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About this Issue 

This Special Issue on SAGE, the pioneering 
computer-based air-defense system, has had, like 
SAGE itself, a complicated beginning. Two old SAGE 
hands, Mort Astrahan and Jack Jacobs, wrote an 
article on the design of the SAGE computer and 
submitted it to the Annals. Herb Benington, another 
old SAGE hand, was looking, at the time, into the 
possibility of republishing his 1956 paper on the 
development of the software for SAGE. Bernie Galler 
suggested that an entire issue of the Annals be 
devoted to SAGE, and in a weak moment, I agreed to 
act as editor. I recruited Jack Jacobs and Louise 
Meyer to help me, and we set to work. 

SAGE was a very large enterprise involving dozens 
of organizations and thousands of people. A list of 
just the major contributors would be quite long. It 
was obvious that we could not hope to cover all the 
major aspects of SAGE-its conception, design, 
production, operation, test, funding, politics, 
management, organizational relationships, and so on. 
Instead, I took the editor's privilege of looking at 
SAGE from my own limited perspective of design and 
test. I hope those of you who read this issue will gain 
some feel for what SAGE was, for the technical 
environment in which it was created, the kind of 
people who designed it, and a little about how they 
felt about it. Speaking as one of them, I feel that 
SAGE was a great experience, socially as well as 
technically. The opportunity to be a part of a truly 
important enterprise-to be in at the beginning of a 
new and revolutionary art, to do things for the first 
time and see them built and work as they were 
supposed to-such an opportunity comes to only a 
few lucky ones. We were very lucky, and I hope that 
through the barrier of words comes a little of the 
excitement and enthusiasm that gripped us all and 
that we still remember. 

The issue is more of a sampler than a unified 
description. There are two papers from the 1950s 
and three new ones on the computer, on radar data 
transmission, and on test and experiment. There is 
an overview and-perhaps the heart of the issue-a 
discussion by some of the participants representing 
some of the major organizations. Reliability was the 

fundamental driver of the design of SAGE, and we are 
fortunate to have some remarks from Jay Forrester 
on that subject. Each paper was written to stand 
alone and therefore has some introductory material 
that may be redundant. I hope you will forgive us for 
any duplication. Finally, there is a report of a recent 
trip to North Bay, Ontario, to see a SAGE center in 
operation. 

This issue appears in a significant year for SAGE. 
There are, as I write, six SAGE centers still in 
operation, and running very well, I might add: doing 
their job, meeting their reliability specifications 
(downtime less than 4 hours per year), all 55,000 
vacuum tubes in each center glowing softly. SAGE is 
now 25 years old; the first center went operational 
on July 1, 1958. The remaining ones contain, as far 
as I know, the oldest operating computers in the 
world. But this year is the last. By the end of 1983, 
all the remaining SAGE centers will be shut down, 
and the task of air defense for the United States and 
Canada will be carried out by new centers equipped 
with modern hardware but logically and 
operationally the lineal descendants of SAGE. 

Only a few of the major designers of SAGE are 
represented in this issue. I will not attempt to name 
the others. There are many, most but not all of 
whom I knew and whose faces and accomplishments 
I remember, although I can no longer remember 
names. In my view, there were only two who were 
absolutely necessary to SAGE, without whom there 
would have been no SAGE: George Valley and Jay 
Forrester. Jay was the leader of the Whirlwind group 
at MIT, the leader of the SAGE division at Lincoln 
Laboratory, the inventor of core memory, and the 
strong intelligence at the heart of the SAGE design. 
George Valley was the chairman of the Air Force 
Scientific Advisory Board's Air Defense Systems 
Engineering Committee, assistant director and later 
associate director of Lincoln. Without George there 
would have been no Lincoln Laboratory and no 
SAGE. I am sorry he was not able to participate in 
our discussion, and I hope that someday he will 
publish his own memoirs of his key role in the 
nation's defenses. 
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The role of the U.S. Air Force in the design of 
SAGE is given too little attention in this issue. 
Obviously the Air Force had the need and provided 
the funding that created SAGE. Beyond that, 
however, many air force officers played roles of 
fundamental importance. Senior officers, such as 
General Earle E. Partridge, contributed their 
understanding and support in good times and bad. 
Other officers managed project offices, participated 
in the operational design, planned and ran tests and 
exercises, trained and provided crews, and did (and 
did well) a thousand things that had to be done. I 
hope their story will be told in some other place. 

I would like to express my appreciation for the 
dedicated efforts of all the authors and participants 
and for their patience with the many telephone calls. 
The assistance and encouragement of Bernie Galler 
and Nancy Stern have been invaluable. Ed Galvin, 
MITRE archivist, did his usual superb job of 
collecting information and pictures. Without Mondy 
Dana there would be no Annals; without Louise 
Meyer there would be no issue on SAGE. 

Robert R. Everett 
Editor, Special Issue 

Contributors 

Morton M. Astrahan (Ph.D. 
Northwestern University 1949) joined 
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system. From 1956-1970 he was at IBM's Advanced 
Systems Development Division in San Jose (with 
two years in France as advisor to the IBM European 
Laboratories). In 1970 he joined the Research 
Division, where he is currently engaged in the 
development of relational database systems. He 
organized and was first chairman of what is now the 
IEEE Computer Society. Since 1952 he has helped 
manage the Joint Computer Conferences and is now 
on the AFIPS National Computer Conference 
Committee. He is a Fellow of IEEE and received the 
AFIPS Distinguished Service Award in 1975. 

Herbert D. Henington (B.S.E.E. 
MIT; B.A. Oxford University) worked 
for MIT and the System 
Development Corporation on 
developing the prototype software for 
the SAGE system. In 1963 he joined 
the Office of the Secretary of 

Defense. From 1973-1981 he was vice-president of 
the MITRE Corporation, serving as general manager 
of its Metrek Division and Washington Center. He 
went back to SDC in 1981 and currently manages a 
project to modernize data processing for the Naval 
Intelligence Command. 

Robert Bright attended the 
University of Pennsylvania and 
worked for the Bell Telephone 
Company of Pennsylvania. He was 
later transferred to the Western 
Electric Company as a radar systems 
engineer and mobile radio and 
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Telephone & Telegraph Company as a radio 
engineer. He worked with Western Electric as 
superintendent of systems engineering on the SAGE 

project and then rejoined AT&T in 1958. In 1959 he 
became executive communications administrator of 
the Washington Office, where he was in charge of 
worldwide communications services for the U.S. 
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president. He was transferred to AT&T Long Lines 
Department in 1963. He was appointed director of 
Government Communications Projects at Western 
Electric in 1966 and general manager of Government 
Projects and International Systems in 1969. He 
retired from Western Electric in 1976 and now lives 
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management positions on Project 
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currently a technical specialist in the Systems 
Architecture organization at FSD headquarters in 
Bethesda. 

Robert R. Everett (B.S.E.E. Duke 
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student and in 1943 as a staff 
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SAGE Overview 
JOHN F. JACOBS 

Editor's Note 

I would like to thank Jack Jacobs for this overview, 
which gives a brief review of the history of SAGE and 
of some of the organizations involved. I cannot think 
of anyone better able to discuss SAGE than Jake who, 
along with his many other contributions, created and 
ran the Systems Office that coordinated the design 
efforts of the numerous organizations having 
subsystem design responsibilities. We at Lincoln had 
nominal overall design authority, but we were not 
foolish enough to insist on it very often. Almost all the 
time, the Systems Office would handle problems by 
investigating them, getting everyone's input, and then 
coming up with a solution with plenty of backup and 
justification. Everyone's agreement was then sought, 
usually in formal coordination meetings, which 
frequently had as many as a hundred participants. 

Even though there had been no warning of the Japa­
nese attack on Pearl Harbor, the American public 
maintained a complacent attitude toward the lack of 
adequate air defense in the years right after the end 
of World War II. Much of this complacency may have 
been due to the fact that the United States had devel­
oped the atomic bomb and had demonstrated its 
deathly potential. Although there was an uneasy fear 

© 1983 by the American Federation of Information Processing So­
cieties, Inc. Permission to copy without fee all or part of this 
material is granted provided that the copies are not made or distrib­
uted for direct commercial advantage, the AFIPS copyright notice 
and the title of the publication and its date appear, and notice is 
given that the copying is by permission of the American Federation 
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Agreement was almost always achieved, not because 
nobody wanted to object, but because the sheer 
hopelessness of trying to upset the carefully worked 
out and documented Systems Office solution was 
obvious to everyone. Besides, Lincoln was 
responsible, and no one wished to usurp that 
important but highly risky position. Since no design 
decision was considered valid within the community 
without Lincoln concurrence, one was faced with 
agreeing or else taking the onus for holding up the 
whole schedule and bringing down the wrath of the 
entire community on himself. To make this work, of 
course, the Systems Office had to be prompt, 
accurate, and thorough. At this task, as at all others, 
Jake was superb. 

that Russia, the estranged ally, would someday possess 
this technology, America was thought to be secure in 
her arms supremacy. 

The August 1949 disclosure to the Truman admin­
istration by U.S. intelligence that the Russians had 
exploded a nuclear bomb-and had developed bomb-· 
ers capable of carrying such a device over the North 
Pole and into the United States-jolted America out 
of her complacency and into the Cold War. One of the 
groups in the Department of Defense acting on this 
information (which was not made public until late in 
September) was the newly formed Air Force Scientific 
Advisory Board. One of the board members, George 
E. Valley from MIT, proposed that a group of experts 
be assembled to address themselves to the suddenly 
paramount issue of U.S. air defense. As a result of 
that recommendation, the Air Defense Systems En­
gineering Committee (ADSEC)-also known as the 
Valley Committee-was formed in December 1949 
with Valley as its chairman. 

The Valley Committee's first meeting marked the 
genesis of a novel concept for an air-defense system 
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that would become known several years later as the 
SAGE system. SAGE-Semi-Automatic Ground Envi­
ronment-was deployed eight years after Valley's 
committee was first assembled. As it evolved, SAGE 
spawned new technologies, businesses, agencies, and 
careers. The history of SAGE has many threads run­
ning through it that weave a pattern or legacy; some 
of the principal elements that comprise SAGE are 
discussed later in this issue. SAGE became the first 
major command and control system; Whirlwind, 
MIT's pioneering digital computer, played a crucial 
role as the system's heart. 

In a matter of months members of the Valley Com­
mittee concluded that the existing air-defense net­
work, which was left over from the war and consisted 
of a few large radars and manual methods of process­
ing and relaying radar data, was almost wholly inad­
equate. They proposed a larger number of smaller 
radars for greater coverage nationwide, with commu­
nication lines between the areas of coverage, and 
centralized, automated systems to handle the infor­
mation. They recommended that the existing system 
be upgraded as quickly as possible by a competent 
technical organization, and that the longer-range so­
lution should include extensive use of computers to 
handle surveillance, control, and bookkeeping func­
tions. 

The ADSEC recommendations were set in motion 
at MIT through Project Charles, an air-defense study 
group headed by F. Wheeler Loomis, on leave from 
the University of Illinois. The group consisted of a 
number of experts (including Valley) from the scien­
tific community. After a thorough review of the exist-

January 1956 press 
conference announcing 
the SAGE system for 
continental air defense. 
Left to right: Admiral 
Edward Cochran, George 
E. Valley, Major General 
Raymond G. Maude, 
Colonel Dorr Newton. 

ing situation, Project Charles recommended, first, that 
the existing manual system be upgraded (Bell Labo­
ratories and Western Electric were later chosen to 
undertake this upgrading, which came to be known as 
the Continental Air Defense System (CADS) project), 
and second, that a research laboratory be established 
to undertake the long-range development of a more 
capable ultimate system. Project Lincoln, later known 
as Lincoln Laboratory, was established in 1951. 

While credited with the development of SAGE, Lin­
coln benefited from work done in other research lab­
oratories. Lincoln drew both ideas and personnel from 
these laboratories and adapted their products or tech­
nologies to the air-defense problem. One of the most 
dramatic innovations from another laboratory was the 
Whirlwind computer, originally developed in the late 
1940s by MIT's Digital Computer Laboratory as a 
computer for a navy flight trainer and airplane stabil-
ity analyzer. · 

Whirlwind was the first real-time control computer. 
Lincoln considered it a good candidate for the air­
defense control machine because it had been designed 
to meet two real-time control needs that were critical 
to the air-defense problem: fast processing speed and 
maximum reliability. The research and development 
involved in attaining speed and reliability for Whirl­
wind laid the groundwork for the design of the SAGE 
computer. 

In 1950 Jay W. Forrester invented and led the 
development of the random-access core memory as a 
replacement for the then-current. but limiting tech­
nology of cathode-ray-tube (CRT) storage. Compared 
to the cathode-ray memory in Whirlwind, the core 
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memory doubled the operating speed, quadrupled the 
input data rate, increased the mean time to failure 
from two hours to two weeks, and reduced the main­
tenance time from four hours a day to two hours a 
week. Whirlwind personnel also emphasized tube re­
liability in order to overcome the problem of frequent 
tube failures that plagued the early generation of 
computers. Whirlwind staff, working with tube man­
ufacturers, developed special tubes that were less 
prone to failure than other tubes. Whirlwind staff also 
developed marginal checking, a procedure for contin­
ually monitoring the deterioration of vacuum tubes. 
This procedure allowed deteriorating tubes to be iden­
tified before actual failure. 

Lincoln drew from work done at the Air Force 
Cambridge Research Laboratory (CRL) on data com­
munication. Among CRL's communication innova­
tions that were adapted for SAGE was a technique 
called slowed-down video, which provided, by digital 
transmission over phone lines, a continuous picture of 
what was in the range of the radar. Another CRL 
technique put to use in SAGE was a radar processor 
that included a beam-splitting device capable of de­
termining the center of the beam after the beam swept 
across a target, thus giving increased angular accuracy 
of the target location. CRL also initiated a scheme for 
sending generalized digital data over a standard phone 
line. 

As soon as the component parts of the system were 
developed, Lincoln Laboratory produced an experi­
mental air-defense system called the Cape Cod Sys­
tem, which first coordinated the various components 
of the system and realized its capabilities. In 1952, 
those working on the Cape Cod project demonstrated 
the system's abilities to track and control aircraft and 
its capabilities for surveillance and weapons control. 
The Cape Cod System was the first to use computer 
time-sharing and to use extensively CRT display con­
soles and light guns to transfer information from the 
screens to the computer. 

The Cape Cod System used the Whirlwind com­
puter, but a more reproducible, maintainable machine 
was required for the deployed system. The successor 
to Whirlwind was the FSQ-7, a computer jointly de­
veloped by Lincoln and IBM and specifically designed 
to meet the air-defense needs. 

The final SAGE plan called for duplex computers 
located at direction centers throughout the country. 
The FSQ-7 was the first system to use this duplex 
computer scheme. It was designed to have one com­
puter in active control and one to serve as a test 
machine capable of assuming the operational load 
should a breakdown occur. The FSQ-7 was one of the 
earliest production machines to incorporate random­
access core memory. (This technology serves as an 
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example of how a military development can spin off 
commercially: core memory, initiated for the FSQ-7, 
actually made its first appearance in a production 
machine in 1955 in IBM's 704.) The FSQ-7 also in­
corporated a dual arithmetic element that by simul­
taneous processing of both the X and Y positions of 
the data, made possible even greater speed than the 
Whirlwind computer. Finally, the experience of joint 
design by Lincoln and IBM laid the groundwork for 
later coordination among the many organizations that 
were to become involved in the SAGE production. 

The software for the FSQ-7 broke ground in pro­
gramming. Such a large operating program was never 
required before the FSQ-7. Furthermore, the program 
had to be developed with few qualified programmers 
and few of the programming aids available today. A 
result of programming the FSQ-7 was the experience 
gained in developing large-scale programs of the kind 
SAGE would require. Hundreds of inexperienced pro­
grammers received formal and hands-on training that 
would enable them to program for SAGE, and the first 
sophisticated utility system containing the compiler, 
the checker, and the communication pool was devel­
oped. 

SAGE NOMENCLATURE 

Whirlwind Developed as a high-speed, parallel, synchro­
nous digital computer for a variety of applications. 

Whirlwind II Second-generation Whirlwind computer, de­
veloped for use in the air-defense system. Initial name of 
the SAGE computer prototype. 

AN/FSQ-7 (also FSQ-7, Q-7) Air Force nomenclature for 
the production version of Whirlwind II. This computer 
served as the active element at the sector level in the SAGE 

direction centers. 
AN/FSQ-8 (also FSQ-8, Q-8) Modified FSQ-7 computer 

with specialized display system used at the division (multi­
sector) level in the SAGE combat centers. 

XD-1, XD-2 Single-computer prototypes of the AN/FS0-:7. 
One was installed at IBM's Poughkeepsie location, the 
other at Lincoln Laboratory. 

TX-0 Experimental, transistorized next-generation com­
puter system used to develop new techniques to replace 
AN/FSQ-7 vacuum-tube technology. 

AN/FSQ-32 Proposed transistorized replacement for the 
AN/FSQ-7. A single model was built and installed at Stra­
tegic Air Command Headquarters. 

AN/FST-1 Radar data-processing and transmitting equip­
ment employing so-called slowed-down video technique. 
Designed by Lincoln Division 2 and built by Lewyt Corpo­
ration for the gap-filler radars. 

AN/FST-2 Radar data-processing and transmitting equip­
ment which converted analog radar signals to a digital 
format. Also reduced clutter and performed beam splitting. 
Designed by Lincoln Division 2 and built by Burroughs 
Corporation for the SAGE system. 
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Direction centers typically were 
four-story buildings with floor 
plans similar to this one. The SAGE 
FSQ-7 duplex computers occupied 
the entire second floor. Air cooling 
and ducting equipment was located 
on the first floor, along with 
telephone frames, cables, and 
equipment needed to maintain 
communications and radar data 
flow. The power house was 
attached to the operations part of 
the building by a common wall at 
the first floor. Most of the third 
floor was a service area for the 
operations room above, and also 
contained office and storage space, 
the subsector command post, and 
the Kelvin-Hughes projector and 
air-situation display screen. The 
fourth floor of the center housed 
the operational areas, where air 
force staff supervised each of the 
major air-defense functions 
(weapons direction, identification, 
air surveillance, etc.) from separate 
areas. (Illustration by Bernard 
Shuman, MITRE Corporation.) 
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Lincoln played the primary role in SAGE develop­
ment until research proved the conceptual system was 
feasible. The focus then turned to producing the sys­
tem. Since Lincoln was chartered to do only the re­
search and development work, production fell outside 
its realm of responsibility. Various commercial man­
ufacturers were sought to produce the actual SAGE 

components. Because of its work on CADS, Western 
Electric was chosen to provide the administrative 
support, engineering services, acceptance testing, and 
evaluation for the project. Lincoln retained responsi­
bility for initial systems engineering, central design, 
and the master operating program. IBM was to follow 
through on the production computer, and a split-off 
from the Rand Corporation, the System Development 
Corporation, whose staff was familiar with program­
ming and the air-defense problem, assumed responsi­
bility for the evolution of the operational program. 
The Burroughs Corporation was chosen to produce 
the FST-2, which included the beam splitter, and 
AT&Twas given responsibility for digital ground com­
munications. The coordinating agency was the Air 
Defense Engineering Services (ADES) project office 
in New York, directed by Colonel Richard M. Osgood 
from the Air Materiel Command (AMC) and assisted 
by Colonel Albert R. Shiely from the Air Research 
and Development Command (ARDC). Establishing 
the ADES office represented the first attempt to apply 
a systems approach to the development of an elec­
tronic system. 

Once SAGE was considered operational, the empha­
sis turned toward integrating existing and new weap­
ons into the system. In the late 1950s the air-defense 
system was relatively fragmented; many new weapons 
were being developed, but the authority for weapons 
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development was dispersed. For the new weapons to 
have maximum utility, the operation of all systems 
had to be coordinated. This meant, especially to the 
people at Lincoln, integration with the SAGE system. 

The original SAGE program was designed to control 
manned interceptors. A new series of interceptors, the 
F -102 and F -106, had to be included. By the late 1950s, 
control of weapons such as Nike, the ground-to-air 
missile developed by Bell Telephone Laboratories and 
Western Electric, and BOMARC (Boeing-Michigan 
Aeronautical Research Center) A and B, the Air Force 
primary defensive missile, had to be integrated with 
SAGE. New systems, such as the Airborne Long Range 
Input (ALRI) system, which used the first airborne 
radar platforms; the Texas Towers, a string of early­
warning radars off the coast of New England; and the 
frequency diversity radars, a family of radars operated 
on different frequencies to reduce the threat of jam­
ming, also had to be tied in. 

Lincoln provided the initial systems engineering 
work; however, the continued modification and adap­
tation of the system for further integration was not 
the laboratory's responsibility. As a first attempt to 
coordinate weapons integration, the Air Force created. 
the SAGE Weapons Integration Group (SWIG), com­
posed of air force and weapons manufacturers person­
nel. This organization had little authority, little tech­
nical expertise, and little consensus of purpose; it 
ultimately lasted less than a year. The need for an 
organization with a broader base of power and with 
participants whose primary concern was integration 
became clear. In 1957 the Air Force established a 
higher-level Air Defense Systems Management Office 
(ADSMO), staffed by ARDC, AMC, and Air Defense 
Command (ADC), to attend to the integration prob-

By the time SAGE was fully deployed in 1963, U.S. 
air-defense coverage was the responsibility of 23 
geographically determined sectors. The heart of 
each air-defense sector was its direction center, 
where air-surveillance information from radars 
within the sector was received, interpreted, and 
displayed by the twin AN/FSQ-7 computers to the 
sector's commander and staff. 

The New York air-defense sector was the first to 
be declared operational in July 1958, during 
ceremonies held at McGuire Air Force Base near 
Trenton, N.J. The sector's direction center at 
McGuire, shown in this 1958 photo, is today 
headquarters for the 21st Air Force. 
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SAGE CHRONOLOGY 

1949 

Aug. Russians detonate atomic device. 
Nov. George E. Valley, MIT, proposes to Theodore von Karman, chairman, Air Force Scientific Advisory Board, that a 

study of air-defense requirements be undertaken. 
Dec. Air Defense Systems Engineering Committee (ADSEC) is established, with Valley as chairman. 

1950 
Sep. First MIT experiments transmitting digitized data from Microwave Early Warning (MEW) radar at Hanscom Field 

(Bedford, Mass.) to Whirlwind computer in Cambridge, Mass., over commercial telephone lines. 
Oct. ADSEC's final report is issued, defining the air-defense system that will become known as SAGE. 
Dec. Gen. Hoyt S. Vandenberg, Air Force Chief of Staff, asks MIT to establish and administer an air-defense laboratory, 

and to perform an intensive investigation of the air-defense problem. 

1951 
Jan. Air Force contracts with Bell Telephone Laboratories to improve existing ground-radar-based air-defense system. 
Jan. Air Force contracts with University of Michigan to expand ballistic missile program into a system for air defense. 
Feb. "Project Charles" established at MIT for short-term investigation of air-defense problem. 
Apr. First live demonstration of automatic aircraft interception using Whirlwind computer and MEW radar. 
Jul. "Project Lincoln" established at MIT as laboratory for air defense-original charter for MIT Lincoln Laboratory. 
Aug. Air Force Air Research and Development Command (ARDC) assumes responsibility for administration of Project 

Lincoln. 
Oct. MIT's Whirlwind staff at the Digital Computer Laboratory joins Project Lincoln as Division 6. 

1952 
Feb. Secretary of the Air Force T. K. Finletter assigns top priority to air-defense matters; promises MIT whatever funding 

required. 
Apr. Name "Project Lincoln" changed to "Lincoln Laboratory." 
May Memory Test Computer (MTC) under design. 
Jun. Plans for "Cape Cod System" published-scaled-down prototype of nationwide SAGE system. 
Jul. Lincoln considering several manufacturers for production of air-defense computer. 
Oct. IBM awarded subcontract by Lincoln to study computer project; Division 6-IBM engineering collaboration under way. 

1953 
Jan. 
Jan. 
Mar. 
May 
Jun.­
Jul. 
Summer 
Aug. 
Sep. 
Sep. 
Nov. 
Dec. 

1954 

Lincoln publishes Technical Memorandum No. 20-a proposed air-defense system called "Lincoln Transition System." 
First Division 6-IBM technical meeting, Hartford, Conn. 
Lincoln publishes report, "Cape Cod System and Demonstration." 
ARDC decides to pursue Lincoln Transition System and phase out University of Michigan system. 
Division 6-IBM "Project Grind" meetings. 

Division 6 staff moves from MIT in Cambridge to Lincoln Laboratory in Lexington. 
First bank of core storage wired into Whirlwind after MTC tests succeed. 
IBM receives contract to produce two single-computer prototypes: the XD-1 and XD-2. 
Cape Cod System fully operational. 
Decision made to have duplex computer system. 
Cape Cod System tracks 48 aircraft. 

Feb. First production contract for SAGE computer-called the AN/FSQ-7-awarded to IBM. 
May Air Materiel Command establishes Air Defense Engineering Services (ADES) at Wright-Patterson Air Force Base for 

acquisition of the Lincoln Transition System. Western Electric becomes involved in ADES management. 
Jul. Lincoln Transition System is renamed SAGE-Semi-Automatic Ground Environment. 
Sept. ADES moves to New York City and acquires representatives from ARDC, ADC, and AMC. 

1955 
Mar. "Red Book" operational plan is published-complete definition of SAGE. 
Apr. ADES becomes part of newly formed Electronic Defense Systems Division. 
Jun.- Simplex version of AN/FSQ-7 (XD-1) installed at Lincoln by IBM. 
Jul. 
Dec. System Development Division emerges from Rand Corporation. 

1956 
Feb. Development of TX-0 announced-experimental transistorized computer. 
Apr. Lincoln urges Air Force to find agency to manage integration of weapons with SAGE system. 



lem; ADSMO suffered failings similar to SWIG's: it 
was still at too low a level and had too little technical 
support to have any clout. 

By way of strengthening ADSMO, the Air Defense 
Systems Integration Division (AD SID) was formed, 
with a general officer, Major General Kenneth P. 
Bergquist, in charge. Still, technical support was re­
quired. MIT, unwilling to let Lincoln get more deeply 
involved in SAGE deployment by continuing to supply 
the technical support, refused a role as technical ad­
viser but agreed to help establish an organization 
separate from Lincoln and MIT to provide the nec­
essary technical support. The organization, which 
came to be known as the MITRE Corporation, was 
formally established in 1958. One of its first respon­
sibilities was to serve as technical adviser to ADSID 
on integrating weapons under SAGE. 

Further coordination difficulties occurred in the late 
1950s and early 1960s when new command and control 
systems such as ballistic missile warning, air commu­
nication, and satellite surveillance were developed. 
Like the original weapons systems, these systems were 
all developed independently, and there was no guar­
antee of their coordinated operation. To meet the need 
to coordinate the new command and control systems, 
the Air Force Command and Control Development 
Division (C2D2

) was formed in 1963. Soon C2D2 was 
subsumed under a high-level organization for weapons 
and systems integration, the Electronic Systems Di­
vision (ESD), which included the development divi­
sions from ARDC, and AMC, and C2D2

• 

The first SAGE direction center went operational in 
July 1958 at McGuire Air Force Base. SAGE was fully 
deployed by 1963. In total; 23 direction centers, three 
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combat centers, and one programming center were 
built. Because each center was duplexed, there were 
54 CPUs in all. In the intervening years, the original 
SAGE plan underwent modification and expansion. In 
1957, when Russia launched Sputnik, the United 
States became increasingly concerned over the special 
vulnerability of the SAGE system, whose computers 
were located at Strategic Air Command (SAC) bases­
bonus targets in a ballistic missile attack. The idea of 
Super Combat Centers (SCCs) evolved: deep under­
ground direction centers housing the new AN /FSQ-
32 computer. The AN/FSQ-32 computer replaced the 
outdated vacuum-tube technology of the FSQ-7 /8 with 
transistor technology. The idea of the SCC was 
scrapped in favor of the less costly Back-Up Intercep­
tor Control (BUIC) system, which provided automation 
at the radar sites as well as at the direction centers. 
The backup automation ensured air-defense capabili­
ties, even if the SAGE direction centers fell under 
attack. 

As of this writing, in mid-1983, six SAGE direction 
centers are still in operation: Hancock Field, New 

. York; Fort Lee, Virginia; McChord Air Force Base, 
Washington; Malmstrom Air Force Base, Montana; 
Luke Air Force Base, Arizona; North Bay, Ontario, 
Canada. Some of the FSQ-7s have been operating for 
more than 20 years. SAGE is now being phased out in 
favor of a new system that emphasizes FAA radars 
and new Regional Operational Control Centers 
(ROCCs). Because SAGE never saw actual combat, it 
is difficult to evaluate its effectiveness, but the system 
merits appreciation simply for its contributions to 
both the computer-communications field and air de­
fense. 

Jun. IBM's first production FSQ-7 system accepted in manufacturing test cell. 
Sep. Air Force asks Lincoln to manage weapons integration task; Lincoln declines. 
Nov. ARDC holds conference on weapons integration problem. 
Dec. Experimental SAGE Sector (ESS) begins shakedown tests. 
Dec. System Development Division of Rand begins independent operation as System Development Corporation. 
Dec. ARDC recommends establishment of Air Defense Systems Management Office (ADSMO) to oversee integration. 

1957 
May SAGE Weapons Integration Group (SWIG) assembles at Hanscom Field. 
Jun. Lincoln urges that Division 6 take over weapons integration responsibility. 

1958 
Mar. Secretary of the Air Force proposes to MIT that a new organization be formed to provide systems engineering 

support to ADSMO. 
Jul. First of 24 SAGE direction centers operational at McGuire Air Force Base, New Jersey. 
Jul. Division 6 becomes basis of new systems engineering organization, incorporated as the MITRE Corporation. 

1963 
The SAGE system is fully deployed in 23 air-defense sectors: 22 in the United States and one in Canada. 

1983 
Jan. Six SAGE systems still running. 

1984 
Jan. All SAGE systems shut down. 
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Environment (SAGE) system and how it developed. 
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Editor's Note 

The definition of the SAGE system evolved from the Air 
Defense Systems Engineering Committee (Valley 
Committee) concept through many modifications as 
Lincoln Laboratory, the other contractors, and the 
U.S. Air Force faced fiscal, technical, and operational 
realities. By 1956, the definition of the design of SAGE 

was substantially fixed; most of the critical 
subsystems had been tested in either the Cape Cod 
System or the Experimental SAGE Sector. Adequate 
money was available. The prime contractors were 
able to predict how long it would take to do their jobs. 
Instead of writing a new paper on the definition of the 
design of SAGE, we have chosen to reprint a paper 
written in 1957, the year before the SAGE system 
became operational. The paper describes SAGE and all 
its subsystems as it was understood at the time. 

By 1957, some of the SAGE direction-center 
buildings had been built and some of the subsystems 
had been installed. The System Program Office was 
functioning effectively, and all the participants had 
planned their actions according to a master schedule 
prepared by the Air Defense Engineering Services 
Project Office. The following paper was presented at 

© 1957 IRE (now IEEE). Reprinted with permission from Proceed­
ings of Eastern Joint Computer Conference, Washington, D.C., 
December 1957, pp. 148-155. 
Authors' Addresses: R. R. Everett and C. A. Zraket, MITRE Cor­
poration, Burlington Road, Bedford, MA 01730. H. D. Benington, 
System Development Corporation, 7929 Westpark Drive, McLean, 
VA 22101. 
Illustrations courtesy MITRE Archives. 
© 1983 AFIPS 0164-1239/83/040330-339$01.00/00 

the Eastern Joint Computer Conference in December 
1957 in Washington. Changes made in the system 
after that time were generally those required to adjust 
(cut back) the system to match the available monies 
and to correct for the overestimates made by the 
designers. The changes also reflected the declining 
priority of air defense, the growing awareness of the 
need for integration, and the mechanisms set up to 
control the evolution of the system. Nevertheless, the 
paper is an excellent description of the system that 
was initially deployed. 

The Requirement of SAGE 

The past decade has shown an increase in the air 
threat to this country to an extent that has outdated 
manually coordinated traffic-handling techniques and 
manual data processing. General Earle E. Partridge, 
Commander-in-Chief, North American Air Defense 
Command, stated (U.S. News & World Report, 6 Sep­
tember 1957) the need for a defense system that is 
prepared to work instantly and that will blanket the 
entire United States. Until recently, we have relied on 
an air-defense processing system whose traffic-han­
dling techniques were almost identical to those used 
during the Second World War. Fortunately, there has 
been substantial improvement in our inventory of 
automated air-defense components. These include im­
proved radar systems, automatic fire-control devices, 
navigational systems, and both missiles and manned 
aircraft of high performance. But successful air de-
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Figure 1. A SAGE direction center building contains 
power-generation and computing equipment, operational 
areas for directing sector operation, and office and 
maintenance facilities. Data are transmitted to this center 
both automatically and by voice phone. The center 
communicates with adjacent SAGE centers and transmits 
guidance data to weapons under its control. 

fense requires both good components and intelligent 
utilization of these components. More important, in­
telligent commitment of new weapons requires up-to­
date knowledge of the complete enemy threat and of 
the success of weapons already committed. 

The air-defense data-processing problem is one of 
nationwide data-handling capability: faciliti~s for 
communication, filtering, storage, control, and dis­
play. A system is required that can maintain a com­
plete, up-to-date picture of the air and ground situa­
tions over wide areas of the country; that can control 
modern weapons rapidly and accurately; and that can 
present filtered pictures of the air and weapons situ­
ations to the air force personnel who conduct the air 
battle. 

The Semi-Automatic Ground Environment Sys­
tem-SAGE-was developed to satisfy these require­
ments. SAGE is a large-scale, electronic air-surveillance 
and weapons-control system and is composed of three 
groups of facilities: those required to process and 
transmit surveillance data from data-gathering 
sources to data-processing centers; data-processing 
centers where data are evaluated and developed into 
an air situation and where weapons-guidance orders 
are generated; and communications facilities to trans­
mit data to weapons, to command levels, to adjacent 
centers, and to other users such as the Civil Aeronau­
tics Adminstration (CAA) and federal civil defense 
agencies. SAGE uses very large digital computing sys­
tems to process nationwide air-defense data. SAGE is 
a real-time control system, a real-time communication 
system, and a real-time management-information sys­
tem. The basic ideas of this system resulted from the 
efforts of George E. Valley and Jay W. Forrester, both 
of MIT. 

A large number of organizations have contributed 
to the development of SAGE since its conception in the 
Air Force and at MIT's Lincoln Laboratory. The 
International Business Machines Corporation (IBM) 
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Figure 2. SAGE data processing. The direction center 
continuously receives input data from hundreds of 
locations within and without the sector. Some of these 
data are transmitted digitally over telephone lines and read 
directly into the computer; some are transmitted by 
teletype or voice phone and transcribed onto punched 
cards before input to the computer. In 1 second, over 
10,000 bits of data representing hundreds of different types 
of information can be received at the direction center. 

designed, manufactured, and installed the AN /FSQ-7 
Combat Direction Central and the AN /FSQ-8 Combat 
Control Central including the necessary special tools 
and test equipment. The Western Electric Company, 
Inc. provided management services and the design and 
construction of the direction center and combat center 
buildings. These services were performed with the 
assistance of the subcontractor, the Bell Telephone 
Laboratories. The Burroughs Corporation manufac-
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Figure 3. A direction center receives digitally coded data 
automatically and continuously from search radars and 
height finders over voice-bandwidth communications 
circuits. Data on flight plans, weapons status, weather, and 
aircraft tracks are received, respectively, from the Air 
Movements Identification Service (AMIS), weapons bases, 
USAF Weather Service, Ground Observer Corps, and 
airborne early-warning and picket ships over teletype and 
voice telephone circuits. Similarly, data from the direction 
center are transmitted in digitally coded form over voice­
bandwidth communications circuits to ground-air data-link 
systems, to weapons bases, to adjacent direction centers, 
and to command levels; data to other users are transmitted 
over automatic teletype circuits. 
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Figure 4. The fourth floor of the direction center contains separate operational rooms for air surveillance, identification, 
status input, weapons assignments and control, and command functions. Up to 50 operators are required in one room to 
man the consoles, which are directly connected to the computer. 

tured, installed, and provided logistic support for 
AN/FST-2 coordination data-transmitting sets. The 
System Development Corporation (until recently a 
division of the Rand Corporation) assisted Lincoln 
Laboratory in the preparation of the master computer 
program and the adaptation of this program to pro­
duction combat direction centers. 

Sectors and Direction Centers 

With SAGE, air defense is conducted from about 30 
direction centers located throughout the United States 
(Figure 1). A center is responsible for air surveillance 
and weapons employment over an area called a sector. 
Each center contains a digital computing system-the 
AN/FSQ-7-containing almost 60,000 vacuum tubes. 
Over 100 air force officers and airmen within the 
center control the air defense of the sector. Most of 
these men sit at consoles directly connected to the 
computer where they receive filtered displays of the 
computer's storage of system-status data; they direct 
the computer through manual keyboards at each con­
sole. The Boston sector is typical; its direction center 
is located at Stewart Air Force Base in New York. Its 
area of responsibility extends from Maine on the north 

to Connecticut on the south and from New York on 
the west to a point hundreds of miles off the seacoast 
on the east. 

The computer in the direction center can store over 
1 million bits of information representing weapons 
and surveillance status of the sector at one time (Fig­
ure 2). These bits represent thousands of different 
types of information. For example, the computer gen­
erates and stores positions and velocities of all aircraft, 
or it stores wind velocity at various locations and 
altitudes. Within the computer, a program of 75,000 
instructions controls all automatic operations; input 
data are processed, aircraft are tracked, weapons are 
guided, outputs are generated. Each second, the com­
puter can generate over 100,000 bits of digital infor­
mation for display to air force operator consoles. Each 
operator receives cathode-ray-tube displays that are 
tailored to his needs, and he may request additional 
information or send instructions to the computer by 
means of keyboard inputs on his console. Each second, 
the computer can generate thousands of bits of infor­
mation for automatic digital transmission via tele­
phone or teletype to weapons and missiles, to adjacent 
centers or higher headquarters, and to other installa­
tions within the sector. 
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Figure 5. Each operator sits at a console that contains 
display and input facilities tailored to his responsibilities. 

How fast is this system? Obviously, response times 
from input to output vary with the task performed. 
Fastest response is required by automatic control 
functions (such as weapons guidance) and for man­
machine communication (such as displays of re­
quested information). For many of these functions, 
only several seconds are required from stimulus to 
response. For others, several minutes may elapse be­
fore the 'effects of new data are reflected throughout 
the system. We will now consider, in more detail, the 
three major areas that comprise SAGE data processing. 
First, the sector or environment that contains the data 
sources or sinks coordinated by the direction center. 
Next, the man-machine component-how the opera­
tors within the direction center are informed of the 
air situation and how they affect its progress. Finally, 
the computing system that performs the automatic 
component of the direction-center function. 

The SAGE Sector 

The direction center communicates with over 100 
adjacent installations (Figure 3). Air-surveillance data 
are received from several types of radars. Long-range 
search and gap-filler radars located throughout the 
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Figure 6. The operators insert data into the computer 
through keyboard actions. 

sector provide multiple coverage of the air volume 
within the sector; picket ships, airborne early warning 
(AEW), and Texas Towers extend this coverage well 
beyond the coastline; height finders supply altitude 
data. Within the direction center, these data are con­
verted by the computer to a single positional frame of 
reference and are used to generate an up-to-date pic­
ture of the air situation. Other inputs to the direction 
center include missile, weapons, and airbase status; 
weather data; and flight plans of expected friendly air 
activity. Such data, which are received from many 
installations within and without the sector, are auto­
matically processed by the computer and used by 
direction-center operational personnel to assist iden­
tification of aircraft, employment of weapons, or se­
lection of tactics. 

The direction-center computer communicates au­
tomatically and continuously with adjacent direction 
centers and command-level headquarters in order to 
ensure that air defense is coordinated smoothly be­
tween sectors and conducted intelligently over larger 
areas than a single sector. For example, an aircraft 
flies out of a sector; surveillance data from the center 
are automatically transmitted to the proper adjacent 
center in order to guarantee continuous tracking and 
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Figure 7. Situation display (on Charactron tube developed by Hughes Products Co.) of New England coastline and adjacent 
installations. 

interception. In this way, adjacent centers are contin­
uously warning, informing, and acknowledging. The 
final function of the direction center is to continuously 

Figure 8. Typotron digital display (developed by San 
Diego Division of Stromberg-Carlson; formerly Convair 
Division of General Dynamics). 

transmit status, command, or guidance data to air­
borne interceptors and missiles or to related ground 
installations. 

Three types of data transmission are used for both 
inputs and outputs. First, data sources or sinks that 
require high transmission rates communicate directly 
with the SAGE computer by means of digitally coded 
data transmitted at 1300 pulses per second over voice­
bandwidth telephone lines and radio channels. Typical 
applications of this type of channel are inputs from 
search radars and intercommunication between adja­
cent centers. Teletype provides a second channel that 
is slower but equally automatic. Input flight plans are 
transmitted from Air Movement Identification Ser­
vices. Finally, voice telephone communications are 
used in cases where high automaticity is either unnec­
essary, too expensive, or not feasible. If such infor­
mation must be entered into the computer, either 
punched cards or operator keyboard inputs are used. 
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Figure 9. Each of two identical computers includes the 
central computer that performs all calculations, the 75,000-
instruction air-defense program, and the millions of bits of 
system-status data. Both of the latter are stored on 
auxiliary magnetic drums. 

All data sources and sinks in the sector operate 
asynchronously. Inputs from each source arrive at the 
direction center with very different average and peak 
rates. Each source is processed by the computer with 
a priority and sampling rate consistent with the role 
of the particular data in the overall air-defense func­
tion. Likewise, the computer generates output mes­
sages with a frequency and timing that will ensure 
adequate transmission of guidance and status data 
and yet will make maximum use of finite phone-line 
and teletype capacity. One of the major functions of 
the SAGE computer is coordination and scheduling in 
real time of sector inputs and outputs with the manual 
and automatic functions performed in the direction 
center. 

The Man in the System 

Although SAGE has made many of the data-processing 
functions in a direction center automatic, many tasks 
remain that are better performed by the man. Opera­
tors can relay computer outputs by phone or radio to 
adjacent installations and weapons; they can recognize 
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Figure 10. Major means of communication between 
automatic equipment and operating personnel. 
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Figure 11. Static program organization. 

certain patterns more rapidly and meaningfully than 
any of our present computers and take appropriate 
action. Most important, operators are required for 
tactical judgments such as aircraft identification or 
weapons deployment and commitment. If a major 
advantage of the FSQ-7 computer is its ability to 
maintain and store a complete picture of the sector 
situation, an equally important advantage is that the 
same computer can rapidly summarize and filter these 
data for individual presentation to the more than 100 
air force personnel who both assist and direct air­
defense operations. 

The fourth floor of the center contains operational 
areas from which air force personnel supervise the 
computer and the sector. Each of the major air-defense 
functions-radar inputs, air surveillance, identifica­
tion, weapons control, operations analysis, training, 
simulation, and sector command (Figure 4)-is super­
vised from a separate room. 

Each operator sits at a console that contains display 
and input facilities tailored to his responsibilities (Fig­
ure 5). The operators insert data into the computer by 
pushing keyboard buttons (Figure 6). Each console is 
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Figure 12. Dynamic program operation. . 
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Figure 13. Digital data transmitted automatically to the 
direction center via telephone lines can be selected for 
insertion into the computer at an input patch panel. 

provided with an input capacity to the computer of 25 
to 100 bits of information at one time. The total 
keyboard input capacity for all consoles is over 4000 
bits, which are sampled by the computer every several 
seconds. 

A 19-inch Charactron cathode-ray tube displays 
geographically oriented data covering the whole or 
part of the sector (Figure 7). On this air-situation 
display scope, the operator can view different cate­
gories of tracks or radar data, geographic boundaries, 
predicted interception points, or special displays gen­
erated by the computer to assist his decision. 

Figure 14. Magnetic drums are used for buffer storage of 
1/0 data and storage of system-status data and computer 
programs. Twelve physical drums (six shown) have the 
capacity for almost 150,000 32-bit words. Half of this 
capacity is required for storage of the real-time program. 

Every 2¥.! · seconds, the computer generates about 
200 different types of displays, requiring up to 20,000 
characters, 18,000 points, and 5000 lines. Some of 
these are always present on an operator's situation 
display. Others he may select. Some he may request 
the computer to prepare especially for his viewing. 
Finally, the computer can force very high-priority 
displays for his attention. 

The operator's console can also contain a 4-inch 
Typotron digital-display tube that is used to present 
status data such as weather conditions at several 
airbases or attention data that, for example, show the 
operator why the computer rejected his action (Figure 
8). Sixty-three different characters are available in the 
Typotron. The FSQ-7 display system can display these 
characters at the rate of 10,000 characters every few 
seconds to all the digital display scopes. 

SAGE Computing System 

The SAGE FSQ-7 computer occupies the entire second 
floor of the direction center. About 70 frames contain­
ing almost 60,000 vacuum tubes are required to handle 
all input-output data, to perform air-defense calcula­
tions, and to store system-status data. In order to en­
sure round-the-clock operation, two identical compu­
ters are required. These are located on opposite sides 
of the floor with unduplicated input-output equipment 
and maintenance consoles situated in between. 

Figure 15. Magnetic core memory. The central computer 
is a binary, parallel machine with an 8192-word core 
memory and a speed of roughly 75,000 single-address 
instructions per second. Numbers representing positional 
data are stored and processed as vectors with two 16-bit 
components in order to facilitate processing. 
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Figure 16. Control console. Separate control consoles (including standard IBM punched-card equipment) and magnetic-
tape units are provided for each of the duplexed computers. · 

Figure 9 shows the logical organization of one of the 
two identical computers. Since only one of these com­
puters performs the real-time air-defense function at 
any one time, we can discuss simplex processing before 
considering the problems of duplex operation. 

The computer system consists of the following ma­
jor components: a central computer, the air-defense 
computer programs, and the system status data stored 
on auxiliary magnetic drums. The central computer is 
buffered from all sector and console in-out equipment 
by magnetic drums (except for the console keyboard 
inputs, which use a 4096-bit buffer core memory). 
Finally, a real-time clock and four magnetic tape units 
(used for simulated inputs and summary recorded 
outputs) complete the FSQ-7 system. 

The central computer is a general-purpose, binary, 
parallel, single-address machine with 32-bit word 
length and a magnetic core memory of 8192 words. 
The memory cycle time is 6 microseconds. Each in­
struction uses one 32-bit word, and the effective op­
erating rate is about 75,000 instructions per second. 
Four index registers are available for address modifi­
cation. One unique feature of the central computer is 
the storage and manipulation of numerical quantities 
as two-dimensional vectors with two 16-bit compo­
nents. In this way, a single sequence of instructions 
can simultaneously process both components of posi­
tional data, effectively doubling computing speed for 
this type of processing. Twelve magnetic drums, each 
with a capacity of 12,288 words of 32 bits, are used for 
storage of system-status data, system-control pro-

grams, and buffer in-out data. Under control of the 
central computer, data can be transferred in variable­
length blocks between these drums and core memory. 
The total drum storage capacity is about 150,000 
words of 32 bits. 

During an average 1-second period, the central com­
puter transfers from 20 to 50 blocks of data, each 
containing 50 to 5000 words, between the central 
computer's core memory and the terminal devices. In 
order to ensure maximum utilization of the central 
computer for air-defense processing and control, an 
in-out break feature is used. With this feature, calcu­
lations in the central computer continue during input­
output operations; they are only interrupted for the 
one core-memory cycle required to transfer a word 
between the core memory and the terminal device. 
The in-out break has proved very valuable since con­
siderably more than 50 percent of real time is required 
for input-output searching, waiting, and transferring. 

The input-output buffering devices process in-out 
data independently of the central computer and so 
free the computer to do more complex air-defense 
processing. (Separate read-write heads are provided 
for the buffering equipment and for the central com­
puter.) In their buffering role, these devices can re­
ceive or transmit data while the computer is perform­
ing some unrelated· function. 

Consider, for example, the general manner in which 
input data from voice-bandwidth phone lines are re­
ceived. The serial 1300-pulse-per-second message is 
demodulated and stored in a shift register of appro-
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Figure 17. Central computer frames. There are about 70 frames containing nearly 60,000 vacuum tubes in the system. 

priate length. When· the complete message has been 
received, the message is shifted at a higher rate into a 
second shift register (whose length is a multiple of 32 
bits), thus freeing the first register to receive another 
message. When the first empty register is located on 
the input buffer drum, parallel writing stores the word 
in 10 microseconds. A relative timing indicator is also 

Figure 18. Air surveillance room. From this location the 
air force operators direct aircraft detection and tracking 
and communicate with adjacent direction centers. The 
operator in the foreground is instructing the computer to 
assign one of the tracks shown on his 19-inch cathode-ray 
display ( Charactron) to another operator for special 
monitoring. Situation displays on this tube can be forced 
by the computer or requested by the operator. The small 4-
inch tube (Typotron) is used for display of tabular status 
data. In addition, the console contains keyboard facilities 
for inserting data into the computer and telephone 
facilities to provide appropriate priority communications 
with other stations within and without the direction 
center. 

stored on the drum with the message since the com­
puter may not process the message for several seconds 
and since time of receipt at the direction center is 
often critical. The central computer can read these 
randomly stored data by requesting a block transfer 
of occupied slots only. Output messages are processed 
conversely. In a few milliseconds, the central computer 
can deposit (on the output buffer drum) a series of 
messages that will keep several phone lines busy for 
10 seconds. 

The processing ability of the buffer devices is fully 
exploited in the display system (Figure 10). In this 
case, the central computer maintains a coded table on 
the buffer display drum. This table is interpreted and 
displayed by special-purpose equipment every 2112 sec­
onds at the appropriate console. The central computer 
can change any part of the display at any time by 
rewriting only appropriate words on the drum. 

The central computer performs air-defense process­
ing in the following manner (see Figures 11 and 12). 
The buffer storage tables, the system-status data, and 
the system computer program are organized in 
hundreds of blocks-each block consisting of from 25 
to 4000 computer words. A short sequence-control 
program in the central computer's core memory trans­
fers appropriate program or data blocks into core 
memory, initiates processing, and then returns appro­
priate table blocks (but never programs) back to the 
drum. To take advantage of the in-out break feature, 
operation of each air-defense routine is closely coor­
dinated with operation of the sequence-control pro­
gram so that programs and data are transferred during 
data processing. 
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By time-sharing the central computer, each of the 
air-defense routines is operated at least once every 
minute-many are operated every several seconds. 
One interesting feature is that the frequency of pro­
gram operation is locked with real time rather than 
allowed to vary as a function of load; during light load 
conditions the sequence-control program will often 
"mark time" until the real-time clock indicates that 
the next operation should be repeated. Such synchro­
nization with real time simplifies many of the control 
and input-output functions without causing any deg­
radation in system performance. Figures 13-19 show 
the SAGE system in operation. 

Reliability 

One last aspect of the computing system remains to 
be discussed: reliability. As mentioned earlier, 24-
hour-per-day uninterrupted operation of the comput­
ing system was a requirement that could not be com­
promised. The FSQ-7 is a crucial link in the air­
defense chain. If the computing system stops, the 
surveillance and control functions are interrupted, 
men and machines throughout the sector lose vital 
communications, and the sector is without air defense. 

In order to ensure continuous system operation, any 
component whose failure would cripple the system has 
been duplexed whenever possible. As a result, two 
complete, independent computers are provided-each 
with separate drums, central computers, input-output 
buffering devices, and magnetic tapes. Equipment as­
sociated with individual input-output channels is gen­
erally not duplicated: consoles, phone-line demodula­
tors, shift registers, etc. Loss of one of these pieces of 
equipment would merely cause loss of some data and 
minor system degradation, rather than complete shut­
down of the direction center. 

At any one time, one computer performs the air­
defense job-this is the active computer. The standby 
machine may be operating in one of several modes: it 
may be down for repair (unscheduled maintenance 
time); it may be undergoing routine preventive main­
tenance (marginal checking), or even assisting in the 
maintenance of other equipment within the sector. 

The switchover process interchanges the roles of 
the computers-the standby machine goes active, the 
active machine goes to standby. Simplexed devices 
connected to one machine are automatically trans­
ferred to the other, and the air-defense program begins 
operation in the newly active machine. From an equip­
ment point of view, switchover requires only a few 
seconds. However, all of the system-status data that 
were available before switchover must be available to 
the newly active computer. Otherwise, the entire air­
situation picture would need to be regenerated; this 
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Figure 19. Command post (experimental SAGE sector). 
Operation of the direction center and the sector is 
supervised in the command post by the sector commander 
and his staff. A summary of the current air situation in the 
sector and adjoining areas is projected on a large screen. 

would cripple sector operations as effectively as if both 
computers had stopped. Accordingly, the active ma­
chine transmits changes in the air-situation data to 
the standby machine several times per minute via an 
intercommunication drum. Computer switchover is 
hardly noticeable to operating personnel. 

Although the requirement for continuous operation 
is a stringent one, SAGE is less vulnerable than many 
other digital computer applications to transient errors 
in the FSQ-7. For most operations, the computer 
operates iteratively in a feedback loop. In these appli­
cations, the system is self-correcting for all but a few 
improbable errors. Parity-checking circuits in the in­
put and output buffer equipment and in the computer­
memory system eliminate some data subject to tran­
sient errors. 
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Editor's Note 

In 1952, we at Lincoln realized that the production of 
the SAGE computers would be a major undertaking 
and that it was none too soon to get a first-class 
manufacturer aboard. IBM was soon selected for.the 
job, a decision no one ever regretted. 

The Lincoln people, filled with the hubris of young 
engineers and fresh from Whirlwind, had the idea that 
they would design the machine and that IBM would 
do the production engineering, whatever that was, 
and build the necessary quantity. The IBM people, 
also proud and capable, fresh from the 701, and much 
more knowledgeable about what it took to produce 
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equipment, had the idea that a page or two of 
specifications was all that Lincoln need supply. 

The first meetings of these two groups were loud 
and rancorous. As I look back on them, they were 
social rather than technical. We argued about 
everything. IBM used square steel tubing for racks; 
MIT used L-shaped aluminum. The amount of time 
spent on this subject was remarkable unless one saw 
it (as I do now, but didn't then) as a process of getting 
acquainted. After a while, as the two groups began to 
know and respect each other, the arguments became 
more cogent and took place between individuals 
instead of between organizations. As the job grew, 
the Lincoln people found they had more and more to 
do in other areas, and the IBM group increased in size 
and strength and took over more and more of the job 
until they essentially had it all. , 

From my point of view it was a fine relationship. 
IBM did a superb job. I learned that if you want 
something difficult done, get people to do it who will 
fight with you, stand up for what they believe, and 
take over the job at least as fast as they are able. 

I cannot think of two better individuals to describe 
the activity than these two principal architects of 
the FSQ-7. 
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Introduction 

The SAGE (Semi-Automatic Ground Environment) 
air-defense computer, the AN/FSQ-7, was developed 
at a time when Department of Defense (DOD) officials 
perceived that Soviet bombers carrying nuclear bombs 
were a primary threat to the United States. The 
generally held belief in the validity of this threat gave 
the SAGE program the highest DOD priority. The AN/ 
FSQ-7 design, including its architecture, components, 
and computer programs, drew mostly on work done at 
MIT's Project Whirlwind and at IBM. How all this 
came about is the subject of this paper. 

SAGE system programming is an interesting story in 
its own right, but is outside the scope of this paper. 
Similarly, the system for management of deployment 
worked out among the Air Defense Engineering Ser­
vices project office, Lincoln Laboratory, the Air De­
fense Command, and the contractors deserves a more 
thorough treatment. 

Prologue 

The need for air defense was driven home in the 
United States by the Japanese attack on Pearl Harbor 
in 1941. Pearl Harbor demonstrated the need for air 
surveillance, warning, and real-time control. Shaken 
by Pearl Harbor, the United States became serious 
about air defense within its continental limits. By the 
end of World War II, there were more than 70 ground 
control of intercept ( GCI) sites. 

Each GCI site consisted of one or two search radars, 
a height-finder radar, and ground-to-air and air-to­
ground communications. The operators sat in front of 
plan-position indicators (PPis), which presented the 
air situation on a scope with long-persistence phos­
phors. Aircraft appeared as "blips" of light on the face 
of the tube. Information on targets from adjacent sites 
was cross-told by voice telephone. The control centers 
were usually built around a large, edge-lit, plexiglass 
board that showed the local geographic features. Air­
craft of interest were marked on the board by opera­
tors standing on scaffolding behind the board using 
grease pencils. The big board also showed status in­
formation, which was written backward by the oper­
ators. The network of GCI sites became known later 
as the Manual System. 

Following the Allied victory, the most powerful air 
forces were in the hands of the Allies, including Rus­
sia. There seemed no justification for the expense of 
maintaining the radar sites established during the war, 
and support eroded. 

In 194 7 the Army Air Corps was organized as the 
U. S. Air Force, a separate service. The Air Force was 
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given the air-defense mission and proceeded to plan 
the revival of the Manual System. The importance of 
this mission was increased with the subsequent Rus­
sian production of nuclear bombs, and was further 
strengthened by events in Korea. Meanwhile, the Air 
Force Chief of Staff, General Hoyt S. Vandenberg, 
became more and more concerned about the United 
States' vulnerability to airborne attack. The Air Force 
Scientific Advisory Board was exposed to the problem, 
and in 1949, the board set up an Air Defense Systems 
Engineering Committee (ADSEC) under George E. 
Valley, a physics professor at MIT. The committee 
became known as the Valley Committee. 

The Valley Committee began by looking at the 
newly reactivated air-defense system. This system had 
been authorized by Congress through the Air Force, 
and consisted of about 70 GCI radar sites. Except for 
improved radars and height finders, it was quite sim­
ilar to the Manual System air-defense setup estab­
lished during World War II. The committee quickly 
concluded that the air-defense system as reshaped by 
the Air Force had very low capability. It recommended 
that a competent technical organization look into 
what could be done to improve the system in the short 
run. As a result, the Western Electric Company and 
the Bell Telephone Laboratories were given the task 
of upgrading the existing system; this was to become 
the Continental Air Defense System (CADS) project. 
The Valley Committee also suggested that a longer­
range look be taken at the problem. It recommended 
the extensive use of automation, particularly com­
puters, to handle the bookkeeping, surveillance, and 
control problems in the implementation of the next 
generation of air-defense systems. This conclusion 
was supported by the development of the Whirlwind 
computer at MIT. Whirlwind promised to provide 
real-time control over a large number of aircraft. It 
was also noted that the ability to pass digital infor­
mation over phone lines had been demonstrated at 
Bell Telephone Laboratories and at the Air Force 
Cambridge Research Laboratory. To deal with one of 
the major problems, low-altitude surveillance, the 
committee recommended the establishment of a large 
number of short-range, low-maintenance radars 
placed close together to fill gaps in coverage. 

The Valley Committee report led Vandenberg in 
December 1950 to ask MIT to establish a laboratory 
for air-defense research and development. The Air 
Force Scientific Advisory Board endorsed this request 
and asked MIT to undertake an interim study of the 
air-defense problem. The study, called Project 
Charles, ran from February to August 1951. It gave 
further support to the concept of a computer-based 
system. The laboratory was established within MIT 
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in 1951 as Project Lincoln, and in 1952 became the 
MIT Lincoln Laboratory. The SAGE system evolved 
from the work of this laboratory (MITRE 1979; Red­
mond and Smith 1980). 

Project Whirlwind 

The Whirlwind computer project at MIT's Digital 
Computer Laboratory (DCL) was of crucial impor­
tance to the development of the AN/FSQ-7 for several 
reasons. First, it provided a demonstration of real­
time control by a digital computer, without which the 
SAGE project could not have been approved. Second, 
it provided a reservoir of people with the skills and 
experience needed to participate in the SAGE system 
design and development. Third, it provided an exper­
imental testbed for the system design. The story of 
the Whirlwind project and the role of key people like 
Jay W. Forrester and Robert R. Everett has been 
described by Redmond and Smith (1977; 1980). 

The Cape Cod System 

In the spring of 1952, DCL operations and people 
concerned with air defense were merged into Lincoln 
Laboratory as Division 6. Whirlwind was working well 
enough to be used as part of Lincoln's experimental 
air-defense system, called the Cape Cod System. It 
consisted of a control center at the Barta Building in 
Cambridge, Mass., where Whirlwind was housed, an 
experimental long-range radar on Cape Cod at South 
Truro, Mass., and a number of short-range radars 
called "gap fillers." The control center contained com­
puter-controlled operating stations for interaction 
with human operators. It was equipped with ultrahigh­
frequency communications to aircraft supplied by the 
Air Research and Development Command (ARDC) 
and the Air Defense Command (ADC), for the purpose 
of creating a realistic test of the system. 

The Valley Committee and Project Charles had 
indicated that a preferred solution for dealing with the 
low-altitude detection problem was to connect to­
gether many radars (preferably short-range, low­
maintenance ones) and make a composite picture of 
the afr situation out of the. data taken from these 
radars. It was largely the need to deal with so much 
data that prompted the Valley Committee to favor the 
use of the computer aids in processing the data in real 
time. Just as Whirlwind had the potential for filling 
the needs for this additional data load, work at the 
Air Force Cambridge Research Laboratory (CRL) un­
der Jack Harrington on digital transmission of radar 
data had the potential for filling another need: com­
municating the data. Harrington's group had devel-

oped a technique (actually, several techniques) for 
transmitting these data. One technique, called slowed­
down video, divided the coverage area of short-range 
radars into a large number of wedge-shaped boxes, the 
number bounded by range resolution required and the 
angular resolution that one could achieve with the 
radar. The boxes were mapped onto a stream of bits 
sent on a phone line. The stream was synchronized 
with the radar pulses and the angular position of the 
radar. Each bit was a 1 if the corresponding box 
contained a signal return above a certain magnitude; 
otherwise it was 0. This technique showed promise for 
short-range radars, but it was far too inaccurate for 
the long-range radars. 

CRL was also working on methods of providing 
more angular precision than could be achieved by 
means of beam forming. One scheme that eventually 
resulted in another SAGE development, called the 
AN/FST-2 (Ogletree et al. 1957), derived from beam­
splitting experiments carried on at CRL. It depended 
on the fact that as a radar beam rotates, the pulse rate 
is high enough that several returns are received from 
a single aircraft. Harrington's group invented a device 
that determined the center of the target after the beam 
had swept over it .. This device made it possible to 
increase the angular accuracy by an order of magni­
tude. Harrington's team also developed a scheme for 
sending generalized digital data over a standard phone 
line that had been adapted to the Cape Cod System. 
Harrington and many of his team from CRL joined 
Lincoln Laboratory when it was instituted. As soon 
as Whirlwind was able to perform, an experimental 
MEW radar at Hanscom Field was connected by 
phone line to Whirlwind, and the first tracking pro­
grams were developed. By 1952, the Cape Cod team 
had demonstrated the ability of the computer to track 
and control aircraft in small numbers. The Cape Cod 
System was intended to demonstrate the operations 
that were to be executed for field use-in particular, 
the surveillance function and weapons-control func­
tion. Both functions required information on the po­
sition of hostile, friendly, and neutral aircraft. A 
scheme where all of the operators in the control center 
worked from the same positional database became a 
requirement. 

In the scheme that was adopted, target data were 
transmitted to the center in angular coordinates. The 
computer translated the data into Cartesian coordi­
nates and combined them with the position of the 
radar that picked up the data, so that each piece of 
data had an X-Y position in a common coordinate 
system and could be compared with stored track data 
(successive positions of an object being tracked). Each 
operating station was equipped with a console with a 
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cathode-ray-tube (CRT) situation display that com­
bined track and map data. During the course of the 
operating cycle, the computer presented successive 
data locations to an X-Y deflection register that si­
multaneously positioned the beam on each of the 
operating stations. The operator used the so-called 
light gun to tell the computer to associate a track with 
other keyed information, such as track number, iden­
tification, altitude, speed, and armament. The opera­
tor placed the light gun over the display screen at the 
position of interest and pressed a trigger switch (Fig­
ure 1). When the screen was illuminated at that po­
sition, a signal was sent to the computer saying in 
effect that the deflection register contents identified 
the data item selected by the operator. 

In order to reduce the load on the tracking_ pro­
grams, radar returns from fixed objects were filtered 
from the gap-filler data by a device called a video 
mapper. The mapper was a standard plan-position 
display for a single radar with a photocell viewing the 
whole display. Returns from fixed objects were covered 
with opaque material so that these returns did not 
activate the photocell and thus were rejected. 

By the time the Cape Cod System was finished, it 
had about 30 operational stations with appropriate 
displays. The data required by an operator could not 
all be accommodated on the graphic situation display, 
so the Whirlwind group created an auxiliary display 
for text data associated with a particular track. 

The Cape Cod System was used in exercises that 
included SAC bombers playing the role of hostiles, 
and the ADC and ARDC interceptors playing a 
friendly role. Before the experimental SAGE sector that 
grew out of the Cape Cod System was finished, 5000 
or so sorties had been flown against the system to test 
the system and its component parts. 

Whirlwind II 

It was clear to those who had participated in the Valley 
Committee and in Project Charles that . Whirlwind 
was more of a breadboard than a prototype of the 
computer that would be used in the air-defense system. 
To turn the ideas and inventions developed in Whirl­
wind into a reproducible, maintainable operating de­
vice required the participation of an industrial con­
tractor. The conceptual production computer became 
known as Whirlwind II. 

The Whirlwind II group was set up in 1952 to deal 
with all design questions, including whether transis­
tors were ready forlarge-scale employment (they were 
not) and whether the magnetic-core memory was 
ready for exploitation as a system component (it was). 
The Whirlwind II group also spent much of its time 
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Figure 1. Light gun in use. 

in negotiation with ADC . and ARDC headquarters 
personnel in structuring the overall air-defense sys­
tem, including the definition of areas of control, cross­
telling among sectors, need for weapons allocation, 
manning requirements, and air-defense doctrine. 

The most important goal established for Whirlwind 
II was that there should be only a few hours a year of 
unavailability of the operational system. The Whirl­
wind II team thought this was possible, extrapolating 
from the experience on the Cape Cod System. Most 
of the design choices faced by the Whirlwind II group 
involved the trade-off among the number of tracks 
that could be processed, the number of interceptors 
that could be employed simultaneously, and the sys­
tem availability criteria. 

Selection of a Computer Contractor 

The idea of engaging a manufacturer to help with the 
design engineering and manufacturing of the field 
computer was implicit in the nature of the research­
and-development mission of Lincoln Laboratory. A 
team was set up consisting of: Jay W. Forrester, head 
of Lincoln Division 6 and director of DCL; Robert R. 
Everett, ·associate director of Division 6 and associate 
director of DCL; C. Robert Wieser, leader of the Cape 
Cod System design; and Norman H. Taylor, chief 
engineer of the division. They were responsible for 
finding the most appropriate computer manufacturer 
and designer to translate the progress made so far in 
the Cape· Cod System into a design for the next­
generation air-defense system. This system was to 
become known as the Lincoln Transition System. In 
1954 it was renamed SAGE. 

Early in 1952, the team made a survey of the pos­
sible engineering and manufacturing candidates and 
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chose four for further evaluation: IBM, Remington 
Rand (two different divisions), and Raytheon. The 
team visited all three companies, reviewed their ca­
pabilities, and graded them on the basis of personnel, 
facilities, and experience. 

The team looked at the technical contributions of 
the companies in terms of reliable tubes and other 
components, circuits, hardware, packaging, storage 
systems, and magnetic tape units. The companies were 
graded on their probable capability of bringing the 
Whirlwind II from development to production, includ­
ing their experience in setting up production of high­
quality electronics, their understanding of tests re­
quired, and the availability of their trained people. 
The team evaluated the production organization, the 
quality of assembly work, size of organization, simi­
larity of the proposed work to the company's standard 
product, present availability of production capacity, 
service organization, and training ability. Finally, the 
team considered the proximity to MIT and the train 
travel time to the various headquarters. Each of the 
four men on the team made his own assessment, using 
the weights decided on before the trip. IBM received 
the highest score and was selected. 

The IBM decision to accept the contract was made 
at the highest management levels. It involved evalua­
tion of the risks versus the benefits. Some of the risks 
considered were technical feasibility, monetary risk, 
effect on commercial programs of losing people to the 
project, and potential liability for mishaps posed by 
the operation of a real-time system. Advantages in­
cluded direct involvement in technical advances plus 
an opportunity to respond to a national defense need. 

The IBM Contract 

IBM set up its SAGE effort as a separate project 
independent of the usual constraints of commercial 
development. It was expected to set its own design, 
procurement, test, and documentation procedures 
commensurate with the stringent requirements of the 
contract. 

"Project High" began in September 1952 in antici­
pation of a study subcontract from the MIT Lincoln 
Laboratory. A six-month subcontract was issued in 
October. Office space was rented on the third floor of 
a necktie factory on High Street in Poughkeepsie, 
N.Y.-the project got its name from this location. 
John Coombs, who had recently joined IBM from 
Engineering Research Associates, was the first project 
manager. 

During the next few months, the expanding IBM 
group learned the current status of air-defense studies. 
The group visited the Boston area frequently in order 

to study the Cape Cod System and to become ac­
quainted with the overall design strategy of the Lin­
coln Labs people as well as their specific proposals for 
central processor design. A visit was made to a com­
peting system at the University of Michigan-the Air 
Defense Integrated System (ADIS ), which grew out of 
Project MIRO, a ground-control system for the BOM­

ARC ground-to-air missile. 
In January 1953 the system design began in earnest. 

IBM bought the High Street building and assigned 26 
people to the project. The Lincoln Whirlwind II team 
organized itself along major subsystem lines: an arith­
metic-element section, a memory section, drum-design 
section, and so forth. The IBM team organized itself 
in a similar pattern. These counterpart groups began 
trying to design the system on a joint basis. The 
Lincoln group, fresh from its experiences of making 
Whirlwind I operate and designing the Cape Cod 
System, viewed the IBM task as that of packaging 
Whirlwind devices so the system could be reproduced 
easily and quickly. On the other hand, the IBM people 
expected to participate in all levels of central computer 
system design and favored the technology familiar to 
them. 

The AN/FSQ-7 was designed by joint MIT-IBM 
committees that managed to merge the best elements 
of their members' diverse backgrounds to produce a 
result that advanced the state of the art in many 
directions. The committees presented their proposals 
at joint meetings that often involved 20 to 40 partici­
pants. Miraculously, these groups were able to arrive 
at a consensus and make progress. The MIT people 
had the final word on design specifications, but most 
decisions really were based on joint agreement. 

During 1953 the meetings involved a lot of traffic 
between Poughkeepsie and the Boston area. Because 
of bad roads, driving was difficult. Some of the early 
meetings were held in Hartford, Conn., which was the 
halfway point between Poughkeepsie and Bedford, 
Mass. Another way of going from Poughkeepsie to 
Boston was to take an evening train to New York and 
a berth on the Midnight Owl to Boston. Small groups 
began chartering aircraft for a one-hour direct flight. 
On several occasions a large group would charter a 
DC-3. This helped to justify IBM's first corporate 
aircraft. 

The first Hartford meeting was held January 20, 
1953. John Coombs, the senior IBM man at the meet­
ing, said that the purpose of the meeting was to allow 
the people working on the system, at both MIT and 
IBM, to exchange descriptions of what was being done. 
Jay Forrester, the first Lincoln speaker, went into 
some detail about the background of the program and 
his perception of the roles of the Lincoln and IBM 
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people. He characterized the program as urgent, with 
a prototype system required by 1954. He referred to 
memorandum TM-20 which contained a description 
of what was then known as the transition system. He 
stated that none of the existing computers, including 
Whirlwind I, the IBM 701, and others, were suitable. 
Because of the nature of the problem, specialized 
peripherals would be required, and existing machines 
had nothing like the reliability required for the job. 
Forrester suggested that IBM place a representative 
at the Cape Cod facilities. He gave a fairly complete 
description of the status of Whirlwind II thinking at 
MIT. 

J. F. Jacobs of Lincoln presented the arguments for 
choosing vacuum tubes for the arithmetic and control 
units. It was too early for transistors, and magnetic­
core circuits were too slow. H. D. Ross ofIBM reported 
some tentative arithmetic-element decisions, includ­
ing the use of one's-complement arithmetic and the 
use of flip-flops instead of the pulse regenerator used 
in the IBM 701. M. M. Astrahan of IBM described 
proposals for logical design innovations. These in­
volved index registers, dual arithmetic elements for 
simultaneous processing of X and Y coordinates of 
tracking data, and an interrupt scheme for operating 
in-out equipment simultaneously with program­
instruction execution. 

Other Lincoln speakers included R. L. Best on basic 
circuits, W. N. Papian on magnetic-core memory, 
J. H. McCusker on magnetic core production, and 
K. H. Olsen on the Memory Test Computer. Other 
IBM speakers were N. P. Edwards on nonmemory 
magnetic-core applications, E. H. Goldman on buffer 
storage and display, and J. A. Goetz on component 
reliability and standardization. 

Lincoln's N. H. Taylor discussed the schedule. He 
told the group that Lincoln had set an objective of 
having a prototype computer with its associated equip­
ment installed and operating by January 1, 1955. 
Installation, testing, and integration of the equipment 
in the air-defense system had to be started on July 1, 
1954. The nine months preceding this, October 1, 
1953, to July 1, 1954, would be required for procure­
ment of materials and construction of the model. That 
left about nine months for engineering work in con­
nection with the preparation of specifications, block­
diagram work, development of basic circuit units, 
special equipment design, and all the other things 
necessary to permit actual construction to begin. The 
schedule for this work was very tight. Taylor estimated 
that IBM would require about 235 development engi­
neering professionals at the peak. 

The meeting was concluded by T. A. Burke of IBM 
who described IBM's progress on the subcontract, 
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which would end in three months. He was concerned 
that the follow-on Air Force prime contract be issued 
in time to avoid interruption of work. 

A second joint meeting was held in Hartford on 
April 21, 1953. The first meeting had resulted in 
formation of a number of committees made up of IBM 
and MIT engineers who were to prepare design spec­
ifications. The second meeting consisted mostly of 
status reports from these committees. 

In April IBM received a prime contract for computer 
design specifications. On May 21 another Hartford 
meeting was held, this time to deal with packaging of 
Whirlwind II. Much of the meeting was spent on 
standardization of pluggable units. It was agreed that 
the mechanical design group should proceed with the 
design of a six-tube pluggable unit, with backup de­
signs for four-tube and nine-tube units. Another meet­
ing on packaging was held June 1, 1953, at which a 
final decision was made to have both six-tube and 
nine-tube units. A breakdown of the central machine 
(arithmetic, control, and memory) into seven main 
frames was described. 

Robert P. Crago joined Project High in June 1953. 
He became manager of engineering design in July 
1954, and manager of Project High in February 1955. 

Project Grind 

The Hartford meetings acted as an information ex­
change, a catalyst for initiating action, an opportunity 
to identify overlooked aspects of the machine, and a 
forum in which people could interact on a personal 
level. By the time of the last Hartford meeting, a 
modus operandi had been established between the 
IBM and the MIT staffs, who had basically agreed on 
the central machine. It would have a single-address 
order code in a 32-bit word. The memory would have 
a read-write cycle in the range of 5.5-7.5 microseconds 
for 8192 words of 33 bits, including a check bit. Data 
words required only 16 bits, so each retrieval involved 
two data words. 

The central machine turned out to be the easy part 
of the job. In the rest of the system, decisions were 
not being made fast enough to meet the schedule. 
There was not enough time for detailed study of all 
the alternatives available, so choices had to be made 
primarily on the basis of the experience the individuals 
had with the subject area under consideration. To 
expedite this decision making, it was agreed that a 
series of meetings would be held in which as many of 
the necessary decisions as possible would be made in 
a short period of time. These meetings were called 
Project Grind because the participants were to grind 
away at each topic until a decision was reached. There 
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Figure 2. Typical computer frame (front). 

were seven days of these meetings between June. 24 
and July 15, 1953. In order to identify the machine 
under design within IBM as well as MIT, the Whirl­
wind II name was dropped in favor of air force no­
menclature, and the system was given an air force 
number, AN/FSQ-7. An AN/FSQ-7 planning group 
was identified, consisting of about 20 members drawn 
from both IBM and MIT. The procedure that was 
followed consisted of taking subsystems one at a time 
and forging whatever decisions could be made with 
the existing background and knowledge. Minutes of 
the Project Grind meetings were taken to record some 
of the decisions and some of the reasons for those 
decisions. Any problem could be brought into the open 
so that decisions could be made as soon as possible. It 
was also agreed that everyone should present even 
tentative plans for various parts of the system, as long 
as everyone knew that they were tentative. 

The first Project Grind meeting, on June 24, 1953, 
was devoted to the radar inputs. Slowed-down video 
inputs, video mappers, and slowed-down video-input 
registers were discussed, and participants agreed on a 
general description of the input registers. 

At the second meeting the subjects were marginal 
checking, power supplies, and magnetic-core memory. 
The third meeting dealt with magnetic drums. It was 
tentatively agreed that there would be six parallel 
fields of 34 bits each (two bits for status) per physical 
drum, with two heads per bit for input-output buffer­
ing, and probably five physical drums in the computer. 
The fourth meeting was concerned with output display 
systems. A 2-second display cycle was tentatively ac­
cepted; all display data streamed by the display con­
soles every 2 seconds, and each console displayed the 
items requested by the operator. It was agreed that 

there would be 16 words available per displayed track, 
allowing for display of history of all tracks. The fifth 
meeting was concerned with cross-telling, output 
drums, output links for digital information, a display­
maintenance console, and mechanical design. 

At the sixth meeting the concern was standard 
circuits and the action of the standards committee. 
Four tube types were definitely approved. It was de­
cided that 0.1-microsecond pulses would be used wher­
ever possible in the system. It was generally agreed 
that a project meeting should be held at least once 
every other week. 

The seventh and last meeting, on July 15, covered 
mapper subcontracts, cross-telling, review of the 
drums, paper-tape machines, input counters, manual 
inputs, and power supplies. It was generally agreed 
that paper tape would not be used in the FSQ-7. 

Development and Production 

Project Grind resulted in fewer decisions than consid­
ered necessary to meet the schedule, but it had a 
remarkably good effect on the working relations of the 
people involved. It also demonstrated the need for 
some ongoing method for reaching a consensus on 
high-level specifications. 

This need eventually prompted Lincoln to set up a 
Systems Office, under the direction of J. F. Jacobs, to 
establish what was then called design control. It was 
necessary for IBM and MIT to come to terms on the 
design of the FSQ-7. It was also necessary that a 
description, in specification terms, be written of what 
the Air Force was buying. The Systems Office took 
inputs from IBM, MIT, ADC, and Lincoln Project 
Office of the Air Force-and later inputs from the 
4620th Air Defense Wing-and created a forum in 
which consensus about the main features of the design 
in all aspects of the system could be obtained. When 
this consensus was reached on the various parts of the 
system, a document would be prepared for the purpose 
of recommending to the Air Force that it approve or 
disapprove all or part of a proposed procurement of 
the pieces of the system. 

IBM created a three-man Engineering Design Office 
to control system design-the IBM interface to Ja­
cobs's Systems Office. The three individuals shared a 
common office, promoting close communication and 
cooperation. Design, procurement, implementation, 
and test principles and practices were initiated and 
controlled from this central point. The commercial 
design practices and components then available were 
not adequate to meet the stringent reliability require­
ments of the air-defense mission. Few military speci­
fications were applicable, so new component specifi-
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cations and design practices were required. The design 
practices and disciplines developed for the SAGE com­
puter later helped IBM to standardize the hardware 
of its commercial product line. 

In September 1953, IBM received a contract for two 
single-computer prototype systems, XD-1 and XD-2. 
XD-1 replaced Whirlwind in the Cape Cod system 
during 1955. The arithmetic, control, and memory 
units were shipped in January to the Lincoln site in 
Lexington, Mass. (Figures 2 and 3). Final testing was 
done there, along with integration of other frames 
shipped during the year. The modified system was 
renamed the Experimental SAGE System. The XD-2 
was produced to support programming system devel­
opment and to provide a hardware testbed in Pough­
keepsie. 

The broad outline of the SAGE network was delin­
eated in 1954. The first serious plan visualized 46 
computerized direction centers. It became evident to 
the Air Force that it would be desirable to automate 
the Air Defense Division headquarters. These head­
quarters, called combat centers, had the responsibility 
for directing the operations and allocating weapons 
on a large-scale basis, involving several direction cen­
ters. This called for a computer like the FSQ-7 with a 
specialized display system. 

The system was named the FSQ-8. The locations 
for Q-7s and Q-8s were chosen and a delivery schedule 
was worked out calling for production of three systems 
the first year (1957) and 10 to 12 in each of the 
subsequent four years. As the program continued, 
periodic revisions were made of the number of auto­
mated sectors and the installation schedule. 

The first production contract was awarded to IBM 
in February 1954. The first production system was 
accepted in its manufacturing test cell on June 30, 
1956, and was declared operational at McGuire Air 
Force Base on July 1, 1958. To implement the deploy­
ment schedule, IBM built a manufacturing plant in 
Kingston, N.Y. IBM manufactured a total of 24 FSQ-
7s and three FSQ-8s. These were deployed along the 
northern perimeter and the east and west coasts of 
the United States. 

Innovations 

The SAGE system provides a demonstration of the 
kind of innovation that can be achieved when cost is 
secondary to performance. This kind of environment 
is difficult to create in a commercially oriented com­
pany, but SAGE provided the environment. Ambitious 
performance goals were met by the operational sys­
tems. Furthermore, as hardware costs dropped, most 
of the SAGE innovations became cost effective for the 
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Figure 3. Typical computer frame (back). 

commercial market. The following items are high­
lights of some of these innovations. 

1. Core memory in a production machine. This is 
probably the single most important innovation in 
SAGE. The size and reliability required could not have 
been achieved by any other memory technology exist­
ing or proposed in 1953. The core memory used in 
SAGE evolved directly from the pioneering work of 
Forrester and the MIT groups that developed the 
feasibility model and built the Memory Test Computer 
(MTC). "By May 1953, the MTC was demonstrating 
the swift, highly reliable operation of arrays of cores 
32-by-32, stacked 16 high" (Redmond and Smith 
1977). The original system design called for 8192 
words of 33 bits, including a check bit, arranged in 
two banks of 33 planes. Each plane was a 64 x 64 
matrix. When the requirements of the application 
program became apparent, a 256 x 256 unit (65,536 
words) was designed to replace one of the smaller 
banks. In cooperation with the MIT group, IBM de­
veloped the methods of manufacturing and testing 
uniform, reliable, and inexpensive core memory in 
production quantities. This involved an automatic 
core tester and a core-plane stringing process that 
used hypodermic needles to guide the fine wires 
through the tiny cores. 

2. Active-standby duplex system. The AN/FSQ-7 
was the first computer system to use two computers 
in active-standby roles for reliability. In previous dual­
computer systems, both computers did the same thing 
and compared output. In SAGE, the standby computer 
could run test programs or other work while the active 
computer ran the air-defense programs. The active 
computer maintained situation-status information on 
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an intercommunication drum accessible by both com­
puters (Everett et al. 1957; Vance et ·al. 1957). 

The original concept was three computers located 
at different sites within a geographic area called a 
sector. The radar inputs were to be connected to two 
of the three with sufficient displays that any two of 
the three could run the system at full capacity. This 
mode was rejected because of the high costs of com­
munication and replicated personnel support facilities. 

The duplex decision was not made until November 
1953. Because it involved design changes in the input­
output components, a separate group was formed to 
do the redesign without affecting the schedule for 
construction and test of the XD-1 and XD-2 proto­
types. The design philosophy was to duplicate every 
unit that could shut down the whole system. Thus the 
central computer and input drums were duplicated, 
but display consoles and modems were not (Everett et 
al. 1957). Great care was taken to ensure that the 
switchover facilities did not introduce single failure 
modes affecting both of the duplexed systems. 

3. Digital communication over standard phone lines. 
The transmission of digital data over voice-grade 
phone lines at 1300 bits per second was pioneered by 
the Lincoln people. Harrington's group (Division 2) 
designed the first modems to convert digital data to 
and from analog waveforms that could be accommo­
dated by voice-band channels. The channels required 
special conditioning to minimize noise pickup and 
eliminate unequal phase shifts across the frequency 
spectrum. The phase shifts were not noticeable in 
voice transmission but distorted the data waveforms. 

4. Time-sharing. Time-sharing a computer for real­
time tracking of hundreds of airplanes, real-time 
control of weapons, and interaction with human con­
trollers was a bold concept. It required invention of 
programming techniques to ensure timely sequencing 
through all the tasks (Everett et al. 1957). Programs 
and data tables were paged in from drums, and only 
the tables were rewritten. Data input-output and dis­
play data were fully buffered by drums. 

5. Input-output {1/0) control with memory cycle 
stealing. SAGE marked the introduction of the 1/0 
break, also called memory cycle stealing. This forerun­
ner of modern channels allowed computation to con­
tinue during 1/0 operations, interrupted only for the 
core-memory cycle required to transfer a word be­
tween the core memory and the 1/0 device (Everett et 
al. 1957). It involved a register to count the number 
of words transferred and a memory address register, 
incremented for each word transferred, to specify the 
location of the next word (Astrahan et al. 1957). 

6. Associative input system with drum buffer. The 
input buffer drums contained radar data intermixed 

from several sites. Each data item was tagged with the 
identity of its source radar. The central processing 
unit (CPU) could request all the data from a particular 
radar. This constituted an associative memory access. 

7. Branch and index instruction. The AN/FSQ-7 
index registers were an adaptation to a parallel ma­
chine organization of the Williams B-tube (Williams 
and Kilburn 1952). The branch and index instruction 
allowed a single instruction to decrement an index 
register, test for the end of a loop, and branch back to 
the beginning of the loop (Astrahan et al. 1957). 

8. Computer control of marginal checking. Marginal 
checking by varying supply voltages was proved effec­
tive for vacuum-tube circuits by the Whirlwind expe­
rience. The AN/FSQ-7 extended the capability by 
allowing program control of the voltage excursion 
magnitude and its point of application (Astrahan and 
Walters 1956). 

9. Display, light gun, and keyboard input in a pro­
duction machine. The Cape Cod System demonstrated 
the functions needed in a cathode-ray-tube display 
console, including the use of light guns. The AN/FSQ-
7 display system constituted the first use of such 
consoles in a production computer system. The 
graphic situation displays used the Convair 19-inch 
Charactron tubes in which the electron beam was 
passed through a mask in order to shape the beam 
into the form of one of 64 characters. The shaped 
beam was then deflected to the desired position on the 
screen. A textual display used the 5-inch Hughes 
Typotron, which also had a character mask but had a 
storage screen instead of the standard phosphor. IBM 
designed the display consoles but subcontracted pro­
duction to Hazeltine. 

10. Circuit standards. A central-circuit design group 
was responsible for design or approval of all CPU 
circuits. The group followed a set of design standards 
based on component tolerances and compatibility with 
marginal checking (Nienburg 1956). 

11. Component specifications and vendor control. 
Special contracts were made with manufacturers of 
vacuum tubes, capacitors, diodes, and resistors to en­
sure the uniformity and reliability of the products. 
IBM required these vendors to institute strict controls 
over the design, manufacture, and testing of the com­
ponents and actually monitored the manufacturing 
and testing processes at these vendors' plants (Heath 
1956). 

12. Circuit packaging. In the pluggable units, all 
components except vacuum tubes were mounted on 
etched circuit boards. IBM's Manufacturing Engi­
neering Department worked with General Mills to 
develop the Autofab machine, which assembled and 
soldered the circuit boards. These automatic soldering 
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techniques greatly increased the reliability of the cir­
cuit boards, as did the development of double-sided 
boards with plated-through holes. 

Postscript 

An AN /FSQ-7 system weighs 250 tons and has a 3000-
kilowatt power supply. Twenty-four FSQ-7 systems 
were installed. The first began operating in 1958 at 
the McGuire Air Force Base direction center in New 
Jersey. Performance data on the seven remaining sys­
tems were compiled for the 24-month period from 
March 1978 to February 1980. Each system used 
49,000 vacuum tubes. The tubes had a mean time to 
failure of 50,000 to 100,000 hours. The average per­
centage of time that both machines of a system were 
down for maintenance was 0.043 percent, or 3. 77 hours 
per year. The average percentage of time both ma­
chines were down for all causes, including air condi­
tioning and other situations not attributable to the 
computers, was 0.272 percent, or 24 hours per year. 
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Editor's Note 

When we all began to work on SAGE, we believed our 
own myths about software-that one can do anything 
with software on a general-purpose computer; that 
software is easy to write, test, and maintain; that it is 
easily replicated, doesn't wear out, and is not subject 
to transient errors. We had a lot to learn. 

As Herb Benington discusses in the following 
paper, we had already successfully written quite a lot 
of software for experimental purposes. We were 
misled by the success we had had with capable 
engineers writing programs that were small enough 
for an individual to understand fully. With SAGE, we 
were faced with programs that were too large for one 
person to grasp entirely and also with the need to hire 
and train large numbers of people to become 
programmers-after all, there were only a handful of 
trained programmers in the whole world. We were 
faced with organizing and managing a whole new art. 
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Bob Wieser (who led the software design and 
production effort at Lincoln) and his group decided 
with great wisdom to build the tools needed for such 
an endeavor instead of trying to do the whole job with 
the limited resources at hand. We paid a price-the 
schedule slipped by a year-but the organization that 
was established really got on top of the job and 
stayed on top. 

Much of what Herb and others created for the SAGE 
job was forgotten and had to be relearned later by 
others when they faced similar problems. I confess to 
having a certain amount of purely human pleasure at 
watching other organizations suffer through the 
problems of building large programs-organizations 
that had been so critical of our own difficulties. 

One thing not to forget is the challenge of putting 
so large and complex a program into a limited 
computer capacity. The FSQ-7 was the largest 
machine we felt able to build in the early 1950s; its 
capacity is trivial by today's standards. One might 
think that with today's technology, SAGE-like software 
would be easier to build. Unfortunately, this seems not 
to be so. There is a kind of Parkinson's Law for 
software: it is infinitely expandable and swells up to 
exceed whatever capacity is provided for it. 

Foreword 

The following paper is a description of the 
organization and techniques we used at MIT's 
Lincoln Laboratory in the mid-1950s to produce 
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programs for the SAGE air-defense system. The paper 
appeared a year before the announcement of SAGE; 
no mention was made of the specific application 
other than to indicate that the program was used in 
a large control system. The programming effort was 
very large-eventually, close to half a million 
computer instructions. About one-quarter of these 
instructions supported actual operational air-defense 
missions. The remainder were used to help generate 
programs, to test systems, to document the entire 
process, and to support those other managerial and 
analytic chores so essential to producing a good 
computer program. 

As far as I know, there was no comparable effort 
under way in the United States at the time, and 
none was started for several years. Highly complex 
programs were being written for a variety of 
mathematical, military, and intelligence applications, 
but these did not represent the concerted efforts of 
hundreds of people attempting to produce an 
integrated program with hundreds of thousands of 
instructions and highly related functionality. In a 
letter to me on April 23, 1981, Barry W. Boehm, 
director of software research and technology at 
TRW, says of the paper, "I wish I had known of it a 
couple of years ago when I wrote [a] paper indicating 
how many of today's software engineering hot topics 
had already been understood in 1961 in Bill Hosier's 
IRE article. Your paper predates much of that 
understanding by another five years." 

By chance, the paper was presented in 
Washington, D.C., in June 1956 at a symposium on 
advanced programming methods for digital 
computers, sponsored by the Navy Mathematical 
Computing Advisory Panel and the Office of Naval 
Research. The paper was given there because Wes 
Melahn (soon to become president of System 
Development Corporation, and now at the MITRE 
Corporation) was deeply concerned with the 
programming of an air-defense system, as well as 
with the theory and mathematics of advanced digital 
computing at universities. All the other papers at the 
symposium were presented from the perspective of 
either universities or the nascent computing 
industry. The hot topics were machine organization, 
development of algorithms, and the development of 
higher-order languages. The common goal was to 
produce instructions that cost less than $1 per line. 
The audience was somewhat chilled to hear that we 
could not do better than $50 per instruction in our 
particular effort-and that we were talking about 
tens of thousands of pages of documentation. 

I lost interest in the subject until several years ago, 
when I joined the MITRE Corporation and became 
interested in what had happened to data processing 
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in the ensuing 20-25 years. I showed the paper to a 
number of colleagues, some of whom knew nothing 
of the SAGE development and some of whom had 
been deeply involved with it. Generally speaking, 
they were surprised that we had developed or used 
techniques with SAGE that today are considered 
essential to the effective production of large 
computer programs. (We did omit a number of 
important approaches, which I will say a little more 
about below.) 

It is easy for me to single out the one factor that I 
'think led to our relative success: we were all 
engineers and had been trained to organize our 
efforts along engineering lines. We had a need to 
rationalize the job; to define a system of 
documentation so that others would know what was 
being done; to define interfaces and police them 
carefully; to recognize that things would not work 
well the first, second, or third time, and therefore 
that much independent testing was needed in 
successive phases; to create development tools that 
would help build products and test tools and to make 
sure they worked; to keep a record of everything that 
really went wrong and to see whether it really got 
fixed; and, most important, to have a chief engineer 
who was cognizant of these activities and responsible 
for orchestrating their interplay. In other words, as 
engineers, anything other than structured 
programming or a top-down approach would have 
been foreign to us. 

Between the early 1950s and the mid-1960s, 
thousands of computer programmers participated in 
the design, testing, installation, or maintenance of 
SAGE. They learned the system well, and as a result, 
the chances are reasonably high that on a large data­
processing job in the 1970s you would find at least 
one person who had worked with the SAGE system. 
The initial SAGE prototype program slipped its initial 
schedule by about one year. After that, dozens of 
major modifications were installed at dozens of sites 
with slips of at most several weeks. The disciplined 
approach, which had started at MIT's Lincoln 
Laboratory, persisted for over 15 years at SDC. Why 
is it, then, that there are so many tales of computer­
program projects whose schedule slippages were 
much greater than SAGE's and whose overruns are 
often horrendous? There are three major reasons. 

First, the industry went through a phase where we 
decided that computer programming and the 
computer programmer were "different." They could 
not work and would not prosper under the rigid 
climate of engineering management. Just a few years 
ago, I heard with amazement the executive vice­
president of one of our very largest information­
system firms say, "Herb, you have to realize the 
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programmers are different; they have got to get 
special treatment." I almost ran out to sell his stock 
short, but then I discovered that his more realistic 
middle management had realized the failure of this 
nostalgic view of the computer programmer. 

Second, if anything, the pendulum has swung too 
far in the other direction. Many of our government­
procurement documents act as if one produces 
software in the same way that one manufactures 
spacecraft or boots. When I got back into the 
computer programming business several years ago, 
I read a number of descriptions of top-down 
programming. The great majority seemed to espouse 
the following approach: we must write the initial top­
down specification (for example, the A Spec), then 
the next one (typically, the B Spec), so we will know 
precisely what our objectives are before we produce 
one line of code. This attitude can be terribly 
misleading and dangerous. To stretch an analogy 
slightly, it is like saying that we must specify the 
characteristics of a rocket engine before measuring 
the burning properties of liquid hydrogen. Generally, 
software is the most complex component of a system. 
Twice as much software can improve the 
performance of a system by 1 percent or by 500 
percent. The percentage can only be determined if a 
great deal of detailed analysis (including coding) is 
undertaken to understand the "burning properties" 
of software. I do not mention it in t!ie attached 
paper, but we undertook the programming only after 
we had assembled an experimental prototype of 
35,000 instructions of code that performed all of the 
bare-bone functions of air defense. Twenty people 
understood in detail the performance of those 35,000 
instructions; they knew what each module would do, 
they understood the interfaces, and they understood 
the performance requirements. People should be very 
cautious about writing top-down specs without 
having this detailed knowledge, so that the decision­
maker who has the "requirement" can make the 
proper trade-offs between performance, cost, and 
risk. 

To underscore this point, the biggest mistake we 
made in producing the SAGE computer program was 
that we attempted to make too large a jump from the 
35,000 instructions we had operating on the much 
simpler Whirlwind I computer to the more than 
100,000 instructions on the much more powerful 
IBM SAGE computer. If I had it to do over again, I 
would have built a framework that would have 
enabled us to handle 250,000 instructions, but I 
would have transliterated almost directly only the 
35,000 instructions we had in hand on this 
framework. Then I would have worked to test and 

evolve a system. I estimate that this evolving 
approach would have reduced our overall software 
development costs by 50 percent. 

The third reason that we keep seeing missed 
schedules was pointed out to me by the editor of one 
of our best computing journals, who says he has 
concluded that producing large computer programs is 
like raising a family. You can observe your neighbors 
and see all of the successes and failures in their 
children. You can reflect on the experiences you had 
as one member of a large family. You can observe all 
the proper maxims of life and society. You can even 
study at length the experiences of many others who 
have raised families. In the final analysis, however, . 
you have to start out and do it on your own, learn 
the unique options you have, see what unexpected 
problems arise, and, with reasonable luck, perform 
about as well as those who have been doing it 
forever. 

The latter observation may be reassuring to the 
new program manager, but there have been 
numerous significant advances in the techniques for 
producing large computer programs since we did the 
SAGE job over 25 years ago. A few that strike me as 
most important are: 

• We now use higher-order languages in virtually all 
situations. 

• Almost all software development and unit testing 
are qone interactively at consoles in a time­
sharing mode. 

• We have developed a large family of tools that 
allow us to do much precise design and flow 
analysis before coding. (I still say that we should 
use these techniques before we start finalizing our 
top-down requ.irements.) 

• We have developed organizational approaches that 
improve or at least guarantee the quality of the 
systems much earlier in the game. These include 
some of the structured languages, code reviews, 
walk-throughs, etc. 

For further progress, I would stress the following. 

• Since the SAGE effort, we have talked about the 
need to invest in tools that help produce · 
programs-that is, in tools for coding, editing, 
testing and debugging, configuration management, 
consistency checking, structural analysis, etc. I 
believe too little effort has been spent on thinking 
through such tools and standardizing them so that 
they can become analogous to the relatively few 
higher-order languages that we use with great 
facility. 

• Finally, there remains a tremendous range and 
ability among computer programmers to do 
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different jobs. Some are good gem-cutters for any 
kind of stone. Some can play very special roles­
for example, where fastidious approaches are 
needed. Some are brilliant and articulate 
conceptualizers and leaders. Some should not be 
allowed near a computer. We must learn to 
recognize these types, to use them in their right 
place, and to set higher standards for not using 
people even though the market seems insatiable. 

-Herbert D. Benington 

Introduction 

At the 1955 Eastern Joint Computer Conference, Jay 
W. Forrester suggested that the evolution of electronic 
digital computers might be roughly divided into five­
year periods, each period with its paramount signifi­
cance. 

1945-1950 was the period of electronic design. From 
1950-1955, attention has been focused on the solution of 
scientific and engineering problems. 1955-1960 will 
encompass the upswing in the commercial data­
processing applications .... 1960-1965 will probably 
mark the shift of major attention to the use of digital 
computers as the central elements in real-time control 
systems. 

With respect to this last period, Forrester continues: 

General purpose digital computers, as outlined in [recent 
news] releases, are to be the nerve centers for tying 
together the flow of information in our forthcoming new 
air defense system. This type of control system, we can 
assume, will develop further into a high-speed automatic 
control and regulation of future civilian air traffic .... 

[Or,] consider the chemical plants and oil 
refineries .... In the last 30 years the automatic controls 
in an oil refinery have risen ... to some 15 percent of 
the investment in a refinery [or often about] $15,000 
worth of automatic controls. I believe we will see digital 
computers as controllers and monitors of operation in 
these plants to permit closer control, higher-speed 
chemical reactions, larger outputs, and a better product. 

During the past five years, we have seen develop­
ments in automatic programming where the emphasis 
has paralleled Forrester's first three periods. We can 
compare the electronic-design phase with the devel­
opment of basic programming techniques of transla­
tion, compilation, and interpretive routines. Scientific 
and engineering calculations have been assisted by the 
PACT and A-2 compiling systems, and commercial data 
processing by ·BIOR and B-0 (to name but a few). More 
important, our colleagues who build computers have 
come to realize that a computer is not useful until it 
has been programmed, and that programming is an 
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expensive job that requires both machine assistance 
and human sympathy. 

This paper looks ahead at some programming prob­
lems that are likely to arise during Forrester's 1960-
1965 period of real-time control applications. At first 
glance, these are problems that will result from the 
need for very large, very efficient programs, where one 
program (consisting of over 100,000 machine instruc­
tions) may be used in several machines during periods 
of months or years. On closer inspection, we realize 
that these are problems that must be faced whenever 
the need arises for the systematic preparation and 
operation of large, integrated programs, whether these 
programs are used for commercial processing, scien­
tific calculation, or program preparation itself. 

During the past several years at the Lincoln Labo­
ratory, several system programs containing over 
30,000 machine instructions each have been prepared. 
These programs are used for data processing and 
control in real-time systems. Production of these pro­
grams is briefly described here, particularly in terms 
of cost and organization. Four problem areas are 
stressed. 

The first problem is computer operation. Computer 
time is at a premium when a large program is being 
prepared by relatively inexperienced programmers, 
when the machine and its terminal equipment are 
being shaken down, and when the machine-program 
system requires inordinate testing and debugging. The 
only answer is highly systematic, highly mechanized 
program preparation and computer operation. A Lin­
coln Utility System of ser-Vice routines containing 
40,000 instructions has been prepared to ease this 
problem. 

The second problem is program or system reliability. 
Needless to say, a large program is distressingly prone 
to all types of design and coding errors, including some 
very subtle ones. In spite of this tendency, it must be 
extremely reliable if it is to control effectively a system 
involving extensive equipment or manpower. This is 
true not only in a real-time system, but also in com­
mercial applications unless equipment engineers can 
outvote lawyers. Reliability is also a major factor in 
the preparation of ambitious automatic programming 
systems:-how many unreliable programs have been 
produced with supposedly well-tested compilers? 

Next, there is the problem of supporting programs. 
It has been the experience of the Lincoln Laboratory 
that a system of service programs equal in size to the 
main system program must be maintained to support 
preparation, testing, and maintenance of the latter. 

Finally, there is the problem of documentation. In 
the early days of programming, you could call up the 
programmer if the machine stopped. You seldom mod-
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Figure 1. Typical control system. In general, a typical 
control system uses automatic and manual elements. The 
automatic portion consists of a centralized digital 
computer, terminal equipment communicating with the 
environment, and a computer program incorporating 
system memory and standard operational procedures. 

ified another person's program-you wrote your own. 
Although present automatic programming technology 
has done much to make programs more communicable 
among programmers, there is a long way to go before 
we can take an integrated program of 100,000 instruc­
tions and make it "public property" for the user, the 
coder, the tester, the evaluator, and the on-site main­
tenance programmer. The only answer seems to be 
the documentation of the system on every level from 
sales brochures for management to instruction listings 
for maintenance engineers. Such documentation will 
require the development of new methods and new 
languages; more significantly, it will require a much 
more extensive use of the computer to assist in pro­
gram production, documentation, and maintenance. 

At the last ONR symposium on automatic program­
ming held two years ago, the most popular theme was 
simplifying program input through the use of symbolic 
inputs, machine compilation and generation, algebraic 
translation, etc. Very little was said about checkout or 
debugging, training, or operation. I suspect that for 
many the past two years have been a period of realizing 
that automatic programming concepts must go beyond 
the input process into these other areas. 

Large Programs for·Control and Processing 

Before considering these problems in more detail, 
consider some rudiments of large systems and large 
programs. Figure 1 represents a broad flowchart of a 

typical control and processing system such as might 
be used for air-traffic control, industrial-plant control, 
or commercial applications. The area inside the 
dashed line represents the control system; the area 
outside is the environment to be controlled. In general, 
control consists of a manual and an automatic com­
ponent. Manual in-out data could use voice phones or 
radios, teletypes, meters, etc. Typical automatic inputs 
and outputs might be teletype data or high-bandwidth 
digital data from or to analog-to-digital converters. 

The central control is a high-speed, general-pur­
pose, digital machine that includes in-out terminal 
equipment and is controlled itself by the system pro­
gram. Depending on the degree of system automation, 
manual control and processing might range anywhere 
from one half-awake computer operator (who will be 
awakened by an alarm) to a staff of several hundred 
operators and supervisors, each of whom must com­
municate directly with the computer. The machine 
can signal the man through indicator lights and 
alarms, cathode-ray displays, or printed data; the man 
can respond with digital keyboard inputs or a variety 
of analog-to-digital devices. Periodically, the computer 
records data for later analysis of system performance. 

From the computer's point of view, then, the system 
consists of a wide variety of inputs and outputs, each 
with different data characteristics-peak rate, average 
rate, reliability, coding, etc. The system program must 
perform a wide variety of tasks. 

1. It must remember the state of environment. De­
pending on the application, this may require from 
100,000 to many billions of bits of information stored 
on drums, tapes, or photographic plates. 

BOOK· 
INPUT OUTPUT KEEPING CONTROL PROCESSING 

PROGRAMS 2 2 2 2 

{ ~,: m'; I',' m': 
80 PROGRAMS 3 

' ' ' 
100,000 • • 4 

INSTRUCTIONS s s 

ISOLATED 
TABLES 
1,000ITEMS 

CENTRAL 
TABLES 
1,000ITEMS 

6 6 

7 

Figure 2. Static program organization. A system program 
of 100,000 instructions is organized into programming 
groups for input, output, etc. Each group contains several 
subprograms and requires both isolated and central tables. 
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2. It must sample each input either periodically or 
on demand, translate the data, test for reasonableness 
(usually in terms of the present state of the environ­
ment), and either revise its memory content accord­
ingly or transmit the data for further processing. 

3. It must, either periodically or on demand, calcu­
late, monitor, correlate, predict, control, summarize, 
record, and decide. 

4. It must encode and transmit outputs to· all ter­
minal devices. 

5. Finally, the program must control the frequency 
and sequence with which it performs each input, out­
put, processing, or bookkeeping task. 

In order to give these features some physical mean­
ing, let us attach rough numbers to a typical control 
problem. Figure 2 shows the organization of a typical 
100 000-instruction program that contains 80 compo­
nen't subprograms. In other words, each subfunction 
requires a logically distinct subprogram containing an 
average of 1250 instructions. In the figure, each box 
(e.g., Il2) represents a subprogram; they are grouped 
as follows. 

1. There are four major input channels (e.g., 
punched cards, teletype, audio-bandwidth data link, 
and manual keyboards) designated by program groups 
I1 to I4. For each channel, several different types or 
sources of data are received by the control element. 
For example, I3 requires seven subprograms, I31 to 
I37. 

2. There are four major processing functions, which 
require a total of 24 component subprograms. In an 
air-traffic-control application, a typical process might 
be: first, review all aircraft landing at all airports; 
next, monitor these with respect to airspace assign­
ment and sudden trouble situations; finally, prepare a 
revised space assignment. 

3. A third group of 15 subprograms are required for 
program bookkeeping. These programs coordinate 
communications between all other programs, monitor 
ystem load, and prepare summary data for output. 

4. The output makeup programs use three chan­
nels-for example, cathode-ray display, audio-band­
width data link, and teletype. Fourteen subprograms 
are required to scan the system memory and make up 
properly coded output messages. 

5. Finally, seven control subprograms are required 
to control the timing, sequencing, and operation of all 
other subprograms. 

The 100,000 instructions represent standing opera­
tional procedures for the system; they do not change 
as the system operates. The system memory, which is 
stored separately in system tables, can be broken down 
into two blocks: isolated tables, which store informa-

COMPONENT 
PROGRAM 

ISOLATED 
TABLES 

CENTRAL 
TABLES 

CONTROL 
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Figure 3. Dynamic program operation. Component 
subprograms (Figure 2) time-share the control computer. 
Each component program requires iso~ated and central. 
tables; a control program, which remams perman~ntly m 
storage, directs sequence and frequency of operation of 
component subprograms. 

tion required by one program group only (e.g., I2), and 
central tables, which store data shared by two or more 
program groups. In measuring the complexity of the 
table structure, the total table memory required by 
tables is not nearly so important as the number of 
items. In this sense, an item is defined as one unique 
type of information. A single item may be represented 
once in the tables (e.g., "process I42 is being per­
formed"), or the item may be represented 1 million 
times (e.g., "customer account number"). . 

In the example given, 1000 items each are reqmred 
for the isolated and central tables. For 10 of the central 
items, the program groups which set or use the item 
are shown; for example, the first item is used by Il, 
I4, 03, B2, Cl, C2, P2, and P4. If 1000 such lines we~e 
drawn, the dot matrix would measure the communi­
cations (and complexity) within the program. 

Figure 3 shows how the component subprograms 
time-share the machine to perform the control and 
processing functions (only a small portion of the com­
plete program sequence is shown). Each c?mponent 
subprogram requires its isolated tables, pertment por­
tions of the control tables, and certain control subpro­
grams. Eighty programs must time-share the machin~. 
In general, some subprograms will operate uncondi­
tionally in a fixed sequence but at different frequen­
cies; other programs will operate on demand. 

Large-Program Systems-Centralized versus 
Decentralized 

At this stage, we can consider the effect of program 
size and integration on the design, testing, and oper­
ation of the program. To date, there have been several 
programming systems of over 50,000 machine instruc-
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Figure 4. Program production. Production of a large­
program system proceeds from a general operational plan 
through system evaluation; for example, assembly testing 
verifies operational and program specifications. 

tions prepared for business and scientific applications. 
For the most part, however, these programs have been 
what might be called large decentralized programs; 
that is, the data-processing function has been divided 
into a dozen or so parts, and the communication 
between these parts has used blocks of data stored on 
magnetic tape or punched cards. 

Usually, the format and coding (i.e., the structure) 
of these blocks can be unequivocally defined with 
relative ease. This considerably simplifies the design 
problem; after the blocks have been documented, 
groups of programmers can be assigned to each part 
with the assurance that little communication between 
these programmers will be necessary. If the fullest 
decentralization is desired, the component programs 
will not share machine storage or machine time. (In 
some applications, even different machines are used.) 

Control of data processing in a decentralized system 
is primarily manual. Tape reels and programs are 
changed by computer operators (and even shipped to 
remote locations). If an unexpected result develops, 
an engineer or accountant or supervisor can print out 
intermediate data and decide after the fact what 
course should be taken. Efficient use of computer time 
need not be closely monitored, since there are no real­
time constraints. 

In testing or debugging one part of the system, data 
produced by other parts are not required until the very 
last moment that the system is put into operation. 
(Probably many of the decentralized systems currently 
in operation still contain many minor errors which 
are being compensated for daily by users who have 
become accustomed to these minor idiosyncrasies.) 

The important point is that one can write a large 
programming system and still maintain a high degree 
of decentralization. Like most decentralizations, this 
course produces a system that contains semantic in­
consistencies, ambiguities, and errors; operating inef­
ficiencies result from duplication and wasted motion. 

Real-time control systems have presented the first 
computer application where a very large program is 
required to perform all assigned functions, and yet 
where the disadvantages of decentralization cannot be 
tolerated. Success or failure of the system usually 
depends on efficient use of computer operating time. 
Internal control of the real-time program must be 
highly organized if efficient time and storage alloca­
tion are to be achieved, if the many in-out devices are 
to be adequately sampled, and if automatic decisions 
are to be made when unusual conditions develop 
within the program or from the external environment. 

The control program must be centralized. This com­
plicates design and coding since communication be­
tween component subprograms must have a high 
bandwidth. The use of each of the thousands of central 
table items must be coordinated between 100 or so 
component subprograms. Organized, readable specifi­
cations for the design and coding phase accomplish 
part of this task. Even then, only the most thorough 
testing of the entire program ensures that system 
threads have been carefully worked out, that incom­
patibilities are discovered, and that all contingencies 
are accounted for. 

Preparation of a System Program 

Figure 4 indicates the nine phases used at the Lincoln 
Laboratory in preparing a large system program. First, 
an operational plan defines broad design requirements 
for the complete control system consisting of the 
machine, the operator, and the system program. This 
plan must be prepared jointly by the computer systems 
engineers and the eventual user of the system. 

From this plan, detailed operational specifications 
are prepared that precisely define the "transfer func­
tion" of the control system. In this representation, the 
computer, its terminal equipment, and the system 
program are treated as a black box. On the other hand, 
this description is sufficiently detailed that program­
mers_ can later prepare the system program using only 
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machine and operational specifications. The opera­
tional specifications correspond to the equations the 
scientist gives a programmer; numerical analysis has 
yet to be performed. 

Program specifications outline implementation of 
the operational black box by the system program. 
These specifications organize the program into com­
ponent subprograms and tables, indicate main chan­
nels of program intracommunication, and specify time­
and storage-sharing of the machine by each subpro­
gram. Continuing the analogy, program specifications 
correspond to a broad flowchart of the solution. 

After the operational and program specifications 
have been completed, detailed coding specifications are 
prepared that define the transfer function of each 
component subprogram in terms of the processing of 
central and isolated items. From these specifications, 
it is possible to predict precisely the output of the 
subprogram for any configuration of input items. The 
coding specifications also describe all storage tables. 

Each component subprogram is coded using the 
coding specifications. Ideally, this phase would be a 
simple mechanical translation; actually, detailed cod­
ing uncovers inconsistencies that require revisions in 
the coding specifications (and occasionally in the op­
erational specifications). 

After coding, each component subprogram is param­
eter tested on the machine by itself. This testing phase 
uses an environment that simulates pertinent portions 
of the system program. Each test performed during 
this phase is documented in a set of test specifications 
that detail the environment used and the outputs 
obtained. In the figure, the dashed line indicates that 
parameter testing is guided by the coding specifica­
tions instead of by the coded program; in other words, 
a programmer must prove that he satisfied his speci­
fications, not that his program will perform as coded. 
(Actually, test specifications for one subprogram can 
be prepared in parallel with the coding.) 

As parameter testing of component subprograms is 
completed, the system program is gradually assembled 
and tested using first simulated inputs and then live 
data. For each test performed during this period, as­
sembly test specifications are prepared that indicate 
test inputs and recorded outputs. Assembly testing 
indicates that a system program satisfies the opera­
tional and program specifications. 

When the completed program has been assembled, 
it is tested in its operational environment during 
shakedown. At the completion of this phase, the pro­
gram is ready for operation and evaluation. 

Figure 5 indicates reasonable production costs that 
might be expected in preparing a system program of 
100,000 instructions. Considering the present tech­
nology of program preparation, our experience does 
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ENGINEERING COMPUTER PAPER 
MANPOWER TIME OUTPUT 

PHASE (MAN-YEARS) (HR} (PG} 

Operational Plan 500 

Operational Specs 30 2,500 

Program Specs 10 0 500 

Coding Specs 30 5,000 

Coding 10 3,000 

Parameter Testing 20 1,000 2,000 

Assembly Testing . 30 2,000 1,500 

Shakedown ? 

Evaluation ? ? __ ? 

130 3,000 15,000 

Minimum Production Time = 18 Months 

Figure 5. Production cost. Using present techniques, the 
production cost for a 100,000-instruction program can 
easily require $55 per instruction. 

not indicate that these are at all overly pessimistic 
estimates. The estimates shown do not include train­
ing of programmers, preparation of ancillary pro­
grams, development of control-systems techniques, or 
overhead supporting activity. They include only en­
gineering manpower required to produce the system 
program. Let us assume an overhead factor of 100 
percent (for supporting programs, management, etc.), 
a cost of $15,000 per engineering man-year (including 
overhead), and a cost of $500 per hour of computer 
time (this is probably low since a control computer 
contains considerable terminal equipment). Assuming 
these factors, the cost of producing a 100,000-instruc­
tion system program comes to about $5,500,000 or $55 
per machine instruction. In other words, the time and 
cost required to prepare a system program are compa­
rable with the time and cost of building the computer 
itself. 

The Lincoln Utility System 

In order to simplify the preparation and operation of 
all programs, the Lincoln Laboratory has prepared a 
set of service routines called the Lincoln Utility Sys­
tem. This system was designed to assist all program­
mers in using the machine; its present size-40,000 
machine instructions-is indicative of the importance 
attached to its role. The Lincoln system does not 
provide automatic-coding facilities in the conven­
tional sense. Compared with systems that have been 
developed at computing centers where scientific and 
engineering calculations predominate, the Lincoln 
system has concentrated more on systematizing com­
puter operation and program debugging than on de­
veloping automatic translation of programmer lan­
guage into machine language. Design of the system 
followed these ground rules. 
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PROGRAMMER'S 
FORM 

ALPHANUMERIC, 
SYMBOLIC CARDS 

LIBRARY 
FORM 

LOCATION DAT A 
RELATIVE-ADDRESS COPY 
COMMUNICATION TAGS 
EDITOR REQUESTS 

INPUT TAG STRUCTURE 
WORD CODING 
PROGRAM IDENTITY 

\ 
I 

MACHINE 
FORM 

BINARY COPY 
(DRUMS, CORES) 

I OPTIONAL FOR 
) ··~ PRINTOUT I 

\ 

~ 
Figure 6. Program input process. With ~he Lincoln Utility 
System, compiled programs are stored wit~ th~ 
programmer's full input structure; at .read:m time, the 
program is finally converted ~o ?1achme bmary. lan~age. 
Even at this time the symbolic mput structure is available 
to other service routines. 

1. At the Lincoln Laboratory, most programs are 
prepared by relatively inexperienced programmers. As 
many features as possible were included to help them, 
yet no features were used that were so complicated 
that only experienced programmers could use them 
with facility. Also, programmers do not operate the 
machine during debugging; they are required to plan 
and document their operations beforehand. 

2. Computer time for parameter testing, assembly 
testing, and system shakedown is scarce. A large effort 
has been devoted to systematizing and mechanizing 
computer operations in order to use minimum com­
puter time. 

3. The Lincoln Utility System includes several fea­
tures that assist programmers in communication and 
documentation problems encountered during the de­
sign and testing phases of system program production. 

4. The Lincoln Utility System contains extensive 
debugging features including facilities for remote, flex­
ible card control of the computer and programs to be 
tested. 

5. Programs are prepared in machine language be­
cause automatic coding techniques developed to date 
do not guarantee the efficient programming required 
for a real-time system. (In retrospect, this ground rule 
seems very shaky.) 

6. The Lincoln Utility System, which is quite large, 
has not been so centralized that its initial production 
was delayed or that its revision and improvement are 
difficult. 

With the Lincoln Utility System, programmers code 
in floating address using some subroutine requests, 
particularly for card input and printed outputs. When 

programs are compiled, they are stored on a magnetic­
tape library with their full input structure; that is, the 
library copy contains program identity, a relative­
address binary copy, assigned memory locations, a 
floating-address tag table, subroutine requests, etc. 
Storage in this form has several advantages. First, 
modifications to a program can be expressed in the 
floating-address input structure; for recompilation, 
the compiler does not require a complete program 
copy. Second, all postmortems during and after pro­
gram operation are retranslated into input language; 
programmers do not write programs in symbolic form 
and receive fixed-address outputs. Third, major mod­
ifications in storage addresses and locations can be 
made to a checked-out program at the time the pro­
gram is read into the machine because system design 
parameters are stored in a central communication pool 
(see Figure 6). 

In order to debug programs, a "checker" facility is 
used. This is a service program of 10,000 instructions 
that allows the program to be tested-the checkee­
to be operated either interpretively or noninterpre­
tively under control of a pseudoprogram of executive 
instructions. When the checkee is operated in the 
interpretive mode, the checker automatically detects 
loops, arithmetic alarms, illegal in-out sequences, and 
illegal instructions. It stores a history of program 
operation including branches, change-registers, and 
in-out transfers. In the interpretive mode, the checkee 
cannot cause a machine halt; when alarm conditions 
are detected, the checker automatically generates spe­
cial outputs and moves on to another job. The checker 
provides a wide variety of outputs including instruc­
tion-by-instruction printouts, dynamic change-regis­
ter printouts, and alarm printouts. Using the executive 
instructions, a programmer can set machine registers 
or memory registers to test values; he can start and 
stop the checkee at selected locations; he can request 
different outputs for different regions of the program; 
he can request alarm outputs if the checkee transfers 
control outside a fixed region or if a loop of more than 
n cycles is performed; he can indicate the use of 
different executive subprograms depending on the re­
sults of checkee operation; he can indicate which 
portions of his program are to be performed nonin­
terpretively. From a programmer's point of view, the 
checker is a special-purpose, checkout computer; it is 
a stored-program machine with highly flexible input, 
output, and control sections. (See Figure 7 for a sample 
executive program.) 

All utility programs are controlled by utility control 
cards. Before a machine run, a deck of binary cards, 
checker executive cards, etc., is prepared. The operator 
places the cards in the reader, pushes one button, and 
the rest of the computer operation is automatic. 
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A final feature of the utility system is the use of a 
large communication pool of numerical parameters 
shared by all programmers. Each programmer can 
specify that constants or addresses in his program 
should be taken from the pool. Numbers in this pool 
are expressed symbolically by the programmer in both 
his coding specifications and his coded copy; the ma­
chine supplies proper numerical values at read-in time. 
These ·values may be unknown to the programmer and 
even changed from day to day. For example, commu­
nication tags are used for extracting information (usu­
ally table items) that is packed into a full word. The 
programmer need not know the exact location of the 
word in memory, nor the position of the information 
bits within the word. Communication tags are even 
used to indicate the location in memory of the program 
itself. A program-design group assigns specific numer­
ical values to the tag pool from day to day, in some 
cases long after component subprograms have been 
debugged. Since numerical values are assigned only 
when the program is read into the machine, it is 
possible for system designers to move programs and 
tables within drum and core memory merely by chang­
ing constants in this pool. Only one central document 
needs to be revised, and minimum testing on the 
computer is required. Figure 8 indicates the allocation 
of the 40,000 instructions in the utility system. 

Testing 

It is debatable whether a program of 100,000 instruc­
tions can ever be thoroughly tested-that is, whether 
the program can be shown to satisfy its specifications 
under all operating conditions. Considering the size 

CHECKER CARDS I D E L A Y E D 
0 1 N I 1 1 A 1 1 R 

(2 AL 0 7 
0 3 L p 2 5 
0 4 LR 1 2 3 
0 5 TR 2 3 
0 6 BG 2 A 3 z + 6 
0 7 L p 4 
0 8 LR 1 4 5 1 6 
0 9 BG 1 4 A 6 L + 5 
1 0 cc 
1 QT 

Figure 7. Sample executive program. The Lincoln checker 
is controlled by pseudoinstructions. The executive program 
shown indicates regions of the checkee to be performed 
noninterpretively (01 NI), alternate executive instructions 
in case of checkee alarm (02 AL), maximum-length loops 
(03 LP), legal regions of checkee operation (04 LR), 
checkee output mode (05 TR), etc. 
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PROGRAM 

Compiler 
Read-in 
Library Merge-Output 
Checker 
Master Tape Load 
In-Out Editors 
Communication Pool 
Utility Control 
Numeric Subroutines 
Miscellaneous 

LENGTH 

10,500 
1,300 
4,700 
7,500 
2,000 
2,400 
4,100 
3,000 
1,000 
4,000 

40,500 

Figure 8. Utility system. The Lincoln Utility System 
requires over 40,000 instructions as indicat!!d. 

and complexity of a system program, it is certain that 
the program will never be subjected to all possible 
input conditions during its lifetime. For this reason, 
one must accept the fact that testing will be sampling 
only. 

On the other hand, many sad experiences have 
shown that the program-testing effort is seldom ade­
quate. When the program is delivered for operation, 
its performance must be highly reliable because the 
control system is a critical part of a much larger 
environment of men and machines. One error per 
100,000 operations of the entire program can easily be 
intolerable. 

As a result of facing this problem for some time at 
the Lincoln Laboratory, the following principles have 
evolved to govern our testing. 

First, parameter testing (i.e., testing of individual 
component subprograms in a simulated environment) 
cannot be too thorough. This phase must discover all 
errors internal to the program and its individual cod­
ing specifications. Even if parameter testing were per­
fect (which it never is!), many errors in system design 
would remain to be discovered during subsequent as­
sembly testing. 

Second, initial assembly testing should be per­
formed using completely simulated inputs. There are 
several reasons. First, only in this way can all test 
inputs be carefully control~ed and all tests be repro­
ducible. Second, when errors are discovered with a 
new program using live inputs, there will always be a 
question whether the program or the machine is at 
fault. Integration of the system program with terminal 
equipment should not be attempted until the assem­
bled program has been well tested. 

A third principle is that the testing facility used 
during the assembly test phase must contain exten­
sive, flexible facilities for recording both system 
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LIVE 
INPUTS SYSTEM 

PROGRAM 
LIVE 

OUTPUTS 

r- -, 
I I 
I LIVE INITIAL INTERNAL EXTERNAL I I SIMULATION CONDITIONS I 
I I 
I INPUT OUTPUT I 

L---------------------~ 
INSTRUMENTATION 

Figure 9. Test instrumentation. Proper testing of a control 
system requires an automatic facility for simulating inputs 
and monitoring outputs. With this facility, extensive 
testing can be performed and outputs produced for either 
diagnosis of system errors or verification of proper system 
performance. 

outputs and intermediate outputs (i.e., subprogram 
intercommunications). Without this facility, rapid 
and reliable diagnosis of system errors is impossible. 
After a test has been conducted and errors found, it 
should be possible to correct the error before the 
program is put on the machine again. 

The need for comprehensive simulated inputs and 
recorded outputs can be satisfied only if the basic 
design of the system program includes an instrumen­
tation facility. In the same way that marginal-check­
ing equipment has become an integral part of some 
large computers, test instrumentation should be con­
sidered a permanent facility in a large program. 

Figure 9 illustrates the role of test instrumentation 
in a system program. Each of the live inputs can be 
individually simulated; this allows simultaneous test­
ing with both live and simulated data. In addition, the 
input instrumentation allows easy setting of initial 
conditions for system memory; this feature is per­
formed by a special-purpose translation program that 
converts alphanumeric card data into system tables. 

System Program 

Utility Programs 
Special Programs 
Test Instrumentation 
Operational Instrumentation 

100,000 Instructions 

40,000 
10,000 
20,000 
30,000 

200,000 Instructions 

Figure 10. Production of a system program. Supporting 
programs whose total size equals the system program may 
be required to simplify production and testing of the 
system program. 

The output instrumentation "probes" both internal 
data (for diagnosis) and external data (for simpler 
verification). 

One final principle should govern system-program 
testing: All successful parameter and assembly tests 
must be reproducible throughout the life of the system 
program. These tests must be documented in test 
specifications that detail the reasons for the tests, 
required inputs, operating procedures, and expected 
outputs. 

The original reason for this requirement stemmed 
from the problem of revising the program once it was 
operational. The slightest modification to a program 
can be successful under limited testing conditions and 
yet still cause critical errors for other operations. Since 
it is desirable to retest the program thoroughly after 
each modification, a large battery of test inputs must 
be available. We have discovered two other incidental 
advantages of detailed test documentation. First, a 
programmer's tests tend to be more organized and 
more exhaustive if he must document them. Second, 
if machine-versus-program reliability is ever ques­
tioned, retesting is possible. If a known program and 
a known test fail, the machine is at fault. 

Supporting Programs 

The utility and test-instrumentation programs dis­
cussed are only part of the complete set of supporting 
programs. In addition, special programs, which assist 
preparation of the system program, are used to gen­
erate routine data blocks, perform special translation 
of alphanumeric data into parameter tables, assemble 
program-sequence and timing parameters, etc. 

Operational instrumentation programs are used 
during system shakedown and evaluation. They con­
tain simulation and recording facilities that are far 
more realistic and operationally oriented than the test 
instrumentation. System recorded data are analyzed 
with a battery of data-reduction programs (Figure 10). 

Documentation-Design and Revision 

As indicated earlier, documentation of the system 
program is an immense, expensive job. The output 
will run to tens of thousands of pages of specifications, 
charts, and listings. At the Lincoln Laboratory, these 
currently include the following. 

Operational specifications 
Program specifications 
Coding specifications 
Detailed flowcharts 
Coded program listings 
Parameter test specifications 
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Assembly test specifications 
System operating manuals 
Program operating manuals 

The need for this battery of documents is obvious. 
The system and its program must be learned and used 
by management, operational-design engineers, sys­
tem-operating personnel, training personnel, pro­
gram-design engineers, programmers, program-test 
engineers, evaluation personnel, and, if more than one 
system is maintained, on-site maintenance program­
mers. Each of these users has very different needs. 

Consider the problem of revising the system once 
the program is operational in the field. A minor change 
in the operational specifications is proposed. First, the 
cost and effects of this change must be evaluated in 
terms of the program, the operators, and, often, the 
machine. In order to make the change, several hundred 
revisions may be required in the specifications. If the 
change is approved, these documents must be changed, 
operating manuals revised, and the program modified 
and thoroughly tested. The wave of changes must be 
coordinated smoothly. 

Digital computers are often sold to management on 
the basis of their programmed flexibility. We have 
said, "If your doctrine or procedure changes, no messy, 
expensive, time-consuming equipment changes will be 
required." In reality, this is not true today. The cost 
of the documentation mentioned is only a symptom 
of the design-coordination problem in large systems. 

How can we reduce this cost? Obviously, as we have 
done already, by more extensive use of the computer. 
(At the laboratory, we have partially gone in this 
direction through the use of punched cards for storing 
all central design data. Decks are easily revised, fed 
into the system program, or listed for the user.) We 
must systematize design, production, and documen­
tation both in the small and in the large. By "in the 
small," I mean what is already being done in automatic 
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programming. Instead of an algebraic translator, we 
need a unified "bookkeeping-logical-processing-alge­
braic translator." Before we get this, we will surely 
need much more research on coding languages and 
representations. Eventually, programming should be­
come a two-way conversation between the imprecise 
human language and the precise, if unimaginative, 
machine. The programmer will say, "Do this," and the 
machine will answer, "OK, but what happens if ... ?" 
The smallest gain of such a system would be the 
elimination of the coding, parameter testing, and pa­
rameter test-specification phases. Unfortunately, 
these phases represent only one quarter of the system 
cost. 

Documentation "in the large" poses a bigger chal­
lenge. 
1. What integrated set of documents are required to 

design and describe a large system? 
2. What language should these documents use? 
3. How should they be cross-referenced? 
4. Can we eventually store them on magnetic tape 

and let the computer analyze, print, and code? 

Summary 

The techniques that have been developed for auto­
matic programming over the past five years have 
mostly aimed at simplifying the part of programming 
that, at first glance, seems toughest-program input, 
or conversion from programmer language to machine 
code. As a result of progress in this area (and a growing 
number of experienced programmers), we find that 
large programs can· now be produced; unfortunately, 
they are difficult to test and document. If the newest 
very-high-speed, large-memory computers are to be 
fully utilized, we must develop automatic program­
ming procedures so that they allow cheap production 
of highly reliable, easily revised, well-documented sys­
tem programs. 
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The Cape Cod System 
C. ROBERT WIESER 

The Cape Cod System was an advanced-development prototype for the SAGE 

system. The paper discusses the evolution of the Cape Cod System, which 
used the Whirlwind computer, from its inception in 1951 through first operation 
in September 1953. 

Categories and Subject Descriptors: K.2 {History of Computing]-hardware, 
SAGE, software, systems 
General Terms: Design, Management 
Additional Key Words and Phrases: defense, U.S. Air Force, Cape Cod 
System, Whirlwind 

Editor's Note 

One of the important characteristics of the SAGE 

development was the close integration of the design 
with experimental tests of concepts, the discovery 
and correction of unforeseen difficulties in the real 
world, and the verification of design details. Thanks to 
the high priority of air defense and the complete 
support of the Air Force, we were able to build and 
operate an evolving experimental air-defense system 
with which to do our work. This evolving system, as 
Bob Wieser describes, began with a single radar and 
eventually became a full-scale air-defense system 
covering the New England area, with numerous 
radars, assigned air-defense interceptors, and 
regularly scheduled raids by SAC bombers. I believe 
that SAGE could not have been successfully built in 
such a short time without these extensive 
experimental facilities. 

The Cape Cod System also acted as a 
demonstration to persuade decision makers in the Air 
Force, associated contractors, and the community at 
large that SAGE was actually doable. Today, in a world 
full of computers, it may be difficult to believe there 
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was a lot of skepticism about whether SAGE could be 
made to work. In fact, believers were a small minority 
to start with, and Cape Cod played a major role in 
persuading important people, especially senior Air 
Force officials, that MIT was on the right track. Once 
they believed, they provided the solid backing without 
which SAGE would not have been possible. 

In the early days, Whirlwind and its growing 
ensemble of peripheral equipment was only marginally 
reliable, yet we ran air-defense exercises every week. 
Whirlwind had a distinct personality-it could be 
fractious and difficult but it seemed to sense when 
something important was going on and would react 
appropriately. Many times I saw Whirlwind flat on its 
back an hour before demonstration time only to come 
up and run solidly when needed, then collapse again 
and be down for several days. For some reason that 
none of us, including George, could understand, 
Whirlwind particularly liked George Valley. Whirlwind 
would almost invariably run while he was in the 
building only to go back to sulking when he left. 

Introduction 

The Cape Cod System was an important and necessary 
step in upgrading post-World War II continental air 
defense. The upgrading was extensive and required 
improvement of just about all the functions and ele­
ments of the system, which was aptly characterized in 
the first report of the Valley Committee (January 
1950) as "lame, purblind, and idiot-like."1 

1 "Air Defense System," Report of the Air Defense Systems Engi­
neering Committee, October 24, 1950, pp. 9-10. 
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Figure 1. Gap-filler radar. 

In addition to problems of equipment reliability and 
maintainability, the 1950 air-defense ground environ­
ment had a number of conceptual difficulties that had 
to be corrected in order to achieve the high attrition 
rates needed to cope with an emerging nuclear threat. 
The Battle of Britain was won with about 5 percent 
attrition of attacking bombers, a number hopelessly 
low for defense against nuclear attack. 

Briefly, the principal conceptual problems were gaps 
in low-altitude radar coverage, severe problems in 
"hand-over" (handing aircraft tracks and control of 
interceptors from one radar to another by voice tele­
phone), and the inability of the system, which was 
entirely manual, to carry out detection, tracking, iden­
tification, and interception for more than a few targets 
in the coverage of any one radar. To make matters 
even more difficult, these problems were synergistic. 
The only known cure for lack of low-altitude radar 
cover was "gap-filler" radars (Figure 1) to cover the 
low-altitude "holes" between the existing long-range 
radars. Because low-altitude radar coverage is inher­
ently limited to a few tens of miles, a low-altitude 
defense requires more frequent hand-over of aircraft 
tracks. The advent of faster jet aircraft required even 
more frequent hand-over, and further taxed the man­
ual-control system operators by reducing the time 
available to intercept an attacking bomber. 

Planning 

The Air Defense Systems Engineering Committee, 
usually called the Valley Committee, envisioned a new 
air-defense ground environment with a number of 
innovations to correct the conceptual limitations of 
the old system. Unmanned gap-filler radars would be 
added to supplement low-altitude coverage, and both 
gap-filler and long-range radar data would be auto-
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matically encoded and transmitted over telephone 
lines to direction centers. Thus the netting of radars 
took care of the hand-over problems by providing the 
direction center with the composite overlapping cov­
erage of many radars. The direction centers would also 
be linked by automatic digital data transmission. Be­
cause this concept included automatic detection of 
aircraft, it contributed to eliminating saturation in the 
direction center. 

The direction center itself was to be semiautomatic; 
that is, routine tasks would be done automatically 
under the supervision of operators. A high-speed dig­
ital computer would collect target reports from the 
radar network, transform them into a common coor­
dinate system, perform automatic track-while-scan 
(tracking based on periodic radar reports at 10- to 12-
second intervals), and compute interceptor trajecto­
ries. Operators filtered the radar data, had override 
control (i.e., could initiate or drop tracks), performed 
friend-or-foe identification function, assigned intercep­
tors to targets, and monitored engagements through 
voice communication with the interceptor pilots. 

For each of these innovations there was a prior 
invention, but all inventions were at a very early stage 
of development in 1950. In operation were breadboard 
hardware for automatic radar target detection, digital 
encoding (with beam splitting), and transmission over 
voice-bandwidth telephone lines. This equipment, the 
Digital Radar Relay (DRR), was installed and con-

Figure 2. Digital radar relay (DRR) connected to the 
MEW radar. 
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nected to a World War II Microwave Early Warning 
(MEW) radar at Hanscom Field (Figure 2). Commer­
cial telephone lines were available. The forerunner of 
the SAGE digital computer, Whirlwind I, had been 
designed, prototypes of its repetitive basic circuits and 
devices had been built and tested, and the computer 
was under construction with its central memory ( elec­
trostatic storage) yet to be integrated. 

System analysis and engineering was at a very early 
stage. A small group was studying the application of 
Whirlwind to semiautomatic air-traffic control and 
had started work on automatic digital track-while­
scan and aircraft flight-path control. This group be­
came the nucleus of the Cape Cod design group. 

Nothing in the new air-defense ground-environ­
ment concept challenged the laws of physics; however, 
an extensive, urgent engineering job had to be done if 
the concept was to be accepted. The MEW and bread­
board DRR were unreliable, telephone lines were 
noisy, and the electrostatic storage for Whirlwind was 
yet to be integrated. The smattering of software in 
existence had been coded in machine language for 
scientific calculation, and some thought had been 
given to steering aircraft away from collision courses 
instead of onto them. 

Given these circumstances, development of the new 
concept and its embodiment in the Cape Cod System 
relied heavily on iterative cycles of experiment-learn­
improve. Since the major elements and subelements 
were being developed simultaneously, system engi­
neering and integration was a parallel empirical pro­
cess of exploiting what was available. Understandably, 
there were skeptics who viewed the concept, which 
was radically new and without even an analogous 
precedent, as more foolhardy than creative. This lent 
further impetus to a development approach that used 
what was at hand to conduct realistic experiments and 
used the experimental results immediately to steer 
further development of hardware and software. How­
ever inelegant, the approach worked very well. The 
ever-present realism of radar clutter, telephone-line 
noise, and limited computer memory drove the devel­
opment pace faster than a mathematical analytical 
approach could ever have done. 

Early Experimentation 

The development and test process was evolutionary, 
but fell into three phases based on availability of 
hardware. The first phase consisted of the Project 

Figure 3. Whirlwind I test control. Left to right: Stephen J. Dodd, Jay W. Forrester, Robert R. Everett, Ramona Ferenz. 
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Charles demonstrations, which provided elementary 
proof-of-principle evidence to support continued de­
velopment. Next, there was construction and test of 
the 1953 Cape Cod System, which demonstrated fea­
sibility of the SAGE system. The third phase was 
expansion of the Cape Cod System to provide addi­
tional design data for SAGE. 

The first step in the Charles demonstrations was· to 
show that radar data, encoded and transmitted from 
a remote site, could be inserted into a digital computer. 
Phone lines were leased, and the MEW radar data 
were transmitted to the Barta Building in Cambridge, 
Mass., where Whirlwind I was under construction 
(Figure 3). The internal memory was not yet available, 
and the only usable storage consisted of five flip-flop 
test-storage registers. Using one register as an input 
buffer and another as an output register (for display), 
the MEW data were first inserted and displayed in 
September 1950, a few months prior to the formal 
commencement of the Project Charles investigations. 
However trivial an experiment this might seem in 
retrospect, much was learned. The reliability of the 
old MEW radar was poor, as was the reliability of the 
first breadboard DRR. Telephone noise was frequently 
formidable, especially when cross-talk from dialing 
flooded the computer with false "targets." Usable data 
were available less than half the time, a condition that 
had to be improved. As a result, phone-line noise was 
to a large extent cleaned up, and the MEW and DRR 
were shut down for a month for repair and 
upgrading. 

In the meantime, construction of Whirlwind contin­
ued, paced by the reliability of the first bank of elec­
trostatic storage tubes (Figure 4). The memory density 
was thinned to 16 X 16 (256 registers) to improve 
operation, and a small amount of "application time" 
was allocated to computer users. The applications 
group (later the Cape Cod design group) coded the 
computer to perform automatic, real-time track-while­
scan of up to 10 aircraft detected by the MEW radar. 
The program also provided a cathode-ray-tube plan­
position indicator (PPI) polar display of the radar 
reports and the tracks, which were initiated manually 
from the display tube by means of a photoelectric light 
gun. Thus another direction-center function was dem­
onstrated, although on· a limited scale, and with no 
better than a 50-50 chance of reliable operation even 
when "tweaked up" for a test. 

The next evolutionary step, which took place early 
in the era of Project Charles, was to program Whirl­
wind to compute collision-course vectoring instruc­
tions for an interceptor aircraft automatically. Be­
cause of limited storage, the track capacity had to be 
reduced from ten to two aircraft (the target and inter-

C. R. Wieser • Cape Cod System 

Figure 4. Whirlwind I electrostatic memory. From top left: 
Jay Forrester, Pat Youtz, and Stephen Dodd. 

ceptor). The interceptor vectoring headings were dis­
played by means of indicator lights on a flip-flop 
register and translated mentally from binary to deci­
mal by the radio telephone "talker" for voice trans­
mission to the interceptor pilot. 

Having coded and tested the system, there was a 
strong urge to try it out quickly. The local Hanscom 
Air National Guard Unit was persuaded (very infor­
mally) to join the experiment as part of maintaining 
flight proficiency. Two officers agreed to try it out. 
One flew the C-45 target (a small twin-engine Beech­
craft of World War II vintage), and the other flew a 
T-6 single-engine propeller-driven trainer. These air­
craft flew at about one-quarter the speed of jets, but 
they were available and jets were not. On April 20, 
1951, less than a year after the birth of. the Valley 
Committee's air-defense concept, automatic compu­
tation of interceptor instructions was demonstrated 
live, three times, in the skies of New England. Miss 
distances were less than 1000 yards, quite adequate 
for hand-over to airborne intercept radar. 

Construction 

Although the air-defense functions were demonstrated 
on a limited scale with unreliable developmental 
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equipment, the system worked as expected in a real­
istic environment and provided a basis for proceeding 
with construction of the Cape Cod System. The deci­
sion to proceed came just three days after the inter­
ceptions were conducted. The timetable, which was 
driven by military urgency, was ambitious-the Cape 
Cod System was to be built and put in operation by 
1953, a development time of 2112 years from limited 
proof-of-principle tests to demonstration of feasibility. 
Moreover, the "1953 Cape Cod System," as it was 
called, was a big step from the MEW-DRR-Whirl­
wind system with limited storage to a functionally 
complete experimental system so that all the air­
defense functions could be performed experimentally, 
developed further, and demonstrated with acceptable 
reliability. 

Radar netting was required. Earlier experiments 
showed that some form of radar data filtering was 
needed to remove the residual radar clutter that was 
not canceled by the moving target indicator (MTI). 
Phone-line noise had to be held within acceptable 
limits. Whirlwind I had to have a larger, more reliable 
random-access internal memory supplemented by an 
external memory. Buffer storage had to be added to 
handle the insertion of data from an asynchronous 
radar network. The software had to be expanded con­
siderably. Finally, a direction center had to be de­
signed and constructed to permit air force officers and 
enlisted men to operate the system-that is, to control 
the radar data filtering, initiate and monitor tr~cks, 

identify aircraft, and assign and monitor interceptors 
(Figure 5). The Cape Cod System was, in essence, a 
model of the SAGE system, scaled down in size but 
realistically embodying all the SAGE air-defense func­
tions. 

A long-range FPS-3 radar, the workhorse of the 
operational air-defense net, was installed at South 
Truro, Mass., near the tip of Cape Cod (Figure 6). It 
was equipped with an improved DRR. Two gap fillers, 
designed by Lincoln Laboratory, were installed at 
Scituate and Rockport, Mass., and were equipped with 
the new gap-filler detection and data-transmission 
system called slowed-down video (SDV). Each radar 
included a Mk-X IFF (identification friend or foe) 
system with its reports multiplexed with the radar 
data. Dedicated telephone circuits to the Barta Build­
ing in Cambridge were leased and tested. 

At the Barta Building, work on Whirlwind contin­
ued, and the reliability of electrostatic storage was 
constantly improved. It was clear that the rapidly 
advancing research on magnetic-core memory would 
in all likelihood lead to a much superior memory. 
Development of a 1024-register core memory was ini­
tiated. A buffer drum built by Engineering Research 
Associates (now a part of Sperry Univac) in Minne­
apolis was added to Whirlwind. 

A parallel effort to develop a "radar mapper" to 
filter data at the direction center was also initiated 
(Figure 7). The radar MTI of the early 1950s was all 
analog and provided limited subclutter visibility, es-

Figure 5. Cape Cod direction center (air force operators in foreground are intercept monitors). 
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Figure 6. FPS-3 radar at South Truro. 

pecially at short ranges. Since targets could not be 
detected in very dense clutter, it was wasteful of 
computer capacity to insert dense clutter into the 
computer. A simple, ingenious solution was devised. 
It consisted of a polar PPI display of the incoming 
data for each radar. The cathode-ray-tube (CRT) face 
was horizontal, and a single photocell was mounted 
above it. The photocell response to the bright blue 
initial flash from displayed position reports controlled 
a gate that passed the data into the computer. Con­
sequently, any area of the tube face that was masked 
(opaque to blue light) resulted in rejection of the radar 
data. The mask material was a paint that could be 
applied or removed manually and transmitted the 
afterglow on the tube face so that data under the mask 
were visible to the operator (but not to the photocell). 
Changes in clutter patterns were relatively slow, since 
they were caused by changes in weather (anomalous 
propagation and echoes from severe storms). Another 
key problem had been solved. 

Construction of a realistic direction· center de­
pended heavily on the development of a versatile 
display console that provided the operators the infor­
mation they needed to make decisions and also pro­
vided them the means to send commands to the com­
puter. (The modern term interactive applies but was 
not in common use in the early 1950s.) 

Nothing like this had ever been done before, and 
the technology then at hand was primitive by today's 
standards. What was wanted was a computer-gener­
ated PPI display that would include alphanumeric 
characters (for labels on aircraft tracks) and a separate 
electronic tote-board status display. The console op-
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erator had to be able to select display categories of 
information (for example, all hostile aircraft tracks) 
without being distracted by all of the information 
available. 

The Cape Cod display console was developed around 
the Stromberg-Carlson Charactron CRT. The tube 
contained an alphanumeric mask in the path of the 
electron beam. The beam was deflected to pass 
through the desired character on the mask, refocused, 
and deflected a second time to the desired location on 
the tube face-electronically complex, but it worked. 

The console operator had a keyboard on which he 
could compose a command to the computer-for ex­
ample, identify a particular aircraft track as friendly! 
He could use either the track number (inserted via his 
keyboard) to designate the aircraft track or his light 
gun, which sensed the track-display flash and called 
for the computer to read the operator's keyboard com­
mand. 

A great deal of engineering went into the display 
system electronics and the logic of what to display and 
what operator actions were required at each operator 
position. There was also the question of console layout 
for ease of operation. With a characteristic direct 

Figure 7. Two radar mappers (far left)_. 
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Figure 8. Whirlwind I core-memory banks. 

approach, one of the engineers ran a simple experi­
ment. He suspended a Charactron display-tube ship­
ping carton from the ceiling of his office by means of 
four strings and drew the outline of the tube surface 
on one end of the carton. Visitors were seated before 
the mock-up and asked to adjust the strings to what 
they thought. was the best height and tilt angle of the 
mocked-up tube face. Height of the front and rear of 
the carton were then measured and recorded. The 
measurements from many trials were averaged, and 
the geometry of the Cape Cod displays was deter­
mined. 

Like all parts of the system, the first experimental 
console was built in a hurry. After the electronics were 
developed, the next console component sought was a 
custom-built metal cabinet to house the display. De­
livery time was quoted as several months, so once 
again ingenuity came to the rescue. A household 
cabinetmaking shop was across the parking lot from 
the Barta Building. In a few days the shop built the 
first console cabinet of plywood-at considerably less 
than the cost of a metal cabinet. There was only one 
problem: the cabinetmaker delivered the cabinet with 

an attractive blond mahogany finish, which was feared 
to be indicative of unseemly luxury. After a brief 
period of admiration, the console was painted gray. 

In parallel with the hardware improvements, there 
was major software development to be done. The 
integration of the external storage drum was a soft­
ware problem as well as a hardware problem. The 
scarcity of internal memory capacity required that 
much of the software be stored on the drum and 
transferred into the central computer when needed. 
The radar network data, also stored on a drum, had 
to be read into the computer and transformed into a 
common coordinate system for proper registration. 
The operator consoles had to be integrated via soft­
ware that generated a variety of displays and received 
and executed the operator's control commands. Since 
automatic ground-to-air data links were not yet in use, 
interceptor vectoring orders were still displayed (now 
in decimal) on a small "tote tube" and relayed to the 
pilot by voice radio. 

The software task was to program quickly the larg­
est real-time control program ever coded, and to do 
all the coding in machine language, since higher-order 
languages had not yet been developed. Furthermore, 
the code had to be assembled, checked out, and real­
istically tested on a one-of-a-kind computer that was 
a testbed shared for software development, hardware 
development, demonstrations for visiting officials 
(who came from near and far to monitor progress), 
and training the first crew of air force operators. 

Operation and Expansion 

All of these complex engineering tasks were carried 
out in parallel, on a schedule, and with remarkably 
little rework. By September 1953, just two years and 

BRUNSWICK 

DERRY e .~. HAMPTON 
/"/ 

-·-·---./ 0 

BEDFORD 

CLINTON e A 

FOXBORO 
-·-·1·---·1. 

CHESTNU~I[ 
HILL . 

I 
! 

I 

(1 
~MONTAUK 

~UFFOLK 
COUNTY 

T 
0 10 20 30 
~ 
NAUTICAL 

MILES 

o DIRECTION CENTER 

® HEAVYRADARS 

• GAP FILLER RADARS 

A AIRBASES 

~ HEIGHT FINDERS 

Figure 9. Map of the Cape Cod expanded radar network. 

368 • Annals of the History of Computing, Volume 5, Number 4, October 1983 



five months after "go," the Cape Cod System was fully 
operational, including the integration of two 1024-
register random-access core-memory banks in Whirl­
wind (Figure 8). Reliability was excellent by the 
standards of vacuum-tube electronics. It was an engi­
neering feat that in itself speaks for the imagination, 
enthusiasm, and skill of the people involved-proba­
bly a quarter of the number who would be assigned to 
a project of similar complexity today. Moreover, the 
management style created an environment in which 
rapid progress was possible; although strict in setting 
goals and priorities and in allocating scarce resources 
(skilled people and computer time), management did 
not engulf the workers in bureaucracy. The workers 
were young, bright, enthusiastic, and very much aware 
that they were working on the leading edge of some­
thing new and important; they were learning on-the­
job skills that schools did not teach. The hours were 
long, the camaraderie was close, and everyone wanted 
to make it work. 

Having demonstrated the feasibility of the radically 
new air-defense concept, the designers and operators 
of the Cape Cod System continued to expand and 
operate. the system, principally to collect operating 
data for specifying the new operational air-defense 
system. Toward the end of 1953, the blueprint for a 
deployable system, the Lincoln Transition System, 
was published. In the summer of 1954, the system was 
designated the SAGE system by the Air Force·. 

During this period, the Cape Cod System radar 
network was expanded to include two more long-range 
FPS-3 radars located at Brunswick, Me., and Montauk 
Point on the eastern tip of Long Island. (Integration 
of the Montauk radar revealed some of the previous 
problems with radar registration. Air force records 
included three locations for the radar, two of which 
were in the Atlantic Ocean!) Additional gap fillers 
were built and integrated, bringing the entire network 
to a total of 14 radars by the summer of 1954 (Figure 
9). 

There were continuing efforts to expand and im­
prove the system software, to reflect air force operator 
experience in the choice of operator displays, and to 
make operations more realistic. All-weather jet inter­
ceptors were assigned to support the experiments: 12 
U.S. Air Force F-89Cs at Hanscom Field and a group 
of Navy F-3Ds at South Weymouth. Later, an opera­
tional Air Defense Command squadron of F-86Ds, 
based at the Suffolk County Airfield on Long Island, 
was integrated into the Cape Cod System, and the Air 
Force arranged for diversion of Strategic Air Com­
mand training flights into the Cape Cod area, so that 
the Cape Cod System could be used to run large-scale 
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air-defense exercises against Strategic Air Command 
B-4 7 jet bombers. 

In 1954 automatic ground-to-air data links were in 
development as an aid to conducting large-scale air 
battles and as a necessity for the forthcoming BOM­

ARC pilotless interceptor, which would later be inte­
grated with the SAGE system. The Cape Cod System 
was again extended to run an experiment. The MIT 
Instrumentation Laboratory (now the Charles Stark 
Draper Laboratory) was engaged in autopilot research 
and had at its flight facility a B-26 aircraft equipped 
with an autopilot that could be commanded by input 
signals from a digital data link. After agreement to a 
joint experiment, the ground end of the data link was 
connected to the Whirlwind computer, and software 
modifications were incorporated to transmit intercep­
tor vectoring commands automatically over the data 
link and into the B-26 autopilot. 

Without delay, an experimental live interception 
was arranged. After checking by radio with the inter­
ceptor pilot that the system seemed to be working 
properly, he was given the request ("let George do it") 
to switch to autopilot control. The interception went 
as planned, the pilot soon sighted the target aircraft 
("tally-ho"), and let the autopilot complete a success­
ful interception. Another important first had been 
accomplished. The Cape Cod System engineers, with 
the irreverent enthusiasm of youth, .dubbed the exper­
iment "the immaculate interception." 

Conclusion 

Cape Cod experiments continued at the urgent pace 
necessary to gather data in time to support the design 
of the SAGE system-hardware, software, and operat­
ing doctrine. The operation was outstandingly suc­
cessful in meeting its commitments. In a more general 
sense, demonstration of the Cape Cod System was a 
much larger accomplishment because it was the initial 
step toward a sweeping change-a change of kind-in 
automation. The system was the first large-scale, real­
time control system that combined remote sensing 
and complex control operations, all controlled by a 
central digital computer and supervised by human 
operators. 

Systems of this generic type were perceived to have 
many civil and military applications. Digital process­
ing technology was advancing rapidly toward cheaper, 
better components. The people who engineered the 
system and the imaginative air force officers who 
funded and supported it were aware of this, which is 
probably why conceiving, building, and operating the 
Cape Cod System was a source of deep satisfaction. 
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Editor's Note 

Just as important to the concept of SAGE as the digital 
computer was the technology for transmitting radar 
data over telephone lines. Fortunately, while MIT was 
developing a digital computer for control applications, 
a group under Jack Harrington at the Air Force 
Cambridge Research Center was developing 
techniques for digital signal processing and digital 
transmission over telephone lines. George Valley 
seized on these two pioneering efforts and saw that 
they made a centralized computer-based air-defense 
system possible. 

We had many troubles with radar data 
transmission, most of which could not be foreseen 
without trying the equipment out in the real world. 
Sending digits over telephone lines sounds easy, and 
it is, but sending them reliably was not. The telephone 
system had been elegantly designed for sending 
analog voice, but suffered a number of distortions and 
noise interferences that only digits could notice-and 
notice them they did. 

At first the telephone company was dubious about 
what we were doing. When the first telephone line for 
radar data came into the Whirlwind building to be 
wired into one of Jack's modems, the telephone 
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installer insisted on wiring it into a handset. We told 
him we didn't want the handset, but he said it was 
regulations and that was that. When he left, we 
connected it to the modem. I don't know what 
happened to the handset. Later the telephone 
company became interested in digital transmission 
and designed and built the modems for SAGE. 

SAGE cost a lot of money, so much that it was kind 
of unreal to an ordinary person. One of the few times I 
got some sort of feeling for what we were really up to 
was driving from South Truro on Cape Cod, where we 
were installing a radar station, back to Boston. Every 
so often along the road was a big wooden drum full of 
telephone cable that was to be installed to bring the 
information back to Whirlwind. Mile after mile, drum 
after drum-and this was just one station for the 
experimental system. 

I also remember a visit from another organization 
that was working on another approach to air defense. 
They went away in shock when they discovered that 
our telephone bill was larger than their entire budget. 

Introduction 

The spectacular success of microwave radar in air 
defense during World War II, particularly for early 
warning and fighter direction, came largely from ap­
plying radar to point defense. There were relatively 
simple interconnections between points in the form of 
voice cross-telling. In the postwar years, the speed and 
range of foreseeable air actions increased, requiring a 
family of radars to provide adequate coverage of the 
field of action. The remoting or automatic relaying of 
radar pictures and data over relatively long distances 
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to some .reg~onal operation center became a develop­
ment obJective of great operational importance. 

History 

The beginnings of automatic radar data networking 
go back to the postwar (1946-1950) programs of the 
Relay Systems Laboratory in the Air Force Cambridge 
Research Center and the contributions ofE. W. Samp­
son, E. B. Staples, H. Feistel, E. W. Bivans, T. F. 
~ogers, a?d myself. Our efforts centered on complet­
mg the microwave relay system initiated at the end of 
World War II at the MIT Radiation Laboratory, 
where so many of the significant steps in the devel­
opment of microwave radar were taken. 

Two efforts in the Relay Systems Laboratory had 
significant impacts on radar networking in their sep­
arate ways. The first effort concerned the development 
of a microwave relay system (Ames et al. 1948) that 
would transmit a radar video signal with the necessary 
range and azimuth synchronization, so that the radar 
plan-position indicator (PPI) picture could be recon­
structed and displayed at the receiving end. Theim­
mediate application was the transmission of signals 
from the MEW (Microwave Early Warning) radar at 
!fanscom. Field in Bedford, Mass., to our laboratory 
m Cambridge, some 20 miles and two microwave hops 
away. The system worked out very well. The several 
megahertz of bandwidth required to transmit the un­
processed video, however, and the high initial cost and 
maintenance of microwave relay stations at that time, 
led to a good deal· of thinking about more efficient 
ways to accomplish the same objective. Those consid­
erations evolved into the second major effort, a con­
cept called digital radar relay (DRR). The basic idea 
(Ames et al. 1952) followed from the realization that 
the information contained in the radar picture was 
contained within the coordinates (range and azimuth) 
of relatively few radar targets. If these targets could 
be detected and their location transmitted in the new 
binary digital form, a substantial reduction in band­
width would result, allowing the wideband microwave 
circuit to be replaced by a narrowband telephone line. 
The argument was advanced that telephone lines were 
abundant, available everywhere within the United 
States, and much less expensive than microwave 
transmission-therefore they should be utilized. It is 
i~onic that three decades later the bulk of the long­
lme telephone traffic in this country is actually carried 
by microwave relay! 

Development Problems 

~h~le the concept of DRR was simple and appealing, 
its implementation posed a number of formidable 
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technical challenges. First, there was a need to detect 
radar reflections automatically from an airborne tar­
get. In a practical sense, the target was often immersed 
in a fairly high level of radar noise, ground clutter, or 
other unwanted returns. The selection process had to 
be very great in DRR; otherwise, the limited trans­
mission capacity could easily be overloaded. The de­
tection had to take into account that the target return 
occurred over many radar pulses-that is, that there 
were a large number of radar hits per beamwidth. 
Some form of signal integration (Harrington 1950a) 
was essential if efficient detection was to be achieved. 

The principle of signal-to-noise improvement 
through the integration of a repetitive signal in noise 
was well recognized, but the high-capacity electronic 
storage necessary to accomplish the video addition in 
real time was lacking. Initially, delay lines were used 
in what today would be called a "comb filter arrange­
ment"; however, these were restricted to one repetition 
rate and for large numbers of additions displayed 
marginal stability. Our group concentrated on a new 
storage tube developed by the RCA Laboratories at 
Princeton called the barrier-grid storage tube. We had 
some good initial success with it for video integration, 
and later for digital storage as well. 

Another area of concentration in the development 
of.the DRR technology was in the encoding of the 
target. range and azimuth coordinates. The simplest 
techmque, and the one we adopted, was to count either 
r~nge or azimuth marks in a simple array counter, 
with the counter being reset at range and azimuth 
zero, and to read those out at the precise time the 
integrated radar signal exceeded a preset threshold. 
Ot~er techniques were investigated as well, including 
an mteresting optical disk from which azimuth could 
be read directly. A voltage-encoding tube (Harrington 
et al. 1951), adapted from a television monoscope with 
a special target pattern in cyclic binary code, was also 
d~vel~ped and had multiple high-speed encoding ap­
phcat10ns. 

One of the most difficult requirements in the imple­
mentation of the digital radar scheme was the provi­
sion of enough high-speed storage to store the (R, O) 
code groups when they were generated-and to store 
them for a variable time until the slow-speed trans­
mission channel was clear to take them. A number of 
~hoices were available, but none were really attractive; 
m the late 1940s the magnetic and/or integrated cir­
cuit tech~ology that makes digital storage so cheap 
and plentiful today was not yet invented. 

A 16-bit coordinate word had to be stored in a few 
microseconds, depending on the radar-range resolu­
tion desired; hence, fairly high storage speed was 
required. A random-access store seemed the most suit-
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able for the nonuniform rate at which the targets 
occurred and for the slower but more uniform rate of 
read-out for transmission. The new storage-tube tech­
nology (Bivans and Harrington 1950) seemed to be 
the most promising for both this application and sig­
nal integration. A better understanding of the electro­
static storage mechanism (Harrington 1950b) in the 
tube led to the successful use in the late 1940s of the 
barrier-grid storage tube for these applications. 

In the early equipment, transmission of the target 
coordinates over a telephone channel was accom­
plished by modulating a family of nine tones in the 
500-2500 Hz band at about a 50-100 Hz rate to 
transmit eight bits plus a marker bit in parallel. This 
was relatively inefficient and wasteful of bandwidth; 
however, it easily handled many of the idiosyncrasies 
of the telephone lines, particularly the effects of delay 
distortion and the frequency changes introduced by 
single-sideband carrier systems. 

Early Experiments 

We demonstrated successful operation of the new 
DRR system over a phone line from the MEW radar 
site in Bedford to the laboratory in Cambridge some­
time in 1949. It was a significant achievement that 
contributed directly to the work of ADSEC (Air De­
fense Systems Engineering Committee) and the air­
defense-system concept that committee was evolving. 
We now had achieved automatic detection of radar 
targets, with sufficient sensitivity and a low enough 
false-alarm· rate that we approached within a decibel 
or so the detection sensitivity of a human operator. 
Further, we had encoded the target coordinates, stored 
them, and transmitted them at low rate over a phone 
line for display or other processing at a remote point. 

Our 1949 DRR demonstration coincided with the 
formation of ADSEC, chaired by MIT's George E. 
Valley, Jr., a radar expert and distinguished alumnus 
of the famed Radiation Laboratory. The Valley Com­
mittee, in examining U.S. defenses against low-flying 
enemy bombers, soon recognized that the only way to 
fill the gaps created by the earth's curvature under the 
long-range radar beams was to employ a much larger 
family or network of shorter-range "gap-filler" radars. 
These gap-filler radars could be remoted to a central 
point and would provide low-altitude coverage over a 
wide region. The early concept envisaged the use of 
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small CW (continuous-wave) radars sensitive only to 
moving targets. They were to be mounted on telephone 
poles and remoted via phone lines to an operations 
center. The great advantage of position-determining 
pulse radars soon prevailed. The general importance 
of narrowband communications for radar data led to 
our group's involvement in the work of ADSEC. It 
was an exciting time; Valley had gathered around him 
a number of experienced and creative people who were 
rethinking the nation's entire air-defense concept. A 
sense of great importance and urgency was attached 
to their work. 

One of the early steps taken by ADSEC was to 
recognize the need for high-speed, real-time data pro­
cessing for target tracking and interception at the 
central point. ADSEC sponsored some early experi­
ments in which the MEW radar at Bedford, fitted 
with our DRR equipment, would transmit radar-target 
data in real time to the Whirlwind computer in Cam­
bridge, where digital track-while-scan operations 
would be carried out. These first experiments in cen­
tralized radar tracking were truly pioneering and un­
questionably influenced much of the subsequent work 
on automatic air-defense systems. 

Our group at the Air Force Cambridge Research 
Center joined the SAGE effort as Group 24, Data 
Transmission, of MIT's new Lincoln Laboratory, es­
tablished in 1950 to develop a more effective air­
defense system. Valley became the head of our division 
and eventually the associate director of the·laboratory, 
while Jay W. Forrester and his Whirlwind team be­
came Division 6 of the new laboratory. Thus much of 
the appropriate data-processing experience was in 
place in the laboratory for a major developmental 
effort on an automatic air-defense problem. 

FST-1 Development 

From the early ADSEC experiments, the subsequent 
Cape Cod System experience, and the later SAGE sys­
tem came a great many ideas and a good deal of 
progress in the development of automatic means to 
accomplish the detection and transmission of radar 
data. Three general schemes were employed. The first 
of these, the Digital Radar Relay (Ames et al. 1952), 
primarily used in the ADSEC-sponsored MEW­
Whirlwind I experiments, was followed early in the 
Lincoln Laboratory work by a so-called slowed-down 
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video (SDV) system (Harrington 1954), a much sim­
pler method than the DRR scheme. It recognized that 
when radar signals were integrated over the repetition 
intervals in one radar beamwidth and subsequently 
read out over a longer period of time, a relatively 
narrowband-view signal resulted that could be directly 
transmitted over a telephone line. The addition of 
fairly simple azimuth synchronization allowed the en­
tire picture to be reproduced essentially in real time 
at the remote point. SD V was cheap and effective and 
was built in several different forms, depending on the 
size (range) of the picture and the type of storage. Its 
big disadvantage was that it faithfully relayed all 
returns in the radar picture. Its accuracy was inher­
ently poor: one beamwidth in azimuth (1 degree) and 
one interval (1 mile) in range. The coarse granularity 
was in fact the basis on which narrowbanding was 
accomplished, and it yielded a surprisingly useful and 
accurate picture from which elementary aircraft track­
ing could be carried out. Our group developed two 
principal SDV designs: one employed flip-flop storage 
and was used on the gap-filler radars in the Cape Cod 
network; the second was a storage-tube SDV system 
designed for the large heavy radars, and subsequently 
produced by the Lewyt Corporation. The production 
version was called FST-1. 

FST-2 Development 

The difficulties of trying to achieve accurate aircraft 
tracks at the central point from relatively coarse SDV 
data led to the development of the so-called fine-grain 
data (FGD) system (later produced as the FST-2). 
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Fine-grain data system. 

The FGD scheme was, in fact, a variation of the 
original DRR idea, but with a much more elegant 
detector that could identify the center of the target 
and code its coordinates more accurately. It required 
that a relatively large number of radar repetition 
intervals be stored such that the signals in any one 
range interval could be examined over the full beam­
width. Various detector schemes were used to detect 
the target (Harrington 1955) and its center, such as 
run-length detectors and sequential observers (Dineen 
and Reed 1956), but the simplest and most effective 
seemed to be the simple Neyman-Pearson observer 
applied to the beginning and end of the target run, 
with the distance between these two events determin­
ing the azimuth correction. 

The form of storage used in the first FGD, after 
some initial attempts at using a storage-tube system, 
was a multiple-track magnetic drum whose rotation 
rate could be synchronized with radar repetition rate. 
This worked well and produced considerable improve­
ment in the basic accuracy of the transmitted radar 
data and the tracks determined from those data. The 
magnetic-drum system was the prototype for the FST-
2 radar data transmitting equipment, later produced 
by the Burroughs Corporation for the SAGE system 
(Ogletree et al. 1957). 

Another important area addressed in the early days 
of the Lincoln effort was the development of modems 
for the transmission of radar data over land lines. The 
complexities of the telephone plant and the effect that 
various kinds of carrier equipment and delay distor­
tion had on some of our signals was a bit of a shock 
at first. A scheme to transmit binary data at 1300 bits 
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per second with appropriate synchronization was soon 
developed, and it worked well on all of the lines we 
encountered (Harrington et al. 1954). (In the early 
1950s, 1300 bits per second over an untreated voice 
line was an achievement.) 

Little has been said here about the radar itself. 
Radar was largely a development of the previous dec­
ade, although much work continued on moving-target 
detection, which was essential for the proper filtering 
of radar data into the SAGE system. A great many 
radar designs were investigated that attempted in 
different ways to detect the Doppler envelope of the 
coherent sampled radar returns from any one moving 
target. None of these schemes, at least prior to the 
mid-1950s, satisfactorily provided all of the coverage, 
scan time, and accuracy desired, while still giving good 
Doppler detection. The result was a need to employ 
so-called vl.deo mapping to map out portions of the 
original radar picture where known clutter existed. If 
such equipment was not employed, serious overloading 
of both the narrowband data network and the central 
tracking computer could result. The fact that moving­
target-indicator schemes almost worked well enough 
was tantalizing, but hindsight says that the initial 
selection of the right radar returns from the enormous 
population of radar returns in the average picture 
needed a great deal more work. We did have target 
filtering and selection schemes that depended not so 
much on the instantaneous Doppler of the target as 
on its motion over a longer period of many radar 
scans. The amounts of storage required to recognize 
track patterns right at the radar were considerably 
beyond the bounds of possibility in those days and 
were pretty much ruled out. Today the unbelievably 
low cost of storage would argue otherwise. 

Summary 

In general, the early years of the SAGE system devel­
opment were most productive and rewarding. Consid-

erable progress in sophisticated radar-detection meth­
ods, accurate encoding, the storage and integration of 
data by a variety of means, and the development of 
workable·modems for narrowband transceivers in the 
radar data-transmission business was accomplished. 
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On October 26, 1982, several people who had participated in the design and 
development of the SAGE system gathered at the MITRE Corporation to discuss 
their work and its ramifications. Henry S. Tropp was moderator. Kent C. 
Redmond and Thomas M. Smith, authors of "Project Whirlwind" (Digital Press, 
1980), who are writing a book on the SAGE project, were also present. 

Editor's Note 

At Bernie Galler's suggestion, we arranged a 
discussion among some of the SAGE participants. I 
was dubious at first because the number of major 
contributors to SAGE is so large that I did not see how 
we could have a real discussion among so many, and 
yet I did not feel competent to leave any out. After a 
while, however, we were able to attract a group of 
people who not only contributed themselves but who 
represent groups of major contributors. · 

We were fortunate that Jay Forrester could come 
from MIT, Herb Benington represented SDC, Bob 
Bright had been at AT&T, Bob Crago at IBM, Jack 
Harrington at AFCRC and Lincoln Division 2, Jack 
Jacobs at Lincoln Division 6, Major General Al Shiely 
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(retired) at the Air Force, Norman Taylor at Lincoln 
Division 6, and Bob Wieser at Lincoln Division 6. 

Hank Tropp led the discussion, which was vigorous 
and lasted all afternoon, through dinner, and into the 
evening. One characteristic of old SAGE hands is that 
they love to talk. 

I regret that more SAGE people did not have a 
chance to have their say. I am especially sorry that 
George Valley was unable to join us. We thought of all 
of you, however, and hope there will be other 
opportunities. 

Henry S. Tropp: We're gathered here today to talk 
about an important air-defense system that has been 
in place for two decades: SAGE (Semi-Automatic 
Ground Environment). I want to thank Bob Everett 
for letting us use the facilities of the MITRE Corpo­
ration for our meeting. 
Robert R. Everett: I'd like to say one thing right away. 
I had hoped George Valley would be here, but at the 
last moment he was not able to come. He asked me to 
express his regrets at not being here, and to say hello 
to all of you. 

Jay W. Forrester: We could start our discussion by 
noting that we are here as a consequence of a series 
of small happenstance events. We should trace this 
enterprise back to Gordon S. Brown, who in the early 
part of the 1940s was director of the Servomechanisms 
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Laboratory at MIT. At least three of us-myself, 
Wieser, and Everett-grew up in that environment, 
which was a powerful learning experience. A great deal 
of responsibility was given to very young people, al­
lowing them a chance to carry ideas from their con­
ception and research right into the military operating 
field so that they understood how their mistakes would 
eventually come back to their own doorsteps. That 
experience lies behind many of the ideas about relia­
bility that allowed the SAGE system to succeed. 

At the end of World War II, I had begun to think 
about leaving MIT and perhaps starting a company 
to develop servomechanisms. Gordon Brown called 
me in one day and suggested that there might be more 
interesting possibilities. He gave me a list of about 12 
projects to choose from. One was an aircraft stability 
and control analyzer, which represented the beginning 
of a sequence of events that eventually led to SAGE. 

Initially the aircraft analyzer was to be an analog 
computer. Another happenstance directed our atten­
tion to digital computers. Perry Crawford, who now 
works for IBM and at that time was in the Special 
Devices Center of the U.S. Navy, was standing with 
me on the front steps of MIT at 77 Massachusetts 
A venue late one afternoon. He called my attention for 
the first time to digital computation, to the mechanical 
Harvard Mark I computer, to the electronic ENIAC 

computer. He suggested that we move in the direction 
of digital computation to get out of the difficulties 
that analog computation was presenting. It was also 
Crawford who pushed the whole idea of combat infor­
mation and control with digital computers, well before 
any high-speed, general-purpose, reliable computer 
had ever functioned. Working with Perry Crawford, 
Bob Everett and I in 194 7 wrote a paper1 on how a 
digital computer could be used to coordinate the activ­
ities of a naval task force-the submarines under the 
surface, the ships on the surface, and the aircraft 
overhead. 

We were thus prepared to take advantage of another 
one of those small happenstance incidents when 

1 J. W. Forrester and R.R. Everett, "Information System of Inter­
connected Digital Computers." Project Whirlwind, Servomechan­
isms Laboratory, MIT, Cambridge. Limited Distribution Memoran­
dum L-2, October 15, 1947. 

George Valley and his committee for the U.S. Air 
Force were seeking a way of coordinating radar infor­
mation. Jerome G. Wiesner, then directing the MIT 
Research Laboratory for Electronics (and later presi­
dent of MIT), suggested that Valley should talk to us 
about the coordination of military information. We 
had by that time a year of thinking about using digital 
computers for coordinating military combat informa­
tion. 

After that meeting with Valley, the program devel­
oped rapidly through Project Charles and the Lincoln 
Laboratory to the SAGE system that we are here to 
discuss. 
Tropp: Your mention of happenstances saves me my 
next question. I want to go back in time and try to 
plant ourselves in 1949 or 1950. I can't recall any 
stored-program computer other than the EDSAC that 
was up and running. One side of the BINAC was oper­
ating. Whirlwind was close, and SEAC may have been 
close. Valley came to you with a proposal that was 
obviously going to require a computer that not only 
didn't exist, but no one had even thought about what 
it was going to be like. I'd like to throw out an open 
question to anybody who wants to respond: how did 
you view the problem when each of you were intro­
duced to this incredible challenge of producing an air­
defense system in a technology that by current elec­
tronic standards was limited and in an environment 
that was relatively unknown? 

Norman H. Taylor: I didn't think it was that vague at 
all. We had a computer that was technically very 
sound and that worked very well, except for the stor­
age-tube memory. We were confident that we could 
solve that problem somehow. We were transmitting 
radar data to the computer, and we were tracking 
aircraft. We had working displays, working tape units; 
magnetic drums were available. We were writing and 
using what we thought then were sizable computer 
programs. We knew we needed a much larger com­
puter, but we thought we knew how to build one. 
There were engineering problems galore but no fun­
damental problems that we knew of. 

John V. Harrington: I think somebody should point 
out that in 1949 at the time of the deliberations of the 
ADSEC committee-the Valley Committee-the 
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problem was really broader than just what would be 
used at the central point to do all the tracking and 
correlation. That, to be sure, was the most important 
and most difficult component of the whole system. 
Close in importance was the kind of radar network 
that would be necessary to provide the low-altitude 
coverage, which was needed to deal with what I re­
member as being the most serious threat: the low­
altitude long-range Soviet bomber. 

I remember going through an awful lot of different 
radar configurations. I know we had the telephone 
pole radar-the continuous-wave (CW) radar (which 
had a short range and not much discrimination, but it 
could measure velocity extraordinarily well). There 
were so many of them that we were faced with an 
enormous transmission problem, and data-handling 
problem, and central correlation problem. 
Taylor: And you had the ghost problem, didn't you? 
Harrington: And we had ghosts. [Editor's Note: 
Ghosts are false targets created when correlating 
range-only, azimuth-only, or velocity-only radar 
measurements.] Harry Nyquist of Bell Laboratories 
was first to recognize the ghost problem in the CW 
radar, which turned out to be its death knell. 

We looked at bi-static radars. Then we looked at 
heavy radars. We looked at combinations of heavy 
radars and small radars; each of these had somewhat 
different data-transmission and data-handling prob­
lems. We should not forget that these radar studies 
were an awfully important part of the work of the 
Valley Committee and of the early work of the Lincoln 
Lab, too. 
Taylor: It was also the problem that we never quite 
solved. 
Harrington: No, we never really quite solved it. As 
remarkable a machine as Whirlwind I was-and for 
all its successes-it could easily be flooded by all of 
the data just from one radar. The CW radar, which 
was by far the best filter to detect moving targets, 
really never worked out. And the MTI (moving-target 
indicator) radar was more of a name than anything 
else. My apologies to those people who worked on the 
MTI radars, but they never were completely reliable, 
or completely credible. Overall, however, in the radar 
aspect, the communications aspect, the data-handling 
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Left to right: Benington, 
Harrington, Crago, 
Taylor, Forrester (shown 
twice), Tropp, Everett 
(shown twice), Bright, 
Shiely, Jacobs, Wieser. 

aspect, the command aspect, and so on, it was really 
a remarkably ambitious system. When you think 
about it happening 30 years ago, it was really remark­
able. 
Tropp: That's what amazed me. Maybe the question 
that I'm really trying to get at is, at what point did 
the real magnitude of what you were trying to do really 
sink in? Look at some of the early estimates of SK of 
memory, SK of core, a few thousand lines of code. 
Obviously each of you had a different reaction to the 
magnitude of problems involved. 
Forrester: Well, it sank in slowly. Each step in real­
izing the magnitude was by a percentage that could be 
coped with one part at a time. 
Herbert D. Benington: I remember two anecdotes 
where my problems helped SAGE to progress. First, I 
was having lunch with my boss, Jack Arnow. I was 
telling him that Whirlwind reliability was so bad, that 
the computer programs were so complex, that we were 
making very little progress in checking out the system 
(and having to work too many hours). Within a day 
or so, Jay called a staff meeting and said that we would 
replace the storage-tube memory by transferring the 
core memory from the Memory Test Computer to 
Whirlwind. That's when we started getting 99 percent 
reliability out of Whirlwind and we could check the 
programs out. 

The second anecdote was when we had the XD-1 
(the prototype of the AN /FSQ-7 computer) operating 
and had SOOO words of core. I started realizing then 
that we couldn't get the job done because there would 
have to be so much paging in and out from drums that 
we'd spend too much of our available time doing that. 
I was also having lunch with my boss that day, and I 
told him my conclusions. Jay dropped by at lunch and 
said, "Well, we've been developing a 65,000-word core 
memory, so we'll put it in." That eightfold increase 
made the program possible. 

Everett: I think all these things are right, but several 
other things were important. First of all, we didn't 
make a design and send one bunch of people off to 
build the computer-another bunch of people off to 
do this and that-and put it all together several years 
later only to find out that it was wrong. We took it 
step by step. We were actually looking at real radar 
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"Maybe the question that 
I'm really trying to get at is, 
at what point did the real 
magnitude of what you were 
trying to do really sink in?" 

data, and tracking real aircraft, long before system 
designs were all complete. 

The second thing is that the technology was im­
proving rapidly, and it seemed to stay about even with 
our recognition of the size of the problem. 

The third comment I might make is that we didn't 
sit down and say, "We need a machine of such and 
such size, and if we can't make it we give up." What 
we did say was, "We think we can make a machine of 
such and such size, and given that machine, we could 
do the following things." As the machine got better, 
the job got bigger, and we were able to handle it. Even 
if the machine had been half as capacious, we still 
would have done something, although it would not 
have been quite the same thing. 

I make these remarks because very often in today's 
military-development world, people try to do every­
thing and end up doing nothing. 

Taylor: You play the end game before you start. 

Tropp: That's an important aspect of SAGE that has 
probably not really been told in the papers I've seen 
for the Annals. 

Everett: I was struck at the time and have been struck 
since by how much a group of really smart, dedicated 
people with adequate resources can do toward solving 
problems. You put them to work on a problem, and 
you get a solution if you don't have too many problems, 
and if you don't box them in with too many restric­
tions. SAGE had a lot of problems, but, as Jay said, we 
fortunately didn't realize them all at once. As each 
problem came up, we were able eventually to do 
enough about it to get the system going. In my expe-

rience, you can do almost anything if there are only 
one or at most two real difficulties. But when you 
start to work on something that's loaded with a whole 
slew of very difficult problems, you can lose control 
and really get into trouble. 

Taylor: I remember one incident along those lines 
when the radars were giving us a lot of trouble. I was 
in a study group with Al Hill in Washington, and I 
said, "Al, we shouldn't have ever gotten into this thing. 
We can't get decent data, and how can you track 
airplanes with no good data?" Al said, "We knew we 
couldn't initially get people to accept a new bunch of 
radars. But we could sell the idea of a computer to 
analyze the radar data. Now we've got the computer, 
let's stop and think about the radars." 

Forrester: We have recalled the obscurity of the prob­
lems and the embryonic state of the technology, but I 
have always felt that it was much easier to build the 
SAGE system without having the technology available 
to start with than if the technology had been there. 
With the absence of the technology there was also the 
absence of thousands of people out there all feeling 
that they knew how to do it better. Therefore, we were 
able to move quickly with our decisions. As long as 
they were plausible and could be explained, we could 
carry other people with us. We weren't at the same 
time running competition with alternative suggestions 
that, whether they were good or not, would immobilize 
the process of decision making. The freedom to be 
decisive and to settle on things that worked even if 
there might be somewhere in the offing an idea that 
would be better, made it possible to build the SAGE 
system. 

Taylor: I think Bob put his finger on one important 
thing here: the freedom to do something without ap­
proval from top management. Take the case of the 
65,000~word memory we just heard about. We knew 
the memory was too small; we didn't have to wait for 
Herb to worry about it. 
Benington: I'm sorry you didn't tell me. 

Taylor: We could hardly run a test program on these 
small memories, and we knew we had to build bigger 
ones. Down in the basement of the Lincoln Lab, we 
started out with TX-0 which was really designed not 
only to test transistorized computers but to test that 
big m~mory. That's all it did. We built that big mem­
ory, and we didn't go to the steering committee to get 
approval for it. We didn't go up there and say, "Now, 
here's what we ought to do, it's going to cost this many 
million dollars, it's going to take us this long, and you 
must give us approval for it." We just had a pocket of 
money that was for advanced research. We didn't tell 
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anybody what it was for; we didn't have to. Take any 
one of those developments-whether it was that mem­
ory, the Memory Test Computer, or the cathode-ray 
tubes and the Charactron tubes-if we had had to go 
through the management stuff that we have to go 
through now to get $100,000 worth of freedom, we 
would never have done any of them. We were able to 
do it. We'd have a meeting with Bob and me and one 
other person-and with Jay if he were there. Occa­
sionally these projects failed or needed more funds or 
more time. On these occasions, the issues did rise to 
higher management levels-first the Lincoln Steering 
Committee, next the Air Force, and as needed the New 
York ADES meetings. The atmosphere was one of 
asking for help, and usually the response was positive. 
As stated earlier, the problems rose to the surface, not 
the successes, so management addressed problems. As 
long as it worked we were winners. 

Tropp: In the current environment we may have to 
reinvent organizations with freedom of action to solve 
problems of our present society. 

Forrester: We will reinvent effective organizations in 
this country very quickly when we perceive as a nation 
that we truly have a technological crisis, such as 
happened, for example, in the Manhattan project, with 
travel to the moon, at the Radiation Laboratory in 
World War II, and in the SAGE system. The effective 
pattern in the past has been to take several people 
who have good ideas and give them a budget and an 
empty cornfield. They can build buildings, find people, 
and do the job faster than can most existing organi­
zations, which have become stifled by cumbersome 
decision making. The missing link in the past has 
been absence of a way to terminate organizations when 
their purpose is accomplished. Most continue to exist 
after the job is done, become ineffective, and yet 
continue to absorb resources. 

Tropp: I'd like to get at a little earlier aspect of the 
Air Force's point of view, General Shiely. In one of 
the documents that Bob Everett was able to get me, I 
ran across the fact that at least two proposals were 
mentioned for an air-defense system: one at the Uni­
versity of Michigan and one at Lincoln Laboratory. 
Would you care to talk about what the other one was 
and why the decision was made to go with the one 
from Lincoln Laboratory? 

Albert R. Shiely: I have to take a little bit of issue 
with Jay that there wasn't any competition. Part of 
our job in New York was trying to isolate those doing 
the job from all the experts who were certain they 
knew how the job could be done by different ap­
proaches and who also were completely convinced that 
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the SAGE system would never work. At least one 
competitive approach was sponsored by the University 
of Michigan and supported by a substantial segment 
of the scientific community. With these two ap­
proaches, things got to the position where the Secre­
tary of the Air Force had to make a choice between 
the two approaches. I believe it was Roger Lewis who 
made the decision to proceed with the SAGE system. 
During the time it was being put into the field there 
continued to be substantial concern on the part of 
very qualified parts of the scientific community over 
many of the problems that have been mentioned here .. 
Further, there was significant concern by the military 
operators over whether a centralized system of this 
type was the right way to go or whether one ought to 
have an improved decentralized system operating at 
the radar sites much as the old system operated. 

As I remember, the Michigan proposal was to au­
tomate the decentralized radar system and provide the 
improvement by that approach. In contrast, the SAGE 

system was to centralize it and combine the air picture 
into an overall one. 

So there were operational concerns about the SAGE 

approach, and there were technical concerns about the 
SAGE approach. What's missing from the general area 
of these papers, which are superb, is the atmosphere 
under which this program was pursued. One way of 
describing it might be called a stage of controlled 
panic. Jay was exactly right: we were fortunate that 
the big problems occurred one at a time instead of all 
at once. I can recall being worried every time I would 
see Bob Crago or Bob Everett or someone like that 
come to New York because I knew something was 
coming; and I didn't know what hand grenade some-

Jay W. Forrester 
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body was going to roll out on the table, but I knew 
there was going to be one. I recall such things as the 
sudden discovery that the slowed-down video tech­
nique would not work with large radars, and we didn't 
know what the hell the solution was. George Valley 
did say, "I've got the answer on a workbench in a 
laboratory up here. Don't worry; all you need to do is 
make identical copies of that and put it into the field." 
I think that device on the counter had something on 
the order of 150 or 200 vacuum tubes. In fact, it did 
work, and the Burroughs Corporation took that 200-
tube thing from the bench and into the field in working 
order in 18 months-I think it went to something like 
2200 vacuum tubes. The identical copy was something 
of that order. Nevertheless, I think this was a minor 
miracle on the part of that company-one, of many 
miracles that were worked by industry, by the tech­
nical people at Lincoln, and by many elements of the 
Air Force. 

There were a number of problems. That was one, 
and the one-year programming delay was another; we 
had a series of panics that occurred, as I said, one at 
a time. 

Tropp: Do you think they occurred because nobody 
realized what the other ones were until they showed 
up? 

Shiely: We were building and designing and doing 
everything simultaneously. I agree completely with 
Jay that the first and most important thing was that 
there was a national perception of the emergency need 
for an improved air-defense system; there wasn't any 
argument. We had to do something about it, and we 
were told to go do it-do it as fast as we could and 
make it work. There was an understanding at the 
topmost part of the government that the need was 
urgent. I might add that the willingness on the part of 
the military side of the family to give people like 
ourselves in New York the authority and freedom to 
move and the backing to make the decisions involved, 
even at the price of tearing up some of the organiza­
tional structures in the process, were the keys to 
success as far as that side of the program was con­
cerned. That got us the license and the freedom to do 
the things mentioned here. 
Tropp: From this discussion, there were , apparently 
hoards of what would today be called managerial prob­
lems. Had you known they were going to come up, you 
might not have tackled any of them. When you look 
at any aspect of it, the management was really a kind 
of horrendous job. 

Shiely: It was a challenging job, but it was a good one 
in the sense that the one thing that everybody agreed 
on was that we had to get the job done. There wasn't 

anybody who was motivated to do anything other than 
find solutions to the problems. It was a great thing. 
Forrester: There is a chapter in the SAGE history that 
I feel was extremely important. It was part of our 
background for taking the long-range view of where 
we were going. In 1948 Karl Compton, who was then 
president of MIT and also head of the Research and 
Development Board for the military, asked us to pre­
pare a report on what we thought the future of digital 
computers would be in the military. In 1948 there were 
scarcely any working systems to use as a precedent. 
Five of us-Bob Everett, Hugh Boyd, Harris Fahne­
stock, Robert A. Nelson, and I-worked up a report 
that was a 15-year forecast of computers in the mili­
tary. It culminated in a two-by-three foot foldout page, 
which had 15 years across the horizontal axis and 10 
areas of application along the vertical axis. [Editor's 
Note: The chart is reproduced on pages 382-383.] In 
each intersection was described the state foreseen for 
the application. The applications included logistics, 
research, antiballistic missile defense, air-traffic con­
trol, and control of naval task forces. At each inter­
section was given the state of development and now 
much would be spent in that year for research, how 
much for development, and how much for production. 
The grand total was $2 billion. The research expend­
iture alone totaled over $1 billion at the end of 15 
years. The report created a communications gap when 
we went into a meeting with the Office of Na val 
Research where they thought the agenda was whether 
or not we were going to get our next $100,000-and 
we came in with a forecast 10,000 times that for the 
next 15 years. 
Tropp: Looking back on that forecast, was it conserv­
ative or pretty close? 
Forrester: The air-defense part of it, which we pur­
sued, came out about three years sooner. The cost was 
probably within an order of magnitude. I would say 
the projections for 15 years were probably as good as 
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most commercial companies do today when they esti­
mate the cost and the schedule for the next computer 
in production. 

Incidentally, that $2 billion was generated by look­
ing into every step of research-the design, testing, 
and training of people. Those budget figures were 
made up out of pieces no bigger than 25 people working 
a calendar quarter. The 15 years were laid out by 
identifying small groups of people who would be work­
ing in each area. One reason the time schedule came 
out fairly reliably was that all of the political time 
delays were put in, such as a year set aside for people 
to agree to test and follow up on experimental equip­
ment. 

In the context of the Michigan and MIT competi­
tion, our earlier estimate of the possible technical pace 
gave us a frame of reference for how big and how long 
the job might be. We went in with an estimate and 
forecast that ran maybe ten times as much money and 
five times as much time as Michigan did. In the period 
of disagreement over how to build an air-defense sys­
tem, our position was that if any serious group of 
people thought they could do the job in the time and 
price range that was being suggested, they should be 
allowed to try. But we also said that the longer-term 
program should be kept going until a smaller-scale 
system could be evaluated. Eventually the day came 
when it was evident to almost anyone walking through 
the two establishments that the long-term slow pro­
gram at MIT was already further ahead. Then the 
$300 million of production money that was scheduled 
for the other system was diverted to complete the 
research and development for the MIT system. 

Robert Bright: Reservations had been expressed by 
numerous learned people. There was an opposing 
school that said, "This is in the national interest; this 
is the kind of thing we ought to do. The system as 
proposed is not static; it could be dynamic; it could be 
developed along the way." At that time Bell Labora­
tories and Western Electric were involved in a study 
of continental air defense, called naturally the CADS 

project. In May 1955 General N. F. Twining, vice chief 
of staff of the Air Force, wrote to M. J. Kelly, president 
of Bell Laboratories, saying, "Take a look at what 
Lincoln's doing. We're already phasing out the Uni­
versity of Michigan, and we want you to undertake 
the management and the implementation of SAGE." 

With that, when it was nailed down, we built an 
organization comprised of Lincoln Laboratory, Bell 
Laboratories, IBM, Burroughs, and later the building 
contractors, that worked together as well as any team 
that I've ever seen or been exposed to. There was full 
and complete communication between the contractors 
involved in the project. Through the pink haze of 25 
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years, I remember that we even got to be friends with 
many of the people involved. Our phasing meetings, 
which most of you attended, were wide open. People 
were welcome to speak their mind, and if they were 
right a consensus would be developed. But that kind 
of project organization, that kind of management, 
developed on an ad hoc basis, seemed to work. One of 
the things that made it work was the shared location 
and cooperation of the Air Force Project Office and 
the contractors involved. We were in each other's hair 
almost constantly, and we could get the support we 
needed from the Air Force Project Office. The national 
interest at that time was to build a viable air-defense 
system, and this was foremost in the minds of every­
body involved. 

John F. Jacobs: I agree with Bob. At the same time 
we were working on the system design, others were 
busy making the organizations involved do the things 
that had to be done in order to turn the air-defense 
concept into reality. The most important step in that 
direction was the Air Force's establishment and struc­
turing of ADES (Air Defense Engineering Services). 
This project office was the first to deal with electronic 
systems doing command and control development and 
procurement-in fact, it was the first electronic sys­
tems program office. These systems were designed to 
control a number of weapons systems, rather than 
being tailored to the control of a single system. ADES 
had to deal with these elements-old and new subsys­
tems that had to be integrated into the new air-defense 
components-and they also had to provide manage­
ment support to command personnel. 

ADES remained flexible and encouraged adapta­
tions of their own organization to the needs of the job. 
The monthly phasing meetings are an example of the 
tools they instituted for achieving a consensus. The 
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other organizations that should share in the credit are 
the Air Defense Command Planning Group under 
Colonel Tom Halley, the wing established by Air 
Defense Command under Colonel Joseph Day Lee 
that supplied the inputs to the operational specifica­
tion, and the Lincoln Project Office, which monitored 
our activities at Lincoln Lab. 

Tropp: Maybe this is a good time to discuss some 
aspects of the actual design of the hardware for the 
system. One thing that struck me as I looked at the 
Q-7 a couple of weeks ago was that I literally felt as if 
I were walking inside a. computer, which I obviously 
can't do with an Apple or a TRS-80. 

Taylor: You could in Whirlwind. 
Tropp: You could walk inside Whirlwind, that's true. 
Other hardware ideas are having a duplex computer, 
the design of the base hardware to do that hot backup, 
the concept of the common drum. I hope somebody 
will pick up these ideas and discuss how they evolved 
and what some of the problems were. Jay, do you want 
to start? 
Forrester: One thing running through the whole pro­
gram was central to its success. That was an attitude 
of being open about recognition of mistakes and short­
comings. When a mistake was recognized, it was ad­
mitted and fixed rather than evaded or denied. An 
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Chart with 15-year forecast for military computers, 
mentioned by Jay Forrester on page 380. The grand total 
in 1948 was $2 billion-equivalent to $8 billion in 1983 
dollars. (Figure 6 from Jay W. Forrester, Hugh R. Boyd, 
Robert R. Everett, Harris Fahnestock, and Robert A. 
Nelson, "A Plan for Digital Information-Handling 
Equipment in the Military Establishment." Project DIC 
6345, MIT Servomechanisms Laboratory, September 14, 
1948. Reproduced courtesy of Division of Mathematics, 
National Museum of American History, Smithsonian 
Institution.) 

example was the second computer or the duplex com­
puter in the SAGE centers. The decision to insist on a 
second computer occurred one weekend when we be­
gan to realize that there wasn't going to be the relia­
bility in a single machine that we had been promising. 
By that time the Air Force had already budgeted the 
whole system. To double the number of computers 
required going back to the Air Force for the extra 
money. There was a lot of flak from that, but our 
position was that it had to be done. We wouldn't stand 
behind the system if they didn't. The Air Force sup­
ported such changes very effectively. 

The marginal-checking system that improved reli­
ability by a factor of ten came about as a result of 
forthrightly admitting a weakness and solving it. 
Again, it was one of those interesting happenstances. 
In the days of Whirlwind we had what we referred to 
as the "annual investigation." Somebody always began 
wondering again how we could spend several million 
dollars on one computing machine. The result would 
be another panel or an investigator. In about 1948, 
Francis Murray (a mathematician from Columbia) 
spent a weekend investigating on behalf of the Office 
of Na val Research. On Saturday in my office he said, 
"What are you going to do about all these components 
when they gradually deteriorate, and streetcars go by, 
and the voltage will change? You won't know you're 
approaching trouble until components begin to cause 
mistakes." We hadn't thought about that before, but 
we recognized it as something that had to have an 
answer. I told him that we would vary the screen 
voltages of the vacuum tubes up and down so we could 
tell if they still had a safe working margin, and this 
would detect gradual deterioration. The idea sounded 
so good that the next Monday morning Norm Taylor 
started putting such a system into Whirlwind. 

Tropp: Jack Jacobs's overview paper clearly points 
out that the desire to get this job done was strong 
enough that once you had convinced people of what 
you could do, your mistakes weren't so important. 

Taylor: I did a lot of the direct correlating of the 
numbers to find out what reliability we could achieve 
and found we needed the dual machine. 

We had enough data about tube reliability and so 
forth to correlate one piece of data with another and 
make a reasonable prediction. Then we said, "Well, if 
we have one machine, what will be a mean time to 
failure? If we have two, what will it be? Indeed, is it 
possible to take advantage of tlie improvement of two 
because we have twice the probability of failure? After 
a while we made up our minds to go to two machines 
in a center. 

We were about to make a presentation on reliability 
to the Air Defense Command in Colorado Springs 
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when I said to Jay, "These are all the numbers. I've 
never been to Colorado Springs, but I would love to 
go." He said, "You can go if you make the speech." 

I had never made a speech like that before, but I 
remember getting up, and there was what seemed like 
a whole room full of generals sitting in front of me­
and I hadn't even met a general before that. I gave the 
speech almost the way I had memorized it. We sim­
plified the equations so that I wouldn't get tangled up 
in it and everyone could follow it nicely. Afterward at 
a cocktail party, one of the generals whose name I 
don't remember came up to me and said, "Norm, that 
was a very convincing speech. We're going to go with 
this thing, this duplex." Just right there, that after­
noon. It would take a year to get that decision nowa­
days. 
Tropp: Not only were you building two computers 
instead of one, but you would also need a building 
twice as large as well as all the things that go with it. 
Shiely: We didn't even know at that point how big a 
building we would need. 
Taylor: A real problem was the number of people. We 
hadn't even found out how many operating positions 
we would need. 

Thomas M. Smith: I was wondering about these ref­
erences and this philosophy that Jay was talking about 
and Norm was just referring to. How did that strike 
you, Bob Crago, coming into their operation, working 
with them? Was it something new, distinct, energiz­
ing, in your experience? 

Robert P. Crago: I think it was probably the first 
experience most of us in IBM had in working with an 
outside group and taking the leadership from them. 
We had been pretty much our own masters in previous 
projects. It took us a while to realize that we were 
dealing with some very professional people who knew 
what they were doing. While reading through the 
papers, I thought about the coordination meetings in 
back of the IBM branch office in Hartford. Was it 
your mother, Norm, who was calling in to find out if 

you were at the meeting or not? No one would admit 
to the meeting that was going on in the back room. 

I think the kind of technical camaraderie that grew 
out of this project made it the most exciting thing that 
I've ever been involved in. I had the feeling that there 
were no hidden problems, that no one would tuck 
things away. 

Taylor: That was part of it. We told everybody what 
the problems were as soon as we found them out. 

Smith: And in the 20 or 30 years that have passed 
since, you have not encountered that kind of phenom­
enon in industry? 
Taylor: It's usually "don't tell anybody until you hit 
the skids," so to speak. 

Tropp: Returning to your analysis of how two com­
puters would be better than one in terms of mean free 
time between failures, how about the common drum? 

Taylor: The duplex arrangement wasn't designed at 
that time. I think it was Steve Dodd who did the 
details; he was in charge of that part of the design, 
anyway. There was to be one switch that was going to 
switch from one computer to the other. Dodd told me 
that that was the biggest oversimplifier in all the 
world. 
Benington: We used to joke that when that switch 
was thrown, we had better warn Niagara Falls. 

Taylor: I've been taking quite a riding all my life about 
that switch because it turned out to be a million-dollar 
switch. During its design there was a great deal of 
tugging and hauling on how we would use that second 
computer. At first we probably had the simpler idea 
that we would do everything on both sides simulta­
neously. It turned out that that was rather inefficient 
because we had a lot of things to do, and the other 
computer could do some of them while keeping a check 
on the computer that was carrying the operational 
load. Whichever machine was backup had to keep its 
status information up-to-date, of course, in case it had 
to take over. The common drum was a convenient way 
for the two machines to carry out the necessary infor­
mation exchange. 
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Actually, duplexing the computers was the easier 
part of the job. Much more difficult and expensive was 
switching the enormous number of peripherals from 
one machine to the other, and searching out and 
duplexing all the single-point failure modes in the 
entire center, from the power plant to the command­
er's display. Nowadays there are only one or two 
people who have really working duplex computers. 
Tandem has built a tremendous business out of this, 
and nobody else does it. 

Tropp: This is a good time to discuss some aspects of 
software development. The choice by the Air Force of 
SDC to do software was another one of those acci­
dents. I think that Herb was going to talk about it in 
terms of, what was it, STP? 

Benington: Yes, the System Training Program. At the 
same time that Whirlwind was being developed, the 
psychologists at Rand decided they wanted to do some 
experiments on team training. They were interested 
in how you could improve the performance of the team 
and how to measure it. Bill Biel (later vice-president 
of SDC) was the man who headed that effort, and he 
decided to use the air-defense function as an experi­
ment to try it out. Rand, from which SDC spun off, 
was working for the Air Force. Even though they were 
doing most of their work with the Strategic Air Com­
mand on the offensive problem, there wasn't much 
large team activity in SAC, but in air defense there 
clearly was. So they set up team-training exercises 
using college students as simulated officers and en­
listed men. From this work they developed some im­
portant principles. One principle was that you ought 
to start out with very low stress on the student oper­
ators and then gradually increase it as the team per­
formance increased. Another was that right after the 
experiment you ought to debrief them on what was 
really going on in the world so they would look at what 
they had just done for three hours, what they thought 
was going on, and what had really happened. A final 
principle was that you ought to have the team analyze 
itself and look at ways in which it could improve its 
performance. They got tremendous performance from 
those college students. Some of the people from the 
Air Defense Command came and looked and said that 
it was just the excellent Rand training and the fact 
that the college students had very high IQs-that they 
ought to try it out on some of the actual personnel 
from the defense command. So they brought in some 
of the enlisted men and a few officers and started 
doing this to them. They found that they got even 
higher performance than they did with the college 
students because those people knew the business and 
were highly motivated. So, independent of the SAGE 

activity, Rand started this System Training Program 
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for the air-defense centers, and when SAGE came along 
it was used in SAGE. 

Having that other backup computer we discussed 
earlier was a great opportunity because this realistic 
simulation could then be run from the other computer 
and fed in across that drum. Also, some of the termi­
nals could be diverted to simulate people at adjacent 
centers, to simulate the pilots, and the like. So that 
program turned out to be, I think, very successful. As 
long as I was familiar with the program, Rand and 
later SDC continued it. I guess it was also quite 
expensive. I would be interested in whether General 
Shiely has any views as an operator as to how useful 
that program was, and whether we still have anything 
to learn from it today? 

Shiely: I really didn't get into that too much except 
secondhand. My understanding is that it was a very 
valuable program for keeping the operators trained. I 
know it was the basis for an awful lot of the work we 
did in system testing and getting the operational peo­
ple up to snuff on the system prior to its going into 
service. Rand was very, very important from that 
standpoint. 

Tropp: Many choices were made regarding who did 
which aspect-for example, the choice of Lincoln's 
proposal for the general concept of the system, the 
choice of IBM as the prime contractor, the choice of 
SDC to do the software. I'm curious about earlier 
thoughts as to who would do these things. For exam­
ple, in doing the software, was there an original 
thought that it would be done at Lincoln Lab? Or that 
the Air Force would do it prior to finally realizing the 
magnitude and saying, "Hey, we'll go elsewhere"? 

Forrester: For SDC it was a matter of going outside 
the Lincoln Laboratory. For reasons I do not recall, 
Lincoln did not want to build up its staff to that 
extent. 

Everett: The MIT management did not want to. They 
didn't see a long-term need for a large number of 
software people as a part of MIT. 

C. Robert Wieser: SDC wasn't chosen; it was created. 

Everett: SDC was actually created here. 

Forrester: The group that started working for Rand 
and became SDC was started here. We started hiring 
people, and later SDC took over its own hiring. SDC 
was created for the purpose of doing the programming. 

Tropp: Were there earlier thoughts-because you had 
done your own programming on Whirlwind-that that 
was a project that you could do in-house? 

Forrester: The programming was started inside. Bob 
Wieser and his group did a great deal of it before SDC 
came into being. 
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Wieser: There was serious consideration of getting 
IBM to pick up the programming job, too, but as I 
remember they didn't want it. There was serious con­
sideration of having Bell Telephone Laboratories do 
it, and they didn't want it either. SDC was created to 
do the job; it was created inside my group. At that 
time, a division in Lincoln was roughly 100 people, 
and a group was roughly 10. When my group got to 
120, I knew something had happened. 

Crago: It's true that IBM was offered the opportunity 
of taking on the programming. We estimated that it 
could grow to several thousand people before we were 
through. I think the principal factor in deciding not 
to do the work was that we couldn't imagine where we 
could absorb 2000 programmers at IBM when this job 
would be over someday, which shows how well we were 
understanding the future at that time. 

Jacobs: The computer programming was probably the 
most underestimated task in the entire SAGE project. 
The team that programmed Whirlwind and the Cape 
Cod System was obviously the team that should take 
some responsibility for developing the SAGE program­
ming and also for carrying out air-defense programs. 
SAGE necessitated a system that, in addition to the 
verification of the air-defense concept, had to be done 
on a much more complicated machine-the FSQ-7. It 
also had to be done by inexperienced programmers, 
and it had to be aimed at producing a master program 
to be installed at a number of sites, and adapted to 
those sites. SAGE also required both the training for 
and definition of program maintenance. Finally, there 
was a myth that you could do all or most of the 
integration of weapons by modifying the computer 
program. This turned out to be untrue. Not only did 
most of these changes require hardware changes, but 
the cost of programming soon rivaled the cost of doing 
the same thing with hardware. 

Forrester: I've mentioned the managerial aspects of 
SAGE. The managerial structure that ran through the 
undertaking was at least as important as the technical 
work. The story wouldn't be complete if we didn't 
mention the IBM management support and dedica­
tion. IBM management really threw their resources 
into the program without restraint. As an example, 
when it came time to schedule production, there was 
no air force contract yet for the machines. If IBM was 
to meet the schedule, there had to be a factory. IBM 
went ahead and started building a factory before the 
Air Force had signed a contract. No doubt IBM could 
have built typewriters in the building if the contract 
did not come along, but, nevertheless, they built a 
factory specifically for the SAGE computers on thefr 
own initiative. It was that willingness to go ahead and 
to take some risks that ran all the way through the 
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program in all the participating private company op­
erations as well as the Air Force and MIT. 
Tropp: When this whole thing was starting, there was 
no FORTRAN, no COBOL, and no ALGOL. Everything 
was machine language, machine code, or something 
special of that nature. There were very few program­
mers, and people were walking around saying, "There 
aren't enough mathematicians around, anyway; we 
need many more programmers." There may have been 
3000-4000 of them in the United States. What was 
the training problem like to create the small army of 
programmers to do this kind of job? 

Benington: It was significant. I think we did it fairly 
well. We had computer programming courses run by 
IBM, Rand, SDC, and MIT. We discovered very 
quickly who could program well, after training and 
experience. But it was almost impossible to predict at 
the time of hiring. 
Crago: Music teachers were particularly good subjects, 
weren't they? 

Benington: Yes, music teachers. And women turned 
out to be very good for the administrative programs. 
One reason is that these people tend to be fastidious­
they worry how all the details fit together while still 
keeping the big picture in mind. I don't want to sound 
sexist, but one of our strongest groups had 80 percent 
women in it; they were doing the right kind of thing. 
The mathematicians were needed for some of the more 
complex applications. So we did a lot of learning of 
how to train people, how to decide who was good, and 
where to put them. 

We were talking earlier about software on the 
Whirlwind project, which started clarifying some of 
my thoughts. At Whirlwind there were two software 
groups. One of them was under Charlie Adams, who 
was developing the software tools that would be 
needed in a university environment. He was catering 
to the very bright individual who wanted to get on the 
computer. As a result he developed things such as 
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symbolic addressing, which would have been heresy in 
Whirlwind. With symbolic addressing, you refer to 
your data's location not by the number of the memory 
cell it is in, but by a mnemonic title such as Al or 
TAX or something like that. Later it was all put 
together in the right way. He developed an operating 
system so that somebody could use input/output de­
vices or storage and not have to worry about managing 
all the administrative and allocation details. He de- . 
veloped the first higher-order language well before 
FORTRAN and COBOL; this was in the early 1950s. 
These were all tools that are useful to individuals 
using the computer. But in the Cape Cod System and 
in SAGE, the problem was one of team programming. 
We thought that some of those tools were dangerous 
because they couldn't be well disciplined. I think we 
were wrong in retrospect, but we developed tools of a 
very complex nature, and they're not always found 
today in some of the more advanced projects where 
the team can be disciplined. You could assign an 
individual a job, you could control the data that that 
individual had access to, you could control when that 
individual's program operated, and you could find out 
if that individual was playing the game wrong and 
punish the person. So we had a whole set of tools for 
design, for controlling of the team, for controlling of 
the data, and for testing the programs that were really 
quite advanced. 
Tropp: Very little of that ended up in the literature. 

Benington: I gave one paper in San Francisco: "Lin­
coln Utility Program System."2 Charlie Adams was 
there; when he said, "Good show," I felt extremely 
pleased. Also, the paper published in this issue of the 
Annals gives some of these ideas. 

Wieser: In the early days of programming for Whirl­
wind, I can assure you that programming was not done 
by mathematicians. It was done by people who in the 
first place understood how the machine worked, and 
in the second place had some reasonable grasp of the 
problem they were trying to solve with the machine. 
They thought in terms of airplanes in space, not 
totally in terms of symbolic logic. A lot of homework 
went into that. When we first went into the air-traffic­
control application before we had a Whirlwind, I spent 
many nights over in the control tower at Logan Air­
port finding out how the air-traffic-control system 
really worked. I got up at 5 o'clock mornings, drove 
out to Beverly, took flying instruction, and got a pilot's 
license. We got involved in the problem we were 
working on. It was not an abstraction; it was a real 
engineering thing. To the extent that you could con-

2 H. D. Benington, "Lincoln Utility Program System." Proc. West­
ern Joint Computer Conference, AIEE, San Francisco, February 
1956, Vol. 9. 
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fine it to a small number of people, which was true of 
the Cape Cod System programming, you could get an 
awful lot more out of the people. That way was more 
efficient than having one set of people writing require­
ments, another set writing specs, another set translat­
ing specs into code, another set checking it out. The 
people did all those things as one great team. They 
had the knowledge of all of the steps in the process 
through to checkout, through the experiments with 
real airplanes to find out how the whole system 
worked. I don't know that you could apply that process 
to big-scale programming-what's called production 
programming; you probably cannot. But on the scale 
we were doing it then, it worked well. The program­
ming went very, very rapidly, much more rapidly than 
you could do it with a structured system of training 
programmers and using large numbers of specialists. 
It was more like the analog of the model shop in 
industry. What we had was a model shop doing the 
job. It was quick; it was inexpensive. 

Benington: I agree with Bob completely. The differ­
ence between Cape Cod and SAGE is really the differ­
ence between the model shop and production. By the 
time we got to SAGE we had to specialize. One group 
did the requirements, one produced programs, one 
tested them, and one put them in the field. We had to 
do it, and we also learned that you could use less­
experienced people to implement and test those re­
quirements. Today it's still the most effective way of 
doing it. 

Crago: It's a theme that's come up here a number of 
times. Jay said it, and Bob said it. The commonality 
of effort, the dedication of people, the fact that so 
many of us spent quite a bit of time in the particular 
application so that we had a chance to see our own 
mistakes and had a chance to help work them out. I 
see so many people moving quickly between jobs to­
day-one year at the most. They miss getting a chance 
to see their mistakes and straighten them out. 

Forrester: In the Digital Computer Laboratory that 
came out of the Servomechanisms Laboratory, at the 
center of the operation was a core team of people who 
had been through several complete, successful projects 
from the beginning of the idea through development, 
the experimental work, the production in factories, 
and out into the field where that equipment was either 
working or not working. They had the knowledge of 
every step that was yet to come up from having been 
there before. They had gone through the research-to­
field cycle two or three times before they came to 
SAGE. Such a group of people made a powerful team 
in dealing with how management and technology are 
integrated together. 
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Tropp: I think the fact that there was a nucleus is 
often overlooked. A group of you who started with the 
aircraft simulator can be traced all the way through 
the evolution to SAGE. 

Forrester: The group had gone through two or three 
projects in the Servomechanisms Laboratory even be­
fore the aircraft simulator. 
Tropp: That continuity covers more than two dec­
ades. 
Forrester: Starting in 1940 and running through 1962. 

Everett: I'd like to respond to a question you asked 
earlier about whether people were confident that they 
could do the job. It seems to me that in this process 
we were just talking about-of going through the 
whole task, and of finding our mistakes and fixing 
them along the way-we came out at the other end 
not only with a much better feeling of how to do the 
thing, but also with a feeling of confidence that we 
could do it, which I think is important. I don't know 
how the rest of you felt, but I have no recollection of 
ever having been worried that we might not do it. I 
really believed that we could do anything if we were 
given enough money and left alone. 

Tropp: Let's go back to what we were talking about: 
this attitude about having to get the job done. That 
was the atmosphere in this country during World War 
II. No matter which project I talk to somebody about, 
it was, "There was a war on, and we had to get the job 
done." That's the end of the answer; that's all there 
was. 
Taylor: We started pretty close to the end of the war. 
In 1948 a lot of us were still in that frame of mind. ·' 

Everett: I think today you will find there is a lot more 
cynicism in people. It doesn't take the form of people 
thinking they can't do it; it takes the form that they 
don't think they'll be allowed to do it. 

Wieser: I don't think the workers scared easily. I 
think some of the confidence, at least on my part, was 
related to keeping fairly close track of the competitive 
schemes. I wasn't a computer designer; I was an early 
customer. We talked earlier about the formidable 
problems that were faced with the development of the 
SAGE computer, but the fact that the technology and 
the ideas were so new meant that there was a lot of 
elbow room for improvement. In terms of competitive 
schemes, the University of Michigan's was not the 
only one. There were others; a big system called 414 
was one of those. It used relatively mature analog 
technology. They had a bad set of problems that they 
had to cope with and they didn't have all of the new 
avenues of improvement that we had. They couldn't 
jump from electrostatic storage to core memory. They 
were stuck with what they had, and in a sense while 
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414 was a more conservative undertaking, it was also 
a dead-end street. Today you wouldn't ever go back 
and try to ·make an air-defense system using either 
that technology or those components or the principles 
on which those competitive systems operated. They 
had problems in radar-network registration, problems 
in stability of analog tracking-all those technicians 
with screwdrivers trying to keep the thing working. 
You know, analog systems didn't work well even when 
they worked the way they were designed to work. 

Benington: I think we ought to distinguish between 
the commercial world and doing business with the 
government. I am now dealing with the government 
but also a lot with the commercial world, and things 
in the commercial world in information systems are 
as lively now or more lively than they were in our day. 
If you look at the number of companies, large and 
small, the fantastic variety of projects, the numbers 
of failures, the number of outstanding successes, it's a 
very, very thriving world, and I think the country's 
doing very well in that regard. I'm glad the government 
isn't meddling too much with it. 

Tropp: One thing that often comes up when you're 
talking about an advancement as important as SAGE 

is the retrospective look: "If I had to do it all over 
again, would I do it differently?" As someone who 
wasn't a part of it and only saw the Q-7 two weeks 
ago, I look at it and say, "Don't change a thing; in 
fact, don't move it out!" 

Does anyone want to respond with a retrospective 
view of what you would do differently or what mile­
stones you saw as forcing you to move in a direction 
that now you wish you hadn't gone in? 

Benington: Before somebody does that, can I tell an 
anecdote? Jack Jacobs and I and some other MITRE 
officers went down to Fort Lee a couple of years ago 
where there is a SAGE center. It was very operational 
and a "gung-ho" activity. The colonel who ran it said 
it was the most reliable piece of equipment he ever 
had in the Air Force-one of the most successful 
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things he had seen; so maybe we shouldn't change too 
much. 
Tropp: I don't think whatever replaces it could be as 
good, but I'm prejudiced now. 

Shiely: I'm sure glad to find out at this stage that 
nobody was concerned about whether it would work 
or not. I'm going to be frank and say that I was 
terrified. It's a terrifying situation to have somebody 
come in and tell you that your direction center is just 
half as big as it has got to be or that the machine is 
just half as big as it has got to be. 
Tropp: And the money is only a quarter as big. 

Shiely: For example, the system originally started out 
dealing with the problem of vulnerability by putting 
the direction centers underground. The first one we 
started to dig was at Fort Dix, New Jersey. We found 
that the water table was about three feet under the 
surface. So we were faced with the problem of whether 
this had to be a submarine. Then we went up and took 
test borings at West Point, the second center, and 
found it was solid granite. It didn't take very much 
computation after that to figure what all these direc­
tion centers were going to cost, so those centers came 
out of the ground a story at a time. They also got 
reinforced more every time they came out. I think 
everybody is aware of the way military construction is 
programmed in the government system-how it is 
budgeted, defended, and even appropriated by sepa­
rate channels. So you can imagine the problems that 
were involved in. explaining to somebody why these 
buildings were suddenly becoming twice the size, be­
coming reinforced, and coming out of the ground-all 
this happening while the program was going on. We 
were building a building around a machine that hadn't 
been invented yet in a sense, and it certainly hadn't 
been built in the form that it had to be housed. I'm 
glad· I found out now that nobody was really worried 
about it. 

Everett: I think you're making a very good point. 
Those of us who were designing SAGE believed in it, 
and I don't know how we could have done the job if 
we didn't. But as the buyer of the thing, you had every 
right to be terrified. I was amazed at the time and I'm 
still amazed at the unflagging support of the Air Force. 
Truly remarkable. 

Taylor: You might have been apprehensive, but you 
didn't let it show too much. 

Shiely: The thing that I recall hearing about at that 
time was the support we got from the very senior 
people. A top priority for air defense was very, very 
new. This kind of priority went only to strategic 
programs at that time. The type of management struc­
ture we were allowed to establish also was restricted 
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to very few programs; in fact, it was an experimental 
management structure that had been applied only to 
aircraft-and to strategic aircraft at that. To allow us 
to set up an office between the two acquisition com­
mands-a joint project office involving the two com­
mands-and allowing us the authority to direct activ­
ities in those commands was a tremendous departure 
from the normal operation of the Air Force at that 
time and took a tremendous amount of support and 
foresight on the part of people like General Thomas 
F. Power, commander of the Research and Develop­
ment Command, and General Rawlings, commander 
of the Air Materiel Command. Full-time participation 
by the Operational Command for whom the system 
was being built was also. an innovation that proved 
invaluable. We were required to brief the two com­
manders personally once a month on where the pro­
gram was. It took us ten minutes-that was it. We 
were never given any direction, except to go ahead. 
Similar briefings were also given to the Air Defense 
Command. · 
Bright: I seem to recall that we were under severe 
funding restraints somewhere along in the program. 
As I remember, 23 direction centers were proposed. 
B\lt because of funding constraints, Charlie Zraket 
and I and an air force colonel (whose name I don't 
remember) cut this back to 17 direction centers, with­
out significant loss of air-defense capability. That, of 
course, had to be reviewed by our bosses. The cut­
back program was approved. 
Forrester: How many were actually finally installed? 
Tropp: I think 23 direction centers. Here we are ex­
tolling the virtues of the reliability of the Q-7. I went 
through the literature you sent me, Bob, and I keep 
finding names like Q-7A, Q-31, and Q-32. From 1959 
on it seems that somebody kept wanting to replace it 
before it. was fully installed, fully operational, with 
transistorized or more state-of-the-art technology. 
Each of these was dropped for a variety of reasons.· 
The first generation, Q-7, is still operational today 
and will be until sometime in 1983. But why the rush 
to get rid of it before it's ever fully completed? 

Everett: I don't think they were trying to get rid of it 
because it didn't work. The problem was its vulnera­
bility to ICBMs. The new program being pursued 
actually never got built: the so-called super combat 
center, to be installed in hardened underground shel­
ters. We were talking about a machine of a new 
generation with more capability, to be made out of 
transistors. A smaller number of such centers could 
do the work, which then would greatly reduce the cost. 

Tropp: In the records, this isn't very clear. It looks 
like you're introducing a new airplane before the 
model has gone through its introduction. 
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Taylor: The buildings of the direction centers were 
formidable to look at. Bob Everett and I used to drive 
to Poughkeepsie and back almost every week for about 
three years. We had a little Chevrolet wagon that we 
burned out on that trip. One night we were coming 
home at about two o'clock in the morning and we were 
talking about what is important, what will be impor­
tant, and where do we go from here. Bob said, "You 
know, Norm, you and I will be buried in some ceme­
tery, and some guy will walk by those buildings and 
he'll: say, 'What the hell do you suppose those guys 
had in mind?"' 
Forrester: Some of our people were tired at the end of 
the week and occasionally chartered an airplane from 
Poughkeepsie back to Boston. It was very much con­
trary to air force contracting officers' principles, so 
they would come storming in to Nat Sage and say, 
"You can't do this," and Nat Sage would nod and say, 
'~Isn't that terrible!" and take their document and put 
it in his desk drawer and never tell us about it. 

SAGE "FIRSTS"3 

Using Lincoln's farsighted initial design as a basis, the Lincoln­
Rand team set about developing and implementing the first 
large-scale information system with capabilities so advanced 
that a quarter century later they would still be considered the 
current state of the art. Among the numerous firsts of SAGE: 

• A fully real-time system. 
• Servicing 100 simultaneous users. 
• Acquiring live digital data from many sources. 
• Routing data to many destinations. 
• Using interactive graphic displays. 
• Providing near-instant on-line access to a common data 

base. 
• Having fault tolerance and "graceful" degradation. 
• Incorporating a "hot backup" machine. 
• Communicating digital data among a dispersed network of 

computers. 
• Handling live operations and simulated exercises simulta-

neously. 
And incorporating in its computer programs: 
• Centralized system data structures and control. 
• Modular, topdown system organization. 
• Discrete structured program modules. 
• Overlapped input/output and data processing. 
• Simultaneous real-time and computational processing. 
• Time-sequenced synchronous scheduling and interrupt for 

90 subprograms. 
• Centralized data processing with remote input/output and 

display devices. 
• Comprehensive communications pool (compool) defining all 

global data in the program. 
• Table:..driven software for ease of modification. 
• Built-in test, recording, and data reduction. 
• Computer-supported system development and checkout. 
3 Printed with permission from Claude Baum, The System Builders: 
The Story of SOC. Santa Monica, System Development Corporation, 
1981, p. 24. 

Taylor: I remember coming back on that flight once, 
when the pilot turned to me and said, "Does anybody 
see the field down there?" 
Everett: I remember a somewhat similar story. It 
shows you how different things were in those days. 
We needed more computer time, and somebody came 
up with the idea of using the ones on the test floor in 
Poughkeepsie. So we sent one of our staff members to 
IBM, and he worked out a deal with IBM to make the 
time available late at night. Then, as we pieced it 
together later, somebody he was talking with at IBM 
said, "Oh, by the way, this is going to cost some 
money." Our guy said, "That's all right." He came 
home and everything went fine until one day Harris 
Fahnestock came into my office shaking with fury. He 
had in his hand a bill for $1 million. I remember 
saying, "Harris, why are you so upset?" He said, "But 
you never got permission for this." I said, "Now, 
Harris, be calm. You know you would have given us 
permission. It didn't cost a cent more than it should. 
Now will you go away and pay the bill and not bother 
me anymore?" And he went away and paid the bill. 

Tropp: Claude Baum, in The System Builders: The 
Story of SDC, lists numerous "firsts" for SAGE. The 
list, reprinted here, seems to be fairly heavily oriented 
toward software. Herb, do you want to react to it? 
Benington: My initial reaction is that it is a pretty 
good list. 

Tropp: Getting into firsts from a historical point of 
view is always a danger because the minute you say, 
"So-and-so did something first," you find somebody 
else who did it. But I think many of these things that 
are considered firsts in SAGE probably occurred first 
in Whirlwind, didn't they, Bob? 

Everett: It's partly a matter of how you define it. 
Whirlwind in its Cape Cod manifestation did most of 
these things. It couldn't have done its job without 
them. I think that it's not just a matter of who does 
what first, but whether it gets. used in some way. It 
seems to me one of the things that SAGE did was to 
spread the ·knowledge that these things could be done, 
as well as how to do them-throughout the organiza­
tion and throughout the country. 
Wieser: It may be buried in here some place, but I 
think marginal checking systems were very, very im­
portant. Probably SAGE had built-in automatic tests 
to a degree that previous systems had never had be­
fore. 
Harrington: Nobody even tried to do it automatically 
that I know of. To some extent we still haven't. 

Wieser: Marginal checking is not fault tolerance. It 
permitted the anticipation of a failure caused by grad-
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ual deterioration instead of waiting for errors to occur. 
It was a very important part of both the Whirlwind 
and the SAGE computers. 
Everett: I think this list kind of scants the hardware, 
but that's not surprising because it was written by 
software people. 

Tropp: But from a software point of view, Herb, do 
you think it's reasonable? 

Benington: I think it adds detail to the concept, 
particularly the last part of the list-the concept that 
I mentioned about how you must have a disciplined 
team to put together a large computer program. Many 
of these features allow that to happen. For example, 
one of my favorites was the communications pool, 
which was one of the great innovations in SAGE. A lot 
of people who are not using it today are sadder as a 
result, and they don't know it. With the communica­
tions pool, the individual computer programmer could 
access or change system data (i.e., information such 
as aircraft altitudes) without knowing many of the 
details of where the data was stored, when it was 
moved, or who else used it. In this sense we viewed 
the system as hardware, software, and data. We had 
the first "system-data managers" -they played a ma­
jor role in the design of communications. Their up­
dated view of the "communications pool" could be 
integrated into a newly modified system with mini­
mum disruption to all the other hardware and software 
participants. 

Everett: Yes, but the software business went downhill 
after SAGE in many ways. 

Tropp: Mort Bernstein told me that the communica­
tions pool gets reinvented periodically, and I think 
that's the fault of those of you who did the software 
and did not document these things. 

Everett: Or the fault of those who don't read about it. 

Forrester: There were many things in software and 
hardware that were simply done in Whirlwind and 
SAGE with the attitude that that's what people would 
do if they were going to try to design the system. They 
probably did not think about the new ideas as being 
innovative, and there was very little emphasis on 
academic publication. Publication wasn't the goal of 
most of the people. So we have a situation where many 
of the firsts on Whirlwind and SAGE are not repre­
sented in the literature. 
Tropp: I think another facet was that you people were 
too busy to bother writing papers because the group 
of people in the industry was small enough that com­
munication was probably by word of mouth and per­
sonal contact. That's an environment that's hard for 
today's professionals to understand. 

SAGE Discussion 

Herbert D. 
Benington 
"The 
communications 
pool was one of the 
great innovations in 
SAGE. A lot of 
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and they don't know 
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Forrester: However, the Digital Computer Laboratory 
did publish a quarterly report. It was a glossy-paper, 
halftone-picture, typeset publication that was distrib­
uted to maybe 250 addresses. It reached many people, 
but I presume one can't find it in libraries because it 
was not a recognized journal. 

Everett: It would probably be very hard to put to­
gether a set, except in the archives. 
Taylor: There's one item that's not on the SDC list 
because it's such a controversial item: the light gun. 
I've edited all kinds of papers in the last five years, 
and I give credit for inventing the light gun to Robert 
Everett simply because he told me he invented it. 

Everett: If I knew it was that simple, I'd have in­
vented lots of things! 

Taylor: You never told me about anything else, so I 
think you must have done it. Right now you'll find 
that everybody in the business invented the light gun. 
Of course, it was invented in the Cape Cod System, 
which was the prototype for SAGE. We had some crude 
ones before that, but in the Cape Cod System it was 
really used. I think Everett ought to get credit for 
that. 

Smith: Why did you invent it? What prodded that? 
Everett: There are two answers to that. I "invented" 
the light gun, in the sense that I didn't know anybody 
else had done so. And I invented the use of light guns 
in digital computers. There are lots of cases like that; 
people had invented the photoelectric cell pickups for 
other purposes. But my recollection is that one day I 
came up from the basement where I was trying to 
make the storage tubes work. We were starting the 
first experiments in tracking airplanes, and we had 
the problem of designating a particular track, or par­
ticular spot on the tube. Someone had built a joystick 
for this purpose. As you pushed the stick one way or 
another, it closed some microswitches and fed a bit 
stream into a counter that could be read by the com­
puter, which would move the spot accordingly. I looked 
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at it and said, "Why bother to do that? The computer 
knows where the spot is. Put a photocell over it and 
tell the computer that's the one you want." I went 
back down to the basement. After a while I came up 
again and was shown a working light gun. 

Taylor: That's right. We used it on the storage-tube 
detection system at first to tell which spot was doing 
what. 
Wieser: It made the conventional joystick obsolete for 
designating targets on a display tube. 

Smith: Why was that superior? Why do it that way? 
Didn't you want to shoot him? Or did it seem such a 
good idea on the spot? 

Wieser: Instead of steering a displayed circle around 
the tube face until it fit around the dot (target) you 
wanted, which was the conventional joystick way to 
do it, we just found an easier way to designate a 
particular target. That's all. It worked very well. 
Bright: A great many spinoffs from SAGE went into 
the commercial market later. In the Bell System dig­
ital communications was in part a spinoff. It was 
beneficial in moving up the time frame. Many things 
from SAGE have resulted in more advanced develop­
ment-more advanced applications. As I look around 
Bell Laboratories and Western Electric today, I still 
see people who were involved in the SAGE program. 
That won't be true very much longer, because we are 
getting to that age. But they have made valuable 
contributions to commercial applications of digital 
transmission and switching technology. 
Forrester: One first in those machines was parallel, 
synchronous, clock-timed logic. Most of the machines 
under development in the days of Whirlwind were 
something else. They were serial, or they were asyn­
chronous, or in some way they were not the parallel, 
synchronous, clock-timed logic that became the stan­
dard for computer logic. Many ideas that were in those 
machines survived. I believe that a larger percentage 
of original ideas in those machines survived than from 
other machines of the time. 

Wieser: Another thing that I think ·we take for 
granted today is parity checking on all internal infor­
mation transfers inside the machine. That was a fea­
ture of SAGE. 

Crago: How many years was it before there was a 
commercial processor with a full-checked adder? You 
know, SAGE had a full-checked adder, and it was years 
before anybody went back and put one in a commercial 
machine. An invaluable aid in data integrity. 

Tropp: I wanted to get into this whole area of the 
impact of SAGE, but before we do, Tom Smith men­
tioned a managerial question that he wanted to raise. 

Smith: It seems to me from some of the conversations 
here that while there was this incredible amount of 
cooperation going on, nevertheless, some decisions 
had to be made and some options selected. I was 
wondering what kinds of mechanisms came into being 
for this within Lincoln, Western Electric, Bell, and, 
of course, the Air Force Project Office. You couldn't 
all dance around in sweetness and light. One thought 
I had in this discussion was: "To hear us talk here, 
these people almost weren't human. There must have 
been some knock-down, drag-out fights over genuine 
issues; that's the way history gets created." So I want 
to ask: how did all this stuff get implemented, starting 
from the design level and going on through? 

Taylor: I'd like to speak to that, if I may. The first 
time it came to my attention was when we started to 
interface with the IBM people. They had a significant 
number of people on the job. I'm not talking about 
thousands, but 30 or 40 or 50. We had a pretty good 
design concept, but it wasn't easy to transfer that on 
the table, a piece at a time, so we could decide whether 
we were going to accept it or not. 

What Jake Jacobs mentioned before was the vehicle 
we came up with called the Systems Office. The Sys­
tems Office was an unusual concept which I still try 
to use in my consulting work, because it was so effec­
tive in doing just what you said. First, we broke the 
problem into fairly small parts; in other words, if we 
had an arithmetic discussion, Jake would put a team 
together on the Lincoln view of the arithmetic discus­
sion, and IBM would have just two people who worked 
exclusively on this until they came up with an agreed­
upon specification. If that agreed-upon specification 
seemed to be harmonious, Jake would sign off on it 
and say that's what we're going to do. He might tell 
me about it or he might not, depending on whether 
we had ever discussed it before. If there ever was any 
degree of controversy between the two parties, we 
would have a larger meeting-but only when the de­
gree of controversy was nontrivial. 

This vehicle grew to be a very powerful management 
tool because we did not let anything go above a certain 
level unless it was necessary; that was a judgment that 
Jake largely had to make. Furthermore, when we 
started, we did not write a spec and hand it to some­
body at IBM and say, "This is what you have to 
swallow." They had as much right to come to the table 
with a spec as we had. I remember when Astrahan 
came with, for instance, a set of primitives. In a 
computer you have 20 or 30 primitives:--the orders 
you're going to build or design into the machine. I 
expected to have a real knock-down, drag-out fight on 
those primitives because what they had in their usual 
machines wasn't really suitable for SAGE, in my opin-
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ion. Astrahan came with, I think, 34 primitives of 
which we accepted 28. There was a lot of harmony 
before we got to the point of controversy. 
Forrester: Running through the program was an at­
mosphere of openness, a willingness to listen to dif­
ferences. Also in the background of the program was 
the almost absolute control exerted by Lincoln Labo­
ratory. In the contracts between the Air Force and the 
contractors, Lincoln was given the authority to sign 
the drawings. Lincoln had to be satisfied. MIT and 
the Lincoln Laboratory had a substantial role in set­
ting up the air force coordinating office, specifying 
that it be headed by a general, and insisting on the 
degree of authority. A strong office was considered 
necessary so that there would be the authority to get 
rapid decisions. 
Wieser: In today's system-development language you 
would call that process "configuration management." 
Jake would have been running a "configuration con­
trol board." In the midst of all this togetherness, 
harmony, and cooperation there was formality in the 
decision-making process. Accurate records were kept. 
People worked together when they had problems, and 
when they got a solution it was documented. It had to 
be, in order to pass it on to people who were to build 
the hardware. If you have one group designing a com­
puter and- another building it, you need good commu­
nications, which means formal communications. 
Jacobs: I'd like to say a few words about what made 
the Systems Office successful. It was necessary to 
achieve consensus on the design from the air force 
organizations and the contractors, as well as consen­
sus within Lincoln itself. It was important, therefore, 
to select a mechanism that was aimed at achieving 
agreement on what should be done. We wanted to 
create a technique that treated the organizations as 
equals, that would give each organization an equal 
right to propose what should be done. Direction was 
too strong a word, and coordination was too weak. The 
word that was chosen was concurrence. Concurrence 
implied that the organization involved in a design had 
veto power over the proposals affecting it. Thus all 
proposals were circulated to the affected participants 
for their review and comment. The Systems Office 
would do an analysis that spelled out the alternatives, 
suggest a choice, and ask the participants for their 
concurrence. The organization that did not wish to 
concur had the burden of proof; thus in order to deal 
with a nonconcurring problem, the organization would 
have to show how its design was preferable. If they 
succeeded, the process would be repeated. The thing 
that is most amazing to me is how small a number of 
nonconcurrences we were faced with. What had 
started out as an ad-hoc, informal procedure was 

SAGE Discussion 

eventually institutionalized in the so-called Technical 
Information Release, which became the order given to 
the ADES project office as to what we thought they 
should do. It is true that what we ended up with was 
a configuration-management technique, as Bob said, 
but in the beginning it was an experiment in group 
dynamics aimed at establishing a baseline design. 

Taylor: It wasn't so hard when we were talking about 
computers because we had developed a good relation­
ship with IBM. Furthermore, as Jay just said, there 
was a piece of paper. That wasn't true with Boeing 
Aircraft. We had no control over what they did. I 
remember having one session where we came push-to­
shove once in a while. I remember saying to Jay, "If 
we don't get control of this, it's not going to work." 
We had a lecture on what is control. It turns out so 
many times in life that you don't really have control 
of very many things. So you have to control them 
either by impeccable logic or by the power of persua­
sion or just by staying power. We had lots of oppor­
tunities with Boeing and some of those other people 
to do that. The Air Force came in as a very important 
partner. In other words, we came to a dichotomy. 
There's no binary way that one is right and the other 
is wrong in some of these things. So we had to have 
the Air Force adjudicate some of those. There were a 
few tough ones, but I was amazed at how many we 
were able to solve at the working level. 

Shiely: There's an important element to this. One 
thing we did have that was carried on in subsequent 
years was a mandatory, regular reporting meeting 
every month, as I recall. Representatives of every 
organization had to appear at that meeting and report 
on where they were. We had a master schedule that 
was broken down into all its parts, which everyone 
was supposed to follow. (We did have, at least, a hold 
on cost.) Everybody had to come, whether he liked it 
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or not, and stand up and say, "Yes, I am on that 
schedule, I am doing that," or "No, I'm not and here 
are the problems I have." 
Bright: It was a good mechanism for exposing the 
problems. 
Shiely: The problems that were revealed were kept 
track of. In several there was a payoff, one way or the 
other. Either the programmers had to do something, 
or the equipment had to be changed, or the building 
had to be changed, or something of this kind. We had 
some very interesting discussions on a number of these 
things over the years; in fact, I don't recall that we 
ever had to go beyond New York for any of those, in 
spite of the impacts of some of them. 

That was a very important management tool. It was 
almost impossible to keep the problem you were run­
ning across hidden for very long, because you had to 
stand up and speak to it once a month at least and 
show pictures. Believe me, everyone around that table 
asked some very penetrating questions, particularly if 
what the other fellow was doing impacted on what you 
were doing and you either suspected he was in diffi-

. culty or you were having some trouble. We had some 
very spirited discussions. But as a management tool, 
that regular reporting of a complex program of that 
kind, around the table, is something which was carried 
on and, I think, was one of the most effective tools we 
had. This was of course, on a much higher level than 
what we were discussing here. Many, m·any technical 
problems were resolved at the lower levels where they 
didn't impact on any of these overall items. 
Forrester: There was a survival all the way into this 
SAGE system of attitudes that I trace back to Gordon 
Brown and Nathaniel Sage, Sr. (I do not know with 
certainty, but some said that the SAGE air-defense 
system was named after Nathaniel Sage.) Anyway, 
Sage was the director of the Division of Industrial 
Cooperation, the contracting office at MIT. He was 
an unusual person. He had been an army child in his 
youth and had lived on army bases around the world. 
He was a civil engineer by training. He had a high and 
well-justified confidence in his ability to judge people. 
There were people at MIT he would trust and support. 
Others he wouldn't trust farther than he could watch 
them. Gordon Brown, Stark Draper, and I were among 
the group that enjoyed his confidence and support. 

The activities under Brown and Sage had an un­
usual information flow. There are two things about it 
worth mentioning. First, bad news flowed uphill. You 
know a lot of organizations where the reverse is true. 
There was no need to try to impress people with how 
well you were doing; instead, people higher up were 
there to help if there were problems. One had better 
bring up problems and get help before it was too late. 

Second, there was complete freedom in jumping levels 
of hierarchies. In the structure that ran from Sage, to 
Brown, to me, and to the various levels inside the 
laboratory, there was no hesitation on the part of 
anyone to jump over administrative levels to get in­
formation. Nobody felt disturbed by being bypassed. 
Access to information was part of the basis of confi­
dence that Sage had in people. He would drop in and 
talk to people in the laboratory. He would form his 
opinion of whether or not those who worked for me 
seemed to know what they were doing. Also, people 
who worked for me could go directly to Sage or to 
Brown. This was just part of the environment. Prob­
lems flowing up the hierarchy when help was needed 
and direct access to information were carried over into 
the organization of the SAGE system. 
Everett: How did all this seem from the other side? 
How did it look to you? 

Bright: It looked to me like a very workable manage­
ment system because it was the one that we in the 
Bell System had been employing for many years. That 
is, to get all the participants on a project together, let 
them expose what they were pleased about, and then 
get them to tell what they weren't pleased about. 
There was full freedom in the so-called phasing meet­
ings to speak up. Speaking up was encouraged. Then 
there was the more formal part of it where each one 
reported to the coordinator of the project, which was 
Western Electric, on how their part of the project was 
coming along and whether it was in phase with the 
other elements of the system. This worked very well. 
The customer was there, all the contractors were 
there, and the coordinating organization had to make 
sure that there were full and complete reports on a 
month-to-month basis with lots of contact in between 
those formal meetings. My feeling is that it was good. 

Everett: I thought it was good, too, although, as Jay 
says, Lincoln had the ultimate authority, and we 
couldn't be too autocratic. If things weren't normally 
done on that basis we could get away with it once in 
a while when we really needed to. 

Kent C. Redmond: All of the contracts read that you 
had the right of concurrence. You just failed to define 
what happened on nonconcurrence. 
Everett: I like the choice of the word concurrence, 
which was Jake's suggestion, and I thought a brilliant 
suggestion, implying a sort of iron-fist-in-a-velvet­
glove approach to life. 
Crago: As you say, it was never very clear what would 
happen if we didn't concur, so the problem never arose. 

Taylor: I remember once you disagreed with me on 
something, and I said: "Would you like to sign that 
paper to get 45 hours out of this beast?" (I had a 
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verbal agreement with the Air Force that we could 
obtain a mean free time to failure of 45 hours for each 
duplex computer. To do this, we needed control of 
circuits and components.) You said: "What paper?" I 
never told you there wasn't any, but that's all right. 
Smith: I suppose one reason it all worked was the 
technical competence and the recognition by the par­
ties that "Here are the technical options that every­
body sees and here is what seems to be the way to go." 
Even when there was disagreement, you were still 
making your judgments on the basis of what I'll call 
"informed engineering considerations" instead of, say, 
some inadequately informed, high-level management 
consideration, like we ran into when they built a new 
library at our university and decided to reduce costs 
by eliminating separate air conditioning and humidity 
control for the rare-books room. They were incompe­
tent to make that decision, but they were at such a 
high level of management that it never occurred to 
them to check down and find out. It seems to me that 
this was one of the things that you people were able 
to avoid by having control over what you were doing. 

Taylor: Some of the time, but not always. 

Benington: Life is serendipitous. I remember once a 
major argument as to how many monitoring lights 
we'd bring out of the Q-7 to show the operators and 
maintenance people what was going on inside the 
machine. The Lincoln Lab people wanted to have tons 
of lights so you could tell the status of everything, and 
IBM was dead set against it. Two or three years later 
the lab people couldn't care less about those lights, 
and IBM found them essential. 

Crago: We did a fine job of defining the interface 
between the Q-7 and the FST-2. We defined the data 
format in every regard, except we failed to label which 
end was which. All the data was coming in backward. 
Do you remember that one? We had to make a com­
plete change. It was well documented. It was just 
missing one thing. 
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Tropp: From the standpoint of IBM management, 
was there any kind of problem in terms of the number 
of people you were going to have to train to install 
these large computers, maintain them, monitor the 
software, debug, etc., with all these installations as 
they were coming on from 1958 to 1962-adding that 
work force in addition to the one that you'd already 
had to add to develop these computers? 

Crago: In staffing the original design work, we were 
lucky because the company had hired all kinds of 
college-graduate engineers to be customer engineers 
in the field, and they wanted change. A lot of the 
cadre of people who came in to begin working with 
Lincoln Laboratory were those folks who were happy 
to get into design work. Yes, the number of people 
that it took to go out and install and maintain became 
tremendous-so much so that we finally approached 
the Air Force and said, "Isn't this a proper skill area 
in which you ought to be having your own people?" 
We gradually withdrew from the maintenance, and 
the Air Force took on the maintenance themselves. 
That turned out to have real benefits to IBM because 
just at that time, real-time systems became an impor­
tantfactor in commercial applications such as airline­
reservation systems. The people who came out of SAGE 

had a background of staffing five shifts, seven days a 
week, 24 hours a day. This was not true of our regular 
maintenance people. The SAGE field engineers were a 
tremendous asset in jumping in and making these on­
line systems work commercially. 

Shiely: In the early days, one of the interesting things 
was that we began to get in the union business. IBM 
had all nonunion installers. We went out in the first 
center, and the electrical union got a look at this 
machine. We were immediately informed that we 
could only install this with electricians from the elec­
trical union. We and Western Electric ended up hav­
ing to chair the solution of this thing, but we had some 
interesting discussions over whether an electrician 
was properly qualified to install and check out this 
digital computer. 

Tropp: Bob, can you remember the story about what 
happened at North Bay with exactly that situation? I 
guess they installed it at night, so the strike was a 
moot point? 

Bright: We put S.P. (Monk) Schwartz of Western 
Electric on that problem. He was a great head banger, 
and he did get it solved, but I've forgotten how. 

Everett: I remember those phasing group meetings, 
particularly because there was a certain amount of 
discussion about design, but mostly there were, long 
stories about troubles with construction. unions. I re­
member there was a problem with some of the air 
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conditioning in one of the centers; it was soft soldered 
instead of hard soldered. Month after month after 
month, the sad story of the soft solder came up. It 
taught me a lot about the problems of actually putting 
things in the field. 

Crago: Didn't we also have one where a small boulder 
was left in the chilled water pipe for XD-1, and the 
first time the chilled water came on it came ricocheting 
through the pumps with dramatic effect? 

Bright: One of the other management tools that we 
had was that we were responsible, along with the Air 
Force, for developing the funding profile and then 
defending that funding profile along with the Air Force 
Project Office. That seemed to have a particular influ­
ence on getting the job done in some cases. When 
money was diverted from one account to another, it 
required the cooperation of all the contractors. Con­
struction funds, research and development, and other 
categories of money were involved. 

Everett: The production funds were different. 
Bright: It was all different-and the profile we worked 
up was done jointly with you. 

Shiely: That had to be regularly defended. Anything 
that cost more money was just like today. It had to be 
brought up and defended, explained. So the old ques­
tions of performance, cost, and schedule were the 
kinds of things that were the controlling factors after 
we were actually putting it in. There was a lot of 
freedom as long as it didn't affect one of those three 
factors. 

Redmond: I have a question that might have an ob­
vious answer. Wasn't SAGE and its antecedents, in a 
sense, the first demonstrated use of the digital com­
puter in a command-and-control situation? From 
which came, of course, ticket reservations, periodical 
subscriptions, inventory control, and so forth. 

Bright: I think it was the first digital computer so 
used, but analog forms had been used earlier, if mem­
ory serves me right. 
Everett: A lot of control computers were used in 
World War II. In fact, the fire-control computers had 
been used for a long time. It was the first electronic 
digital computer-based system, and it probably· had 
aspects of command in it. 
Tropp: One area is very hard to get into because it's 
so complex-that's the impact of the SAGE project in 
the years following its first installation. We can dis­
cuss it from the standpoint of software technology and 
hardware technology, people spreading, ideas spread­
ing. For instance, what did IBM get out of this in 
terms of its role in building computers after it built 
the Q-7? How do you see that as affecting IBM's 
growth or development as a mainframe manufacturer? 

Crago: A great many people were trained on that 
program who spread throughout the corporation-not 
only maintainers, but also designers. I can walk into 
any IBM plant in the United States and have former 
SAGE people introduce themselves and express pride 
in having been a part of the project. So that spreading 
of knowledge was immensely valuable. The people who 
went off the program early went on to the SABRE 

system for American Airlines and applications of that 
sort. I mentioned already the impact the maintenance 
folks had. I think the things we were taught and 
learned together about component reliability, mar­
ginal checking, and everything of that sort had impact 
that you can't measure in the machines that were 
designed later. There were always trade-offs. There 
were differences in the economics of what you could 
put in, but we all knew what the alternative could be, 
and that was invaluable. Of course, core memories 
were vital in the early machines, replacing the storage 
tubes. We also knew more about oil-filled 200-volt 
capacitors than we ever wanted to know, because we've 
never used them since except in power supplies. But 
there is no question that SAGE had a very real impact 
throughout IBM. 

Tropp: Does someone else want to respond from an­
other viewpoint? 

Harrington: I'll take another viewpoint. From the 
viewpoint of the front end of the system, I would say 
that a lot of the radar signal detection and data 
handling and processing has shown up to be of enor­
mous benefit to the FAA, in particular, over the years. 
The machine that the Burroughs Corporation built as 
a result of Lincoln's work, first known as the FST-2 
(it has had other names) is in its second or third 
generation at various FAA stations. Some of the dis­
play equipment that I have seen used was derived from 
some of the work that was done at the Lincoln Labo­
ratory. A lot of the early modem work was done at 
Lincoln to make use of existing telephone lines. Mo­
dems just didn't exist in 1948 or 1950, and there was 
a frequency-division system used that was terribly 
cumbersome. Digital transmission was relatively un­
known and was very inefficient. Lincoln developed, I 
remember, a 1300-bit-per-second system that went on 
up to 2100 bits per second o'ver a variety of telephone 
lines. In fact, MIT has a patent on that. That later 
became a contributor to the Bell System A-1 data 
system. The techniques have gone well beyond that 
now, but the early beginning of the modem concept 
really came out heavily from the need within the SAGE 

system to net radars to computers. 

Bright: Of course, we learned how to build Texas 
Towers, too, but we haven't had very much use for 
that in the Bell System. 
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John V. Harrington 
"The early beginning 
of the modem concept 
really came out heav­
ily from the need 
within the SAGE sys­
tem to net radars to 
computers." 

Forrester: When we first started receiving digital data 
over phone lines and occasionally found noise dis­
rupting the signals, we got in touch with the Bell· 
System to ask what the specifications were on the 
lines. Their answer: "The lines are all right if you can 
talk over them." 
Harrington: We had trouble with some of the early 
models of our modems, and we couldn't understand 
why we were having troubles. We finally ordered up a 
loop from the telephone company, which went from 
someplace in the Cambridge area up to Brunswick, 
Maine, and back again. It was about a 300-mile loop, 
and we had the beginning and the end of the line right 
there so we could look at it. I remember being shocked 
when we put 1000 cycles in one end of the line and 
what came out was not 1000 cycles, it was 1000 plus a 
few cycles. That was typical of the single-sideband K­
carrier system. 

Bright: We got 43-Al later that did pretty well and 
that used the common user group. 

Harrington: Anyway, we had to redesign all of our 
modems. 
Bright: But in those days we had to have special 
treatment on the telephone lines in order for them to 
do a good job with digital communications. You had 
to adjust each one. But that was the beginning of the 
learning curve. We have grown out of that. 
Benington: If the human ear had been phase sensitive, 
we might have had SAGE a year earlier. 
Bright: Fletcher and Munson did something about the 
human ear, you'll recall. They drew a curve of its 
acuity, and we used that curve in engineering our 
telephone lines. When we were talking about voice 
transmission in those days, and/or slow-speed tele­
graph, it was fine for that but it wasn't applicable to 
high-speed digital communications without condition­
ing. That problem's been pretty much overcome now. 

Everett: We found out a lot of interesting things about 
situations we thought were in good shape. For in­
stance, we had to align the radars, and we therefore 
had to know where they were. We sent surveying 
teams out to find their locations. They surveyed all 

SAGE Discussion 

. the radars, and we cranked up the system and discov­
ered the radars weren't registering. We eventually 
discovered that sometimes tP,ere were mistakes of 
miles in the surveyed locations. The location given for 
one radar turned out to be in the middle of Long 
Island Sound. 
Benington: Going back to what followed from SAGE, 
in my paper I talk about what I think came out of the 
software. The transfer came through people rather 
than through publications, and therefore some orga­
nizations benefited a great deal. IBM did. SDC had 
some problems in that regard because they thought 
they could be nonprofit and do it. They quickly dis­
covered they couldn't do that sort of business as a 
nonprofit company, and so in the transition they lost 
a lot of good people. But I hear Jay talk about Nat 
Sage and Gordon Brown, and clearly they had quite 
an impact on him. As the junior member of this team, 
I ought to point out that there are 50 or 100 people 
whose Nat Sages and Gordon Browns are Jay Forres­
ter. One person is Ken Olsen. I don't think Ken can 
talk about how he manages DEC-a very successful 
operation-without using Jay as his role model. 
Bright: We haven't talked at all about tests and eval­
uations on the fully installed SAGE system. We were 
all very much gratified when McGuire was cut over, 
tested, and evaluated, with appropriate targets, and it 
worked. It was time for us to go back to the people 
who were not so enthusiastic about SAGE and say, 
"Here, we have something that will track an aircraft 
and guide an interceptor to the aircraft. And we can 
do it with multiple targets." What I'm getting at is 
that the test and evaluation teams consisted of Lin­
coln Laboratory, Bell Laboratories, Burroughs, IBM 
(the building people were there to make sure that 
everything was okay in the building), and Western 
Electric. The process, with that many organizations 
involved in test and evaluation, worked very well. I 
don't recall that we ran into any controversy as these 
things were cut over and put into operation. It seemed 
to me pretty smooth. It may be the pink haze of time 
that makes me think that now, but I can't remember 
an occasion that we didn't go ahead as a fully inte­
grated team. 
Tropp: What constituted the word I saw in the docu­
ments I've been looking at: operational, as in, "New 
York sector operational 26 June 1958, Boston sector 
11 September," etc? Who defined "operational," and 
who set up the standards by which a sector either met 
or failed at that level? 

Bright: With a lot of help, the Air Force did it. 

Shiely: There were a whole series of tests that, if 
successful, established that the sector was ready for 
operational use. As each sector completed its testing, 
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it was turned over to the operational command for 
use. In the early sectors, it was a very difficult decision 
because although originally the Air Force thought that 
it could operate SAGE and keep the manual air-defense 
system in existence as a backup, it quickly became 
apparent that this wasn't possible. Therefore, the 
decision to accept a sector meant turning the air 
defense of that section of the country over to the SAGE 

system. 

Tropp: How long did it take the New York sector to 
run the test process before the crew was comfortable 
with it? Before you were sure the computer was reli­
able, the software debugged sufficiently, and so on, to 
where you declared it operational? Was that a one­
year process, a two-year process, a six-month process? 

Bright: It wasn't one process. It was an incremental 
kind of thing. You went in, you checked out one 
element of the system, then you'd work through the 
other elements. It was a gradual integration of those 
elements. How much time that took I can't remember, 
but a systematic integration of various elements took 
place. 

Shiely: It was measured in months, but it came down 
as you went down the system. The first one took so 
many months, then the next one took fewer, and so 
on. The later sectors were done quite rapidly. The 
first sector at McGuire must have been under test for 
several months, I think, before it finally went opera­
tional. 

Bright: I'm sure it was months, but I have no feel for 
how long it took. 

Shiely: After the first sector, it was a very quick, rapid 
program. A new sector was scheduled to go operational 
every two months. The reliability of the machines was 
superb, but several sectors were operational before we 
were confident that it was going to continue to operate 
at those levels. 

Everett: The software had to be checked out, too. 
Although the programs were basically all alike, each 
one had to be adapted to the peculiarities of the sector, 
locations of air bases, radars, etc. 

Bright: Each sector was different. 

Everett: It turned out there were a lot of problems in 
the geometry of the sectors-the locations of all the 
radars and airbases, the characteristics of the aircraft, 
and so on. Then there was the process of keeping the 
program up to date. There was a new program that 
went out at regular intervals. I've forgotten what those 
intervals were. 
Benington: They called them models, and it was about 
every six months. We had packages that were sub­
models, but SDC, at the end, had a production system 
that had four groups in it. There were people in the 
field, there were people at home to service the field, 
there were people who produced the production pro­
gram, and there were development people who did the 
equivalent of the Cape Cod. In order to put BOMARC 

in, you'd do it first in a development model-you'd 
know what you were talking about-then you'd pro­
duction spec it, give it to the field people, and install 
it-2000 people for the entire process. 

While I was with SDC over a period of four years, 
we missed only one schedule at McGuire by three 
weeks-and the colonel at McGuire was furious with 
us. Everything else was done on schedule. 

Everett: For those who don't know it, t:~1ere are, I 
believe, six SAGE centers still running, and they're to 
be shut down in 1983. By the end of 1983 they will all 
be gone. 
Tropp: 1958 to 1983-that's not a bad life span. 

I want to thank all of you for participating in this 
discussion today. I particularly want to thank Bob 
Everett for hosting our gathering and for allowing me 
the privilege of being able to share in this occasion. 

Bottom row, left to right: 
Jacobs, Forrester, Everett, 
Bright. Top row, left to right: 
Benington, Harrington, 
Taylor, Crago, Wieser, Shiely. 
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Reliability of Components 

Foreword 

Because this issue of the Annals focuses on the SAGE 

system, the following excerpt from Christopher 
Evans's 1975 interview with Jay W. Forrester is 
timely. (Another excerpt from this tape appeared in 
the last issue of the Annals, Vol. 5, No. 3, pp. 297-
301; see Vol. 3, No. 4, p. 417, for details on Evans's 
"Pioneers of Computing" series of tapes.) 

The pioneering series of first-generation electronic 
computers established the environment, architecture, 
and fundamentals from which subsequent 
developments emerged. In fact, some would argue 
that except for exciting new technology (transistors, 
chips, printed circuits, etc.), nothing has really 
changed. 

First-generation computer designers and builders 
were plagued by many new problems in order to get 
their devices up and running. One overriding concern 
was that of component reliability, particularly as 
these pioneers charted new territory. They were 
concerned with how long the computer they were 
building would run before some component failed. 
When you think of the vacuum-tube technology of 
that era, you can't help but be impressed by the 
amount of productive work that was done. In fact, if 
your reaction is like mine, you are awed when you 
learn that the AN/FSQ-7s in SAGE have not only 
been operational since 1958, but have an "up" time 
of 99.83 percent. Can we ·say this about most of the 
computers being sold today? How many of them will 
still be operating in 20 years? 

The Q-7 was a direct descendant of Whirlwind, 
and it is on the Whirlwind project that people like 
Gordon Brown, Bob Everett, and Jay Forrester set 
the standards and created the designs that led to the 
Q-7 and its extraordinary record over the past 
quarter century. In the account that follows, 
Forrester speaks directly to the subject of reliability. 

-Henry S. Tropp 
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Editor's Note 

Jay Forrester is one of the great pioneers of the 
computer business: director of Digital Computer 
Laboratory at MIT, builder of Whirlwind, inventor of 
core memory, and chief engineer for SAGE. His 
accomplishments are too numerous to mention, but 
this brief excerpt from an interview shows us 
something of his attitude toward design. 

Jay W. Forrester The Whirlwind I computer was 
conceived in early 1947. The block diagrams, as even­
tually executed, were completed by Robert Everett in 
the spring of 1947. We began to develop the prototype 
circuits and to make various tests from 194 7 on into 
1949. At that time there was almost no knowledge of 
the nature of noise in electronic circuits. There was 
no certainty that if you wanted to carry out compu­
tations at a megacycle rate for days at a time without 
error, spontaneous random noise wouldn't be in cir­
cuits that might interfere with reliability. Almost 
nothing was known about the life of vacuum tubes 
beyond 500 or 1000 hours. Everything having to do 
with reliability and long-term performance had to be 
explored from the ground up. 

In the process of doing this we developed a five­
digit multiplier-a first step toward the Whirlwind 
computer-that we could put on life tests repeatedly 
solving a specified multiplication, automatically 
checking the answer, and counting the number of 
times that it would make a mistake over very long 
periods of time. We found, for example, that there 
were missing cycles-switching transients on the 
power lines that would feed through the equipment. 
We eventually had to isolate our equipment com­
pletely by putting mechanical motors and our own 
synchronous generators between the power system 
and the electronic computer to keep streetcars and 
elevators from introducing an occasional error. After 
we'd taken all of these precautions we had a device 
that would run for weeks at a time without a compu-

Adapted from "Pioneers of Computing," Tape 4, Science Museum, 
London, with permission. Science Museum London copyright. 
Categories and Subject Descriptors: K.2 [History of Computing] 
-hardware, Whirlwind. General Terms: Design, Experimentation, 
Reliability. Additional Key Words and Phrases: core memory, MIT. 
Photograph courtesy MITRE Archives. 
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Norman H. Taylor at the five-digit multiplier in 1948 .. 

tational error. We began to show that there was a 
possibility of building the kind of reliable electronics 
that our objectives required. 

Christopher Evans Roughly, when was the five-digit 
multiplier completed and working reliably? 

J.F. It was completed in late 1947 and was used for 
quite some time after that-certainly through 1948 
and probably 1949. 

C.E. What size was this device? 

J.F. It was probably 8 feet high and 10or12 feet long. 
It consisted of five parallel registers that would mul­
tiply together two five-digit binary numbers. Now the 
equivalent circuitry would be put on a chip smaller 
than a match head. 

C.E. So, now you had this thing completed. Were there 
any doubts about the way in which you should construct 
Whirlwind I itself? 

J.F. There are always doubts in any new pioneering 
effort. The Whirlwind I computer was a 16-binary­
digit machine which many people looked upon as too 
short a register length to be of any practical use 
because the scientific problems and the problems of 
interest to mathematicians were thought to require a 
30- or 40-binary-digit length. We chose 16 mainly to 
hold down the size and the complexity of the machine. 
We looked upon the Whirlwind I computer primarily 
as an experimental machine-again, to test out the 
feasibility of a computer. But many people expressed 
doubts about register length. There were grave doubts 
about the costs we were encountering in order to 

achieve the reliability we were after. It was a contin­
uous battle to sustain the necessary funding to carry 
on the work. People were unconvinced of the idea that 
a computer could substitute for experience and judg­
ment and decision making. This has always been and 
still is an issue that produces skepticism, doubt, and 
a feeling of uneasiness. That was particularly true in 
the late 1940s when no one had ever seen it happen. 

C.E. Could you say something about the hardware and 
the software of Whirlwind I? 

J.F. Whirlwind I probably contained more features 
that survived into today's computers than any other 
machine of its time. It was a machine that had parallel 
synchronous logic, meaning that the digits were trans­
mitted in parallel, and they were timed and controlled 
by a central clock. The machine at the Institute for 
Advanced Study in Princeton was also parallel, but it 
used a nonsynchronous logic in which a particular 
operation ran its course, and at the end of its comple­
tion it triggered the next step. It was a different kind 
of control logic. 

We had in the Whirlwind computer the first cath­
ode-ray-tube display that was controlled by the ma­
chine itself. We had the first man-machine interaction 
through a cathode-ray tube in which the cathode-ray 
tube would display an output, leaving some sort of 
decision or question for an operator, who could then 
use a light gun, which he would point at the cathode­
ray tube. This would tell the computer what the op­
erator wanted to do and with respect to what part of 
the display. 

Whirlwind I had a marginal checking system in 
which one could, under the control of the machine 
itself, alter the voltage on t:\1-e screen grids of vacuum 
tubes that would vary the gain and move the particular 
set of vacuum tubes up or down with respect to their 
normal range of operation. The computer itself at the 
same time ran programs to test to see if the tubes still 
carried on their functions without error. We could 
thus anticipate deterioration of any component that 
was occurring gradually. This was perhaps 90 percent 
of ultimate failures, so it meant that the marginal 
checking system gave an additional factor of ten to 
the in-service reliability of the machine. 

We had done two things to increase the life of 
vacuum tubes. Vacuum tubes were thought to have 
about a 500-hour life. If one is going to put 20,000 
vacuum tubes in a computer, it is quite intolerable to 
have such a short life (a little arithmetic shows that 
the machine would run only a few minutes at a time). 
First, we had discovered the primary cause of short 
life in vacuum tubes. We found that tubes were failing 
from an apparent loss of emission caused by the 
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building up of an insulating barrier on the nickel core 
of the cathode, which produced a self-bias in the tube 
to cut down current. It was not an inability to emit 
electrons, but instead a self-bias that simply shut off 
the flow of electrons. The solution turned out to be 
the omission of the silicon that had been put in the 
nickel to make processing easier. This by itself raised 
the effective life of vacuum tubes from 500 hours to 
500,000 hours. The marginal checking gave another 
factor of ten on that, so the effective life in terms of 
failures per 1000 tubes per 1000 hours had gone from 
about 500 hours to 5 million hours. This was quite 
sufficient to bring vacuum-tube reliability up to a 
standard that was not met by transistors until 10 or 
15 years after they were first invented and were being 
put into computers. 

The best-known innovation that was put into the 
Whirlwind I computer was the magnetic-core mem­
ory-the random-access magnetic-core memory­
which was developed in the search for reliability. The 
Whirlwind computer design was laid out initially in 
1947. We felt there was a need for a storage more 
reliable than the so-called Williams tube, which many 
people were trying to use at that time. We developed 
a special storage tube ourselves that had much higher 
signal levels. Also, the stored binary digits were dy­
namically self-sustained by a second electron gun. One 
electron gun was a reasonably ordinary cathode-ray 
beam that was used to find a spot on the face of the 
tube and to energize it and to read it. The other 
electron gun produced a flood of low-energy electrons, 
with grids at the storage surface and a cathode poten­
tial such that electrons flooded the storage surface in 
a way that sustained either of two stable states. The 
electrons actively regenerated either the low-potential 
or the high-potential stored spot. This worked well in 
principle-it worked well in individual tubes-but it 
relied on a hot cathode and on the secondary emission 
characteristics of the storage surface. Both of these 
are notoriously difficult to keep operating properly. 
The tube was subject to many practical problems that 
shortened its life. We were lucky to get a month of 
life out of such a tube. The tubes stored 1024 bits and 
cost about $1000 each. That was a cost of $1 per bit 
per month for high-speed storage. The economics of 
keeping a machine in operation with that sort of 
storage cost were entirely at odds with our objectives. 

~ay if". F'orrester 
Systems Dynamics Group 
MIT 
E-40-294 
Cambridge, MA 02139 

SAGE at North Bay 

Editor's Note 

The most obvious characteristic of a SAGE center is its 
size-courtesy of vacuum-tube technology and 
emphasis on reliability and maintainability. I hope the 
readers who get this far have gained some feel for the 
size of SAGE, but its true character can only be felt by 
those who wander around inside a SAGE center. 
Whirlwind had somewhat the same feel, though much 
smaller, because the cable racks were exposed. 

I remember during the design phase of SAGE that 
when I visited Whirlwind, I had a warm, relaxed feeling 
walking around inside it, while walking around inside 
the FSQ-7 prototype at Lincoln filled me with anxiety. 
I thought for a while that the difference had something 
to do with the personality of the two machines, but 
sometime later I found the Q-7 also gave me a warm 
feeling, so it must have been me after all. 

Several years ago, a number of us at MITRE 
decided we should visit a SAGE site. None of us had 
been in one for many years. I don't know what we 
expected-a feeling of decay perhaps, dispirited 
operators, or that wonder at how small things seem 
when we revisit places we knew long ago. I could not 
go at the last moment, but the group returned, their 
eyes shining with excitement. "It looks brand new," 
they said. "It's clean as a whistle." "The operators are 
young, enthusiastic, and proud of SAGE." "It's working 
just as it was supposed to-downtime a few hours a 
year." "It looks as big as ever." 

Unfortunately, I missed the trip to North Bay also, 
but I gather that the visitors were impressed. We are 
fortunate to have a firsthand report. 

In a recent issue of ACM's Communications (Volume 
26, Number 2, February 1983, pp. 118-119), Gordon 
Bell described a visit that I was privileged to be part 
of to the NORAD site at North Bay, Ontario, Canada. 
The main purpose of the trip was to view and learn 
about the SAGE computer, the IBM AN/FSQ-7. When 
Gwen Bell, director of the Computer Museum, first 
told me of the plan to organize the trip, my original 

Categories and Subject Descriptors: K.2 [History of Computing] 
-hardware, SAGE, software, systems. General Terms: Design, Reli­
ability. Additional Key Words and Phrases: North Bay, U.S. Air 
Force. 
Photograph courtesy USAF Electronic Systems Division History 
Office. 
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reaction-in addition to a strong desire to be pres­
ent-was amazement that a first-generation computer 
was still operating. It turned out that most of the SAGE 

sites were still using the Q-7, but the U.S. Air Force 
was in the process of replacing them with Hughes 
computers. The North Bay site was scheduled for 
replacement in June 1983, and I was anxious to see 
the Q-7 in operation before it was removed. (The 
previous spring I had been taken to NASA Ames twice 
to see the ILLIAC IV, and both times I found it sitting 
vacantly with its insides spread all around the floor. 
Now it's too late; the ILLIAC IV is gone-to the Com­
puter Museum.) 

Before the trip I read all I could about SAGE (in­
cluding the manuscripts for this issue), but mostly I 
reread material on Project Whirlwind. I knew that 
Whirlwind had been the basis for much of the com­
puter thinking that went into the design of SAGE. 

Careful engineering and an emphasis on reliability 
were characteristics of Project Whirlwind under Jay 
Forrester, Gordon Brown, and Bob Everett, and I 
knew that these were continued on into the SAGE 

project. But this knowledge didn't lessen my astonish­
ment that a 1958 first-generation computer of this 
size and mission, with 55,000 vacuum tubes that con­
stantly needed replacement, was still operational. 

On Friday, October 8, 1982, our group boarded two 
aircraft at Hanscom Field and flew to North Bay. 
There we were taken by bus to the NORAD site, were 
cleared through the gates, and saw in front of us an 
opening to a cave in a mountain. We had been told 
that we were going to be 600 feet underground, and I 
had had a mental image of getting into an elevator 
and being whisked to the subterranean site. Instead, 
the bus drove into the cave along a narrow 6000-foot 
tunnel carved from solid rock. The headlights of the 
bus were angled sideways, not forward, because the 
tight fit of the tunnel sides was more crucial than 
what was ahead. We were awed by the eerie trip and 

An entrance to North Bay's underground SAGE site in 1963. 

the enormity of the site-inside the mountain is the 
three-story 150,000-square-foot building that houses 
the Q-7. 

It turned out that it really wouldn't have been 
necessary for me to do a lot of preparatory reading. 
Members of the site staff gave us an excellent briefing. 
They explained the hardware architecture, the opera­
tion, the software, the mission, and every aspect in 
great detail and clarity. A scale model of the structure 
showed all of the rooms on each level, with their 
purpose and contents clearly identified. We spent the 
next two hours looking at the Q-7 and all of its 
components and peripherals-bay after bay of core 
racks, marginal-testing racks, racks of spare pluggable 
units, etc. We were allowed to work at one of the 
consoles where they were running some flight-infor­
mation simulations. I used a light gun on a radar spot 
and then read the identification of that particular 
aircraft on the screen. 

Near the end of the tour, Gordon Bell talked one of 
the officers into taking Gwen Bell, Gordon, and me 
out of the wing we were in, into a large hole in the 
mountain between wings of the building that housed 
the monster-sized diesel generators that could power 
the installation-marine diesels that could be reversed 
without tearing themselves apart. When it was time 
to go back, our guide didn't know the digital combi­
nation that opened the door on our side, so there was 
a brief moment of panic as we realized that we were 
dependent on someone on the other side hearing the 
bell we rang and opening the door. Someone did hear 
it, however, and on rejoining the group we learned 
that the following Monday was a Canadian holiday; it 
might have been Tuesday before we were rescued. 

Another purpose of the trip was for Gwen Bell to 
decide what components she would request for the 
Computer Museum collection before the Q-7 was can­
nibalized and destroyed. The museum's new quarters 
in Boston (see "News and Notices" in this issue) will 
be able to house huge parts of the computer. Some 
pieces are small; for example, there are six-tube and 
nine-tube pluggable units-certainly choice items. 
When we got back on the bus, we noted that a member 
of the group had walked out with a six-tube unit. We 
told him that he would never get it through customs, 
but the next day he told the officers it was scrap, and 
they casually waved him through. 

On the return trip, Gordon Bell and I spent a good 
deal of time discussing what we had seen and reflecting 
on it in terms of the contemporary scene. At one point 
he said, "Do you realize that we walked inside a 
computer? There is no way you can do that with any 
computer built today." I absolutely agreed. Three 
months later to the day, I stood inside a Cray I and 
felt the cool air blow up around me. 
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This account has deliberately omitted the technical 
details of what I saw and learned. Gordon Bell's CACM 
report gives them magnificently, and the papers in 
this issue give the specifics of the AN /FSQ-7 com­
puters in general. A few numbers continue to awe me, 
though: 55,000 vacuum tubes, 135,000 diodes, 13,000 
transistors, 7000 pluggable units, 12 drums, all of that 
core memory, and still 99.83 percent availability as a 
simplex and 99.97 percent as a duplex! 

Henry S. Tropp 
Department of Mathematics 
Humboldt State University 
Arcata, CA 95521 

A few paragraphs from Gordon Bell's CACM note:1 

Bob Everett's paper on the SAGE computer was published 
in 1957, and the machine was operational in Canada in 
1962. The machine created many patents as by-products, 
including perhaps the first associative store (using a drum). 
The machine is duplexed with a warm standby (I mean 
warm, since the duplexed machine uses about one 
megawatt of power to heat 55,000 tubes, 175,000 diodes 
and 13,000 transistors in 7000 plug-ins!). The 6-
microsecond, 32-bit-word machine has 4 x 64K x 32-bit 
core memories and about the same memory in twelve 10.7-
inch diameter, 2900-rpm drums, six of which are for 
secondary memory. There is no use of interrupts, and 1/0 
is done in an elegant fashion by loading/unloading parallel 
tracks of the drums with the external world completely in 
parallel with computing. That is, the 1/0 state becomes 
part of the computer's memory state. A single 1/0 channel 
is then used to move a drum track to and from the primary 
core memory. 

The main 1/0 is a scan and height radar that tracks 
targets and finds their altitude. The operator's radar 
consoles plot the terrain and targets according to operator 
switch requests. The computer sends information to be 
plotted on 20-inch round Hughes Charactron (vector and 
alpha gun) tubes or displayed on small alphanumeric 
storage tubes for supplementary information. 
Communication lines connect neighboring air-defense 
sectors and the overall command. The operating system of 
1 million words is stored on 728 tape drives and the drums. 

The computer logic is stored in many open bays 15 feet 
to 30 feet long, each of which has a bay of voltage marginal 
check switches on the left side, followed by up to a 
maximum of 15 panels. The vertical panels are about 7 feet 
high by 2 feet wide and hold about 20 plug-in logic units. 
The separate right and left half of the arithmetic units are 
about 30 feet each or about 2 feet per bit. Two sets of the 
AMD 2901 four-bit microprocessor slice would be an 
overkill for this 32'."bit function today. The machine does 
vector (of length 2) arithmetic to handle.the coordinate 
operations. The room with one CPU, drum, and memory 
is about 50 feet x 150 feet, and the room with two CPU 
consoles, tapes, and card 1/0 printer is about 25 feet x 50 
feet. The several dozen radar consoles are in a very large 
room. 

1 Reprinted with permission from Communications of the ACM, Vol. 
26, No. 2, February 1983. Copyright 1983, Association for Comput­
ing Machinery, Inc. 

Epilogue 

As you read this, it is probable that the last SAGE 
center has shut down and its multitude of parts is on 
the way to various museums, office shelves, and 
scrap heaps. It is too bad that most of the things 
that electronics people build these days have short 
lives-much shorter than our own. It is our own 
fault, of course. If we did not improve things so 
rapidly, they would not become obsolete and end up 
on scrap heaps quite so soon. Still, it seems to me 
that engineers had somewhat greater satisfactions in 
years gone by. A dam, a bridge, even a power plant 
will probably outlast its designer. As I drive through 
Cambridge, I pass a filter plant designed by my 
father 50 years ago. It gives me a good feeling. 

Yet SAGE has left behind a legacy of ideas and 
organizations-a different kind of legacy from a 
Hoover Dam, but a legacy nonetheless. SAGE was the 
first computer-based command-and-control system. 
There are now SAGE-like systems all over the world. 
The Lincoln Laboratory at MIT, the MITRE 
Corporation, the System Development Corporation, 
and the Air Force Electronic Systems Division are a 
few of the organizations created to build SAGE ·that 
are still thriving. 

SAGE trained hundreds of digital-system design 
engineers, thousands of computer programmers, and 
thousands of digital-computer field engineers who 
gave great impetus to the new field of digital 
computers. 

Computer-driven displays, on-line terminals, time­
sharing, high-reliability computation, digital signal 
processing, digital transmission over telephone lines, 
digital track-while-scan, digital simulation, core 
memories, computer networking, duplex computers­
there is an endless list of things done first by SAGE. 

All of these things would have been done 
eventually, and many of them were unrecognized and 
have since been reinvented, but I think it is clear 
that SAGE gave the computer field a real boost 
forward and left its mark on digital computers and 
on human society. 

Robert R. Everett 
Editor, Special Issue 
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