
Volume 5 Number 4 October 1983

of the History of Computing
SPECIAL ISSUE: SAGE {Semi-Automatic Ground Environment) .
Contents

About this Issue • Robert R. Everett, Editor 319
Contributors 320
SAGE Overview • John F. Jacobs 323
SAGE-A Data-Processing System for Air Defense • 330

Robert R. Everett, Charles A. Zraket, and Herbert D. Benington
History of the Design of the SAGE Computer-The AN/FSQ-7 • 340

Morton M. Astrahan and John F. Jacobs
Production of Large Computer Programs • Herbert D. Benington 350
The Cape Cod System • C. Robert Wieser 362
Radar Data Transmission • John V. Harrington 370
A Perspective on SAGE: Discussion • Henry S. Tropp, Moderator 375

Herbert D. Benington, Robert Bright, Robert P. Crago,
Robert R. Everett, Jay W. Forrester, John V. Harrington,
John F. Jacobs, Albert R. Shiely, Norman H. Taylor, and
C. Robert Wieser

Reliability of Components • Jay W. Forrester 399
SAGE at North Bay • Henry S. Tropp 401
Epilogue • Robert R. Everett, Editor 403

Departments

Comments, Queries, and Debate 404
Anecdotes 406
Self-Study Questions 407
News and Notices 407
Reviews 411
D Essay Reviews

0. I. Franksen: Mr. Babbage • Allan G. Bromley
Herman Lukoff: From Dits to Bits • Martin Campbell-Kelly

DReviews
Isaac Asimov: Biographical Encyclopedia • K. W. Smillie
Jacques Futrelle: "Thinking Machine" • Eric A. Weiss
M. R. Hord: ILL/AC IV • Saul Rosen
C. H. Meyer & S. M. Matyas: Cryptography • Cipher A. Deavours
T. J. Peters & R. H. Waterman: In Search of Excellence •

Eric A. Weiss
J. W. Stokes: 70 Years of Radio Tubes • Eric A. Weiss
Gordon Welchman: Hut Six Story • Cipher A. Deavours

D Capsule Reviews

About this Issue

This Special Issue on SAGE, the pioneering
computer-based air-defense system, has had, like
SAGE itself, a complicated beginning. Two old SAGE
hands, Mort Astrahan and Jack Jacobs, wrote an
article on the design of the SAGE computer and
submitted it to the Annals. Herb Benington, another
old SAGE hand, was looking, at the time, into the
possibility of republishing his 1956 paper on the
development of the software for SAGE. Bernie Galler
suggested that an entire issue of the Annals be
devoted to SAGE, and in a weak moment, I agreed to
act as editor. I recruited Jack Jacobs and Louise
Meyer to help me, and we set to work.

SAGE was a very large enterprise involving dozens
of organizations and thousands of people. A list of
just the major contributors would be quite long. It
was obvious that we could not hope to cover all the
major aspects of SAGE-its conception, design,
production, operation, test, funding, politics,
management, organizational relationships, and so on.
Instead, I took the editor's privilege of looking at
SAGE from my own limited perspective of design and
test. I hope those of you who read this issue will gain
some feel for what SAGE was, for the technical
environment in which it was created, the kind of
people who designed it, and a little about how they
felt about it. Speaking as one of them, I feel that
SAGE was a great experience, socially as well as
technically. The opportunity to be a part of a truly
important enterprise-to be in at the beginning of a
new and revolutionary art, to do things for the first
time and see them built and work as they were
supposed to-such an opportunity comes to only a
few lucky ones. We were very lucky, and I hope that
through the barrier of words comes a little of the
excitement and enthusiasm that gripped us all and
that we still remember.

The issue is more of a sampler than a unified
description. There are two papers from the 1950s
and three new ones on the computer, on radar data
transmission, and on test and experiment. There is
an overview and-perhaps the heart of the issue-a
discussion by some of the participants representing
some of the major organizations. Reliability was the

fundamental driver of the design of SAGE, and we are
fortunate to have some remarks from Jay Forrester
on that subject. Each paper was written to stand
alone and therefore has some introductory material
that may be redundant. I hope you will forgive us for
any duplication. Finally, there is a report of a recent
trip to North Bay, Ontario, to see a SAGE center in
operation.

This issue appears in a significant year for SAGE.
There are, as I write, six SAGE centers still in
operation, and running very well, I might add: doing
their job, meeting their reliability specifications
(downtime less than 4 hours per year), all 55,000
vacuum tubes in each center glowing softly. SAGE is
now 25 years old; the first center went operational
on July 1, 1958. The remaining ones contain, as far
as I know, the oldest operating computers in the
world. But this year is the last. By the end of 1983,
all the remaining SAGE centers will be shut down,
and the task of air defense for the United States and
Canada will be carried out by new centers equipped
with modern hardware but logically and
operationally the lineal descendants of SAGE.

Only a few of the major designers of SAGE are
represented in this issue. I will not attempt to name
the others. There are many, most but not all of
whom I knew and whose faces and accomplishments
I remember, although I can no longer remember
names. In my view, there were only two who were
absolutely necessary to SAGE, without whom there
would have been no SAGE: George Valley and Jay
Forrester. Jay was the leader of the Whirlwind group
at MIT, the leader of the SAGE division at Lincoln
Laboratory, the inventor of core memory, and the
strong intelligence at the heart of the SAGE design.
George Valley was the chairman of the Air Force
Scientific Advisory Board's Air Defense Systems
Engineering Committee, assistant director and later
associate director of Lincoln. Without George there
would have been no Lincoln Laboratory and no
SAGE. I am sorry he was not able to participate in
our discussion, and I hope that someday he will
publish his own memoirs of his key role in the
nation's defenses.

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 319

The role of the U.S. Air Force in the design of
SAGE is given too little attention in this issue.
Obviously the Air Force had the need and provided
the funding that created SAGE. Beyond that,
however, many air force officers played roles of
fundamental importance. Senior officers, such as
General Earle E. Partridge, contributed their
understanding and support in good times and bad.
Other officers managed project offices, participated
in the operational design, planned and ran tests and
exercises, trained and provided crews, and did (and
did well) a thousand things that had to be done. I
hope their story will be told in some other place.

I would like to express my appreciation for the
dedicated efforts of all the authors and participants
and for their patience with the many telephone calls.
The assistance and encouragement of Bernie Galler
and Nancy Stern have been invaluable. Ed Galvin,
MITRE archivist, did his usual superb job of
collecting information and pictures. Without Mondy
Dana there would be no Annals; without Louise
Meyer there would be no issue on SAGE.

Robert R. Everett
Editor, Special Issue

Contributors

Morton M. Astrahan (Ph.D.
Northwestern University 1949) joined
the IBM Corporation in Endicott,
N.Y., in 1949. He participated in the
design of the IBM 701 in 1950, and
from 1952-1956 he managed system
planning and part of the development
work for the AN/FSQ-7 of the SAGE

system. From 1956-1970 he was at IBM's Advanced
Systems Development Division in San Jose (with
two years in France as advisor to the IBM European
Laboratories). In 1970 he joined the Research
Division, where he is currently engaged in the
development of relational database systems. He
organized and was first chairman of what is now the
IEEE Computer Society. Since 1952 he has helped
manage the Joint Computer Conferences and is now
on the AFIPS National Computer Conference
Committee. He is a Fellow of IEEE and received the
AFIPS Distinguished Service Award in 1975.

Herbert D. Henington (B.S.E.E.
MIT; B.A. Oxford University) worked
for MIT and the System
Development Corporation on
developing the prototype software for
the SAGE system. In 1963 he joined
the Office of the Secretary of

Defense. From 1973-1981 he was vice-president of
the MITRE Corporation, serving as general manager
of its Metrek Division and Washington Center. He
went back to SDC in 1981 and currently manages a
project to modernize data processing for the Naval
Intelligence Command.

Robert Bright attended the
University of Pennsylvania and
worked for the Bell Telephone
Company of Pennsylvania. He was
later transferred to the Western
Electric Company as a radar systems
engineer and mobile radio and

microwave specialist. In 1949 he went to American
Telephone & Telegraph Company as a radio
engineer. He worked with Western Electric as
superintendent of systems engineering on the SAGE

project and then rejoined AT&T in 1958. In 1959 he
became executive communications administrator of
the Washington Office, where he was in charge of
worldwide communications services for the U.S.

320 • Annals of the History of Computing, Volume 5, Number 4, October 1983

president. He was transferred to AT&T Long Lines
Department in 1963. He was appointed director of
Government Communications Projects at Western
Electric in 1966 and general manager of Government
Projects and International Systems in 1969. He
retired from Western Electric in 1976 and now lives
in North Carolina.

Robert P. Crago (B.S.E.E.
Carnegie-Mellon University 1949;
M.S.E.E. California Institute of
Technology 1949) joined the IBM
Corporation in Poughkeepsie, N.Y.,
in 1949. He held several engineering
management positions on Project

High, IBM's activity in support of the SAGE system.
Since 1956 he has been with the Federal Systems
Division, working especially on applying IBM's
commercial developments to military needs. He is
currently a technical specialist in the Systems
Architecture organization at FSD headquarters in
Bethesda.

Robert R. Everett (B.S.E.E. Duke
University 1942; M.S.E.E. MIT 1943)
joined the MIT Servomechanisms
Laboratory in 1942 as a graduate
student and in 1943 as a staff
member. He was Jay W. Forrester's
assistant on the Whirlwind project

and became associate director of the Digital
Computer Laboratory. When the Lincoln Laboratory
was formed by MIT in 1951, he became associate
head of Division 6, of which he became head in 1956.
Division 6 was responsible for overall systems design
and testing of the SAGE system and its direction
centers; it developed the first magnetic-core
memories invented by Forrester. The SAGE-design
parts of Lincoln were spun off into the nonprofit
MITRE Corporation in 1958, and Everett was
technical director. In 1959 he was appointed vice­
president, Technical Operations. In 1969 he was
appointed president and chief executive officer, a
position he still holds. He is a Fellow of IEEE and is
an advisor to several federal defense organizations.

Jay W. Forrester (B.S. University
of Nebraska 1939; S.M. MIT 1945)
was director of the MIT Digital
Computer Laboratory from 1946 to
1951 and head of Division 6 of the
Lincoln Laboratory until 1956. He
was in charge of the design and
construction of Whirlwind I, and he

. guided the planning and design of the SAGE system.
In this work he invented-and holds the patent

Contributors

for-random-access, coincident-current magnetic
storage. In 1956 he became professor of management
at MIT's Alfred P. Sloan School of Management
(where he was named Germeshausen Professor in
1972) and currently directs the System Dynamics
Program. He has received the Medal of Honor from
IEEE (1972), the Harry Goode Award from AFIPS
(1977), and honorary doctoral degrees from several
universities. He is a Fellow of IEEE, the Academy of
Management, the American Academy of Arts and
Sciences, and AAAS.

John V. Harrington (B.E.E.
Cooper Union Institute of
Technology 1940; M.E.E. Polytechnic
Institute of Brooklyn 1948; Sc.D.
MIT 1957) served with the U.S. Navy
during World War II, and then

worked with the U.S. Air Force Cambridge Research
Laboratory for five years. In 1950 he joined the
Lincoln Laboratory as leader of the Data
Transmission Group of Division 2 and was
responsible for developing radar data-processing and
transmission equipment for the SAGE system, as well
as the first telephone-line modems. He served as
head of Lincoln Laboratory's Radio Physics Division
3 from 1958 to 1963, when he joined MIT's faculty
and became the first director of MIT's Center for
Space Research. In 1973 he went to the
Communications Satellite Corporation, where he is
now senior vice-president of research and
development and director of COMSAT Laboratories.
He is a Fellow of IEEE, AIAA, and AAAS and is the
recipient of the Air Force Medal for exceptional
civilian service and the Gano Dunn award of the
Cooper Union.

John F. Jacobs (B.S.E.E. Illinois
Institute of Technology 1950;
M.S.E.E. MIT 1952) joined the
Whirlwind project at the Digital
Computer Laboratory as an MIT
graduate student and then as a staff

member. From 1952-1958 at Lincoln Laboratory he
worked on logical design for Whirlwind 11/FSQ-7,
established the Systems Office for design control,
and held responsibility for the SAGE computer
program and weapons system integration. He was
associate head of Lincoln's Division 6 at the time he
joined the MITRE Corporation in 1958 as associate
technical director. He was senior vice-president for
corporate planning and development when he retired
in 1977. He is currently special consultant to
MITRE.

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 321

Contributors

Albert R. Shiely, Jr. (B.S. U.S.
Military Academy 1943; M.S.E.E.
University of Illinois 194 7) was a
pilot with the U.S. Air Force during
World War II and served in several
electronics research and development
positions from 194 7 to 1954. As chief

of the Air Defense Systems Operations Division of
the Air Research and Development Command from
1954-1957, he was in charge of engineering for the
USAF on the SAGE system. From 1957-1967 he was
assigned to USAF headquarters in Washington,
D.C., and to the Electronic Systems Division at
Hanscom Field, Mass., in electronics staff and
program management. Promoted to brigadier general
in 1967, he commanded the USAF European
communications area until he was appointed vice­
commander of the Air Force Communications
Service in 1969. In 1971, promoted to major general,
he commanded the Electronic Systems Division until
he retired in 197 4. He now lives in Barrington, N .H.,
where he has served as a selectman and on local
community committees.

Norman H. Taylor (B.A. Bates
College 1937; M.S.E.E. MIT 1939)
worked on the Whirlwind project at
the MIT Digital Computer
Laboratory from 194 7 to 1952 and
was associate head of Lincoln
Laboratory's Computer Division,
where he was in charge of the MTC,

the FSQ-7, and the TX-0 and TX-2 computers. By
1958 he was manager of SAGE weapons integration.
From 1958 to 1969 he worked for Itek Corporation,
Control Data Corporation, and Arthur D. Little. In
1969 he founded and to 1982 was president of
Corporate-Tech Planning. He is now an independent
consultant. He helped run the first Joint Computer
Conferences in 1950-1951. He is a Fellow of IEEE,
and received its electronic reliability award.

Henry S. Tropp is a professor of
mathematics at Humboldt State
University and a member of the
Editorial Board of the Annals of the
History of Computing. In 1973 he ·
conducted a discussion similar to the
one in this issue with the participants
in Project Whirlwind for the AFIPS/

Smithsonian Computer History Project. In October
1982 he toured the SAGE facility in North Bay,
Canada, with a group organized by the Computer
Museum.

C. Robert Wieser (B.S.E.E.,
M.S.E.E. MIT 1940) worked with the
Boston Edison Company from 1940-
1942, when he joined the MIT
Servomechanisms Laboratory,
developing fire-control systems. He
went to the Digital Computer

Laboratory in 1949 and applied Whirlwind I to air­
traffic control and then air defense. In 1951 he
joined the Lincoln Laboratory and was leader of the
group designing and testing the Cape Cod Air
Defense Direction Center and preparing the
operational and mathematical specifications for the
SAGE system. At Lincoln he became head of the
Systems Division (changed to the Data Systems
Division in 1963), assistant director, and deputy
director. In 1968 he joined the Office of the
Secretary of Defense and in 1971 went to the
McDonnell Douglas Astronautics Company as
director of Advanced Weapons Programs. Since 1982
he has been vice-president and general manager of
the Western Division of Physical Dynamics, Inc./
RES Operations.

Charles A. Zraket (B.S.E.E.
Northeastern University 1951;
M.S.E.E. MIT 1953) joined MIT's
Digital Computer Laboratory in 1951
and was group leader in the Digital
Computer Division at Lincoln
Laboratory from 1952-1958. He went
to the MITRE Corporation in 1958 as

head of the Advanced Systems Department and has
been a technical director and vice-president in
MITRE's Bedford, Mass., and McLean, Va.,
divisions. Since 1978 he has been executive vice­
president, chief operating officer, and trustee of
MITRE. He is a Fellow of IEEE and a member of
several policy groups and committees concerned with
national security and energy resources.

322 • Annals of the History of Computing, Volume 5, Number 4, October 1983

SAGE Overview
JOHN F. JACOBS

Editor's Note

I would like to thank Jack Jacobs for this overview,
which gives a brief review of the history of SAGE and
of some of the organizations involved. I cannot think
of anyone better able to discuss SAGE than Jake who,
along with his many other contributions, created and
ran the Systems Office that coordinated the design
efforts of the numerous organizations having
subsystem design responsibilities. We at Lincoln had
nominal overall design authority, but we were not
foolish enough to insist on it very often. Almost all the
time, the Systems Office would handle problems by
investigating them, getting everyone's input, and then
coming up with a solution with plenty of backup and
justification. Everyone's agreement was then sought,
usually in formal coordination meetings, which
frequently had as many as a hundred participants.

Even though there had been no warning of the Japa­
nese attack on Pearl Harbor, the American public
maintained a complacent attitude toward the lack of
adequate air defense in the years right after the end
of World War II. Much of this complacency may have
been due to the fact that the United States had devel­
oped the atomic bomb and had demonstrated its
deathly potential. Although there was an uneasy fear

© 1983 by the American Federation of Information Processing So­
cieties, Inc. Permission to copy without fee all or part of this
material is granted provided that the copies are not made or distrib­
uted for direct commercial advantage, the AFIPS copyright notice
and the title of the publication and its date appear, and notice is
given that the copying is by permission of the American Federation
of Information Processing Societies, Inc. To copy otherwise, or to
republish, requires specific permission.
Author's Address: MITRE Corporation, Burlington Road, Bedford,
MA 01730.
Categories and Subject Descriptors: K.2 [History of Computing)
-hardware, people, SAGE, software, systems. General Terms: De­
sign, Management. Additional Key Words and Phrases: defense,
J. W. Forrester, Lincoln Laboratory, G. E. Valley.
Photographs courtesy MITRE Archives.
© 1983 AFIPS 0164-1239/83/040323-329$01.00/00

Agreement was almost always achieved, not because
nobody wanted to object, but because the sheer
hopelessness of trying to upset the carefully worked
out and documented Systems Office solution was
obvious to everyone. Besides, Lincoln was
responsible, and no one wished to usurp that
important but highly risky position. Since no design
decision was considered valid within the community
without Lincoln concurrence, one was faced with
agreeing or else taking the onus for holding up the
whole schedule and bringing down the wrath of the
entire community on himself. To make this work, of
course, the Systems Office had to be prompt,
accurate, and thorough. At this task, as at all others,
Jake was superb.

that Russia, the estranged ally, would someday possess
this technology, America was thought to be secure in
her arms supremacy.

The August 1949 disclosure to the Truman admin­
istration by U.S. intelligence that the Russians had
exploded a nuclear bomb-and had developed bomb-·
ers capable of carrying such a device over the North
Pole and into the United States-jolted America out
of her complacency and into the Cold War. One of the
groups in the Department of Defense acting on this
information (which was not made public until late in
September) was the newly formed Air Force Scientific
Advisory Board. One of the board members, George
E. Valley from MIT, proposed that a group of experts
be assembled to address themselves to the suddenly
paramount issue of U.S. air defense. As a result of
that recommendation, the Air Defense Systems En­
gineering Committee (ADSEC)-also known as the
Valley Committee-was formed in December 1949
with Valley as its chairman.

The Valley Committee's first meeting marked the
genesis of a novel concept for an air-defense system

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 323

J. F. Jacobs • Overview

that would become known several years later as the
SAGE system. SAGE-Semi-Automatic Ground Envi­
ronment-was deployed eight years after Valley's
committee was first assembled. As it evolved, SAGE
spawned new technologies, businesses, agencies, and
careers. The history of SAGE has many threads run­
ning through it that weave a pattern or legacy; some
of the principal elements that comprise SAGE are
discussed later in this issue. SAGE became the first
major command and control system; Whirlwind,
MIT's pioneering digital computer, played a crucial
role as the system's heart.

In a matter of months members of the Valley Com­
mittee concluded that the existing air-defense net­
work, which was left over from the war and consisted
of a few large radars and manual methods of process­
ing and relaying radar data, was almost wholly inad­
equate. They proposed a larger number of smaller
radars for greater coverage nationwide, with commu­
nication lines between the areas of coverage, and
centralized, automated systems to handle the infor­
mation. They recommended that the existing system
be upgraded as quickly as possible by a competent
technical organization, and that the longer-range so­
lution should include extensive use of computers to
handle surveillance, control, and bookkeeping func­
tions.

The ADSEC recommendations were set in motion
at MIT through Project Charles, an air-defense study
group headed by F. Wheeler Loomis, on leave from
the University of Illinois. The group consisted of a
number of experts (including Valley) from the scien­
tific community. After a thorough review of the exist-

January 1956 press
conference announcing
the SAGE system for
continental air defense.
Left to right: Admiral
Edward Cochran, George
E. Valley, Major General
Raymond G. Maude,
Colonel Dorr Newton.

ing situation, Project Charles recommended, first, that
the existing manual system be upgraded (Bell Labo­
ratories and Western Electric were later chosen to
undertake this upgrading, which came to be known as
the Continental Air Defense System (CADS) project),
and second, that a research laboratory be established
to undertake the long-range development of a more
capable ultimate system. Project Lincoln, later known
as Lincoln Laboratory, was established in 1951.

While credited with the development of SAGE, Lin­
coln benefited from work done in other research lab­
oratories. Lincoln drew both ideas and personnel from
these laboratories and adapted their products or tech­
nologies to the air-defense problem. One of the most
dramatic innovations from another laboratory was the
Whirlwind computer, originally developed in the late
1940s by MIT's Digital Computer Laboratory as a
computer for a navy flight trainer and airplane stabil-
ity analyzer. ·

Whirlwind was the first real-time control computer.
Lincoln considered it a good candidate for the air­
defense control machine because it had been designed
to meet two real-time control needs that were critical
to the air-defense problem: fast processing speed and
maximum reliability. The research and development
involved in attaining speed and reliability for Whirl­
wind laid the groundwork for the design of the SAGE
computer.

In 1950 Jay W. Forrester invented and led the
development of the random-access core memory as a
replacement for the then-current. but limiting tech­
nology of cathode-ray-tube (CRT) storage. Compared
to the cathode-ray memory in Whirlwind, the core

324 • Annals of the History of Computing, Volume 5, Number 4, October 1983

memory doubled the operating speed, quadrupled the
input data rate, increased the mean time to failure
from two hours to two weeks, and reduced the main­
tenance time from four hours a day to two hours a
week. Whirlwind personnel also emphasized tube re­
liability in order to overcome the problem of frequent
tube failures that plagued the early generation of
computers. Whirlwind staff, working with tube man­
ufacturers, developed special tubes that were less
prone to failure than other tubes. Whirlwind staff also
developed marginal checking, a procedure for contin­
ually monitoring the deterioration of vacuum tubes.
This procedure allowed deteriorating tubes to be iden­
tified before actual failure.

Lincoln drew from work done at the Air Force
Cambridge Research Laboratory (CRL) on data com­
munication. Among CRL's communication innova­
tions that were adapted for SAGE was a technique
called slowed-down video, which provided, by digital
transmission over phone lines, a continuous picture of
what was in the range of the radar. Another CRL
technique put to use in SAGE was a radar processor
that included a beam-splitting device capable of de­
termining the center of the beam after the beam swept
across a target, thus giving increased angular accuracy
of the target location. CRL also initiated a scheme for
sending generalized digital data over a standard phone
line.

As soon as the component parts of the system were
developed, Lincoln Laboratory produced an experi­
mental air-defense system called the Cape Cod Sys­
tem, which first coordinated the various components
of the system and realized its capabilities. In 1952,
those working on the Cape Cod project demonstrated
the system's abilities to track and control aircraft and
its capabilities for surveillance and weapons control.
The Cape Cod System was the first to use computer
time-sharing and to use extensively CRT display con­
soles and light guns to transfer information from the
screens to the computer.

The Cape Cod System used the Whirlwind com­
puter, but a more reproducible, maintainable machine
was required for the deployed system. The successor
to Whirlwind was the FSQ-7, a computer jointly de­
veloped by Lincoln and IBM and specifically designed
to meet the air-defense needs.

The final SAGE plan called for duplex computers
located at direction centers throughout the country.
The FSQ-7 was the first system to use this duplex
computer scheme. It was designed to have one com­
puter in active control and one to serve as a test
machine capable of assuming the operational load
should a breakdown occur. The FSQ-7 was one of the
earliest production machines to incorporate random­
access core memory. (This technology serves as an

J. F. Jacobs • Overview

example of how a military development can spin off
commercially: core memory, initiated for the FSQ-7,
actually made its first appearance in a production
machine in 1955 in IBM's 704.) The FSQ-7 also in­
corporated a dual arithmetic element that by simul­
taneous processing of both the X and Y positions of
the data, made possible even greater speed than the
Whirlwind computer. Finally, the experience of joint
design by Lincoln and IBM laid the groundwork for
later coordination among the many organizations that
were to become involved in the SAGE production.

The software for the FSQ-7 broke ground in pro­
gramming. Such a large operating program was never
required before the FSQ-7. Furthermore, the program
had to be developed with few qualified programmers
and few of the programming aids available today. A
result of programming the FSQ-7 was the experience
gained in developing large-scale programs of the kind
SAGE would require. Hundreds of inexperienced pro­
grammers received formal and hands-on training that
would enable them to program for SAGE, and the first
sophisticated utility system containing the compiler,
the checker, and the communication pool was devel­
oped.

SAGE NOMENCLATURE

Whirlwind Developed as a high-speed, parallel, synchro­
nous digital computer for a variety of applications.

Whirlwind II Second-generation Whirlwind computer, de­
veloped for use in the air-defense system. Initial name of
the SAGE computer prototype.

AN/FSQ-7 (also FSQ-7, Q-7) Air Force nomenclature for
the production version of Whirlwind II. This computer
served as the active element at the sector level in the SAGE

direction centers.
AN/FSQ-8 (also FSQ-8, Q-8) Modified FSQ-7 computer

with specialized display system used at the division (multi­
sector) level in the SAGE combat centers.

XD-1, XD-2 Single-computer prototypes of the AN/FS0-:7.
One was installed at IBM's Poughkeepsie location, the
other at Lincoln Laboratory.

TX-0 Experimental, transistorized next-generation com­
puter system used to develop new techniques to replace
AN/FSQ-7 vacuum-tube technology.

AN/FSQ-32 Proposed transistorized replacement for the
AN/FSQ-7. A single model was built and installed at Stra­
tegic Air Command Headquarters.

AN/FST-1 Radar data-processing and transmitting equip­
ment employing so-called slowed-down video technique.
Designed by Lincoln Division 2 and built by Lewyt Corpo­
ration for the gap-filler radars.

AN/FST-2 Radar data-processing and transmitting equip­
ment which converted analog radar signals to a digital
format. Also reduced clutter and performed beam splitting.
Designed by Lincoln Division 2 and built by Burroughs
Corporation for the SAGE system.

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 325

J. F. Jacobs • Overview

FOURTH
FLOOR

THIRD
FLOOR

SECOND
FLOOR

FIRST
FLOOR

EQUIPMENT COOLING
MAINTENANCE AREA

COMMUNICATION
RECORDING­
MONITORING
AND VHF

EQUIPMENT
COOLING FILTER
MAINTENANCE AREA

ANALYSIS AND
TRAINING

MAINTENANCE
TEST AREA

AIR SURVEILLANCE

IDENTIFICATION ROOM

Direction centers typically were
four-story buildings with floor
plans similar to this one. The SAGE
FSQ-7 duplex computers occupied
the entire second floor. Air cooling
and ducting equipment was located
on the first floor, along with
telephone frames, cables, and
equipment needed to maintain
communications and radar data
flow. The power house was
attached to the operations part of
the building by a common wall at
the first floor. Most of the third
floor was a service area for the
operations room above, and also
contained office and storage space,
the subsector command post, and
the Kelvin-Hughes projector and
air-situation display screen. The
fourth floor of the center housed
the operational areas, where air
force staff supervised each of the
major air-defense functions
(weapons direction, identification,
air surveillance, etc.) from separate
areas. (Illustration by Bernard
Shuman, MITRE Corporation.)

SUBSECTOR COMMAND POST

GENERATORS

DIESEL ENGINES

COOLING
TOWER

326 • Annals of the History of Computing, Volume 5, Number 4, October 1983

Lincoln played the primary role in SAGE develop­
ment until research proved the conceptual system was
feasible. The focus then turned to producing the sys­
tem. Since Lincoln was chartered to do only the re­
search and development work, production fell outside
its realm of responsibility. Various commercial man­
ufacturers were sought to produce the actual SAGE

components. Because of its work on CADS, Western
Electric was chosen to provide the administrative
support, engineering services, acceptance testing, and
evaluation for the project. Lincoln retained responsi­
bility for initial systems engineering, central design,
and the master operating program. IBM was to follow
through on the production computer, and a split-off
from the Rand Corporation, the System Development
Corporation, whose staff was familiar with program­
ming and the air-defense problem, assumed responsi­
bility for the evolution of the operational program.
The Burroughs Corporation was chosen to produce
the FST-2, which included the beam splitter, and
AT&Twas given responsibility for digital ground com­
munications. The coordinating agency was the Air
Defense Engineering Services (ADES) project office
in New York, directed by Colonel Richard M. Osgood
from the Air Materiel Command (AMC) and assisted
by Colonel Albert R. Shiely from the Air Research
and Development Command (ARDC). Establishing
the ADES office represented the first attempt to apply
a systems approach to the development of an elec­
tronic system.

Once SAGE was considered operational, the empha­
sis turned toward integrating existing and new weap­
ons into the system. In the late 1950s the air-defense
system was relatively fragmented; many new weapons
were being developed, but the authority for weapons

J. F. Jacobs • Overview

development was dispersed. For the new weapons to
have maximum utility, the operation of all systems
had to be coordinated. This meant, especially to the
people at Lincoln, integration with the SAGE system.

The original SAGE program was designed to control
manned interceptors. A new series of interceptors, the
F -102 and F -106, had to be included. By the late 1950s,
control of weapons such as Nike, the ground-to-air
missile developed by Bell Telephone Laboratories and
Western Electric, and BOMARC (Boeing-Michigan
Aeronautical Research Center) A and B, the Air Force
primary defensive missile, had to be integrated with
SAGE. New systems, such as the Airborne Long Range
Input (ALRI) system, which used the first airborne
radar platforms; the Texas Towers, a string of early­
warning radars off the coast of New England; and the
frequency diversity radars, a family of radars operated
on different frequencies to reduce the threat of jam­
ming, also had to be tied in.

Lincoln provided the initial systems engineering
work; however, the continued modification and adap­
tation of the system for further integration was not
the laboratory's responsibility. As a first attempt to
coordinate weapons integration, the Air Force created.
the SAGE Weapons Integration Group (SWIG), com­
posed of air force and weapons manufacturers person­
nel. This organization had little authority, little tech­
nical expertise, and little consensus of purpose; it
ultimately lasted less than a year. The need for an
organization with a broader base of power and with
participants whose primary concern was integration
became clear. In 1957 the Air Force established a
higher-level Air Defense Systems Management Office
(ADSMO), staffed by ARDC, AMC, and Air Defense
Command (ADC), to attend to the integration prob-

By the time SAGE was fully deployed in 1963, U.S.
air-defense coverage was the responsibility of 23
geographically determined sectors. The heart of
each air-defense sector was its direction center,
where air-surveillance information from radars
within the sector was received, interpreted, and
displayed by the twin AN/FSQ-7 computers to the
sector's commander and staff.

The New York air-defense sector was the first to
be declared operational in July 1958, during
ceremonies held at McGuire Air Force Base near
Trenton, N.J. The sector's direction center at
McGuire, shown in this 1958 photo, is today
headquarters for the 21st Air Force.

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 327

SAGE CHRONOLOGY

1949

Aug. Russians detonate atomic device.
Nov. George E. Valley, MIT, proposes to Theodore von Karman, chairman, Air Force Scientific Advisory Board, that a

study of air-defense requirements be undertaken.
Dec. Air Defense Systems Engineering Committee (ADSEC) is established, with Valley as chairman.

1950
Sep. First MIT experiments transmitting digitized data from Microwave Early Warning (MEW) radar at Hanscom Field

(Bedford, Mass.) to Whirlwind computer in Cambridge, Mass., over commercial telephone lines.
Oct. ADSEC's final report is issued, defining the air-defense system that will become known as SAGE.
Dec. Gen. Hoyt S. Vandenberg, Air Force Chief of Staff, asks MIT to establish and administer an air-defense laboratory,

and to perform an intensive investigation of the air-defense problem.

1951
Jan. Air Force contracts with Bell Telephone Laboratories to improve existing ground-radar-based air-defense system.
Jan. Air Force contracts with University of Michigan to expand ballistic missile program into a system for air defense.
Feb. "Project Charles" established at MIT for short-term investigation of air-defense problem.
Apr. First live demonstration of automatic aircraft interception using Whirlwind computer and MEW radar.
Jul. "Project Lincoln" established at MIT as laboratory for air defense-original charter for MIT Lincoln Laboratory.
Aug. Air Force Air Research and Development Command (ARDC) assumes responsibility for administration of Project

Lincoln.
Oct. MIT's Whirlwind staff at the Digital Computer Laboratory joins Project Lincoln as Division 6.

1952
Feb. Secretary of the Air Force T. K. Finletter assigns top priority to air-defense matters; promises MIT whatever funding

required.
Apr. Name "Project Lincoln" changed to "Lincoln Laboratory."
May Memory Test Computer (MTC) under design.
Jun. Plans for "Cape Cod System" published-scaled-down prototype of nationwide SAGE system.
Jul. Lincoln considering several manufacturers for production of air-defense computer.
Oct. IBM awarded subcontract by Lincoln to study computer project; Division 6-IBM engineering collaboration under way.

1953
Jan.
Jan.
Mar.
May
Jun.­
Jul.
Summer
Aug.
Sep.
Sep.
Nov.
Dec.

1954

Lincoln publishes Technical Memorandum No. 20-a proposed air-defense system called "Lincoln Transition System."
First Division 6-IBM technical meeting, Hartford, Conn.
Lincoln publishes report, "Cape Cod System and Demonstration."
ARDC decides to pursue Lincoln Transition System and phase out University of Michigan system.
Division 6-IBM "Project Grind" meetings.

Division 6 staff moves from MIT in Cambridge to Lincoln Laboratory in Lexington.
First bank of core storage wired into Whirlwind after MTC tests succeed.
IBM receives contract to produce two single-computer prototypes: the XD-1 and XD-2.
Cape Cod System fully operational.
Decision made to have duplex computer system.
Cape Cod System tracks 48 aircraft.

Feb. First production contract for SAGE computer-called the AN/FSQ-7-awarded to IBM.
May Air Materiel Command establishes Air Defense Engineering Services (ADES) at Wright-Patterson Air Force Base for

acquisition of the Lincoln Transition System. Western Electric becomes involved in ADES management.
Jul. Lincoln Transition System is renamed SAGE-Semi-Automatic Ground Environment.
Sept. ADES moves to New York City and acquires representatives from ARDC, ADC, and AMC.

1955
Mar. "Red Book" operational plan is published-complete definition of SAGE.
Apr. ADES becomes part of newly formed Electronic Defense Systems Division.
Jun.- Simplex version of AN/FSQ-7 (XD-1) installed at Lincoln by IBM.
Jul.
Dec. System Development Division emerges from Rand Corporation.

1956
Feb. Development of TX-0 announced-experimental transistorized computer.
Apr. Lincoln urges Air Force to find agency to manage integration of weapons with SAGE system.

lem; ADSMO suffered failings similar to SWIG's: it
was still at too low a level and had too little technical
support to have any clout.

By way of strengthening ADSMO, the Air Defense
Systems Integration Division (AD SID) was formed,
with a general officer, Major General Kenneth P.
Bergquist, in charge. Still, technical support was re­
quired. MIT, unwilling to let Lincoln get more deeply
involved in SAGE deployment by continuing to supply
the technical support, refused a role as technical ad­
viser but agreed to help establish an organization
separate from Lincoln and MIT to provide the nec­
essary technical support. The organization, which
came to be known as the MITRE Corporation, was
formally established in 1958. One of its first respon­
sibilities was to serve as technical adviser to ADSID
on integrating weapons under SAGE.

Further coordination difficulties occurred in the late
1950s and early 1960s when new command and control
systems such as ballistic missile warning, air commu­
nication, and satellite surveillance were developed.
Like the original weapons systems, these systems were
all developed independently, and there was no guar­
antee of their coordinated operation. To meet the need
to coordinate the new command and control systems,
the Air Force Command and Control Development
Division (C2D2

) was formed in 1963. Soon C2D2 was
subsumed under a high-level organization for weapons
and systems integration, the Electronic Systems Di­
vision (ESD), which included the development divi­
sions from ARDC, and AMC, and C2D2

•

The first SAGE direction center went operational in
July 1958 at McGuire Air Force Base. SAGE was fully
deployed by 1963. In total; 23 direction centers, three

J. F. Jacobs • Overview

combat centers, and one programming center were
built. Because each center was duplexed, there were
54 CPUs in all. In the intervening years, the original
SAGE plan underwent modification and expansion. In
1957, when Russia launched Sputnik, the United
States became increasingly concerned over the special
vulnerability of the SAGE system, whose computers
were located at Strategic Air Command (SAC) bases­
bonus targets in a ballistic missile attack. The idea of
Super Combat Centers (SCCs) evolved: deep under­
ground direction centers housing the new AN /FSQ-
32 computer. The AN/FSQ-32 computer replaced the
outdated vacuum-tube technology of the FSQ-7 /8 with
transistor technology. The idea of the SCC was
scrapped in favor of the less costly Back-Up Intercep­
tor Control (BUIC) system, which provided automation
at the radar sites as well as at the direction centers.
The backup automation ensured air-defense capabili­
ties, even if the SAGE direction centers fell under
attack.

As of this writing, in mid-1983, six SAGE direction
centers are still in operation: Hancock Field, New

. York; Fort Lee, Virginia; McChord Air Force Base,
Washington; Malmstrom Air Force Base, Montana;
Luke Air Force Base, Arizona; North Bay, Ontario,
Canada. Some of the FSQ-7s have been operating for
more than 20 years. SAGE is now being phased out in
favor of a new system that emphasizes FAA radars
and new Regional Operational Control Centers
(ROCCs). Because SAGE never saw actual combat, it
is difficult to evaluate its effectiveness, but the system
merits appreciation simply for its contributions to
both the computer-communications field and air de­
fense.

Jun. IBM's first production FSQ-7 system accepted in manufacturing test cell.
Sep. Air Force asks Lincoln to manage weapons integration task; Lincoln declines.
Nov. ARDC holds conference on weapons integration problem.
Dec. Experimental SAGE Sector (ESS) begins shakedown tests.
Dec. System Development Division of Rand begins independent operation as System Development Corporation.
Dec. ARDC recommends establishment of Air Defense Systems Management Office (ADSMO) to oversee integration.

1957
May SAGE Weapons Integration Group (SWIG) assembles at Hanscom Field.
Jun. Lincoln urges that Division 6 take over weapons integration responsibility.

1958
Mar. Secretary of the Air Force proposes to MIT that a new organization be formed to provide systems engineering

support to ADSMO.
Jul. First of 24 SAGE direction centers operational at McGuire Air Force Base, New Jersey.
Jul. Division 6 becomes basis of new systems engineering organization, incorporated as the MITRE Corporation.

1963
The SAGE system is fully deployed in 23 air-defense sectors: 22 in the United States and one in Canada.

1983
Jan. Six SAGE systems still running.

1984
Jan. All SAGE systems shut down.

SAGE-A Data-Processing System
for Air Defense
ROBERT R. EVERETT, CHARLES A. ZRAKET, AND HERBERT D. BENINGTON

The paper is adapted from a presentation at the 1957 Eastern Joint Computer
Conference. The authors give details of the Semi-Automatic Ground
Environment (SAGE) system and how it developed.

Categories and Subject Descriptors: K.2 [History of Computing]-hardware,
SAGE, software, systems
General Terms: Design, Management
Additional Key Words and Phrases: defense, Lincoln Laboratory, U.S. Air
Force, real-time control, AN/FSQ-7, FST-2

Editor's Note

The definition of the SAGE system evolved from the Air
Defense Systems Engineering Committee (Valley
Committee) concept through many modifications as
Lincoln Laboratory, the other contractors, and the
U.S. Air Force faced fiscal, technical, and operational
realities. By 1956, the definition of the design of SAGE

was substantially fixed; most of the critical
subsystems had been tested in either the Cape Cod
System or the Experimental SAGE Sector. Adequate
money was available. The prime contractors were
able to predict how long it would take to do their jobs.
Instead of writing a new paper on the definition of the
design of SAGE, we have chosen to reprint a paper
written in 1957, the year before the SAGE system
became operational. The paper describes SAGE and all
its subsystems as it was understood at the time.

By 1957, some of the SAGE direction-center
buildings had been built and some of the subsystems
had been installed. The System Program Office was
functioning effectively, and all the participants had
planned their actions according to a master schedule
prepared by the Air Defense Engineering Services
Project Office. The following paper was presented at

© 1957 IRE (now IEEE). Reprinted with permission from Proceed­
ings of Eastern Joint Computer Conference, Washington, D.C.,
December 1957, pp. 148-155.
Authors' Addresses: R. R. Everett and C. A. Zraket, MITRE Cor­
poration, Burlington Road, Bedford, MA 01730. H. D. Benington,
System Development Corporation, 7929 Westpark Drive, McLean,
VA 22101.
Illustrations courtesy MITRE Archives.
© 1983 AFIPS 0164-1239/83/040330-339$01.00/00

the Eastern Joint Computer Conference in December
1957 in Washington. Changes made in the system
after that time were generally those required to adjust
(cut back) the system to match the available monies
and to correct for the overestimates made by the
designers. The changes also reflected the declining
priority of air defense, the growing awareness of the
need for integration, and the mechanisms set up to
control the evolution of the system. Nevertheless, the
paper is an excellent description of the system that
was initially deployed.

The Requirement of SAGE

The past decade has shown an increase in the air
threat to this country to an extent that has outdated
manually coordinated traffic-handling techniques and
manual data processing. General Earle E. Partridge,
Commander-in-Chief, North American Air Defense
Command, stated (U.S. News & World Report, 6 Sep­
tember 1957) the need for a defense system that is
prepared to work instantly and that will blanket the
entire United States. Until recently, we have relied on
an air-defense processing system whose traffic-han­
dling techniques were almost identical to those used
during the Second World War. Fortunately, there has
been substantial improvement in our inventory of
automated air-defense components. These include im­
proved radar systems, automatic fire-control devices,
navigational systems, and both missiles and manned
aircraft of high performance. But successful air de-

330 • Annals of the History of Computing, Volume 5, Number 4, October 1983

Figure 1. A SAGE direction center building contains
power-generation and computing equipment, operational
areas for directing sector operation, and office and
maintenance facilities. Data are transmitted to this center
both automatically and by voice phone. The center
communicates with adjacent SAGE centers and transmits
guidance data to weapons under its control.

fense requires both good components and intelligent
utilization of these components. More important, in­
telligent commitment of new weapons requires up-to­
date knowledge of the complete enemy threat and of
the success of weapons already committed.

The air-defense data-processing problem is one of
nationwide data-handling capability: faciliti~s for
communication, filtering, storage, control, and dis­
play. A system is required that can maintain a com­
plete, up-to-date picture of the air and ground situa­
tions over wide areas of the country; that can control
modern weapons rapidly and accurately; and that can
present filtered pictures of the air and weapons situ­
ations to the air force personnel who conduct the air
battle.

The Semi-Automatic Ground Environment Sys­
tem-SAGE-was developed to satisfy these require­
ments. SAGE is a large-scale, electronic air-surveillance
and weapons-control system and is composed of three
groups of facilities: those required to process and
transmit surveillance data from data-gathering
sources to data-processing centers; data-processing
centers where data are evaluated and developed into
an air situation and where weapons-guidance orders
are generated; and communications facilities to trans­
mit data to weapons, to command levels, to adjacent
centers, and to other users such as the Civil Aeronau­
tics Adminstration (CAA) and federal civil defense
agencies. SAGE uses very large digital computing sys­
tems to process nationwide air-defense data. SAGE is
a real-time control system, a real-time communication
system, and a real-time management-information sys­
tem. The basic ideas of this system resulted from the
efforts of George E. Valley and Jay W. Forrester, both
of MIT.

A large number of organizations have contributed
to the development of SAGE since its conception in the
Air Force and at MIT's Lincoln Laboratory. The
International Business Machines Corporation (IBM)

HUNDREDS OF
DATA SOURCES

AND SINKS

R. R. Everett et al. • SAGE

OVER
ONE HUNDRED

AIR FORCE
OPERATORS

-----------------~~------~---~------~~~-SAGE SECTOR &
ADJACENT CENTERS SAGE DIRECTION CENTER

Figure 2. SAGE data processing. The direction center
continuously receives input data from hundreds of
locations within and without the sector. Some of these
data are transmitted digitally over telephone lines and read
directly into the computer; some are transmitted by
teletype or voice phone and transcribed onto punched
cards before input to the computer. In 1 second, over
10,000 bits of data representing hundreds of different types
of information can be received at the direction center.

designed, manufactured, and installed the AN /FSQ-7
Combat Direction Central and the AN /FSQ-8 Combat
Control Central including the necessary special tools
and test equipment. The Western Electric Company,
Inc. provided management services and the design and
construction of the direction center and combat center
buildings. These services were performed with the
assistance of the subcontractor, the Bell Telephone
Laboratories. The Burroughs Corporation manufac-

TEXAS TOWER

1

HIGHER '-._ ~

"'/T"'o ~t~~
II~·

DIRECTION
CENTER

Figure 3. A direction center receives digitally coded data
automatically and continuously from search radars and
height finders over voice-bandwidth communications
circuits. Data on flight plans, weapons status, weather, and
aircraft tracks are received, respectively, from the Air
Movements Identification Service (AMIS), weapons bases,
USAF Weather Service, Ground Observer Corps, and
airborne early-warning and picket ships over teletype and
voice telephone circuits. Similarly, data from the direction
center are transmitted in digitally coded form over voice­
bandwidth communications circuits to ground-air data-link
systems, to weapons bases, to adjacent direction centers,
and to command levels; data to other users are transmitted
over automatic teletype circuits.

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 331

Figure 4. The fourth floor of the direction center contains separate operational rooms for air surveillance, identification,
status input, weapons assignments and control, and command functions. Up to 50 operators are required in one room to
man the consoles, which are directly connected to the computer.

tured, installed, and provided logistic support for
AN/FST-2 coordination data-transmitting sets. The
System Development Corporation (until recently a
division of the Rand Corporation) assisted Lincoln
Laboratory in the preparation of the master computer
program and the adaptation of this program to pro­
duction combat direction centers.

Sectors and Direction Centers

With SAGE, air defense is conducted from about 30
direction centers located throughout the United States
(Figure 1). A center is responsible for air surveillance
and weapons employment over an area called a sector.
Each center contains a digital computing system-the
AN/FSQ-7-containing almost 60,000 vacuum tubes.
Over 100 air force officers and airmen within the
center control the air defense of the sector. Most of
these men sit at consoles directly connected to the
computer where they receive filtered displays of the
computer's storage of system-status data; they direct
the computer through manual keyboards at each con­
sole. The Boston sector is typical; its direction center
is located at Stewart Air Force Base in New York. Its
area of responsibility extends from Maine on the north

to Connecticut on the south and from New York on
the west to a point hundreds of miles off the seacoast
on the east.

The computer in the direction center can store over
1 million bits of information representing weapons
and surveillance status of the sector at one time (Fig­
ure 2). These bits represent thousands of different
types of information. For example, the computer gen­
erates and stores positions and velocities of all aircraft,
or it stores wind velocity at various locations and
altitudes. Within the computer, a program of 75,000
instructions controls all automatic operations; input
data are processed, aircraft are tracked, weapons are
guided, outputs are generated. Each second, the com­
puter can generate over 100,000 bits of digital infor­
mation for display to air force operator consoles. Each
operator receives cathode-ray-tube displays that are
tailored to his needs, and he may request additional
information or send instructions to the computer by
means of keyboard inputs on his console. Each second,
the computer can generate thousands of bits of infor­
mation for automatic digital transmission via tele­
phone or teletype to weapons and missiles, to adjacent
centers or higher headquarters, and to other installa­
tions within the sector.

332 • Annals of the History of Computing, Volume 5, Number 4, October 1983

Figure 5. Each operator sits at a console that contains
display and input facilities tailored to his responsibilities.

How fast is this system? Obviously, response times
from input to output vary with the task performed.
Fastest response is required by automatic control
functions (such as weapons guidance) and for man­
machine communication (such as displays of re­
quested information). For many of these functions,
only several seconds are required from stimulus to
response. For others, several minutes may elapse be­
fore the 'effects of new data are reflected throughout
the system. We will now consider, in more detail, the
three major areas that comprise SAGE data processing.
First, the sector or environment that contains the data
sources or sinks coordinated by the direction center.
Next, the man-machine component-how the opera­
tors within the direction center are informed of the
air situation and how they affect its progress. Finally,
the computing system that performs the automatic
component of the direction-center function.

The SAGE Sector

The direction center communicates with over 100
adjacent installations (Figure 3). Air-surveillance data
are received from several types of radars. Long-range
search and gap-filler radars located throughout the

R. R. Everett et al. • SAGE

Figure 6. The operators insert data into the computer
through keyboard actions.

sector provide multiple coverage of the air volume
within the sector; picket ships, airborne early warning
(AEW), and Texas Towers extend this coverage well
beyond the coastline; height finders supply altitude
data. Within the direction center, these data are con­
verted by the computer to a single positional frame of
reference and are used to generate an up-to-date pic­
ture of the air situation. Other inputs to the direction
center include missile, weapons, and airbase status;
weather data; and flight plans of expected friendly air
activity. Such data, which are received from many
installations within and without the sector, are auto­
matically processed by the computer and used by
direction-center operational personnel to assist iden­
tification of aircraft, employment of weapons, or se­
lection of tactics.

The direction-center computer communicates au­
tomatically and continuously with adjacent direction
centers and command-level headquarters in order to
ensure that air defense is coordinated smoothly be­
tween sectors and conducted intelligently over larger
areas than a single sector. For example, an aircraft
flies out of a sector; surveillance data from the center
are automatically transmitted to the proper adjacent
center in order to guarantee continuous tracking and

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 333

Figure 7. Situation display (on Charactron tube developed by Hughes Products Co.) of New England coastline and adjacent
installations.

interception. In this way, adjacent centers are contin­
uously warning, informing, and acknowledging. The
final function of the direction center is to continuously

Figure 8. Typotron digital display (developed by San
Diego Division of Stromberg-Carlson; formerly Convair
Division of General Dynamics).

transmit status, command, or guidance data to air­
borne interceptors and missiles or to related ground
installations.

Three types of data transmission are used for both
inputs and outputs. First, data sources or sinks that
require high transmission rates communicate directly
with the SAGE computer by means of digitally coded
data transmitted at 1300 pulses per second over voice­
bandwidth telephone lines and radio channels. Typical
applications of this type of channel are inputs from
search radars and intercommunication between adja­
cent centers. Teletype provides a second channel that
is slower but equally automatic. Input flight plans are
transmitted from Air Movement Identification Ser­
vices. Finally, voice telephone communications are
used in cases where high automaticity is either unnec­
essary, too expensive, or not feasible. If such infor­
mation must be entered into the computer, either
punched cards or operator keyboard inputs are used.

334 • Annals of the History of Computing, Volume 5, Number 4, October 1983

SECTOR IN-OUT

TELEPHONE
LINE INPUTS ~

STATUS ~
CARD INPUTS ~ ~

I OPERATOR CONSOLES 0

~
DISPLA VS KEYBOARDS

........ -r..,,.,,....__-.
TELEPHONE

TJ~i~~~~ ~~ ~-:i:t'-.,::;;:;--•...,..,.-~-"

COMPUTER
INTERCOM­

MUNICATION MAGNETIC REAL-TIME
TAPE CLOCK

PROGRAMS

SYSTEM
STATUS DATA

ENVIRONMENT
INPUT-OUTPUT

CONSOLE
INPUT-OUTPUT

CONTROL

STATUS DATA
MAINTENANCE

Figure 9. Each of two identical computers includes the
central computer that performs all calculations, the 75,000-
instruction air-defense program, and the millions of bits of
system-status data. Both of the latter are stored on
auxiliary magnetic drums.

All data sources and sinks in the sector operate
asynchronously. Inputs from each source arrive at the
direction center with very different average and peak
rates. Each source is processed by the computer with
a priority and sampling rate consistent with the role
of the particular data in the overall air-defense func­
tion. Likewise, the computer generates output mes­
sages with a frequency and timing that will ensure
adequate transmission of guidance and status data
and yet will make maximum use of finite phone-line
and teletype capacity. One of the major functions of
the SAGE computer is coordination and scheduling in
real time of sector inputs and outputs with the manual
and automatic functions performed in the direction
center.

The Man in the System

Although SAGE has made many of the data-processing
functions in a direction center automatic, many tasks
remain that are better performed by the man. Opera­
tors can relay computer outputs by phone or radio to
adjacent installations and weapons; they can recognize

DIGITAL INFORMATION DISPLA VS

RADARDATA

SWITCH
INPUTS

DISPLAY DRUMS

DISPLAY
MESSAGES

CENTRAL
COMPUTER

Figure 10. Major means of communication between
automatic equipment and operating personnel.

R. R. Everett et al. • SAGE

BOOK-
INPUT OUTPUT KEEPING CONTROL PROCESSING

PROGRAMS 2 l ~
','

mim;muu111m11 80 PROGRAMS 3

100,000 4

INSTRUCTIONS :

ISOLATED
TABLES
1,000ITEMS

CENTRAL
TABLES
1,000ITEMS

{0000000000000000

Figure 11. Static program organization.

certain patterns more rapidly and meaningfully than
any of our present computers and take appropriate
action. Most important, operators are required for
tactical judgments such as aircraft identification or
weapons deployment and commitment. If a major
advantage of the FSQ-7 computer is its ability to
maintain and store a complete picture of the sector
situation, an equally important advantage is that the
same computer can rapidly summarize and filter these
data for individual presentation to the more than 100
air force personnel who both assist and direct air­
defense operations.

The fourth floor of the center contains operational
areas from which air force personnel supervise the
computer and the sector. Each of the major air-defense
functions-radar inputs, air surveillance, identifica­
tion, weapons control, operations analysis, training,
simulation, and sector command (Figure 4)-is super­
vised from a separate room.

Each operator sits at a console that contains display
and input facilities tailored to his responsibilities (Fig­
ure 5). The operators insert data into the computer by
pushing keyboard buttons (Figure 6). Each console is

COMPONENT
PROGRAM

ISOLATED
TABLES

CENTRAL
TABLES

CONTROL

---t----TIME------

---a ti a TI a c D 0---1
---D c D D 0 D D D- --

STORAGE

---o D 0 D D 0 0 0---1
---0 D D 0 D 0 0 D---

Figure 12. Dynamic program operation. .

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 335

R. R. Everett et al. • SAGE

Figure 13. Digital data transmitted automatically to the
direction center via telephone lines can be selected for
insertion into the computer at an input patch panel.

provided with an input capacity to the computer of 25
to 100 bits of information at one time. The total
keyboard input capacity for all consoles is over 4000
bits, which are sampled by the computer every several
seconds.

A 19-inch Charactron cathode-ray tube displays
geographically oriented data covering the whole or
part of the sector (Figure 7). On this air-situation
display scope, the operator can view different cate­
gories of tracks or radar data, geographic boundaries,
predicted interception points, or special displays gen­
erated by the computer to assist his decision.

Figure 14. Magnetic drums are used for buffer storage of
1/0 data and storage of system-status data and computer
programs. Twelve physical drums (six shown) have the
capacity for almost 150,000 32-bit words. Half of this
capacity is required for storage of the real-time program.

Every 2¥.! · seconds, the computer generates about
200 different types of displays, requiring up to 20,000
characters, 18,000 points, and 5000 lines. Some of
these are always present on an operator's situation
display. Others he may select. Some he may request
the computer to prepare especially for his viewing.
Finally, the computer can force very high-priority
displays for his attention.

The operator's console can also contain a 4-inch
Typotron digital-display tube that is used to present
status data such as weather conditions at several
airbases or attention data that, for example, show the
operator why the computer rejected his action (Figure
8). Sixty-three different characters are available in the
Typotron. The FSQ-7 display system can display these
characters at the rate of 10,000 characters every few
seconds to all the digital display scopes.

SAGE Computing System

The SAGE FSQ-7 computer occupies the entire second
floor of the direction center. About 70 frames contain­
ing almost 60,000 vacuum tubes are required to handle
all input-output data, to perform air-defense calcula­
tions, and to store system-status data. In order to en­
sure round-the-clock operation, two identical compu­
ters are required. These are located on opposite sides
of the floor with unduplicated input-output equipment
and maintenance consoles situated in between.

Figure 15. Magnetic core memory. The central computer
is a binary, parallel machine with an 8192-word core
memory and a speed of roughly 75,000 single-address
instructions per second. Numbers representing positional
data are stored and processed as vectors with two 16-bit
components in order to facilitate processing.

336 • Annals of the History of Computing, Volume 5, Number 4, October 1983

R. R. Everett et al. • SAGE

Figure 16. Control console. Separate control consoles (including standard IBM punched-card equipment) and magnetic-
tape units are provided for each of the duplexed computers. ·

Figure 9 shows the logical organization of one of the
two identical computers. Since only one of these com­
puters performs the real-time air-defense function at
any one time, we can discuss simplex processing before
considering the problems of duplex operation.

The computer system consists of the following ma­
jor components: a central computer, the air-defense
computer programs, and the system status data stored
on auxiliary magnetic drums. The central computer is
buffered from all sector and console in-out equipment
by magnetic drums (except for the console keyboard
inputs, which use a 4096-bit buffer core memory).
Finally, a real-time clock and four magnetic tape units
(used for simulated inputs and summary recorded
outputs) complete the FSQ-7 system.

The central computer is a general-purpose, binary,
parallel, single-address machine with 32-bit word
length and a magnetic core memory of 8192 words.
The memory cycle time is 6 microseconds. Each in­
struction uses one 32-bit word, and the effective op­
erating rate is about 75,000 instructions per second.
Four index registers are available for address modifi­
cation. One unique feature of the central computer is
the storage and manipulation of numerical quantities
as two-dimensional vectors with two 16-bit compo­
nents. In this way, a single sequence of instructions
can simultaneously process both components of posi­
tional data, effectively doubling computing speed for
this type of processing. Twelve magnetic drums, each
with a capacity of 12,288 words of 32 bits, are used for
storage of system-status data, system-control pro-

grams, and buffer in-out data. Under control of the
central computer, data can be transferred in variable­
length blocks between these drums and core memory.
The total drum storage capacity is about 150,000
words of 32 bits.

During an average 1-second period, the central com­
puter transfers from 20 to 50 blocks of data, each
containing 50 to 5000 words, between the central
computer's core memory and the terminal devices. In
order to ensure maximum utilization of the central
computer for air-defense processing and control, an
in-out break feature is used. With this feature, calcu­
lations in the central computer continue during input­
output operations; they are only interrupted for the
one core-memory cycle required to transfer a word
between the core memory and the terminal device.
The in-out break has proved very valuable since con­
siderably more than 50 percent of real time is required
for input-output searching, waiting, and transferring.

The input-output buffering devices process in-out
data independently of the central computer and so
free the computer to do more complex air-defense
processing. (Separate read-write heads are provided
for the buffering equipment and for the central com­
puter.) In their buffering role, these devices can re­
ceive or transmit data while the computer is perform­
ing some unrelated· function.

Consider, for example, the general manner in which
input data from voice-bandwidth phone lines are re­
ceived. The serial 1300-pulse-per-second message is
demodulated and stored in a shift register of appro-

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 337 .

R. R. Everett et al. • SAGE

Figure 17. Central computer frames. There are about 70 frames containing nearly 60,000 vacuum tubes in the system.

priate length. When· the complete message has been
received, the message is shifted at a higher rate into a
second shift register (whose length is a multiple of 32
bits), thus freeing the first register to receive another
message. When the first empty register is located on
the input buffer drum, parallel writing stores the word
in 10 microseconds. A relative timing indicator is also

Figure 18. Air surveillance room. From this location the
air force operators direct aircraft detection and tracking
and communicate with adjacent direction centers. The
operator in the foreground is instructing the computer to
assign one of the tracks shown on his 19-inch cathode-ray
display (Charactron) to another operator for special
monitoring. Situation displays on this tube can be forced
by the computer or requested by the operator. The small 4-
inch tube (Typotron) is used for display of tabular status
data. In addition, the console contains keyboard facilities
for inserting data into the computer and telephone
facilities to provide appropriate priority communications
with other stations within and without the direction
center.

stored on the drum with the message since the com­
puter may not process the message for several seconds
and since time of receipt at the direction center is
often critical. The central computer can read these
randomly stored data by requesting a block transfer
of occupied slots only. Output messages are processed
conversely. In a few milliseconds, the central computer
can deposit (on the output buffer drum) a series of
messages that will keep several phone lines busy for
10 seconds.

The processing ability of the buffer devices is fully
exploited in the display system (Figure 10). In this
case, the central computer maintains a coded table on
the buffer display drum. This table is interpreted and
displayed by special-purpose equipment every 2112 sec­
onds at the appropriate console. The central computer
can change any part of the display at any time by
rewriting only appropriate words on the drum.

The central computer performs air-defense process­
ing in the following manner (see Figures 11 and 12).
The buffer storage tables, the system-status data, and
the system computer program are organized in
hundreds of blocks-each block consisting of from 25
to 4000 computer words. A short sequence-control
program in the central computer's core memory trans­
fers appropriate program or data blocks into core
memory, initiates processing, and then returns appro­
priate table blocks (but never programs) back to the
drum. To take advantage of the in-out break feature,
operation of each air-defense routine is closely coor­
dinated with operation of the sequence-control pro­
gram so that programs and data are transferred during
data processing.

338 • Annals of the History of Computing, Volume 5, Number 4, October 1983

By time-sharing the central computer, each of the
air-defense routines is operated at least once every
minute-many are operated every several seconds.
One interesting feature is that the frequency of pro­
gram operation is locked with real time rather than
allowed to vary as a function of load; during light load
conditions the sequence-control program will often
"mark time" until the real-time clock indicates that
the next operation should be repeated. Such synchro­
nization with real time simplifies many of the control
and input-output functions without causing any deg­
radation in system performance. Figures 13-19 show
the SAGE system in operation.

Reliability

One last aspect of the computing system remains to
be discussed: reliability. As mentioned earlier, 24-
hour-per-day uninterrupted operation of the comput­
ing system was a requirement that could not be com­
promised. The FSQ-7 is a crucial link in the air­
defense chain. If the computing system stops, the
surveillance and control functions are interrupted,
men and machines throughout the sector lose vital
communications, and the sector is without air defense.

In order to ensure continuous system operation, any
component whose failure would cripple the system has
been duplexed whenever possible. As a result, two
complete, independent computers are provided-each
with separate drums, central computers, input-output
buffering devices, and magnetic tapes. Equipment as­
sociated with individual input-output channels is gen­
erally not duplicated: consoles, phone-line demodula­
tors, shift registers, etc. Loss of one of these pieces of
equipment would merely cause loss of some data and
minor system degradation, rather than complete shut­
down of the direction center.

At any one time, one computer performs the air­
defense job-this is the active computer. The standby
machine may be operating in one of several modes: it
may be down for repair (unscheduled maintenance
time); it may be undergoing routine preventive main­
tenance (marginal checking), or even assisting in the
maintenance of other equipment within the sector.

The switchover process interchanges the roles of
the computers-the standby machine goes active, the
active machine goes to standby. Simplexed devices
connected to one machine are automatically trans­
ferred to the other, and the air-defense program begins
operation in the newly active machine. From an equip­
ment point of view, switchover requires only a few
seconds. However, all of the system-status data that
were available before switchover must be available to
the newly active computer. Otherwise, the entire air­
situation picture would need to be regenerated; this

R. R. Everett et al. • SAGE

Figure 19. Command post (experimental SAGE sector).
Operation of the direction center and the sector is
supervised in the command post by the sector commander
and his staff. A summary of the current air situation in the
sector and adjoining areas is projected on a large screen.

would cripple sector operations as effectively as if both
computers had stopped. Accordingly, the active ma­
chine transmits changes in the air-situation data to
the standby machine several times per minute via an
intercommunication drum. Computer switchover is
hardly noticeable to operating personnel.

Although the requirement for continuous operation
is a stringent one, SAGE is less vulnerable than many
other digital computer applications to transient errors
in the FSQ-7. For most operations, the computer
operates iteratively in a feedback loop. In these appli­
cations, the system is self-correcting for all but a few
improbable errors. Parity-checking circuits in the in­
put and output buffer equipment and in the computer­
memory system eliminate some data subject to tran­
sient errors.

REFERENCES

Astrahan, M. M., B. Housman, J. F. Jacobs, R. P. Mayer,
and W. H. Thomas. January 1957. Logical design of the
digital computer for the SAGE system. IBM Journal of
Research and Development 1, 1, 76-83.

Benington, H. D. June 1956. Production of large computer
programs. Proc. Symposium on Advanced Programming
Methods, Washington, D.C. ONR Symposium Report
ACR-15, 15-27.

Israel, D. R. April 1956. Simulation in large digital-control
systems. Proc. National Simulation Conference, Houston.

Ogletree, W. A., H. W. Taylor, E.W. Veitch, and J. Wylen.
December 1957. AN/FST-2 radar processing equipment
for SAGE. Proc. Eastern Joint Computer Conference,
Washington, D.C. New York, IRE, pp. 156-160.

Vance, P.R., L. C. Dooley, and C. E. Diss. December 1957.
Operation of the SAGE duplex computers. Proc. Eastern
Joint Computer Conference, Washington, D.C. New York,
IRE, pp. 160-172.

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 339

History of the Design of the
SAGE Computer-
The AN/FSQ-7
MORTON M. ASTRAHAN and JOHN F. JACOBS

This paper tells the story of the development of the SAGE (Semi-Automatic
Ground Environment) air-defense computer, the AN/FSQ-7. At the time of its
operational deployment in 1958, the AN/FSQ-7 was the first large-scale, real­
time digital control computer supporting a major military mission. The
AN/FSQ-7 design, including its architecture, components, and computer
programs, drew on research and development programs throughout the United
States, but mostly on work done at MIT's Project Whirlwind and at IBM.

Categories and Subject Descriptors: K.2 [History of Computing]-hardware,
SAGE, software, systems
General Terms: Design, Management
Additional Key Words and Phrases: defense, Lincoln Laboratory, U.S. Air
Force, Whirlwind, IBM Corporation, AN/FSQ-7 computer

Editor's Note

In 1952, we at Lincoln realized that the production of
the SAGE computers would be a major undertaking
and that it was none too soon to get a first-class
manufacturer aboard. IBM was soon selected for.the
job, a decision no one ever regretted.

The Lincoln people, filled with the hubris of young
engineers and fresh from Whirlwind, had the idea that
they would design the machine and that IBM would
do the production engineering, whatever that was,
and build the necessary quantity. The IBM people,
also proud and capable, fresh from the 701, and much
more knowledgeable about what it took to produce

© 1983 by the American Federation of Information Processing
Societies, Inc. Permission to copy without fee all or part of this
material is granted provided that the copies are not made or distrib­
uted for direct commercial advantage, the AFIPS copyright notice
and the title of the publication and its date appear, and notice is
given that the copying is by permission of the American Federation
of Information Processing Societies, Inc. To copy otherwise, or to
republish, requires specific permission.
Authors' Addresses: M. M. Astrahan, IBM Research Laboratory,
K55-281, 5600 Cottle Road, San Jose, CA 95193. J. F. Jacobs,
MITRE Corporation, Burlington Road, Bedford, MA 01730.
Illustrations courtesy MITRE Archives.
© 1983 AFIPS 0164-1239/83/040340-349$01.00/00

equipment, had the idea that a page or two of
specifications was all that Lincoln need supply.

The first meetings of these two groups were loud
and rancorous. As I look back on them, they were
social rather than technical. We argued about
everything. IBM used square steel tubing for racks;
MIT used L-shaped aluminum. The amount of time
spent on this subject was remarkable unless one saw
it (as I do now, but didn't then) as a process of getting
acquainted. After a while, as the two groups began to
know and respect each other, the arguments became
more cogent and took place between individuals
instead of between organizations. As the job grew,
the Lincoln people found they had more and more to
do in other areas, and the IBM group increased in size
and strength and took over more and more of the job
until they essentially had it all. ,

From my point of view it was a fine relationship.
IBM did a superb job. I learned that if you want
something difficult done, get people to do it who will
fight with you, stand up for what they believe, and
take over the job at least as fast as they are able.

I cannot think of two better individuals to describe
the activity than these two principal architects of
the FSQ-7.

340 • Annals of the History of Computing, Volume 5, Number 4, October 1983

Introduction

The SAGE (Semi-Automatic Ground Environment)
air-defense computer, the AN/FSQ-7, was developed
at a time when Department of Defense (DOD) officials
perceived that Soviet bombers carrying nuclear bombs
were a primary threat to the United States. The
generally held belief in the validity of this threat gave
the SAGE program the highest DOD priority. The AN/
FSQ-7 design, including its architecture, components,
and computer programs, drew mostly on work done at
MIT's Project Whirlwind and at IBM. How all this
came about is the subject of this paper.

SAGE system programming is an interesting story in
its own right, but is outside the scope of this paper.
Similarly, the system for management of deployment
worked out among the Air Defense Engineering Ser­
vices project office, Lincoln Laboratory, the Air De­
fense Command, and the contractors deserves a more
thorough treatment.

Prologue

The need for air defense was driven home in the
United States by the Japanese attack on Pearl Harbor
in 1941. Pearl Harbor demonstrated the need for air
surveillance, warning, and real-time control. Shaken
by Pearl Harbor, the United States became serious
about air defense within its continental limits. By the
end of World War II, there were more than 70 ground
control of intercept (GCI) sites.

Each GCI site consisted of one or two search radars,
a height-finder radar, and ground-to-air and air-to­
ground communications. The operators sat in front of
plan-position indicators (PPis), which presented the
air situation on a scope with long-persistence phos­
phors. Aircraft appeared as "blips" of light on the face
of the tube. Information on targets from adjacent sites
was cross-told by voice telephone. The control centers
were usually built around a large, edge-lit, plexiglass
board that showed the local geographic features. Air­
craft of interest were marked on the board by opera­
tors standing on scaffolding behind the board using
grease pencils. The big board also showed status in­
formation, which was written backward by the oper­
ators. The network of GCI sites became known later
as the Manual System.

Following the Allied victory, the most powerful air
forces were in the hands of the Allies, including Rus­
sia. There seemed no justification for the expense of
maintaining the radar sites established during the war,
and support eroded.

In 194 7 the Army Air Corps was organized as the
U. S. Air Force, a separate service. The Air Force was

M. M. Astrahan & J. F. Jacobs • SAGE Design

given the air-defense mission and proceeded to plan
the revival of the Manual System. The importance of
this mission was increased with the subsequent Rus­
sian production of nuclear bombs, and was further
strengthened by events in Korea. Meanwhile, the Air
Force Chief of Staff, General Hoyt S. Vandenberg,
became more and more concerned about the United
States' vulnerability to airborne attack. The Air Force
Scientific Advisory Board was exposed to the problem,
and in 1949, the board set up an Air Defense Systems
Engineering Committee (ADSEC) under George E.
Valley, a physics professor at MIT. The committee
became known as the Valley Committee.

The Valley Committee began by looking at the
newly reactivated air-defense system. This system had
been authorized by Congress through the Air Force,
and consisted of about 70 GCI radar sites. Except for
improved radars and height finders, it was quite sim­
ilar to the Manual System air-defense setup estab­
lished during World War II. The committee quickly
concluded that the air-defense system as reshaped by
the Air Force had very low capability. It recommended
that a competent technical organization look into
what could be done to improve the system in the short
run. As a result, the Western Electric Company and
the Bell Telephone Laboratories were given the task
of upgrading the existing system; this was to become
the Continental Air Defense System (CADS) project.
The Valley Committee also suggested that a longer­
range look be taken at the problem. It recommended
the extensive use of automation, particularly com­
puters, to handle the bookkeeping, surveillance, and
control problems in the implementation of the next
generation of air-defense systems. This conclusion
was supported by the development of the Whirlwind
computer at MIT. Whirlwind promised to provide
real-time control over a large number of aircraft. It
was also noted that the ability to pass digital infor­
mation over phone lines had been demonstrated at
Bell Telephone Laboratories and at the Air Force
Cambridge Research Laboratory. To deal with one of
the major problems, low-altitude surveillance, the
committee recommended the establishment of a large
number of short-range, low-maintenance radars
placed close together to fill gaps in coverage.

The Valley Committee report led Vandenberg in
December 1950 to ask MIT to establish a laboratory
for air-defense research and development. The Air
Force Scientific Advisory Board endorsed this request
and asked MIT to undertake an interim study of the
air-defense problem. The study, called Project
Charles, ran from February to August 1951. It gave
further support to the concept of a computer-based
system. The laboratory was established within MIT

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 341

M. M. Astrahan & J. F. Jacobs • SAGE Design

in 1951 as Project Lincoln, and in 1952 became the
MIT Lincoln Laboratory. The SAGE system evolved
from the work of this laboratory (MITRE 1979; Red­
mond and Smith 1980).

Project Whirlwind

The Whirlwind computer project at MIT's Digital
Computer Laboratory (DCL) was of crucial impor­
tance to the development of the AN/FSQ-7 for several
reasons. First, it provided a demonstration of real­
time control by a digital computer, without which the
SAGE project could not have been approved. Second,
it provided a reservoir of people with the skills and
experience needed to participate in the SAGE system
design and development. Third, it provided an exper­
imental testbed for the system design. The story of
the Whirlwind project and the role of key people like
Jay W. Forrester and Robert R. Everett has been
described by Redmond and Smith (1977; 1980).

The Cape Cod System

In the spring of 1952, DCL operations and people
concerned with air defense were merged into Lincoln
Laboratory as Division 6. Whirlwind was working well
enough to be used as part of Lincoln's experimental
air-defense system, called the Cape Cod System. It
consisted of a control center at the Barta Building in
Cambridge, Mass., where Whirlwind was housed, an
experimental long-range radar on Cape Cod at South
Truro, Mass., and a number of short-range radars
called "gap fillers." The control center contained com­
puter-controlled operating stations for interaction
with human operators. It was equipped with ultrahigh­
frequency communications to aircraft supplied by the
Air Research and Development Command (ARDC)
and the Air Defense Command (ADC), for the purpose
of creating a realistic test of the system.

The Valley Committee and Project Charles had
indicated that a preferred solution for dealing with the
low-altitude detection problem was to connect to­
gether many radars (preferably short-range, low­
maintenance ones) and make a composite picture of
the afr situation out of the. data taken from these
radars. It was largely the need to deal with so much
data that prompted the Valley Committee to favor the
use of the computer aids in processing the data in real
time. Just as Whirlwind had the potential for filling
the needs for this additional data load, work at the
Air Force Cambridge Research Laboratory (CRL) un­
der Jack Harrington on digital transmission of radar
data had the potential for filling another need: com­
municating the data. Harrington's group had devel-

oped a technique (actually, several techniques) for
transmitting these data. One technique, called slowed­
down video, divided the coverage area of short-range
radars into a large number of wedge-shaped boxes, the
number bounded by range resolution required and the
angular resolution that one could achieve with the
radar. The boxes were mapped onto a stream of bits
sent on a phone line. The stream was synchronized
with the radar pulses and the angular position of the
radar. Each bit was a 1 if the corresponding box
contained a signal return above a certain magnitude;
otherwise it was 0. This technique showed promise for
short-range radars, but it was far too inaccurate for
the long-range radars.

CRL was also working on methods of providing
more angular precision than could be achieved by
means of beam forming. One scheme that eventually
resulted in another SAGE development, called the
AN/FST-2 (Ogletree et al. 1957), derived from beam­
splitting experiments carried on at CRL. It depended
on the fact that as a radar beam rotates, the pulse rate
is high enough that several returns are received from
a single aircraft. Harrington's group invented a device
that determined the center of the target after the beam
had swept over it .. This device made it possible to
increase the angular accuracy by an order of magni­
tude. Harrington's team also developed a scheme for
sending generalized digital data over a standard phone
line that had been adapted to the Cape Cod System.
Harrington and many of his team from CRL joined
Lincoln Laboratory when it was instituted. As soon
as Whirlwind was able to perform, an experimental
MEW radar at Hanscom Field was connected by
phone line to Whirlwind, and the first tracking pro­
grams were developed. By 1952, the Cape Cod team
had demonstrated the ability of the computer to track
and control aircraft in small numbers. The Cape Cod
System was intended to demonstrate the operations
that were to be executed for field use-in particular,
the surveillance function and weapons-control func­
tion. Both functions required information on the po­
sition of hostile, friendly, and neutral aircraft. A
scheme where all of the operators in the control center
worked from the same positional database became a
requirement.

In the scheme that was adopted, target data were
transmitted to the center in angular coordinates. The
computer translated the data into Cartesian coordi­
nates and combined them with the position of the
radar that picked up the data, so that each piece of
data had an X-Y position in a common coordinate
system and could be compared with stored track data
(successive positions of an object being tracked). Each
operating station was equipped with a console with a

342 • Annals of the History of Computing, Volume 5, Number 4, October 1983

cathode-ray-tube (CRT) situation display that com­
bined track and map data. During the course of the
operating cycle, the computer presented successive
data locations to an X-Y deflection register that si­
multaneously positioned the beam on each of the
operating stations. The operator used the so-called
light gun to tell the computer to associate a track with
other keyed information, such as track number, iden­
tification, altitude, speed, and armament. The opera­
tor placed the light gun over the display screen at the
position of interest and pressed a trigger switch (Fig­
ure 1). When the screen was illuminated at that po­
sition, a signal was sent to the computer saying in
effect that the deflection register contents identified
the data item selected by the operator.

In order to reduce the load on the tracking_ pro­
grams, radar returns from fixed objects were filtered
from the gap-filler data by a device called a video
mapper. The mapper was a standard plan-position
display for a single radar with a photocell viewing the
whole display. Returns from fixed objects were covered
with opaque material so that these returns did not
activate the photocell and thus were rejected.

By the time the Cape Cod System was finished, it
had about 30 operational stations with appropriate
displays. The data required by an operator could not
all be accommodated on the graphic situation display,
so the Whirlwind group created an auxiliary display
for text data associated with a particular track.

The Cape Cod System was used in exercises that
included SAC bombers playing the role of hostiles,
and the ADC and ARDC interceptors playing a
friendly role. Before the experimental SAGE sector that
grew out of the Cape Cod System was finished, 5000
or so sorties had been flown against the system to test
the system and its component parts.

Whirlwind II

It was clear to those who had participated in the Valley
Committee and in Project Charles that . Whirlwind
was more of a breadboard than a prototype of the
computer that would be used in the air-defense system.
To turn the ideas and inventions developed in Whirl­
wind into a reproducible, maintainable operating de­
vice required the participation of an industrial con­
tractor. The conceptual production computer became
known as Whirlwind II.

The Whirlwind II group was set up in 1952 to deal
with all design questions, including whether transis­
tors were ready forlarge-scale employment (they were
not) and whether the magnetic-core memory was
ready for exploitation as a system component (it was).
The Whirlwind II group also spent much of its time

M. M. Astrahan & J. F. Jacobs • SAGE Design

Figure 1. Light gun in use.

in negotiation with ADC . and ARDC headquarters
personnel in structuring the overall air-defense sys­
tem, including the definition of areas of control, cross­
telling among sectors, need for weapons allocation,
manning requirements, and air-defense doctrine.

The most important goal established for Whirlwind
II was that there should be only a few hours a year of
unavailability of the operational system. The Whirl­
wind II team thought this was possible, extrapolating
from the experience on the Cape Cod System. Most
of the design choices faced by the Whirlwind II group
involved the trade-off among the number of tracks
that could be processed, the number of interceptors
that could be employed simultaneously, and the sys­
tem availability criteria.

Selection of a Computer Contractor

The idea of engaging a manufacturer to help with the
design engineering and manufacturing of the field
computer was implicit in the nature of the research­
and-development mission of Lincoln Laboratory. A
team was set up consisting of: Jay W. Forrester, head
of Lincoln Division 6 and director of DCL; Robert R.
Everett, ·associate director of Division 6 and associate
director of DCL; C. Robert Wieser, leader of the Cape
Cod System design; and Norman H. Taylor, chief
engineer of the division. They were responsible for
finding the most appropriate computer manufacturer
and designer to translate the progress made so far in
the Cape· Cod System into a design for the next­
generation air-defense system. This system was to
become known as the Lincoln Transition System. In
1954 it was renamed SAGE.

Early in 1952, the team made a survey of the pos­
sible engineering and manufacturing candidates and

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 343

M. M. Astrahan & J. F. Jacobs • SAGE Design

chose four for further evaluation: IBM, Remington
Rand (two different divisions), and Raytheon. The
team visited all three companies, reviewed their ca­
pabilities, and graded them on the basis of personnel,
facilities, and experience.

The team looked at the technical contributions of
the companies in terms of reliable tubes and other
components, circuits, hardware, packaging, storage
systems, and magnetic tape units. The companies were
graded on their probable capability of bringing the
Whirlwind II from development to production, includ­
ing their experience in setting up production of high­
quality electronics, their understanding of tests re­
quired, and the availability of their trained people.
The team evaluated the production organization, the
quality of assembly work, size of organization, simi­
larity of the proposed work to the company's standard
product, present availability of production capacity,
service organization, and training ability. Finally, the
team considered the proximity to MIT and the train
travel time to the various headquarters. Each of the
four men on the team made his own assessment, using
the weights decided on before the trip. IBM received
the highest score and was selected.

The IBM decision to accept the contract was made
at the highest management levels. It involved evalua­
tion of the risks versus the benefits. Some of the risks
considered were technical feasibility, monetary risk,
effect on commercial programs of losing people to the
project, and potential liability for mishaps posed by
the operation of a real-time system. Advantages in­
cluded direct involvement in technical advances plus
an opportunity to respond to a national defense need.

The IBM Contract

IBM set up its SAGE effort as a separate project
independent of the usual constraints of commercial
development. It was expected to set its own design,
procurement, test, and documentation procedures
commensurate with the stringent requirements of the
contract.

"Project High" began in September 1952 in antici­
pation of a study subcontract from the MIT Lincoln
Laboratory. A six-month subcontract was issued in
October. Office space was rented on the third floor of
a necktie factory on High Street in Poughkeepsie,
N.Y.-the project got its name from this location.
John Coombs, who had recently joined IBM from
Engineering Research Associates, was the first project
manager.

During the next few months, the expanding IBM
group learned the current status of air-defense studies.
The group visited the Boston area frequently in order

to study the Cape Cod System and to become ac­
quainted with the overall design strategy of the Lin­
coln Labs people as well as their specific proposals for
central processor design. A visit was made to a com­
peting system at the University of Michigan-the Air
Defense Integrated System (ADIS), which grew out of
Project MIRO, a ground-control system for the BOM­

ARC ground-to-air missile.
In January 1953 the system design began in earnest.

IBM bought the High Street building and assigned 26
people to the project. The Lincoln Whirlwind II team
organized itself along major subsystem lines: an arith­
metic-element section, a memory section, drum-design
section, and so forth. The IBM team organized itself
in a similar pattern. These counterpart groups began
trying to design the system on a joint basis. The
Lincoln group, fresh from its experiences of making
Whirlwind I operate and designing the Cape Cod
System, viewed the IBM task as that of packaging
Whirlwind devices so the system could be reproduced
easily and quickly. On the other hand, the IBM people
expected to participate in all levels of central computer
system design and favored the technology familiar to
them.

The AN/FSQ-7 was designed by joint MIT-IBM
committees that managed to merge the best elements
of their members' diverse backgrounds to produce a
result that advanced the state of the art in many
directions. The committees presented their proposals
at joint meetings that often involved 20 to 40 partici­
pants. Miraculously, these groups were able to arrive
at a consensus and make progress. The MIT people
had the final word on design specifications, but most
decisions really were based on joint agreement.

During 1953 the meetings involved a lot of traffic
between Poughkeepsie and the Boston area. Because
of bad roads, driving was difficult. Some of the early
meetings were held in Hartford, Conn., which was the
halfway point between Poughkeepsie and Bedford,
Mass. Another way of going from Poughkeepsie to
Boston was to take an evening train to New York and
a berth on the Midnight Owl to Boston. Small groups
began chartering aircraft for a one-hour direct flight.
On several occasions a large group would charter a
DC-3. This helped to justify IBM's first corporate
aircraft.

The first Hartford meeting was held January 20,
1953. John Coombs, the senior IBM man at the meet­
ing, said that the purpose of the meeting was to allow
the people working on the system, at both MIT and
IBM, to exchange descriptions of what was being done.
Jay Forrester, the first Lincoln speaker, went into
some detail about the background of the program and
his perception of the roles of the Lincoln and IBM

344 • Annals of the History of Computing, Volume 5, Number 4, October 1983

people. He characterized the program as urgent, with
a prototype system required by 1954. He referred to
memorandum TM-20 which contained a description
of what was then known as the transition system. He
stated that none of the existing computers, including
Whirlwind I, the IBM 701, and others, were suitable.
Because of the nature of the problem, specialized
peripherals would be required, and existing machines
had nothing like the reliability required for the job.
Forrester suggested that IBM place a representative
at the Cape Cod facilities. He gave a fairly complete
description of the status of Whirlwind II thinking at
MIT.

J. F. Jacobs of Lincoln presented the arguments for
choosing vacuum tubes for the arithmetic and control
units. It was too early for transistors, and magnetic­
core circuits were too slow. H. D. Ross ofIBM reported
some tentative arithmetic-element decisions, includ­
ing the use of one's-complement arithmetic and the
use of flip-flops instead of the pulse regenerator used
in the IBM 701. M. M. Astrahan of IBM described
proposals for logical design innovations. These in­
volved index registers, dual arithmetic elements for
simultaneous processing of X and Y coordinates of
tracking data, and an interrupt scheme for operating
in-out equipment simultaneously with program­
instruction execution.

Other Lincoln speakers included R. L. Best on basic
circuits, W. N. Papian on magnetic-core memory,
J. H. McCusker on magnetic core production, and
K. H. Olsen on the Memory Test Computer. Other
IBM speakers were N. P. Edwards on nonmemory
magnetic-core applications, E. H. Goldman on buffer
storage and display, and J. A. Goetz on component
reliability and standardization.

Lincoln's N. H. Taylor discussed the schedule. He
told the group that Lincoln had set an objective of
having a prototype computer with its associated equip­
ment installed and operating by January 1, 1955.
Installation, testing, and integration of the equipment
in the air-defense system had to be started on July 1,
1954. The nine months preceding this, October 1,
1953, to July 1, 1954, would be required for procure­
ment of materials and construction of the model. That
left about nine months for engineering work in con­
nection with the preparation of specifications, block­
diagram work, development of basic circuit units,
special equipment design, and all the other things
necessary to permit actual construction to begin. The
schedule for this work was very tight. Taylor estimated
that IBM would require about 235 development engi­
neering professionals at the peak.

The meeting was concluded by T. A. Burke of IBM
who described IBM's progress on the subcontract,

M. M. Astrahan & J. F. Jacobs • SAGE Design

which would end in three months. He was concerned
that the follow-on Air Force prime contract be issued
in time to avoid interruption of work.

A second joint meeting was held in Hartford on
April 21, 1953. The first meeting had resulted in
formation of a number of committees made up of IBM
and MIT engineers who were to prepare design spec­
ifications. The second meeting consisted mostly of
status reports from these committees.

In April IBM received a prime contract for computer
design specifications. On May 21 another Hartford
meeting was held, this time to deal with packaging of
Whirlwind II. Much of the meeting was spent on
standardization of pluggable units. It was agreed that
the mechanical design group should proceed with the
design of a six-tube pluggable unit, with backup de­
signs for four-tube and nine-tube units. Another meet­
ing on packaging was held June 1, 1953, at which a
final decision was made to have both six-tube and
nine-tube units. A breakdown of the central machine
(arithmetic, control, and memory) into seven main
frames was described.

Robert P. Crago joined Project High in June 1953.
He became manager of engineering design in July
1954, and manager of Project High in February 1955.

Project Grind

The Hartford meetings acted as an information ex­
change, a catalyst for initiating action, an opportunity
to identify overlooked aspects of the machine, and a
forum in which people could interact on a personal
level. By the time of the last Hartford meeting, a
modus operandi had been established between the
IBM and the MIT staffs, who had basically agreed on
the central machine. It would have a single-address
order code in a 32-bit word. The memory would have
a read-write cycle in the range of 5.5-7.5 microseconds
for 8192 words of 33 bits, including a check bit. Data
words required only 16 bits, so each retrieval involved
two data words.

The central machine turned out to be the easy part
of the job. In the rest of the system, decisions were
not being made fast enough to meet the schedule.
There was not enough time for detailed study of all
the alternatives available, so choices had to be made
primarily on the basis of the experience the individuals
had with the subject area under consideration. To
expedite this decision making, it was agreed that a
series of meetings would be held in which as many of
the necessary decisions as possible would be made in
a short period of time. These meetings were called
Project Grind because the participants were to grind
away at each topic until a decision was reached. There

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 345

M. M. Astrahan & J. F. Jacobs • SAGE Design

Figure 2. Typical computer frame (front).

were seven days of these meetings between June. 24
and July 15, 1953. In order to identify the machine
under design within IBM as well as MIT, the Whirl­
wind II name was dropped in favor of air force no­
menclature, and the system was given an air force
number, AN/FSQ-7. An AN/FSQ-7 planning group
was identified, consisting of about 20 members drawn
from both IBM and MIT. The procedure that was
followed consisted of taking subsystems one at a time
and forging whatever decisions could be made with
the existing background and knowledge. Minutes of
the Project Grind meetings were taken to record some
of the decisions and some of the reasons for those
decisions. Any problem could be brought into the open
so that decisions could be made as soon as possible. It
was also agreed that everyone should present even
tentative plans for various parts of the system, as long
as everyone knew that they were tentative.

The first Project Grind meeting, on June 24, 1953,
was devoted to the radar inputs. Slowed-down video
inputs, video mappers, and slowed-down video-input
registers were discussed, and participants agreed on a
general description of the input registers.

At the second meeting the subjects were marginal
checking, power supplies, and magnetic-core memory.
The third meeting dealt with magnetic drums. It was
tentatively agreed that there would be six parallel
fields of 34 bits each (two bits for status) per physical
drum, with two heads per bit for input-output buffer­
ing, and probably five physical drums in the computer.
The fourth meeting was concerned with output display
systems. A 2-second display cycle was tentatively ac­
cepted; all display data streamed by the display con­
soles every 2 seconds, and each console displayed the
items requested by the operator. It was agreed that

there would be 16 words available per displayed track,
allowing for display of history of all tracks. The fifth
meeting was concerned with cross-telling, output
drums, output links for digital information, a display­
maintenance console, and mechanical design.

At the sixth meeting the concern was standard
circuits and the action of the standards committee.
Four tube types were definitely approved. It was de­
cided that 0.1-microsecond pulses would be used wher­
ever possible in the system. It was generally agreed
that a project meeting should be held at least once
every other week.

The seventh and last meeting, on July 15, covered
mapper subcontracts, cross-telling, review of the
drums, paper-tape machines, input counters, manual
inputs, and power supplies. It was generally agreed
that paper tape would not be used in the FSQ-7.

Development and Production

Project Grind resulted in fewer decisions than consid­
ered necessary to meet the schedule, but it had a
remarkably good effect on the working relations of the
people involved. It also demonstrated the need for
some ongoing method for reaching a consensus on
high-level specifications.

This need eventually prompted Lincoln to set up a
Systems Office, under the direction of J. F. Jacobs, to
establish what was then called design control. It was
necessary for IBM and MIT to come to terms on the
design of the FSQ-7. It was also necessary that a
description, in specification terms, be written of what
the Air Force was buying. The Systems Office took
inputs from IBM, MIT, ADC, and Lincoln Project
Office of the Air Force-and later inputs from the
4620th Air Defense Wing-and created a forum in
which consensus about the main features of the design
in all aspects of the system could be obtained. When
this consensus was reached on the various parts of the
system, a document would be prepared for the purpose
of recommending to the Air Force that it approve or
disapprove all or part of a proposed procurement of
the pieces of the system.

IBM created a three-man Engineering Design Office
to control system design-the IBM interface to Ja­
cobs's Systems Office. The three individuals shared a
common office, promoting close communication and
cooperation. Design, procurement, implementation,
and test principles and practices were initiated and
controlled from this central point. The commercial
design practices and components then available were
not adequate to meet the stringent reliability require­
ments of the air-defense mission. Few military speci­
fications were applicable, so new component specifi-

346 • Annals of the History of Computing, Volume 5, Number 4, October 1983

cations and design practices were required. The design
practices and disciplines developed for the SAGE com­
puter later helped IBM to standardize the hardware
of its commercial product line.

In September 1953, IBM received a contract for two
single-computer prototype systems, XD-1 and XD-2.
XD-1 replaced Whirlwind in the Cape Cod system
during 1955. The arithmetic, control, and memory
units were shipped in January to the Lincoln site in
Lexington, Mass. (Figures 2 and 3). Final testing was
done there, along with integration of other frames
shipped during the year. The modified system was
renamed the Experimental SAGE System. The XD-2
was produced to support programming system devel­
opment and to provide a hardware testbed in Pough­
keepsie.

The broad outline of the SAGE network was delin­
eated in 1954. The first serious plan visualized 46
computerized direction centers. It became evident to
the Air Force that it would be desirable to automate
the Air Defense Division headquarters. These head­
quarters, called combat centers, had the responsibility
for directing the operations and allocating weapons
on a large-scale basis, involving several direction cen­
ters. This called for a computer like the FSQ-7 with a
specialized display system.

The system was named the FSQ-8. The locations
for Q-7s and Q-8s were chosen and a delivery schedule
was worked out calling for production of three systems
the first year (1957) and 10 to 12 in each of the
subsequent four years. As the program continued,
periodic revisions were made of the number of auto­
mated sectors and the installation schedule.

The first production contract was awarded to IBM
in February 1954. The first production system was
accepted in its manufacturing test cell on June 30,
1956, and was declared operational at McGuire Air
Force Base on July 1, 1958. To implement the deploy­
ment schedule, IBM built a manufacturing plant in
Kingston, N.Y. IBM manufactured a total of 24 FSQ-
7s and three FSQ-8s. These were deployed along the
northern perimeter and the east and west coasts of
the United States.

Innovations

The SAGE system provides a demonstration of the
kind of innovation that can be achieved when cost is
secondary to performance. This kind of environment
is difficult to create in a commercially oriented com­
pany, but SAGE provided the environment. Ambitious
performance goals were met by the operational sys­
tems. Furthermore, as hardware costs dropped, most
of the SAGE innovations became cost effective for the

M. M. Astrahan & J. F. Jacobs • SAGE Design

Figure 3. Typical computer frame (back).

commercial market. The following items are high­
lights of some of these innovations.

1. Core memory in a production machine. This is
probably the single most important innovation in
SAGE. The size and reliability required could not have
been achieved by any other memory technology exist­
ing or proposed in 1953. The core memory used in
SAGE evolved directly from the pioneering work of
Forrester and the MIT groups that developed the
feasibility model and built the Memory Test Computer
(MTC). "By May 1953, the MTC was demonstrating
the swift, highly reliable operation of arrays of cores
32-by-32, stacked 16 high" (Redmond and Smith
1977). The original system design called for 8192
words of 33 bits, including a check bit, arranged in
two banks of 33 planes. Each plane was a 64 x 64
matrix. When the requirements of the application
program became apparent, a 256 x 256 unit (65,536
words) was designed to replace one of the smaller
banks. In cooperation with the MIT group, IBM de­
veloped the methods of manufacturing and testing
uniform, reliable, and inexpensive core memory in
production quantities. This involved an automatic
core tester and a core-plane stringing process that
used hypodermic needles to guide the fine wires
through the tiny cores.

2. Active-standby duplex system. The AN/FSQ-7
was the first computer system to use two computers
in active-standby roles for reliability. In previous dual­
computer systems, both computers did the same thing
and compared output. In SAGE, the standby computer
could run test programs or other work while the active
computer ran the air-defense programs. The active
computer maintained situation-status information on

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 34 7

M. M. Astrahan & J. F. Jacobs • SAGE Design

an intercommunication drum accessible by both com­
puters (Everett et al. 1957; Vance et ·al. 1957).

The original concept was three computers located
at different sites within a geographic area called a
sector. The radar inputs were to be connected to two
of the three with sufficient displays that any two of
the three could run the system at full capacity. This
mode was rejected because of the high costs of com­
munication and replicated personnel support facilities.

The duplex decision was not made until November
1953. Because it involved design changes in the input­
output components, a separate group was formed to
do the redesign without affecting the schedule for
construction and test of the XD-1 and XD-2 proto­
types. The design philosophy was to duplicate every
unit that could shut down the whole system. Thus the
central computer and input drums were duplicated,
but display consoles and modems were not (Everett et
al. 1957). Great care was taken to ensure that the
switchover facilities did not introduce single failure
modes affecting both of the duplexed systems.

3. Digital communication over standard phone lines.
The transmission of digital data over voice-grade
phone lines at 1300 bits per second was pioneered by
the Lincoln people. Harrington's group (Division 2)
designed the first modems to convert digital data to
and from analog waveforms that could be accommo­
dated by voice-band channels. The channels required
special conditioning to minimize noise pickup and
eliminate unequal phase shifts across the frequency
spectrum. The phase shifts were not noticeable in
voice transmission but distorted the data waveforms.

4. Time-sharing. Time-sharing a computer for real­
time tracking of hundreds of airplanes, real-time
control of weapons, and interaction with human con­
trollers was a bold concept. It required invention of
programming techniques to ensure timely sequencing
through all the tasks (Everett et al. 1957). Programs
and data tables were paged in from drums, and only
the tables were rewritten. Data input-output and dis­
play data were fully buffered by drums.

5. Input-output {1/0) control with memory cycle
stealing. SAGE marked the introduction of the 1/0
break, also called memory cycle stealing. This forerun­
ner of modern channels allowed computation to con­
tinue during 1/0 operations, interrupted only for the
core-memory cycle required to transfer a word be­
tween the core memory and the 1/0 device (Everett et
al. 1957). It involved a register to count the number
of words transferred and a memory address register,
incremented for each word transferred, to specify the
location of the next word (Astrahan et al. 1957).

6. Associative input system with drum buffer. The
input buffer drums contained radar data intermixed

from several sites. Each data item was tagged with the
identity of its source radar. The central processing
unit (CPU) could request all the data from a particular
radar. This constituted an associative memory access.

7. Branch and index instruction. The AN/FSQ-7
index registers were an adaptation to a parallel ma­
chine organization of the Williams B-tube (Williams
and Kilburn 1952). The branch and index instruction
allowed a single instruction to decrement an index
register, test for the end of a loop, and branch back to
the beginning of the loop (Astrahan et al. 1957).

8. Computer control of marginal checking. Marginal
checking by varying supply voltages was proved effec­
tive for vacuum-tube circuits by the Whirlwind expe­
rience. The AN/FSQ-7 extended the capability by
allowing program control of the voltage excursion
magnitude and its point of application (Astrahan and
Walters 1956).

9. Display, light gun, and keyboard input in a pro­
duction machine. The Cape Cod System demonstrated
the functions needed in a cathode-ray-tube display
console, including the use of light guns. The AN/FSQ-
7 display system constituted the first use of such
consoles in a production computer system. The
graphic situation displays used the Convair 19-inch
Charactron tubes in which the electron beam was
passed through a mask in order to shape the beam
into the form of one of 64 characters. The shaped
beam was then deflected to the desired position on the
screen. A textual display used the 5-inch Hughes
Typotron, which also had a character mask but had a
storage screen instead of the standard phosphor. IBM
designed the display consoles but subcontracted pro­
duction to Hazeltine.

10. Circuit standards. A central-circuit design group
was responsible for design or approval of all CPU
circuits. The group followed a set of design standards
based on component tolerances and compatibility with
marginal checking (Nienburg 1956).

11. Component specifications and vendor control.
Special contracts were made with manufacturers of
vacuum tubes, capacitors, diodes, and resistors to en­
sure the uniformity and reliability of the products.
IBM required these vendors to institute strict controls
over the design, manufacture, and testing of the com­
ponents and actually monitored the manufacturing
and testing processes at these vendors' plants (Heath
1956).

12. Circuit packaging. In the pluggable units, all
components except vacuum tubes were mounted on
etched circuit boards. IBM's Manufacturing Engi­
neering Department worked with General Mills to
develop the Autofab machine, which assembled and
soldered the circuit boards. These automatic soldering

348 • Annals of the History of Computing, Volume 5, Number 4, October 1983

techniques greatly increased the reliability of the cir­
cuit boards, as did the development of double-sided
boards with plated-through holes.

Postscript

An AN /FSQ-7 system weighs 250 tons and has a 3000-
kilowatt power supply. Twenty-four FSQ-7 systems
were installed. The first began operating in 1958 at
the McGuire Air Force Base direction center in New
Jersey. Performance data on the seven remaining sys­
tems were compiled for the 24-month period from
March 1978 to February 1980. Each system used
49,000 vacuum tubes. The tubes had a mean time to
failure of 50,000 to 100,000 hours. The average per­
centage of time that both machines of a system were
down for maintenance was 0.043 percent, or 3. 77 hours
per year. The average percentage of time both ma­
chines were down for all causes, including air condi­
tioning and other situations not attributable to the
computers, was 0.272 percent, or 24 hours per year.

REFERENCES

Astrahan, M. M., and L. R. Walters. December 1956. Reli­
ability of an air defense computing system: Marginal
checking and maintenance programming. IRE Transac­
tions on Electronic Computers EC-5, 4, 233-237.

M. M. Astrahan & J. F. Jacobs • SAGE Design

Astrahan, M. M., B. Housman, J. F. Jacobs, R. P. Mayer,
and W. H. Thomas. January 1957. Logical design of the
digital computer for the SAGE system. IBM Journal of
Research and Development 1, 1, 76-83.

Everett, R. R., C. A,. Zraket, and H. D. Benington. December
1957. SAGE-A data processing system for air defense.
Proc. Eastern Joint Computer Conference, Washington,
D.C. (see the preceding article in this issue of the Annals).

Heath, H.F., Jr. December 1956. Reliability of an air defense
computing system: Component development. IRE Trans­
actions on Electronic Computers EC-5, 4, 224-226.

MITRE Corporation. 1979. "MITRE: The First Twenty
Years." Bedford, Mass.

Nienburg, R. E. December 1957. Reliability of an air defense
computing system: Circuit design. IRE Transactions on
Electronic Computers EC-5, 4, 227-233.

Ogletree, W. A., H. W. Taylor, E.W. Veitch, and J. Wylen.
December 1957. AN/FST-2 radar processing equipment
for SAGE. Proc. Eastern Joint Computer Conference.
Washington, D.C. New York, AIEE, pp. 156-160.

Redmond, K. C., and T. M. Smith. October 1977. Lessons
from Project Whirlwind. IEEE Spectrum 14, 10, 50-59.

Redmond, K. C., and T. M. Smith. 1980. Project Whirlwind,
The History of a Pioneer Computer. Bedford, Mass., Dig­
ital Press.

Vance, P.R., L. G. Dooley, and C. E. Diss. December 1957.
Operation of the SAGE duplex computers. Proc. Eastern
Joint Computer Conference, Washington, D.C. New York,
AIEE, pp. 160-172.

Williams, F. C., and T. Kilburn. February 1952. The Uni­
versity of Manchester computing machine. Review of Elec­
tronic Digital Computers, 57-61. (Joint AIEE-IRE Com­
puter Conference, Philadelphia, December 10-12, 1951.)

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 349

Production of Large
Computer Programs
HERBERT D. BENINGTON

The paper is adapted from a presentation at a symposium on advanced
programming methods for digital computers sponsored by the Navy
Mathematical Computing Advisory Panel and the Office of Naval Research in
June 1956. The author describes the techniques used to produce the
programs for the Semi-Automatic Ground Environment (SAGE) system.

Categories and Subject Descriptors: K.2 [History of Computing]-SAGE,
software, systems
General Terms: Design, Management
Additional Key Words and Phrases: Lincoln Laboratory

Editor's Note

When we all began to work on SAGE, we believed our
own myths about software-that one can do anything
with software on a general-purpose computer; that
software is easy to write, test, and maintain; that it is
easily replicated, doesn't wear out, and is not subject
to transient errors. We had a lot to learn.

As Herb Benington discusses in the following
paper, we had already successfully written quite a lot
of software for experimental purposes. We were
misled by the success we had had with capable
engineers writing programs that were small enough
for an individual to understand fully. With SAGE, we
were faced with programs that were too large for one
person to grasp entirely and also with the need to hire
and train large numbers of people to become
programmers-after all, there were only a handful of
trained programmers in the whole world. We were
faced with organizing and managing a whole new art.

© 1983 by the American Federation of Information Processing
Societies, Inc. Permission to copy without fee all or part of this
material is granted provided that the copies are not made or distrib­
uted for direct commercial advantage, the AFIPS copyright notice
and the title of the publication and its date appear, and notice is
given that the copying is by permission of the American Federation
of Information Processing Societies, Inc. To copy otherwise, or to
republish, requires specific permission.
Author's Address: System Development Corporation, 7929 West­
park Drive, McLean, VA 22101.
Adapted with permission from Proceedings, Symposium on Ad­
vanced Programming Methods for Digital Computers, Washington,
D.C., June 28-29, 1956. ONR Symposium Report ACR-15, Office
of Naval Research.
Illustrations courtesy MITRE Corporation.
© 1983 AFIPS 0164-1239/83/040350-361 $01.00/00

Bob Wieser (who led the software design and
production effort at Lincoln) and his group decided
with great wisdom to build the tools needed for such
an endeavor instead of trying to do the whole job with
the limited resources at hand. We paid a price-the
schedule slipped by a year-but the organization that
was established really got on top of the job and
stayed on top.

Much of what Herb and others created for the SAGE
job was forgotten and had to be relearned later by
others when they faced similar problems. I confess to
having a certain amount of purely human pleasure at
watching other organizations suffer through the
problems of building large programs-organizations
that had been so critical of our own difficulties.

One thing not to forget is the challenge of putting
so large and complex a program into a limited
computer capacity. The FSQ-7 was the largest
machine we felt able to build in the early 1950s; its
capacity is trivial by today's standards. One might
think that with today's technology, SAGE-like software
would be easier to build. Unfortunately, this seems not
to be so. There is a kind of Parkinson's Law for
software: it is infinitely expandable and swells up to
exceed whatever capacity is provided for it.

Foreword

The following paper is a description of the
organization and techniques we used at MIT's
Lincoln Laboratory in the mid-1950s to produce

350 • Annals of the Hist6ry of Computing, Volume 5, Number 4, October 1983

programs for the SAGE air-defense system. The paper
appeared a year before the announcement of SAGE;
no mention was made of the specific application
other than to indicate that the program was used in
a large control system. The programming effort was
very large-eventually, close to half a million
computer instructions. About one-quarter of these
instructions supported actual operational air-defense
missions. The remainder were used to help generate
programs, to test systems, to document the entire
process, and to support those other managerial and
analytic chores so essential to producing a good
computer program.

As far as I know, there was no comparable effort
under way in the United States at the time, and
none was started for several years. Highly complex
programs were being written for a variety of
mathematical, military, and intelligence applications,
but these did not represent the concerted efforts of
hundreds of people attempting to produce an
integrated program with hundreds of thousands of
instructions and highly related functionality. In a
letter to me on April 23, 1981, Barry W. Boehm,
director of software research and technology at
TRW, says of the paper, "I wish I had known of it a
couple of years ago when I wrote [a] paper indicating
how many of today's software engineering hot topics
had already been understood in 1961 in Bill Hosier's
IRE article. Your paper predates much of that
understanding by another five years."

By chance, the paper was presented in
Washington, D.C., in June 1956 at a symposium on
advanced programming methods for digital
computers, sponsored by the Navy Mathematical
Computing Advisory Panel and the Office of Naval
Research. The paper was given there because Wes
Melahn (soon to become president of System
Development Corporation, and now at the MITRE
Corporation) was deeply concerned with the
programming of an air-defense system, as well as
with the theory and mathematics of advanced digital
computing at universities. All the other papers at the
symposium were presented from the perspective of
either universities or the nascent computing
industry. The hot topics were machine organization,
development of algorithms, and the development of
higher-order languages. The common goal was to
produce instructions that cost less than $1 per line.
The audience was somewhat chilled to hear that we
could not do better than $50 per instruction in our
particular effort-and that we were talking about
tens of thousands of pages of documentation.

I lost interest in the subject until several years ago,
when I joined the MITRE Corporation and became
interested in what had happened to data processing

H. D. Benington • Large Computer Programs

in the ensuing 20-25 years. I showed the paper to a
number of colleagues, some of whom knew nothing
of the SAGE development and some of whom had
been deeply involved with it. Generally speaking,
they were surprised that we had developed or used
techniques with SAGE that today are considered
essential to the effective production of large
computer programs. (We did omit a number of
important approaches, which I will say a little more
about below.)

It is easy for me to single out the one factor that I
'think led to our relative success: we were all
engineers and had been trained to organize our
efforts along engineering lines. We had a need to
rationalize the job; to define a system of
documentation so that others would know what was
being done; to define interfaces and police them
carefully; to recognize that things would not work
well the first, second, or third time, and therefore
that much independent testing was needed in
successive phases; to create development tools that
would help build products and test tools and to make
sure they worked; to keep a record of everything that
really went wrong and to see whether it really got
fixed; and, most important, to have a chief engineer
who was cognizant of these activities and responsible
for orchestrating their interplay. In other words, as
engineers, anything other than structured
programming or a top-down approach would have
been foreign to us.

Between the early 1950s and the mid-1960s,
thousands of computer programmers participated in
the design, testing, installation, or maintenance of
SAGE. They learned the system well, and as a result,
the chances are reasonably high that on a large data­
processing job in the 1970s you would find at least
one person who had worked with the SAGE system.
The initial SAGE prototype program slipped its initial
schedule by about one year. After that, dozens of
major modifications were installed at dozens of sites
with slips of at most several weeks. The disciplined
approach, which had started at MIT's Lincoln
Laboratory, persisted for over 15 years at SDC. Why
is it, then, that there are so many tales of computer­
program projects whose schedule slippages were
much greater than SAGE's and whose overruns are
often horrendous? There are three major reasons.

First, the industry went through a phase where we
decided that computer programming and the
computer programmer were "different." They could
not work and would not prosper under the rigid
climate of engineering management. Just a few years
ago, I heard with amazement the executive vice­
president of one of our very largest information­
system firms say, "Herb, you have to realize the

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 351

H. D. Benington • Large Computer Programs

programmers are different; they have got to get
special treatment." I almost ran out to sell his stock
short, but then I discovered that his more realistic
middle management had realized the failure of this
nostalgic view of the computer programmer.

Second, if anything, the pendulum has swung too
far in the other direction. Many of our government­
procurement documents act as if one produces
software in the same way that one manufactures
spacecraft or boots. When I got back into the
computer programming business several years ago,
I read a number of descriptions of top-down
programming. The great majority seemed to espouse
the following approach: we must write the initial top­
down specification (for example, the A Spec), then
the next one (typically, the B Spec), so we will know
precisely what our objectives are before we produce
one line of code. This attitude can be terribly
misleading and dangerous. To stretch an analogy
slightly, it is like saying that we must specify the
characteristics of a rocket engine before measuring
the burning properties of liquid hydrogen. Generally,
software is the most complex component of a system.
Twice as much software can improve the
performance of a system by 1 percent or by 500
percent. The percentage can only be determined if a
great deal of detailed analysis (including coding) is
undertaken to understand the "burning properties"
of software. I do not mention it in t!ie attached
paper, but we undertook the programming only after
we had assembled an experimental prototype of
35,000 instructions of code that performed all of the
bare-bone functions of air defense. Twenty people
understood in detail the performance of those 35,000
instructions; they knew what each module would do,
they understood the interfaces, and they understood
the performance requirements. People should be very
cautious about writing top-down specs without
having this detailed knowledge, so that the decision­
maker who has the "requirement" can make the
proper trade-offs between performance, cost, and
risk.

To underscore this point, the biggest mistake we
made in producing the SAGE computer program was
that we attempted to make too large a jump from the
35,000 instructions we had operating on the much
simpler Whirlwind I computer to the more than
100,000 instructions on the much more powerful
IBM SAGE computer. If I had it to do over again, I
would have built a framework that would have
enabled us to handle 250,000 instructions, but I
would have transliterated almost directly only the
35,000 instructions we had in hand on this
framework. Then I would have worked to test and

evolve a system. I estimate that this evolving
approach would have reduced our overall software
development costs by 50 percent.

The third reason that we keep seeing missed
schedules was pointed out to me by the editor of one
of our best computing journals, who says he has
concluded that producing large computer programs is
like raising a family. You can observe your neighbors
and see all of the successes and failures in their
children. You can reflect on the experiences you had
as one member of a large family. You can observe all
the proper maxims of life and society. You can even
study at length the experiences of many others who
have raised families. In the final analysis, however, .
you have to start out and do it on your own, learn
the unique options you have, see what unexpected
problems arise, and, with reasonable luck, perform
about as well as those who have been doing it
forever.

The latter observation may be reassuring to the
new program manager, but there have been
numerous significant advances in the techniques for
producing large computer programs since we did the
SAGE job over 25 years ago. A few that strike me as
most important are:

• We now use higher-order languages in virtually all
situations.

• Almost all software development and unit testing
are qone interactively at consoles in a time­
sharing mode.

• We have developed a large family of tools that
allow us to do much precise design and flow
analysis before coding. (I still say that we should
use these techniques before we start finalizing our
top-down requ.irements.)

• We have developed organizational approaches that
improve or at least guarantee the quality of the
systems much earlier in the game. These include
some of the structured languages, code reviews,
walk-throughs, etc.

For further progress, I would stress the following.

• Since the SAGE effort, we have talked about the
need to invest in tools that help produce ·
programs-that is, in tools for coding, editing,
testing and debugging, configuration management,
consistency checking, structural analysis, etc. I
believe too little effort has been spent on thinking
through such tools and standardizing them so that
they can become analogous to the relatively few
higher-order languages that we use with great
facility.

• Finally, there remains a tremendous range and
ability among computer programmers to do

352 • Annals of the History of Computing, Volume 5, Number 4, October 1983

different jobs. Some are good gem-cutters for any
kind of stone. Some can play very special roles­
for example, where fastidious approaches are
needed. Some are brilliant and articulate
conceptualizers and leaders. Some should not be
allowed near a computer. We must learn to
recognize these types, to use them in their right
place, and to set higher standards for not using
people even though the market seems insatiable.

-Herbert D. Benington

Introduction

At the 1955 Eastern Joint Computer Conference, Jay
W. Forrester suggested that the evolution of electronic
digital computers might be roughly divided into five­
year periods, each period with its paramount signifi­
cance.

1945-1950 was the period of electronic design. From
1950-1955, attention has been focused on the solution of
scientific and engineering problems. 1955-1960 will
encompass the upswing in the commercial data­
processing applications 1960-1965 will probably
mark the shift of major attention to the use of digital
computers as the central elements in real-time control
systems.

With respect to this last period, Forrester continues:

General purpose digital computers, as outlined in [recent
news] releases, are to be the nerve centers for tying
together the flow of information in our forthcoming new
air defense system. This type of control system, we can
assume, will develop further into a high-speed automatic
control and regulation of future civilian air traffic

[Or,] consider the chemical plants and oil
refineries In the last 30 years the automatic controls
in an oil refinery have risen ... to some 15 percent of
the investment in a refinery [or often about] $15,000
worth of automatic controls. I believe we will see digital
computers as controllers and monitors of operation in
these plants to permit closer control, higher-speed
chemical reactions, larger outputs, and a better product.

During the past five years, we have seen develop­
ments in automatic programming where the emphasis
has paralleled Forrester's first three periods. We can
compare the electronic-design phase with the devel­
opment of basic programming techniques of transla­
tion, compilation, and interpretive routines. Scientific
and engineering calculations have been assisted by the
PACT and A-2 compiling systems, and commercial data
processing by ·BIOR and B-0 (to name but a few). More
important, our colleagues who build computers have
come to realize that a computer is not useful until it
has been programmed, and that programming is an

H. D. Benington • Large Computer Programs

expensive job that requires both machine assistance
and human sympathy.

This paper looks ahead at some programming prob­
lems that are likely to arise during Forrester's 1960-
1965 period of real-time control applications. At first
glance, these are problems that will result from the
need for very large, very efficient programs, where one
program (consisting of over 100,000 machine instruc­
tions) may be used in several machines during periods
of months or years. On closer inspection, we realize
that these are problems that must be faced whenever
the need arises for the systematic preparation and
operation of large, integrated programs, whether these
programs are used for commercial processing, scien­
tific calculation, or program preparation itself.

During the past several years at the Lincoln Labo­
ratory, several system programs containing over
30,000 machine instructions each have been prepared.
These programs are used for data processing and
control in real-time systems. Production of these pro­
grams is briefly described here, particularly in terms
of cost and organization. Four problem areas are
stressed.

The first problem is computer operation. Computer
time is at a premium when a large program is being
prepared by relatively inexperienced programmers,
when the machine and its terminal equipment are
being shaken down, and when the machine-program
system requires inordinate testing and debugging. The
only answer is highly systematic, highly mechanized
program preparation and computer operation. A Lin­
coln Utility System of ser-Vice routines containing
40,000 instructions has been prepared to ease this
problem.

The second problem is program or system reliability.
Needless to say, a large program is distressingly prone
to all types of design and coding errors, including some
very subtle ones. In spite of this tendency, it must be
extremely reliable if it is to control effectively a system
involving extensive equipment or manpower. This is
true not only in a real-time system, but also in com­
mercial applications unless equipment engineers can
outvote lawyers. Reliability is also a major factor in
the preparation of ambitious automatic programming
systems:-how many unreliable programs have been
produced with supposedly well-tested compilers?

Next, there is the problem of supporting programs.
It has been the experience of the Lincoln Laboratory
that a system of service programs equal in size to the
main system program must be maintained to support
preparation, testing, and maintenance of the latter.

Finally, there is the problem of documentation. In
the early days of programming, you could call up the
programmer if the machine stopped. You seldom mod-

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 353

H. D. Benington • Large Computer Programs

CONTROL

r-------------------~
I MANUAL I
I I
I I
I I
I I

AUTOMATIC

CENTRAL COMPUTER

TERMINAL EQUIPMENT

SYSTEM PROGRAM

RECORDING

Figure 1. Typical control system. In general, a typical
control system uses automatic and manual elements. The
automatic portion consists of a centralized digital
computer, terminal equipment communicating with the
environment, and a computer program incorporating
system memory and standard operational procedures.

ified another person's program-you wrote your own.
Although present automatic programming technology
has done much to make programs more communicable
among programmers, there is a long way to go before
we can take an integrated program of 100,000 instruc­
tions and make it "public property" for the user, the
coder, the tester, the evaluator, and the on-site main­
tenance programmer. The only answer seems to be
the documentation of the system on every level from
sales brochures for management to instruction listings
for maintenance engineers. Such documentation will
require the development of new methods and new
languages; more significantly, it will require a much
more extensive use of the computer to assist in pro­
gram production, documentation, and maintenance.

At the last ONR symposium on automatic program­
ming held two years ago, the most popular theme was
simplifying program input through the use of symbolic
inputs, machine compilation and generation, algebraic
translation, etc. Very little was said about checkout or
debugging, training, or operation. I suspect that for
many the past two years have been a period of realizing
that automatic programming concepts must go beyond
the input process into these other areas.

Large Programs for·Control and Processing

Before considering these problems in more detail,
consider some rudiments of large systems and large
programs. Figure 1 represents a broad flowchart of a

typical control and processing system such as might
be used for air-traffic control, industrial-plant control,
or commercial applications. The area inside the
dashed line represents the control system; the area
outside is the environment to be controlled. In general,
control consists of a manual and an automatic com­
ponent. Manual in-out data could use voice phones or
radios, teletypes, meters, etc. Typical automatic inputs
and outputs might be teletype data or high-bandwidth
digital data from or to analog-to-digital converters.

The central control is a high-speed, general-pur­
pose, digital machine that includes in-out terminal
equipment and is controlled itself by the system pro­
gram. Depending on the degree of system automation,
manual control and processing might range anywhere
from one half-awake computer operator (who will be
awakened by an alarm) to a staff of several hundred
operators and supervisors, each of whom must com­
municate directly with the computer. The machine
can signal the man through indicator lights and
alarms, cathode-ray displays, or printed data; the man
can respond with digital keyboard inputs or a variety
of analog-to-digital devices. Periodically, the computer
records data for later analysis of system performance.

From the computer's point of view, then, the system
consists of a wide variety of inputs and outputs, each
with different data characteristics-peak rate, average
rate, reliability, coding, etc. The system program must
perform a wide variety of tasks.

1. It must remember the state of environment. De­
pending on the application, this may require from
100,000 to many billions of bits of information stored
on drums, tapes, or photographic plates.

BOOK·
INPUT OUTPUT KEEPING CONTROL PROCESSING

PROGRAMS 2 2 2 2

{ ~,: m'; I',' m':
80 PROGRAMS 3

' ' '
100,000 • • 4

INSTRUCTIONS s s

ISOLATED
TABLES
1,000ITEMS

CENTRAL
TABLES
1,000ITEMS

6 6

7

Figure 2. Static program organization. A system program
of 100,000 instructions is organized into programming
groups for input, output, etc. Each group contains several
subprograms and requires both isolated and central tables.

354 • Annals of the History of Computing, Volume 5, Number 4, October 1983

2. It must sample each input either periodically or
on demand, translate the data, test for reasonableness
(usually in terms of the present state of the environ­
ment), and either revise its memory content accord­
ingly or transmit the data for further processing.

3. It must, either periodically or on demand, calcu­
late, monitor, correlate, predict, control, summarize,
record, and decide.

4. It must encode and transmit outputs to· all ter­
minal devices.

5. Finally, the program must control the frequency
and sequence with which it performs each input, out­
put, processing, or bookkeeping task.

In order to give these features some physical mean­
ing, let us attach rough numbers to a typical control
problem. Figure 2 shows the organization of a typical
100 000-instruction program that contains 80 compo­
nen't subprograms. In other words, each subfunction
requires a logically distinct subprogram containing an
average of 1250 instructions. In the figure, each box
(e.g., Il2) represents a subprogram; they are grouped
as follows.

1. There are four major input channels (e.g.,
punched cards, teletype, audio-bandwidth data link,
and manual keyboards) designated by program groups
I1 to I4. For each channel, several different types or
sources of data are received by the control element.
For example, I3 requires seven subprograms, I31 to
I37.

2. There are four major processing functions, which
require a total of 24 component subprograms. In an
air-traffic-control application, a typical process might
be: first, review all aircraft landing at all airports;
next, monitor these with respect to airspace assign­
ment and sudden trouble situations; finally, prepare a
revised space assignment.

3. A third group of 15 subprograms are required for
program bookkeeping. These programs coordinate
communications between all other programs, monitor
ystem load, and prepare summary data for output.

4. The output makeup programs use three chan­
nels-for example, cathode-ray display, audio-band­
width data link, and teletype. Fourteen subprograms
are required to scan the system memory and make up
properly coded output messages.

5. Finally, seven control subprograms are required
to control the timing, sequencing, and operation of all
other subprograms.

The 100,000 instructions represent standing opera­
tional procedures for the system; they do not change
as the system operates. The system memory, which is
stored separately in system tables, can be broken down
into two blocks: isolated tables, which store informa-

COMPONENT
PROGRAM

ISOLATED
TABLES

CENTRAL
TABLES

CONTROL

H. D. Benington • Large Computer Programs

-------TIME----~

---0 D DO [Ji~[j o--- [
-- -D c D 0 D D D o---

STORAGE

---o 0 DD D 0 D 0---1
---D D DD DD D D---

Figure 3. Dynamic program operation. Component
subprograms (Figure 2) time-share the control computer.
Each component program requires iso~ated and central.
tables; a control program, which remams perman~ntly m
storage, directs sequence and frequency of operation of
component subprograms.

tion required by one program group only (e.g., I2), and
central tables, which store data shared by two or more
program groups. In measuring the complexity of the
table structure, the total table memory required by
tables is not nearly so important as the number of
items. In this sense, an item is defined as one unique
type of information. A single item may be represented
once in the tables (e.g., "process I42 is being per­
formed"), or the item may be represented 1 million
times (e.g., "customer account number"). .

In the example given, 1000 items each are reqmred
for the isolated and central tables. For 10 of the central
items, the program groups which set or use the item
are shown; for example, the first item is used by Il,
I4, 03, B2, Cl, C2, P2, and P4. If 1000 such lines we~e
drawn, the dot matrix would measure the communi­
cations (and complexity) within the program.

Figure 3 shows how the component subprograms
time-share the machine to perform the control and
processing functions (only a small portion of the com­
plete program sequence is shown). Each c?mponent
subprogram requires its isolated tables, pertment por­
tions of the control tables, and certain control subpro­
grams. Eighty programs must time-share the machin~.
In general, some subprograms will operate uncondi­
tionally in a fixed sequence but at different frequen­
cies; other programs will operate on demand.

Large-Program Systems-Centralized versus
Decentralized

At this stage, we can consider the effect of program
size and integration on the design, testing, and oper­
ation of the program. To date, there have been several
programming systems of over 50,000 machine instruc-

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 355

H. D. Benington • Large Computer Programs

..
DESIGN

----·
TESTING

I
I _..J

CODING SPECIFICATIONS

ASSEMBLY TESTING
(SPECIFICATIONS) -~

SYSTEM EVALUATION ____ _.

Figure 4. Program production. Production of a large­
program system proceeds from a general operational plan
through system evaluation; for example, assembly testing
verifies operational and program specifications.

tions prepared for business and scientific applications.
For the most part, however, these programs have been
what might be called large decentralized programs;
that is, the data-processing function has been divided
into a dozen or so parts, and the communication
between these parts has used blocks of data stored on
magnetic tape or punched cards.

Usually, the format and coding (i.e., the structure)
of these blocks can be unequivocally defined with
relative ease. This considerably simplifies the design
problem; after the blocks have been documented,
groups of programmers can be assigned to each part
with the assurance that little communication between
these programmers will be necessary. If the fullest
decentralization is desired, the component programs
will not share machine storage or machine time. (In
some applications, even different machines are used.)

Control of data processing in a decentralized system
is primarily manual. Tape reels and programs are
changed by computer operators (and even shipped to
remote locations). If an unexpected result develops,
an engineer or accountant or supervisor can print out
intermediate data and decide after the fact what
course should be taken. Efficient use of computer time
need not be closely monitored, since there are no real­
time constraints.

In testing or debugging one part of the system, data
produced by other parts are not required until the very
last moment that the system is put into operation.
(Probably many of the decentralized systems currently
in operation still contain many minor errors which
are being compensated for daily by users who have
become accustomed to these minor idiosyncrasies.)

The important point is that one can write a large
programming system and still maintain a high degree
of decentralization. Like most decentralizations, this
course produces a system that contains semantic in­
consistencies, ambiguities, and errors; operating inef­
ficiencies result from duplication and wasted motion.

Real-time control systems have presented the first
computer application where a very large program is
required to perform all assigned functions, and yet
where the disadvantages of decentralization cannot be
tolerated. Success or failure of the system usually
depends on efficient use of computer operating time.
Internal control of the real-time program must be
highly organized if efficient time and storage alloca­
tion are to be achieved, if the many in-out devices are
to be adequately sampled, and if automatic decisions
are to be made when unusual conditions develop
within the program or from the external environment.

The control program must be centralized. This com­
plicates design and coding since communication be­
tween component subprograms must have a high
bandwidth. The use of each of the thousands of central
table items must be coordinated between 100 or so
component subprograms. Organized, readable specifi­
cations for the design and coding phase accomplish
part of this task. Even then, only the most thorough
testing of the entire program ensures that system
threads have been carefully worked out, that incom­
patibilities are discovered, and that all contingencies
are accounted for.

Preparation of a System Program

Figure 4 indicates the nine phases used at the Lincoln
Laboratory in preparing a large system program. First,
an operational plan defines broad design requirements
for the complete control system consisting of the
machine, the operator, and the system program. This
plan must be prepared jointly by the computer systems
engineers and the eventual user of the system.

From this plan, detailed operational specifications
are prepared that precisely define the "transfer func­
tion" of the control system. In this representation, the
computer, its terminal equipment, and the system
program are treated as a black box. On the other hand,
this description is sufficiently detailed that program­
mers_ can later prepare the system program using only

356 • Annals of the History of Computing, Volume 5, Number 4, October 1983

machine and operational specifications. The opera­
tional specifications correspond to the equations the
scientist gives a programmer; numerical analysis has
yet to be performed.

Program specifications outline implementation of
the operational black box by the system program.
These specifications organize the program into com­
ponent subprograms and tables, indicate main chan­
nels of program intracommunication, and specify time­
and storage-sharing of the machine by each subpro­
gram. Continuing the analogy, program specifications
correspond to a broad flowchart of the solution.

After the operational and program specifications
have been completed, detailed coding specifications are
prepared that define the transfer function of each
component subprogram in terms of the processing of
central and isolated items. From these specifications,
it is possible to predict precisely the output of the
subprogram for any configuration of input items. The
coding specifications also describe all storage tables.

Each component subprogram is coded using the
coding specifications. Ideally, this phase would be a
simple mechanical translation; actually, detailed cod­
ing uncovers inconsistencies that require revisions in
the coding specifications (and occasionally in the op­
erational specifications).

After coding, each component subprogram is param­
eter tested on the machine by itself. This testing phase
uses an environment that simulates pertinent portions
of the system program. Each test performed during
this phase is documented in a set of test specifications
that detail the environment used and the outputs
obtained. In the figure, the dashed line indicates that
parameter testing is guided by the coding specifica­
tions instead of by the coded program; in other words,
a programmer must prove that he satisfied his speci­
fications, not that his program will perform as coded.
(Actually, test specifications for one subprogram can
be prepared in parallel with the coding.)

As parameter testing of component subprograms is
completed, the system program is gradually assembled
and tested using first simulated inputs and then live
data. For each test performed during this period, as­
sembly test specifications are prepared that indicate
test inputs and recorded outputs. Assembly testing
indicates that a system program satisfies the opera­
tional and program specifications.

When the completed program has been assembled,
it is tested in its operational environment during
shakedown. At the completion of this phase, the pro­
gram is ready for operation and evaluation.

Figure 5 indicates reasonable production costs that
might be expected in preparing a system program of
100,000 instructions. Considering the present tech­
nology of program preparation, our experience does

H. D. Benington • Large Computer Programs

ENGINEERING COMPUTER PAPER
MANPOWER TIME OUTPUT

PHASE (MAN-YEARS) (HR} (PG}

Operational Plan 500

Operational Specs 30 2,500

Program Specs 10 0 500

Coding Specs 30 5,000

Coding 10 3,000

Parameter Testing 20 1,000 2,000

Assembly Testing . 30 2,000 1,500

Shakedown ?

Evaluation ? ? __ ?

130 3,000 15,000

Minimum Production Time = 18 Months

Figure 5. Production cost. Using present techniques, the
production cost for a 100,000-instruction program can
easily require $55 per instruction.

not indicate that these are at all overly pessimistic
estimates. The estimates shown do not include train­
ing of programmers, preparation of ancillary pro­
grams, development of control-systems techniques, or
overhead supporting activity. They include only en­
gineering manpower required to produce the system
program. Let us assume an overhead factor of 100
percent (for supporting programs, management, etc.),
a cost of $15,000 per engineering man-year (including
overhead), and a cost of $500 per hour of computer
time (this is probably low since a control computer
contains considerable terminal equipment). Assuming
these factors, the cost of producing a 100,000-instruc­
tion system program comes to about $5,500,000 or $55
per machine instruction. In other words, the time and
cost required to prepare a system program are compa­
rable with the time and cost of building the computer
itself.

The Lincoln Utility System

In order to simplify the preparation and operation of
all programs, the Lincoln Laboratory has prepared a
set of service routines called the Lincoln Utility Sys­
tem. This system was designed to assist all program­
mers in using the machine; its present size-40,000
machine instructions-is indicative of the importance
attached to its role. The Lincoln system does not
provide automatic-coding facilities in the conven­
tional sense. Compared with systems that have been
developed at computing centers where scientific and
engineering calculations predominate, the Lincoln
system has concentrated more on systematizing com­
puter operation and program debugging than on de­
veloping automatic translation of programmer lan­
guage into machine language. Design of the system
followed these ground rules.

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 357

H. D. Benington • Large Computer Programs

PROGRAMMER'S
FORM

ALPHANUMERIC,
SYMBOLIC CARDS

LIBRARY
FORM

LOCATION DAT A
RELATIVE-ADDRESS COPY
COMMUNICATION TAGS
EDITOR REQUESTS

INPUT TAG STRUCTURE
WORD CODING
PROGRAM IDENTITY

\
I

MACHINE
FORM

BINARY COPY
(DRUMS, CORES)

I OPTIONAL FOR
) ··~ PRINTOUT I

\

~
Figure 6. Program input process. With ~he Lincoln Utility
System, compiled programs are stored wit~ th~
programmer's full input structure; at .read:m time, the
program is finally converted ~o ?1achme bmary. lan~age.
Even at this time the symbolic mput structure is available
to other service routines.

1. At the Lincoln Laboratory, most programs are
prepared by relatively inexperienced programmers. As
many features as possible were included to help them,
yet no features were used that were so complicated
that only experienced programmers could use them
with facility. Also, programmers do not operate the
machine during debugging; they are required to plan
and document their operations beforehand.

2. Computer time for parameter testing, assembly
testing, and system shakedown is scarce. A large effort
has been devoted to systematizing and mechanizing
computer operations in order to use minimum com­
puter time.

3. The Lincoln Utility System includes several fea­
tures that assist programmers in communication and
documentation problems encountered during the de­
sign and testing phases of system program production.

4. The Lincoln Utility System contains extensive
debugging features including facilities for remote, flex­
ible card control of the computer and programs to be
tested.

5. Programs are prepared in machine language be­
cause automatic coding techniques developed to date
do not guarantee the efficient programming required
for a real-time system. (In retrospect, this ground rule
seems very shaky.)

6. The Lincoln Utility System, which is quite large,
has not been so centralized that its initial production
was delayed or that its revision and improvement are
difficult.

With the Lincoln Utility System, programmers code
in floating address using some subroutine requests,
particularly for card input and printed outputs. When

programs are compiled, they are stored on a magnetic­
tape library with their full input structure; that is, the
library copy contains program identity, a relative­
address binary copy, assigned memory locations, a
floating-address tag table, subroutine requests, etc.
Storage in this form has several advantages. First,
modifications to a program can be expressed in the
floating-address input structure; for recompilation,
the compiler does not require a complete program
copy. Second, all postmortems during and after pro­
gram operation are retranslated into input language;
programmers do not write programs in symbolic form
and receive fixed-address outputs. Third, major mod­
ifications in storage addresses and locations can be
made to a checked-out program at the time the pro­
gram is read into the machine because system design
parameters are stored in a central communication pool
(see Figure 6).

In order to debug programs, a "checker" facility is
used. This is a service program of 10,000 instructions
that allows the program to be tested-the checkee­
to be operated either interpretively or noninterpre­
tively under control of a pseudoprogram of executive
instructions. When the checkee is operated in the
interpretive mode, the checker automatically detects
loops, arithmetic alarms, illegal in-out sequences, and
illegal instructions. It stores a history of program
operation including branches, change-registers, and
in-out transfers. In the interpretive mode, the checkee
cannot cause a machine halt; when alarm conditions
are detected, the checker automatically generates spe­
cial outputs and moves on to another job. The checker
provides a wide variety of outputs including instruc­
tion-by-instruction printouts, dynamic change-regis­
ter printouts, and alarm printouts. Using the executive
instructions, a programmer can set machine registers
or memory registers to test values; he can start and
stop the checkee at selected locations; he can request
different outputs for different regions of the program;
he can request alarm outputs if the checkee transfers
control outside a fixed region or if a loop of more than
n cycles is performed; he can indicate the use of
different executive subprograms depending on the re­
sults of checkee operation; he can indicate which
portions of his program are to be performed nonin­
terpretively. From a programmer's point of view, the
checker is a special-purpose, checkout computer; it is
a stored-program machine with highly flexible input,
output, and control sections. (See Figure 7 for a sample
executive program.)

All utility programs are controlled by utility control
cards. Before a machine run, a deck of binary cards,
checker executive cards, etc., is prepared. The operator
places the cards in the reader, pushes one button, and
the rest of the computer operation is automatic.

358 • Annals of the History of Computing, Volume 5, Number 4, October 1983

A final feature of the utility system is the use of a
large communication pool of numerical parameters
shared by all programmers. Each programmer can
specify that constants or addresses in his program
should be taken from the pool. Numbers in this pool
are expressed symbolically by the programmer in both
his coding specifications and his coded copy; the ma­
chine supplies proper numerical values at read-in time.
These ·values may be unknown to the programmer and
even changed from day to day. For example, commu­
nication tags are used for extracting information (usu­
ally table items) that is packed into a full word. The
programmer need not know the exact location of the
word in memory, nor the position of the information
bits within the word. Communication tags are even
used to indicate the location in memory of the program
itself. A program-design group assigns specific numer­
ical values to the tag pool from day to day, in some
cases long after component subprograms have been
debugged. Since numerical values are assigned only
when the program is read into the machine, it is
possible for system designers to move programs and
tables within drum and core memory merely by chang­
ing constants in this pool. Only one central document
needs to be revised, and minimum testing on the
computer is required. Figure 8 indicates the allocation
of the 40,000 instructions in the utility system.

Testing

It is debatable whether a program of 100,000 instruc­
tions can ever be thoroughly tested-that is, whether
the program can be shown to satisfy its specifications
under all operating conditions. Considering the size

CHECKER CARDS I D E L A Y E D
0 1 N I 1 1 A 1 1 R

(2 AL 0 7
0 3 L p 2 5
0 4 LR 1 2 3
0 5 TR 2 3
0 6 BG 2 A 3 z + 6
0 7 L p 4
0 8 LR 1 4 5 1 6
0 9 BG 1 4 A 6 L + 5
1 0 cc
1 QT

Figure 7. Sample executive program. The Lincoln checker
is controlled by pseudoinstructions. The executive program
shown indicates regions of the checkee to be performed
noninterpretively (01 NI), alternate executive instructions
in case of checkee alarm (02 AL), maximum-length loops
(03 LP), legal regions of checkee operation (04 LR),
checkee output mode (05 TR), etc.

H. D. Benington • Large Computer Programs

PROGRAM

Compiler
Read-in
Library Merge-Output
Checker
Master Tape Load
In-Out Editors
Communication Pool
Utility Control
Numeric Subroutines
Miscellaneous

LENGTH

10,500
1,300
4,700
7,500
2,000
2,400
4,100
3,000
1,000
4,000

40,500

Figure 8. Utility system. The Lincoln Utility System
requires over 40,000 instructions as indicat!!d.

and complexity of a system program, it is certain that
the program will never be subjected to all possible
input conditions during its lifetime. For this reason,
one must accept the fact that testing will be sampling
only.

On the other hand, many sad experiences have
shown that the program-testing effort is seldom ade­
quate. When the program is delivered for operation,
its performance must be highly reliable because the
control system is a critical part of a much larger
environment of men and machines. One error per
100,000 operations of the entire program can easily be
intolerable.

As a result of facing this problem for some time at
the Lincoln Laboratory, the following principles have
evolved to govern our testing.

First, parameter testing (i.e., testing of individual
component subprograms in a simulated environment)
cannot be too thorough. This phase must discover all
errors internal to the program and its individual cod­
ing specifications. Even if parameter testing were per­
fect (which it never is!), many errors in system design
would remain to be discovered during subsequent as­
sembly testing.

Second, initial assembly testing should be per­
formed using completely simulated inputs. There are
several reasons. First, only in this way can all test
inputs be carefully control~ed and all tests be repro­
ducible. Second, when errors are discovered with a
new program using live inputs, there will always be a
question whether the program or the machine is at
fault. Integration of the system program with terminal
equipment should not be attempted until the assem­
bled program has been well tested.

A third principle is that the testing facility used
during the assembly test phase must contain exten­
sive, flexible facilities for recording both system

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 359

H. D. Benington • Large Computer Programs

LIVE
INPUTS SYSTEM

PROGRAM
LIVE

OUTPUTS

r- -,
I I
I LIVE INITIAL INTERNAL EXTERNAL I I SIMULATION CONDITIONS I
I I
I INPUT OUTPUT I

L---------------------~
INSTRUMENTATION

Figure 9. Test instrumentation. Proper testing of a control
system requires an automatic facility for simulating inputs
and monitoring outputs. With this facility, extensive
testing can be performed and outputs produced for either
diagnosis of system errors or verification of proper system
performance.

outputs and intermediate outputs (i.e., subprogram
intercommunications). Without this facility, rapid
and reliable diagnosis of system errors is impossible.
After a test has been conducted and errors found, it
should be possible to correct the error before the
program is put on the machine again.

The need for comprehensive simulated inputs and
recorded outputs can be satisfied only if the basic
design of the system program includes an instrumen­
tation facility. In the same way that marginal-check­
ing equipment has become an integral part of some
large computers, test instrumentation should be con­
sidered a permanent facility in a large program.

Figure 9 illustrates the role of test instrumentation
in a system program. Each of the live inputs can be
individually simulated; this allows simultaneous test­
ing with both live and simulated data. In addition, the
input instrumentation allows easy setting of initial
conditions for system memory; this feature is per­
formed by a special-purpose translation program that
converts alphanumeric card data into system tables.

System Program

Utility Programs
Special Programs
Test Instrumentation
Operational Instrumentation

100,000 Instructions

40,000
10,000
20,000
30,000

200,000 Instructions

Figure 10. Production of a system program. Supporting
programs whose total size equals the system program may
be required to simplify production and testing of the
system program.

The output instrumentation "probes" both internal
data (for diagnosis) and external data (for simpler
verification).

One final principle should govern system-program
testing: All successful parameter and assembly tests
must be reproducible throughout the life of the system
program. These tests must be documented in test
specifications that detail the reasons for the tests,
required inputs, operating procedures, and expected
outputs.

The original reason for this requirement stemmed
from the problem of revising the program once it was
operational. The slightest modification to a program
can be successful under limited testing conditions and
yet still cause critical errors for other operations. Since
it is desirable to retest the program thoroughly after
each modification, a large battery of test inputs must
be available. We have discovered two other incidental
advantages of detailed test documentation. First, a
programmer's tests tend to be more organized and
more exhaustive if he must document them. Second,
if machine-versus-program reliability is ever ques­
tioned, retesting is possible. If a known program and
a known test fail, the machine is at fault.

Supporting Programs

The utility and test-instrumentation programs dis­
cussed are only part of the complete set of supporting
programs. In addition, special programs, which assist
preparation of the system program, are used to gen­
erate routine data blocks, perform special translation
of alphanumeric data into parameter tables, assemble
program-sequence and timing parameters, etc.

Operational instrumentation programs are used
during system shakedown and evaluation. They con­
tain simulation and recording facilities that are far
more realistic and operationally oriented than the test
instrumentation. System recorded data are analyzed
with a battery of data-reduction programs (Figure 10).

Documentation-Design and Revision

As indicated earlier, documentation of the system
program is an immense, expensive job. The output
will run to tens of thousands of pages of specifications,
charts, and listings. At the Lincoln Laboratory, these
currently include the following.

Operational specifications
Program specifications
Coding specifications
Detailed flowcharts
Coded program listings
Parameter test specifications

360 • Annals of the History of Computing, Volume 5, Number 4, October 1983

Assembly test specifications
System operating manuals
Program operating manuals

The need for this battery of documents is obvious.
The system and its program must be learned and used
by management, operational-design engineers, sys­
tem-operating personnel, training personnel, pro­
gram-design engineers, programmers, program-test
engineers, evaluation personnel, and, if more than one
system is maintained, on-site maintenance program­
mers. Each of these users has very different needs.

Consider the problem of revising the system once
the program is operational in the field. A minor change
in the operational specifications is proposed. First, the
cost and effects of this change must be evaluated in
terms of the program, the operators, and, often, the
machine. In order to make the change, several hundred
revisions may be required in the specifications. If the
change is approved, these documents must be changed,
operating manuals revised, and the program modified
and thoroughly tested. The wave of changes must be
coordinated smoothly.

Digital computers are often sold to management on
the basis of their programmed flexibility. We have
said, "If your doctrine or procedure changes, no messy,
expensive, time-consuming equipment changes will be
required." In reality, this is not true today. The cost
of the documentation mentioned is only a symptom
of the design-coordination problem in large systems.

How can we reduce this cost? Obviously, as we have
done already, by more extensive use of the computer.
(At the laboratory, we have partially gone in this
direction through the use of punched cards for storing
all central design data. Decks are easily revised, fed
into the system program, or listed for the user.) We
must systematize design, production, and documen­
tation both in the small and in the large. By "in the
small," I mean what is already being done in automatic

H. D. Benington • Large Computer Programs

programming. Instead of an algebraic translator, we
need a unified "bookkeeping-logical-processing-alge­
braic translator." Before we get this, we will surely
need much more research on coding languages and
representations. Eventually, programming should be­
come a two-way conversation between the imprecise
human language and the precise, if unimaginative,
machine. The programmer will say, "Do this," and the
machine will answer, "OK, but what happens if ... ?"
The smallest gain of such a system would be the
elimination of the coding, parameter testing, and pa­
rameter test-specification phases. Unfortunately,
these phases represent only one quarter of the system
cost.

Documentation "in the large" poses a bigger chal­
lenge.
1. What integrated set of documents are required to

design and describe a large system?
2. What language should these documents use?
3. How should they be cross-referenced?
4. Can we eventually store them on magnetic tape

and let the computer analyze, print, and code?

Summary

The techniques that have been developed for auto­
matic programming over the past five years have
mostly aimed at simplifying the part of programming
that, at first glance, seems toughest-program input,
or conversion from programmer language to machine
code. As a result of progress in this area (and a growing
number of experienced programmers), we find that
large programs can· now be produced; unfortunately,
they are difficult to test and document. If the newest
very-high-speed, large-memory computers are to be
fully utilized, we must develop automatic program­
ming procedures so that they allow cheap production
of highly reliable, easily revised, well-documented sys­
tem programs.

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 361

The Cape Cod System
C. ROBERT WIESER

The Cape Cod System was an advanced-development prototype for the SAGE

system. The paper discusses the evolution of the Cape Cod System, which
used the Whirlwind computer, from its inception in 1951 through first operation
in September 1953.

Categories and Subject Descriptors: K.2 {History of Computing]-hardware,
SAGE, software, systems
General Terms: Design, Management
Additional Key Words and Phrases: defense, U.S. Air Force, Cape Cod
System, Whirlwind

Editor's Note

One of the important characteristics of the SAGE

development was the close integration of the design
with experimental tests of concepts, the discovery
and correction of unforeseen difficulties in the real
world, and the verification of design details. Thanks to
the high priority of air defense and the complete
support of the Air Force, we were able to build and
operate an evolving experimental air-defense system
with which to do our work. This evolving system, as
Bob Wieser describes, began with a single radar and
eventually became a full-scale air-defense system
covering the New England area, with numerous
radars, assigned air-defense interceptors, and
regularly scheduled raids by SAC bombers. I believe
that SAGE could not have been successfully built in
such a short time without these extensive
experimental facilities.

The Cape Cod System also acted as a
demonstration to persuade decision makers in the Air
Force, associated contractors, and the community at
large that SAGE was actually doable. Today, in a world
full of computers, it may be difficult to believe there

© 1983 by the American Federation of Information Processing
Societies, Inc. Permission to copy without fee all or part of this
material is granted provided that the copies are not made or distrib­
uted for direct commercial advantage, the AFIPS copyright notice
and the title of the publication and its date appear, and notice is
given that the copying is by permission of the American Federation
of Information Processing Societies, Inc. To copy otherwise, or to
republish, requires specific permission.
Author's Address: Physical Dynamics, Inc., 13 Corporate Plaza,
Suite 100, Newport Beach, CA 92660.
Figures 2-5, 7-9 courtesy MITRE Archives. Figures 1 and 6 courtesy
MIT Lincoln Laboratory.
© 1983 AFIPS 0164-1239/83/040362-369$01.00/00

was a lot of skepticism about whether SAGE could be
made to work. In fact, believers were a small minority
to start with, and Cape Cod played a major role in
persuading important people, especially senior Air
Force officials, that MIT was on the right track. Once
they believed, they provided the solid backing without
which SAGE would not have been possible.

In the early days, Whirlwind and its growing
ensemble of peripheral equipment was only marginally
reliable, yet we ran air-defense exercises every week.
Whirlwind had a distinct personality-it could be
fractious and difficult but it seemed to sense when
something important was going on and would react
appropriately. Many times I saw Whirlwind flat on its
back an hour before demonstration time only to come
up and run solidly when needed, then collapse again
and be down for several days. For some reason that
none of us, including George, could understand,
Whirlwind particularly liked George Valley. Whirlwind
would almost invariably run while he was in the
building only to go back to sulking when he left.

Introduction

The Cape Cod System was an important and necessary
step in upgrading post-World War II continental air
defense. The upgrading was extensive and required
improvement of just about all the functions and ele­
ments of the system, which was aptly characterized in
the first report of the Valley Committee (January
1950) as "lame, purblind, and idiot-like."1

1 "Air Defense System," Report of the Air Defense Systems Engi­
neering Committee, October 24, 1950, pp. 9-10.

362 • Annals of the History of Computing, Volume 5, Number 4, October 1983

J

Figure 1. Gap-filler radar.

In addition to problems of equipment reliability and
maintainability, the 1950 air-defense ground environ­
ment had a number of conceptual difficulties that had
to be corrected in order to achieve the high attrition
rates needed to cope with an emerging nuclear threat.
The Battle of Britain was won with about 5 percent
attrition of attacking bombers, a number hopelessly
low for defense against nuclear attack.

Briefly, the principal conceptual problems were gaps
in low-altitude radar coverage, severe problems in
"hand-over" (handing aircraft tracks and control of
interceptors from one radar to another by voice tele­
phone), and the inability of the system, which was
entirely manual, to carry out detection, tracking, iden­
tification, and interception for more than a few targets
in the coverage of any one radar. To make matters
even more difficult, these problems were synergistic.
The only known cure for lack of low-altitude radar
cover was "gap-filler" radars (Figure 1) to cover the
low-altitude "holes" between the existing long-range
radars. Because low-altitude radar coverage is inher­
ently limited to a few tens of miles, a low-altitude
defense requires more frequent hand-over of aircraft
tracks. The advent of faster jet aircraft required even
more frequent hand-over, and further taxed the man­
ual-control system operators by reducing the time
available to intercept an attacking bomber.

Planning

The Air Defense Systems Engineering Committee,
usually called the Valley Committee, envisioned a new
air-defense ground environment with a number of
innovations to correct the conceptual limitations of
the old system. Unmanned gap-filler radars would be
added to supplement low-altitude coverage, and both
gap-filler and long-range radar data would be auto-

C. R. Wieser • Cape Cod System

matically encoded and transmitted over telephone
lines to direction centers. Thus the netting of radars
took care of the hand-over problems by providing the
direction center with the composite overlapping cov­
erage of many radars. The direction centers would also
be linked by automatic digital data transmission. Be­
cause this concept included automatic detection of
aircraft, it contributed to eliminating saturation in the
direction center.

The direction center itself was to be semiautomatic;
that is, routine tasks would be done automatically
under the supervision of operators. A high-speed dig­
ital computer would collect target reports from the
radar network, transform them into a common coor­
dinate system, perform automatic track-while-scan
(tracking based on periodic radar reports at 10- to 12-
second intervals), and compute interceptor trajecto­
ries. Operators filtered the radar data, had override
control (i.e., could initiate or drop tracks), performed
friend-or-foe identification function, assigned intercep­
tors to targets, and monitored engagements through
voice communication with the interceptor pilots.

For each of these innovations there was a prior
invention, but all inventions were at a very early stage
of development in 1950. In operation were breadboard
hardware for automatic radar target detection, digital
encoding (with beam splitting), and transmission over
voice-bandwidth telephone lines. This equipment, the
Digital Radar Relay (DRR), was installed and con-

Figure 2. Digital radar relay (DRR) connected to the
MEW radar.

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 363

C. R. Wieser • Cape Cod System

nected to a World War II Microwave Early Warning
(MEW) radar at Hanscom Field (Figure 2). Commer­
cial telephone lines were available. The forerunner of
the SAGE digital computer, Whirlwind I, had been
designed, prototypes of its repetitive basic circuits and
devices had been built and tested, and the computer
was under construction with its central memory (elec­
trostatic storage) yet to be integrated.

System analysis and engineering was at a very early
stage. A small group was studying the application of
Whirlwind to semiautomatic air-traffic control and
had started work on automatic digital track-while­
scan and aircraft flight-path control. This group be­
came the nucleus of the Cape Cod design group.

Nothing in the new air-defense ground-environ­
ment concept challenged the laws of physics; however,
an extensive, urgent engineering job had to be done if
the concept was to be accepted. The MEW and bread­
board DRR were unreliable, telephone lines were
noisy, and the electrostatic storage for Whirlwind was
yet to be integrated. The smattering of software in
existence had been coded in machine language for
scientific calculation, and some thought had been
given to steering aircraft away from collision courses
instead of onto them.

Given these circumstances, development of the new
concept and its embodiment in the Cape Cod System
relied heavily on iterative cycles of experiment-learn­
improve. Since the major elements and subelements
were being developed simultaneously, system engi­
neering and integration was a parallel empirical pro­
cess of exploiting what was available. Understandably,
there were skeptics who viewed the concept, which
was radically new and without even an analogous
precedent, as more foolhardy than creative. This lent
further impetus to a development approach that used
what was at hand to conduct realistic experiments and
used the experimental results immediately to steer
further development of hardware and software. How­
ever inelegant, the approach worked very well. The
ever-present realism of radar clutter, telephone-line
noise, and limited computer memory drove the devel­
opment pace faster than a mathematical analytical
approach could ever have done.

Early Experimentation

The development and test process was evolutionary,
but fell into three phases based on availability of
hardware. The first phase consisted of the Project

Figure 3. Whirlwind I test control. Left to right: Stephen J. Dodd, Jay W. Forrester, Robert R. Everett, Ramona Ferenz.

364 • Annals of the History of Computing, Volume 5, Number 4, October 1983

Charles demonstrations, which provided elementary
proof-of-principle evidence to support continued de­
velopment. Next, there was construction and test of
the 1953 Cape Cod System, which demonstrated fea­
sibility of the SAGE system. The third phase was
expansion of the Cape Cod System to provide addi­
tional design data for SAGE.

The first step in the Charles demonstrations was· to
show that radar data, encoded and transmitted from
a remote site, could be inserted into a digital computer.
Phone lines were leased, and the MEW radar data
were transmitted to the Barta Building in Cambridge,
Mass., where Whirlwind I was under construction
(Figure 3). The internal memory was not yet available,
and the only usable storage consisted of five flip-flop
test-storage registers. Using one register as an input
buffer and another as an output register (for display),
the MEW data were first inserted and displayed in
September 1950, a few months prior to the formal
commencement of the Project Charles investigations.
However trivial an experiment this might seem in
retrospect, much was learned. The reliability of the
old MEW radar was poor, as was the reliability of the
first breadboard DRR. Telephone noise was frequently
formidable, especially when cross-talk from dialing
flooded the computer with false "targets." Usable data
were available less than half the time, a condition that
had to be improved. As a result, phone-line noise was
to a large extent cleaned up, and the MEW and DRR
were shut down for a month for repair and
upgrading.

In the meantime, construction of Whirlwind contin­
ued, paced by the reliability of the first bank of elec­
trostatic storage tubes (Figure 4). The memory density
was thinned to 16 X 16 (256 registers) to improve
operation, and a small amount of "application time"
was allocated to computer users. The applications
group (later the Cape Cod design group) coded the
computer to perform automatic, real-time track-while­
scan of up to 10 aircraft detected by the MEW radar.
The program also provided a cathode-ray-tube plan­
position indicator (PPI) polar display of the radar
reports and the tracks, which were initiated manually
from the display tube by means of a photoelectric light
gun. Thus another direction-center function was dem­
onstrated, although on· a limited scale, and with no
better than a 50-50 chance of reliable operation even
when "tweaked up" for a test.

The next evolutionary step, which took place early
in the era of Project Charles, was to program Whirl­
wind to compute collision-course vectoring instruc­
tions for an interceptor aircraft automatically. Be­
cause of limited storage, the track capacity had to be
reduced from ten to two aircraft (the target and inter-

C. R. Wieser • Cape Cod System

Figure 4. Whirlwind I electrostatic memory. From top left:
Jay Forrester, Pat Youtz, and Stephen Dodd.

ceptor). The interceptor vectoring headings were dis­
played by means of indicator lights on a flip-flop
register and translated mentally from binary to deci­
mal by the radio telephone "talker" for voice trans­
mission to the interceptor pilot.

Having coded and tested the system, there was a
strong urge to try it out quickly. The local Hanscom
Air National Guard Unit was persuaded (very infor­
mally) to join the experiment as part of maintaining
flight proficiency. Two officers agreed to try it out.
One flew the C-45 target (a small twin-engine Beech­
craft of World War II vintage), and the other flew a
T-6 single-engine propeller-driven trainer. These air­
craft flew at about one-quarter the speed of jets, but
they were available and jets were not. On April 20,
1951, less than a year after the birth of. the Valley
Committee's air-defense concept, automatic compu­
tation of interceptor instructions was demonstrated
live, three times, in the skies of New England. Miss
distances were less than 1000 yards, quite adequate
for hand-over to airborne intercept radar.

Construction

Although the air-defense functions were demonstrated
on a limited scale with unreliable developmental

Annals of the History of Computing, Velum~ 5, Number 4, October 1983 • 365

C. R. Wieser • Cape Cod System

equipment, the system worked as expected in a real­
istic environment and provided a basis for proceeding
with construction of the Cape Cod System. The deci­
sion to proceed came just three days after the inter­
ceptions were conducted. The timetable, which was
driven by military urgency, was ambitious-the Cape
Cod System was to be built and put in operation by
1953, a development time of 2112 years from limited
proof-of-principle tests to demonstration of feasibility.
Moreover, the "1953 Cape Cod System," as it was
called, was a big step from the MEW-DRR-Whirl­
wind system with limited storage to a functionally
complete experimental system so that all the air­
defense functions could be performed experimentally,
developed further, and demonstrated with acceptable
reliability.

Radar netting was required. Earlier experiments
showed that some form of radar data filtering was
needed to remove the residual radar clutter that was
not canceled by the moving target indicator (MTI).
Phone-line noise had to be held within acceptable
limits. Whirlwind I had to have a larger, more reliable
random-access internal memory supplemented by an
external memory. Buffer storage had to be added to
handle the insertion of data from an asynchronous
radar network. The software had to be expanded con­
siderably. Finally, a direction center had to be de­
signed and constructed to permit air force officers and
enlisted men to operate the system-that is, to control
the radar data filtering, initiate and monitor tr~cks,

identify aircraft, and assign and monitor interceptors
(Figure 5). The Cape Cod System was, in essence, a
model of the SAGE system, scaled down in size but
realistically embodying all the SAGE air-defense func­
tions.

A long-range FPS-3 radar, the workhorse of the
operational air-defense net, was installed at South
Truro, Mass., near the tip of Cape Cod (Figure 6). It
was equipped with an improved DRR. Two gap fillers,
designed by Lincoln Laboratory, were installed at
Scituate and Rockport, Mass., and were equipped with
the new gap-filler detection and data-transmission
system called slowed-down video (SDV). Each radar
included a Mk-X IFF (identification friend or foe)
system with its reports multiplexed with the radar
data. Dedicated telephone circuits to the Barta Build­
ing in Cambridge were leased and tested.

At the Barta Building, work on Whirlwind contin­
ued, and the reliability of electrostatic storage was
constantly improved. It was clear that the rapidly
advancing research on magnetic-core memory would
in all likelihood lead to a much superior memory.
Development of a 1024-register core memory was ini­
tiated. A buffer drum built by Engineering Research
Associates (now a part of Sperry Univac) in Minne­
apolis was added to Whirlwind.

A parallel effort to develop a "radar mapper" to
filter data at the direction center was also initiated
(Figure 7). The radar MTI of the early 1950s was all
analog and provided limited subclutter visibility, es-

Figure 5. Cape Cod direction center (air force operators in foreground are intercept monitors).

366 • Annals of the History of Computing, Volume 5, Number 4, October 1983

Figure 6. FPS-3 radar at South Truro.

pecially at short ranges. Since targets could not be
detected in very dense clutter, it was wasteful of
computer capacity to insert dense clutter into the
computer. A simple, ingenious solution was devised.
It consisted of a polar PPI display of the incoming
data for each radar. The cathode-ray-tube (CRT) face
was horizontal, and a single photocell was mounted
above it. The photocell response to the bright blue
initial flash from displayed position reports controlled
a gate that passed the data into the computer. Con­
sequently, any area of the tube face that was masked
(opaque to blue light) resulted in rejection of the radar
data. The mask material was a paint that could be
applied or removed manually and transmitted the
afterglow on the tube face so that data under the mask
were visible to the operator (but not to the photocell).
Changes in clutter patterns were relatively slow, since
they were caused by changes in weather (anomalous
propagation and echoes from severe storms). Another
key problem had been solved.

Construction of a realistic direction· center de­
pended heavily on the development of a versatile
display console that provided the operators the infor­
mation they needed to make decisions and also pro­
vided them the means to send commands to the com­
puter. (The modern term interactive applies but was
not in common use in the early 1950s.)

Nothing like this had ever been done before, and
the technology then at hand was primitive by today's
standards. What was wanted was a computer-gener­
ated PPI display that would include alphanumeric
characters (for labels on aircraft tracks) and a separate
electronic tote-board status display. The console op-

C. R. Wieser • Cape Cod System

erator had to be able to select display categories of
information (for example, all hostile aircraft tracks)
without being distracted by all of the information
available.

The Cape Cod display console was developed around
the Stromberg-Carlson Charactron CRT. The tube
contained an alphanumeric mask in the path of the
electron beam. The beam was deflected to pass
through the desired character on the mask, refocused,
and deflected a second time to the desired location on
the tube face-electronically complex, but it worked.

The console operator had a keyboard on which he
could compose a command to the computer-for ex­
ample, identify a particular aircraft track as friendly!
He could use either the track number (inserted via his
keyboard) to designate the aircraft track or his light
gun, which sensed the track-display flash and called
for the computer to read the operator's keyboard com­
mand.

A great deal of engineering went into the display
system electronics and the logic of what to display and
what operator actions were required at each operator
position. There was also the question of console layout
for ease of operation. With a characteristic direct

Figure 7. Two radar mappers (far left)_.

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 367

C. R. Wieser • Cape Cod System

Figure 8. Whirlwind I core-memory banks.

approach, one of the engineers ran a simple experi­
ment. He suspended a Charactron display-tube ship­
ping carton from the ceiling of his office by means of
four strings and drew the outline of the tube surface
on one end of the carton. Visitors were seated before
the mock-up and asked to adjust the strings to what
they thought. was the best height and tilt angle of the
mocked-up tube face. Height of the front and rear of
the carton were then measured and recorded. The
measurements from many trials were averaged, and
the geometry of the Cape Cod displays was deter­
mined.

Like all parts of the system, the first experimental
console was built in a hurry. After the electronics were
developed, the next console component sought was a
custom-built metal cabinet to house the display. De­
livery time was quoted as several months, so once
again ingenuity came to the rescue. A household
cabinetmaking shop was across the parking lot from
the Barta Building. In a few days the shop built the
first console cabinet of plywood-at considerably less
than the cost of a metal cabinet. There was only one
problem: the cabinetmaker delivered the cabinet with

an attractive blond mahogany finish, which was feared
to be indicative of unseemly luxury. After a brief
period of admiration, the console was painted gray.

In parallel with the hardware improvements, there
was major software development to be done. The
integration of the external storage drum was a soft­
ware problem as well as a hardware problem. The
scarcity of internal memory capacity required that
much of the software be stored on the drum and
transferred into the central computer when needed.
The radar network data, also stored on a drum, had
to be read into the computer and transformed into a
common coordinate system for proper registration.
The operator consoles had to be integrated via soft­
ware that generated a variety of displays and received
and executed the operator's control commands. Since
automatic ground-to-air data links were not yet in use,
interceptor vectoring orders were still displayed (now
in decimal) on a small "tote tube" and relayed to the
pilot by voice radio.

The software task was to program quickly the larg­
est real-time control program ever coded, and to do
all the coding in machine language, since higher-order
languages had not yet been developed. Furthermore,
the code had to be assembled, checked out, and real­
istically tested on a one-of-a-kind computer that was
a testbed shared for software development, hardware
development, demonstrations for visiting officials
(who came from near and far to monitor progress),
and training the first crew of air force operators.

Operation and Expansion

All of these complex engineering tasks were carried
out in parallel, on a schedule, and with remarkably
little rework. By September 1953, just two years and

BRUNSWICK

DERRY e .~. HAMPTON
/"/

-·-·---./ 0

BEDFORD

CLINTON e A

FOXBORO
-·-·1·---·1.

CHESTNU~I[
HILL .

I
!

I

(1
~MONTAUK

~UFFOLK
COUNTY

T
0 10 20 30
~
NAUTICAL

MILES

o DIRECTION CENTER

® HEAVYRADARS

• GAP FILLER RADARS

A AIRBASES

~ HEIGHT FINDERS

Figure 9. Map of the Cape Cod expanded radar network.

368 • Annals of the History of Computing, Volume 5, Number 4, October 1983

five months after "go," the Cape Cod System was fully
operational, including the integration of two 1024-
register random-access core-memory banks in Whirl­
wind (Figure 8). Reliability was excellent by the
standards of vacuum-tube electronics. It was an engi­
neering feat that in itself speaks for the imagination,
enthusiasm, and skill of the people involved-proba­
bly a quarter of the number who would be assigned to
a project of similar complexity today. Moreover, the
management style created an environment in which
rapid progress was possible; although strict in setting
goals and priorities and in allocating scarce resources
(skilled people and computer time), management did
not engulf the workers in bureaucracy. The workers
were young, bright, enthusiastic, and very much aware
that they were working on the leading edge of some­
thing new and important; they were learning on-the­
job skills that schools did not teach. The hours were
long, the camaraderie was close, and everyone wanted
to make it work.

Having demonstrated the feasibility of the radically
new air-defense concept, the designers and operators
of the Cape Cod System continued to expand and
operate. the system, principally to collect operating
data for specifying the new operational air-defense
system. Toward the end of 1953, the blueprint for a
deployable system, the Lincoln Transition System,
was published. In the summer of 1954, the system was
designated the SAGE system by the Air Force·.

During this period, the Cape Cod System radar
network was expanded to include two more long-range
FPS-3 radars located at Brunswick, Me., and Montauk
Point on the eastern tip of Long Island. (Integration
of the Montauk radar revealed some of the previous
problems with radar registration. Air force records
included three locations for the radar, two of which
were in the Atlantic Ocean!) Additional gap fillers
were built and integrated, bringing the entire network
to a total of 14 radars by the summer of 1954 (Figure
9).

There were continuing efforts to expand and im­
prove the system software, to reflect air force operator
experience in the choice of operator displays, and to
make operations more realistic. All-weather jet inter­
ceptors were assigned to support the experiments: 12
U.S. Air Force F-89Cs at Hanscom Field and a group
of Navy F-3Ds at South Weymouth. Later, an opera­
tional Air Defense Command squadron of F-86Ds,
based at the Suffolk County Airfield on Long Island,
was integrated into the Cape Cod System, and the Air
Force arranged for diversion of Strategic Air Com­
mand training flights into the Cape Cod area, so that
the Cape Cod System could be used to run large-scale

C.R. Wieser • Cape Cod System

air-defense exercises against Strategic Air Command
B-4 7 jet bombers.

In 1954 automatic ground-to-air data links were in
development as an aid to conducting large-scale air
battles and as a necessity for the forthcoming BOM­

ARC pilotless interceptor, which would later be inte­
grated with the SAGE system. The Cape Cod System
was again extended to run an experiment. The MIT
Instrumentation Laboratory (now the Charles Stark
Draper Laboratory) was engaged in autopilot research
and had at its flight facility a B-26 aircraft equipped
with an autopilot that could be commanded by input
signals from a digital data link. After agreement to a
joint experiment, the ground end of the data link was
connected to the Whirlwind computer, and software
modifications were incorporated to transmit intercep­
tor vectoring commands automatically over the data
link and into the B-26 autopilot.

Without delay, an experimental live interception
was arranged. After checking by radio with the inter­
ceptor pilot that the system seemed to be working
properly, he was given the request ("let George do it")
to switch to autopilot control. The interception went
as planned, the pilot soon sighted the target aircraft
("tally-ho"), and let the autopilot complete a success­
ful interception. Another important first had been
accomplished. The Cape Cod System engineers, with
the irreverent enthusiasm of youth, .dubbed the exper­
iment "the immaculate interception."

Conclusion

Cape Cod experiments continued at the urgent pace
necessary to gather data in time to support the design
of the SAGE system-hardware, software, and operat­
ing doctrine. The operation was outstandingly suc­
cessful in meeting its commitments. In a more general
sense, demonstration of the Cape Cod System was a
much larger accomplishment because it was the initial
step toward a sweeping change-a change of kind-in
automation. The system was the first large-scale, real­
time control system that combined remote sensing
and complex control operations, all controlled by a
central digital computer and supervised by human
operators.

Systems of this generic type were perceived to have
many civil and military applications. Digital process­
ing technology was advancing rapidly toward cheaper,
better components. The people who engineered the
system and the imaginative air force officers who
funded and supported it were aware of this, which is
probably why conceiving, building, and operating the
Cape Cod System was a source of deep satisfaction.

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 369

Radar Data Transmission
JOHN V. HARRINGTON

The paper reviews the development of radar data transmission and its role in
the SAGE system. The work leading to the design of the FST-1 and FST-2 radar
data-compression systems is described.

Categories and Subject Descriptors: K.2 [History of Computing]-hardware,
SAGE, software, systems
General Terms: Design, Management
Additional Key Words and Phrases: radar, U.S. Air Force, FST-1, FST-2

Editor's Note

Just as important to the concept of SAGE as the digital
computer was the technology for transmitting radar
data over telephone lines. Fortunately, while MIT was
developing a digital computer for control applications,
a group under Jack Harrington at the Air Force
Cambridge Research Center was developing
techniques for digital signal processing and digital
transmission over telephone lines. George Valley
seized on these two pioneering efforts and saw that
they made a centralized computer-based air-defense
system possible.

We had many troubles with radar data
transmission, most of which could not be foreseen
without trying the equipment out in the real world.
Sending digits over telephone lines sounds easy, and
it is, but sending them reliably was not. The telephone
system had been elegantly designed for sending
analog voice, but suffered a number of distortions and
noise interferences that only digits could notice-and
notice them they did.

At first the telephone company was dubious about
what we were doing. When the first telephone line for
radar data came into the Whirlwind building to be
wired into one of Jack's modems, the telephone

© 1983 by the American Federation of Information Processing
Societies, Inc. Permission to copy without fee all or part of this
material is granted provided that the copies are not made or distrib­
uted for direct commercial advantage, the AFIPS copyright notice
and the title of the publication and its date appear, and notice is
given that the copying is by permission of the American Federation
of Information Processing Societies, Inc. To copy otherwise, or to
republish, requires specific permission.
Author's Address: Communications Satellite Corporation, 950 L'En­
fant Plaza, Washington, DC 20024.
Illustrations courtesy MITRE Corporation.
© 1983 AFIPS 0164-1239/83/040370-37 4$01.00/00

installer insisted on wiring it into a handset. We told
him we didn't want the handset, but he said it was
regulations and that was that. When he left, we
connected it to the modem. I don't know what
happened to the handset. Later the telephone
company became interested in digital transmission
and designed and built the modems for SAGE.

SAGE cost a lot of money, so much that it was kind
of unreal to an ordinary person. One of the few times I
got some sort of feeling for what we were really up to
was driving from South Truro on Cape Cod, where we
were installing a radar station, back to Boston. Every
so often along the road was a big wooden drum full of
telephone cable that was to be installed to bring the
information back to Whirlwind. Mile after mile, drum
after drum-and this was just one station for the
experimental system.

I also remember a visit from another organization
that was working on another approach to air defense.
They went away in shock when they discovered that
our telephone bill was larger than their entire budget.

Introduction

The spectacular success of microwave radar in air
defense during World War II, particularly for early
warning and fighter direction, came largely from ap­
plying radar to point defense. There were relatively
simple interconnections between points in the form of
voice cross-telling. In the postwar years, the speed and
range of foreseeable air actions increased, requiring a
family of radars to provide adequate coverage of the
field of action. The remoting or automatic relaying of
radar pictures and data over relatively long distances

370 • Annals of the History of Computing, Volume 5, Number 4, October 1983

to some .reg~onal operation center became a develop­
ment obJective of great operational importance.

History

The beginnings of automatic radar data networking
go back to the postwar (1946-1950) programs of the
Relay Systems Laboratory in the Air Force Cambridge
Research Center and the contributions ofE. W. Samp­
son, E. B. Staples, H. Feistel, E. W. Bivans, T. F.
~ogers, a?d myself. Our efforts centered on complet­
mg the microwave relay system initiated at the end of
World War II at the MIT Radiation Laboratory,
where so many of the significant steps in the devel­
opment of microwave radar were taken.

Two efforts in the Relay Systems Laboratory had
significant impacts on radar networking in their sep­
arate ways. The first effort concerned the development
of a microwave relay system (Ames et al. 1948) that
would transmit a radar video signal with the necessary
range and azimuth synchronization, so that the radar
plan-position indicator (PPI) picture could be recon­
structed and displayed at the receiving end. Theim­
mediate application was the transmission of signals
from the MEW (Microwave Early Warning) radar at
!fanscom. Field in Bedford, Mass., to our laboratory
m Cambridge, some 20 miles and two microwave hops
away. The system worked out very well. The several
megahertz of bandwidth required to transmit the un­
processed video, however, and the high initial cost and
maintenance of microwave relay stations at that time,
led to a good deal· of thinking about more efficient
ways to accomplish the same objective. Those consid­
erations evolved into the second major effort, a con­
cept called digital radar relay (DRR). The basic idea
(Ames et al. 1952) followed from the realization that
the information contained in the radar picture was
contained within the coordinates (range and azimuth)
of relatively few radar targets. If these targets could
be detected and their location transmitted in the new
binary digital form, a substantial reduction in band­
width would result, allowing the wideband microwave
circuit to be replaced by a narrowband telephone line.
The argument was advanced that telephone lines were
abundant, available everywhere within the United
States, and much less expensive than microwave
transmission-therefore they should be utilized. It is
i~onic that three decades later the bulk of the long­
lme telephone traffic in this country is actually carried
by microwave relay!

Development Problems

~h~le the concept of DRR was simple and appealing,
its implementation posed a number of formidable

J. V. Harrington • Radar Data Transmission

technical challenges. First, there was a need to detect
radar reflections automatically from an airborne tar­
get. In a practical sense, the target was often immersed
in a fairly high level of radar noise, ground clutter, or
other unwanted returns. The selection process had to
be very great in DRR; otherwise, the limited trans­
mission capacity could easily be overloaded. The de­
tection had to take into account that the target return
occurred over many radar pulses-that is, that there
were a large number of radar hits per beamwidth.
Some form of signal integration (Harrington 1950a)
was essential if efficient detection was to be achieved.

The principle of signal-to-noise improvement
through the integration of a repetitive signal in noise
was well recognized, but the high-capacity electronic
storage necessary to accomplish the video addition in
real time was lacking. Initially, delay lines were used
in what today would be called a "comb filter arrange­
ment"; however, these were restricted to one repetition
rate and for large numbers of additions displayed
marginal stability. Our group concentrated on a new
storage tube developed by the RCA Laboratories at
Princeton called the barrier-grid storage tube. We had
some good initial success with it for video integration,
and later for digital storage as well.

Another area of concentration in the development
of.the DRR technology was in the encoding of the
target. range and azimuth coordinates. The simplest
techmque, and the one we adopted, was to count either
r~nge or azimuth marks in a simple array counter,
with the counter being reset at range and azimuth
zero, and to read those out at the precise time the
integrated radar signal exceeded a preset threshold.
Ot~er techniques were investigated as well, including
an mteresting optical disk from which azimuth could
be read directly. A voltage-encoding tube (Harrington
et al. 1951), adapted from a television monoscope with
a special target pattern in cyclic binary code, was also
d~vel~ped and had multiple high-speed encoding ap­
phcat10ns.

One of the most difficult requirements in the imple­
mentation of the digital radar scheme was the provi­
sion of enough high-speed storage to store the (R, O)
code groups when they were generated-and to store
them for a variable time until the slow-speed trans­
mission channel was clear to take them. A number of
~hoices were available, but none were really attractive;
m the late 1940s the magnetic and/or integrated cir­
cuit tech~ology that makes digital storage so cheap
and plentiful today was not yet invented.

A 16-bit coordinate word had to be stored in a few
microseconds, depending on the radar-range resolu­
tion desired; hence, fairly high storage speed was
required. A random-access store seemed the most suit-

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 371

J. V. Harrington • Radar Data Transmission

RADAR SIGNAL THRESHOLD
~

VIDEO INTEGRATION DETECTOR

Digital radar relay system.

able for the nonuniform rate at which the targets
occurred and for the slower but more uniform rate of
read-out for transmission. The new storage-tube tech­
nology (Bivans and Harrington 1950) seemed to be
the most promising for both this application and sig­
nal integration. A better understanding of the electro­
static storage mechanism (Harrington 1950b) in the
tube led to the successful use in the late 1940s of the
barrier-grid storage tube for these applications.

In the early equipment, transmission of the target
coordinates over a telephone channel was accom­
plished by modulating a family of nine tones in the
500-2500 Hz band at about a 50-100 Hz rate to
transmit eight bits plus a marker bit in parallel. This
was relatively inefficient and wasteful of bandwidth;
however, it easily handled many of the idiosyncrasies
of the telephone lines, particularly the effects of delay
distortion and the frequency changes introduced by
single-sideband carrier systems.

Early Experiments

We demonstrated successful operation of the new
DRR system over a phone line from the MEW radar
site in Bedford to the laboratory in Cambridge some­
time in 1949. It was a significant achievement that
contributed directly to the work of ADSEC (Air De­
fense Systems Engineering Committee) and the air­
defense-system concept that committee was evolving.
We now had achieved automatic detection of radar
targets, with sufficient sensitivity and a low enough
false-alarm· rate that we approached within a decibel
or so the detection sensitivity of a human operator.
Further, we had encoded the target coordinates, stored
them, and transmitted them at low rate over a phone
line for display or other processing at a remote point.

Our 1949 DRR demonstration coincided with the
formation of ADSEC, chaired by MIT's George E.
Valley, Jr., a radar expert and distinguished alumnus
of the famed Radiation Laboratory. The Valley Com­
mittee, in examining U.S. defenses against low-flying
enemy bombers, soon recognized that the only way to
fill the gaps created by the earth's curvature under the
long-range radar beams was to employ a much larger
family or network of shorter-range "gap-filler" radars.
These gap-filler radars could be remoted to a central
point and would provide low-altitude coverage over a
wide region. The early concept envisaged the use of

R. a PHONE
STORE i----.. MODEM _..

CODERS LINE

small CW (continuous-wave) radars sensitive only to
moving targets. They were to be mounted on telephone
poles and remoted via phone lines to an operations
center. The great advantage of position-determining
pulse radars soon prevailed. The general importance
of narrowband communications for radar data led to
our group's involvement in the work of ADSEC. It
was an exciting time; Valley had gathered around him
a number of experienced and creative people who were
rethinking the nation's entire air-defense concept. A
sense of great importance and urgency was attached
to their work.

One of the early steps taken by ADSEC was to
recognize the need for high-speed, real-time data pro­
cessing for target tracking and interception at the
central point. ADSEC sponsored some early experi­
ments in which the MEW radar at Bedford, fitted
with our DRR equipment, would transmit radar-target
data in real time to the Whirlwind computer in Cam­
bridge, where digital track-while-scan operations
would be carried out. These first experiments in cen­
tralized radar tracking were truly pioneering and un­
questionably influenced much of the subsequent work
on automatic air-defense systems.

Our group at the Air Force Cambridge Research
Center joined the SAGE effort as Group 24, Data
Transmission, of MIT's new Lincoln Laboratory, es­
tablished in 1950 to develop a more effective air­
defense system. Valley became the head of our division
and eventually the associate director of the·laboratory,
while Jay W. Forrester and his Whirlwind team be­
came Division 6 of the new laboratory. Thus much of
the appropriate data-processing experience was in
place in the laboratory for a major developmental
effort on an automatic air-defense problem.

FST-1 Development

From the early ADSEC experiments, the subsequent
Cape Cod System experience, and the later SAGE sys­
tem came a great many ideas and a good deal of
progress in the development of automatic means to
accomplish the detection and transmission of radar
data. Three general schemes were employed. The first
of these, the Digital Radar Relay (Ames et al. 1952),
primarily used in the ADSEC-sponsored MEW­
Whirlwind I experiments, was followed early in the
Lincoln Laboratory work by a so-called slowed-down

372 • Annals of the History of Computing, Volume 5, Number 4, October 1983

J. V. Harrington • Radar Data Transmission

RADAR SIGNAL SLOW-SPEED
MODEM NARROW BAND VIDEO __...

INTEGRATION
~

VIDEO READ-OUT

Slowed-down video system.

video (SDV) system (Harrington 1954), a much sim­
pler method than the DRR scheme. It recognized that
when radar signals were integrated over the repetition
intervals in one radar beamwidth and subsequently
read out over a longer period of time, a relatively
narrowband-view signal resulted that could be directly
transmitted over a telephone line. The addition of
fairly simple azimuth synchronization allowed the en­
tire picture to be reproduced essentially in real time
at the remote point. SD V was cheap and effective and
was built in several different forms, depending on the
size (range) of the picture and the type of storage. Its
big disadvantage was that it faithfully relayed all
returns in the radar picture. Its accuracy was inher­
ently poor: one beamwidth in azimuth (1 degree) and
one interval (1 mile) in range. The coarse granularity
was in fact the basis on which narrowbanding was
accomplished, and it yielded a surprisingly useful and
accurate picture from which elementary aircraft track­
ing could be carried out. Our group developed two
principal SDV designs: one employed flip-flop storage
and was used on the gap-filler radars in the Cape Cod
network; the second was a storage-tube SDV system
designed for the large heavy radars, and subsequently
produced by the Lewyt Corporation. The production
version was called FST-1.

FST-2 Development

The difficulties of trying to achieve accurate aircraft
tracks at the central point from relatively coarse SDV
data led to the development of the so-called fine-grain
data (FGD) system (later produced as the FST-2).

,.... THRESHOLD
f--+1 DETECTOR

SIGNAL

-- STORE i----
µ.-INTERVALS

~
SIGNAL WIDTH

~
DETECTOR

Fine-grain data system.

The FGD scheme was, in fact, a variation of the
original DRR idea, but with a much more elegant
detector that could identify the center of the target
and code its coordinates more accurately. It required
that a relatively large number of radar repetition
intervals be stored such that the signals in any one
range interval could be examined over the full beam­
width. Various detector schemes were used to detect
the target (Harrington 1955) and its center, such as
run-length detectors and sequential observers (Dineen
and Reed 1956), but the simplest and most effective
seemed to be the simple Neyman-Pearson observer
applied to the beginning and end of the target run,
with the distance between these two events determin­
ing the azimuth correction.

The form of storage used in the first FGD, after
some initial attempts at using a storage-tube system,
was a multiple-track magnetic drum whose rotation
rate could be synchronized with radar repetition rate.
This worked well and produced considerable improve­
ment in the basic accuracy of the transmitted radar
data and the tracks determined from those data. The
magnetic-drum system was the prototype for the FST-
2 radar data transmitting equipment, later produced
by the Burroughs Corporation for the SAGE system
(Ogletree et al. 1957).

Another important area addressed in the early days
of the Lincoln effort was the development of modems
for the transmission of radar data over land lines. The
complexities of the telephone plant and the effect that
various kinds of carrier equipment and delay distor­
tion had on some of our signals was a bit of a shock
at first. A scheme to transmit binary data at 1300 bits

R,Q
CODERS

~

PHONE
I--+ STORE I--+ MODEM

LINE

il8 CORRECTION

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 373

J. V. Harrington • Radar Data Transmission

per second with appropriate synchronization was soon
developed, and it worked well on all of the lines we
encountered (Harrington et al. 1954). (In the early
1950s, 1300 bits per second over an untreated voice
line was an achievement.)

Little has been said here about the radar itself.
Radar was largely a development of the previous dec­
ade, although much work continued on moving-target
detection, which was essential for the proper filtering
of radar data into the SAGE system. A great many
radar designs were investigated that attempted in
different ways to detect the Doppler envelope of the
coherent sampled radar returns from any one moving
target. None of these schemes, at least prior to the
mid-1950s, satisfactorily provided all of the coverage,
scan time, and accuracy desired, while still giving good
Doppler detection. The result was a need to employ
so-called vl.deo mapping to map out portions of the
original radar picture where known clutter existed. If
such equipment was not employed, serious overloading
of both the narrowband data network and the central
tracking computer could result. The fact that moving­
target-indicator schemes almost worked well enough
was tantalizing, but hindsight says that the initial
selection of the right radar returns from the enormous
population of radar returns in the average picture
needed a great deal more work. We did have target
filtering and selection schemes that depended not so
much on the instantaneous Doppler of the target as
on its motion over a longer period of many radar
scans. The amounts of storage required to recognize
track patterns right at the radar were considerably
beyond the bounds of possibility in those days and
were pretty much ruled out. Today the unbelievably
low cost of storage would argue otherwise.

Summary

In general, the early years of the SAGE system devel­
opment were most productive and rewarding. Consid-

erable progress in sophisticated radar-detection meth­
ods, accurate encoding, the storage and integration of
data by a variety of means, and the development of
workable·modems for narrowband transceivers in the
radar data-transmission business was accomplished.

REFERENCES

Ames, L. A., E. W. Bivans, J. V. Harrington, and T. F.
Rogers. June 1948. "The AN/CPS-1 Radar Relay Sys­
tem." Cambridge Research Laboratories Report No.
E2003.

Ames, L. A., E. W. Bivans, J. A. Dumanian, J. V. Harrington,
T. F. Rogers, and R. V. Wood, Jr. May 1952. "The Digital
Radar Relay System-D.R.R., An Experiment in Data
Transmission." Cambridge Research Center Report No.
E5088.

Bivans, E. W., and J. V. Harrington. March 1950. "An
Electronic Storage System." Paper presented at National
IRE Convention, New York.

Dineen, G. P., and I. S. Reed. March 1956. An analysis of
signal detection and location by digital methods. IRE
Transactions on Information Theory IT-2, 1, 29-38.

Harrington, J. V. October 1950a. Signal-to-noise improve­
ment through integration in a storage tube. Proceedings
IRE 38, 10, 1197-1203.

Harrington, J. V. October 1950b. Storage of small signals on
dielectric surface. Journal Applied Physics 21, 10, 1048-
1053.

Harrington, J. V., G. R. Spencer, and K. N. Wulfsberg.
March 1951. "A Five-Digit Parallel Coder Tube." Paper
presented at National IRE Convention, New York.

Harrington, J. V. March 1954. "Storage-Tube Slowed-Down
Video System." Lincoln Laboratory Technical Report No.
61.

Harrington, J. V. March 1955. An analysis of the detection
of repeated signals in noise by binary integration. IRE
Transactions on Information Theory IT-1, 1.

Harrington, J. V., P. Rosen, and D. A. Spaeth. April 1954.
Some results on the transmission of pulses over telephone
lines. Proc. Symposium on Information Networks, Poly­
technic Institute of Brooklyn.

Ogletree, W. A., H. W. Taylor, E.W. Veitch, and J. Wylen.
December 1957. AN/FST-2 radar processing equipment
for SAGE. Proc. Eastern Joint Computer Conference,
Washington, D.C. 156-160.

37 4 • Annals of the History of Computing, Volume 5, Number 4, October 1983

A Perspective on SAGE:
Discussion ·
HENRY S. TROPP, MODERATOR
HERBERT D. BENINGTON
ROBERT BRIGHT
ROBERT P. CRAGO
ROBERT R. EVERETT
JAY W. FORRESTER

JOHN V. HARRINGTON
JOHN F. JACOBS
ALBERT R. SHIEL Y
NORMAN H. TAYLOR
C. ROBERT WIESER

On October 26, 1982, several people who had participated in the design and
development of the SAGE system gathered at the MITRE Corporation to discuss
their work and its ramifications. Henry S. Tropp was moderator. Kent C.
Redmond and Thomas M. Smith, authors of "Project Whirlwind" (Digital Press,
1980), who are writing a book on the SAGE project, were also present.

Editor's Note

At Bernie Galler's suggestion, we arranged a
discussion among some of the SAGE participants. I
was dubious at first because the number of major
contributors to SAGE is so large that I did not see how
we could have a real discussion among so many, and
yet I did not feel competent to leave any out. After a
while, however, we were able to attract a group of
people who not only contributed themselves but who
represent groups of major contributors. ·

We were fortunate that Jay Forrester could come
from MIT, Herb Benington represented SDC, Bob
Bright had been at AT&T, Bob Crago at IBM, Jack
Harrington at AFCRC and Lincoln Division 2, Jack
Jacobs at Lincoln Division 6, Major General Al Shiely

© 1983 by the American Federation of Information Processing
Societies, Inc. Permission to copy without fee all or part of this
material is granted provided that the copies are not made or distrib­
uted for direct commercial advantage, the AFIPS copyright notice
and the title of the publication and its date appear, and notice is
given that the copying is by permission of the American Federation
of Information Processing Societies, Inc. To copy otherwise, or to
republish, requires specific permission.
Moderator's Address: Department of Mathematics, Humboldt State
University, Arcata, CA 95521.
Photographs by Lou N occa, MITRE Corporation.
Categories and Subject Descriptors: K.2 [History of Computing]
-hardware, people, SAGE, software, systems. General Terms: Design,
Management. Additional Key Words and Phrases: defense, Lincoln
Laboratory, U.S. Air Force, IBM Corporation, MITRE Corporation,
System Development Corporation, AN/FSQ-7.

© 1983 AFIPS 0164-1239/83/040375-398$01.00/00

(retired) at the Air Force, Norman Taylor at Lincoln
Division 6, and Bob Wieser at Lincoln Division 6.

Hank Tropp led the discussion, which was vigorous
and lasted all afternoon, through dinner, and into the
evening. One characteristic of old SAGE hands is that
they love to talk.

I regret that more SAGE people did not have a
chance to have their say. I am especially sorry that
George Valley was unable to join us. We thought of all
of you, however, and hope there will be other
opportunities.

Henry S. Tropp: We're gathered here today to talk
about an important air-defense system that has been
in place for two decades: SAGE (Semi-Automatic
Ground Environment). I want to thank Bob Everett
for letting us use the facilities of the MITRE Corpo­
ration for our meeting.
Robert R. Everett: I'd like to say one thing right away.
I had hoped George Valley would be here, but at the
last moment he was not able to come. He asked me to
express his regrets at not being here, and to say hello
to all of you.

Jay W. Forrester: We could start our discussion by
noting that we are here as a consequence of a series
of small happenstance events. We should trace this
enterprise back to Gordon S. Brown, who in the early
part of the 1940s was director of the Servomechanisms

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 375

SAGE Discussion

Laboratory at MIT. At least three of us-myself,
Wieser, and Everett-grew up in that environment,
which was a powerful learning experience. A great deal
of responsibility was given to very young people, al­
lowing them a chance to carry ideas from their con­
ception and research right into the military operating
field so that they understood how their mistakes would
eventually come back to their own doorsteps. That
experience lies behind many of the ideas about relia­
bility that allowed the SAGE system to succeed.

At the end of World War II, I had begun to think
about leaving MIT and perhaps starting a company
to develop servomechanisms. Gordon Brown called
me in one day and suggested that there might be more
interesting possibilities. He gave me a list of about 12
projects to choose from. One was an aircraft stability
and control analyzer, which represented the beginning
of a sequence of events that eventually led to SAGE.

Initially the aircraft analyzer was to be an analog
computer. Another happenstance directed our atten­
tion to digital computers. Perry Crawford, who now
works for IBM and at that time was in the Special
Devices Center of the U.S. Navy, was standing with
me on the front steps of MIT at 77 Massachusetts
A venue late one afternoon. He called my attention for
the first time to digital computation, to the mechanical
Harvard Mark I computer, to the electronic ENIAC

computer. He suggested that we move in the direction
of digital computation to get out of the difficulties
that analog computation was presenting. It was also
Crawford who pushed the whole idea of combat infor­
mation and control with digital computers, well before
any high-speed, general-purpose, reliable computer
had ever functioned. Working with Perry Crawford,
Bob Everett and I in 194 7 wrote a paper1 on how a
digital computer could be used to coordinate the activ­
ities of a naval task force-the submarines under the
surface, the ships on the surface, and the aircraft
overhead.

We were thus prepared to take advantage of another
one of those small happenstance incidents when

1 J. W. Forrester and R.R. Everett, "Information System of Inter­
connected Digital Computers." Project Whirlwind, Servomechan­
isms Laboratory, MIT, Cambridge. Limited Distribution Memoran­
dum L-2, October 15, 1947.

George Valley and his committee for the U.S. Air
Force were seeking a way of coordinating radar infor­
mation. Jerome G. Wiesner, then directing the MIT
Research Laboratory for Electronics (and later presi­
dent of MIT), suggested that Valley should talk to us
about the coordination of military information. We
had by that time a year of thinking about using digital
computers for coordinating military combat informa­
tion.

After that meeting with Valley, the program devel­
oped rapidly through Project Charles and the Lincoln
Laboratory to the SAGE system that we are here to
discuss.
Tropp: Your mention of happenstances saves me my
next question. I want to go back in time and try to
plant ourselves in 1949 or 1950. I can't recall any
stored-program computer other than the EDSAC that
was up and running. One side of the BINAC was oper­
ating. Whirlwind was close, and SEAC may have been
close. Valley came to you with a proposal that was
obviously going to require a computer that not only
didn't exist, but no one had even thought about what
it was going to be like. I'd like to throw out an open
question to anybody who wants to respond: how did
you view the problem when each of you were intro­
duced to this incredible challenge of producing an air­
defense system in a technology that by current elec­
tronic standards was limited and in an environment
that was relatively unknown?

Norman H. Taylor: I didn't think it was that vague at
all. We had a computer that was technically very
sound and that worked very well, except for the stor­
age-tube memory. We were confident that we could
solve that problem somehow. We were transmitting
radar data to the computer, and we were tracking
aircraft. We had working displays, working tape units;
magnetic drums were available. We were writing and
using what we thought then were sizable computer
programs. We knew we needed a much larger com­
puter, but we thought we knew how to build one.
There were engineering problems galore but no fun­
damental problems that we knew of.

John V. Harrington: I think somebody should point
out that in 1949 at the time of the deliberations of the
ADSEC committee-the Valley Committee-the

376 • Annals of the History of Computing, Volume 5, Number 4, October 1983

problem was really broader than just what would be
used at the central point to do all the tracking and
correlation. That, to be sure, was the most important
and most difficult component of the whole system.
Close in importance was the kind of radar network
that would be necessary to provide the low-altitude
coverage, which was needed to deal with what I re­
member as being the most serious threat: the low­
altitude long-range Soviet bomber.

I remember going through an awful lot of different
radar configurations. I know we had the telephone
pole radar-the continuous-wave (CW) radar (which
had a short range and not much discrimination, but it
could measure velocity extraordinarily well). There
were so many of them that we were faced with an
enormous transmission problem, and data-handling
problem, and central correlation problem.
Taylor: And you had the ghost problem, didn't you?
Harrington: And we had ghosts. [Editor's Note:
Ghosts are false targets created when correlating
range-only, azimuth-only, or velocity-only radar
measurements.] Harry Nyquist of Bell Laboratories
was first to recognize the ghost problem in the CW
radar, which turned out to be its death knell.

We looked at bi-static radars. Then we looked at
heavy radars. We looked at combinations of heavy
radars and small radars; each of these had somewhat
different data-transmission and data-handling prob­
lems. We should not forget that these radar studies
were an awfully important part of the work of the
Valley Committee and of the early work of the Lincoln
Lab, too.
Taylor: It was also the problem that we never quite
solved.
Harrington: No, we never really quite solved it. As
remarkable a machine as Whirlwind I was-and for
all its successes-it could easily be flooded by all of
the data just from one radar. The CW radar, which
was by far the best filter to detect moving targets,
really never worked out. And the MTI (moving-target
indicator) radar was more of a name than anything
else. My apologies to those people who worked on the
MTI radars, but they never were completely reliable,
or completely credible. Overall, however, in the radar
aspect, the communications aspect, the data-handling

SAGE Discussion

Left to right: Benington,
Harrington, Crago,
Taylor, Forrester (shown
twice), Tropp, Everett
(shown twice), Bright,
Shiely, Jacobs, Wieser.

aspect, the command aspect, and so on, it was really
a remarkably ambitious system. When you think
about it happening 30 years ago, it was really remark­
able.
Tropp: That's what amazed me. Maybe the question
that I'm really trying to get at is, at what point did
the real magnitude of what you were trying to do really
sink in? Look at some of the early estimates of SK of
memory, SK of core, a few thousand lines of code.
Obviously each of you had a different reaction to the
magnitude of problems involved.
Forrester: Well, it sank in slowly. Each step in real­
izing the magnitude was by a percentage that could be
coped with one part at a time.
Herbert D. Benington: I remember two anecdotes
where my problems helped SAGE to progress. First, I
was having lunch with my boss, Jack Arnow. I was
telling him that Whirlwind reliability was so bad, that
the computer programs were so complex, that we were
making very little progress in checking out the system
(and having to work too many hours). Within a day
or so, Jay called a staff meeting and said that we would
replace the storage-tube memory by transferring the
core memory from the Memory Test Computer to
Whirlwind. That's when we started getting 99 percent
reliability out of Whirlwind and we could check the
programs out.

The second anecdote was when we had the XD-1
(the prototype of the AN /FSQ-7 computer) operating
and had SOOO words of core. I started realizing then
that we couldn't get the job done because there would
have to be so much paging in and out from drums that
we'd spend too much of our available time doing that.
I was also having lunch with my boss that day, and I
told him my conclusions. Jay dropped by at lunch and
said, "Well, we've been developing a 65,000-word core
memory, so we'll put it in." That eightfold increase
made the program possible.

Everett: I think all these things are right, but several
other things were important. First of all, we didn't
make a design and send one bunch of people off to
build the computer-another bunch of people off to
do this and that-and put it all together several years
later only to find out that it was wrong. We took it
step by step. We were actually looking at real radar

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 377

SAGE Discussion

Henry S. Tropp
"Maybe the question that
I'm really trying to get at is,
at what point did the real
magnitude of what you were
trying to do really sink in?"

data, and tracking real aircraft, long before system
designs were all complete.

The second thing is that the technology was im­
proving rapidly, and it seemed to stay about even with
our recognition of the size of the problem.

The third comment I might make is that we didn't
sit down and say, "We need a machine of such and
such size, and if we can't make it we give up." What
we did say was, "We think we can make a machine of
such and such size, and given that machine, we could
do the following things." As the machine got better,
the job got bigger, and we were able to handle it. Even
if the machine had been half as capacious, we still
would have done something, although it would not
have been quite the same thing.

I make these remarks because very often in today's
military-development world, people try to do every­
thing and end up doing nothing.

Taylor: You play the end game before you start.

Tropp: That's an important aspect of SAGE that has
probably not really been told in the papers I've seen
for the Annals.

Everett: I was struck at the time and have been struck
since by how much a group of really smart, dedicated
people with adequate resources can do toward solving
problems. You put them to work on a problem, and
you get a solution if you don't have too many problems,
and if you don't box them in with too many restric­
tions. SAGE had a lot of problems, but, as Jay said, we
fortunately didn't realize them all at once. As each
problem came up, we were able eventually to do
enough about it to get the system going. In my expe-

rience, you can do almost anything if there are only
one or at most two real difficulties. But when you
start to work on something that's loaded with a whole
slew of very difficult problems, you can lose control
and really get into trouble.

Taylor: I remember one incident along those lines
when the radars were giving us a lot of trouble. I was
in a study group with Al Hill in Washington, and I
said, "Al, we shouldn't have ever gotten into this thing.
We can't get decent data, and how can you track
airplanes with no good data?" Al said, "We knew we
couldn't initially get people to accept a new bunch of
radars. But we could sell the idea of a computer to
analyze the radar data. Now we've got the computer,
let's stop and think about the radars."

Forrester: We have recalled the obscurity of the prob­
lems and the embryonic state of the technology, but I
have always felt that it was much easier to build the
SAGE system without having the technology available
to start with than if the technology had been there.
With the absence of the technology there was also the
absence of thousands of people out there all feeling
that they knew how to do it better. Therefore, we were
able to move quickly with our decisions. As long as
they were plausible and could be explained, we could
carry other people with us. We weren't at the same
time running competition with alternative suggestions
that, whether they were good or not, would immobilize
the process of decision making. The freedom to be
decisive and to settle on things that worked even if
there might be somewhere in the offing an idea that
would be better, made it possible to build the SAGE
system.

Taylor: I think Bob put his finger on one important
thing here: the freedom to do something without ap­
proval from top management. Take the case of the
65,000~word memory we just heard about. We knew
the memory was too small; we didn't have to wait for
Herb to worry about it.
Benington: I'm sorry you didn't tell me.

Taylor: We could hardly run a test program on these
small memories, and we knew we had to build bigger
ones. Down in the basement of the Lincoln Lab, we
started out with TX-0 which was really designed not
only to test transistorized computers but to test that
big m~mory. That's all it did. We built that big mem­
ory, and we didn't go to the steering committee to get
approval for it. We didn't go up there and say, "Now,
here's what we ought to do, it's going to cost this many
million dollars, it's going to take us this long, and you
must give us approval for it." We just had a pocket of
money that was for advanced research. We didn't tell

378 • Annals of the History of Computing, Volume 5, Number 4, October 1983

anybody what it was for; we didn't have to. Take any
one of those developments-whether it was that mem­
ory, the Memory Test Computer, or the cathode-ray
tubes and the Charactron tubes-if we had had to go
through the management stuff that we have to go
through now to get $100,000 worth of freedom, we
would never have done any of them. We were able to
do it. We'd have a meeting with Bob and me and one
other person-and with Jay if he were there. Occa­
sionally these projects failed or needed more funds or
more time. On these occasions, the issues did rise to
higher management levels-first the Lincoln Steering
Committee, next the Air Force, and as needed the New
York ADES meetings. The atmosphere was one of
asking for help, and usually the response was positive.
As stated earlier, the problems rose to the surface, not
the successes, so management addressed problems. As
long as it worked we were winners.

Tropp: In the current environment we may have to
reinvent organizations with freedom of action to solve
problems of our present society.

Forrester: We will reinvent effective organizations in
this country very quickly when we perceive as a nation
that we truly have a technological crisis, such as
happened, for example, in the Manhattan project, with
travel to the moon, at the Radiation Laboratory in
World War II, and in the SAGE system. The effective
pattern in the past has been to take several people
who have good ideas and give them a budget and an
empty cornfield. They can build buildings, find people,
and do the job faster than can most existing organi­
zations, which have become stifled by cumbersome
decision making. The missing link in the past has
been absence of a way to terminate organizations when
their purpose is accomplished. Most continue to exist
after the job is done, become ineffective, and yet
continue to absorb resources.

Tropp: I'd like to get at a little earlier aspect of the
Air Force's point of view, General Shiely. In one of
the documents that Bob Everett was able to get me, I
ran across the fact that at least two proposals were
mentioned for an air-defense system: one at the Uni­
versity of Michigan and one at Lincoln Laboratory.
Would you care to talk about what the other one was
and why the decision was made to go with the one
from Lincoln Laboratory?

Albert R. Shiely: I have to take a little bit of issue
with Jay that there wasn't any competition. Part of
our job in New York was trying to isolate those doing
the job from all the experts who were certain they
knew how the job could be done by different ap­
proaches and who also were completely convinced that

SAGE Discussion

the SAGE system would never work. At least one
competitive approach was sponsored by the University
of Michigan and supported by a substantial segment
of the scientific community. With these two ap­
proaches, things got to the position where the Secre­
tary of the Air Force had to make a choice between
the two approaches. I believe it was Roger Lewis who
made the decision to proceed with the SAGE system.
During the time it was being put into the field there
continued to be substantial concern on the part of
very qualified parts of the scientific community over
many of the problems that have been mentioned here ..
Further, there was significant concern by the military
operators over whether a centralized system of this
type was the right way to go or whether one ought to
have an improved decentralized system operating at
the radar sites much as the old system operated.

As I remember, the Michigan proposal was to au­
tomate the decentralized radar system and provide the
improvement by that approach. In contrast, the SAGE

system was to centralize it and combine the air picture
into an overall one.

So there were operational concerns about the SAGE

approach, and there were technical concerns about the
SAGE approach. What's missing from the general area
of these papers, which are superb, is the atmosphere
under which this program was pursued. One way of
describing it might be called a stage of controlled
panic. Jay was exactly right: we were fortunate that
the big problems occurred one at a time instead of all
at once. I can recall being worried every time I would
see Bob Crago or Bob Everett or someone like that
come to New York because I knew something was
coming; and I didn't know what hand grenade some-

Jay W. Forrester
"I have always felt that it
was much easier to build
the SAGE system without
having the technology
available to start with than
if the technology had been
there."

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 379

SAGE Discussion

body was going to roll out on the table, but I knew
there was going to be one. I recall such things as the
sudden discovery that the slowed-down video tech­
nique would not work with large radars, and we didn't
know what the hell the solution was. George Valley
did say, "I've got the answer on a workbench in a
laboratory up here. Don't worry; all you need to do is
make identical copies of that and put it into the field."
I think that device on the counter had something on
the order of 150 or 200 vacuum tubes. In fact, it did
work, and the Burroughs Corporation took that 200-
tube thing from the bench and into the field in working
order in 18 months-I think it went to something like
2200 vacuum tubes. The identical copy was something
of that order. Nevertheless, I think this was a minor
miracle on the part of that company-one, of many
miracles that were worked by industry, by the tech­
nical people at Lincoln, and by many elements of the
Air Force.

There were a number of problems. That was one,
and the one-year programming delay was another; we
had a series of panics that occurred, as I said, one at
a time.

Tropp: Do you think they occurred because nobody
realized what the other ones were until they showed
up?

Shiely: We were building and designing and doing
everything simultaneously. I agree completely with
Jay that the first and most important thing was that
there was a national perception of the emergency need
for an improved air-defense system; there wasn't any
argument. We had to do something about it, and we
were told to go do it-do it as fast as we could and
make it work. There was an understanding at the
topmost part of the government that the need was
urgent. I might add that the willingness on the part of
the military side of the family to give people like
ourselves in New York the authority and freedom to
move and the backing to make the decisions involved,
even at the price of tearing up some of the organiza­
tional structures in the process, were the keys to
success as far as that side of the program was con­
cerned. That got us the license and the freedom to do
the things mentioned here.
Tropp: From this discussion, there were , apparently
hoards of what would today be called managerial prob­
lems. Had you known they were going to come up, you
might not have tackled any of them. When you look
at any aspect of it, the management was really a kind
of horrendous job.

Shiely: It was a challenging job, but it was a good one
in the sense that the one thing that everybody agreed
on was that we had to get the job done. There wasn't

anybody who was motivated to do anything other than
find solutions to the problems. It was a great thing.
Forrester: There is a chapter in the SAGE history that
I feel was extremely important. It was part of our
background for taking the long-range view of where
we were going. In 1948 Karl Compton, who was then
president of MIT and also head of the Research and
Development Board for the military, asked us to pre­
pare a report on what we thought the future of digital
computers would be in the military. In 1948 there were
scarcely any working systems to use as a precedent.
Five of us-Bob Everett, Hugh Boyd, Harris Fahne­
stock, Robert A. Nelson, and I-worked up a report
that was a 15-year forecast of computers in the mili­
tary. It culminated in a two-by-three foot foldout page,
which had 15 years across the horizontal axis and 10
areas of application along the vertical axis. [Editor's
Note: The chart is reproduced on pages 382-383.] In
each intersection was described the state foreseen for
the application. The applications included logistics,
research, antiballistic missile defense, air-traffic con­
trol, and control of naval task forces. At each inter­
section was given the state of development and now
much would be spent in that year for research, how
much for development, and how much for production.
The grand total was $2 billion. The research expend­
iture alone totaled over $1 billion at the end of 15
years. The report created a communications gap when
we went into a meeting with the Office of Na val
Research where they thought the agenda was whether
or not we were going to get our next $100,000-and
we came in with a forecast 10,000 times that for the
next 15 years.
Tropp: Looking back on that forecast, was it conserv­
ative or pretty close?
Forrester: The air-defense part of it, which we pur­
sued, came out about three years sooner. The cost was
probably within an order of magnitude. I would say
the projections for 15 years were probably as good as

Albert R. Shiely
"There was an
understanding
at the topmost

part of the
government

that the need
was urgent."

380 • Annals of the History of Computing, Volume 5, Number 4, October 1983

most commercial companies do today when they esti­
mate the cost and the schedule for the next computer
in production.

Incidentally, that $2 billion was generated by look­
ing into every step of research-the design, testing,
and training of people. Those budget figures were
made up out of pieces no bigger than 25 people working
a calendar quarter. The 15 years were laid out by
identifying small groups of people who would be work­
ing in each area. One reason the time schedule came
out fairly reliably was that all of the political time
delays were put in, such as a year set aside for people
to agree to test and follow up on experimental equip­
ment.

In the context of the Michigan and MIT competi­
tion, our earlier estimate of the possible technical pace
gave us a frame of reference for how big and how long
the job might be. We went in with an estimate and
forecast that ran maybe ten times as much money and
five times as much time as Michigan did. In the period
of disagreement over how to build an air-defense sys­
tem, our position was that if any serious group of
people thought they could do the job in the time and
price range that was being suggested, they should be
allowed to try. But we also said that the longer-term
program should be kept going until a smaller-scale
system could be evaluated. Eventually the day came
when it was evident to almost anyone walking through
the two establishments that the long-term slow pro­
gram at MIT was already further ahead. Then the
$300 million of production money that was scheduled
for the other system was diverted to complete the
research and development for the MIT system.

Robert Bright: Reservations had been expressed by
numerous learned people. There was an opposing
school that said, "This is in the national interest; this
is the kind of thing we ought to do. The system as
proposed is not static; it could be dynamic; it could be
developed along the way." At that time Bell Labora­
tories and Western Electric were involved in a study
of continental air defense, called naturally the CADS

project. In May 1955 General N. F. Twining, vice chief
of staff of the Air Force, wrote to M. J. Kelly, president
of Bell Laboratories, saying, "Take a look at what
Lincoln's doing. We're already phasing out the Uni­
versity of Michigan, and we want you to undertake
the management and the implementation of SAGE."

With that, when it was nailed down, we built an
organization comprised of Lincoln Laboratory, Bell
Laboratories, IBM, Burroughs, and later the building
contractors, that worked together as well as any team
that I've ever seen or been exposed to. There was full
and complete communication between the contractors
involved in the project. Through the pink haze of 25

SAGE Discussion

Robert Bright
"We built an
organization
comprised of Lincoln
Laboratory, Bell
Laboratories, IBM,
Burroughs, and later
the building ·
contractors, that
worked together as
well as any team that
I've ever seen or been
exposed to."

years, I remember that we even got to be friends with
many of the people involved. Our phasing meetings,
which most of you attended, were wide open. People
were welcome to speak their mind, and if they were
right a consensus would be developed. But that kind
of project organization, that kind of management,
developed on an ad hoc basis, seemed to work. One of
the things that made it work was the shared location
and cooperation of the Air Force Project Office and
the contractors involved. We were in each other's hair
almost constantly, and we could get the support we
needed from the Air Force Project Office. The national
interest at that time was to build a viable air-defense
system, and this was foremost in the minds of every­
body involved.

John F. Jacobs: I agree with Bob. At the same time
we were working on the system design, others were
busy making the organizations involved do the things
that had to be done in order to turn the air-defense
concept into reality. The most important step in that
direction was the Air Force's establishment and struc­
turing of ADES (Air Defense Engineering Services).
This project office was the first to deal with electronic
systems doing command and control development and
procurement-in fact, it was the first electronic sys­
tems program office. These systems were designed to
control a number of weapons systems, rather than
being tailored to the control of a single system. ADES
had to deal with these elements-old and new subsys­
tems that had to be integrated into the new air-defense
components-and they also had to provide manage­
ment support to command personnel.

ADES remained flexible and encouraged adapta­
tions of their own organization to the needs of the job.
The monthly phasing meetings are an example of the
tools they instituted for achieving a consensus. The

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 381

BASIC

RESEARCH

TRAINING

DATA

CONVERSION

ACTIVITIES

COMPONENT ANO CIRCUIT DEVELOPMENT
STOflAGE SYSTEMS
MATHEMATICS AND APPLICATIONS
RESEARCH COMMON TO MANY USES

RESEARCH PERSONNEL
APPLICATIONS PLANNING
OPERATING STAFF

PHYSICAL MEASUREMENTS TO
OlGITAL QUANTITIES
DIGITAL TO PHYSICAL
RADAR DATA TO DIGITAL FORM
COMPVTER-TO•SERVO LINKS

* GUIDED MISSILE DATA REDUCTION
ENGi NEERING SURFACE SHIP ANO AIRCRAFT STABILITY

AN 0 ~~:;~~O~ ~~~~~!~~~~N ANALYSIS
SCIENTIFIC OESIGN COMPUTATION

c 0 M PUTE RS ~:;PHT~~:~:,:~~p~icc;:i~~s RESEARCH

FIXED

LOCATION

CONTROL

SYSTEMS

SIMULATION

SYSTEMS

INTERCEPTION NETWORKS
AIR TRAFFIC CONTROL
MANUFACTURING PROCESS
CONTROL

DESIGN STUDY SIMULATORS
SYNTHETIC TRAINING

WAR COLLEGE TACTICAL
SIMULATOR
GRO:JP TRAINING-AIR ANO
ANTI-SUBMARINE TEAMS

SHIPBOARD COMBAT INFORMATION CENTER
SE Ml- MOBILE FIRE CONTROL

CONTROL ::~~~s~:~Ri~~~~~:~~~~ATION
COMPUTER s ANO AUTOl'ATIC TASK GROVP

ATTACK CONTROL

1949

CONTINUED
INVESTIGATION

R0.3

1950

INFORMAL 50 STUDENTS

1951

R3.7 R4.8

:,~~~~Tll~NI OR 2 ~l~~C~L~~~SNEEOEO 250 STUDENTS

COLLEGES WERE AVAIL.t.BLE

R 0.4

CONTINUED
INVESTIGATION

DESIGNS
NOW IN
PROGRESS

R2.3

R0.2

R0.8

R5.0

FIRST
EXPERIMENTAL
HIGH- SPEEO
MACHINES

LABORATORY
TESTING ANO
STUDY

~PPLICATIONS

STUDIES
PRELIMINARY
DESIGNS

APPLICATIONS
STUDIES

APPL.ICATIONS
STUDIES

OEStUN

1952 1953 1954

RI 1.7

R 2.2 R 2.8

500 STUDENTS STUDENTS

R2.0 R2.2

R7.0 RB.2
El .0 E2.0

OPERATING CONSTRUCTION
EXPERIMENTAL TRAFFIC NET'NORKS OF ADDITIONAL
TRAFFIC NEl WORKS REDESIGNS COMPUTING

EXPERIMENTAL
CONSTRUCTION
DESIGN AUXILIARY

EQUIPMENT

FACILITIES

R2.4

R8.8
P3.0

R 0.5 R0.8 R 1.3
CONSTRUCT EI. 'i E3.0

CONTINUE STUDIES ~:~~~N~o ~~~s::~~:LL
SPECIFICATIONS F~ ENGlNEERING OE"ONSlRATION
EXPERIMENTAL USE COMPUTER DESIGNS SYSTEM$

DESIGN

1'2.2

El.0 FINISH

CONSTRUCTION

111:3.&
E 3.0

1955 1956 1957

Rl7.0 R 17.6 RI 7.6

INSTALL
ADDITIONAL
FACILITIES

TESTS

R9.5
P3.0

R3.6
P3.0

R6.9

R2A R2.4

INSTALL ANO
OPERATE

Rll.9
P5.0

R4.5
P3.0

INSTALL ANO
OPERATE

Rl3.0
P5.0

R7.8
E6 0

R5.I
P4.0

EVALUATION Of' CONTRACTS FOR
TEST INSTALLATION SIMULATOR

CONSTRUCTION

ft4:! Pf4.e Pt 6.0
E3.0 E3.0 E3.0

EXPERIMENTAL
C0N:.Tl:IUCT10h OF EXPERIMENTAL INSTALLATION

FIELO TESTS
FIELO TESTS
PROTOTYPE
DESIGN

SYSTEM
OF EXPERIMENTAL \.tillT FOR

SHIPBOARD

ON SHIPBOARD

1958

COMPUTERS

R 17.6

R8.5

Rl5.6
P~.O

NOW MEETlfllG
SCIENTIFIC ANO
ENGINEERING LOAD

RI0.2
EIO.O

PROTOTYPE
FIELD TEST
CONTINUED
PROOUCTION
DESIGN

UNITS BEING
BUILT FOR
TRAINHIG AND
ENGINE(RING
SIMULATION

R6.3
P6.0

R7.~

E6.0

PROTOTYPE
CONSTRUCTION

MOBILE

CONTROL

~ 0.2 R 1.7 R2.B
E 1.0

R3·.3
E2.0

R3.9
R3 0

R4.7 R6.5

MISSILE LAUNCHING
BAS•C STUDIES
IN"VESTJGATE

CO~TINUE
EXPERIMENTAL

R 3 .0 CONTINUE R5.0

~ TRUCK '

CONTROL FOR ANTI-MISSILE DEFENSE
AIRBORNE COMBAT INFORfrilATION
CENTER

SPECIAL
CONTlfllUEO

)PRELIMINUY

'INVESTIGATION

EXPERIMENTAL

STUDIES
WORK

CONSTRUCT
EXPEfflMENTAL

SYSTEM
FIELD TESTS

FIELD TESTS
PROTOTYPE
OES1GN

EXPERIMENTAL
WORK

NO LARGE

AIRCRAFT

AIRBORNE

COMPUTERS

LOGISTICS

PRECISION hUSSILE CONTROL

AIRBORNE FIRE CONTROL

SPECIAL INPUT-OUTPUT EQUIPMENT
INTERCONNECTION WITH
COMMUNICATIONS EQUIPMENT
HIGH CAPACITY DATA· STORAGE

RO.I

RO.I

COMPONENTS

ANO .. ETH JDS

AFPL ICAT ONS

~TUO•ES
STUDl Cf
S1MPLIF1E0

APPLICATION

STUDIES

OPER.MEP.TAL

~ESlARCH

TR ALCi W'1T~

roMPUTER$

BE.JIN

EXPERIMENTAL

OESIUNS

EXTEt..D ~T\,i'Jlf. S
P[GIN WORK

ON TERMl~AL

EQL.-1P'.tENT

OE SIGN MODEL
SYSTEM

£XfERIMEl'llTAL
RESEARCH

ANO DESIGN

DESIGN
EXfERIMEfllTAL

R3.4

CONSTRUCT
EXPERfotENTAL
EOUIPMIENT

CONT 1NUEO
EXPERIMENTAL

EQUIPMENT CONSTRUCT SOME
roR LARGE-SCALE SPEC iAL
USE

EQUIPMENT

R4.4
El.O

PRELIMINARY
FIELO TESTS
RE OE SIGN
EXPERIMENTAL
EQUIPMENT

9UILO MOOEL
INSTALLATION

ROO
E2 O

TEST

TRIAL TEST

RH
E2.0

RI0.4
E3.0

COMPLETE
PROTOTYPE
DESIGN

PROTOhPE
DESIGNS

COhSTRUCT
PROTOTYPE
EQUIPMENT

R6.B
E5.0

•U4 4
E6 0

TOTAL YEARLY COST T5.2 Tll.5 T4 4 2 T63.6 T93 2 T 10~.7 Tl 38.8

TOTAL YEARLY RESEARCH R R5.2 Rlt-5 R 19.5 R3 7. 7 A&l .I R7 1.2 R 79.7 R 95.8

COSTS TOTAL YEARLY EXPERIMENTAL E
CONSTRUCT! ON

[10 £6.5 E10.o E8.0 E14.0

(ML~~ONS) 1--~~~~~~~~-~----·~---+-~~~~+-~~~~+-~~---~----~-~----~t--~~~-1·-~~~-+~~~~-+~~~~~ TOTAL YEARLY PRODUCTION 0 0 P3 0 P&.O P 8.o P9.0 Pl\ 0

i--~~~~~~~~--1~~~~-t-~~~-·-+-~~~~---t-~~~~-+-~~~~-+-~~~~-r--~~~~r-~~~--1~~~~-+~~--~··~

NUMBER OF STAFF REQUIRED 1350 180:1 2400 2900 3500

NOTES' I. ALL COST FIGURES ARE IN MILLIONS OF COLLARS * 50,. Of THE COST IN THE ENGINEERING ANO SCIENTIFIC
2. STAFF WAS ASSIGN EC TO SPECIFIC ACTIVITIES IN EACH YEAR. COMPUTER ROW IS FOR ROUTINE OPERATION. OTHER

COSTS HAVE BHN OERIVEO AS OISCUSSEO IN THE TEXT. llOWS INCLUDE ONLY EXPERIMENTAL ANO FIELO TEST
OPERATION.

{

T TOTAL L'NCLAss.:-·.:L·
COST SYMBOLS R RESEARCH ANO DEVELOPMENT, INCLUDING OPERATION ANO FIELD TESTING, PRODUCTION OESIG~, ANO SALARIES OF ASSIGNED TRAINEES

E EXPERIMENTAL CONSTRUCTION COSTS

P PRODUCTION COSTS (NOT INCLUDING DESIGN)

other organizations that should share in the credit are
the Air Defense Command Planning Group under
Colonel Tom Halley, the wing established by Air
Defense Command under Colonel Joseph Day Lee
that supplied the inputs to the operational specifica­
tion, and the Lincoln Project Office, which monitored
our activities at Lincoln Lab.

Tropp: Maybe this is a good time to discuss some
aspects of the actual design of the hardware for the
system. One thing that struck me as I looked at the
Q-7 a couple of weeks ago was that I literally felt as if
I were walking inside a. computer, which I obviously
can't do with an Apple or a TRS-80.

Taylor: You could in Whirlwind.
Tropp: You could walk inside Whirlwind, that's true.
Other hardware ideas are having a duplex computer,
the design of the base hardware to do that hot backup,
the concept of the common drum. I hope somebody
will pick up these ideas and discuss how they evolved
and what some of the problems were. Jay, do you want
to start?
Forrester: One thing running through the whole pro­
gram was central to its success. That was an attitude
of being open about recognition of mistakes and short­
comings. When a mistake was recognized, it was ad­
mitted and fixed rather than evaded or denied. An

382 • Annals of the History of Computing, Volume 5, Number4, October 1983

I

I

1960 1961 1962

Rll.6 RIB.6 Rl9.8 R21.7

RI0.8 Rl4.3 Rl5.I

STATUS
1963 AT ENO OF 15 YEAR PERIOD

R2 3.0 TOTAL COST

CONTINUED
INVESTIGATION

RESEARCH ON IMPROVED

METHODS ANO COMPONENTS

SHOULD CONTINUE

R20 .0 TOTAL COST

THE GREATEST PART OF THE

T217.3

Tlll.3

:10 STUDENTS 2750 STUDENTS 3250 STUDENTS 3900 STUDENTS 4400 STUDENTS TRAINING IS NOW IN

I

R2.4

Rl7.4
P3.0

R2.4

R\8.2
P3.0

R 2.4

R20.0
p 4.0

R2.4

R21.0
P4.0

OPERATING PERSONNEL

R2.4 TOTAL COST

CONTINUED

INVESTIGATION RESEARCH SHOULD CONTINUE

T31.2

R22.0
P4.0

TOTAL COST T227.9 * RIB5.9
E 3.0

IPUTERS COMPUTERS COMPUTERS COMPUTERS COMPUTERS p 39.0
INCREASING IN USE INCREASING IN USE ALL LARGE SCALE ENGINEERING

NOW DONE BY COMPUTERS

ANO SCIENTIFIC CALCULATION
IREASING IN USE INCREASING .. USE INCREASING .. USE

E~~:g ~:g~ ~~g:~ ~~g--~ ~I~~ ~I~~
I

Rl2.2 R15.6 R21 0 R21.4 R 21.4 TOTAL COST T402.I Rl38.I

PRODUCTION PRODUCTION COMPUTERS

n PROOUCTION lNSTALL ATlO~S PRODUCTION PRODUCTION PRODUCTION AVAILABLE ANO OPERATING IN
EMS TRIAL AIR TRAFFIC CONTROL SYSTEMS. BULK OF

I
CONTROL SYSTEM PRODUCTION STILL TO COME

~~---t--~~~~~~~~-t-~~~-+~~~~-+-~---~,-,-~~~,,..,---t

I ~~.~
RB 3 Rt1.4 TOTAL COST Tl44.0 R76.5

_O INSTALL i OPERATE

I

TOTYPE
.O TESTS
OUCTION
IGN

I

Rcl.2
E60

R7.8
R6.0

JTOTYPE
'tSTRUCTION
lOUCTION
SIGN

R8 8
[6.0

TOTYP£
ST RUCTION

Rl7.9
E7.0

I~ *CAKING

P6.0 PI0.0

BUILD INSTALL BUILD INSTALL
ANO OPERATE OPERATE

R8.8 ftl0.6
E6.0 E 6.0
P8.0 P 15 0

START PRODUCTION FIELD TEST
PRODUCTION UNIT

R 9_6 Rll.5
E6 .0 E ~O
P2.0 P 5.0

PRCTOTYPE FIELD

Rl2.4
PIO.O

BUILD INSTALL

OPERATE

PRODUCTION

RI0.6
E '5.0
P159

TESTS COMPLETE 'stART PRODUCTION PRODUCTION
PRODUCTION
DESIGN

RIO 2 Rl2.0 Rl2.6
E6 O E6 0 E6.0

PROTOTYPE
Pl.O P3.0 P6.0

FIELD TEST~
STAR ... PROOUCTIO~ PROOUC.TION

Rl9.9 A24.4 R24 4
Eb.O E 6.0 E 7.0
p ~ 0 Pt(, 0 P2J.O

BEGIN EQUIPMENT

Rl2.4
Pl5.0 E 4.5

P63.0
BUILD INSTALL HIGHLY FLEXIBLE TRAINING

PRODUCTION

ANO ENGINEERING SIMULATORS

~·~:~ ·roTAL COST T299~ ~!~~I
PICO .0 P173.0

OPERATING SHIPBOARD EQUIPMENT
AVAILABLE. INSTALLATION COMPLETE
ON SOME MAJOR FLEET UNITS.
BULK OF PRODUCTION STILL TO COME.

RIO .6 TOTAL COST Tl88.5 R74.5
E42.0
P72.0 ;5;·g

R\3.0
E6.0

Pl50

R25.4
E 7.0
P3S.O

PRODUCTION MOBILE
COMPUTERS BECOMING AVAILABLE
BULK OF PRODUCTION STILL TO COME.

TOTAL COST Tl47.2 R B4.2
E 3B.O
P25.0

PRODUCTION AIRBORNE
COMPUTERS AVAJLABl.f. BULK CF
PRODUCTION STILL TO COME

TOTAL COST T271.4 ~•57.4

E44.0
p 70.0

COMPUTERS IN E11ERl'-OAY P"00UCTtVf'4 P~OOUCTIO~
TALLATIONS PRODUCTION

USE SOLVING LOGISTICS PROBLEMS
BULK OF PRODUCTION TO COME

": 24 B 4 T5122 GR4NO TOTALS 12040.2

R·24 3 R 151 6 R160 2

E35.0 04.0 £34 0 E33 0 [257.5

+
P14.0 P3~0 P67 0 P155 0 P,19.0 p 627.0

670G

FIGURE 6

FORECAST OF DIGITAL INFORMATION HANDLING PROGRAM

PROJECT WHIRLWIND SEPTEMBER 14,1948
SERVOMECHANISMS LABORATORY D-32904

MASS. INST: OF TECHNOLOGY

Chart with 15-year forecast for military computers,
mentioned by Jay Forrester on page 380. The grand total
in 1948 was $2 billion-equivalent to $8 billion in 1983
dollars. (Figure 6 from Jay W. Forrester, Hugh R. Boyd,
Robert R. Everett, Harris Fahnestock, and Robert A.
Nelson, "A Plan for Digital Information-Handling
Equipment in the Military Establishment." Project DIC
6345, MIT Servomechanisms Laboratory, September 14,
1948. Reproduced courtesy of Division of Mathematics,
National Museum of American History, Smithsonian
Institution.)

example was the second computer or the duplex com­
puter in the SAGE centers. The decision to insist on a
second computer occurred one weekend when we be­
gan to realize that there wasn't going to be the relia­
bility in a single machine that we had been promising.
By that time the Air Force had already budgeted the
whole system. To double the number of computers
required going back to the Air Force for the extra
money. There was a lot of flak from that, but our
position was that it had to be done. We wouldn't stand
behind the system if they didn't. The Air Force sup­
ported such changes very effectively.

The marginal-checking system that improved reli­
ability by a factor of ten came about as a result of
forthrightly admitting a weakness and solving it.
Again, it was one of those interesting happenstances.
In the days of Whirlwind we had what we referred to
as the "annual investigation." Somebody always began
wondering again how we could spend several million
dollars on one computing machine. The result would
be another panel or an investigator. In about 1948,
Francis Murray (a mathematician from Columbia)
spent a weekend investigating on behalf of the Office
of Na val Research. On Saturday in my office he said,
"What are you going to do about all these components
when they gradually deteriorate, and streetcars go by,
and the voltage will change? You won't know you're
approaching trouble until components begin to cause
mistakes." We hadn't thought about that before, but
we recognized it as something that had to have an
answer. I told him that we would vary the screen
voltages of the vacuum tubes up and down so we could
tell if they still had a safe working margin, and this
would detect gradual deterioration. The idea sounded
so good that the next Monday morning Norm Taylor
started putting such a system into Whirlwind.

Tropp: Jack Jacobs's overview paper clearly points
out that the desire to get this job done was strong
enough that once you had convinced people of what
you could do, your mistakes weren't so important.

Taylor: I did a lot of the direct correlating of the
numbers to find out what reliability we could achieve
and found we needed the dual machine.

We had enough data about tube reliability and so
forth to correlate one piece of data with another and
make a reasonable prediction. Then we said, "Well, if
we have one machine, what will be a mean time to
failure? If we have two, what will it be? Indeed, is it
possible to take advantage of tlie improvement of two
because we have twice the probability of failure? After
a while we made up our minds to go to two machines
in a center.

We were about to make a presentation on reliability
to the Air Defense Command in Colorado Springs

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 383

SAGE Discussion

Norman H.
Taylor
"It would take a
year to get that
decision
nowadays."

when I said to Jay, "These are all the numbers. I've
never been to Colorado Springs, but I would love to
go." He said, "You can go if you make the speech."

I had never made a speech like that before, but I
remember getting up, and there was what seemed like
a whole room full of generals sitting in front of me­
and I hadn't even met a general before that. I gave the
speech almost the way I had memorized it. We sim­
plified the equations so that I wouldn't get tangled up
in it and everyone could follow it nicely. Afterward at
a cocktail party, one of the generals whose name I
don't remember came up to me and said, "Norm, that
was a very convincing speech. We're going to go with
this thing, this duplex." Just right there, that after­
noon. It would take a year to get that decision nowa­
days.
Tropp: Not only were you building two computers
instead of one, but you would also need a building
twice as large as well as all the things that go with it.
Shiely: We didn't even know at that point how big a
building we would need.
Taylor: A real problem was the number of people. We
hadn't even found out how many operating positions
we would need.

Thomas M. Smith: I was wondering about these ref­
erences and this philosophy that Jay was talking about
and Norm was just referring to. How did that strike
you, Bob Crago, coming into their operation, working
with them? Was it something new, distinct, energiz­
ing, in your experience?

Robert P. Crago: I think it was probably the first
experience most of us in IBM had in working with an
outside group and taking the leadership from them.
We had been pretty much our own masters in previous
projects. It took us a while to realize that we were
dealing with some very professional people who knew
what they were doing. While reading through the
papers, I thought about the coordination meetings in
back of the IBM branch office in Hartford. Was it
your mother, Norm, who was calling in to find out if

you were at the meeting or not? No one would admit
to the meeting that was going on in the back room.

I think the kind of technical camaraderie that grew
out of this project made it the most exciting thing that
I've ever been involved in. I had the feeling that there
were no hidden problems, that no one would tuck
things away.

Taylor: That was part of it. We told everybody what
the problems were as soon as we found them out.

Smith: And in the 20 or 30 years that have passed
since, you have not encountered that kind of phenom­
enon in industry?
Taylor: It's usually "don't tell anybody until you hit
the skids," so to speak.

Tropp: Returning to your analysis of how two com­
puters would be better than one in terms of mean free
time between failures, how about the common drum?

Taylor: The duplex arrangement wasn't designed at
that time. I think it was Steve Dodd who did the
details; he was in charge of that part of the design,
anyway. There was to be one switch that was going to
switch from one computer to the other. Dodd told me
that that was the biggest oversimplifier in all the
world.
Benington: We used to joke that when that switch
was thrown, we had better warn Niagara Falls.

Taylor: I've been taking quite a riding all my life about
that switch because it turned out to be a million-dollar
switch. During its design there was a great deal of
tugging and hauling on how we would use that second
computer. At first we probably had the simpler idea
that we would do everything on both sides simulta­
neously. It turned out that that was rather inefficient
because we had a lot of things to do, and the other
computer could do some of them while keeping a check
on the computer that was carrying the operational
load. Whichever machine was backup had to keep its
status information up-to-date, of course, in case it had
to take over. The common drum was a convenient way
for the two machines to carry out the necessary infor­
mation exchange.

Robert P. Crago
"I think the kind
of technical
camaraderie that
grew out of this
project made it the
most exciting
thing that I've ever
been involved in."

384 • Annals of the History of Computing, Volume 5, Number 4, October 1983

Actually, duplexing the computers was the easier
part of the job. Much more difficult and expensive was
switching the enormous number of peripherals from
one machine to the other, and searching out and
duplexing all the single-point failure modes in the
entire center, from the power plant to the command­
er's display. Nowadays there are only one or two
people who have really working duplex computers.
Tandem has built a tremendous business out of this,
and nobody else does it.

Tropp: This is a good time to discuss some aspects of
software development. The choice by the Air Force of
SDC to do software was another one of those acci­
dents. I think that Herb was going to talk about it in
terms of, what was it, STP?

Benington: Yes, the System Training Program. At the
same time that Whirlwind was being developed, the
psychologists at Rand decided they wanted to do some
experiments on team training. They were interested
in how you could improve the performance of the team
and how to measure it. Bill Biel (later vice-president
of SDC) was the man who headed that effort, and he
decided to use the air-defense function as an experi­
ment to try it out. Rand, from which SDC spun off,
was working for the Air Force. Even though they were
doing most of their work with the Strategic Air Com­
mand on the offensive problem, there wasn't much
large team activity in SAC, but in air defense there
clearly was. So they set up team-training exercises
using college students as simulated officers and en­
listed men. From this work they developed some im­
portant principles. One principle was that you ought
to start out with very low stress on the student oper­
ators and then gradually increase it as the team per­
formance increased. Another was that right after the
experiment you ought to debrief them on what was
really going on in the world so they would look at what
they had just done for three hours, what they thought
was going on, and what had really happened. A final
principle was that you ought to have the team analyze
itself and look at ways in which it could improve its
performance. They got tremendous performance from
those college students. Some of the people from the
Air Defense Command came and looked and said that
it was just the excellent Rand training and the fact
that the college students had very high IQs-that they
ought to try it out on some of the actual personnel
from the defense command. So they brought in some
of the enlisted men and a few officers and started
doing this to them. They found that they got even
higher performance than they did with the college
students because those people knew the business and
were highly motivated. So, independent of the SAGE

activity, Rand started this System Training Program

SAGE Discussion

for the air-defense centers, and when SAGE came along
it was used in SAGE.

Having that other backup computer we discussed
earlier was a great opportunity because this realistic
simulation could then be run from the other computer
and fed in across that drum. Also, some of the termi­
nals could be diverted to simulate people at adjacent
centers, to simulate the pilots, and the like. So that
program turned out to be, I think, very successful. As
long as I was familiar with the program, Rand and
later SDC continued it. I guess it was also quite
expensive. I would be interested in whether General
Shiely has any views as an operator as to how useful
that program was, and whether we still have anything
to learn from it today?

Shiely: I really didn't get into that too much except
secondhand. My understanding is that it was a very
valuable program for keeping the operators trained. I
know it was the basis for an awful lot of the work we
did in system testing and getting the operational peo­
ple up to snuff on the system prior to its going into
service. Rand was very, very important from that
standpoint.

Tropp: Many choices were made regarding who did
which aspect-for example, the choice of Lincoln's
proposal for the general concept of the system, the
choice of IBM as the prime contractor, the choice of
SDC to do the software. I'm curious about earlier
thoughts as to who would do these things. For exam­
ple, in doing the software, was there an original
thought that it would be done at Lincoln Lab? Or that
the Air Force would do it prior to finally realizing the
magnitude and saying, "Hey, we'll go elsewhere"?

Forrester: For SDC it was a matter of going outside
the Lincoln Laboratory. For reasons I do not recall,
Lincoln did not want to build up its staff to that
extent.

Everett: The MIT management did not want to. They
didn't see a long-term need for a large number of
software people as a part of MIT.

C. Robert Wieser: SDC wasn't chosen; it was created.

Everett: SDC was actually created here.

Forrester: The group that started working for Rand
and became SDC was started here. We started hiring
people, and later SDC took over its own hiring. SDC
was created for the purpose of doing the programming.

Tropp: Were there earlier thoughts-because you had
done your own programming on Whirlwind-that that
was a project that you could do in-house?

Forrester: The programming was started inside. Bob
Wieser and his group did a great deal of it before SDC
came into being.

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 385

SAGE Discussion

Wieser: There was serious consideration of getting
IBM to pick up the programming job, too, but as I
remember they didn't want it. There was serious con­
sideration of having Bell Telephone Laboratories do
it, and they didn't want it either. SDC was created to
do the job; it was created inside my group. At that
time, a division in Lincoln was roughly 100 people,
and a group was roughly 10. When my group got to
120, I knew something had happened.

Crago: It's true that IBM was offered the opportunity
of taking on the programming. We estimated that it
could grow to several thousand people before we were
through. I think the principal factor in deciding not
to do the work was that we couldn't imagine where we
could absorb 2000 programmers at IBM when this job
would be over someday, which shows how well we were
understanding the future at that time.

Jacobs: The computer programming was probably the
most underestimated task in the entire SAGE project.
The team that programmed Whirlwind and the Cape
Cod System was obviously the team that should take
some responsibility for developing the SAGE program­
ming and also for carrying out air-defense programs.
SAGE necessitated a system that, in addition to the
verification of the air-defense concept, had to be done
on a much more complicated machine-the FSQ-7. It
also had to be done by inexperienced programmers,
and it had to be aimed at producing a master program
to be installed at a number of sites, and adapted to
those sites. SAGE also required both the training for
and definition of program maintenance. Finally, there
was a myth that you could do all or most of the
integration of weapons by modifying the computer
program. This turned out to be untrue. Not only did
most of these changes require hardware changes, but
the cost of programming soon rivaled the cost of doing
the same thing with hardware.

Forrester: I've mentioned the managerial aspects of
SAGE. The managerial structure that ran through the
undertaking was at least as important as the technical
work. The story wouldn't be complete if we didn't
mention the IBM management support and dedica­
tion. IBM management really threw their resources
into the program without restraint. As an example,
when it came time to schedule production, there was
no air force contract yet for the machines. If IBM was
to meet the schedule, there had to be a factory. IBM
went ahead and started building a factory before the
Air Force had signed a contract. No doubt IBM could
have built typewriters in the building if the contract
did not come along, but, nevertheless, they built a
factory specifically for the SAGE computers on thefr
own initiative. It was that willingness to go ahead and
to take some risks that ran all the way through the

C. Robert Wieser
"At that time, a

division in Lincoln
was roughly 100

people, and a group
was roughly 10. When
my group got to 120, I

knew something had
happened."

program in all the participating private company op­
erations as well as the Air Force and MIT.
Tropp: When this whole thing was starting, there was
no FORTRAN, no COBOL, and no ALGOL. Everything
was machine language, machine code, or something
special of that nature. There were very few program­
mers, and people were walking around saying, "There
aren't enough mathematicians around, anyway; we
need many more programmers." There may have been
3000-4000 of them in the United States. What was
the training problem like to create the small army of
programmers to do this kind of job?

Benington: It was significant. I think we did it fairly
well. We had computer programming courses run by
IBM, Rand, SDC, and MIT. We discovered very
quickly who could program well, after training and
experience. But it was almost impossible to predict at
the time of hiring.
Crago: Music teachers were particularly good subjects,
weren't they?

Benington: Yes, music teachers. And women turned
out to be very good for the administrative programs.
One reason is that these people tend to be fastidious­
they worry how all the details fit together while still
keeping the big picture in mind. I don't want to sound
sexist, but one of our strongest groups had 80 percent
women in it; they were doing the right kind of thing.
The mathematicians were needed for some of the more
complex applications. So we did a lot of learning of
how to train people, how to decide who was good, and
where to put them.

We were talking earlier about software on the
Whirlwind project, which started clarifying some of
my thoughts. At Whirlwind there were two software
groups. One of them was under Charlie Adams, who
was developing the software tools that would be
needed in a university environment. He was catering
to the very bright individual who wanted to get on the
computer. As a result he developed things such as

386 • Annals of the History of Computing, Volume 5, Number 4, October 1983

symbolic addressing, which would have been heresy in
Whirlwind. With symbolic addressing, you refer to
your data's location not by the number of the memory
cell it is in, but by a mnemonic title such as Al or
TAX or something like that. Later it was all put
together in the right way. He developed an operating
system so that somebody could use input/output de­
vices or storage and not have to worry about managing
all the administrative and allocation details. He de- .
veloped the first higher-order language well before
FORTRAN and COBOL; this was in the early 1950s.
These were all tools that are useful to individuals
using the computer. But in the Cape Cod System and
in SAGE, the problem was one of team programming.
We thought that some of those tools were dangerous
because they couldn't be well disciplined. I think we
were wrong in retrospect, but we developed tools of a
very complex nature, and they're not always found
today in some of the more advanced projects where
the team can be disciplined. You could assign an
individual a job, you could control the data that that
individual had access to, you could control when that
individual's program operated, and you could find out
if that individual was playing the game wrong and
punish the person. So we had a whole set of tools for
design, for controlling of the team, for controlling of
the data, and for testing the programs that were really
quite advanced.
Tropp: Very little of that ended up in the literature.

Benington: I gave one paper in San Francisco: "Lin­
coln Utility Program System."2 Charlie Adams was
there; when he said, "Good show," I felt extremely
pleased. Also, the paper published in this issue of the
Annals gives some of these ideas.

Wieser: In the early days of programming for Whirl­
wind, I can assure you that programming was not done
by mathematicians. It was done by people who in the
first place understood how the machine worked, and
in the second place had some reasonable grasp of the
problem they were trying to solve with the machine.
They thought in terms of airplanes in space, not
totally in terms of symbolic logic. A lot of homework
went into that. When we first went into the air-traffic­
control application before we had a Whirlwind, I spent
many nights over in the control tower at Logan Air­
port finding out how the air-traffic-control system
really worked. I got up at 5 o'clock mornings, drove
out to Beverly, took flying instruction, and got a pilot's
license. We got involved in the problem we were
working on. It was not an abstraction; it was a real
engineering thing. To the extent that you could con-

2 H. D. Benington, "Lincoln Utility Program System." Proc. West­
ern Joint Computer Conference, AIEE, San Francisco, February
1956, Vol. 9.

SAGE Discussion

fine it to a small number of people, which was true of
the Cape Cod System programming, you could get an
awful lot more out of the people. That way was more
efficient than having one set of people writing require­
ments, another set writing specs, another set translat­
ing specs into code, another set checking it out. The
people did all those things as one great team. They
had the knowledge of all of the steps in the process
through to checkout, through the experiments with
real airplanes to find out how the whole system
worked. I don't know that you could apply that process
to big-scale programming-what's called production
programming; you probably cannot. But on the scale
we were doing it then, it worked well. The program­
ming went very, very rapidly, much more rapidly than
you could do it with a structured system of training
programmers and using large numbers of specialists.
It was more like the analog of the model shop in
industry. What we had was a model shop doing the
job. It was quick; it was inexpensive.

Benington: I agree with Bob completely. The differ­
ence between Cape Cod and SAGE is really the differ­
ence between the model shop and production. By the
time we got to SAGE we had to specialize. One group
did the requirements, one produced programs, one
tested them, and one put them in the field. We had to
do it, and we also learned that you could use less­
experienced people to implement and test those re­
quirements. Today it's still the most effective way of
doing it.

Crago: It's a theme that's come up here a number of
times. Jay said it, and Bob said it. The commonality
of effort, the dedication of people, the fact that so
many of us spent quite a bit of time in the particular
application so that we had a chance to see our own
mistakes and had a chance to help work them out. I
see so many people moving quickly between jobs to­
day-one year at the most. They miss getting a chance
to see their mistakes and straighten them out.

Forrester: In the Digital Computer Laboratory that
came out of the Servomechanisms Laboratory, at the
center of the operation was a core team of people who
had been through several complete, successful projects
from the beginning of the idea through development,
the experimental work, the production in factories,
and out into the field where that equipment was either
working or not working. They had the knowledge of
every step that was yet to come up from having been
there before. They had gone through the research-to­
field cycle two or three times before they came to
SAGE. Such a group of people made a powerful team
in dealing with how management and technology are
integrated together.

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 387

SAGE Discussion

Tropp: I think the fact that there was a nucleus is
often overlooked. A group of you who started with the
aircraft simulator can be traced all the way through
the evolution to SAGE.

Forrester: The group had gone through two or three
projects in the Servomechanisms Laboratory even be­
fore the aircraft simulator.
Tropp: That continuity covers more than two dec­
ades.
Forrester: Starting in 1940 and running through 1962.

Everett: I'd like to respond to a question you asked
earlier about whether people were confident that they
could do the job. It seems to me that in this process
we were just talking about-of going through the
whole task, and of finding our mistakes and fixing
them along the way-we came out at the other end
not only with a much better feeling of how to do the
thing, but also with a feeling of confidence that we
could do it, which I think is important. I don't know
how the rest of you felt, but I have no recollection of
ever having been worried that we might not do it. I
really believed that we could do anything if we were
given enough money and left alone.

Tropp: Let's go back to what we were talking about:
this attitude about having to get the job done. That
was the atmosphere in this country during World War
II. No matter which project I talk to somebody about,
it was, "There was a war on, and we had to get the job
done." That's the end of the answer; that's all there
was.
Taylor: We started pretty close to the end of the war.
In 1948 a lot of us were still in that frame of mind. ·'

Everett: I think today you will find there is a lot more
cynicism in people. It doesn't take the form of people
thinking they can't do it; it takes the form that they
don't think they'll be allowed to do it.

Wieser: I don't think the workers scared easily. I
think some of the confidence, at least on my part, was
related to keeping fairly close track of the competitive
schemes. I wasn't a computer designer; I was an early
customer. We talked earlier about the formidable
problems that were faced with the development of the
SAGE computer, but the fact that the technology and
the ideas were so new meant that there was a lot of
elbow room for improvement. In terms of competitive
schemes, the University of Michigan's was not the
only one. There were others; a big system called 414
was one of those. It used relatively mature analog
technology. They had a bad set of problems that they
had to cope with and they didn't have all of the new
avenues of improvement that we had. They couldn't
jump from electrostatic storage to core memory. They
were stuck with what they had, and in a sense while

Robert R. Everett
"I have no
recollection of ever
having been worried
that we might not
do it. I really
believed that we
could do anything if
we were given
enough money and
left alone."

414 was a more conservative undertaking, it was also
a dead-end street. Today you wouldn't ever go back
and try to ·make an air-defense system using either
that technology or those components or the principles
on which those competitive systems operated. They
had problems in radar-network registration, problems
in stability of analog tracking-all those technicians
with screwdrivers trying to keep the thing working.
You know, analog systems didn't work well even when
they worked the way they were designed to work.

Benington: I think we ought to distinguish between
the commercial world and doing business with the
government. I am now dealing with the government
but also a lot with the commercial world, and things
in the commercial world in information systems are
as lively now or more lively than they were in our day.
If you look at the number of companies, large and
small, the fantastic variety of projects, the numbers
of failures, the number of outstanding successes, it's a
very, very thriving world, and I think the country's
doing very well in that regard. I'm glad the government
isn't meddling too much with it.

Tropp: One thing that often comes up when you're
talking about an advancement as important as SAGE

is the retrospective look: "If I had to do it all over
again, would I do it differently?" As someone who
wasn't a part of it and only saw the Q-7 two weeks
ago, I look at it and say, "Don't change a thing; in
fact, don't move it out!"

Does anyone want to respond with a retrospective
view of what you would do differently or what mile­
stones you saw as forcing you to move in a direction
that now you wish you hadn't gone in?

Benington: Before somebody does that, can I tell an
anecdote? Jack Jacobs and I and some other MITRE
officers went down to Fort Lee a couple of years ago
where there is a SAGE center. It was very operational
and a "gung-ho" activity. The colonel who ran it said
it was the most reliable piece of equipment he ever
had in the Air Force-one of the most successful

388 • Annals of the History of Computing, Volume 5, Number 4, October 1983

things he had seen; so maybe we shouldn't change too
much.
Tropp: I don't think whatever replaces it could be as
good, but I'm prejudiced now.

Shiely: I'm sure glad to find out at this stage that
nobody was concerned about whether it would work
or not. I'm going to be frank and say that I was
terrified. It's a terrifying situation to have somebody
come in and tell you that your direction center is just
half as big as it has got to be or that the machine is
just half as big as it has got to be.
Tropp: And the money is only a quarter as big.

Shiely: For example, the system originally started out
dealing with the problem of vulnerability by putting
the direction centers underground. The first one we
started to dig was at Fort Dix, New Jersey. We found
that the water table was about three feet under the
surface. So we were faced with the problem of whether
this had to be a submarine. Then we went up and took
test borings at West Point, the second center, and
found it was solid granite. It didn't take very much
computation after that to figure what all these direc­
tion centers were going to cost, so those centers came
out of the ground a story at a time. They also got
reinforced more every time they came out. I think
everybody is aware of the way military construction is
programmed in the government system-how it is
budgeted, defended, and even appropriated by sepa­
rate channels. So you can imagine the problems that
were involved in. explaining to somebody why these
buildings were suddenly becoming twice the size, be­
coming reinforced, and coming out of the ground-all
this happening while the program was going on. We
were building a building around a machine that hadn't
been invented yet in a sense, and it certainly hadn't
been built in the form that it had to be housed. I'm
glad· I found out now that nobody was really worried
about it.

Everett: I think you're making a very good point.
Those of us who were designing SAGE believed in it,
and I don't know how we could have done the job if
we didn't. But as the buyer of the thing, you had every
right to be terrified. I was amazed at the time and I'm
still amazed at the unflagging support of the Air Force.
Truly remarkable.

Taylor: You might have been apprehensive, but you
didn't let it show too much.

Shiely: The thing that I recall hearing about at that
time was the support we got from the very senior
people. A top priority for air defense was very, very
new. This kind of priority went only to strategic
programs at that time. The type of management struc­
ture we were allowed to establish also was restricted

SAGE Discussion

to very few programs; in fact, it was an experimental
management structure that had been applied only to
aircraft-and to strategic aircraft at that. To allow us
to set up an office between the two acquisition com­
mands-a joint project office involving the two com­
mands-and allowing us the authority to direct activ­
ities in those commands was a tremendous departure
from the normal operation of the Air Force at that
time and took a tremendous amount of support and
foresight on the part of people like General Thomas
F. Power, commander of the Research and Develop­
ment Command, and General Rawlings, commander
of the Air Materiel Command. Full-time participation
by the Operational Command for whom the system
was being built was also. an innovation that proved
invaluable. We were required to brief the two com­
manders personally once a month on where the pro­
gram was. It took us ten minutes-that was it. We
were never given any direction, except to go ahead.
Similar briefings were also given to the Air Defense
Command. ·
Bright: I seem to recall that we were under severe
funding restraints somewhere along in the program.
As I remember, 23 direction centers were proposed.
B\lt because of funding constraints, Charlie Zraket
and I and an air force colonel (whose name I don't
remember) cut this back to 17 direction centers, with­
out significant loss of air-defense capability. That, of
course, had to be reviewed by our bosses. The cut­
back program was approved.
Forrester: How many were actually finally installed?
Tropp: I think 23 direction centers. Here we are ex­
tolling the virtues of the reliability of the Q-7. I went
through the literature you sent me, Bob, and I keep
finding names like Q-7A, Q-31, and Q-32. From 1959
on it seems that somebody kept wanting to replace it
before it. was fully installed, fully operational, with
transistorized or more state-of-the-art technology.
Each of these was dropped for a variety of reasons.·
The first generation, Q-7, is still operational today
and will be until sometime in 1983. But why the rush
to get rid of it before it's ever fully completed?

Everett: I don't think they were trying to get rid of it
because it didn't work. The problem was its vulnera­
bility to ICBMs. The new program being pursued
actually never got built: the so-called super combat
center, to be installed in hardened underground shel­
ters. We were talking about a machine of a new
generation with more capability, to be made out of
transistors. A smaller number of such centers could
do the work, which then would greatly reduce the cost.

Tropp: In the records, this isn't very clear. It looks
like you're introducing a new airplane before the
model has gone through its introduction.

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 389

SAGE Discussion

Taylor: The buildings of the direction centers were
formidable to look at. Bob Everett and I used to drive
to Poughkeepsie and back almost every week for about
three years. We had a little Chevrolet wagon that we
burned out on that trip. One night we were coming
home at about two o'clock in the morning and we were
talking about what is important, what will be impor­
tant, and where do we go from here. Bob said, "You
know, Norm, you and I will be buried in some ceme­
tery, and some guy will walk by those buildings and
he'll: say, 'What the hell do you suppose those guys
had in mind?"'
Forrester: Some of our people were tired at the end of
the week and occasionally chartered an airplane from
Poughkeepsie back to Boston. It was very much con­
trary to air force contracting officers' principles, so
they would come storming in to Nat Sage and say,
"You can't do this," and Nat Sage would nod and say,
'~Isn't that terrible!" and take their document and put
it in his desk drawer and never tell us about it.

SAGE "FIRSTS"3

Using Lincoln's farsighted initial design as a basis, the Lincoln­
Rand team set about developing and implementing the first
large-scale information system with capabilities so advanced
that a quarter century later they would still be considered the
current state of the art. Among the numerous firsts of SAGE:

• A fully real-time system.
• Servicing 100 simultaneous users.
• Acquiring live digital data from many sources.
• Routing data to many destinations.
• Using interactive graphic displays.
• Providing near-instant on-line access to a common data

base.
• Having fault tolerance and "graceful" degradation.
• Incorporating a "hot backup" machine.
• Communicating digital data among a dispersed network of

computers.
• Handling live operations and simulated exercises simulta-

neously.
And incorporating in its computer programs:
• Centralized system data structures and control.
• Modular, topdown system organization.
• Discrete structured program modules.
• Overlapped input/output and data processing.
• Simultaneous real-time and computational processing.
• Time-sequenced synchronous scheduling and interrupt for

90 subprograms.
• Centralized data processing with remote input/output and

display devices.
• Comprehensive communications pool (compool) defining all

global data in the program.
• Table:..driven software for ease of modification.
• Built-in test, recording, and data reduction.
• Computer-supported system development and checkout.
3 Printed with permission from Claude Baum, The System Builders:
The Story of SOC. Santa Monica, System Development Corporation,
1981, p. 24.

Taylor: I remember coming back on that flight once,
when the pilot turned to me and said, "Does anybody
see the field down there?"
Everett: I remember a somewhat similar story. It
shows you how different things were in those days.
We needed more computer time, and somebody came
up with the idea of using the ones on the test floor in
Poughkeepsie. So we sent one of our staff members to
IBM, and he worked out a deal with IBM to make the
time available late at night. Then, as we pieced it
together later, somebody he was talking with at IBM
said, "Oh, by the way, this is going to cost some
money." Our guy said, "That's all right." He came
home and everything went fine until one day Harris
Fahnestock came into my office shaking with fury. He
had in his hand a bill for $1 million. I remember
saying, "Harris, why are you so upset?" He said, "But
you never got permission for this." I said, "Now,
Harris, be calm. You know you would have given us
permission. It didn't cost a cent more than it should.
Now will you go away and pay the bill and not bother
me anymore?" And he went away and paid the bill.

Tropp: Claude Baum, in The System Builders: The
Story of SDC, lists numerous "firsts" for SAGE. The
list, reprinted here, seems to be fairly heavily oriented
toward software. Herb, do you want to react to it?
Benington: My initial reaction is that it is a pretty
good list.

Tropp: Getting into firsts from a historical point of
view is always a danger because the minute you say,
"So-and-so did something first," you find somebody
else who did it. But I think many of these things that
are considered firsts in SAGE probably occurred first
in Whirlwind, didn't they, Bob?

Everett: It's partly a matter of how you define it.
Whirlwind in its Cape Cod manifestation did most of
these things. It couldn't have done its job without
them. I think that it's not just a matter of who does
what first, but whether it gets. used in some way. It
seems to me one of the things that SAGE did was to
spread the ·knowledge that these things could be done,
as well as how to do them-throughout the organiza­
tion and throughout the country.
Wieser: It may be buried in here some place, but I
think marginal checking systems were very, very im­
portant. Probably SAGE had built-in automatic tests
to a degree that previous systems had never had be­
fore.
Harrington: Nobody even tried to do it automatically
that I know of. To some extent we still haven't.

Wieser: Marginal checking is not fault tolerance. It
permitted the anticipation of a failure caused by grad-

390 • Annals of the History of Computing, Volume 5, Number 4, October 1983

ual deterioration instead of waiting for errors to occur.
It was a very important part of both the Whirlwind
and the SAGE computers.
Everett: I think this list kind of scants the hardware,
but that's not surprising because it was written by
software people.

Tropp: But from a software point of view, Herb, do
you think it's reasonable?

Benington: I think it adds detail to the concept,
particularly the last part of the list-the concept that
I mentioned about how you must have a disciplined
team to put together a large computer program. Many
of these features allow that to happen. For example,
one of my favorites was the communications pool,
which was one of the great innovations in SAGE. A lot
of people who are not using it today are sadder as a
result, and they don't know it. With the communica­
tions pool, the individual computer programmer could
access or change system data (i.e., information such
as aircraft altitudes) without knowing many of the
details of where the data was stored, when it was
moved, or who else used it. In this sense we viewed
the system as hardware, software, and data. We had
the first "system-data managers" -they played a ma­
jor role in the design of communications. Their up­
dated view of the "communications pool" could be
integrated into a newly modified system with mini­
mum disruption to all the other hardware and software
participants.

Everett: Yes, but the software business went downhill
after SAGE in many ways.

Tropp: Mort Bernstein told me that the communica­
tions pool gets reinvented periodically, and I think
that's the fault of those of you who did the software
and did not document these things.

Everett: Or the fault of those who don't read about it.

Forrester: There were many things in software and
hardware that were simply done in Whirlwind and
SAGE with the attitude that that's what people would
do if they were going to try to design the system. They
probably did not think about the new ideas as being
innovative, and there was very little emphasis on
academic publication. Publication wasn't the goal of
most of the people. So we have a situation where many
of the firsts on Whirlwind and SAGE are not repre­
sented in the literature.
Tropp: I think another facet was that you people were
too busy to bother writing papers because the group
of people in the industry was small enough that com­
munication was probably by word of mouth and per­
sonal contact. That's an environment that's hard for
today's professionals to understand.

SAGE Discussion

Herbert D.
Benington
"The
communications
pool was one of the
great innovations in
SAGE. A lot of
people who are not
using it today are
sadder as a result,
and they don't know
it."

Forrester: However, the Digital Computer Laboratory
did publish a quarterly report. It was a glossy-paper,
halftone-picture, typeset publication that was distrib­
uted to maybe 250 addresses. It reached many people,
but I presume one can't find it in libraries because it
was not a recognized journal.

Everett: It would probably be very hard to put to­
gether a set, except in the archives.
Taylor: There's one item that's not on the SDC list
because it's such a controversial item: the light gun.
I've edited all kinds of papers in the last five years,
and I give credit for inventing the light gun to Robert
Everett simply because he told me he invented it.

Everett: If I knew it was that simple, I'd have in­
vented lots of things!

Taylor: You never told me about anything else, so I
think you must have done it. Right now you'll find
that everybody in the business invented the light gun.
Of course, it was invented in the Cape Cod System,
which was the prototype for SAGE. We had some crude
ones before that, but in the Cape Cod System it was
really used. I think Everett ought to get credit for
that.

Smith: Why did you invent it? What prodded that?
Everett: There are two answers to that. I "invented"
the light gun, in the sense that I didn't know anybody
else had done so. And I invented the use of light guns
in digital computers. There are lots of cases like that;
people had invented the photoelectric cell pickups for
other purposes. But my recollection is that one day I
came up from the basement where I was trying to
make the storage tubes work. We were starting the
first experiments in tracking airplanes, and we had
the problem of designating a particular track, or par­
ticular spot on the tube. Someone had built a joystick
for this purpose. As you pushed the stick one way or
another, it closed some microswitches and fed a bit
stream into a counter that could be read by the com­
puter, which would move the spot accordingly. I looked

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 391

SAGE Discussion

at it and said, "Why bother to do that? The computer
knows where the spot is. Put a photocell over it and
tell the computer that's the one you want." I went
back down to the basement. After a while I came up
again and was shown a working light gun.

Taylor: That's right. We used it on the storage-tube
detection system at first to tell which spot was doing
what.
Wieser: It made the conventional joystick obsolete for
designating targets on a display tube.

Smith: Why was that superior? Why do it that way?
Didn't you want to shoot him? Or did it seem such a
good idea on the spot?

Wieser: Instead of steering a displayed circle around
the tube face until it fit around the dot (target) you
wanted, which was the conventional joystick way to
do it, we just found an easier way to designate a
particular target. That's all. It worked very well.
Bright: A great many spinoffs from SAGE went into
the commercial market later. In the Bell System dig­
ital communications was in part a spinoff. It was
beneficial in moving up the time frame. Many things
from SAGE have resulted in more advanced develop­
ment-more advanced applications. As I look around
Bell Laboratories and Western Electric today, I still
see people who were involved in the SAGE program.
That won't be true very much longer, because we are
getting to that age. But they have made valuable
contributions to commercial applications of digital
transmission and switching technology.
Forrester: One first in those machines was parallel,
synchronous, clock-timed logic. Most of the machines
under development in the days of Whirlwind were
something else. They were serial, or they were asyn­
chronous, or in some way they were not the parallel,
synchronous, clock-timed logic that became the stan­
dard for computer logic. Many ideas that were in those
machines survived. I believe that a larger percentage
of original ideas in those machines survived than from
other machines of the time.

Wieser: Another thing that I think ·we take for
granted today is parity checking on all internal infor­
mation transfers inside the machine. That was a fea­
ture of SAGE.

Crago: How many years was it before there was a
commercial processor with a full-checked adder? You
know, SAGE had a full-checked adder, and it was years
before anybody went back and put one in a commercial
machine. An invaluable aid in data integrity.

Tropp: I wanted to get into this whole area of the
impact of SAGE, but before we do, Tom Smith men­
tioned a managerial question that he wanted to raise.

Smith: It seems to me from some of the conversations
here that while there was this incredible amount of
cooperation going on, nevertheless, some decisions
had to be made and some options selected. I was
wondering what kinds of mechanisms came into being
for this within Lincoln, Western Electric, Bell, and,
of course, the Air Force Project Office. You couldn't
all dance around in sweetness and light. One thought
I had in this discussion was: "To hear us talk here,
these people almost weren't human. There must have
been some knock-down, drag-out fights over genuine
issues; that's the way history gets created." So I want
to ask: how did all this stuff get implemented, starting
from the design level and going on through?

Taylor: I'd like to speak to that, if I may. The first
time it came to my attention was when we started to
interface with the IBM people. They had a significant
number of people on the job. I'm not talking about
thousands, but 30 or 40 or 50. We had a pretty good
design concept, but it wasn't easy to transfer that on
the table, a piece at a time, so we could decide whether
we were going to accept it or not.

What Jake Jacobs mentioned before was the vehicle
we came up with called the Systems Office. The Sys­
tems Office was an unusual concept which I still try
to use in my consulting work, because it was so effec­
tive in doing just what you said. First, we broke the
problem into fairly small parts; in other words, if we
had an arithmetic discussion, Jake would put a team
together on the Lincoln view of the arithmetic discus­
sion, and IBM would have just two people who worked
exclusively on this until they came up with an agreed­
upon specification. If that agreed-upon specification
seemed to be harmonious, Jake would sign off on it
and say that's what we're going to do. He might tell
me about it or he might not, depending on whether
we had ever discussed it before. If there ever was any
degree of controversy between the two parties, we
would have a larger meeting-but only when the de­
gree of controversy was nontrivial.

This vehicle grew to be a very powerful management
tool because we did not let anything go above a certain
level unless it was necessary; that was a judgment that
Jake largely had to make. Furthermore, when we
started, we did not write a spec and hand it to some­
body at IBM and say, "This is what you have to
swallow." They had as much right to come to the table
with a spec as we had. I remember when Astrahan
came with, for instance, a set of primitives. In a
computer you have 20 or 30 primitives:--the orders
you're going to build or design into the machine. I
expected to have a real knock-down, drag-out fight on
those primitives because what they had in their usual
machines wasn't really suitable for SAGE, in my opin-

392 • Annals of the History of Computing, Volume 5, Number 4, October 1983

ion. Astrahan came with, I think, 34 primitives of
which we accepted 28. There was a lot of harmony
before we got to the point of controversy.
Forrester: Running through the program was an at­
mosphere of openness, a willingness to listen to dif­
ferences. Also in the background of the program was
the almost absolute control exerted by Lincoln Labo­
ratory. In the contracts between the Air Force and the
contractors, Lincoln was given the authority to sign
the drawings. Lincoln had to be satisfied. MIT and
the Lincoln Laboratory had a substantial role in set­
ting up the air force coordinating office, specifying
that it be headed by a general, and insisting on the
degree of authority. A strong office was considered
necessary so that there would be the authority to get
rapid decisions.
Wieser: In today's system-development language you
would call that process "configuration management."
Jake would have been running a "configuration con­
trol board." In the midst of all this togetherness,
harmony, and cooperation there was formality in the
decision-making process. Accurate records were kept.
People worked together when they had problems, and
when they got a solution it was documented. It had to
be, in order to pass it on to people who were to build
the hardware. If you have one group designing a com­
puter and- another building it, you need good commu­
nications, which means formal communications.
Jacobs: I'd like to say a few words about what made
the Systems Office successful. It was necessary to
achieve consensus on the design from the air force
organizations and the contractors, as well as consen­
sus within Lincoln itself. It was important, therefore,
to select a mechanism that was aimed at achieving
agreement on what should be done. We wanted to
create a technique that treated the organizations as
equals, that would give each organization an equal
right to propose what should be done. Direction was
too strong a word, and coordination was too weak. The
word that was chosen was concurrence. Concurrence
implied that the organization involved in a design had
veto power over the proposals affecting it. Thus all
proposals were circulated to the affected participants
for their review and comment. The Systems Office
would do an analysis that spelled out the alternatives,
suggest a choice, and ask the participants for their
concurrence. The organization that did not wish to
concur had the burden of proof; thus in order to deal
with a nonconcurring problem, the organization would
have to show how its design was preferable. If they
succeeded, the process would be repeated. The thing
that is most amazing to me is how small a number of
nonconcurrences we were faced with. What had
started out as an ad-hoc, informal procedure was

SAGE Discussion

eventually institutionalized in the so-called Technical
Information Release, which became the order given to
the ADES project office as to what we thought they
should do. It is true that what we ended up with was
a configuration-management technique, as Bob said,
but in the beginning it was an experiment in group
dynamics aimed at establishing a baseline design.

Taylor: It wasn't so hard when we were talking about
computers because we had developed a good relation­
ship with IBM. Furthermore, as Jay just said, there
was a piece of paper. That wasn't true with Boeing
Aircraft. We had no control over what they did. I
remember having one session where we came push-to­
shove once in a while. I remember saying to Jay, "If
we don't get control of this, it's not going to work."
We had a lecture on what is control. It turns out so
many times in life that you don't really have control
of very many things. So you have to control them
either by impeccable logic or by the power of persua­
sion or just by staying power. We had lots of oppor­
tunities with Boeing and some of those other people
to do that. The Air Force came in as a very important
partner. In other words, we came to a dichotomy.
There's no binary way that one is right and the other
is wrong in some of these things. So we had to have
the Air Force adjudicate some of those. There were a
few tough ones, but I was amazed at how many we
were able to solve at the working level.

Shiely: There's an important element to this. One
thing we did have that was carried on in subsequent
years was a mandatory, regular reporting meeting
every month, as I recall. Representatives of every
organization had to appear at that meeting and report
on where they were. We had a master schedule that
was broken down into all its parts, which everyone
was supposed to follow. (We did have, at least, a hold
on cost.) Everybody had to come, whether he liked it

John F. Jacobs
"We wanted to create a

technique that treated the
organizations as equals,

that would give each
organization an equal right
to propose what should be

done."

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 393

SAGE Discussion

or not, and stand up and say, "Yes, I am on that
schedule, I am doing that," or "No, I'm not and here
are the problems I have."
Bright: It was a good mechanism for exposing the
problems.
Shiely: The problems that were revealed were kept
track of. In several there was a payoff, one way or the
other. Either the programmers had to do something,
or the equipment had to be changed, or the building
had to be changed, or something of this kind. We had
some very interesting discussions on a number of these
things over the years; in fact, I don't recall that we
ever had to go beyond New York for any of those, in
spite of the impacts of some of them.

That was a very important management tool. It was
almost impossible to keep the problem you were run­
ning across hidden for very long, because you had to
stand up and speak to it once a month at least and
show pictures. Believe me, everyone around that table
asked some very penetrating questions, particularly if
what the other fellow was doing impacted on what you
were doing and you either suspected he was in diffi-

. culty or you were having some trouble. We had some
very spirited discussions. But as a management tool,
that regular reporting of a complex program of that
kind, around the table, is something which was carried
on and, I think, was one of the most effective tools we
had. This was of course, on a much higher level than
what we were discussing here. Many, m·any technical
problems were resolved at the lower levels where they
didn't impact on any of these overall items.
Forrester: There was a survival all the way into this
SAGE system of attitudes that I trace back to Gordon
Brown and Nathaniel Sage, Sr. (I do not know with
certainty, but some said that the SAGE air-defense
system was named after Nathaniel Sage.) Anyway,
Sage was the director of the Division of Industrial
Cooperation, the contracting office at MIT. He was
an unusual person. He had been an army child in his
youth and had lived on army bases around the world.
He was a civil engineer by training. He had a high and
well-justified confidence in his ability to judge people.
There were people at MIT he would trust and support.
Others he wouldn't trust farther than he could watch
them. Gordon Brown, Stark Draper, and I were among
the group that enjoyed his confidence and support.

The activities under Brown and Sage had an un­
usual information flow. There are two things about it
worth mentioning. First, bad news flowed uphill. You
know a lot of organizations where the reverse is true.
There was no need to try to impress people with how
well you were doing; instead, people higher up were
there to help if there were problems. One had better
bring up problems and get help before it was too late.

Second, there was complete freedom in jumping levels
of hierarchies. In the structure that ran from Sage, to
Brown, to me, and to the various levels inside the
laboratory, there was no hesitation on the part of
anyone to jump over administrative levels to get in­
formation. Nobody felt disturbed by being bypassed.
Access to information was part of the basis of confi­
dence that Sage had in people. He would drop in and
talk to people in the laboratory. He would form his
opinion of whether or not those who worked for me
seemed to know what they were doing. Also, people
who worked for me could go directly to Sage or to
Brown. This was just part of the environment. Prob­
lems flowing up the hierarchy when help was needed
and direct access to information were carried over into
the organization of the SAGE system.
Everett: How did all this seem from the other side?
How did it look to you?

Bright: It looked to me like a very workable manage­
ment system because it was the one that we in the
Bell System had been employing for many years. That
is, to get all the participants on a project together, let
them expose what they were pleased about, and then
get them to tell what they weren't pleased about.
There was full freedom in the so-called phasing meet­
ings to speak up. Speaking up was encouraged. Then
there was the more formal part of it where each one
reported to the coordinator of the project, which was
Western Electric, on how their part of the project was
coming along and whether it was in phase with the
other elements of the system. This worked very well.
The customer was there, all the contractors were
there, and the coordinating organization had to make
sure that there were full and complete reports on a
month-to-month basis with lots of contact in between
those formal meetings. My feeling is that it was good.

Everett: I thought it was good, too, although, as Jay
says, Lincoln had the ultimate authority, and we
couldn't be too autocratic. If things weren't normally
done on that basis we could get away with it once in
a while when we really needed to.

Kent C. Redmond: All of the contracts read that you
had the right of concurrence. You just failed to define
what happened on nonconcurrence.
Everett: I like the choice of the word concurrence,
which was Jake's suggestion, and I thought a brilliant
suggestion, implying a sort of iron-fist-in-a-velvet­
glove approach to life.
Crago: As you say, it was never very clear what would
happen if we didn't concur, so the problem never arose.

Taylor: I remember once you disagreed with me on
something, and I said: "Would you like to sign that
paper to get 45 hours out of this beast?" (I had a

394 • Annals of the History of Computing, Volume 5, Number 4, October 1983

Thomas M. Smith (left) and Kent C. Redmond

verbal agreement with the Air Force that we could
obtain a mean free time to failure of 45 hours for each
duplex computer. To do this, we needed control of
circuits and components.) You said: "What paper?" I
never told you there wasn't any, but that's all right.
Smith: I suppose one reason it all worked was the
technical competence and the recognition by the par­
ties that "Here are the technical options that every­
body sees and here is what seems to be the way to go."
Even when there was disagreement, you were still
making your judgments on the basis of what I'll call
"informed engineering considerations" instead of, say,
some inadequately informed, high-level management
consideration, like we ran into when they built a new
library at our university and decided to reduce costs
by eliminating separate air conditioning and humidity
control for the rare-books room. They were incompe­
tent to make that decision, but they were at such a
high level of management that it never occurred to
them to check down and find out. It seems to me that
this was one of the things that you people were able
to avoid by having control over what you were doing.

Taylor: Some of the time, but not always.

Benington: Life is serendipitous. I remember once a
major argument as to how many monitoring lights
we'd bring out of the Q-7 to show the operators and
maintenance people what was going on inside the
machine. The Lincoln Lab people wanted to have tons
of lights so you could tell the status of everything, and
IBM was dead set against it. Two or three years later
the lab people couldn't care less about those lights,
and IBM found them essential.

Crago: We did a fine job of defining the interface
between the Q-7 and the FST-2. We defined the data
format in every regard, except we failed to label which
end was which. All the data was coming in backward.
Do you remember that one? We had to make a com­
plete change. It was well documented. It was just
missing one thing.

SAGE Discussion

Tropp: From the standpoint of IBM management,
was there any kind of problem in terms of the number
of people you were going to have to train to install
these large computers, maintain them, monitor the
software, debug, etc., with all these installations as
they were coming on from 1958 to 1962-adding that
work force in addition to the one that you'd already
had to add to develop these computers?

Crago: In staffing the original design work, we were
lucky because the company had hired all kinds of
college-graduate engineers to be customer engineers
in the field, and they wanted change. A lot of the
cadre of people who came in to begin working with
Lincoln Laboratory were those folks who were happy
to get into design work. Yes, the number of people
that it took to go out and install and maintain became
tremendous-so much so that we finally approached
the Air Force and said, "Isn't this a proper skill area
in which you ought to be having your own people?"
We gradually withdrew from the maintenance, and
the Air Force took on the maintenance themselves.
That turned out to have real benefits to IBM because
just at that time, real-time systems became an impor­
tantfactor in commercial applications such as airline­
reservation systems. The people who came out of SAGE

had a background of staffing five shifts, seven days a
week, 24 hours a day. This was not true of our regular
maintenance people. The SAGE field engineers were a
tremendous asset in jumping in and making these on­
line systems work commercially.

Shiely: In the early days, one of the interesting things
was that we began to get in the union business. IBM
had all nonunion installers. We went out in the first
center, and the electrical union got a look at this
machine. We were immediately informed that we
could only install this with electricians from the elec­
trical union. We and Western Electric ended up hav­
ing to chair the solution of this thing, but we had some
interesting discussions over whether an electrician
was properly qualified to install and check out this
digital computer.

Tropp: Bob, can you remember the story about what
happened at North Bay with exactly that situation? I
guess they installed it at night, so the strike was a
moot point?

Bright: We put S.P. (Monk) Schwartz of Western
Electric on that problem. He was a great head banger,
and he did get it solved, but I've forgotten how.

Everett: I remember those phasing group meetings,
particularly because there was a certain amount of
discussion about design, but mostly there were, long
stories about troubles with construction. unions. I re­
member there was a problem with some of the air

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 395

SAGE Discussion

conditioning in one of the centers; it was soft soldered
instead of hard soldered. Month after month after
month, the sad story of the soft solder came up. It
taught me a lot about the problems of actually putting
things in the field.

Crago: Didn't we also have one where a small boulder
was left in the chilled water pipe for XD-1, and the
first time the chilled water came on it came ricocheting
through the pumps with dramatic effect?

Bright: One of the other management tools that we
had was that we were responsible, along with the Air
Force, for developing the funding profile and then
defending that funding profile along with the Air Force
Project Office. That seemed to have a particular influ­
ence on getting the job done in some cases. When
money was diverted from one account to another, it
required the cooperation of all the contractors. Con­
struction funds, research and development, and other
categories of money were involved.

Everett: The production funds were different.
Bright: It was all different-and the profile we worked
up was done jointly with you.

Shiely: That had to be regularly defended. Anything
that cost more money was just like today. It had to be
brought up and defended, explained. So the old ques­
tions of performance, cost, and schedule were the
kinds of things that were the controlling factors after
we were actually putting it in. There was a lot of
freedom as long as it didn't affect one of those three
factors.

Redmond: I have a question that might have an ob­
vious answer. Wasn't SAGE and its antecedents, in a
sense, the first demonstrated use of the digital com­
puter in a command-and-control situation? From
which came, of course, ticket reservations, periodical
subscriptions, inventory control, and so forth.

Bright: I think it was the first digital computer so
used, but analog forms had been used earlier, if mem­
ory serves me right.
Everett: A lot of control computers were used in
World War II. In fact, the fire-control computers had
been used for a long time. It was the first electronic
digital computer-based system, and it probably· had
aspects of command in it.
Tropp: One area is very hard to get into because it's
so complex-that's the impact of the SAGE project in
the years following its first installation. We can dis­
cuss it from the standpoint of software technology and
hardware technology, people spreading, ideas spread­
ing. For instance, what did IBM get out of this in
terms of its role in building computers after it built
the Q-7? How do you see that as affecting IBM's
growth or development as a mainframe manufacturer?

Crago: A great many people were trained on that
program who spread throughout the corporation-not
only maintainers, but also designers. I can walk into
any IBM plant in the United States and have former
SAGE people introduce themselves and express pride
in having been a part of the project. So that spreading
of knowledge was immensely valuable. The people who
went off the program early went on to the SABRE

system for American Airlines and applications of that
sort. I mentioned already the impact the maintenance
folks had. I think the things we were taught and
learned together about component reliability, mar­
ginal checking, and everything of that sort had impact
that you can't measure in the machines that were
designed later. There were always trade-offs. There
were differences in the economics of what you could
put in, but we all knew what the alternative could be,
and that was invaluable. Of course, core memories
were vital in the early machines, replacing the storage
tubes. We also knew more about oil-filled 200-volt
capacitors than we ever wanted to know, because we've
never used them since except in power supplies. But
there is no question that SAGE had a very real impact
throughout IBM.

Tropp: Does someone else want to respond from an­
other viewpoint?

Harrington: I'll take another viewpoint. From the
viewpoint of the front end of the system, I would say
that a lot of the radar signal detection and data
handling and processing has shown up to be of enor­
mous benefit to the FAA, in particular, over the years.
The machine that the Burroughs Corporation built as
a result of Lincoln's work, first known as the FST-2
(it has had other names) is in its second or third
generation at various FAA stations. Some of the dis­
play equipment that I have seen used was derived from
some of the work that was done at the Lincoln Labo­
ratory. A lot of the early modem work was done at
Lincoln to make use of existing telephone lines. Mo­
dems just didn't exist in 1948 or 1950, and there was
a frequency-division system used that was terribly
cumbersome. Digital transmission was relatively un­
known and was very inefficient. Lincoln developed, I
remember, a 1300-bit-per-second system that went on
up to 2100 bits per second o'ver a variety of telephone
lines. In fact, MIT has a patent on that. That later
became a contributor to the Bell System A-1 data
system. The techniques have gone well beyond that
now, but the early beginning of the modem concept
really came out heavily from the need within the SAGE

system to net radars to computers.

Bright: Of course, we learned how to build Texas
Towers, too, but we haven't had very much use for
that in the Bell System.

396 • Annals of the History of Computing, Volume 5, Number 4, October 1983 /

John V. Harrington
"The early beginning
of the modem concept
really came out heav­
ily from the need
within the SAGE sys­
tem to net radars to
computers."

Forrester: When we first started receiving digital data
over phone lines and occasionally found noise dis­
rupting the signals, we got in touch with the Bell·
System to ask what the specifications were on the
lines. Their answer: "The lines are all right if you can
talk over them."
Harrington: We had trouble with some of the early
models of our modems, and we couldn't understand
why we were having troubles. We finally ordered up a
loop from the telephone company, which went from
someplace in the Cambridge area up to Brunswick,
Maine, and back again. It was about a 300-mile loop,
and we had the beginning and the end of the line right
there so we could look at it. I remember being shocked
when we put 1000 cycles in one end of the line and
what came out was not 1000 cycles, it was 1000 plus a
few cycles. That was typical of the single-sideband K­
carrier system.

Bright: We got 43-Al later that did pretty well and
that used the common user group.

Harrington: Anyway, we had to redesign all of our
modems.
Bright: But in those days we had to have special
treatment on the telephone lines in order for them to
do a good job with digital communications. You had
to adjust each one. But that was the beginning of the
learning curve. We have grown out of that.
Benington: If the human ear had been phase sensitive,
we might have had SAGE a year earlier.
Bright: Fletcher and Munson did something about the
human ear, you'll recall. They drew a curve of its
acuity, and we used that curve in engineering our
telephone lines. When we were talking about voice
transmission in those days, and/or slow-speed tele­
graph, it was fine for that but it wasn't applicable to
high-speed digital communications without condition­
ing. That problem's been pretty much overcome now.

Everett: We found out a lot of interesting things about
situations we thought were in good shape. For in­
stance, we had to align the radars, and we therefore
had to know where they were. We sent surveying
teams out to find their locations. They surveyed all

SAGE Discussion

. the radars, and we cranked up the system and discov­
ered the radars weren't registering. We eventually
discovered that sometimes tP,ere were mistakes of
miles in the surveyed locations. The location given for
one radar turned out to be in the middle of Long
Island Sound.
Benington: Going back to what followed from SAGE,
in my paper I talk about what I think came out of the
software. The transfer came through people rather
than through publications, and therefore some orga­
nizations benefited a great deal. IBM did. SDC had
some problems in that regard because they thought
they could be nonprofit and do it. They quickly dis­
covered they couldn't do that sort of business as a
nonprofit company, and so in the transition they lost
a lot of good people. But I hear Jay talk about Nat
Sage and Gordon Brown, and clearly they had quite
an impact on him. As the junior member of this team,
I ought to point out that there are 50 or 100 people
whose Nat Sages and Gordon Browns are Jay Forres­
ter. One person is Ken Olsen. I don't think Ken can
talk about how he manages DEC-a very successful
operation-without using Jay as his role model.
Bright: We haven't talked at all about tests and eval­
uations on the fully installed SAGE system. We were
all very much gratified when McGuire was cut over,
tested, and evaluated, with appropriate targets, and it
worked. It was time for us to go back to the people
who were not so enthusiastic about SAGE and say,
"Here, we have something that will track an aircraft
and guide an interceptor to the aircraft. And we can
do it with multiple targets." What I'm getting at is
that the test and evaluation teams consisted of Lin­
coln Laboratory, Bell Laboratories, Burroughs, IBM
(the building people were there to make sure that
everything was okay in the building), and Western
Electric. The process, with that many organizations
involved in test and evaluation, worked very well. I
don't recall that we ran into any controversy as these
things were cut over and put into operation. It seemed
to me pretty smooth. It may be the pink haze of time
that makes me think that now, but I can't remember
an occasion that we didn't go ahead as a fully inte­
grated team.
Tropp: What constituted the word I saw in the docu­
ments I've been looking at: operational, as in, "New
York sector operational 26 June 1958, Boston sector
11 September," etc? Who defined "operational," and
who set up the standards by which a sector either met
or failed at that level?

Bright: With a lot of help, the Air Force did it.

Shiely: There were a whole series of tests that, if
successful, established that the sector was ready for
operational use. As each sector completed its testing,

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 397

SAGE Discussion

it was turned over to the operational command for
use. In the early sectors, it was a very difficult decision
because although originally the Air Force thought that
it could operate SAGE and keep the manual air-defense
system in existence as a backup, it quickly became
apparent that this wasn't possible. Therefore, the
decision to accept a sector meant turning the air
defense of that section of the country over to the SAGE

system.

Tropp: How long did it take the New York sector to
run the test process before the crew was comfortable
with it? Before you were sure the computer was reli­
able, the software debugged sufficiently, and so on, to
where you declared it operational? Was that a one­
year process, a two-year process, a six-month process?

Bright: It wasn't one process. It was an incremental
kind of thing. You went in, you checked out one
element of the system, then you'd work through the
other elements. It was a gradual integration of those
elements. How much time that took I can't remember,
but a systematic integration of various elements took
place.

Shiely: It was measured in months, but it came down
as you went down the system. The first one took so
many months, then the next one took fewer, and so
on. The later sectors were done quite rapidly. The
first sector at McGuire must have been under test for
several months, I think, before it finally went opera­
tional.

Bright: I'm sure it was months, but I have no feel for
how long it took.

Shiely: After the first sector, it was a very quick, rapid
program. A new sector was scheduled to go operational
every two months. The reliability of the machines was
superb, but several sectors were operational before we
were confident that it was going to continue to operate
at those levels.

Everett: The software had to be checked out, too.
Although the programs were basically all alike, each
one had to be adapted to the peculiarities of the sector,
locations of air bases, radars, etc.

Bright: Each sector was different.

Everett: It turned out there were a lot of problems in
the geometry of the sectors-the locations of all the
radars and airbases, the characteristics of the aircraft,
and so on. Then there was the process of keeping the
program up to date. There was a new program that
went out at regular intervals. I've forgotten what those
intervals were.
Benington: They called them models, and it was about
every six months. We had packages that were sub­
models, but SDC, at the end, had a production system
that had four groups in it. There were people in the
field, there were people at home to service the field,
there were people who produced the production pro­
gram, and there were development people who did the
equivalent of the Cape Cod. In order to put BOMARC

in, you'd do it first in a development model-you'd
know what you were talking about-then you'd pro­
duction spec it, give it to the field people, and install
it-2000 people for the entire process.

While I was with SDC over a period of four years,
we missed only one schedule at McGuire by three
weeks-and the colonel at McGuire was furious with
us. Everything else was done on schedule.

Everett: For those who don't know it, t:~1ere are, I
believe, six SAGE centers still running, and they're to
be shut down in 1983. By the end of 1983 they will all
be gone.
Tropp: 1958 to 1983-that's not a bad life span.

I want to thank all of you for participating in this
discussion today. I particularly want to thank Bob
Everett for hosting our gathering and for allowing me
the privilege of being able to share in this occasion.

Bottom row, left to right:
Jacobs, Forrester, Everett,
Bright. Top row, left to right:
Benington, Harrington,
Taylor, Crago, Wieser, Shiely.

398 • Annals of the History of Computing, Volume 5, Number 4, October 1983

Reliability of Components

Foreword

Because this issue of the Annals focuses on the SAGE

system, the following excerpt from Christopher
Evans's 1975 interview with Jay W. Forrester is
timely. (Another excerpt from this tape appeared in
the last issue of the Annals, Vol. 5, No. 3, pp. 297-
301; see Vol. 3, No. 4, p. 417, for details on Evans's
"Pioneers of Computing" series of tapes.)

The pioneering series of first-generation electronic
computers established the environment, architecture,
and fundamentals from which subsequent
developments emerged. In fact, some would argue
that except for exciting new technology (transistors,
chips, printed circuits, etc.), nothing has really
changed.

First-generation computer designers and builders
were plagued by many new problems in order to get
their devices up and running. One overriding concern
was that of component reliability, particularly as
these pioneers charted new territory. They were
concerned with how long the computer they were
building would run before some component failed.
When you think of the vacuum-tube technology of
that era, you can't help but be impressed by the
amount of productive work that was done. In fact, if
your reaction is like mine, you are awed when you
learn that the AN/FSQ-7s in SAGE have not only
been operational since 1958, but have an "up" time
of 99.83 percent. Can we ·say this about most of the
computers being sold today? How many of them will
still be operating in 20 years?

The Q-7 was a direct descendant of Whirlwind,
and it is on the Whirlwind project that people like
Gordon Brown, Bob Everett, and Jay Forrester set
the standards and created the designs that led to the
Q-7 and its extraordinary record over the past
quarter century. In the account that follows,
Forrester speaks directly to the subject of reliability.

-Henry S. Tropp

© 1983 by the American Federation of Information Processing
Societies, Inc. Permission to copy without fee all or part of this
material is granted provided that the copies are not made or distrib­
uted for direct commercial advantage, the AFIPS copyright notice
and the title of the publication and its date appear, and notice is
given that the copying is by permission of the American Federation
of Information Processing Societies, Inc. To copy otherwise, or to
republish, requires specific permission.
© 1983 AFIPS 0164-1239/83/040399-403$01.00/00

Editor's Note

Jay Forrester is one of the great pioneers of the
computer business: director of Digital Computer
Laboratory at MIT, builder of Whirlwind, inventor of
core memory, and chief engineer for SAGE. His
accomplishments are too numerous to mention, but
this brief excerpt from an interview shows us
something of his attitude toward design.

Jay W. Forrester The Whirlwind I computer was
conceived in early 1947. The block diagrams, as even­
tually executed, were completed by Robert Everett in
the spring of 1947. We began to develop the prototype
circuits and to make various tests from 194 7 on into
1949. At that time there was almost no knowledge of
the nature of noise in electronic circuits. There was
no certainty that if you wanted to carry out compu­
tations at a megacycle rate for days at a time without
error, spontaneous random noise wouldn't be in cir­
cuits that might interfere with reliability. Almost
nothing was known about the life of vacuum tubes
beyond 500 or 1000 hours. Everything having to do
with reliability and long-term performance had to be
explored from the ground up.

In the process of doing this we developed a five­
digit multiplier-a first step toward the Whirlwind
computer-that we could put on life tests repeatedly
solving a specified multiplication, automatically
checking the answer, and counting the number of
times that it would make a mistake over very long
periods of time. We found, for example, that there
were missing cycles-switching transients on the
power lines that would feed through the equipment.
We eventually had to isolate our equipment com­
pletely by putting mechanical motors and our own
synchronous generators between the power system
and the electronic computer to keep streetcars and
elevators from introducing an occasional error. After
we'd taken all of these precautions we had a device
that would run for weeks at a time without a compu-

Adapted from "Pioneers of Computing," Tape 4, Science Museum,
London, with permission. Science Museum London copyright.
Categories and Subject Descriptors: K.2 [History of Computing]
-hardware, Whirlwind. General Terms: Design, Experimentation,
Reliability. Additional Key Words and Phrases: core memory, MIT.
Photograph courtesy MITRE Archives.

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 399

Reliability

Norman H. Taylor at the five-digit multiplier in 1948 ..

tational error. We began to show that there was a
possibility of building the kind of reliable electronics
that our objectives required.

Christopher Evans Roughly, when was the five-digit
multiplier completed and working reliably?

J.F. It was completed in late 1947 and was used for
quite some time after that-certainly through 1948
and probably 1949.

C.E. What size was this device?

J.F. It was probably 8 feet high and 10or12 feet long.
It consisted of five parallel registers that would mul­
tiply together two five-digit binary numbers. Now the
equivalent circuitry would be put on a chip smaller
than a match head.

C.E. So, now you had this thing completed. Were there
any doubts about the way in which you should construct
Whirlwind I itself?

J.F. There are always doubts in any new pioneering
effort. The Whirlwind I computer was a 16-binary­
digit machine which many people looked upon as too
short a register length to be of any practical use
because the scientific problems and the problems of
interest to mathematicians were thought to require a
30- or 40-binary-digit length. We chose 16 mainly to
hold down the size and the complexity of the machine.
We looked upon the Whirlwind I computer primarily
as an experimental machine-again, to test out the
feasibility of a computer. But many people expressed
doubts about register length. There were grave doubts
about the costs we were encountering in order to

achieve the reliability we were after. It was a contin­
uous battle to sustain the necessary funding to carry
on the work. People were unconvinced of the idea that
a computer could substitute for experience and judg­
ment and decision making. This has always been and
still is an issue that produces skepticism, doubt, and
a feeling of uneasiness. That was particularly true in
the late 1940s when no one had ever seen it happen.

C.E. Could you say something about the hardware and
the software of Whirlwind I?

J.F. Whirlwind I probably contained more features
that survived into today's computers than any other
machine of its time. It was a machine that had parallel
synchronous logic, meaning that the digits were trans­
mitted in parallel, and they were timed and controlled
by a central clock. The machine at the Institute for
Advanced Study in Princeton was also parallel, but it
used a nonsynchronous logic in which a particular
operation ran its course, and at the end of its comple­
tion it triggered the next step. It was a different kind
of control logic.

We had in the Whirlwind computer the first cath­
ode-ray-tube display that was controlled by the ma­
chine itself. We had the first man-machine interaction
through a cathode-ray tube in which the cathode-ray
tube would display an output, leaving some sort of
decision or question for an operator, who could then
use a light gun, which he would point at the cathode­
ray tube. This would tell the computer what the op­
erator wanted to do and with respect to what part of
the display.

Whirlwind I had a marginal checking system in
which one could, under the control of the machine
itself, alter the voltage on t:\1-e screen grids of vacuum
tubes that would vary the gain and move the particular
set of vacuum tubes up or down with respect to their
normal range of operation. The computer itself at the
same time ran programs to test to see if the tubes still
carried on their functions without error. We could
thus anticipate deterioration of any component that
was occurring gradually. This was perhaps 90 percent
of ultimate failures, so it meant that the marginal
checking system gave an additional factor of ten to
the in-service reliability of the machine.

We had done two things to increase the life of
vacuum tubes. Vacuum tubes were thought to have
about a 500-hour life. If one is going to put 20,000
vacuum tubes in a computer, it is quite intolerable to
have such a short life (a little arithmetic shows that
the machine would run only a few minutes at a time).
First, we had discovered the primary cause of short
life in vacuum tubes. We found that tubes were failing
from an apparent loss of emission caused by the

400 • Annals of the History of Computing, Volume 5, Number 4, October 1983

building up of an insulating barrier on the nickel core
of the cathode, which produced a self-bias in the tube
to cut down current. It was not an inability to emit
electrons, but instead a self-bias that simply shut off
the flow of electrons. The solution turned out to be
the omission of the silicon that had been put in the
nickel to make processing easier. This by itself raised
the effective life of vacuum tubes from 500 hours to
500,000 hours. The marginal checking gave another
factor of ten on that, so the effective life in terms of
failures per 1000 tubes per 1000 hours had gone from
about 500 hours to 5 million hours. This was quite
sufficient to bring vacuum-tube reliability up to a
standard that was not met by transistors until 10 or
15 years after they were first invented and were being
put into computers.

The best-known innovation that was put into the
Whirlwind I computer was the magnetic-core mem­
ory-the random-access magnetic-core memory­
which was developed in the search for reliability. The
Whirlwind computer design was laid out initially in
1947. We felt there was a need for a storage more
reliable than the so-called Williams tube, which many
people were trying to use at that time. We developed
a special storage tube ourselves that had much higher
signal levels. Also, the stored binary digits were dy­
namically self-sustained by a second electron gun. One
electron gun was a reasonably ordinary cathode-ray
beam that was used to find a spot on the face of the
tube and to energize it and to read it. The other
electron gun produced a flood of low-energy electrons,
with grids at the storage surface and a cathode poten­
tial such that electrons flooded the storage surface in
a way that sustained either of two stable states. The
electrons actively regenerated either the low-potential
or the high-potential stored spot. This worked well in
principle-it worked well in individual tubes-but it
relied on a hot cathode and on the secondary emission
characteristics of the storage surface. Both of these
are notoriously difficult to keep operating properly.
The tube was subject to many practical problems that
shortened its life. We were lucky to get a month of
life out of such a tube. The tubes stored 1024 bits and
cost about $1000 each. That was a cost of $1 per bit
per month for high-speed storage. The economics of
keeping a machine in operation with that sort of
storage cost were entirely at odds with our objectives.

~ay if". F'orrester
Systems Dynamics Group
MIT
E-40-294
Cambridge, MA 02139

SAGE at North Bay

Editor's Note

The most obvious characteristic of a SAGE center is its
size-courtesy of vacuum-tube technology and
emphasis on reliability and maintainability. I hope the
readers who get this far have gained some feel for the
size of SAGE, but its true character can only be felt by
those who wander around inside a SAGE center.
Whirlwind had somewhat the same feel, though much
smaller, because the cable racks were exposed.

I remember during the design phase of SAGE that
when I visited Whirlwind, I had a warm, relaxed feeling
walking around inside it, while walking around inside
the FSQ-7 prototype at Lincoln filled me with anxiety.
I thought for a while that the difference had something
to do with the personality of the two machines, but
sometime later I found the Q-7 also gave me a warm
feeling, so it must have been me after all.

Several years ago, a number of us at MITRE
decided we should visit a SAGE site. None of us had
been in one for many years. I don't know what we
expected-a feeling of decay perhaps, dispirited
operators, or that wonder at how small things seem
when we revisit places we knew long ago. I could not
go at the last moment, but the group returned, their
eyes shining with excitement. "It looks brand new,"
they said. "It's clean as a whistle." "The operators are
young, enthusiastic, and proud of SAGE." "It's working
just as it was supposed to-downtime a few hours a
year." "It looks as big as ever."

Unfortunately, I missed the trip to North Bay also,
but I gather that the visitors were impressed. We are
fortunate to have a firsthand report.

In a recent issue of ACM's Communications (Volume
26, Number 2, February 1983, pp. 118-119), Gordon
Bell described a visit that I was privileged to be part
of to the NORAD site at North Bay, Ontario, Canada.
The main purpose of the trip was to view and learn
about the SAGE computer, the IBM AN/FSQ-7. When
Gwen Bell, director of the Computer Museum, first
told me of the plan to organize the trip, my original

Categories and Subject Descriptors: K.2 [History of Computing]
-hardware, SAGE, software, systems. General Terms: Design, Reli­
ability. Additional Key Words and Phrases: North Bay, U.S. Air
Force.
Photograph courtesy USAF Electronic Systems Division History
Office.

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 401

North Bay

reaction-in addition to a strong desire to be pres­
ent-was amazement that a first-generation computer
was still operating. It turned out that most of the SAGE

sites were still using the Q-7, but the U.S. Air Force
was in the process of replacing them with Hughes
computers. The North Bay site was scheduled for
replacement in June 1983, and I was anxious to see
the Q-7 in operation before it was removed. (The
previous spring I had been taken to NASA Ames twice
to see the ILLIAC IV, and both times I found it sitting
vacantly with its insides spread all around the floor.
Now it's too late; the ILLIAC IV is gone-to the Com­
puter Museum.)

Before the trip I read all I could about SAGE (in­
cluding the manuscripts for this issue), but mostly I
reread material on Project Whirlwind. I knew that
Whirlwind had been the basis for much of the com­
puter thinking that went into the design of SAGE.

Careful engineering and an emphasis on reliability
were characteristics of Project Whirlwind under Jay
Forrester, Gordon Brown, and Bob Everett, and I
knew that these were continued on into the SAGE

project. But this knowledge didn't lessen my astonish­
ment that a 1958 first-generation computer of this
size and mission, with 55,000 vacuum tubes that con­
stantly needed replacement, was still operational.

On Friday, October 8, 1982, our group boarded two
aircraft at Hanscom Field and flew to North Bay.
There we were taken by bus to the NORAD site, were
cleared through the gates, and saw in front of us an
opening to a cave in a mountain. We had been told
that we were going to be 600 feet underground, and I
had had a mental image of getting into an elevator
and being whisked to the subterranean site. Instead,
the bus drove into the cave along a narrow 6000-foot
tunnel carved from solid rock. The headlights of the
bus were angled sideways, not forward, because the
tight fit of the tunnel sides was more crucial than
what was ahead. We were awed by the eerie trip and

An entrance to North Bay's underground SAGE site in 1963.

the enormity of the site-inside the mountain is the
three-story 150,000-square-foot building that houses
the Q-7.

It turned out that it really wouldn't have been
necessary for me to do a lot of preparatory reading.
Members of the site staff gave us an excellent briefing.
They explained the hardware architecture, the opera­
tion, the software, the mission, and every aspect in
great detail and clarity. A scale model of the structure
showed all of the rooms on each level, with their
purpose and contents clearly identified. We spent the
next two hours looking at the Q-7 and all of its
components and peripherals-bay after bay of core
racks, marginal-testing racks, racks of spare pluggable
units, etc. We were allowed to work at one of the
consoles where they were running some flight-infor­
mation simulations. I used a light gun on a radar spot
and then read the identification of that particular
aircraft on the screen.

Near the end of the tour, Gordon Bell talked one of
the officers into taking Gwen Bell, Gordon, and me
out of the wing we were in, into a large hole in the
mountain between wings of the building that housed
the monster-sized diesel generators that could power
the installation-marine diesels that could be reversed
without tearing themselves apart. When it was time
to go back, our guide didn't know the digital combi­
nation that opened the door on our side, so there was
a brief moment of panic as we realized that we were
dependent on someone on the other side hearing the
bell we rang and opening the door. Someone did hear
it, however, and on rejoining the group we learned
that the following Monday was a Canadian holiday; it
might have been Tuesday before we were rescued.

Another purpose of the trip was for Gwen Bell to
decide what components she would request for the
Computer Museum collection before the Q-7 was can­
nibalized and destroyed. The museum's new quarters
in Boston (see "News and Notices" in this issue) will
be able to house huge parts of the computer. Some
pieces are small; for example, there are six-tube and
nine-tube pluggable units-certainly choice items.
When we got back on the bus, we noted that a member
of the group had walked out with a six-tube unit. We
told him that he would never get it through customs,
but the next day he told the officers it was scrap, and
they casually waved him through.

On the return trip, Gordon Bell and I spent a good
deal of time discussing what we had seen and reflecting
on it in terms of the contemporary scene. At one point
he said, "Do you realize that we walked inside a
computer? There is no way you can do that with any
computer built today." I absolutely agreed. Three
months later to the day, I stood inside a Cray I and
felt the cool air blow up around me.

402 • Annals of the History of Computing, Volume 5, Number 4, October 1983

This account has deliberately omitted the technical
details of what I saw and learned. Gordon Bell's CACM
report gives them magnificently, and the papers in
this issue give the specifics of the AN /FSQ-7 com­
puters in general. A few numbers continue to awe me,
though: 55,000 vacuum tubes, 135,000 diodes, 13,000
transistors, 7000 pluggable units, 12 drums, all of that
core memory, and still 99.83 percent availability as a
simplex and 99.97 percent as a duplex!

Henry S. Tropp
Department of Mathematics
Humboldt State University
Arcata, CA 95521

A few paragraphs from Gordon Bell's CACM note:1

Bob Everett's paper on the SAGE computer was published
in 1957, and the machine was operational in Canada in
1962. The machine created many patents as by-products,
including perhaps the first associative store (using a drum).
The machine is duplexed with a warm standby (I mean
warm, since the duplexed machine uses about one
megawatt of power to heat 55,000 tubes, 175,000 diodes
and 13,000 transistors in 7000 plug-ins!). The 6-
microsecond, 32-bit-word machine has 4 x 64K x 32-bit
core memories and about the same memory in twelve 10.7-
inch diameter, 2900-rpm drums, six of which are for
secondary memory. There is no use of interrupts, and 1/0
is done in an elegant fashion by loading/unloading parallel
tracks of the drums with the external world completely in
parallel with computing. That is, the 1/0 state becomes
part of the computer's memory state. A single 1/0 channel
is then used to move a drum track to and from the primary
core memory.

The main 1/0 is a scan and height radar that tracks
targets and finds their altitude. The operator's radar
consoles plot the terrain and targets according to operator
switch requests. The computer sends information to be
plotted on 20-inch round Hughes Charactron (vector and
alpha gun) tubes or displayed on small alphanumeric
storage tubes for supplementary information.
Communication lines connect neighboring air-defense
sectors and the overall command. The operating system of
1 million words is stored on 728 tape drives and the drums.

The computer logic is stored in many open bays 15 feet
to 30 feet long, each of which has a bay of voltage marginal
check switches on the left side, followed by up to a
maximum of 15 panels. The vertical panels are about 7 feet
high by 2 feet wide and hold about 20 plug-in logic units.
The separate right and left half of the arithmetic units are
about 30 feet each or about 2 feet per bit. Two sets of the
AMD 2901 four-bit microprocessor slice would be an
overkill for this 32'."bit function today. The machine does
vector (of length 2) arithmetic to handle.the coordinate
operations. The room with one CPU, drum, and memory
is about 50 feet x 150 feet, and the room with two CPU
consoles, tapes, and card 1/0 printer is about 25 feet x 50
feet. The several dozen radar consoles are in a very large
room.

1 Reprinted with permission from Communications of the ACM, Vol.
26, No. 2, February 1983. Copyright 1983, Association for Comput­
ing Machinery, Inc.

Epilogue

As you read this, it is probable that the last SAGE
center has shut down and its multitude of parts is on
the way to various museums, office shelves, and
scrap heaps. It is too bad that most of the things
that electronics people build these days have short
lives-much shorter than our own. It is our own
fault, of course. If we did not improve things so
rapidly, they would not become obsolete and end up
on scrap heaps quite so soon. Still, it seems to me
that engineers had somewhat greater satisfactions in
years gone by. A dam, a bridge, even a power plant
will probably outlast its designer. As I drive through
Cambridge, I pass a filter plant designed by my
father 50 years ago. It gives me a good feeling.

Yet SAGE has left behind a legacy of ideas and
organizations-a different kind of legacy from a
Hoover Dam, but a legacy nonetheless. SAGE was the
first computer-based command-and-control system.
There are now SAGE-like systems all over the world.
The Lincoln Laboratory at MIT, the MITRE
Corporation, the System Development Corporation,
and the Air Force Electronic Systems Division are a
few of the organizations created to build SAGE ·that
are still thriving.

SAGE trained hundreds of digital-system design
engineers, thousands of computer programmers, and
thousands of digital-computer field engineers who
gave great impetus to the new field of digital
computers.

Computer-driven displays, on-line terminals, time­
sharing, high-reliability computation, digital signal
processing, digital transmission over telephone lines,
digital track-while-scan, digital simulation, core
memories, computer networking, duplex computers­
there is an endless list of things done first by SAGE.

All of these things would have been done
eventually, and many of them were unrecognized and
have since been reinvented, but I think it is clear
that SAGE gave the computer field a real boost
forward and left its mark on digital computers and
on human society.

Robert R. Everett
Editor, Special Issue

Annals of the History of Computing, Volume 5, Number 4, October 1983 • 403

