

--------- -------- - ---- -- ----------_.- Application System/400Tt~

Programming:
Structured Query Language/400
Programmer's Guide

SC21-9609-1

so ¢o •

Second Edition (September 1989)

This major revision makes obsolete SC21-9609-0.

See "About This Manual" for a summary of major changes to this edition. Changes or additions to the text
and illustrations are indicated by a vertical line to the left of the change or addition.

This edition applies to Release 2 Modification Level 0 of IBM Structured Query Language/400 (SQLl400)
Licensed Program (Program 5728-ST1), and to all subsequent releases and modifications until otherwise
indicated in new editions or technical newsletters.

Changes are periodically made to the information herein; any such changes will be reported in subsequent
revisions or technical newsletters.

This publication contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any si milarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM's licensed program may be used. Any func
tionally equivalent program may be used instead.

The numbers at the bottom right of illustrations are publishing control numbers and are not part of the tech
nical content of this manual.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to your IBM-approved remarketer.

This publication could contain technical inaccuracies or typographical errors.

A form for readers' comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Information Development, Department 245, Rochester,
Minnesota, U.S.A. 55901. IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Application System/400, AS/400, COBOLl400, Operating System/400, OS/400, RPG/400, C/400 and SQLl400
are trademarks of the International Business Machines Corporation.

400 is a registered trademark of the International Business Machines Corporation.

© Copyright International Business Machines Corporation 1988, 1989. All rights reserved.

J

J

L About This Manual

This manual explains to programmers and database managers how to use the IBM
Structured Ouery language/400 (SOLl400) licensed program, how to access data in
a database, and how to prepare, run, and test an application program containing
SOL statements.

This manual may refer to products that are announced but are not yet available.

This manual contains small programs which are furnished by IBM as simple exam
ples to provide an illustration. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability, servicea
bility, or function of these programs. All programs contained herein are provided to
you "AS IS". THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED.

Who Should Use This Manual
This manual is intended for use by application programmers and database man
agers who are familiar with COBOLl400, AS/400 PLlI, C/400, or RPG III (part of
RPG/400) languages and who understand basic database applications.

What You Should Know
You should know how to use and write application programs for the AS/400 system.
You should also know how to program with COBOLl400, AS/400 PLlI, C/400, or RPG
III.

Assumptions Relating to Examples of SQl Statements
The examples of SOL statements shown in this manual are based on the sample
tables in Appendix B and assume the following:

• They are shown in the interactive SOL environment or written in COBOL. EXEC
SOL and END-EXEC are used to delimit an SOL statement in a COBOL program.
A description of how to use SOL statements in a COBOL program is provided in
Chapter 5.

• Each SOL example is shown on several lines, with each clause of the statement
on a separate line.

• SOL reserved words are highlighted.

• SOL naming convention is used.

• The APOST and APOSTSOl precompiler options are assumed (although they
are not the default in COBOL). Character string literals within SOL and host lan
guage statements are delimited by apostrophes (').

• The complete syntax of the SOL statement is usually not shown in anyone
example. For the complete description and syntax of any of the statements
described in this manual, see the SQLl400 Reference manual.

Whenever the examples vary from these assumptions, it is stated.

© Copyright IBM Corp. 1988. 1989 About This Manual iii

-va 0' ... _ • - e e • $

Because this manual is intended for the application programmer, most of the exam
ples are shown as if they were written in an application program. However, many
examples can be slightly changed and run interactively by using the interactive SOL
(see Chapter 11). The syntax of an SOL statement, when using interactive SOL,
differs slightly from the format of the same statement when it is embedded in a
program.

How This Manual Is Organized
Chapter 1 introduces you to the Structured Ouery language (SOL) by explaining
the concepts and objects of SOL. A comparison of the AS/400 system and the
SOL naming rules is shown, and the SOL catalog is described.

Chapter 2 describes how to create and work with collections, tables, and views,
and how to use catalogs in database design.

Chapter 3 describes coding techniques for using basic SOL statements and
clauses, using a cursor, performing complex search conditions, and joining data
from more than one table.

Chapter 4 describes common concepts and rules for using SOL with host lan
guages.

Chapter 5 describes how to use SOL statements in COBOL programs.

Chapter 6 describes how to use SOL statements in RPG III programs.

II Chapter 7 descri bes how to use SOL statements in PLII programs.

Chapter 8 describes how to use SOL statements in C programs.

Chapter 9 describes how to issue SOL statements that are defined and run at
program run time.

Chapter 10 describes how to prepare and run a program containing SOL state
ments.

Chapter 11 describes how to use interactive SOL to prompt, syntax check, vali
date, and run SOL statements.

Chapter 12 describes the security plan for protecting SOL data.

Chapter 13 describes how to establish a test environment for and how to debug
SOL statements in an application program.

Chapter 14 describes guidelines and techniques for fine-tuning SOL statements
in an application program and for working with retrieved data.

Appendix A contains sample tables and the statements for creating them for
inserting information into them. The examples used throughout this manual are
based on these sample tables.

Appendix B contains a description of SOL return codes.

Appendix C contains sample programs using SOLl400 statements.

This manual also contains a glossary of terms and abbreviations and an index. Use
the glossary to find the meaning of unfamiliar terms. Use the index to lOOK up a
topic.

iv Sal Programmer's Guide

•

L How This Manual Has Changed
The following is a list of the major changes or additions that have been made to this
manual:

• A new chapter on the C/400 precompiler
• A new parameter, TGTRLS, allowed on CRTSOLRPG and CRTSOLCBL com

mands
• New parameters, PGMLNG, DECPNT, and SOLSTRDLM, added to STRSOL

command
• Prompting for SOL statements
• Ability to save interactive SOL session

Changes since the previous edition of the manual are indicated by a vertical line to
the left of the change.

Related Online Information
The following online information is available on the AS/400 system. After pressing
the Help key on any menu, you can press the Help key a second time to see an
explanation of how the online information works, including the index search func
tion. You can press either the Help key or F1 for help.

Help for Displays

Index Search

You can press the Help key on any display to see information about the display.
There are two types of help available:

Field
Extended

Field help explains the field on which the cursor is positioned when you press the
Help key. For example, it describes the choices available for a prompt. If a system
message appears at the bottom of the display, position the cursor on the message
and press the Help key to see information about the cause of the message and the
appropriate action to take.

Extended help explains the purpose of the display. Extended help appears if you
press the Help key when the cursor is outside the areas for which field help is avail
able.

To exit the online information, press F3 (Exit). You return to the display on which
you pressed the Help key.

Index search allows you to specify words or phrases that identify the information
that you want to see. To use index search, press the Help key, then press F11
(Search index). You can also use index search by entering the Start Index Search
(STRIDXSCH) command on any command line or by selecting option 2 on the User
Support menu.

About This Manual V

Help for Control Language Commands
To see prompts for parameters for a control language command, type the command,
then press F4 (Prompt) instead of the Enter key. To see extended help for the
command, type the command and press the Help key.

Online Education
AS/400 online education provides training on a wide variety of topics. To use the
online education, press F13 (User support) on any system menu to show the User
Support menu. Then select the option to use online education .•

Question-and-Answer Function
The question-and-answer (0 & A) function provides answers to questions you may
have about using the AS/400 system. To use the 0 & A function, press F13 (User
support) on any system menu to show the User Support menu. Then select the
option to use the question-and-answer function. You can also use the qUestion-and-. " ".'.
answer function by entering the Start Question and Answer (STROST) command on .".,
any command line.

vi SOL Programmer's Guide

L Related Printed Information
If you need more information about how to use SOL statements, statement syntax
and parameters, see the following manuals:

• Programming: Structured Query Language/400 Reference, SC21-9608

This manual also contains information on the following:

Basic syntax of SOL and language elements (such as characters, tokens,
and constants)
Scalar functions and column functions
Subselect, fullselect, and select-statement queries
Limits set by the SOLl400 program
SOlCA and SOlDA control blocks

• Systems Application Architecture Common Programming Interface Database
Reference, SC26-4348.

If you need more information about the interactive data definition utility, see the
Utilities: Interactive Data Definition Utility User's Guide, SC21-9657.

For more information about AS/400 system security, see the Programming: Security
Concepts and Planning, SC21-8083.

For more information about entering source and syntax checking of host language
and SOL statements, see the Application Development Tools: Source Entry Utility
User's Guide and Reference, SC09-1172.

For more information on AS/400 control language commands and system program
ming, see the following:

• Languages: COBOLl400 User's Guide, SC09-1158

• Languages: PLII Reference Summary, SX09-1051

• Languages: PLII User's Guide and Reference, SC09-1156

• Languages: RPG/400 User's Guide, SC09-1161

• Languages: C/400 User's Guide (available at a later date)

• Languages: C/400 Reference Summary (available at a later date)

• Programming: Command Reference Summary, SC21-8076

• Programming: Control Language Programmer's Guide, SC21-80n

• Programming: Control Language Reference, SBOF-0481

For more information about databases, see the following:

• Programming: Backup and Recovery Guide, SC21-8079

• Programming: Database Guide, SC21-9659

• Programming: Data Description Specifications Reference, SC21-9620

About This Manual vii

J

viii SOL Programmer's Guide

L

L

Contents

Chapter 1. Introduction to Structured Query language/400 1-1
SOL Concepts .. 1-1

Relational Databases and Terminology 1-2
Types of SOL Statements 1-2

SOL Objects 1-3
Collections .. 1-3
Data Dictionary 1-3
Journals and Journal Receivers 1-3
Tables, Rows, and Columns 1-3
Views .. 1-4
Indexes ... 1-5
Catalogs .. 1-5

Catalog Views .. 1-6
SYSCOLUMNS .. 1-6
SYSINDEXES ... 1-8
SYSKEYS 1-8
SYSTABLES .. 1-9
SYSVIEWDEP ... 1-9
SYSVIEWS .. 1-10

Compiled Application Program Objects 1-10
User Source File Member .. 1-10
Temporary Source File Member 1-11
Program ... 1-11

Chapter 2. Working with SQl Collections, Tables, Views, Indexes, and Catalogs 2-1
Creating an SOL Collection 2-1
Creating and Using a Table 2-1

Creating the Department Table (TDEPT) 2-2
Using the LABEL ON Statement for Defining Table Names and Column

Headings ... 2-2
Inserting Information into a Table 2-2

Getting Information from a Single Table 2-4
Getting Information from More Than One Table 2-5
Changing Information in a Table 2-6
Deleting Information in a Table 2-6
Creating and Using a View 2-7

Creating a View on a Single Table 2-7
Creating a View Combining Data from More Than One Table 2-8
Notes on Using a View 2-9

Working with Indexes 2-10
Using the Catalog in Database Design .. 2-11

Getting Catalog Information about a Table , , , . , " 2-11
Getting Catalog Information about a Column ' , ' . , , , ' 2-11
Getting Catalog Information about Indexes ,.,',', ," 2-12
Getti ng Catalog I nformation about Views ' . , , . , . , , , 2-12
Building a View over Catalog Views ,.," , , , , , , ' , , , , " 2-12

Using COMMENT ON , , , , , , , , , , , , 2-13
Getting Comments , . , , , , 2-13

Chapter 3. SQl Coding Techniques
Using Basic Sal Statements and Clauses

The INSERT Statement "

3-1
, , , , , , , , ' 3-1

3-1

© Copyright IBM Corp, 1988, 1989 Contents ix

-

The UPDATE Statement
The DELETE Statement
The SELECT INTO Statement
The WHERE Clause
The GROUP BY Clause
The HAVING Clause
The ORDER BY Clause

3-3
3-4
3-5
3-8

3-11
3-13
3-14

Using the UNION Keyword to Combine Subselects 3-16
Restrictions for the Length and Data Type of Columns 3-18
Specifying UNION ALL 3-19

Using a Cursor 3-20
Example of How to Use a Cursor 3-20
A Unit of Recovery and Open Cursors 3-25
Preventing Duplicate Rows 3-25

Performing Complex Search Conditions 3-26
Keywords for Use in Search Conditions 3-26

Joining Data from More Than One Table 3-29
The WHERE Clause and Joining Tables 3-30
Notes on the Join Technique 3-31

Inserting Multiple Rows into a Table 3-32
Inserting Default Values into Columns 3-33

Chapter 4. Common Concepts and Rules for Using SQl with Host languages 4-1
Using Host Variables in SOL Statements 4-1

Assignment Rules .. 4-2
Indicator Variables 4-4

Handling SOL Error Return Codes 4-6
Handling Exception Conditions with the WHENEVER Statement 4-7

Chapter 5. Using SQl Statements In COBOL Programs 5-1
Application Requirements 5-1

SOL Communication Area (SOLCA) 5-1
Coding Requirements 5-2
Host Structures 5-4
Basic Requirements for Host Variables 5-5

Coding Rules .. 5-5

J

Assignment Rules 5-5 . .'
Allowable COBOL Declarations 5-6 ,...",
Indicator Variables
External Descriptions

The WHENEVER Statement
Handling SOL Error Return Codes

5-8
5-8
5-8
5-8

Chapter 6. Using SQl Statements in RPG Programs 6-1
Application Requirements 6-1

SOL Communication Area (SOLCA) 6-1
Coding Requirements 6-2
Host Structures ... 6-4
Basic Requirements for Host Variables

Coding Rules .. .
Assignment Rules
Allowable RPG Declarations
Indicator Variables
External Descriptions

The WHENEVER Statement
Handling SOL Error Return Codes

6-5
6-5
6-5
6-5
6-6
6-6
6-7
6-7

X Sal Programmer's Guide

Chapter 7. Using SQl Statements In Pl/l Programs 7-1
Application Requirements 7-1

"\..." SOL Communication Area (SOlCA) 7-1
SOL Descriptor Area (SOlDA) 7-2

Coding Requirements 7-2
Using PLII Host Variables in SOL Statements 7-3

Host Structures ... 7-3
Basic Requirements for Host Variables 7-4

Coding Rules ... 7-4
Assignment Rules .. 7-5
Allowable PLII Declarations 7-5
Indicator Variables 7-7

Using the %INClUDE Directive for External File Descriptions 7-8
Element Description 7-8
Structure Definition 7-9
Structure Ending .. 7-10
%INClUDE Example 7-11

The WHENEVER Statement 7-11
Handling SOL Error Return Codes 7-11

Chapter 8. Using SQl Statements in C Programs 8-1
Application Requirements 8-1

SOL Communication Area (SOlCA) 8-1
SOL Descriptor Area (SOlDA) 8-2

Coding Requirements 8-3
Using C Host Variables in SOL Statements 8-4

Host Structures ... 8-4

"~ Basic Requirements of Host Variables 8-5
Coding Rules ... 8-5
Assignment Rules .. 8-6
Allowable C Declarations 8-6
Supported Pointer Data Types 8-8
Indicator Variables 8-9

The WHENEVER Statement 8-9
Handling SOL Error Return Codes 8-9

Chapter 9. Dynamic SQl Applications 9-1
Designing and Running a Dynamic SOL Application 9-3
Processing NonSelect-Statements 9-3

Using the PREPARE and EXECUTE Statements 9-4
Processing Select-Statements and Using SOlDA 9-5

Fixed-List Select-Statements . 9-5
Varying-List Select-Statements 9-6
The SOL Descriptor Area (SOlDA) 9-7
SOlDA Format .. 9-7
Example of a Select-Statement for Allocating Storage for SOlDA 9-10
Using a Cursor ... 9-14
Using Parameter Markers 9-15

Chapter 10. Preparing and Running a Program with SQl Statements 10-1
Basic Processes of the SOL Precompiler 10-1

Input to the Precompiler 10-2
Output from the Precompiler 10-2

Precompiler Commands 10-7
Syntax for the Precompiler Commands 10-7

Precompiler Command Parameters 10-12

Contents xi

Parameter Definitions 10-12
Required Parameter 10-12
Optional Parameters 10-13
Example of the Precompiler Source Command 10-17

Compiling an Application Program 10-17
Binding an Application 10-18

Program References 10-18
Running a Program with Embedded Sal 10-19

OS/400 DDM Considerations 10-19
Override Considerations 10-19
Sal Return Codes 10-19

Chapter 11. Using Interactive SQl 11-1
Overview ... 11-1

Terminology ... 11-2
Getting Started ... 11-3

Functional Description
Statement Entry
Session Services
List Selection Function
Exit Interactive Sal
Help
The Session and Its Functions
Recovering a Saved or Failed Sal Session
Messages
Supported Sal Statements
Interactive Session Display Flow Diagram

Tips on Using Interactive Sal
Using the List Selection Function
Testing Your Sal Statements Using Interactive Sal
Entering DBCS Data

STRSOl Command
Example

Chapter 12. SQL Data Protection
Sal Security

Authorization ID
Public Authority
Views .. .

Sal Data Integrity
Concurrency
Atomic Operations
Journaling
Commitment Control
Save/Restore ,
Damage Tolerance
Index Recovery

Chapter 13. Testing SQL Statements in Application Programs
Establishing a Test Environment

DeSigning a Test Data Structure
Debugging Your Program

Chapter 14. Guidelines and Techniques for Using SQL
Guidelines for Using Sal Statements

Effectively Using an Sal Index

xii Sal Programmer's Guide

11-4
11-4
11-6
11-8
11-8
11-9
11-9
11-9
11-9

11-10
11-10
11-14
11-14
11-17
11-17
11-18
11-20

12-1
12-1
12-1
12-1
12-1
12-2
12-2
12-3
12-3
12-4
12-6
12-6
12-6

13-1
13-1
13-1
13-2

14-1
14-1
14-2

J

Improving Performance When Selecting Data from Two or More Tables 14-5
Improving Performance by Reducing the Number of Opens 14-6
Improving Performance by Using Blocking Considerations 14-7
Improving Performance when Paging Interactively Displayed Data 14-7

Techniques for Solving Some Common Collection Problems 14-8
Paging through Retrieved Data 14-8
Keeping a Copy of the Data 14-8
Retrieving Data a Second Time 14-8
Establishing Position at the End of a Table 14-10
Adding Data to the End of a Table 14-10
Updating Data as It Is Retrieved from a Table 14-10
Updating Data Previously Retrieved 14-11
Changing the Table Definition 14-11

Appendix A. SOL Sample Tables
Creating the Tables .. .

Department Table (TDEPT)
Employee Table (TEMPL)
Project Table (TPROJ)
Employee Project Account Table (TEMPRACT)

Inserting Information into the Tables
TDEPT Table .. .
TEMPL Table .. .

A-1
A-1
A-1
A-2
A-2
A-2
A-3
A-3
A-3

TPROJ Table A-4
TEMPRACT Table A-4

Sample Tables A-5

Appendix B. SQLCODES B-1
SQLCODE Descriptions B-2

Positive SQLCODEs B-2
Negative SQLCODEs B-2

Appendix C. Sample Programs Using SQLl400 Statements C-1
SQL Statements in COBOL Programs C-3
SOL Statements in PLII Programs C-11
SOL Statements in RPG Programs C-16
SQL Statements in C Programs C-21
Report Produced by Sample Programs C-25

Glossary .. . G-1

Index .. X-1

Contents xiii

xiv Sal Programmer's Guide

I Chapter 1. Introduction to Structured Query Language/400

Sal Concepts

This manual describes the AS/4001 system implementation of the Structured Ouery
language/400 (SOLl400)1. SOL manages information based on the relational model
of data. SOL statements may be embedded in high-level languages or may be run
interactively.

SOL consists of statements and clauses that describe what you want to do with the
data in a database and under what conditions you want to do it.

SOLl400 consists of three main parts:

• SOL run-time support

This part supplies the parsing of SOL statements and the support to run any SOL
statement. SOLl400 interfaces with the existing system functions to use SOL
statements. This support is part of the Operating System/400 (OS/400)1, which
allows applications that contain SOL statements to be run on systems where
SOL is not installed.

• SOL precompilers

This part supports precompiling embedded SOL statements in host languages.
These languages are supported: COBOLl4001, AS/400 PLlI, C/4001, and RPG III
(part of RPG/4001). The SOL host language precompilers prepare an application
program containing SOL statements. The host language compilers then compile
the precompiled host source programs. For more information on precompiling,
see Chapter 10.

• SOL interactive interface

This part supplies you with an interactive interface for creating and running SOL
statements. For more information on interactive SOL, see Chapter 11.

I 1 AS/400, COBOLl400, Operating System/400, OS/400, RPG/400, C/400, and SQL/400 are trademarks of the International Business
Machines Corporation.

© Copyright IBM Corp. 1988, 1989 Chapter 1. Introduction 1-1

Relational Databases and Terminology
In the relational model of data, all data is perceived as existing in tables. SOLl400
objects are created and maintained as AS/400 system objects. The following table
shows the relationship between AS/400 system terms and SOL relational database
terms. For more information on database, see the Database Guide.

Table 1-1. Relationship of System Terms to SQL Terms

System Terms

Library. Groups related objects and allows
the user to find the objects by name.

Physical file. A set of records.

Record. A set of fields.

Field. One or more characters of related
information of one data type.

Logical file. A subset of fields and records
of one or more physical files.

Types of Sal Statements

SQL Terms

Collection. Consists of a library, a journal,
a journal receiver, a data dictionary, and an
Sal catalog. A collection groups related
objects and allows the user to find the
objects by name.

Table. A set of columns and rows.

Row. The horizontal part of a table con
taining a serial set of columns.

Column. The vertical part of a table of one
data type.

View. A subset of columns and rows of one
or more tables.

There are two basic types of SOL statements: data definition statements (DDL) and
data manipulation statements (DML). SOL data definition statements can only
operate on objects created by SOL in an SOL collection. SOL data manipulation
statements can operate on objects created by SOL as well as AS/400 externally
described physical files and AS/400 single-format logical files, whether or not they
reside in an SOL collection. The IDDU dictionary definition for program-described
files will not be referenced. Program-described files will appear as a table with only
a single-character column.

The following SOL statements are data definition statements:

COMMENT ON
CREATE COLLECTION
CREATE INDEX
CREATE TABLE
CREATE VIEW

DROP
GRANT
LABEL ON
REVOKE

The following SOL statements are data manipulation statements:

CLOSE
COMMIT
DECLARE CURSOR
DELETE
FETCH
INSERT

1-2 Sal Programmer's Guide

LOCK TABLE
OPEN
ROLLBACK
SELECT
UPDATE

L

L

SQlObjects

Collections

Data Dictionary

SOL objects used on the AS/400 system are collections, tables, views, indexes, and
catalogs. SOL creates and maintains these objects as AS/400 database objects. A
brief description of these objects follows.

A collection consists of a library, a journal, a journal receiver, a catalog, and a data
dictionary. Tables, views, and other system objects (such as programs) can be
created, moved, or restored in an SOL collection. SOL tables, views, and indexes
can only be created into an SOL collection. They cannot be created into an AS/400
library.

AS/400 physical files can be placed in a created, moved, or restored SOL collection.
AS/400 logical files may not be placed in an SOL collection because they cannot be
described in the data dictionary.

You may create and own many collections.

A data dictionary is a set of tables containing object definitions.

SOL automatically creates a data dictionary when a collection is created. The dic
tionary is then automatically maintained by the system. You can work with data dic
tionaries by using the interactive data definition utility (IDDU), which is part of the
OS/400 program. For more information on IDDU, see the IDDU User's Guide.

Journals and Journal Receivers
A Journal and Journal receiver are used to record changes to tables and views in the
database. The journal and journal receiver are then used in processing SOL
COMMIT and ROLLBACK statements. For more information on journaling, see the
Backup and Recovery Guide.

Tables, Rows, and Columns
A table is a two-dimensional arrangement of data consisting of rows and columns.
The row is the horizontal part containing one or more columns. The column is the
vertical part containing one or more rows of data of one data type. All data for a
column must be of the same type. A table in SOL is a nonkeyed physical file. See
the section "Data Types" in the SQLl400 Reference manual for a description of data
types.

Chapter 1. Introduction 1-3

SQl Data Types

Views

The following is a sample Sal table:

Columns

l
Rows -~ PROJNO PROJNAME DEPTNO DEPTMGR PRSTAFF

r--. MA2100 MFG AUTOMATION D11 000060 12

~ MA2110 MFG PROGRAMMING E21 000100 3

~ MA2112 ROBOT DESIGN E01 000050 3

~ MA2113 PROD CONTROL PROG D11 000060 3

..
RSLS753-1

When you create a table in Sal, you define each of its columns to hold one of the
following types of data:

CHARACTER

DECIMAL

REAL

FLOAT

INTEGER

NUMERIC

SMAlLiNT

Any EBCDIC character

A packed decimal number with an implied decimal point

A short (4-byte) floating-point number in IEEE format

An 8-byte floating point number in IEEE format

A binary number with a precision of 31 bits

A zoned decimal number with an implied decimal point

A binary number with a precision of 15 bits

For more information on data types, see the section on "Data Types" in the SQLl400
Reference manual.

A view appears like a table to an application program; however, a view contains no
data. It is created over one or more tables. A view can contain all the columns of
given tables or some subset of them, or can contain all the rows of given tables or
some subset of them. The columns may be arranged differently in a view than they
are in the tables from which they are taken. A view in Sal is a special form of a
non keyed logical file.

The following figure shows a view created from the preceding example of an Sal
table. Notice that the view is created only over the PROJNO and PROJNAME
columns of the table and for rows MA2110 and MA2111.

1-4 Sal Programmer's Guide

J

Indexes

Catalogs

L

Columns

l
PROJNO PROJNAME

MA2100 MFG AUTOMATION

MA2110 MFG PROGRAMMING

RSLS754-1

An SOL Index is a collection of the data in the columns of a table that are logically
arranged in either ascending or descending order. Each index contains a separate
arrangement. An SOLl400 index is a keyed logical file.

The index is used by the system for faster data retrieval. Whether you create an
index is optional. You can create any number of indexes. You can create or drop
an index at any time. The index is automatically maintained by the system.
However, because the indexes are maintained by the system, a large number of
indexes can adversely affect the performance of applications that change the table.

An SOL catalog consists of a set of views and logical files based on:

• Two database files in OSYS (maintained by the AS/400 database manager) con
taining cross-reference information on:

- The relationships between files and dictionaries
- The relationships between files

• The set of data dictionary files in the collection containing object definitions

Catalog views only contain information about objects in one collection. The infor
mation in a catalog is about your SOL collection and its contents.

The catalog describes every table, view, index, and file in the collection and
includes column definitions. However, there are four logical files existing in every
collection that are not described in the catalog. The information can be queried like
tables.

A catalog is automatically created when you create a collection. You cannot drop or
explicitly change the catalog.

The views contained in an SOL catalog are named:

SYSCOLUMNS
SYSINDEXES
SYSKEYS
SYSTABLES
SYSVIEWDEP
SYSVIEWS

You can access information in the SOL catalog views by using normal SOL state
ments. The contents of each of the catalog views is described in the following
section.

Chapter 1. Introduction 1-5

Catalog Views

SYSCOLUMNS

Column Name

NAME

TBNAME

TBCREATOR

COLNO

COLTYPE

LENGTH

SCALE

NULLS

UPDATES

REMARKS

The views contained in an Sal catalog are described in this section.

The SYSCOlUMNS view contains one row for every column of each table and view
in the SOL collection (including the columns of the SOL catalog). The following
table describes the columns in the SYSCOlUMNS view:

Data Type

CHAR(10)

CHAR(10)

CHAR(10)

SMALLINT

CHAR(8)

SMALLINT

SMALLINT

CHAR(1)

CHAR(1)

CHAR(254)

Description

Name of the column

Name of the table or view that contains the column

The owner of the table or view

Numeric place of the column in the table or view, ordered from left to
right

Type of column:

INTEGER

SMALLINT

FLOAT

CHAR

DECIMAL

NUMERIC

Large number

Small number

Floating point; FLOAT, REAL, or DOUBLE PRECI
SION specified on the CREATE TABLE statement

Fixed-length character string

Packed decimal

Zoned decimal

The length attribute of the column; or, in the case of a decimal,
numeric, or nonzero precision binary column, its precision:

4 bytes

2 bytes

8 bytes

4 bytes

Length of string

Precision of number

Precision of number

INTEGER

SMALLINT

FLOAT, FLOAT(n) where n = 25 to 53, or
DOUBLE PRECISION

FLOAT(n) where n = 1 to 24, or REAL

CHAR

DECIMAL

NUMERIC

Scale of numeric data (zero if not decimal, numeric, or nonzero preci
sion binary)

If the column can contain null values:

N No

Y Yes

Note: This column always contains N.

If the column can be changed:

N No

Y Yes

Note: The value is N anytime a column cannot be changed.

A character string you supply with the COMMENT ON statement

1-6 SOL Programmer's Guide

Column Name Data Type Description

L DEFAULT CHAR(1) If the column has a default value (NOT NULL WITH DEFAULT):

N No

Y Yes

LABEL CHAR(30) A character string you supply with the LABEL ON statement

STORAGE SMALLINT The storage requirements for the column:

4 bytes INTEGER

2 bytes SMALLINT

8 bytes FLOAT, FLOAT(n) where n = 25 to 53, or
DOUBLE PRECISION

4 bytes FLOAT(n) where n = 1 to 24, or REAL

Length of string CHAR

(Precision/2) + 1 DECIMAL

Precision of number NUMERIC

Note: This column supplies the storage requirements for all data
types.

PRECISION SMALLINT The precision of numeric columns (zero if not numeric)

Note: This column supplies the precision of all numeric data types,
including single- and double-precision floating point.

Chapter 1. Introduction 1·7

SVSINDEXES

SVSKEVS

The SYSINDEXES view contains one row for every index in the SOL collection,

including indexes on the Sal catalog. The following table describes the columns in
the SYSINDEXES view:

Column Name

NAME

CREATOR

TBNAME

TBCREATOR

TBDBNAME

UNIOUERUlE

COlCOUNT

DBNAME

Data Type

CHAR(10)

CHAR(10)

CHAR(10)

CHAR(10)

CHAR(10)

CHAR(1)

INTEGER

CHAR(10)

Description

Name of the index

The ownep of the index

Name of the table on which the index is
defined

The owner of the table

Name of the SOL collection that contains the
table on which the index is defined

If the index is unique:

D No (duplicates are allowed)

U Yes

The number of columns in the key

Name of the SOL collection that contains the
index

The SYSKEYS view contains one row for every column of an index type in the Sal
collection (including the keys for the indexes on the Sal catalog). The following
table describes the columns in the SYSKEYS view:

Column Name Data Type Description

IXNAME CHAR(10) Name of the index

IXCREATOR CHAR(10) The owner of the index

COlNAME CHAR(10) Name of the column of the key

COlNO INTEGER Numeric position of the column in the row

COlSEO INTEGER Numeric position of the column in the key

ORDERING CHAR(1) Order of the column in the key:

A Ascending

D Descending

1-8 SOL Programmer's Guide

J

SYSTABLES

SYSVIEWDEP

The SYSTABlES view contains one row for every table or view in the Sal collection
(including the columns of the Sal catalog). The following table describes the
columns in the SYSTABlES view:

Column Name Data Type

NAME CHAR(10)

CREATOR CHAR(10)

TYPE CHAR(1)

COLCOUNT SMALLINT

RECLENGTH SMALLINT

LABEL CHAR(30)

REMARKS CHAR(254)

DBNAME CHAR(10)

Description

Name of the table or view

The owner of the table or view

If the row describes a table or view:

L Logical file

P Physical file

T Table

V View

Number of columns in the table or view

The length of any record in the table

A character string you supply with the
LABEL ON statement

A character string you supply with the
COMMENT ON statement

Name of the SQL collection that contains the
table or view

The SYSVIEWDEP view records the dependencies of views on tables (including the
views of the Sal catalog). The following table describes the columns in the
SYSVIEWDEP view:

Column Name Data Type

DNAME CHAR(10)

DCREATOR CHAR(10)

BNAME CHAR(10)

BCREATOR CHAR(10)

BDBNAME CHAR(10)

BTYPE CHAR(1)

Description

Name of the view

The owner of the view

Name of a table the view is dependent on

The owner of the table the view is based on

Name of the SQL collection that contains the
table that the view is dependent on

Type of object the view was based on:

T Table

V View

Chapter 1. Introduction 1-9

SYSVIEWS
The SYSVIEWS view contains one or more rows for each view in the Sal collection
(including the views of the Sal catalog). Each row contains a 70-character portion
of the Sal CREATE VIEW statement that created the view. The following table
describes the columns in the SYSVIEWS view:

Column Name Data Type

NAME CHAR(10)

CREATOR CHAR(10)

SEONO INTEGER

CHECK CHAR(1)

TEXT CHAR(70)

Description

Name of the view

The owner of the view

Sequence number of this row; the first
portion of the view is on row one and suc
cessive rows have increasing values of
SEONO

Used only for compatibility with other SOL
implementations. For the SOLl400 program,
the value is always N.

The text portion of the text of the CREATE
VIEW statement

Compiled Application Program Objects
With the SOLl400 program, you do not have to manage any objects related to the
application other than the original source and the resulting program.

The following shows the objects and steps that happen during the precompile and
compile processes:

User Temporary
Source Precompile Source Compile Program
File File
Member Member

Processed Access
SOL Plan
Statements

RSLS755-3

User Source File Member
A source file member contains the programmer's application language and Sal
statements. Normally, you create and maintain the source file member by using the
source entry utility (SEU), a part of the AS/400 Application Development Tools
licensed program.

1-10 SOL Programmer's Guide

J

J

L

L

Temporary Source File Member

Program

The temporary source file member is created in the library (OTEMP) by the precom
pile process (CRTSOlxxx commands)2 and is automatically deleted by the system at
job completion. A temporary source file member with the same name as the
program name is added to OSOl TEMP by the precompile process. This member
contains calls to:

• SOL run-time support, which has replaced embedded SOL statements

• Parsed and syntax checked SOL statements

By default, the host language compiler is called by the precompiler. For more infor
mation on precompilers, see Chapter 10.

A program is the object created as a result of the compile process, which you can
run.

An access plan is a set of internal structures and information that tells SOL how to
run an embedded SOL statement in the most effective way. It is created only when
a successful compile has occurred. Access plans are not created on the compile for
SOL statements that reference a table or view that cannot be found or to which you
are not authorized. The access plans for such statements will be created when the
program is run. If, at that time, the table or view still cannot be found or you are still
not authorized, a negative SOlCODE is returned. Access plans are stored and
maintained in the program object.

2 The xxx in this command refers to the host language indicators CBL for COBOLl400, PLI for AS/400 PLlI, RPG for RPG III (part of
RPG/400), and C for C/400.

Chapter 1. Introduction 1·11

1·12 Sal Programmer's Guide

-

Chapter 2. Working with SQl Collections, Tables, Views,
Index,es, and Catalogs

This chapter describes how to create and work with Sal collections, tables, views,
and indexes, and how to use catalogs in database gesign. It also describes using
the COMMENT ON statement to describe the purpose of a table or view and any
other special information about it.

The syntax and parameters for each of the Sal statements used in this chapter are
described in detail in the SQLl400 Reference manual. The tables referred to in the
examples are described in Appendix A.

A detailed description of how to use Sal statements and clauses in more complex
situations is provided in Chapter 3.

Creating an SQl Collection
In the SOLl400 program, an Sal collection is the basic object in which tables, views,
and indexes are placed. You must have authority to the CRTLIB and CRTDTADCT
Cl commands to run the CREATE COllECTION statement. For more information on
security, see Security Concepts and Planning.

A sample collection, named USER1, can be created with the following Sal state
ment:

CREATE COLLECTION USERI

Note: Running this statement causes several objects to be created and may take a
few minutes.

After you have successfully created a collection, you can put tables, views, and
ind3xes in it. For the purpose of supplying sample objects for the examples used in
this manual, imagine that we have created the USER1 collection. The following
sections describe adding tables and views to the USER1 collection.

Creating and Using a Table
The Sal CREATE TABLE statement is used to create a table and define the physical
attributes of the columns in the table.

When this statement is processed, a new, empty table is created, containing the
column information as defined. In the CREATE TABLE statement, the 'first param
eter specifies the column name, the second parameter is the data type for that
colurr,n, and the third parameter specifies if the column can be null. In the SOLl400
program, only NOT NUll or NOT NUll WITH DEFAULT is allowed.

Note: A table must be created in an Sal collection; it cannot be created in a
library,

Other than the Sal return code, no other data is ever returned for the CREATE
TABLE statement. The first-level message text of Sal return codes is described in
Appendix B.

© Copyright IBM Corp, 1988, 1989 Chapter 2. Sal Tables, Views, Catalogs 2-1

Creating the Department Table (TDEPT)
The sample department table describes each department in the company and speci
fies the department manager and the next higher department of authority.

You can create this table with the following interactive Sal statement:

CREATE TABLE USER1.TDEPT
(DEPTNO CHAR(3)

DEPTNAME CHAR(36)
MGRNO CHAR(6)
ADMRDEPT CHAR(3)

NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT)

Note: You must type the complete statement before pressing Enter or you will get
an error message.

Using the LABEL ON Statement for Defining Table Names and Column
Headings

Sometimes the table name or column name does not clearly define the data when
shown on an interactive display of the table. By using the lABEL ON statement, you
can create a more descriptive label for the columns in addition to, or instead of, the
table or column name.

In the interactive environment, the lABEL ON statements looks like this:

LABEL ON
TABLE USER1.TDEPT IS 'Department Structure Table'

LABEL ON
COLUMN USER1.TDEPT.ADMRDEPT IS 'Reports to Dept.'

where the table named TDEPT, when shown on an interactive display, will appear
as Department Structure Table and the column named ADMRDEPT will have the
heading Reports to Dept. The label for tables can be no more than 30 characters
and the label for columns can be no more than 20 characters (blanks included). For
more information about the lABEL ON statement, see the SQU400 Reference
manual.

Inserting Information into a Table
After you create a table, you can insert information (data values) into it by using the
INSERT Sal statement (see "The INSERT Statement" on page 3-1 for more informa
tion on using this statement). In the interactive environment, the INSERT statements
look like this:

INSERT INTO USER1.TDEPT
(DEPTNO,

DEPTNAME,
MGRNO,
ADMRDEPT)

VALUES

2-2 Sal Programmer's Guide

(' A00' ,
'COMPUTER SERVICE DIV.',
'000010',
, ')

J

L

L

When the INSERT statement is run, a row is placed in the table. Note that a
one-to-one correspondence exists between the column names specified in the
INSERT clause and the data values specified in the VALUES clause. You must issue
an INSERT statement for each row of the table. The sample collection now contains
a table filled with data by issuing an INSERT statement for each row.

If COMMIT(*NONE) has been specified, no further action is required. Each insert is
done at the time of the operation. However, if you specify COMMIT(*CHG) or
COMMIT(* ALL), the insert is not guaranteed until the COMMIT statement is run.
Conversely, the insert is backed out if you run a ROLLBACK statement.

Sample Department Table (TDEPT)

DEPTNO DEPTNAME MGRNO ADMRDEPT

AOO COMPUTER SERVICE DIV. 000010 (blanks')

801 PLANNING 000020 AOO

C01 INFORMATION CENTER 000030 AOO

D01 DEVELOPMENT CENTER (blanks') AOO

E01 SUPPORT SERVICES 000050 AOO

D11 MANUFACTURING SYSTEMS 000060 D01

D21 ADMINISTRATION SYSTEMS 000070 D01

E11 OPERATIONS 000090 E01

E21 SOFTWARE SUPPORT 000100 E01

, These entries were created with blank characters.

Chapter 2. Sal Tables, Views, Catalogs 2-3

•

Getting Information from a Single Table
You can retrieve stored data by using the select-statement. The select-statement is
the most complex of all SOL statements. This statement is composed of three main
clauses:

1. The SELECT clause, which specifies those columns containing the desired data

2. The FROM clause, which specifies the table containing the columns with the
desi red data

3. The WHERE clause, which supplies a filter that determines which rows of data
are retrieved

In addition to the three main clauses, there are several other clauses described in
"Using Basic SOL Statements and Clauses" on page 3-1 and in the SQLl400
Reference manual, which affect the final form of returned data (for example, the
ORDER BY clause).

In the interactive environment, the SOL statement looks like this:

SELECT EMPNO, LASTNAME, JOBCODE
FROM USERl.TEMPL
WHERE JOBCODE > 59

AND SEX = 'F'

Note: The value being compared (in this case F) must be entered exactly as it
appears in the table. For example, an f would not select any rows where the
SEX column contained an F. However, in this example, adding the following
OR clause would work.

AND SEX = 'F' OR SEX = 'f'

Refer to Appendix A to actually set up this environment and run the examples.

If the select-statement is successful, the result is one or more rows of the specified
table.

The running of the above sample select-statement returns the following rows from
the TEMPL table:

EMPNO LASTNAME JOBCODE

000010 HAAS 66

000030 KWAN 60

Note that only those rows are returned whose data values compare with the condi
tions specified by the predicates in the WHERE clause. Furthermore, the only data
values returned are from the columns you explicitly specified in the SELECT clause.
Data values of columns other than those explicitly identified are not returned.

2-4 Sal Programmer's Guide

J

J

·L Getting Information from More Than One Table

L

In addition to getting data from one table, SOL allows you to get information from
columns contained in different tables. This operation is called a join operation. (For
a more detailed description of the join operation, see "Joining Data from More Than
One Table" on page 3-29). In SOL, a join operation is specified by placing the
names of those tables you want to join together into the same FROM clause of a
select-statement.

For example, consider the following select-statement, shown as you would enter it
in the interactive environment in the SOL naming convention:

SELECT EMPNO, LASTNAME, USERl.TDEPT.DEPTNO, DEPTNAME
FROM USERl.TEMPL, USERl.TDEPT
WHERE JOBCODE > 59

AND SEX = 'F'
AND USERl.TEMPL.DEPTNO = USERl.TDEPT.DEPTNO

Note: Whenever the same column name exists in two or more tables being joined,
the table name must be entered before the column name, connected with a
period. For example, in the preceding select-statement, the column names
DEPTNO and EMPNO are found in both tables.

With the system naming convention, you must use correlation names to achieve the
same results. For example, in the case above, you would enter the following SOL
statement:

SELECT EMPNO, LASTNAME, V.DEPTNO, DEPTNAME
FROM USERI/TEMPL X, USERI/TDEPT V
WHERE JOBCODE > 59

AND SEX = 'F'
AND X.DEPTNO = V.DEPTNO

where X and Yare correlation names for TEMPL and TDEPT, respectively. For
more information on correlation names, see the SQLl400 Reference manual.

If the select-statement is successful, the result is one or more rows of the specified
table. The data values in the columns of the rows returned represent a composite of
the data values contained in the two tables specified TEMPL and TDEPT.

The running of the above example select-statement returns the following columns:

EMPNO LASTNAME DEPTNO DEPTNAME

000010 HAAS AOO COMPUTER SERVICE DIV.

000030 KWAN C01 INFORMATION CENTER

Chapter 2. Sal Tables, Views, Catalogs 2-5

•

Changing Information in a Table

EMPNO

000010

000020

000030

Using the UPDATE statement, you can change the data values in some of or all of
the columns of a table. Also, you can limit the number of rows being changed
during a single run by using the WHERE clause with the UPDATE statement. If the
WHERE clause is absent, all of the rows in the specified table are changed.
However, if the WHERE clause is highly restrictive, only one or a few rows are
changed. (For more information on using the UPDATE statement and the WHERE
clause, see "The UPDATE Statement" on page 3-3 and "The WHERE Clause" on
page 3-8.)

For example, consider the following UPDATE statement, shown in the interactive
environment, in which Michael L. Thompson's (employee no. 000020) telephone
number is changed to 5678:

UPDATE USERl.TEMPL
SET PHONENO = '5678'
WHERE EMPNO = '000020'

The TEMPL table, shown in part, would be changed as follows:

FIRSTNME MIDINIT LASTNAME DEPTNO PHONENO

CHRISTINE I HAAS AOO 3978

MICHAEL L THOMPSON B01 5678

SALLY A KWAN C01 4738

J

If you specify COMMIT(*NONE), no further action is required. Each change is then .j
done at the time of the operation. However, if you specify COMMIT(*CHG) or
COMMIT(*ALL), the change is not guaranteed until you run the COMMIT statement.
Otherwise, the change is backed out if you run a ROLLBACK statement.

Deleting Information in a Table
The DELETE statement allows you to delete entire rows from a table because they
no longer contain needed information. The DELETE statement allows you to use the
WHERE clause to identify rows to be deleted during a single run. (For more infor
mation, see "The DELETE Statement" on page 3-4.)

For example, if Eileen W. Henderson left the company, the row containing informa
tion about this person must now be deleted. The following DELETE statement,
shown in the interactive environment, looks like this:

DELETE
FROM USERl.TEMPL
WHERE EMPNO = '000090'

If you specify COMMIT(*NONE), no further action is required. Each delete is then
done at the time of the operation. However, if you specify COMMIT(*CHG) or
COMMIT(*ALL), the delete is not guaranteed until you run the COMMIT statement.
Otherwise, the delete is backed out if you run a ROLLBACK statement.

2-6 Sal Programmer's Guide

L

L

Creating and Using a View
At times, you may find that no single table contains all the information you need,
and that the data is scattered among several tables. Also, you may want to get only
part of the data contained in a table and not a whole row or column of data, there
fore limiting the access to certain kinds of data such as salary information. For
these conditions, SOL lets you create a view.

You create a view in much the same way as you create a table. The view is defined
by the CREATE VIEW statement. In order to create views, you must have SELECT
authority on the tables on which views are based.

If you do not specify column names for the view, the column names will be the same
as those for the table on which the view is based.

Note: A view must be created over tables or files that are in an SOL collection; a
view cannot be created over tables or files in a library.

Creating a View on a Single Table
The following example shows how to create a view on a single table. The view is
built on a table named USER1.TDEPT, which contains department data. The table
has four columns, but the view is only on three of the columns: DEPTNO,
DEPTNAME, and MGRNO. The order of the columns in the SELECT clause is the
order in which they appear in the view. The CREATE VIEW statement looks like this:

CREATE VIEW USERl.VDEPT3 AS
SELECT DEPTNO,DEPTNAME,MGRNO
FROM USERl.TDEPT

In the example above, the columns of the view have the same name as the columns
in the table, because no column list follows the view name. The following table is
the result of running the SOL statement:

SELECT * FROM USERl.VDEPT3

DEPTNO DEPTNAME MGRNO

AOO COMPUTER SERVICE DIV. 000010

801 PLANNING 000020

C01 INFORMATION CENTER 000030

001 DEVELOPMENT CENTER (blanks2)

E01 SUPPORT SERVICES 000050

011 MANUFACTURING SYSTEMS 000060

021 ADMINISTRATION SYSTEMS 000070

E11 OPERATIONS 000090

E21 SOFTWARE SUPPORT 000100

2 This entry was created with blank characters.

Chapter 2. SOL Tables, Views, Catalogs 2-7

Creating a View Combining Data from More Than One Table
You can create a view that combines data from two or more tables by naming more
than one table in the FROM clause. The combining operation is called a join. In the
following example, the USER1.TEMPL table contains a column of manager's names
called LASTNAME, and a column of employee serial numbers called EMPNO.
These are joined with the MGRNO column of the USER1.TDEPT table. The CREATE
VIEW statement looks like this:

CREATE VIEW USERl.VDEPTM AS
SELECT USERl.TDEPT.DEPTNO,MGRNO,LASTNAME,ADMRDEPT
FROM USERl.TDEPT,USERl.TEMPL
WHERE USERl.TEMPL.EMPNO = USERl.TDEPT.MGRNO

When using the CREATE VIEW statement, the collection name specified could be
any collection name that has already been created. For example, if you want the
view above to reside in a collection named SMITH, enter the first line of the state
ment as:

CREATE VIEW USERl.VDEPTM AS

The following table is the result of running the SOL statement:

SELECT * FROM USERl.VDEPTM

DEPTNO MGRNO LASTNAME ADMRDEPT3

AOO 000010 HAAS (blanks4)

B01 000020 THOMPSON AOO

C01 000030 KWAN AOO

E01 000050 GEYER AOO

D11 000060 STEARN D01

D21 000070 PULASKI D01

E11 000090 HENDERSON E01

E21 000100 SPENSER E01

3 If you typed the LABEL ON statement on page 2-2, this heading will be over
ridden by the heading specified on the LABEL ON statement and will read
Reports to Dept.

4 This entry was created with blank characters.

If you want to create the same view, including only those departments that report
administratively to department AOO, and you also want a different set of column
names, your CREATE VIEW statement looks like this:

CREATE VIEW USERl.VDEPTMA00
(DEPT,MGR,NAME,REPORTTO)
AS
SELECT USERl.TDEPT.DEPTNO,MGRNO,LASTNAME,ADMRDEPT
FROM USERl.TEMPL,USERl.TDEPT
WHERE USERl.TEMPL.EMPNO = USERl.TDEPT.MGRNO
AND ADMRDEPT = 'A00'

2-8 SOL Programmer's Guide

The following table is the result of running the SQl statement:

SELECT * FROM USERl.VDEPTMA00

DEPT MGR NAME REPORTT05

B01 000020 THOMPSON AOO

C01 000030 KWAN AOO

E01 000050 GEYER AOO

5 If you typed the LABEL ON statement on page 2-2, this heading will be over
ridden by the heading specified on the LABEL ON statement and will read
Reports to Dept.

Notes on Using a View
When creating a view, the following restrictions must be considered:

• You cannot change, insert, or delete data in a view if it includes any of the fol-
lowing:

A FROM clause that uses more than one table (a join)
The FROM clause that identifies a read-only view
Any of the Sal column functions (SUM, MAX, MIN, AVG, or COUNT)
Elimination of duplicate rows (DISTINCT)
Grouping (GROUP BY), or HAVING

In the above cases, you can get data from the views by means of the Sal
SELECT statement, but you cannot use statements such as INSERT,
UPDATE, or DELETE.

• You cannot insert a row in a view if:

The table on which the view is based has a column for which there is no
default value, and that column is not in the view.
The view has a column resulting from an expression, a constant, or a func
tion, and the column has been specified in the INSERT column list.

• You cannot update a column of a view that results from an expression, a con
stant. or a function.

• You cannot use the special register USER.

• You cannot use the scalar function lENGTH.

• You cannot use UNION or UNION ALL.

Chapter 2. SOL Tables, Views, Catalogs 2-9

You can make changes to a table through a view even though the view does not
contain the same number of columns or the same number of rows as the table on
which it is based, provided that the columns not referred to were defined as NOT
NULL WITH DEFAULT.

When you define a view on a table, it is like creating a new table, containing just the
columns and rows you want.

You process the view as though it were a table, even though the view is totally
dependent on one or more tables for data. The view has no data of its own and
therefore requires no storage for the data. Because a view is derived from a table
that exists in storage, when you update the view data, you are really updating data
in the table. Therefore, views are automatically kept up-to-date as the tables they
depend on are updated.

Views let you deal only with the data you need, A view reduces complexity and, at

.
"\'., '...",

the same time, restricts access. When your application uses a view (instead of the \
table on which the view is based), it cannot access other rows or columns of the 'WI
table that are not included in the view.

Working with Indexes
An index is used by the system for faster data retrieval. The following example
creates an index over the column LASTNAME in the USER1.TEMPL table:

CREATE INDEX INXI ON USERl.TEMPL (LASTNAME)

Any number of indexes can be created; however, because the indexes are main
tained by the system, a large number of indexes can adversely affect performance.
See Chapter 14 for more information on using indexes.

Note: An index can be created only over tables or files that are in an SOL col
lection.

2-10 SOL Programmer's Guide

L

L

Using the Catalog in Database Design
A catalog is automatically created when you create a collection. As the following
examples show, you can display catalog information, but you cannot INSERT,
DELETE, or UPDATE catalog information.

You must have SELECT privileges on the catalog views to run the following exam
ples.

Getting Catalog Information about a Table
SYSTABLES contains a row for every table and view in the SOL collection. It tells
you if the object is a table or view, the object name, the owner of the object, what
SOL collection it is in, and so forth.

The following sample statement displays information for the USER1.TDEPT table:

SELECT *
FROM USERl.SYSTABLES
WHERE NAME = 'TDEPT'

Getting Catalog Information about a Column
SYSCOLUMNS contains a row for each column of every table and view in the col
lection.

The following sample statement displays all the column names in the USER1.TDEPT
table:

SELECT *
FROM USERl.SYSCOLUMNS
WHERE TBNAME = 'TDEPT'

The result of the previous sample statements is a row of information for each
column in the table. Some of the information is not visible because the width of the
information is wider than the display screen.

For more information about each column, specify a select-statement like this:

SELECT NAME,TBNAME,COLTYPE,LENGTH,DEFAULT
FROM USERl.SYSCOLUMNS
WHERE TBNAME = 'TDEPT'

In addition to the column name for each column, the select-statement shows:

• The name of the table that contains the column
• The data type of the column
• The length attribute of the column
• If the column allows default values

The result looks like this:

NAME TBNAME COLTYPE LENGTH DEFAULT

DEPTNO TDEPT CHAR 3 Y

DEPTNAME TDEPT CHAR 36 Y

MORNO TDEPT CHAR 6 Y

ADMRDEPT TDEPT CHAR 3 Y

Chapter 2. Sal Tables, Views, Catalogs 2-11

Getting Catalog Information about Indexes
SYSINDEXES contains a row for every index in the collection. The following
example gets information about the index INX1:

SELECT *
FROM USERl.SYSINDEXES
WHERE NAME = 'INXl'

The previous example displays a single row of information about a particular index.
However, a table can have more than one index. To display infotmation about all
the indexes on a table, write a statement like this:

SELECT *
FROM USERl.SYSINDEXES
WHERE TBNAME = 'TEMPL'

Note: In this example, there happens to be only one index over TEMPL.

Getting Catalog Information about Views
For every view you create in the collection, information is stored in the catalog
views. This is what happens in the catalog, following a CREATE VIEW:

• A row is inserted into SYSTABLES.

• A row is inserted into SYSCOLUMNS for each column of the view.

• One or more rows are inserted into SYSVIEWS to record the text of the CREATE
VIEW statement.

• For each table on which the view is dependent, a row is inserted into
SYSVIEWDEP to record what the view is dependent on.

Building a View over Catalog Views
You can build a view on one or more of the catalog views containing information
about your own tables and views. The following example creates a view of a user's
tables from the SYSTABLES view:

CREATE VIEW MYTABLES AS
SELECT * FROM USERl.SYSTABLES
WHERE CREATOR = 'USERl'

2-12 Sal Programmer's Guide

J

J

J

L

Using COMMENT ON
After you create a table or view, you can supply information about it for future refer
ence, such as the purpose of the table or view, who uses it, and anything unusual or
special about it. You can also include similar information about each column of the
table or view. Your comment must not be more than 254 bytes.

A comment is especially useful if your names do not clearly indicate the contents of
the columns or tables. In that case, use a comment to describe the specific contents
of the column or table.

If you include REMARKS in the list of column names you get from SYSCOLUMNS,
any comments you had included for the columns are displayed. Both SYSTABLES
and SYSCOLUMNS have a column for REMARKS.

An example of using COMMENT ON follows:

COMMENT ON TABLE USERl.TEMPL IS
'Employee table. Each row in this table represents
one employee of the company.'

Getting Comments
After running a COMMENT ON statement, your comments are stored in the
REMARKS column of SYSTABLES or SYSCOLUMNS. (If the indicated row had
already contained a comment, the old comment is replaced by the new one.) The
following example gets the comments added by the COMMENT ON statement in the
previous example:

SELECT REMARKS
FROM USERl.SYSTABLES
WHERE NAME = 'TEMPL'

Chapter 2. SOL Tables, Views, Catalogs 2-13

J

2-14 SQL Programmer's Guide

L Chapter 3. SQl Coding Techniques

This chapter describes coding techniques for:

• Using basic SOL statements and clauses
• Using the UNION keyword to combine subselects
• Using a cursor
• Performing complex search conditions
• Joining data from more than one table
• Inserting multiple rows into a table
• Inserting default values into columns

You can embed SOL statements in an application program or issue them interac
tively, using interactive SOL (described in Chapter 11).

Using Basic SQl Statements and Clauses
This section shows the basic SOL statements and clauses that retrieve, update,
delete, and insert data into tables and views. The SOL statements used are
SELECT, UPDATE, DELETE, and INSERT. Also, FETCH can be used in an applica
tion program to access data. Examples using these SOL statements are supplied to
help you develop SOL statements. Detailed syntax and parameter descriptions for
SOL statements are given in the SQLl400 Reference manual.

You can write SOL statements on one line or on many lines. The rules for the con
tinuation of lines are the same as those of the host language (the language the
program is written in), except for C. In C, when using line continuation, an SOL
statement can be split wherever a blank can occur, except within a string constant.

Notes:

1. The SOL statements described in this chapter can be run on SOL tables and
views and database physical and logical files. The tables and views can be
either in an SOL collection or in a library.

2. Character strings specified in an SOL statement (such as those used with
WHERE or VALUES clauses) are case sensitive; that is, uppercase characters
must be entered in uppercase and lowercase characters must be entered in
lowercase.

The INSERT Statement
You can use the INSERT statement to add new rows to a table or view by doing one
of the following:

• Specifying values in the INSERT statement for columns of the single row to be
added.

• Including a subselect in the INSERT statement to tell SOL what data for the new
row is contained in another table or view. "Inserting Multiple Rows into a
Table" on page 3-32, explains how to use the subselect within an INSERT state
ment to add multiple rows to a table.

Note: Because views are built on tables and actually contain no data, working with
views can be complicated. See "Notes on Using a View" on page 2-9 for
more information on inserting information into a view.

© Copyright IBM Corp. 1988, 1989 Chapter 3, SOL Coding Techniques 3-1

For every row you insert, you must supply a value for each NOT NUll'column of a
table that does not have a default value. The INSERT statement for adding a row to
a table or view may look like this:

EXEC SQL
INSERT INTO table-name

[(column-name-l [, column-name-2] •••)]
VALUES (value-l [, value-2] ...)

END-EXEC.

The INTO clause names the columns for which you specify values. The VALUES
clause specifies a value for each column named in the INTO clause.

For example, suppose you want to add a new employee to the USER1.TEMPl table:

EXEC SQL
INSERT INTO USER1.TEMPL

(EMPNO, FIRSTNME, MIDINIT, LASTNAME, DEPTNO)
VALUES (:PGM-SERIAL, : PGM-NAMEl ,

:PGM-NAME2. :PGM-NAME3. :PGM-DEPT)
END-EXEC.

First, you might supply values for only those columns that have no default values.
SOL inserts the new values (contained in host variables) into the USER1.TEMPl
table in the order in which you list them. The first value (from PGM-SERIAl) is put
into the first specified column (EMPNO) , the second value (from PGM-NAME1) is put
into the second specified column (FIRSTNME), and so on. If you specify fewer
column names than there are columns in the row, SOL places default values in the
remaining columns.

You must provide a value in the VALUES clause for each column named in an
INSERT statement's column list. You can name all columns for which you are pro
viding values, or you can omit the column name list.

It is a good idea to name all columns into which you are inserting values because:

Your source statements are more descriptive.
You can verify that you are giving the values in order.
You have better data independence.

When your program attempts to insert a row that duplicates another row already in
the table, an error might occur:

• If the table has a unique index, the row is not inserted. Instead, SOL returns an
SOlCODE of -803.

• If the table does not have a unique index, the row can be inserted without error.

If SOL finds an error while running the INSERT statement, it stops inserting data. No
rows in the table are inserted (rows already inserted, if any, are deleted), if
COMMIT(*All) or COMMIT(*CHG) is specified. If you specify COMMIT(*NONE), any
rows already inserted are not deleted.

If the row is inserted without error, the SOlERRD(3) field of the SOlCA will have a
value of 1.

Note: INSERT with subselect may have more than one row to insert. The number
of rows inserted is reflected in SOlERRD(3).

3-2 SOL Programmer's Guide

J

J

J

The UPDATE Statement
To change the data in a table, use the UPDATE statement. With the UPDATE state
ment, you can change the value of one or more columns in each row that satisfies
the search condition of the WHERE clause. The result of the UPDATE statement is
one or more changed column values in zero or more rows of a table (depending on
how many rows satisfy the search condition specified in the WHERE clause). The
UPDATE statement looks like this:

EXEC SQL
UPDATE table-name

SET column-name-l = value-expression
[, column-name-2 = value-expression]
WHERE search-condition

END-EXEC.

For example, suppose an employee has been relocated. To update several items of
the employee's data in the USER1.TEMPl table to reflect the move, you can specify:

EXEC SQL
UPDATE USERl.TEMPL

SET JOBCODE = :PGM-CODE,
PHONENO = :PGM-PHONE
WHERE EMPNO = :PGM-SERIAL

END-EXEC.

First, name the table or view, then provide a column-name = value-expression pair
for each column you want to update. Use the SET clause to specify the new value
for a column. The SET clause names the columns you want updated and provides
the values you want them changed to. The value-expression you specify can be:

A column name. Replace the column's current value with the contents of
another column in the same row.

A constant. Replace the column's current value with the value provided in the
SET clause.

A host variable. Replace the column's current value with the contents of the
host variable.

A special register. Replace the column's current value with a special register
value (USER).

An expression. Replace the column's current value with the value that results
from an expression.

Next, identify the rows to be updated:

• To update a single row, use a WHERE clause that locates one, and only one,
row.

• To update several rows, use a WHERE clause that locates only the rows you
want to update.

You can omit the WHERE clause; if you do, Sal updates each row in the table or
view with the values you supply.

If Sal finds an error while running your UPDATE statement, it stops updating and
returns a negative SQlCODE. If you specify COMMIT(*All) or COMMIT(*CHG), no
rows in the table are changed (rows al ready changed, if any, are restored to their

Chapter 3. SOL Coding Techniques 3-3

previous values). If COMMIT(*NONE) is specified, any rows already changed are
not restored to previous values.

If SOL cannot find any rows that satisfy the search condition, an SOlCODE of + 100
is returned.

Note: UPDATE with WHERE clause may have updated more than one row. The
number of rows updated is reflected in SOlERRD(3).

The DELETE Statement
To remove rows from a table, use the DELETE statement. When you DELETE a row,
you remove the entire row. DELETE does not remove specific columns from the
row. The result of the DELETE statement is the removal of zero or more rows of a
table (depending on how many rows satisfy the search condition specified in the
WHERE clause). If you omit a WHERE clause from a DELETE statement, SOL
removes all the rows of the table. The DELETE statement looks like this:

DELETE FROM table-name
WHERE search-condition ..•

For example, suppose department D11 was moved to another place. You want to
delete each row in the USER1.TEMPl table with a DEPTNO value of D11 as follows:

EXEC SQL
DELETE FROM USERl.TEMPL

WHERE DEPTNO = 'OIl'
END-EXEC.

When this statement is run, SOL deletes any row from the USER1.TEMPl table that
meets the search condition.

The WHERE clause tells SOL which rows you want to delete from the table. SOL
deletes all the rows that satisfy the search condition from the base table. You can
omit the WHERE clause, but you will probably want to include one, because a
DELETE statement without a WHERE clause deletes all the rows from the table or
view. To delete a table definition as well as the table contents, issue the DROP
statement (described in the SQLl400 Reference manual).

If SOL finds an error while running your DELETE statement, it stops deleting data
and returns a negative SOlCODE. If you specify COMMIT(*All) or COMMIT(*CHG),
no rows in the table are deleted (rows already deleted, if any, are restored to their
previous values). If COMMIT(*NONE) is specified, any rows already deleted are not
restored to their previous values.

If SOL cannot find any rows that satisfy the search condition, then an SOlCODE of
+ 100 is returned.

Note: DELETE with WHERE clause may have deleted more than one row. The
number of rows deleted is reflected in SOLERRD(3).

3-4 Sal Programmer's Guide

J

The SELECT INTO Statement
You can use the SELECT INTO statement1 to retrieve a specific row (for example,
the row for an employee). The format and syntax shown here are very basic.
SELECT INTO statements can be more varied than the examples presented in this
chapter. A SELECT INTO statement specifies six items of information:

1. The name of each column you want
2. The name of each host variable used to contain retrieved data
3. The name of the table or view that contains the data
4. A search condition to, uniquely identify the row that contains the information you

want
5. The name of each column used to group your data

I

6. A search condition that uniquely identifies a group that contains the information
you want

A SELECT INTO statement looks like this:

EXEC SQL
SELECT column names

INTO host variables
FROM table or view name
WHERE search condition
GROUP BY column names
HAVING search condition

END-EXEC.

The INTO clause names the host variables (variables in your program used to
contain retrieved column values). The value of the first column specified in the
SELECT clause is put into the first host variable named in the INTO clause; the
second value is put into the second host variable, and so on.

The INTO clause is part of the SELECT INTO statement because we are assuming
the WHERE clause can be satisfied by only one row. For example, each row in the
USER1.TEMPL table has a unique EMPNO (employee number). Therefore, the
result of the SELECT INTO statement is assumed to be either one or zero rows.
Finding more than one row is an error, although one row will be returned.

If you want several rows to be the result of a select-statement, use a DECLARE
CURSOR statement to select the rows, followed by a FETCH statement to move the
column values into host variables one row at a time. A technique for using cursors
is described in "Using a Cursor" on page 3-20.

The FROM clause names the table (or view) that contains the data you are inter
ested in.

1 For the complete syntax of the SELECT statement, see the SQLl400 Reference manual.

Chapter 3. Sal Coding Techniques 3-5

For example, assume that each department listed in the USER1.TDEPT table has a
unique department number. You want to retrieve the department name and
manager number from the USER1.TDEPT table for department C01. To do this, your
program can issue:

EXEC SQL
SELECT DEPTNAME, MGRNO

INTO :PGM-DEPTNAME, :PGM-MGRNO
FROM USERl.TDEPT
WHERE DEPTNO = :PGM-DEPT

END-EXEC.

In this example, PGM-DEPT has been set to C01. When the statement is run, the
result is one row:

PGM-DEPTNAME PGM-MGRNO

INFORMATION CENTER 000030

If Sal is unable to find a row that satisfies the search condition, an SalCODE of
+ 100 is returned.

If Sal finds an arithmetic expression error while running your statement, one of two
things occurs:

• If the arithmetic expression error occurs in the SELECT list or during the evalu
ation of an argument of a column or scalar function in the SELECT list, and an
indicator variable is provided to the expression in error:

Sal returns a -2 for the indicator variable corresponding to the expression
in error.

sal returns all valid data for that row.

Sal returns an SalCODE of + 802.

• If the arithmetic expression error occurs under any other circumstances, Sal
stops retrieving rows and returns an SalCODE of -802 in the SalCA.

If Sal finds a numeric conversion error while running your select-statement, one of
two things occurs:

• If the numeric conversion error occurs while converting a numeric value into the
host variable and an indicator variable is provided with the host variable:

Sal returns a -2 for the host variable corresponding to the expression in
error.

sal returns all valid data for that row.

Sal returns an SalCODE of + 304.

• If the numeric conversion error occurs while converting a numeric value into the
data type of the host variable and an indicator variable is not provided with the
host variable, Sal stops running your statement and returns an SalCODE of
-304.

3-6 SOL Programmer's Guide

. . J' ',\,

J

L
In the case of SQlCODEs of -304 or -802, the SQlCA reports only the first conver
sion error or arithmetic error detected. However, the indicator variable corre
sponding to each results column, having arithmetic and/or conversion errors, will be
set to -2.

If SQl finds any other errors while running your select-statement, a negative
SQlCODE is returned.

If SQl finds that the retrieved character column value length is too large to be saved
in a host variable, SQl will:

• Truncate the data while assigning the value to the host variable.

• Set SQlWARNO and SQlWARN1 in the SQlCA to the value W.

• Set SQlWARNO to Wand SQlWARN1 to N when using C/400, for a varying
length null-terminated character variable, if only the null-terminator is trun
cated.

• Set the indicator variable, if provided, to the length of the value before trun
cation.

Specifying the Columns You Want
With the SELECT clause (the first part of a select-statement), you specify the name
of each column you want to retrieve. For example:

SELECT EMPNO, LASTNAME, DEPTNO

You can specify that only one column be retrieved, or as many as 8000 columns.
The value of each column you name is retrieved in the order specified in the
SELECT clause.

If you want to retrieve all columns (in the same order as they appear in the row),
use an asterisk (*) instead of naming the columns:

SELECT *

You can specify a SELECT * clause in a program, but this is not recommended
because, if the table definition changes, your program might reference columns for
which no receiving host variables are defined.

When using the select-statement in an application program, list the column names
to give your program more data independence. There are two reasons for this:

1. When you look at the source code statement, you can easily see the one-to-one
correspondence between the column names in the SELECT clause and the host
variables named in the INTO clause.

2. If a column is added to a table or view you access and you use "SELECT * ... ,"
the INTO clause does not have a matching host variable named for the new
column. The extra column causes you to get a warning (not an error) in the
SQlCA (SQLWARN4 will contain a "W"; in RPG this field is SQlWN4).

Chapter 3. Sal Coding Techniques 3-7

Processing Data in a View
You can retrieve data from a view in exactly the same way you retrieve data from a
table. However, there are several restrictions when you attempt to update, insert,
or delete data in a view. These restrictions are described in "Notes on Using a
View" on page 2-9.

The WHERE Clause
The WHERE clause specifies a search condition that identifies the row or rows you
want to retrieve, update, or delete. The number of rows you process with an Sal
statement then depends on the number of rows that satisfy the WHERE clause
search condition. A search condition consists of one or more predicates. A predi
cate specifies a test that you want Sal to apply to a specified row or rows of a table.

In the following example, DEPTNO = 'C01' is a predicate, DEPTNO and 'C01' are
expressions, and the equal sign (=) is a comparison operator. Note that character
values are enclosed in apostrophes ('); numeric values are not. This applies to all
literal values wherever they are coded within an Sal statement. For example, to .J-
specify that you are interested in the rows where the department number is C01, you
would say:

WHERE DEPTNO = 'C01'

In this case, the search condition consists of one predicate: DEPTNO = 'C01'.

Using Expressions in the WHERE Clause
An expression in a WHERE clause names or specifies something you want to
compare to something else. Each expression, when resolved by Sal, has a char
acter string or a numeric value. The expressions you specify can be:

• A column name names a column. For example:

WHERE EMPNO = '000200'

EMPNO names a column that is defined as a 6-byte character value. Equality
comparisons (that is, X = Y or X -. = Y) can be performed on character data.
Other types of comparisons can also be evaluated for character data, based on
the binary collating sequence.

However, you cannot compare character strings to numbers. You also cannot
perform arithmetic operations on character data (even though EMPNO is a char
acter string that appears to be a number).

• An expression identifies two values that are added (+), subtracted (-), multi
plied (*). divided (/). or concatenated (II) to result in a value. The operands of
an expression can be:

A constant (that is, a literal value)
A column
A host variable
A value returned from a function
A special register
Another expression

For example:

WHERE JOBCODE + EDUCLVL > 70

3-8 SQL Programmer's Guide

L

JOBCODE names a column that is defined as a 3-digit packed decimal value
(DECIMAl(3)). EDUCLVL names a column that is defined as a halfword integer
value (SMAlLlNT).

• A constant specifies a literal value for the expression. For example:

WHERE 40000 < SALARY

SALARY names a column that is defined as an 8-digit packed decimal value
(DECI MAl(8,2)).

• A host variable identifies a variable in an application program. For example:

WHERE EMPNO = :EMP

• A special register identifies a special value generated by the database
manager. For example:

WHERE LASTNAME = USER

A search condition need not be limited to two column names or constants separated
by an arithmetic or comparison operator. You can develop a complex search condi
tion that specifies several predicates separated by AND and OR, names and con
stants. No matter how complex the search condition, it will supply a TRUE or FALSE
value when evaluated against a row. There is also an unknown truth value, which is
effectively false. That is, if the value of a row is null, this null value is not returned
as a result of a search because it is not less than, equal to, or greater than the value
specified in the search condition. More complex search conditions and predicates
are described in "Performing Complex Search Conditions" on page 3-26.

To fully understand the WHERE clause, you need to know how Sal evaluates search
conditions and predicates, and compares the values of expressions. This topic is
discussed in the SQU400 Reference manual.

Comparison Operators: The Sal comparison operators are:

...,= or <>

<
>
<= or...,>

> = or...,<

Equal to

Not equal to

less than

Greater than

less than or equal to (or not greater than)

Greater than or equal to (or not less than)

Chapter 3. Sal Coding Techniques 3-9

The NOT Keyword
You can precede a predicate with the NOT keyword to specify that you want the
opposite of the predicate's value (that is, TRUE if the predicate results are FALSE,
or vice versa). For example, to indicate that you are interested in all employees
except those working in department C01, you could say:

WHERE NOT OEPTNO = 'C01'

which is equivalent to:

WHERE OEPTNO ,= 'C01'

Note: You cannot make the NOT keyword part of a comparison operator: NOT must
precede a predicate.

The USER Special Register
When an Sal statement containing the USER special register is run, Sal replaces J ..
USER with the authorization 10 of the person running the program.

There are two restrictions on using the USER special register:

1. USER cannot be used in a CREATE VIEW statement.

Multiple Predicates

2. The authorization 10 of the person running the program cannot be longer than 8
characters.

A WHERE clause can contain several predicates, each of which is separated by a
logical connective, ANO or OR. For example, to locate all male employees in
department 021, you can specify:

WHERE SEX = 'M' AND OEPTNO = '021'

You can precede a predicate with the NOT keyword to specify the opposite of the
predicate. However, NOT applies only to the predicate it precedes, not to all predi
cates in the WHERE clause. For example, to specify all women who work in depart-
ment 011:,J

WHERE NOT SEX = 'M'
AND OEPTNO = 'OIl'

3-10 Sal Programmer's Guide

The GROUP BY Clause
Without a GROUP BY clause, the application of SOL column functions yields one
row. When GROUP BY is used, the function is applied to each group, thereby
yielding as many rows as there are groups.

The GROUP BY clause allows you to find the characteristics of groups of rows rather
than individual rows. When you specify a GROUP BY clause, SOL divides the
selected rows into groups such that the rows of each group have matching values in
one or more columns. Next, SOL processes each group to produce a single-row
result for the group. You can specify one or more columns in the GROUP BY clause
to group the rows. The items you specify in the SELECT statement are properties of
each group of rows, not properties of individual rows in a table or view.

For example, the USER1.TEMPL table has several sets of rows, and each set con
sists of rows describing members of a specific department. To find the average
salary of people in each department, you could issue:

The Sal statement: Results in:

EXEC SQL fetch WORK-DEPT AVG-SAlARY
DECLARE XMPl CURSOR FOR

SELECT DEPTNO. 1~~ 42833
DEClMAL(AVG(SALARy) ,5,0)

~.- ~.01 41250
FROM USER1.TEMPL
GROUP BY DEPTINO ...

END-EXEC •
...

EXEC SQL
FETCH XMPl

INTO :WORK-DEPT. :AVG-SALARY
END-EXEC.

RSLS789-0

The result is several rows, one for each department.

Note: Grouping the rows does not mean ordering them. Grouping puts each
selected row in a group, which SOL then processes to derive characteristics
of the group. Ordering the rows puts all the rows in the results table in
ascending or descending collating sequence. ("The ORDER BY Clause" on
page 3-14 describes how to do this.)

Chapter 3. Sal Coding Techniques 3-11

When you use GROUP BY, you name the columns you want SOL to use to group the
rows. For example, suppose you want a list of the number of people working on
each major project described in the USER1.TPROJ table. You could issue:

The Sal statement: Results in:

EXEC SQL fetch SUM-PR MAJ-PROJ
DECLARE XMP2 CURSOR FOR

H~
SELECT SUM(PRSTAFF), MAJPROJ MA2100

FROM USERl. TPROJ

:.= :
MA211D GROUP BY MAJPROJ

END-EXEC. AD3100
...

EXEC SQL ...
FETCH XMP2

INTO :SUM-PR, :MAJ-PROJ
END-EXEC.

RSLS790'()

The result is a list of the company's current major projects and the number of
people working on each project.

You can also specify that you want the rows grouped by more than one column. For
example, you could issue a select-statement to find the average salary for men and
women in each department, using the USER1.TEMPL table. To do this, you could
issue:

The Sal statement: Results in:

EXEC SQL fetch DEPT SEX AVG-WAGES
DECLARE XMP3 CURSOR FOR ,-- r----

SELECT DEPTNO, SEX, 1- AOO F 52750
DECIMAL (AVG (SALARY) ,5,0) f--- r--

2- ADO M 37875 FROM USERl. TEMPL f--- c--
GROUP BY DEPTNO, SEX 3- 801 M 41250

END-EXEC. r--- r--
... 4- C01 F 30156

EXEC SQL r--- f-

FETCH XMP3 I

INTO : DEPT , :SEX,
:AVG-WAGES

END-EXEC.

RSLS791·0

Because you did not include a WHERE clause in this example, SOL examines and
process all rows in the USER1.TEMPL table. The rows are grouped first by depart
ment number and next (within each department) by sex before SOL derives the
average SALARY value for each group.

3·12 Sal Programmer's Guide

c The HAVING Clause
You can use the HAVING clause to specify a search condition for the groups
selected based on a GROUP BY clause. The HAVING clause says that you want only
those groups that satisfy the condition in that clause. Therefore, the search condi
tion you specify in the HAVING clause must test properties of each group rather than
properties of individual rows in the group.

The HAVING clause follows the GROUP BY clause and can contain the same kind of
search condition you can specify in a WHERE clause. In addition, you can specify
column functions in a HAVING clause. For example, suppose you wanted to retrieve
the average salary of women in each department. To do this, you would use the
AVG column function and group the resulting rows by DEPTNO and specify a
WHERE clause of SEX = I F'.

To specify the condition that you want this data only when all the employees in the
selected department who have an education level equal to or greater than 16 (a
college graduate), use the HAVING clause. The HAVING clause tests a property of
the group. In this case, the test is on MIN(EDUCLVL), which is a group property:

The Sal statement: Results in:

EXEC SQL fetch DEPT AVG-WAGES MIN-EOUC
DECLARE XMP4 CURSOR FOR r---

SELECT DEPTNO, 1- AOO 52750

~
DECIMAL(AVG(SALARY) ,5,0). r---

2- C01 30156 16 MIN(EDUCLVL) r----
FROM USERl. TEMPL 3- 011 24476

~.~ WHERE SEX = 'F' r----
GROUP BY DEPTNO
HAVING MIN(EDUCLVL) >= 16

END-EXEC •
...

EXEC SQL
FETCH XMP4

INTO :DEPT, : AVG-WAGES ,
:MIN-EDUC

END-EXEC.

RSLS792·0

You can use multiple predicates in a HAVING clause by connecting them with AND
and OR, and you can use NOT for any predicate of a search condition.

Chapter 3. Sal Coding Techniques 3-13

The ORDER BY Clause
You can specify that you want selected rows retrieved in a particular order, sorted
by ascending or descending collating sequence of a column's value, with the
ORDER BY clause. You can use an ORDER BY clause as you would a GROUP BY
clause: specify the name of the column or columns you want SOL to use when
retrieving the rows in a collated sequence.

Instead of naming the columns to order the results, you can use a number. For
example, ORDER BY 3 specifies that you want the results ordered by the third
column of the results table, as specified by the select-statement. Use a number to
order the rows of the results table when the sequencing value is the result of an
expression, column function, or something other than a column name in the select
statement.

For example, to retrieve the names and department numbers of female employees
listed in the alphanumeric order of their department numbers, you could use this
select-statement:

The SQL statement: Results in:

EXEC SQL fetch PGM-NAME3 DEPT
DECLARE XMP5 CURSOR FOR ~

SELECT LASTNAME, DEPTNO 1- HAAS AOO
~

FROM USERl.TEMPL 2- KWAN C01 WHERE SEX = 'F' f---
ORDER BY DEPTNO 3- QUINTANA C01

END-EXEC. f---
... 4- NICHOLLS C01

EXEC SQL f---
5- PIANKA 011 FETCH XMP5 I---

INTO :PGM-NAME3, :DEPT 6- SCOUTTEN 011
END-EXEC. I---

7- LUTZ 011
f---

8- PULASKI 021
I---

9- JOHNSON 021
I---

10- PEREZ 021

11- HENDERSON ffiB 12- SCHNEIDER E11

RSLS793-0

Note: All columns named in the ORDER BY clause must also be named in the
SELECT statement.

3-14 SQL Programmer's Guide

J

J

.
.. ~.
~

J

You can also specify whether you want SOL to collate the rows in ascending (ASC)
or descending (DESC) sequence. An ascending collating sequence is the default. In
the above select-statement, SOL first returns the row with the lowest department
number (alphabetically and numerically), followed by rows with higher department
numbers. To order the rows in descending collating sequence based on the depart
ment number, specify:

ORDER BY DEPTNO DESC.

As with GROUP BY, you can specify a secondary ordering sequence (or several
levels of ordering sequences) as well as a primary one. In the example above, you
might want the rows ordered first by department number, and within each depart
ment, ordered by employee name. To do this, specify:

ORDER BY DEPTNO, LASTNAME.

Note: If you intend to update a column or delete a row, you cannot include a
GROUP BY or HAVING clause in the SELECT statement within a DECLARE
CURSOR statement. (The DECLARE CURSOR statement is described in
"Using a Cursor" on page 3-20.)

•

Chapter 3. Sal Coding Techniques 3-15

Using the UNION Keyword to Combine Subselects
Using the UNION keyword, you can combine two or more subselects to form a single
select-statement. When SQL encounters the UNION keyword, it processes each sub
select to form an interim result table, then it combines the interim result table of
each subselect and deletes duplicate rows to form a combined result table. You use
UNION to merge lists of values from two or more tables. You can use any of the
clauses and techniques you have learned so far when coding select-statements,
including ORDER BY.

You can use UNION to eliminate duplicates when merging lists of values obtained
from several tables. For example, you can obtain a combined list of employee
numbers that includes:

• People in department D11

• People whose assignments include projects MA2112, MA2113, and AD3111

The combined list is derived from two tables and contains no duplicates. To do this,
specify:

MOVE 'OIl' TO WORK-DEPT.

EXEC SQL
DECLARE XMP6 CURSOR FOR
SELECT EMPNO

FROM USER1.TEMPL
WHERE DEPTNO = :WORK-DEPT

UNION
SELECT EMPNO

FROM USER1.TEMPRACT
WHERE PROJNO = 'MA2112' OR

PROJNO = 'MA2113' OR
PROJNO = 'AD3111'

ORDER BY 1
END-EXEC.

EXEC SQL
FETCH XMP6

INTO :EMP-NUMBER
END-EXEC.

3-16 SQL Programmer's Guide

j

L
To better understand what results from these Sal statements, imagine that Sal
goes through the following process:

Step 1: SOL processes the Which results in an interim
first SELECT statement: result table:

... (from USER1.TEMPl)
SELECT EMPNO

000060 FROM USER1.TEMPL
WHERE DEPTNO • '011' 000150 ...

000160

000170

...

Step 2: SOL processes the Which results in another
second SELECT statement: interim result table:

... (from USER1.TEMPRACT)
SELECT EMPNO

000170 FROM USER1. TEMPRACT
WHERE PROJNO • 'MA2112' OR 000190

PROJNO • 'MA2113' OR
PROJNO = 'AD3111' 000180 ...

. ..

Which results in a combined
Step 3: Sal combines the result table with values in
two interim result tables: ascending sequence:

EXEC SQL fetch EMP-NUMBER
DECLARE XMP6 CURSOR FOR

SELECT ••• 1- 000060
UNION 2- 000150

SELECT •••
ORDER BY 1 3- 000160

END-EXEC.
4-... 000170

EXEC SQL 5- 000180 FETCH XMP6
INTO :EMP-NUMBER

END-EXEC.

RSLS794-0

When you use UNION:

• Any ORDER BY clause must appear after the last subselect that is part of the
union. In this example, the results are sequenced on the basis of the first
selected column, EMPNO. The ORDER BY clause specifies that the combined
result table is to be in collated sequence.

Note: To specify the columns that Sal should order the results by, use
numbers (in a union, you cannot use column names for this). The
number refers to the position of the expression in the list of expressions
you include in your subselects.

• You cannot use UNION when creating a view.

To identify which subselect each row is from, you can include a constant at the end
of the select list of each subselect in the union. When Sal returns your results, the
last column contains the constant for the subselect that is the source of that row.
For example, you can specify:

SELECT A, B, 'Al' ••• UNION SELECT X, Y, 'B2'

Chapter 3. Sal Coding Techniques 3-17

When a row is presented to your program, it includes a value (either A1 or B2) to
indicate the table that is the source of the row's values. If the column names in the
union are different, SOL uses the set of column names specified in the first subse
lect when interactive SOL displays or prints the results, or in the SOlDA resulting
from processing an SOL DESCRIBE statement.

In the example above, SOL uses A and B.

Restrictions for the Length and Data Type of Columns
When you use UNION, the lengths and data types of the columns named in the
SELECT statements must be comparable; any necessary conversions are made to
produce the values of the result table. For example, if you specify:

SELECT EMPNO .•. UNION SELECT DEPTNO ..•

where EMPNO is CHAR(6) and DEPTNO is CHAR(3), the column in the result table is
CHAR(6). The values in the result table that are derived from DEPTNO are padded
on the right with blanks.

Rules for Numeric Columns
If you want to combine two numeric columns, A and B, the following rules apply:

• If column A or column B is floating-point, the result column is floating-point. If
either column A or column B is double-precision floating-point, the result
column is double-precision floating-point. If column A and column Bare single
precision floating-point, the results column is single-precision floating-point. If
either column A or column B is single-precision floating-point and the other is
decimal, zoned decimal (NUMERIC), or binary integer, the result column is
double-precision floating-point.

• If column A and column B are decimal, or one is decimal and the other binary
integer or zoned decimal (NUMERIC), the results column is decimal.

• If column A and column B are zoned decimal (NUMERIC), or one is zoned
decimal and the other binary integer, the results column is zoned decimal
(NUMERIC).

• If column A or column B are large integer, the results column is large integer. If
column A and column B are small integer, the results column is small integer.

• If column A and column B are nonzero scale binary and have different scales, or
if one is nonzero scale binary and the other is zero scale binary integer, the
results column is decimal.

• If column A and column B are nonzero scale binary and have the same scales,
the results column is nonzero scale binary with the scale of A and B.

Rules for Character Siring Columns
If you want to combine two string columns, A and B, the following rules apply:

• Column A and column B must both be character string.
• If column A and column B are fixed length, the results column is fixed length.

Otherwise, the results column is varying-length. The length attribute of the
results column is the greater of the length attributes of column A and column B.

3-18 Sal Programmer's Guide

J

J

J

Specifying UNION ALL
If you want to keep duplicates in the result of a UNION, specify UNION ALL instead
of just UNION.

Step 3. Sal combines two Resulting in a result table that
interim result tables: includes duplicates:

EXEC SQL fetch EMP-NUMBER
DECLARE XMP6 CURSOR FOR

SELECT ••• 1- 000060
UNION ALL

SELECT .•• 2- 000150

ORDER BY 1 3- 000160
END-EXEC.

4-... 000170
EXEC SQL 5- 000170 FETCH XMP6

INTO :EMP-NLIMBER 6- 000180
END-EXEC.

7- 000180

8- 000190

... . ..

RSLS795-0

• The UNION ALL operation is associative, for example:

(SELECT PROJNO FROM USERl.TPROJ
UNION ALL
SELECT PROJNO FROM USERl.TPROJEC)
UNION ALL
SELECT PROJNO FROM USERl.TEMPRACT

gives the same result as:

SELECT PROJNO FROM USERl.TPROJ
UNION ALL
(SELECT PROJNO FROM USERl.TPROJEC
UNION ALL
SELECT PROJNO FROM USERl.TEMPRACT)

• When you include the UNION ALL in the same SOL statement as a UNION oper
ator, however, the result of the operation depends on the order of evaluation.
Where there are no parentheses, evaluation is from left to right. Where paren
theses are included, the parenthesized subselect is evaluated first, followed,
from left to right, by the other parts of the statement.

Chapter 3. Sal Coding Techniques 3-19

Using a Cursor
Assume that Sal builds a result table2 to hold all the rows retrieved by running the
select-statement. Sal then uses a cursor to make rows from the result table avail
able to your program. A cursor identifies the current row of the result table speci
fied by a select-statement. When you use a cursor, your program can retrieve each
row sequentially from the result table until end-of-data (SOlCODE = + 100) is
reached. The set of rows obtained as a result of running the select-statement can
consist of zero, one, or many rows, depending on the number of rows that satisfy the
search condition.

Note: The select-statement referred to in this section must be within a DECLARE
CURSOR statement, and cannot include an INTO clause. The DECLARE
CURSOR statement defines and names the cursor and specifies the set of
rows to be retrieved with the embedded select-statement.

The result table of a cursor is processed much like a sequential data set. The
cursor must be opened (with an OPEN statement) before any rows are retrieved. A
FETCH statement is used to retrieve the cursor's current row. FETCH can be run
repeatedly until all rows have been retrieved. When the end-of-data condition
occurs, you should close the cursor with a CLOSE statement (similar to end-of-file
processing).

Your program can have several cursors; each cursor requires its own:

DECLARE CURSOR statement to define the cursor
OPEN and CLOSE statements to open and close the cursor
FETCH statement to retrieve rows from the cursor's result table

Example of How to Use a Cursor
Suppose your program examines data about people in department D11. The data is
kept in the USER1.TEMPl table. The following example shows the Sal statements
you would include in a program to define and use a cursor. In this example, the
cursor is used by the program to process a set of rows from the USER1.TEMPl
table.

I 2 SOL implements a result table different ways, depending on the complexity of the select-statement. However. the concept is the
same.

3-20 SQL Programmer's Guide

J

Sal Statement

EXEC Sal
DECLARE THISEMP CURSOR FOR
SELECT EMPNO, lASTNAME,

DEPTNO, JOBCODE
FROM USER1.TEMPl
WHERE DEPTNO = '011'

FOR UPDATE OF JOBCODE
END-EXEC.

EXEC Sal
OPEN THISEMP

END-EXEC.

EXEC Sal
WHENEVER NOT FOUND

GO TO ClOSE-THISEMP
END-EXEC.

EXEC Sal
FETCH THISEMP

INTO :EMP-NUM, :NAME2,
:DEPT, :JOB-CODE

END-EXEC.

... for specific employees
in department 011, update
the JOBCODE value:

EXEC Sal
UPDATE USER1.TEMPl
SET JOBCODE = :NEW-CODE
WHERE CURRENT OF THISEMP

END-EXEC .

... then print the row .

... for other employees,
delete the row:

EXEC Sal
DELETE FROM USER1.TEMPl

WHERE CURRENT OF THISEMP
END-EXEC.

Branch back to fetch and
process the next row.

ClOSE-THISEMP.
EXEC Sal

CLOSE THISEMP
END-EXEC.

Described in Section

"Step 1: Define the Cursor" on page 3-22.

"Step 2: Open the Cursor" on page 3-23.

"Step 3: Specify What to Do when End-of-Data Is
Reached" on page 3-23.

"Step 4: Retrieve a Row Using the Cursor" on
page 3-23.

"Step 5a: Update the Current Row" on page 3-24 .

"Step 5b: Delete the Current Row" on page 3-24.

"Step 6: Close the Cursor" on page 3-25.

Chapter 3. Sal Coding Techniques 3-21

Step 1: Define the Cursor
To define and identify a set of rows to be accessed with a cursor, issue a DECLARE
CURSOR statement:

1. The DECLARE CURSOR statement names a cursor and specifies a select
statement. The select-statement defines a set of rows that, conceptually, makes
up the result table. The statement looks like this:

EXEC SQL
DECLARE cursor-name CURSOR FOR

SELECT column-I, column-2
FROM table-name
WHERE column-I = search-condition

FOR UPDATE OF column-2
END-EXEC.

The select-statement shown here is rather simple. However, you can code
several other types of clauses in a select-statement within a DECLARE CURSOR
statement.

2. If you intend to update any columns in any or all of the rows of the identified
table (the table named in the FROM clause), include the FOR UPDATE OF
clause; it names each column you intend to update. If you do not specify the
names of columns you will later update, and you specify the ORDER BY clause,
a negative SQLCODE is returned if an update is attempted. If you do not specify
the FOR UPDATE OF clause and you do not specify the ORDER BY clause, you
can update any of the columns of the specified table.

You can update a column of the identified table even though it is not part of the
result table. In this case, you do not need to name the column in the SELECT
statement. When the cursor retrieves a row (using FETCH) that contains a
column value you want to update, you can use UPDATE ... WHERE CURRENT OF
to update the row.

For example, assume that each row of the result table includes the EMPNO,
LASTNAME, and DEPTNO columns from the USER1.TEMPL table. If you want to
update the JOB CODE column (one of the columns in each row of the
USER1.TEMPL table), the DECLARE CURSOR statement should include FOR
UPDATE OF JOBCODE ... even though JOBCODE is omitted from the SELECT
statement.

3. The result table is read-only if the SELECT statement includes the keyword DIS
TINCT, a UNION operator, a column function, a GROUP BY clause, or a HAVING
clause. The result table is also read-only if the FROM clause of the SELECT
statement identifies a read-only view or identifies more than one table or view
(that is, if it is "joined" with another table). For details about the join technique,
see "Joining Data from More Than One Table" on page 3-29.

3-22 SOL Programmer's Guide

J

Step 2: Open the Cursor
To tell Sal that you are ready to process the first row of the result table, issue the
OPEN statement. When your program issues the OPEN statement, SOL processes
the select-statement within the DECLARE CURSOR statement to identify a set of
rows, called a result table3 , using the current value of any host variables specified in
the select-statement. The OPEN statement looks like this:

EXEC SQL
OPEN cursor-name

END-EXEC.

Step 3: Specify What to Do when End-of-Data Is Reached
To find out when no rows are left to process, test the SOlCODE field for a value of
100 (that is, end-of-data). This condition occurs when the FETCH statement has
retrieved the last row in the result table and your program issues a subsequent
FETCH. For example:

IF SQLCODE =100 GO TO DATA-NOT-FOUND.

An alternative to this technique is to code the WHENEVER NOT FOUND clause. The
WHENEVER NOT FOUND clause can result in a branch to another part of your
program, where a CLOSE statement is issued. The WHENEVER NOT FOUND clause
looks like this:

EXEC SQL
WHENEVER NOT FOUND GO TO symbolic-address

END-EXEC.

Your program should anticipate an end-of-data condition whenever a cursor is used
to fetch a row, and should be prepared to handle this situation when it occurs.

Step 4: Retrieve a Row USing the Cursor
To move the contents of a selected row into your program's host variables, use the
FETCH statement. The SELECT statement within the DECLARE CURSOR statement
identifies rows that contain the column values your program wants (that is, the
result table is defined), but SOL does not retrieve any data for your application
program until FETCH is issued.

When your program issues the FETCH statement, SOL uses the cursor to point to the
next row in the result table, making it the current row. SOL then moves the current
row's contents into your program's host variables (specified with the INTO clause).
This sequence is repeated each time FETCH is issued, until you have processed all
rows in the result table.

SOL maintains the position of the current row (that is, the cursor points to the
current row) until the next FETCH statement for the cursor is issued. The UPDATE
statement does not change the position of the current row within the result table,
although the DELETE statement does.

3 A result table can contain zero, one, or many rows, depending on the extent to which the search condition is satisfied.

Chapter 3. Sal Coding Techniques 3-23

The FETCH statement looks like this:

EXEC SQL
FETCH cursor-name

INTO :host variable-l[, :host variable-2] ...
END-EXEC.

Step Sa: Update the Current Row
When your program has retrieved the current row, you can update its data by using
the UPDATE statement with the WHERE CURRENT OF clause. The WHERE
CURRENT OF clause specifies a cursor that points to the row you want to update.
The UPDATE ... WHERE CURRENT OF statement looks like this:

EXEC SQL
UPDATE table-name

SET column-l = value [, column-2 = value]
WHERE CURRENT OF cursor-name

END-EXEC.

When used with a cursor, the UPDATE statement:

• Updates only one row-the current row

• Identifies a cursor that points to the row to be updated

• Requires that the column updated be named previously in the FOR UPDATE OF
clause of the DECLARE CURSOR statement, if an ORDER BY clause was also
specified

After you have updated a row, the cursor's position remains on that row (that is, it
points to the current row) until you issue a FETCH statement for the next row.

Step 5b: Delete the Current Row
When your program has retrieved the current row, you can delete the row by using
the DELETE statement. To do this, you issue a DELETE statement designed for use
with a cursor; the WHERE CURRENT OF clause specifies a cursor that points to the
row you want to delete. The DELETE ... WHERE CURRENT OF statement looks like
this:

EXEC SQL
DELETE FROM table-name

WHERE CURRENT OF cursor-name
END-EXEC.

When used with a cursor, the DELETE statement:

• Deletes only one row-the current row

• Uses the WHERE CURRENT OF clause to identify a cursor that points to the row
to be deleted

After you have deleted a row, you cannot update or delete another row using that
cursor until you issue a FETCH statement for the next row.

3-24 Sal Programmer's Guide

J

J

"The DELETE Statement" on page 3-4 shows you how to use the DELETE statement
to delete all rows that meet a specific search condition. You can also use the
FETCH and DELETE ... WHERE CURRENT OF statements when you want to obtain a
copy of the row, examine it, then delete it.

Step 6: Close the Cursor
If you have finished processing the rows of the result table and you want to use the
cursor again, issue a CLOSE statement to close the cursor:

EXEC SQL
CLOSE cursor-name

END-EXEC.

If you have finished processing the rows of the result table and you do not want to
use the cursor again, you can let the system automatically close the cursor when
the first Sal program in the program stack ends.

Because an open cursor still holds locks on referred-to-tables or views, you should
explicitly close any open cursors as soon as they are no longer needed.

A Unit of Recovery and Open Cursors
If your program completes a unit of recovery (that is, it either commits or rolls back
the changes made so far), all open cursors are automatically closed by Sal, unless
you have specified HOLD. You can reopen the cursor, but you will begin processing
at the beginning of the result table.

If you wish to continue processing from the current cursor position after a COMMIT
or ROLLBACK, you must specify COMMIT HOLD or ROllBACK HOLD. When HOLD
is specified, any open cursors are left open and keep their cursor position so that
processing can resume. All record locks are still released. Since a FETCH state
ment acquires a lock on the row that it retrieves, you should not normally issue a
FETCH statement before a COMMIT.

Preventing Duplicate Rows
When Sal evaluates a select-statement, several rows might qualify to be in the
result table, depending on the number of rows that satisfy the select-statement's
search condition. Some of the rows in the result table might be duplicates. You can
specify that you do not want any duplicates by using the DISTINCT keyword, fol
lowed by the list of column names:

SELECT DISTINCT JOBCODE, SEX

DISTINCT means you want to select only unique rows. If a selected row duplicates
another row in the result table, the duplicate row is ignored (it is not put into the
result table). For example, suppose you want a list of employee job codes. You do
not need to know which employee has what job code. Because it is probable that
several people in a department have the same job code, you can use DISTINCT to
ensure that the result table has only unique values.

Chapter 3. SOL Coding Techniques 3-25

The following example shows how to do this:

EXEC SQL
DECLARE XMP2 CURSOR FOR

SELECT DISTINCT JOBCODE
FROM USER1.TEMPL
WHERE DEPTNO = :JOB-DEPT

END-EXEC.

EXEC SQL
FETCH XMP2

INTO :JOBCODE
END-EXEC.

The result is four rows (in this example, JOB-DEPT is set to D11).

fetch JOBCODE

~:~5:
3- 53

4- 52

RSLS796-O

If you do not include DISTINCT in a SELECT clause, you might find duplicate rows in
your result, because Sal retrieves the JOB CODE column's value for each row that
satisfies the search condition.

Performing Complex Search Conditions
The following section explains more advanced things you can do with search condi
tions.

Keywords for Use in Search Conditions
A search condition can contain any of the keywords BETWEEN ... AND, IN, and LIKE.

Note: Literal values are shown in the following examples to keep the examples
simple. However, you could just as easily code host variables instead.
Remember to precede each host variable with a colon.

• BETWEEN ... AND ... is used to specify a search condition that is satisfied by any
value that falls on or between two other values. For example, to 'find all
employees who were hired in 1987, you could use this:

WHERE HIREDATE BETWEEN '870101' AND '871231'

The BETWEEN keyword is inclusive. A more complex, but explicit, search con
dition that produces the same result is:

WHERE HIREDATE >= '870101' AND HIREDATE <= '871231'

3-26 Sal Programmer's Guide

J

J

L

• IN says you are interested in rows in which the value of the specified expression
is among the values you have listed. For example, to find the names of all
employees in departments AOO, C01, and E21, you could specify:

WHERE DEPTNO IN ('A00', 'C01', 'E21')

• LIKE says you are interested in rows in which a column value is similar to the
value you supply. When you use LIKE, the value on the left is always a column
name of character type. The value on the right must be a character value:
either a character string, a mixed character string, a host variable that contains
character data, or the USER special register.

When you use LIKE, SOL searches for a character string similar to the one you
specify. The degree of similarity is determined by two special characters used
in the string that you include in the search condition:

An underscore character stands for any single character.

% A percent sign stands for an unknown string of a or more characters. SOL
expects the unknown string not to begin in the first position in the column
unless the % precedes the string. In that case, the unknown string can
begin anywhere in the column.

Note: If you are operating on mixed data, the following distinction applies: an
EBCDIC underscore character refers to one EBCDIC character. No such
restriction applies to the percent sign; that is, a percent sign refers to any
number of characters of any type.

Use the underscore character or percent sign either when you do not know or
do not care about all the characters of the column's value. For example, to find
out which employees live in Minneapolis, you could specify:

WHERE ADDRESS LIKE '%MINNEAPOLIS%'

In this case, you should be sure that MINNEAPOLIS was not part of a street
address or part of another city name. SOL returns any row with the string
MINNEAPOLIS in the ADDRESS column, no matter where the string occurs.

In another example, to list the towns whose names begin with SAN_, you could
specify:

WHERE TOWN LIKE 'SAN %'

Multiple Search Condition within a WHERE Clause
You have seen how to qualify a request using one search condition. You can qualify
your request further by coding a search condition that includes several predicates.
The search condition you specify can contain any of the comparison operators or the
keywords BETWEEN, IN, and LIKE.

You can join any two predicates with the connectors AND and OR. In addition, you
can use the NOT keyword to specify that the desired search condition is the negated
value of the specified search condition. A WHERE clause can have as many predi
cates as you want.

Chapter 3. SOL Coding Techniques 3-27

• AND says that, for a row to qualify, the row must satisfy both predicates of the
search condition. For example, to find out which employees in department D21
were hired after December 31,1987, you would specify:

WHERE DEPTNO = 'D2l' AND HIREDATE > '871231'

• OR says that, for a row to qualify, the row can satisfy the condition set by either
or both predicates of the search condition. For example, to find out which
employees are in either department C01 or D11, you could specify4:

WHERE DEPTNO = 'COl' OR DEPTNO = 'OIl'

• NOT says that, to qualify, a row must not meet the criteria set by the search con
dition or predicate that follows the NOT. For example, to find all employees in
department E11 except those with a job code lower than 55, you could specify:

WHERE DEPTNO = 'Ell' AND NOT JOBCODE < 55

When SOL evaluates search conditions that contain these connectors, it does so in a
specific order. SOL first evaluates the NOT clauses, next evaluates the AND
clauses, and then the OR clauses.

You can change the order of evaluation by using parentheses. The search condi
tions enclosed in parentheses are evaluated first. For example, to select all
employees in departments E11 and E21 who have job codes greater than 53, you
could specify:

WHERE JOBCODE > 53 AND
(DEPTNO = 'Ell' OR DEPTNO = 'E21')

The parentheses determine the meaning of the search condition. In this example,
you want all rows that have a:

DEPTNO value of E11 or E21, and
JOBCODE value greater than 53

If you did not use parentheses:

WHERE JOBCODE > 53 AND DEPTNO = 'Ell'
OR DEPTNO = 'E2l'

your result is different. The selected rows are rows that have:

DEPTNO = E11 and JOBCODE > 53, or
DEPTNO = E21, regardless of the JOBCODE val ue

4 You could also use IN to specify this request: WHERE DEPTNO IN ('C01 " 'D11').

3-28 Sal Programmer's Guide

Joining Data from More Than One Table
In the SELECT examples you have seen so far, the retrieved information has usually
been in one table. Sometimes the information you want is not in one table only. To
form a row of the result table, you might want to retrieve some column values from
a row in one table and some columns from a row in another table. You can use a
select-statement to retrieve and join column values from two or more tables into a
row.

Joining data (as described in this section) differs from using the UNION keyword in
the following ways:

With UNION keyword, the column values specified in one select-statement must
have compatible data types with the column values in the other select
statement. Also, the set of rows selected from one table is added to the end of
the set selected from the other table, and duplicate rows are eliminated.

With join, column values from one row of a table are combined with column
values from another row of another (or the same) table to form a single row of
data. Sal examines both tables specified in the join select-statement to
retrieve data from as many rows as meet the search criteria specified in the
WHERE clause.

For example, suppose you want to retrieve, for project MA2112, the employee
numbers, names, activity codes, and amount of time spent on that project. In other
words, you want the EMPNO and LASTNAME columns from the USER1.TEMPl table
and the ACTNO and EMPTIME columns from the USER1.TEMPRACT table. To find
this information, you need to join the two tables.

To do this, you list the two tables you are joining in the FROM clause of the SELECT
statement. If the tables have any column names that are the same, you qualify
those column names by prefixing them with the name of the table:

EXEC SQL
DECLARE XMP7 CURSOR FOR

SELECT USERl.TEMPL.EMPNO, LASTNAME, ACTNO, EMPTIME
FROM USERl.TEMPL, USERl.TEMPRACT
WHERE USERl.TEMPL.EMPNO = USERl.TEMPRACT.EMPNO

AND USERl.TEMPRACT.PROJNO = 'MA2112'
END-EXEC.

EXEC SQL
FETCH XMP7

INTO :PERSON, : NAME3 , :ACTIV, :TIME
END-EXEC.

Chapter 3. SOL Coding Techniques 3-29

I

I
I

I
1

I

i
I

To better understand what results from these SOL statements, imagine that SOL
goes through the following process:

Step 1: SOL selects all rows in USER1.TEMPRACT
with a PROJNO value of MA2112: Which results in an interim result table:

... (from USER1.TEMPRACT)
SELECT USERl.TEMPL.EMPNO, ... EMPNO ACTNO EMPTIME

ACTNO, EMPTIME
FROM ... USER!. TEMPRACT 000170

BE ffiE WHERE •..
000190 USER!. TEMPRACT. PROJNO = 'MA2112 ' 70 100

Step 2: SOL selects all rows from the USER1.TEMPL
table with a EMPNO value equal to the EMPNO values
from step 1.

From each row, SOL selects the row's EMPNO and
LASTNAME values. Which results in another interim result table:

... (from USER1.TEMPL)
SELECT USERl.TEMPL.EMPNO, LASTNAME EMPNO LASTNAME

FROM USERl.TEMPL, ...
YOSHIMURA I WHERE USERl.TEMPL.EMPNO = 000170

USERl.TEMPRACT.EMPNO ...
I 000190 WALKER ...

Step 3: SOL combines the results of the previous
two steps to form a result table that can be
retrieved a row at a time with a FETCH statement: The combined result table:

EXEC SQL fetch PERSON NAME3 ACTIV TIME
DECLARE XMP? CURSOR FOR

000170 ! YOSHIMURA J SELECT USERl.TEMPL.EMPNO, LASTNAME, ACTNO, EMPTIME 1- till ~ FROM USERl.TEMPL, USERl.TEMPRACT 2- 000190 I WALKER I 70 100
WHERE USER1.TEMPL.EMPNO = USERl.TEMPRACT.EMPNO
AND USERl. TEMPRACT. PROJNO = 'MA2112 '

END-EXEC.
...
EXEC SQL

FETCH XMP?
INTO : PERSON, : NAME3, : ACTIV, : TIME

END-EXEC.

RSLS797-0

The WHERE Clause and Joining Tables
The WHERE clause establishes a condition for joining two or more tables; that is, it
gives a relationship between the two tables.

When tables are joined, the WHERE clause can be used to:

• Concatenate, on a one-to-one basis, a row from table A with a corresponding
row from table B

• Concatenate distinct groups of rows from table A to different rows of table B
• Concatenate groups of rows from table A to selected rows of table B

In the preceding example, the statement tells SOL that you want columns from rows
in the USER1.TEMPL table concatenated with columns from rows in the
USER1.TEMPRACT table that have the same EMPNO value and a PROJNO value of
MA2112.

3-30 SOL Programmer's Guide

If you do not include a WHERE clause, each row of the USER1.TEMPL table is con
catenated with every row of the USER1.TEMPRACT table to form a result table, even
though the data may be unrelated. In other words, if you do not include a WHERE
clause, the number of rows in the result table is the product of the number of rows of
each joined table.

For example, note that the lack of a WHERE clause in the following SOL statement
causes a concatenation of each row of table A to every row of table B:

EXEC SQL
SELECT * FROM A, B

END-EXEC.

The results look like this:

Table A consists of:
I

Table 8 consists of: I The results of the SELECT are:
--------------,r---

Column 1 Column 2 Column 1

[A1l
1A2l, A2

~

'.1 AA1 I
AA2

I !

IAA31

Column 2

~ .. 881J
~

I VAR1 VAR2 VAR3

I
I Ml ,- AA 1 I 81

AA~
AA2

~ AA2

I ~ AA3 81

I l~u ~ 82
------~-- ----------~

RSLS798-0

Some of the uses you may have for joining two or more tables are:

• To create a view

Note: The view created in this manner cannot be processed using UPDATE,
DELETE, or INSERT statements.

• To select data

• To join a table or view to itself

Notes on the Join Technique
When you join two or more tables:

• If there are common column names, you must prefix each common name with
the name of the table (or a correlation name). Column names that are unique
do not need a prefix.

• If you do not list the column names you want, but instead use SELECT " SOL
returns rows that consist of all the columns of the first table, followed by all the
columns of the second table, and so on.

• If the GROUP BY clause is used in a view's definition, you cannot join the view
with any other table.

• You must be authorized to select rows from each table or view specified in the
FROM clause.

Chapter 3. Sal Coding Techniques 3-31

Inserting Multiple Rows into a Table
You can use a subselect within an INSERT statement to insert zero, one, or more
rows selected from the table or view you specify into another table. The rows you
select cannot be from the same table you are inserting into. SOL will not process
the INSERT statement if the tables are the same.

One use for this kind of INSERT statement is to move data into a table you have
created for summary data. For example, suppose you want a table that shows each
employee's time commitments to projects. You could create a table called
EMPTIME with the columns EMPNUMBER, PROJNUMBER, STARTDATE, ENDDATE,
and TTlME, and then use the following INSERT statement to fill the table:

EXEC SQL
INSERT INTO USERl.EMPTIME

(EMPNUMBER, PROJNUMBER, STARTDATE, ENDDATE)
SELECT EMPNO, PROJNO, EMSTDATE, EMENDATE

FROM USERl.TEMPRACT
END-EXEC.

The subselect embedded in the INSERT statement is no different from the subselect
you use to retrieve data. With the exception of UNION and ORDER BY, you can use
all the keywords, column functions, and techniques used to retrieve data. SOL
inserts all the rows that meet the search conditions into the table you specify.
Inserting rows from one table into another does not affect any existing rows in either
the source table or the target table.

Notes on Multiple Row Insertion
You should keep in mind the following notes when inserting multiple rows into a
table:

• The number of columns implicitly or explicitly listed in the INSERT statement
must equal the number of columns listed in the subselect.

• The data in the columns you are selecting must be compatible with the columns
you are inserting into.

J

• In the event the subselect statement embedded in the, INSERT returns no rows,
an SOLCODE of 100 is returned to alert you that no rows were inserted. If you)
successfully insert rows, the SOLERRD(3) field of the SOLCA will have an ...""
integer representing the number of rows SOL actually inserted.

• If SOL finds an error while running the INSERT statement, SOL stops the opera
tion. If you specify COMMIT (*CHG) or COMMIT (*ALL), nothing is inserted into
the table and a negative SOLCODE is returned. If you specify COMMIT(*NONE),
any rows inserted prior to the error remain in the table.

• You can join two or more tables with a subselect in an INSERT statement.
Loaded in this manner, the table can be operated on with UPDATE, DELETE,
and INSERT statements, because the rows exist as physically stored rows in a
table,

• When inserting new rows, you cannot specify an insertion sequence.

3-32 Sal Programmer's Guide

Inserting Default Values into Columns
At the time a table is created, individual columns within that table can be defined
such that default values are inserted if no other values are specified on an INSERT
statement.

To cause SOL to insert a default value into a column, omit that column's name and
value from your INSERT statement. Lacking any explicit assignment, SOL will auto
matically insert the default value into that column.

Note: If a table column was defined as NOT NULL rather than NOT NULL WITH
DEFAULT, you must explicitly provide a value for this column in any rows you
INSERT. If you omit such specifications, SOL returns a negative SOLCODE.

Also note that, when you insert a row into a view, there is an additional con
sideration. If the view does not contain all the columns of the base table,
SOL inserts default values into those columns of the base table that are not
in the view.

Chapter 3. SQL Coding Techniques 3-33

3-34 SOL Programmer's Guide

Chapter 4. Common Concepts and Rules for Using SQL with
Host Languages

This chapter describes some concepts and rules that are common to using Sal
statements in a host language that involve:

• Using host variables in Sal statements

• Handling Sal error and return codes

• Handling exception conditions with the WHENEVER statement

Using Host Variables in SQl Statements
When your program retrieves data, the values are put into data items defined by
your program and specified with the INTO clause of a SELECT or FETCH statement.
The data items are called host variables.

A host variable is a field in your program that is referenced in an Sal statement,
usually as the source or target for the value of a column. The host variable and
column must be data-type compatible. Host variables may not be used to identify
SQl objects such as tables or views.

A host structure is a group of host variables used as the source or target for a set of
selected values (for example, the set of values for the columns of a row).

Note: By using a host variable instead of a literal value in an Sal statement, you
give the application program the flexibility it needs to process different rows
in a table or view.

For example, instead of coding an actual department number in a WHERE
clause, you can use a host variable set to the department number you are
currently interested in.

Host variables are commonly used in Sal statements in these ways:

1. In a WHERE clause: You can use a host variable to specify a value in the predi
cate of a search condition, or to replace a literal value in an expression. For
example, if you have defined a field called EMPID that contains an employee
number, you can retrieve the name of the employee whose number is 000110
with:

MOVE '888118' TO EMPID.
EXEC SQL

SELECT LASTNAME
INTO :PGM-LASTNAME
FROM USER1.TEMPL
WHERE EMPNO = :EMPID

END-EXEC.

2. As a receiving area for column values (named In an INTO clause): You can use
a host variable to specify a program data area that is to contain the column
values of a retrieved row. The INTO clause names one or more host variables
that you want to contain column values returned by SOL. For example, suppose
you are retrieving the EMPNO, LASTNAME, and DEPTNO column values from
rows in the USER1.TEMPl table. You could define a host variable in your

© Copyright IBM Corp. 1988. 1989 Chapter 4. Common Concepts and Rules for Using Sal with Host languages 4-1

program to hold each column, then name the host variables with an INTO
clause. For example:

EXEC SQL
SELECT EMPNO, LASTNAME, DEPTNO

INTO :CBLEMPNO, :CBLNAME, :CBLDEPT
FROM USERl.TEMPL
WHERE EMPNO = :EMPID

END-EXEC.

In this example, the host variable CBLEMPNO receives the value from EMPNO,
CBlNAME receives the value from lASTNAME, and CBlDEPT receives the
value from DEPTNO.

3. As a value in a SELECT clause: When specifying a list of items in the SELECT
clause, you are not restricted to the column names of tables and views. Your
program can return a set of column values intermixed with host variable values
and literal constants. For example:

MOVE '000220' TO PERSON.
EXEC SQL

SELECT 'A', LASTNAME, SALARY, :RAISE,
SALARY + :RAISE

INTO :PROCESS, : PERSON-NAME, :EMP-SAL,
:EMP-RAISE, :EMP-TTL

FROM USERl.TEMPL
WHERE EMPNO = :PERSON

END-EXEC.

The results are:

PROCESS PERSON·NAME EMP·SAL EMp·RAISE EMP-TTL

A LUTZ 29840

4. As a value in other clauses of an SQl statement:

The SET clause in an UPDATE statement
The VALUES clause in an INSERT statement

4476

For more information on clauses, see the SQLl400 Reference manual.

34316

Assignment Rules
Sal column values are sent to (or assigned to) host variables during the running of
FETCH and SELECT INTO statements. Sal column values are set 'from (or assigned
from) host variables during the running of INSERT and UPDATE statements. All
assignment operations observe the following rules:

• Numbers and strings are not compatible:

Numbers cannot be assigned to string columns or string host variables.
Strings cannot be assigned to numeric columns or numeric host variables.

• All character strings are compatible; all numeric values are compatible. Con
versions are performed by Sal whenever necessary.

• A null value cannot be assigned to a host variable that does not have an associ
ated indicator variable.

4-2 Sal Programmer's Guide

J

J

Rules for Character String Assignment
Rules regarding character string assignment are:

• When a character string is put into a column, the length of the character string
value must not be greater than the length attribute of the column.

• When a mixed character results column is assigned to a mixed column, the
value of the mixed character results column must be a valid mixed character
string.

• When the value of a result column is put into a host variable and the character
string value of the result column is longer than the length attribute of the host
variable, the string is truncated on the right by the necessary number of charac
ters. If this occurs, SOLWARNO and S9LWARN1 (in the SOLCA) are set to W.
When using C/400, for a varying length null terminated character variable, if
only the null terminator is truncated, then SOLWARNO is set to Wand
SOLWARN1 is set to N.

• When the value of a results column is put into a fixed-length host variable or
when the value of a host variable is put into a fixed-Length CHAR result column
and the length of the character string value is less than the length attribute of
the target, the character string is padded on the right with the necessary
number of blanks.

• When a mixed character results column is truncated because the length of the
host variable into which it was being inserted was less than the length of the
string, the shift-in character at the end of the string is preserved. The result is,
therefore, still a valid mixed character string.

Rules for Numeric Assignment
Rules regarding numeric assignment are:

• The whole part of a number may be altered when converting it to slngle
precision floating-point. Because a single-precision floating-point field can only
contain seven decimal digits, any whole part of a number that contains more
than seven digits is altered due to rounding.

• The whole part of a number Is never truncated. If necessary, the fractional part
of a number is truncated. If the number, as converted, does not fit into the
target host variable or column, a negative SOLCODE is returned.

• Whenever a decimal, numeric, or binary number is assigned to a decimal,
numeric, or binary column or host variable, the number is converted, if neces
sary, to the preCision and scale of the target. The necessary number of leading
zeros is appended or deleted; in the fractional part of the number, the necessary
number of trailing zeros is appended, or the necessary number of trailing digits
is eliminated.

• When a binary or floating-point number is assigned to a decimal or numeric
column or host variable, the number is first converted to a temporary decimal or
numeric number and then converted, if necessary, to the precision and scale of
the target.

When a halfword binary integer (SMALLlNT) with 0 scale is converted to
decimal or numeric, the temporary result has a precision of 5 and a scale of
O.

When a fullword binary integer (INTEGER) is converted to decimal or
numeric, the temporary result has a precision of 11 and a scale of O.

Chapter 4. Common Concepts and Rules for Using SOL with Host Languages 4-3

Indicator Variables

When a floating-point number is converted to decimal or numeric, the tem
porary result has a precision of 31 and the maximum scale that allows the
whole part of the number to be represented without loss of either signif
icance or accuracy.

An indicator variable is a halfword integer variable used to indicate whether its
associated host variable has been assigned a null value:

• If a host variable is used any place other than in an INTO clause, it must not
have an associated indicator variable containing a negative value. You are
responsible for ensuring that this indicator is not set to a negative value.

• If the value for the result column is nUll, SOL puts a negative value in the indi
cator variable.

• If you do not use an indicator variable and the result column is a null value, a
negative SOLCODE is returned.

• If the value for the result column causes a numeric conversion error or an arith
metic expression error, SOL sets the indicator variable to -2.

You can also use an indicator variable to verify that a retrieved character string
value has not been truncated. If truncation occurs, the indicator variable contains a
positive integer that specifies the original length of the string.

When SOL returns a value from a result column, you can test the indicator variable.
If the value of the indicator variable is less than zero, you know the value of the
results column is null. When SOL returns a null value, nothing is put into the host J
variable used to contain the value of the result column (the value of the host vari-
able is unchanged).

You specify an indicator variable (preceded by a colon) immediately after the host
variable. For example:

EXEC SQL
SELECT COUNT(*), AVG(SALARY)

INTO :PLICNT, :PLISAL:INDNULL
FROM USER!. TEMPL
WHERE JOBCODE < 52

END-EXEC.

You can then test INDNULL to see if it contains a negative value. If it does, you
know SOL returned a null value.

Used with Host Structures
You can also specify an Indicator structure (defined as an array of halfword integer
variables) to support a host structure. If the results column values returned to a
host structure can be nUll, you can append an indicator structure name to the host
structure name. This allows SOL to notify your program about each null value
returned to a host variable in the host structure.

4-4 SOL Programmer's Guide

For example, in COBOL:

01 SAL-REC.
10 MIN-SAL
10 AVG-SAL
10 MAX-SAL

77 SALIND
01 EDUC-LEVEL

MOVE 20 TO EDUC-LEVEL.

EXEC SQL

PIC S9(6)V99 USAGE COMP-3.
PIC S9(6)V99 USAGE COMP-3.
PIC S9(6)V99 USAGE COMP-3.
PIC S9999 USAGE COMP-4 OCCURS 3 TIMES.
PIC S9999 COMP-4.

SELECT MIN(SALARY) , AVG(SALARY) , MAX (SALARY)
INTO :SAL-REC:SALIND
FROM USERl.TEMPL
WHERE EDUCLVL>:EDUC-LEVEL

END-EXEC.

In this example, SALIND is an array containing 3 values, each of which can be
tested for a negative value. If, for example, SALlND(1) contains a negative value,
then the corresponding host variable in the host structure (that is, MIN-SAL) is not
changed for the selected row.

In the above example, SOL selects the column values of the row into a host struc
ture. Therefore, you must use a corresponding structure for the indicator variables
to determine which (if any) selected column values are null.

Chapter 4. Common Concepts and Rules for Using Sal with Host languages 4·5

Handling SQl Error Return Codes
When an SOL statement is processed in your program, SOL places a return code in
the SOlCODE field. The return code indicates the success or failure of the running
of your statement. If SOL encounters an error while processing the statement, the
return code in SOlCODE is a negative number. If SOL encounters an exception but
valid condition while processing your statement, the return code is a positive
number. If your SOL statement is processed without encountering an error or
exception condition, the return code is zero.

Note: There are situations when a zero return code is returned to your program
and the result might not be satisfactory. For example, if a value was trun
cated as a result of running your program, the SOlCODE returned to your
program is zero. However, one of the SOL warning flags (SOlWARN1) indi
cates truncation.

Warning: If you do not test for negative SOL return codes or specify a WHENEVER
SOlERROR statement, your program will continue to the next statement. Contin
uing to run after an error can produce unpredictable results.

Because the SOlCA is a valuable problem-diagnosis tool, it is a good idea to
include in your application programs the instructions necessary to display some of
the information contained in the SOlCA. Especially important are the following
SOlCA fields:

SOlCODE

SOlERRD(3)

SOlWARNO

Return code.

The number of rows updated, inserted, or deleted by SOL.

If set to W, at least one of the SOL warning flags (SOlWARN1
through SOlWARN7) is set.

For more information about SOleA, see Appendix B. SOlCA and SOlDA Control
Blocks in the SQU400 Reference manual.

4-6 Sal Programmer's Guide

J

Handling Exception Conditions with the WHENEVER Statement
The WHENEVER statement causes SOL to check the SOLCA and continue pro
cessing your program, or branch to another area in your program if an error, excep
tion, or warning exists as a result of running an SOL statement. An exception
condition handling subroutine (part of your program) can then examine the
SOLCODE field to take an action specific to the error or exception situation.

The WHENEVER statement allows you to specify what you want to do whenever a
general condition is true. You can specify more than one WHENEVER statement for
the same condition. When you do this, the first WHENEVER statement applies to all
subsequent SOL statements in the source program until another WHENEVER state
ment is specified.

The WHENEVER statement looks like this:

EXEC SQL
WHENEVER condition action

END-EXEC.

There are three conditions you can specify:

SOLWARNING

SOLERROR

NOT FOUND

Specify SOLWARNING to indicate what you want done when
SOLWARNO = W or SOLCODE contains a positive value other
than 100.

Note: SOLWARNO could be set for several different reasons.
For example, if the value of a column was truncated when it was
moved into a host variable, your program might not regard this
as an error.

Specify SOLERROR to indicate what you want done when an
error code is returned as the result of an SOL statement
(SOLCODE < 0).

Specify NOT FOUND to indicate what you want done when an
SOLCODE of + 100 is returned because:

• After a single-row SELECT is issued or after the first FETCH
is issued for a cursor, the data the program specifies does
not exist.

• After a subsequent FETCH, no more rows satisfying the
cursor select-statement are left to retrieve.

• After an UPDATE, a DELETE, or an INSERT, no row meets
the search condition.

Chapter 4. Common Concepts and Rules for Using SOL with Host Languages 4-7

You can also specify the action you want taken:

CONTINUE

GO TO label

This causes your program to continue to the next statement.

This causes your program to branch to an area in the program.
The label for that area may be preceded with a colon. The
WHENEVER ... GO TO statement:

• Must be a section name or an unqualified paragraph name in
COBOL

• Is a label in PLII and C

• Is the label of a TAG in RPG

For example, if you are retrieving rows using a cursor, you expect that SOL will
eventually be unable to find another row when the FETCH statement is issued. To
prepare for this situation, specify a WHENEVER NOT FOUND GO TO ... statement to
cause SOL to branch to a place in the program where you issue a CLOSE statement
in order to close the cursor properly. J
Note: A WHENEVER statement affects all subsequent source SOL statements until

another WHENEVER is encountered.

In other words, all SOL statements coded between two WHENEVER statements (or
following the first, if there is only one) are governed by the first WHENEVER state
ment, regardless of the path the program takes.

Because of this, the WHENEVER statement must precede the first SOL statement it
is to affect. If the WHENEVER follows the SOL statement, the branch is not taken on
the basis of the value of the SOLCODE set by that SOL statement. However, if your
program checks the SOLCODE directly, the check must be done after the SOL state
ment is run.

The WHENEVER statement does not provide a CALL to a subroutine option. For this
reason, you might want to examine the SOLCODE value after each SOL statement is
run and call a subroutine, rather than use a WHENEVER statement.

4-8 Sal Programmer's Guide

L Chapter 5. Using SQl Statements in COBOL Programs

L

The AS/400 system supports more than one version of COBOL. The SOU400
program only supports the COBOLl400 language. This chapter describes the unique
application and coding requirements for embedding SOL statements in a
COBOLl400 program. Requirements for host structures and host variables are
defined. The handling of return codes is described.

A detailed sample COBOL program, showing how SOL statements can be used, is
provided in Appendix C.

Application Requirements
To run SOL statements, your COBOL program must have an SOL communication
area (SOLCA). There are two ways to get the SOLCA into your program. Use the
INCLUDE SOLCA or code a COBOL data item with the name SOLCODE. The pre
compiler will provide an SOLCA when it finds a declaration for SOLCODE. The
SOLCODE must be defined as:

PIC S9(n) COMP-4.

where n is a positive integer from 5 to 9.

sal Communication Area (SalCA)
The SOLCA is where SOL returns information about the results of running each SOL
statement. To include the SOLCA declaration, you can use the INCLUDE statement:

DATA DIVISION.
WORKING-STORAGE SECTION.

EXEC SQL
INCLUDE SQLCA
END-EXEC.

You can specify INCLUDE SOLCA wherever a 77 level or a record description entry
can be specified in the WORKING STORAGE section. (Other INCLUDE statements
can be specified anywhere in the DATA DIVISION or the PROCEDURE DIVISION.)

© Copyright IBM Corp. 1988, 1989 Chapter 5. Sal Statements in COBOL 5-1

When you use the INCLUDE statement, the SOL COBOL precompiler includes
COBOL source statements for the SQLCA:

01 SQLCA.
05 SQLCAID
05 SQLCABC
05 SQLCODE
05 SQLERRM.

49 SQLERRML
49 SQLERRMC

05 SQLERRP
05 SQLERRD

05 SQLWARN.
10 SQLWARN0
10 SQLWARNI
10 SQLWARN2
10 SQLWARN3
10 SQLWARN4
10 SQLWARN5
10 SQLWARN6
10 SQLWARN7
10 SQLWARN8
10 SQLWARN9
10 5QLWARNA

05 SQLSTATE

PIC X(8).
PIC 59(9) COMP-4.
PIC S9(9) COMP-4.

PIC S9(4) COMP-4.
PIC X(70).
PIC X(8).
OCCURS 6 TIMES
PIC S9(9) COMP-4.

PIC X(1).
PIC X(1).
PIC X(1).
PIC X(1).
PIC X(1).
PIC X(1).
PIC X(1).
PIC X(1).
PIC X(1).
PIC X(1).
PIC X(l).
PIC X(5).

SQLCODE is replaced with SaLCADE when a declare for SQLCODE is found in the
program and the SQLCA is provided by the precompiler.

For more information on SaLCA, see the SQLl400 Reference manual.

Coding Requirements
You must put SOL statements (other than the INCLUDE statement) in the PROCE
DURE DIVISION. The SOL statement can be preceded by a paragraph name if a
COBOL statement in the same place could be preceded by a paragraph name.

When you issue SOL statements from a COBOL program, begin each statement with
EXEC SOL. EXEC SOL must be specified within one line. The remainder of the
statement may be specified on subsequent lines.

Each SOL statement must have an ending delimiter. In COBOL programs, end each
SOL statement with END-EXEC. If several SOL statements are coded with no
COBOL statements between them, the ending delimiter of each SOL statement must
include an ending period (END-EXEC.). For a single SOL statement between two
COBOL statements, an ending period is optional (END-EXEC. or END-EXEC). The
ending period might not be appropriate in a structured program or where an SOL
statement is embedded in a COBOL clause. An ending period ends the preceding
COBOL statement (an IF ... THEN statement, for example).

5-2 SQL Programmer's Guide

L

L

For example, an UPDATE statement issued from a COBOL program would look like
this:

EXEC SQL
UPDATE USERl.TDEPT

SET MGRNO = :MGR-NUM
WHERE DEPTNO = :INT-DEPT

END-EXEC.

Including Code: You cannot use COBOL COPY verbs to include SQl statements.
You must use the SQl INCLUDE statement. INCLUDE statements cannot be nested.

Continuation for SQL Statements: The line continuation rules for SQl statements
are the same as those for other COBOL statements, except that EXEC SQl must be
specified within one line. If you continue a string constant from one line to the next,
the first nonblank character in the next line must be a string delimiter. If you con
tinue a delimited identifier from one line to the next, the first nonblank character in
the next line must be the SQl escape character.

Comments: You can include COBOL comment lines (* in column 7) within SQl
statements.

Note: COBOL debugging lines (0 in column 7) and page eject lines (I in column 7)
are treated as comment lines by the SQl precompiler.

Margins: Code SQl statements in columns 12 through 72. If EXEC SQl starts
before the specified margin (that is, before column 12), the SQl precompiler will not
recognize the statement.

Sequence Numbers: The source statements generated by the SQl precompiler are
generated with the same sequence number as the SQl statement.

Reserved Words: Do not use host variable names that begin with SQL. In addition,
a list of SQl reserved words can be found in the SQLl400 Reference.

Dynamic SQL in a COBOL Program: Dynamic SQl is an advanced programming
technique described in Chapter 9. With dynamic SQl, your program can develop
and then run SQl statements while the program is running. A SELECT statement
with a variable SELECT list (that is, a list of the data to be returned as part of the
query) that runs dynamically requires an SQl descriptor area (SQlDA). This is
because you cannot know in advance how many or what type of variables to allocate
in order to receive the results of the SELECT. Because the SQlDA uses pointer var
iables, which are not supported by COBOL, an INCLUDE SQlDA statement cannot
be specified in a COBOL program. An SQlDA must be set up by a PUI or C
program and passed to the COBOL program in order to use it.

COBOL Compile-Time Options: The COBOL PROCESS statement can be used to
specify the compile-time options for the COBOL compiler. Although the PROCESS
statement will be recognized by the COBOL compiler when it is called to create the
progr~m by the precompiler; the SQl precompiler itself does not recognize the
PROCESS statement. Therefore, options that affect the syntax of the COBOL source
such as APOST and QUOTE should not be specified in the PROCESS statement.
Instead *APOST and *QUOTE should be specified in the OPTION parameter of the
CRTSQlCBl command.

Chapter 5. SOL Statements in COBOL 5-3

Using COBOL Host Variables in SQl Statements
When your program retrieves data, the values are put into data items defined by
your program and specified with the INTO clause of a SELECT INTO or FETCH state
ment. The data items are called host variables. See "Using Host Variables in SOL
Statements" on page 4-1 for more information.

Host Structures
A host structure is a named set of host variables that is defined in your program's
DATA DIVISION. Host structures have a maximum of two levels, even though the
host structure might Itself occur within a multilevel structure. An exception is the
declaration of a varying-length character string, which requires another level that
must be level 49.

A host structure name can be a group name whose subordinate levels name ele
mentary data items. For example:

Ell A
El2 B

El3 CI PICTURE
El3 C2 PICTURE

In this example, B Is the name of a host structure consisting of the elementary items
C1 and C2.

When writing an SOL statement using a qualified host variable name (for example,
to Identify a field within a structure), use the name of the structure followed by a
period and the name of the field (that is, PUI style). For example, specify J
STRUCTURE. FIELD rather than FIELD OF STRUCTURE or FIELD IN STRUCTURE.
However, PL/I style applies only to qualified names within SOL statements; you
cannot use this technique for writing qualified names In COBOL statements.

After the host structure is defined, you can refer to it in an SOL statement Instead of
listing the several host variables (that is, the names of the data items that comprise
the host structure).

For example, you can retrieve all column values from selected rows of the table
USER1.TEMPL with:

5-4 Sal Programmer's Guide

J

01 PEMPL.
10 EMPNO
10 FIRSTNME.

49 FIRSTNME-LEN
49 FIRSTNME-TEXT

10 MIDINIT
10 LASTNAME.

49 LASTNAME-LEN
49 LASTNAME-TEXT

10 DEPTNO

MOVE '000220' TO EMPNO.

EXEC SQL
SELECT *

INTO :PEMPL
FROM USERl. TEMPL
WHERE EMPNO = :EMPNO

END-EXEC.

PIC X(6).

PIC 59(4) USAGE COMP-4.
PIC X(12).
PIC X(1).

PIC 59(4) USAGE COMP-4.
PIC X(15).
PIC X(3).

Notice that in the declaration of PEMPl, two varying-length string elements are
included in the structure: FIRSTNME and lASTNAME.

Basic Requirements for Host Variables

Coding Rules

This section describes the coding rules for host variables, assignment rules, decla
rations for host variables, and indicator variables and structures as they apply to
COBOLl400 programs.

Precede a host variable with a colon when it is used within an Sal statement. Do
not precede a host variable with a colon when you use it outside of an Sal state
ment.

You can use any valid COBOL variable name for host variables. For example, the
name can contain hyphens except as the first or last character in the name. The
first character of a host variable must be a character other than a hyphen.

You cannot specify JUSTIFIED or BLANK WITH ZERO when coding a host variable.

You can specify OCCURS only when defining an indicator structure. You cannot
specify OCCURS for any other type of host variable.

Assignment Rules
Sal column values are sent to (or assigned to) host variables during the running of
FETCH and SELECT INTO statements. Sal column values are set from (or assigned
from) host variables during the running of INSERT and UPDATE statements. All
assignment operations observe the rules specified in the section "Assignment
Rules" on page 4-2.

Chapter 5. Sal Statements in COBOL 5-5.

Allowable COBOL Declarations
SOL does not recognize every possible COBOL data description. If the COBOL data
item you code is not consistent with those shown in the following table, the data
item is not recognized as a host variable and might result in an error message when
the program is precompiled. You can examine the data types in the cross-reference
listing of the precompiler to note which variables have recognized data types.

The table shows the COBOL declarations that are allowed for use as host variables.
All other types of COBOL declarations are rejected by SOL if encountered.

Note: Under Explanatory Notes, the length of string variables does not effect their
recognition by the precompiler; the length limits apply to use, not declara
tion.

Table 5-1. COBOL Declarations Allowed for Use as Host Variables

SQl Data Type

CHAR
(character string)

(varying-length
character string)

SMAlLiNT
(halfword integer)

INTEGER
(fullword integer)

DECIMAL
(decimal value)

NUMERIC
(zoned decimal)

COBOL Equivalent

01 identifier PIC X(n).

01 identifier
49 identifier PIC S9(ni) COMP-4.
49 identifier PIC X(nc).

01 identifier PIC S9(n) COMP-4.
or

01 identifier PIC S9(n)V9(m)
COMP-4.

01 identifier PIC S9(n) COMP-4.
or

01 identifier PIC S9(n)V9(m)
COMP-4.

01 identifier PIC S9(n)V COMP-3.
or

01 identifier PIC S9(n)V9(m)
COMP-3.

or
01 identifier PIC S9(n)V9(m)
COMPo

01 identifier PIC S9(n)V9(m).
or

01 identifier PIC S9(n)V9(m)
DISPLAY.

5-6 Sal Programmer's Guide

Explanatory Notes

n is a positive integer.

Anything other than Xs in the PICTURE clause
makes the data item unacceptable as a host vari
able.

ni is a positive integer from 1 to 4.

nc is a positive integer.

n is a positive integer from 1 to 4. m also is a
positive integer; n + m cannot exceed 4. You can
include a V to denote the decimal pOint. Any
thing other than a 9 and a V makes the data item
unacceptable as a host variable.

PIC Sand COMP-4 are required.

n is a positive integer from 5 to 9. m also is a
positive integer; n + m can range from 5 to 9.
You can include a V to denote the decimal point.
Anything other than a 9 and a V makes the data
item unacceptable as a host variable.

PIC Sand COMP-4 are required.

nand m are positive integers; n + m cannot
exceed 18. You must include a V to denote the
decimal point. Anything other than a 9 and a V
makes the data item unacceptable as a host vari
able. COMP may be used in place of COMP-3.

PIC Sand COMP-3 or COMP are required.

nand m are positive integers; n + m cannot
exceed 18. You must include a V to denote the
decimal pOint. Anything other than a 9 and a V
makes the data item unacceptable as a host vari
able.

PIC S is required.

j

J

The following COBOL abbreviations are acceptable when coding COBOL host vari
ables:

PIC

COMP

USAGE

S9(4)

X(3)

Notes:

PICTURE or PICTURE IS or PIC IS

COMPUTATIONAL or USAGE IS COMPUTATIONAL

USAGE IS (an optional clause)

S9999

XXX

1. For data declarations of host variables not within a host structure, use level
number 01 or 77. Host variables within a structure may be level 02 through 4S.
A leading zero is not required. Host structures have a maximum of two levels,
except for level 49. Host structures may be used within levels 02 through 4S.

2. A varying-length character string data item must have group level 01 through 4S.
The group must contain two elementary items with the level 49 and consists of:

• Length item. The first elementary item must be a halfword integer variable
(PICTURE S9(4) COMP-4. It represents the length of the character string.

• Value item. The second elementary item must have the same description
as a fixed-length character string (for example, PICTURE X(SO), where SO is
the maximum length of the string). This item is used to contain the value of
the character string. If you use the host variable to insert a character string
into a column, SOL inserts only as many characters as are allowed by the
length item.

The data item and elementary items can have any acceptable COBOL name.
However, you refer to this host variable in your SOL statements with its group
name only.

3. Any level 77 data description entry except the length item of a varying-length
character string may be followed by one or more REDEFINES or RENAMES
entries. However, the names in these entries may not be used in SOL state
ments. Entries with the name FILLER are ignored.

4. The VALUE clause may be used to specify the initial contents of a data item.

S. Arrays (OCCURS clause) are not supported other than as indicator variables for
structures.

6. COBOL host variables used in SOL statements must be type compatible with the
columns with which they are to be used:

• Numeric data types are compatible with each other.

• Character data types are compatible with each other. SOL automatically
converts a fixed-length character string to a varying-length string, or vice
versa, when necessary.

7. Be careful of overflow. For example, if you retrieve an INTEGER column value
into a PICTURE S9(4) host variable and the column value is larger than 32767 or
smaller than -3276S, you get an overflow error.

S. Be careful of truncation. For example, if you retrieve an SO-character CHAR
column value into a PICTURE X(70) host variable, the rightmost 10 characters of
the retrieved string are truncated.

Chapter 5. Sal Statements in COBOL 5-7

Indicator Variables
An indicator variable is a halfword integer variable used to indicate whether its
associated host variable has been assigned a null value. See "Indicator Variables"
on page 4-4 for more information.

External Descriptions
Sal uses the COpy DD-format-name, COpy DO-All-FORMATS, COPY
DDS-format-name, and COpy DDS-All-FORMATS to retrieve host variables from
the file definitions. If the REPLACING option is specified, only complete name
replacing is done. Identifier-1 is compared against the format name and the field
name. If they are equal, identifier-2 is used as the new name.

Note: You cannot retrieve host variables from file definitions that have field names
which are COBOL reserved words.

J

To retrieve the definition of the sample table TDEPT described in Appendix B, you '\
can code the following: ...,

01 TDEPT-STRUCTURE.
COPY DDS-ALL-FORMATS OF TDEPT.

A host structure named TDEPT-STRUCTURE is defined with an 05 level field named
TDEPT-RECORD that contains four 06 level fields named DEPTNO, DEPTNAME,
MGRNO, and ADMRDEPT. These field names can be used as host variables in Sal
statements. For more information on the COBOL COPY verb, see the COBOU400
User's Guide.

The WHENEVER Statement
The target for the GOTO clause in the SOL WHENEVER statement must be a section
name or an unqualified paragraph name in the COBOL source.

Handling SQl Error Return Codes
When an SOL statement is processed in your program, Sal places a return code in . '\
the SOlCODE field. For more information on handling error return codes, see "Han- ...""
dling Sal Error Return Codes" on page 4-6. For a description of SOlCA, see the
SQU400 Reference manual.

5-8 Sal Programmer's Guide

L

Chapter 6. Using Sal Statements in RPG Programs

RPG/400 supports both RPG II and RPG III programs. SOL statements can only be
used in RPG III programs. RPG II and AutoReport are not supported. All references
to RPG in this manual apply to RPG III only.

This chapter describes the unique application and coding requirements for embed
ding SOL statements in an RPG program. Requirements for host structures and host
variables are defined. The handling of return codes is also described.

A detailed sample RPG program, showing how SOL statements can be used, is pro
vided in Appendix C.

Application Requirements
To run SOL statements, your RPG III program must have an SOL communication
area (SOLCA).

SQl Communication Area (SQlCA)
The SOL precompiler automatically places the SOLCA data structure Into the source
prior to the first calculation specification. You should not code an INCLUDE SOLCA
in your RPG program. If the program has an INCLUDE SOLCA specified, It is
accepted and Ignored. For more information on SOLCA, see the SQLI400 Reference
manual.

© Copyright IBM Corp. 1988. 1989 Chapter 6. Sal Statements In RPG 6-1

The SOLCA, as defined for RPG:

ISQLCA DS
1* SQL Communications area
I
I
I
I
I
I
I
I
I
I
I
I

1* End of SQLCA

1 8 SQLAID
B 9 120SQLABC
B 13 160SQLCOD
B 17 180SQLERL

19 88 SQLERM
89 96 SQLERP
97 120 SQLERR

B 97 1000SQLER1
B 101 1040SQLER2
B 105 1080SQLER3
B 109 1120SQLER4
B 113 1160SQLER5
B 117 1200SQLER6

121 127 SQLWRN
121 121 SQLWN0
122 122 SQLWN1
123 123 SQLWN2
124 124 SQLWN3
125 125 SQLWN4
126 126 SQLWN5
127 127 SQLWN6
128 128 SQLWN7
129 129 SQLWN8
130 130 SQLWN9
131 131 SQLWNA
132 136 SQLSTT

SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL

Note: Variable names in RPG are limited to 6 characters. The standard SOLCA
names have been changed to a length of 6. RPG does not have a way of
defining arrays in a data structure without also defining them in the extension
specification. SOLERR is defined as character with SOLER1 through 6 used
as the names of the elements.

Coding Requirements
SOL statements coded in RPG programs must be placed in the calculation section.
This requires that a C be placed in position 6. SOL statements can be placed in
detail calculations, in total calculations, or in an RPG subroutine. The SOL state
ments are run based on the logic of the RPG statements.

An SOL statement is delimited by IEXEC SOL and lEND-EXEC.

EXEC SOL indicates the beginning of a SOL statement. It must occupy positions 8
through 16 of the source statement, preceded by a I in position 7. The SOL state
ment may start in position 17 and continue through position 74.

END-EXEC ends the SOL statement. It must occupy positions 8 through 16 of the
source statement, preceded by a I in position 7. Positions 17 through 74 must be
blank.

Including Code: You may use either the RPG ICOPY statement or the SOL
INCLUDE statement to include code into your source.

6-2 SOL Programmer's Guide

J

J

L
Continuation for SQL Statements: When additional records are needed to contain
the Sal statement, positions 9 through 74 can be used. Position 7 must be a +
(plus sign), and position 8 must be blank.

Comments: RPG comments can be embedded within the Sal statement by placing
an • in position 7.

The following is an example of an Sal statement in RPG:

Note: Both uppercase and lowercase letters are acceptable in Sal statements.

C SWITCH IFEQ ON
C MOVE 'EOl' HOSTV 3
C/EXEC SQL insert into TDEPT (DEPTNO, DEPTNAME, MGRNO, ADMRDEPT)
C+ values('AOO', 'COMPUTER SERVICE DIV', '000010', :HOSTV)
C/END-EXEC
C END

The Sal statement inside the delimiters can be coded free-form and is not
restricted to uppercase notation. The following example is the previous example
coded differently:

C
C
C/EXEC SQL

SWITCH IFEQ ON
MOVE 'EOl' HOSTV 3

C+ INSERT into TDEPT (DEPTNO,
C+
C+
C+
C* this is a comment
C+ values ('AOO',
C+
C+
C+
C/END-EXEC
C END

DEPTNAME,
MGRNO,

ADMRDEPT)

'COMPUTER SERVICE DIV',
'000010',

:hostv)

Sequence Numbers: The source statements generated by the Sal precompiler are
generated with the same sequence number as the Sal statement.

Reserved Words: Do not use host variable names that begin with SOL. In addition,
a list of Sal reserved words can be found in the SQLl400 Reference.

Dynamic SQL in a RPG Program: Dynamic Sal is an advanced programming tech
nique described in Chapter 9. With dynamic SOL, your program can develop and
then run SOL statements while the program is running. A SELECT statement with a
variable SELECT list (that is, a list of the data to be returned as part of the query)
that runs dynamically requires an SOL descriptor area (SOlDA). This is because
you cannot know in advance how many or what type of variables to allocate in order
to receive the results of the SELECT. Because the SOlDA uses pointer variables
which are not supported by RPG, an INCLUDE SOlDA statement cannot be specified
in an RPG program. An SOlDA must be set up by a PLII or C program and passed
to the RPG program in order to use it.

Chapter 6. Sal Statements in RPG 6-3

Using RPG Host Variables in SQl Statements
When your program retrieves data, the values are put into RPG fields defined by J:
your program and specified with the INTO clause of a SELECT INTO or FETCH state-
ment. The RPG fields are called host variables. See "Using Host Variables in SOL
Statements" on page 4-1 for more information.

Host Structures
The RPG data structure name can be used as a host structure name if subfields
exist in the data structure. The use of the data structure name in an SOL statement
implies the list of subfield names making up the data structure.

When subfields are not present for the data structure, then the data structure name
is a host variable of character type. This allows character variables larger than 256,
because data structures can be up to 9999.

In the following example, BIGCHR is an RPG data structure without subfields. SOL
treats any references to BIGCHR as a character string with a length of 642.

IBIGCHR DS 642

In the next example, PEMPL is the name of the host structure consisting of the sub
fields EMPNO, FIRSTNME, MIDINIT, LASTNAME, and DEPTNO. The reference to
PEMPL uses the subfields. For example, the first column of TEMPL is placed In
EMPNO, the second column Is placed in FIRSTNME, and so on.

IPEMPL DS
I
I
I
I
I

C MOVE '000220'

C/EXEC SQL
C+ SELECT * INTO :PEMPL
C+ FROM USER1.TEMPL
C+ WHERE EMPNO = :EMPNO
C/END-EXEC

01 06 EMPNO
07 18 FIRSTNME
19 19 MIDINT
20 34 LASTNAME
35 37 DEPTNO

EMPNO

When writing an SOL statement, references to subfields can be qualified. Use the
name of the data structure, followed by a period and the name of the subfield. For
example, PEMPL.MIDINT is the same as specifying only MIDINT.

6-4 SOL Programmer's Guide

Basic Requirements for Host Variables

Coding Rules

This section describes the coding rules for host variables, assignment rules, decla
rations for host variables, and indicator variables and structures as they apply to
RPG programs.

Precede a host variable with a colon when it is used within an Sal statement. Do
not precede a host variable with a colon when you use it outside of an Sal state
ment.

Any valid host variable name can be used in an Sal statement. You can use a host
variable to represent a data value, but you cannot use it to represent a table name,
view name, or column name.

Assignment Rules
RPG associates precision and scale with all numeric types. RPG defines numeric
operations, assuming the data is in packed format. This means that operations
involving binary variables include an implicit conversion to packed before the oper
ation is performed (and back to binary, if necessary). Data is aligned to the implied
decimal point when Sal operations are performed. All assignment operations
observe the rules specified in the section "Assignment Rules" on page 4-2.

Allowable RPG Declarations
RPG has two types of data: character and numeric. Within the numeric type, there
are four storage types: halfword binary, fullword binary, packed, and zoned. All
variables defined in RPG can be used as host variables, except for the following:

• Multiple occurrence data structures
• Indicator field names (*INxx)
• Tables
• UDATE
• UDAY
• UMONTH
• UYEAR
• look-ahead fields
• Named constants

Arrays cannot be used as host variables, but they can be used as indicator vari
ables. Fields used as host variables are passed to SQl using the CAlLlPARM func
tions of RPG. If a field cannot be used in the results field of the PARM, it cannot be
used as a host variable.

The following table shows the relationship between Sal and RPG data types:

SOL Data Type

CHAR
(Character string)

SMAlLiNT
(halfword integer)

RPG Equivalent

Field defined without decimal places; maximum length, 9999.

Subfield of the data structure. B in position 43 of the subfield
specification, storage length, 2. An entry must be made in posi
tion 52.

Chapter 6. Sal Statements in RPG 6-5

SQl Data Type

INTEGER
(fullword integer)

DECIMAL
(Decimal value)

NUMERIC
(Zoned decimal)

Indicator Variables

RPG Equivalent

Subfield of the data structure. B in position 43 of the subfield
specification, storage length, 4. An entry must be made in posi
tion 52.

Subfield of the data structure. P in position 43 and an entry in
position 52 of the subfield specification.

Or

Defined as numeric and not a subfield of a data structure.

Maximum precision of 30.

Subfield of the data structure. Blank in position 43. An entry
must be made in position 52.

Maximum precision of 30.

SOL requires the attribute of SMALLINT for data to be used as an indicator variable.
This is accomplished in RPG by declaring the variable as a subfield in a data struc
ture. The length for to and from must be 2. Position 43 must be B, and position 52
must be O.

An indicator structure can be defined by declaring the variable as an array with an
element length of 4,0 and declaring the array name as a subfield of a data structure
with B in position 43.

The following example shows RPG field names used as indicator variables. The
array AI has three elements defined as numeric 4,0. The entries for AI and INO as
subfields declare their storage format of binary. AI can now be used as an indicator
structure. INO can be used as an indicator variable.

E

os

External Descriptions

AI 348

B 1 68AI
B 7 88INO

The SOL precompiler processes the RPG source in much the same manner as the
RPG compiler. This means that the precompiler processes the ICOPY statement for
definitions of host variables. Field definitions for externally described files are
obtained and renamed, if different names are specified. The external definition form
of the data structure can be used to obtain a copy of the column names to be used
as host variables.

In the following example, the sample table TOEPT is used as a file in an RPG
program. The SOL precompiler retrieves the field (column) definitions for TDEPT for
use as host variables. The record name must be changed so that it is not the same
as the file name. The field names must be changed because they are more than six
characters in length.

6-6 Sal Programmer's Guide

J

J

FTDEPT
F
ITDPTREC
I
I

IP E
TDEPT

DEPT NAME
ADMRDEPT

DISK
KRENAMETDPTREC

DEPTN
ADMRD

Note: Code an F-spec for a file in your RPG program only if you use RPG state
ments to do I/O operations to the file. If you use only SOL statements to do I/O oper
ations to the file, include the external definition by using an external data structure.

In the following example, the sample table is specified as an external data structure.
The SOL precompiler retrieves the field (column) definitions as subfields of the data
structure. Subfield names can be used as host variable names, and the data struc
ture name TDEPT can be used as a host structure name. The field names must be
changed because they are greater than six characters.

ITDEPT
I
I

E DS

The WHENEVER Statement

DEPTNAME
ADMRDEPT

DEPTN
ADMRD

The target for the GOTO clause in the SOL WHENEVER statement must be the label
of an RPG TAG statement in the RPG source. The RPG scope rules for the
GOTOITAG must be observed. For more information on handling the WHENEVER
statement, see "Handling Exception Conditions with the WHENEVER Statement" on
page 4-7.

Handling SQl Error Return Codes
When an SOL statement is processed in your program, SOL places a return code in
the SOlCOD field of the SOL communication area (SOlCA). The SOlCA allows SOL
to communicate with your program. For more information on handling error return
codes, see "Handling SOL Error Return Codes" on page 4-6. For a description of
SOlCA, see the SQLl400 Reference manual.

Chapter 6. Sal Statements in RPG 6-7

J

6-8 SOL Programmer's Guide

L Chapter 7. Using SQl Statements in Pl/l Programs

This chapter describes the unique application and coding requirements for embed
ding Sal statements in an AS/400 PLII program. Requirements for host structures
and host variables are defined. The handling of return codes is described.

A detailed sample PLII program, showing how Sal statements can be used, is pro
vided in Appendix C.

Application Requirements
To run Sal statements, your PLII program must have an Sal communication area
(SOlCA). There are two ways to get the SQlCA into your program. Use the
INCLUDE SQlCA or code a PLII variable with the name SQlCODE. The precompiler
will provide an SOlCA when it finds a declaration for SOlCODE. The SOlCODE
must be defined as:

FIXED BINARY (31)

SQl Communication Area (SQlCA)
An AS/400 PLII program that accesses Sal data must include an SOlCA, The
SOlCA Is the data area in which Sal returns information about the results of
running each Sal statement. To include a PLII declaration of the SOlCA, use the
EXEC Sal INCLUDE statement:

EXEC SQL INCLUDE SQLCA;

When you use the EXEC Sal INCLUDE statement, Sal replaces that statement with
a declaration of the SOlCA. The included PLII source statements for the SOlCA
are:

DCL 1 SQLCA,
2 SQLCAID
2 SQLCABC
2 SQLCODE
2 SQLERRM
2 SQLERRP
2 SQLERRD(6)
2 SQLWARN,

3 SQLWARN8
3 SQLWARNI
3 SQLWARN2
3 SQLWARN3
3 SQLWARN4
3 SQLWARN5
3 SQLWARN6
3 SQLWARN7
3 SQLWARN8
3 SQLWARN9
3 SQLWARNA

2 SQLSTATE

CHAR(8) ,
BIN FIXED(31),
BIN FIXED(31),
CHAR(78) VAR,
CHAR(8),
BIN FIXED(31),

CHAR(1) ,
CHAR(1),
CHAR(1),
CHAR(1) ,
CHAR(1) ,
CHAR(1) ,
CHAR(1),
CHAR(1) ,
CHAR(1) ,
CHAR(1),
CHAR(1) ,
CHAR(5);

SQlCODE is replaced with SOlCADE when a declare for SOlCODE is found in the
program and the SQlCA is provided by the precompiler.

For more information on SQlCA, see the SQLl400 Reference manual.

© Copyright IBM Corp. 1988, 1989 Chapter 7. Sal Statements in PllI 7-1

SQl Descriptor Area (SQlDA)
Dynamic SOL is an advanced programming technique and is described in
Chapter 9. With dynamic SOL, your program can develop and then run SOL state
ments while the program is running.

A select-statement with a variable SELECT list (that is, a list of the data to be
returned as part of the query) that runs dynamically requires an SOL descriptor area
(SOLDA). This is because you cannot know in advance how many or what type of
variables to allocate in order to receive the results of the SELECT. The SOLDA is
used to pass information about an SOL statement between SOL and your applica
tion. This information is used before an SOL statement is dynamically run.
However, information about the results of running the statement is returned in the
SOLCA. An SOLDA can be specified in a PLII program by coding:

EXEC SQL INCLUDE SQLDA;

A PLII program can also issue dynamic SOL statements using the EXECUTE IMME
DIATE statement, which does not require an SOLDA.

You may code the SOLDA structure directly instead of using the INCLUDE SOLDA
statement. If you choose to declare the structure directly, you can specify any name
for it. For example, you can call it SPACE1 or DAREA instead of SOLDA. The gen
erated PLII source statements for the SOLDA are:

DCL 1 SQLDA BASED(SQLDAPTR),
2 SQLDAID CHAR(8),
2 SQLDABC BIN FIXED(31),
2 SQLN BIN FIXED,
2 SQLD BIN FIXED,
2 SQLVAR(99) ,

3 SQLTYPE
3 SQLLEN
3 SQLRES
3 SQLDATA
3 SQUND
3 SQLNAME

DCL SQLDAPTR PTR;

Coding Requirements

BIN FIXED,
BIN FIXED,
CHAR(12) ,
PTR,
PTR,
CHAR(30) VAR;

You can code an SOL statement anywhere in a PLII program.

When you issue SOL statements from a PLII program, begin each statement with
EXEC SOL. The EXEC SOL must be on one line. The remainder of the statement
can appear on the next and subsequent lines.

Each SOL statement must have an ending delimiter. In PLII programs, end each
SOL statement with a semicolon (;). For example, an UPDATE statement issued
from a PLII program would look like this:

EXEC SQL
UPDATE USERl.TDEPT

SET MGRNO = :MGR_NUM
WHERE DEPTNO = :INT_DEPT;

SOL statements, like PLII statements, can have a label prefix.

7-2 SOL Programmer's Guide

J

Including Code: You cannot use the PUI %INCLUDE directive to include source
which contains SOL statements or host variable DCL statements. Use the SOL
INCLUDE statement to include source which contains SOL statements and host vari
able DCL statements.

Continuation for SQL Statements: The line continuation rules for SOL statements
are the same as those for other PLII statements.

Comments: You can include PUI comments in SOL statements wherever you can
have a blank, except between the words EXEC and SOL.

Margins: Code SOL statements within the margins specified by the MARGINS
parameter on the CRTSOLPLI command. If EXEC SOL does not start within the
specified margins, the SOL precompiler will not recognize the SOL statement. For
more information about the CRTSOLPLI command, see the section "Precompiler
Commands" on page 10-7.

Reserved Words: Host variable names that begin with SOL are reserved for SOL.
A list of additional SOL reserved words is located in the SQLl400 Reference.

Using Pl/l Host Variables in SQl Statements
When your program retrieves data, the values are put into PLII variables defined by
your program and specified with the INTO clause of a SELECT INTO or FETCH state
ment. The PUI variables are called host variables. See "Using Host Variables in
SOL Statements" on page 4-1 for more information.

Host Structures
In PLII programs, you can define a host structure, which is a named set of elemen
tary PUI variables. A host structure name can be a group name whose subordinate
levels name elementary PUI variables. For example:

DCl 1 A,
2 S,

3 Cl CHAR(...),
3 C2 CHAR(•..);

In this example, B is the name of a host structure consisting of the elementary items
C1 and C2.

You can use the structure name as shorthand notation for a list of scalars, but only
for a two-level structure. You can qualify a host variable with a structure name (for
example, STRUCTURE. FIELD). Host structures are limited to two levels. (For
example, in the above host structure example, the A cannot be referenced in SOL.)
A structure cannot contain an intermediate level structure. In the previous example,
A could not be used as a host variable or referenced in an SOL statement. A host
structure for SOL data is two levels deep and can be thought of as a named set of
host variables. After the host structure is defined, you can refer to it in an SOL
statement instead of listing the several host variables (that is, the names of the host
variables that make up the host structure).

Chapter 7. Sal Statements in PLII 7-3

For example, you can retrieve all column values from selected rows of the table
USER1.TEMPL with:

DCl 1 PEMPl,
5 EMPNO CHAR(6),
5 FIRSTNME CHAR(12) VAR,
5 MIDINIT CHAR(l),
5 lASTNAME CHAR(15) VAR,
5 DEPTNO CHAR(3);

EMPID = '000220';

EXEC SQL
SELECT *

INTO :PEMPl
FROM USERl.TEMPl
WHERE EMPNO = :EMPID;

Basic Requirements for Host Variables

Coding Rules

This section describes the coding rules for host variables, assignment rules, decla
rations for host variables, and indicator variables and structures as they apply to
PLII programs.

Precede a host variable with a colon when it is used within an SOL statement. Do
not precede a host variable with a colon when you use it o~tside of an SOL state
ment.

Any valid host variable name can be used in an Sal statement. You can use a host
variable to represent a data value, but you cannot use it to represent a table name,
view name, or column name.

Host variables must be scalars or structures of scalars. Host variables cannot be
declared as arrays, although an array of indicator variables is allowed when the
array is associated with a host structure.

You can use any valid PLiI variable name for host variables.

You can declare host variable attributes in any order acceptable to PLII. For
example, BIN FIXED(31), BINARY FIXED(31), BIN(31) FIXED, and FIXED BIN(31) are
all acceptable. If several variables have exactly the same attributes, you can
declare all of them in a single declare statement. For example:

DCl (X, Y, Z) BIN FIXED;

The names of host variables should be unique within the program, even if the host
variables are in different blocks or procedures, unless you qualify them with a struc
ture name to make them unique.

If host variables are used in an Sal statement, the Sal statement must be within
the scope of the DCl statement in which the variable was declared.

Host variables can be STATIC, BASED, or AUTOMATIC storage class, or parame
ters.

7-4 Sal Programmer's Guide

J

Assignment Rules
Sal column values are sent to (or assigned to) host variables during the running of
FETCH and SELECT INTO statements. Sal column values are set from (or assigned
from) host variables during the running of INSERT and UPDATE statements. All
assignment operations observe the rules specified in the section" Assignment
Rules" on page 4-2.

Allowable PL/I Declarations
Sal will not recognize every possible PUI data declaration. If the PUI declaration
you code is not consistent with those shown in the following table, the declaration is
not recognized as a host variable and might result in an error message when the
program is precompiled.

The following table shows the PUI declarations that are allowed as host variables.
All other types of PUI declarations are ignored by Sal if encountered.

Table 7-1 (Page of 2). PLII Declarations Allowed for Use as Host Variables

Sal Data Type

CHAR
(character str i ng)

(Varying length
character string)

SMAlLiNT
(halfword integer)

INTEGER
(fullword integer)

DECIMAL
(decimal value)

NUMERIC
(zoned decimal)

PUI Equivalent

DCl identifier CHAR(m);

DCl identifier CHAR(n) VAR;

DCl identifier BIN FIXED;
or

DCl identifier FIXED BIN;
or

DCl identifier BIN FIXED(15);
or

DCl identifier FIXED BIN(15);

DCl identifier BIN FIXED(31);
or

DCl identifier FIXED BIN(31);

DCl identifier DEC FIXED(p);
or

DCl identifier FIXED DEC(p);
or

DCl identifier DEC FIXED(p,s);
or

DCl identifier FIXED DEC(p,s);

DCl identifier PICTURE
'999V99R' ;

Explanatory Notes

m is a positive integer from 1 to 32767.

n is a positive integer from 1 to 32765.

p (the precision) and s (the scale factor) are
positive integers. sis 0 to 15 but cannot be
larger than p. pis 1 to 15.

Valid picture data items are 9, V, and R; R is
required. The range of numeric values in the
picture specification is expressed by 9 in digit
positions, V for the decimal, and A for the sign.
For example, imagine the expression

PICTURE '999V99R',

where the length equals 6, and the precision
equals 3. V is optional, R is required.

Chapter 7. Sal Statements in PUI 7-5

Table 7-1 (Page 2 of 2). PUI Declarations Allowed for Use as Host Variables

SQl Data Type

REAL
(single-precision
fl oati ng-poi nt)

FlOAT(53)
(double-precision
floating-point)

PllI Equivalent

DCl identifier BIN FlOAT(n);
or

DCl identifier FLOAT BIN(n);
or

DCl identifier DEC FlOAT(m);
or

DCl identifier FLOAT DEC(m);

DCl identifier BIN FlOAT(n);
or

DCl identifier FLOAT BIN(n);
or

DCl identifier DEC FlOAT(m);
or

DCl identifier FLOAT DEC(m);

7-6 Sal Programmer's Guide

Explanatory Notes

n is a positive integer from 1 to 24, however,
Sal recognizes it as FlOAT(24).

m is a positive integer from 1 to 7, however,
Sal recognizes it as FlOAT(24).

n is a positive integer from 25 to 53, however,
Sal recognizes it as FlOAT(53).

m is a positive integer from 8 to 16, however,
Sal recognizes it as FlOAT(53).

J

L
The following PLII abbreviations are acceptable when coding PLII host variables:

BIN

CHAR

BINARY

CHARACTER

DEC DECIMAL

DCl DECLARE

PIC PICTURE

VAR VARYING

Notes:

1. You cannot declare:

• DECIMAL without FIXED or FLOAT
• BINARY without FIXED or FLOAT

• BIT
• Implicit declarations
• Block scoping rules
• Arrays-other than for indicators

Otherwise, any valid PLII DECLARE statement can be coded (as long as the dec
laration is within the parameters noted in the preceding table). If BASED is
coded, it must be followed by a PLII element-locator-expression.

2. The INITIAL clause may be used to specify the initial contents of a host variable.

3. PLII host variables used in SOL statements must be type compatible with the
columns with which they are to be used:

• Numeric data types are compatible with each other.

• Character data types are compatible with each other. SOL automatically
converts a fixed-length character string to a varying-length string, or vice
versa, when necessary.

4. Be careful of overflow. For example, if you retrieve an INTEGER column value
into a BIN FIXED(1S) host variable and the column value is larger than 32767 or
smaller than -32768, you get an overflow error.

S. Be careful of truncation. For example, if you retrieve an 80-character CHAR
column value into a CHAR(70) host variable, the farthest right 10 characters of
the retrieved string are truncated.

Indicator Variables

Retrieving a floating-point, numeric, or decimal result column value into a BIN
FIXED(31) or BIN FIXED(1S) host variable removes any fractional value.

An indicator variable is a halfword integer variable used to indicate whether its
associated host variable has been assigned a null value. See "Indicator Variables"
on page 4-4 for more information.

Chapter 7. Sal Statements in PLII 7-7

Using the %lNCLUDE Directive for External File Descriptions
You can use the PLII %INCLUOE directive to include the definitions of externally
described files in a source program. When used with SOL, only a particular format
of the %INCLUOE directive is recognized by the SOL precompiler. That directive
format must have the following three elements or parameter values, otherwise the
precompiler ignores the directive. The required elements are file name, format
name, and element type. There are two optional elements supported by the SOL
precompiler: prefix name and COMMA. The syntax for the %INCLUOE directive
and a description of the required and optional elements follows:

%INClUDE fi 1 e-name-(-format-name-, -e 1 ement-type-----------.~

~~--~~----------------------__.I)-;----------------------~~~4

---'[-, --p-r-ef-i-x--n-a-m-eJ-'[-,--C-O-M-MA-]...,----J

Element Description
A description of the required values follows:

file name
The name of the file that contains the record format to be included. You cannot
name your file SYSLIB.

format name
The name of the record format to be included.

element type
The fields and indicators that are to be included. The valid types are:

INPUT
This type generates the record definition matching the input buffer. It
includes fields that have a usage of INPUT or BOTH in the data description
specification (~~S). OUTPUT fields are also included for subfiles.

OUTPUT
This type generates the record definition matching the output buffer. It
includes fields that have a usage of OUTPUT or BOTH in DDS. For data
base tables, it uses INPUT and BOTH.

KEY
This type includes fields specified as keys in DDS.

INDICATORS
This type is not supported by the AS/400 system SOL precompiler . .
Note: If this element is present, the enti re %INCLUOE di rective is ignored

by the precompiler.

RECORD

7-8 Sal Programmer's Guide

This type generates the record definition matching both the input and output
buffers used by physical and logical files. It includes fields that have a
usage of BOTH in ~~S. INPUT fields are also included for logical files.

J

L
prefix name

A character string of 30 characters or less prefixing all generated names. The
generated names must be valid and must be 31 characters or less.

COMMA
A value specifying that the last data element of the record or key structure does
not end the structure. If COMMA is not specified (the default), the last data
element ends the structure.

For more information on using the %INCLUDE directive, see the PUt User's
Guide/Reference.

Structure Definition
If the record format contains any of the fields of the element-type you specified,
there are two factors that affect the names of the host variables that are generated:
the prefix specified in the %INCLUDE directive, and the alias specified in the DDS
source.

alla8
If you use the ALIAS keyword in your DDS, the alias name you specify is the
name the precompiler generates in your program. The field name specified in
the DDS is ignored. By using the alias name, you can make full use of PLlls
31-character name-length limit to increase the readability of your program.

prefix
If you code a prefix name in your %INCLUDE directive, the prefix you specify is
attached to the field name or its alias supplied by the file. For example, if you
write

%INCLUOE STOCK FILE(COUNT,RECORO,CURRENT);

and, in the DDS, if the first field in the record is named

SALARY

the generated name is

CURRENT_SALARY

By using prefixes, you can generate meaningful names for different uses of the
same record format inside a single program.

If one of the following conditions exists in the externally defined file, then the SOL
precompiler generates a declaration of a host variable called DUMMYDCL:

• No fields are defined for the file.

• The element type is INPUT and no fields exist in the record format with usage of
INPUT or BOTH.

• The element type is OUTPUT, the file is not a database file, and no fields exist in
the record format with usage OUTPUT or BOTH.

• The element type is INDICATORS, but no separate indicators exist.

The DUMMYDCL host variable does not have a valid SOL data type and cannot be
used. For example, a DUMMYDCL host variable is generated by a subfile control
record format (which has no record fields and exists to define indicators and to com
municate with the system).

Chapter 7. Sal Statements in PLII 7-9

A DUMMYDCL host variable is also generated if the record format you include has
no fields of the element-type you specify. For example, if you specify INPUT for a J
record format that has only output fields, no fields are included, and a DUMMYDCL
is generated.

The following table shows how each DDS data type is defined in a PLII program:

DDS
Data
Type length

Indicator

A, H, J, E, 1 to 32766
0

B 1 to 4

B 5 to 9

B 1 to 4

B 5 to 9

P 1 to 15

P 16 to 31

S 1 to 15

S 16 to 31

F 1 to 7

F 8 to 15

Structure Ending

Decimal
Position

0

none

0

0

1 to 4

1 to 9

o to 15

o to 31

o to 15

o to 31

o to 7

o to 15

SQl
Equivalent

Not usable as a host variable

CHAR(n)
where n = 1 to 32766

SMALLINT

INTEGER

CHAR(2)

CHAR(4)

DECIMAL(p,q)
where:

p = 1 to 15
q = 0 to 15

CHAR(n)
where n = length + 2 + 1

NUMERIC(p,q)
where:

p = 1 to 15
q = 0 to 15

CHAR(n)
where n = 16 to 31

FLOAT(24)

FLOAT(53)

The structure is ended normally by the last data element of the record or key struc
ture. However, if in the %lNCLUDE directive the COMMA element is specified, then
the structure is not ended.

For more information about O/OINCLUDE structures, see the PLII User's
Guide/Reference.

7-10 SOL Programmer's Guide

J

%INCLUDE Example
To include the definition of the sample table TDEPT described in Appendix S, you
can code:

DCl 1 TDEPT_STRUCTURE.
%INClUDE TDEPT(TDEPT.RECORD);

In the above example, a host structure named TDEPT _STRUCTURE would be
defined having four fields. The fields would be DEPTNO, DEPTNAME, MGRNO, and
ADMRDEPT.

The WHENEVER Statement
The target for the GOTO clause in the SOL WHENEVER statement must be a label in
the PUI source.

Handling Sal Error Return Codes
When an SOL statement is processed in your program, it places a return code in the
SOLCODE field. For more information on handling error return codes, see "Han
dling SOL Error Return Codes" on page 4-6. For a description of SOLCA, see the
SQLl400 Reference manual.

Chapter 7. Sal Statements in PLII 7-11

J

7-12 Sal Programmer's Guide

Chapter 8. Using SQl Statements in C Programs

This chapter describes the unique application and coding requirements for embed
ding Sal statements in a C/400 program. Requirements for host structures and host
variables are defined. The handling of return codes is described.

A detailed sample C program, showing how Sal statements can be used, is pro
vided in Appendix C.

Application Requirements
To run Sal statements, your C program must have an Sal communication area
(SalCA), as described below. There are two ways to get the SalCA into your
program. Use the INCLUDE SalCA or code a C variable with the name SalCODE.
The precompiler will provide an SalCA when it finds a declaration for SalCODE.
The SalCODE must be defined as:

long i nt

SQl Communication Area (SQlCA)
A C/400 program must include one SalCA within the scope of all Sal statements
that can be run. The SalCA is the data area that returns information about the
results of running each Sal statement.

The SalCA definition must be embedded before any Sal or C statements that can
be run. The included C source statements for the SalCA are:

#ifndef SQLCODE
struct sqlca {

unsigned char sqlcaid[8];
long sqlcabc;
long sqlcode;
short sqlerrml;
unsigned char sqlerrmc[70];
unsigned char sqlerrp[8];
long sqlerrd[6];
unsigned char sqlwarn[ll];
unsigned char sqlstate[5];
} ;

#define SQLCODE sqlca.sqlcode,
#define SQLWARNO sqlca.sqlwarn[O]
#define SQLWARNI sqlca.sqlwarn[l]
#define SQLWARN2 sqlca.sqlwarn[2]
#define SQLWARN3 sqlca.sqlwarn[3]
#define SQLWARN4 sqlca.sqlwarn[4]
#define SQLWARN5 sqlca.sqlwarn[5]
#define SQLWARN6 sqlca.sqlwarn[6]
#define SQLWARN7 sqlca.sqlwarn[7]
#define SQLWARN8 sqlca.sqlwarn[8]
#define SQLWARN9 sqlca.sqlwarn[9]
#define SQLWARNA sqlca.sqlwarn[lO]
#define SQLSTATE sqlca.sqlstate
#endif
struct sqlca sqlca;

© Copyright IBM Corp. 1988, 1989 Chapter 8. Sal Statements in C 8-1

When a declare for SOlCODE is found in the program and the SOlCA is provided by J
the precompiler, sqlcode is replaced with sqlcade. For more information on SOlCA, .
see the SQU400 Reference manual.

SQL Descriptor Area (SQLDA)
Dynamic SOL is an advanced programming technique and is described in
Chapter 9. With dynamic SOL, your program can develop and then run SOL state
ments while the program is running.

A select-statement with a variable SELECT list (that is, a list of the data to be
returned as part of the query) that runs dynamically, requires an SOL descriptor
area (SOlDA). This is because you cannot know in advance how many or what type
of variables to allocate in order to receive the results of the SELECT. The SOlDA is
used to pass information about an SOL statement between SOL and your applica
tion. This information is used before an SOL statement is dynamically run.
However, information about the results of running the statement is returned in the
SOlCA. An SOlDA can be specified in a C program by coding:

EXEC SQL INCLUDE SQLDA;

The C declarations included for the SOlDA are:

#ifndef SQLDASIZE
struct sqlda {

unsigned char sqldaid[8];
long sqldabc;
short sqln;
short sqld;
struct sqlvar {

short sqltype;
short sqllen;
unsigned char *sqldata;
short *sqlind;

};

struct sqlname {

} sql var[1];

short length;
unsigned char data[3G];

} sqlname;

#define SQLDASIZE(n) (sizeof(struct sqlda) + (n-1)* sizeof(struct sqlvar))
#endif

One benefit from using the INCLUDE SQlDA SQl statement is that you also get the
following macro definition:

#define SQLDASIZE(n) (sizeof(struct sqlda) + (n-1)* sizeof(struc sqlvar))

This macro makes it easy to allocate storage for an SOlDA with a speci'fied number
of SOlVAR elements. In the following example, the SQlDASIZE macro is used to
allocate storage for an SQlDA with 20 SQlVAR elements.

#include <stdlib.h>
EXEC SQL INCLUDE SQLDA;

struct sqlda *mydaptr;
short numvars = 20;

mydaptr = (struct sqlda *) malloc(SQLDASIZE(numvars));
mydaptr->sqln = 20;

8-2 SOL Programmer's Guide

J

J

I·

When you have declared an SOlDA as a pointer, you must dereference it when you
use it as an SOL statement, just as you would for a host variable that was declared
as a pOinter. For example, if you declared a pointer to an SOlDA called mydaptr,
you would use it in a PREPARE statement as:

EXEC SQL PREPARE mysname INTO :*mydaptr FROM :mysqlstring;

Coding Requirements
An SOL statement can be placed wherever a C statement that can be run can be
placed.

The SOL statements begin with an EXEC SOL and end with a semicolon (;). The
EXEC SOL must be all on one line. The rest of the SOL statement may be on more
than one line. For example, an UPDATE statement coded in a C program would look
like this:

EXEC SQL
UPDATE USERl.TDEPT
SET MGRNO = :mgrnum
WHERE DEPTNO = :intdept;

Including Code: You cannot use the C #include preprocessor directive to include
source which contains SOL statements or host variable declarations. Use the SOL
INCLUDE statement to include source that contains SOL statements and host vari
able declarations.

Continuation for SQL Statements: SOL statements can be contained on one or
more input lines. An SOL statement can be split wherever a blank can occur, except
within a string constant. The backslash (\) is not supported.

Comments: Comments can appear within an SOL statement. Comments begin with
the f* characters and end with *f charact rs, and span any number of lines. Com
ments cannot be nested.

Margins: You must code SOL statemen s within the margins specified by the
MARGINS parameters on the CRTSOlC ommand.

Statement Labels: SOL statements that can be run can have statement labels asso
ciated with them, specified in the usual manner.

Reserved Words: Do not use host variable names that begin with SOL or sql. In
addition, a list of SOL reserved words can be found in the SQU400 Reference.

Nulls: C and SOL both use the word null, but for different meani ngs. The C lan
guage has a null character (NUL), a null pointer (NULL), and a null statement (just a
semicolon). The C NUL is a single character that compares equal to O. The C NULL
is a special reserved pointer value that does not point to any valid data object. The
SOL null value is a special value that is distinct from all non-null values and points
out the absence of a (non-null) value.

Preprocessor Sequence: The SOL preprocessor must be run before the C pre
processor. No C preprocessor directives are permitted within SOL statements.

Chapter 8. Sal Statements in C 8-3

Using C Host Variables in SQl Statements
When your program retrieves data, the values are put into C variables defined by
your program and specified with the INTO clause of a SELECT INTO or FETCH state
ment. The C variables are called host variables. See "Using Host Variables in SOL
Statements" on page 4-1 for more information.

Host Structures
In C programs, you can define a host structure, which is a named set of elementary
C variables. Host structures have a maximum of two levels, even though the host
structure might itself occur within a multilevel structure. An exception is the decla
ration of a varying-length character string, that requires another structure.

A host structure name can be a group name whose subordinate levels name ele
mentary C variables. For example:

struct
struct {

char cl;
char c2;
} b_st;

In this example, b_st is the name of a host structure consisting of the elementary
items c1 and c2.

You can use the structure name as a shorthand notation for a list of scalars, but only
for a two-level structure. You can qualify a host variable with a structure name (for
example, structure.field). Host structures are limited to two levels. (For example, in
the above host structure example, the a_st cannot be referenced in SOL.) A struc
ture cannot contain an intermediate level structure. In the previous example, a_st
could not be used as a host variable or referenced in an SOL statement. A host
structure for SOL data is two levels deep and can be thought of as a named set of
host variables. After the host structure is defined, you can refer to it in an SOL
statement instead of listing the several host variables (that is, the names of the host
variables that make up the host structure).

8-4 Sal Programmer's Guide

J

For example, you can retrieve all column values from selected rows of the table
USER1.TEMPl with:

struct { char empno[7];
struct

char midint[l];
struct

char deptno[4];
} pempl;

short int firstname-len;
char firstname-text[12];
firstname;

{ short int lastname-len;
char lastname-text[15];

} lastname;

strcpy("000220",pempl.empno);

exec sql
select *

into :pempl
from userl.templ
where empno=:pempl.empno;

Notice that in the declaration of pemp1, two varying-length string elements are
included in the structure: firstname and lastname.

Basic Requirements of Host Variables

Coding Rules

This section describes the coding rules for host variables, indicator variables, and
structures as they apply to C programs.

Any valid host variable name, with a maximum of 31 characters can be used in an
Sal statement. A host variable may be used to represent a data value, but cannot
be used to represent a table name, view name, or column name.

When a host variable occurs within an Sal statement, the host variable must be
preceded by a colon (:) to teil Sal that the variable is not a column name.

You must explicitly declare ail host variables used in Sal statements. The declara
tions must appear in the program before the Sal or C statements that refer to the
variable.

Host variables must be scalar variables; they cannot be elements of vectors or
arrays (subscripted variables) except for character arrays used to hold strings.

Character host variables must include an explicit constant length. The declaration
must not use an expression to define the length of the character variable.

With respect to Sal statements, ail host variables have global scope regardless of
where they are actuaily declared. Thus, although C allows you to use the same
name for variables in different scopes, you can only use a name once for a host var
iable.

Chapter 8. SOL Statements in C 8-5

Assignment Rules
SOL column values are sent to (or assigned to) host variables during the running of
FETCH and SELECT INTO statements. SOL column values are set from (or assigned
from) host variables during the running of INSERT and UPDATE statements. All
assignment operations observe the rules specified in the section "Assignment
Rules" on page 4-2.

Allowable C Declarations
SOL will not recognize every possible C variable. If the C variable you code is not
consistent with those shown in the following table, the variable is not recognized as
a host variable and cannot be used with an SOL statement.

The following table shows the C variables that are allowed for use as host variables.
All other types of C variables will be rejected.

Table 8-1. C Declarations Allowed for Use as Host Variables

SQl Data Type

CHAR(1)
(character string)

No exact equivalent
(character string length n)

C Equivalent

char identifier;

char identifier[m];

(Varying-length character string) struct { short len;

SMAlLiNT
(halfword integer)

INTEGER
(fullword integer)

DECIMAL
(decimal value)

REAL
(single-precision floating-point)

FLOAT
(double-precision floating-paint)

NUMERIC
(zoned decimal)

char sen];
} identifier;

short int identifier;
or

short identifier;

long int identifier;
or

long identifier;

no exact equivalent

float identifier;

double identifier;

no exact equivalent

Explanatory Notes

A single character. C does not provide a fixed
length character string longer than one char
acter.

Character array used to hold NUL terminated
strings (m = n+1, n< = 32766). The first NUL in
the array ends the string.

Structure to emulate varying-length string.

16 bit, signed integer.

32 bit, signed integer. No decimal point is
allowed.

Because C does not support decimal numbers,
code a decimal column as a float or double var
iable or as an integer.

Floating point.

Floating point.

Because C does not support zoned numbers,
code a numeric column as a float or double var
iable or as an integer.

C supports some data types and storage classes with no SOL equivalents. For
example:

typedef
register storage class
int type
unsigned integers
long double type
incomplete types

8-6 Sal Programmer's Guide

J

void type
enum type
union type
bitfield
array type attribute (except for char and indicator arrays)
function type attribute
const
signed
volatile

In most cases, C statements can be used to convert between these data types and
the data types allowed by SOL.

Notes:

1. Storage class.

The C storage class may be auto, extern, or static. Host variables cannot be
register class. Host variables cannot be typedef class.

2. Character data type.

The character data type in C is a NUL-terminated character string whose length
is specified as n in the declaration above. The NUL is included in the length.
The equivalent SOL data type is CHARACTER whose length is n-1 and which is
not NUL-terminated. The SOL TYPE for the C NUL-delimited string is 460. It
cannot be used for data when the data includes NUL. Use the varying-length
character strings if the data can include NUL.

3. Varying-length character data type.

The varying-length character string data item is supported in C for strings of
arbitrary (binary or character) data. Because binary data can contain any com
bination, varying-length character strings use a length field and no string termi
nator. It is important to note that the C string manipulation functions cannot
handle this data type, since the strings can contain NUL characters and are not
null terminated, contrary to what those functions expect.

struct { short length;
char data[datalen];

} identifier;

4. Apostrophes and quotes have different meanings in C and SOL. C uses quotes
to delimit string constants and apostrophes to delimit character constants. SOL
does not have this distinction, but quotes are used for delimited identifiers and
apostrophes are used to delimit character string constants. Character data in
SOL is distinct from integer data.

5. C host variables used in SOL statements must be type-compatible with the
columns with which they are to be used.

• Numeric data types are compatible with each other: a SMAlLlNT,
INTEGER, DECIMAL, NUMERIC, or FLOAT column is compatible with a C
host variable defined as short int, long int, float, or double.

• Character data types (CHAR and varying-length string) are compatible with
each other.

6. Be careful of overflow. For example, if you retrieve an INTEGER column value
into a short int host variable and the column value is larger than 32767, you will
get an overflow error.

Chapter 8. Sal Statements in C 8-7

7. Be careful to avoid truncation, ensure the host variable you declare can contain J
the data and a NUL terminator, if applicable.'

Retrieving a floating point, numeric, or decimal result column value into a short
or long identifier host variable removes any fractional value.

Supported Pointer Data Types
You can also declare host variables that are pointers to the supported C data types,
with the following restrictions:

• If a host variable is declared as a pointer, then that host variable must be
declared with asterisks followed by a host variable. The following examples are
all valid:

short *mynum; /* Ptr to an integer */
long **mynumptr; /* Ptr to a ptr to a long integer */
char *mychar; /* Ptr to a single character */
char(*mychara) [20] /* Ptr to a char array of 20 bytes */
struct { /* Ptr to a variable char array of 30 */

short mylen; /* bytes. */
char mydata[30];
} *myvarchar;

Note: Parentheses are only allowed when declaring a pointer to a null termi
nated character array, in which case they are required. If the paren
theses were not used, you would be declaring an array of pointers rather
than the desired pointer to an array. For example:

char (*a) [10] ;
char *a [10] ;

/* pointer to a null-terminated char array */
/* pointer to an array of pointers */

• If a host variable is declared as a pointer, then no other host variable may be
declared with that same name within the same source file. For example, the
second declaration below would be invalid:

char *mychar;
char mychar;

/* This declaration is valid
/* But this one is invalid

*/
*/

• When a host variable is referenced within an SQL statement, that host variable
must be referenced exactly as declared, with the exception of pointers to null
terminated character arrays. For example, the following declaration required
parentheses:

char (*mychara)[20]; /* ptr to char array of 28 bytes */
However, the parentheses are not allowed when the host variable is referenced
in an Sal statement, such as a SELECT:

EXEC SQL SELECT name INTO :*mychara FROM my table;

• Only the asterisk may be used as an operator over a host variable name.

• Tl;1e maximum length of a host variable name is affected by the number of aster
isks specified, as these asterisks are considered part of the name.

• Pointers to structures are not usable as host variables except for variable char
acter structures. Also, pointer fields in structures are not usable as host vari
ables.

8-8 Sal Programmer's Guide

J

Indicator Variables
An indicator variable is a short integer variable. You can also specify an indicator
structure (defined as an array of halfword integer variables) to support a host struc
ture.

The WHENEVER Statement
The target for the GOTO clause in the SOL WHENEVER statement must be a label in
the C source.

, Handling SQl Error Return Codes
When an SOL statement is processed in your program, it places a return code in the
SOLCODE field. For more information on handling error return codes, see "Han
dling SOL Error Return Codes" on page 4-6. For a description of SOLCA, see the
SQLl400 Reference manual.

Chapter 8. SOL Statements in C 8-9

J

J

8-10 Sal Programmer's Guide

Chapter 9. Dynamic SQl Applications

Dynamic Sal allows an application to define and run Sal statements at program
run time. An application that provides for dynamic Sal accepts as input (or builds)
an Sal statement in the form of a character string. The application does not need to
know what type of Sal statement it will run. The application:

• Builds or accepts as input an Sal statement

• Prepares the Sal statement for running

• Runs the statement

• Handles Sal return codes

Interactive Sal (described in Chapter 11) is an example of a dynamic Sal program.
Sal statements are processed and run dynamically by interactive SOL.

Note: The run-time overhead is greater for statements processed using dynamic
Sal than for static Sal statements. The additional process is similar to that
required for precompiling, binding, and then running a program, instead of
only running it. Therefore, only applications requiring the flexibility of
dynamic Sal should use it. Other applications should access data from the
database using normal (static) Sal statements.

Some dynamic Sal statements require use of address variables. COBOL or RPG
programs require the aid of PLII or C programs to manage the address variables.

The examples in this chapter are PLII examples. The following table shows all the
statements supported by the SOLl400 program and indicates if they can be used in a
dynamic application:

© Copyright IBM Corp. 1988, 1989 Chapter 9. Dynamic Sal 9-1

Note: In the following table, the numbers in the Dynamic SQL column correspond to
the notes on the next page.

Table 9-1. List of SQL Statements Allowed in Dynamic Applications

Static
SQL Statement SQL Dynamic SQL

BEGIN DECLARE SECTION Y N

CLOSE Y N

COMMENT ON Y Y

COMMIT Y Y

CREATE COLLECTION Y Y

CREATE INDEX Y Y

CREATE TABLE Y Y

CREATE VIEW Y Y

DECLARE CURSOR Y See Note 4.

DECLARE STATEMENT Y N

DELETE Y Y

DESCRIBE Y See Note 6.

DROP Y Y

END DECLARE SECTION Y N

EXECUTE Y See Note 1.

EXECUTE IMMEDIATE Y See Note 2.

FETCH Y N

GRANT Y Y

INCLUDE Y N

INSERT Y Y

LABEL ON Y Y

LOCK TABLE Y Y

OPEN Y N

PREPARE Y See Note 3.

REVOKE Y Y

ROLLBACK Y Y

SELECT Y See Note 5.

UPDATE Y Y

WHENEVER Y N

9-2 SOL Programmer's Guide

J

J

Notes:

1. Cannot be prepared, but used to run prepared Sal statements. The Sal state
ment must be previously prepared by the PREPARE statement prior to using the
EXECUTE statement. See example for PREPARE under "Using the PREPARE
and EXECUTE Statements" on page 9-4.

2. Cannot be prepared, but used with dynamic statement strings that do not have
any? parameter markers. The EXECUTE IMMEDIATE statement causes the
statement strings to be prepared and run dynamically at program run time. See
example for EXECUTE IMMEDIATE under "Processing NonSelect-Statements"
on page 9-3.

3. Cannot be prepared, but used to parse, optimize, and set up dynamic SELECT
statements prior to running. See example for PREPARE under "Processing
NonSelect-Statements" on page 9-3.

4. Cannot be prepared, but used to define the cursor for the associated dynamic
select-statement prior to running.

5. Cannot be used with EXECUTE or EXECUTE IMMEDIATE, but can be prepared
and used with OPEN CURSOR. A SELECT INTO statement cannot be prepared
or used in EXECUTE IMMEDIATE.

6. Cannot be prepared, but used to return a description of a prepared statement.

Designing and Running a Dynamic SQl Application
To issue a dynamic Sal statement, you must use the statement with either an
EXECUTE statement or an EXECUTE IMMEDIATE statement, because dynamic Sal
statements are not prepared at precompile time and therefore must be prepared at
run time. The EXECUTE IMMEDIATE statement causes the Sal statement to be pre
pared and run dynamically at program run time.

There are two basic types of dynamic Sal statements: select-statements and
nonselect-statements. Nonselect-statements include such statements as DELETE,
INSERT, and UPDATE.

Processing NonSelect-Statements
To build a dynamic Sal nonselect-statement:

1. Verify that the Sal statement you want to build is one that can be run dynam
ically (see Table 9-1 on page 9-2).

2. Build the Sal statement. (Use Interactive Sal for an easy way to build, verify,
and run your Sal statement. See Chapter 11 for more information.)

To run a dynamic Sal nonselect-statement:

1. Run the Sal statement using EXECUTE IMMEDIATE, or PREPARE the Sal
statement, then EXECUTE the prepared statement.

2. Handle any Sal return codes that might result.

Chapter 9. Dynamic SOL 9-3

The following is an example of an application running a dynamic SOL nonselect
statement (stmtstrg):

EXEC SQL
EXECUTE IMMEDIATE :stmtstrg;

Note: The SOL statement is normally a host variable. In PLlI, it can also be a string
expression.

Using the PREPARE and EXECUTE Statements
If nonselect-statements contain no parameter markers, they can be run dynamically
using the EXECUTE IMMEDIATE statement. However, if the nonselect-statements
have parameter markers, they must be run using PREPARE and EXECUTE.

The PREPARE statement prepares the nonselect-statement (for example, the
DELETE statement) and gives it a name of your choosing. In this instance, let us
call it 51. After the statement has been prepared, it can be run many times within
the same program, using different values for the parameter markers. The following
example is of a prepared statement being run multiple times:

DSTRING = 'DELETE FROM USERl.TEMPL WHERE EMPNO =

/*The ? is a parameter marker which denotes
that this value is a host variable that is

?' • . ,

to be substituted each time the statement is run.*/

EXEC SQL PREPARE Sl FROM :DSTRING;

/*DSTRING is the delete statement that the PREPARE statement is
nami ng S1. * /

DO UNTIL (EMP =0);
/*The application program reads a value for EMP from the

display station.*/
EXEC SQL

EXECUTE Sl USING :EMP;

END;

In routines similar to the example above, you must know the number of parameter
markers and their data types, because the host variables that provide the input data
are declared when the program is being written.

Note: All Sal statements that have been prepared are destroyed when COMMIT or
ROLLBACK is run, unless the HOLD is specified. For more information, see
descriptions of COMMIT and ROllBACK in the SQLl400 Reference manual.

9-4 SOL Programmer's Guide

J

Processing Select-Statements and Using SQLDA
There are two basic types of select-statements: fixed-list and varying-list.

To process a fixed-list select-statement, an SOlDA is not necessary.

To process a varying-list select-statement, you must first declare an SOlDA struc
ture. SOlDA is a control block used to pass host variable input values from an
application program to SOL and to receive output values from SOL. In addition,
information about SELECT list expressions can be returned in a PREPARE or
DESCRIBE statement.

Fixed-List Select-Statements
In dynamic SOL, fixed-list select-statements are those statements designed to
retrieve data of a predictable number and type. When using these statements, you
can anticipate and define host variables to accommodate the retrieved data, so that
an SOlDA is not necessary. Each successive FETCH returns the same number of
values as the last, and these values have the same data formats as those returned
for the last FETCH. You can specify host variables the same as you would for any
SOL application.

You can use fixed-list dynamic select-statements with any SOL-supported applica
tion program.

To run fixed-list select-statements dynamically, your application must:

1. Place the input SOL statement into a host variable.

2. Issue a PREPARE statement to validate the dynamic SOL statement and put it
into a form that can be run.

3. Declare a cursor for the statement name.

4. Open the cursor.

5. FETCH a row into a fixed list of variables (rather than into a descriptor area, as
you would if you were using a varying-list select-statement, described in the fol
lowing section, "Varying-List Select-Statements").

6. When end of data occurs, close the cursor.

7. Handle any SOL return codes that may result.

Chapter 9. Dynamic Sal 9-5

For example,

DSTRING = 'SELECT EMP, EMPNAME
FROM USERl.TEMPL WHERE EMP> ?';

EXEC SQL
PREPARE S2 FROM :DSTRING;

EXEC SQL
DECLARE C2 CURSOR FOR S2;

EXEC SQL
OPEN C2 USING :EMP;

DO WHILE (SQLCODE = 0);

EXEC SQL
FETCH C2 INTO :EMP, :EMPNAME;

END;

EXEC SQL
CLOSE C2;

J

Note: Remember that because the select-statement, in this case, always returns
the same number and type of data items as previously run fixed-list select
statements, you do not have to use the SOL descriptor area (SOLDA). The
preceding example can be run with COBOLl400, AS/400 PLlI, RPG III (part of
RPG/400), and C/400. J

Varying-List Select-Statements
In dynamic SOL, varying-list select-statements are ones for which the number and
format of result columns to be returned are not predictable; that is, you do not know
how many variables you need, or what the data types are. Therefore, you cannot
define host variables in advance to accommodate the result columns returned.

If your application accepts varying-list SELECT statements, your program has to:

1. Place the input SOL statement into a host variable.

2. Issue a PREPARE statement to validate the dynamic SOL statement and put it
into a form that can be run.

3. Declare a cursor for the statement name.

4. Issue a DESCRIBE statement to request information from SOL about the type
and size of each column of the result table.

Notes:

a. You can also code the PREPARE statement with an INTO clause to perform
the functions of PREPARE and DESCRIBE with a single statement.

b. If the SOLDA is not large enough to contain column descriptions for each
retrieved column, the program must determine how much space is needed,
get storage for that amount of space, build a new SOLDA, and reissue the
DESCRIBE statement.

5. Allocate the amount of storage needed to contain a row of retrieved data.

9-6 Sal Programmer's Guide

6. Put storage addresses into the SOlDA (SOL descriptor area) to tell SOL where
to put each item of retrieved data.

7. Open the cursor (declared in step 3) that includes the name of the dynamic
select-statement.

8. FETCH a row.

9. When end of data occurs, close the cursor.

10. Handle any SOL return codes that might result.

The SQl Descriptor Area (SQlDA)

SQlDA Format

You can use the SOlDA to pass information about an SOL statement between SOL
and your application.

The SOlDA is a collection of variables required for running the SOL DESCRIBE
statement, and may optionally be used by the PREPARE, OPEN, FETCH, and
EXECUTE statements. An SOlDA communicates with dynamic SOL. It can be used
in a DESCRIBE statement, changed with the addresses of host variables, and then
reused in a FETCH statement.

The meaning of the information in an SOlDA depends on its use. In PREPARE and
DESCRIBE, an SOlDA provides information to an application program about a pre
pared statement. In OPEN, EXECUTE, and FETCH. an SOlDA provides information
about host variables.

If your application lets you have several cursors open at the same time, you can
code several SOlDAs, one for each dynamic select-statement. For more informa
tion on SOlDA and SOlCA, see the SQLl400 Reference manual.

SOlDAs can be used in RPG and COBOL applications as well as PL/I and C;
however, because RPG and COBOL provide no way to set pOinters, pointers must
be set outside the RPG or COBOL program by a PLII or C program. Since the area
used for the SOlDA must be declared by the PLII or C program (to get the space for
pointers on a 16-byte boundary), the PLII or C program must do the call of the RPG
or COBOL program.

The SOlDA consists of four variables followed by an arbitrary number of occur
rences of a sequence of six variables collectively named SOlVAR. When an SOlDA
is used in OPEN, FETCH, and EXECUTE, each occurrence of SOlVAR describes a
host variable.

The variables of SOLDA are as follows (variable names are in lowercase for C):

SQLDAID

SOLDABC

SOLDAID is used for storage dumps. It is a string of 8 characters
that have the value' SOLDA' after the SOLDA that is used in a
PREPARE or DESCRIBE statement. It is not used for FETCH,
OPEN, or EXECUTE.

SOlABC indicates the length of the SOLDA. It is a 4-byte integer
that has the value SOlN*lENGTH(SOlVAR) + 16 after the
SOlDA is used in a PREPARE or DESCRIBE statement.
SOlDABC must have a value equal to or greater than
SOlN*LENGTH(SOlVAR) + 16 prior to use by FETCH, OPEN, or
EXECUTE.

Chapter 9. Dynamic Sal 9·7

SOLN

SOLD

SOLVAR

SOLTYPE

SOLN is a 2-byte integer that specifies the total number of occur
rences of SOLVAR. It must be set prior to use by any SOL state
ment to a value greater than or equal to O.

SOLD is a 2-byte integer that specifies the pertinent number of
occurrences of SOLVAR; that is, the number of host variables
described by the SOLDA. This field is set by SOL on a
DESCRIBE or PREPARE statement. In other statements, this
field must be set prior to use to a value greater than or equal to 0
and less than or equal to SOLN.

The variables of SOLVAR are SOLTYPE, SOLLEN, SOLRES,
SOLDATA, SOUND, and SOLNAME. These variables are set by
SOL on a DESCRIBE or PREPARE statement. In other state
ments, they must be set prior to use. These variables are
defined as follows:

SOL TYPE is a 2-byte integer that specifies the data type of the
host variable as shown in Table 9-2:

Table 9-2. SOL TYPE Values

Values

500/501

496/497

484/485

488/489

480/481

452/453

448/449

456/457

460/461

SOLLEN

9·8 SOL Programmer's Guide

Null Indicator?
Data Type (for each value)

2-byte integer No/Yes

4-byte integer No/Yes

Decimal No/Yes

Numeric (zoned) NolVes

4-byte and 8-byte floating point No/Yes
(IEEE)

Fixed-length character No/Yes

Varyi ng-Iength character No/Yes

Long varying-length character (more No/Yes
than 254 bytes)

Varying-length character null- No/Yes
terminated character, Conly

SOLLEN is a 2-byte integer variable that is always pertinent,
based on the following conditions:

• If the data type is decimal or numeric, the first byte is the
precision and the second byte is the scale.

• If the data type is fixed-length character or floating paint,
SOLLEN is the length of the host variable or column.

• If the data type is varying-length character, SOLLEN must be
from 1 to 254 bytes, which indicates the maximum length of
the host variable.

• If the data type is long varying-length character, SOLLEN
must be from 1 to 32 766 bytes, which indicates the maximum
length of the host variable.

• If the data type is a 2-byte or 4-byte integer, SOLLEN is either
the length of the host variable or column; or precision and
scale. If the first byte is 0, SOLLEN contains a length of 2 or

J

.J

SQLRES

SQLDATA

SQLlND

SQLNAME

4. If the first byte is nonzero, the first byte is the precision
and the second byte is the scale.

SQLRES is a 12-byte reserved area for boundary alignment pur
poses. Note that pointers must be on a quad-word boundary.

SQLDATA is a 16-byte pointer variable that specifies the address
of the host variables when the SQLDA is used on OPEN, FETCH,
and EXECUTE.

When the SQLDA is used on PREPARE and DESCRIBE, this area
is overlaid with the following information:

• The third and fourth bytes contain a small integer and indi
cate whether the column is FOR BIT DATA. If the small
integer is -1, the column is bit data (FOR BIT DATA).

SQLlND is a 16-byte pointer that specifies the address of a small
integer host variable that is used as an indication of null or not
null when the SQLDA is used on OPEN, FETCH, and EXECUTE.
A negative value indicates null and a nonnegative indicates not
null. Since the SQLl400 program does not provide full null value
support, this has limited usefulness. There are cases, however,
when the result of a query is a null value even though nulls
cannot be stored in tables. These cases are:

• If a group function (MIN, MAX, and so on) is specified in the
SELECT list, and the GROUP BY clause is not specified, and
the result of COUNT is 0, then a null value (-1) is returned in
the indicator variable for the group functions other than
COUNT.

• If a decimal data error occurred when evaluating an
expression in the SELECT list, but a successful analysis
could still be made as to whether the resulting row should be
selected, as many valid results are returned as possible, and
items that encountered errors are returned as a null value
(-2).

When the SQLDA is used on PREPARE and DESCRIBE, this area
is reserved for future use.

SQLNAME is a variable-length character variable with a
maximum length of 30, which contains the name of selected
column or label names after a PREPARE or DESCRIBE. It is
reserved in OPEN, FETCH, or EXECUTE.

Chapter 9. Dynamic SOL 9-9

Example of a Select-Statement for Allocating Storage for SQLDA

Allocating Storage

The select-statement can be read from a display station or from a host variable, or it\
can be developed within an application program. The following example shows a ..."
select-statement read from a display station:

SELECT DEPTNO. PHONENO FROM USER1.TEMPL
WHERE LASTNAME = 'PARKER'

Note: The select-statement has no INTO clause. Dynamic select-statements must
not have an INTO clause, even if they return only one row.

When the statement is read, it is assigned to a host variable. The host variable (for
example, named DSTRING) is then processed, using the PREPARE statement, as
shown:

EXEC SQL
PREPARE Sl FROM :DSTRING;

Now you can allocate storage for the SOLDA. The techniques for acquiring storage
are language dependent. The SOLDA must be allocated on a 16-byte boundary.
The SOLDA consists of a fixed-length header, 16 bytes long. The header is followed
by a varying-length array section (SOLVAR), each element of which is 80 bytes in
length. The amount of storage you need to allocate depends on how many elements
you want to have in the SOLVAR array. Each column you select must have a corre
sponding SOLVAR array element. Therefore, the number of columns listed in your
select-statement determines how many SOLVAR array elements you should allo
cate. Because select-statements are specified at run time, however, it is impossible
to know how many columns will be accessed. Consequently, you must estimate the
number of columns. Suppose, in this example, that no more than 20 columns are
ever expected to be accessed by a single select-statement. This means that the
SOLVAR array should have a dimension of 20 (for an SOLDA size 20 x 80, or 1600,
plus 16 for a total of 1616 bytes), because each item in the select-list must have a
corresponding entry in SOLVAR.

Having allocated what you estimated to be enough space for your SOLDA, in the
SOLN field of the SOLDA, set an initial value equal to the number of SOLVAR array
elements. In the following example, set SOLN to 20:

Allocate space for an SQLDA of 1616 bytes on a quadword boundary
SQLN = 20;

Having allocated storage. you can now issue a DESCRIBE statement.

EXEC SQL
DESCRIBE Sl INTO :SQLDA;

9-10 Sal Programmer's Guide

When the DESCRIBE statement is run, SOL places values in the SOlDA that provide
information about the select-list. The following Figure 9-1 shows the contents of the
SOlDA after the DESCRIBE is run:

SOlVAR
Element 1
(80 bytes)

SOlVAR
Element 2
(80 bytes)

I

,

I

I

452

6

452

7

S 0 l D A I

I 3 (reserved)

37

0

I DEPTNO

I 4 (reserved)

37

0

I PHONENO

Figure 9-1. Contents of SQLDA after a DESCRIBE Is Run

SOLDA S' /' Ize

1616 I 20 I 2

RSLS756·3

SOlDAID is an identifier field initialized by SOL when a DESCRIBE is run.
SOlDABC is the byte count or size of the SOlDA. You can ignore these for now.

The example for running the SELECT statement for S1 is:

SELECT DEPTNO, PHONENO
FROM USER1.TEMPL
WHERE LASTNAME = 'PARKER'

Your program might have to alter the SOlN value if the SOlDA is not large enough
to contain the described SOlVAR elements. For example, let the select-statement
contain 27 select-list expressions instead of the 20 or less that you estimated.
Because the SOlDA was only allocated with an SOlVAR dimension of 20 elements,
SOL cannot describe the select-list, because the SOlVAR has too many elements.
SOL sets the SOLD to the actual number of columns specified by the SELECT state
ment, and the rest of the structure is ignored. Therefore, after a DESCRIBE, you
should compare the SOlN to the SOLD. If the value of SOLD is greater than the
value of SOlN, allocate a larger SOlDA based on the value in SOLD, as follows:

EXEC SQL
DESCRIBE Sl INTO :SQLDA;

IF SQLN <= SQLD THEN
DO;

/*Allocate a larger SQLDA using the value of SQLD.*/
/*Reset SQLN to the larger value.*/

EXEC SQL
DESCRIBE S1 INTO :SQLDA;

END;

Chapter 9. Dynamic SOL 9-11

If you use DESCRIBE on a non-SELECT statement, SOL sets SOLD to O. Therefore,
if your program is designed to process both SELECT and nonSElECT statements,
you can describe each statement (after it is prepared) to determine whether it is a
select-statement. This sample routine is designed to process only select
statements; the SOLD is not checked.

Your program must now analyze the elements of SOlVAR. Remember that each
element describes a single select-list expression. Consider again the SELECT
statement that is being processed:

SELECT DEPTNO, PHONENO
FROM USERl.TEMPL
WHERE LASTNAME = 'PARKER'

The first item in the select-list is DEPTNO. At the beginning of this section, we iden
tified that each SOlVAR element contains the fields SOL TYPE, SOllEN, SOlRES,
SOlDATA, SOUND, and SOlNAME. SOL returns, in the SOlTYPE field, a code that
describes the data type of the expressions and whether nulls are applicable or not.

For example, SOL sets SOlTYPE to 452 in SOlVAR element 1 (see Figure 9-1 on
page 9-11). This specifies that DEPTNO is a fixed-length character string (CHAR)
column and that nulls are not permitted in the column.

SOL sets SOllEN to the length of the column. For character strings, SOllEN is set
to the maximum length of the character string. For decimal, numeric, or nonzero
scale binary, the preciSion and scale are returned in the first and second bytes,
respectively. For other data types, SOllEN is set as follows:

SMALLINT
INTEGER
REAL
FLOAT

SQLLEN = 2
SQLLEN = 4
SQLLEN = 4
SQLLEN = 8

Because the data type of DEPTNO is CHAR, SOL sets SOllEN equal to the length of
the character string. For DEPTNO, that length is 3. Therefore, when the SELECT
statement is later run, a storage area large enough to hold a CHAR(3) string is
needed.

Because the data type of DEPTNO is CHAR FOR SBCS DATA, the first 4 bytes of
SOL data were set to a nonzero val ue (see Fi gure 9-1 on page 9-11). The last field
in an SOlVAR element is a varying-length character string called SOLNAME. The
first 2 bytes of SOlNAME contain the length of the character data. The character
data itself is usually the name of a column used in the select statement (DEPTNO in
the above example). The exceptions to this are select-list items that are unnamed,
such as functions (for example, SUM(SALARY)). expressions (for example,
A + B-C), and constants. In these cases, SOlNAME is an empty string. SOlNAME
may also contain a label rather than a name. One of the parameters associated
with the PREPARE and DESCRIBE statements is the USING clause. You can specify
it this way:

EXEC SQL
DESCRIBE S1 INTO SQLDA

USING LABELS;

J

If you specify NAMES (or omit the USING parameter entirely), only column names .. '\
are placed in the SOlNAME field. If you specify lABELS, only labels associated ,.."
with the columns listed in your SOL statement are entered here. If you specify ANY,
labels are placed in the SOlNAME field for those columns that have labels; other-

9-12 Sal Programmer's Guide

L

SQLVAR
Element 1
(80 bytes)

SQLVAR
Element 2
(80 bytes)

452

wise, the column names are entered. If you specify BOTH, names and labels are
both placed in the field with their corresponding lengths. If you specify BOTH,
however, you must remember to double the size of the SOLVAR array because you
are including twice the number of elements. For more information on the USING
option and on column labels, see the SQL!400 Reference manual.

In the example, the second SOLVAR element contains the information for the
second column used in the select: PHONENO. The 452 code in SOLTYPE specifies
that PHONE NO is a CHAR column. For a CHAR data type of length 4, SOL sets
SOLLEN to 4.

After analyzing the result of the DESCRIBE, you can allocate storage for variables
containing the result of the SELECT statement. For DEPTNO, a character field of
length 3 must be allocated; for PHONENO, a character field of length 4 must be allo
cated.

After the storage is allocated, you must set SOLDATA and SOUND to point to the
appropriate areas. For each element of the SOLVAR array, SOLDATA points to the
place where the results are to be put. SOUND points to the place where the null
indicator is to be put. The following figure shows what the structure looks like now:

/SQLDASize

S Q L D A I 1616 I 20 I 2 I FLDA: (CHAR(3))

I 3 I (reserved) I
Address of FLDA

Address of FLDAI

6 I DEPTNa

452 I 4 I (reserved)

Address of FLDB

Address of FLDBI

7 I P HaN E N a

FLDB: (CHAR(4))

I

Indicator
Variables: (halfword)
FLDAI: FLDBI:

RSLS757·2

Chapter 9. Dynamic SQL 9-13

Using a Cursor

This is what was done so far:

EXEC SQL
INCLUDE SQLDA;

/*Read a statement into the DSTRING varying-length
character string host variable.*/

EXEC SQL
PREPARE 51 FROM :DSTRING;

/*Allocate an 5QLDA of 1616 bytes.*/
SQLN =28;
EXEC SQL

DESCRIBE 51 INTO :SQLDA;
/*Analyze the results of the DESCRIBE.*/
/*Allocate storage to hold one row of

the result table.*/
/*Set SQLDATA and SQLIND for each column

of the result table.*/

You are now ready to retrieve the select-statements results. Dynamically defined
select-statements must not have an INTO statement. Therefore, all dynamically
defined select-statements must use a cursor. Special forms of the DECLARE, OPEN,
and FETCH are used for dynamically defined select-statements.

The DECLARE statement for the example statement is:

EXEC SQL DECLARE C1 CURSOR FOR Sl;

J

As you can see, the only difference is that the name of the prepared select- .J
statement (S1) is used instead of the select-statement itself. The actual retrieval of
result rows is made as follows:

EXEC SQL
OPEN C1;

EXEC SQL
FETCH C1 USING DESCRIPTOR :SQLDA;

DO WHILE (SQLCODE = 8);
/*Display ... the results pointed to by 5QLDATA*/
END;
/*Display ('END OF LIST')*/

EXEC SQL
CLOSE C1;

The cursor is opened, and the result table is evaluated. Notice that there are no
input host variables needed for the example select-statement. The SELECT result
rows are then returned using FETCH. On the FETCH statement, there is no list of
output host variables. Rather, the FETCH statement tells SOL to return results into
areas described by the descriptor called SOlDA. The same SOLDA that was set up
by DESCRIBE is now being used for the output of the SELECT statement. In partic
utar, the results are returned into the storage areas pointed to by the SOLDATA and
SOUND fields of the SOLVAR elements. The following figure shows what the struc
ture looks like after the FETCH statement has been processed.

9·14 Sal Programmer's Guide

SQLVAR
Element 1
(80 bytes)

SQLVAR
Element 2
(80 bytes)

SQLDA S' /; Ize

S Q L D A I 1616 I 20 I 2 FLDA: (CHAR(3))

452 I 3
I

(reserved) ! E11 I

Address of FLDA

Address of FLDAI FLDB: (CHAR(4))

6
I

DEPTNO I 4502 I

452
I

4
I

(reserved) Indicator
Variables: (halfword)

Address of FLDB FLDAI: FLDBI:
I

Address of FLDBI I~J 0

7 I P H 0 N E N 0

RSLS758-2

The meaning of the SMAlUNT pointed to by SOUND is the same as any other indi
cator variable:

o Denotes that the returned value is not null.
<0 Denotes that the returned value is null.
>0 Denotes that the returned value was truncated because

the storage area furnished was not large enough.
The indicator variable contains the length before
truncation.

Note: Unless HOLD is specified, dynamic cursors are closed and prepared state
ments are destroyed during COMMIT or ROllBACK. Before opening the
cursor, you must issue a PREPARE to use the statement again, if HOLD was
not specified on COMMIT or ROllBACK.

Using Parameter Markers
In the example we are using, the select-statement that was dynamically run had pre
dictable parameters (input host variables) in the WHERE clause. In the example, it
was:

WHERE LASTNAME = 'PARKER'

If you want to run the same select-statement several times, using different values
for lASTNAME, you can use an Sal statement such as PREPARE or EXECUTE (as
described in "Using the PREPARE and EXECUTE Statements" on page 9-4) like this:

SELECT DEPTNO, PHONENO FROM USERl.TEMPL WHERE LASTNAME = ?

When your parameters are not predictable, your application cannot know the
number or types of the parameters until run time. You can arrange to receive this
information at the time your application is run, and by using a USING DESCRIPTOR
on the OPEN CURSOR statement, you can substitute the values contained in specific
host variables for the parameter markers included in the WHERE clause of the
sel ect-statement.

To code such a program, you need to use the OPEN CURSOR statement with the
USING DESCRIPTOR clause. This SOL statement is used to not only open a cursor,
but to replace each parameter marker with the value of the corresponding host vari-

Chapter 9. Dynamic SQL 9-15

able. The descriptor name that you specify with this statement must identify an
SOLDA that contains a valid description of those host variables. This SOLDA. unlike
those previously described, is not used to return information on data items that are
part of a SELECT list. That is, it is not used as output from a DESCRIBE statement,
but as input to the OPEN CURSOR statement. It provides information on host vari
ables that are used to replace parameter markers in the WHERE clause of the
SELECT statement. It gets this information from the application, which must be
designed to place appropriate values into the necessary fields of the SOlDA. The
SOLDA is then ready to be used as a source of information for SOL in the process of
replacing parameter markers with host variable data.

When you use the SOLDA for input to the OPEN CURSOR statement with the USING
DESCRIPTOR clause, not all of its fields have to be filled in. Specifically, SOLDAID,
SOLRES, and SOlNAME can be left blank. Therefore, when you use this method for
replacing parameter markers with host variable values, you need to determine:

• How many? parameter markers are there?

• What are the data types and attri butes of these parameters markers (SOL TYPE
and SOLLEN)?

• Do you want an indicator variable?

In addition. if the routine is to handle both SELECT and nonSELECT statements. you
may want to determine what category of statement it is. (Alternatively, you can
write code to look for the SELECT keyword.)

If your application uses parameter markers, your program has to:

1. Read a statement into the DSTRING varying-length character string host vari
able.

2. Determine the number of? parameter markers.

3. Allocate an SOlDA of that size.

4. Set SOlN and SOLD to the number of? parameter markers.

5. Set SOLDABC equal to SOLN*LENGTH(SOLVAR) + 16.

6. For each? parameter marker:

a. Determine the data types, lengths. and indicators.

b. Set SOL TYPE and SOLLEN.

c. Allocate storage to hold the input values (the? values).

d. Set these values.

e. Set SOLDATA and SOUND (if applicable) for each? parameter marker.

f. Issue the OPEN CURSOR statement with a USING DESCRIPTOR clause to
open your cursor and substitute a host variable value for each of the param
eter markers.

The statement can then be processed normally.

9-16 SOL Programmer's Guide

j

Chapter 10. Preparing and Running a Program with SQL
Statements

This chapter describes some of the tasks for preparing and running an application
program. The tasks described are:

• Precompiling
• Compiling
• Binding
• Running

Basic Processes of the SQl Precompiler
You must precompile and compile an application program containing embedded
SOL statements before you can run it. Precompiling of such programs is done by
the SOL precompiler. The SOL precompiler scans each statement of the application
program source and does the following:

• Looks for SaL statements and for the definition of host variable names. The
variable names and definitions are used to verify the SOL statements. You can
examine the listing after the SOL precompiler completes processing to see if
any errors occurred.

• Verifies that each SaL statement is valid and free of syntax errors. The vali
dation procedure supplies error messages in the output listing that helps you
correct any errors that occur.

• Validates the SaL statements using the description in the database. During the
precompile, the SOL statements are checked for valid table, view, and column
names. If a referred to table or view does not exist, or you are not authorized to
the table or view at the time of the precompile or compile, the validation is done
at run time. If the table or view does not exist at run time, an error occurs.

Notes:

1. Overrides are processed when retrieving external definitions. For more
information, see the Database Guide and the Data Management Guide.

2. You need some authority (at least 'OBJOPR) to any tables or views referred
to in the SOL statements in order to validate the SOL statements. The
actual authority required to process any SOL statement is checked at run
time. For more information on any SOL statement, see the SQLl400
Reference manual.

• Prepares each SaL statement for compilation in the host language. For most
SOL statements, the SOL precompiler inserts a comment and a CALL statement
to the SOL interface module (OSOROUTE). For some SOL statements (for
example, DECLARE statements), the SOL precompiler produces no host lan
guage statement except a comment.

• Produces information about each precompiled SaL statement. The information
is stored internally in a temporary source file member, where it is available for
use during the bind process.

To get complete diagnostic information when you precompile, specify the ·SOURCE
and ·XREF precompiler options.

© Copyright IBM Corp. 1988, 1989 Chapter 10. Running a Program with SOL Statements 10-1

Input to the Precompiler
Application programming statements and embedded SOL statements are the
primary input to the SOL precompiler. In PLII and C programs, the SOL statements
must use the same margins as specified in the MARGINS parameter of the
CRTSOLPLI and CRTSOLC commands.

The SOL precompiler assumes that the host language statements are syntactically
correct. If the host language statements are not syntactically correct, the precom
piler may not correctly identify SOL statements and host variable declarations.
There are limits on the forms of source statements that can be passed through the
precompiler. Literals and comments, that are not accepted by the application lan
guage compiler, can interfere with the precompiler source scanning process and
cause errors.

The SOL INCLUDE statement can be used to get secondary input from the file speci
fied by the INCFILE parameter of the CRTSOLxxx' command. The SOL INCLUDE
statement causes input to be read from the specified member until the end of the
member is reached. The included member may not contain other precompiler
INCLUDE statements, but can contain both application program and SOL statements.

Another preprocessor may process source statements before the SOL precompiler.
However, any preprocessor run before the SOL precompile must be able to pass
through SOL statements.

If double-byte character set (DBCS) literals are specified in the application program
source, the system value OIGC (for using DBCS characters) must indicate that the
system supports DBCS literals.

Output from the Precompiler

Listing

The following sections describe the various kinds of output supplied by the precom
piler.

The output listing is sent to the print file specified by the PRTFILE parameter of the
CRTSOLxxx command. The following items are output to the printer file:

• Precompiler options

Options specified in the CRTSOLxxx command.

• Precompiler source

This output supplies precompiler source statements, with record numbers
assigned by the precompiler, if the 'SOURCE option is in effect.

• Precompiler cross-reference

This output supplies a cross-reference listing (if 'XREF was specified in the
OPTION parameter), showing the precompiler line numbers of SOL statements
in which host names and column names are referred to.

1 The xxx in this command refers to the host language indicators: eBl for eOBOLl400, PLI for AS/400 PLlI, e for e/400 and RPG for
RPG/400.

10-2 SOL Programmer's Guide

• Precompiler diagnostics

This output supplies diagnostic messages, showing the precompiler record
numbers of statements in error.

Temporary Source File Members
Source statements processed by the precompiler are written to OSOLTEMP in the
OTEMP library. In your precompiler-changed source code, SOL statements have
been converted to comments and calls to the SOL interlace module, OSOROUTE,
application language interface. The name of the temporary source file member is
the same as the name specified in the PGM parameter of the CRTSOLxxx. This
member cannot be changed before being used as input to the compiler.

OSOLTEMP can be moved to a permanent library after the precompile, if you want
to compile at a later time. You cannot change the records of the source member, or
the attempted compile will fail.

Sample Precompiler Output

a

The output can provide information about your precompiled source module if you
specify the *SOURCE (*SRC) and *XREF options on the OPTION parameter when you
call the SOL precompiler.

The format of the precompiler output is:

5 728S Tl R02 MOO 891006 IBM SQL/400 CBLTESTl 89-03-28 15:44:34 Page
Source type ..••...•.•••..• COBOL
Program name•• USER 1 /CBL TESTl
Source fi 1 e •.•....•.••.•.• *LlBL/QLBLSRC
Member •....••..•.•........ *PGM
Opt ions••••.•.•....... *SRC *XREF
Target release .••••......• *CURRENT
INCLUDE f i 1 e••...•• *L1 BL/*SRCFI LE
Commi t .•...•......•.•..••. *CHG
Generat i on 1 eve 1••... 10
Printer file ••••.••....... *LlBL/QSYSPRT
Text.•.•••.•........ *SRCMBRTXT
Source member changed on 89~24 13:06:14

*SQL

o A list of the options you specified when the SOL precompiler was called.

fJ The date the source member was last changed.

RSLS760·3

Chapter 10. Running a Program with Sal Statements 10-3

5728STl R02 MOO 891006 TBM SQL/400 CBLTESTl 89-03-28 15:44: 34 Page 2 J 0 rJ II
Record * ... + ... 1 ••• + ••• 2 ••• + ••• 3 ••• + ••• 4 ••• + ••• 5 ••• + ••• 6 ••• + ••• 7 ••• + ••• 8 SEQNBR Last change

IDENTIFICATION DIVISION. 100 03-24-89
2 PROGRAM- I D. CBLTESTl. 200 03-24-89
3 ENVIRONMENT DIVISION. 300 03-24-89
4 CONFIGURATION SECTION. 400 03-24-89
5 SOURCE-COMPUTER. IBM-AS400. 500 03-24-89
6 OBJECT-COMPUTER. IBM-AS400. 600 03-24-89

INPUT-OUTPUT SECTION. 700 03-24-89
8 Fl LE-CONTROL. 800 03-24-89
9 SELECT OUTFILE, ASSIGN TO PRINTER-QPRINT, 900 03-24-89

10 FILE STATUS IS FSTAT. 1000 03-24-89
11 DATA DIVISION. 1100 03-24-89
12 FILE SECTION. 1200 03-24-89
13 FD OUTFILE 1300 03-24-89
14 DATA RECORD IS REC-1, 1400 . 03-24-89
15 LABEL RECORDS ARE OMITTED. 1500 03-24-89
16 01 REC-l. 1600 03-24-89
17 05 CC PIC X. 1700 03-24-89
18 05 DEPT-NO PIC X(3). 1800 03-24-89
19 05 FI LLER PIC X(5). 1900 03-24-89
20 05 AVERAGE-EDUCATION-LEVEL PIC ZZZ. 2000 03-24-89
21 05 FI LLER PIC X(5). 2100 03-24-89
22 05 AVERAGE-SALARY PIC ZZZZ9.99. 2200 03-24-89 J 23 01 ERROR-RECORD. 2300 03-24-89
24 05 CC PIC X. 2400 03-24-89
25 05 ERROR-CODE PIC S9(5). 2500 03-24-89
26 05 ERROR-MESSAGE PIC X(70). 2600 03-24-89
27 WORKING-STORAGE SECTION. 2700 03-24-89
28 EXEC SQL 2800 03-24-89
29 INCLUDE SQLC/(2900 03-24-89
30 END-EXEC. 3000 03-24-89
31 77 FSTAT PIC XX. 3100 03-24-89
32 01 AVG-RECORD. 3200 03-24-89
33 05 DEPTNO PIC X(3). 3300 03-24-89
34 05 AVG-EDUC PIC S9(4) USAGE COMP-4. 3400 03-24-89
35 05 AVG-SALARY PIC S9(6)V99 COMP-3. 3500 03-24-89
36 PROCEDURE DIVISION. 3600 03-24-89
37 *** 3700 03-24-89 J 38 * This program will get the average education level and the * 3800 03-24-89
39 * average salary by department. * 3900 03-24-89
40 *** 4000 03-24-89
41 A000-MAIN-PROCEDURE. 4100 03-24-89
42 OPEN OUTPUT OUTFILE. 4200 03-24-89
43 *** 4300 03-24-89
44 * Set-up WHENEVER statement to handle SQL errors. 4400 03-24-89
45 *** 4500 03-24-89
46 EXEC SQL 4600 03-24-89
47 WHENEVER SQLERROR GO TO B000-SQL-ERROR 4700 03-24-89
48 END-EXEC. 4800 03-24-89
49 *** 4900 03-24-89
50 * Declare cursor * 5000 03-24-89
51 *** 5100 03-24-89
52 EXEC SQL 5200 03-24-89 J 53 DECLARE CURS CURSOR FOR 5300 03-24-89
54 SELECT DEPTNO, AVG(EDUCLVL), AVG(SALARY) 5400 03-24-89
55 FROM USER1.TEMPL 5500 03-24-89
56 GROUP BY DEPT NO 5600 03-24-89

10-4 SOL Programmer's Guide

5728ST1 R02 MOO 891006 IBM SQL/400 CBLTEST1
Record * ... + ... 1 ... + ... 2 ... + ... 3 ... + ... 4 ... + ... 5 ... + ... 6 ... + ...

57 END-EXEC.
58 ***
59 * Open cursor *
60 ***
61 EXEC SQL
62 OPEN CURS
63 END-EXEC.
64 **T**********************
65 * Fetch a 11 result rows *
66 ***
67 PERFORM A010-FETCH-PROCEDURE THROUGH A010-FETCH-EXIT
68 UNTIL SQLCODE IS = 100.
69 ***
70 * Close cursor *
71 ***
72 EXEC SQL
73 CLOSE CURS
74 END-EXEC.
75 CLOSE OUTFILE.
76 STOP RUN.
77 ***
78 * Fetch a row and move the information to the output record. *
79 ***
80 A010-FETCH-PROCEDURE.
81 MOVE SPACES TO REC-l.
82 EXEC SQL
83 FETCH CURS INTO :AVG-RECORD
84 END-EXEC.
85 IF SQLCODE IS = 0
86 MOVE DEPTNO TO DEPT-NO
87 MOVE AVG-SALARY TO AVERAGE-SALARY
88 MOVE AVG-EDUC TO AVERAGE-EDUCATION-LEVEL
89 WRITE REC-1 AFTER ADVANCING 1 LINE.
90 A010-FETCH-EXIT.
91 EXIT.
92 ***
93 * An SQL error occurred. Move the error number to the error *
94 * record and stop runni ng. *
95 ***
96 BOOO-SQL-ERROR.
97 MOVE SPACES TO ERROR-RECORD.
98 MOVE SQLCODE TO ERROR-CODE.
99 MOVE "AN SQL ERROR HAS OCCURRED" TO ERROR-MESSAGE.

100 WRITE ERROR-RECORD AFTER ADVANCING 1 LINE.
101 CLOSE OUTFILE.
102 STOP RUN.

* * * * * END 0 F SOU R C E * * * * *

... + ... 8 SEQNBR
5700
5800
5900
6000
6100
6200
6300
6400
6500
6600
6700
6800
6900
7000
7100
7200
7300
7400
7500
7600
7700
7800
7900
8000
8100
8200
8300
8400
8500
8600
8700
8800
8900
9000
9100
9200
9300
9400
9500
9600
9700
9800
9900

10000
10100
10200

89-03-28 15:44:34
Last change

03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89
03-24-89

Page

II The record number assigned by the precompiler when it reads the source
record. The record numbers are used to identify the source record in error
messages and Sal runtime processing.

3

II The sequence number taken from the source record. This is the number seen
when you use the source entry utility (SEU) to edit the source member.

II The date when the source record was last changed. If the record is blank, it
indicates that the record has not been changed since it was created.

Chapter 10. Running a Program with SOL Statements 10-5

5728STl R02 Me0 891006

D
Data Names
'CURS'

'DEPTNO'

'EDUCLVL'

'SALARY'

'TEMPL'

'USERl'

AVERAGE-EDUCATION-LEVEL
AVERAGE-SALARY

AVG-EDUC
AVG-RECORD

AVG-SALARY
B000-SQL-ERROR

CC
CC
DEPT-NO
DEPTNO
ERROR-CODE
ERROR-MESSAGE
ERROR-RECORD
FSTAT
REC-l

ISM SQL/400 CBLTESTl 89-03-28 15:44:34 Page 4
CROSS REFERENCE

fJ II
Define Reference

53 I CURSOR
62 73 83

**** COLUMN
54 56

**** COLUMN
54

**** COLUMN
54

**** TABLE IN 'USER1'
55

**** COLLECTION
55

20 IN REC-l
22 IN REC-l

II IJ
34 SMALL INTEGER PRECISION(4.0) IN AVG-RECORD
32 STRUCTURE

83
35 DECIMAL(8.2) IN AVG-RECORD
**** LABEL

47
17 CHARACTER (1) IN REC-l
24 CHARACTER (1) IN ERROR-RECORD
18 CHARACTER (3) IN REC-l
33 CHARACTER (3) IN AVG-RECORD
25 NUMERIC(5.0) IN ERROR-RECORD
26 CHARACTER(70) IN ERROR-RECORD
23 STRUCTURE
31 CHARACTER(2)
16

D Data names are the symbolic names used in source statements. Names
enclosed in quotation marks (") or apostrophes (') are names of Sal entities,
such as tables and columns. Names not enclosed by quotation marks or apos
trophes are host variables.

fJ The define column specifies the line number at which the name is defined.
The line number is generated by the Sal precompiler .•••• means that the
object was not defined or the precompiler did not recognize the declarations.

IJ The reference column contains two types of information:

• What the symbolic name is defined as II
• The line numbers where the symbolic name occurs II

If the symbolic name refers to a valid host variable, the data type II or struc
ture II is also noted.

10-6 Sal Programmer's Guide

5728STl R02 M00 891006 IBM SQL/400 CBLTEST1 89-03-28 15:44:34 Page 5
DIAGNOSTIC MESSAGES

MSG ID SEV RECORD TEXT
SQLl103 10 55 Position 23 Field definitions for file TEMPL in USER1 not found.

Message Summary
Total Info Warning Error Severe Terminal

1 0 1 000
102 Source records processed

* * * * * END 0 F LIS TIN G * * * * *

Precompiler Commands
In the SQLl400 program there are four precompiler commands (CRTSQLCBL,
CRTSQLPLI, CRTSQLC, and CRTSQLRPG); one for each of the host languages:
COBOLl400, AS/400 PLlI, C/400, and RPG III (part of RPG/400). Separate commands
by language let you specify the required parameters and then take the default for
the remaining parameters, because the defaults are applicable only to the one lan
guage you are using. For example, the options *APOST and *QUOTE are unique to
COBOL. They are not included in the commands for the other languages.

Syntax for the Precompiler Commands
The syntax for the SQLl400 precompiler commands is shown on the following pages.
The parameters are defined under "Parameter Definitions" on page 10-12.

Chapter 10. Running a Program with SOL Statements 10-7

The syntax for the create SOL COBOL (CRTSOLCBL) precompiler command is:

.. r-*CURLIB/~
CRTSQLCBL-PG~ Fprogram-name

1 ibrary-name/
Required

Optional

.--SRCFILE *CURLIB/ J 1-----------•• --E*LIBL/ [QLBLSRC I

library-name/J source-file-nameJ

{ *PGM A
~SRCMBR JI--'--'--------------....

source-file-member-name

[
*NOSOURCEL

~*NOSRC~{:*NOXR:J{F *GEN]{*QUOTESQL~
'--OPTION

*SOURCE *XREF *NOGEN *APOSTSQL

*SRC

~*QUOTEJ-E*SYSVAB-C~ *SYS~
*PERIOD 1-. ----------------.....

* APOST ---1 *COMMA *SQL

r+"*CUR:JENT
'--TGTRLS~ 1-.--------------------------------..

L*PRV

~*LIBL/ [*SRCFILE
~ 1 NCFI LE---l-*CURLIB/ J JI------------..

L-library-name/J source-file-name

--E*CHG3- {to
'--COMMIT *ALL GENLVL JI---------------------.

*NONE severity-l evel

--E*LIBL/ ~ r-QSYSPRT
'--PRTFl LE *CURLIB/--~ Jr---------------------..

library-name/ printer-file-name

~*SRCMBRTXT~
~ TEXT i*BLANK------+---------------------------------------

'---' descri pt ion'

IJOb: B,l pgm: B,l Exec I

10-8 SOL Programmer's Guide

J

The syntax for the create SOL PLII (CRTSOLPLI) precompiler command is:

{*CURLIB/~
CRTSQLPLI-PGM Fprogram--name

1 i brary-name/
Required

Optional

-f*LIBL/ [QPLISRC
~SRCFILE *CURLIB/ J jf------------..

library-name/J source-file-name

{
*PGM r;l

~SRCMBR jl-----'-n----L _____________
source-file-member-name

[
*NOSOURCE

~*NOSRC
~OPTION

*SOURCE

*SRC

* NOXR:J-t*GEN:J-(*SYSJf--_____ --..

*XREF *NOGEN *SQL

-f*LIBL/ [*SRCFILE
~INCFILE *CURLIB/ J jf------------..

library-name/J source-fi1 e-name

-f*CHG3-- {10 {*SRCFI LEJ--
~COMMIT *ALL GENLVL MARGINS

*NONE severity-l eve 1 J--- 1 eft ri ght

-f*LIBL/ [QSYSPRT
~PRTFILE *CURLIB/ J jf----------.....

library-name/ printer-file-name

-f*SRCMBRTXT~
I
~TEXT *BLANK----f---------------------

'description'

IJOb: B,I Pgm: B,I Execl

Chapter 10. Running a Program with Sal Statements 10-9

The syntax for the create SOL RPG (CRTSOLRPG) precompiler command is: J
.. r-*CURLIB/~

CRTSQLRPG-PGL M~~ ,Fprogram-name -
library-name/

Required

Optional

-f*LIBL/ [QRPGSRC
""'-SRCFI LE *CURLIB/ J jl-------------._

library-name/J source-fi1 e-name

-{
*PGM A

""'-SRCMBR jl---'---'----------------.-
source-fi1 e-member-name

C*NOSOURCEL

{
*NOS;JCC----'l *NOXRJ-(F *GEN:J-E*SYSVAB-C*SYS~

""'-OPTION *PERIOD
*SOURCE *XREF *NOGEN *COMMA *SQL

*SRC

J

-{
*CUR:JENT

""'-TGTRLS 1-. ----------------------.-

*PRV

-f*LIBL/ [*SRCFILE
.....-INCFI LE *CURLIB/ J jl-------------._

library-name/J source-fi1 e-name J
-f*CHG--, -{IO

""'-COMMIT *ALL ----1------GENLVL jl-------------.-
*NONE--.J sever; ty-l evel

-f*LIBL/ rQSYSPRT
""'-PRTFILE *CURLIB/ j. jl----------.... -

1 i brary-name/ Lpr; nter-f; 1 e-name

-f*SRCMBRTXT~ ""'-TEXT *BLANK---+--------------------
'description'

IJOb: B,l Pgm: B,l Exec I

10-10 Sal Programmer's Guide

The syntax for the create SOL C (CRTSOlC) precompiler command is:

.. r-*CURLlB/~
CRTSQLC-PGL ~,~~ ,Fprogram-name'---------------+

library-name/
Required

Optional

-E*LIBL/ [QCSRC
-SRCFlLE *CURLIB/ J jl---------,---+

library-name/J source-file-name

{
*PGM A

-SRCMBR jl---'---'----------------+-
source-file-member-name

[
*NOSOURCEL

{*NOSRC~r{:*NOXR:J-[F *GEN:J-[*SYSJ
-OPTION

*SOURCE~ *XREF *NOGEN *SQL

*SRC~ -

-E*LIBL/ [*SRCFlLE
-lNCFlLE *CURLIB/ J jl-------------+_

library-name/J source-file-name

-E*CHGr {10 {*SRCFlLEy -COMMIT *ALL ENLVL ARGlNS
*NONE seVeritY-leVelr left right

-E*LIBL/ [QSYSPRT
-PRTFILE *CURLIB/ j jr------------+_

library-name/ printer-file-name

-E*SRCMBRTXT~ -TEXT *BLANK----t--------------------
'description'

IJOb: B,l pgm: B,l Execl

Chapter 10. Running a Program with Sal Statements 10-11

Precompiler Command Parameters
The precompiler is controlled by parameters specified when it is called by one of
the SOL precompiler commands. The parameters specify how the input is pro
cessed, and how the output is presented.

You can precompile a program without specifying anything more than the name of
the member containing the program source statements as the PGM parameter of the
CRTSOLxxx. SOL assigns default values for all precompiler parameters (which
may, however, be overridden by any that you explicitly specify).

Parameter Definitions
The following paragraphs describe the parameters for the precompiler commands.
The parameters consist of keywords and values. The following figure defines the
parts of a parameter as used throughout this manual:

r ----- -- --- - -- ---- Parameter-- - - - - ---- ---- ------
1 1
1 1

1 1

1 ~ValUe} :
COMMAND _I KEYWORDi va 1 ue ----------------. ..

--value

CRTSQLCBL
\

PGM (MYLIB/MYPROGRAM)

Note: The default value is indicated by an arrowhead (-+).

Required Parameter

RSLS759-2

The following parameter is required for the SOL precompiler commands. If you
choose not to specify any of the following keyword values, then the defaults for
those values are used.

PGM (Program)
Specifies the qualified name by which the compiled program is known.

*CURLlB: If a library is not specified, the program is created in the current
library. If no current library entry exists in the library list, OGPL is used.

library-name: Specify the name of the library where the compiled program is
created.

Warning: If the program name you specify is the same name of an existing
program, your new program replaces the existing one.

program-name: Specify the name of the program being created that contains
the SOL statements.

10-12 SOL Programmer's Guide

L

L

Optional Parameters
The following parameters are optional for the SOL precompiler source commands.
If you choose not to specify any of the following keywords or their values, then the
defaults are used.

SRCFILE (Source File)
Specifies the qualified name of the source file that contains the source with the
SOL statements.

*LlBL: Specifies that the library list is used to locate the source file.

*CURLlB: Specifies that the current library for the job is used to locate the
source file. If no current library entry exists in the library list, OGPL is used.

library-name: Specify the library where the source file is located.

QxxxSRC: If the source file name is not specified, the IBM-supplied source file
name is used. OLBLSRC is the source file name for COBOL, OPLlSRC for PLlI,
ORPGSRC for RPG, and OCSRC for C.

source-file-name: Specify the name of the source file that contains the source.
This source file should have a record length of 92. The source file can be a
database file, device file, or an inline data file.

SRCMBR (Source Member)
Specifies the name of the source file member containing the source. This
parameter is only specified if the source fi Ie name in the SRCFILE parameter is
a database file.

·PGM: Specifies that the host program source is in the member of the source
file that has the same member name as that specified in the PGM parameter for
the precompiler command.

source-file-member-name: Specify the name of the member containing the host
program source.

OPTION
Specifies the following options to the precompiler. If an option is specified more
than once, or if two options conflict, the last option specified is used. If an
option is not specified, then the default is used.

*NOSOURCE or *NOSRC: Specifies that a source listing is not produced by the
precompiler.

*SOURCE or *SRC: Specifies that a source listing is produced by the precom
piler, consisting of the source input and all error messages.

*NOXREF: Specifies that the precompiler does not produce a cross-reference of
names.

*XREF: Specifies that the precompiler produces a cross-reference between
items in your program and the numbers of the statements in your program that
refer to these items.

*GEN: Specifies that the host language compiler is to be called to create a
program after the source has been precompiled.

*NOGEN: Specifies that the host language compiler is not called and that no
program will be created.

*QUOTESQL (COBOL only): Specifies that the string delimiters within SOL
statements are quotation marks (").

Chapter 10. Running a Program with SOL Statements 10·13

*APOSTSQL (COBOL only): Specifies that the string delimiters within Sal state
ments are apostrophes (').

Notes:

1. If *APOSTsal is specified, the Sal escape character for delimited identi
fiers is the quotation (") mark. If *aUOTEsal is specified, the Sal escape
character for delimited identifiers is the apostrophe (').

2. Sal statements in RPG, PLlI, and C use apostrophes for string delimiters
and quotation marks for Sal escape characters.

*QUOTE (COBOL only): Specifies that a quotation mark (") is used for nonnu
meric literals and Boolean literals in COBOL statements.

*APOST (COBOL only): Specifies that an apostrophe (') is used for non-numeric
literals and Boolean literals in COBOL statements.

*SYSVAL (COBOL and RPG only): Specifies that the value used as the decimal
point is from the ODECFMT system value.

Note: If the ODECFMT system value specifies that the value used as the
decimal point is a comma, any numeric constants in lists (such as in the
SELECT clause, VALUES clause, and so on) must be separated by a
comma followed by a blank. For example, VAlUES(1,1, 2,23, 4,1) is
equivalent to VAlUES(1.1,2.23,4,1) where the decimal point is the period.

*PERIOD (COBOL and RPG only): Specifies that the value used as the decimal
point is a period.

Note: In PLII and C, the period is used as the decimal point.

*COMMA (COBOL and RPG only): Specifies that the value used as the decimal
point is a comma.

Note: Any numeric constants in lists (such as in the SELECT clause, VALUES
clause, and so on) must be separated by a comma followed by a blank.
For example, VAlUES(1,1, 2,23, 4,1) is equivalent to VAlUES(1.1,2.23.4,1)
where the decimal pOint is the period.

·SYS: Specifies that the AS/400 system naming convention will be used,
(Iibrary-name/file-name).

·SQL: Specifies that the Sal naming convention will be used (collection
name. table-name).

Note: *SYS also specifies that the AS/400 security convention will be used.
*SOl specifies that the Sal security convention will be used. The
AS/400 security convention requires that the user running the program
must have authority to objects referred to by the Sal statements in the
program. The Sal security convention requires that the owner of the
program has authority to the objects referred to in the static Sal state
ments in the program. The Sal security convention is the same as the
AS/400 security convention for dynamic Sal and interactive SOL.

TGTRLS (target release-RPG and COBOL only)
Specifies whether the precompiler and compiler are to check statements for
potential restore onto the prior release of the OS/400 program.

The *PRV option must be used if the program is to be restored onto the prior
OS/400 program.

*CURRENT: No checking is required.

10-14 Sal Programmer's Guide

J

J

L

L

*PRV: The SOL precompiler will issue message SOL7906. This message states
that the program must not be restored to an OS/400 Release 1 Modification
Level 0 system. It can be restored to an OS/400 Release 1 Modification Level 2
or Release 2 Modification Level 0 system.

The user must also save the object with "PRV to run it on the previous release.

For more information, see the *PRV option descriptions for the TGTRLS param
eter on the Create RPG Program (CRTRPGPGM) and Create COBOL Program
(CRTCBLPGM) commands in the CL Reference manual.

INCFILE (Include File)
Specifies the qualified name of the source file that contains the members
included in the program with any SOL INCLUDE statement.

*LlBL: Specifies that the library list is used to locate the source file.

*CURLlB: The current library for the job used to locate the source file. If no
current library entry exists in the library list, OGPL is used.

library-name: Specifies the library where the source 'file is located.

*SRCFILE: Specifies the qualified source file you specified in the SRCFILE
parameter that contains the source file member(s) specified on any SOL
INCLUDE statement.

source-file-name: Specify the name of the source file that contains the source
file member(s) specified on any SOL INCLUDE statement. The record length of
the source file you specify here must be no less than the record length of the
source file you specified for the SRCFllE parameter.

COMMIT
Specifies if SOL statements in the compiled program are run under commitment
control. Files referred to in the host language source are not affected by this
option. Only files, SOL tables, and Sal views referred to in Sal statements are
affected.

*CHG (change): Specifies that only the updated, deleted, and inserted rows are
locked until the end of the unit of recovery (transaction).

*ALL: Specifies that all rows selected, updated, deleted, and inserted are
locked until the end of the unit of recovery (transaction).

*NONE: Specifies that commitment control is not used. If Sal DOL statements
are included in the program, *NONE must be used.

Note: If ·CHG or "ALL are specified, the following data definition statements
cannot be included in the application:

COMMENT ON
CREATE COLLECTION
CREATE INDEX
CREATE TABLE
CREATE VIEW

GENLVL (generation level)

DROP
GRANT
LABEL ON
REVOKE

Specifies if a program is created, depending on the severity of messages gener
ated as a result of precompile errors. If errors occur with a severity level
greater than the value specified in GENLVL parameter, the appropriate lan
guage compiler is not called.

10: If a severity level value is not specified, the default severity level is 10.

Chapter 10. Running a Program with SOL Statements 10-15

severity-level: Specify a number from 0 through 40. Some suggested values
are listed below:

10 The level value for warnings.
20 The level value for general error messages.
30 The level value for serious error messages.
40 The level value for system detected error messages.

Note: The GENLVL only applies to messages generated as a result of SOL pre
compile errors. The specified GENLVL value is not passed to the lan
guage compiler.

MARGINS (PL/I and Conly)
Specifies the part of the precompiler input record that contains source text.

*SRCFILE: Specifies that the margin values of the file member you specify in
the SRCMBR parameter are used. For PLlI, if the file is type SOLPLI, the
margin values are the values specified on the Source Entry Utility Services
display; if the file is a different type, the margin values are the default values of
2 and 72. For C, if the file is type SOLC, the margin values are the values speci
fied on the Source Entry Utility Services display; if the file is a different type, the
margins are the default values of 1 and 80.

left right: Specify the beginning position (left) and the ending position (right) for
the statements. The margins you specify must not be less than 1 or more than
80. The left margin must be smaller than the right margin.

PRTFILE (printer file)
Specifies the qualified name of the printer device file to which the precompiler
listing is directed. The file should have a minimum length of 132 characters. If
a file with a record length of less than 132 characters is specified, information is
lost.

*LlBL: Specifies the library list used to locate the printer file.

*CURLlB: Specifies the current library for the .iob used to locate the printer file.
If no current library entry exists in the library list, OGPL is used.

library-name: Specify the library where the printer file is located.

QSYSPRT: If a file name is not specified, the precompiler listing is directed to
the IBM-supplied print file, OSYSPRT.

printer-file-name: Specify the name of the printer device file to which the pre
compiler listing is directed.

TEXT
Specifies text that briefly describes the program and its function.

*SRCMBRTXT: Specifies that the text is taken from the source file member
being used to create the program. You can add to or change the text for a data
base source member by using the Start Source Entry Utility (STRSEU)
command, or by using either the Add Physical File Member (ADDPFM) or
Change Physical File Member (CHGPFM) command. If the source file is an
inline file or a device file, the text is blank.

*BLANK: Specifies no text.

description: Specify no more than 50 characters enclosed in apostrophes (').

10-16 SOL Programmer's Guide

J

Example of the Precompiler Source Command
The following example creates a COBOL program named SAMPLE and stores it in a
library named QTEMP. The SQL naming convention was selected, and every row
selected from the specified table(s) are locked until the end of the unit of recovery.

CRTSQLCBL PGM(qtemp/sample) OPTION(*SRC *XREF *SQL) COMMIT(*ALL)

Compiling an Application Program
The SQLl400 program automatically calls the host language compiler after the suc
cessful completion of a precompile, unless *NOGEN is specified. The CRTxxxPGM
command is run specifying the program name, source file name, precompiler
created source member name, text, and USRPRF. For COBOL and RPG, the
TGTRLS parameter from the CRTSQLxxx command is specified on the CRTxxxPGM
command. For COBOL, the *QUOTE or 'APOST is also passed. For PLII and C, the
MARGINS are set in the temporary source file. Defaults are used for all other
parameters.

Note: If you specify 'SYS, USRPRF(*USER) is specified by the precompiler. If you
specify *SQL, USRPRF(*OWNER) is specified by the precompiler.

You can interrupt the call to the host language compiler by specifying *NOGEN
under OPTION parameter of the precompiler command. *NOGEN specifies that the
host language compiler will not be called. The precompiler has created the source
member in the QTEMP/QSQLTEMP file, using the program name specified in the
CRTSQLxxx command as the name of the member. You now can explicitly call the
host language compilers, specifying the source member in the QTEMP/QSQLTEMP
file, and change the defaults, if you wish.

If you precompiled using the *SQL option, then you must specify USRPRF(*OWNER)
on the CRTxxxPGM command.

Note: You must not change the source member in QTEMP/QSQLTEMP prior to
issuing the CRTxxxPGM command or the compile will fail.

Warning: If you do separate precompile and compile steps, and the source
program contains references to externally described files (COPY DDS in COBOL,
%INCLUDE in PLlI, and externally defined files or data structures in RPG), the
referred to files must not be changed between the precompile and compile steps.
Otherwise, results that are not predictable may occur because the change to the
field definitions are not reflected in the temporary source member.

Error and Warning Messages during a Compile
The conditions described in the following paragraphs could produce an error or
warning message during an attempted compile process.

During a PLII or C Compile: If EXEC SQL starts before the left margin (as specified
with the MARGINS parameter, the default), the SQL precompiler will not recognize
the statement as an SQL statement. Consequently, it will be passed as is to the
compiler.

During a COBOL Compile: If EXEC SQL starts before column 12, the SQL precom
piler will not recognize the statement as an SQL statement. Consequently, it will be
passed as is to the compiler.

Chapter 10. Running a Program with Sal Statements 10-17

Binding an Application
Before you can run your application program, a relationship between the program
and any referred to tables and views must be established. This process is called
binding. The result of binding is an access plan.

The access plan is a control structure that describes the actions necessary to satisfy
each SOL request. An access plan contains information about the program and
about the data the program intends to use.

The access plan is stored in the program and therefore is automatically deleted,
moved, saved, and so on with the program.

SOL automatically attempts to bind and create access plans when a successful
compile has occurred. If, at run time, the database manager detects that an access
plan is not valid or detects that changes have occurred to the database that may
improve performance (for example, the addition of indexes), a new access plan is
automatically created. Binding does three things:

1. It revalidates the SQl statements using the description in the database. During
the bind process, the SOL statements are checked for valid table, view, and
column names. If a referred to table or view does not exist at the time of the
precompile or compile, the validation is done at run time. If the table or view
does not exist at run time, a negative SOLCODE is returned.

2. It selects the access paths needed to access the data your program wants to
process. In selecting an access path, indexes, table sizes, and other factors
are considered, when it builds an access plan. It considers all indexes avail
able to access the data and decides which ones (if any) to use when selecting a
path to the data.

3. It attempts to build access plans. If all the SOL statements are valid, the bind
process then builds and stores access plans in the program.

If the characteristics of a table or view your program accesses have changed. the
access plan may no longer be valid. When you attempt to run a program that con-

J

tains an access plan that is not valid, the system automatically attempts to rebuild . ".
the access plan. If the access plan cannot be rebuilt, a negative SOLCODE is .,.,
returned. In this case, you might have to change the program's SOL statements and
reissue the CRTSOLxxx command to correct the situation.

For example, if a program contains an SOL statement that references COLUMNA in
TABLEA and the user deletes and recreates TABLEA so that COLUMNA no longer
exists, when the user calls the program, the automatic rebind will be unsuccessful
because COLUMNA no longer exists. In this case the user must change the
program source and reissue the CRTSOLxxx command.

Program References
All references to collections, tables, views, and indexes in an SOL program are
placed in the object information repository (OIR) of the library when the program is
created.

10-18 SOL Programmer's Guide

J

{
~

L

You may use the Display Program References (DSPPGMREP) CL command to
display all object references in the program. If the SOL naming convention is used,
the library name is stored in the OIR in one of two ways:

1. If the SOL name is fully qualified, the collection name is stored.

2. If the SOL name is not fully qualified, the authorization 10 of the statement is
stored.

If the system naming convention is used, the library name is stored in the OIR in one
of two ways:

1. If the object name is 'fully qualified, the library name is stored.

2. If the object is not fully qualified, *LlBL is stored.

Running a Program with Embedded SQl
Running a host language program with embedded SOL statements, after the pre
compile and compile have been successfully done, is the same as running any host
program. Type:

CALL pgm-name

on the system command line. For more information on running programs, see the
CL Programmer's Guide.

OS/400 DDM Considerations
SOL does not support remote file access through OS/400 DDM (distributed data
management).

Override Considerations
You can use overrides (specified by the OVRDBF command) to direct a reference to
a different table or view or change certain operational characteristics of the
program. The following parameters are processed if an override is specified:

TOFILE
MBR
SEOONLY
LVLCHK
INHWRT
WAITRCD

All other override parameters are ignored. For more information on overrides, see
the Database Guide and the Data Management Guide.

SQl Return Codes
A list of SOL return codes is provided in Appendix B.

2 For more information about the DSPPGMREF CL command, see the CL Reference manual.

Chapter 10. Running a Program with SOL Statements 10-19

J

10-20 SOL Programmer's Guide

L Chapter 11. Using Interactive SQl

Overview

This chapter describes how to use interactive Sal to syntax check, validate, run
Sal statements, and use the prompt function. An overview, functional description,
and tips on using interactive Sal are provided.

Interactive Sal allows you to enter Sal statements or prompts directly from the
keyboard. Either a completion message or an error message is displayed after
each statement is processed. In addition, status messages are normally displayed
during long running statements. In the case of the SELECT statement, the result is
also displayed, printed, or sent to a database file.

There are four basic functions supplied by interactive Sal:

• The statement entry function allows you to type the interactive Sal statement
and run it by pressing the Enter key.

While in the statement entry function, you may:

Type in an interactive Sal statement and run it.
Page through previous statements and messages.
Call session services.
Call list selection.
Edit statements.
Prompt for Sal statements.

• The prompt function allows you to type an Sal statement, press F4 (Prompt)
and be prompted for the syntax of the statement. It also allows you to press F4
to get a menu of all Sal statements. From this menu you can select a state
ment and be prompted for the syntax of the statement.

• The session services function allows you to:

Change commitment control attributes.
Change the values that are in effect when you run your interactive Sal
statements.
Change the SELECT output device.
Change the list of collections (libraries).
Change the list type to select either all your system and Sal objects or only
your Sal objects.
Print the current session history.
Remove all entries you made for the current session.
Save the session in a source file.
Change the data refresh operation when displaying data.

• The list selection function allows you to select from lists of your authorized col
lections, tables, views, or columns. The selections you make from the lists can
be inserted into the Sal statement at the position located by the cursor.

Online help is available for all the displays in interactive Sal, as well as other
normal system display operations.

If your previous Sal session was saved or ended abnormally, the first display that
appears when you start a new Sal session is the Recover Sal Session display.
The Recover Sal Session display allows you to continue with the old session or

© Copyright IBM Corp. 1988, 1989 Chapter 11. Interactive SQl 11-1

Terminology

start a new session. If you do not recover the old session at this time, the old
session is deleted.

You cannot run all of the SOL statements in the interactive SOL environment. For a
list of valid interactive statements, see the "Supported SOL Statements" on
page 11-10. However, you can use interactive SOL to check the syntax of all the
SOL statements in multiple languages.

The following sections describe in more detail the functions available.

There are two naming conventions that can be used on SOLl400: system (*SYS) and
SOL (*SOL). The naming convention used affects the terms used on the displays
and the method for qualifying file and table names. In the system naming conven
tion, files are qualified by library name in the form: library/file. In the SOL naming

J

convention, tables are qualified by the collection name in the form: collection.table.)
The naming convention used is selected by a parameter on the Start SOL (STRSOL) ..",
command' on a command line. In the following discussion, the SOL naming conven-
tion is used.

The following list shows the relationship between AS/400 object names and SOLl400
object names:

System Terms SQl Terms

Library Collection

Physical file Table

Record Row

Field Column

logical file View

For further descriptions of the terms listed above, see the section "Relational Data
bases and Terminology" on page 1-2.

~

1 For a description of the STRSQL command, see the "STRSQL Command" on page 11-18.

11-2 Sal Programmer's Guide

L
Getting Started

L

Audience

You can start using interactive SOL by entering STRSOLl on a command line. The
Enter SOL Statements display then appears. This is the primary display from which
you can enter SOL statements and, by using the function keys, use the session ser
vices (F13), list select functions (F16=Select collections, F17 = Select tables, or
F18=Select columns), and prompting (F4).

Enter SQL Statements

Type SQL statement, press Enter.
===> --

Bottom
F3=Exit F4=Prompt F6=Insert line F9=Retrieve F10=Copy line
F12=Cancel F13=Services F24=More keys

(C) COPYRIGHT IBM CORP. 1982, 1989.

Press F24 to view function keys F16, F17, and F18.

F14=Delete line F15=Split line
F17=Select tables

(files)

F16=Select collections (libraries)
F18=Select columns F24=More keys

(fields)

Bottom

Note: The names in parentheses appear in place of the ones above, if you select
the system naming convention.

The intended users of interactive SOL are programmers and database administra
tors with a knowledge of database concepts and the SOL language.

Chapter 11. Interactive Sal 11-3

Functional Description

Statement Entry

Prompting

Interactive Sal allows the programmer or database administrator to quickly and
easily define, update, delete, or look at data, mainly for testing, problem analysis,
and database maintenance. A programmer, for example, may insert some rows into
a table, using interactive Sal, and test the Sal statements before running them in
an application program. A database administrator may use interactive Sal to grant
or revoke privileges, create or drop collections, tables, or views, or select informa
tion from system catalog tables.

The statement entry function is the function that you are in when first entering inter
active SOL. You return to the statement entry function after processing each inter
active Sal statement.

In the statement entry function, you type or prompt for the entire Sal statement and
submit it for processing by pressing the Enter key.

The statement may be one or many lines long. When the statement has been pro
cessed, the statement and the resulting text message are moved upward on the
display. You can then enter another statement.

If the statement was recognized by Sal but contains a syntax error, the statement
that was just entered and the resulting text message (syntax error) is moved upward
on the display, and a copy of the statement with the error appears in the input area
with the cursor positioned at the beginning of the token that contains the syntax
error.

You may page through previous statements, commands and messages-even those
that have moved off the top of the display. If you need more room to enter an Sal
statement, you can page down the display.

The prompt function helps you supply the necessary information for the syntax of a
statement you want to use. The prompter is useful when you have forgotten the
syntax of a statement or when you want to save time.

To use the prompter, you have two options:

• If you type at least the verb of the statement before pressing F4 (Prompt), any
(partial) statement beyond the verb, in which the syntax is correct, will be
accepted. The statement will be parsed and the clauses that have been com
pleted will be filled in on the prompt displays.

There are menus available if you enter an unqualified CREATE, DECLARE or
DROP statement (without the noun).

• If you press F4 (Prompt) without typing anything on the Enter Sal Statements
panel, you are shown a complete menu of statements. You can select the
number of the statement you want to use, and the system will then prompt for
the statement you selected.

Note: In a few cases, if you type part of an Sal statement in the correct syntax,
and the last item in the partial statement is an object name that is too long, the
prompt screen will appear and the object name that is too long will be truncated
to the allowable maximum length.

11-4 SOL Programmer's Guide

J

The prompt function can be used in any of the three run modes ("RUN, *VlO, and
*SYN).

The statement that is built as a result of the prompting will be inserted into the
session. If you cancel prompting using F12 or F3, a message will be inserted indi
cating that you cancelled prompting.

The prompter remains in control if any error is encountered. The cursor will be
positioned to the error whenever possible.

Statements are checked for syntax upon entry into the prompter. A syntax check
here means that the statement is syntactically correct so far. The prompter will not
accept a syntactically incorrect statement. You can use F12 or F3 to exit or cancel
whether or not the statement is syntactically correct.

Notes:

1. In *RUN or "VlO mode, only the interactive form of the data manipulation state
ment is allowed. In *SYN mode with a language other than *NONE, all Sal
statements may be prompted.

2. In Sal (*SOl) naming, a default collection (library) name may be supplied when
the collection name qualifies a table, view, or index name. The default used
depends on the value of the USOPT parameter specified on the STRSOl
command, (option 4 (Session services)). If the value of USOPT is *CURUS, then
the current library name is used as the default. If the value of USOPT was a
user-specified collection name, then that collection name is used as the default.
For all other values of USOPT, the default collection name is the current job's
profile name (sign-on ID).

The default supplied on the prompt displays may be different from the implicit
qualification used when no collection name is supplied on the Enter Sal State
ments display. On the Enter Sal Statements display, the implicit qualification is
always the current job's profile name.

3. In system (*SYS) naming, unqualified collection names are qualified by *USL.

If you are in the Sal prompter and press F4 (Prompt), a list of objects will be dis
played, depending on the position of the cursor. You can select objects from this
list. If you press F21 (Display statement), the prompter will display a formatted Sal
statement as it has been filled in so far.

DBCS Considerations for Prompting: The rules for processing OSCS data across
multiple lines, in such a way as to allow entering one continuous OSCS character
string, are the same as those adopted by the Enter Sal Statements display. Each
line must contain as many shift-in characters as shift-out characters. However, if
during formatting, the prompter finds that the very last column on a line contains a
shift-in and the very first column of the next line contains a shift-out, the shift-in and
shift-out characters are removed by the prompter when the two lines are assem
bled. Also, if the last two columns of a line contain a shift-in followed by a single
byte blank, and the very first column of the next line contains a shift-out, the shift-in,
blank, shift-out sequence is removed by the prompter when the two lines are assem
bled.

There is an unavoidable situation that may come up as a result of following the rules
above. This situation is a result of a statement code assembled by the prompter
that may align itself on boundaries when passed back to the statement entry panel
in such a way that the statement entry code will then strip shift-in and shift-out pairs

Chapter 11. Interactive Sal 11-5

unknown to the user when (if) the statement is run or verified. This condition will be
sensed by the prompter before the statement is processed and returned as a
warning message. As far as the prompter is concerned, the statement is syntac
tically correct when it is leaving the prompter, but the prompter is aware during pro
cessing that the condition exists for unexpected results and supplies the message.

You can either ignore this message or take further action. Interactive SOL is sensi
tive to this situation and (in this case only) shows the statement to you before it is
run or verified (along with the message). Message help text describes the situation
that has occurred, discusses how the statement will be processed, and indicates
how to proceed.

Session Services
The session services function is made available by pressing F13 (Session services)
on the Enter SOL Statements display, which accesses the Work with Session Ser
vices display. It is through this function that you can change the current values that
are in effect for your interactive SOL session. You also can print, clear, or save the \
session to a source file. The following is a brief description of the options on the"
Work with Session Services display:

1. Change commitment control

This function lets you set the level of commitment control that you want in effect
for your session. The choices are *NONE, *CHG, and *AlL.

Note: If locks on rows are currently being held for this unit of recovery and you
attempt to change COMMIT from *All or "CHG to *NONE, a warning
message is displayed.

For more information on the COMMIT and ROllBACK statements, see the
SQLl400 Reference manual.

2. Change statement processing control

This function lets you control how your SOL statement is processed. You can do
one of the following:

a. Check for correct syntax, make a validity check, and run your SOL statement
(the Run option).

b. Check for correct syntax and check that the object names used in the state- J
ment actually exist on your system (called a validity check), but not run the
statement. This option does not allow the use of host variables.

c. Check for correct syntax only. This option allows you to use host variables
and allows al/ SOL statements.

When this option is chosen, you will be prompted to select what language
character set to use for syntax checking SOL statements. Valid options are:

• "NONE
• *C
• ·CBl
• *PLI
• *RPG

If you choose "CBl or "RPG, you are prompted for the decimal point symbol
touse. The choices are the system value (default), period, or comma. For
interactive SOL, the decimal point is set to the system value; for PUI and C,
the decimal point is set to a period.

Additionally, with *CBl, you will be prompted for the SOL string delimiter
symbol you want to use. The choices are quote (default) and apostrophe.

11-6 SQl Programmer's Guide

L

L

L

For the other languages, this value is set to an apostrophe and cannot be
changed.

When you run the statement, a syntax check and validity check are performed
automatically.

3. Change SELECT output device

This function lets you control where the output from a successful SELECT state
ment is sent. You can either display, print, or save the results in a database file.
If you choose to print or save the results, you are prompted for printer or data
base file information.

4. Change list of collections (libraries)

This function lets you control which collections and libraries are used as a basis
for building the collections list when F16 is pressed. You can select from *LlBl,
*USRUBl, *AllUSR, "All, and "CURUB, or specify a library name. The name
you specify may be used to supply a single collection or library. You are
prompted for the name. For more information on the other five choices, see the
CL Reference manual.

When you change the collection (library) option, it affects the presentation of the
lists only and not the statement syntax. In the system naming convention, the
*UBl list is used to resolve an unqualified file name, regardless of the setting of
the list of collections or of the STRSOl UBOPT parameter. In the Sal naming
convention, the user profile is used to resolve an unqualified table name. If
there is a collection with the same name as your user profile, that collection
name is used to resolve the unqualified table, regardless of the setting of the list
of collections or of the STRSOl UBOPT parameter.

In either naming convention, selecting the file or table name from the list
ensures that the name is properly qualified.

5. Change list type

This function lets you control which types of objects are shown when you
request a list. You may choose to see both system created objects and Sal
created objects, or Sal created objects only.

6. Print current session

This function lets you print the current session immediately and then continue
working. You are prompted for printer information. All the Sal statements you
entered and all the messages displayed are printed just as they appear on the
Enter Sal Statements display.

7. Remove all entries from current session

This function lets you remove all the Sal statements and messages from the
Enter Sal Statements display and the session history. You are prompted to
ensure that you really want to delete the information.

S. Save session in source file

This function lets you save the session in a source file. You are prompted for
the source file name. This function lets you embed the source file into a host
language program by using the source entry utility (SEU).

Chapter 11. I nteractive Sal 11-7

9. Change data refresh option

This option lets you control the data refresh operation when using the interac
tive SELECT statement to display data. You are prompted to specify whether
the data is always refreshed or whether the data is only refreshed on the first
forward pass of the retrieval operation.

List Selection Function
The list selection function is made available by pressing F16, F17, or F18 on the
Enter SOL Statements display. After pressing the desired function key, you are pre
sented with a list of authorized collections, tables, and views, or columns from
which to choose. If you request a list of tables, but you have not previously selected
a collection, you are asked to select a collection first. If you request a list of
columns, but you have not previously selected a table and/or a collection, you are
asked to select a collection and/or table first.

The list selection mode allows you to do the following:

• Select one or more items from the list, numerically specifying the order.
• Page through the list.
• Display the list again (all input fields are erased).
• Obtain help.
• Exit the list selection function without making any choices.

When returning from the list function, the selections you made are inserted at the
position of the cursor on the Enter SOL Statements display. When using the table
and view list to insert names into you statement, a maximum of 32 tables and/or
views may be selected from the list. For more tips on using the list selection func
tion, see "Using the List Selection Function" on page 11-14.

Note: An important rule for using the list function:· Always select the list you are
primarily interested in. For example, if you want a list of columns, but you
believe that the columns you want are in a collection or table not currently
selected, press F18 (Select columns). Then, from the column list, press the
appropriate function key to change the table or collection. Do not go first to
the collection or table list, in this case, because you do not want to have the
table name or collection name inserted into your statement.

For more information on using the list selection function, see "Using the List
Selection Function" on page 11-14.

Exit Interactive SQl
Pressing F3 (Exit) allows you to exit the interactive SOL environment and do one of
the following:

1. Save and exit session; leave interactive SOL.
2. Exit without saving session; leave interactive SOL without saving your session.
3. Resume session; remain in interactive SOL and return to the Enter SOL State

ments display (the current session parameters remain in effect).
4. Save session in source file; save the current session in a source file as defined

in the Change Source File display when Enter is pressed.

Note: If locks on rows are currently being held for this unit of recovery and you
attempt to exit interactive SOL, a warning message is displayed.

11-8 Sal Programmer's Guide

J

L
Help

Help is available from every display in the interactive SOL session. You can obtain
general help information about the whole display, or selective information about
part of the displayed information by positioning the cursor in the area in question
and pressing the Help key or F1 (Help).

The Session and Its Functions
When you enter the start SOL command (STRSOL)2, an interactive SOL session is
created. The session consists of:

• Values of parameters you specified in the STRSOL command

• SOL statements you entered in the session along with their corresponding mes
sages following each SOL statement

• Values of the parameters that you changed via the session services function, if
applicable

• Lists selections you have made

Interactive SOL supplies a unique session-id. This allows multiple users with the
same sign-on 10 to use interactive SOL from more than one work station at the same
time. Also, more than one interactive SOL session can be run from the same work
station at the same time by the same user (sign-on 10).

I Recovering a Saved or Failed SQl Session

Messages

If the previous SOL session was saved or ended abnormally, interactive SOL pre
sents the Recover SOL Session display at the start of the next session (when the
next STRSOL command is entered). From this display, you can either recover the
old session by selecting option 1 (Attempt to resume existing SOL session) or delete
the old session and start a new session by selecting option 2 (Delete existing SOL
session and start a new session). If you choose to recover the old session, the
parameters you specified when you entered STRSOL are ignored and the parame
ters for the old session are used. If you choose to delete the old session and con
tinue with the new session, the parameters you specified when you entered STRSOL
are used.

Only first-level text for messages are shown on the Enter SOL Statements display.
You can see the second-level text by positioning the cursor to the first-level text and
pressing the Help key.

If an error is detected in a SOL statement, the statement is duplicated and the cursor
is positioned at the place in the statement where the error was detected.

2 For a description of the STRSOL command, see the "STRSOL Command" on page 11-18.

Chapter 11. Interactive Sal 11-9

Supported SQl Statements
The following Sal statements can be run in the interactive Sal environment. All
Sal statements can be syntax checked by interactive SOL. See the SQLl400
Reference manual for information about the statements.

In the case where there is a distinction between the interactive form of the SELECT
statement and other forms, the interactive form must be used.

COMMENT ON GRANT
COMMIT INSERT
CREATE COllECTION lABEL ON
CREATE INDEX lOCK TABLE
CREATE TABLE REVOKE
CREATE VIEW ROllBACK
DELETE SELECT
DROP UPDATE

Interactive Session Display Flow Diagram
The following figure shows the overall flow of the displays used in an interactive
Sal session. The reverse characters are used to represent the function key
pressed to see the next display in the figure. Remember, the only statement that
returns data is the SELECT statement.

11-10 Sal Programmer's Guide

J

J

J

-:~------------------~l _ ___ Enter SQL Statements

I m
ICI F3~Exit F4=Prompt
~ F13=Services

F6=Insert line
Fl4=De 1 ete 1 i ne

F9=Retrieve
Fl5=Spl it 1 i ne

F lO=Copy 1 i ne
F24=More keys

Press F24

~~~select Collections 
(li bra ri es) 

EJ 

II 

Dr 

II 
F17=Select tables 

(files) 
F18=Select columns 

(fields) 

Select and Sequence Collections 
(Select and Sequence Libraries) 

Select and Sequence Tables 
(Select and Sequence Files) 

Select and Sequence Columns 
(Select and Sequence Fields) 

F24=More keys 

~~~--------------------w-or-k--w-it-h--s-es-s-i-o-n-s-e-r-v-ic-e-s--------------------~ 

-n. Change commitment control T
2. Change statement processing control
3. Change SELECT output device

, 4. Change list of collections (libraries)
5. Change list type
6. Print current session
7. Remove all entries from current session
8. Save session in source file
9. Change data refresh option

Change Commitment Control l
I
(Change Statement Processing Control 1

2. I
3.~~-------------------C-h-a-ng-e--S-E-LE-C-T--Ou-t-P-u-t-D-e-v-ic-e-------------------~~

TO"""' o,'ioo ..
l=Display
2=Printer
3~Database file

Change Printer

Change File

T

Chapter 11. Interactive Sal

l
l

RSLS751-10

11-11

4. Change List of Collections J (Libraries)

~List of collections l=*LIBL T 2=*USRLIBL

I

3=*ALLUSR

I
4=*ALL

I
5=*CURLIB
6=Collection (1 i brary)

6 r Change Collection l (Li brary)

5. r Change List Type l
6. I Change Printer l J
7. r Confirm Remove Entries Request l

(I 8.
I

Change Source File
I

9.
(Change Data Refresh Dption l I

Dr Exit Interactive SOL 1 --L

T~ti"" l=Save and exit session T 2=Exit without saving session
3=Resume session
4=Save session in source file

3 r Enter SOL Statements \ J
4 r Change Source File l

1 Recover SQL Session 1
T Attempt to resume existing SOL session T 2. Delete existing SOL session and start a new session

I

1 or 2

r
Enter SOL Statements l

RSLS752-10

11-12 Sal Programmer's Guide

For example, press F4 to prompt without typing anything:

Select SQL Statement

Select one of the following:

1. COMMENT ON
2. COMMIT
3. CREATE COLLECTION
4. CREATE INDEX
5. CREATE TABLE
6. CREATE VIEW
7. DELETE
8. DROP COLLECTION
9. DROP INDEX

10. DROP TABLE
11. DROP VI EW
12. GRANT
13. INSERT
14. LABEL ON

For example, type CREATE TABLE and press F4 to prompt:

Specify CREATE TABLE Statement

Type choi ces.

Table ... Name
Collection Name. F4 for list

Type information. press Enter.
Default: Y=Yes, N=No
Data: l=BIT, 2=SBCS, 3=MIXED

-----Digits-----
Column Type Precision Scale Length Default Data

y 2

RSLS788-2

Chapter 11. Interactive Sal 11-13

Tips on Using Interactive SQl
The following paragraphs contain tips and techniques for using interactive SOL.

Using the List Selection Function
You may request a list at any time while typing an SOL statement on the Enter SOL
Statements display. The selections you make from the lists are inserted on the
Enter SOL Statements display, starting where the cursor is located and in the order
that you specify. You must type the key words of the statement, but the selected list
information is added automatically.

The examples on the following pages show you how to use the list select function to
build your SELECT statement.

Note: The following examples let you see how you might obtain the specific data
you desire. The object names and selections are imaginary and probably do
not exist on your system.

First Time Used in Session
First, assume you have just entered interactive SOL by typing STRSQL on the system
Command Entry display, and you have made no list selections or entries. Also,
assume you have selected 'SOL for the naming convention.

At the Enter SOL Statements display:

1. Type SELECT on the first data entry line.

2. Type FROM on the second data entry line.

3. Leave the cursor positioned after FROM.

Enter SQL Statements

Type SQL statement, press Enter.
===> SELECT

FROM

4. Press F17 (Select tables) to obtain a list of tables, because you want the table
name to follow FROM.

Note: Instead of a list of tables appearing as you expected, a list of collections
appears (the Select Collections display). This is because you have not
selected a collection or collections from which to work, since you just
entered the SOL session.

5! Type a 1 in the Seq column across from YOURDB2 collection.

11-14 SOL Programmer's Guide

J

Select and Sequence Collections

Type sequence numbers (1-999) to select collections, press Enter.

Type Text Seq Co 11 ect ion
YDURDB1
YDURDB2
YOURDB3
YOURDB4

SYS Company benefits
SYS Employee personal data
SYS Job classifications/requirements
SYS Company insurances

6. Press the Enter key.

The Select and Sequence display appears, showing the tables existing in the
YOURDB2 collection.

7. Type a 1 in the Seq column across from PEOPLE table.

Select and Sequence Tables

Type sequence numbers (1-999) to select tables, press Enter.

Seq Table/view Collection Type Text
EMPLCD YOURDB2 TAB Employee company data
PEOPLE YDURDB2 TAB Employee personal data
EMPLEXP YOURDB2 TAB Employee experience
EMPLEVL YOURDB2 TAB Employee evaluation reports
EMPLBEN YOURDB2 TAB Employee benefits record
EMPLMED YOURDB2 TAB Employee medical record
EMPLlNVST YOURDB2 TAB Employee investments record

8. Press the Enter key.

The Enter Sal Statements display appears again with the table name,
YOURDB2.PEOPlE, inserted after FROM.

The table name is qualified by the collection name, and both names appear in
the proper syntax.

Enter SQL Statements

Type SQL statement, press Enter.
===> SELECT

FROM YOURDB2.PEOPLE

9. Position the cursor after SELECT.

10. Press F18 (Select and Sequence columns) to obtain a list of columns, because
you want the column name to follow SELECT. Press F11 to see Text column.

The Select and Sequence Columns display appears, showing the columns
existing in the PEOPLE table.

11. Type a 1 in the Seq column across from the NAME column.

12. Type a 2 in the Seq column across from the SOCSEC column.

Chapter 11. Interactive Sal 11-15

Select and Sequence Columns

Type sequence numbers (1-999) to select columns, press Enter.

Seq Column Table/view Collection Text
1 NAME PEOPLE YOURDB2

EMPLNO PEOPLE YOURDB2 Emoloyee ID no.
2 SOCSEC PEOPLE YOURDB2

COADDR PEOPLE YOURDB2 Company mail address
STRADDR PEOPLE YOURDB2 Street address
CITY PEOPLE YOURDB2
ZIP PEOPLE YOURDB2
COPHONE PEOPLE YOURDB2 Employee internal telephone number.
PERPHONE PEOPLE YOURDB2 Employee home telephone number.
AGE PEOPLE YOURDB2

13. Press the Enter key.

The Enter SQl Statements display appears again with the NAME, SOCSEC
appearing after SELECT.

Enter SQL Statements

Type SQL statement, press Enter.
===> SELECT NAME, SOCSEC

FROM YOURDB2.PEOPLE

14. Press the Enter key.

The statement you created is now syntax checked, validity checked, and run,
according to the statement processing options that you previously selected.

If you ran the statement and if no errors were encountered, the SQl Statement
Entry display looks like this:

Enter SQL Statements

Type SQL statement, press Enter.

===>

11-16 SOL Programmer's Guide

SELECT NAME. SOCSEC
FROM YOURDB2.PEOPLE
SELECT statement run complete.

J

L

After First Use in Session
Once you have used the list function, the values you selected remain in effect until
you change them or until you change the list of libraries option on the Work with
Session Services display.

Note: To change the lists, remember this rule:

Always select the list you are primarily interested in. For example, if you
want a list of columns, but you believe that the columns you want are in a
collection or table not currently selected, press F18 (Select columns). Then,
from the column list display, press the appropriate function key to change the
table or collection. Do not go first to the collection or table list, in this case,
because you do not want to have the table name or collection name inserted
into your statement.

Testing Your SQl Statements Using Interactive SQl
An important use for interactive SOL is to test your SOL statements before embed
ding them into your host program. When exiting interactive SOL, save your session
in a source file. Then, use the system source entry utility (SEU) to copy the state
ments into your program.

Entering DBCS Data
When you enter double-byte character set (DBCS) data on the Enter SOL Statements
display, you must be aware of how the shift-out and shift-in characters are pro
cessed by interactive SOL. Each line of data must contain as many shift-out charac
ters as shift-in characters. To assist processing a DBCS data string requiring more
than one line for entry, interactive SOL removes the extra shift-out and shift-in char
acters. If the very last (farthest right) column on the line contains a shift-in char
acter and the very first (farthest left) column of the next line contains a shift-out
character, these shift-in, shift-out characters are removed by interactive SOL when
the statement is processed. Also, when the two farthest right columns of a line
contain a shift-in character, followed by a single-byte blank character, and the next
line contains a shift-out character in the farthest left column, the shift-in, blank,
shift-out sequence is removed when the statement is processed.

Chapter 11. Interactive SOL 11-17

STRSQL Command
The STRSOl command starts interactive SOL, which immediately shows the Enter
SOL Statements display. This display allows you to build, edit, enter, and run an
SOL statement in an interactive environment. Any messages during the running of
the program are shown on this display.

You can also specify many processing options by typing STRSOl on the command
line and then pressing F4 (prompt). All of the parameters for the STRSOl command,
except NAMING, can be set by using the Work with Session Services display in
interactive SOL.

A syntax diagram of the command and a definition of the parameters follows:

STRSQL----------------------------+
Required

Optional

-f
*NONE {*SYS -f*RUN~ ~COMMIT *CHG~NAMING]-PROCESS *VLD,jt---------
*ALL=r-- *SQL *SYN

~LIBOPT *USRLIBL--+-LISTTYPE- REFRESH i:~~~tIB,---~ {*ALL]- {*ALWAYSJiL

*ALL *SQL * FORWARD
*ALLUSR----i
1 ibrary-name-

~*NONE------------------,

r*C--------------------~

(1) -f*SYSVA~L {*QUOTESQL
~PGMLNG-f-*CBL-DEC PNT * PER I O~SQLSTRD LM

*COMMA APOSTSQL
f-*PLI------------------~

-f
*SYSVALi

~*RPG-DECPNT *PERIOD-+------------
*COMMA~

(1) PGMLNG, DECPNT, and SQLSTRDLM are valid only when you select *SYN at the
PROCESS parameter.

I Job: I pgm: I Exec I

COMMIT
Specifies whether the SOL statements are run under commitment control.

*NONE: Specifies that commitment control is not used. COMMIT and
ROllBACK statements are not allowed. If SOL DDl statements are run, *NONE
must be specified.

*CHG: Specifies that only those rows updated, deleted, or inserted are locked
until the unit of recovery (transaction) is committed or rolled back.

*ALL: Specifies that all rows selected, updated, deleted, and inserted are
locked until the unit of recovery (transaction) is committed or rolled back.

11-18 SOL Programmer's Guide

J

I

NAMING
Specifies the naming convention used for naming objects in SOL statements.

*SYS: Indicates that the system naming convention is used (library-name/file
name).

*SQL: Indicates that the SOL naming convention is used (collection-name.table
name).

PROCESS
Specifies what values are used to process the statements.

*RUN: Specifies that the statements are syntax checked, data checked, and then
run.

*VLD: Specifies that the statements are syntax checked and data checked, but
not run.

*SYN: Specifies that the statements are syntax checked only.

LlBOPT
Specifies which collections and libraries are used as a basis for building a list
when F16, F17, F18, or F4 on prompts is pressed.

*LlBL: Specifies that all the libraries in the user and system portions of the job's
library list are shown.

*CURLlB: Specifies that the current library is shown.

*USRLlBL: Specifies that only the libraries in the user portion of the job's
library list are shown.

*ALL: Specifies that all the libraries in the system, including OSYS, are shown.

*ALLUSR: Specifies that all the nonsystem libraries, which include all user
defined libraries and the aGPl library, that are not in the job's library list are
shown. Libraries whose names start with the letter a, other that OGPl, are not
included.

library-name: Allows you to specify the name of a library.

LlSTTYPE
Specifies what types of objects are displayed with list support (F16, F17, F18, or
F4 on prompts).

*ALL: Specifies that all objects are displayed.

*SQL: Specifies that only Sal created objects are displayed.

REFRESH
Specifies when the displayed SELECT output data is refreshed.

*ALWAYS: Specifies that the data is normally refreshed when scrolling forward
and backward.

*FORWARD: Specifies that the data is refreshed only as the user scrolls forward
to the end of the data for the first time. When scrolling backward, a copy of the
data already seen is displayed.

PGMLNG
Specifies the program language syntax rules to use. To use this parameter, you
must select ·SYN at the PROCESS parameter.

*NONE: Specifies that you are not using a specific language's syntax check
rules, but you are using a superset of all of the other languages' syntax rules.

Chapter 11. Interactive Sal 11-19

Example

The supported languages are:

*C: Specifies that you are checking syntax using the C language syntax rules.

*CBL: Specifies that you are checking syntax using the COBOL language syntax
rules.

*PLI: Specifies that you are checking syntax using the PLlllanguage syntax
rules.

*RPG: Specifies that you are checking syntax using the RPG language syntax
rules.

DECPNT
Specifies what kind of decimal point you want to use if you are using COBOL
(*CBl) or RPG (*RPG) language syntax rules.

You are prompted to use one of the following types of decimal points:

*SYSVAL: Specifies that the decimal point is extracted from the system value.

*PERIOD: Specifies that a period represents the decimal point.

*COMMA: Specifies that a comma represents the decimal point.

SQLSTRDLM
Specifies the Sal string delimiter. To use this parameter, you must be using
COBOL (*CBl).

*QUOTESQL: Specifies that a quotation mark represents the Sal string delim
iter.

J

*APOSTSQL: Specifies that an apostrophe represents the Sal string delimiter. J
STRSQL PROCESS(*SYN) PGMLNG(*CBL) NAMING(*SQL) DECPNT(*COMMA)

SQLSTRDLM(*APOSTSQL)

This command starts an interactive Sal session that only syntax checks Sal state
ments. The syntax rules used by the syntax checker is from the COBOL language.
The Sal naming convention is used for this session. The decimal point will be
represented by a comma and the Sal string delimiter will be represented by an
apostrophe.

11-20 SOL Programmer's Guide

~ Chapter 12. SQl Data Protection

~

SQl Security

Authorization 10

Public Authority

Views

This chapter describes the security plan for protecting Sal data from unauthorized
users and the methods for ensuring data integrity.

All objects on the AS/400 system, including Sal objects, are managed by the
system security function. Sal uses the GRANT and REVOKE statements to inter
face with the AS/400 system commands Grant Object Authority (GRTOBJAUT) and
Revoke Object Authority (RVKOBJAUT). For more information on system security
and the use of the GRTOBJAUT and RVKOBJAUT commands, see the Security Con
cepts and Planning manual.

The Sal GRANT and REVOKE statements only operate on tables and views. In
some cases, it is necessary to use system GRTOBJAUT and RVKOBJAUT com
mands to authorize users to other objects, such as commands and programs.

The authority checked for Sal statements depends on whether the statement is
static, dynamic, or being run interactively. For static Sal statements, authority is
checked against the user who is the owner of the program containing the Sal state
ment in addition to the user who is running the program. This is accomplished by
using USRPRF(*OWNER) when the precompiler calls the compiler.

For dynamic Sal statements or for statements issued interactively, authority is
checked against the user who is running the program or is processing the state
ment.

The authorization ID identifies a unique user and, in the SOLl400 program, is a user
profile object. Authorization IDs can be created using the system Create User
Profile (CRTUSRPRF) command.

Public authority on specific tables and views is controlled by using the Sal GRANT
and REVOKE statements. If 'PUBLIC is specified with the Sal GRANT statement,
authority to an object is granted to all users that have no private authority to that
object.

For more information on the GRANT and REVOKE statements, see the SQLl400
Reference manual.

A view can prevent unauthorized users from having access to sensitive data. The
application program can access the data it needs in a table, without having access
to sensitive or restricted data in the table. A view can restrict access to particular
columns by not specifying those columns in the SELECT list (for example, employee
salaries). A view can restrict access to particular rows in a table by specifying a
WHERE clause (for example, allowing access only to the rows associated with a par
ticular department number).

© Copyright IBM Corp. 1988, 1989 Chapter 12. Data Protection 12-1

SQl Data Integrity

Concurrency

Sal data integrity protects data from being destroyed or changed by unauthorized
persons, system operation or hardware failures (such as physical damage to a disk),
programming errors, interruptions before a job is completed (such as a power
failure). or interference from running applications at the same time (such as serial
ization problems). Data integrity is ensured by the following functions:

• Concurrency
• Atomic operations
• Journaling
• Commitment control
• Save/restore
• Damage tolerance
• Index recovery

For more information about each of these functions, see the Database Guide and the
Backup and Recovery Guide.

Concurrency is the ability for multiple users to access and change data in the same
table or view at the same time without risk of losing data integrity. This ability is
automatically supplied by the AS/400 database manager. locks are implicitly
acquired on tables and rows to protect concurrent users from changing the same
data at precisely the same time.

In some cases, the program may acquire locks that prevent other statements in the
same program from running. For example, a lock on a row currently held by one
cursor will prevent another cursor in the same program (or in a DELETE or UPDATE
statement not associated with the cursor) from acquiring a lock on the same row.

Deadlock detection is not provided; instead, default and user-specifiable lock-wait
time-out values are supported. Sal creates tables, views, and indexes with the
default record wait time (60 seconds) and the default file wait time (*IMMED). The
user may change these values by using the Change Physical File (CHGPF). Change
logical File (CHGlF), and Override Database File (OVRDBF) commands. (For more
information on these commands, see the CL Reference manual.)

You may explicitly prevent other users from using a table at the same time by using
the Sal lOCK TABLE statement, which is described in the SQL!400 Reference
manual.

12-2 SOL Programmer's Guide

Atomic Operations

Journaling

In general, all underlying database data definition functions are designed to be
atomic (either they will complete or they will appear to never have been started).
This is true regardless of when or how the function was ended or interrupted (power
failure, abnormal ending, job cancel, and so forth). Data definition statements are
not affected by the COMMIT and ROllBACK statements. However, because the
underlying database data definition functions are atomic, the database is never left
in an unusable state.

The following Sal data definition statements are guaranteed to be atomic:

COMMENT ON
DROP TABLE
DROP VIEW
DROP INDEX

GRANT (See note.)
lABEL ON
REVOKE (See note.)

Note: If multiple tables are specified for a GRANT or REVOKE statement, the tables
are processed one at a time, so the entire Sal statement is not atomic, but
the GRANT or REVOKE to each individual table will be atomic.

The following data definition statements are not atomic because they involve more
than one OS/400 database operation:

CREATE COllECTION
CREATE TABLE
CREATE VIEW
CREATE INDEX
DROP COllECTION

For example, a CREATE TABLE may be interrupted after the AS/400 physical file
has been created, but before the member has been added. Therefore, in the case of
create statements, if an operation ends abnormally, you may have to drop the object
and then create it again. In the case of a DROP COllECTION statement, you may
have to drop the collection again or use the DlTLIB Cl command to remove the
remaining parts of the collection.

The AS/400 journal support supplies an audit trail and forward and backward
recovery. Forward recovery can be used to take an older version of a table and
apply the changes logged on the journal to the table. Backward recovery can be
used to remove changes logged on the journal from the table.

When an Sal collection is created, a journal and journal receiver are created in the
collection. The journal and journal receiver are not created on a user auxiliary
storage pool (ASP). However, because placing journal receivers on ASPs can
improve performance, the user who manages the journal may wish to create all
future receivers on an ASP.

When a table is created, it is automatically journaled to the journal Sal created in
the collection. After this pOint, it is the user's responsibility to use the journal func
tions to manage the journal, the journal receivers, and the journaling of tables to the
journal. For example, if a table is moved into a collection, no automatic change to
the journaling status occurs. If a table is restored, the normal journal rules apply.
That is, if the table was journaled at the time of the save, it is journaled to the same
journal at restore time. If the table was not journaled at the time of the save, itis
not journaled at restore time.

Chapter 12. Data Protection 12-3

A user can stop journaling on any table using the journal functions, but doing so
prevents Sal from running under commitment control. Sal is still able to function J ..•..
in this case if the user has specified COMMIT(*NONE); however, this does not
provide the same level of integrity that journaling and commitment control provide.

Commitment Control
The AS/400 commitment control provides a means to process a group of database
changes (UPDATES, INSERTS, or DELETES) as a single unit of recovery (trans
action). An Sal COMMIT statement guarantees that the group of operations is com
pleted. An Sal ROllBACK statement guarantees that the group of operations is
backed out.

If the user requests COMMIT (*CHG) and COMMIT (*All) when the program was
precompiled or when interactive Sal was started, then Sal sets up the commitment
control environment by implicitly invoking the Start Commitment Control
(STRCMTCTl) command. The specified COMMIT keyword value is used when Sal
starts commitment control. NFYOBJ(*NONE) is specified when Sal starts commit- J
ment control. The user can issue STRCMTCTl before invoking Sal in order to
specify different NFYOBJ or lCKl Vl parameters.

If the user specifies commitment control and the application does not complete for
any reason or if it requests a ROllBACK, all updates, inserts, and deletes made
within the unit of recovery are backed out, even if a power failure occurs.

The journal created in the Sal collection is normally the journal used for logging all
changes to Sal tables. The user may, however, use the system journal functions to J
journal Sal tables to a different journal. This is necessary if tables from multiple .
collections need to be used in the same unit of recovery. This is because AS/400
commitment control requires that all files under commitment control are journaled
to the same journal.

The AS/400 system uses locks on rows to keep other jobs from accessing changed
data before a unit of recovery completes. If COMMIT(*All) is specified, locks on
rows fetched are also used to prevent other jobs from changing data that was read
before a unit of recovery completes. This ensures that, if the same unit of recovery
rereads a record, it gets the same result.

Commitment control handles up to 4096 distinct row changes in a unit of recovery. If
COMMIT(*All) is specified, all rows read are also included in the 4096 limit. (If a
row is changed or read more than once in a unit of recovery, it is only counted once
toward the 4096 limit.) Holding a large number of locks adversely affects system
performance and does not allow concurrent users to access rows locked in the unit
of recovery until the end of the unit of recovery. It is, therefore, in the user's best
interest to keep the number of rows processed in a unit of recovery small.

The HOLD value on COMMIT and ROllBACK allows the user to keep the cursor
open and start another unit of recovery without issuing an OPEN again.

If there are locked rows (records) pending from running a Sal precompiled program
or an interactive Sal session, a COMMIT or ROllBACK statement can be issued
from the system Command Entry display. Otherwise, an implicit ROllBACK opera
tion occurs when the job is ended.

Commitment control does not apply to data definition statements.

12-4 Sal Programmer's Guide

Table 12-1. Record Lock Duration

SQl Statement COMMIT Duration of Record locks
Parameter

SELECT INTO 'NONE No locks

I
'CHG No locks
'ALL (See note 2) From read until ROLLBACK or COMMIT

FETCH (read-only cursor) 'NONE No locks
'CHG No locks
'ALL (See note 2) From read until ROLLBACK or COMMIT

FETCH (update or delete 'NONE From read until next FETCH
capable cursor) See note 1 'CHG When record not updated or deleted

from read until next FETCH
When record is updated or deleted
from read until ROLLBACK or COMMIT

'ALL From read until ROLLBACK or COMMIT

INSERT 'NONE No locks
'CHG From insert until ROLLBACK or COMMIT
'ALL From insert until ROLLBACK or COMMIT

UPDATE (non-cursor) 'NONE Each record locked while being updated
'CHG From read until ROLLBACK or COMMIT
'ALL From read until ROLLBACK or COMMIT

DELETE (non-cursor) 'NONE Each record locked while being deleted
'CHG From read until ROLLBACK or COMMIT
'ALL From read until ROLLBACK or COMMIT

I UPDATE (with cursor) 'NONE Lock remains until next FETCH
'CHG From read until ROLLBACK or COMMIT
'ALL From read until ROLLBACK or COMMIT

DELETE (with cursor) 'NONE Lock remains until next FETCH
'CHG From read until ROLLBACK or COMMIT
'ALL From read until ROLLBACK or COMMIT

Notes:

1. A cursor is open with UPDATE or DELETE capabilities if the result table is not read-only (see description of
DECLARE CURSOR in SQLl400 Reference) and if one of the following is true:

• The cursor is defined with a FOR UPDATE CLAUSE.

• The cursor is defined without a FOR UPDATE or ORDER BY clause and the program contains at least one
of the following:

- Cursor UPDATE referencing the same cursor-name
- Cursor DELETE referencing the same cursor-name
- An EXECUTE or EXECUTE IMMEDIATE statement

2. In the following cases, a table or view may be locked exclusively in order to satisfy COMMIT(*ALL):

• When commitment control has already started and is using COMMIT('CHG) and changes are pending to
the database.

• If a subselect is processed that includes a join, group by, or union, or if the processing of the query
requires the use of a temporary result, an exclusive lock is acquired to protect the user from seeing
uncommitted changes.

Chapter 12. Data Protection 12-5

Save/Restore
The AS/400 save/restore functions are used to save tables, views, indexes, journals,
journal receivers, and collections on disk (save file) or to some external media (tape
or diskette). The saved versions may be restored onto the system at some later
time. The save/restore function allows an entire collection, selected objects, or only
objects changed since a given date and time to be saved. All information needed to
restore an object to its previous state is saved. This function can be used to recover
from damage to individual tables by restoring the data with a previous version of the
table or the enti re collection.

Damage Tolerance

Index Recovery

The AS/400 database functions have a certain amount of tolerance to damage
caused by disk errors or system errors.

A DROP operation always succeeds, regardless of the damage. This assures that
should damage occur, at least the table, view, or index can be deleted and restored J'
or created again.

In the event that a disk error has damaged a small portion of the rows in a table, the
AS/400 database manager allows the user to read rows still accessible.

The AS/400 database manager supplies several functions to deal with index
recovery. All indexes on the system have a maintenance option that specifies when
an index is maintained. SOL indexes are created with an attribute of "IMMED main-\
tenance. -.J

In the event of a power failure or abnormal system failure, indexes that are in the
process of change may need to be rebuilt by the database manager to make sure
they agree with the actual data. All indexes on the system have a recovery option
that specifies when an index should be rebuilt if necessary. All SOL indexes with an
attribute of UNIOUE are created with a recovery attribute of *IPl (this means that
these indexes are rebuilt before the OS/400 has been started). All other SOL
indexes are created with the * AFTIPl recovery option (this means that after the
operating system has been started, indexes are asynchronously rebuilt). During an
IPl, the operator can see a display showing indexes needing to be rebuilt and their
recovery option. The operator may override the recovery options.

The AS/400 database manager supplies an index journaling function that makes it
unnecessary to rebuild an entire index due to a power or system failure. If the index
is journaled, the system database support automatically makes sure the index is in
synchronization with the data in the tables without having to rebuild it from scratch.
SOL indexes are not journaled automatically. The user can, however, use the Start
Journal Access Path (STRJRNAP) Cl command 1 to journal any index created by
SOL.

The save/restore function allows the user to save indexes when a table is saved by
using ACCPTH ("YES) on the Save Object (SAVOBJ) or Save Library (SAVLlB) Cl
commands. In the event of a restore when the indexes have also been saved, there

For more information on control language commands. see the CL Reference manual.

12-6 Sal Programmer's Guide

L Catalog Integrity

L

is no need to rebuild the indexes. Any indexes not previously saved and restored
are automatically and asynchronously rebuilt by the database manager.

Catalogs contain information about tables, views, and indexes in a collection. The
database manager ensures that the information in the catalog is accurate at all
times. This is accomplished by preventing end users from explicitly changing any
information in the catalog and by implicitly maintaining the information in the
catalog when changes occur to the tables, views, and indexes described in the
catalog.

The integrity of the catalog is maintained whether objects in the collection are
changed by Sal statements, OS/400 Cl commands, System/38 Environment Cl
commands, System/36 Environment functions, or any other product or utility on an
AS/400 system. For example. deleting a table can be done by running an Sal
DROP statement, issuing an OS/400 DlTF Cl command, issuing a System/38 DlTF
Cl command or entering option 4 on a WRKF or WRKOBJ display. Regardless of
the interface used to delete the table, the database manager will remove the
description of the table from the catalog at the time the delete is performed. The
following is a list of functions and the associated effect on the catalog:

Table 12-2. Effect of Various Functions on Catalogs

Function Effect on the Catalog

Create object into collection Information added to catalog

Delete of object from collection Related information removed from catalog

Restore of object into collection Information added to catalog

Change of object long comment Comment updated in catalog

Change of object label (text) Label updated in catalog

Change of object owner Owner updated in catalog

Move of object from a collection Related information removed from catalog

Move of object into collection Information added to catalog

Rename of object Name of object updated in catalog

Chapter 12. Data Protection 12-7

J

12-8 Sal Programmer's Guide

l" Chapter 13. Testing SQl Statements in Application Programs

This chapter describes how to establish a test environment for SOL statements in an
application program and how to debug this program.

Establishing a Test Environment
Some things you need to test your program are:

• Authorization. You need to be authorized to create tables and views, access
SOL data, and create and run programs.

• A test data structure. If your program updates, inserts, or deletes data from
tables and views, you should use test data to verify the running of the program.
If your program only retrieves data from tables and views, you might consider
using production-level data when testing your program. It is recommended,
however, that you use the Start Debug (STRDBG) command with
UPDPROD(*NO) to assure that the production level data does not accidentally
get changed. See the chapter on testing in the CL Programmer's Guide for
more information on debugging.

• Test input data. The input data your program uses during testing should be
valid data that represents as many possible input conditions as you can think of.
You cannot be sure that your output data is valid unless you use valid input
data.

If your program verifies that input data is valid, include both valid and invalid
data to verify that the valid data is processed and the invalid data is detected.

You might have to refresh the data for subsequent tests.

To test the program thoroughly, test as many of the paths through the program as
possible. For example:

• Use input data that forces the program to run each of its branches.

• Check the results. For example, if the program updates a row, select the row to
see if it was updated correctly.

• Be sure to test the program error routines. Again, use input data that forces the
program to encounter as many of the anticipated error conditions as possible.

• Test the editing and validation routines your program uses. Give the program
as many different combinations of input data as possible to verify that it cor
rectly edits or validates that data.

Designing a Test Data Structure
To test an application that accesses SOL data, you may have to create test tables
and views:

• Test views of existing tables. If your application does not change data and the
data exists in one or more production-level tables, you might consider using a
view of the existing tables. It is also recommended that you use STRDBG
command with UPDPROD(*NO) to assure that the production level data does not
accidentally get changed. See the chapter on testing in the CL Programmer's
Guide for more information on debugging.

© Copyright IBM Corp. 1988. 1989 Chapter 13. Testi ng SQl Statements 13·1

Authorization

• Test tables. When your application creates, changes, or deletes data, you will
probably want to test the application by using tables that contain test data. See
Chapter 2 for a description of how to create tables and views.

Also, you may want to use the CRTDUPOBJ Cl command to create a duplicate
test table, view, or index. See the CL Reference manual for more information
on using the CRTDUPOBJ command.

Before you can create a table. you must be authorized to create tables and to use
the collection in which the table is to reside. In addition, you must have authority to
create and run the programs you want to test.

If you intend to use existing tables and views (either directly or as the basis for a
view), you must be authorized to access those tables and views.

If you want to create a view, you must be authorized to create views and must have
authorization to each table and view on which the view is based. For more informa
tion on specific authorities required for any specific Sal statement. see the SQU400
Reference manual.

Debugging Your Program
Debugging your program with Sal statements is much the same as debugging your
program without Sal statements. However, when running your program with SOL
statements in the STRDBG environment, SOL puts a message in the job log about
how the SOL statements ran. This message is an indication of the SOlCODE for the \
SOL statement. If the statement ran successfully, the SOlCODE value is zero, and a ..."
completion message is issued. A negative SOLCODE results in a diagnostic
message. A positive SOLCODE results in an informational message.

The message is a 4-digit code prefixed by SOL. For example, an SOLCODE of -204
results in a message of SOl0204.

References to high-level language statement numbers in debug must be taken from
the compile listing.

13-2 Sal Programmer's Guide

L

L

Chapter 14. Guidelines and Techniques for Using SQl

This chapter describes the guidelines and techniques for using Sal statements in
application programs. The chapter consists of two sections. The first section,
"Guidelines for Using Sal Statements," describes guidelines for designing a
program that uses Sal and system resources more efficiently. The second section,
"Techniques for Solving Some Common Collection Problems" on page 14-8, sug
gests techniques for using Sal statements in an application program and for solving
some common database problems.

Guidelines for Using SQl Statements
This section describes some specific considerations and guidelines to help you tune
the Sal statements in an application program. As a general rule, you can ignore
most of these guidelines and still get correct results when accessing Sal data.
These guidelines help you design a program that minimizes its use of Sal and
system resources and that minimizes the time needed to access Sal data from a
very large table.

The Sal language is a high-level language with much flexibility. Because of this,
you can sometimes write a select-statement several different ways to retrieve the
same data. However, the performance of different forms of a select-statement can
vary greatly. In this section are several examples of alternative Sal statements.
The recommendations given with each example are based on the relafive perfor
mance of the example.

Some of the suggestions are easy to carry out without compromising any of the
ease-of-use functions of SOL. Others, however, are complex and difficult to use. To
determine if you need to make the effort to tune the performance of your Sal state
ments, consider the following guidelines:

• If you are accessing a table of 10,000 rows or more, you should start thinking
about the performance implications of your SOL statements.

• If you are accessing a table of 100,000 rows or more, you should seriously con
sider the performance implications of your Sal statements.

• If the Sal statement you issue requires the ordering of 1000 rows or more, you
should consider trying to improve the performance of the ORDER BY.

• If you are accessing more than one table (for example, a join), you should con
sider trying to improve the select-statement performance.

You can improve performance by effectively using an SOL index and by effectively
selecting data from two or more tables, described in the following paragraphs.

© Copyright IBM Corp. 1988, 1989 Chapter 14. Guidelines and Techniques 14-1

Effectively Using an SQl Index
Sal provides two basic means for accessing tables: a table scan (sequential) and
an index-based (direct) retrieval. Index-based retrieval is usually more efficient
than table scan. However, when a very large percentage of pages are retrieved,
table scan is more efficient than index-based retrieval.

If Sal cannot use an index to access the data in a table, it will have to read all the
data in the table. Very large tables present a special performance problem: the
high cost of retrieving all the data in the table. The following suggestions help you
to design code that allows Sal to take advantage of available indexes.

1. Avoid numeric conversions.

When a column value and a host variable (or literal value) are being compared,
try to specify the same data types and attributes. Sal does not use an index for
the named column if the host variable or literal value has a greater precision
than the precision of the column. If the two items being compared have different
data types, Sal will have to convert one or the other of the values, which may
result in inaccuracies (because of limited machine precision). For example,
EDUClVl is a halfword integer value (SMAlLlNT). Specify:

.•• WHERE EDUCLVL < 11 AND
EDUCLVL >= 2

instead of

... WHERE EDUCLVL < 1.lE1 AND
EDUCLVL > 1.3

2. Avoid character string padding.

Try to use the same data length when comparing a fixed-length character string
column value to a host variable or literal value. Sal does not use an index if
the literal value or host variable is longer than the column length. For example,
EMPNO is CHAR(6) and DEPTNO is CHAR(3). Specify:

•.. WHERE EMPNO > '000300' AND
DEPTNO < 'E20'

instead of

14-2 SOL Programmer's Guide

WHERE EMPNO > '000300 ' AND
DEPTNO < 'E20 '

J

J

3. Avoid the use of LIKE patterns beginning with % or _.

The percent sign (%), and the underscore U, when used in the pattern of a LIKE
predicate, specify a character string that is similar to the column value of rows
you want to select. When used to denote characters in the middle or at the end
of a character string, as in

... WHERE LASTNAME LIKE 'J%SON%'

they can take advantage of Sal indexes. However, when used at the beginning
of a character string, as in

... WHERE LASTNAME LIKE '%SON'

they may prevent Sal from using any indexes that might be defined on the
LASTNAME column to limit the number of rows scanned. You should therefore
avoid using these symbols at the beginning of character strings, especially if
you are accessing a particularly large table.

4. Be aware that SQL does not use an index In the following Instances:

• For a column that is expected to be updated; for example, your program
might include

EXEC SQL
DECLARE OEPTEMP CURSOR FOR

SELECT EMPNO, LASTNAME, OEPTNO
FROM USERl. TEMPL
WHERE (OEPTNO = 'OIl' OR

OEPTNO = '021') AND
EMPNO >= '000190'

FOR UPDATE OF EMPNO, OEPTNO
END-EXEC.

even if you do not intend to update the employee's serial number. In thif!
example, Sal cannot use an index with a key of EMPNO or DEPTNO.

Sal can operate more efficiently if the FOR UPDATE OF column list only
names the column you intend to update: DEPTNO. Therefore, do not
specify a column in the FOR UPDATE OF column list unless you intend to
update the column.

• For a column being compared with another column from the same row. For
example:

EXEC SQL
DECLARE OEPTOATA CURSOR FOR

SELECT OEPTNO, OEPTNAME
FROM USERl. TOEPT
WHERE OEPTNO = AOMROEPT

END-EXEC.

Even though there is an index for DEPTNO and another index for
ADMRDEPT, Sal will not use either index. The index has no added benefit
because every row of the table needs to be looked at.

5. An application program can do retrievals based on some key value In either of
two ways:

a. A SELECT INTO statement can be used with a host variable, or

b. A cursor could be declared by using a host variable, and a sequence of
OPEN, FETCH, and CLOSE statements can be issued.

Chapter 14. Guidelines and Techniques 14-3

For example, suppose you want to FETCH a row from a table based on some
value input from a display station:

EXEC SQL
DECLARE EMPCSR CURSOR FOR

SELECT EMPNO, LASTNAME, DEPTNO
FROM USERl.TEMPL
WHERE EMPNO = :EMPVAR

END-EXEC.

(Input an employee number from the display station.)

EXEC SQL
OPEN EMPCSR

END-EXEC.

EXEC SQL
FETCH EMPCSR

INTO :EMPVAR, :LASTVAR, :DEPTVAR
END-EXEC.

EXEC SQL
CLOSE EMPCSR

END-EXEC.

(Get the next employee number from the display station
and repeat the OPEN, FETCH, and CLOSE.)

If the WHERE condition can be completely satisfied by doing key retrievals using

J

an existing index, SOL will not actually close the cursor when the CLOSE state- "\
ment is issued. The OPEN statement must still be issued, before the next ..."
FETCH, but since the full open is not done, the application runs much faster. The
cursor is completely closed when the program ends.

Instead, the following SELECT INTO statement could be specified:

(Input an employee number from the display station.)

EXEC SQL
SELECT EMPNO, LASTNAME, DEPTNO

INTO :EMPVAR, :LASTVAR, :DEPTVAR
FROM USERl.TEMPL
WHERE EMPNO = :EMPVAR

END-EXEC.

(Get the next employee number from the display station
and repeat the SELECT.)

If the WHERE condition can be completely satisfied by doing key retrievals using
an existing index, SOL will leave open the internal cursor used to select the
records until the program ends. If the SELECT INTO statement is run again, a
full open is not necessary and the application runs much faster.

14·4 Sal Programmer's Guide

Improving Performance When Selecting Data from Two or More Tables
If the select-statement you are considering accesses two or more tables, all the rec
ommendations suggested in the previous section apply. The following suggestion is
directed specifically to select-statements that access several tables.

You might want to provide redundant information when joining several tables. If you
give SOL extra information to work with when requesting a join, it can better deter
mine the best way to do the join. The additional information might seem redundant,
but it is helpful to SOL. For example, instead of coding:

EXEC SQL
DECLARE DEPTDATA CURSOR FOR

SELECT USERl.TEMPL.DEPTNO, DEPTNAME, EMPNO, LAST NAME
FROM USERl.TEMPL, USERl.TPROJ
WHERE USERl.TEMPL.DEPTNO = USERl.TPROJ.DEPTNO AND

USERl.TPROJ.DEPTNO = :DEPTNUM
END-EXEC.

provide SOL with a little more data in the WHERE clause:

EXEC SQL
DECLARE DEPTDATA CURSOR FOR

SELECT USERl.TEMPL.DEPTNO, DEPTNAME, EMPNO, LASTNAME
FROM USERl.TEMPL, USERl.TPROJ
WHERE USERl.TEMPL.DEPTNO = USERl.TPROJ.DEPTNO AND

USERl.TPROJ.DEPTNO = :DEPTNUM AND
USERl.TEMPL.DEPTNO = :DEPTNUM

END-EXEC.

SOL may be able to make a more informed decision about the best way to process
the select-statement when given this redundant information.

For joins involving more than two tables, providing redundant information might
become tedious. To improve performance and minimize the amount of redundant
information, code a predicate that refers to an indexed column.

In the above example, assume that DEPTNO column of USER1.TEMPL is indexed but
DEPTNO column of USER1.TPROJ is not. To improve the statement performance
(without providing redundant information), you can code:

EXEC SQL
DECLARE DEPTDATA CURSOR FOR

SELECT USERl.TEMPL.DEPTNO, DEPTNAME, EMPNO, LASTNAME
FROM USERl.TEMPL, USERl.TPROJ
WHERE USERl.TEMPL.DEPTNO = USERl.TPROJ.DEPTNO AND

USERl.TEMPL.DEPTNO = :DEPTNUM
END-EXEC.

Chapter 14. Guidelines and Techniques 14-5

Improving Performance by Reducing the Number of Opens
The number of opens in a program can significantly affect performance. An open
occurs on:

• An OPEN statement
• SELECT INTO statement
• An INSERT statement with a VALUES clause
• An UPDATE statement with a WHERE condition
• An UPDATE statement with a WHERE CURRENT OF cursor and SET clauses that

refer to operators or functions
• A DELETE statement with a WHERE condition

An INSERT statement with a subselect requires two opens.

To minimize the number of opens, the SQLl400 program leaves a cursor open in the
following cases and reuses the cursor if the statement is run again:

• An INSERT statement with a VALUES list

• A SELECT INTO statement when the WHERE clause can be completely satisfied
by dOing key retrievals from an existing index and when GROUP BY, HAVING, or
column functions have not been specified

• OPEN statement when the WHERE clause in the associated DECLARE CURSOR
can be completely satisfied by doing key retrievals from an existing index and
when GROUP BY, HAVING, or column functions have not been specified

The SQLl400 program only reuses cursors opened by the same statement number. J.
An identical statement coded later in the program does not reuse a cursor from any
other statement. If the identical statement must be run in the program many times,
code it once in a procedure and call the procedure to run the function.

The SQLl400 program does an open for each execution of an UPDATE WHERE
CURRENT OF when any expression in the SET clause contains an operator or func
tion. The open can be avoided by coding the function or operation in the host lan
guage code.

For example, the following UPDATE will cause the SQLl400 program to do an open
for every execution:

EXEC SQL
FETCH EMPT INTO : SALARY

END-EXEC

EXEC SQL
UPDATE USER1.TEMPL

SET SALARY = :SALARY + 1000
WHERE CURRENT OF EMPT

END-EXEC.

14-6 Sal Programmer's Guide

Instead, use the following coding technique to avoid opens:

EXEC SQL
FETCH EMPT INTO :SALARY

END EXEC.

ADD 1000 TO SALARY.

EXEC SQL
UPDATE USERl.TEMPL

SET SALARY = :SALARY
WHERE CURRENT OF EMPT

END-EXEC.

The TRCJOB or DSPJRN Cl commands can be used to determine the number of
opens being performed by an Sal statement. See the CL Reference for information
on the TRCJOB and DSPJRN commands.

Improving Performance by Using Blocking Considerations
Sal attempts to retrieve and insert records a block at a time when possible to
improve performance. The user can control blocking, if desired, by using the
SEOONlY parameter on the OVRDBF Cl command prior to calling the application
program that contains the Sal statements. For more information on the OVRDBF
command, see the CL Reference.

Sal automatically blocks records in the following cases:

• INSERT

If an INSERT statement contains a subselect, inserted records are blocked and
not actually inserted into the target table until the block is full.

If an INSERT statement contains a subselect, and COMMIT(*All) has not been
specified, records for the subselect are retrieved in a block.

Note: If an INSERT with a VALUES clause is specified, Sal will not actually
close the internal cursor used to perform the inserts until the program
ends. If the same INSERT statement is run again, a full open is not nec
essary and the application runs much faster.

• OPEN

If COMMIT(*NONE) has been specified, and the cursor is only used for FETCH
statements, blocking is done when the records are retrieved. Notice that if
dynamic Sal statements exist in the program, Sal is unable to determine
whether UPDATE or DELETE statements refer to the cursor, so blocking is not
done.

Improving Performance when Paging Interactively Displayed Data
In large tables, paging performance is usually degraded because of the
REFRESH(*AlWAYS) parameter on the STRSQl command which dynamically
retrieves the latest data directly from the table. Paging performance can be
improved by specifying REFRESH(*FORWARD).

When interactively displaying data using REFRESH(*FORWARD), the results of a
select-statement are copied to a temporary file as you page forward through the
display. Other users sharing the table can make changes to the rows while you are
displaying the select-statement results. If you page backward or forward to rows

Chapter 14. Guidelines and Techniques 14-7

that have already been displayed, the rows shown are those in the temporary file
instead of those in the updated table.

The refresh option can be changed on the Session Services display.

Techniques for Solving Some Common Collection Problems
This section provides techniques to help you do the following tasks:

• Page through retrieved data
• Keep a copy of the data
• Retrieve the data a second time
• Establish position at the end of a table
• Add data to the end of a table
• Update data as it is retrieved from the collection
• Update data previously retrieved
• Change the table definition

Paging through Retrieved Data
When a program retrieves data from the database, the FETCH statement allows it to
page forward through the data. Sal has no statement equivalent to a backward
FETCH. That leaves you with two programming options:

1. Keep a copy of the data that has been fetched and page through it by some pro
gramming technique.

2. Use Sal to retrieve the data again, typically by a second cursor.

Both options are discussed in more detail in the following sections.

Keeping a Copy of the Data
One effect of this approach is that by paging backward you always see exactly the
same data that was fetched, even if the data in the table has changed in the mean
time. That may be an advantage if you need to see a consistent set of data.
However, it has the disadvantage of not allowing you to see updates made by others
as soon as they are committed to the table.

The locks you hold on the data may prevent others from updating it, which you may
or may not want. If COMMIT(* All) is specified, the locks are not released after the
data is fetched. Therefore, if you want others to be able to update the data you have
fetched, and you do not need to see those updates, commit your work after fetching
the data.

Retrieving Data a Second Time
To retrieve the data a second time, the technique depends on the order in which you
want to see the data again: either from the beginning or from the middle of the
result table.

Retrieving from the Beginning
To retrieve the data again from the beginning, merely close the active cursor and
reopen it. That pOSitions the cursor at the beginning of the result table. But, unless ',"",'
the program holds an exclusive lock on the table locks on all the data, others may ..",
have changed it, and what was the first row of the result table is no longer the first
row.

14-8 SOL ProQrammer's Guide

L

Retrieving from the Middle
To retrieve data a second time from somewhere in the middle of the result table, run
a second SELECT statement and declare a second cursor on it. For example:

EXEC SQL
DECLARE A CURSOR FOR

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'MINNESOTA'
ORDER BY DEPTNO

END-EXEC.

Suppose that you now want to return to the rows that start with DEPTNO
and fetch sequentially from that point. Declare a second cursor:

EXEC SQL
DECLARE B CURSOR FOR

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'MINNESOTA'
AND DEPTNO >= 'M95'
ORDER BY DEPTNO

END-EXEC.

That statement positions the cursor where you want it.

'M95',

Again, unless the table was locked, rows may have been inserted or deleted by
other users. If so, the row with DEPTNO = 'M95' may no longer exist. Or there
may now be 20 rows with DEPTNO between M95 and M99, where before there were
only 16.

The Order of Rows In the Second Result Table
The rows of the second result table may not appear in the same order. Sal does
not consider the order of rows as significant unless the select-statement uses
ORDER BY. Therefore, if there are several rows with the same DEPTNO value, the
second select-statement may retrieve them in a different order from the first. The
rows are guaranteed to be in order by department number only if ORDER BY
DEPTNO is specified.

The difference in ordering could occur even if you were to run the same Sal state
ment, with the same host variables, a second time. For example, indexes could be
created or dropped that could affect the access plan.

The ordering is more likely to change if the second select-statement has a predicate
that the first did not. Sal may choose to use an index on the new predicate. For
example, Sal may choose an index on lOCATION for the first statement in our
example, and an index on DEPTNO for the second. Because rows are fetched in
order by the index key, the second order need not be the same as the first.

Again, executing PREPARE for two similar select-statements can produce a different
ordering of rows even if no indexes are created or dropped. In the example, if there
are many different values of lOCATION, Sal could choose an index on lOCATION
for both statements. Yet, changing the value of DEPTNO in the second statement

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'MINNESOTA'
AND DEPTNO >='Z98'
ORDER BY DEPTNO

Chapter 14. Guidelines and Techniques 14·9

could cause Sal to choose an index on DEPTNO. Because of the subtle relation
ships between the form of an Sal statement and the values in it, never assume that
two different Sal statements return rows in the same order, unless the order is
uniquely determined by an ORDER BY clause.

Retrieving in Reverse Order
If there is only one row for each value of DEPTNO, then the following statement
specifies a unique ordering of rows:

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'MINNESOTA'
ORDER BY DEPTNO

To retrieve the same rows in reverse order, simply specify that the order is
descending, as in this statement:

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'MINNESOTA'
ORDER BY DEPTNO DESC

A cursor on the second statement would retrieve rows in exactly the opposite order
from a cursor on the first statement. But that is guaranteed only if the first state
ment specifies a unique ordering.

For retrieving rows in reverse order, it might be useful to have two indexes on the
DEPTNO column, one in ascending order and one in descending order.

Establishing Position at the End of a Table
The end of the table is defined as a result of a select-statement like the one that
follows:

SELECT * FROM DEPARTMENT
ORDER BY DEPTNO DESC

Adding Data to the End of a Table
The order in which rows are returned to your program depends on the ORDER BY
clause in the Sal statement. To get the effect of adding data to the end of a table,
include a sequence number column in the table definition. Then, when you retrieve
data from the table, use an ORDER BY clause naming that column.

Updating Data as It Is Retrieved from a Table

Restrictions

You can update rows of data as you retrieve them. On the select-statement, use
FOR UPDATE OF, followed by a list of columns that may be updated. Then use the
cursor-controlled UPDATE statement. The WHERE CURRENT OF clause names the
cursor that points to the row you want to update. If neither a FOR UPDATE OF nor
an ORDER BY clause is specified, all columns may be updated.

If the FOR UPDATE OF clause is specified, you cannot use FOR UPDATE OF with a
select-statement that includes any of these elements:

• A column function (AVG, MIN, MAX, SUM, or COUNT)
• The keywords GROUP BY, UNION, or DISTINCT
• A column that is defined with an expression (for example, SALARY + COMMIS

SION)
• More than one table, as in a join

14-10 SOL Programmer's Guide

J

L

L

If a FOR UPDATE OF clause is specified, you cannot update columns that were not
named in the FOR UPDATE OF clause. But you may name columns in the FOR
UPDATE OF clause that are not in the SELECT list, as in this example:

SELECT A, B, C FROM TABLE
FOR UPDATE OF A,E

Do not name more columns than you need in the FOR UPDATE OF clause; indexes
on those columns are not used when you access the table.

Updating Data Previously Retrieved
You can page backward and update data that had been previously retrieved by
doing one of two things:

1. If you have a second cursor on the data to be updated, and if the select
statement uses none of the above restricted elements, you can use a cursor
controlled UPDATE statement. Name the second cursor in the WHERE
CURRENT OF clause.

Note: This technique does not work for COMMIT (*ALL).

2. In other cases, use UPDATE with a WHERE clause that names all the values in
the row or specifies a unique key of the table. You can code one statement,
using host variables in the WHERE clause, and run the same statement many
times with different values of the variables.

Changing the Table Definition
It is not possible to add, rearrange, or delete columns in a table without dropping
and creating the entire table. However, you can dynamically create a view of the
table, which includes only the columns you want, in the order you want.

Chapter 14. Guidelines and Techniques 14-11

J

J

14-12 Sal Programmer's Guide

L

Appendix A. SOL Sample Tables

This appendix contains the sample tables referred to and used in the body of this
manual. Along with the tables are the SOL statements for creating the tables and
for inserting information into the tables. For detailed information on creating tables.
see "Creating and Using a Table" on page 2-1. The tables are:

• Department table (TDEPT)

• Employee table (TEMPL)

• Project table (TPROJ)

• Employee project account table (TEMPRACT)

Creating the Tables
The SOL statements for creating the sample tables are shown in this section.

Department Table (TDEPT)
The sample department table describes each department in the company and speci
fies the department manager and the next higher department of authority.

This table can be created with the following interactive SOL statement:

CREATE TABLE USER1.TDEPT

© Copyright IBM Corp. 1988, 1989

(DEPTNO CHAR(3)
DEPTNAME CHAR(36)
MGRNO CHAR(6)
ADMRDEPT CHAR(3)

NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT)

Appendix A. Sal Sample Tables A-1

Employee Table (TEMPL)
The sample employee table describes the employees of the company.

This table can be created with the following interactive SOL statement:

CREATE TABLE USERl.TEMPL
(EMPNO CHAR(6) NOT NULL WITH DEFAULT,

NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT)

FIRSTNME CHAR(12)
MIDINIT CHAR(l)
LASTNAME CHAR(15)
DEPTNO CHAR(3)
PHONENO CHAR(4)
HIREDATE CHAR(6)
JOBCODE DECIMAL(3)
EDUCLVL SMALLINT
SEX CHAR(l)
BRTHDATE CHAR(6)
SALARY DECIMAL(B,2)

Project Table (TPROJ)
The sample project table describes each programming project currently active in
the company and specifies the department responsible for the project, the depart
ment manager, staffing information, and dates marking the duration of the project.

This table can be created with the following interactive SOL statement:

CREATE TABLE USERl.TPROJ
(PROJNO CHAR(6) NOT NULL WITH DEFAULT,

PRNAME CHAR(36) NOT NULL WITH DEFAULT,
DEPTNO CHAR(3) NOT NULL WITH DEFAULT,
DEPTMGR CHAR(6) NOT NULL WITH DEFAULT,
PRSTAFF DECIMAL(5,2) NOT NULL WITH DEFAULT,
PRSTDATE CHAR(6) NOT NULL WITH DEFAULT,
PRENDATE CHAR(6) NOT NULL WITH DEFAULT,
MAJPROJ CHAR(6) NOT NULL WITH DEFAULT)

Employee Project Account Table (TEMPRACT)
The sample employee project account table describes each programming project
currently active in the company and identifies each employee involved in the
project, the project number, the account number, the start and end dates of the
employee's involvement, and the estimated number of hours the employee will
charge to the project.

This table can be created with the following interactive SOL statement:

CREATE TABLE USERl.TEMPRACT
(EMPNO CHAR(6)

PROJNO CHAR(6)
ACTNO SMALLINT
STARTDATE CHAR(6)
ENDDATE CHAR(6)
EMPTIME DECIMAL(5,2)

A-2 SQl Programmer's Guide

NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT)

J

L

L

Inserting Information into the Tables

TDEPT Table

TEMPL Table

Information (data values) is inserted into the tables by using the Sal INSERT state
ment (see "The INSERT Statement" on page 3-1).

The INSERT statement for inserting information into the department table is, in part,
as follows:

INSERT INTO USERl.TDEPT
(DEPTNO,
DEPTNAME,
MGRNO,
ADMRDEPT)

VALUES
(' A00' ,

'COMPUTER SERVICE DIV.',
'000010' ,
, ,)

... and so on for the rest of the information for the table.

The INSERT statement for inserting information into the employee table is, in part,
as follows:

INSERT INTO USERl.TEMPL
(EMPNO,
FIRSTNME,
MIDINIT ,
LASTNAME,
DEPTNO,
PHONENO,
HIREDATE,
JOBCODE,
EDUCLVL,
SEX,
BRTHDATE,
SALARY)

VALUES
('000010' ,

'CHRISTINE' ,
, I ' ,
'HAAS',
'A00' ,
'3978',
'750101' ,
66,
18,

, F' ,
'330814' ,
52750)

••• and so on for the rest of the information for the table.

Appendix A. SOL Sample Tables A-3

•

TPROJ Table
The INSERT statement for inserting information into the project table is, in part, as
follows:

INSERT INTO USER1.TPROJ
(PROJNO,

PRNAME,
DEPTNO,
DEPTMGR,
PRSTAFF,
PRSTDATE,
PRENDATE,
MAJPROJ)

VALUES
('AD3100' ,

'ADMINISTRATION SERVICES',
'DOl',
'000010',
6.5,

'860101',
'830201' ,
, ,)

... and so on for the rest of the information for the table.

TEMPRACT Table
The INSERT statement for inserting information into the employee project account
table is, in part, as follows:

INSERT INTO USER1.TEMPRACT
(EMPNO,
PROJNO,
ACTNO,
STARTDATE,
ENDDATE,
EMPTIME)

VALUES
(' 000160' ,

'MA2100' ,
20,

'860501',
'860829' ,
500)

... and so on for the rest of the information for the table.

A-4 Sal Programmer's Guide

Sample Tables
The following tables are the results of running the previous CREATE TABLE and
INSERT statements:

Department Table (TDEPT)

DEPTNO DEPTNAME MGRNO ADMRDEPT

AOO COMPUTER SERVICE DIV. 000010 (blanks)

B01 PLANNING 000020 AOO

C01 INFORMATION CENTER 000030 AOO

001 DEVELOPMENT CENTER (blanks) AOO

E01 SUPPORT SERVICES 000050 AOO

011 MANUFACTURING SYSTEMS 000060 001

D21 ADMINISTRATION SYSTEMS 000070 D01

E11 OPERATIONS 000090 E01

E21 SOFTWARE SUPPORT 000100 E01

Appendix A. SOL Sample Tables A·5

Employee Table (TEMPL)

EMPNO FIRSTNME MIDINIT LASTNAME DEPTNO PHONENO

000010 CHRISTINE I HAAS AOO 3978 ...

000020 MICHAEL L THOMPSON B01 3476 ...

000030 SALLY A KWAN C01 4738 ...

000050 JOHN B GEYER E01 6789 ...

000060 IRVING F STERN D11 6423 ...

000070 EVA D PULASKI D21 7831 ...

000090 EILEEN W HENDERSON E11 5498 ...

000100 THEODORE Q SPENSER E21 0972 ...

000110 VICENZO G LUCCHESI AOO 3490 ...

000120 SEAN (blanks) O'CONNELL AOO 2167 ...

000130 DELORES M QUINTANA C01 4578 ...

000140 HEATHER A NICHOLLS C01 1793 ...

000150 BRUCE (blanks) ADAMSON D11 4510 ...

000160 ELIZABETH R PIANKA D11 3782 ...

000170 MASATOSHI J YOSHIMURA D11 2890 ...

000180 MARILYN S SCOUTTEN D11 1682 ...

000190 JAMES H WALKER D11 2986 ...

000200 DAVID (blanks) BROWN D11 4501 ...

000210 WILLIAM T JONES D11 0942 ...

000220 JENNIFER K LUTZ D11 0672 ...

000230 JAMES J JEFFERSON D21 2094 ...

000240 SALVATORE M MARINO D21 3780 ...
000250 DANIEL S SMITH D21 0961 ...

000260 SYBIL P JOHNSON D21 8953 ...

000270 MARIA L PEREZ D21 9001 ...

000280 ETHEL R SCHNEIDER E11 8997 ...

(Continued additional columns for each row are shown on the next page. The EMPNO column is repeated
for reference only.)

A-6 SOL Programmer's Guide

J

J

Employee Table (TEMPL) (continued)

EMPNO HIREDATE JOBCODE EDUCLVL SEX BRTHDATE SALARY

000010 ... 750101 66 18 F 330814 52750

000020 ... 731010 61 18 M 480202 41250

000030 ... 750405 60 20 F 410511 38250

000050 ... 690817 58 16 M 450915 40175

000060 ... 730914 55 16 M 450707 32250

000070 ... 800930 56 16 F 530526 36170

000090 ... 700815 55 16 F 410515 29750

000100 ... 800619 54 14 M 561218 26150

000110 ... 680516 58 19 M 491105 46500

000120 ... 731205 58 14 M 421018 29250

000130 ... 710728 55 16 F 350915 23800

000140 ... 761215 55 18 F 460119 28420

000150 ... 720212 55 16 M 470517 25280

000160 ... 771011 54 17 F 550412 22250

000170 ... 780915 54 16 M 510105 24680

000180 ... 730707 53 17 F 490221 21340

000190 ... 740726 53 16 M 520625 20450

000200 ... 760303 55 16 M 410529 27740

000210 ... 790411 52 17 M 530223 18270

000220 ... 780829 55 18 F 480319 29840

000230 ... 761121 53 14 M 350530 22180

000240 ... 791205 55 17 M 540331 28760

000250 ... 791030 52 15 M 391112 19180

000260 ... 750911 52 16 F 361005 17250

000270 ... 800930 55 15 F 530526 27380

000280 ... 770324 54 17 F 360328 26250

Appendix A. SOL Sample Tables A-7

Project Table (TPROJ)

PROJNO PRNAME DEPTNO DEPTMGR PRSTAFF PRSTDATE PRENDATE MAJPROJ J
AD3100 ADMINISTRATION SER- D01 000010 6.5 860101 830201 (blanks)

VICES

AD3110 GENERAL ADMIN D21 000070 6 871001 880215 AD3100
SYSTEMS

AD3111 PAYROLL PROGRAMMING D21 000230 2 880101 880401 AD3110

AD3112 PERSONNEL PROGRAM- D21 000250 1 870320 870601 AD3110
MING

AD3113 ACCOUNT PROGRAM- D21 000270 2 870901 880315 AD3110
MING

MA2100 MFG AUTOMATION D11 000060 12 860324 (blanks) (blanks)

MA2110 MFG PROGRAMMING E21 000100 3 870928 880219 MA2100

MA2112 ROBOT DESIGN E01 000050 3 860106 881111 MA2110

MA2113 PROD CONTROL PROG D11 000060 3 (blanks) (blanks) MA2100

Employee Project Account Table (TEMPRACT)

EMPNO PROJNO AeTNO STARTDATE ENDDATE EMPTIME

000160 MA2100 20 860501 860829 500

000170 MA2100 20 860901 861231 500

000180 MA2100 20 870105 870430 650

000060 MA2100 10 870101 881101 500

000110 MA2100 20 880101 880301 400

000220 MA2112 50 871001 880615 900

000170 MA2112 70 870601 880102 100

000190 MA2112 70 880201 880601 100

000180 MA2113 70 870401 871215 400

000210 MA2113 80 870401 871215 500

000230 MA2113 70 870401 871215 300

000010 AD3100 10 880101 880701 500

000070 AD3110 10 880101 880201 100

000230 AD3111 60 880101 880315 100

000240 AD3111 70 880215 880915 500

000250 AD3112 60 880101 880201 100

000270 AD3113 60 880301 880401 100

000260 AD3113 70 880615 880701 80

A-8 Sal Programmer's Guide

Appendix B. SQLCODES

SOL does not communicate directly with the end user but rather returns error codes
to the application program when an error occurs.

This appendix lists only SOLCODES. There are many SOL messages, but they are
not listed here. Detailed descriptions of all SOLl400 messages, including
SOLCODEs, are available online and can be displayed and printed from the Display
Message Descrip.tion display. You can access this display by using the Display
Message Description (DSPMSGD) CL command.

SOLCODEs are returned in the SOLCODE variable.

Every SOLCODE has a corresponding message in message file OSOLMSG in library
OSYS. The message ID for any SOLCODE is constructed by appending the absolute
value (4 digits, padded with zeros) of the SOLCODE to SOL. For example, the
message ID corresponding to SOLCODE -204 would be SOL0204. The replacement
text for each SOL message is stored in SOLERRM in the SOLCA. The SOLCA is an
area in the application program (defined by the application program) for the use of
SOL. It is described in SQLl400 Reference manual.

If SOL encounters an error while processing the statement, the SOLCODE is a nega
tive number. If SOL encounters an exceptional but valid condition while processing
your statement, the SOLCODE is a positive number. If your SOL statement is pro
cessed without encountering an error or exceptional condition, the return code is
zero.

When running in debug mode, SOL places a message corresponding to the
SOLCODE in the job log for each SOL statement run.

An application may also send the SOL message corresponding to any SOLCODE by
specifying the message ID and the replacement text on the Retrieve Message
(RTVMSG), Send Program Message (SNDPGMMSG), and Send User Message
(SNDUSRMSG) CL commands. For more information on the CL commands, see the
CL Reference.

© Copyright IBM Corp. 1988, 1989 Appendix B. SQLCODES B-1

NI A - SQL0802

SQLCODE Descriptions
In the following brief descriptions of the SQlCODEs, message data fields are identi
fied by an ampersand (&) and a number (for example, &1). The replacement text for
these fields is stored in SQlERRM in the SQlCA. More detailed cause and recovery
information for any SQlCODE can be found by using the Display Message
Description (DSPMSGD) Cl command.

Positive SQLCODEs

N/A SQLCODE 0

Explanation: The Sal statement has run successfully. Check SOlWARNO to ensure that it
is blank. If it is blank, the statement was run successfully. If it is not blank, a warning con
dition exists. Check the other warning indicators to determine the particular warning condi
tion. For example, if SOlWARN1 is not blank, a string has been truncated.

SQL0100 SQLCODE + 100

Explanation: Row not found.

SQL0304 SQLCODE + 304

Explanation: Conversion error in assignment to host variable & 1.

SQLOS02 SQLCODE + S02

Explanation: Data conversion or data mapping error.

Negative SQLCODEs

SQL0010 SQLCODE -10

Explanation: String constant beginning &1 not'delimited.

SQL0060 SQLCODE -60

Explanation: Value &1 for DECIMAL function not valid,

SQLOOS4 SQLCODE -S4

Explanation: Sal statement not allowed.

SQL0101 SQLCODE -101

Explanation: Sal statement too long or complex,

SQL0103 SQLCODE -103

Explanation: Numeric literal &1 not valid.

SQL0104 SQLCODE -104

Explanation: Token &1 not valid. Valid tokens: &2.

SQL0105 SQLCODE -105

Explanation: Mixed string constant not valid.

8-2 Sal Programmer's Guide

J

SQL0106 - SQL0125

SQL0106 SQLCODE ·106

Explanation: Precision specified for FLOAT column not valid.

SQL0107 SQLCODE ·107

Explanation: &1 too long. Maximum &2 characters.

SQL0109 SQLCODE ·109

Explanation: &1 clause not allowed.

SQL0110 SQLCODE ·110

Explanation: Hex literal beginning &1 not valid.

SQL0111 SQLCODE ·111

Explanation: Column function does not include column name.

SQL0112 SQLCODE ·112

Explanation: Operand of column function is another function.

SQL0113 SQLCODE ·113

Explanation: Name &1 not allowed.

,/ SQL0115 SQLCODE ·115

~ Explanation: Comparison operator &1 not valid.

SQL0117 SQLCODE ·117

Explanation: Statement inserts wrong number of values.

SQL0118 SQLCODE ·118

Explanation: Table &1 in &2 also specified in FROM clause.

SQL0119 SQLCODE ·119

Explanation: Column &1 in HAVING clause not in GROUP BY.

SQL0120 SQLCODE ·120

Explanation: Column function use not valid.

SQL0121 SQLCODE ·121

Explanation: Duplicate column name &1 in INSERT or UPDATE.

SQL0122 SQLCODE ·122

Explanation: Column specified in SELECT list not valid.

'--'
SQL0125 SQLCODE ·125

Explanation: ORDER BY column number &1 not valid.

Appendix B. SQLCODES 8-3

SQL0129 - SQL0159

SQL0129 SQLCODE ·129

J Explanation: Too many tables in Sal statement.

SQL0131 SQLCODE ·131

Explanation: Comparison operator LIKE has operands not compatible.

SQL0132 SQLCODE ·132

Explanation: LIKE predicate not valid.

SQL0134 SQLCODE ·134

Explanation: Operand of MIN or MAX function exceeds 256 bytes.

SQL0136 SQLCODE ·136

Explanation: ORDER BY or GROUP BY columns too long.

SQL0137 SQLCODE ·137

Explanation: Result of concatenation too long.

SQL0138 SQLCODE ·138

Explanation: Argument & 1 of SUBSTR function out of range.

SQL0150 SQLCODE ·150 "
Explanation: View or logical file &1 in &2 read only.",

SQL0151 SQLCODE ·151

Explanation: Column &3 in table &1 in &2 read only.

SQL0153 SQLCODE ·153

Explanation: Column list required for CREATE VIEW.

SQL0154 SQLCODE ·154

Explanation: UNION and UNION All for CREATE VIEW not valid.

SQL0155 SQLCODE ·155

Explanation: View &1 in &2 not valid in FROM clause.

SQL0156 SQLCODE ·156

Explanation: &1 in &2 not a table.

SQL0158 SQLCODE ·158

Explanation: Number of columns specified not consistent.

SQL0159 SQLCODE ·159

J Explanation: &1 in &2 not correct type.

8-4 Sal Programmer's Guide

SQL0170 - SQL0305

L SQL0170 SQLCODE ·170

Explanation: Number of arguments for function &1 not valid.

SQL0171 SQLCODE ·171

Explanation: Argument of function &2 is not valid.

SQL0198 SQLCODE ·198

Explanation: SOL statement empty or blank.

SQL0199 SQLCODE ·199

Explanation: Keyword &1 not expected. Valid tokens: &2.

SQL0203 SQLCODE ·203

L Explanation: Column &1 in more than one table.

SQL0204 SQLCODE ·204

Explanation: Object &1 in &2 type *&3 not found.

SQL0205 SQLCODE ·205

Explanation: Column &1 not in table &2.

SQl0206 SQLCODE ·206

Explanation: Column &1 not in specified tables.

SQL0207 SQLCODE ·207

Explanation: ORDER BY clause with UNION operator not valid.

SQL0208 SQlCODE ·208

Explanation: ORDER BY column &1 not in results table.

SQL0301 SQLCODE ·301

Explanation: Input host variable &1 not valid.

SQL0302 SQLCODE ·302

Explanation: Conversion error on input host variable &1.

SQL0303 SQLCODE ·303

Explanation: Host variable &1 not compatible with SELECT item.

SQL0304 SQLCODE ·304

Explanation: Conversion error in assignment to host variable &1.

L SQL0305 SQLCODE ·305

Explanation: Indicator variable required.

Appendix B. SOlCODES B-5

SQL0309 - SQL0417

SQL0309 SQLCODE -309

J Explanation: Indicator variable contains null value.

SQL0311 SQLCODE -311

Explanation: Variable length host variable contains invalid length.

SQL0312 SQLCODE -312

Explanation: Host variable &1 not defined or not usable.

SQL0313 SQLCODE -313

Explanation: Number host variables not valid.

SQL0401 SQLCODE -401

Explanation: Comparison operator &1 operands not compatible. J
SQL0402 SQLCODE -402

Explanation: &1 use not valid.

SQL0404 SQLCODE -404

Explanation: Value for column &1 too long.

SQL0405 SQLCODE -405

Explanation: Literal &1 out of range.

SQL0406 SQLCODE -406

Explanation: Conversion error on assignment to column & 1.

SQL0407 SQLCODE -407

Explanation: INSERT or UPDATE value is null.

SQL0408 SQLCODE -408 ~
Explanation: INSERT or UPDATE value for column &1 not compatible.

SQL0410 SQLCODE -410

Explanation: Floating point literal &1 not valid.

SQL0414 SQLCODE -414

Explanation: Numeric column &1 not valid in LIKE predicate.

SQL0415 SQLCODE -415

Explanation: UNION operands not compatible.

SQL0417 SQLCODE -417

Explanation: Combination of parameter markers not valid.

8-6 SOL Programmer's Guide

SQL0418 - SQL0517

SQL0418 SQLCODE -418

L Explanation: Use of parameter marker is not valid.

SQL0419 SQLCODE -419

Explanation: Negative scale not valid.

SQL0421 SQLCODE -421

Explanation: Number of UNION operands not equal.

SQL0501 SQLCODE -501

Explanation: Cursor &1 not open.

SQL0502 SQLCODE -502

Explanation: Cursor &1 already open.

SQL0503 SQLCODE -503

Explanation: Column &3 cannot be updated.

SQL0504 SQLCODE -504

Explanation: Cursor &1 not declared.

L
SQL0507 SQLCODE -507

Explanation: Cursor &1 not open.

SQL0508 SQLCODE -508

Explanation: Cursor &1 not positioned on locked row.

SQL0509 SQLCODE -509

Explanation: Table &2 in &3 not same as table in cursor &1.

SQL0510 SQLCODE -510

Explanation: View or logical file &1 in &2 read only.

SQL0511 SQLCODE ·511

Explanation: FOR UPDATE OF clause not valid.

SQL0514 SQLCODE -514

Explanation: Prepared statement &2 not found.

SQL0516 SQLCODE -516

Explanation: Prepared statement &1 not found.

L
SQL0517 SQLCODE -517

Explanation: Prepared statement &2 not SELECT statement.

Appendix B. SQLCODES B-7

SQL0518 - SQL0803

SQL0518 SQLCODE ·518

Explanation: Prepared statement &1 not found. J
SQL0519 SQLCODE ·519

Explanation: Prepared statement &1 in use.

SQL0551 SQLCODE ·551

Explanation: Not authorized to object &1 in &2 type *&3.

SQL0552 SQLCODE ·552

Explanation: Not authorized to & 1.

SQL0556 SQLCODE ·556

Explanation: Revoke of privilege not valid.

SQL0601 SQLCODE ·601

Explanation: Object &1 in &2 type *&3 already exists.

SQL0602 SQLCODE ·602

Explanation: More than 120 columns specified for CREATE INDEX.

SQL0603 SQLCODE -603

Explanation: Unique index cannot be created because of duplicate keys.

SQL0604 SQLCODE ·604

Explanation: Attributes of column not valid.

SQL0607 SQLCODE ·607

Explanation: Operation not allowed on system table &1 in &2.

SQL0612 SQLCODE -612

Explanation: &1 is a duplicate column name.

SQL0614 SQLCODE ·614

Explanation: Length of columns for CREATE INDEX too long.

SQL0637 SQLCODE -637

Explanation: Duplicate &1 keyword.

SQL0802 SQLCODE ·802

Explanation: Data conversion or data mapping error.

SQL0803 SQLCODE ·803

J Explanation: Duplicate key value specified.

8-8 SOL Programmer's Guide

SQL0804 - SQLS016

SQL0804 SQLCODE ·804

Explanation: SQLDA not valid.

SQL0811 SQLCODE ·811

Explanation: Embedded SELECT resulted in more than one row.

SQL0822 SQLCODE ·822

Explanation: SQLDA contains address not valid.

SQL0840 SQLCODE ·840

Explanation: Number of selected items exceeds 8000.

SQL0901 SQLCODE ·901

Explanation: Function check.

SQL0904 SQLCODE ·904

Explanation: Resource limit exceeded.

SQL0906 SQLCODE ·906

Explanation: Operation not performed because previous error.

SQL0913 SQLCODE ·913

Explanation: Row or object &1 in &2 type *&3 in use.

SQL5001 SQLCODE ·5001

Explanation: Column qualifier &1 is undefined.

SQL5002 SQLCODE ·5002

Explanation: Library must be specified for table &1.

SQL5003 SQLCODE ·5003

Explanation: DDL statement used with commitment control.

SQL5004 SQLCODE ·5004

Explanation: CREATE VIEW not valid with USER or LENGTH specified.

SQL5005 SQLCODE ·5005

Explanation: Operator &1 not consistent with operands.

SQL5006 SQLCODE ·5006

Explanation: Duplicate table designator &1 not valid.

SQL5016 SQLCODE ·5016

Explanation: Table name &1 not valid for naming option.

Appendix B. SQLCODES 8-9

SQL5017 - SQL7011

SQL5017 SQLCODE -5017

J Explanation: Too many users specified for GRANT or REVOKE.

SQL5019 SQLCODE -5019

Explanation: Empty string operand not valid.

SQL5021 SQLCODE -5021

Explanation: FOR UPDATE OF column &1 also in ORDER BY.

SQL5022 SQLCODE -5022

Explanation: FOR DATA clause not valid for specified type.

SQL7001 SQLCODE -7001

Explanation: File &1 in &2 not database file. J
SQL7002 SQLCODE -7002

Explanation: Override parameter not valid.

SQL7003 SQLCODE -7003

Explanation: File &1 in &2 has more than one format.

SQL7004 SQLCODE -7004

Explanation: &1 not a collection.

SQL7005 SQLCODE -7005

Explanation: FOR MIXED DATA not allowed.

SQL7006 SQLCODE -7006

Explanation: Cannot drop collection &1.

SQL7007 SQLCODE -7007 J
Explanation: COMMIT or ROLLBACK not valid.

SQL7008 SQLCODE -7008

Explanation: &1 in &2 not valid for operation.

SQL7009 SQLCODE -7009

Explanation: USER specified, but user profile name &1 too long.

SQL7010 SQLCODE -7010

Explanation: Logical File &1 not valid for CREATE VIEW.

SQL7011 SQLCODE -7011

J Explanation: &1 in &2 not table, view, or physical file.

8-10 Sal Programmer's Guide

SQL7012 - SQL7012

SQL7012 SQLCODE ·7012

Explanation: Privilege not valid for table or view &1 in &2.

Appendix B. SQLCODES 8-11

J

J

J

8-12 SQL Programmer's Guide

L

Appendix C. Sample Programs Using SQL/400 Statements

This appendix contains a sample application showing how to code SOL statements
in each of the languages supported by SOU400: COBOL, PUI, C, and RPG.

The sample application adjusts the estimated employee hours for project numbers
starting with MA. The application uses the sample tables in Appendix A.

Each sample program produces the same report, which is shown at the end of this
appendix. The first part of the report shows the updated estimated employee hours.
The second part shows the previous total and the current total of estimated hours by
project.

The following notes apply to all three sample programs:

SOL statements can be entered in upper or lowercase.

D This host language statement retrieves the external definitions for the
SOL table TEMPRACT. These definitions can be used as host variables
or as a host structure.

Notes:

1. In RPG, field names in an externally described structure that are
longer than 6 characters must be renamed.

2. C does not support the retrieval of external definitions.

The SOL INCLUDE SOLCA statement is used to include the SOLCA for
PUI, C, and COBOL programs. For RPG programs, the SOL precompiler
automatically places the SOLCA data structure into the source at the end
of the I specification section.

II This SOL WHENEVER statement defines the host language label to which
control is passed if an SOLERROR (SOLCODE < 0) occurs in an SOL
statement. This WHENEVER SOLERROR statement applies to all the fol
lowing SOL statements until the next WHENEVER SOLERROR statement
is encountered.

This SOL UPDATE statement updates the EMPTIME column, which con
tains the estimated hours by the rate in the host variable PERCENTAGE
(PERCNT for RPG). The updated rows are those that have MA as the first
two characters of the PROJNO column.

This SOL COMMIT statement commits the changes made by the SOL
UPDATE statement. Record locks on all changed rows are released.

Note: The program was precompiled using COMMIT(*CHG).

m This SOL DECLARE CURSOR statement defines cursor C1, which returns
all columns of each row from the TEMPRACT table in which MA are the
first two characters of the PROJNO column. Rows are returned in
ascending order by employee number (EMPNO column).

fJ This SOL OPEN statement opens cursor C1 so that the rows can be
fetched.

iii This SOL WHENEVER statement defines the host language label to which
control is passed when all rows are fetched (SOLCODE = 100).

© Copyright IBM Corp. 1988, 1989 Appendix C. Sample Programs Using SQLl400 Statements C-1

This Sal FETCH statement returns all columns for cursor C1 and places
the returned values into the corresponding elements of the host struc
ture. See Note A.

DJ After all rows are fetched, control is passed to this label. The Sal
CLOSE statement closes cursor C1.

ED This Sal DECLARE CURSOR statement defines cursor C2, which joins
the two tables TEMPRACT and TPROJ. The results are grouped by the
columns PROJNO and PRNAME. The COUNT function returns the
number of rows in each group. The SUM functions calculate the total of
previously estimated hours and the total of current estimated hours. The
ORDER BY 1 clause specifies that rows are retrieved based on the con
tents of the first results column (TEMPRACT.PROJNO).

m This Sal FETCH statement returns the results columns for cursor C2 and
places the returned values into the corresponding elements of the host
structure described by the program.

m This Sal WHENEVER statement with the CONTINUE option causes pro
cessing to continue to the next statement regardless if an error occurs
on the Sal ROllBACK statement. Errors are not expected on the Sal
ROllBACK statement; however, this prevents the program from going
into a loop if an error does occur.

m This Sal ROllBACK statement restores the table to its original condi
tion if an error occurred during the update.

C-2 SOL Programmer's Guide

J

SQl Statements in COBOL Programs

5728STI R02 MOO 891006
Source type COBOL
Program name •••••••••••••• USERl/CBLEX
Source file ••••••••••••••• *LIBL/QLBLSRC
Membe r ..•••••••••••.•••••• * PGM
Opt ions ••••••••••••••••••• *SRC *XREF
Target release •••••••••••• *CURRENT
INCLUDE fil e •••••••••••••• *LIBL/*SRCFI LE
Commi t. *CHG
Generation level •••••••••• l0
Printer flle ••••..•••••••• *LIBL/SQLPRT
Text .••••••••••••••••••••• *SRCMBRTXT
Source member changed on 89-03-17 11:30:28

IBM SQL/400 CBLEX

Figure C-1 (Part 1 of 9). Sample COBOL Program Using SOL Statements

89-03-28 15: 23: 44 Page

Appendix C. Sample Programs Using SQLl400 Statements C-3

5728ST1 R02 MOO 891006 IBM SQL/400 CBLEX
Record * ... + ••• 1 ... + ... 2 ... + ... 3 ... + ... 4 ... + ... 5 ... + ... 6 ... + ... 7 ... + ... 8

1 IDENTIFICATION DIVISION.
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 0
33
34
35
36
37
38
39
40
41
42
43
44
45 PJ
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

PROGRAM-ID. CBLEX.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-AS400.
OBJECT-COMPUTER. IBM-AS400.
INPUT-OUTPUT SECTION.

FI LE-CONTROL.
SELECT PRINTFILE ASSIGN TO PRINTER-QPRINT

ORGANIZATION IS SEQUENTIAL.

DATA DIVISION.

FILE SECTION.

FD PRINTFILE
BLOCK CONTAINS 1 RECORDS
LABEL RECORDS ARE OMITTED.

01 PRINT-RECORD PIC X(132).

WORKING-STORAGE SECTION.
77 PROJID PIC X(3).
77 PERCENTAGE PIC S999V99 COMP-3.

* Structure for report 1.

01 RPTl.
COpy DDS-TEMPRACT OF USERI-TEMPRACT.

* Structure for report 2.

01 RPT2.
15 PROJNO PIC X(6).
15 PROJECT -NAME PIC X(36).
15 EMPLOYEE-COUNT PIC S9 (4) COMP-4.
15 OLD-TOTAL-TIME PIC S9(6)V99 COMP-3.
15 NEW-TOTAL-TIME PIC S9(6)V99 COMP-3.

EXEC SQL
INCLUDE SQLCA

END-EXEC.
77 CODE-EDIT PIC ---99.

• Headers for reports. *

01 RPTl-HEADERS.
05 RPTl-HEAOERl PIC X(132)

VALUE "UPOATED EMPLOYEE PROJECT ACCOUNT
05 RPTl-HEADER2.

10 FILLER PIC X(lO) VALUE "EMPLOYEE".
10 FILLER PIC X(9) VALUE "PROJECT".
10 FILLER PIC X(9) VALUE "ACCOUNT".

DATA" •

Figure C-1 (Part 2 of 9). Sample COBOL Program Using SQL Statements

C-4 Sal Programmer's Guide

89·03·28 15: 23: 44 Page 2
SEQNBR Last change

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700
4800
4900
5000
5100
5200
5300
5400
5500
5600
5700
5800
5900
6000

J

J

5728STl R02 MOO 891006 IBM SQL/400 CBLEX 89-03-28 15:23:44 Page 3
Record • .• • + ... 1 •.. + ••• 2 ..• + •.• 3 ... + ••• 4 ... + ••. 5 ••. + ••• 6 • •• + ••• 7 •.. + ••• 8 SEQNBR Last change

61 10 FILLER PIC X(l04) VALUE "EMPLOYEE". 6100
62 05 RPTl-HEADER3. 6200
63 10 FILLER PIC X(10) VALUE" NUMBER". 6300
64 10 FILLER PIC X(9) VALUE "NUMBER". 6400
65 10 FILLER PIC X(9) VALUE "NUMBER". 6500
66 10 FILLER PIC X(104) VALUE" HOURS". 6600
67 01 RPT2-HEADERS. 6700
68 05 RPT2-HEADERI. 6800
69 10 FILLER PIC X(21) VALUE SPACES. 6900
70 10 FILLER PIC X(111) 7000
71 VALUE "ACCUMULATED STATISTICS BY PROJECT". 7100
72 05 RPT2-HEADER2. 7200
73 10 FILLER PIC X(9) VALUE "PROJECT". 7300
74 10 FILLER PIC X(38) VALUE SPACES. 7400
75 10 FILLER PIC X(ll) VALUE "NUMBER OF". 7500
76 10 FILLER PIC X(lO) VALUE "PREVIOUS". 7600
77 10 FILLER PIC X(65) VALUE" CURRENT". 7700
78 05 RPT2-HEADER3. 7800
79 10 FILLER PIC X(9) VALUE "NUMBER". 7900
80 10 FILLER PIC X(38) VALUE "PROJECT NAME". 8000
81 10 FILLER PIC X(l1) VALUE "EMPLOYEES". 8100
82 10 FILLER PIC X(10) VALUE" HOURS". 8200

L 83 10 FILLER PIC X(65) VALUE" HOURS". 8300
84 01 RPTl-DATA. 8400
85 05 FILLER PIC X VALUE SPACE. 8500
86 05 EMPNO PIC X(6). 8600
87 05 FILLER PIC XXX VALUE SPACES. 8700
88 05 PROJNO PIC X(6). 8800
89 05 FILLER PIC X(4) VALUE SPACES. 8900
90 05 ACTNO PI C ZZZ99. 9000
91 05 FILLER PIC X(3) VALUE SPACES. 9100
92 05 EMPTIME PIC ZZZZ9.99. 9200
93 05 FILLER PIC X(96) VALUE SPACES. 9300
94 01 RPT2-DATA. 9400
95 05 PROJNO PIC X(6). 9500
96 05 FILLER PIC XXX VALUE SPACES. 9600
97 05 PROJECT -NAME PIC X(36). 9700
98 05 FILLER PIC X(4) VALUE SPACES. 9800
99 05 EMPLOYEE-COUNT PIC ZZZ9. 9900

100 05 FI LLER PIC XIS) VALUE SPACES. 10000
101 05 OLD-TOTAL-TIME PIC ZZZZ9.99. 10100
102 05 FILLER PIC XX VALUE SPACES. 10200
103 05 NEW-TOTAL-TIME PIC ZZZZ9.99. 10300
104 05 FILLER PIC X(56) VALUE SPACES. 10400
105 10500
106 PROCEDURE DIVISION. 10600
107 10700
108 AOOO-MAIN. 10800
109 MOVE 0.06 TO PERCENTAGE. 10900
110 MOVE "MA%" TO PROJID. 11000
111 OPEN OUTPUT PRINTFILE. 11100
112 11200
113 *** 11300
114 • Update the selected projects by the new percentage. If an • 11400
115 • error occurs during the updat, ROLLBACK the changes, * 11500
116 *** 11600
117 11700
118 EXEC SQL 11800
119 II WHENEVER SQLERROR GO TO E010-UPDATE-ERROR 11900
120 END-EXEC. 12000

Figure C-1 (Part 3 of 9). Sample COBOL Program Using SQL Statements

L

Appendix C. Sample Programs Using SQLl400 Statements C-S

5728ST1 R02 M00 891006 IBM SQL/400 CBLEX
Record

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

•••• + ••• 1 ••• + ••• 2 ••• + ••• 3 ••• + ••• 4 ••• + ••• 5 ••• + ••• 6 ••• + ••• 7 ••• + ••• 8

fJ

EXEC SQL
UPDATE USER1/TEMPRACT

SET EMPTIME = EMPTIME * (1+: PERCENTAGE)
WHERE PROJNO LIKE: PROJID

END-EXEC.

• Commit changes.

EXEC SQL
COMMIT

END-EXEC.

EXEC SQL
WHENEVER SQLERROR GO TO E020-REPORT-ERROR

END-EXEC.

• Report the updated statistics for each employee assigned to·
• the selected projects.

• Write out the header for Report 1. *

write

write

write

exec

print-record from rptl-header1
before advancing 2 lines.
pri nt-record from rptl-header2
before advancing 1 line.
print-record from rptl-header3
before advancing 2 lines.

sql
declare c1 cursor for

select •
from user1/tempract
where tempract.projno 1 i ke : proj id
order by empno

end-exec.
EXEC SQL

OPEN C1
END-EXEC.

PERFORM B000-GENERATE-REPORTl THRU B010-GENERATE-REPORTl-EXIT
UNTI L SQLCODE NOT EQUAL TO ZERO.

A100-DONE1.
EXEC SQL

CLOSE C1
END-EXEC.

• For each project selected, generate a report containing
• project number, project name, the old total of employee
• hours, and the new total of employee hours for each
• proj ect.

the*
•
•
•

Note: iii and II are located on Part 5 of this figure.

Figure C-1 (Part 4 of 9). Sample COBOL Program Using SOL Statements

C-6 Sal Programmer's Guide

89-03-28 15:23:44 Page
SEQNBR Last change

12100
12200
12300
12400
12500
12600
12700
12800
12900
13000
13100
13200
13300
13400
13500
13600
13700
13800
13900
14000
14100
14200
14300
14400
14500
14600
14700
14800
14900
15000
15100
15200
15300
15400
15500
15600
15700
15800
15900
16000
16100
16200
16300
16400
16500
16600
16700
16800
16900
17000
17100
17200
17300
17400
17500
17600
17700
17800
17900
18000

4 J

L
5728STl RG2 MeG 891GG6 IBM SQL/4GG CBLEX 89-G3-28 15:23:44 Page
Record * ... + .•. 1 ••. + ... 2 ••• + ••• 3 ..• + ••• 4 ••• + ... 5 ... + •.. 6 ... + ... 7 • •• + ..• 8 SEQNBR Last change

181 *** 18100
182 * Wr; te out the header for Report 2. * 18200
183 *** 18300
184 18400
185 MOVE SPACES TO PRINT -RECORD. 18500
186 WRITE PRINT -RECORD BEFORE ADVANCI NG 2 LI NES. 18600
187 WRITE PRINT-RECORD FROM RPT2-HEADERl 18700
188 BEFORE ADVANCING 2 LINES. 18800
189 WRITE PRINT-RECORD FROM RPT2-HEADER2 18900
190 BEFORE ADVANCING 1 LINE. 19000
191 WRITE PRINT-RECORD FROM RPT2-HEADER3 19100
192 BEFORE ADVANCING 2 LINES. 19200
193 19300
194 EXEC SQL 19400
195 m DECLARE C2 CURSOR FOR 19500
196 SELECT TEMPRACT.PROJNO. PRNAME. COUNT(*). 19600
197 SUM(EMPTIME/(1.0+:PERCENTAGE».SUM(EMPTIME) 19700
198 FROM USER1/TEMPRACT. USER1/TPROJ 19800
199 WHERE TEMPRACT.PROJNO=TPROJ.PROJNO 19900
200 GROUP BY TEMPRACT.PROJNO. PRNAME 20000
201 HAVING TEMPRACT.PROJNO LIKE :PROJID 20100
202 ORDER BY 1 20200
203 END-EXEC. 20300
204 EXEC SQL 20400
205 OPEN C2 20500
206 END-EXEC. 20600
207 20700
208 PERFORM C000-GENERATE-REPORT2 THRU C010-GENERATE-REPORT2-EXIT 20800
209 UNTIL SQLCODE NOT EQUAL TO ZERO. 20900
210 21000
211 A200-DONE2. 21100
212 EXEC SQL 21200
213 CLOSE C2 21300
214 END-EXEC. 21400
215 21500
216 ********.***********.***************.**.*********.****'It******** 21600
217 * All done. * 21700

L
218 ***********.*** 21800
219 21900
220 A900-MAIN-EXIT • 22000
221 CLOSE PRINTFILE. 22100
222 STOP RUN. 22200
223 22300
224 ************.************************* •• ******.******** •••••••• 22400
225 * Fetch and write the rows to PRINTFILE. * 22500
226 ************* •• *************.*** •• ********************'It******** 22600
227 22700
228 B000-GENERATE-REPORTl. 22800
229 EXEC SQL 22900
230 II WHENEVER NOT FOUND GO TO A100-DONEl 23000
231 END-EXEC. 23100
232 EXEC SQL 23200

L
233 II FETCH Cl INTO :TEMPRACT 23300
234 END-EXEC. 23400
235 MOVE CORRESPONDING TEMPRACT TO RPTI-DATA. 23500
236 WRITE PRI NT -RECORD FROM RPTl-DATA 23600
237 BEFORE ADVANCING 1 LINE. 23700
238 23800
239 BOIO-GENERATE-REPORTl-EXIT . 23900
240 EXIT. 24000

Figure C-1 (Part 5 of 9). Sample COBOL Program Using SQL Statements

L

Appendix C. Sample Programs Using SQLl400 Statements C-7

5728ST1 R02 M00 891006 IBM SQL/400 CBLEX
Record * ... + ... 1 ..• + ••• 2 .•• + ••• 3 ..• + ••• 4 ••. + ••• 5 ... + ••• 6 ••• + •••

II

II

HI

* Fetch and write the rows to PRINTFILE. *

C000-GENERATE-REPORT2.
EXEC SQL

WHENEVER NOT FOUND GO TO A200-DONE2
END-EXEC.
EXEC SQL

FETCH C2 INTO :RPT2
END-EXEC.
MOVE CORRESPONDING RPT2 TO RPT2-DATA.
IIRITE PRINT -RECORD FROM RPT2-DATA

BEFORE ADVANCING 1 LINE.

COI0-GENERATE-REPORT2-EXIT.
EXIT •

* Error occured wh'ile updating table.
* rollback changes.

Inform user and *

EOI0-UPDATE-ERROR.
EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE SQLCODE TO CODE-EDIT.
STRING "*** ERROR Occurred while updating table. SQLCODE="

CODE-EDIT DELIMITED BY SIZE INTO PRINT-RECORD.
WRITE PRINT-RECORD.
EXEC SQL

ROLLBACK
END-EXEC.
STOP RUN.

* Error occured whil e generating reports.
* exit.

Inform user and *
*

E020-REPORT-ERROR.
MOVE SQLCODE TO CODE-EDIT.

".+ ••• 8
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

STRING "*** ERROR Occurred while generating reports. SQLCODE
"=" CODE-EDIT DELIMITED BY SIZE INTO PRINT-RECORD.

WRITE PRINT-RECORD.
STOP RUN.

* * * * * END 0 F SOU R C E * * * * *

Figure C-1 (Part 6 of 9). Sample COBOL Program Using SOL Statements

C-8 Sal Programmer's Guide

89-03-28 15:23:44 Page
SEQNBR Last change
24100
24200
24300
24400
24500
24600
24700
24800
24900
25000
25100
25200
25300
25400
25500
25600
25700
25800
25900
26000
26100
26200
26300
26400
26500
26600
26700
26800
26900
27000
27100
27200
:?7300
27400
27500
27600
27700
27800
27900
28000
28100
28200
28300
28400
28500
28600
28700
28800

J

5728STl R02 M00 891006 IBM SQL/400 CBLEX 89-03-28 15:23:44 Page
CROSS REFERENCE

Data Names Define Reference
'ACTNO' 122 SMALL INTEGER PRECISION(4.0) COLUMN (NOT NULL) IN 'USERl'. 'TEMPRACT'
'Cl' 155 CURSOR

162 1713 233
'C2' 195 CURSOR

2135 213 251
'DEPTMGR' 198 CHARACTER (6) COLUMN (NOT NULL) [N 'USERl' • 'TPROJ '
'DEPTNO' 198 CHARACTER(3) COLUMN (NOT NULL) IN ' USERI ' . 'TPROJ'
'EMPNO' 122 CHARACTER (6) COLUMN (NOT NULL) IN 'USERl'.'TEMPRACT'
'EMPNO' **** COLUMN

159
, EMPTIME' COLUMN

123 123 197 197
'EMPTIME' 122 OECIMAL(5.2) COLUMN (NOT NULL) IN 'USERl'.'TEMPRACT'
'ENDDATE' 122 CHARACTER(6) COLUMN (NOT NULL) IN 'USERl'.'TEMPRACT'
'MAJPROJ' 198 CHARACTER(6) COLUMN (NOT NULL) IN 'USERl'.'TPROJ'
'PRENDATE' 198 CHARACTER(6) COLUMN (NOT NULL) IN 'USERl'.'TPROJ'
'PRNAME' **** COLUMN

196 21313
'PRNAME' 198 CHARACTER(36) COLUMN (NOT NULL) IN 'USERl'.'TPROJ'
'PROJNO' **** COLUMN

124
'PROJNO' 122 CHARACTER (6) COLUMN (NOT NULL) IN 'USERl'.'TEMPRACT'
, PROJNO' **** COLUMN IN 'USERI'.'TEMPRACT'

158 196 199 21313 2131
'PROJNO' **** COLUMN IN 'USERI'. 'TPROJ'

199
'PROJNO' 198 CHARACTER(6) COLUMN (NOT NULL) IN 'USERl' • 'TPROJ'
'PRSTAFF' 198 DECIMAL(5.2) COLUMN (NOT NULL) IN 'USERl'.'TPROJ'
'PRSTDATE ' 198 CHARACTER(6) COLUMN (NOT NULL) IN 'USERl' • 'TPROJ '
'STARTDATE ' 122 CHARACTER (6) COLUMN (NOT NULL) IN 'USERl'.'TEMPRACT'
'TEMPRACT' **** TABLE IN 'USERI'

122 157 158 198
'TPROJ' **** TABLE IN 'USERl'

198 199
'USERI ' **** COLLECTION

122 157 198 198

~
ACTNO 38 SMALL INTEGER PRECISION(4.0) IN TEMPRACT
ACTNO 913 IN RPTl-DATA
AIQ0-DONE! **** LABEL

2313
A2Qe-DONE2 **** LABEL

248

Figure C-1 (Part 7 of 9). Sample COBOL Program Using SQL Statements

L

Appendix C. Sample Programs Using SQLl400 Statements e-9

5728STl R02 MOO 891006 IBM SQL/400 CBLEX 89-03-28 15:23:44 Page 8
CROSS REFERENCE

CODE-EDIT 48
EMPLOYEE-COUNT 41 SMALL INTEGER PRECISION(4,O) IN RPT2
EMPLOYEE-COUNT 99 IN RPT2-DATA
EMPNO 38 CHARACTER(6) IN TEMPRACT
EMPNO 86 CHARACTER(6) IN RPT1-DATA
EMPTIME 38 DECIMAL(5,2) IN TEMPRACT
EMPTIME 92 IN RPTl-DATA
ENDDATE 38 CHARACTER(6) IN TEMPRACT
E010-UPDATE-ERROR **** LABEL

119
E020-REPORT -ERROR **** LABEL

136
NEW-TOTAL- TIME 43 DECIMAL(8,2) IN RPT2
NEW-TOTAL-TIME 103 IN RPT2-DATA
OLD-TOTAL-TIME 42 DECIMAL(8,2) IN RPT2
OLD-TOTAL-TIME 101 IN RPT2-DATA
PERCENTAGE 25 DECIMAL(5,2)

123 197
PRINT -RECORD 21 CHARACTER (132)
PROJ ECT -NAME 40 CHARACTER(36) IN RPT2
PROJ ECT -NAME 97 CHARACTER(36) IN RPT2-DATA
PROJID 24 CHARACTER (3)

124 158 201

J PROJNO 38 CHARACTER(6) IN TEMPRACT
PROJNO 39 CHARACTER (6) IN RPT2
PROJNO 88 CHARACTER (6) IN RPTl-DATA
PROJNO 95 CHARACTER (6) IN RPT2-DATA
RPTl 31
RPTl-DATA 84
RPTl-HEADERS 54
RPTl-HEADER1 55 CHARACTER(132) IN RPT1-HEADERS
RPTl-HEADER2 57 IN RPTl-HEADERS
RPTl-HEADER3 62 IN RPTl-HEADERS
RPT2 38 STRUCTURE

251
RPT2-DATA 94
RPT2-HEADERS 67
RPT2-HEADER1 68 IN RPT2-HEADERS

J
Figure C-t (Part 8 of 9). Sample COBOL Program Using SQL Statements

5728STl R02 MOO 891006 IBM SQL/400 CBLEX 89-03-28 15:23:44 Page 9
CROSS REFERENCE

RPT2-HEADER2 72 IN RPT2-HEADERS
RPT2-HEADER3 78 IN RPT2-HEADERS
STARTDATE 38 CHARACTER (6) IN TEMPRACT
TEMPRACT 38 STRUCTURE IN RPT1
No errors found in source

288 Source records processed
* * * * * END o F LIS TIN G * * * * * J

Figure C-t (Part 9 of 9). Sample COBOL Program Using SQL Statements

C-10 SOL Programmer's Guide

SQl Statements in Pl/l Programs

5728STl R02 MOO 891006
Source type ••••••••••••••• PLl
Program name ••••••...••••• USER1/PLIEX
Source file •••••.•.•.••••• *LIBL/QPLlSRC
Member .•.•••••••.•••..••.. *PGM
Opt ions ••••••••••••••••••• *SRC *XREF
INCLUDE file •.•••••••••••• *LIBL/*SRCFILE
COl1l11it. •••..•••••••••••••• *CHG
Generat ion 1 eve 1 •••••••••• 10
Marg i ns .•••..•••..•...•••• *SRCF I LE
Pri nter fi 1 e ••••.•.••••••• *LIBL/SQLPRT
Text. •.•••••••••..•...•••• *SRCMBRTXT
Source member changed on 89-03-17 11:29:01

IBM SQL/400 PLIEX

Figure C-2 (Part 1 of 6). Sample PUI Program Using SOL Statements

89-03-28 15:25:24 Page

Appendix C. Sample Programs Using SQL/400 Statements C-11

5728STl R02 MOO 891006 IBM SQl/400 PLIEX
Record * ... + ... 1 ••• + ••• 2 ... + ... 3 ... + ... 4 ... + ... 5 ... + ... 6 ... + ... 7 ... + ... 8

1 PlIEX: PROC;
2
3
4
5
6
7
8
9

10
11 D
12
13
14
15
16
17
18
19
20

DCl PROJID CHAR(3);
DCl PERCENTAGE FIXED DECIMAl(5,2);

/* File declaration for sysprint */
DCl SYSPRINT FILE EXTERNAL OUTPUT STREAM PRINT;

/* Structure for report 1 * /
DCl 1 RPTl,

%1 NClUDE TEMPRACT (TEMPRACT, RECORD) ;

/* Structure for report 2 */
DCl 1 RPT2,

15 PROJNO CHAR(6) ,
15 PROJECT NAME CHAR(36),
15 EMPLOYEE COUNT FIXED BIN(I5),
15 OLD TOTAL TIME FIXED DECIMAl(8,2),
15 NEW=TOTAl=TIME FIXED DECIMAL(8,2);

21 fJ EXEC SQl INCLUDE SQlCA;
22
23
24
25
26
27
28
29 II
30
31 II
32
33
34
35
36 II
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54 II
55
56
57
58
59
60 II

PERCENTAGE = 0.06;
PROJID = 'MA%';
OPEN FIlE(SYSPRINT);

/* Update the selected projects by the new percentage.
/* occurs during the update, ROllBACK the changes.
EXEC SQl WHENEVER SQLERROR GO TO UPDATE ERROR;
EXEC SQl -

UPDATE USERI/TEMPRACT
SET EMPTIME = EMPTIME * (1+:PERCENTAGE)
WHERE PROJNO LIKE :PROJID;

/* Commi t changes * /
EXEC SQl

COMMIT;
EXEC SQl WHENEVER SQLERROR GO TO REPORT_ERROR;

If an error */
*/

/* Report the updated statistics for each employee assigned to the */
/* selected projects. */

/* Write out the header for Report 1 */
put file(sysprint) edit('UPDATED EMPLOYEE PROJECT ACCOUNT DATA')

(col (1) ,a);
put file(sysprint)

edit('EMPLOYEE','PROJECT','ACCOUNT','EMPLOYEE')
(skip(2) ,col (1) ,a, col (11) ,a,col (20) ,a,col (29) ,a);

put file(sysprint)
edi t (' NUMBER' , 'NUMBER' , 'NUMBER' , 'HOURS')

(skip,col (2) ,a,col (11) ,a,col (20) ,a,col (30) ,a, skip) ;

exec sql
declare cl cursor for

sel ect *
from userl/tempract
where tempract.projno like :projid
order by empno;

EXEC SQl
OPEN Cl;

Figure C-2 (Part 2 of 6). Sample PLII Program Using SOL Statements

C-12 SOL Programmer's Guide

89-03-28 15:25:24 Page
SEQNBR last change

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700
4800
4900
5000
5100
5200
5300
5400
5500
5600
5700
5800
5900
6000

J

5728ST1 R02 MOO 891006 IBM SQLj400 PLIEX
Record * ... + ••• 1 ••• + ••• 2 ••• + ••• 3 ••• + ••• 4 ••• + ••• 5 ••• + ••• 6 ••• + ••• 7 ••• + ••• 8

61
62 /* Fetch and write the rows to SYSPRINT */
63 III EXEC SQL WHENEVER NOT FOUND GO TO DONEl;
64
65
66
67 m
68
69
70
71

DO UNTIL (SQLCODE ~= 0);
EXEC SQL

FETCH Cl INTO :RPT1;
PUT FILE(SYSPRINT)

EDIT(RPT1.EMPNO,RPT1.PROJNO,RPT1.ACTNO,RPT1.EMPTIME)
(SKI P ,COL(2) ,A,COL(l1) ,A, COL(21) ,F (5) ,COL (29) ,F(8,2));

END;
72
73
74
75
76

DONE1 :
1m EXEC SQL

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93 m
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

lEI

CLOSE C1;

/* For each project selected, generate a report containing the */
/* project number, project name, the old total of employee hours, *j
/* and the new total of employee hours for each project. */

/* Write out the header for Report 2 */
PUT FILE(SYSPRINT) EDIT('ACCUMULATED STATISTICS BY PROJECT')

(SKIP(3) ,COL(22) ,A);
PUT FILE(SYSPRINT)

EDIT('PROJECT','NUMBER OF','PREVIOUS','CURRENT')
(SKIP(2) ,COLO) ,A,COL(48) ,A,COL(59) ,A,COL(70) ,A);

PUT FILE(SYSPRINT)
ED IT (, NUMBER' , ' PROJ ECT NAME',' EMPLOYEES' , 'HOURS' , ' HOURS')

(SKIP,COLO) ,A,COL(10) ,A,COL(48) ,A,COL(60) ,A,COL(71),
A,SKIP) ;

EXEC SQL
DECLARE C2 CURSOR FOR

SELECT TEMPRACT.PROJNO, PRNAME, COUNT(*),
SUM(EMPTIME/(1.0+:PERCENTAGE)),SUM(EMPTIME)

FROM USER1/TEMPRACT, USER1/TPROJ
WHERE TEMPRACT.PROJNO=TPROJ.PROJNO
GROUP BY TEMPRACT.PROJNO, PRNAME
HAVING TEMPRACT.PROJNO LIKE :PROJID
ORDER BY 1;

EXEC SQL
OPEN C2;

/* Fetch and write the rows to SYSPRINT * /
EXEC SQL WHENEVER NOT FOUND GO TO DONE2;

DO UNTIL (SQLCODE ~= 0);
EXEC SQL

FETCH C2 INTO :RPT2;
PUT FI LE (SYSPRI NT)

END;

EDIT (RPT2. PROJNO,RPT2. PROJECT_NAME, EMPLOYEE_COUNT,
OLD TOTAL TIME,NEW TOTAL TIME)

(SKIP ,COLli) ,A,COL(10) ,A,COL(50) ,F(4) ,COL (59) ,F (8, 2) ,
COL(69) ,F(8,2));

116
117
118
119

DONE2:

120

EXEC SQL
CLOSE C2;

GO TO FINISHED;

Figure C-2 (Part 3 of 6). Sample PLII Program Using SQL Statements

89-03-28 15:25:24 Page
SEQNBR Last change

6100
6200
6300
6400
6500
6600
6700
6800
6900
7000
7100
7200
7300
7400
7500
7600
7700
7800
7900
8000
8100
8200
8300
8400
8500
8600
8700
8800
8900
9000
9100
9200
9300
9400
9500
9600
9700
9800
9900

10000
10100
10200
10300
10400
10500
10600
10700
10800
10900
11000
11100
11200
11300
11400
11500
11600
11700
11800
11900
12000

Appendix C. Sample Programs USing SQLl400 Statements C-13

5728STl R02 M00 891006 IBM SQL/400 PLlEX 89-03-28 15:25:24 Page
Record * ••• + ••• 1 ••• + ••• 2 ••• + ••• 3 ••• + ••• 4 ••• + ••• 5 ••• + ••• 6 ••• + ••• 7 ••• + ••• 8

121
122

SEQNBR Last change
12100

123
124
125
126
127
128

/* Error occured while updating table. Infonn user and rollback */
/* changes. * /

UPDATE ERROR:
II EXEC-SQL WHENEVER SQLERROR CONTINUE;

PUT FILE(SYSPRINT) EDIT('*** ERROR Occurred while updating table.' I I
, SQLCODE=',SQLCODE)(A,F(5));

129 m
130

EXEC SQL
ROLLBACK;

GO TO FINISHED;
131
132
133
134
135
136
137
138
139
140
141
142
143

/* Error occured while generating reports. Infonn user and exit. */
REPORT ERROR:

PUT FILE(SYSPRINT) EDIT('*** ERROR Occurred while generating' II
'reports. SQLCODE=',SQLCODE)(A,F(5»;
GO TO FINISHED;

/* All done * /
FINISHED:

CLOSE FILE(SYSPRINT);
RETURN;

END PLlEX;
* * * * * END 0 F SOU R C E * * * * *

Figure C-2 (Part 4 of 6). Sample PLII Program Using SOL Statements

5728STl R02 M00 891006 IBM SQL/400 PLlEX
CROSS REFERENCE

Data Names Define Reference

12200
12300
12400
12500
12600
12700
12800
12900
13000
13100
13200
13300
13400
13500
13600
13700
13800
13900
14000
14100
14200
14300

89-03-28 15:25:24

"ACTNO" 56 SMALL INTEGER PRECISION(4,0) COLUMN (NOT NULL) IN "USER1". "TEMPRACT"
"CI I1 54 CURSOR

60 67 75
"C2 1l 93 CURSOR

102 109 119
"DEPTMGR" 96 CHARACTER (6) COLUMN (NOT NULL) IN "USER1"."TPROJ"
"DEPTNO" 96 CHARACTER (3) COLUMN (NOT NULL) IN "USER1"."TPROJ"
"EMPNO" **** COLUMN

58
"EMPNO" 56 CHARACTER (6) COLUMN (NOT NULL) IN "USER1". 'TEMPRACT"
"EMPTIME" 56 DEClMAL(5,2) COLUMN (NOT NULL) IN "USER1". "TEMPRACT"
"EMPTIME" **** COLUMN

32 32 95 95
"ENDDATE" 56 CHARACTER(6) COLUMN (NOT NULL) IN "USER1". "TEMPRACT"
"MAJPROJ" 96 CHARACTER(6) COLUMN (NOT NULL) IN "USERI'. "TPROJ"
"PRENDATE" 96 CHARACTER(6) COLUMN (NOT NULL) IN "USER1"."TPROJ"
"PRNAME" **** COLUMN

94 98
"PRNAME" 96 CHARACTER(36) COLUMN (NOT NULL) IN "USER1". "TPROJ"
"PROJNO" **** COLUMN IN "USER1". "TEMPRACT"

33 57 94 97 98 99
"PROJNO" 56 CHARACTER(6) COLUMN (NOT NULL) IN "USER1"."TEMPRACT"
"PROJNO" **** COLUMN IN "USER1"."TPROJ"

97
"PROJNO" 96 CHARACTER(6) COLUMN (NOT NULL) IN "USER1"."TPROJ"
"PRSTAFF" 96 DEClMAL(5,2) COLUMN (NOT NULL) IN "USER1"."TPROJ'
"PRSTDATE" 96 CHARACTER(6) COLUMN (NOT NULL) IN "USER1"."TPROJ"
"STARTDATE" 56 CHARACTER(6) COLUMN (NOT NULL) IN "USER1"."TEMPRACT"
"TEMPRACT" **** TABLE IN "USERI'

31 56 57 96
"TPROJ" **** TABLE IN "USER1"

96 97
"USER1" **** COLLECTION

31 56 96 96
ACTNO 11 SMALL INTEGER PRECISION(4,0) IN RPTl
DONE1 **** LABEL

63
DONE2 **** LABEL

105
EMPLOYEE_COUNT 17 SMALL INTEGER PRECISION(4,0) IN RPT2
EMPNO 11 CHARACTER(6) IN RPT1

Figure C-2 (Part 5 of 6). Sample PLiI Program Using SOL Statements

C-14 Sal Programmer's Guide

Page

4 J

5

J

J

5728STI R02 M00 891006 IBM SQL/400 PLIEX 89-03-28 15:25:24 Page 6
CROSS REFERENCE

EMPTIME 11 DECIMAL(5,2) IN RPT1
ENDDATE 11 CHARACTER(6) IN RPTl
NEW TOTAL TIME 19 DEClMAL(8,2) IN RPT2
OLD-TOTAL-TIME 18 DEClMAL(8,2) IN RPT2
PERCENTAGE 4 DECIMAL(5,2)

32 95
PROJ ECT _NAME 16 CHARACTER(36) IN RPT2
PROJID 3 CHARACTER (3)

33 57 99
PROJNO 11 CHARACTER (6) IN RPTl
PROJNO 15 CHARACTER (6) IN RPT2
REPORT_ERROR **** LABEL

38
RPTl 10 STRUCTURE

67
RPT2 14 STRUCTURE

109
STARTDATE 11 CHARACTER(6) IN RPTl
SYSPRINT 7
UPDATE ERROR **** LABEL
No errors found in source

143 Source records processed
* * * * * END o F LIS TIN G * * * * *

Figure C-2 (Part 6 of 6). Sample PLII Program Using SQL Statements

Appendix C. Sample Programs Using SQL/400 Statements C-1S

SQl Statements in RPG Programs

5728ST1 R02 M00 891006 IBM SQL/400
Source type ••••••••••••••• RPG
Program name •••••••••••••• USER1/RPGEX
Source file ••••••••••••••• *LIBL/QRPGSRC
Member *PGM
Options *SRC *XREF
Target release •••••••••••• *CURRENT
INCLUDE fi 1 e •••••••••••••• *LlBL/*SRCFI LE
Commit *CHG
Generation level 10
Printer file *LlBL/SQLPRT
Text •••••••••••••••••••••• *SRCMBRTXT
Source member changed on 89-03-17 11:30:49

RPGEX

Figure C-S (Part 1 of 7). Sample RPG Program Using SQL Statements

C-16 Sal Programmer's Guide

89-03-28 15:24:49 Page

J

J

J

L 57285T1 R02 MOO 891006 IBM 5QL/400 RPGEX 89-03-28 15:24:49 Page 2
Record * ••. + ••• 1 ••• + •.• 2 ••• + ... 3 ••• + ••• 4 ••• + •.. 5 ••• + .•. 6 ••. + •.. 7 ••• + ••• 8 SEQNBR Last change

1 H 100
2 F* F"ile declaration for QPRINT 200
3 F* 300
4 FQPRI NT 0 132 PRINTER 400
5 1* 500
6 1* Structure for report 1. 600
7 !* 700
8 D IRPTl E DSTEMPRACT 800
9 I STARTDATE STARDT 900

10 I ENDDATE ENDDT 1000
11 I EMPTIME EMPTIM 1100
12 1* 1200
13 1* Structure for report 2. 1300
14 1* 1400
15 IRPT2 OS 1500
16 I 1 6 PRJNUM 1600
17 I 7 42 PNAME 1700
18 I B 43 440EMPCNT 1800
19 I P 45 4920LDTIM 1900
20 I P 50 542NEWTIM 2000
21 1* 2100
22 I DS 2200
23 I 1 3 PROJ 10 2300
24 D I P 4 62PERCNT 2400
25 C* 2500
26 C Z-ADD.06 PERCNT 2600
27 C MOVEL'MA%' PROJID 2700
28 C* 2800
29 C* Update the selected projects by the new percentage. If an 2900
30 C* error occurs during the update, ROLLBACK the changes. 3000
31 C* 3100
32 11 C/EXEC SQL WHENEVER SQLERROR GOTO UPDERR 3200
33 C/END-EXEC 3300
34 C* 3400
35 II C/EXEC SQL 3500
36 C+ UPDATE USER1/TEMPRACT 3600
37 C+ SET EMPTIME = EMPTIME * (1+:PERCNT) 3700
38 C+ WHERE PROJNO LIKE: PROJID 3800
39 C/END-EXEC 3900
40 C* 4000
41 C* Commit changes. 4100
42 C* 4200
43 II C/EXEC SQL COMMIT 4300
44 C/END-EXEC 4400
45 C* 4500
46 C/EXEC SQL WHENEVER SQLERROR GO TO RPTERR 4600
47 C/END-EXEC 4700
48 C* 4800
49 C* Report the updated statistics for each employee assigned to 4900
50 C* selected projects. 5000
51 C* 5100
52 C* Write out the header for report 1. 5200
53 C* 5300
54 C EXCPTRECA 5400
55 D C/EXEC SQL declare cl cursor for 5500
56 C+ select * from userl/tempract 5600
57 C+ where tempract.projno like :projid 5700
58 C+ order by empno 5800
59 C/END-EXEC 5900
60 C* 6000

Figure C-3 (Part 2 of 7). Sample RPG Program Using SQL Statements

Appendix C. Sample Programs Using SQLl400 Statements C-17

5728STl R02 MOO 891006 IBM SQL/400 RPGEX
Record

61
62
63
64
65
66
67

* ... + ... 1 ••• + •.• 2 ..• + ••• 3 .•• + ..• 4 ••• + ••• 5 .•• + ••• 6 ..• + .•• 7 ••• + ..• 8
C/EXEC SQL

D C+ OPEN Cl
C/END-EXEC
C*
C* Fetch and wri te the rows to QPRINT.
C*

68 III
69

C/EXEC SQL WHENEVER NOT FOUND GO TO DONE1
C/END-EXEC
C SQLCOD DOUNEO

70 m
71

C/EXEC SQL
C+ FETCH C1 INTO :RPT1

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

C/END-EXEC
C
C
C

1m C/EXEC SQL
C+ CLOSE C1
C/END-EXEC
C*

DONE!

EXCPTRECB
END
TAG

C* For each project selected, generate a report containing the
C* project number, project name, the old total of employee hours,
C* and the new total of employee hours.
C*
C* Write out the header for report 2.
C*
C m C/EXEC SQL

EXCPTRECC

C+ DECLARE C2 CURSOR FOR
C+ SELECT TEMPRACT.PROJNO, PRNAME, COUNT(*),
C+ SUM(EMPTIME/(1.0+:PERCNT)),SUM(EMPTIME)
C+ FROM USER1/TEMPRACT, USER1/TPROJ
C+ WHERE TEMPRACT.PROJNO = TPROJ.PROJNO
C+ GROUP BY TEMPRACT.PROJNO, PRNAME
C+ HAVING TEMPRACT.PROJNO LIKE :PROJID
C+ ORDER BY 1
C/END-EXEC
C*
C/EXEC SQL OPEN C2
C/END-EXEC
C*
C* Fetch and write the rows to QPRINT.
C*
C/EXEC SQL WHENEVER NOT FOUND GO TO DONE2
C/END-EXEC
C SQLCOD DOUNEO
C/EXEC SQL

II C+ FETCH C2 INTO : RPT2
C/END-EXEC
C
C
C DONE2
C/EXEC SQL CLOSE C2
C/END-EXEC
C
C*

EXCPTRECD
END
TAG

GOTO FINISH

C* Error occured while updating table.
C* changes.
C*
C
C

UPDERR TAG
EXCPTRECE

Inform user and rollback

Figure C-3 (Part 3 of 7). Sample RPG Program Using SQL Statements

C-18 SOL Programmer's Guide

89-03-28 15:24:49 Page
SEQNBR Last change

6100
6200
6300
6400
6500
6600
6700
6800
6900
7000
7100
7200
7300
7400
7500
7600
7700
7800
7900
8000
8100
8200
8300
8400
8500
8600
8700
8800
8900
900()
9100
9200
9300
9400
9500
9600
9700
9800
9900

10000
10100
10200
10300
10400
10500
10600
10700
10800
10900
11000
11100
11200
11300
11400
11500
11600
11700
11800
11900
12000

3 J

57285Tl R02 MOO 891006 IBM SQL/400 RPGEX
Record * ••• + ••• 1 ••• + ••• 2 ••• + ••• 3 ••• + ••• 4 ••• + ••• 5 ••• + ••• 6 ••• + ••• 7 ••• + ••• 8

121 II C/EXEC SQL WHENEVER SQLERROR CONTI NUE
122 C/END-EXEC
123 C*
124 m C/EXEC SQL
125 C+ ROLLBACK
126 C/END-EXEC
127 C . GOTO FINISH
128 C*
129 C* Error occured while generating reports. Inform user and exit.
130 C*
131 C RPTERR
132 C
133 C*
134 C* All done.
135 C*
l36 C FINISH
l37 C
138 OQPRINT E 0201
l39 0
140 0
141 0 E 01
142 0
143 0
144 0
145 0
146 0 E 02
147 0
148 0
149 0
150 0
151 0 E 01
152 0
153 0
154 0
155 0
156 0 E 22
157 0
158 0
159 0 E 01
160 0
161 0
162 0
163 0
164 0 E 02
165 0
166 0
167 0
168 0
169 0
170 0 E 01
171 0
172 0
173 0
174 0
175 0
176 0 E 01
177 0
178 0
179 0
180 0

TAG
EXCPTRECF

TAG
SETON

RECA

RECA

RECA

RECB
EMPNO
PROJNO
ACTNO L
EMPTIML
RECC

RECC

RECC

RECD
PRJNUM
PNAME
EMPCNTL
OLDTIML
NEWTIML
RECE

SQLCODL

LR

21 'UPDATED EMPLOYEE PROJ'
37 'ECT ACCOUNT DATA'

8 'EMPLOYEE'
17 'PROJECT'
26 'ACCOUNT'
36 'EMPLOYEE'

7 'NUMBER'
16 'NUMBER'
25 'NUMBER'
34 'HOURS'

7
16
26
37

42 'ACCUMULATED STATISTIC'
54 'S BY PROJECT'

7 'PROJECT'
56 'NUMBER OF'
66 'PREVIOUS'
76 'CURRENT'

6 'NUMBER'
21 'PROJECT NAME'
56 'EMPLOYEES'
64 'HOURS'
75 'HOURS'

6
45
55
67
77

28 ,*** ERROR Occurred whi 1 e'
52 ' updating table. SQLCODE'
53 '='
62

Figure C-3 (Part 4 of 7). Sample RPG Program Using SQL Statements

5728STI R02 M00 891006 IBM SQL/400 RPGEX
Record * ••• + ••• 1 ••• + ••• 2 ••• + ••• 3 ••• + ••• 4 ••• + ••• 5 ••• + ••• 6 ••• + •••

181 0 E 01 RECF
182 0
183 0
184 0
185 0

28 '*** ERROR Occurred while'
52 ' generating reports. SQL'
57 'CODE='

SQLCODL 67
* * * * * END 0 F SOU R C E * * * * *

... + .•• 8

Figure C-3 (Part 5 of 7). Sample RPG Program USing SQL Statements

89-03-28 15:24:49 Page
SEQNBR Last change
12100
12200
12300
12400
12500
12600
12700
12800
12900
l3000
13100
l3200
l3300
13400
l3500
13600
l3700
l3800
13900
14000
14100
14200
14300
14400
14500
14600
14700
14800
14900
15000
15100
15200
15300
15400
15500
15600
15700
15800
15900
16000
16100
16200
16300
16400
16500
16600
16700
16800
16900
17000
17100
17200
17300
17400
17500
17600
17700
17800
17900
18000

SEQNBR
18100
18200
18300
18400
18500

89-03-28 15:24:49
Last change

Page

4

Appendix C. Sample Programs USing SQLl400 Statements C-19

5728STl R02 MOO 891006 IBM SQL/400 RPGEX 89-03-28 15:24:49 Page J CROSS REFERENCE
Data Names Define Reference
"ACTNO" 35 SMALL INTEGER PRECISION(4,O) COLUMN (NOT NULL) IN "USER1"."TEMPRACT"
"el l• 55 CURSOR

61 70 76
IIC2" 87 CURSOR

98 106 112
"DEPTMGR" 87 CHARACTER (6) COLUMN (NOT NULL) IN "USER1"."TPROJ"
"DEPTNO" 87 CHARACTER (3) COLUMN (NOT NULL) IN "USER1"."TPROJ"
"EMPNO" 35 CHARACTER (6) COLUMN (NOT NULL) IN "USERl"."TEMPRACT"
"EMPNO" **** COLUMN

55
"EMPTIME" **** COLUMN

35 35 87 87
"EMPTIME" 35 DECIMAL(5,2) COLUMN (NOT NULL) IN ·USERl"."TEMPRACT"
"ENDDATE" 35 CHARACTER(6) COLUMN (NOT NULL) IN "USERl"."TEMPRACT"
"MAJPROJ" 87 CHARACTER(6) COLUMN (NOT NULL) IN "USERl"."TPROJ"
"PRENDATE" 87 CHARACTER(6) COLUMN (NOT NULL) IN "USERl"."TPROJ"
"PRNAME" **** COLUMN

87 87
"PRNAME" 87 CHARACTER(36) COLUMN (NOT NULL) IN "USERl"."TPROJ"
"PROJNO" **** COLUMN

35

J "PROJNO" 35 CHARACTER(6) COLUMN (NOT NULL) IN "USERl". "TEMPRACT"
"PROJNO" **** COLUMN IN "USERl". "TEMPRACT"

55 87 87 87 87
"PROJNO" **** COLUMN IN "USERl". "TPROJ"

87
·PROJNO" 87 CHARACTER(6) COLUMN (NOT NULL) IN "USERl"."TPROJ"
"PRSTAFF" 87 DECIMAL(5,2) COLUMN (NOT NULL) IN "USERl"."TPROJ"
"PRSTDATE" 87 CHARACTER(6) COLUMN (NOT NULL) IN "USERl". "TPROJ"
"STARTDATE" 35 CHARACTER(6) COLUMN (NOT NULL) IN "USERl". "TEMPRACT"
"TEMPRACT" **** TABLE IN "USERl"

35 55 55 87
"TPROJ" **** TABLE IN "USERl"

87 87
"USER1" **** COLLECTION

35 55 87 87
ACTNO 8 SMALL INTEGER PRECISION(4,0) IN RPTl J DONE1 75 LABEL

67
DONE2 III LABEL

103
EMPCNT 18 SMALL INTEGER PRECISION(4.0) IN RPT2

Figure C-3 (Part 6 of 7). Sample RPG Program Using SOL Statements

5728STl R02 MOO 891006 IBM SQL/400 RPGEX 89-03-28 15:24:49 Page 7
CROSS REFERENCE

EMPNO 8 CHARACTER(6) IN RPTI
EMPTIM 8 DECIMAL(5,2) IN RPTI
ENDDT 8 CHARACTER(6) IN RPTI
FINISH 136 LABEL
NEWTIM 20 DECIMAL(9,2) IN RPT2
OLDTIM 19 DECIMAL (9 ,2) IN RPT2
PERCNT 24 DECIMAL(5,2)

35 87
PNAME 17 CHARACTER(36) IN RPT2
PRJNUM 16 CHARACTER(6) IN RPT2
PROJID 23 CHARACTER (3)

35 55 87
PROJNO 8 CHARACTER(6) IN RPTl
RPTERR 131 LABEL

46
RPTl 8 STRUCTURE

70
RPT2 15 STRUCTURE

106
STARDT 8 CHARACTER (6) IN RPTl
UPDERR 119 LABEL
No errors found in source

185 Source records processed
* * * * * END 0 F LIS TIN G * * * * *

Figure C-3 (Part 7 of 7). Sample RPG Program Using SQL Statements

C-20 Sal Programmer's Guide

L SQl Statements in C Programs

5728STl R02 M00 891006
Source type •••••••••••••.. C
Program name •••.•••••....• USER1/CEX
Source file•...•••..•• *LIBL/QCSRC
Member••.•••••••••••• *PGM
Options .•••••••..•.••••••• *SRC *XREF
INCLUDE file •.••••...•..•. *LIBL/*SRCFILE
Commi t ..•....•...•.•••.... *CHG
Generation level ..•••..... 10
Margi ns *SRCFI LE
Printer file *LIBL/SQLPRT
Text .•.••••••••••••••...•. *SRCMBRTXT
Source member changed on 89-03-28 12: 31: 54

IBM SQL/400 CEX

Figure C-4 (Part 1 of 6). Sample C Program Using SQL Statements

89-03-28 15:26:00 Page

Appendix C. Sample Programs Using SQLl400 Statements C-21

5728STl R02 M00 891006
Record * ... + ... 1 ... + ...

IBM SQL/400 CEX
... + ••. 3 ••• + ••. 4 ••• + ••• 5 ... + ... 6 ... + ... 7 ... + ••• 8

1 #include 'string.h'
2 #include 'stdlib.h'
3 #include 'stdio.h'
4
5 main()
6 {
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

char projid??(3??);
double percentage;

/* File declaration for qprint */
FI LE *qpri nt;

/* Structure for report 1 * /
struct {

char empno?? (7??);
char projno??(7??);
short actno;
char startdate?? (7??);
char enddate??(7??);
float emptime;
} rptl;

/* Structure for report 2 */
struct {

char projno??(7??);
char project name?? (37??);
short employee count;
double old total time,new total time;

} rpt2; - - --

EXEC SQL INCLUDE SQLCA;

percentage = 0.06;
strcpy(proj id, "MA%");
qprint=fopen("QPRINT", 'w');

/* Update the selected projects by the new percentage.
/* occurs during the update, ROLLBACK the changes.
EXEC SQL WHENEVER SQLERROR GO TO update error;
EXEC SQL -

UPDATE USER1/TEMPRACT
SET EMPTIME = EMPTIME * (l+:percentage)
WHERE PROJNO LIKE :projid;

/* Commit changes */
EXEC SQL

COMMIT;
EXEC SQL WHENEVER SQLERROR GO TO report_error;

If an error * /
*/

/* Report the updated statistics for each employee assigned to the */
/* selected projects. */

/* Write out the header for Report 1 */
fprintf(qprint, 'UPDATED EMPLOYEE PROJECT ACCOUNT DATA");
fpri ntf (qpri nt, "\n\nEMPLOYEE PRO.] ECT ACCOUNT EMPLOYEE") ;
fprintf(qprint, "\n NUMBER NUMBER NUMBER HOURS\n");

exec sql
declare c1 cursor for

sel ect *

Figure C-4 (Part 2 of 6). Sample C Program Using SQL Statements

C-22 Sal Programmer's Guide

SEQNBR
100
200
300
400
500
600
700
800
900

1000
1100
1200
l300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700
4800
4900
5000
5100
5200
5300
5400
5500
5600
5700
5800
5900
6000

89-03-28 15:26:00
Last change

89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28

Page 2 J

5728ST1 R02 M00 891006 IBM SQL/400 CEX
Record * ... + ... 1 ... + ••• 2 .•. + ••. 3 •.. + ••• 4 ••• + .•• 5 ••. + ••• 6 ••• + •.• 7 .•. + ••• 8

61 from user1/tempract
62 where tempract.projno like :projid
63 order by empno;
64 EXEC SQL
65 OPEN C1;

/* Fetch and write the rows to QPRINT * /
EXEC SQL WHENEVER NOT FOUND GO TO done1;

do {
EXEC SQL

FETCH C1 INTO : rptl;
fprintf(qprint,"\n %6s %6s %6d %8.2f",

rptl.empno,rptl.projno,rptl.actno,rptl.emptime);
}

whil e (SQLCODE==O);

done1 :
EXEC SQL

CLOSE C1;

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

/* For each project selected, generate a report containing the */
/* project number, project name, the old total of employee hours, */
/* and the new total of employee hours for each project. */

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

/* Write out the header for Report 2 * /
fprintf(qprint, "\n\n\n ACCUMULATED STATISTICS\

BY PROJECT");
fprintf(qprint, "\n\nPROJECT

NUMBER OF PREVIOUS CURRENT");
fprintf(qprint, "\nNUMBER PROJECT NAME

EMPLOYEES HOURS HOURS\n");

EXEC SQL
DECLARE C2 CURSOR FOR

SELECT TEMPRACT.PROJNO, PRNAME, COUNT(*),
SUM(EMPTIME/(1.0+:percentage)),SUM(EMPTIME)

FROM USERI/TEMPRACT, USER1/TPROJ
WHERE TEMPRACT.PROJNO=TPROJ.PROJNO
GROUP BY TEMPRACT.PROJNO, PRNAME
HAV I NG TEMPRACT. PROJ NO LI KE : proj i d
ORDER BY 1;

EXEC SQL
OPEN C2;

/* Fetch and write the rows to QPRINT */
EXEC SQL WHENEVER NOT FOUND GO TO done2;

do {
EXEC SQL

FETCH C2 INTO :rpt2;
fprintf(qprint,"\n%6s %36s %6d %8.2f %8.2f",

}

rpt2.projno,rpt2.project name,rpt2.employee count,
rpt2.o1d_total_time,rpt2~new_total_time); -

whil e (SQLCODE==0);

done2:
EXEC SQL

CLOSE C2;

\

\

Figure C-4 (Part 3 of 6). Sample C Program Using SQL Statements

SEQNBR
6100
6200
6300
6400
6500
6600
6700
6800
6900
7000
7100
7200
7300
7400
7500
7600
7700
7800
7900
8000
8100
8200
8300
8400
8500
8600
8700
8800
8900
9000
9100
9200
9300
9400
9500
9600
9700
9800
9900

10000
10100
10200
10300
10400
10500
10600
10700
10800
10900
11000
11100
11200
11300
11400
11500
11600
11700
11800
11900
12000

89-03-28 15:26:00
Last change

89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28

Page 3

Appendix C. Sample Programs Using SQLl400 Statements C-23

5728ST1 R02 M00 891006 IBM SQL/400 CEX
Record * ... + ••. I ••• + ••• 2 ••• + ••• 3 ••• + ..• 4 ••• + ••• 5 ••• + ••• 6 ••• + ••• 7 ••• + ••• 8

121 goto finished;

/* Error occured while updating table. Inform user and rollback
/* changes.

update error:
EXEC-SQL WHENEVER SQLERROR CONTINUE;
fprintf(qpri nt, "*** ERROR Occurred whi I e updati ng table. SQLCODE="

"%5d\n" ,SQLCODE) ;
EXEC SQL

ROLLBACK;
goto finished;

*/
*/

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

/* Error occured while generating reports. Inform user and exit. */
report error:

fpriiitf(qpri nt, "*** ERROR Occurred whil e generati ng reports. "
"SQLCODE=%5d\n",SQLCODE);

goto finished;

/* All done */
finished:

fclose(qprint);
exit (0) ;

* * * * * END 0 F SOU R C E * * * * *

Figure C-4 (Part 4 of 6). Sample C Program Using SQL Statements

5728STl R02 M00 891006 IBM SQL/400 CEX
CROSS REFERENCE

Data Names Define Reference

SEQNBR
12100
12200
12300
12400
12500
12600
12700
12800
12900
13000
13100
13200
13300
13400
13500
13600
13700
13800
13900
14000
14100
14200
14300
14400

89-03-28 15:26:00
Last change

89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28
89-03-28

89-03-28 15:26:00

"ACTNO" 61 SMALL INTEGER PRECISION(4,0) COLUMN (NOT NULL) IN "USERI". "TEMPRACT"
"e1 11 59 CURSOR

65 72 80
"C2 11 95 CURSOR

104 111 120
"DEPTMGR" 98 CHARACTER (6) COLUMN (NOT NULL) IN "USERI"."TPROJ"
"DEPTNO" 98 CHARACTER (3) COLUMN (NOT NULL) IN "USERI"."TPROJ"
"EMPNO" **** COLUMN

63
"EMPNO" 61 CHARACTER(6) COLUMN (NOT NULL) IN "USERl". "TEMPRACT"
"EMPTIME" 61 DECIMAL(5,2) COLUMN (NOT NULL) IN "USERI· ."TEMPRACT"
"EMPTlME" **** COLUMN

42 42 97 97
"ENDDATE" 61 CHARACTER (6) COLUMN (NOT NULL) IN "USERI". "TEMPRACT"
"MAJPROJ" 98 CHARACTER (6) COLUMN (NOT NULL) IN "USER1"."TPROJ"
"PRENDATE· 98 CHARACTER (6) COLUMN (NOT NULL) IN "USERI"."TPROJ"
"PRNAME" **** COLUMN

96 100
"PRNAME" 98 CHARACTER (36) COLUMN (NOT NULL) IN ·USERl· ."TPROJ"
II PROJNO II **** COLUMN IN "USERl". "TEMPRACT"

43 62 96 99 100 101
"PROJNO" 61 CHARACTER (6) COLUMN (NOT NULL) IN "USERl"."TEMPRACT"
"PROJNO" **** COLUMN IN "USERI". "TPROJ"

99
"PROJNO" 98 CHARACTER(6) COLUMN (NOT NULL) IN "USERI"."TPROJ"
"PRSTAFF" 98 DECIMAL(5,2) COLUMN (NOT NULL) IN "USERI"."TPROJ"
"PRSTDATE" 98 CHARACTER (6) COLUMN (NOT NULL) IN ·USERI"."TPROJ"
"STARTDATE" 61 CHARACTER(6) COLUMN (NOT NULL) IN "USER1". "TEMPRACT"
"TEMPRACT" **** TABLE IN "USER1·

41 61 62 98
"TPROJ" **** TABLE IN "USER1"

98 99
"USERI" **** COLLECTION

41 61 98 98
actno 17 SMALL INTEGER PRECISION(4,0) IN rptl
done1 **** LABEL

68
done2 **** LABEL

107
employee_count 27 SMALL INTEGER PRECISION(4,0) IN rpt2
empno IS VARCHAR(7) IN rptl

Figure C-4 (Part 5 of 6). Sample C Program Using SQL Statements

C-24 Sal Programmer's Guide

Page 4

Page 5

L

L

5728STl R02 MOO 891006 IBM SQL/400 CEX 89-03-28 15:26:00 Page
CROSS REFERENCE

emptime 20 FLOAT (24) IN rptl
enddate 19 VARCHAR(7) IN rptl
new total time 28 FLOAT(53) IN rpt2
old-total-time 28 FLOAT(53) IN rpt2
percentage 8 FLOAT (53)

42 97
proj ect_name 26 VARCHAR(37) IN rpt2
proj id 7 VARCHAR(3)

43 62 101
projno 16 VARCHAR(7) IN rptl
projno 25 VARCHAR(7) IN rpt2
report_error **** LABEL

48
rptl 21 STRUCTURE

72
rpt2 29 STRUCTURE

111
startdate 18 VARCHAR(7) IN rptl
update_error **** LABEL
No errors found in source

144 Source records processed
* * * * * END 0 F LIS TIN G * * * * *

Figure C-4 (Part 6 of 6). Sample C Program Using SQL Statements

Report Produced by Sample Programs
The following report is produced by each of the preceding sample programs.

UPDATED EMPLOYEE PROJECT ACCOUNT DATA

EMPLOYEE
NUMBER

000060
000110
000160
000170
000170
000180
000180
000190
000210
000220
000230

PROJECT
NUMBER

MAWJ0
MA2112
MA21 13

PROJECT ACCOUNT EMPLOYEE
NUMBER NUMBER HOURS

MA2100 10 530.00
MA2100 20 424.00
MA2100 20 530.00
MA2l00 20 530.00
MA2112 70 106.00
MA2l00 20 689.00
MA2113 70 424.00
MA2112 70 106.00
MA2113 80 530.00
MA2112 50 954.00
MA2113 70 318.00

ACCUMULATED STATISTICS BY PROJECT

PROJECT NAME

MFG AUTOMATION
ROBOT DESIGN
PROD CONTROL PROG

NUMBER OF
EMPLOYEES

5
3
3

PREVIOUS
HOURS

2550.00
1100.00
1200.00

Figure C-S. Report Produced by Sample Programs

CURRENT
HOURS

2703.00
1166.00
1272.00

RSLS765-0

6

Appendix C. Sample Programs Using SQU400 Statements C-2S

J

J

C-26 sal Programmer's Guide

Glossary

access path. The path used to locate data specified in
Sal statements. An access path can be either indexed
or sequential, or a combination of both.

access plan. The control structure produced during
compile time that is used to process Sal statements
encountered when the program is run.

ANSI. American National Standards Institute

application. A program or set of programs that
perform a task; for example, a payroll application.

attribute. In database design, a characteristic of an
entity; for example, the telephone number of an
employee is one of that employee's attributes.

authorization 10. A user profile. A name identifying a
user to whom privileges can be granted.

automatic bind. When an application program is being
run and the access plan is not valid, binding takes
place automatically; that is, without a user issuing a
CRTSOlxxx command, where xxx is RPG, PLI, CBl, or
C.

binary. An Sal data type indicating that the data is a
binary number with a precision of 15 (halfword) or 31
(fullword) bits.

bind. The process by which the output from the Sal
precompiler is converted to a usable structure called
an access plan. This process is the one during which
access paths to the data are selected and some author
ization checking is performed. There are two types of
bind used by SOLl400: automatic and dynamic (see
automatic bind and dynamic bind).

catalog. Tables, maintained by the database manager,
that contain descriptions of objects, such as tables,
views, and indexes.

catalog views. A set of views containing information
about the objects in a collection, such as tables, views,
indexes, and column definitions.

character string. A sequence of bytes or characters
associated with a single-byte character set.

clause. A distinct part of a statement in the language
structure, such as a SELECT clause or a WHERE
clause.

collection. A set of objects created by SOLl400 that
contains tables, views, indexes, and other system
objects (such as a program) created by the user. An
Sal collection consists of a library; a data dictionary
that contains description and information for all tables,

© Copyright IBM Corp. 1988, 1989

Views, indexes, and files created into the library; an
Sal catalog; and a journal and journal receiver that
are used to journal changes to all tables created into
the collection.

column. The vertical part of a table. A column has a
name and a particular data type (for example, char
acter, decimal, or integer).

column function. A process that calculates a value
from a set of values and expresses it as a function
name followed by an argument enclosed in paren
theses.

commit. The process that data changed by one appli
cation or user to be used by other applications or
users. When a commit operation occurs, the locks are
released to allow other applications to use the changed
data.

commit point. The point in time when data is consid
ered to be consistent.

comparison operator. A symbol (such as =, >, <)
used to specify a relationship between two values.

concurrency. The shared use of resources by multiple
interactive users or application programs at the same
time.

correlation name. An identifier that deSignates a table,
a view, or an individual row of a table or view within a
single Sal statement. The name can be defined in any
FROM clause or in the first clause of an UPDATE or
DELETE statement.

cursor. A named control structure used by an applica
tion program to point to a row of data. The position of
the row is within a table or view, and the cursor is used
to interactively select rows from the columns.

data type. An attribute of columns, constants, and host
variables.

DBCS. See double-byte character set (OBeS).

default value. A predetermined value, attribute, or
option that is assumed when no other value is explicitly
specified. For example, the value of a column is a
nonnull value determined by the data type of the
column.

delimited identifier. A sequence of one or more char
acters of the standard character set enclosed within
SOL escape characters used to form a name.

delimiter token. A string constant, a delimited identi
fier, a symbol (for example, II, I, " +, or -), or other

Glossary G-1

special characters (for example, period, comma, paren
theses).

double-byte character set (OBCS). A set of characters
used by national languages, such as Japanese and
Chinese, that have more symbols than can be repre
sented by the 256 single-byte EBCDIC positions. Each
character is 2 bytes in length, and therefore requires
special hardware to be displayed or printed. Contrast
with single-byte character set.

dynamic bind. When Sal statements are entered
interactively, binding is done dynamically (that is, as
the Sal statements are entered).

dynamic SOL. Sal statements that are prepared and
processed within a program while the program is
running. The Sal source statements are contained in
host-language variables rather than being coded
directly into the application program. The Sal state
ment might change several times while the program is
running.

EBCDIC. See extended binary coded decimal inter
change code (EBCDIC).

embedded SOL. Sal statements that are embedded
within a program and are prepared during the program
preparation process before the program is run. After it
is prepared, the statement itself does not change,
although values of host variables specified within the
statement might change.

escape character. The symbol used to enclose a
delimited identifier. This symbol is the quotation mark
("), except in COBOL programs where the symbol can
be assigned by the user as either a quotation mark or
an apostrophe.

expression. An operand, or a collection of operators
and operands, that yields a single value.

extended binary coded decimal Interchange code
(EBCDIC). A coded character set of 256 8-bit charac
ters.

fixed-length string. A character string whose length Is
specified and cannot be changed. Contrast with
varying-length string.

fullword binary. A binary number with a precision of
31 bits. See also integer.

full select. That form of the select-statement that
includes ORDER BY or UNION operators.

function. A column function or a scalar function.

halfword binary. A binary number with a precision of
15 bits.

G-2 Sal Programmer's Guide

host language. Any programming language, such as
COBOL, PLlI, C, and RPG, in which you can embed Sal
statements.

host structure. In an application program, a structure
referred to by embedded Sal statements. In RPG, this
is called a data structure; in PLII and C, this is known
as a structure; in COBOL, this is called a group item.

host variable. In an application program, a variable
referred to by embedded Sal statements. In RPG, this
is called a field name; in PLII and C, this is known as a
variable; in COBOL, this is called a data item.

Identifier. See delimited identifier and ordinary identi
fier.

index. A set of pOinters that are logically arranged by
the values of a key. Indexes provide quick access to
data and can enforce uniqueness on the rows in a
table.

Index key. The set of columns in a table used to deter
mine the order of indexed entries.

indicator variable. A variable used to represent the
null value in an application program. For example, if
the value for the results column is null, Sal puts a neg
ative value in the indicator variable.

Integer. An Sal data type indicating that the data is a
binary number with a precision of 31 bits.

loin. A relational operation that allows retrieval of
data from two or more tables based on matching
column values.

key. A column or an ordered set of columns identified
in the description of an index.

keyword. A name that identifies a parameter used in
an Sal statement or Sal precompiler command. See
also parameter.

lock. The process by which integrity of data is
ensured. The prevention of concurrent users from
accessing inconsistent data.

long string. A string whose actual length, or a varying
length string whose maximum length, is greater than
254 bytes or 127 double-byte characters.

mixed data string. A character string that can contain
both single-byte and double-byte characters.

nUll. A special value that indicates the absence of
information.

oblect. Anything that can be created or manipulated
with Sal statements, such as collections, tables, views,
or indexes.

J

J

L
ordinary identifier. A letter followed by zero or more
characters, each of which is a letter ($, @, #, a-z, and
A-Z), a number, or the underscore character used to
form a name. An ordinary identifier must not be iden
tical to a reserved word.

ordinary token. A numeric constant, and ordinary
identifier, a host variable, or a keyword.

page. A unit of storage equal to 512 bytes.

parameter. The keywords and values that further
define SQl precompiler commands and SQl state
ments.

plan. See access plan.

precompile. A processing of programs containing SQl
statements that takes place before a compile. SQl
statements are replaced with statements that wi II be
recognized by the host language compiler. The output
from this precompile includes source code that can be
submitted to the compiler and used in the bind process.

predicate. An element of a search value that
expresses or implies a comparison operation.

prepared SOL statement. A named object that is the
form of an SQl statement that was processed by the
PREPARE statement.

privilege. A capability given to a user by the pro
cessing of a GRANT statement.

rebind. The creation a new access plan for a program
that was previously bound. If, for example, you add an
index for a table that is used by your application
program, SQLl400 may automatically bind the applica
tion again to take advantage of that index.

real table. A physical file or a table created by SQl.

recovery. The process of rebuilding databases after a
system failure.

relational database. A data structure perceived by its
users as a collection of tables.

result column. An expression in a SELECT clause that
SQl selects for an application program.

result table. The set of rows that SQl selects for an
application program. The program uses a cursor to
retrieve the rows one by one into a host structure or a
set of host variables.

rollback. The process of restoring data changed by an
application to the state at its last commit point.

row. The horizontal part of a table. A row consists of
a sequence of values, one for each column of the table.

SBCS. See single-byte character set (SBCS).

scalar function. An operation that produces a single
value from another value and expresses it in the form
of a function name followed by a list of arguments
enclosed in parentheses.

search condition. A criterion for selecting rows from a
table. A search condition consists of one or more pred
icates.

short string. A string whose actual length, or a
varying-length string whose maximum length, is less
than or equal to 254 bytes.

single-byte character set (SBCS). A character set in
which each character is represented by a one-byte
code.

small integer. An SQl data type indicating that the
data is a binary number with a precision of 15 bits.

special register. A storage area whose primary use is
to store information produced in conjunction with the
use of specific SQl functions. The SQLl400 special
register is (named) USER.

SOL. See Structured Query Language.

SOLCA. See SQL communication area (SQLCA).

SOLDA. See SQL descriptor area (SQLDA).

SOL communication area (SOLCA). A collection of var
iables that are used by SQl to provide an application
program with information about the processing of SQl
statements within the program.

SOL descriptor area (SOLDA). A collection of vari
ables that are used in the processing of certain SQl
statements. The SQlDA is intended for dynamic SQl
programs.

static SOL. SQl statements that are embedded within
a program, and are prepared during the program prep
aration process before the program is run. After being
prepared, the statement itself does not change
(although values of host variables specified by the
statement might change).

string. A character string.

string delimiter. A symbol used to enclose an SQl
string constant. This symbol is the apostrophe (')'
except in COBOL applications, in which case the
symbol (either an apostrophe or a quotation mark) may
be assigned by the user.

Structured Ouery language (SOL). A language that
can be used within host programming languages or
interactively to access data and to control access to
resources.

Glossary G-3

subselect. That form of a query that does not include
ORDER BY or UNION operators.

table. A named data object consisting of a specific
number of columns and some number of unordered
rows.

token. See delimited token and ordinary token.

union. An SOL operation that combines the results of
two subselects. Union is often used to merge lists of
values obtained from several tables.

unique index. An index that assures that no identical
key values are stored in a table.

unit of recovery. A sequence of operations within a
unit of work between two commit pOints.

G-4 SOL Programmer's Guide

unlock. To release an object or system resource that
was previously locked and return it to general avail
ability.

user profile. An object with a unique name that con
tains the user's password, the list of special authorities
assigned to a user, and the objects the user owns. See
also authorization 10.

value. Smallest unit of data manipulated in SOL.

varying-length string. A character string whose length
is not fixed, but variable within limits. Contrast with
fixed-length string.

view. An alternative representation of data from one
or more tables. A view can include all or some of the
columns contained in the table or tables on which it is
defined.

J

J

L Index

A
abbreviations

COBOL 5-7
PLII 7-7

access plans 10-18
adding to the end of a table 14-10
address variables used in dynamic SQl 9-1
advanced coding techniques

complex search conditions 3-26
insert multiple rows into a table 3-32

notes on 3-32
join 3-29
selecting data from more than one table 3-29

allocating storage 9-10
allocating storage, SQlDA, example 9-10
allowable declarations for host variables

C 8-6
COBOL 5-6
PLII 7-5
RPG 6-5

analyzing error and warning messages
output from the precompiler 10-3

AND keyword 3-26
multiple search condition 3-27

application plans
See access plans

application requirements
C

communication area (SolCA) 8-1
COBOL

communication area (SolCA) 5-1
PLII

communication area (SolCA) 7-1
RPG

communication area 6-1
arithmetic expression error 3-6
arranging rows 3-15
arrays, COBOL 5-7
ASP (auxiliary storage pool) 12-3
assignment rules 4-2

character string assignment 4-3
COBOL 5-5
numeric assignment 4-3
PLII 7-5
RPG 6-5

assumptions, relating to examples of SQl
statements iii

asterisk (select all columns) 3-7
atomic operations

data definition statements 12-3
data integrity 12-3

audience 11-3

© Copyright IBM Corp. 1988, 1989

authorization
testing 13-1
to create test tables

GRANT statement example 13-2
authorization 10 12-1
auxiliary storage pool (ASP) 12-3

B
basic SQl statements and clauses 3-1
BETWEEN clause, multiple search condition 3-27
BETWEEN keyword 3-26
binding, access plans 10-18
blocking considerations 14-7
BOTH, Plil element type 7-8

c
C programs 8-1

allowable declarations for host variables 8-6
application requirements 8-1
coding requirements 8-3
comments 8-3
communication area (SOlCA) 8-1
continuation for SOL statements 8-3
descriptor area (SOlDA) 8-2
dynamic SOL 8-2
host structures 8-4
host variables 8-4
indicator variables 8-9
nulls 8-3
pointer data types supported 8-8
preprocessor sequence 8-3
reserved words 8-3
Sal statement delimiters 8-3
Sal syntax in 8-3
statement labels 8-3
using SOL statements 8-1

calculation section (RPG) 6-2
catalog description 1-6
catalog views 1-6

description of 1-6
SYSCOlUMNS 1-6
SYSINDEXES 1-8
SYSKEYS 1-8
SYST ABLES 1-9
SYSVIEWDEP 1-9
SYSVIEWS 1-10

catalogs 1-5,2-1
changing information in a table 2-6
description 1-5
get information from 2-4
updating 2-6
using the catalog in collection design 2-11

Index X-1

catalogs (continued)
working with 2-1, 2-4, 2-11

changing data 3·3
changing information In a table 2-6
changing the table definition 14-11
changing, Indexes 1-5,2-10
character data type 1-4
character string assignment 4-3
clauses 3-1

AND 3-27
NOT 3-27
OR 3-27
WHERE 3-27

CLOSE CURSOR statement 3-23, 3-25
COBOL programs 5-1

abbreviations 5-7
allowable declarations for host variables 5-6, 5-7
appl ication requirements 5-1
arrays 5-7
assignment rules 5-5
coding requirements 5-2
comments 5-3
communication area (SalCA) 5-1
continuation for Sal statements 5-3
data description entry
data types 5-7
descriptor area (SalDA) 5-3
dynamic Sal 5-3
error and warning messages 10-17

during a compile 10-17
host structures 5-4
host variables 5-4
indicator variables 5-8,7-7
OCCURS clause 5-7
overflow 5-7
procedure division 5-2
requirements for host variables 5-5
reserved words 5-3
return code handling 5-8
sample program with Sal statements C-3
Sal delimiters 5-2
Sal precompiler command example 10-17
Sal syntax in 5-2
truncation 5-7
using Sal statements 5-1
value item 5-7
varying-length character string 5-7

length item 5-7
COBOL source file parameter (QlBlSRC) 10-13
COBOL, external descriptions 5·8
coding examples C-1

Sal statements used in C C-21
Sal statements used in COBOL C-3
Sal statements used in PLII C-11
Sal statements used in RPG C-16

coding required with host variable, naming
conventions 7-4

X-2 Sal Programmer's Guide

coding requirements 7-4
C 8-2,8-3

comments 8-3
dynamic Sal 8-2
host structures 8-4
host variables 8-4
line continuation 8-3
nulls 8-3
preprocessor sequence 8-3
reserved words 8-3
Sal statement delimiters 8-3

COBOL 5-2, 5-3
comments 5-3
dynamic Sal 5-3
host structures 5-4
host variables 5-4, 5-5
including code 5-3
line continuation 5-3
margins 5-3
reserved words 5-3
sequence numbers 5-3
Sal statement delimiters 5-2

PLII 7-2
comments 7-3
dynamic Sal 7-2
host structures 7-3
host variables 7-3,7-4
line continuation 7-3
reserved words 7-3
Sal statement delimiters 7-2

RPG 6-2,6-3
comments 6-3
dynamic Sal 6-3
host variables 6-4
line continuation 6-3
reserved words 6-3
Sal statement delimiters 6-2

coding requirements, RPG, sequence numbers 6-3
coding SQl statements in C 8·1

application requirements 8-1
return code handling 8-9
sample program C-21

coding SQl statements In COBOL 5-1
application requirements 5-1
host structures 5-4
return code handling 5-8
rules for host variables 5-5
sample program C-3

coding SQl statements in PLII 7·1
application requirements 7-1
host structures 7-9
return code handling 7-11
rules for host variable 7-4

sample program C-11
coding SQl statements in RPG 6·1

application requirements 6-1
host structures 6-4
return code handling 6-7

J

coding SQl statements In RPG (continued)
rules for host variables 6-5
sample program C-16

coding techniques 3-1
collating rows 3-15
collections 1-3

changing list types 11-7
creating 2-1
description 1-3
techniques for solving problems 14-8
terminology 1-2
working with 2-1

columns 1-3
combining 3-29
creating 2-2
data types 1-4
defining column headings 2-2
description 1-3
FOR UPDATE OF clause 3-24
insert default values into columns 3-33
inserting information 2-2
join 3-29
length and data type rules 3-18
numeric, rules for 3-18
selecting all the columns 3-7
specifying the columns you want 3-7
updating in views 2-9

combining information from more than one table 2-5
combining SELECT statements 3-16
commands 10-7,10-8

CRTSOLC 10-11
CRTSOLCBL 10-8
CRTSOLPLI 10-9
CRTSOLRPG 10-10
for SOL C precompiler (CRTSOLC) 10-11
for SOL COBOL precompiler 10-8
for SOL PLII precompiler (CRTSOLPLI) 10-9
for SOL RPG precompiler (CRTSOLRPG) 10-10
keywords 10-12
parameter definitions 10-12
SOL precompiler 10-7, 10-12

CRTSOLCBL 10-7
CRTSOLPLI 10-7
CRTSOLRPG 10-7

values 10-12
COMMA, used with PlJl 7-9
COMMENT ON, using 2-13
COMMENT ON, using, getting comments 2·13
comments

C 8-3
COBOL 5-3
PLII 7-3

RPG 6-3
COMMIT 10·15

interactive keyword 11-18
COMMIT statement 2·3,2·6,3-3,12·4

HOLD value 12-4

commitment control 12·4
changing 11-6

common collection problems, techniques for
solving 14·8

communication area (SQlCA)
C 8-1
COBOL 5-1
PLII 7-1
RPG 6-1

comparison operators 3·9
compiled application program objects 1·10

data dictionary 1-3
program 1-11
temporary source file member 1-11
user source file member 1-10

compiling
application programs 10-17
COBOL 10-17

error and warning messages 10-17
PLII 10-17

error and warning messages 10-17
RPG 10-17

completing a unit of recovery 3·25
complex search conditions 3·26

keywords for use in search conditions 3-26
multiple search condition 3-27
WHERE 3-27

concatenate rows 3-30
concatenating two sets of selected rows 3-16
concepts 1·1
concepts, SQl with host languages 4·1

assignment rules 4-2
host structures 4-4
indicator variables 4-4
return code, handling 4-6
using host variables 4-1

concurrency, data Integrity 12·2
continuation for SQl statements

C 8-3
COBOL 5-3
PLII 7-3
RPG 6-3

conversion error 3·6
correlation names 2·5, 3·31
CREATE COllECTION statement 2·1
create SQl statements 10·8,10·9,10·10,10·11

for C precompiler 10-11
for COBOL precompiler (CRTSOLCBL) 10-8
for PLII precompiler 10-9
for RPG precompiler 10-10

CREATE TABLE statement 2·1,2·2
CREATE VIEW statement 2·7
creating 2-2

collections 2-1
indexes 2-10
rows 2-2
tables 2-1, 2-2
TDEPT (department table) 2-2

Index X-3

creating (continued)
USER1 collection 2-1

creating a view 2-7
combining data from more than one table 2-8
on a single table 2-7

creating a view combining data from more than one
table 2-8

creating a view on a single table 2-7
CRTDTADCT CL command 2-1
CRTDUPOBJ CL command 13-2
CRTLIB CL command 2-1
CRTSQLC 10-11

parameter description 10-12
syntax description 10-11

CRTSQLCBL 10-8
parameter description 10-12
syntax description 10-8

CRTSQLCBL command example 10-17
CRTSQLPLI 10-9

parameter description 10-12
syntax description 10-9

CRTSQlRPG 10-10
parameter description 10-12
syntax description 10-10

CURSOR statement 3-25
cursors 3-20

D

CLOSE CURSOR 3-23
completion of unit of recovery 3-25
defining a cursor 3-22
end of data 3-23
functions 3-20
OPEN CURSOR 3-23
OPEN CURSOR statement with DESCRIPTOR

clause 9-15
selecting a set of rows 3-20
setting up a cursor 3-22
using 3-20,9-14
using parameter markers 9-15

damage tolerance 12-6
data definition statement 1-2
data definition statements 12-3
data description entry, COBOL 5-7
data dictionary 1-3
data integrity 12-1,12-2

atomic operations 12-3
commitment control 12-4
concurrency 12-2
damage tolerance 12-6
data definition statements 12-3
index recovery 12-6
journaling 12-3
save/restore 12-6

data items 5-4
COBOL 5-4
RPG 6-4

X-4 Sal Programmer's Guide

data manipulation SQL statement 1-2
data protection 12-1

data integrity 12-2
security 12-1
See also security

data security 12-1
data types 1-4

character 1-4
COBOL 5-7
decimal 1-4
float 1-4
for C applications 8-6, 8-8
for COBOL applications 5-6
for PllI applications 7-5
for RPG applications 6-5
integer 1-4
numeric 1-4
PllI 7-7
real 1-4
SMAlLiNT (small integer) 1-4

DBCS 10-2,11-17
entering in interactive Sal 11-17
use as precompiler input 10-2

DDM considerations 10-19
deadlock detection 12-2
debugging your program 13-2
decimal data type 1-4
declarations for host variables

C 8-6
COBOL 5-6, 5-7
PUI 7-5
RPG 6-5

DECLARE CURSOR statement 3-5
defining 3-22
FOR UPDATE OF clause 3-24
selecting several rows at a time 3-5
setting up a cursor 3-22

declare restrictions, PLII 7-7
deHnlng table name and column headings 2-2
DELETE statement 2-6, 3-4

with WHERE clause 2-6
delete the current row 3-24
DELETE WHERE CURRENT OF statement 3-24
deleting Informallon In a table 2-6
delimiters

for Sal statements in COBOL 5-2
SOL statements in C 8-3
SOL statements in PllI 7-2
SOL statements in RPG 6-2

department table (TDEPT), creating 2-2
DESCRIBE statement, using with dynamic SQL 9-10
descriptor area (SQlDA)

C 8-2
COBOL 5-3
description 9-7
dynamic SELECT statement format 9-7
fixed-list select-statement 9-5
format description 9-7,9-8,9-9

SOLD 9-8

J

J

descriptor area (SQlDA) (continued)
format description (continued)

SQlDABC 9-7
SOlDAID 9-7
SOlDATA 9-9
SOlDIND 9-9
SQllEN 9-8
SOlN 9-7
SOlNAME 9-9
SOlRES 9-9
SQlTYPE 9-8
SOlVAR 9-8

PL/I 7-2
RPG 6-3
varying-list select-statement 9-5,9-6

DESCRIPTOR clause with OPEN CURSOR 9-15
designing, test data structure 13-1
dictionary, data 1-3
displaying SQlCODE descriptions B-1
displays 11-3

flow diagram for interactive SOL 11-10
using interactive displays 11-3

DISTINCT keyword, using 3-25
double-byte character set (DBCS) 10-2

entering in interactive SOL 11-17
use as precompiler input 10-2

duplicate rows, eliminating 3-25
dynamic SQl 9-1

allocating storage 9-10
appl ications 9-1, 9-3
building and running statements 9-3
in C programs 8-2
in COBOL programs 5-3
in PL/I programs 7-2
in RPG programs 6-3
processing 9-3
processing SELECT statements 9-3
processing select-statements 9-5
replacing parameter markers with host

variables 9-16
requirements for using parameter markers 9-16
run-time overhead 9-1
statements 9-2
types of statements 9-3
use of address variables 9-1
using a cursor 9-14
using fixed-list 9-5
using OPEN CURSOR with DESCRIPTOR

clause 9-15
using parameter markers 9-15
using the DESCRIBE statement 9-10
using the EXECUTE statement 9-4
using the PREPARE statement 9-4
using varying-list 9-5
valid SQl statements 9-1

E
element descriptions, PllI 7·8,7-9

COMMA 7-9
element type 7-8

BOTH 7-8
INDICATORS 7-8
INPUT 7-8
KEY 7-8
OUTPUT 7-8
RECORD 7-8

file name 7-8
format name 7-8
prefix name 7-9

element type
used with PllI 7-8

BOTH 7-8
INDICATORS 7-8
INPUT 7-8
KEY 7-8
OUTPUT 7-8
RECORD 7-8

eliminating duplicate rows 3·25
end of data and cursors 3-23
END-EXEC 6-2
error and warning messages

during a COBOL compile 10-17
during a PL/I compile 10-17
output from the precompiler 10-3

error codes
handling by C 8-9
handling by COBOL 5-8
handling by PL/I 7-11
handling for RPG 6-7

establishing a test environment 13·1
establishing position at the end of a table 14-10
examples ill

assumptions for SQl statements iii
create SOL COBOL command 10-17
using a cursor 3-20

exception condition handling 4·7,6·7
by RPG 6-7

EXEC SQL 6-2
EXECUTE IMMEDIATE statement, use In PLII 7·2
EXECUTE statement, using dynamically 9·4
exit interactive SQl 11-8
expressions 3·8
expressions, definition 3·8
external descriptions

COBOL 5-8
RPG 6-6

external file descriptions, PLII 7-8

F
failed session, recovery 11·9
FETCH statement 14·8

end of data 3-23

Index X-5

FETCH statement (continued)
retrieving a row from a set of rows 3-23

file descriptions, external, PllI 7·8
file name, used with PllI 7·8
fixed-list, used with dynamic Sal 9·5
float data type 1·4
floating-point number 1·4, 4·3
FOR UPDATE OF clause 3-24
format name, used with PLII
fullword binary interger 4-3
functional description 11-4

exiting interactive SQl 11-8
interactive SQl display flow diagram 11-10
list selection function 11-1, 11-8, 11-14
session history 11-6
session services 11-1, 11-6
statement entry 11-1, 11-4
supported SQl statements 11-10

function, Sal precompiler 10-1

G
generation level (GENlVl) 10·15
GENlVl 10-15
getting catalog information

about a column 2-11
about a table 2-11
about indexes 2-12
about views 2-12

getting comments 2·13
getting data from more than one table 3·29
geHing information

from a single table 2-4
from more than one table 2-5

getting started using interactive Sal 11·3
GO TO label 4-8
GRANT statement 12·1,13·2

example 13-2
GROUP BY clause 3·11
group of rows 3-13
grouping the rows you select 3·11
GRTOBJAUT (grant object authority) Cl

command 12-1
guidelines for using Sal 14-1

H

selecting data from multiple tables, improving per
formance 14-5

statements 14-1

halfword binary integer 4·3
HAVING clause 3·13
help, online 11-9
HOLD value 12-4
host languages, using Sal
host structures 4·4, 5-4

C 8-4
COBOL 5-4

X-6 SOL Programmer's Guide

host structures (continued)
definition 4-1
in a PUI program 4-4
PUI 7-3,7-9
RPG 6-4

host variables 4·1
See also data items
address variables used in dynamic SQl 9-1
assignment rules for COBOL 5-5
assignment rules for PUI 7-5
assignment rules for RPG 6-5
C 8-4
C declarations 8-6
COBOL 5-4
COBOL declarations 5-6
input 9-15
INTO clause 4-1
other clauses 4-2
PUI 7-3
PUI declarations 7-5
replacing parameter markers with 9-16
requirements 5-5,7-4

COBOL 5-5
PUI 7-4

requirements for RPG 6-5
RPG 6-3,6-4
RPG declarations 6-5
RPG names 6-2
SELECT clause 4-2
using parameter markers 9-15
WHERE clause 4-1

how to, use Sal with host languages

IDDU (interactive data definition utility) 1·3
IN clause, multiple search condition 3·27
IN keyword 3-26
INCFllE 10-15
INCFllE parameter 10-2
Include file (INCFllE) 10-15
INCLUDE SOlCA statement

C 8-1
COBOL 5··1
PUI 7-1
RPG 6-1

INCLUDE statement
INCFllE parameter 10-2
use as precompiler input 10-2

including code in a COBOL program 5·3
Index recovery 12·6
Index search, description of v
Indexes 1·5,2·1

creating 2-10
working with 2-1, 2-10

Index, Sal
conditions with out an index 14-3
using effectively 14-3

indicator variables 4-4
C 8-9
COBOL 5-8
PLII 7-7
RPG 6-6

INDICATORS, PL/I element type 7-8
Input data, testing 13-1
input to precompiler 10-2
INPUT, Plil element type 7-8
insert defaull values Into columns 3-33
insert multiple rows into a table

insert default values into columns 3-33
INSERT statement 2-2,3-1, A-3

blocking considerations 14-7
using A-3
VALUES clause 3-1

inserting
multiple rows into a table 3-32
rows 2-2

inserting information
columns 2-2
into tables 2-2
rows 2-2

inserting information Into tables A-3
inserting multiple rows into a table

notes on 3-32
INTEGER
integer data type 1-4
integrity using views 12-1
integrity, data 12-1

See also security.
interactive Sal

basic functions 11-1
list selection 11-1
session services 11-1,11-6
statement entry 11-1
statement entry function 11-1, 11-4

display flow diagram 11-10
entering DBCS data 11-17
functional description 11-4
getting started 11-3
help, online 11-9
overview 11-1
STRSOl command 11-18
supported Sal statements 11-10
tips on using interactive Sal 11-14
used for testing Sal statements 11-17
using 11-3

interactive Sal statements 9-2
INTO clause 2-2, 3-5, A-3

used with host variables 4-1
using with INSERT 2-2, A-3

introduction
concepts 1-1
Sal objects description 1-3

J
join 3-29, 3-31

definition 2-5, 2-8
example 2-8
examples 2-5
notes on the technique 3-31
tables 3-29, 3-30
uses for 3-31
WHERE clause 3-30

joining tables 14-5
journal receiver 12-3
journaling 12-3

data integrity 12-3
index function 12-6
'STRJRNAP Cl command 12-6

journals and Journal receivers 1-3

K
keeping a copy of the data 14-8
keeping duplicates 3-19
keywords

AND 3-26
BETWEEN 3-26
COMMIT 10-15,11-18
DISTINCT 3-25
for use in search conditions 3-26
GENLVl 10-15
INCFILE (include file) 10-15
L1BOPT 11-19
LIKE 3-26
L1STTYPE 11-19
MARGINS 10-16
NAMING 11-18
NOT keyword 3-10
OPTION 10-13
PGM (program) 10-12
PROCESS 11-19
PRTFILE 10-16
REFRESH 11-19
source file 10-13
source file name 10-13
SRCFllE 10-13
SRCMBR (source member) 10-13
TEXT 10-16
TGTRLS (include file) 10-14
UNION 3-17
UNION All 3-19

KEY, Plil element type 7-8

L
lABEL ON statement 2-2
labels, C 8-3
languages, using Sal with host 4-1
lCKlVl parameter 12-4
left right 10-16

Index X-7

length and data type rules 3-18
LIBOPT, interactive keyword 11-19
library name 10-12,10-15,10-16
library, changing list types 11-7
LIKE keyword 3-26

multiple search condition 3-27
line continuation

C 8-3
COBOL 5-3
PUI 7-3
RPG 6-3

list selection
collection types 11-7
library types 11-7
qualifying names 11-7

list selection function 11-1,11-8
using interactively 11-14

list type, changing 11-7
listing output from SQL precompiler 10-2
LlSTTYPE, Interactive keyword 11-19
lock level 12-4
LOCK statement 12-2

M
MARGIN keyword, PL/I 7-3
margins

in a COBOL program 5-3
PUI 7-3

MARGINS keyword 10-16
use as precompiler input 10-2

member name 10-13
members

source file
changed 10-3
modified 10-3
temporary 10-3

messages 11-9, B-1
during a COBOL compile 10-17
during a PUI compile 10-17
error and warning
10 B-1
text storage B-1

multiple predicates 3-10
multiple row Insertion, notes 3-32

N
naming conventions 1-2

in a PLII program 7-4
qualifying 11-2,11-7
Sal naming 11-2
system naming 11-2

NAMING, Interactive keyword 11-18
NFYOBJ parameter 12-4
NOT keyword 3-10

multiple search condition 3-27

X-8 Sal Programmer's Guide

NOT NULL 2-1,3-33
NOT NULL WITH DEFAULT 3-33
notes on using a view 2-9
NUL character 8-3
NULL pOinter 8-3
null statement 8-3
nulls, C 8-3
numeric

o

assignment 4-3
columns, rules for 3-18
conversions 14-2
data type 1-4

objects
catalogs 1-5
collections 1-3
columns 1-3
compiled application program objects 1-10,1-11

program 1-11
temporary source file member 1-11
user source file member 1-10

data dictionary 1-3
definitions 1-3
indexes 1-5
journal 1-3
journal receiver 1-3
rows 1-3
Sal 1-3
tables 1-3
views 1-4

OCCURS clause 5-7
online education, description of vi
online information, types of v

help for control language commands vi
help for displays v
index search v
online education vi
question-and-answer function vi

online, help 11-9
OPEN CURSOR statement 3-23,9-15

using with DESCRIPTOR clause 9-15
open cursors 3-25
OPEN statement 14-6

blocking considerations 14-7
performance considerations 14-6
use of 14-6

operators, comparison 3-9
OPTION keyword 10-13
options

See a/so keyword
Sal precompiler commands 10-12

OR keyword, multiple search condition 3-27
ORDER BY clause

used when selecting rows 3-14,3-15
used with DESC and ASC values 3-15

J

J

L

ordering rows 3-15
output

device selection 11-7
from precompiler 10-2
precompiler 10-2, 10-3

listing 10-2
printing current session 11-7

OUTPUT, PL/I element type 7-8
overflow

COBOL 5-7
PLII 7-7

override considerations 10·19
overview, interactive SQl, audience 11-3

p
paging

through data, previously retrieved 14-8
through retrieved data 14-8

parameter
description 10-12
keyword

COMMIT 10-15
GENlVl (generation level) 10-15
INCFllE (include file) 10-15
MARGINS 10-16
OPTION 10-13
PRTFllE 10-16
SRCMBR (source member) 10-13
TEXT 10-16
TGTRlS 10-14

PGM (program) keyword 10-12
program name 10-12
source file 10-13
SOL precompiler commands 10-12
SRCFllE 10-13
STRSOl 11-18
values

left right 10-16
library name 10-12,10-15,10-16
member name 10-13
printer file name 10-16
OlBlSRC 10-13
OPLlSRC 10-13
ORPGSRC 10-13
OSYSPRT 10-16
OxxxSRC 10-13
severity level 10-16
source file name 10-13, 10-15
"All 10-15
"APOST (apostrophe) 10-14
"APOSTSOl 10-14
"CHG (change) 10-15
"COMMA 10-14
"CURLIB 10-12, 10-15, 10-16
"CURRENT 10-14
"GEN 10-13
"LlBl 10-15, 10-16
"NOGEN 10-13

parameter (continued)
values (continued)

"NONE 10-15
"NOSOURCE 10-13
"NOSRC 10-13
"NOXREF 10-13
"PERIOD 10-14
"PGM 10-13
"PRY 10-15
"~UOTE 10-14
"OUOTESOl 10-13
"SOURCE 10-13
"SOL 10-14
"SRC 10-13
"SRCFllE (source file) 10-15,10-16
"SRCMBRTXT (source member text) 10-16
"SYS 10-14
"SYSVAl 10-14
"XREF 10-13

parameter markers 9-15
replacing with host variables 9-16
requirements for using 9-16
using 9-15

PEMPL In a COBOL program 5-5
performance considerations 14-2, 14-5

OPEN statement 14-6
PGM 10-12
PLII programs 7-1

abbreviations 7-7
allowable declarations for host variables 7-5
application requirements 7-1
assignment rules 7-5
coding requirements 7-2
comments 7-3
communication area (SOlCA) 7-1
continuation for SOL statements 7-3
data types 7-7
declare restrictions 7-7
descriptor area (SOlDA) 7-2
dynamic SOL 7-2
element descriptions 7-8
error and warning messages 10-17

during a compile 10-17
EXECUTE IMMEDIATE statement 7-2
external file descriptions 7-8
host structures 7-3
host variables 7-3
margins 7-3
overflow 7-7
requirements for host variables 7-4
reserved words 7-3
return code handling 7-11,8-9
sample program with SOL statements C-11, C-16
SOL statement delimiters 7-2
SOL syntax in 7-2
structures 7-9
truncation 7-7
using SOL statements 7-1

Index X-g

Pl/l programs (continued)
%INClUDE directive 7-8

Pl/l source file parameter (aPlISRC) 10·13
pointer data types, allowed for C programs 8·8
positioning at end of table 14·10
precompiler

basic processes 10-1
commands 10-12

keywords 10-12
parameter definitions 10-12
values 10-12

CRTSOlC 10-11
CRTSOlCBl 10-8
CRTSOlPU 10-9
CRTSOlRPG 10-10
for C 10-11
for COBOL 10·8
for PUI 10-9
for RPG 10-10
INCLUDE statement 10-2
input to 10-2
options 10-12
output 10-3
output from 10-2
parameter definitions

library name 10-12
PGM 10-12
program name 10-12
OlBlSRC 10-13
OPllSRC 10-13
ORPGSRC 10-13
OxxxSRC 10-13
source file name 10-13
SRCFllE 10-13
'CURUB 10-12

SOL commands 10-7,10-8,10-9,10-10,10-11
temporary source file members 10-3
use of margins 10-2
using double-byte character set (DBCS) 10-2

precompiling Sal statements
precompiling Sal statements, precompile

commands 10·7
predicates 3-8, 3-27

in a search condition 3-9
in the WHERE clause 3-8
multiple 3-10
use of 3-8
used in multiple search condition 3-27

prefix name, used with PllI 7·9
PREPARE statement, using dynamically 9-4
preparing a program containing SQl for running 10·1
print current session 11-7
print file name 10-16
printer file (PRTFllE) 10·16
problem solving, techniques for collection

problems 14·8
procedure division (COBOL) 5·2

X-10 SOL Programmer's Guide

PROCESS, Interactive keyword 11-19
program 1-11

description 1-11
name description 10-12
references 10-18
sample in C C-21
sample in COBOL C-3
sample in PUI C-11
sample in RPG C-16

prompt function 11-4
protection of data 12·1
PRTFllE 10-16
public authority 12-1

Q
Q&A

See question-and-answer function, description of
QlBlSRC 10-13
QPllSRC 10-13
QRPGSRC 10-13
QSYSPRT 10·16
qualifying

SOL and system names 11-2
SOL statements 3-8

questlon-and-answer function, description of vi

R
real data type 1-4
RECORD, PlII element type 7-8
Recover SQl Session display, use of 11·9
recovery 11-9, 12-3

a failed SOL session 11-9
a saved SOL session 11-9

redundant information, providing 14-5
REFRESH, interactive keyword 11·19
register, USER special 3·10
relational database, description 1-2
removing all entries from the current session 11-7
requirements for host variables, Indicator

variables 7-7
reserved words

C 8-3
COBOL 5-3
PUI 7-3
RPG 6-3

result table 3-20, 14-9
retrieving

a row from a set of rows 3-23
data a second time 14-8

data from the middle 14-9
from the beginning 14-8
order of rows in the second result table 14-9

in reverse order 14-10
information from a single table 2-4

return codes B-1
exception condition handling 4-7

return codes (continued)
handling by C 8-9
handling by COBOL 5-8
handling by PUI 7-11
handling for RPG 6-7
rules for handling 4-6

revising data 3-3
Revoke Object Authority (RVKOBJAUT)

command 12-1
REVOKE statement 12-1
ROLLBACK statement, HOLD value
rows 1-3

arranging 3-15
combining 3-30
creating 2-2
current update 3-24
delete current 3-24
description 1-3
eliminating duplicate 3-25
inserting 2-2
inserting multiple rows 3-32

notes on 3-32
joining 3-30
ordering 3-15
retrieving a row from a set of rows 3-23
specifying a condition for a group of rows 3-13

rows in the second result table, order of 14-9
RPG programs 6-1

allowable declarations for host variables 6-5
application requirements 6-1
assignment rules 6-5
calculation section 6-2
coding requirements 6-2
comments 6-3
communication area (SOlCA) 6-1
continuation for Sal statements 6-3
descriptor area (SOlDA) 6-3
dynam ic Sal 6-3
example of Sal statements in RPG 6-3
external descriptions 6-6
host structures 6-4
host variables 6-4
indicator variables 6-6
requirements for host variables 6-5
reserved words 6-3
return code handling 6-7
Sal syntax in 6-2
structures 6-6
using Sal statements 6-1

RPG source file parameter (QRPGSRC) 10-13
rules

assignment rules 4-2
for character string assignment 4-3
for coding host variables in COBOL 5-5
for coding host variables in RPG 6-5
for numeric assignment 4-3
for PUI host variables 7-4
for Sal with host language 4-6

rules (continued)
for Sal with host languages 4-2
host structures 4-4
return code handling 4-6
Sal with host languages 4-4
using Sal with host languages 4-1

running a program containing SOL statements
diagnostic information 10-1

RVKOBJAUT (Revoke Object Authority)
command 12-1

s
sample programs C-1
saved session, recovery 11-9
save/restore 12-6
saving session in source file 11-7
search conditions 3-26

using predicates 3-9
security

data 12-1
Sal objects 12-1
using views 12-1

SELECT INTO statement 3-5
select-statements 9-5

allocating storage 9-10
DISTINCT keyword 3-25
dynamic processing 9-3
dynamic Sal 9-3
fixed-I ist 9-5
processing dynamically 9-5
selecting several rows at a time 3-5
using a cursor 9-14
varying-list 9-5,9-6

selecting
all the columns 3-7
data from more than one table 3-29
data from multiple tables 14-5

improving performance 14-5
joining tables 14-5
provide redundant information 14-5

one row 3-5
output device 11-7
rows from a table 3-5

sequence numbers
in COBOL 5-3
in RPG 6-3

session history 11-6
session services 11-6

changing collection (library) lists 11-7
changing list types 11-7
commitment control 11-6
controlling SELECT output device 11-7
printing current session 11-7
removing entries from current session 11-7
saving sessions in source file 11-7
statement processing control 11-6

Index X-11

session services function 11-1
sess ions 11-9

changing options 11-1
controlling 11-1
functional description 11-9
printing current 11-7
recovery of a failed session 11-9
recovery of a saved session 11-9
removing all entries from the current session 11-7
saving in source file 11-7
session services function 11-1

SET clause 3-3
severity level 10-16
shift-in, shift-out characters, use with interactive
Sal 11-17

small integer (SMAlLlNT) data type 1-4
SMAlllNT
SMAlllNT data type 1-4
source commands, Sal precompiler 10-7
source file parameters

OlBlSRC (COBOL) 10-13
OPLlSRC (PUI) 10-13
ORPGSRC(RPG) 1~13

source file (SRCFllE) 10-13,10-16
members 10-3

changed 10-3
modified 10-3
temporary 10-3

name 10-13,10-15
source member (SRCMBR) 10-13
special register 3-10
specifying the columns you want 3-7
Sal descriptor area (SQlDA), description 9-7
SQl in RPG example 6-3
SQl index, using effectively 14-2

avoid LIKE predicates beginning with % or _ 14-3
avoid numeric conversions 14-2
avoid string character padding 14-2
conditions with out an index 14-3

SQl naming convention 11-2
Sal precompiler, basic processes 10-1
SQl statements ill

assumptions for examples of iii
data definition 1-2
data definition statements 12-3
data manipulation 1-2
types of 1-2
used in sample C program C-21
used in sample COBOL program C-3
used in sample PUI program C-11
used in sample RPG program C-16

SQl statement, prompting for 11-4
Sal (Structured Query language), prompting 11-4
SalCA

C 8-1
COBOL 5-1
PUI 7-1
RPG 6-1

X-12 SOL Programmer's Guide

SQlCODEs B-1
description B-1
how to display descriptions B-1
list B-1
message file B-1
occurrence of 3-6

SQlD 9-8
SQlDA

C 8-2
COBOL 5-3
description 9-7
example of allocating storage 9-10
format description 9-7,9-8,9-9

SOLD 9-8
SOlDABC 9-7
SOlDAID 9-7
SOlDATA 9-9
SOLIND 9-9
SOllEN 9-8
SOlN 9-7
SOlNAME 9-9
SOLRES 9-9
SOLTYPE 9-8
SOLVAR 9-8

PUI 7-2
RPG 6-3

SQlDABC 9-7
SQlDAID 9-7
SQlDATA 9-9
SQllND 9-9
SQllEN 9-8
SQlN 9-7
SQlNAME 9-9
SQlRES 9-9
SQlTYPE 9-8
SQlVAR 9-8
SRCFllE (source file) 10-13
SRCMBR (source member), description 10-13
Start Debug (STRDBG) command 13-2
Start SQl (STRSQl) command 11-18
statement

WHENEVER 8-9
statement entry function 11-1, 11-4
statement processing, contrOlling 11-6
statements In RPG programs, SQl in RPG

example 6-3
statements, Sal 3-1

used in sample C program C-21
used in sample COBOL program C-3
used in sample PLII program C-11
used in sample RPG program C-16

statement, WHENEVER 5-8,7-11
static SQl statements 9-2
STRCMTCTl 12-4
STRDBG (Start Debug) Cl command 13-2
string, character assignment 4-3
STRSal (Start SQl) command

description 11-18

J

L

STRsaL (Start SaL) command (continued)
parameters 11-18
syntax 11-18

structures
COBOL 5-4
halfword integer variables 4-4
indicator 4-4
PLII 7-9
RPG 6-4.6-6
RPG data 6-5

subselect
combining two or more statements 3-16
with UNION keyword 3-16

supported SaL statements 11-10
syntax checking, selecting interactively
syntax for SaL precompiler commands 10-7

CRTSOLC 10-11
CRTSOLCBL 10-8
CRTSOLPLI 10-9
CRTSOLRPG 10-10

SYSCOLUMNS 1-6
SYSINDEXES 1-8
SYSKEYS 1-8
SYSTABLES 1-9
system naming convention 11-2
system print file, aSYSPRT parameter 10-16
SYSVIEW 1-10
SYSVIEWDEP 1-9

T
table definitions 14-11
tables 1-3,2-1

changing information in a table 2-6
CREATE TABLE statement 2-2
creating 2-2
creating tables 2-1
defining table names 2-2
deleting information in a table 2-6
description 1-3
get information from a single table 2-4
getting information from more than one table 2-5
inserting information into tables 2-2. A-3
join 3-31
updating 2-6
using tables 2-1
working with 2-1. 2-2. 2-4. 2-6

tables, views, and catalogs, using COMMENT ON 2-13
target release (TGTRLS) 10-14
TDEPT (department table), creating 2-2
techniques for solving common collection

problems 14-8
techniques for solving common database problems

adding to the end of a table 14-10
changing table definitions 14-11
keeping a copy of the data 14-8
positioning at end of table 14-10
retrieving the data a second time 14-8

techniques for solving common database problems
(continued)

updating data as it is retrieved from a table 14-10
updating data previously retrieved 14-11

techniques for using SaL 14-1
selecting data from multiple tables, improving per

formance 14-5
statements 14-1

techniques, coding 3-1
temporary source file members 1-11,10-3
terminology 1-2

col/ection 1-2
qualifying 11-2
SOL naming 11-2
SOL objects 1-2
system 1-2
system naming 11-2

test data structures 13-1
designing 13-1
test tables 13-2

test data structures, designing, test views of existing
tables 13-1

test tables 13-2
test views of existing tables 13-1
testing 13-1

authorization 13-1,13-2
GRANT statement example 13-2

debugging your program 13-2
establishing a test environment 13-1
SOL statements 13-1
SOL statements interactively 11-17
test data structure 13-1
test data structures 13-1
test input data 13-1
test tables 13-2

TEXT 10-16
TGTRLS 10-14
tips on using interactive SaL 11-14
truncation

U

COBOL 5-7
PUI 7-7

UNION ALL, keeping duplicates 3-19
UNION keyword 3-16

length and data type rules 3-18
rules for using 3-17,3-18

unit of recovery
completion of 3-25
description 3-25

UPDATE statement 3-3,14-10
updating the current row 3-24
using 2-6
WHERE CURRENT OF clause 3-24

updating data
previously retrieved 14-11
retrieved from a database

restrictions 14-10

Index X-13

updating data (continued)
retrieved from a table 14-10

updating the current row of a set of rows 3-24
user source file member 1-10
USER special register 3-10
USER1 collection, creating 2-1
using

a view 2-7
catalogs in collection design 2-11
tables 2-1

using a cursor 9-14
using basic SQL statements and clauses 3-1
using Interactive 11-3
using SQL statements 14-1

V

in C programs C-21
in COBOL programs C-3
in PLII programs C-11
in RPG programs C-16
using an Sal index effectively 14-2

validity checking, selecting Interactively 11-6
value 10-12
VALUE clause 5-7
value Item (COBOL) 5-7
VALUES clause 3-1
values, inserting 3-33
variables 4-1

address variables used in dynamic Sal 9-1
assignment rules for COBOL 5-5
assignment rules for PLII 7-5
assignment rules for RPG 6-5
C 8-4
C declarations 8-6
C indicator 8-9
COBOL 5-4
COBOL declarations 5-6
COBOL indicator 5-8
halfword integer 4-4
indicator 4-4
input host 9-15
PLII 7-3
PLII declarations 7-5
PLII indicator 7-7
replacing parameter markers with host 9-16
requirements for COBOL 5-5
requirements for PLII 7-4
requirements for RPG 6-5
RPG 6-4
RPG declarations 6-5
RPG indicator 6-6
RPG names 6-2
using host 4-1
using parameter markers 9-15

varying-length character string
COBOL 5-7

length item 5-7

X-14 sal Programmer's Guide

varying-list
select-statement 9-6
used with dynamic Sal 9-5

views 1-4, 2-1, 3-8
authority to 12-1
catalog

SYSCOlUMNS 1-6
SYSINDEXES 1-8
SYSKEYS 1-8
SYSTABlES 1-9
SYSVIEWDEP 1-9
SYSVIEWS 1-10

changing 2-9
changing information in a table 2-7
creating a view 2-7
defining 2-10
get information from a single view 2-4
getting information from 2-9
inserting information 2-9
processing 2-10, 3-8
running 2-10
updating 2-9
using a view 2-7
worki ng with 2-1, 2-4

w
warning and error messages

during a COBOL compile 10-17
during a PLII compile 10-17

WHENEVER NOT FOUND clause 3-23
WHENEVER statement 4-7,5-8,6-7,7-11,8-9

exception condition 4-7
handling 4-7
handling by RPG 6-7

WHERE clause 3-8,3-27,3-30,14-4
AND 3-27
multiple search condition 3-27
NOT 3-27
OR 3-27
used with a join 3-30
used with host variables 4-1
using 2-6

WHERE CURRENT OF clause 3-24
working with

collections 2-1
indexes 2-10

Special Characters
*ALL 10-15
*APOST 10-14
*APOSTSQL 10-14
*CHG 10-15
*COMMA 10-14
*CURLIB 10-12, 10-15, 10-16
*CURRENT 10-14

J

L
*GEN 10-13
*LIBL 10-15,10-16
*NOGEN 10-13
*NONE 10-15
*NOSOURCE 10-13
*NOSRC 10-13
*NOXREF 10-13
*PERIOD 10-14
*PGM (program)

description 10-13
*PRV 10-15
*QUOTE 10-14
*QUOTESQL 10-13
*SAVLIB CL command 12-6
*SAVOBJ CL command 12-6
*SOURCE 10-1,10-13
*SQL 10-14
*SRC 10-13
*SRCFILE 10-16
*SRCFILE (source file) 10-15
*SRCMBRTXT 10-16
*STRJRNAP CL command 12-6
*SYS 10-14
*SYSVAL 10-14
*XREF 10-1,10-13
OfoINCLUDE directive 7-8

example 7-11
prefix 7-9
structure ending 7-10
structures 7-9
using prefixes 7-9

Index X-1S

L

L

Application Systeml400™ Programming:
Structured Query Language/400
Programmer's Guide SC21-9609-1

READER'S COMMENT FORM

Please use this form only to identify publication errors or to request changes In publications. Oi rect any
requests for additional publications, technical questions about IBM systems, changes in IBM programming
support, and so on, to your IBM representative or to your IBM-approved remarketer. You may use this form
to communicate your comments about this publication, its organization, or subject matter, with the under
standing that IBM may use or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you,

D If your comment does not need a reply (for example, pointing out a typing error), check
this box and do not include your name and address below. If your comment is applicable,
we will include it in the next revision of the manual.

D If you would like a reply, check this box. Be sure to print your name and address below.

Page number(s): Comment(s):

No postage necessary if mailed in the U.S.A.

Please contact your IBM representative or your IBM-approved
remarketer to request additional publications.

Name

Company or
Organization

Address

Phone No.

City State Zip Code

Area Code

Fold and Tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Information Development
Department 245
3605 North Hwy 52
ROCHESTER MN 55901-9986

Fold and Tape

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

1.1.1 •• 1.1.1.1 •• 11 •••••• 111.1 •• 1.1 •• 1 •• 1 •• 11 ••• 11 •• 1

Fold and Tape Please do not staple Fold and Tape

--..- ------ -------- - ---- - - -----------,-
~

Cut or Fold
Along Line

Cut or Fold
Along Line

L
Application Systeml400™ Programming:
Structured Query Language/400
Programmer's Guide SC21-9609-1

READER'S COMMENT FORM

Please use this form only to Identify publication errors or to request changes In publications. Direct any
requests for additional publications, technical questions about IBM systems, changes in IBM programming
support, and so on, to your IBM representative or to your IBM-approved remarketer. You may use this form
to communicate your comments about this publication, its organization, or subject matter, with the under
standing that IBM may use or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you.

D If your comment does not need a reply (for example, pointing out a typing error), check
this box and do not include your name and address below. If your comment is applicable,
we will include it in the next revision of the manual.

D If you would like a reply, check this box. Be sure to print your name and address below.

Page number(s): Comment(s):

No postage necessary if mailed in the U.S.A.

Please contact your IBM representative or your IBM-approved
remarketer to request additional publications.

Name

Company or
Organization

Address

Phone No.

City State Zip Code

Area Code

Fold and Tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Information Development
Department 245
3605 North Hwy 52
ROCHESTER MN 55901-9986

Fold and Tape

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

1.1.1"1.1.1.1 •• 11'"111111.1 •• 1.1"1 •• 1 •• 11".11 •• 1

Fold and Tape Please do not staple Fold and Tape

--------- -------- - ---- - - -----------,-
®

Cut or Fold
Along Line

J

J

Cut or Fold
Along Line

