area (SQLDA)" on
page 133.

member-name
Names a member to be included from the file specified on the INCFILE
keyword of the CRTSQLxxx (where xxx is RPG, CBL, C, or PLI) command.

The member may contain any host language source statements and any
SQL statements other than an INCLUDE statement.

When your program is precompiled, the INCLUDE statement is replaced by
source statements. Thus the INCLUDE statement should be specified at a point
in your program such that the resulting source statements are acceptable to the
compiler.

INCLUDE

Example
Include an SQLCA in a program.

EXEC SQL INCLUDE SQLCA END-EXEC.

Chapter 5. Statements 97

INSERT

INSERT

Invocation

Authorization

The INSERT statement inserts rows into a table or view. Inserting a row into a
view inserts the row into the table on which the view is based.

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

The privileges held by the authorization ID of the statement must include the
INSERT privilege on the specified table or view.

You have the INSERT privilege on a table if any of the following apply:

• You are the owner of the table
• You have been granted the INSERT privilege on the table
• You have been granted the system authorities 'OBJOPR and 'ADD on the

table.

You have the INSERT privilege on a view if any of the following apply:

• You have been granted the INSERT privilege on the view
• You created the view, you had the INSERT privilege on its base table at that

time, and you still have that INSERT privilege
• You have been granted the system authorities 'OBJOPR and 'ADD on the

base table.

If a subselect is specified, the privileges held by the authorization ID of the
statement must also include the SELECT privilege on every table or view
identified in the subselect. Refer to SELECT to determine when you have the
SELECT privilege.

~ '~ i VALUES-(------cconstant)--,----------------~

chost-variable
special-register

subselect--------------------------~

Note: Refer to Chapter 4, "Queries" on page 39 for the syntax of subse/ect.

98 SQL/400 Reference

Description

INSERT

INTO table-name or view-name
Names the table or view into which an insertion is to be made The table or
view must be described in the catalog, but it must not be a catalog table or
any of the following types of view:

• A read-only view (for a description, see "CREATE VIEW" on page 69)

• A view of a catalog table

The following types of views are not allowed unless a column name has
been specified:

• A view with a column that is derived from a constant or an arithmetic
expression.

• A view with two columns derived from the same column of the
underlying table.

column-name
Lists the names of one or more columns for which you provide insert
values. You may name the columns in any order. Each must belong to the
table or view named, and you may not name the same column more than
once. The column names must not be qualified.

If you omit the column list. you are implicitly using a list of all the columns
in the order they exist in the table or view.

The implicit column list is established at create program time if the
referenced table or view exists at create program time. Otherwise. the
implicit column list is established at the first successful run of the INSERT
statement. Hence an INSERT statement embedded in an application
program does not use any columns that might have been added to the table
or view after create program time.

VALUES
Introduces one row of values to be inserted. The values of the row are the
values of the keywords, constants, or host variables specified in the clause.

Each host variable you name must be described in your program in
accordance with the rules for declaring host variables.

The number of values in the VALUES clause must equal the number of
names in the column list. The first value is inserted in the first column in
the list. the second value in the second column, and so on.

For an explanation of constant and host-variable, see Chapter 2. For a
description of special-register, see "Special Registers" on page 18.

subselect
Inserts the rows of the result table of a subselect. There may be one, more
than one, or none. If there is none, SQLCODE is set to + 100.

The base object of the INSERT, and the base object of the subselect, must
not be the same table.

The number of columns in the result table must equal the number of names
in the column list. The value of the first column of the result is inserted in
the first column in the list, the second value in the second column, and so
on.

Chapter 5. Statements 99

INSERT

Insert Rules

Notes

Examples

A maximum of 4096 rows may be inserted in any single INSERT operation when
COMMIT(*ALL) or COMMIT(*CHG) has been specified.

Insert values must satisfy the following rules. If they do not, or if any other
errors occur during the execution of the INSERT statement, no rows are
inserted.

• Default values: The value inserted in any column that is not in the column
list is the default value of the column. Columns without a default value
must be included in the colUmn list. Similarly, if you insert into a view, the
default value is inserted into any column of the base table that is not
included in the view. Hence all columns of the base table that are not in
the view must have default values.

• Data Types: The data type of the values to be inserted must be compatible
with the data type defined for the corresponding columns.

• Length: If the insert value of a column is a number, the column must be a
numeric column with the capacity to represent the integral part of the
number. If the insert value of a column is a string, the column must be a
string column with a length attribute at least as great as the length of the
string.

• Assignment: Insert values are assigned to columns in accordance with the
assignment rules described in Chapter 2.

• Validity: If the table named, or the base table of the view named, has one
or more unique indexes, each row inserted into the table must conform to
the constraints imposed by those indexes.

An INSERT statement may be used to insert rows that do not conform to the
definition of the view. These rows will not appear in the view, but are inserted
into the base table of the view.

If an error occurs during the execution of an INSERT statement and
COMMIT('ALL) or COMMITrCHG) was specified, all changes made during the
execution of the statement are backed out. However. other changes in the unit
of recovery made prior to the error are not backed out. If COMMIT(*NONE) is
specified, changes are not backed out.

One or more exclusive locks are acquired at the execution of a successful
INSERT statement. Until the locks are released, an inserted row can only be
accessed by the application process that performed the insert. For further
information about locking, see the description of the COMMIT, ROLLBACK, and
LOCK TABLE statements.

Example 1: Insert values into table CORPDAT A.EMP.

INSERT INTO CORPDATA.EMP
VALUES ('000285' '~lARY' 'T' 'SmTH' 'D11' '2866' , " , , ,

818818,42,16, 'F',550522,16345)

Example 2: Load the temporary table SMITH.TEMPEMPL with data from table
CORPDAT A.EMP.

100 SQLl400 Reference

INSERT INTO SMITH.TEMPEMPL
SELECT *
FROM CORPDATA.EMP

Example 3: Load the temporary table SMITH.TEMPEMPL with data from
Department 011 from CORPDATA.EMP.

INSERT INTO StIITH. TEIIPEI·1PL
SELECT *
FROM CORPDATA.EMP
WHERE WORKDEPT='Dll'

INSERT

Chapter 5. Statements 101

LABEL ON

LABEL ON

Invocation

Authorization

The LABEL ON statement adds or replaces labels in the catalog descriptions of
tables, views, or columns.

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

The privileges held by the authorization ID of the statement must include:

• The system authority 'READ on the library containing the table or view, and
• Ownership of the table or view, or the system authorities of both 'OBJOPR

and 'OBJMGT on the referenced table or view.

~LABEL ON--------------------------------....

TABLELt~bl e-name-,--I--------r--IS-stri ng-constant-,--------.....

Vl ew-name-----.J ~~
-COLUI'·IN-r-tab 1 e-name. co 1 umn-name

~vlew-name.column-name

~ , ~
tabl e-nam.:.y-(--col umn-name-IS-stri ng-constant)-
Vlew-name

Description
TABLE

Indicates that the label is for a table or a view. Labels on tables or views
are implemented as AS/400 system object text.

table-name or view-name
Must identify a table or view described in the local catalog.

COLUMN

IS

Indicates that the label is for a column. Labels on columns are
implemented as AS/400 system column headings, and can therefore be
used when displaying or printing query results.

table-name. column-name or view-name.column-name
Is the name of the column, qualified by the name of the table or view in
which it appears. The column named must be described in the catalog.

Introduces the label you want to provide.

string-constant
Can be any SQL character string constant of up to 30 bytes in length for
tables and views, or 20 bytes in length for columns. The constant may
contain double-byte characters as well as EBCDIC characters.

102 SQL!400 Reference

J

Example
Enter a label on the DEPTNO column of table CORPDATA.DEPT.

LABEL ON COLUMN CORPDATA.DEPT.DEPTNO
IS I DEPARHIENT NUI.IBER I

LABEL ON

Chapter 5. Statements 103

LOCK TABLE

LOCK TABLE

Invocation

Authorization

The LOCK TABLE statement acquires a shared or exclusive lock on the named
table.

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

The privileges held by the authorization ID of the statement must include:

• Ownership of the table, or
• Any SOL privilege for the table, or
• The system authority 'OBJOPR on the table.

~LOCK TABLE-tabl e-name--IN--r-SHARE--I~--II·IODE------------~".
LEXCLUSI VE---.J

Description
table-name

Names the table to be locked. The table must be a base table described in
the catalog, but not a catalog table.

IN SHARE MODE
Acquires a shared lock (*SHRNUP) for the application process in which the
statement is executed. The lock prevents concurrent application processes
from executing any but read-only operations on the named table.

IN EXCLUSIVE MODE
Acquires an exclusive lock (*EXCL) for the application process in which the
statement is executed. The lock prevents concurrent application processes
from executing any operations at all on the identified table.

The lock is acquired when the LOCK TABLE statement is executed.

The lock acquired can be released in three ways:

1. By the termination of the unit of recovery unless the unit of recovery is
terminated by SOL statements COMMIT HOLD or ROLLBACK HOLD, or the
CL commands COMMIT or ROLLBACK.

2. By the ending of the first SOL program in the program stack. An SOL
program is a program which has issued an embedded SOL statement.

3. By issuing the CL command DLCOBJ to unlock the table.

Because the statement is synchronous, conflicting locks already held by other
application processes will cause your application to wait up to the default wait
time.

104 SQU400 Reference

Example

LOCK TABLE

Obtain a lock on the table CORPDATA.EMP. Do not allow other programs
either to read or update the table.

LOCK TABLE CORPDATA.EMP IN EXCLUSIVE MODE

Chapter 5. Statements 105

OPEN

OPEN

Invocation

Authorization

The OPEN statement opens a cursor so that it can be used to fetch rows from
its result table.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

See" DECLARE CURSOR" on page 72 for the authorization required to use a
cursor.

~OPEN--cursor-name-,------------------,------------·""'''

lUSING-~ host-v:riable--'-[----Ij

Description

USING DESCRIPTOR--descriptor-name

cursor-name
Identifies the cursor to be opened. The cursor-name must identify a
declared cursor as explained in the Notes for the DECLARE CURSOR
statement. VVhen the OPEN statement is executed, the cursor must be in
the closed state.

The SELECT statement associated with the cursor is either:

• the select-statement specified in the DECLARE CURSOR statement, or

• the prepared select-statement identified by the statement-name
specified in the DECLARE CURSOR statement. If the identified SELECT
statement has not been successfully prepared, the cursor cannot be
successfully opened.

The result table of the cursor is derived by evaluating the SELECT
statement. The evaluation uses the current values of any special registers
specified in the SELECT statement and the current values of any host
variables specified in the SELECT statement or the USING clause of the
OPEN statement. The rows of the result table may be derived during the
execution of the OPEN statement, and a temporary table created to hold
them; or they may be derived during the execution of subsequent FETCH
statements. In either case, the cursor is placed in the open state and
positioned before the first row of its result table. If the table is empty the
state of the cursor is effectively" after the last row".

USING
Introduces a list of host variables whose values are substituted for the
parameter markers (question marks) of a prepared statement. (For an
explanation of parameter markers, see" PREPARE" on page 109.) If the
DECLARE CURSOR statement names a prepared statement that includes
parameter markers, you must use USING. If the prepared statement does
not include parameter markers, USING is ignored.

1 06 SQU400 Reference

OPEN

host-variable
Identifies a variable described in the program in accordance with the
rules for declaring host variables. The number of variables must be the
same as the number of parameter markers in the prepared statement.
The nth variable corresponds to the nth parameter marker in the
prepared statement.

DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of zero or
more host variables.

Before the OPEN statement is executed, the value of SQLN must be set
to indicate how many occurrences of SQLVAR are provided in the
SQLDA, and SQLDABC must be set to indicate the number of bytes of
storage allocated for the SQLDA. Enough storage must be allocated to
allow for all the occurrences of SQLN. Thus, SQLDABC must be greater
than or equal to 16 + SQLN*(N), where N is the length of an SQLVAR
occurrence. which is implementation-defined.

SQLD must be set to a value greater than or equal to 0 and less than or
equal to SQLN. SQLD indicates the number of variables used in the
SQLDA when executing this statement and must be the same as the
number of parameter markers in the prepared statement. The nth
variable described by the SQLDA corresponds to the nth parameter
marker in the prepared statement. (For a description of the values that
must be set in the SQLVAR occurrences of the SQLDA, see "The SQL
Descriptor Area (SQLDA)" on page 133.)

Note that because RPG and COBOL do not provide the facility for
setting pointers, and the SQLDA uses pointers to locate the appropriate
host variables, you will have to set these pointers outside your RPG or
COBOL application.

When the SELECT statement of the cursor is evaluated, each parameter marker
is effectively replaced by the value of its corresponding host variable. Each
value that replaces a parameter marker must be compatible with operations
applied to it during the execution of the prepared statement. For example,

• If the parameter marker appears as the operand of an arithmetic operator,
the parameter value must be a number. Its value is converted to conform
to the description of the other operand, if necessary, according to the rules
described in Chapter 2.

• If the other operand is a column, the value of the parameter is the number
that would result if the host variable were assigned to the column, and the
value must conform to the rules for assignments described in Chapter 2.

• If a parameter value is used as the operand of a comparison operator, it
must be compatible with the other operand of that operator, and its length
must not be greater than that of the other operand. In the case of the
BETWEEN and IN predicates, this "other operand" is the first operand that
is not specified with a parameter marker.

Chapter 5. Statements 107

OPEN

Notes

Example

Closed state of cursors: All cursors in a program are in the closed state when:

• The program is initiated
• A program initiates a new unit of recovery by executing a COMMIT or

ROLLBACK statement without a HOLD option.

A cursor can also be in the closed state because a CLOSE statement was
executed.

To retrieve rows from the result table of a cursor, you must execute a FETCH
statement when the cursor is open. The only way to change the state of a
cursor from closed to open is to execute an OPEN statement.

Effect of temporary tables: If the result table of a cursor is not read-only, its
rows are derived during the execution of subsequent FETCH statements. The
same method may be used for a read-only result table. However, if a result
table is read-only, the database manager may choose to use the temporary
table method instead. With this method the entire result table is transferred to
a temporary table during the execution of the OPEN statement. When a
temporary table is used, the results of a program can differ in these two ways:

• An error can occur during OPEN that would otherwise not occur until some
later FETCH statement.

• The INSERT, UPDATE, and DELETE statements are not allowed while the
cursor is open.

Conversely, if a temporary table is not used, INSERT, UPDATE, and DELETE
statements executed while the cursor is open can affect the result table if
issued from the same program. Your result table can also be affected by
operations executed by your own unit of recovery, and the effect of such
operations is not always predictable. For example, if cursor C is positioned on
a row of its result table defined as SELECT * FROM T, and you insert a row into
T, the effect of that insert on the result table is not predictable because its rows
are not ordered. Thus a subsequent FETCH C mayor may not retrieve the new
row of T.

The OPEN statement places the cursor at the beginning of the rows to be
fetched.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO FROM CORPDATA.DEPT
WHERE ADMRDEPT = 'ABB'
END-EXEC.

EXEC SQL OPEN C1 END-EXEC.

108 SQU400 Reference

'-.".

PREPARE

Invocation

Authorization

PREPARE

The PREPARE statement is used by application programs to dynamically
prepare an SQL statement for execution. The PREPARE statement creates an
executable SQL statement, called a prepared statement, from a character string
form of the statement, called a statement string. The life of a prepared
statement extends to one of the following:

• The end of the application program, or
• Until another PREPARE statement with the same statement name has been

issued by the same instance of the program in the program stack (in the
case of recursive program calls), or

• Until a COMMIT (no HOLD), or ROLLBACK (no HOLD) is issued.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

The authorization rules are those defined for the dynamic preparation of the
SQL statement specified by the PREPARE statement. For example, see
Chapter 4, "Queries" on page 39 for the authorization rules that apply when a
SELECT statement is prepared.

Authorization is not completely checked when DROP COLLECTION, DROP
TABLE or DROP VIEW statements are prepared. The system authority
'OBJEXIST on all objects in the collection is not required to prepare a DROP
COLLECTION statement. The system authority 'OBJEXIST is not required on all
views, indexes, and logical files that reference the table in a DROP TABLE
statement. The system authority of 'OBJEXIST is not required on all views that
reference the view in a DROP VIEW statement. The 'OBJEXIST authority is
checked when the EXECUTE statement is executed.

~PREPARE-s tatement-name-.------------------------,---.
I NTO-descri ptor-name-,------------,-

f NAr.tES
US I NG LABELS

ANY
BOTH

~FRm·l~s tri ng-express ion
Lhost-vari abl e---.J

Description
statement-name

Names the prepared statement. If the name identifies an existing prepared
statement, that prepared statement is destroyed, unless the statement is
prepared in another instance of the same program or another program.
The name must not identify a prepared statement that is the SELECT
statement of an open cursor of this instance of the program.

Chapter 5. Statements 109

PREPARE

INTO
If you use INTO, and the PREPARE statement is successfully executed,
information about the prepared statement is placed in the SQLDA specified
by the descriptor-name. Thus the PREPARE statement:

EXEC SQL PREPARE SI INTO SQLDA FROM VI;

is equivalent to:

EXEC SQL PREPARE SI FROM VI;
EXEC SQL DESCRIBE SI INTO SQLDAj

See" DESCRIBE" on page 79 for an explanation of the information that is
placed in the SQLDA.

descriptor-name
Is SQLDA or the name of an SQLDA.

USING

FROM

Indicates what value to assign to each SQLNAME variable in the SQLDA
when INTO is used. If the requested value does not exist SQLNAME is
set to length O.

NAMES
Assigns the name of the column. This is the default

LABELS
Assigns the label of the column. (Column labels are defined by the
LABEL ON statement)

ANY
Assigns the column label, and, if the column has no label, the
column name.

BOTH
Assigns both the label and name of the column. In this case, two
occurrences of SQLVAR per column will be needed to accommodate
the additional information. To specify this expansion of the SQLVAR
array, set SQLN to 2*n on the PREPARE statement (where n is the
number of columns in the result table). Then, on any later FETCH
statement, set SQLN to n. The first n occurrences of SQLVAR for
each of the columns in the result table contain the column names.
The second n occurrences contain the column labels.

Introduces the statement string. The statement string is the value of the
specified string-expression or the identified host-variable.

string-expression
Is any expression that yields a character string. String expressions are
only allowed in PLII.

host-variable
Must identify a host variable that is described in the program in
accordance with the rules for declaring character string variables.

The host variable must be of the form :host-variable. The form
:host-variable:indicator-variable is not allowed.

110 SQLl400 Reference

Notes

.1

PREPARE

Rules for statement strings: The statement string must be one of the following
SQL statements: COMMENT ON, COMMIT, CREATE COLLECTION, CREATE
INDEX, CREATE TABLE, CREATE VIEW, DELETE, DROP, GRANT, INSERT, LABEL
ON, LOCK TABLE, REVOKE, ROLLBACK, or UPDATE.

The statement string may also be a select-statement. For information on the
select-statement, see "select-statement" on page 47.

The statement string must not:

• Begin with EXEC SQL and end with a statement terminator
• Include references to host variables
• Include comments.

Parameter markers: Although a statement string cannot include references to
host variables, it may include parameter markers; those can be replaced by the
values of host variables when the prepared statement is executed. A
parameter marker is a question mark (?) that appears where a host variable
could appear if the statement string were a static SQL statement. For an
explanation of how parameter markers are replaced by values, see "OPEN" on
page 106 and "EXECUTE" on page 85.

Rules for parameter markers:

• Parameter markers must not appear:

In a select list (SELECT? is invalid)

As an operand of the concatenation or substring operator

As both operands of a single arithmetic or comparison operator
(WHERE? = ? is invalid)

As an operand of a unary minus

• At least one of the operands of the BETWEEN or IN predicates must not be
a parameter marker.

• An argument of a scalar function cannot be specified solely as 3 parameter
marker.

• If a scalar function is used in other than a SELECT list, and it has an
argument that can be specified as an arithmetic expression, a parameter
marker can be included in that expression, provided that it is the operand of
an arithmetic operator and that the other operand is a number.

When a PREPARE statement is executed, the statement string is parsed and
checked for errors. If the statement string is invalid, a prepared statement is
not created and a negative value is returned in the SQLCODE field of the
SQLCA.

Prepared statements can be referred to in the following kinds of statements,
with the restrictions shown:

Chapter 5. Statements 111

PREPARE

Example

In ...
DESCRIBE
DECLARE CURSOR
EXECUTE

The prepared statement ...
has no restrictions
must be SELECT
must not be SELECT

A prepared statement can be executed many times. Indeed, if a prepared
statement is not executed more than once and does not contain parameter
markers, it is more efficient to use the EXECUTE IMMEDIATE statement rather
than the PREPARE and EXECUTE statements.

All prepared statements created by a unit of recovery are destroyed when the
unit of recovery is terminated, unless COMMIT HOLD or ROLLBACK HOLD was
used.

A prepared statement can only be referenced in the same instance of the
program in the program stack.

In this COBOL example, an INSERT statement with parameter markers is
prepared.

1,10VE I INSERT INTO CORPDATA.QUOTATIONS VALUES(?,?,?,?) I TO HOLDER.

EXEC SQL PREPARE QUOTES FROI·1 :HOLDER END-EXEC.

112 SQLl400 Reference

L'
REVOKE

Invocation

Authorization

REVOKE

The REVOKE statement removes privileges on one or more tables or views.

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

The privileges held by the authorization 10 of the statement must include
*OBJMGT authority and the privileges you are revoking.

~REVOKE--ALL

~PRIVILEGES~

~ON

~FROI:l

r-' I DELETE
-INDEX-
-INSERT-
-SELECT-
-UPDATE-

~
,

I
~TABLE~

L tab 1 e-nam~ •
view-name

~
,

I Lauthorization-name I
...

PUBLIC

ALL or ALL PRIVILEGES
Revokes all privileges listed below for the specified tables or views.

If you do not use ALL, you must use one or more of the keywords listed
below. Each keyword revokes the privilege described, but only as it applies
to the tables or views named in the ON clause. The same keyword must
not be specified more than once. For information on how these privileges
relate to the AS/400 system object and data rights, see "Notes" on page 94.

DELETE
Revokes the privilege to use the DELETE statement.

INDEX
Revokes the privilege to use the CREATE INDEX statement.

INSERT
Revokes the privilege to use the INSERT statement.

SELECT
Revokes the privilege to use the SELECT statement.

UPDATE
Revokes the privilege to use the UPDATE statement.

Chapter 5. Statements 113

REVOKE

Examples

ON or ON TABLE
Names one or more tables or views on which you are revoking the
privileges. The list may be a list of unique table names or view names, or a
combination of the two.

FROM
Identifies from whom the privileges are revoked.

authorization-name
Lists one or more authorization IDs. Do not specify the same
authorization-name more than once.

PUBLIC
Revokes the specified privileges from PUBLIC.

System Object and Data Rights: When revoking authorities to a table, the
*OBJOPR object rights are revoked only when all system data rights to that
table have been revoked. For a view, these system object rights will only be
revoked when all system data rights to the table or tables on which the view is
dependent have been revoked.

When revoking authorities to a view, the system data rights will only be revoked
from a base table if the specified user does not have the system authority of
*OBJOPR to the base table.

Read-only Views: If inserts, updates, or deletes are not allowed on a view, then
the respective SQL authority of INSERT, UPDATE, or DELETE cannot be revoked
from the view.

Multiple Grants: If you granted the same privilege to the same user more than
once, revoking that privilege from that user nullifies all those grants.

Example 1: Revoke SELECT privileges on table CORPDATA.EMP from user
PULASKI.

REVOKE SELECT
ON TABLE CORPDATA. TEIIPL
FROf·l PULASKI

Example 2: Revoke update privileges on table CORPDATA.EMP, previously
granted to all local users. Note that grants to specific users are not affected.

REVOKE UPDATE
ON TABLE CORPDATA. TE~IPL
FROf,1 PUBLIC

Example 3: Revoke all privileges on table CORPDATA.EMP, from users KWAN
and THOMPSON.

REVOKE ALL
ON TABLE CORPDATA.TEMPL
FROf,1 Kt'JAN, THOf.1PSON

114 SQU400 Reference

ROLLBACK

Invocation

Authorization

The ROLLBACK statement is used to terminate a unit of recovery and back out
the database changes that were made by that unit of recovery.

This statement can be embedded in an application program or it can be issued
interactively. It is an executable statement that can be dynamically prepared.

None required.

~ROLLBACK--,------'---'-------r--~.~~

L\,jORK~ LHOLD~

Description

Notes

The unit of recovery in which the ROLLBACK statement is executed is
terminated and a new unit of recovery is initiated. All changes made by
INSERT, UPDATE, and DELETE statements executed during the unit of recovery
are backed out.

All locks acquired by the unit of recovery are released. All cursors that were
opened during the unit of recovery are closed. All statements that were
prepared during the unit of recovery are destroyed, and any cursors associated
with the prepared statements are invalidated.

WORK
ROLLBACK WORK has the same effect as ROLLBACK. SQLl400 accepts
the keyword WORK for compatibility with other database products.

HOLD
Indicates a hold on resources. If specified, currently open cursors are not
closed, prepared SQL statements are preserved, and all resources acquired
during the unit of recovery, except locks on the rows of tables, are held.
Locks on specific rows acquired during the transaction, however, are
released. If HOLD is omitted, open cursors are closed, prepared SQL
statements discarded, and held resources released. At the end of a
ROLLBACK, the cursor position is the same as it was at the start of the unit
of recovery.

A unit of recovery (see "Application Processes, Concurrency, and Recovery" on
page 3 for description) may include the processing of up to 4096 rows,
including rows retrieved during a SELECT or FETCH statementS, and rows
inserted, deleted, or updated as part of INSERT, DELETE, and UPDATE

6 Unless you specified COMMIT('CHG), in which case these rows are not included in this total.

Chapter 5. Statements 115

Example

operations.? The commit and rollback operations do not affect any data
definition statements, and these statements are not, therefore, allowed in an
application program that also specifies COMMIT("CHG) or COMMIT(*ALL). The
data definition statements are:

• COMMENT
• CREATE COLLECTION
• CREATE INDEX
• CREATE TABLE
• CREATE VIEW
• DROP COLLECTION
• DROP INDEX
• DROP TABLE
• DROP VIEW
• GRANT
• LABEL
• REVOKE

Commitment control is implicitly started by SQL, if necessary, using the system
CL command STRCMTCTL. The lock level used is based on the COMMIT option
specified on either the CRTSQLxxx (where xxx is RPG, CBL, C, or PLI) or the
STRSQL command.

A ROLLBACK is automatically performed when:

1. An application process ends without a final COMMIT being issued.

2. A failure occurs that prevents the application from completing its work
(such as a power failure).

If, within a unit of work, a CLOSE is followed by a ROLLBACK, all intervening
changes are backed out. The CLOSE itself is not backed out and the file is not
reopened.

Delete the alterations made since the last commit point or rollback.

ROLLBACK l'lORK

7 This limit also includes any records accessed or changed through files opened under commitment control
through high-level language file processing.

116 SQU400 Reference

L

SELECT INTO

Invocation

Authorization

SELECT INTO

The SELECT INTO statement produces a result table consisting of at most one
row, and assigns the values in that row to host variables. If the table is empty,
the statement assigns + 100 to SQLCODE and does not assign values to the
host variables.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

To use SELECT INTO, the privileges held by the authorization ID of the
statement must include the SELECT privilege on every table and view identified
in the statement.

You have the SELECT privilege on a table if any of the following apply:

• You are the owner of the table
• You have been granted the SELECT privilege on the table
• You have been granted the system authorities "OBJOPR and "READ on the

table.

You have the SELECT privilege on a view if any of the following apply:

• You have been granted the SELECT privilege on the view
• You created the view, you had the SELECT privilege on its base table when

the view was created, and you still have that SELECT privilege
• You have been granted the system authority "OBJOPR on the view and the

system authority "READ on the base table.

~ '~
»--select-clause--INTO--host-variable~from-clause-r---------.------I.~ ..

L\1here-cl ause~

C==grOUP-bY-ClaUSe~ C==haVing-ClaUSe~
...

Description
See Chapter 4, "Queries" on page 39 for a description of the select-clause,
from-clause, where-clause, group-by-clause, and having-clause.

The from-clause must not identify a view that includes a group-by-clause or a
having-clause. Note too that the grouping, as specified by the group-by-clause,
strongly implies a result table of more than one row, and that a having-clause is
probably needed to reduce the table to at most one row.

INTO
Introduces a list of host variables.

Chapter 5. Statements 117

SELECT INTO

Examples

host variable
Names a structure or variable that is described in the program under
the rules for declaring host structures and variables. A reference to a
structure is replaced by a reference to each of its variables before the
statement is executed.

The first value in the result row is assigned to the first variable in the
list, the second value to the second variable, and so on. If the number
of host variables is less than the number of column values, the value
'W' is assigned to the SQLWARN3 field of the SQLCA. (See "SQL
Communication Area (SQLCA)" on page 127.)

The data type of a variable must be compatible with the value assigned
to it. If the value is numeric, the variable must have the capacity to
represent the integral part of the value. If the value is nUll, an indicator
variable must be specified.

Each assignment to a variable is made according to the rules described
in Chapter 2. Assignments are made in sequence through the list.

If an error occurs as the result of an arithmetic expression in the
SELECT list of a SELECT statement (division by zero, or overflow) or a
numeric conversion error occurs, the result is the null value. As in any
other case of a null value, an indicator variable must be provided and
the main variable is unchanged. In this case, however, the indicator
variable is set to -2. Processing of the statement continues as if the
error had not occurred. If you do not provide an indicator variable, or
some other type of error occurs, processing of the statement terminates
when the error is encountered.

If an error occurs, no value is assigned to the host variable or to later
variables, though any values that have already been assigned to
variables remain assigned.

If an error occurs because the result table has more than one row,
values are assigned to all host variables, but the row that is the source
of the values is undefined and not predictable.

Example 1: Put the maximum salary in CORPDAT A.EMP into the host variable
MAXSALARY.

EXEC SQL SELECT MAX (SALARY)
INTO : IIAXSALRY
FROM CORPDATA.ENP;

Example 2: Put the row for employee 528671, from CORPDAT A.EM P, into the.
host structure EMPREC.

EXEC SQL SELECT * INTO :ENPREC
FROM CORPDATA.EMP
WHERE ENPNO = '528671'

END-EXEC.

118 SQL/400 Reference

J

UPDATE

Invocation

Authorization

UPDATE

The UPDATE statement updates the values of specified columns in rows of a
table or view. Updating a row of a view updates a row of its base table.

The forms of this statement are:

• The searched UPDATE form is used to update one or more rows (optionally
determined by a search condition).

• The positioned UPDATE form is used to update exactly one row (as
determined by the current position of a cursor).

A searched UPDATE statement can be embedded in an application program or
issued interactively. A positioned UPDATE must be embedded in an application
program. Both forms are executable statements that can be dynamically
prepared.

The privileges held by the authorization 10 of the statement must include the
UPDATE privilege on the specified table or view.

You have the UPDATE privilege on a table if any of the following apply:

• You are the owner of the table
• You have been granted the UPDATE privilege on the table
• You have been granted the system authorities 'OBJOPR and 'UPD on the

table.

You have the UPDATE privilege on a view if any of the following apply:

• You have been granted the UPDATE privilege on the view
• You created the view, you had the UPDATE privilege on its base table at

that time, and you still have that UPDATE privilege.
• You have been granted the system authorities 'OBJOPR and 'UPD on the

base table.

Chapter 5. Statements 119

UPDATE

searched update

~UPDATE~t~ble-nam~
VleW-name C==correlation-name~

~
Io>--SET--co 1 umn-name=-express i on-'-------------------------. ..

C==\'JHERE-Searc h-condi t i on:=J

....

positioned update

~UPDATE~table-nam~
Vlew-name

~
Io>--SET--c0 1 umn-name=-express i on-'-------------------------..-..

Io>--\'JHERE CURRENT OF-cursor-name-------------------------....

Description
table-name or view-name

Is the name of the table or view to be updated. The name must identify a
table or view described in the catalog, but not a catalog table, a view of a
catalog table, or a read-only view. (For an explanation of read-only views,
see "CREATE VIEW" on page 69.)

correlation-name

SET

May be used within search-condition to designate the table or view. (For an
explanation of correlation-name, see "Correlation Names" on page 19.)

Introduces a list of column names and values. The column names must not
be qualified, and a column must not be specified more than once.

In a cursor-controlled update, each column name in the list must also
appear in the FOR UPDATE OF clause of the SELECT statement of the
identified cursor, unless FOR UPDATE OF and ORDER BY were not
specified.

column-name
Identifies a column to be updated. The column-name must identify a
column of the specified table or view, but must not identify a view
column derived from a scalar function, constant, or expression.

expression
Indicates the new value of the column. The expression is any
expression of the type described in Chapter 2. It must not include a
column function.

120 SQLl400 Reference

Notes

WHERE

UPDATE

A column-name in an expression must name a column of the named
table or view. For each row that is updated, the value of the column in
the expression is the value of the column in the row before the row is
updated.

Introduces a condition that indicates what rows are updated. You can omit
the clause, give a search condition, or name a cursor. If you omit the
clause, all rows of the table or view are updated.

search-condition
Is any search condition as described in Chapter 2. Each column-name
in the search condition must name a column of the table or view.

The search-condition is applied to each row of the table or view and the
updated rows are those for which the result of the search-condition is
true.

CURRENT OF cursor-name
Identifies the cursor to be used in the update operation. The
cursor-name must identify a declared cursor as explained in "DECLARE
CURSOR" on page 72.

The table or view named must also be named in the FROM clause of
the SELECT statement of the cursor, and the result table of the cursor
must not be read-only. (For an explanation of read-only result tables,
see "DECLARE CURSOR" on page 72.)

When the UPDATE statement is executed, the cursor must be positioned
on a row; that row is updated.

A maximum of 4096 rows may be updated in any single UPDATE operation
when COMMIT(*ALL) or COMMIT(*CHG) has been specified.

Update values are assigned to columns under the assignment rules described
in Chapter 2.

If the update
value is ... Then the column must ...

a number be a numeric column with the capacity to represent the
integral part of the number.

a character string be a character string column with a length attribute that is
not less than the length of the string.

If an update value violates any constraints, or if any other error occurs during
the execution of the UPDATE statement, and COMMIT(*ALL) or COMMIT(*CHG)
was specified, all changes made during the execution of the statement are
backed out. However, other changes in the unit of recovery made prior to the
error are not backed out. If COMMIT(*NONE) is specified, changes are not
backed out.

A view column derived from the same column as another column of the view
can be updated, but both columns cannot be updated in the same UPDATE
statement.

Chapter 5. Statements 121

UPDATE

Examples

When an UPDATE statement completes execution, the value of SQLERRD(3) in
the SQLCA is the number of rows updated. (For a description of the SQLCA,
see "SQL Communication Area (SQLCA)" on page 127.)

Unless appropriate locks already exist, one or more exclusive locks are
acquired by the execution of a successful UPDATE statement. Until the locks
are released, the updated row can only be accessed by the application process
that performed the update. For further information on locking, see the
descriptions of the COMMIT; ROLLBACK, and LOCK TABLE statements.

Example 1: Change employee 000190's telephone number to 3565 in
CORPDATA.EMP.

UPDATE CORPDATA.EMP
SET PHONENO='3565'
WHERE EMPNO='000190'

Example 2: Increase the job code by 10 for members of Department D11.

UPDATE CORPDATA.EMP
SET JOBCODE = JOB CODE + 10
WHERE WORKDEPT='Dll'

Example 3: Change the project end date for project number AD3111 to 13 July
1984.

UPDATE CORPDATA.PROJ
SET PRENDATE = '1984-07-13'
WHERE PROJNO = 'AD3111'

122 SQLl400 Reference

L

WHENEVER

Invocation

Authorization

WHENEVER

The WHENEVER statement specifies the action to be taken when a specified
exception condition occurs.

This statement can only be embedded in an application program. It is not an
executable statement.

None required.

~\'!HENEVER SQLERROR CONTINUE ~ -£rIOT Fourl3t

SQU'JARNING GOTO~host-label

GO TO--..J

Description

Notes

The NOT FOUND, SQLERROR, or SQLWARNING clause is used to identify the
type of exception condition.

NOT FOUND
Identifies any condition that results in an SQL return code of + 100.

SQLERROR
Identifies any condition that results in a negative SQL return code.

SQLWARNING
Identifies any condition that results in a warning condition (SQLWARNO is
'WI), or that results in a positive SQL return code other than + 100.

The CONTINUE or GO TO clause is used to specify what is to happen when the
identified type of exception condition exists.

CONTINUE
Causes the next sequential instruction of the source program to be
executed.

GOTO or GO TO host-label
Causes control to pass to the statement identified by host-label. For
host-label, substitute a single token, optionally preceded by a colon. The
form of the token depends on the host language. In COBOL, for example, it
can be a section-name or an unqualified paragraph-name.

There are three types of WHENEVER statements:

WHENEVER NOT FOUND
WHENEVER SQLERROR
WHENEVER SQLWARNING

Every executable SQL statement in a program is within the scope of one
implicit or explicit WHENEVER statement of each type. The scope of a

Chapter 5. Statements 123

WHENEVER

Example

WHENEVER statement is related to the listing sequence of the statements in the
program, not their execution sequence.

An SQL statement is within the scope of the last WHENEVER statement of each
type that is specified before that SQL statement in the source program. If a
WHENEVER statement of some type is not specified before an SQL statement,
that SQL statement is within the scope of an implicit WHENEVER statement of
that type in which CONTINUE is specified.

If an error is produced, go to HANDLERR. If a warning code is produced,
continue with the normal flow of the program. If no results are found, go to
ENDDATA.

EXEC SQL WHENEVER SQLERROR GOTO HANDLERR END-EXEC.
EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC.
EXEC SQL WHENEVER NOT FOUND GO TO ENDDATA END-EXEC.

124 SQL!400 Reference

L
Appendix A. SQL Limits

The table below describes certain limits imposed by SQLl400. The limits
presented here are minimal values that, if used, will assist in making
application programs readily portable from one system to another.

Table 5 (Page 1 of 2). SQL Limits

ITEM SQL LIMIT

Longest SQL identifier 10

Longest authorization ID 10

Longest cursor name 18

Longest statement name 18

Most columns in a table 8000

Most columns in a view 8000

Maximum length of a row, in bytes, 32766
including all overhead

Maximum byte count of a row 32766

Maximum byte count of CHAR 32766

Largest INTEGER value 2147483647

Smallest INTEGER value -2147483648

Largest SMALLINT value 32767

Smallest SMALLINT value -32768

Largest FLOAT value Approximately 1.79 x10308

Smallest FLOAT value Approximately -1.79 x10308

Smallest positive FLOAT value Approximately 2.22 X10·308

Largest negative FLOAT value Approximately -2.22 X10-308

Largest REAL value Approximately 3.40 x1038

Smallest REAL value Approximately -3.40 X1038

Smallest positive REAL value Approximately 1.17 X10-38

Largest negative REAL value Approximately -1.17 X10-38

Largest DECIMAL or NUMERIC value 9999999999999999999999999999999.

Smallest DECIMAL or NUMERIC -9999999999999999999999999999999.
value

Most table names in an SQL 32
statement. (In a complex SELECT,
the number of tables that can be
joined may be significantly less.)

Maximum length of a host variable 64
name

© Copyright IBM Corp. 1988, 1989 Appendix A. SQL Limits 125

Table 5 (Page 2 of 2). SOL Limits

ITEM SQL LIMIT

Most host variables in a precompiled 4000 or less8

program

Most host variables in an SQL 4000 or less8

statement

Maximum total length of host and storage
indicator variables pointed to in an
SQLDA

Longest host variable used for insert 32766 bytes
or update

Longest SQL statement 32767 bytes

Most elements in a select list 8000 or less9

Most functions in a select list 8000 or less9

Most predicates in a WHERE or 8000 or less9

HAVING clause

Maximum total length of columns in 120
a GROUP BY clause

Maximum number of columns in a 120
GROUP BY clause

Maximum total length of columns in 256
an ORDER BY clause

Maximum number of columns in an 256
ORDER BY clause

Most columns in an index key 120

Longest index key 120

8 The limit is based on the number of pointers allowed in a program. Each host language allows a different
number of pointers. At a minimum, each host language uses one pointer for each use of a host variable.
AS/400 system allows a limit of 4040 pointers in any program.

9 The limit is based on the size of internal structures generated for the parsed SOL statement.

126 SOLl400 Reference

Appendix B. SQLCA and SQLDA Control Blocks

This appendix describes the SQL communication area (SQLCA) and the SQL
descriptor area (SQLDA).

SQL Communication Area (SQLCA)
An SQLCA is a collection of variables that is updated repeatedly during a
program with information about the SQL statement most recently run. The SQL
INCLUDE statement is used to provide the declaration of the SQLCA in COBOL.
C, and PLII. The SQLCA is provided for RPG by the SQL precompiler.

In COBOL, the name of the storage area must be SQLCA In PLII and C, the
name of the structure must be SQLCA. Every SQL statement must be within the
scope of its declaration.

When a stand-alone SQLCODE is specified in the program, the SQLCA must not
be included. The precompiler will include an SQLCA with the name of the
variable SQLCODE changed to SQLCADE (or SQLCOD changed to SQLCAD).
The precompiler will add statements to the program to ensure that the
stand-alone SQLCODE contains the correct values.

The stand-alone SQLCODE must not be specified in an RPG program.

Description of Fields
The names in the following table are those provided by the SQL INCLUDE
statement. For the most part, COBOL, PLlI, and C use the same names. RPG
names are different, because they are limited to 6 characters. Note one
instance where PUI names differ from COBOL.

~ Copyright IBM Corp. 1988, 1989 Appendix B. SQlCA and SQlDA 127

Table 6 (Page 1 of 2). Names Provided by the SOL INCLUDE Statement

COBOL,
PUlor, RPG
C Name Name

SQLCAID SQLAID
sqlcaid

SQLCABC SQLABC
sqlcabc

SQLCODE SQLCOD
sqlcode

SQLERRML 10 SQLERL
sqlerrml

SQLERRMC 10 SQLERM
sqlerrmc

SQLERRP SQLERP
sqlerrp

SQLERRD SQLERR
sqlerrd Defined as 24

characters (not an
arr ay) that are
redefined by the fields
SQLER1 through
SQLER6. The fields
are full-word binary.

SQLWARN SQLWRN
sqlwarn Defined as 8

characters (not an
array).

SQLWARNO SQLWNO
sqlwarnO

SQLWARN1 SQLWN1
sqlwarn1

SQLWARN2 SQLWN2
sqlwarn2

SQLWARN3 SQLWN3
sqlwarn3

SQLWARN4 SQLWN4
sqlwarn4

SQLWARN5 SQLWN5
sqlwarn5

Data
Type

CHAR(8)

INTEGER
(4-bytes)

INTEGER
(4-bytes)

SMALLINT
(2-bytes)

CHAR (70)

CHAR(8)

Array

CHAR(8)

CHAR(1)

CHAR(1)

CHAR(1)

CHAR(1)

CHAR(1)

CHAR(1)

Description

An "eye catcher" for storage dumps, containing
'SQLCA '.

Contains the length of the SQLCA, 136.

Contains the SQL return code.

Code
o

positive

negative

Means
Successful execulion (though there may have
been warning messages).
Successful execution, but with an exception
condition.
Error condition.

Length indicator for SQLERRMC, in the range 0 through
70. 0 means that the value of SQLERRMC is not pertinent.

Contains message replacement text associated with the
SQLCODE.

Provides diagnostic information, such as the name of a
module.

6 INTEGER vanables that provide diagnostic information.

SQLERRD(1) may contain the last four characters of
the CPF escape message if SQLCODE is less than O.
For example, if the message is CPF5715,
X'F5F7F1F5' is placed in SQLERRD(1).11

SQLERRD(2) may contain the last four characters of a
CPD diagnostic message if the SQL code is less than
0.11

SQLERRD(3) shows the number of rows affected after
INSERT, UPDATE, and DELETE.

A set of 8 warning indicators, each containing blank or
'W'.

Blank if all other indicators are blank: contains 'W' if at
least one other indicator contains 'W'.

Contains 'W' If the value of a string column was
truncated when assigned to a host vanable. Contains' N'
if the value of a string column was assigned to a C
null-terminated host variable and If the host variable was
large enough to contain the result but not large enough to
contain the null-terminator.

Reserved

Contains 'W' if the number of columns and the number of
host variables are not the same.

Contains 'W' if a prepared UPDATE or DELETE statement
does not include a WHERE clause.

Reserved

10 In COBOL, SOLERRM includes SOLERRML and SOLERRMC. In PUI, the varying-length string SOLERRM is
equivalent to SOLERRML prefixed to SOLERRMC.

11 SOLERRD(1) and (2) are set only if appropriate.

128 SOU400 Reference

Table 6 (Page 2 of 2). Names Provided by the SQL INCLUDE Statement

COBOL,
PUlor, RPG Data
C Name Name Type Description

SQLWARN6 SQLWN6 CHAR(1) Reserved
sqlwarn6

SQLWARN7 SQLWN7 CHAR(1) Reserved
sqlwarn7

SQLWARN8 SQLWN8 CHAR(1) Reserved
sqlwarn8

SQLWARN9 SQLWN9 CHAR(1) Reserved
sqlwarn9

SQLWARNA SQLWNA CHAR(1) Reserved
sqlwarna

SQLSTATE SQLSTT CHAR(S) Reserved
sqlstate

L

Appendix B. SQLCA and SQLDA 129

The Included SQLCA
The following is a description of the SQLCA that is given by INCLUDE SQLCA

In COBOL:

01 SQLCA.
05 SQLCAID
05 SQLCABC
05 SQLCODE
05 SQLERRtl.

49 SQLERRI1L
49 SQLERRf·IC

05 SQLERRP
05 SQLERRD

05 SQ LI.'!ARN.
10 SQU'!ARNO
10 SQU'!ARN 1
10 SQU'JARN2
10 SQLHARN3
10 SQU'!ARN4
10 SQU'JARNS
10 SQU'!ARN6
10 SQU'!ARN7
10 SQU'!ARN8
10 SQU'!ARN9
10 SQU'!ARNA

05 SQLSTATE

PIC X(8).
PIC S9 (9) CorW-4.
PIC S9(9) COMP-4.

PIC S9(4) COMP-4.
PIC X(70).
PIC X(8).
OCCURS 6 THIES
PIC S9(9) COMP-4.

PICX(l).
PIC X(l).
PIC X(l).
PIC X(l).
PIC X(l).
PIC X(l).
PIC X(l).
PIC X(l).
PIC X(l).
PIC X(l).
PIC X(l).
PIC X(S).

INCLUDE SQLCA must not be specified in other than the working storage
section.

In PLII:

DCL 1 SQLCA,

130 SQL!400 Reference

2 SQLCAID
2 SQLCABC
2 SQLCODE
2 SQLERRI·I
2 SQLERRP
2 SQLERRD(6)
2 SQU'!ARI1,

3 SQU'!ARNO
3 SQU'!ARN1
3 SQU'JARN2
3 SQU'JARN3
3 SQlI.'!ARN4
3 SQlI.'!ARNS
3 SQU'JARN6
3 SQlI.'!ARN7
3 SQU'JARN8
3 SQLHARN9
3 SQlI.'!ARNA

2 SQLSTATE

CHAR(8),
BIN FIXED(31),
BIN FIXED(31),
CHAR(70) VAR,
CHAR(8),
BIN FIXED (31),

CHAR (1) ,
CHAR(l),
CHAR(l),
CHAR(l) ,
CHAR(l),
CHAR(l),
CHAR(l),
CHAR(l) ,
CHAR(l),
CHAR (1) ,
CHAR(l),
CHAR(S);

In C, INCLUDE SQLCA declarations are equivalent to the following:

#ifndef SQLCODE
struct sqlca

unsigned char sql cai d [8];
long sqlcabc;
long sqlcode;
short sqlerrml;
unsigned char sqlerrmc[7];
unsigned char sqlerrp[8];
long sql errd [6] ;
unsigned char sqhlarn[ll];
unsigned char sqlstate[5];

} ;
#define SQLCODE sqlca.sqlcode
#defi ne SQU'!ARNO sqlca.sqlwarn[O]
#define SQL\O!ARNI sqlca.sqlwarn[l]
#define SQU'!ARN2 sqlca.sqlwarn[2]
#define SQU'!ARN3 sqlca.sqlwarn[3]
#defi ne SQU'!ARN4 sqlca.sqlwarn[4]
#define SQU'!ARN5 sqlca.sqlwarn[5]
#define SQU'!ARN6 sqlca.sqlwarn[6]
#define SQU'!ARN7 sqlca.sqlwarn[7]
#define SQU'!ARN8 sqlca.sqlwarn[8]
#define SQU'!ARN9 sqlca.sqlwarn[9]
#define SQU'!ARNA sqlca.sqlwarn[lO]
#define SQLSTATE sqlca.sqlstate
#endif
struct sqlca sqlca;

Appendix B. SQLCA and SQLDA 131

In RPG: The SQLCA data structure is generated by the SQL precompiler and is
not specified by the user.

ISQLCA DS
I 1 8 SQLAID SQL
I B 9 120SQLABC SQL

B 13 160SQLCOD SQL
B 17 180SQLERL SQL

19 88 SQLERM SQL
89 96 SQLERP SQL
97 120 SQLERR SQL

B 97 1000SQLERI SQL
B 101 1040SQLER2 SQL
B 105 1080SQLER3 SQL
B 109 1120SQLER4 SQL
B ll3 ll60SQLER5 SQL
B ll7 1200SQLER6 SQL

121 131 SQU'iRN SQL
121 121 SQU'JN0 SQL
122 122 SQU'JNl SQL
123 123 SQU'iN2 SQL
124 124 SQU-iN3 SQL
125 125 SQU'iN4 SQL
126 126 SQUoJN5 SQL
127 127 SQUoJN6 SQL
128 128 SQU'iN7 SQL
129 129 SQU'iN8 SQL
130 130 SQU'JN9 SQL
131 131 SQU'iNA SQL
132 136 SQLSTT SQL

132 SQU400 Reference

~

The SQL Descriptor Area (SQLDA)
An SQLDA is a collection of variables that is required for execution of the SQL
DESCRIBE statement, and may optionally be used by the PREPARE, OPEN,
FETCH, and EXECUTE statements. An SQLDA communicates with dynamic
SQL; it can be used in a DESCRIBE statement, modified with the addresses of
host variables, and then reused in a FETCH statement.

The meaning of the information in an SQLDA depends on its use. In PREPARE
and DESCRIBE, an SQLDA provides information to an application program
about a prepared statement. In OPEN, EXECUTE, and FETCH, an SQLDA
provides information about host variables.

Description of Fields

PUI C
Name Name

SQLDAID sqldald

SQLDABC sqldabc

SQLN sqln

SQLD sqld

SQLVAR sqlvar

An SQLDA consists of four variables followed by an arbitrary number of
occurrences of a sequence of five variables collectively named SQLVAR. In
OPEN, FETCH, and EXECUTE, each occurrence of SQLVAR describes a host
variable. In DESCRIBE and PREPARE, they describe columns of a result table.

Data Usage in Usage in FETCH, OPEN, and
Type DESCRIBE and PREPARE EXECUTE

(Set by the database (Set by the user prior to
manager except for SQLN) executing the statement)

CHAR(8) An "eye catcher" for storage Not used.
dumps, containing 'SQLDA

INTEGER Length of the SQLDA, equal to Number of bytes of storage
SQLN*LENGTH(SQLVAR) + 16. allocated for the SQLDA. Enough

storage must be allocated to allow
for all occurrences of SQLN.
SQLDABC must be set to a value
greater than or equal to 16 +
SQLN*(N), where N is the length of
an SQLVAR occurrence, which is
implementation-defined.

SMALLINT Unchanged by the database Total number of occurrences of
manager. Must be set to a value SQLVAR provided In the SQLDA.
greater than or equal to zero SQLN must be set to a value
prior to use by DESCRIBE or greater than or equal to O.
PREPARE. Indicates the total
number of occurrences of
SQLVAR.

SMALLINT The number of columns described SQLD must have a value less than
by occurrences of SQLVAR. or equal to SQLN prior to use by

FETCH, OPEN. or EXECUTE.

ARRAY Set of six fields. Not used.

Appendix B. SQLCA and SQLDA 133

Fields in an Occurrence of SQLVAR

~ PUI C Data Usage in Usage in FETCH, OPEN, and
Name Name Type DESCRIBE and PREPARE EXECUTE

(Set by the database (Set by the user prior to
manager except for SQlN) executing the statement)

SQLTYPE sqltype SMALLINT Tells the data type of the column Same as usage in DESCRIBE and
and whether or not It has an PREPARE, except that SQLTYPE
associated Indicator varrable. must be set prror to use by FETCH,
"Values of SQLTYPE" on OPEN, or EXECUTE.
page 136 lists the allowable
values and their meanings.

SQLLEN sqllen SMALLINT GI ves the length attrrbute of the Same as usage In DESCRIBE and
column, as follows. PREPARE, except that SQLTYPE

Data Type Content
must be set prior to use by FETCH,
OPEN, or EXECUTE.

Character Length attri bute
In bytes.

Decimal,
Numeric, ..J or I nteger Byte 1
= preCision;
byte 2 = scale.

Float 4 for single
precision;
8 for double
precIsion.

Integer 2 for SMALLlNT;
4 for INTEGER.

Note:
Binary numbers may be .j represented In the SQLDA as
either length of 2 or 4 or with
precision and scale. If the first
byte IS greater than X '00', it
indicates precIsion and scale.

SQLRES sqlres reserved PrOVides boundary alignment. Same as usage In DESCRI BE and
area POinters must be on a quad-word PREPARE.
(12-byte) boundary.

SQLDATA sqldata pOinter The third and fourtl, bytes contain SQLDATA must have the address of
(16-byte) a small integer that indicates the host variables prior to use by

whether the column is FOR BIT FETCH, OPEN, or EXECUTE.

.j DATA. If the small integer IS -1,
the column IS bit data (FOR BIT
DATA).

The remai nlng 12 bytes are
reserved.

134 SQLl400 Reference

PUI C Data Usage in Usage in FETCH, OPEN, and

L
Name Name Type DESCRIBE and PREPARE EXECUTE

(Set by the database (Set by the user prior to
manager except for SQLN) executing the statement)

SQLlND sqlind pOinter Reserved. SQLlND must have the address of
(16-byte) an indicator variable prior to use by

FETCH, OPEN, or EXECUTE. A
negative value indicates null and a
non-negative values indicates not
null. The following cases might
result in a null value, even though
null values cannot be stored in
tables: . If a column function (MIN, MAX,

COUNT, etc.) are specified in
the SELECT list, and the
GROUP BY clause was not
specified, and the result of
COUNT is 0, then a null value
(-1) is returned in the indicator

L variable for the column
functions other than COUNT. . If a decimal data error occurred
when evaluating an expression
in the SELECT list, but a
successful determination could
still be made as to whether the
resulting row should be
selected, as many valid results
will be returned as possible,
and items that encountered
errors will be returned as a null

L value (-2).

SQLNAME sqlname Varyi ng-Iength Contains the name or label of the Not used.
character column.
string:
maximum
length is 30
characters.

Appendix B. SQLCA and SQLDA 135

Values of SQL TYPE
The table below lists allowable values of the SQL TYPE field of an SQLDA, and
their meanings. There are two values for each data type:

• For DESCRIBE and PREPARE statements, the first value does not allow null
values, but the second value does allow null values .

• For FETCH, OPEN, and EXECUTE statements, the first value does not have
an indicator variable, but the second value does have an indicator variable.

Table 7. Allowable SQLTYPE Field Values

Values Data Type

448/449 varYing-length character
string

452/453 fixed-length character
string

456/457 long varying-length
character string (greater
than 254 bytes)

460/461 C only. VarYing length,
null terminated character
string

480/481 floating pOint

484/485 decimal

488/489 numeric (zoned)

496/497 large Integer

500/501 small Integer

The Included SQLDA
In PLfI, INCLUDE SQLDA specifies:

DCl 1 SQlDA BASED(SQlDAPTR),
2 SQLDAID CHAR(8),
2 SQlDABC BIN FIXED(31),
2 SQLN BIN FIXED,
2 SQLD BIN FIXED,
2 SQlVAR (99),

3 SQLTYPE BIN FIXED,
3 SQLLEN BIN FIXED,
3 SQlRES CHAR(12),
3 SQLDATA PTR,
3 SQUND PTR,
3 SQLNANE CHAR(30) VAR;

DCl SQLDAPTR PTR;

136 SQL!400 Reference

DESCRIBE and
PREPARE -
Null Indicator?

no/yes

no/yes

no/yes

no/yes

no/yes

no/yes

no/yes

no/yes

no/yes

FETCH, OPEN, and
EXECUTE -
Indicator Variable?

no/yes

no/yes

no/yes

no/yes

no/yes

no/yes

no/yes

no/yes

no/yes

In C, INCLUDE SQLDA specifies:

#ifndef SQLDASIZE
struct sqlda
{

} ;

unsigned char
long

sql dai d [8];
sqldabc;
sqln; short

short sqld;
struct sqlvar

short sqltype;
short sqllen;
unsigned char *sqldata;
short *sqlind;
struct sqlname

short length;
unsigned char data[30];

} sqlname;
sqlvar[l];

#define SQLDASIZE(n) (sizeof(struct sqlda)+(n-l) * sizeof(struct sqlvar))
#endif

Appendix B. SQLCA and SQLDA 137

138 SQU400 Reference

Appendix C. Reserved Words

ALL DESCRIPTOR INDEX SELECT
AND DISTINCT INSERT SET
ANY INTO
AS END-EXEC12 IS TABLE

EXECUTE TO
BETWEEN LIKE
BY FOR UNION

FROM NOT UPDATE
COLLECTION NULL USER
COLUMN GO USING
COUNT GOTO OF
CURRENT GROUP ON VALUES
CURSOR OR VIEW

HAVING ORDER
DATABASE WHERE
DELETE IMMEDIATE PRIVILEGES WITH

IN

12 COBOL only

© Copyright IBM Corp. 1988, 1989 Appendix C. Reserved Words 139

140 SQU400 Reference

L
Glossary

access path. The path used to locate data specified
in SOL statements. An access path can be either
indexed or sequential, or a combination of both.

access plan. The control structure produced during
compile time that is used to process SOL statements
encountered when the program is run.

ANSI. American National Standards Institute

application. A program or set of programs that
perform a task; for example, a payroll application.

attribute. In database design, a characteristic of an
entity; for example, the telephone number of an
employee is one of that employee's attributes.

authorization ID. A user profile. A name identifying
a user to whom privileges can be granted.

automatic bind. When an application program is
being run and the access plan is not valid, binding
takes place automatically; that is, without a user
issuing a CRTSOLxxx command, where xxx is RPG,
PLI, CBl, or C.

binary. An SOL data type indicating that the data is
a binary number with a precision of 15 (halfword) or
31 (fullword) bits.

bind. The process by which the output from the SOL
precompiler is converted to a usable structure called
an access plan. This process is the one during which
access paths to the data are selected and some
authorization checking is performed. There are two
types of bind used by SOU400: automatic and
dynamic (see automatic bind and dynamic bind).

catalog. Tables, maintained by the database
manager, that contain descriptions of objects, such as
tables, views, and indexes.

catalog views. A set of views containing information
about the objects in a collection, such as tables,
views, indexes, and column definitions.

character string. A sequence of bytes or characters
associated with a single-byte character set.

clause. A distinct part of a statement in the language
structure, such as a SELECT clause or a WHERE
clause.

collection. A set of objects created by SOU400 that
contains tables, views, indexes, and other system
objects (such as a program) created by the user. An
SOL collection consists of a library; a data dictionary

© Copyright IBM Corp. 1988, 1989

that contains description and information for all
tables, views, indexes, and files created into the
library; an SOL catalog; and a journal and journal
receiver that are used to journal changes to all tables
created into the collection.

column. The vertical part of a table. A column has a
name and a particular data type (for example,
character, decimal, or integer).

column function. A process that calculates a value
from a set of values and expresses it as a function
name followed by an argument enclosed in
parentheses.

commit. The process that data changed by one
application or user to be used by other applications or
users. When a commit operation occurs, the locks
are released to allow other applications to use the
changed data.

commit point. The point in time when data is
considered to be consistent.

comparison operator. A symbol (such as =, >, <)
used to specify a relationship between two values.

concurrency. The shared use of resources by
multiple interactive users or application programs at
the same time.

correlation name. An identifier that designates a
table, a view, or an individual row of a table or view
within a single SOL statement. The name can be
defined in any FROM clause or in the first clause of
an UPDATE or DELETE statement.

cursor. A named control structure used by an
application program to point to a row of data. The
position of the row is within a table or view, and the
cursor is used to interactively select rows from the
columns.

data type. An attribute of columns, constants, and
host variables.

DBCS. See double-byte character set (DBCS).

default value. A predetermined value, attribute, or
option that is assumed when no other value is
explicitly specified. For example, the value of a
column is a nonnull value determined by the data
type of the column.

delimited identifier. A sequence of one or more
characters of the standard character set enclosed
within SOL escape characters used to form a name.

Glossary 141

delimiter token. A string constant, a delimited
identifier, a symbol (for example, II, t, *, +, or -), or
other special characters (for example, period, comma,
parentheses).

double-byte character set (DBCS). A set of
characters used by national languages, such as
Japanese and Chinese, that have more symbols than
can be represented by the 256 single-byte EBCDIC
positions. Each character is 2 bytes in length, and
therefore requires special hardware to be displayed
or printed. Contrast with single-byte character set.

dynamic bind. When SQL statements are entered
interactively, binding is done dynamically (that is, as
the SQL statements are entered).

dynamic SQL. SQL statements that are prepared and
processed within a program while the program is
running. The SQL source statements are contained in
host-language variables rather than being coded
directly into the application program. The SQL
statement might change several times while the
program is running.

EBCDIC. See extended binary coded decimal
interchange code (EBCDIC).

embedded SQL. SQL statements that are embedded
within a program and are prepared during the
program preparation process before the program is
run. After it is prepared, the statement itself does not
change, although values of host variables specified
within the statement might change.

escape character. The symbol used to enclose a
delimited identifier. This symbol is the quotation
mark n, except in COBOL programs where the
symbol can be assigned by the user as either a
quotation mark or an apostrophe.

expression. An operand, or a collection of operators
and operands, that yields a single value.

extended binary coded decimal interchange code
(EBCDIC). A coded character set of 256 B-bit
characters.

fixed-length string. A character string whose length
is specified and cannot be changed. Contrast with
varying-length string.

fullword binary. A binary number with a precision of
31 bits. See also integer.

full select. That form of the select-statement that
includes ORDER BY or UNION operators.

function. A column function or a scalar function.

142 SQLl400 Reference

halfword binary. A binary number with a precision of
15 bits.

host language. Any programming language, such as
COBOL, PLlI, C, and RPG, in which you can embed
SQL statements.

host structure. In an application program, a structure
referred to by embedded SQL statements. In RPG,
this is called a data structure; in PLII and C, this is
known as a structure; in COBOL, this is called a group
item.

host variable. In an application program, a variable
referred to by embedded SQL statements. In RPG,
this is called a field name; in PLII and C, this is known
as a variable; in COBOL, this is called a data item.

identifier. See delimited identifier and ordinary
identifier.

index. A set of pointers that are logically arranged
by the values of a key. Indexes provide quick access
to data and can enforce uniqueness on the rows in a
table.

index key. The set of columns in a table used to
determine the order of indexed entries.

indicator variable. A variable used to represent the
null value in an application program. For example, if
the va,lue for the results column is null, SQL puts a
negative value in the indicator variable.

integer. An SQL data type indicating that the data is
a binary number with a precision of 31 bits.

join. A relational operation that allows retrieval of
data from two or more tables based on matching
column values.

key. A column or an ordered set of columns
identified in the description of an index.

keyword, A name that identifies a parameter used in
an SQL statement or SQL precompiler command. See
also parameter.

lock, The process by which integrity of data is
ensured. The prevention of concurrent users from
accessing inconsistent data.

long string. A string whose actual length, or a
varying-length string whose maximum length, is
greater than 254 bytes or 127 double-byte characters,

mixed data string. A character string that can
contain both single-byte and double-byte characters.

null. A special value that indicates the absence of
information.

J

L
object. Anything that can be created or manipulated
with SOL statements, such as collections, tables,
views, or indexes.

ordinary identifier. A letter followed by zero or more
characters, each of which is a letter ($, @' #, a-z, and
A-Z), a number, or the underscore character used to
form a name. An ordinary identifier must not be
identical to a reserved word.

ordinary token. A numeric constant, and ordinary
identifier, a host variable, or a keyword.

. page. A unit of storage equal to 512 bytes.

parameter. The keywords and values that further
define SOL precompiler commands and SOL
statements.

plan. See access plan.

precompile. A processing of programs containing
SOL statements that takes place before a compile.
SOL statements are replaced with statements that will
be recognized by the host language compiler. The
output from this precompile includes source code that
can be submitted to the compiler and used in the bind
process.

predicate. An element of a search value that
expresses or implies a comparison operation.

prepared SQL statement. A named object that is the
form of an SOL statement that was processed by the
PREPARE statement.

privilege. A capability given to a user by the
processing of a GRANT statement.

rebind. The creation a new access plan for a
program that was previously bound. If, for example,
you add an index for a table that is used by your
application program, SOLl400 may automatically bind
the application again to take advantage of that index.

real table. A physical file or a table created by SOL.

recovery. The process of rebuilding databases after
a system failure.

relational database. A data structure perceived by its
users as a collection of tables.

result column. An expression in a SELECT clause
that SOL selects for an application program.

result table. The set of rows that SOL selects for an
application program. The program uses a cursor to
retrieve the rows one by one into a host structure or
a set of host variables.

rollback. The process of restoring data changed by
an application to the state at its last commit point.

row. The horizontal part of a table. A row consists
of a sequence of values, one for each column of the
table.

secs. See single-byte character set (SBCS).

scalar function. An operation that produces a single
value from another value and expresses it in the form
of a function name followed by a list of arguments
enclosed in parentheses .

search condition. A criterion for selecting rows from
a table. A search condition consists of one or more
predicates.

short string. A string whose actual length, or a
varying-length string whose maximum length, is less
than or equal to 254 bytes.

single-byte character set (SeCS). A character set in
which each character is represented by a one-byte
code.

small integer. An SOL data type indicating that the
data is a binary number with a precision of 15 bits.

special register. A storage area whose primary use
is to store information produced in conjunction with
the use of specific SOL functions. The SOLl400
special register is (named) USER.

SQL. See Structured Query Language.

SQLCA. See SQL communication area (SQLCA).

SQLDA. See SQL descriptor area (SQLDA).

SQL communication area (SQLCA). A collection of
variables that are used by SOL to provide an
application program with information about the
processing of SOL statements within the program.

SQL descriptor area (SQLDA). A collection of
variables that are used in the processing of certain
SOL statements. The SOLDA is intended for dynamic
SOL programs.

static SQL. SOL statements that are embedded
within a program, and are prepared during the
program preparation process before the program is
run. After being prepared, the statement itself does
not change (although values of host variables
specified by the statement might change).

string. A character string.

string delimiter. A symbol used to enclose an SOL
string constant. This symbol is the apostrophe n,
except in COBOL applications, in which case the

Clossary 143

symbol (either an apostrophe or a quotation mark)
may be assigned by the user.

Structured Query Language (SQL). A language that
can be used within host programming languages or
interactively to access data and to control access to
resources.

subselect. That form of a query that does not include
ORDER BYor UNION operators.

table. A named data object consisting of a specific
number of columns and some number of unordered
rows.

token. See delimited token and ordinary token.

union. An SOL operation that combines the results of
two subselects. Union is often used to merge lists of
values obtained from several tables.

unique index. An index that assures that no identical
key values are stored in a table.

144 SOU400 Reference

unit of recovery. A sequence of operations within a
unit of work between two commit points.

unlock. To release an object or system resource that
was previously locked and return it to general
availability.

user profile. An object with a unique name that
contains the user's password, the list of special
authorities assigned to a user, and the objects the
user owns. See also authorization /D.

value. Smallest unit of data manipulated in SOL.

varying-length string. A character string whose
length is not fixed, but variable within limits. Contrast
with fixed-length string.

view. An alternative representation of data from one
or more tables. A view can include all or some of the
columns contained in the table or tables on which it is
defined.

L
Index

A
ALL clause

of subselect 40
ALL PRIVILEGES clause

GRANT statement 93
REVOKE statement 113

alphabetic extender
basic symbol 5

ambiguous reference 20
AN D truth table 30
ANY

in USING clause of DESCRIBE statement 79
ANY clause

PREPARE statement 110
application process 3
arithmetic operators 24
AS clause

CREATE VIEW statement 70
ASC clause

CREATE INDEX statement 64
of select-statement 47

Assembler application
host variable 88

assignment
numbers 13-15
strings 15

asterisk n
in COUNT 32
in subselect 40

AS/400 system precompiler
string delimiter options for COBOL 18
use of I NCLU DE statements 96
'COMMA, -PERIOD, and 'SYSVAL options 17

authorization I D
description 10
resulting from errors 118

authorization-name 8
AVG function 32

B
base table 2
basic operations in SOL 13
basic predicate 26
BEGIN DECLARE SECTION statement 53-54
BETWEEN predicate 27
BOTH

in USING clause of DESCRIBE statement 79
BOTH clause

PREPARE statement 110
built-in function

See function

© Copyright IBM Corp. 1988, 1989

c
C application

null-terminated string variables allowed 11
catalog 2
CHAR

data type 11
character string

assignment 15
comparison 16
constants 17
description 11
empty 11

characters 5
CLOSE statement 55-56
closed state of cursor 108
COBOL application

escape character 7
host variable 21, 22
varying-length string variables 11

collection
creating 61
description 1
dropping 81

COLLECTION clause
CREATE COLLECTION statement 61
DROP statement 81

collection-name 8
column

names in a result 41
rules 45

COLUMN clause
COMMENT ON statement 57
LABEL ON statement 102

column function
See function

column name 18
column-name 8
commands

help for CL commands iv
comment

in catalog table 57
COMMENT ON statement 57-58

column name qualification 19
commit 3
commit point 59
COMMIT statement 59-60
comparison

compatibility rules 13
numbers 15
strings 16

compatibility
data types 13
rules 13

Index 145

concatenation operator 23
concurrency

with LOCK TABLE statement 104
constants

character string 17
decimal 17
floati ng-poi nt 16
hexadecimal 17
integer 16

CONTINUE clause
WH EN EVER statement 123

conversion of numbers
errors 118
scale and precision 14

correl ation-name
defining 19
description 8
FROM clause

of subselect 43
qualifying a column name 19

COUNT
COUNT function 32
CREATE COLLECTION statement 61-62
CREATE INDEX statement 63-64
CREATE TABLE statement 65-68
CREATE VIEW statement 2,69-71
cursor

See also DECLARE CURSOR statement
See also?
active set 106
closed by error

UPDATE 121
closed state 108
closing 55
COM M IT statement 59
defining 72
moving position 90
pre pari ng 106

cursor-name 8

o
data type

character string 11
description 11
numeric 12
result columns 42

decimal
arithmetic 25
constants 17
data type 13
numbers 13

DECIMAL data type
for CREATE TABLE 66

DECIMAL function 34
declaration

inserting into a program 96
DECLARE

BEGIN DECLARE SECTION statement 53

146 SOLl400 Reference

DECLARE (continued)
END DECLARE SECTION statement 83

DECLARE CURSOR statement 72-74
DECLARE STATEMENT statement 75
DELETE clause

GRANT statement 94
REVOKE statement 113

DELETE statement 76-78
deleting SOL objects 81
delimited identifier in SOL 7
DESC clause

CREATE INDEX statement 64
of select-statement 47

DESCRIBE statement 79-80
DESCRIPTOR
descriptor-name 8
DIGITS function 35
DISTINCT clause

of subselect 40
DISTINCT keyword

AVG function 32
column function 31
COUNT function 32
MAX function 32
MIN function 33
SUM function 33

DOU BLE PRECISION data type
for CREATE TABLE 66

double precision floating-point 13
double-byte character

in character strings 11
in COMMENT ON statement 58
in LIKE predicates 28
truncated duri ng assignment 15

DROP statement 81-82
duplicate rows with UNION 45
dynamic select 52
dynamic SOL

E

defined 50
descri ption
execution

EXECUTE IMMEDIATE statement 88
EXECUTE statement 85

obtaining statement information with
DESCRIBE 79

preparation and execution 51
PREPARE statement 109

EBCDIC character
in LIKE predicates 28

empty character string 11
END DECLARE SECTION statement 83-84
error

closes cursor 108
during UPDATE 121
in arithmetic expression 118
in numeric conversion 118

escape character in SQL
delimited identifier 7

evaluation order 25
EXCLUSIVE

IN EXCLUSIVE MODE clause
LOCK TABLE statement 104

executable statement 50, 51
EXECUTE IMMEDIATE statement 88-89
EXECUTE statement 85-87
expression

F

decimal operands 24
floating-point operands 25
host variables 26
in subselect 40
integer operands 24
numeric operands 24
precedence of operation 25
with arithmetic operators 24
with concatenation operator 23
without operators 23

FETCH statement 90-92
FLOA T data type 66
FLOAT function 35
floating-point

constants 16
numbers 12

FOR BIT DATA clause
CREATE TABLE statement 67

FOR MIXED DATA clause
CREATE TABLE statement 67

FOR SBCS DATA clause
CREATE TABLE statement 67

FOR UPDATE OF clause
of select-statement 48
prohibited in views 70

FROM clause
DELETE statement 77
of subselect 42
PREPARE statement
REVOKE statement

fullselect 45
function 31, 34

column 31
AVG 32
COUNT 32
MAX 32
MIN 33
SUM 33

description 31
nesting 34
scalar 34

DECIMAL 34
DIGITS 35
FLOAT 35
INTEGER 36
LENGTH 36
SUBSTR 36

110
114

G
GO TO clause

WHENEVER statement 123
GRANT statement 93-95
GROUP BY clause

cannot join view using 70
of subselect 43
results wi th subselect 41

group-by-clause 43
grouping column 43

H
HAVING clause

of subselect 44
results with subselect 41

help
for CL commands, online iv
for displays iv
for SQL precompiler commands, online iv

hexadecimal constants 17
HOLD clause

COMMIT statement 59
host label

description 8
host structure

description 22
host variable

description 8, 21
EXECUTE IMMEDIATE statement 88
FETCH statement 90
in an expression 26
PREPARE statement 110
SELECT 118
substitution for parameter markers 85

host-identifier
in host variable 8

host-label 123

identifiers in SQL
description 7
ordinary 7

IMMEDIATE
EXECUTE IMMEDIATE statement

IN EXCLUSIVE MODE clause
LOCK TABLE statement 104

IN predicate 29
IN SHARE MODE clause

LOCK TABLE statement 104
INCLUDE statement 96-97
index 2

dropping 81
INDEX clause

CREATE INDEX statement 63
DROP statement 81
GRANT statement 94

88-89

Index 147

INDEX clause (continued)
REVOKE statement 113

index search iv
index-name 9
indicator

structure 22
variable 88

infix operators 24
INSERT clause

GRANT statement 94
REVOKE statement 113

INSERT statement 98-101
integer constants 16
INTEGER data type 12,66
INTEGER function 36
interactive entry of SOL statements 52
INTO clause

DESCRIBE statement 79
FETCH statement 90
INSERT statement 99
PREPARE statement 110
S ELECT I NTO statement 117

IS clause

L

COMMENT ON statement 58
LABEL ON statement 102

LABEL
in catalog tables 102

LABEL ON statement 102-103
LABELS

in USING clause of DESCRIBE statement 79
LABELS clause

PREPARE statement 110
large integers 12
length attribute of column 11
LENGTH function 36
LIKE predicate 27
limits

in SOL 125
literals 16
LOCK TABLE statement 104-105
locking

COMMIT statement 59
description 3
during UPDATE 121
LOCK TABLE statement 104
table spaces 104

logical operator 29
logical unit of work (LUW)

definition 3
initiating closes cursors 108
ROLLBACK 115
terminating destroys prepared statements 112
terminating LUW 115

148 SOLl400 Reference

M
MAX function 32
MIN function 33
mixed data

in character strings 11
in LIKE predicates 28
in string assignments 15
using 11

MODE

N

IN EXCLUSIVE MODE clause
LOCK TABLE statement 104

IN SHARE MODE clause
LOCK TABLE statement 104

name
for SOL statements 75
in subselect 40

NAMES
in USING clause of DESCRIBE statement 79

NAMES clause
PREPARE statement 110

naming conventions in SOL 8
nonexecutable statement 50, 51
NOT FOUND clause

WHENEVER statement 123
NOT NULL clause

CREATE TABLE statement 66
NOT NULL WITH DEFAULT clause

CREATE TABLE statement 66
null value in SOL

assigned to host variable 118
assignment 13
defined 11
in grouping columns 44
in result columns 41

numbers 12
numeric

assignments 13
comparisons 15
conversion errors 118
data types 12
numbers 13

NUMERIC data type
for CREATE TABLE 66

o
object table 20
ON clause

CREATE INDEX statement 64
ON TABLE clause

GRANT statement 94
REVOKE statement 114

online
index iv

OPEN statement 106-108
operands

decimal 24
floating-point 25
host variable 26
integer 24
numeric 24

operation
assignment
comparison
description

13-15
15-16

13
operators

arithmetic 24
OR truth table 30
ORDER BY clause

of select-statement 47
prohibited in views 70

order of evaluation 25
order-by-clause 47
ordinary identifier in SOL 7

p
parameter marker 85

in EXECUTE statement 85
in OPEN statement 107
in PREPARE statement 111
rules 111

parentheses
with UNION 45

PUI application
host variable 21, 22
varying-length string variables 11

precedence
level 25
operation 25

precision of a number 12
precompiler

escape character option for COBOL 7
predicate

basic 26
BETWEEN 27
description 26
IN 29
LIKE 27

prefix operator 24
PREPARE statement 109-112
prepared SOL statement

dynamically prepared by PREPARE 109-112
executing 85-87
identifying by DECLARE 75
obtaining information by INTO with PREPARE 80
obtaining information with DESCRIBE 79

privilege 113
PUBLIC clause

GRANT statement 94
REVOKE statement 114

Q
qualification of column names 19
query 39-48
question mark (?)

See parameter marker

R
read-only

table 72
view 70

REAL data type
for CREATE TABLE 66

recovery, unit of
See logical unit of work (LUW)

result columns of subselect 42
REVOKE statement 113-114
rollback

description 3
ROLLBACK statement 115-116
row

deleting 76
inserting 98

RPG application
host variable 21
varying-length string variables not allowed 11

rules
names in SOL 8

run-time authorization ID 10

s
scalar function

See function
scale of data

comparisons in SOL 15
conversion of numbers in SOL 14
in results of arithmetic operations 24
inSOL 13

search condition
description 29
order of evaluation 30
with DELETE 77
with HAVING 44
with UPDATE 121
with WHERE 43

SELECT clause
as syntax component 40
GRANT statement 94
REVOKE statement 113

SELECT INTO statement 117-118
select list

application 41
maximum number of elements and functions 126
notation 40

SELECT statement
fullselect 45
select-statement 47

Index 149

SELECT statement (continued)
subselect 39

SET clause
UPDATE statement 120

SHARE
IN SHARE MODE clause

LOCK TABLE statement 104
shift-in character

in SOL character strings 11
not truncated by assignments 15

shift-out character
in SOL character strings 11

single precision floating-point 12
single row select 117
small integers 12
SMALLINT data type 66
special register 18

USER 18
SOL statement

BEGIN DECLARE SECTION 53-54
CLOSE 55-56
COMMENT ON 57-58
COM M IT 59-60
CONTINUE 123
CREATE COLLECTION 61-62
CREATE INDEX 63-64
CREATE TABLE 65-68
CREATE VIEW 69-71
DECLARE CURSOR 72-74
DECLARE STATEMENT 75
DELETE 76-78
DESCRIBE 79-80
DROP 81-82
END DECLARE SECTION 83-84
EXECUTE 85-87
EXECUTE IMMEDIATE 88-89
FETCH 90-92
GRANT 93-95
INCLUDE 96-97
INSERT 98-101
LABEL ON 102-103
LOCK TABLE 104-105
names for 75
OPEN 106
PREPARE 109-112
REVOKE 113-114
ROLLBACK 115-116
SELECT INTO 117-118
UPDATE 119-122
WHENEVER 123-124

SOL (Structured Query Language)
assignment operation 13
basic operations 13
character strings 11
characters 5
comparison operation 13
constants 16
data types 11

150 SOLl400 Reference

SOL (Structured Query Language) (continued)
escape character 7
identifiers 7
limits 125
naming conventions 8
null value 11
numbers 12
shift-out and shift-in characters 11
tokens 5
value 11
variable names used 8

SOLCA (SOL communication area)
description 127
entry changed by UPDATE 121

SOLCA (SOL communication area) clause
INCLUDE statement 96

SOLDA (SOL descriptor area)
descri ption 133

SOLDA (SOL descriptor area) clause
INCLUDE statement 96

SOLERROR clause
WHENEVER statement 123

SQLWARNING clause
WHENEVER statement 123

STATEMENT clause
DECLARE STATEMENT 75

statement-name 9
static select 52
static SOL 1, 50
string

columns 11
comparison 16
constant

character 17
hexadecimal 17

variable
fi xed-length 11
varying-length 11

subselect 39
in CREATE VIEW statement 39
used in CREATE VIEW statement 70
used in INSERT statement 99

SUBSTR function 36
SUM function 33
synonym

qualifying a column name 19

T
table

creating 65
definition 2
designator 20
dropping 81
temporary 108

TABLE clause
COMMENT ON statement 57
DROP statement 82
LABEL ON statement 102

J

table space
dropping 81

table-name
description 9
in CREATE TABLE statement 65
qualifying a column name 19

temporary tables in OPEN 108
terminating

logical unit of work (LUW) 115
unit of recovery 59

tokens in SQL 5-6
truncation of numbers 13
truth table 30
truth valued logic 29

u
unary

minus 24
plus 24

undefined reference 20
UNION ALL clause

of fullselect 45
UNION clause

of full select 45
with duplicate rows 45

UNIQUE clause
CREATE INDEX statement 63

unit of recovery
See also logical unit of work (LUW)
COMMIT 59
destroying prepared statements 112
initiating closes cursors 108
referring to prepared statements 109
ROLLBACK 115
terminating

COMMIT 59
UPDATE clause

GRANT statement 94
LABEL ON 102
REVOKE statement 113

UPDATE statement 119-122
update-clause 48
USER special register 18
USING clause

DESCRIBE statement 79
EXECUTE statement 85
OPEN statement 106
PREPARE statement 110

USING DESCRIPTOR 85
USING DESCRIPTOR clause

EXECUTE statement 85
FETCH statement 90
OPEN statement 107

V
value in SQL 11

VALUES clause
INSERT statement 99

view
See also?
creating 69
description 2
dropping 82
read-only 70

VIEW clause
CREATE VIEW statement 69
DROP statement 82

view-name
description 9
qualifying a column name 19

W
WH EN EVER statement 123-124
WHERE clause

DELETE statement 77
of subselect 43
UPDATE statement 121

WHERE CURRENT OF clause
DELETE statement 77
UPDATE statement 121

WORK
in COMMIT statement 59
in ROLLBACK statement 115

WORK clause
COMMIT statement 59

Special Characters
" (asterisk)

in subselect 40
"APOST precompiler option 18
"APOSTSQL precompiler option 18
"COMMA precompiler option 17
"PERIOD precompiler option 17
"QUOTE precompiler option 18
"QUOTESQL precompiler option 18
'SYSVAL precompiler option 17
? (question mark)

See parameter marker

Index 151

Application System/400Tf4 Programming:
Structured Query Language/400 Reference SC21-9608-1

READER'S COMMENT FORM

Please use this form only to identify publication errors or to request changes in publications. Di rect any
requests for additional publications, technical questions about IBM systems, changes in IBM programming
support, and so on, to your IBM representative or to your IBM-approved remarketer. You may use this form
to communicate your comments about this publication, its organization, or subject matter, with the under
standing that IBM may use or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you.

o If your comment does not need a reply (for example, pointing out a typing error), check
this box and do not include your name and address below. If your comment is applicable,
we will include it in the next revision of the manual.

o If you would like a reply, check this box. Be sure to print your name and address below.

Page number(s): Comment(s):

No postage necessary if mailed in the U.S.A.

Please contact your IBM representative or your IBM-approved
remarketer to request additional publications.

Name

Company or
Organization

Address

Phone No.

City State Zip Code

Area Code

Fold and Tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Information Development
Department 245
3605 North Hwy 52
ROCHESTER MN 55901-9986

Fold and Tape

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

1.1.1 •• 1.1.1.1 •• 11 •••••• 111.1 •• 1.1 •• 1 •• 1 •• 11 ••• 11 •• 1

Fold and Tape Please do not staple Fold and Tape

--------- ----- ---- - ---- - - ----------_.-
®

Cut or Fold
Along Line

Cut or Fold
Along Line

