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Using This Manual
Purpose

This manual is part of a documentation set that describes pSOSystem, the modular,
high-performance real-time operating system environment from Integrated Systems.

This manual provides theoretical information about the operation of the pSOSystem
environment. Read this manual to gain a conceptual understanding of pSOSystem
and to understand how the various software components in pSOSystem can be
combined to create an environment suited to your particular needs.

For a comprehensive description of the startup and operation of the pSOSystem en-
vironment, see the Getting Started guide, the pSOSystem System Calls manual, the
pSOSystem Programmer’s Reference, pSOSystem Advanced Topics, and pSOSystem
Application Examples. These manuals comprise the standard documentation set for
the pSOSystem environment.

Audience

This manual is targeted primarily for embedded application developers who want to
gain an overall understanding of pSOSystem components. Basic familiarity with
UNIX terms and concepts is assumed.

A secondary audience includes those seeking an introduction to pSOSystem fea-
tures.
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Organization

This manual is organized as follows:

Chapter 1, ‘‘Product Overview”, presents a brief introduction to pSOSystem software
including the standard components.

Chapter 2, ‘‘pSOS+ Real-Time Kernel”, describes the pSOS+ real-time multitasking
kernel, the heart of pSOSystem software.

Chapter 3, ‘‘pSOS+m Multiprocessing Kernel”, describes the extensions offered by
the pSOS+m multitasking, multiprocessing kernel.

Chapter 4, ‘‘Network Programming”, provides a summary of pSOSystem networking
services and describes in detail the pNA+ TCP/IP Manager component.

Chapter 5, ‘‘pHILE+ File System Manager”, describes the pSOSystem file manage-
ment component.

Chapter 6, ‘‘pREPC+ ANSI C Library”, describes the pSOSystem ANSI C run-time li-
brary.

Chapter 7, ‘‘I/O System”, discusses the pSOSystem I/O system and explains how
device drivers are incorporated into a system.

Related Documentation

When using the pSOSystem software you might want to have on hand the other
manuals of the basic documentation set:

■ pRISM+ Getting Started contains an introduction to the pSOSystem in the
pRISM+ environment, some tutorials, a description of board-support packages,
configuration instructions, information on files and directories, and some
board-specific information. It also includes introductory material on using the
pROBE+ debugger.

■ pSOSystem Programmer’s Reference contains detailed descriptions of system
services, interfaces and drivers, configuration tables, and memory usage.

■ pSOSystem System Calls provides a reference of pSOS+, pHILE+, pREPC+,
pNA+, and pRPC+ system calls and error codes.

■ pSOSystem Advanced Topics contains information on how to customize your
usage of your pSOSystem. It contains sections on using and crating BSPs and
Assembly Language information.
xiv
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■ pSOSystem Application Examples describes the application examples that are
provided for you and tutorials on how to use these examples.

Based on your software configuration, you may need to refer to one or more of the
following manuals:

■ Routing Architecture manual describes the pSOSystem Routing Architecture for
OpEN Shortest Path First (OSPF), Routing Information Protocol (RIP), and other
related routing protocols.

■ RIP Version 2 User’s Guide describes how to use the pSOSystem RIP protocol.

■ C++ Support Package User’s Guide documents the C++ support services includ-
ing the pSOSystem C++ Classes (library) and support for the C++ run time.

■ ESp User’s Guide PC Hosts and ESp User’s Guide: Workstation Hosts document
the ESp front-end analyzer, which displays application activities, and the
pMONT component, the target resident application monitor.

■ LAP Driver User’s Guide describes the interfaces provided by the LAP (Link Ac-
cess Protocol) drivers for OpEN product, including the LAPB and LABD frame-
level products.

■ OpEN: OSI Lower Layers User’s Guide describes how to use the pSOSystem
Open System Interconnections (OSI) product named OpEN: OSI Lower Layers.

■ OpEN User’s Guide describes how to install and use the pSOSystem OpEN
(Open Protocol Embedded Networking) product.

■ OSPF User’s Guide describes the Open Shortest Path First (OSPF)   pSOSystem
protocol driver.

■ SNMP User’s Guide describes the internal structure and operation of SNMP, the
Simple Network Management Protocol product from Integrated Systems. It also
describes how to install and use the SNMP Management Information Base (MIB)
Compiler.

■ TCP/IP for OpEN User’s Guide describes how to use the pSOSystem Streams-
based TCP/IP for OpEN (Open Protocol Embedded Networking) product.
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Notation Conventions

This section describes the conventions used in this document.

Font Conventions

This sentence is set in the default text font, Bookman Light. Bookman Light is used
for general text, menu selections, window names, and program names. Fonts other
than the standard text default have the following significance:

Sample Input/Output

In the following example, user input is shown in bold Courier , and system re-
sponse is shown in Courier .

commstats

Number of total packets sent 160
Number of acknowledgment timeouts 0
Number of response timeouts 0
Number of retries 0
Number of corrupted packets received 0
Number of duplicate packets received 0
Number of communication breaks with target 0

Courier: Courier  is used for command and function names, file
names, directory paths, environment variables, messages and
other system output, code and program examples, system
calls, prompt responses, and syntax examples.

bold Courier: bold Courier  is used for user input (anything you are ex-
pected to type in).

italic: Italics are used in conjunction with the default font for empha-
sis, first instances of terms defined in the glossary, and publi-
cation titles.

Italics are also used in conjunction with Courier  or bold
Courier  to denote placeholders in syntax examples or generic
examples.

Bold Helvetica narrow: Bold Helvetica narrow font is used for buttons, fields, and icons in
a graphical user interface. Keyboard keys are also set in this
font.
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Symbol Conventions

This section describes symbol conventions used in this document.

[ ] Brackets indicate that the enclosed information is optional. The brackets
are generally not typed when the information is entered.

| A vertical bar separating two text items indicates that either item can be
entered as a value.

˘ The breve symbol indicates a required space (for example, in user input).

% The percent sign indicates the UNIX operating system prompt for C shell.

$ The dollar sign indicates the UNIX operating system prompt for Bourne and
Korn shells.

The symbol of a processor located to the left of text identifies processor-spe-
cific information (the example identifies 68K-specific information).

Host tool-specific information is identified by a host tools icon (in this exam-
ple, the text would be specific to the pRISM host tools chain).

68K

pRISM
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Support

Customers in the United States can contact Integrated Systems Technical Support
as described below.

International customers can contact:

■ The local Integrated Systems branch office

■ The local pSOS distributor

■ Integrated Systems Technical Support as described below

Before contacting Integrated Systems Technical Support, please gather the informa-
tion called for in Table 1 on page -xix. The detailed description in Table 1 should in-
clude the following:

■ A list of components used by the application which causes the problem

■ Procedure you followed for building the application code

■ Complete error messages including error code as it appeared on screen
(it is useful in back-tracking the source of the problem)

■ Complete configuration table if the problem is with sensitively configured com-
ponent such as pNA+

■ A complete test case including all the include/make or include/build files and
sequence of commands for reproducing the problem

■ A test case is a MUST if the issue is tool-related (i.e. MRI/GHS/SDS/DIAB/
CADUL/GNU/METAWARE debugger, compiler, assembler, and linker)

Contacting Integrated Systems Support

To contact Integrated Systems Technical Support, use one of the following methods:

■ Call 408-542-1925 (US and international countries).

■ Call 1-800-458-7767 (US and Canada).

■ Send a fax to 408-542-1966.

■ Send e-mail to psos_support@isi.com.

Integrated Systems actively seeks suggestions and comments about our software,
documentation, customer support, and training. Please send your comments by e-
mail to ideas@isi.com.
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TABLE 1 Problem Report

Contact Name:

Voice Phone Number:

Company Name:

Company Street Address:

City, State, Country, Zip Code:

Customer ID (very important):

E-mail Address:

Fax Number:

Product Name (including components):

Version(s) :

for pSOSystem from   $PSS_ROOT/include/version.h

for pROBE+ include output from QV command

Target Processor:

Host Platform:

Toolchain (Compiler...)

Type of issue:

(problem, feature request, question, documentation, bug,
installation, hardware system configuration, pre-sales, or
performance)

Priority:

(critical, high, medium or low, need to be assigned
judiciously)

One Line Issue Description:

Detailed Description (please attach supporting information):
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Product Overview
1.1 What Is pSOSystem?

pSOSystem is a modular, high-performance real-time operating system designed
specifically for embedded microprocessors. It provides a complete multitasking envi-
ronment based on open systems standards.

pSOSystem is designed to meet three overriding objectives:

■ Performance

■ Reliability

■ Ease-of-Use

The result is a fast, deterministic, yet accessible system software solution. Accessi-
ble in this case translates to a minimal learning curve. pSOSystem is designed for
quick startup on both custom and commercial hardware.

The pSOSystem software is supported by an integrated set of cross development
tools that can reside on UNIX- or DOS-based computers. These tools can communi-
cate with a target over a serial or TCP/IP network connection.

1.2 System Architecture

The pSOSystem software employs a modular architecture. It is built around the
pSOS+ real-time multi-tasking kernel and a collection of companion software com-
ponents. Software components are standard building blocks delivered as absolute
position-independent code modules. They are standard parts in the sense that they
are unchanged from one application to another. This black box technique eliminates
1-1
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maintenance by the user and assures reliability, because hundreds of applications
execute the same, identical code.

Unlike most system software, a software component is not wired down to a piece of
hardware. It makes no assumptions about the execution/target environment. Each
software component utilizes a user-supplied configuration table that contains appli-
cation- and hardware-related parameters to configure itself at startup.

Every component implements a logical collection of system calls. To the application
developer, system calls appear as re-entrant C functions callable from an applica-
tion. Any combination of components can be incorporated into a system to match
your real-time design requirements. The pSOSystem components are listed below.

NOTE:Certain components may not yet be available on all target processors.
Check the release notes to see which pSOSystem components are
available on your target.

■ pSOS+ Real-time Multitasking Kernel. A field-proven, multitasking kernel
that provides a responsive, efficient mechanism for coordinating the activities of
your real-time system.

■ pSOS+m Multiprocessor Multitasking Kernel. Extends the pSOS+ feature set
to operate seamlessly across multiple, tightly-coupled or distributed processors.

■ pNA+ TCP/IP Network Manager. A complete TCP/IP implemen-tation including
gateway routing, UDP, ARP, and ICMP protocols; uses a standard socket inter-
face that includes stream, datagram, and raw sockets.

■ pRPC+ Remote Procedure Call Library. Offers SUN-compatible RPC and XDR
services; allows you to build distributed applications using the familiar C proce-
dure paradigm.

■ pHILE+ File System Manager. Gives efficient access to mass storage devices,
both local and on a network. Includes support for CD-ROM devices, MS-DOS
compatible floppy disks, and a high-speed proprietary file system. When used in
conjunction with the pNA+ component and the pRPC+ subcomponent, offers cli-
ent-side NFS services.

■ pREPC+ ANSI C Standard Library. Provides familiar ANSI C run-time func-
tions such as printf() , scanf() , and so forth, in the target environment.

Figure 1-1 illustrates the pSOSystem environment.
1-2
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In addition to these core components, pSOSystem includes the following:

■ Networking protocols including SNMP, FTP, Telnet, TFTP, NFS, and STREAMS

■ Run-time loader

■ User application shell

■ Support for C++ applications

■ Boot ROMs

■ Pre-configured versions of pSOSystem for popular commercial hardware

pSOS+

System
Task

User
Task

User
Task

C, C++ Interface

Interrupt
Handlers

Drivers

pRPC+pNA+

pROBE+

pHILE+ pREPC+

FIGURE 1-1 . The pSOSystem Environment
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■ pSOSystem templates for custom configurations

■ Chip-level device drivers

■ Sample applications

This manual focuses on explaining pSOSystem core components. Other parts of the
pSOSystem environment are described in the pSOSystem Programmer’s Reference
and in the Getting Started manual.

1.3 Integrated Development Environment

The pSOSystem integrated cross-development environment can reside on a UNIX-
or DOS-based computer. It includes C and C++ optimizing compilers, a target CPU
simulator, a pSOS+ OS simulator, and a cross-debug solution that supports source-
and system-level debugging.

The pSOSystem debugging environment centers on the pROBE+ system-level de-
bugger and optional high-level debugger. The high-level debugger executes on your
host computer and works in conjunction with the pROBE+ system-level debugger,
which runs on a target system.

The combination of the pROBE+ debugger and optional host debugger provides a
multitasking debug solution that features:

■ A sophisticated mouse and window user interface.

■ Automatic tracking of program execution through source code files.

■ Traces and breaks on high-level language statements.

■ Breaks on task state changes and operating system calls.

■ Monitoring of language variables and system-level objects such as tasks,
queues and semaphores.

■ Profiling for performance tuning and analysis.

■ System and task debug modes.

■ The ability to debug optimized code.

The pROBE+ debugger, in addition to acting as a back end for a high-level debugger
on the host, can function as a standalone target-resident debugger that can accom-
pany the final product to provide a field maintenance capability.

The pROBE+ debugger and other pSOSystem development tools are described in
other manuals. See ‘‘Related Documentation” in Using This Manual.
1-4
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pSOS+ Real-Time Kernel
2.1 Overview

Discussions in this chapter focus primarily on concepts relevant to a single-proces-
sor system.

The pSOS+ kernel is a real-time, multitasking operating system kernel. As such, it
acts as a nucleus of supervisory software that

■ Performs services on demand

■ Schedules, manages, and allocates resources

■ Generally coordinates multiple, asynchronous activities

The pSOS+ kernel maintains a highly simplified view of application software, irre-
spective of the application’s inner complexities. To the pSOS+ kernel, applications
consist of three classes of program elements:

■ Tasks

■ I/O Device Drivers

■ Interrupt Service Routines (ISRs)

Tasks, their virtual environment, and ISRs are the primary topics of discussion in
this chapter. The I/O system and device drivers are discussed in Chapter 7.

Additional issues and considerations introduced by multiprocessor configurations
are covered in Chapter 3, pSOS+m Multiprocessing Kernel.
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2.2 Multitasking Implementation

A multitasked system is dynamic because task switching is driven by temporal
events. In a multitasking system, while tasks are internally synchronous, different
tasks can execute asynchronously. Figure 2-1 illustrates the multitasking kernel. A
task can be stopped to allow execution to pass to another task at any time. In a very
general way, Figure 2-1 illustrates multitasking and how it allows interrupt han-
dlers to directly trigger tasks that can trigger other tasks.

Thus, a multitasked implementation closely parallels the real world, which is mainly
asynchronous and/or cyclical as far as real-time systems apply. Application soft-
ware for multitasking systems is likely to be far more structured, race-free, main-
tainable, and re-usable.

Several pSOS+ kernel attributes help solve the problems inherent in real-time soft-
ware development. They include

TASK

pSOS+TASK

TASK
ISR

ISR

ISR

ISR

FIGURE 2-1 . Multitasking Approach
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■ Partitioning of actions into multiple tasks, each capable of executing in parallel
(overlapping) with other tasks: the pSOS+ kernel switches on cue between
tasks, thus enabling applications to act asynchronously — in response to the
outside world.

■ Task prioritization. The pSOS+ kernel always executes the highest priority task
that can run.

■ Task preemption. If an action is in progress and a higher priority external event
occurs, the event's associated action takes over immediately.

■ Powerful, race-free synchronization mechanisms available to applications,
which include message queues, semaphores, multiple-wait events, and asyn-
chronous signals.

■ Timing functions, such as wakeup, alarm timers, and timeouts for servicing cy-
clical, external events.

2.2.1 Concept of a Task

From the system’s perspective, a task is the smallest unit of execution that can
compete on its own for system resources. A task lives in a virtual, insulated environ-
ment furnished by the pSOS+ kernel. Within this space, a task can use system re-
sources or wait for them to become available, if necessary, without explicit concern
for other tasks. Resources include the CPU, I/O devices, memory space, and so on.

Conceptually, a task can execute concurrently with, and independent of, other
tasks. The pSOS+ kernel simply switches between different tasks on cue. The cues
come by way of system calls to the pSOS+ kernel. For example, a system call might
cause the kernel to stop one task in mid-stream and continue another from the last
stopping point.

Although each task is a logically separate set of actions, it must coordinate and syn-
chronize itself, with actions in other tasks or with ISRs, by calling pSOS+ system
services.

2.2.2 Decomposition Criteria

The decomposition of a complex application into a set of tasks and ISRs is a matter
of balance and trade-offs, but one which obviously impacts the degree of parallel-
ism, and therefore efficiency, that can be achieved. Excessive decomposition exacts
an inordinate amount of overhead activity required in switching between the virtual
environments of different tasks. Insufficient decomposition reduces throughput, be-
cause actions in each task proceed serially, whether they need to or not.
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There are no fixed rules for partitioning an application; the strategy used depends
on the nature of the application. First of all, if an application involves multiple, inde-
pendent main jobs (for example, control of N independent robots), then each job
should have one or more tasks to itself. Within each job, however, the partitioning
into multiple, cooperating tasks requires much more analysis and experience.

The following discussion presents a set of reasonably sufficient criteria, whereby a
job with multiple actions can be divided into separate tasks. Note that there are no
necessary conditions for combining two tasks into one task, though this might re-
sult in a loss of efficiency or clarity.   By the same token, a task can always be split
into two, though perhaps with some loss of efficiency.

Terminology:

In this discussion, a job is defined as a group of one or more tasks, and a task is de-
fined as a group of one or more actions.

An action (act) is a locus of instruction execution, often a loop.

A dependent action (dact) is an action containing one and only one dependent con-
dition; this condition requires the action to wait until the condition is true, but the
condition can only be made true by another dact.

Decomposition Criteria:

Given a task with actions A and B, if any one of the following criteria are satisfied,
then actions A and B should be in separate tasks:

Time — dact A and dact B are dependent on cyclical conditions that have differ-
ent frequencies or phases.

Asynchrony — dact A and dact B are dependent on conditions that have no
temporal relationships to each other.

Priority — dact A and dact B are dependent on conditions that require a differ-
ent priority of attention.

Clarity/Maintainability — act A and act B are either functionally or logically re-
moved from each other.

The pSOS+ kernel imposes essentially no limit on the number of tasks that can co-
exist in an application. You simply specify in the pSOS+ Configuration Table the
maximum number of tasks expected to be active contemporaneously, and the
pSOS+ kernel allocates sufficient memory for the requisite system data structures
to manage that many tasks.
2-4



pSOSystem System Concepts pSOS+ Real-Time Kernel

2

2.3 Overview of System Operations

pSOS+ kernel services can be separated into the following categories:

■ Task Management

■ Storage Allocation

■ Message Queue Services

■ Event and Asynchronous Signal Services

■ Semaphore Services

■ Time Management and Timer Services

■ Interrupt Completion Service

■ Error Handling Service

■ Multiprocessor Support Services

Detailed descriptions of each system call are provided in pSOSystem System Calls.
The remainder of this chapter provides more details on the principles of pSOS+ ker-
nel operation and is highly recommended reading for first-time users of the pSOS+
kernel.

2.3.1 Task States

A task can be in one of several execution states. A task’s state can change only as
result of a system call made to the pSOS+ kernel by the task itself, or by another
task or ISR. From a macroscopic perspective, a multitasked application moves along
by virtue of system calls into pSOS+, forcing the pSOS+ kernel to then change the
states of affected tasks and, possibly as a result, switch from running one task to
running another. Therefore, gaining a complete understanding of task states and
state transitions is an important step towards using the pSOS+ kernel properly and
fully in the design of multitasked applications.

To the pSOS+ kernel, a task does not exist either before it is created or after it is de-
leted. A created task must be started before it can execute. A created-but-unstarted
task is therefore in an innocuous, embryonic state.

Once started, a task generally resides in one of three states:

■ Ready

■ Running

■ Blocked
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A ready task is runnable (not blocked), and waits only for higher priority tasks to re-
lease the CPU. Because a task can be started only by a call from a running task,
and there can be only one running task at any given instant, a new task always
starts in the ready state.

A running task is a ready task that has been given use of the CPU. There is always
one and only one running task. In general, the running task has the highest priority
among all ready tasks; unless the task’s preemption has been turned off, as de-
scribed in Section 2.3.3 .

A task becomes blocked only as the result of some deliberate action on the part of
the task itself, usually a system call that causes the calling task to wait. Thus, a
task cannot go from the ready state to blocked, because only a running task can
perform system calls.

2.3.2 State Transitions

Figure 2-2 depicts the possible states and state transitions for a pSOS+ task. Each
state transition is described in detail below. Note the following abbreviations:

■ E for Running (Executing)

■ R for Ready

■ B for Blocked

E

BR

FIGURE 2-2 . Task State Transitions
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(E->B) A running task (E) becomes blocked when:

1. It requests a message (q_receive /q_vreceive  with wait) from an empty mes-
sage queue; or

2. It waits for an event condition (ev_receive  with wait enabled) that is not pres-
ently pending; or

3. It requests a semaphore token (sm_p with wait) that is not presently available;
or

4. It requests memory (rn_getseg  with wait) that is not presently available; or

5. It pauses for a time interval (tm_wkafter ) or until a particular time
(tm_wkwhen ).

(B->R) A blocked task (B) becomes ready when:

1. A message arrives at the message queue (q_send /q_vsend , q_urgent /
q_vurgent , q_broadcast /q_vbroadcast ) where B has been waiting, and B
is first in that wait queue; or

2. An event is sent to B (ev_send ), fulfilling the event condition it has been waiting
for; or

3. A semaphore token is returned (sm_v), and B is first in that wait queue; or

4. Memory returned to the region (rn_retseg ) now allows a memory segment that
to be allocated to B; or

5. B has been waiting with a timeout option for events, a message, a semaphore, or
a memory segment, and that timeout interval expires; or

6. B has been delayed, and its delay interval expires or its wakeup time arrives; or

7. B is waiting at a message queue, semaphore or memory region, and that queue,
semaphore or region is deleted by another task.

(B->E) A blocked task (B) becomes the running task when:

1. Any one of the (B->R) conditions occurs, B has higher priority than the last run-
ning task, and the last running task has preemption enabled.

(R->E) A ready task (R) becomes running when the last running task (E):

1. Blocks; or

2. Re-enables preemption, and R has higher priority than E; or
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3. Has preemption enabled, and E changes its own, or R’s, priority so that R now
has higher priority than E and all other ready tasks; or

4. Runs out of its timeslice, its roundrobin mode is enabled, and R has the same
priority as E.

(E->R) The running task (E) becomes a ready task when:

1. Any one of the (B->E) conditions occurs for a blocked task (B) as a result of a
system call by E or an ISR; or

2. Any one of the conditions 2-4 of (R->E) occurs.

A fourth, but secondary, state is the suspended state. A suspended task cannot run
until it is explicitly resumed. Suspension is very similar to blocking, but there are
fundamental differences.

First, a task can block only itself, but it can suspend other tasks as well as itself.

Second, a blocked task can also be suspended. In this case, the effects are additive
— that task must be both unblocked and resumed, the order being irrelevant, be-
fore the task can become ready or running.

NOTE:The task states discussed above should not be confused with user and
supervisor program states that exist on some processors. The latter are
hardware states of privilege.

2.3.3 Task Scheduling

The pSOS+ kernel employs a priority-based, preemptive scheduling algorithm. In
general, the pSOS+ kernel ensures that, at any point in time, the running task is
the one with the highest priority among all ready-to-run tasks in the system. How-
ever, you can modify pSOS+ scheduling behavior by selectively enabling and dis-
abling preemption or time-slicing for one or more tasks.

Each task has a mode word (see section 2.4.3, ‘‘Task Mode Word”), with two settable
bits that can affect scheduling. One bit controls the task’s preemptibility. If dis-
abled, then once the task enters the running state, it will stay running even if other
tasks of higher priority enter the ready state. A task switch will occur only if the
running task blocks, or if it re-enables preemption.

A second mode bit controls timeslicing. If the running task's timeslice bit is enabled,
the pSOS+ kernel automatically tracks how long the task has been running. When
the task exceeds the predetermined timeslice, and other tasks with the same prior-
ity are ready to run, the pSOS+ kernel switches to run one of those tasks. Timeslic-
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ing only affects scheduling among equal priority tasks. For more details on
timeslicing, see section 2.3.5, ‘‘Roundrobin by Timeslicing.’’

2.3.4 Task Priority

A priority must be assigned to each task when it is created. There are 256 priority
levels — 255 is the highest, 0 the lowest. Certain priority levels are reserved for use
by special pSOSystem tasks. Level 0 is reserved for the IDLE  daemon task furnished
by the pSOS+ kernel. Levels 240 - 255 are reserved for a variety of high priority
tasks, including the pSOS+ ROOT. A task’s priority, including that of system tasks,
can be changed at runtime by calling the t_setpri  system call.

When a task enters the ready state, the pSOS+ kernel puts it into an indexed ready
queue behind tasks of higher or equal priority. All ready queue operations, includ-
ing insertions and removals, are achieved in fast, constant time. No search loop is
needed.

During dispatch, when it is about to exit and return to the application code, the
pSOS+ kernel will normally run the task with the highest priority in the ready
queue. If this is the same task that was last running, then the pSOS+ kernel simply
returns to it. Otherwise, the last running task must have either blocked, or one or
more ready tasks now have higher priority. In the first (blocked) case, the pSOS+
kernel will always switch to run the task currently at the top of the indexed ready
queue. In the second case, technically known as preemption, the pSOS+ kernel will
also perform a task switch, unless the last running task has its preemption mode
disabled, in which case the dispatcher has no choice but to return to it.

Note that a running task can only be preempted by a task of higher or equal (if
timeslicing enabled) priority. Therefore, the assignment of priority levels is crucial in
any application. A particular ready task cannot run unless all tasks with higher pri-
ority are blocked. By the same token, a running task can be preempted at any time,
if an interrupt occurs and the attendant ISR unblocks a higher priority task.

2.3.5 Roundrobin by Timeslicing

In addition to priority, the pSOS+ kernel can use timeslicing to schedule task execu-
tion. However, timesliced (roundrobin) scheduling can be turned on/off on a per
task basis, and is always secondary to priority considerations.

You can specify the timeslice quantum in the Configuration Table using the param-
eter kc_ticks2slice . For example, if this value is 6, and the clock frequency
(kc_ticks2sec ) is 60, a full slice will be 1/10 second.
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Each task carries a timeslice counter, initialized by the pSOS+ kernel to the
timeslice quantum when the task is created. Whenever a clock tick is announced to
the pSOS+ kernel, the pSOS+ time manager decrements the running task’s
timeslice counter unless it is already 0. The timeslice counter is meaningless if the
task’s roundrobin bit or the preemption bit is disabled. If the running task’s roun-
drobin bit and preemption bit is enabled and its time-slice counter is 0, two out-
comes are possible as follows:

1. If all other presently ready tasks have lower priority, then no special scheduling
takes place. The task’s timeslice counter stays at zero, so long as it stays in the
running or ready state.

2. If one or more other tasks of the same priority are ready, the pSOS+ kernel
moves the running task from the running state into the ready state, and re-en-
ters it into the indexed ready queue behind all other ready tasks of the same
priority. This forces the pSOS+ dispatcher to switch from that last running task
to the task now at the top of the ready queue. The last running task’s timeslice
counter is given a full timeslice, in preparation for its next turn to run.

Regardless of whether or not its roundrobin mode bit is enabled, when a task be-
comes ready from the blocked state, the pSOS+ kernel always inserts it into the in-
dexed ready queue behind all tasks of higher or equal priority. At the same time, the
task’s timeslice counter is refreshed with a new, full count.

NOTE:The preemption mode bit takes precedence over roundrobin scheduling.
If the running task has preemption disabled, then it will preclude
roundrobin and continue to run.

In general, real-time systems rarely require time-slicing, except to insure that cer-
tain tasks will not inadvertently monopolize the CPU. Therefore, the pSOS+ kernel
by default initializes each task with the roundrobin mode disabled.

For example, shared priority is often used to prevent mutual preemption among cer-
tain tasks, such as those that share non-reentrant critical regions. In such cases,
roundrobin should be left disabled for all such related tasks, in order to prevent the
pSOS+ kernel from switching tasks in the midst of such a region.

To maximize efficiency, a task’s roundrobin should be left disabled, if:

1. it has a priority level to itself, or

2. it shares its priority level with one or more other tasks, but roundrobin by
timeslice among them is not necessary.
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2.3.6 Manual Roundrobin

For certain applications, automatic roundrobin by timeslice might not be suitable.
However, there might still be a need to perform roundrobin manually — that is, the
running task might need to explicitly give up the CPU to other ready tasks of the
same priority.

The pSOS+ kernel supports manual roundrobin, via the tm_wkafter  system call
with a zero interval. If the running task is the only ready task at that priority level,
then the call simply returns to it. If there are one or more ready tasks at the same
priority, then the pSOS+ kernel will take the calling task from the running state into
the ready state, thereby putting it behind all ready tasks of that priority. This forces
the pSOS+ kernel to switch from that last running task to another task of the same
priority now at the head of the ready queue.

2.3.7 Dispatch Criteria

Dispatch refers to the exit stage of the pSOS+ kernel, where it must decide which
task to run upon exit; that is, whether it should continue with the running task, or
switch to run another ready task.

If the pSOS+ kernel is entered because of a system call from a task, then the pSOS+
kernel will always exit through the dispatcher, in order to catch up with any state
transitions that might have been caused by the system call. For example, the calling
task might have blocked itself, or made a higher priority blocked task ready. On the
other hand, if the pSOS+ kernel is entered because of a system call by an ISR, then
the pSOS+ kernel will not dispatch, but will instead return directly to the calling
ISR, to allow the ISR to finish its duties.

Because a system call from an ISR might have caused a state transition, such as
readying a blocked task, a dispatch must be forced at some point. This is the reason
for the I_RETURN entry into the pSOS+ kernel, which is used by an ISR to exit the
interrupt service, and at the same time allow the pSOS+ kernel to execute a dis-
patch.

2.3.8 Objects, Names, and IDs

The pSOS+ kernel is an object-oriented operating system kernel. Object classes in-
clude tasks, memory regions, memory partitions, message queues, and sema-
phores.

Each object is created at runtime and known throughout the system by two identi-
ties — a pre-assigned name and a run-time ID. An object’s 32-bit (4 characters, if
ASCII) name is user-assigned and passed to the pSOS+ kernel as input to an
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Obj_CREATE (e.g. t_create ) system call. The pSOS+ kernel in turn generates and
assigns a unique, 32-bit object ID (e.g. Tid ) to the new object. Except for
Obj_IDENT  (e.g. q_ident ) calls, all system calls that reference an object must use
its ID. For example, a task is suspended using its Tid , a message is sent to a mes-
sage queue using its Qid , and so forth.

The run-time ID of an object is of course known to its creator task — it is returned
by the Obj_CREATE system call.   Any other task that knows an object only by its
user-assigned name can obtain its ID in one of two ways:

1. Use the system call Obj_IDENT  once with the object’s name as input; the
pSOS+ kernel returns the object’s ID, which can then be saved away.

2. Or, the object ID can be obtained from the parent task in one of several ways.
For example, the parent can store away the object’s ID in a global variable — the
Tid  for task ABCD can be saved in a global variable with a name like ABCD_TID,
for access by all other tasks.

An object’s ID contains implicitly the location, even in a multiprocessor distributed
system, of the object’s control block (e.g. TCB or QCB), a structure used by the
pSOS+ kernel to manage and operate on the abstract object.

Objects are truly dynamic — the binding of a named object to its reference handle is
deferred to runtime. By analogy, the pSOS+ kernel treats objects like files. A file is
created by name. But to avoid searching, read and write operations use the file’s ID
returned by create or open. Thus, t_create  is analogous to File_Create , and
t_ident  to File_Open .

As noted above, an object’s name can be any 32-bit integer. However, it is customary
to use four-character ASCII names, because ASCII names are more easily remem-
bered, and pSOSystem debug tools will display an object name in ASCII, if possible.

2.4 Task Management

In general, task management provides dynamic creation and deletion of tasks, and
control over task attributes. The available system calls in this group are:

t_create Create a new task.

t_ident Get the ID of a task.

t_start Start a new task.

t_restart Restart a task.
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2.4.1 Creation of a Task

Task creation refers to two operations. The first is the actual creation of the task by
the t_create  call. The second is making the task ready to run by the t_start  call.
These two calls work in conjunction so the pSOS+ kernel can schedule the task for
execution and allow the task to compete for other system resources. Refer to pSOS-
ystem System Calls for a description of t_create  and t_start .

A parent task creates a child task by calling t_create . The parent task passes the
following input parameters to the child task:

■ A user-assigned name

■ A priority level for scheduling purposes

■ Sizes for one or two stacks

■ Several flags

Refer to the description of t_create  in pSOSystem System Calls for a description of
the preceding parameters.

t_create  acquires and sets up a Task Control Block (TCB) for the child task, then
it allocates a memory segment (from Region 0) large enough for the task’s stack(s)
and any necessary extensions. Extensions are extra memory areas required for op-
tional features. For example:

■ A floating point context save area for systems with co-processors

■ Memory needed by other system components (such as pHILE+, pREPC+, pNA+,
and so forth) to hold per-task data

This memory segment is linked to the TCB. t_create  returns a task identifier as-
signed by the pSOS+ kernel.

t_delete Delete a task.

t_suspend Suspend a task.

t_resume Resume a suspended task.

t_setpri Change a task’s priority.

t_mode Change calling task’s mode bits.

t_setreg Set a task’s notepad register.

t_getreg Get a task’s notepad register.
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The t_start  call must be used to complete the creation. t_start  supplies the
starting address of the new task, a mode word that controls its initial execution be-
havior (see section 2.4.3, ‘‘Task Mode Word”), and an optional argument list. Once
started, the task is ready-to-run, and is scheduled for execution based on its as-
signed priority.

With two exceptions, all user tasks that form a multitasking application are created
dynamically at runtime. One exception is the ROOT task, which is created and
started by the pSOS+ kernel as part of its startup initialization. After startup, the
pSOS+ kernel simply passes control to the ROOT task. The other exception is the de-
fault IDLE  task, also provided as part of startup. All other tasks are created by ex-
plicit system calls to the pSOS+ kernel, when needed.

In some designs, ROOT can initialize the rest of the application by creating all the
other tasks at once. In other systems, ROOT might create a few tasks, which in turn
can create a second layer of tasks, which in turn can create a third layer, and so on.
The total number of active tasks in your system is limited by the kc_ntask  specifi-
cation in the pSOS+ Configuration Table.

The code segment of a task must be memory resident. It can be in ROM, or loaded
into RAM either at startup or at the time of its creation. A task’s data area can be
statically assigned, or dynamically requested from the pSOS+ kernel. Memory con-
siderations are discussed in detail in the “Memory Usage” chapter of the pSOSystem
Programmer’s Reference.

2.4.2 Task Control Block

A task control block (TCB) is a system data structure allocated and maintained by
the pSOS+ kernel for each task after it has been created. A TCB contains everything
the kernel needs to know about a task, including its name, priority, remainder of
timeslice, and of course its context. Generally, context refers to the state of machine
registers. When a task is running, its context is highly dynamic and is the actual
contents of these registers. When the task is not running, its context is frozen and
kept in the TCB, to be restored the next time it runs.

There are certain overhead structures within a TCB that are used by the pSOS+ ker-
nel to maintain it in various system-wide queues and structures. For example, a
TCB might be in one of several queues — the ready queue, a message wait queue, a
semaphore wait queue, or a memory region wait queue. It might additionally be in a
timeout queue.

At pSOS+ kernel startup, a fixed number of TCBs is allocated reflecting the maxi-
mum number of concurrently active tasks specified in the pSOS+ Configuration Ta-
ble entry kc_ntask . A TCB is allocated to each task when it is created, and is
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reclaimed for reuse when the task is deleted. Memory considerations for TCBs are
given in the “Memory Usage” chapter of the pSOSystem Programmer’s Reference.

A task’s Tid  contains, among other things, the encoded address of the task’s TCB.
Thus, for system calls that supply Tid  as input, the pSOS+ kernel can quickly lo-
cate the target task’s TCB. By convention, a Tid  value of 0 is an alias for the run-
ning task. Thus, if 0 is used as the Tid  in a system call, the target will be the calling
task’s TCB.

2.4.3 Task Mode Word

Each task carries a mode word that can be used to modify scheduling decisions or
control its execution environment:

■ Preemption Enabled/Disabled — If a task has preemption disabled, then so
long as it is ready, the pSOS+ kernel will continue to run it, even if there are
higher priority tasks also ready.

■ Roundrobin Enabled/Disabled — Its effects are discussed in section 2.3.5,
‘‘Roundrobin by Timeslicing.”

■ ASR Enabled/Disabled — Each task can have an Asynchronous Signal Service
Routine (ASR), which must be established by the as_catch  system call. Asyn-
chronous signals behave much like software interrupts. If a task’s ASR is en-
abled, then an as_send  system call directed at the task will force it to leave its
expected execution path, execute the ASR, and then return to the expected exe-
cution path. See section 2.10.1, ‘‘The ASR,” for more details on ASRs.

■ Interrupt Control — Allows interrupts to be disabled while a task is running. On
some processors, you can fine-tune interrupt control. Details are provided in
the t_mode()  and t_start()  call descriptions in pSOSystem System Calls.

A task’s mode word is set up initially by the t_start  call and can be changed dy-
namically using the t_mode  call. Some processor versions of pSOS+ place restric-
tions on which mode attributes can be changed by t_mode() . Details are provided
in the t_mode()  description in pSOSystem System Calls.

To ensure correct operation of the application, you should avoid direct modification
of the CPU control/status register. Use t_mode  for such purposes, so that the
pSOS+ kernel is correctly informed of such changes.
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2.4.4 Task Stacks

Each task must have its own stack, or stacks. You declare the size of the stack(s)
when you create the task using t_create() . Details regarding processor-specific
use of stacks are provided in the t_create()  call description of pSOSystem System
Calls. Additional information on stacks is provided in the “Memory Usage” chapter
of the pSOSystem Programmer’s Reference.

2.4.5 Task Memory

The pSOS+ kernel allocates and maintains a task’s stack(s), but it has no explicit
knowledge of a task’s code or data areas.

For most applications, application code is memory resident prior to system startup,
being either ROM resident or bootloaded. For some systems, a task can be brought
into memory just before it is created or started; in which case, memory allocation
and/or location sensitivity should be considered.

2.4.6 Death of a Task

A task can terminate itself, or another task. The t_delete  pSOS+ Service removes
a created task by reclaiming its TCB and returning the stack memory segment to
Region 0. The TCB is marked as free, and can be reused by a new task.

The proper reclamation of resources such as segments, buffers, or semaphores
should be an important part of task deletion. This is particularly true for dynamic
applications, wherein parts of the system can be shutdown and/or regenerated on
demand.

In general, t_delete  should only be used to perform self-deletion. The reason is
simple. When used to forcibly delete another task, t_delete  denies that task a
chance to perform any necessary cleanup work.   A preferable method is to use the
t_restart  call, which forces a task back to its initial entry point. Because
t_restart  can pass an optional argument list, the target task can use this to dis-
tinguish between a t_start , a meaningful t_restart , or a request for self-dele-
tion. In the latter case, the task can return any allocated resources, execute any
necessary cleanup code, and then gracefully call t_delete  to delete itself.

A deleted task ceases to exist insofar as the pSOS+ kernel is concerned, and any ref-
erences to it, whether by name or by Tid , will evoke an error return.
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2.4.7 Notepad Registers

Each task has 16 software notepad 32-bit registers. They are carried in a task’s
TCB, and can be set and read using the t_setreg  and t_getreg  calls, respec-
tively.   The purpose of these registers is to provide to each task, in a standard sys-
tem-wide manner, a set of named variables that can be set and read by other tasks,
including by remote tasks on other processor nodes.

Eight of these notepad registers are reserved for system use. The remaining eight
can be used for any application specific purpose.

2.4.8 The Idle Task

At startup, the pSOS+ kernel automatically creates and starts an idle task, named
IDLE , whose sole purpose in life is to soak up CPU time when no other task can
run. IDLE  runs at priority 0 with a stack allocated from Region 0 whose size is equal
to kc_rootsst .

On most processors, IDLE  executes only an infinite loop. On some processors,
pSOS+ can be configured to call a user-defined routine when IDLE  is executed. This
user-defined routine can be used for purposes such as power conservation. See
“pSOS+ and pSOS+m Configuration Table Parameters” in pSOSystem Programmer’s
Reference for more details.

Though simple, IDLE  is an important task. It must not be tampered with via
t_delete , t_suspend , t_setpri , or t_mode , unless you have provided an equiv-
alent task to fulfill this necessary idling function.

2.5 Storage Allocation

pSOS+ storage management services provide dynamic allocation of both variable
size segments and fixed size buffers. The system calls are

rn_create Create a memory region.

rn_ident Get the ID of a memory region.

rn_delete Delete a memory region.

rn_getseg Allocate a segment from a region.

rn_retseg Return a segment to a region.

pt_create Create a partition of buffers.

pt_ident Get the ID of a partition.
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2.5.1 Regions and Segments

A memory region is a user-defined, physically contiguous block of memory. Regions
can possess distinctive implicit attributes. For example, one can reside in strictly lo-
cal RAM, another in system-wide accessible RAM. Regions must be mutually dis-
joint and can otherwise be positioned on any long word boundary.

Like tasks, regions are dynamic abstract objects managed by the pSOS+ kernel. A
region is created using the rn_create  call with the following inputs — its user-as-
signed name, starting address and length, and unit_size . The pSOS+ system call
rn_create  returns a region ID (RNid ) to the caller. For any other task that knows a
region only by name, the rn_ident  call can be used to obtain a named region’s
RNid .

A segment is a variable-sized piece of memory from a memory region, allocated by
the pSOS+ kernel on the rn_getseg  system call. Inputs to rn_getseg  include a
region ID, a segment size that might be anything, and an option to wait until there
is sufficient free memory in the region. The rn_retseg  call reclaims an allocated
segment and returns it to a region.

A region can be deleted, although this is rarely used in a typical application. For one
thing, deletion must be carefully considered, and is allowed by the pSOS+ kernel
only if there are no outstanding segments allocated from it, or if the delete override
option was used when the region was created.

2.5.2 Special Region 0

The pSOS+ kernel requires at least one region in order to function. This special re-
gion’s name is RN#0 and its id is zero (0). The start address and length of this region
are specified in the pSOS+ Configuration Table. During pSOS+ startup, the pSOS+
kernel first carves a Data Segment from the beginning of Region 0 for its own data
area and control structures such as TCBs, etc. A formula to calculate the exact size
of this pSOS+ Data Segment is given in the “Memory Usage” chapter of the pSOSys-
tem Programmer’s Reference manual. The remaining block of Region 0 is used for
task stacks, as well as any user rn_getseg  calls.

The pSOS+ kernel pre-allocates memory for its own use. That is, after startup, the
pSOS+ kernel makes no dynamic demands for memory. However, when the

pt_delete Delete a partition of buffers.

pt_getbuf Get a buffer from a partition.

pt_retbuf Return a buffer to a partition.
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t_create  system call is used to create a new task, the pSOS+ kernel will internally
generate an rn_getseg  call to obtain a segment from Region 0 to use as the task’s
stack (or stacks in the case of certain processors).

Similarly, when q_vcreate  is used to create a variable length message queue, the
pSOS+ kernel allocates a segment from Region 0 to store messages pending at the
queue.

Note that the pSOS+ kernel keeps track of each task’s stack segment and each vari-
able length message queue’s message storage segment. When a task or variable
length queue is deleted, the pSOS+ kernel automatically reclaims the segment and
returns it to Region 0.

Like any memory region, your application can make rn_getseg  and rn_retseg
system calls to Region 0 to dynamically allocate and return variable-sized memory
segments. Region 0, by default, queues any tasks waiting there for segment alloca-
tion by FIFO order.

2.5.3 Allocation Algorithm

The pSOS+ kernel takes a piece at the beginning of the input memory area to use as
the region’s control block (RNCB). The size of the RNCB varies, depending on the re-
gion size and its unit_size  parameter, described below.   A formula giving the size
of an RNCB is given in the “Memory Usage” chapter of the pSOSystem Programmer’s
Reference.

Each memory region has a unit_size  parameter, specified as an input to
rn_create . This region-specific parameter is the region’s smallest unit of alloca-
tion. This unit must be a power of 2, but greater than or equal to 16 bytes. Any seg-
ment allocated by rn_getseg  is always a size equal to the nearest multiple of
unit_size . For example, if a region’s unit_size  is 32 bytes, and an rn_getseg
call requests 130 bytes, then a segment with 5 units or 160 bytes will be allocated.
A region’s length cannot be greater than 32,767 times the unit_size  of the region.

The unit_size  specification has a significant impact on (1) the efficiency of the al-
location algorithm, and (2) the size of the region’s RNCB. The larger the unit_size ,
the faster the rn_getseg  and rn_retseg  execution, and the smaller the RNCB.

The pSOS+ region manager uses an efficient heap management algorithm. A re-
gion’s RNCB holds an allocation map and a heap structure used to manage an or-
dered list of free segments. By maintaining free segments in order of decreasing size,
an rn_getseg  call only needs to check the first such segment. If the segment is too
small, then allocation is clearly impossible. The caller can wait, wait with timeout,
or return immediately with an error code. If the segment is large enough, then it will
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be split. One part is returned to the calling task. The other part is re-entered into
the heap structure. If the segment exactly equals the requested segment size, it will
not be split.

When rn_retseg  returns a segment, the pSOS+ kernel always tries to merge it
with its neighbor segments, if one or both of them happen to be free. Merging is fast,
because the neighbor segments can be located without searching. The resulting seg-
ment is then re-entered into the heap structure.

2.5.4 Partitions and Buffers

A memory partition is a user-defined, physically contiguous block of memory, di-
vided into a set of equal-sized buffers. Aside from having different buffer sizes, par-
titions can have distinctive implicit attributes. For example, one can reside in
strictly local RAM, another in system-wide accessible RAM. Partitions must be mu-
tually disjoint.

Like regions, partitions are dynamic abstract objects managed by the pSOS+ kernel.
A partition is created using the pt_create  call with the following inputs — its user-
assigned name, starting address and length, and buffer_size . The system call
pt_create  returns a partition ID (PTid ) assigned by the pSOS+ kernel to the
caller. For any other task that knows a partition only by name, the pt_ident  call
can be used to obtain a named partition’s PTid .

The pSOS+ kernel takes a small piece at the beginning of the input memory area to
use as the partition’s control block (PTCB). The rest of the partition is organized as a
pool of equal-sized buffers. Because of this simple organization, the pt_getbuf  and
pt_retbuf  system calls are highly efficient.

A partition has the following limits — it must start on a long-word boundary and its
buffer size must be a power of 2, but greater than or equal to 4 bytes.

Partitions can be deleted, although this is rarely done in a typical application. For
one thing, deletion must be carefully considered, and is allowed by the pSOS+ ker-
nel only if there are no outstanding buffers allocated from it.

Partitions can be used, in a tightly-coupled multiprocessor configuration, for effi-
cient data exchange between processor nodes. For a complete discussion of shared
partitions, see Chapter 3, pSOS+m Multiprocessing Kernel.
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2.6 Communication, Synchronization, Mutual Exclusion

A pSOS+ based application is generally partitioned into a set of tasks and interrupt
service routines (ISRs). Conceptually, each task is a thread of independent actions
that can execute concurrently with other tasks. However, cooperating tasks need to
exchange data, synchronize actions, or share exclusive resources. To service task-
to-task as well as ISR-to-task communication, synchronization, and mutual exclu-
sion, the pSOS+ kernel provides three sets of facilities — message queues, events,
and semaphores.

2.7 The Message Queue

Message queues provide a highly flexible, general-purpose mechanism to implement
communication and synchronization. The related system calls are listed below:

Like a task, a message queue is an abstract object, created dynamically using the
q_create  system call. q_create  accepts as input a user-assigned name and sev-
eral characteristics, including whether tasks waiting for messages there will wait
first-in-first-out, or by task priority, whether the message queue has a limited length,
and whether a set of message buffers will be reserved for its private use.

A queue is not explicitly bound to any task. Logically, one or more tasks can send
messages to a queue, and one or more tasks can request messages from it. A mes-
sage queue therefore, serves as a many-to-many communication switching station.

Consider this many-to-1 communication example. A server task can use a message
queue as its input request queue. Several client tasks independently send request
messages to this queue. The server task waits at this queue for input requests, pro-
cesses them, and goes back for more — a single queue, single server implementa-
tion.

q_create  Create a message queue.

q_ident  Get the ID of a message queue.

q_delete  Delete a message queue.

q_receive  Get/wait for a message from a queue.

q_send  Post a message at the end of a queue.

q_urgent  Put a message at head of a queue.

q_broadcast  Broadcast a message to a queue.
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The number of message queues in your system is limited by the kc_nqueue  specifi-
cation in the pSOS+ Configuration Table.

A message queue can be deleted using the q_delete  system call. If one or more
tasks are waiting there, they will be removed from the wait queue and returned to
the ready state. When they run, each task will have returned from their respective
q_receive  call with an error code (Queue Deleted). On the other hand, if there are
messages posted at the queue, then the pSOS+ kernel will reclaim the message
buffers and all message contents are lost. Message buffers are covered in
section 2.7.3, ‘‘Messages and Message Buffers.”

2.7.1 The Queue Control Block

Like a Tid , a message queue’s Qid  carries the location of the queue’s control block
(QCB), even in a multiprocessor configuration. This is an important notion, because
using the Qid  to reference a message queue totally eliminates the need to search for
its control structure.

A QCB is allocated to a message queue when it is created, and reclaimed for re-use
when it is deleted. This structure contains the queue’s name and ID, wait-queueing
method, and message queue length and limit. Memory considerations for QCBs are
given in the “Memory Usage” chapter of the pSOSystem Programmer’s Reference.

2.7.2 Queue Operations

A queue usually has two types of users — sources and sinks. A source posts mes-
sages, and can be a task or an ISR. A sink consumes messages, and can be another
task or (with certain restrictions) an ISR.

There are three different ways to post a message — q_send , q_urgent , and
q_broadcast .

When a message arrives at a queue, and there is no task waiting, it is copied into a
message buffer taken from either the shared or (if it has one) the queue’s private,
free buffer pool. The message buffer is then entered into the message queue. A
q_send  call puts a message at the end of the message queue. q_urgent  inserts a
message at the front of the message queue.

When a message arrives at a queue, and there are one or more tasks already waiting
there, then the message will be given to the first task in the wait queue. No message
buffer will be used. That task then leaves the queue, and becomes ready to run.
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The q_broadcast  system call broadcasts a message to all tasks waiting at a queue.
This provides an efficient method to wake up multiple tasks with a single system
call.

There is only one way to request a message from a queue — the q_receive  system
call. If no message is pending, the task can elect to wait, wait with timeout, or re-
turn unconditionally. If a task elects to wait, it will either be by first-in-first-out or
by task priority order, depending on the specifications given when the queue was
created. If the message queue is non-empty, then the first message in the queue will
be returned to the caller. The message buffer that held that message is then re-
leased back to the shared or the queue’s private free buffer pool.

2.7.3 Messages and Message Buffers

Messages are fixed length, consisting of four long words. A message’s content is en-
tirely dependent on the application. It can be used to carry data, pointer to data,
data size, the sender’s Tid , a response queue Qid , or some combination of the
above. In the degenerate case where a message is used purely for synchronization, it
might carry no information at all.

When a message arrives at a message queue and no task is waiting, the message
must be copied into a message buffer that is then entered into the message queue.

A pSOS+ message buffer consists of five long words. Four of the long words are the
message and one is a link field. The link field links one message buffer to another. At
startup, the pSOS+ kernel allocates a shared pool of free message buffers. The size
of this pool is equal to the kc_nmsgbuf  entry in the pSOS+ Configuration Table.

A message queue can be created to use either a pool of buffers shared among many
queues or its own private pool of buffers. In the first case, messages arriving at the
queue will use free buffers from the shared pool on an as-needed basis. In the sec-
ond case, a number of free buffers equal to the queue’s maximum length are taken
from the shared pool and set aside for the private use of the message queue.
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2.7.4 Two Examples of Queue Usage

The examples cited below and depicted in Figure 2-3 illustrate the ways in which
the message queue facility can be used to implement various synchronization re-
quirements.

The first example typifies the straightforward use of a message queue as a FIFO
queue between one or more message sources, and one or more message sinks. Syn-
chronization provided by a single queue is one-way and non-interlocked. That is, a
message sink synchronizes its activities to the arrival of a message to the queue, but
a message source does not synchronize to any queue or sink condition — it can
elect to produce messages at its own pace.

The second example uses two queues to close the synchronization loop, and provide
interlocked communication. A task that is a message sink to one queue is a mes-
sage source to the other, and vice-versa. Task A sends a message to queue X, and
does not continue until it receives a message from queue Y. Task B synchronizes it-
self to the arrival of a message to queue X, and responds by sending an acknowledg-

TASK A:

Q_SEND

Q_SEND

Q_SEND

Q_RECV

Q_RECV

Q_RECV

TASK A: TASK B:

TASK B:

FIGURE 2-3 . One Way and Two Way Queue Synchronization
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ment message to queue Y. The result is that tasks A and B interact in an
interlocked, coroutine-like fashion.

2.7.5 Variable Length Message Queues

Recall that ordinary message queues use fixed-length 16-byte messages. While 16
bytes is adequate for most purposes, in some cases it is convenient to use messages
of differing sizes, particularly larger messages. The pSOS+ kernel supports a special
type of message queue called a variable length message queue. A variable length
message queue can accept messages of any length up to a maximum specified when
the queue is created.

Internally the pSOS+ kernel implements variable length message queues as a spe-
cial type of ordinary queue. That is, ordinary and variable length message queues
are not different objects, but rather, different forms of the same object.

Although they are implemented using the same underlying object, the pSOS+ kernel
provides a complete family of services to create, manage, and use variable length
message queues. These services are as follows:

A variable length queue is created with the q_vcreate  service call. In addition to
name and flags  the caller provides two additional input parameters. The first spec-
ifies the queue’s maximum message length.   A message of any length up to this
maximum can be sent to the queue. Any attempt to send a message larger than a
queue’s maximum message length results in an error. The second parameter speci-
fies the queue’s maximum message queue length. This is the maximum number of
messages that can be waiting at the queue simultaneously.

Unlike ordinary queues, which use buffers from the system-wide buffer pool for
message storage, variable length queues always store messages in buffers that are
allocated from region 0 when the queue is created. These buffers are then available

q_vcreate Create a variable length message queue

q_vident Get the ID of a variable length message queue

q_vdelete Delete a variable length message queue

q_vreceive Get or wait for message from a variable length message
queue

q_vsend Post a message at end of a variable length message queue

q_vurgent Put a message at head of a variable length message queue

q_vbroadcast Broadcast a message to a variable length message queue
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for the exclusive use of the queue. They are never shared with other queues and
they are only returned to region 0 if and when the queue is deleted.

Once a variable length message queue has been created, variable length messages
are sent and received using the q_vsend , q_vurgent , q_vbroadcast , and
q_vreceive  service calls. The calls operate exactly like their ordinary counterparts
(q_send , q_urgent , q_broadcast , and q_vreceive ), except the caller must pro-
vide an additional parameter that specifies the length of the message. The
q_vreceive  service call returns the length of the received message to the caller.

The remaining two variable length message queue services, q_vident  and
q_vdelete  are identical to their ordinary counterparts (q_ident  and q_delete ) in
every respect.

Note that although ordinary and variable length message queues are implemented
using the same underlying object, service calls cannot be mixed. For example,
q_send  cannot be used to post a message to a variable length message queue. Sim-
ilarly, q_vsend  cannot be used to send a message to an ordinary queue. There is
one exception — q_ident  and q_vident  are identical. When searching for the
named queue, both return the first queue encountered that has the specified name,
regardless of the queue type.

2.8 Events

The pSOS+ kernel provides a set of synchronization-by-event facilities. Each task
has 32 event flags it can wait on, bit-wise encoded in a 32-bit word. The high 16 bits
are reserved for system use. The lower 16 event flags are user definable.

Two pSOS+ system calls provide synchronization by events between tasks and be-
tween tasks and ISRs:

ev_send  is used to send one or more events to another task. With ev_receive , a
task can wait for, with or without timeout, or request without waiting, one or more
of its own events. One important feature of events is that a task can wait for one
event, one of several events (OR), or all of several events (AND).

ev_receive Get or wait for events.

ev_send Send events to a task.
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2.8.1 Event Operations

Events are independent of each other. The ev_receive  call permits synchroniza-
tion to the arrival of one or more events, qualified by an AND or OR condition. If all
the required event bits are on (i.e. pending), then the ev_receive  call resets them
and returns immediately. Otherwise, the task can elect to return immediately or
block until the desired event(s) have been received.

A task or ISR can send one or more events to another task. If the target task is not
waiting for any event, or if it is waiting for events other than those being sent,
ev_send  simply turns the event bit(s) on, which makes the events pending. If the
target task is waiting for some or all of the events being sent, then those arriving
events that match are used to satisfy the waiting task. The other non-matching
events are made pending, as before. If the requisite event condition is now com-
pletely satisfied, the task is unblocked and made ready-to-run; otherwise, the wait
continues for the remaining events.

2.8.2 Events Versus Messages

Events differ from messages in the following sense:

■ An event can be used to synchronize with a task, but it cannot directly carry
any information.

■ Topologically, events are sent point to point. That is, they explicitly identify the
receiving task. A message, on the other hand, is sent to a message queue. In a
multireceiver case, a message sender does not necessarily know which task will
receive the message.

■ One ev_receive  call can condition the caller to wait for multiple events.
q_receive , on the other hand, can only wait for one message from one queue.

■ Messages are automatically buffered and queued. Events are neither counted
nor queued. If an event is already pending when a second, identical one is sent
to the same task, the second event will have no effect.
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2.9 Semaphores

The pSOS+ kernel provides a set of familiar semaphore operations. In general, they
are most useful as resource tokens in implementing mutual exclusion. The related
system calls are listed below.

Like a message queue, a semaphore is an abstract object, created dynamically using
the sm_create  system call. sm_create  accepts as input a user-assigned name, an
initial count, and several characteristics, including whether tasks waiting for the
semaphore will wait first-in-first-out, or by task priority. The initial count parameter
should reflect the number of available “tokens” at the semaphore. sm_create  as-
signs a unique ID, the SMid , to each semaphore.

The number of semaphores in your system is limited by the kc_nsema4  specifica-
tion in the pSOS+ Configuration Table.

A semaphore can be deleted using the sm_delete  system call. If one or more tasks
are waiting there, they will be removed from the wait queue and returned to the
ready state. When they run, each task will have returned from its respective sm_p
call with an error code (Semaphore Deleted).

2.9.1 The Semaphore Control Block

Like a Qid , a semaphore’s SMid  carries the location of the semaphore control block
(SMCB), even in a multiprocessor configuration. This is an important notion, be-
cause using the SMid  to reference a semaphore eliminates completely the need to
search for its control structure.

An SMCB is allocated to a semaphore when it is created, and reclaimed for re-use
when it is deleted. This structure contains the semaphore’s name and ID, the token
count, and wait-queueing method. It also contains the head and tail of a doubly
linked task wait queue. Memory considerations for SMCBs are given in the “Memory
Usage” chapter of the pSOSystem Programmer’s Reference.

sm_create Create a semaphore.

sm_ident Get the ID of a semaphore.

sm_delete Delete a semaphore.

sm_p Get / wait for a semaphore token.

sm_v Return a semaphore token.
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2.9.2 Semaphore Operations

The pSOS+ kernel supports the traditional P and V semaphore primitives. The sm_p
call requests a token. If the semaphore token count is non-zero, then sm_p decre-
ments the count and the operation is successful. If the count is zero, then the caller
can elect to wait, wait with timeout, or return unconditionally. If a task elects to
wait, it will either be by first-in-first-out or by task priority order, depending on the
specifications given when the semaphore was created.

The sm_v call returns a semaphore token. If no tasks are waiting at the semaphore,
then sm_v increments the semaphore token count. If tasks are waiting, then the
first task in the semaphore’s wait list is released from the list and made ready to
run.

2.10 Asynchronous Signals

Each task can optionally have an Asynchronous Signal Service Routine (ASR). The
ASR’s purpose is to allow a task to have two asynchronous parts — a main body and
an ASR. In essence, just as one task can execute asynchronously from another task,
an ASR provides a similar capability within a task.

Using signals, one task or ISR can selectively force another task out of its normal lo-
cus of execution — that is, from the task’s main body into its ASR. Signals provide a
“software interrupt” mechanism. This asynchronous communications capability is
invaluable to many system designs. Without it, workarounds must depend on syn-
chronous services such as messages or events, which, even if possible, suffer a
great loss in efficiency.

There are three related system calls:

An asynchronous signal is a user-defined condition. Each task has 32 signals, en-
coded bit-wise in a long word. To receive signals, a task must establish an ASR us-
ing the as_catch  call. The as_send  call can be used to send one or more
asynchronous signals to a task, thereby forcing the task, the next time it is dis-
patched, to first go to its ASR. At the end of an ASR, a call to as_return  allows the
pSOS+ kernel to return the task to its original point of execution.

as_catch Establish a task’s ASR.

as_send Send signals to a task.

as_return Return from an ASR.
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2.10.1 The ASR

A task can have only one active ASR, established using the as_catch  call. A task’s
ASR executes in the task’s context — from the outside, it is not possible to discern
whether a task is executing in its main code body or its ASR.

The as_catch  call supplies both the ASR’s starting address and its initial mode of
execution. This mode replaces the mode of the task’s main code body (see
section 2.4.3, ‘‘Task Mode Word”) as long as the ASR is executing. It is used to con-
trol the ASR’s execution behavior, including whether it is preemptible and whether
or not further asynchronous signals are accepted.

Typically, ASRs execute with asynchronous signals disabled. Otherwise, the ASR
must be programmed to handle re-entrancy.

The details of how an ASR gains control are processor-specific; this information can
be found in the description of as_catch  in pSOSystem System Calls.

A task can disable and enable its ASR selectively by calling t_mode . Any signals re-
ceived while a task’s ASR is disabled are left pending. When re-enabled, an ASR will
receive control if there are any pending signals.

2.10.2 Asynchronous Signal Operations

The as_send  call makes the specified signals pending at the target task, without af-
fecting its state or when it will run. If the target task is not the running task, its ASR
takes over only when it is next dispatched to run. If the target is the running task,
which is possible only if the signals are sent by the task itself or, more likely, by an
ISR, then the running task’s course changes immediately to the ASR.

2.10.3 Signals Versus Events

Despite their resemblance, asynchronous signals are fundamentally different from
events, as follows:

■ To synchronize to an event, a task must explicitly call ev_receive . ev_send
by itself has no effect on the receiving task’s state. By contrast, as_send  can
unilaterally force the receiving task to execute its ASR.

■ From the perspective of the receiving task, response to events is synchronous; it
occurs only after a successful ev_receive  call. Response to signals is asyn-
chronous; it can happen at any point in the task’s execution. Note that, while
this involuntary-response behavior is by design, it can be modified to some ex-
tent by using t_mode  to disable (i.e. postpone) asynchronous signal processing.
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2.11 Time Management

Time management provides the following functions:

■ Maintain calendar time and date.

■ Timeout (optional) a task that is waiting for messages, semaphores, events or
segments.

■ Wake up or send an alarm to a task after a designated interval or at an ap-
pointed time.

■ Track the running task’s timeslice, and mechanize roundrobin scheduling.

These functions depend on periodic timer interrupts, and will not work in the ab-
sence of a real-time clock or timer hardware.

The explicit time management system calls are:

2.11.1 The Time Unit

The system time unit is a clock tick, defined as the interval between tm_tick  sys-
tem calls. This call is used to announce to the pSOS+ kernel the arrival of a clock
tick — it is normally called from the real-time clock ISR on each timer interrupt. The
frequency of tm_tick  determines the granularity of the system time-base. Obvi-
ously, the higher the frequency, the higher the time resolution for timeouts, etc. On
the other hand, processing each clock tick takes a small amount of system over-
head.

tm_tick Inform the pSOS+ kernel of clock tick arrival.

tm_set Set time and date.

tm_get Get time and date.

tm_wkafter Wakeup task after interval.

tm_wkwhen Wakeup task at appointed time.

tm_evafter Send events to task after interval.

tm_evevery Send events to calling task at periodic intervals.

tm_evwhen Send events to task at appointed time.

tm_cancel Cancel an alarm timer.
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You can specify this clock tick frequency in the pSOS+ Configuration Table as
kc_ticks2sec . For example, if this value is specified as 100, the system time man-
ager will interpret 100 tm_tick  system calls to be one second, real-time.

2.11.2 Time and Date

The pSOS+ kernel maintains true calendar time and date, including perpetual leap
year compensation. Two pSOS+ system calls, tm_set  and tm_get , allow you to set
and obtain the date and time of day. Time resolution is accurate to system time
ticks.

No elapsed tick counter is included, because this can be easily maintained by your
own code. For example, your real-time clock ISR can, in addition to calling tm_tick
on each clock interrupt, increment a 32-bit global counter variable.

2.11.3 Timeouts

Implicitly, the pSOS+ kernel uses the time manager to provide a timeout facility to
other system calls, e.g. q_receive , q_vreceive , ev_receive , sm_p, and
rn_getseg .

The pSOS+ kernel uses a proprietary timing structure and algorithm, which, in ad-
dition to being efficient, guarantees constant-time operations. Both task entry into
and removal from the timeout state are performed in constant time — no search
loops are required.

If a task is waiting, say for message (q_receive ), with timeout, and the message ar-
rives in time, then the task is simply removed from the timing structure, given the
message, and made ready to run. If the message does not arrive before the time in-
terval expires, then the task will be given an error code indicating timeout, and
made ready to run.

Timeout is measured in ticks. If kc_ticks2sec  is 100, and an interval of 50 milli-
seconds is required, then a value of 5 should be specified. Timeout intervals are 32
bits wide, allowing a maximum of 232 ticks. A timeout value of n will expire on the
nth forthcoming tick. Because the system call can happen anywhere between two
ticks, this implies that the real-time interval will be between n-1 and n ticks.
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2.11.4 Absolute Versus Relative Timing

There are two ways a task can specify timing — relative or absolute. Relative timing
is specified as an interval, measured in ticks. Absolute timing is specified as an ap-
pointed calendar date and time. The system calls tm_wkafter  and tm_evafter  ac-
cept relative timing specifications. The system calls tm_wkwhen  and tm_evwhen
accept absolute time specifications.

Note that absolute timing is affected by any tm_set  calls that change the calendar
date and time, whereas relative timings are not affected. In addition, use of absolute
time specifications might require additional time manipulations.

2.11.5 Wakeups Versus Alarms

There are two distinct ways a task can respond to timing. The first way is to go to
sleep (i.e. block), and wake up at the desired time. This synchronous method is sup-
ported by the tm_wkafter  and tm_wkwhen  calls. The second way is to set an alarm
timer, and then continue running. This asynchronous method is supported by
tm_evafter  and tm_evwhen . When the alarm timer goes off, the pSOS+ kernel will
internally call ev_send  to send the designated events to the task. Of course, the
task must call ev_receive  in order to test or wait for the scheduled event.

Alarm timers offer several interesting features. First, the calling task can execute
while the timer is counting down. Second, a task can arm more than one alarm
timer, each set to go off at different times, corresponding to multiple expected condi-
tions. This multiple alarm capability is especially useful in implementing nested
timers, a common requirement in more sophisticated communications systems.
Third, alarm timers can be canceled using the tm_cancel  call.

In essence, the wakeup mechanism is useful only in timing an entire task. The
alarm mechanism can be used to time transactions within a task.

2.11.6 Timeslice

If the running task’s mode word (see section 2.4.3, ‘‘Task Mode Word”) has its roun-
drobin bit and preemptible bit on, then the pSOS+ kernel will countdown the task’s
assigned timeslice. If it is still running when its timeslice is down to zero, then roun-
drobin scheduling will take place. Details of the roundrobin scheduling can be
found in section 2.3.5, ‘‘Roundrobin by Timeslicing.”

You can specify the amount of time that constitutes a full timeslice in the pSOS+
Configuration Table as kc_ticks2slice . For instance, if that value is 10, and the
kc_ticks2sec  is 100, then a full timeslice is equivalent to about one-tenth of a
second. The countdown or consumption of a timeslice is somewhat heuristic in na-
ture, and might not exactly reflect the actual elapsed time a task has been running.
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2.12 Interrupt Service Routines

Interrupt service routines (ISRs) are critical to any real-time system. On one side, an
ISR handles interrupts, and performs whatever minimum action is required, to re-
set a device, to read/write some data, etc. On the other side, an ISR might drive one
or more tasks, and cause them to respond to, and process, the conditions related to
the interrupt.

An ISR’s operation should be kept as brief as possible, in order to minimize masking
of other interrupts at the same or lower levels. Normally, it simply clears the inter-
rupt condition and performs the necessary physical data transfer. Any additional
handling of the data should be deferred to an associated task with the appropriate
(software) priority. This task can synchronize its actions to the occurrence of a hard-
ware interrupt, by using either a message queue, events flag, semaphores, or ASR.

2.12.1 Interrupt Entry and Exit

For all processors, the Interrupt Service Routine should exit using I_RETURN entry
in the pSOS+ kernel. I_RETURN causes pSOS+ kernel to dispatch to the highest pri-
ority task.

2.12.2 Synchronizing With Tasks

An ISR usually communicates with one or more tasks, either directly, or indirectly
as part of its input/output transactions. The nature of this communication is usu-
ally to drive a task, forcing it to run and handle the interrupting condition. This is
similar to the task-to-task type of communication or synchronization, with two im-
portant differences.

First, an ISR is usually a communication/synchronization source — it often needs
to return a semaphore, or send a message or an event to a task. An ISR is rarely a
communication sink — it cannot wait for a message or an event.

Second, a system call made from an ISR will always return immediately to the ISR,
without going through the normal pSOS+ dispatch. For example, even if an ISR
sends a message and wakes up a high priority task, the pSOS+ kernel must never-

On Coldfire, PowerPC, MIPS, and x86 processors, interrupts
should be directly vectored to the user-supplied ISRs. As early as
possible, the ISR should call the I_ENTER entry in the pSOS+
kernel. I_ENTER sets an internal flag to indicate that an inter-
rupt is being serviced and then returns to the ISR.

CF

MIPS

PPC

x86
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theless return first to the ISR. This deferred dispatching is necessary, because the
ISR must be allowed to complete.

The pSOS+ kernel allows an ISR to make any of the synchronization sourcing sys-
tem calls, including q_send , q_urgent  and q_broadcast  to post messages to
message queues, sm_v to return a semaphore, and ev_send  to send events to
tasks.

A typical system implementation, for example, can use a message queue for this
ISR-to-task communication. A task requests and waits for a message at the queue.
An ISR sends a message to the queue, thereby unblocking the task and making it
ready to run. The ISR then exits using the I_RETURN entry into the pSOS+ kernel.
Among other things, I_RETURN causes the pSOS+ kernel to dispatch to run the
highest priority task, which can be the interrupted running task, or the task just
awakened by the ISR. The message, as usual, can be used to carry data or pointers
to data, or for synchronization.

In some applications, an ISR might additionally have the need to dequeue messages
from a message queue. For example, a message queue might be used to hold a chain
of commands. Tasks needing service will send command messages to the queue.
When an ISR finishes one command, it checks to see if the command chain is now
empty. If not, then it will dequeue the next command in the chain and start it. To
support this type of implementation, the pSOS+ kernel allows an ISR to make
q_receive  system calls to obtain messages from a queue, and sm_p calls to ac-
quire a semaphore. Note, however, that these calls must use the “no-wait” option, so
that the call will return whether or not a message or semaphore is available.

2.12.3 System Calls Allowed From an ISR

The restricted subset of pSOS+ system calls that can be issued from an ISR are as
follows. Conditions necessary for the call to be issued from an ISR are in parenthe-
ses.

as_send Send asynchronous signals to a task (local task).

ev_send Send events to a task (local task).

k_fatal Abort and enter fatal error handler.

k_terminate Terminate a failed node (pSOS+m component only).

pt_getbuf Get a buffer from a partition (local partition).

pt_retbuf Return a buffer to a partition (local partition).

q_broadcast Broadcast a message to an ordinary queue (local queue).
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As noted earlier, because an ISR cannot block, a q_receive , q_vreceive , or sm_p
call from an ISR must use the no-wait, i.e. unconditional return, option. Also, be-
cause remote service calls block, the above services can only be called from an ISR if
the referenced object is local.

All other pSOS+ system calls are either not meaningful in the context of an ISR, or
can be functionally served by another system call. Making calls not listed above
from an ISR will lead to dangerous race conditions, and unpredictable results.

q_receive Get a message from an ordinary message queue (no-wait
and local queue).

q_send Post a message to end of an ordinary message queue (local
queue).

q_urgent Post a message at head of an ordinary message queue (lo-
cal queue).

q_vbroadcast Broadcast a variable length message to queue (local
queue).

q_vreceive Get a message from a variable length message queue (no-
wait and local queue).

q_vsend Post a message to end of a variable length message queue
(local queue).

q_vurgent Post a message at head of a variable length message queue
(local queue).

sm_p Acquire a semaphore (no-wait and local semaphore).

sm_v Return a semaphore (local semaphore).

t_getreg Get a task’s software register (local task).

t_resume Resume a suspended task (local task).

t_setreg Set a task’s software register (local task).

tm_get Get time and date.

tm_tick Announce a clock tick to the pSOS+ kernel.
2-36



pSOSystem System Concepts pSOS+ Real-Time Kernel

2

2.13 Fatal Errors and the Shutdown Procedure

Most error conditions resulting from system calls, for example parametric and tem-
porary resource exhaustion errors, are non-fatal. These are reported back to the
caller. A few error conditions prevent continued operation. This class of errors,
known as fatal errors, include startup configuration defects, internal resource ex-
haustion conditions, and various other non-recoverable conditions. In addition,
your application software can, at any time, generate a fatal error by making the sys-
tem call k_fatal .

Every fatal error has an associated error code that defines the cause of the fatal er-
ror. The error code appendix of pSOSystem System Calls lists all pSOSystem error
codes. Error codes equal to or greater than 0x20000000 are available for use by ap-
plication code. In this case, the error code is provided as an input parameter to
k_fatal  or k_terminate  (in multiprocessor systems).

When a fatal error occurs, whether generated internally by pSOSystem or by a call
to k_fatal  or k_terminate , the pSOS+ kernel passes control to an internal fatal
error handler. In single processor systems, the fatal error handler simply performs
the shutdown procedure described below. In multiprocessor systems it has the addi-
tional responsibility of removing the node from the multiprocessor system.

The shutdown procedure is a procedure whereby the pSOS+ kernel attempts to halt
execution in the most orderly manner possible. The pSOS+ kernel first examines the
pSOS+ Configuration Table entry kc_fatal. If this entry is non-zero, the pSOS+ ker-
nel jumps to this address. If kc_fatal  is zero, and the pROBE+ System Debug/An-
alyzer is present, then the pSOS+ kernel passes control to the System Failure entry
of the pROBE+ component. Refer to the pROBE+ User’s Guide for a description of
pROBE+ component behavior in this case. Finally, if the pROBE+ component is ab-
sent, the pSOS+ kernel internally executes an illegal instruction to cause a deliber-
ate illegal instruction exception. The illegal instruction hopefully causes control to
pass to a ROM monitor or other low-level debug tool. The illegal instruction exe-
cuted is processor-specific; on most processors, it is a divide-by-zero instruction.

In all cases, the pSOS+ kernel makes certain information regarding the nature of
the failure available to the entity receiving control. Refer to the error code appendix
of pSOSystem System Calls for a detailed description of this information.
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2.14 Tasks Using Other Components

Integrated Systems offers many other system components that can be used in sys-
tems with the pSOS+ kernel. While these components are easy to install and use,
they require special consideration with respect to their internal resources and mul-
titasking.

During normal operation, components internally allocate and hold resources on be-
half of calling tasks. Some resources are held only during execution of a service call.
Others are held indefinitely and this depends on the state of the task. In the pHILE+
component, for example, control information is kept whenever files are open. The
pSOS+ service calls t_restart  and t_delete  asynchronously alter the execution
path of a task and present special problems relative to management of these re-
sources.

The subsections that follow discuss deletion and restart-related issues in detail and
present recommended methods for performing these operations.

2.14.1 Deleting Tasks That Use Components

To avoid permanent loss of component resources, the pSOS+ kernel does not allow
deletion of a task that is holding any such resource. Instead, t_delete  returns an
error code, which indicates that the task to be deleted holds one or more resources.

The exact conditions under which components hold resources are complex. In gen-
eral, any task that has made a component service call might be holding resources.
But all components provide a facility for returning all of their task-related re-
sources, via a single service call. We recommend that these calls be made prior to
calling t_delete .

pHILE+, pNA+ and pREPC+ components can hold resources that must be returned
before a task can be deleted. These resources are returned by calling close_f (0),
close (0) and fclose (0), and free (-1) respectively. Because the pREPC+ compo-
nent calls the pHILE+ component, and the pHILE+ component calls the pNA+ com-
ponent (if NFS is in use), these services must be called in the correct order. Below is
a sample code fragment that a task can use to delete itself:

fclose(0); /* close pREPC+ files */
close_f(0); /* return pHILE+ resources */
close(0); /* return pNA+ resources */
free((void *) -1); /* return pREPC+ resources */
t_delete(0); /* and commit suicide */

Obviously, calls to components not in use should be omitted.
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Because only the task to be deleted can make the necessary close calls, the simplest
way to delete a task is to restart the task, passing arguments to it that indicate that
the task should delete itself. (Of course, the task code must be written to check its
arguments and behave accordingly.)

2.14.2 Restarting Tasks That Use Components

The pSOS+ kernel allows a task to be restarted regardless of its current state. Check
the sections in this manual for each component to determine its behavior on task
restart.

It is possible to restart a task while the task is executing code within the compo-
nents themselves. Consider the following example:

1. Task A makes a pHILE+ call.

2. While executing pHILE+ code, task A is preempted by task B.

3. Task B then restarts task A.

In such situations, the pHILE+ component will correctly return resources as re-
quired. However, a file system volume might be left in an inconsistent state. For ex-
ample, if t_restart  interrupts a create_f  operation, a file descriptor (FD) might
have been allocated but not the directory entry. As a result, an FD could be perma-
nently lost. But, the pHILE+ component is aware of this danger, and returns a
warning, via the t_restart . When such a warning code is received from the
pHILE+ component, verify_vol  should be used to detect and correct any resulting
volume inconsistencies.

All components are notified of task restarts, so expect such warnings from any of
them.
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pSOS+m Multiprocessing Kernel
The pSOS+m real-time multiprocessing operating system kernel is the multipro-
cessing version of the pSOS+ real-time multitasking operating system kernel. It ex-
tends many of the pSOS+ system calls to operate seamlessly across multiple
processing nodes.

This chapter is designed to supplement the information provided in Chapter 2. It
covers those areas in which the functionality of the pSOS+m kernel differs from that
of the pSOS+ kernel.

3.1 System Overview

The pSOS+m kernel is designed so that tasks that make up an application can re-
side on several processor nodes and still exchange data, communicate, and syn-
chronize exactly as if they are running on a single processor. To support this, the
pSOS+m kernel allows system calls to operate across processor boundaries, system-
wide. Processing nodes can be connected via any type of connection; for example,
shared memory, message-based buses, or custom links, to name a few.

The pSOS+m kernel is designed for functionally-divided multiprocessing systems.
This is the best model for most real-time applications, given the dedicated nature of
such applications and their need for deterministic behavior. Each processor exe-
cutes and manages a separate, often distinct, set of functions. Typically, the decom-
position and assignment of functions is done prior to runtime, and is thus
permanent (as opposed to task reassignment or load balancing).
3-1



pSOS+m Multiprocessing Kernel pSOSystem System Concepts
The latest version of the pSOS+m kernel incorporates facilities that support the fol-
lowing:

3.2 Software Architecture

The pSOS+m kernel implements a master - slave architecture. As shown in
Figure 3-1, every pSOS+m system must have exactly one node, called the master
node, which manages the system and coordinates the activities of all other nodes,
called slave nodes. The master node must be present when the system is initialized
and must remain in the system at all times. In addition to the master, a system may
have anywhere between zero and 16382 slave nodes. Unlike the master node, slave
nodes may join, exit, and rejoin the system at any time.

The pSOS+m kernel itself is entirely hardware independent. It makes no assump-
tions about the physical media connecting the processing nodes, or the topology of
the connection. This interconnect medium can be a memory bus, a network, a cus-
tom link, or a combination of the above. To perform interprocessor communication,
the pSOS+m kernel calls a user-provided communication layer called the Kernel In-
terface (KI). The interface between the pSOS+m kernel and the KI is standard and
independent of the interconnect medium.

In addition to the KI and the standard pSOS+ Configuration Table, pSOS+m re-
quires a user-supplied Multiprocessor Configuration Table (MPCT) that defines ap-
plication-specific parameters.

Soft Fail A processing node can suffer a hardware or software fail-
ure, and other nodes will continue running.

Hot Swap New nodes can be inserted or removed from a system with-
out shutting down.
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3.3 Node Numbers

Every node is identified by a user-assigned node number. A node number must be
unique; that is, no two nodes can have the same number. Node numbers must be
greater than or equal to 1 and less than or equal to the maximum node number
specified in the Multiprocessor Configuration Table entry mc_nnode . Because node
numbers must be unique, mc_nnode  also determines the maximum number of
nodes that can be in the system; its value should be greater than 1 and less than or
equal to 16383. However, a system may have less than mc_nnode  nodes if not all
node numbers are in use.

Node number 1 designates the master node. All other nodes are slave nodes. One
node in your system must be assigned node number 1.

pSOS+m
MASTER

#1

KI

pSOS+m
SLAVE

#n

KI

pSOS+m
SLAVE

#m

KI

APPLICATION

FIGURE 3-1 pSOS+m Layered Approach
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3.4 Objects

pSOS+ is an object-oriented kernel. Object classes include tasks, memory regions,
memory partitions, message queues, and semaphores. In a pSOS+m multiprocessor
system, the notion of objects transcends node boundaries. Objects (e.g. a task or
queue) can be reached or referenced from any node in the system exactly and as
easily as if they are all running on a single CPU.

3.4.1 Global Objects

On every object-creation system call, there is a flag parameter, XX_GLOBAL, which
can be used to declare that the object will be known globally to all other nodes in the
system. XX is short for the actual object. For example, task, message queue, and
semaphore objects can be declared as global by using T_GLOBAL, Q_GLOBAL, and
SM_GLOBAL, respectively. Memory partitions can also be declared as global, al-
though this is useful only in a shared memory multiprocessor system where the
partition is contained in an area addressable by multiple nodes. Memory region ob-
jects can only be local.

An object should be exported only if it will be referenced by a node other than its
node of residence, because an exported (i.e. global) object requires management and
storage not only on the resident node but also on the master node.

3.4.2 Object ID

Each object, local or global, is known system-wide by two identities — a user-as-
signed 32-bit name and a unique pSOS-assigned 32-bit run-time ID. This ID, when
used as input on system calls, is used by the pSOS+m kernel to locate the object’s
node of residence as well as its control structure on that node.

This notion of a system-wide object ID is a critical element that enables pSOS+m
system calls to be effective system-wide; that is, transparently across nodes. The ap-
plication program never needs to possess any explicit knowledge, a priori or ac-
quired, regarding an object’s node of residence.

3.4.3 Global Object Tables

Every node running the pSOS+ kernel or the pSOS+m kernel has a Local Object Ta-
ble that contains entries for local objects. In a multiprocessor system, every node
also has a Global Object Table. A slave node’s Global Object Table contains entries
for objects that are resident on the slave node and exported for use by other nodes.
The master node’s global object table contains entries for every exported object in
the system, regardless of its node of residence.
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On a slave node, when an object is created with the XX_GLOBAL option, the pSOS+m
kernel enters its name and ID in the Global Object Table on the object’s node of res-
idence. In addition, the pSOS+m kernel passes the object’s name and ID to the mas-
ter node for entry in the master node’s Global Object Table.

Thus, every global object located on a slave node has entries in two Global Object
Tables — the one on its node of residence, and the one on the master node. On the
master node, when an object is created with the XX_GLOBAL option, the global ob-
ject’s name and ID are simply entered in the master node’s Global Object Table.

Similar operations occur when a global object is deleted. When a global object is de-
leted, it is removed from the master node’s Global Object Table and its own node’s
Global Object Table if the object resides on a slave node.

The maximum number of objects (of all types) that can be exported is specified by
the Multiprocessor Configuration Table entry, mc_nglbobj . During pSOS+m kernel
initialization, this entry is used to pre-allocate storage space for the Global Object
Table. Note that the master node’s Global Object Table is always much larger than
Global Object Tables on slave nodes.

Formulae for calculating the sizes and memory usage of Global Object Tables are
provided in the “Memory Usage” chapter of the pSOSystem Programmer’s Reference.

3.4.4 Ident Operations on Global Objects

The pSOS+m Object Ident system calls (e.g. t_ident  or q_ident ) perform run-time
binding by converting an object’s name into the object’s ID. This may require
searching the object tables on the local node and/or the Global Object Table on the
master node. To search the master node’s Global Object Table, slave nodes must
post an IDENT request to the master node. On receiving this request, the pSOS+m
kernel on the master node searches its Global Object Table and replies to the slave
node with the object’s ID, or an indication that the object does not exist.

Because objects created and exported by different nodes may not have unique
names, the result of this binding may depend on the order and manner in which the
object tables are searched. The table search order may be modified using the node
input parameter to the Object Ident system calls. In particular,

1. If node  equals 0, the pSOS+m kernel first searches the Local Object Table and
then the Global Object Table on the caller’s node. If the object is not found, a
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request is posted to the master node, which searches its Global Object Table,
beginning with objects exported by node number 1, then node 2, and so on.

2. If node  equals the local node’s node number, then the pSOS+m kernel searches
the Global Object Table on the local node only.

3. If node  is not equal to the local node number, a request is posted to the master
node, which searches its Global Object Table for objects created and exported
by the specified node.

Typically, object binding is a one-time only, non-time-critical operation executed as
part of setting up the application or when adding a new object.

3.5 Remote Service Calls

When the pSOS+m kernel receives a system call whose target object ID indicates
that the object does not reside on the node from which the call is made, the
pSOS+m kernel will process the system call as a remote service call (RSC).

In general, an RSC involves two nodes. The source node is the node from which the
system call is made. The destination node is the node on which the object of the sys-
tem call resides. To complete an RSC, the pSOS+m kernels on both the source and
destination nodes must carry out a sequence of well-coordinated actions and ex-
change a number of internode packets.

There are two types of RSC, synchronous and asynchronous. Each is described in
the following sections.

3.5.1 Synchronous Remote Service Calls

A synchronous RSC occurs whenever any of the following pSOS+m service calls are
directed to an object that does not reside on the local node:

as_send() ev_send()

q_broadcast() q_vbroadcast()

q_receive() q_vreceive()

q_send() q_vsend()

q_urgent() q_vurgent()

pt_getbuf() pt_retbuf()

sm_p() sm_v()
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Consider what happens when a task calls q_send  to send a message to a queue on
another node:

1. On the source node, the pSOS+m kernel receives the call, deciphers the QID,
and determines that this requires an RSC;

2. The pSOS+m kernel calls the Kernel Interface (KI) to get a packet buffer, loads
the buffer with the q_send  information, and calls the KI to send the packet to
the destination node;

3. If the KI delivers the packet successfully, the pSOS+m kernel blocks the calling
task, and then switches to run another task;

4. Meanwhile, on the destination node, its KI senses an incoming packet (typically
from an ISR), and calls the pSOS+m Announce-Packet entry;

5. When the KI’s ISR exits, pSOS+m calls the KI to receive the packet, deciphers its
contents, and generates an internal q_send  call to deliver the message to the
resident target queue;

6. If the q_send  call is successful, then the pSOS+m kernel uses the packet buffer
it received in Step 5 to build a reply packet, and calls KI to send the packet to
the source node;

7. If the KI delivers the reply packet successfully, the pSOS+m kernel simply exe-
cutes a normal dispatch to return to the user’s application;

8. Back on the source node, its KI senses an incoming packet (typically from an
ISR), and calls the pSOS+m Announce-Packet entry;

9. When the KI ISR exits, the pSOS+m kernel calls the KI to receive the packet, de-
ciphers its contents, recognizes that it is a normal conclusion of an RSC, re-
turns the packet buffer, unblocks the calling task, and executes a normal
dispatch to return to the application.

This example shows a completely normal operation. If there is any error or abnor-
mal condition at any level, the results may vary from a system shutdown to an error
code being returned to the caller.

t_getreg() t_setreg()

t_resume() t_suspend()

t_setpri()
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Certain pSOS+m system calls are not supported as RSCs. Most of these are ex-
cluded because they can never be RSCs — for instance, calls that can only be self-
directed at the calling task (for example, t_mode , ev_receive , and tm_wkafter ).
tm_set  and tm_get  are not supported because they affect resources, in this case
time, that are otherwise strictly local resources.

Some calls are excluded because their implementation as RSCs would have meant
compromises in other important respects. At present, object creation and deletion
calls are not supported, for performance and robustness reasons. Notice that every
system call that may be useful for communication, synchronization, and state con-
trol is included.

Furthermore, note that RSCs are supported only if they are called from tasks. Calls
from ISRs are illegal because the overhead associated with internode communica-
tion makes it unacceptable for use from an ISR.

In summary, in the event of an RSC, the pSOS+m kernel on the source and destina-
tion nodes use their respective KI to exchange packets which, in a manner com-
pletely transparent to the user’s application, “bridge the gap” between the two
nodes.

3.5.2 Asynchronous Remote Service Calls

When a task makes a synchronous remote service call, the task is blocked until a
reply is received from the destination node. This allows errors and return values to
be returned to the calling task and is essential to transparent operation across
nodes. However, some service calls such as q_send()  return only an error code and
if the caller knows an error is not possible, then waiting for a reply needlessly delays
execution of the calling task and consumes CPU resources with the processing of
two context switches, as the task blocks and then unblocks.

For faster operation in these cases, the pSOS+m kernel offers asynchronous ver-
sions for the following pSOS+ system calls:

pSOS+ Synchronous
Service

pSOS+m Asynchronous
Call

q_send() q_asend()

q_urgent() q_aurgent()

q_vsend() q_avsend()

q_vurgent() q_avurgent()
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Asynchronous calls operate like their synchronous counterparts, except that the
calling task does not wait for a reply and the destination node does not generate
one.

An asynchronous RSC should be used only when an error is not expected. If an er-
ror occurs, however, the pSOS+m kernel on the destination node will send a packet
to the source node describing the error. Because the state of the calling task is un-
known (e.g. it may have been deleted), the source pSOS+m kernel does not attempt
to directly notify the calling task. Instead, it checks for a user-provided callout rou-
tine by examining the Multiprocessor Configuration Table entry mc_asyncerr . If
provided, this routine is called.

The mc_asyncerr  callout routine is passed two parameters. The first parameter is
the function code of the asynchronous service that generated the error, and the sec-
ond parameter is the task ID of the task that made the erroneous call. What
mc_asyncerr  does is up to the user. However, a normal sequence of events is to
perform further error analysis and then shut down the node with a k_fatal()  call.
Other alternatives are to delete or restart the calling task, send an ASR or event to
the calling task, or ignore the error altogether.

If an mc_asyncerr  routine is not provided (mc_asyncerr = 0 ), pSOS+m generates
an internal fatal error.

Note that an asynchronous service may operate on a local object. In this case, the
call is performed synchronously because all relevant data structures are readily
available. Nonetheless, should an error occur, it is handled as if the object were re-
mote. Thus, mc_asyncerr  is invoked and no error indication is returned to the
caller. This provides consistent behavior regardless of the location of the referenced
object.

Asynchronous calls are only supported in the pSOS+m kernel. If called when using
the pSOS+ kernel (the single processor version), an error is returned.

sm_v() sm_av()

ev_send() ev_asend()

pSOS+ Synchronous
Service

pSOS+m Asynchronous
Call
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3.5.3 Agents

Certain RSCs require waiting at an object on a remote node. For example,
q_receive  and sm_p may require the calling task to wait for a message or sema-
phore, respectively. If the message queue or semaphore is local, then the pSOS+m
kernel simply enqueues the calling task’s TCB to wait at the object. What if the ob-
ject is not local?

Suppose the example in section 3.5.1 involves a q_receive , not a q_send , call.
The transaction sequence is identical, up to when the destination node’s pSOS+m
kernel deciphers the received packet, and recognizes the q_receive . The pSOS+m
kernel uses a pseudo-object, called an Agent, to generate the q_receive  call to the
target queue. If the queue is empty, then the Agent’s Control Block, which resem-
bles a mini-TCB, will be queued at the message wait queue. The destination node
then executes a normal dispatch and returns to the application.

Later, when a message is posted to the target queue, the Agent is dequeued from the
message wait queue. The pSOS+m kernel uses the original RSC packet buffer to
hold a reply packet containing among other things the received message; it then
calls the KI to send the reply packet back to the source node. The Agent is released
to the free Agent pool, and all remaining transactions are again identical to that for
q_send .

In summary, Agents are used to wait for messages or semaphores on behalf of the
task that made the RSC. They are needed because the calling tasks are not resident
on the destination node, and thus not available to perform any waiting function.

The Multiprocessor Configuration Table entry, mc_nagent , specifies the number of
Agents that the pSOS+m kernel will allocate for that node. Because one Agent is
used for every RSC that requires waiting on the destination node, this parameter
must be large enough to support the expected worst case number of such RSCs.

3.5.4 RSC Overhead

In comparison to a system call whose target object is resident on the node from
which the call is made, an RSC requires several hidden transactions between the
pSOS+m kernel and the KI both on the source and destination nodes, not to men-
tion the packet transit times. The exact measure of this overhead depends largely on
the connection medium between the source and destination nodes.

If the medium is a memory bus, the KI operations will be quite fast, as is the packet
transit time. On the other hand, if the medium is a network, especially one that
uses a substantial protocol, the packet transit times may take milliseconds or more.
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3.6 System Startup and Coherency

The master node must be the first node started in a pSOS+m multiprocessor sys-
tem. After the master node is up and running, other nodes may then join. A slave
node should not attempt to join until the master node is operational and it is the
user’s responsibility to ensure that this is the case. In a system in which several
nodes are physically started at the same time (for example, when power is applied to
a VME card cage) this is easily accomplished by inserting a small delay in the star-
tup code on the slave nodes. Alternately, the ki_init  service can delay returning to
the pSOS+m kernel until it detects that the master node is properly initialized and
operational.

Slave nodes may join the system any time after the master node is operational. Join-
ing requires no overt action by application code running on the slave node. The
pSOS+m kernel automatically posts a join request to the master node during its ini-
tialization process. On the master node, the pSOS+m kernel first performs various
coherency checks to see if the node should be allowed to join (see below) and if so,
grants admission to the new node. Finally, it notifies other nodes in the system that
the new node has joined.

For a multiprocessor pSOS+m system to operate correctly, the system must be co-
herent. That is, certain Multiprocessor Configuration Table parameters must have
the same value on every node in the system. In addition, the pSOS+m kernel ver-
sions on each node must be compatible. There are four important coherency checks
that are performed whenever a slave node joins:

1. The pSOS+m kernel version on each slave node must be compatible with the
master node.

2. The maximum number of nodes in the system as specified in the Multiprocessor
Configuration Table entry mc_nnode  must match the value specified on the
master node.

3. The maximum number of global objects on the node as specified by the Multi-
processor Configuration Table entry mc_nglbobj  must match the value speci-
fied on the master node.

4. The maximum packet size that can be transmitted by the KI as specified by the
Multiprocessor Configuration Table entry mc_kimaxbuf  must match the value
specified on the master node.

All of the above conditions are checked by the master node when a slave node at-
tempts to join. If any condition is not met, the slave node will not be allowed to join.
The slave node then aborts with a fatal error.
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Joining nodes must observe one important timing limitation. In networks with
widely varying transmission times between nodes, it is possible for a node to join the
system, obtain the ID of an object on a remote node and post an RSC to that object,
all before the object’s node of residence has been notified that the new node has
joined. When this occurs, the destination node simply ignores the RSC. This may
cause the calling task to hang or, if the call was asynchronous, to proceed believing
the call was successful.

To prevent such a condition, a newly joining node must not post an RSC to a remote
node until a sufficient amount of time has elapsed to ensure the remote node has
received notification of the new node’s existence.

In systems with similar transmission times between all master and slave nodes, no
special precautions are required, because all slaves would be informed of the new
node well before the new node could successfully IDENT the remote object and post
an RSC.

In systems with dissimilar transmission times, an adequate delay should be intro-
duced in the ROOT task. The delay should be roughly equal to the worst case trans-
mission time from the master to a slave node.

3.7 Node Failures

As mentioned before, the master node must never fail. In contrast, slave nodes may
exit a system at any time. Although a node may exit for any reason, it is usually a
result of a hardware or software failure. Therefore, this manual refers to a node that
stops running for any reason as a failed node.

The failure of a node may have an immediate and substantial impact on the opera-
tion of remaining nodes. For example, nodes may have RSCs pending on the failed
node, or there may be agents waiting on behalf of the failed node. As such, when a
node fails, all other nodes in the system must be notified promptly, so corrective ac-
tion can be taken.

The following paragraphs explain what happens when a node fails or leaves a sys-
tem. In general, the master node is responsible for coordinating the graceful removal
of a failed node. There are three ways that a master may learn of a node failure:

1. The pSOS+m kernel on the failing node internally detects a fatal error condition,
which causes control to pass to its fatal error handler. The fatal error handler
notifies the master and then shuts itself down (as described in Chapter 2).

2. An application calls k_fatal()  (without the K_GLOBALattribute). On a slave
node, control is again passed to the pSOS+m internal fatal error handler, which
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notifies the master node and then shuts itself down by calling the user-supplied
fatal error handler. See section 2.13.

3. An application on any node (not necessarily the failing node) calls
k_terminate() , which notifies the master.

Upon notification of a node failure, the master does the following:

1. First, if notification did not come from the failed node, the master sends a shut-
down packet to the failed node. If the failed node receives it (that is, it has not
completely failed yet), it performs the shutdown procedure as described in
Chapter 2.

2. Second, it sends a failure notification packet to all remaining slave nodes.

3. Lastly, it removes all global objects created by the failed node from its global ob-
ject table.

The pSOS+m kernel on all nodes, including the master, perform the next 4 steps af-
ter receiving notification of a node failure:

1. The pSOS+m kernel calls the Kernel Interface (KI) service ki_roster  to notify
the KI that a node has left the system.

2. The pSOS+m kernel calls the user-provided routine pointed to by the Multipro-
cessor Configuration Table entry mc_roster  to notify the application that a
node has left the system.

3. All agents waiting on behalf of the failed node are recovered.

4. All tasks waiting for RSC reply packets from the failed node are awakened and
given error ERR_NDKLD, indicating that the node failed while the call was in
progress.

After all of the above steps are completed, unless notified by your mc_roster  rou-
tine, it is possible that your application code may still use object IDs for objects that
were on the failed node. If this happens, the pSOS+m kernel returns the error
ERR_STALEID.

3.8 Slave Node Restart

A node that has failed may subsequently restart and rejoin the system. The
pSOS+m kernel treats a rejoining node exactly like a newly joining node, that is, as
described in section 3.6. In fact, internally, the pSOS+m kernel does not distinguish
between the two cases. However, a rejoining node introduces some special consider-
ations that are discussed in the following subsections.
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3.8.1 Stale Objects and Node Sequence Numbers

Recall from section 3.7 that when a node exits, the system IDs for objects on the
node may still be held by task level code. Such IDs are called stale IDs. So long as
the failed node does not rejoin, detection of stale IDs is trivial because the node is
known not to be in the system. However, should the failed node rejoin, then, in the
absence of other protection mechanisms, a stale ID could again become valid. This
might lead to improper program execution.

To guard against use of stale IDs after a failed node has rejoined, every node is as-
signed a sequence number. The master node is responsible for assigning and main-
taining sequence numbers. A newly joining node is assigned sequence number = 1
and the sequence number is incremented thereafter each time the node rejoins. All
object IDs contain both the node number and sequence number of the object’s node
of residence. Therefore, a stale ID is easily detected by comparing the sequence
number in the ID to the current sequence number for the node.

Object IDs are 32-bit unsigned integers. Because only 32 bits are available in a node
number, the number of bits used to encode the sequence number depends on the
maximum number of nodes in the system as specified in the Multiprocessor Config-
uration Table entry mc_nnode . If mc_nnode  is less than 256, then 8 bits are used to
encode the sequence number and the maximum sequence number is 255. If
mc_nnode  is greater than or equal to 256, then the number of bits used to encode
the sequence number is given by the formula

16 - ceil(log 2(mc_nnode + 1))

For example, in a system with 800 nodes, 6 bits would be available for the sequence
number and the maximum sequence number would therefore be 63. In the largest
possible system (recall mc_nnode  may not exceed 16383), there would be 2 bits
available to encode the sequence number.

Once a node’s sequence number reaches the maximum allowable value, the next
time the node attempts to rejoin, the action taken by the pSOS+m kernel depends
on the value of the Multiprocessor Configuration Table entry mc_flags on the re-
joining slave node. If the SEQWRAP bit is not set, then the node will not be allowed to
rejoin. However, if SEQWRAP is set, then the sequence number will wrap around to
one. Because this could theoretically allow a stale ID to be reused, this option
should be used with caution.
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3.8.2 Rejoin Latency Requirements

When a node fails, considerable activity occurs on every node in the system to en-
sure that the node is gracefully removed from the system. If the node should rejoin
too soon after failing, certain inter-nodal activities by the new instantiation of the
node may be mistakenly rejected as relics of the old instantiation of the node.

To avoid such errors, a failed node must not rejoin until all remaining nodes have
been notified of the failure and have completed the steps described in section 3.7. In
addition, there must be no packets remaining in transit in the KI, either to or from
the failed node, or reporting failure of the node, or awaiting processing at any node.
This is usually accomplished by inserting a small delay in the node’s initialization
code. For most systems communicating through shared memory, a delay of 1 sec-
ond should be more than adequate.

3.9 Global Shutdown

A global shutdown is a process whereby all nodes stop operating at the same time. It
can be caused for two reasons:

1. A fatal error occurred on the master node.

2. A k_fatal()  call was made with the K_GLOBALattribute set. In this case, the
node where the call was made notifies the master node.

In either case, the master node then sends every slave node a shutdown packet. All
nodes then perform the normal pSOS+m kernel shutdown procedure.

3.10 The Node Roster

On every node, the pSOS+m kernel internally maintains an up-to-date node roster
at all times, which indicates which nodes are presently in the system. The roster is a
bit map encoded in 32-bit (long word) entries. Thus, the first long word contains bits
corresponding to nodes 1 - 32, the second nodes 33 - 64, etc. Within a long word,
the rightmost (least significant) bit corresponds to the lowest numbered node.

The map is composed of the minimum number of long words needed to encode a
system with mc_nnode , as specified in the Multiprocessor Configuration Table.
Therefore, some bits in the last long word may be unused.

Application code and/or the KI may also need to know which nodes are in the sys-
tem. Therefore, the pSOS+m kernel makes its node roster available to both at sys-
tem startup and keeps each informed of any subsequent roster changes. The
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application is provided roster information via the user-provided routine pointed to
by the Multiprocessor Configuration Table entry mc_roster . The KI is provided ros-
ter information via the KI service ki_roster . For more information on KI service
calls or the Multiprocessor Configuration Table, see the “Configuration Tables”
chapter of the pSOSystem Programmer’s Reference.

3.11 Dual-Ported Memory Considerations

Dual-ported memory is commonly used in memory-bus based multiprocessor sys-
tems. However, it poses several unique problems to the software: any data structure
in dual-ported memory has two addresses, one for each port. Consider the problem
when one processor node passes the address of a data structure to a second node. If
the data structure is in dual-ported memory, the address may have to be translated
before it can be used by the target node, depending on whether or not the target
node accesses this memory through the same port as the sender node.

To overcome this confusion over the duality of address and minimize its impact on
user application code, the pSOS+m kernel includes facilities that perform address
conversions. But first, a few terminology definitions.

3.11.1 P-Port and S-Port

A zone is a piece of contiguously addressable memory, which can be single or dual
ported. The two ports of a dual-ported zone are named the p-port and the s-port. The
(private) p-port is distinguishable in that it is typically reserved for one processor
node only. The (system) s-port is normally open to one or more processor nodes.

In a typical pSOS+m configuration, the multiple nodes are tied via a system bus,
e.g. VME or Multibus. In this case, each dual-ported zone’s s-port would be inter-
faced to the system bus, and each p-port would be connected to one processor node
via a private bus that is usually, but not necessarily, on the same circuit board.

If a node is connected to the p-port of a dual-ported zone, then three entries in its
pSOS+m Multiprocessor Configuration Table must be used to describe the zone.
mc_dprext  and mc_dprint  specify the starting address of the zone, as seen from
the s-port and the p-port, respectively. mc_dprlen  specifies the size of the zone, in
bytes. In effect, these entries define a special window on the node’s address space.
The pSOS+m kernel uses these windows to perform transparent address conver-
sions for the user’s application.
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If a node is not connected to any dual-ported zone, or accesses dual-ported zones
only through their s-ports, then the three configuration table entries should be set
to 0. Notice that the number of zones a processor node can be connected to via the
p-port is limited to one.

NOTE:A structure (user or pSOS+m) must begin and end in a dual port zone. It
must not straddle a boundary between single and dual ported memory.

3.11.2 Internal and External Address

When a node is connected to a dual-ported zone, any structure it references in that
zone, whether it is created by the user’s application code or by the pSOS+ kernel
(e.g. a partition buffer), is defined to have two addresses:

1. The internal address is defined as the address used by the node to access the
structure. Depending on the node, this may be the p-port or the s-port address
for the zone.

2. The external address is always the s-port address.

3.11.3 Usage Within pSOS+m Services

Any address in a dual ported zone used as input to the pSOS+m kernel or entered in
a Configuration Table must be an internal address (to the local node). Similarly,
when a pSOS+m system call outputs an address that is in a dual ported zone, it will
always be an internal address to the node from which the call is made.

Consider in particular a partition created in a dual ported zone and exported to en-
able shared usage by two or more nodes. A pt_getbuf  call to this partition auto-
matically returns the internal address of the allocated buffer. In other words, the
pSOS+m kernel always returns the address that the calling program can use to ac-
cess the buffer. If the calling node is tied to the zone’s p-port, then the returned in-
ternal address will be the p-port address. If the calling node is tied to the s-port,
then the returned internal address will be the s-port address.
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3.11.4 Usage Outside pSOS+

Often, operations in dual-ported zones fall outside the context of the pSOS+ kernel.
For example, the address of a partition buffer or a user structure may be passed
from one node to another within the user’s application code. If this address is in a
dual ported zone, then the two system calls, m_int2ext  and m_ext2int , may need
to be used to perform a necessary address conversion.

Observe the following rule:

When an address within a dual-port zone must be passed from one node to another,
then pass the external address.

The procedure is quite simple. Because the sending node always knows the internal
address, it can call m_int2ext  to first convert it to the external address. On the re-
ceiving node, m_ext2int  can be used to convert and obtain the internal address for
that node.
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Network Programming
4.1 Overview of Networking Facilities

pSOSystem real-time operating system provides an extensive set of networking facil-
ities for addressing a wide range of interoperability and distributed computing re-
quirements. These facilities include

TCP/IP Support - pSOSystem’s TCP/IP networking capabilities are constructed
around the pNA+ software component. pNA+ includes TCP, UDP, IP, ICMP,
IGMP, and ARP accessed through the industry standard socket programming
interface. pNA+ offers services to application developers as well as to other pSO-
System networking options such as RPC, NFS, FTP, and so forth.

pNA+ fully supports level 2 IP multicast as specified in RFC 1112, including an
implementation of IGMP.

pNA+ supports unnumbered point-to-point links as specified in the IP router re-
quirements in RFC 1716.

In addition, pNA+ supports the Management Information Base for Network
Management of TCP/IP-based Internets (MIB-II) standard. pNA+ also works in
conjunction with pSOSystem cross development tools to provide a network-
based download and debug environment for single- or multi-processor target
systems.

SNMP — Simple Network Management Protocol, is a standard used for manag-
ing TCP/IP networks and network devices. Because of its flexibility and avail-
ability, SNMP has become the most viable way to manage large, heterogeneous
networks containing commercial or custom devices.
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FTP, Telnet, TFTP — pSOSystem environment includes support for the well
known internet protocols File Transfer Protocol (FTP) and Telnet (client and
server side), and Trivial File Transfer Protocol (TFTP).    FTP client allows you to
transfer files to and from remote systems. FTP server allows remote users to
read and write files from and to pHILE+ managed devices. Telnet client enables
you to login to remote systems, while Telnet server offers login capabilities to
the pSOSystem shell, pSH, from remote systems. TFTP is used in pSOSystem
Boot ROMs and is normally used to boot an application from a network device.

RPCs — pSOSystem fully supports Sun Microsystems’ Remote Procedure Call
(RPC) and eXternal Data Representation (XDR) specifications via the pRPC+
software component. The pRPC+ component allows you to construct distributed
applications using the familiar C procedure call paradigm. With the pRPC+
component, pSOS+ tasks and UNIX processes can invoke procedures for execu-
tion on other pSOSystem or UNIX machines.

NFS — pSOSystem environment offers both Network File System (NFS) client
and NFS server support. NFS server allows remote systems to access files stored
on pHILE+ managed devices. NFS client facilities are part of the pHILE+ compo-
nent and allow your application to transparently access files stored on remote
storage devices.

STREAMS — is an extremely flexible facility for developing system communica-
tion services. It can be used to implement services ranging from complete net-
working protocol suites to individual device drivers. Many modern networking
protocols, including Windows NT and UNIX System V Release 4.2 networking
services, are implemented in a STREAMS environment. pSOSystem offers a
complete System V Release 4.2 compatible STREAMS environment called OpEN
(Open Protocol Embedded Networking).

The following documents published by Prentice Hall provide more detailed infor-
mation on UNIX System V Release 4.2:

● Operating System API Reference (ISBN# 0-13-017658-3)

● STREAMS Modules and Drivers (ISBN# 0-13-066879-6)

● Network Programming Interfaces (ISBN# 0-13-017641-9)

● Device Driver Reference (ISBN# 0-13-042631-8)

This chapter describes the pNA+ and pRPC+ network components. The FTP, Telnet,
pSH, TFTP, and NFS server facilities are documented in the “System Services” chap-
ter of the pSOSystem Programmer’s Reference. NFS client services are described
along with the pHILE+ component in Chapter 5.
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Detailed information on SNMP is available in the SNMP User‘s Guide, and STREAMS
is documented in the OpEN User’s Guide, which describes the pSOSystem OpEN
(Open Protocol Embedded Networking) product.

4.2 pNA+ Software Architecture

pNA+ is organized into four layers. Figure 4-1 illustrates the architecture and how
the protocols fit into it.

The socket layer provides the application programming interface. This layer provides
services, callable as re-entrant procedures, which your application uses to access
internet protocols; it conforms to industry standard UNIX 4.3 BSD socket syntax
and semantics. In addition, this layer contains enhancements specifically for em-
bedded real-time applications.

The transport layer supports the two Internet Transport protocols, Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP). These protocols provide
network independent transport services. They are built on top of the Internet Proto-
col (IP).

Application

Socket Layer

IP/ARP

Network Interfaces

FIGURE 4-1  pNA+ Architecture

ICMP IGMP UDP TCP
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TCP provides reliable, full-duplex, task-to-task data stream connections. It is based
on the internet layer, but adds reliability, flow control, multiplexing, and connec-
tions to the capabilities provided by the lower layers.

UDP provides a datagram mode of packet-switched communication. It allows users
to send messages with a minimum of protocol overhead. However, ordered, reliable
delivery of data is not guaranteed.

The IP layer is used for transmitting blocks of data called datagrams. This layer pro-
vides packet routing, fragmentation and reassembly of long datagrams through a
network or internet. Multicast IP support is implemented in the IP layer.

The Network Interface (NI) layer isolates the IP layer from the physical characteris-
tics of the underlying network medium. It is hardware dependent and is responsible
for transporting packets within a single network. Because it is hardware dependent,
the network interface is not part of pNA+ proper. Rather, it is provided by the user,
or by ISI as a separate piece of software.

In addition to the protocols described, pNA+ supports the Address Resolution Proto-
col (ARP), the Internet Control Message Protocol (ICMP), and the Internet Group
Management Protocol (IGMP).

ICMP is used for error reporting and for other network-management tasks. It is lay-
ered above IP for input and output operations, but it is logically a part of IP, and is
usually not accessed by users. See Section 4.16, ‘‘Internet Control Message Protocol
(ICMP).’’

IGMP is used by IP nodes to report their host group memberships to any immedi-
ately-neighboring multicast routers. IGMP is layered above IP for input and output
operations, but it is an integral part of IP. It is required to be implemented by hosts
conforming to level 2 of the IP multicasting specification in RFC 1112. See
Section 4.17, ‘‘Internet Group Management Protocol (IGMP).”

ARP is used to map internet addresses to physical network addresses; it is de-
scribed in Section 4.12.2, ‘‘Address Resolution Protocol (ARP).’’

4.3 The Internet Model

pNA+ operates in an internet environment. An internet is an interconnected set of
networks. Each constituent network supports communication among a number of
attached devices or nodes. In addition, networks are connected by nodes that are
called gateways. Gateways provide a communication path so that data can be ex-
changed between nodes on different networks.
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Nodes communicate by exchanging packets. Every packet in transit through an in-
ternet has a destination internet address, which identifies the packet’s final destina-
tion. The source and destination nodes can be on the same network (i.e. connected),
or they can be on different networks (i.e. indirectly connected). If they are on differ-
ent networks, the packet must pass through one or more gateways.

4.3.1 Internet Addresses

Each node in an internet has at least one unique internet (IP) address. An internet
address is a 32-bit number that begins with a network number, followed by a node
number. There are three formats or classes of internet addresses. The different
classes are distinguished by their high-order bits. The three classes are defined as
A, B and C, with high-order bits of 0, 10, and 110. They use 8, 16, and 24 bits, re-
spectively, for the network part of the address. Each class has fewer bits for the
node part of the address and thus supports fewer nodes than the higher classes.

IP multicast groups are identified by Class D IP addresses, i.e. those with four high-
order bits 1110. The group addresses range from 224.0.0.0 to 239.255.255.255.
Class E IP addresses, i.e. those with 1111 as their high-order four bits, are reserved
for future addressing needs.

Externally, an internet address is represented as a string of four 8-bit values sepa-
rated by dots. Internally, an internet address is represented as a 32-bit value. For
example, the internet address 90.0.0.1 is internally represented as 0x5a000001.
This address identifies node 1 on network 90. Network 90 is a class A network.

In the networking literature, nodes are sometimes called hosts. However, in real-
time systems, the term host is normally used to refer to a development system or
workstation (as opposed to a target system). Therefore, we choose to use the term
node rather than host.

Note that a node can have more than one internet address. A gateway node, for ex-
ample, is attached to at least two physical networks and therefore has at least two
internet addresses. Each internet address corresponds to one node-network con-
nection.

4.3.2 Subnets

As mentioned above, an internet address consists of a network part and a host part.
To provide additional flexibility in the area of network addressing, the notion of sub-
net addressing has become popular, and is supported by the pNA+ component.

Conceptually, subnet addressing allows you to divide a single network into multiple
sub-networks. Instead of dividing a 32-bit internet address into a network part and
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host part, subnetting divides an address into a network part and a local part. The
local part is then sub-divided into a sub-net part and a host part. The sub-division
of the host part of the internet address is transparent to nodes on other networks.

Sub-net addressing is implemented by extending the network portion of an internet
address to include some of the bits that are normally considered part of the host
part. The specification as to which bits are to be interpreted as the network address
is called the network mask. The network mask is a 32-bit value with ones in all bit
positions that are to be interpreted as the network portion.

For example, consider a pNA+ node with an address equal to 128.9.01.01. This ad-
dress defines a Class B network with a network address equal to 128.9. If the net-
work is assigned a network mask equal to 0xffffff00, then, from the perspective of
the pNA+ component, the node resides on network 128.9.01.

A network mask can be defined for each Network Interface (NI) installed in your sys-
tem.

Routes that are added to the pNA+ IP forwarding table can include IP subnet masks.
A default value of the mask is computed internally based on the address class if the
subnet mask is not explicitly specified.

4.3.3 Broadcast Addresses

pNA+ supports various forms of IP broadcast. The underlying interface should sup-
port broadcast. The broadcast packet is sent to the interface using the NI service
ni_broadcast. For more information, see the Network Interface section in the
chapter, “Interfaces and Drivers,” in pSOSystem Programmer’s Reference.

Typically LAN interfaces support broadcasting. Point-to-Point interfaces (numbered
or unnumbered) such as PPP and SLIP are typically not broadcastable interfaces. In
some cases it may be necessary to send a broadcast packet on a Point-to-Point link.
For instance, protocols such as RIP (Routing Internet Protocol) send routing up-
dates using limited broadcast IP packets on Point-to-Point interfaces. For such
cases the MSG_INTERFACE flag should be used to bypass the routing table and va-
lidity checks when sending broadcast packets on Point-to-Point interfaces. Once the
MSG_INTERFACE is specified pNA+ will not interpret the validity of the destination IP
address. The flag causes routing to be bypassed. For non-broadcast interfaces on
which the MSG_INTERFACE flag is used to force the packet to be transmitted, the
packet is sent to the interface using the ni_send  service.
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pNA+ supports four forms of IP broadcast addresses:

1. Limited Broadcast

This is the broadcast address 255.255.255.255. pNA+ sends the data on the
first interface that supports broadcast other than the internal loopback inter-
face.

2. Net-directed Broadcast

The host ID in this broadcast is set to all 1s. For example, consider a Class B
network (not subnetted - network mask is 255.0.0.0) and IP network number
128.1.0.0. A net-directed broadcast to this network would be IP address
128.1.255.255.

3. Subnet-directed Broadcast

The host ID is set to all 1s but there is a subnet ID in the address. For example,
consider a subnetted Class A network with subnet mask 255.255.240.0 and IP
network number 10.10.32.0. The subnet-directed broadcast to this network
would be IP address 10.10.47.255.

4. All-subnets-directed Broadcast

The host ID and the subnet ID are all 1s. For example, consider a subnetted
Class A network with subnet mask 255.255.240.0 and IP network number
10.10.32.0. The all-subnets-directed broadcast to such a network is the IP ad-
dress 10.255.255.255. If the network is not subnetted, it is a net-directed
broadcast.

NOTE:A route must exist to support sending packets to the broadcast address
types 2, 3, and 4. Routing may be bypassed by using the MSG_INTERFACE
flag in the pNA+ socket send calls.

4.3.4 A Sample Internet

Figure 4-2 depicts an internet consisting of two networks.

Note that because node B is on both networks, it has two internet addresses and
serves as a gateway between networks 90 and 100. For example, if node A wants to
send a packet to node D, it sends the packet to node B, which in turn sends it to
node D.
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4.4 The Socket Layer

The socket layer is the programmer’s interface to the pNA+ component.   It is based
on the notion of sockets and designed to be syntactically and semantically compati-
ble with UNIX 4.3 BSD networking services. This section is intended to provide a
brief overview of sockets and how they are used.

4.4.1 Basics

A socket is an endpoint of communication. It is the basic building block for commu-
nication. Tasks communicate by sending and receiving data through sockets.

Sockets are typed according to the characteristics of the communication they sup-
port. The pNA+ component provides three types of sockets supporting three differ-
ent types of service:

■ Stream sockets use the Transmission Control Protocol (TCP) and provide a con-
nection-based communication service. Before data is transmitted between
stream sockets, a connection is established between them.

■ Datagram sockets use the User Datagram Protocol (UDP) and provide a connec-
tionless communication service. Datagram sockets allow tasks to exchange data
with a minimum of protocol overhead. However, reliable delivery of data is not
guaranteed.

Node A

90.0.0.1

Node B

90.0.0.2

100.0.0.3

Node C

100.0.0.4

Node D

100.0.0.5

Network 90

Network 100

FIGURE 4-2 A Sample Internet
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■ Raw sockets provide user level access to the IP, ICMP (see section 4.16), and
IGMP (see section 4.17) layers. This enables you to implement transport proto-
cols (other than TCP/UDP) over the IP layer. They provide connectionless and
datagram communication service.

4.4.2 Socket Creation

Sockets are created via the socket()  system call. The type of the socket (stream,
datagram, or raw) is given as an input parameter to the call. A socket descriptor is
returned, which is then used by the creator to access the socket. An example of
socket()  used to create a stream socket is as follows:

s = socket (AF_INET, SOCK_STREAM, 0);

The returned socket descriptor can only be used by the socket’s creator. However,
the shr_socket()  system call can be used to allow other tasks to reference the
socket:

ns = shr_socket (s, tid);

The parameter s  is a socket descriptor used by the calling task to reference an exist-
ing socket [s  is normally a socket descriptor returned by socket() ]. The parameter
tid  is the task ID of another task that wants to access the same socket.
shr_socket()  returns a new socket descriptor ns , which can be used by tid  to
reference the socket. This system call is useful when designing UNIX-style server
programs.

4.4.3 Socket Addresses

Sockets are created without addresses. Until an address is assigned or bound to a
socket, it cannot be used to receive data. A socket address consists of a user-de-
fined 16-bit port number and a 32-bit internet address. The socket address func-
tions as a name that is used by other entities, such as tasks residing on other nodes
within the internet, to reference the socket.

The bind()  system call is used to bind a socket address to a socket. bind()  takes
as input a socket descriptor and a socket address and creates an association be-
tween the socket and the address specified. An example using bind()  is as follows:

bind (s, addr, addrlen);

A socket typically binds to a local address and port. Server sockets are usually
bound to a wildcard address and a port. The bind()  system call will fail if an at-
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tempt is made to bind to an address/port combination that is already in use by an-
other socket. This is an issue with only UDP and TCP sockets.

The SO_REUSEADDR and SO_REUSEPORT socket options allow local addresses to be
reused by multiple sockets. The following table lists all the cases of binding to local
addresses. The table is reproduced from the book TCP/IP Illustrated Vol II by Wright
and Stevens. Note that the port is the same in all cases.

ip1 and ip2 are local IP addresses, ipmcast  is a multicast address and * stands for
the wildcard address INADDR_ANY.

NOTE:All sockets must enable the SO_REUSEPORT to allow binding on the same
local port. The SO_REUSEPORT is particularly useful for FTP client and
server.

For 2 UDP sockets that are bound to ip1 and the wildcard address respectively, data
arriving for ip2 will be received by the wildcard socket and data arriving for ip1 will
be received by the socket bound to ip1. This means that the wildcard socket will re-
ceive all data except data meant for ip1. (Note that the assumption is that the sock-
ets are not connected.) For 2 UDP sockets that are bound to the same local address,
say ip1, only *one* (unspecified) of the sockets will receive data that is meant for
ip1. Connecting the sockets to different peer addresses/ports will of course help in
narrowing down the search.

The behavior of a UDP socket that is bound to the wildcard address changes if an-
other socket is created that is bound to a specific IP address. Consider the following
example. A UDP socket s1 is created and bound to the wildcard IP address
INADDR_ANY. Data arriving for IP addresses ip1 and ip2 will be received by the wild-

Existing
Protocol Control

Block

Try to bind new
Socket

SO_REUSEADDR SO_REUSEPORT

ONOFF ON

ip1 ip1 Error Error OK

ip1 ip2 OK OK OK

ip1 * Error OK OK

* ip1 Error OK OK

* * Error Error OK

ipmcast ipmcast Error OK OK
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card bound socket s1. A second UDP socket is now created called s2 which is now
bound to the local IP address ip2. Data arriving for ip1 will still be received by the
wildcard bound socket s1. But data arriving for ip2 will now be received by the ip2
bound socket s2, since it is the best matched socket. (Note the assumption in this
example is that both sockets are not connected.)

Consider the case of two UDP sockets that are both bound to local IP address ip1
(using option SO_REUSEADDR above) and are not connected. Data arriving for ip1
could be sent to socket s1 *or* s2. It is not specified which socket will receive the
data unless the sockets are connected. For instance, consider 2 external hosts h1
and h2 sending data to ip1. If s1 is connected to h1 and s2 is connected to h2 then
data arriving from h1 will be received through socket s1 and data arriving from h2
will be received through socket s2. Therefore, connecting the sockets provides more
deterministic behavior.

For incoming multi-cast or broadcast UDP packets, each socket that is bound to the
matching multi-cast, broadcast or wildcard address will receive a copy of the data-
gram. Unless the socket is connected to a non-matching address (port combination).

4.4.4 Connection Establishment

When two tasks wish to communicate, the first step is for each task to create a
socket. The next step depends on the type of sockets that were created. Most often
stream sockets are used; in which case, a connection must be established between
them.

Connection establishment is usually asymmetric, with one task acting as a client
and the other task a server. The server binds an address (i.e. a 32-bit internet ad-
dress and a 16-bit port number) to its socket (as described above) and then uses the
listen()  system call to set up the socket, so that it can accept connection re-
quests from clients. The listen()  call takes as input a socket descriptor and a
backlog  parameter. backlog  specifies a limit to the number of connection requests
that can be queued for acceptance at the socket.

A client task can now initiate a connection to the server task by issuing the con-
nect()  system call. connect()  takes a socket address and a socket descriptor as
input. The socket address is the address of the socket at which the server is listen-
ing. The socket descriptor identifies a socket that constitutes the client’s endpoint
for the client-server connection. If the client’s socket is unbound at the time of the
connect()  call, an address is automatically selected and bound to it.

In order to complete the connection, the server must issue the accept()  system
call, specifying the descriptor of the socket that was specified in the prior listen()
call. The accept()  call does not connect the initial socket, however. Instead, it cre-
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ates a new socket with the same properties as the initial one. This new socket is
connected to the client’s socket, and its descriptor is returned to the server. The ini-
tial socket is thereby left free for other clients that might want to use connect()  to
request a connection with the server.

If a connection request is pending at the socket when the accept()  call is issued, a
connection is established. If the socket does not have any pending connections, the
server task blocks, unless the socket has been marked as non-blocking (see section
4.4.9), until such time as a client initiates a connection by issuing a connect()  call
directed at the socket.

Although not usually necessary, either the client or the server can optionally use the
getpeername()  call to obtain the address of the peer socket, that is, the socket on
the other end of the connection.

The following illustrates the steps described above.

4.4.5 Data Transfer

After a connection is established, data can be transferred. The send()  and recv()
system calls are designed specifically for use with sockets that have already been
connected. The syntax is as follows:

send(s, buf, buflen, flags);

recv(s, buf, buflen, flags);

A task sends data through the connection by calling the send()  system call.
send()  accepts as input a socket descriptor, the address and length of a buffer con-
taining the data to transmit, and a set of flags. A flag can be set to mark the data as
‘‘out-of-band,’’ that is, high-priority, so that it can receive special handling at the far
end of the connection. Another flag can be set to disable the routing function for the
data; that is, the data will be dropped if it is not destined for a node that is directly
connected to the sending node.

SERVER CLIENT

socket(domain, type, protocol); socket(domain, type, protocol);

bind(s, addr, addrlen);

listen(s, backlog); connect(s, addr, addrlen);

accept(s, addr, addrlen);
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The socket specified by the parameter s  is known as the local socket, while the
socket at the other end of the connection is called the foreign socket.

When send()  is called, the pNA+ component copies the data from the buffer speci-
fied by the caller into a send buffer associated with the socket and attempts to
transmit the data to the foreign socket. If there are no send buffers available at the
local socket to hold the data, send()  blocks, unless the socket has been marked as
non-blocking. The size of a socket’s send buffers can be adjusted with the set-
sockopt()  system call.

A task uses the recv()  call to receive data. recv()  accepts as input a socket de-
scriptor specifying the communication endpoint, the address and length of a buffer
to receive the data, and a set of flags. A flag can be set to indicate that the recv()  is
for data that has been marked by the sender as out-of-band only. A second flag al-
lows recv()  to ‘‘peek’’ at the message; that is, the data is returned to the caller, but
not consumed.

If the requested data is not available at the socket, and the socket has not been
marked as non-blocking, recv()  causes the caller to block until the data is re-
ceived. On return from the recv()  call, the server task will find the data copied into
the specified buffer.

4.4.6 Connectionless Sockets

While connection-based communication is the most widely used paradigm, connec-
tionless communication is also supported via datagram or raw sockets. When using
datagram sockets, there is no requirement for connection establishment. Instead,
the destination address (i.e the address of the foreign socket) is given at the time of
each data transfer.

To send data, the sendto()  system call is used:

sendto(s, buf, buflen, flags, to, tolen);

The s , buf , buflen , and flags  parameters are the same as those in send() . The
to  and tolen  values are used to indicate the address of the foreign socket that will
receive the data.

The recvfrom()  system call is used to receive data:

recvfrom(s, buf, buflen, flags, to, tolen);

The address of the data’s sender is returned to the caller via the to  parameter.
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4.4.7 Discarding Sockets

Once a socket is no longer needed, its socket descriptor can be discarded by using
the close()  system call. If this is the last socket descriptor associated with the
socket, then close()  de-allocates the socket control block (see section 4.4.11) and,
unless the LINGER option is set (see section 4.4.8), discards any queued data. As a
special case, close(0)  closes all socket descriptors that have been allocated to the
calling task. This is particularly useful when a task is to be deleted.

4.4.8 Socket Options

The setsockopt()  system call allows a socket’s creator to associate a number of
options with the socket. These options modify the behavior of the socket in a num-
ber of ways, such as whether messages sent to this socket should be routed to net-
works that are not directly connected to this node (the DONTROUTE option); whether
sockets should be deleted immediately if their queues still contain data (the LINGER
option); whether packet broadcasting is permitted via this socket (the BROADCAST
option), and so forth. Multicasting-related options may also be set through this call.
A detailed description of these options and their effects is given in the setsock-
opt()  call description, in pSOSystem System Calls . Options associated with a
socket can be checked via the getsockopt()  system call.

4.4.9 Non-Blocking Sockets

Many socket operations cannot be completed immediately. For instance, a task
might attempt to read data that is not yet available at a socket. In the normal case,
this would cause the calling task to block until the data became available. A socket
can be marked as non-blocking through use of the ioctl()  system call. If a socket
has been marked as non-blocking, an operation request that cannot be completed
without blocking does not execute and an error is returned to the caller.

The select()  system call can be used to check the status of a socket, so that a
system call will not be made that would cause the caller to block.

4.4.10 Out-of-Band Data

Stream sockets support the notion of out-of-band data. Out-of-band data is a logi-
cally independent transmission channel associated with each pair of connected
sockets. The user has the choice of receiving out-of-band data either in sequence
with the normal data or independently of the normal sequence. It is also possible to
‘‘peek’’ at out-of-band data. A logical mark is placed in the data stream to indicate
the point at which out-of-band data was sent.
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If multiple sockets might have out-of-band data awaiting delivery, for exceptional
conditions select()  can be used to determine those sockets with such data pend-
ing.

To send out-of-band data, the MSG_OOB flag should be set with the send()  and
sendto()  system calls. To receive out-of-band data, the MSG_OOB flag is used when
calling recv()  and recvfrom() . The SIOCATMARK option in the ioctl()  system
call can be used to determine if out-of-band data is currently ready to be read.

4.4.11 Socket Data Structures

The pNA+ component uses two data structures to manage sockets: socket control
blocks and open socket tables.

A socket control block (SCB) is a system data structure used by the pNA+ compo-
nent to maintain state information about a socket. During initialization, the pNA+
component creates a fixed number of SCBs. An SCB is allocated for a socket when it
is created via the socket()  call.

Every task has an open socket table associated with it. This table is used to store
the addresses of the socket control blocks for the sockets that can be referenced by
the task. A socket descriptor is actually an index into an open socket table. Because
each task has its own open socket table, you can see that one socket might be refer-
enced by more than one socket descriptor. New socket descriptors for a given socket
can be obtained with the shr_socket()  system call (see section 4.4.2).

4.5 The pNA+ Daemon Task

When pNA+ system calls are made, there are three possible outcomes:

1. The pNA+ component executes the requested service and returns to the caller.

2. The system call cannot be completed immediately, but it does not require the
caller to wait. In this case, the pNA+ component schedules the necessary opera-
tions and returns control to the caller. For example, the send()  system call
copies data from the user’s buffer to an internal buffer. The data might not ac-
tually be transmitted until later, but control returns to the calling task, which
continues to run.

3. The system call cannot be completed immediately and the caller must wait. For
example the user might attempt to read data that is not yet available. In this
case, the pNA+ component blocks the calling task. The blocked task is eventu-
ally rescheduled by subsequent asynchronous activity.
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As the above indicates, the internet protocols are not always synchronous. That is,
not all pNA+ activities are initiated directly by a call from an application task.
Rather, certain ‘‘generic’’ processing activities are triggered in response to external
events such as incoming packets and timer expirations. To handle asynchronous
operations, the pNA+ component creates a daemon task called PNAD.

PNAD is created during pNA+ initialization. It is created with a priority of 255 to as-
sure its prompt execution. The priority of PNAD can be lowered with the pSOS+
t_setpri  call. However, its priority must be higher than the priority of any task
calling the pNA+ component.

PNAD is normally blocked, waiting for one of two events, encoded in bits 30 and 31.
When PNAD receives either of these two events, it is unblocked and preempts the
running task.

The first event (bit 31) is sent to PNAD by the pNA+ component upon receipt of a
packet when the pNA+ ANNOUNCE_PACKET entry is called, either by an ISR or
ni_poll . Based on the content of the packet, PNAD takes different actions, such as
waking up a blocked task, sending a reply packet, or, if this is a gateway node, for-
warding a packet. The last action should be particularly noted; that is, if a node is a
gateway, PNAD is responsible for forwarding packets. If the execution of PNAD is in-
hibited or delayed, packet routing will also be inhibited or delayed.

The second event (bit 30) is sent every 100 milliseconds as a result of a pSOS+
tm_evevery  system call. When PNAD wakes up every 100ms, it performs time-spe-
cific processing for TCP that relies heavily on time-related retries and timeouts. Af-
ter performing its time-related processing, PNAD calls ni_poll  for each Network
Interface that has its POLL flag set.

4.6 The User Signal Handler

The pNA+ component defines a set of signals, which correspond to unusual condi-
tions that might arise during normal execution. The user can provide an optional
signal handler, which is called by the pNA+ component when one of these ‘‘unusual’’
or unpredictable conditions occurs. For example, if urgent data is received, or if a
connection is broken, the pNA+ component calls the user-provided signal handler.

The address of the user-provided signal handler is provided in the pNA+ Configura-
tion Table entry NC_SIGNAL. When called by the pNA+ component, the handler re-
ceives as input the signal type (i.e. the reason the handler is being called), the
socket descriptor of the affected socket, and the TID of the task that “owns” the af-
fected socket. When a socket is first created, it has no owner; it must be assigned
one using the ioctl()  system call.
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It is up to the user to decide how to handle the signal. For example, the handler can
call the pSOS+ as_send  system call to modify the execution path of the owner. A
user signal handler is not required. The user can choose to ignore signals generated
by the pNA+ component by setting NC_SIGNAL equal to zero. In addition, if the
socket has no ‘‘owner,’’ the signals are dropped. The signals are provided to the user
so that the application can respond to these unpredictable conditions, if it chooses
to do so.

The following is a list of the signals that can be generated by the pNA+ component:

The description of NC_SIGNAL in the “Configuration Tables” chapter of the pSOSys-
tem Programmer’s Reference describes the calling conventions used by pNA+ when
calling the user-provided signal handler.

4.7 Error Handling

The pNA+ component uses the UNIX BSD 4.3 socket level error reporting mecha-
nisms. When UNIX detects an error condition, it stores an error code into the inter-
nal variable errno  and returns -1 to the caller. To get the error code, the calling
task reads errno  prior to making another system call.errno  is defined in psos.h .

4.8 Packet Routing

The pNA+ component includes complete routing facilities. This means that, in addi-
tion to providing end-to-end communication between two network nodes, a pNA+
node forwards packets in an internet environment. When the pNA+ component re-
ceives a packet addressed to some other node, it attempts to forward the packet to-
ward its destination.

The pNA+ component forwards packets based on routes that define the connectivity
between nodes. A route provides reachability information by defining a mapping be-
tween a destination address and a next hop within a physically attached network.

SIGIO 0x40000000 I/O activity on the socket

SIGINTF ox08000000 Change in interface status occurred. The socket
descriptor is replaced by the interface number
and the TID is set to 0

SIGPIPE 0x20000000 Connection has been disconnected

SIGURG 0x10000000 Urgent data has been received
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Routes can be classified as either direct or indirect. A direct route defines a path to a
directly connected node. Packets destined for that node are sent directly to the final
destination node. An indirect route defines a path to an indirectly connected node
(see section 4.3). Packets addressed to an indirectly connected node are routed
through an intermediate gateway node.

Routes can be classified further as either host or network. A host route specifies a
path to a particular destination node, based on the complete destination node’s IP
address. A network route specifies a path to a destination node, based only on the
network portion of the destination node’s IP address. That is, a network route spec-
ifies a path to an entire destination network, rather than to a particular node in the
network.

Direct routes provide a mapping between a destination address and a Network In-
terface (NI). They are added during NI initialization. When an NI is added into the
system (see section 4.11.6), pNA+ adds a direct route for that NI. If the network is a
point-to-point network, a pNA+ node is connected to a single node (see section
4.11.5), and the route is a host route. Otherwise, it is a network route.

Indirect routes provide a mapping between a destination address and a gateway ad-
dress. Unlike direct routes, indirect routes are not created automatically by the
pNA+ component. Indirect routes are created explicitly, either by entries in the
pNA+ Configuration Table, or by using the pNA+ system call ioctl() .

The pNA+ component supports one final routing mechanism, a default gateway,
which can be specified in the pNA+ configuration table. The default gateway speci-
fies the address to which all packets are forwarded when no other route for the
packet can be found. In fact, in most pNA+ installations, a default route is the only
routing information ever needed.

In summary, the pNA+ component uses the following best-matching algorithm to
determine a packet route:

1. The pNA+ component first looks for a host route using the destination node's
complete IP address. If one exists and is a direct route, the packet is sent di-
rectly to the destination node. If it is an indirect route, the packet is forwarded
to the gateway specified in the route.

2. If a host route does not exist, the pNA+ component looks for the best (or longest)
matching network or subnetwork route for the destination IP address. If one ex-
ists and is a direct route, the packet is sent directly to the destination node. If it
is an indirect route, the packet is forwarded to the gateway specified in the
route.
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3. If a network or subnetwork route does not exist, the pNA+ component forwards
the packet to the default gateway, if one has been provided.

4. Otherwise, the packet is dropped.

Routes can be configured into the pNA+ component during initialization. The config-
uration table entry NC_IROUTE contains a pointer to an Initial Routing Table (see
the “Configuration Tables” chapter of the pSOSystem Programmer’s Reference). They
can also be added or altered dynamically, using the pNA+ system call ioctl() . For
simplicity, most systems use a default gateway node. A default gateway is specified
by the configuration table entry NC_DEFGN.

The following code segment illustrates how to add, delete, or modify routing entries
stored in the pNA+ internal routing table.

{
#define satosin(sa)     ((struct sockaddr_in *)(sa))

int s, rc;
struct rtentry rte;

bzero((char *)&rte, sizeof(rte));

/* create any type of socket */
s = socket(AF_INET, SOCK_DGRAM, 0);

/*
 * add a host route to 192.0.0.1 through
 * gateway 128.0.0.1
 */
satosin(&rte.rt_dst)->sin_family = AF_INET;
satosin(&rte.rt_dst)->sin_addr.s_addr = htonl(0xc0000001);
satosin(&rte.rt_gateway)->sin_family = AF_INET;
satosin(&rte.rt_gateway)->sin_addr.s_addr = htonl(0x80000001);
rte.rt_flags = RTF_HOST | RTF_GATEWAY;
rc = ioctl(s, SIOCADDRT, (char *)&rte);

/*
 * add a route to the network 192.0.0.0
 * through gateway 128.0.0.1. pNA+ uses
 * the class C network mask 255.255.255.0
 * associated with the network 192.0.0.0
 */
satosin(&rte.rt_dst)->sin_family = AF_INET;
satosin(&rte.rt_dst)->sin_addr.s_addr = htonl(0xc0000001);
satosin(&rte.rt_gateway)->sin_family = AF_INET;
satosin(&rte.rt_gateway)->sin_addr.s_addr = htonl(0x80000001);
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rte.rt_flags = RTF_GATEWAY;
rc = ioctl(s, SIOCADDRT, (char *)&rte);

/*
 * add a route to the sub-network 128.10.10.0
 * through gateway 23.0.0.1. The sub-network
 * mask is 255.255.255.0.
 */
satosin(&rte.rt_dst)->sin_family = AF_INET;
satosin(&rte.rt_dst)->sin_addr.s_addr = htonl(0x800a0a00);
satosin(&rte.rt_gateway)->sin_family = AF_INET;
satosin(&rte.rt_gateway)->sin_addr.s_addr = htonl(0x17000001);
rte.rt_netmask = htonl(0xffffff00);
rte.rt_flags = RTF_GATEWAY | RTF_MASK;
rc = ioctl(s, SIOCADDRT, (char *)&rte);

/*
 * modify the above route to go through
 * a different gateway 23.0.0.2.
 */
satosin(&rte.rt_dst)->sin_family = AF_INET;
satosin(&rte.rt_dst)->sin_addr.s_addr = htonl(0x800a0a00);
satosin(&rte.rt_gateway)->sin_family = AF_INET;
satosin(&rte.rt_gateway)->sin_addr.s_addr = htonl(0x17000002);
rte.rt_netmask = htonl(0xffffff00);
rte.rt_flags = RTF_GATEWAY | RTF_MASK;
rc = ioctl(s, SIOCMODRT, (char *)&rte);

/*
 * delete the route modified above
 */
satosin(&rte.rt_dst)->sin_family = AF_INET;
satosin(&rte.rt_dst)->sin_addr.s_addr = htonl(0x800a0a00);
satosin(&rte.rt_gateway)->sin_family = AF_INET;
satosin(&rte.rt_gateway)->sin_addr.s_addr = htonl(0x17000002);
rte.rt_netmask = htonl(0xffffff00);
rte.rt_flags = RTF_GATEWAY | RTF_MASK;
rc = ioctl(s, SIOCDELRT, (char *)&rte);

/*
 * adds a default gateway route
 */
satosin(&rte.rt_dst)->sin_family = AF_INET;
satosin(&rte.rt_dst)->sin_addr.s_addr = 0x0;
satosin(&rte.rt_gateway)->sin_family = AF_INET;
satosin(&rte.rt_gateway)->sin_addr.s_addr = htonl (0xc067360E);
rte.rt_flags = RTF_GATEWAY;}
rc = ioctl(soc, SIOCADDRT, &rte);
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/*
 * modifies the default gateway route added above
 */
satosin(&rte.rt_dst)->sin_family = AF_INET;
satosin(&rte.rt_dst)->sin_addr.s_addr = 0x0;
satosin(&rte.rt_gateway)->sin_family = AF_INET;
satosin(&rte.rt_gateway)->sin_addr.s_addr = htonl (0xc067360E);
rte.rt_flags = RTF_GATEWAY;
rc = ioctl(soc, SIOCMODRT, &rte);

/*
 * deletes the default gateway route added above
 */
satosin(&rte.rt_dst)->sin_family = AF_INET;
satosin(&rte.rt_dst)->sin_addr.s_addr = 0x0;
satosin(&rte.rt_gateway)->sin_family = AF_INET;
satosin(&rte.rt_gateway)->sin_addr.s_addr = htonl (0xc067360E);
rte.rt_flags = RTF_GATEWAY;
rc = ioctl(soc, SIOCDELRT, &rte);

/*
* adds a interface specific route
* these types of routes are typically added
* for unnumbered point to point interfaces for
* which the IP address of both src and dest are
* unknown. The route below is configured to go through
* interface number 1.
*/
satosin(&rte.rt_dst)->sin_family = AF_INET;
satosin(&rte.rt_dst)->sin_addr.s_addr = htonl(0x800a0a00);
satosin(&rte.rt_gateway)->sin_family = AF_INET;
satosin(&rte.rt_gateway)->sin_addr.s_addr = htonl(0xc067360e);
rte.rt_netmask = htonl(0xffffff00);
rte.rt_ifno = 1;
rte.rt_flags = RTF_GATEWAY|RTF_MASK|RTF_INTF;
rc = ioctl(soc, SIOCADDRT, &rte);

/*
 * deletes the route added above
 */
satosin(&rte.rt_dst)->sin_family = AF_INET;
satosin(&rte.rt_dst)->sin_addr.s_addr = htonl(0x800a0a00);
satosin(&rte.rt_gateway)->sin_family = AF_INET;
satosin(&rte.rt_gateway)->sin_addr.s_addr = htonl(0xc067360e);
rte.rt_netmask = htonl(0xffffff00);
rte.rt_ifno = 1;
rte.rt_flags = RTF_GATEWAY|RTF_MASK|RTF_INTF;
rc = ioctl(soc, SIOCDELRT, &rte);
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/* close the socket */
close(s);
}

4.9 IP Multicast

pNA+ provides level 2 IP multicast capability as defined by RFC 1112. This implies
support for sending and receiving IP multicast packets and an implementation of
the Internet Group Membership Protocol (IGMP). The NI driver must, of course, sup-
port multicast. The driver must be configured with the IFF_MULTICAST flag set.

IP Multicast support allows a host to declare interest to participate in a host group.
The host group is defined as a set of 0 or more hosts that are identified by a multi-
cast IP address. A host may join and leave groups at its will. A host does not need to
be a member of a group to send datagrams to the group. But it needs to join a group
to receive datagrams addressed to the group. The reliability of sending multicast IP
packets is equal to that of sending unicast IP packets. No guarantees of packet de-
livery are made.

Multicast IP addresses are in the class D range i.e those that fall in the range
224.0.0.0 to 239.255.255.255. There exists a list of well known groups identified in
the internet. For example, the group address 224.0.0.1 is used to address all IP
hosts on a directly connected network.

The NI driver must support multicast. For each interface capable of multicast, pNA+
adds the ALL_HOSTS multicast group 224.0.0.1. It is possible that the group may
not be added because not enough memberships have been configured by the user.
This is not an error.

pNA+ supports IP multicast only through the RAW IP socket interface. The set-
sockopt  system call should be used to add/delete memberships and set multicast-
ing options for a particular socket.

Example code below shows how multicasting can be done:

/* a multicast interface IP address 128.0.0.1 */
#define MY_IP_ADDR 0x80000001

{
int s;
char loop;
struct ip_mreq ipmreq;
struct ip_mreq_intf ipmreq_intf;
struct rtentry rt;
struct sockaddr_in sin;
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char Buffer[1000];

#define satosin(sa) ((struct sockaddr_in *)(sa))

/* open a RAW IP socket */
s = socket(AF_INET, SOCK_RAW, 100);

/* Add a default Multicast Route for Transmission */
satosin(&rt.rt_dst)->sin_family = AF_INET;
satosin(&rt.rt_dst)->sin_addr.s_addr = htonl(0xe0000000);
satosin(&rt.rt_gateway)->sin_family = AF_INET;
satosin(&rt.rt_gateway)->sin_addr.s_addr = htonl(MY_IP_ADDR);
rt.rt_netmask = htonl(0xff000000);
rt.rt_flags = RTF_MASK;
ioctl(s, SIOCADDRT, (char *)&rt));

/*
 * Add a group membership on the default interface defined above
 */
ipmreq.imr_mcastaddr.s_addr = htonl(0xe0000040);
ipmreq.imr_interface.s_addr = htonl(INADDR_ANY);
setsockopt(s, IPPROTO_IP, IP_ADD_MEMBERSHIP, (char *)&ipmreq,
                 sizeof(struct ip_mreq)));

/* Disable loopback of multicast packets */
loop = 0;
setsockopt(s, IPPROTO_IP, IP_MULTICAST_LOOP, (char *)&loop,
                       sizeof(char));
/* Send a multicast packet */
sin.sin_addr.s_addr = htonl(0xe00000f0);
sin.sin_family = AF_INET;
sendto(s, Buffer, 1000, 0, &sin, sizeof(sin));

/* Receive a multicast packet */
recv(s, Buffer, 1000, 0);

/*
 * Drop a group membership on the default interface defined
 * above
 */
ipmreq.imr_mcastaddr.s_addr = htonl(0xe0000040);
ipmreq.imr_interface.s_addr = htonl(INADDR_ANY);
setsockopt(s, IPPROTO_IP, IP_DROP_MEMBERSHIP, (char *)&ipmreq,
                 sizeof(struct ip_mreq)));

/* Add a group membership on interface number 1
   this option is used for unnumbered interfaces
   for which the local IP address is unknown */
ipmreq_intf.imrif_multiaddr.s_addr = htonl(0xe0000040);
ipmreq_intf.imrif_ifno = 1;
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setsockopt(s, IPPROTO_IP, IP_ADD_MEMBERSHIP_INTF, (char
*)&ipmreq_intf,
                 sizeof(struct ip_mreq_intf)));

/* Drop the group membership added above on interface number 1 */
ipmreq_intf.imrif_multiaddr.s_addr = htonl(0xe0000040);
ipmreq_intf.imrif_ifno = 1;
setsockopt(s, IPPROTO_IP, IP_DROP_MEMBERSHIP_INTF, (char
*)&ipmreq_intf,
                 sizeof(struct ip_mreq_intf)));

}

4.10 Unnumbered Serial Links

pNA+ supports unnumbered serial links as specified in RFC 1716. Assigning a
unique IP address to each serial line connected to a host or router can cause an in-
efficient use of the scarce IP address space. The unnumbered serial line concept has
been proposed to solve this problem. An unnumbered serial line does not have a
unique IP address. All unnumbered serial lines connected to a host or router share
one IP address. This single IP address is termed in pNA+ as the Network Node ID.
This is equivalent to the RFC's term of Router-ID.

If unnumbered links are to be used, then the pNA+ Network Node ID must be set ei-
ther at configuration time or by the ioctl()  system call. For PPP and SLIP this im-
plies that the source IP address is fixed to be the Network Node ID. pNA+ will then
internally assign the IP address of the serial line to be the Network Node ID. All IP
packets transmitted over this serial line will contain the Network Node ID as the
source address of the packet. An NI is configured as an unnumbered link if the
IFF_UNNUMBERED flag is set in ifr_flags .

4.11 Network Interfaces

The pNA+ component accesses a network by calling a user-provided layer of soft-
ware called the Network Interface (NI). The interface between the pNA+ component
and the NI is standard and independent of the network’s physical media or topology;
it isolates the pNA+ component from the network’s physical characteristics.

The NI is essentially a device driver that provides access to a transmission medium.
(The terms network interface, NI, and network driver are all used interchangeably in
this manual.) A detailed description of the interface between the pNA+ component
and the NI is given in the “Interfaces and Drivers” chapter of the pSOSystem Pro-
grammer’s Reference.
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There must be one NI for each network connected to a pNA+ node. In the simplest
case, a node is connected to just one network and will have just one NI. However, a
node can be connected to several networks simultaneously and therefore have sev-
eral network interfaces. Each NI is assigned a unique IP address.

Each network connection (NI) has a number of attributes associated with it. They
are as follows:

■ The address of the NI entry point

■ The IP address

■ The maximum transmission unit

■ The length of its hardware address

■ Control flags

■ The network mask

■ Destination IP address (point-to-point links)

The pNA+ component stores these attributes for all of the network interfaces in-
stalled in your system in the NI Table, discussed in Section 4.11.6, ‘‘The NI Table.’’
NI attributes can be modified using ioctl() . The first two attributes are self-ex-
planatory. Maximum transmission units, hardware addresses, control flags, net-
work subnet mask, and destination IP address are discussed in the following
subsections.

4.11.1 Maximum Transmission Units (MTU)

Most networks are limited in the number of bytes that can be physically transmitted
in a single transaction. Each NI therefore has an associated maximum transmission
unit (MTU), which is the maximum packet size that can be sent or received. If the
size of a packet exceeds the network’s MTU, the IP layer fragments the packet for
transmission. Similarly, the IP layer on the receiving node reassembles the frag-
ments into the original packet.

The minimum MTU allowed by the pNA+ component is 64 bytes. There is no maxi-
mum limit. A larger MTU leads to less fragmentation of packets, but usually in-
creases the internal memory requirements of the NI. Generally, an MTU between
512 bytes and 2K bytes is reasonable. For example, the MTU for Ethernet is 1500.
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4.11.2 Hardware Addresses

In addition to its internet address, every NI has a hardware address. The internet
address is used by the IP layer, while the hardware address is used by the network
driver when physically transferring packets on the network. The process by which
internet addresses are mapped to hardware addresses is called address resolution
and is discussed in section 4.12.

Unlike an internet address, which is four bytes long, the length of a hardware ad-
dress varies depending on the type of network. For example, an Ethernet address is
6 bytes while a shared memory address is usually 4 bytes. The pNA+ component
can support hardware addresses up to 14 bytes in length. The length of a NI’s hard-
ware address must be specified.

4.11.3 Flags

Each NI has a set of flags that define optional capabilities, as follows:

IFF_NOARP This is used to enable or disable address resolution (see
section 4.12).

IFF_BROADCAST This is used to tell the pNA+ component if the NI supports
broadcasting. If you attempt to broadcast a packet on a
network with this flag disabled, the pNA+ component re-
turns an error.

IFF_EXTLOOPBACK If this is disabled, the pNA+ component ‘‘loops back’’ pack-
ets addressed to itself. That is, if you send a packet to
yourself, the pNA+ component does not call the NI, but the
packet is processed as if it were received externally. If this
flag is enabled, the pNA+ component calls the NI.

IFF_INITDOWN If this is set, the initial mode of the NI is down. By default
the NI is up.

IFF_MULTICAST If this is set, the NI is capable of doing multicast (see
Section 4.9, ‘‘IP Multicast”).

IFF_POLL If this is set, the ni_poll  service is called by the pSOS+
daemon task PNAD. This flag is normally used in conjunc-
tion with the pROBE+ debugger.

IFF_POINTTOPOINT If this is set, the NI is a point-to-point interface.
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Note that if the ARP flag is enabled, the BROADCAST flag must also be set (see section
4.12). Additional flags are provided to control the Network Interface:

4.11.4 Network Subnet Mask

A network can have a network mask associated with it to support subnet address-
ing. The network mask is a 32-bit value with ones in all bit positions that are to be
interpreted as the network portion. See section 4.3.2 for a discussion on subnet ad-
dressing.

4.11.5 Destination Address

In point-to-point networks, two hosts are joined on opposite ends of a network inter-
face. The destination address of the companion host is specified in the pNA+ NI Ta-
ble entry DSTIPADDR for point-to-point networks.

4.11.6 The NI Table

The pNA+ component stores the parameters described above for each NI in the NI
Table. The size of the NI Table is determined by the pNA+ Configuration Table entry
NC_NNI, which defines the maximum number of networks that can be connected to
the pNA+ component.

IFF_RAWMEM If this is set, the pNA+ component passes packets to the
driver in the form of mblk (message block) linked lists (see
Section 4.13, ‘‘Memory Management”). Similarly, the driver
announces packets by passing a pointer to the message
block.

IFF_UNNUMBERED If this is set, the NI is an unnumbered point-to-point link.
pNA+ assigns the network node ID as the IP address of the
link (see Section 4.10, ‘‘Unnumbered Serial Links”).

IFF_UP This flag controls the interface status: up or down. If the
flag is set the interface is up; if the flag is not set the inter-
face is down.

IFF_INITDOWN This flag must only be specified at the interface initializa-
tion time. By default pNA+ sets the interfaces to up status
at initialization. If it is required that the interface be down
after initialization, this flag must be set.
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Entries can be added to the NI Table in one of two ways:

1. The pNA+ Configuration Table entry NC_INI  contains a pointer to an Initial NI
Table. The contents of the Initial NI Table are copied to the actual NI Table dur-
ing pNA+ initialization.

2. The pNA+ system call add_ni()  can be used to add an entry to the NI Table dy-
namically, after the pNA+ component has been initialized.

The following code segment illustrates some NI related ioctl()  operations.

{
#define satosin(sa)     ((struct sockaddr_in *)(sa))
#define MAX_BUF 1024

int s, rc;
struct ifconf ifc;
struct ifreq ifr;
char buffer[MAX_BUF];

/* create any type of socket */
s = socket(AF_INET, SOCK_DGRAM, 0);

/* get the interface configuration list */
ifc.ifc_len = MAX_BUF;
ifc.ifc_buf = buffer;
rc = ioctl(s, SIOCGIFCONF, (char *)&ifc);

/*
 * change the IP address of the pNA+ interface 1
 * to 192.0.0.1
 */
ifr.ifr_ifno = 1;
satosin(&ifr.ifr_addr)->sin_family = AF_INET;
satosin(&ifr.ifr_addr)->sin_addr.s_addr = htonl(0xc0000001);
rc = ioctl(s, SIOCSIFADDR, (char *)&ifr);

/*
 * change the destination IP address of a point-point
 * interface (pNA+ interface 2) such as a PPP line to
 * 192.0.0.1
 */
ifr.ifr_ifno = 2;
satosin(&ifr.ifr_addr)->sin_family = AF_INET;
satosin(&ifr.ifr_dstaddr)->sin_addr.s_addr = htonl(0xc0000001);
rc = ioctl(s, SIOCSIFDSTADDR, (char *)&ifr);

/*
 * change the status of the interface number 1 to down.
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 * this must be done in 2 steps, get the current interface
 * flags, turn the UP flag off and set the interface flags.
 */
ifr.ifr_ifno = 1;
rc = ioctl(s, SIOCGIFFLAGS, (char *)&ifr);
ifr.ifr_ifno = 1;
ifr.ifr_flags &= ~IFF_UP;
rc = ioctl(s, SIOCSIFFLAGS, (char *)&ifr);

/* close the socket */
close(s);
}

4.12 Address Resolution and ARP

Every NI has two addresses associated with it —  an internet address and a hard-
ware address. The IP layer uses the internet address, while the network driver uses
the hardware address. The process by which an internet address is mapped to a
hardware address is called address resolution.

In many systems, address resolution is performed by the network driver. The ad-
dress resolution process, however, can be difficult to implement. Therefore, to sim-
plify the design of network drivers, the pNA+ component provides the capability of
resolving addresses internally. To provide maximum flexibility, this feature can be
optionally turned on or off, so that, if necessary, address resolution can still be han-
dled at the driver level.

The pNA+ component goes through the following steps when performing address
resolution:

1. The pNA+ component examines the NI flags (see section 4.11.3) to determine if
it should handle address resolution internally. If not (i.e. the ARP flag is dis-
abled), the pNA+ component passes the internet address to the network driver.

2. If the ARP flag is enabled, the pNA+ component searches its ARP Table (see sec-
tion 4.12.1) for an entry containing the internet address. If an entry is found,
the corresponding hardware address is passed to the NI.

3. If the internet address is not found in the ARP Table, the pNA+ component uses
the Address Resolution Protocol (see section 4.12.2) to obtain the hardware ad-
dress dynamically.
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4.12.1 The ARP Table

The pNA+ component maintains a table called the ARP Table for obtaining a hard-
ware address, given an internet address. This table consists of <internet address,
hardware address> tuples.

The ARP Table is created during pNA+ initialization; the pNA+ Configuration Table
entry NC_NARP specifies its size. Entries can be added to the ARP Table in one of
three ways:

1. An Initial ARP Table can be supplied. The pNA+ Configuration Table entry
NC_IARP contains a pointer to an Initial ARP Table. The contents of the Initial
ARP Table are copied to the actual ARP Table during pNA+ initialization.

2. Internet-to-hardware address associations can be determined dynamically by
the ARP protocol. When the pNA+ component uses ARP to dynamically deter-
mine an internet-to-hardware address mapping, it stores the new <internet ad-
dress, hardware address> tuple in the ARP Table. This is the normal way that
the ARP Table is updated. The next section explains how ARP operates.

3. ARP Table entries can be added dynamically by using ioctl() .The following
code segment illustrates the usage of the various ARP ioctl()  calls.

{
#define satosin(sa)     ((struct sockaddr_in *)(sa))
int s, rc;
struct arpreq ar;
char *ha;

/* create any type of socket */
s = socket(AF_INET, SOCK_DGRAM, 0);

/*
 * get the arp entry corresponding to the internet
 * host address 128.0.0.1
 */
satosin(&ar.arp_pa)->sin_family = AF_INET;
satosin(&ar.arp_pa)->sin_addr.s_addr = htonl(0x80000001);
ar.arp_ha.sa_family = AF_UNSPEC;
rc = ioctl(s, SIOCGARP, (char *)&ar);

/*
 * set a permanent but not publishable arp entry corresponding
 * to the internet host address 128.0.0.1. If the entry
 * exists it will be modified. Set the ethernet address to
 * aa:bb:cc:dd:ee:ff
 */
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satosin(&ar.arp_pa)->sin_family = AF_INET;
satosin(&ar.arp_pa)->sin_addr.s_addr = htonl(0x80000001);
ar.arp_ha.sa_family = AF_UNSPEC;
bzero(ar.arp_ha.sa_data, 14);
ha = ar.arp_ha.sa_data;
ha[0] = 0xaa; ha[1] = 0xbb; ha[2] = 0xcc;
ha[3] = 0xdd; ha[4] = 0xee; ha[5] = 0xff;
ar.arp_flags = ATF_PERM;
rc = ioctl(s, SIOCSARP, (char *)&ar);

/*
 * delete the arp entry corresponding to the internet
 * host address 128.0.0.1
 */
satosin(&ar.arp_pa)->sin_family = AF_INET;
satosin(&ar.arp_pa)->sin_addr.s_addr = htonl(0x80000001);
ar.arp_ha.sa_family = AF_UNSPEC;
rc = ioctl(s, SIOCDARP, (char *)&ar);

/* close the socket */
close(s);
}

4.12.2 Address Resolution Protocol (ARP)

The pNA+ component uses the Address Resolution Protocol (ARP) to determine the
hardware address of a node dynamically, given its internet address. ARP operates as
follows:

1. A sender, wishing to learn the hardware address of a destination node, prepares
and broadcasts an ARP packet containing the destination internet address.

2. Every node on the network receives the packet and compares its own internet
address to the address specified in the broadcasted packet.

3. If a receiving node has a matching internet address, it prepares and transmits
to the sending node an ARP reply packet containing its hardware address.

ARP can be used only if all nodes on the network support it. If your network consists
only of pNA+ nodes, this requirement is of course satisfied. Otherwise, you must
make sure that the non-pNA+ nodes support ARP. ARP was originally developed for
Ethernet networks and is usually supported by Ethernet drivers. Networks based on
other media might or might not support ARP.

The pNA+ component treats internet packets differently than ARP packets. When
pNA+ calls an NI, it provides a packet type parameter, which is either IP  or ARP.
Similarly, when the pNA+ component receives a packet, the NI must also return a
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packet type. All network drivers that support ARP must have some mechanism for
attaching this packet type to the packet. For example, Ethernet packets contain
type  fields. For NIs that do not support ARP, the packet type parameter can be ig-
nored on transmission, and set to IP  for incoming packets.

4.13 Memory Management

As packets move across various protocol layers in the pNA+ component they are
subject to several data manipulations, including

■ Addition of protocol headers

■ Deletion of protocol headers

■ Fragmentation of packets

■ Reassembly of packets

■ Copying of packets

The pNA+ component is designed with specialized memory management so that
such manipulations can be done optimally and easily.

The pNA+ component allows configuration of its memory management data struc-
tures via the pNA+ Configuration Table. These structures are critical to its perfor-
mance; hence, understanding the basics of pNA+ memory management is crucial to
configuring your system optimally.

The basic unit of data used internally by the pNA+ component is called a message.
Messages are stored in message structures. A message structure contains one or
more message block triplets, linked via a singly-linked list. Each message block trip-
let contains a contiguous block of memory defining part of a message. A complete
message is formed by linking such message block triplets in a singly-linked list.

Each message block triplet contains a Message Block, a Data Block, and a Buffer.
Figure 4-3 illustrates the message block triplet.
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A message block contains the characteristics of the partial message defined by the
message block triplet. A data block contains the characteristics of the buffer to
which it points. A buffer is a contiguous block of memory containing data.

A data block may be contained in several message block triplets. However, there is a
one-to-one correspondence between data blocks and buffers. The C language defini-
tions of the data structures for message blocks and data blocks are in the header
file <pna.h> .

Figure 4-4 on page 4-34 illustrates a complete message formed by a linked list of
message block triplets.

The basic unit of transmission used by protocol layers in the pNA+ component is a
packet. A packet contains a protocol header and the data it encapsulates. Each pro-
tocol layer tags a header to the packet and passes it to the lower layer for transmis-
sion. The lower layer in turn uses the packet as encapsulated data and tags its
protocol header and passes it to its lower layer. Packets are stored in the form of
messages.

The buffers in the pNA+ component are used to store data, protocol headers, and
addresses. Data is passed into the pNA+ component via two interfaces. At the user
level, data is passed via the send() , sendto()  and sendmsg()  service calls. At the
NI interface, data is passed via the “Announce Packet” call (See Section 4.11, ‘‘Net-
work Interfaces”).

Message Block

Data Block

Data Buffer

Next Message

dblk_t

mblk_t

FIGURE 4-3 Message Block Triplet
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The pNA+ component allocates a message block triplet and copies data from the ex-
ternal buffer to the buffer associated with the triplet. The message is then passed to
the protocol layers for further manipulation. As the data passes through various
protocol layers, additional message block triplets are allocated to store the protocol
headers and are linked to the message. The pNA+ component also allocates tempo-
rary message block triplets to store socket addresses during pNA+ service calls.

As the messages pass through the protocol layers, they are subjected to various
data manipulations (copying, fragmentation, and reassembly). For instance, when
preparing a packet for transmission, the TCP layer makes a copy of the packet from
the socket buffer, tags a TCP header, and passes the packet to the IP layer. Simi-
larly, the IP layer fragments packets it receives from the transport layer (TCP, UDP)
to fit the MTU of the outgoing Network Interface.

pNA+ memory management is optimized to perform such operations efficiently and
maximize performance by avoiding physical copying of data. For instance, copying
of message block triplets is achieved by allocating a new message block, associating
it with the original data block, and increasing the reference count to the original
data block. This avoids costly data copy operations.

4.14 Memory Configuration

During the initialization of the pNA+ component various memory structures are cre-
ated and initialized. The initialization sequence creates message blocks, data
blocks, and data buffers of multiple sizes. The number of each is configurable in the
pNA+ Configuration Table. the pNA+ component provides entries in the configura-
tion table to specify the number of message blocks and data buffers. Because there
is a one-to-one relationship between data blocks and data buffers, the pNA+ compo-
nent allocates a data block for every buffer configured in the system.

The pNA+ memory configuration is critical to its performance. Configuring too few
buffers or wrong sizes leads to reduced performance. Configuring too many buffers
wastes memory. Optimal performance can be achieved empirically by tuning the fol-
lowing configurable elements:

■ Number of message blocks

■ Buffer configuration

■ MTU-size buffers

■ 128-byte buffers

■ Zero-size buffers

The following sections give general configuration guidelines.
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4.14.1 Buffer Configuration

Buffer configuration is specified via the nc_bcfg  element in the pNA+ Configuration
Table (See the “Configuration Tables” chapter of the pSOSystem Programmer’s Refer-
ence). It allows you to configure application-specific buffer sizes into the system.
Two attributes are associated with a buffer configuration: buffer size and the num-
ber of buffers.

The pNA+ component copies data into its internal buffers via two interfaces. It cop-
ies data from the user buffers to its internal buffers during send() , sendto() , and
sendmsg()  service calls. It copies data from the NI buffers to its internal buffers
during “Announce Packet’’ calls.

The pNA+ component allows buffers of multiple sizes to be configured into the sys-
tem. In order to allocate a buffer to copy data, it first selects the buffer size, using
the following best-fit algorithm:

1. The pNA+ component first tries to find an exact match for the data buffer.

2. If there is no such buffer size available, the pNA+ component searches for the
smallest sized buffer that can contain the requested size.

3. If there is none, the pNA+ component selects the maximum buffer size config-
ured.

Once a size is selected, the pNA+ component checks for a free buffer from the se-
lected size’s buffer list. If none are available, the pNA+ component blocks the caller
on a blocking call, or returns null on a non-blocking call. If the size of the buffer is
not sufficient to copy all of the data, the pNA+ component copies the data into mul-
tiple buffers.

For optimal configuration, the pNA+ component should always find an exact match
when doing buffer size selection. Thus, the configuration should have buffer sizes
equal to the MTU of the NI’s configured in the pNA+ component to satisfy the re-
quirement at the NI interface, and buffer sizes equal to the user buffer sizes speci-
fied in the send() , sendto() , and sendmsg()  service calls to satisfy user interface
requirements. The number of buffers to be configured for each size depends on the
socket buffer size and incoming network traffic.
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pNA+ flexible memory configuration provides multiple buffer sizes. However, 128-
byte and zero-size buffers have special meanings. 128-byte buffers are used inter-
nally by the pNA+ component for storing protocol headers and for temporary usage.
These buffers must always be pNA+ configured to function. Zero-size buffers are
used to create message block triplets with externally specified data buffers (See
Section 4.15, ‘‘Zero Copy Options,’’ and the pna_esballoc()  call description in
pSOSystem System Calls).

MTU-Size Buffers

When a non-zero copy NI is pNA+ configured, data is copied from the NI buffers to
pNA+ internal buffers. Hence, it is optimal to have MTU-size buffers configured in
the system. The number of buffers that should be configured depends on the incom-
ing network traffic on that NI.

Service-Call-Size Buffers

Data is copied from user buffers to pNA+ internal data buffers during send() ,
sendto() , and sendmsg()  service calls. For optimal performance, the pNA+ com-
ponent should be configured with buffer sizes specified in the service calls. The opti-
mal number of buffers depends on the buffer size of the socket.

128-Byte Buffers

The pNA+ component uses 128-byte buffers to store protocol headers and ad-
dresses. The number of protocol headers allocated at any given time depends on the
number of packets sent or received simultaneously by the protocol layers in the
pNA+ component. The number of packets sent or received by the pNA+ component
varies with the number of active sockets and with socket buffer size. The number of
packets that can exist per active socket is the socket buffer size divided by the MTU
of the outgoing NI. pNA+ service calls also use 128-byte buffers for temporary pur-
poses; they use a maximum of three buffers per call.

Zero-Size Buffers

Zero-size buffers are used during pna_esballoc  service calls to attach externally
supplied user buffers to a message block and a data block. When zero-size buffers
are specified, the pNA+ component allocates only a data block; that is, the associ-
ated buffer is not allocated.
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The optimal number of zero-size buffers to be configured depends on the number of
externally specified buffers that can attached to pNA+ message blocks; that is, the
number of times pna_esballoc  is used. (For more details, see Section 4.15, ‘‘Zero
Copy Options.’’)

4.14.2 Message Blocks

The pNA+ memory manager is highly optimized for data copy and fragmentation.
During these operations, the pNA+ component allocates an additional message
block and reuses the original data block and buffer. The number of pNA+ copy or
fragmentation operations per buffer depends on the size of the buffer and on the
MTU size of the NI’s configured in the system.

The maximum number of fragments for buffers of sizes less than the smallest MTU
is two, and the maximum number of fragments for all other buffers is the buffer size
divided by the MTU.

The number of message blocks configured in the system should equal the total
number of fragments that can be formed from the buffers configured in the system.
In most cases, it is sufficient to configure the total number of message blocks to be
twice the total number of buffers configured in the system.

4.14.3 Tuning the pNA+ Component

The pNA+ component also provides statistics for buffer and message block usage via
the ioctl()  service call. The SIOCGDBSTAT command can be used to return
buffer usage, and SIOCGMBSTAT can be used to get message block usage.

These commands provide information on the number of times tasks waited for a
buffer, the number of times a buffer was unavailable, the number of free buffers,
and the total number of buffers configured in the system. You can use this informa-
tion to tweak the message block and data buffer configuration.

The following example illustrates the use of the SIOCGDBSTAT and the SIOCGMB-
STAT ioctl()  options:

{
int i, s, rc;
int buffer_types, size;
struct mbstat mbstat;
struct dbreq dbr;
struct dbstat *dbs;
char *buffer;
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/* create a socket */
s = socket(AF_INET, SOCK_DGRAM, 0);

/* get the message block statistics */
ioctl(s, SIOCGMBSTAT, (char *)&mbstat);

/* print out the message buffer statistics */
printf("No of Buffer classes = %ld\n", mbstat.mb_bufclasses);
printf("No of mblks = %ld\n", mbstat.mb_mblks);
printf("No of free mblks = %ld\n", mbstat.mb_free);
printf("Times waited for mblks = %ld\n", mbstat.mb_wait);
printf("Times failed to get mblks = %ld\n\n", mbstat.mb_drops);

/* allocate a buffer large enough to store all the data buffer
   statistics */
buffer_types = mbstat.mb_bufclasses;
size = buffer_types*sizeof(struct dbstat);
buffer = malloc(size);

/* fill in the dbr structure */
dbr.size = size
dbr.dsp = (struct dbstat *)buffer;
rc = ioctl(s, SIOCGDBSTAT, (char *)&dbr);

/* the actual number of buffer types that pNA+ could fit in
   the provided buffer is returned in the dbr structure */
buffer_types = dbr.size/sizeof(struct dbstat);

/* loop and print all the buffer types and their statistics */
dbs = dbr.dsp;
for (i=0; i < buffer_types; i++)
  {
  printf("Buffer Size = %ld\n", dbs[i].db_size);
  printf(" No data blocks =  %ld\n", dbs[i].db_dblks);
  printf(" No of free =  %ld\n", dbs[i].db_free);
  printf(" Times waited for dblks =  %ld\n", dbs[i].db_wait);
  printf(" Times failed to get dblks = %ld\n\n", dbs[i].db_drops);
  }

4.15 Zero Copy Options

Copying data is an expensive operation in any networking system. Hence, eliminat-
ing it is critical to optimal performance. The pNA+ component performs data copy at
its two interfaces. It copies data from the user buffer to pNA+ internal buffers dur-
ing send() , sendto() , and sendmsg()  service calls, and vice versa during
recv() , recvfrom() , and recvmsg()  calls. A data copy is performed between the
NI and pNA+ buffers when data is exchanged.
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Because the pNA+ memory manager is highly optimized to eliminate data copy, data
is copied only at the interfaces during data transfers. In order to maximize perfor-
mance, the pNA+ component provides options to eliminate data copy at its inter-
faces, as well. These options are referred to as “zero copy” operations. The pNA+
component extends the standard Berkeley socket interface at the user level and pro-
vides an option at the NI level to support zero copy operations.

Zero copy is achieved in the pNA+ component by providing a means of exchanging
data at interfaces via message block triplets and by enabling access to its memory
management. The zero copy operations provided at the interfaces are independent
of each other; that is, an application can choose either one, or both. In most cases,
the NI interface is optimized to perform zero copy, while retaining the standard in-
terface at the socket level.

4.15.1 Socket Extensions

The sendto() , send() , recv() , and recvfrom()  service calls are extended to
support the zero copy option. An option is provided in the calls allowing data to be
exchanged via message block triplets. An additional flag (MSG_RAWMEM) is provided
in these service calls. When the flags  parameter in these service calls is set to
MSG_RAWMEM, the buf  parameter contains a pointer to a message block triplet. (See
these service call descriptions in pSOSystem System Calls.)

When the zero copy option is not used, a buffer always remains in the control of its
owner. For example, during a send()  call, the address of the buffer containing data
to be sent is passed to the pNA+ component. As soon as the call returns, the buffer
can be reused or de-allocated by its owner. The pNA+ component has copied the
data into its internal buffers.

When the zero copy option is used, control of the buffer triplet passes to the pNA+
component. When the pNA+ component finishes using the message block triplet, the
triplet is freed. Similarly, on a recv()  call, control of the buffer passes to the appli-
cation, which is responsible for freeing the message block triplet.

When zero copy is used with non-blocking sockets there is a possibility that a send
call may return after sending a part of the whole message. In this case the user may
resend the remaining part of the buffer on the next send call using the same mes-
sage block triplet. The message block points to the remaining part of the message.
Internally pNA+ keeps a reference to the buffer until the data is sent.
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Four service calls are provided to access pNA+ memory management. They are as
follows:

4.15.2 Network Interface Option

The pNA+ network interface definition supports data exchange between the pNA+
component and an NI via message block triplets. If the RAWMEM flag is set in the NI
flags, it indicates that the interface supports the zero copy operation, and the ex-
change of data between NI and the pNA+ component is in the form of message block
triplets.

The pointers to the pna_allocb() , pna_freeb() , pna_freemsg() , and
pna_esballoc()  functions are passed to the NI driver during its ni_init()  func-
tion call. (See Section 4.11, ‘‘Network Interfaces.’’) These functions are used by the
NI to gain access to pNA+ memory management routines.

4.15.3 Zero Copy User Interface Example

The following segment of code illustrates the usage of the zero copy interface at the
user application level. The pnabench  demo application is also a good example of the
zero copy features in pNA+.

zero_copy_ex()
{
int rc, s, arg, err;
unsigned char buffer[200];
mblk_t *mb, *mb1, *mb2;
struct sockaddr_in peeraddr_in;
frtn_t freefn;
void ufreefn();

pna_allocb() allocates a message block triplet that contains a data
buffer of the size passed in as a parameter. The data buffer
is internal to the pNA+ component.

pna_freeb() frees a single message block triplet.

pna_freemsg() frees a message.

pna_esballoc() associates a message block and a data block with an exter-
nally specified buffer. pna_esballoc()  returns a pointer
to a message block triplet that contains a message block
and a data block allocated by the pNA+ component. The
data buffer in the triplet is passed in as a parameter to the
call.
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/* create a TCP socket */
s = socket(AF_INET, SOCK_STREAM, 0);

memset((char *)&peeraddr_in, 0, sizeof(struct sockaddr_in));
peeraddr_in.sin_family      = AF_INET;
peeraddr_in.sin_addr.s_addr = htonl (HOST_IP);
peeraddr_in.sin_port        = htons (SERVER_PORT);
connect(s, &peeraddr_in, sizeof(struct sockaddr_in));

/* make the socket non-blocking */
arg = 1;
ioctl(s, FIONBIO, (char *)&arg);

/* allocate a 200 byte message block triplet from pNA+ buffers */
mb = pna_allocb(200, 0);
if (mb == 0)
error(“pna_allocb() error: “);

/* Advance the message blocks write pointer so pNA will know how much
data is in the data area of the message block. Note that after the
send calls succeeds pNA+ has ownership of the data. */
mb->b_wptr += 200;
mb->b_cont = 0;

rc = 200;
while (rc != 0)
  {
  err = send(s, (char *)mb, rc, MSG_RAWMEM);
  if (err == -1)
    {
    /* Since only one mblock needs to be freed it is ok to call
    pna_freeb. But pna_freemsg will also work for this case */

    pna_freeb(mb);
    break;
    }

/* In the event that TCP was unable to queue up *all* the data, the
   remaining data should be sent out again later. Once again a send
   can be called with the same mblock. pNA+ will update the read
   pointer in cases of partial sends. Note that partial sends are
   possible with non-blocking sockets because there may not beenough
   space in the send buffer for the data to be queued at once */
   rc -= err;
   }

/* mark the socket as blocking */
arg = 0;
ioctl(s, FIONBIO, (char *)&arg);
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/* Create a message out of a pNA+ allocated buffer and a
   user buffer */

/* Allocate a pNA+ buffer */
mb1 = pna_allocb(200, 0);
if (mb1 == 0)
    error(“pna_allocb() error: “);

/* Allocate a user buffer - assign a free function */
freefn.free_func = ufreefn;
freefn.free_arg =  buffer;
mb2 = pna_esballoc(buffer, 200, 0, &freefn);
if (mb2 == 0)
    error(“pna_esballoc() error: “);

/* Link the mblocks into one message */
mb1->b_cont = mb2;
mb2->b_cont = 0;

/* This time the entire data should be buffered in the TCP send queue
at once. The task could of course block because the socket is set to
blocking mode */
err = send(s, (char *)mb1, rc, MSG_RAWMEM);

/* Receive incoming data on the socket - maximum of 400 bytes - the
task may block till 400 bytes of data is received */
err = recv(s, (char *)&mb, 400, MSG_RAWMEM);

/* process the data in the received message ... */

/* The application needs to free the mblocks because pNA+ transferred
ownership of the mblocks to the application. The mb data buffer will
be freed to the pNA+ buffer pool */
pna_freemsg(mb);
}

/* Nothing to do for the free function since the buffer was allocated
off the stack. Normally this would free a dynamically allocated
buffer */
void
ufreefn(buf)
unsigned char *buf;
{

return;
}
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4.16 Internet Control Message Protocol (ICMP)

ICMP is a control and error message protocol for IP. It is layered above IP for input
and output, but it is really part of IP. ICMP can be accessed through the raw socket
facility. The pNA+ component processes and generates ICMP messages in response
to ICMP messages it receives.

ICMP can be used to determine if the pNA+ component is accessible on a network.
For example, some workstations (such as SUN) provide a utility program called
ping, which generates ICMP echo requests and then waits for corresponding replies
and displays them when received. The pNA+ component responds to the ICMP mes-
sages sent by ping.

ICMP supports 11 unique message types, with each reserved to designate specific IP
packet or network status characteristics, as follows:

TYPE CODE DESCRIPTION

0 0 ECHO REPLY. This type is used to test/ verify that the desti-
nation is reachable and responding. The ping utility relies
on this ICMP message type.

3

0

1

2

3

4

5

DESTINATION UNREACHABLE. This message type is gener-
ated when an IP datagram cannot be delivered by a node.
This type is further delineated by ancillary codes defined as
follows:

Network unreachable.

Host unreachable.

Protocol unreachable.

Port unreachable.

Fragmentation needed but don’t-fragment bit set.

Source route failed.

4 0 SOURCE QUENCH. This type is generated when buffers are
exhausted at an intermediary gateway or end-host.

5

0

1

2

3

REDIRECT. This type is generated for a change of route.

Redirect for network.

Redirect for host.

Redirect for type-of-service and network.

Redirect for type-of-service and host.
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4.17 Internet Group Management Protocol (IGMP)

IGMP is used by IP nodes to report their host group memberships to any immedi-
ately-neighboring multicast routers. Like ICMP, IGMP is an integral part of IP. It is
implemented by all nodes conforming to the Level 2 IP Multicasting specification in
RFC 1112. IGMP messages are encapsulated in IP datagrams, with an IP protocol
number of 2. IGMP can be accessed through the RAW IP socket facility.

Two types of IGMP messages are of concern to nodes:

8 0 ECHO REQUEST. This type is used to test/ verify that the
destination is reachable and responding. The ping utility re-
lies on this ICMP message type.

11

0

1

TIME EXCEEDED FOR DATAGRAM. This type is generated
when the datagram's time to live field has exceeded its limit.

Time-to-live equals 0 during transit.

Time-to-live equals 0 during reassembly.

12 0 PARAMETER PROBLEM: IP header bad.

13 0 TIMESTAMP REQUEST. This type is generated to request a
timestamp.

14 0 TIMESTAMP REPLY.

17 0 ADDRESS MASK REQUEST. This type is sent to obtain a
subnet address mask.

18 0 ADDRESS MASK REPLY.

TYPE DESCRIPTION

1 HOST MEMBERSHIP QUERY. Multicast routers send Host Member-
ship Query messages to discover which host groups have members
on their attached local networks. Queries are addressed to the
ALL_HOSTS group (address 224.0.0.1).

2 HOST MEMBERSHIP REPORT. Hosts respond to a Query by gener-
ating Host Membership Reports reporting each host group to which
they belong on the network interface from which the Query was re-
ceived. A Report is sent with an IP destination address equal to the
host group address being reported, and with an IP time-to-live of 1.

TYPE CODE DESCRIPTION
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4.18 NFS Support

The pNA+ component can be used in conjunction with the pHILE+ component and
the pRPC+ subcomponent to offer NFS support. To support NFS, the pNA+ compo-
nent allows you to assign a host name to your pNA+ system, and a user ID and
group ID to each task. The host name and user and group IDs are used when ac-
cessing NFS servers. Every task that uses NFS services must have a user ID and a
group ID. These values are used by an NFS server to recognize a client task and
grant or deny services based on its identity. Refer to your host system (NFS server)
documentation for a further discussion of NFS protection mechanisms.

The pNA+ Configuration Table entry NC_HOSTNAME is used to define the host name.
This entry points to a null terminated string of up to 32 characters, which contains
the host name for the node.

The pNA+ Configuration Table entries NC_DEFUID and NC_DEFGID can be used to
define default values for a task's user ID and group ID, respectively. Subsequent to
task creation, the system calls set_id()  and get_id()  can be used to change or
examine a task's user and group ID. Note that similar system calls [setid_u()  and
getid_u() ] are provided by the pHILE+ component. Integrated Systems recom-
mends, however, that you use the set_id()  and get_id()  system calls provided
in the pNA+ component for future compatibility.

4.19 MIB-II Support

The pNA+ component supports a TCP/IP Management Information Base, commonly
known as MIB-II, as defined in the internet standard RFC 1213. The pSOSystem op-
tional SNMP (Simple Network Management Protocol) package uses this MIB-II to
provide complete turnkey SNMP agent functionality.

pNA+ MIB-II can also be accessed directly by application developers who have their
own unique requirements. This section describes how this MIB can be accessed.

4.19.1 Background

RFC 1213 groups MIB-II objects into the following categories:

■ System

■ Interfaces

■ Address Translation

■ IP
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■ ICMP

■ TCP

■ UDP

■ EGP

■ Transmission

■ SNMP

The pNA+ component contains built-in support for the IP, ICMP, TCP, and UDP
groups. The Interfaces group is supported by pNA+ NIs. The pSOSystem SNMP li-
brary provides support for the System and SNMP groups. The Address Translation
group is being phased out of the MIB-II specification. Its functionality is provided via
the IP group. The Transmission group is not yet defined, and the pNA+ component
does not include EGP, so neither of these groups are supported.

MIB-II objects, regardless of which category they fall into, can be classified as simple
variables or tables. Simple variables are types such as integers or character strings.
In general, the pNA+ component maintains one instance of each simple variable. For
example, ipInReceives  is a MIB-II object used to keep track of the number of dat-
agrams received.

Tables correspond to one-dimensional arrays. Each element in an array (that is,
each entry in a table) has multiple fields. For example, MIB-II includes an IP Route
Table where each entry in the table consists of the following fields: ipAdEntAddr ,
ipAdEntIfIndex , ipAdEntNetMask , ipAdEntBcastAddr , ipAdEntReasmMax-
Size .

4.19.2 Accessing Simple Variables

All MIB-II objects, regardless of type, are accessed by using the pNA+ ioctl(int
s, int command, int *arg)  system call. The parameter s  can be any valid
socket descriptor.

The command argument specifies an MIB-II object and the operation to be performed
on that object.   Per the SNMP standard, two operations are allowed. You can set the
value of an MIB-II object (Set command) or retrieve an object’s value (Get command).
A valid command parameter is an uppercase string equal to the name of a MIB-II ob-
ject prepended by either SIOCG or SIOCS for Get and Set operations, respectively. A
complete list of permissible commands is provided in the ioctl()  call description
in pSOSystem System Calls.
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The way ioctl()  is used differs, depending on whether you are accessing simple
variables or tables. For simple variables, arg  is a pointer to a variable used either to
input a value (for Set operations) or receive a value (for Get operations). arg  must be
typecast based on the MIB-II object type.

The following table shows the C language types used by the pNA+ component to rep-
resent different types of MIB-II objects.

The following code fragments demonstrate how to set and get the objects ipInRe-
ceives , and ipForwarding , respectively:

{
/* Get the value of ipInReceives */
  long s;
  unsigned long ip_input_pkts;

  /* socket type in following call is irrelevant */
  s = socket(AF_INET, SOCK_STREAM, 0);
  ioctl(s, SIOCGIPINRECEIVES, &ip_input_pkts);
  close(s);
  printf("%lu IP datagrams recvd\n", ip_input_pkts);
}

/* Set the value of ipForwarding */

int s; /* already open socket descriptor */
{
  long forwarding;

MIB-II Object Type pNA+ Representation

INTEGER long

OBJECT IDENTIFIER char *  (as an ASCII string)

IpAddress struct in_addr (defined in
pna.h )

Counter unsigned long

Gauge unsigned long

TimeTicks unsigned long

DisplayString char *

PhysAddress struct sockaddr  (defined in
pna.h )
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  /* get current status first */
  ioctl(s, SIOCGIPFORWARDING, &forwarding);
  if (forwarding == 1) puts("Forwarding was on");
  else /* forwarding == 2 */ puts("Forwarding was off");
  forwarding = 2; /* corresponds to not-forwarding */
  ioctl(s, SIOCSIPFORWARDING, &forwarding);
  puts("Forwarding turned off");
}

4.19.3 Accessing Tables

Accessing information stored in tables is more complicated than accessing simple
variables. The complexity is primarily due to the SNMP specification and the fact
that table sizes vary over time, based on the state of your system.

The pNA+ component defines C data structures for each MIB-II table. These defini-
tions are contained in <pna_mib.h>  and are shown in section 4.19.4. A table usu-
ally consists of multiple instances of the entries shown. The pNA+ component allows
you to access any field in any entry, add table entries, and delete entries.

The key to understanding how to manipulate tables is to recognize that MIB-II table
entries are not referenced by simple integers (like normal programming arrays).
Rather, one or more fields are defined to be index fields, and entries are identified by
specifying values for the index fields. The index fields were selected so that they
identify a unique table entry. The index fields are indicated in the MIB-II tables
shown.

This raises the question of how you determine the valid indices at any time. You ob-
tain them with ioctl()  the following way. First, declare a variable of type
mib_args  (this structure is defined in <pna_mib.h> ) using the following syntax:

struct mib_args {
  long len; /* bytes pointed to by buffer */
  char *buffer; /* ptr to table-specific struct array */
};

buffer  points to an array of structures with a type corresponding to the table you
want to access. len  is the number of bytes reserved for buffer . The buffer should
be large enough to hold the maximum possible size of the particular table being ac-
cessed.

Call ioctl()  with command equal to the MIB-II object corresponding to the name of
the table. arg  is a pointer to the mib_args  variable.
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Upon return from ioctl() , the array pointed to by arg  will have all of its index
fields set with valid values. In addition, there will be one other field set with a valid
value. This field is indicated as default  in the tables shown.

After you obtain a list of indices, you may set or retrieve values from fields in the ta-
bles. You issue an ioctl() call with command corresponding to the name of a field
and arg  pointing to a table-specific data structure.

The following code fragment illustrates how all of this works by traversing the IP
Route Table:

int s;  /* already opened socket descriptor */
{
 struct mib_iproutereq *routes;  /* the array of routes */
 struct mib_args arg;
 int num_routes, len, i;

 num_routes = 50; /* default number of routes in array */
 routes = NULL; /* to insure it is not free d before

* it is allocated */

  /* loop until enough memory is allocated to hold all routes */
  do {
    if (routes) { /* if not the first iteration */
      free(routes); /* free memory from previous iteration */
      num_routes *= 2; /* allocate more space for the next try */
    }
    len = sizeof(struct mib_iproutereq) * num_routes;

/* number  of bytes */

    routes = (struct mib_iproutereq *)malloc(len);
/* array itself */

    arg.len = len;
    arg.buffer = (char *)routes;
    ioctl(s, SIOCGIPROUTETABLE, (int *)&arg);
  }while (arg.len == len); /* if full there may be more routes */

  num_routes = arg.len / sizeof(struct mib_iproutereq);
/* actual number */

  puts("Destination   Next hop      Interface");
  for (i = 0; i < num_routes; i++) {

/* loop through all the routes */
    printf("0x%08X    0x%08X", routes[i].ir_idest.s_addr,
             routes[i].ir_nexthop.s_addr);
    ioctl(s, SIOCGIPROUTEIFINDEX, (int *)&routes[i]);
    printf("    %d\n", routes[i].ir_ifindex);
  }
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  free(routes);
}

You can insert a new entry into a table by specifying an index field with a nonexist-
ent value. The following code fragment shows an example of how to add an entry
into the IP Route Table.

int s; /* already opened socket descriptor */
void add_route(struct in_addr destination,
                struct in_addr gateway)
{
  struct mib_iproutereq route;

  route.ir_idest = destination;
  route.ir_nexthop = gateway;
  ioctl(s, SIOCSIPROUTENEXTHOP, &route);
}

You can delete a table entry by setting a designated field to a prescribed value.
These fields and values are defined in RFC 1213. The following code fragment pro-
vides an example of deleting a TCP connection from the TCP Connection Table so
that the local port can be re-used:

int s;  /* already opened socket descriptor */

void delete_tcpcon(struct in_addr remote_addr, struct in_addr
                   local_addr, short remote_port, short local_port)
{
  struct mib_tcpconnreq tcpconn;

  tcpconn.tc_localaddress = local_addr;
  tcpconn.tc_remaddress = rem_addr;
  tcpconn.tc_localport = local_port;
  tcpconn.tc_remport = rem_port;
  tcpconn.tc_state = TCPCS_DELETETCB;
  ioctl(s, SIOCSTCPCONNSTATE, &tcpconn);
}

4.19.4 MIB-II Tables

This section presents the MIB-II tables supported by the pNA+ component and their
corresponding C language representations.
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Interfaces Table

Structure and Elements MIB-II Object Type

struct mib_ifentry

ie_iindex ifIndex index

ie_descr ifDescr

ie_type ifType default

ie_mtu ifMtu

ie_speed ifSpeed

ie_physaddress ifPhysAddress

ie_adminstatus ifAdminStatus

ie_operstatus ifOperStatus

ie_lastchange ifLastChange

ie_inoctets ifInOctets

ie_inucastpkts ifInUcastPkts

ie_nucastpkts ifInNUcastPkts

ie_indiscards ifInDiscards

ie_inerrors ifInErrors

ie_inunknownp
rotos

ifInUnknown-
Protos

ie_outoctets ifOutOctets

ie_outucastpkts ifOutUCastPkts

ie_outnucastpk
ts

ifOutNUcastP-
kts

ie_outdiscards ifOutDiscards

ie_outerrors ifOutErrors

ie_outqlen ifOutQLen

ie_specific ifSpecific
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IP Address Table

IP Route Table

IP Address Translation Table

Structure and Elements MIB-II Object Type

struct mib_ipaddrreq

ia_iaddr ipAdEntAddr index

ia_ifindex ipAdEntIfIndex default

ia_netmask ipAdEntNet-
Mask

ia_bcastaddr ipAdEntBcas-
tAddr

ia_reasmmaxsiz
e

ipAdEntReasm-
MaxSize

Structure and Elements MIB-II Object Type

struct mib_iproutereq

ir_idest ipRouteDest index

ir_ifindex ipRouteIfIndex

ir_nexthop ipRouteN-
extHop

default

ir_type ipRouteType

ir_proto ipRouteProto

ir_mask ipRouteMask

Structure and Elements MIB-II Object Type

struct
mib_ipnettomediareq

inm_iifindex ipNetToMedi-
aIfIndex

index
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TCP Connection Table

inm_iaddr ipNetToMediaN-
etAddress

index

inm_physaddre
ss

ipNetToMedia-
PhysAddress

default

inm_type ipNetToMedi-
aType

Structure and Elements MIB-II Object Type

struct
mib_tcpconnreq

tc_localaddress tcpConnLocal-
Address

index

tc_localport tcpConnLo-
calPort

index

tc_remaddress tcpConnRe-
mAddress

index

tc_remport tcpConnRem-
Port

index

tc_state tcpConnState default

Structure and Elements MIB-II Object Type
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UDP Listener Table

4.19.5 SNMP Agents

The following IP group operations must be handled within an SNMP agent itself,
rather than through ioctl() .

4.19.6 Network Interfaces

Objects defined by the Interfaces group are maintained by the Network Interfaces
configured in your system. These objects are accessed via the ni_ioctl()  system
call.

pNA+ uses ni_ioctl()  when necessary to access Interfaces objects. ni_ioctl()
is described in the pSOSystem Programmer's Reference.

Structure and Elements MIB-II Object Type

struct
mib_udptabreq

u_localaddress udpLocalAd-
dress

index

u_localport udpLocalPort index

MIB-II Object Operation Comment

ipRouteIfIndex Set The value of this object cannot be set, be-
cause it is always determined by the IP ad-
dress.

ipRouteMetric* Both An SNMP agent should return -1 as their
value.

ipRouteAge Get An SNMP agent should return -1 as its value.

ipRouteMask Set The values of these objects can be interro-
gated but not changed.

ipRouteInfo Get An SNMP agent should return  { 0 0 } as the
value of this object.

ipRoutingDis-
cards

Get An SNMP agent should return 0 as the value
of this object.
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4.20 pRPC+ Subcomponent

The pNA+ component can be “extended” by adding the pRPC+ subcomponent which
implements remote procedure calls.

pRPC+ provides a complete implementation of the Open Network Computing (ONC)
Remote Procedure Call (RPC) and eXternal Data Representation (XDR) specifica-
tions. The pRPC+ subcomponent is designed to be source-code compatible with Sun
Microsystems’ RPC and XDR libraries. Sections 4.20.2  through 4.20.5  describe
those aspects of pRPC+ that are unique to the Integrated Systems implementation.

4.20.1 What is a Subcomponent?

A pNA+ subcomponent is a block of code that extends the feature set of the pNA+
component. A subcomponent is similar to all other components, with the caveat
that it relies on the pNA+ component for resources and services.

pNA+ initializes pRPC+ after it completes its own initialization sequence. Like any
component, pRPC+ requires RAM, which can be allocated from Region 0 or defined
in a Configuration Table.

The pNA+ Configuration Table entry NC_CFGTAB points to a subcomponent table,
which in turn contains a pointer to the pRPC+ Configuration Table.

pRPC+ shares the pNA+ error code space for both fatal and nonfatal errors. A pNA+
nonfatal error code has the form 0x50XX, where XX is the error value. A pRPC+
nonfatal error code has the form 0x51XX, where XX is the error value.

A pNA+ fatal error code has the form 0x5FXX, where XX is the fatal error value. A
set of 32 fatal errors from the pNA+ fatal error space is allocated for pRPC+ begin-
ning at 0x80. See the error code appendix of pSOSystem System Calls for a complete
listing of fatal and nonfatal pNA+ error codes.

4.20.2 pRPC+ Architecture

The pRPC+ subcomponent depends on the services of pSOSystem components other
than the pNA+ component. figure 4-5 on page -57 illustrates the relationship be-
tween the pRPC+ subcomponent and the other parts of pSOSystem.

RPC packets use the TCP or UDP protocols for network transport. The pNA+ compo-
nent provides the TCP/UDP network interface to the pRPC+ subcomponent.

Direct access to XDR facilities, bypassing RPC, is supported by using memory buff-
ers or stdio streams as a translation source or destination. I/O streams are man-
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aged by pREPC+. Streams may refer to pHILE+ managed files or directly to devices.
The pHILE+ component accesses remote NFS files by using network RPCs, utilizing
both the pRPC+ subcomponent and the pNA+ component.

In addition to the communication paths shown on the diagram, the pRPC+ subcom-
ponent also relies on pREPC+ for support of standard dynamic memory allocation.
Consequently, XDR memory allocation within the pRPC+ subcomponent uses the
same policy when insufficient memory is available as is used by applications that
use the pREPC+ ANSI standard interface directly.

The pRPC+ subcomponent uses services provided directly by the pREPC+ and PNA+
components. Installation of those components is prerequisite to the use of the
pRPC+ subcomponent. The pHILE+ component is only required if the ability to store
XDR encoded data on local or remote disk files is desired.

Communication
Drivers Drivers

Disk
Drivers

Network

pSOS+

pNA+

pRPC+

pHILE+

pREPC+

pRPC+

Devices

TCP/UDP

NFS Files

Local

Files

Files

stdio Streams

FIGURE 4-5 . pRPC+ Dependencies
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The pRPC+ subcomponent must be installed in any system that will use the pHILE+
component for NFS, regardless of whether custom RPC/XDR code will be used or
not. This is necessary because NFS is implemented using RPC/XDR. XDR is useful
in conjunction with NFS for sharing raw data files between hosts that use different
native representations of that data. Using XDR to write data files guarantees they
can be correctly read by all hosts. NFS has no knowledge of file contents or struc-
ture, so it cannot perform any data translation itself.

4.20.3 Authentication

The RPC protocol allows client authentication by RPC servers. When authentication
is being employed, servers can identify the client task that made a specific request.
Clients are identified by “credentials” included with each RPC request they make.
Servers may refuse requests based upon the contents of their credentials.

The representation of credentials is operating system specific because different op-
erating systems identify tasks differently. Consequently, the RPC definition allows
the use of custom credentials in addition to specifying a format for UNIX task cre-
dentials.

In order to facilitate porting of UNIX clients to pSOSystem and interoperability be-
tween pSOSystem clients and UNIX servers, pRPC+ fully supports the generation of
UNIX-style credentials.

The content of UNIX credentials are defined by the following data structure:

struct authunix_parms
{

u_long aup_time; /* credential's creation time  */
char *aup_machname; /* hostname of client */
int aup_uid; /* client's UNIX effective uid */
int aup_gid; /* client's UNIX effective gid */
u_int aup_len /* element length of aup_gids */
int *aup_gids; /* array of groups user is in */

};

The pRPC+ subcomponent supports the standard RPC routines for manipulating
UNIX-compatible credentials. These routines are authunix_create()  and
authunix_create_default() . Both routines automatically set the value of the
aup_time  element. The authunix_create()  routine takes as arguments the val-
ues of the remaining fields. The authunix_create_default()  routine sets the
values of the authunix_parms structure members from their pNA+ equivalents. The
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pNA+ configuration parameters are fully documented in the “Configuration Tables”
section of the pSOSystem Programmer’s Reference.

4.20.4 Port Mapper

RPC supports the use of the networking protocols TCP and UDP for message trans-
port. Because RPC and TCP/UDP use different task addressing schemes, clients
must translate servers’ RPC addresses to TCP/UDP addresses prior to making re-
mote procedure calls. RPC uses a “port mapper” task running on each host to per-
form address translation for local servers. Prior to making a remote procedure call,
clients contact the server’s port mapper to determine the appropriate TCP/UDP des-
tination address. (The port mapper protocol is handled within the RPC library and
its existence and use are transparent to application programmers.)

At system initialization time the pRPC+ subcomponent automatically creates a port
mapper task with the pSOS+ name pmap. The pmap task is started with a priority of
254. An application may change the priority of pmap via the standard pSOS+ service
call t_setpri() .

4.20.5 Global Variable

pSOSystem tasks all run in the same address space. Consequently, global variables
are accessible to and shared by every task running on the same processor. When-
ever multiple tasks use the same global variable, they must synchronize access to it
to prevent its value from being changed by one task while it is being used by an-
other task. Synchronization can be achieved by using a mutex lock (implemented
with a semaphore) or disabling task preemption around the regions of code which
access the variable.

The pRPC+ subcomponent eliminates the need to use custom synchronization in
RPC/XDR applications by replacing global variables with task-specific equivalents.

authunix_parms
member

Value set by authunix_create_default()

aup_machine pNA+ configuration parameter NC_HOSTNAME

aup_uid pNA+ configuration parameter NC_DEFUID, may be
changed on a per-task basis by the pNA+ call set_id() .

aup_gid pNA+ configuration parameter NC_DEFGID, may be
changed on a per-task basis by the pNA+ call set_id() .

aup_len, aup_gids aup_len is always 0 so aup_gids is always empty.
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Subroutines are provided in the pRPC+ subcomponent to provide access to the
task-specific variables.

The following global variables are replaced by local variables in the pRPC+ subcom-
ponent.

Use of these pRPC+ subroutines is described in pSOSystem System Calls.

Global Variable Service Call Description

svc_fdset get_fdset() Bit mask of used TCP/IP socket IDs

rpc_createerr rpc_getcreateerr() Reason for RPC client handle cre-
ation failure
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pHILE+ File System Manager
This chapter describes the pSOSystem file management option, the pHILE+ file sys-
tem manager. The following topics are discussed:

■ Volume types

■ How to mount and access volumes

■ Conventions for files, directories, and pathnames

■ Basic services for all volume types

■ Special services for local volume types

■ Blocking and deblocking

■ Cache buffers

■ Synchronization modes

■ Organization of pHILE+ format volumes

■ Special considerations

5.1 Volume Types

From the point of view of the pHILE+ file system manager, a file system consists of a
set of files, and a volume is a container for one file system. A volume can be a single
device (such as a floppy disk), a partition within a device (such as a section of a hard
disk), or a remote directory tree (such as a file system exported by an NFS server).

The pHILE+ file system manager recognizes the following four types of volumes:
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■ pHILE+ Format Volumes

These are devices that are formatted and managed by using proprietary data
structures and algorithms optimized for real-time performance. pHILE+ format
volumes offer high throughput, data locking, selectable cache write-through,
and contiguous block allocation. pHILE+ format volumes can be a wide range of
devices from floppy disks to write-once optical disks, as described below:

● Hard disks:

◆ IDE

Up to 8 gigabytes - Partition and partitioned disk
Up to 31.5 gigabytes (the maximum IDE CHS size) - Unpartitioned disk

◆ SCSI

Up to 8 gigabytes - Partition and partitioned disk
Up to 2,048 gigabytes (the maximum SCSI size) - Unpartitioned disk

● Floppy disks:

Any Size

● Optical disks:

124.4 Mbyte (Fuji M2511A OMEM).

■ MS-DOS Volumes

These devices are formatted and managed according to MS-DOS FAT file system
conventions and specifications. pHILE+ supports both FAT12 and FAT16. MS-
DOS volumes offer a method for exchanging data between a pSOS+ system and
a PC running MS-DOS. Because of their design, MS-DOS volumes are less effi-
cient than pHILE+ volumes; they should be used only when data interchange is
desired (see section 5.2.1). The pHILE+ file system manager supports the MS-
DOS hard disk and floppy disk formats and storage capacities listed below:

● Hard disks:

IDE interchangeable with DOS. Capacity: up to 528 megabytes - Partition

IDE accessible only to pHILE+. Capacity: up to 2 gigabytes - Partition
                                                             up to 8 gigabytes - Partitioned disk

SCSI interchangeable with DOS. Capacity: up to 2 gigabytes - Partition
                                                             up to 8 gigabytes - Partitioned disk
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● Floppy disks:

360 kilobytes (5 1/4” DD double density).

720 kilobytes (3 1/2” DD double density).

1.2 megabytes (5 1/4” DH high density).

1.2 megabytes (5 1/4” NEC).

1.44 megabytes (3 1/2” DH high density).

2.88 megabytes (3 1/2” DQ high density).

● Optical disks:

124.4 megabytes (Fuji M2511A OMEM).

■ NFS Volumes

NFS volumes allow you to access files on remote systems as a Network File Sys-
tem (NFS) client. Files located on an NFS server will be treated exactly as though
they were on a local disk. Since NFS is a protocol, not a file system format, you
can access pHILE+, MS-DOS, or CD-ROM format files.

■ CD-ROM Volumes

These are devices that are formatted and managed according to ISO-9660 CD-
ROM file system specifications. pHILE+ does not support the following CD-ROM
volume attributes:

● Multi-volume sets

● Interleaved files

● CD-ROMs with logical block size not equal to 2048

● Multi-extent files

● Files with extended attribute records

● Record format files

5.2 Formatting and Initializing Disks

If your pSOSystem application writes data, you need to take special care in prepar-
ing the data storage medium it uses (either hard disk or floppy disks). In pHILE+
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you can write data to either MS-DOS format volumes or pHILE+ format volumes.
The volume type chosen for the application determines the procedure you use to for-
mat and initialize the hard disk or floppy disks.

This section

■ discusses how to choose the volume type for your application,

■ defines the stages of disk formatting and initialization, and

■ provides instructions for formatting and initializing hard or floppy disks to use
either MS-DOS or pHILE+ format volumes.

Throughout this section, the word formatting refers to the entire process of prepar-
ing a hard or floppy disk for use. The word initialization refers to the last stage of for-
matting, which is creating the file systems to hold MS-DOS or pHILE+ format files.

NOTE:Considerations for writing device drivers that access MS-DOS and
pHILE+ volumes can be found in Section 7.11, ‘‘pHILE+ Drivers.”

5.2.1 Which Volume Type Should I Use?

You should use pHILE+ volumes whenever possible because they are faster and
more efficient than MS-DOS volumes. However, you must use MS-DOS volumes if
you are setting up a data interchange scenario involving a PC — that is, if the data
will be written on the target but read later on a PC. An example of such a scenario is
an application on a satellite that collects data in space. When the satellite comes
back to earth, the disk is loaded onto a PC and the data is read there.

If using MS-DOS volumes, you must format the disk(s) using DOS commands on a
PC. If using pHILE+ volumes, you can format the disk(s) using either DOS com-
mands or the I/O control commands of a SCSI driver. Specific formatting proce-
dures are provided later in this section.

5.2.2 Format Definitions

Formatting a disk requires several steps, some of which are performed at the factory
and some of which are performed by you. The following definitions describe the en-
tire formatting process:

1. Physical format or Low-level format

A physical format puts markings on the storage medium (typically a magnetic
surface) that delineate basic storage units, usually sectors or blocks. On hard
disks, physical formatting is purely a hardware operation and is almost always
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done at the factory. Instructions for physically formatting hard disks are not
provided in this manual. On floppy disks, you normally perform the physical
formatting. Instructions for doing this are provided below.

Physical formatting very rarely needs to be redone. If it is redone, it destroys all
data on the disk.

2. Partitioning (Hard Disks Only)

A hard disk can be divided into one or more partitions, which are separate phys-
ical sections of the disk. Each partition is treated as a logically distinct unit that
must be separately formatted and mounted.

Each partition can contain only one volume. The partitions on a disk can con-
tain volumes of different types. That is, some partitions can contain MS-DOS
volumes while others contain pHILE+ volumes.

You are responsible for executing the commands that partition the hard disk.
When a hard disk is divided into partitions, a partition table is also written on
the disk. The partition table is located in the first sector of the disk and provides
the address of each partition on the disk.

Partitioning can be redone to change the partition boundaries. However, this de-
stroys all data in any partition that is changed.

3. Writing the Volume Parameter Record

Just as the partition table provides information about each partition on a hard
disk, a volume parameter record in the first sector of each volume (partition or
floppy disk) describes the geometry of that volume, which is information such
as volume size and the starting location of data structures on the volume.

On MS-DOS format volumes, the volume parameter record is called the boot
record. On pHILE+ format volumes, the volume parameter record is called the
root block.

You are responsible for executing the commands that write the volume parame-
ter record. The way in which it is written is described below.

4. Creating an Empty File System Within Each Disk Partition

Each volume must be initialized to contain either an MS-DOS or a pHILE+ for-
mat file system. You are responsible for executing the initialization commands.

You use the system call init_vol()  to initialize pHILE+ format volumes. Note
that init_vol()  also writes the volume parameter record.
5-5



pHILE+ File System Manager pSOSystem System Concepts
You use the format  command to initialize MS-DOS format volumes. Once it is
initialized, you can use the system call pcinit_vol()  to re-initialize it.
pcinit_vol()  leaves the volume parameter record alone. However, the re-ini-
tialization destroys all data stored in any existing file system and writes a new
file system on the volume.

table 5-1 summarizes the above information.

5.2.3 Formatting Procedures

The heading for each set of instructions below defines the disk type, the volume
type, and the system being used, i.e., “Using MS-DOS to Format a Hard Disk for
MS-DOS Volumes.” Remember that if your application uses MS-DOS volumes, you
must format the disk using MS-DOS. If it uses pHILE+ format volumes, use either
MS-DOS or the I/O control commands of a SCSI driver.

Hard Disks

Using MS-DOS to Format a Hard Disk for MS-DOS Volumes

1. Execute the fdisk  command. fdisk  partitions the disk.

2. Execute the format  command once for each partition. format  writes the boot
records and initializes an MS-DOS file system within a partition.

Using MS-DOS to Format a Hard Disk for pHILE+ Volumes

1. Execute the fdisk  command. fdisk  partitions the disk.

2. In your application, use the pSOSystem system call init_vol()  to initialize
each partition as a pHILE+ volume. init_vol()  writes the pHILE+ root block

TABLE 5-1 Steps to Format a Hard or Floppy Disk

Formatting Step Where Performed Type of Disk That Requires
This Step

1. Physical format Factory Hard and floppy

2. Partitioning User Hard only

3. Volume
     parameter record

User Hard and floppy

4. File system
    initialization

User Hard and floppy
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and initializes a pHILE+ file system within the partition. Below is a code exam-
ple using init_vol() .

#include "sys_conf.h" /* FC_LOGBSIZE */

UINT err_code; /* For system calls */

char scratchbuf[1 << FC_LOGBSIZE]; /* For init_vol() */

const INIT_VOL_PARAMS init_vol_params /* For init_vol() */

    = { "SAMPLE", /* volume_label */

100000 - 32, /* volume_size: Number of blocks */

1000, /* num_of_file_descriptors:

 * Number of files on the volume */

4, /* starting_bitmap_block_number: Must be >= 4. */

0 }; /* starting_data_block_number: Intermix control and
* data blocks. */

err_code = init_vol("4.5.1", init_vol_params, scratchbuf);

if (err_code != 0)

/* Error handling */;

Using SCSI Commands to Format a Hard Disk for pHILE+ Volumes

1. In your application, use the SCSI driver command de_cntrl()  function
SCSI_CTL_PARTITION . This function partitions the disk into up to four pri-
mary partitions. It cannot create extended partitions or logical partitions. A code
example using SCSI_CTL_PARTITION  follows:

#include <drv_intf.h>

/* NOTES:

 * There must be some reserved space before the first partition.

 * There must be an extra entry with size = 0 to mark the end of
the list. */
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#define DEVICE(MAJOR, MINOR, PARTITION) \

(((MAJOR) << 16) | ((PARTITION) << 8) | (MINOR))
const PARTITION_ENTRY parts[4+1] /* At most 4 partitions */

= { /* Each entry is: begin, size. */

    { 32, /* 1. begin */

      100000 — 32 }, /* 1. size */

    { 100000, /* 2. begin: Right after 1 */

      100000 }, /* 2. size */

    { 200000, /* 3. begin: Right after 2 */

       50000 }, /* 3. size */

    { 250000, /* 4. begin: Right after 3 */

       50000 }, /* 4. size */

    { 0, 0 } }; /* End of list: size == 0 */

UINT err_code; /* For system calls */

struct scsi_ctl_iopb iopb; /* For de_cntrl() */

ULONG retval;

iopb.function = SCSI_CTL_PARTITION;

iopb.u.arg = parts;

/* NOTE: Partition must be zero. */

err_code = de_cntrl(DEVICE(4, 5, 0), &iopb, &retval);

if (err_code != 0)

/* Error handling */;
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2. In your application, use the pSOSystem system call init_vol()  to initialize
each partition as a pHILE+ volume. See the example on page 5-6.

Floppy Disks

Using MS-DOS to Format a Floppy Disk for MS-DOS Volumes

Execute the format  command. On a floppy disk, format  performs the physical for-
matting, writes the boot record, and initializes a volume in MS-DOS format.

Using MS-DOS to Format a Floppy Disk for pHILE+ Volumes

1. Execute the format  command.

2. In your application, use the pSOSystem system call init_vol()  to initialize
each partition as a pHILE+ volume.

Follow the example on page 5-6, but use a smaller volume_size. A 1.44 mega-
byte 3 1/2” floppy disk has 2,880 sectors per disk so init_vol()  cannot have
a volume_size above that.

Using SCSI Commands to Format a Floppy Disk for pHILE+ Volumes

1. In your application, use the SCSI driver command de_cntrl()  function
SCSI_CTL_FORMAT. This function performs a physical format of the floppy disk.
A code example using SCSI_CTL_FORMAT follows:

#include <drv_intf.h>

#define DEVICE(MAJOR, MINOR, PARTITION) \

(((MAJOR) << 16) | ((PARTITION) << 8) | (MINOR))

UINT err_code; /* For system calls */

struct scsi_ctl_iopb iopb; /* For de_cntrl() */

ULONG retval;

iopb.function = SCSI_CTL_FORMAT;

/* NOTE: Partition must be zero. */
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err_code = de_cntrl(DEVICE(4, 5, 0), &iopb, &retval);

if (err_code != 0)

/* Error handling */;

2. Use the pSOSystem system call init_vol()  to initialize the volumes in pHILE+
format.

Follow the example on page 5-6, but use a smaller volume_size (number of
blocks). A 1.44 megabyte 3 1/2” floppy disk has 2,880 sectors per disk so
init_vol()  cannot have a volume_size above that.

5.3 Working With Volumes

The following sections discuss how to access the pHILE+ file system manager and
all types of volumes, what naming conventions are used, and volume formatting dif-
ferences.

5.3.1 Mounting And Unmounting Volumes

Before a volume can be accessed, it must be mounted. The table below shows which
system call is used to mount each kind of file system. pSOSystem System Calls pro-
vides detailed descriptions of these system calls.

The pHILE+ file system manager maintains a mounted volume table, whose entries
track and control mounted volumes in a system. The size of the mounted volume ta-
ble, and hence the maximum number of volumes that can be mounted contempora-
neously, is determined by the parameter fc_nmount  in the pHILE+ Configuration
Table.

When a volume is no longer needed, it should be unmounted by using the
unmount_vol()  system call. When a volume is unmounted, its entry in the
mounted volume table is removed.

File System Mount system call

pHILE+ mount_vol()

MS-DOS pcmount_vol()

CD-ROM cdmount_vol()

NFS nfsmount_vol()
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Any task can unmount a volume. It does not have to be the same task that originally
mounted the volume. A volume cannot be unmounted if it has any open files.

5.3.2 Volume Names and Device Numbers

When a volume is mounted, the caller provides a 32-bit pSOS+ logical device num-
ber. This logical device number serves as the volume’s name while it is mounted. A
logical device number consists of two fields: a 16-bit major device number followed
by a 16-bit minor device number. By convention, if a device is partitioned (must be a
hard disk), the minor device number itself consists of two fields: the partition num-
ber in the most significant 8 bits, and the minor device number in the least signifi-
cant 8 bits. For more information on hard disk partitions, see Partitioned Hard Disk
Format (Standard MS-DOS) in Chapter 7.

The interpretation of the device number by the pHILE+ file system manager depends
on the type of volume. For local volumes, the major device number identifies a user-
supplied device driver associated with the volume. When the pHILE+ file system
manager needs to read or write a volume, it makes a pSOS+ I/O system call specify-
ing the volume’s major device number. The pSOS+ kernel uses the major device
number to find the device driver through its I/O Switch Table. The minor device
number is simply passed to the driver. Refer to Chapter 7, for a discussion of pSOS+
I/O and pHILE+ drivers.

NFS volumes do not have device drivers per se. I/O requests directed to NFS vol-
umes are routed through the pRPC+ and pNA+ components rather than standard
pSOS+ I/O mechanisms. The volume name is used only to identify the volume while
it is mounted.

The interpretation of the minor device number of local volumes is determined by the
device driver. A few typical uses are to select the device if the driver controls multi-
ple devices, or to select the device operating mode. For example, the Integrated Sys-
tems SCSI hard disk drivers conform with the partition convention above. They
divide the 16-bit minor device number into two fields: the partition number in the
most significant 8 bits and the SCSI ID number in the least significant 8 bits.

A volume name is given to the pHILE+ file system manager as a string of two or
three numbers separated by dots. Each number is decimal or hexadecimal. Hexa-
decimal numbers are preceded by 0x. If two numbers are given they are the 16-bit
major device number followed by the 16-bit minor device number. If three are given,
they are, in order, the 16-bit major device number, the 8-bit minor device number,
and the 8-bit partition number. In this case, an equivalent 16-bit minor device num-
ber is constructed with the partition number in the most significant 8 bits, and the
given minor device number in the least significant 8 bits.
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For a volume name example, consider partition 2 of a partitioned SCSI hard disk.
The SCSI adapter device driver number is 4. The SCSI ID of the disk drive is 3. Some
of the different ways of writing the same volume name are given below:

5.3.3 Local Volumes: CD-ROM, MS-DOS and pHILE+ Format Volumes

Internally, the pHILE+ file system manager treats local file system volumes differ-
ently than NFS volumes. Each local volume consists of a sequence of logical blocks,
and a file is a named collection of blocks. In this model, a logical block is a device-
independent addressable unit of storage. The pHILE+ file system manager interacts
with the device drivers in terms of logical blocks. Logical blocks are numbered start-
ing with 0. The conversion between logical block numbers and physical storage
units — such as head, cylinder, and sector — is handled by the device driver.

Logical blocks must be an even multiple of the physical block size of the device. On
pHILE+ format volumes, the size of a logical block is defined by the pHILE+ configu-
ration table entry fc_logbsize . This parameter has a large impact on system per-
formance. Within limits, a larger logical block size will reduce data scattering on a
device and improve throughput as a result of fewer I/O operations. On MS-DOS vol-
umes, the logical block size is fixed at 512 bytes. On CD-ROM volumes, the logical
block size is fixed at 2048 bytes.

5.3.4 NFS Volumes

When used in conjunction with pRPC+ and pNA+ components, the pHILE+ file sys-
tem manager offers NFS (Network File System) client services. This means that pSO-
System nodes can access files on remote systems that support the NFS protocol
(NFS servers) exactly as though they were on a local disk. The relationship is de-
picted in Figure 5-1.

Name Components

4.3.2 Major device number, Minor device number, Partition

0x4.0x3.0x2 Major device number, Minor device number, Partition

4.515 Major device number, Minor device number

4.0x203 Major device number, Minor device number
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To implement NFS, you must have these software elements:

■ An application interface, to provide functions such as open_f()  and
close_f() . The application interface is provided by the pHILE+ file system
manager.

■ XDR services to put the data in a format that can be generally recognized, and
Remote Procedure Calls to pass requests for NFS service to a server. The pRPC+
component provides RPC and XDR services.

■ On the transport level, a socket interface that observes the User Datagram Pro-
tocol and the Internet Protocol, to carry the Remote Procedure Calls as UDP/IP
messages for the server. pNA+ provides a UDP/IP transport for communication
with a server.

For the most part, you treat remote and local files the same way. There are some dif-
ferences, however, which you must understand when using NFS volumes.

When an NFS client (for example, the pHILE+ file system manager) requests services
from an NFS server, it must identify itself by supplying a user ID, group ID, and

pHILE+ pRPC+ pNA+ pSOS+

Driver

Application

NFS
Server

Ethernet

MS-DOS pHILE+CD-ROM

FIGURE 5-1 How Software Components Talk With NFS
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hostname. These items are used by the server to accept or reject client requests.
How these parameters are used depends on the server.

The hostname is a string of up to 31 characters and must be supplied in the pNA+
Configuration Table. The user ID and group ID are 32-bit numbers. Default values
for these quantities are supplied in the pNA+ Configuration Table. They may also be
examined and set for individual tasks by using the pNA+ get_id()  and set_id()
system calls, respectively.

The nfsmount_vol()  system call also has some unique features. When mounting
an NFS volume, you must specify the IP address of an NFS server and the name of a
directory on that server, which will act as the volume’s root directory.

5.4 Files, Directories, and Pathnames

The pHILE+ file system manager defines two types of files: ordinary files and direc-
tory files. An ordinary file contains user-managed data. A directory file contains in-
formation necessary for accessing ordinary and/or other (sub)directory files under
this directory.

Every volume contains at least one directory file called the ROOT directory. From it
can emanate a tree structure of directories and ordinary files to an arbitrary depth.
Of course, the ROOT directory might contain only ordinary files, yielding a common,
one-level structure.

Files may not cross over volumes and therefore cannot be larger than the volumes
on which they reside. Every file is uniquely identified by using a pathname. A path-
name specifies a path through a directory structure that terminates on a target file
or directory.

Pathnames are either absolute or relative. An absolute pathname always begins
with a volume name and specifies a complete path through the directory tree lead-
ing to a file or directory. On local volumes, a filenumber can be used to start the
complete path at any file or directory on the volume. (For more information on file-
numbers, see section ). In this case, the volume name must include a partition. The
filenumber follows the partition separated by a dot. If a filenumber is not given the
complete path starts at the volume’s root directory.

A relative pathname identifies a file or directory by specifying a path relative to a
predefined directory on a predefined volume, together called the current directory.
The current directory is unique for each task. It can be set and changed with the
change_dir()  system call.
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For examples of absolute pathnames, consider the following MS-DOS file system.
For illustration, assume that the filenumber of the root directory is 0x10000 or
65536, the filenumber of directory sports  is 0x1 or 1, the filenumber of file agenda
is 0x2 or 2, and the filenumber of file baseball  is 0x20003 or 131075. The
get_fn()  system call is used to determine the actual filenumber.

This file system is on the example partitioned SCSI hard disk of section 5.3.2. The
SCSI adapter device number is 4. The SCSI ID of the disk drive is 3. The file system
is on partition 2. Some of the different ways of writing absolute pathnames of the
two files and the two directories are described below:

File Absolute Pathname Components

Root 4.3.2/ Volume including partition, File-
name

Root 4.3.2/. Volume including partition, File-
name

Root 4.3.2.65536/ Volume including partition, File-
number, Filename

Root 4.3.2.0x10000/. Volume including partition, File-
number, Filename

sports 4.3.2/sports Volume including partition, File-
name

sports 4.3.2.65536/sports Volume including partition, File-
number, Filename

sports 4.3.2.1/. Volume including partition, File-
number, Filename

Root Directory
/                   \
sports
|
baseball

agenda
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An example of a relative pathname is food/fruit/apples . apples  is a file in the
directory fruit , which is in the directory food , which is a directory in the current
directory.

/stars/elvis  (note the leading slash) is another example of a relative pathname.
In this case, the file elvis is in the directory stars , which is in the root directory
on the volume defined by the current directory.

Rules for naming files and specifying pathnames vary according to the type of vol-
ume. On all volumes, however, the names containing only a single or double dot (.
and .. ) are reserved. A single dot refers to the current directory. A double dot refers
to the parent of the current directory.

5.4.1 Naming Files on pHILE+ Format Volumes

On pHILE+ format volumes, a file is named by an ASCII string consisting of 1 to 12
characters. The characters can be either upper or lowercase letters, any of the digits
0 - 9, or any of the special characters  . (period), _ (underscore), $ (dollar sign), or -
(dash). A name must begin with a letter or a period. Names are case sensitive — ABc
and ABC represent different files.

When a pathname is specified, the volume, directory, and filenames all are sepa-
rated by either a forward slash (/) or a backslash (\). The following examples show
permissible pathnames for files located on pHILE+ format volumes:

agenda 4.3.2/agenda Volume including partition, File-
name

agenda 4.3.2.65536/agenda Volume including partition, File-
number, Filename

agenda 4.3.2.2/. Volume including partition, File-
number, Filename

baseball 4.3.2/sports/
baseball

Volume including partition, File-
name

baseball 4.3.2.1/baseball Volume including partition, File-
number, Filename

baseball 4.3.2.0x20003/. Volume including partition, File-
number, Filename

File Absolute Pathname Components
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0.1/fruit/apples

apples

./apples

5.4.2 Naming Files on MS-DOS Volumes

Files located on MS-DOS volumes are named according to standard MS-DOS nam-
ing conventions. Note the differences from the rules described above. MS-DOS file-
names are not case sensitive (that is, abc and ABC name the same file). And, MS-
DOS names have two parts: a filename and an extension. The filename can be from
one to eight characters and the extension may be from zero to 3 characters. Filena-
mes and extensions are separated by a dot (.). The characters can be either upper or
lowercase letters, any of the digits 0 - 9, or any of the special characters = (equal
sign), _ (underscore), ^ (caret), $ (dollar sign), ~ (tilde),
! (exclamation point), # (number sign), % (percent sign), & (ampersand), - (hyphen),
{} (braces), @ (at sign),’ (single quotation mark), ’ (apostrophe), () parentheses).

When a pathname is specified, the volume, directory, and filenames all are sepa-
rated by either a forward slash (/) or a backward slash (\). The following examples
show permissible pathnames for files located on MS-DOS formatted volumes:

0.1/fruit/apples.0

apples.new

./apples

The MS-DOS file system treats a pathname that begins with a digit as absolute if
the path component is a valid, currently mounted pSOSystem logical device name
(see section 5.3.2). Otherwise, the system treats the pathname as relative.

5.4.3 Naming Files on NFS Volumes

On NFS volumes, a file is named by a sequence of up to 64 characters. All charac-
ters except backslash (\) and null are allowed. Filenames and directory names are
separated in pathnames by forward slashes (/). If the pHILE+ file system manager
encounters a symbolic link while traversing an NFS pathname, it recursively ex-
pands the link up to three levels of nesting.
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5.4.4 Naming Files on CD-ROM Volumes.

A filename on a CD-ROM volume consists of characters from the following set:

0 - 9, A - Z, _, !, #, $, %, &, (), -, ., =, @, ^, ‘, {}, ~

On a CD-ROM volume, letters are upper-case. You can specify names for a filename
in lower-case, but the system maps them to upper-case. The maximum length for a
filename is 31 characters.

The CD-ROM file system treats a pathname that begins with a digit as absolute if
the path component is a valid, currently mounted pSOSystem logical device name
(see section 5.3.2). Otherwise, the system treats the pathname as relative.

As a special case, the file name _VOLUME.$Y$ in the root directory is used to read
the primary volume descriptor, which is the starting point for locating all information
on the volume. For a detailed description of _VOLUME.$Y$, refer to the open_f()
system call description in pSOSystem System Calls.

5.5 Basic Services for All Volumes

This section describes basic services that can be used with all types of volumes. For
detailed descriptions of the system calls discussed in this section, see the system
calls reference.

5.5.1 Opening and Closing Files

Before a file can be read or written, it must be opened with the open_f()  system
call. open_f()  accepts as input a pathname that specifies a file, and a mode pa-
rameter, which has meaning only when opening files located on NFS volumes.
open_f()  returns a small integer called a file ID (FID) that is used by all other sys-
tem calls that reference the file.

A file may be opened by more than one task at the same time. Each time a file is
opened, a new FID is returned.

When a file is opened for the first time, the pHILE+ file system manager allocates a
data structure for it in memory called a file control block (FCB). The FCB is used by
the pHILE+ file system manager to manage file operations and is initialized with sys-
tem information retrieved from the volume on which the file resides.

All subsequent open calls on the file use the same FCB; it remains in use until the
last connection to the file is closed. At that time, the FCB is reclaimed for reuse. The
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close_f()  system call is used to terminate a connection to a file; it should be used
whenever a file connection is no longer needed.

At pHILE+ startup, a fixed number of FCBs are created, reflecting the maximum
number of permissible concurrently open files specified in the pHILE+ Configuration
Table entry fc_nfcb .

In addition to the FCB, the pHILE+ file system manager uses a system data struc-
ture called an open file table to manage open files. Every task has its own open file
table, which is used by the pHILE+ file system manager to store information about
all of the files that have been opened by that task. Each entry in an open file table
controls one connection to a file. The FID mentioned above is actually used to index
into a task’s Open File Table.

The size of these open file tables is specified in the pHILE+ Configuration Table en-
try fc_ncfile . This parameter sets a limit on the number of files which a task can
have open at the same time.

Figure 5-2 shows the relationship between the system data structures discussed in
this section.
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5.5.2 Reading And Writing

Once a file is open, it may be read or written with the read_f()  and write_f()
system calls, respectively.

read_f()  accepts as input an FID identifying the file to read, the address of a user
data buffer to receive the data, and the number of bytes to read. Data transfer be-
gins at the byte indicated by the position pointer, as explained in the next section.

read_f()  returns the number of bytes transferred from the file to the user’s buffer.
If this value is less than the number requested and the return code does not indi-
cate that an error occurred, then the end-of-file has been reached. Attempting to
read beyond the end-of-file is not considered an error.

Pointer 1FID = 1

Task A

Pointer 2FID = 2

FID = 3    UNUSED

FCB_ i

FCB_ j

FCB_ k

Pointer 1FID = 1

Task B

Pointer 2FID = 2

File File Control
    Blocks

Open file
   tablesIDs

Data Structures

File 1

Data Structures
on a Devicein Memory

File 2

File 3

FIGURE 5-2 The Relationship Among a File ID, a File Control Block,
and a File
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The write_f()  system call is used to write data to a file. write_f()  is similar to
read_f() . It accepts as input an FID to identify a file, the address of a user data
buffer containing data, and the number of bytes to transfer. Data transfer begins at
the byte indicated by the position pointer, as explained in the next section.
write_f()  always transfers the number of bytes requested unless the target vol-
ume runs out of space or an error occurs.

5.5.3 Positioning Within Files

From the user’s point of view, a file is a numbered sequence of bytes. For example, if
a file contains 210 bytes, they are numbered 0 through 209.

For every connection established by open_f() , the pHILE+ file system manager
maintains a position pointer that marks the next byte to read or write. The position
pointer is a 32-bit unsigned integer and is initialized to 0 by open_f() . Every read
or write call advances the position pointer by the number of bytes transferred by
that operation. In this way, a file can be read or written sequentially. The position
pointer will be equal to the number of bytes in the file when the end-of-file is
reached. In the example cited above, the position marker will be 210 after the last
byte is read.

The lseek_f()  system call can be used to relocate a position pointer. lseek_f()
accepts three input parameters. The first parameter is an FID used to specify a file.
The second parameter is an offset that specifies the number of bytes by which the
position pointer should be “moved.”

The third parameter specifies that the move should be relative to one of the follow-
ing:

■ The beginning of file

■ The end of file

■ The current position

The pHILE+ file system manager does not allow positioning beyond the end of a file.
Any attempt to do so results in an error code being returned. The position pointer is
left unchanged.
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5.5.4 Creating Files and Directories

Because of the differences between ordinary files and directory files, separate sys-
tem calls are provided for creating files and directories. The create_f()  system
call is used to create an ordinary file. make_dir()  is used to create directories.
When an ordinary file is created, an entry for it is added to its parent directory. Both
ordinary and directory files are initially empty.

When creating an ordinary file on a pHILE+ format volume, you must specify an ex-
pansion unit. This parameter controls the incremental growth of the file. Details on
this parameter can be found in section .

Because of the read-only operation of CD-ROM volumes, the CD-ROM file system
does not support creation of files and directories.

5.5.5 Changing Directories

The current directory for a task can be set and altered using the change_dir()
system call. change_dir()  accepts as input a pathname specifying the new direc-
tory. This pathname can be either an absolute or relative pathname. Once the new
directory is set, all subsequent relative pathnames are interpreted with respect to
the new current directory.

The pHILE+ file system manager does not assume a default current directory for any
task. If a task intends to use relative pathnames, then it must call change_dir()
at least once.

On pHILE+ format volumes, the current directory may be deleted. The results of us-
ing a relative pathname after the current directory has been deleted is unpredictable
and should never be attempted.

5.5.6 Moving and Renaming Files

The move_f()  system call allows a volume’s directory tree structure to be modified
by moving a file from one directory to another. On MS-DOS volumes, only ordinary
files may be moved. On pHILE+ format volumes and NFS volumes, ordinary and di-
rectory files may be moved. CD-ROM files cannot be moved or renamed. When a di-
rectory is moved, all of the files and subdirectories are also moved.

move_f()  can be used to rename a file by “moving” it within the same directory. Ac-
tually, move_f()  is a misnomer, because move_f()  never really moves data, it only
manipulates directory entries.

Files may not be moved between volumes.
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5.5.7 Deleting Files

Ordinary and directory files may be deleted (removed) by using the remove_f()
system call. A file may not be removed if it is open or if it is a non-empty directory
file. On a CD-ROM file system, a file cannot be deleted.

5.6 Special Services for Local Volume Types

This section discusses some internal implementation issues that are relevant only
for local volumes (that is, not NFS volumes). Understanding the material in these
sections can help you improve the performance of your system.

5.6.1 get_fn, open_fn

Each time a file is opened, the pathname must be parsed and the directories
searched. If the pathname traverses many levels of the directory tree, or if any direc-
tory in the path contains a large numbers of files, then a directory search can be
time-consuming. Most applications open files infrequently, and the directory search
time in such cases is unimportant. However if the same file must be frequently
opened and closed, the parsing and searching overhead can be substantial.

On pHILE+, CD-ROM, and MS_DOS formatted volumes, an alternate method of
opening a file, open_fn() , bypasses all parsing and directory searching. Rather
than providing a pathname, the calling task can provide the file number. The
get_fn()  call is used to obtain the file number. get_fn()  accepts a pathname as
input and returns the file number of the corresponding file. get_fn()  followed by
an open_fn()  is functionally equivalent to an open_f()  call. If the file is to be
opened many times, it is more efficient to call get_fn()  once, and then use
open_fn()  whenever the file must be opened.

A second and less obvious advantage of get_fn()  and open_fn()  involves reusing
pathnames. Often a pathname must be saved so a file can be reopened later. If a file
is deeply nested, its pathname can be quite long and may consequently require a
significant amount of memory for storage. Even worse, if a saved pathname is ex-
pressed relative to a current directory and the current directory changes before the
file is reopened, the operation will fail or the wrong file will be opened.

In these cases, the pathname can instead be converted into a file number. The file
can be (re)opened at a later time, independently of the current directory.
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5.6.2 Direct Volume I/O

While a volume's data is usually accessed through the directory organization pro-
vided by the pHILE+ file system manager, certain applications may need to access
data via its logical address on the volume.

Two pHILE+ system calls, read_vol()  and write_vol() , allow you to access data
on a local volume by block address. Any number of bytes may be accessed, begin-
ning at any byte within any logical block on a volume.

These calls provide two advantages compared to calling the appropriate device
driver directly, which bypasses the pHILE+ file system manager entirely. First, if the
volume has been mounted with some synchronization mode other than immediate
write, data recently written to the volume may still be memory-resident, not having
yet been flushed to the device. Calling the driver directly would not read the latest
copy of such data. Worse, data written directly to the volume could be overwritten
by cache data and thus lost entirely.

read_vol()  and write_vol()  can read/write portions of a block. All the neces-
sary caching and blocking/deblocking will be performed by the pHILE+ file system
manager as required. Thus read_vol()  and write_vol()  allow a device to be ac-
cessed as a continuous sequence of bytes without regard for block boundaries.

NOTE:read_vol()  is available for all local volumes. write_vol() is available for
all local volumes except CD-ROM, which is read-only.

5.6.3 Blocking/Deblocking

From the user’s point of view, a file is a sequence of bytes. Internally, however, the
pHILE+ file system manager implements a file as a sequence of logical blocks, and
interacts with your driver in units of blocks. Therefore, for each user I/O request,
the pHILE+ file system manager must map the requested data bytes into logical
blocks. On top of this, your device driver must, in turn, translate logical blocks into
physical storage units. This process of translating bytes into blocks is called block-
ing and deblocking. The following scenarios illustrate how blocking and deblocking
work.

When a read_f()  operation requests bytes that are within a block, the pHILE+ file
system manager reads the entire block and then extracts the referenced bytes from
it (deblocking).

When a write_f()  operation writes bytes that are within a block, the pHILE+ file
system manager reads the entire block, merges the new data into it (blocking), and
then writes the updated block back to the volume.
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When a read_f()  or write_f()  operation references bytes that fit into an entire
block or blocks, the pHILE+ file system manager transfers the bytes as entire
block(s). No blocking/deblocking is necessary.

When a read_f()  or write_f()  operation references bytes that straddle multiple
blocks, the operation is broken down into separate actions. The bytes at the begin-
ning and end of the sequence will require blocking/deblocking. The bytes that fill
blocks in the middle of the sequence, if any, are transferred as entire blocks.

Note that read and write operations are most efficient if they start at block bound-
aries and have byte counts that are integral multiples of the block size, because no
blocking/deblocking is required.

5.6.4 Cache Buffers

The pHILE+ file system manager maintains a pool, or cache, of buffers for blocking/
deblocking purposes. The number of cache buffers in your system is determined by
the pHILE+ Configuration Table entry fc_nbuf . The size of the buffers in the buffer
cache is determined by the pHILE+ Configuration Table entry fc_logbsize . Each
buffer, when in use, holds an image of a logical block. A buffer can contain ordinary
file data, directory file data, or system data structures. To improve system perfor-
mance, the pHILE+ file system manager uses the buffers as an in-memory cache for
data recently retrieved from a device.

When the pHILE+ file system manager needs to access a logical block, it first checks
to see if an image of the block is contained in a cache buffer. If yes, the pHILE+ file
system manager simply works with the cache buffer in memory. There is no need for
a physical I/O operation, thus improving performance.

Buffers in the cache are maintained using a least-recently-used algorithm. This
means that if the pHILE+ file system manager needs to use a buffer and they are all
in use, then the buffer that has been untouched the longest, regardless of volume,
is reused.

Before reusing a buffer, the pHILE+ file system manager must test to see if the data
in the buffer has been modified (e.g. because of a write_f()  operation). If the data
has been changed, then the pHILE+ file system manager must call your driver to
transfer the buffer’s data to the volume before it can be reused. If the buffer has not
been modified (for example, the data was only read), then the data on the volume is
identical to that in the buffer, and the buffer can be reused.

It is worth noting that the pHILE+ file system manager bypasses the buffer cache, if
possible, to increase performance. If a read or write call involves all of the bytes
within a block, then the pHILE+ file system manager requests your driver to transfer
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the data directly between the volume and the user buffer specified in the system
call. The buffer cache will be bypassed.

The following example illustrates how the pHILE+ file system manager utilizes the
buffer cache. The pHILE+ file system manager receives a write_f()  request for a
sequence of bytes that covers 6 blocks, as follows (see Figure 5-3):

■ The operation starts in middle of block 24, which is not in a cache. A cache
buffer is obtained, and block 24 is read into it via a physical read operation.
Then the respective bytes are copied from the user buffer into the cache buffer.

■ Blocks 25 and 26 are not in a cache. Because they are contiguous, a single
physical write operation is used to write the bytes from the user buffer to blocks
on the volume.

■ Block 27 is in a cache buffer, so bytes are transferred to it, overwriting its old
data.

■ Block 28 is not in a cache, so a physical write operation is used to write the
bytes to the block on the volume.

■ Block 29 is in a cache buffer, so the respective bytes are copied into it.

5.6.5 Synchronization Modes

Because of the buffer cache, a pHILE+ or MS-DOS format volume might not always
contain the most recent data. The data in a cache buffer might have been modified,
but not written to disk. If a hardware failure occurs before the disk is updated, the
data will be lost.

A similar situation can arise with the system data structures used by the pHILE+
file system manager to manage a volume (for example, FCBs, FATs, bit maps, and so
forth). To reduce the number of disk accesses required during normal operation,

24 25 26 27 28 29 30
Physical
Block #

In Cache? No No No Yes No Yes
FIGURE 5-3  Blocking Factors and Cache-Buffering
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copies of certain system data structures normally residing on volumes are main-
tained in memory. In this case, if a hardware failure occurs before the pHILE+ file
system manager updates a volume, then the volume will be corrupted.

To deal with these situations, and at the same time to accommodate different appli-
cation requirements for security and performance, the pHILE+ file system manager
provides three synchronization modes that dictate when a volume is updated. A
fourth synchronization mode is also provided (Read-Only) which does not dictate
when a volume is updated. The synchronization mode is selected when a volume is
mounted. The four possible modes are described in table 5-2.

Immediate-Write Mode

When a volume is mounted with the immediate-write mode, cache buffers and in-
memory system data structures are flushed (that is, written to the volume) when-
ever they are modified.

Immediate-write mode is equivalent to calling sync_vol()  (explained below) after
every pHILE+ operation. Unfortunately, system throughput can be significantly im-
pacted because every write operation results in at least two I/O transactions: one
for a cache buffer and one for system data. When using this mode, you should avoid
writing less than a block of data with one write_f()  system call. You should col-
lect data in a local buffer and write at least one block at a time.

TABLE 5-2 Possible Modes for Synchronization

Mode/Mnemonic Effect Trade Off

Immediate-Write/
SM_IMMED_WRITE

All changed
data is flushed
immediately.

High security,
low perfor-
mance.

Control-Write/
SM_CONTROL_WRITE

Flush only con-
trol data that
changed.

Medium secu-
rity, medium
performance.

Delayed-Write/
SM_DELAYED_WRITE

Flush data only
as required.

Low security,
high perfor-
mance.

Read-Only/
SM_READ_ONLY

Writes to the
volume are dis-
allowed.

N/A
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Control-Write Mode

When a volume has been mounted with control-write mode, every time an in-mem-
ory system data structure is modified, it is flushed to disk. For example, if the con-
tents of a File Control Block is changed, it is flushed. User data, however, is not
flushed immediately and may linger in a cache buffer for an indefinite period of
time.

Control-write mode provides the same level of volume integrity as immediate-write
mode, but provides less protection for your data in the event of a system failure. Its
use, however, can significantly improve throughput. The difference is most dramatic
when the application is performing write_f()  operations involving small numbers
of bytes.

Delayed-Write Mode

When a volume has been mounted with delayed-write mode, the pHILE+ file system
manager flushes memory-resident data only when required by normal operation.
File Control Blocks are flushed only when a file is closed or a volume is synchro-
nized. Cache buffers are flushed only when they are reused, a volume is synchro-
nized, or a volume is unmounted.

The delayed-write mode is the most efficient of the three modes because it mini-
mizes I/O. When using this mode, however, a system failure may leave a volume
with inconsistent system data structures and old user data.

Delayed-write mode is a reasonable choice when high throughput is required. Nor-
mally, using the sync_vol()  system call periodically is sufficient to maintain a
consistent volume.

Read-Only Mode

This mode prevents writing to the volume. Only system calls that do not write to the
volume are allowed. All supported system calls that write to the volume abort and
return the E_RO error. Unsupported system calls still return their usual error code.

This synchronization mode is the only one supported on CD-ROM volumes. How-
ever, it can be used on any local volume.
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5.6.6 sync_vol

The sync_vol()  system call copies the contents of the cache buffers and all in-
memory system data structures to a volume. sync_vol()  is automatically executed
when a volume is unmounted. It is not needed for a volume if the volume is
mounted with immediate write mode.

5.7 pHILE+ Format Volumes

This section discusses how pHILE+ format volumes are organized and the special
system calls available only for pHILE+ format volumes.

5.7.1 How pHILE+ Format Volumes Are Organized

As mentioned in Section 5.6.3, ‘‘Blocking/Deblocking,’’ a pHILE+ format volume
consists of a sequence of logical blocks. Several blocks per volume are dedicated to
hold management information for the volume. These blocks are accessed directly by
the pHILE+ file system manager without going through normal file operations.

The management blocks are defined as follows:

BOOTLOAD The first and second blocks (0 and 1) are never used by the
pHILE+ file system manager. They are reserved in case a
bootstrap loader is needed for the volume.

ROOTBLOCK Block 2 is always used as the root block for a volume. This
block contains all information needed by the pHILE+ file
system manager to locate other vital information on the
volume.

ROOTDIR Block 3 is always used to hold the first block of the root di-
rectory for the volume. As the root directory grows, addi-
tional blocks are allocated dynamically as required.

BITMAP This contiguous sequence of blocks is used to hold the bit-
map for the volume, which uses bits to indicate what
blocks are free. Its size and location are determined by pa-
rameters that you supply when you initialize the volume.

FLIST This contiguous sequence of blocks is used to hold the file
descriptors for the volume. It is positioned immediately fol-
lowing the bitmap. Its size is determined by parameters
you supply when you initialize a volume.
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Thus, a volume has four initial data structures containing vital internal manage-
ment data. Before a volume can be used, it must be initialized using the
init_vol()  call, described in the system calls reference. init_vol()  builds the
root block, the root directory, the bitmap, and the FLIST structures on the volume.
See the init_vol()  call description in pSOSystem System Calls for C language def-
initions of these data structures.

The bitmap can be placed anywhere on a volume and it is always followed by the
FLIST. They need not be contiguous with the root block, root directory or any other
data structure on the volume. Because the bitmap is used during write operations,
and FLIST is used extensively during all file creation and connection, overall volume
access can be improved by careful placement of these structures.

The Root Block

The root block is the starting point from which the pHILE+ file system manager lo-
cates all other data on the volume. For this purpose, it contains the:

In addition, the root block contains the following information about the volume:

The Root Directory

The volume’s root directory is a directory file that forms the starting point from
which the pHILE+ file system manager locates all other files on a volume. From the
root directory emanates the tree structure of (sub)directories and ordinary files. In
the simplest case, the root directory contains only ordinary files, thus yielding a
one-level directory structure common in less sophisticated file systems.

BITMAP_ADDRESS The starting block number of the volume bitmap

FLIST_ADDRESS The starting block number of FLIST

DATA_ADDRESS The starting block number of data space (See section .)

INIT_TIME The time and date of volume initialization

VOLUME_NAME The volume label

VOLUME_SIZE The volume size in blocks

NUMBEROF_FD The number of file descriptors (that is, the FLIST size)

VALIDATE_KEY Volume initialization successful
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Immediately after a volume has been initialized, its root directory contains two files:
FLIST.SYS , which is the volume’s list of file descriptors, and BITMAP.SYS, which is
the volume’s map of occupied blocks.

As with any user file, ordinary or directory, the root directory is expanded automati-
cally by the pHILE+ file system manager, as required. For directory files, such ex-
pansion occurs one block at a time, and the blocks are generally not contiguous.
Contiguous expansion of directory files can be achieved using the annex_f()  sys-
tem call described in pSOSystem System Calls.

The Volume Bitmap

A volume’s bitmap is actually a system file. It is read-only; it performs the critical
function of tracking the usage of each block on the volume. One bit is used to tag
each block in the volume. If a block is allocated to a file, then the corresponding bit
is set to 1. If a block is free, the corresponding bit is 0.

The size of the bitmap is determined by the size of the volume. Thus, for example, if
the volume has 32K blocks, then the bitmap uses 32K bits or 4 Kbytes. If block size
is 1 Kbyte, then 4 blocks are allocated for this bitmap. Immediately after a volume
has been initialized, its bitmap shows blocks used by the bootloader, the root block,
the bitmap itself, and FLIST.SYS .

The bitmap can be read as <volume>/BITMAP.SYS . This file is write-protected, and
hence cannot be written to directly or deleted.

The File Descriptor List

Every file, whether it is an ordinary or directory file, requires a control structure
called a file descriptor (FD). Each volume contains its own list of file descriptors,
called the FLIST, which is stored in a contiguous sequence of blocks. More details
about file descriptors are in section .

You specify the number of file descriptors in the FLIST when you initialize a volume.
Each file descriptor is 128 bytes long. Therefore, if the number of file descriptors
specified is 100, the FLIST occupies 12800 bytes, or 13 blocks if the block size is 1
Kbyte.

Note that if the number of file descriptors on a volume is specified as n, then the
maximum number of user-created files that can exist on the volume is n. The num-
ber of file descriptors created will actually be (n + 4), because four internal system
files are always present: the root directory (/ ), /BITMAP.SYS , /FLIST.SYS , and a
reserved null file. These system files are write-protected, and cannot be written to
directly or deleted.
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Control and Data Block Regions

pHILE+ format volumes recognize two types of file blocks: control blocks and data
blocks. Control blocks contain pHILE+ data structures such as:

■ The bootload (blocks 0 and 1)

■ The root block (block 2)

■ The bitmap

■ The FLIST

■ All directory file blocks

■ Indirect and index blocks

Indirect and index blocks are used with extent maps and are explained in section .

Data and control blocks can be either intermixed or partitioned. Partitioning control
and data blocks is a unique feature of pHILE+ format volumes and makes the
pHILE+ file system manager capable of working with write-once devices. When a
partition is used, the logical address space of a volume is divided into two regions:
one for control blocks and one for data blocks. Using this method, control blocks
can be temporarily maintained on an erasable media while data blocks are written
on a write-once device. After the data partition of a volume is filled, the information
from the control blocks that had been on erasable media can be transferred to the
write-once device, where it is permanently recorded.

Intermixing control and data blocks means that your data and pHILE+ data struc-
tures will be written randomly on a device.

The manner in which control and data blocks are organized on a volume is deter-
mined when the volume is initialized. One of the input parameters to init_vol()
specifies the starting block number of the volume’s data blocks. If 0 is specified,
then the data and control blocks are intermixed. Otherwise, data blocks begin at the
specified block. The starting data block number must be divisible by eight. For ex-
ample, if a data block starting number of 200 is specified on a volume containing
5000 blocks, then blocks 2 - 199 (recall blocks 0 and 1 are not used by the pHILE+
file system manager) are control blocks and blocks 200 - 4999 are data blocks.
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5.7.2 How Files Are Organized

A file is a collection of blocks that contain data, a file descriptor that contains con-
trol information, and an entry in a parent directory file.

The following sections outline how files are constructed and how data in them is
used.

The File Number

Externally, a file is specified by its pathname. Internally, the pHILE+ file system
manager converts this pathname into a corresponding file number, which is in-
dexed. With this file number, the pHILE+ file system manager accesses a file de-
scriptor, and uses its content to perform the necessary operations on the file. You
normally do not use the file number externally as a file ID. A call such as
create_f() , for example, returns an external file ID, not the internal, proprietary
file number. However, file numbers are used in the get_fn() , read_dir() , and
open_fn()  system calls.

The File Descriptor

Each file descriptor is 128 bytes and contains the following information:

■ The logical file size in bytes

■ The physical file size in blocks

■ The file type: directory or ordinary, system or data

■ The time of last modification

■ The file’s expansion unit

■ The file’s extent map.

File Types

There are two type attributes associated with a file. A file may be an ordinary or a di-
rectory file, and it may be a system file or a data file. Ordinary and directory files
were discussed above.
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System files are created by the pHILE+ file system manager when a volume is initial-
ized. There are three system files per volume:

Because system files contain vital data structures, they are protected against user
removal and modification. Reading, however, is allowed.

Time of Last Modification

The pHILE+ file system manager maintains the time at which a file was last modi-
fied. This field is initialized when a file is created; thereafter it is updated whenever
a file is written, or when blocks are annexed to the file.

The File Expansion Unit

If a write_f()  operation extends past the current physical size of a file, the pHILE+
file system manager will automatically expand the file to hold the new data. This
type of file expansion is governed by the following considerations.

When a file is created, you supply a parameter called an expansion unit that deter-
mines the minimum expansion increment to use during write_f()  operations.
This parameter specifies the minimum number of physically contiguous blocks the
pHILE+ file system manager attempts to allocate when additional space is required
by file. This is a lower-bound number, because the number of blocks allocated is ac-
tually determined by either the expansion unit, or the number of blocks needed to
satisfy the current write_f()  operation, whichever is greater.

Extents

A file is treated simply as a sequence of logical blocks. Each such block corresponds
to a physical block on the volume. Because the physical blocks that comprise a file
may be scattered throughout a volume, the pHILE+ file system manager implements
a structure called an extent to keep track of a file’s blocks, and hence its data.

An extent is a sequence of physically contiguous blocks. An extent consists of one or
more blocks; similarly, a file with data consists of one or more extents.

/BITMAP.SYS The volume’s bitmap

/FLIST.SYS The volume’s FLIST

/ The volume’s root directory
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A file can acquire an extent in one of two ways:

■ During a write_f()  operation, when a file is expanded; or

■ During an annex_f()  operation

These operations also might not produce a new extent, because the pHILE+ file sys-
tem manager may merge the newly allocated blocks into an existing extent (logically
the last extent) if the new blocks are contiguous with that extent.

An extent is described by an extent descriptor:

< starting block number, number of blocks >

which identifies the physical address of the blocks that make up the extent.

The Extent Map

The extent map for a file is a list of its extent descriptors. For reasons of efficiency,
this map is organized by layers of indirection.

The first 10 extent descriptors are located in the file’s file descriptor. Additional ex-
tent descriptors, when needed, are stored in indirect blocks. Each indirect block is a
physical block that contains up to n extent descriptors. Because an extent descrip-
tor is 8 bytes, the number n of extent descriptors that can be held in an indirect
block is (blocksize / 8). For example, if blocksize is 1 Kbyte, then n is 128. Indirect
blocks are allocated as needed for each file.

Each indirect block is addressed via an indirect block descriptor which is also a pair
of words:

< starting block number, last logical block number + 1 >

where the first item is a physical block number, and the second item is the logical
number (+ 1) of the last block contained in this indirect block of extent descriptors.
This last number is useful for quickly determining whether an indirect block needs
to be searched while locating a particular logical block within a file.

The indirect block descriptor for the first indirect block, if needed, is held in a file
descriptor. If more than one indirect block is needed, as in the case of rather large
and scattered files, then the second through (n + 1)th indirect block descriptors are
held in an index block.

If allocated, this index block will contain up to n indirect block descriptors. Again,
because each indirect block descriptor is 8 bytes long, the number n of indirect
block descriptors in the index block is equal to (blocksize / 8). For example, if block-
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size is 1 Kbyte, then this number will be 128. The physical block address of the in-
dex block is contained in a file descriptor. A file can have only one index block.

The structure of the extent map ensures that, in the worst case, no more than two
block accesses are needed to locate an extent descriptor. Moreover, the cache buff-
ers will tend to retain frequently used index and indirect blocks.

This extent map structure clearly favors file contiguity. For example, if a file can be
covered in fewer than 10 extents, then access to any of its data can be accomplished
via the file descriptor alone.

The extent map will hold up to [n * (n + 1) + 10] extents, where n is (blocksize / 8), as
above. For example, if blocksize is 1 Kbyte, then the maximum number of extents
per file is [(128 * 129) + 10], or 16522. In the worst case of 1 block per extent, a file
can contain 16522 blocks, or 16 megabytes of data. However, because the pHILE+
file system manager contains both implicit and explicit features to “cluster” many
blocks into a single extent, the number of extents required to map a file is usually
very much smaller. In fact, even for a very large file, the number of extents needed to
map the file rarely exceeds 100.

Figure 5-4 illustrates an example of an extent map layout.

5.7.3 Data Address Mapping

The pHILE+ file system manager allows you to access file content down to individual
bytes. For each file access, the pHILE+ file system manager performs a number of
address translations that convert or map your stretch of data into a volume block or
blocks.

As an example of file content access, consider a file with three extents. Assume its
file descriptor’s extent map looks like the following:

(060,5)

(789,2)

(556,1)
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That is, the file has 8 blocks. Assume that block size is 1 Kbyte. If a read call re-
quests 100 bytes, starting at byte number 7000, the request is processed by the
pHILE+ file system manager as follows:

1. Byte 7000 divided by 1024 = 6, remainder = 856.

2. Logical file block 6 is needed, because blocks are numbered from 0.

3. According to extent map, block #6 is the 2nd block in the extent (789,2).

4. The pHILE+ file system manager calls your driver to read volume block #790.

5. The pHILE+ file system manager extracts bytes 856 to 955 from the 1024 bytes
that were read in.
5-37



pHILE+ File System Manager pSOSystem System Concepts
Index
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FIGURE 5-4 The Layout of an Extent Map
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5.7.4 Block Allocation Methods

Because blocks are the basic unit of the pHILE+ volume, block allocation algorithms
are extremely important to system throughput. Blocks must be allocated whenever:

■ A write_f()  extends the logical size of a file beyond the file's physical
size.

■ An annex_f()  call is made.

■ A new block must be added to a directory to accommodate a new entry. This can
happen on a create_f() , make_dir() , or move_f()  call.

■ An indirect or index block must be added when a new extent is added to a file.
This can happen whenever blocks are allocated — for whatever reason.

When more blocks are needed, the pHILE+ file system manager first determines the
allocation size. This is the ideal size of the extent to be allocated. The allocation size
for each case above is determined as follows:

Case 1: write_f() Extends a File

When extending an ordinary file to write data from a write_f()  call, the allocation
size is the larger of the number of blocks needed for the data and the expansion unit
that you specified when the file was created. For example, assume that a
write_f()  call requires two blocks. If the file was created with an expansion unit of
five blocks, then the allocation size will be five blocks. On the other hand, if the file’s
expansion unit is one, then the allocation size will be two blocks.

Case 2: annex_f() Extends a File

The allocation size is a parameter of the annex_f()  call and is thus provided by the
calling task.

Case 3: A New Entry Extends A Directory File

Directories have the following properties:

■ They grow one entry at a time;

■ Each entry is 16 bytes long; and,

■ There is no expansion unit associated with a directory

For all of these reasons, the directory allocation size is always one block.
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Case 4: An Indirect or Index Block Is Needed

These are always single blocks, so the allocation size is one block. Indirect and in-
dex blocks are explained below.

After selecting the allocation size, the pHILE+ file system manager chooses the block
type. Ordinary files use data blocks, while pHILE+ data structures use control and
data blocks.

The block type is used to decide where in the volume to search for free space. If the
volume was partitioned into data and control regions during initialization, which is
explained in more detail below, only the relevant portion of the volume will be used.

The search does not always start with the first block in the appropriate region.
Rather, the pHILE+ file system manager will start searching in the bitmap of the
block last referenced. This increases the chance of scanning a block in the cache,
and thus enhances throughput.

The search involves locating the first unused extent containing at least the required
number of blocks. This search can have three outcomes:

1. A sufficiently large extent is found and allocated, in which case the
search is successfully completed. If the length of the extent is greater than the
allocation size, the extent will be split.

2. No extents equal to or greater than the allocation size are found. In this case,
the pHILE+ file system manager will allocate the largest remaining extent in the
appropriate region. If the calling function is annex_f() , the number of blocks
actually allocated is returned to the caller. If a write_f()  is executed, a new
allocation size is calculated (depending on the number of blocks not yet allo-
cated) and the operation is repeated. That way, one write_f()  call can add
several extents to a file.

3. The volume is full (no free blocks). In this case, a “volume full” error is returned
to the calling task.

The time to read and write to a file depends on how fragmented the file is. A file frag-
mented into many small and scattered extents will take more time to access than a
file consisting of fewer and larger extents. If a file can be compacted into 10 or fewer
extents, then all of the file’s data blocks can be identified using an extent map
stored in the File Control Block. This is the optimal case. If a file has more than 10
extents, indirect blocks or index blocks must be used, which reduces access times.

Some attention should be given to a file’s expansion unit specification, which is de-
scribed in section . A larger expansion unit results in higher throughput, but may
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waste disk space, because some blocks may not be used. On the other hand, a
smaller expansion unit uses disk space more efficiently, but may cause fragmenta-
tion. This fragmentation will be a function of:

■ The average number of bytes written per write_f() ;

■ The number of annex_f()  calls used; and,

■ Concurrent file activity; that is, how many tasks are using the volume at the
same time.

When the pHILE+ file system manager needs to add blocks to a file, it always checks
to see if the new blocks can be merged into the last extent used.

5.7.5 How Directories Are Organized

Directories implement the hierarchical file structure of the pHILE+ file system man-
ager.   A volume’s directory tree structure is built on top of, but also out of, the basic
data file structure. That is, directory files are treated in almost all respects as ordi-
nary data files. Directory files hold data about their children, and the parent of a di-
rectory will hold data about the directory. A directory file contains an array of
entries. Each entry describes a file in the directory. An entry is nothing more than a
2-tuple, as follows:

Entry: < filenumber, filename  >.

filenumber is the number of the file and filename is its name. Each directory entry
uses 16 bytes, so if the block size is 1 Kbyte, one block can store 64 entries.

When a file is created, the pHILE+ file system manager assigns it a file descriptor in
the volume’s FLIST, described below, and makes an entry in the directory file to
which it belongs.

5.7.6 Logical and Physical File Sizes

Files occupy an integral number of storage blocks on the device. However, the
pHILE+ file system manager keeps track of the length of a file in bytes. Unless the
length of a file is an exact multiple of the block size, the last block of the file will be
partially used. There are therefore two sizes associated with every file: a logical size
and a physical size.

The logical size of a file is the number of data bytes within the file that you can ac-
cess. This size automatically increases whenever data is appended to the file, but
never decreases.
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The physical size of a file corresponds to the number of blocks currently allocated to
the file. Thus the logical and physical sizes of a file are generally different, unless a
file's logical size happens to exactly fill the number of physical blocks allocated to
the file. As with its logical size, a file's physical size never decreases, except when it
is deleted or truncated to less than the physical size.

5.7.7 System Calls Unique to pHILE+ Format

This section discusses those services available after you create a pHILE+ format vol-
ume. These services are not available with any other file system format.

annex_f

write_f()  operations will automatically add new blocks to a file as required, but
the blocks added often are not contiguous. This situation can be partially controlled
on pHILE+ format volumes by using a larger file expansion unit. For even more effi-
cient, contiguous grouping, the annex_f()  function may be used to manually allo-
cate or expand a file’s physical size, in anticipation of new data.

Call annex_f()  by passing the number of contiguous blocks you wish to add to a
file, known by a file ID; the call will return the number of blocks added. annex_f()
does nothing, however, to the logical size of the file — see the cautions in the de-
scription of the call. If a file’s final size can be estimated in advance, then
annex_f()  may be used to allocate a single contiguous extent for the file immedi-
ately after its creation. So long as subsequent write operations do not extend past
this size, the file will be truly contiguous. If the file must be expanded, then this may
be left implicitly to write_f() , or performed explicitly using additional annex_f()
operations.

lock_f

The pHILE+ file system manager allows a single file to be opened and accessed by
more than one task simultaneously. Concurrent read access is generally quite safe;
however, if one or more tasks perform write operations (concurrent update), then it
may be necessary for such tasks to secure exclusive access to all or part of the file.

The lock_f()  function allows a task to lock a specified region of a file. As long as
the lock is in effect, the pHILE+ file system manager will prevent all other file con-
nections from reading, writing or locking that region of the file, thus providing ex-
clusive access to a single connection.

lock_f()  requires two parameters. The first is the position of the first byte to lock.
The second is the number of bytes to lock. A lock may start and/or end beyond both
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the physical or logical end of a file. This allows a lock to anticipate future expansion
of a file. Thus, lock_f()  can be used to prevent all other connections to the file
from:

■ Modifying or appending any data in the locked region of the file, and

■ Reading any data in, or being appended to, the locked region of the file.

When a lock is in place, the locked region can be accessed only by the task that
placed the lock and then only via the file ID with which the lock was placed.

Each connection to a file may lock only one region of a file at any time. If a task
needs to lock two different parts of a file simultaneously, then it must open the file
twice to obtain a second connection (via a different file ID).

If a lock_f()  call is issued through a connection that has an existing lock, then
the existing lock is automatically removed and replaced by the new lock. This lock
replacement takes place as an atomic operation. That is, the existing lock is re-
moved, and the new lock is set in a single operation. This precludes, in the case that
the old and new regions overlap, any opportunity for another task to access — or
even worse, lock — the overlapped region during the replacement window.

To remove an existing lock, replace it with a new lock of length zero, using the same
file ID.

A lock prevents offending read_f() , write_f() , and lock_f()  operations only. It
does not prevent another task from adding blocks to a file with the annex_f()  call.
Nor does it prevent access to the file's data via the read_vol()  and write_vol()
calls.

5.8 Special Considerations

5.8.1 Restarting and Deleting Tasks That Use the pHILE+ File System Manager

During normal operation, the pHILE+ file system manager internally allocates and
holds resources on behalf of calling tasks. Some resources are held only during exe-
cution of a service call, while others are held indefinitely based on the state of the
task (for example when files are open). The pSOS+ service calls t_restart()  and
t_delete()  asynchronously alter the execution path of a task and present special
problems relative to management of these resources.

This section discusses delete-related and restart-related issues in detail and pre-
sents recommended ways to perform these operations.
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Restarting Tasks That Use the pHILE+ File System Manager

The pSOS+ kernel allows a task to be restarted regardless of its current state. The
restart operation has no effect on currently opened files. All files remain open and
their L_ptr’s are unchanged.

It is possible to restart a task while the task is executing code within the pHILE+
component. Consider the following example:

1. Task A makes a pHILE+ call.

2. While executing pHILE+ code, task A is preempted by task B.

3. Task B then restarts task A.

In such situations, the pHILE+ file system manager correctly returns resources as
required. However, a pHILE+ or MS-DOS file system volume may be left in an incon-
sistent state. For example, if t_restart()  interrupts a create_f()  operation, a
file descriptor (FD) may have been allocated but not the directory entry. As a result,
an FD may be permanently lost. t_restart()  detects potential corruption and re-
turns the warning code 0x0D. When this warning code is received, verify_vol()
should be used on all pHILE+ format volumes to detect and correct any resulting
volume inconsistencies.

Deleting Tasks That Use the pHILE+ File System Manager

To avoid permanent loss of pHILE+ resources, the pSOS+ kernel does not allow de-
letion of a task that is holding any pHILE+ resource. Instead, t_delete()  returns
error code 0x18, which indicates that the task to be deleted holds pHILE+ re-
sources.

The exact conditions under which the pHILE+ file system manager holds resources
are complex. In general, any task that has made a pHILE+ service call may hold
pHILE+ resources. close_f(0) , which returns all pHILE+ resources held by the
calling task, should be used prior to calling t_delete() .

The pNA+ and pREPC+ components also hold resources which must be returned be-
fore a task can be deleted. These resources are returned by calling close(0)  and
fclose(0)  respectively. Because the pREPC+ component calls the pHILE+ file sys-
tem manager and the pHILE+ file system manager calls the pNA+ component (if NFS
is in use), these services must be called in the correct order.
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Below is a sample code fragment that a task can use to delete itself:

#if SC_PREPC == YES
fclose(0); /* return pREPC+ resources */
#endif

#if SC_PHILE == YES
close_f(0); /* return pHILE+ resources */
#endif

#if SC_PNA == YES
close(0); /* return pNA+ resources */
#endif

#if SC_PSE == YES
pse_close(0); /* return pSE resources */
#endif

#if SC_PREPC == YES
free(-1); /* return pREPC+ memory */
#endif

t_delete(0); /* and commit suicide */

The conditionals prevent calls to components that are not included. You can omit
the conditionals if you also omit the calls to components that are not included or
not in use.

Because only the task to be deleted can make the necessary close calls, the simplest
way to delete a task is to restart the task and pass arguments requesting self dele-
tion. Of course, the task being deleted must contain code to handle this condition.
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pREPC+ ANSI C Library
6.1 Introduction

Most C compilers are delivered with some sort of run-time library. These run-time li-
braries contain a collection of pre-defined functions that can be called from your ap-
plication program. They are linked with the code you develop when you build your
application. However, when you attempt to use these libraries in a real-time embed-
ded system, they encounter one or more of the following problems:

■ It is the user’s responsibility to integrate library I/O functions into the target
environment, a time-consuming task.

■ The library functions are not reentrant and therefore do not work in a multi-
tasking environment.

■ The library functions are not compatible with a published standard, resulting in
application code that is not portable.

The pREPC+ ANSI C Library solves all of the above problems. First, it is designed to
work with the pSOS+ Real-Time Multitasking Kernel and the pHILE+ file system
manager, so all operating system dependent issues have been addressed and re-
solved. Second, it is designed to operate in a multitasking environment, and finally,
it complies with the C Standard Library specified by the American National Stan-
dards Institute.
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6.2 Functions Summary

The pREPC+ library provides more than 115 run-time functions. Following the con-
ventions used in the ANSI X3J11 standard, these functions can be separated into 4
categories:

■ Character Handling Functions

■ String Handling Functions

■ General Utilities

■ Input/Output Functions

The Character Handling Functions provide facilities for testing characters (for exam-
ple, is a character a digit?) and mapping characters (for example, convert an ASCII
character from lowercase to uppercase).

The String Handling Functions perform operations on strings. With these functions
you can copy one string to another string, append one string to another string, com-
pare two strings, and search a string for a substring.

The General Utilities provide a variety of miscellaneous functions including allocat-
ing and deallocating memory, converting strings to numbers, searching and sorting
arrays, and generating random numbers.

I/O is the largest and most complex area of support. The I/O Functions include
character, direct, and formatted I/O functions. I/O is discussed in Section 6.3, ‘‘I/O
Overview.’’

Detailed descriptions of each function are provided in pSOSystem System Calls.

NOTE:The pREPC+ ANSI C library opens all files in binary mode regardless of
the mode parameter passed to the fopen()  call. This includes text files
on MS-DOS file systems.

6.3 I/O Overview

There are several different levels of I/O supported by the pREPC+/pSOS+/pHILE+
environment, providing different amounts of buffering, formatting, and so forth.
This results in a layered approach to I/O, because the higher levels call the lower
levels. The main levels are shown in Figure 6-1.
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The pREPC+ I/O functions provide a uniform method for handling all types of I/O.
They mask the underlying layers and allow application programs to be hardware
and device independent. A user application can, however, call any of the layers di-
rectly, depending on its requirements.

The lowest, most primitive way of doing I/O is by directly accessing the hardware
device involved, for example a serial channel or a disk controller. Programming at
this level involves detailed knowledge of the device’s control registers, etc. Although
all I/O eventually reaches this level, it is almost never part of the application pro-
gram, as it is too machine-dependent.

The next step up from the actual device is to call a device driver. Under the pSOS+
kernel, all device drivers are called in a similar fashion, via the pSOS+ I/O Supervi-
sor, which is explained in Chapter 7. For reading and writing data, all that is gener-
ally required is a pointer to the buffer to read into or write from, a byte count, and a
way to identify the device being used.

pREPC+   Input/Output

pHILE+

pSOS+   I/O Supervisor

Device (disk, terminal, etc.)

C

Program

Application

FIGURE 6-1 I/O Structure of the pREPC+ Library
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The pSOS+ I/O Supervisor provides the fastest, most direct route for getting a piece
of data to a device. In some cases, this is the best way. Generally, however, it is bet-
ter to use the pREPC+ direct, character, or formatted I/O services.

The pHILE+ file system manager manages and organizes data as sets of files on stor-
age devices and in turn does all of the actual I/O. The pHILE+ I/O path depends on
the type of volume mounted and is described in detail in Chapter 5.

pHILE+ services (such as open_f  and write_f ) can be called directly. However, if
you use the pREPC+ file I/O functions, which in turn call the pHILE+ file system
manager, your application code will be more portable.

The pREPC+ direct I/O and character I/O functions read and write sequences of
characters. The formatted I/O functions perform transformations on the input and
output and include the familiar printf()  and scanf()  functions.

6.3.1 Files, Disk Files, and I/O Devices

Under the pREPC+ library, all I/O is directed to and from ‘‘files.’’ The   pREPC+ li-
brary divides files into two categories: I/O devices and disk files. They are treated as
similarly as possible, but there are intrinsic differences between the two.

Disk files are part of a true file system managed by the pHILE+ file system manager.
There is a file position indicator associated with each disk file, which marks the cur-
rent location within the file. It is advanced whenever data is read from or written to
the file. In addition, it can be changed via system calls.

The pHILE+ file system manager manages four types of volumes. These are pHILE+
formatted volumes, CD-ROM volumes, MS-DOS volumes, and NFS (Network File
System) volumes. The pREPC+ library does not distinguish between the underlying
volume types and therefore works equally well with all four volume types. However,
there are a number of small differences between the various volumes that may af-
fect the results of certain pREPC+ functions. Function descriptions indicate those
cases where the volume type may affect function results and how those functions
would be affected.

I/O devices correspond to pSOS+ logical devices, and are usually associated with
devices such as terminals or printers. From an application’s standpoint, their main
difference from disk files is that they have no position indicator. Data being read
from or written to an I/O device can be thought of as a continuous stream.

When reading and writing disk files, the pREPC+ library calls the pHILE+ file system
manager, which in turn calls the pSOS+ I/O Supervisor. When reading and writing
I/O devices, the pREPC+ library calls the pSOS+ I/O Supervisor directly.
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Before a file (a disk file or an I/O device) can be read or written, it must be opened
using fopen() . One of the fopen()  function’s input parameters is a name that
specifies the file to open. Disk files are designated by pHILE+ pathnames, while I/O
devices are identified by pSOS+ logical device numbers.

Examples:

3.2  designates an I/O device with logical device number 3.2.

3.2/abcd  designates a disk file stored on logical device 3.2.

abcd  designates a disk file in the current directory.

When fopen()  opens a disk file, it generates a pHILE+ open_f()  system call.
When it opens an I/O device, fopen()  calls the pSOS+ de_open()  service. Regard-
less of whether fopen()  opens an I/O device or a disk file, it allocates a FILE  data
structure, which is discussed in section 6.3.2.

6.3.2 File Data Structure

As mentioned in the previous section, when a file is opened, it is allocated a data
structure of type FILE . In the pREPC+ library this is a 32-bit address of a pREPC+
file structure. fopen()  returns a pointer to this allocated data structure. All file op-
erations require the pointer to this structure as an input parameter to identify the
file. If it is not explicitly given, it is implied, as in the case of functions which always
use the standard input or output device (See section 6.3.4).

The FILE  data structure is used to store control information for the open file. Some
of the more important members of this structure include the address of the file’s
buffer, the current position in the file, an end-of file (EOF) flag, and an error flag. In
addition, there is a flag that indicates whether the file is a disk file or an I/O device.

Some of these fields have no meaning for I/O devices, such as the position indicator.

6.3.3 Buffers

Open files normally have an associated buffer that is used to buffer the flow of data
between the user application and the device. By caching data in the buffer, the
pREPC+ library avoids excessive I/O activity when the application is reading or writ-
ing small data units.

When first opened, a file has no buffer. Normally a buffer is automatically assigned
to the file the first time it is read or written. The buffer size is defined by the entry
LC_BUFSIZ in the pREPC+ Configuration Table. The pREPC+ component allocates
the buffer from pSOS+ region 0. If memory is not available, the calling task may
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block based on the values in the pREPC+ configuration table entries LC_WAITOPT
and LC_TIMEOPT. If a buffer cannot be obtained an error is returned to the read or
write operation.

Note that if the default buffer assigned by the pREPC+ library is not appropriate for
a particular file, a buffer may be supplied directly by calling the setbuf()  or set-
vbuf()  functions.

A special case arises when a file is assigned a buffer of length 0. This occurs if
LC_BUFSIZ is zero, and as an option to the setvbuf()  call. In this case, no buffer
is assigned to the file and all I/O is unbuffered. That is, every read or write opera-
tion through the pREPC+ library will result in a call to a pHILE+ device driver as the
case may be.

Finally, note that the three standard files, stdin , stdout , and stderr , are not af-
fected by the value of LC_BUFSIZ. See section 6.3.5 for a discussion of the default
buffering of these three files.

6.3.4 Buffering Techniques

This section describes the buffering techniques used by the pREPC+ library. There
are two cases to consider, writing and reading. On output, data is sent to the file's
buffer and subsequently transferred (or “flushed”) to the I/O device or disk file by
calling a pSOS+ device driver (for an I/O device) or the pHILE+ file system manager
(for a disk file). The time at which a buffer is flushed depends on whether the file is
line-buffered or fully-buffered. If line-buffered, the buffer is flushed when either the
buffer is full or a new line character is detected. If fully-buffered, the buffer is
flushed only when it is full. In addition, data can be manually flushed, or forced,
from a buffer at any time by calling the fflush()  function.

By default, I/O devices are line-buffered, whereas disk files are fully-buffered. This
can be changed after a file is opened by using the setbuf()  or setvbuf()  func-
tions.

When reading, the pREPC+ library retrieves data from a file’s buffer. When attempt-
ing to read from an empty buffer, the pREPC+ library calls either a pSOS+ driver or
the pHILE+ file system manager to replenish its contents. When attempting to re-
plenish its internal buffer, the pREPC+ library reads sufficient characters to fill the
buffer. The pSOS+ driver or the pHILE+ file system manager may return fewer char-
acters than requested. This is not necessarily considered as an error condition. If
zero characters are returned, the pREPC+ library treats this as an EOF condition.

Note that the buffering provided by the pREPC+ library adds a layer of buffering on
top of the buffering implemented by the pHILE+ file system manager.
6-6



pSOSystem System Concepts pREPC+ ANSI C Library

6

6.3.5 stdin, stdout, stderr

Three files are opened automatically for every task that calls the pREPC+ library.
They are referred to as the standard input device (stdin ), the standard output de-
vice (stdout ) and the standard error device (stderr ). They can be disk files or I/O
devices and are defined by entries in the pREPC+ Configuration Table. stdin , std-
out  and stderr  are implicitly referenced by certain input/output functions. For
example, printf()  always writes to stdout , and scanf()  always reads from st-
din .

stdout  and stderr  are opened in mode w, while stdin  is opened in mode r .
Modes are discussed in the fopen()  description given in the system calls reference.
Each file is assigned a 256 byte buffer. LC_BUFSIZ has no effect on the buffer size of
these three files.

The buffering characteristics for stdin  and stdout  depend on the type of files
specified for these devices. In the case of an I/O device, they are line-buffered. For a
disk file, they are fully-buffered. stderr  is an exception. Regardless of whether
stderr  is attached to a disk file or an I/O device, it is fully-buffered.

Like any other file, the buffer size and buffering technique of these files can be mod-
ified with the setbuf()  and setvbuf()  function calls.

The pREPC+ library attempts to open stdin , stdout  and stderr  for a task the
first time the task issues a pREPC+ system call. If any of these files cannot be
opened, the pREPC+ library calls the k_fatal  service with a 0x3F03 error code as
an input parameter.

When opened, the pathname of the files is obtained from the pREPC+ configuration
table. Even though each task maintains a separate file structure for each of the
three standard files, they all use the same stdin , stdout , and stderr  device or
file. This may not be desirable in your application. The freopen()  function can be
used to dynamically change the pathnames of any file, including stdin , stdout ,
and stderr , in your system. For example, to change the stdout  from its default
value of I/O device 1.00  to a disk file (2.00/std_out.dat ) you would use the fol-
lowing function:

freopen("2.00/std_out.dat", "w", stdout);

When using freopen  with the three standard files, two rules should be observed.
First, the mode of the standard files should not be altered from their default values,
and second, you should not use pathnames that include the strings ‘‘stdin’’, ‘‘std-
out’’, or ‘‘stderr’’.
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6.3.6 Streams

Streams is a notion introduced by the X3J11 Committee. Using the X3J11 Commit-
tee’s terminology, a stream is a source or destination of data that is associated with
a file. The Standard defines two types of streams: text streams and binary streams.
In the pREPC+ library, these are identical. In fact, in the pREPC+ library, a stream
is identical to a file. Therefore, the terms file and stream have been used inter-
changeably in the manual.

6.4 Memory Allocation

The following pREPC+ functions allocate blocks of memory:

calloc()
malloc()
realloc()

When any of these functions are called, the pREPC+ library, in turn, calls the
pSOS+ region manager by generating a rn_getseg  call. The pREPC+ library always
requests segments from Region 0. Therefore, you must reserve enough space in Re-
gion 0 for the memory required by your application and for the memory used by the
pREPC+ library for file buffers (see section 6.3.3).

The rn_getseg  call’s input parameters include wait/nowait and timeout options.
The wait/nowait and timeout options used by the pREPC+ library when calling
rn_getseg  are specified in the pREPC+ Configuration Table. Note that if the wait
option is selected, it is possible for any of the functions listed above to result in
blocking the caller. Also note that the number of bytes actually allocated by each
rn_getseg  call depends on Region 0’s unit_size . The following functions result
in memory deallocation:

free()
realloc()
fclose()
setbuf()
setvbuf()

The free()  function is called by a user for returning memory no longer needed.
The remaining functions implicitly cause memory to be released. The pREPC+ li-
brary deallocates memory by generating a rn_retseg  call to the pSOS+ ker-
nel.Chapter 2, contains a complete discussion of the pSOS+ region memory
manager.
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6.5 Error Handling

Most pREPC+ functions can generate error conditions. In most such cases, the
pREPC+ library stores an error code into an internal variable maintained by pSOS+
called errno  and returns an “error indicator” to the calling task. Usually this error
indicator takes the form of a negative return value. The error indicator for each
function, if any, is documented in the individual function calls. Error codes are de-
scribed in detail in the error codes reference.

The pREPC+ library maintains a separate copy of errno  for each task. Thus, an er-
ror occurring in one task will have no effect on the errno  of another task. A task’s
errno  value is initially zero. When an error indication is returned from a pREPC+
call, the calling task can obtain the errno  value by referencing the macro errno .
This macro is defined in the include file <errno.h> . Note that once the task has
been created, the value of errno  is never reset to zero unless explicitly set by the
application code.

The pREPC+ library also maintains two error flags for each opened file. They are
called the end-of-file flag and the error flag. These flags are set and cleared by a
number of the I/O functions. They can be tested by calling the feof()  and fer-
ror()  functions, respectively. These flags can be manually cleared by calling the
clearerr()  function.

6.6 Restarting Tasks That Use the pREPC+ Library

It is possible to restart a task that uses the pREPC+ library. Because the pREPC+ li-
brary can execute with preemption enabled, it is possible to issue a restart to a task
while it is in pREPC+ code. Note that the t_restart  operation does not release any
memory, close any files, or reset errno  to zero. If you wish to have clean_ups ,
then have the task check for restarts and do them as it begins execution again.

NOTE:Restarting a task using pREPC+ that is using pHILE+ (that is, has a disk
file open) may leave the disk volume in an inconsistent state.
6-9



pREPC+ ANSI C Library pSOSystem System Concepts
6.7 Deleting Tasks That Use the pREPC+ Library

To avoid permanent loss of pREPC+ resources, the pSOS+ kernel does not allow de-
letion of a task which is holding any pREPC+ resource. Instead, delete  returns er-
ror code ERR_DELLC which indicates the task to be deleted holds pREPC+
resources.

The exact conditions under which the pREPC+ library holds resources are complex.
In general, any task that has made a pREPC+ service call may hold pREPC+ re-
sources. fclose(0) , which returns all pREPC+ resources held by the calling task,
should be called by the task to be deleted prior to calling t_delete .

pNA+ and pHILE+ components also hold resources that must be returned before a
task can be deleted. These resources are returned by calling close(0)  and
close_f(0)  respectively. Because the pREPC+ library calls the pHILE+ file system
manager, and the pREPC+ library calls the pNA+ component (if NFS is in use), these
services must be called in the correct order. Below is a sample code fragment which
a task can use to delete itself:

fclose(0)); /* close pREPC+ files */
close_f(0); /* return pHILE+ resources */
close(0); /* return pNA+ resources */
free((void *) -1); /* return pREPC+ resources */
t_delete(0); /* and commit suicide */

Obviously, close calls to components not in use should be omitted.

Because only the task to be deleted can make the necessary close calls, the simplest
way to delete a task is to restart the task and pass arguments requesting self dele-
tion. Of course, the task being deleted must contain code to handle this condition.

6.8 Deleting Tasks With exit( ) or abort( )

The exit()  and abort()  calls are implemented in the pREPC+ library as macros
that are defined in the header file prepc.h . These macros, which the user needs to
modify depending on which components are present in the system, can be used to
return all system resources and delete the task.
6-10



7

7

I/O System
A real-time system’s most time-critical area tends to be I/O. Therefore, a device
driver should be customized and crafted to optimize throughput and response. A
driver should not have to be designed to meet the specifications of any externally
imposed, generalized, or performance-robbing protocols.

In keeping with this concept, the pSOS+ kernel does not impose any restrictions on
the construction or operation of an I/O device driver. A driver can choose among the
set of pSOS+ system services, to implement queueing, waiting, wakeup, buffering
and other mechanisms, in a way that best fits the particular driver’s data and con-
trol characteristics.

The pSOS+ kernel includes an I/O supervisor whose purpose is to furnish a device-
independent, standard method both for integrating drivers into the system and for
calling these drivers from the user’s application. I/O can be done completely outside
of the pSOS+ kernel. For instance, an application may elect to request and service
some or all I/O directly from tasks. We recommend, however, that device drivers be
incorporated under the pSOS+ I/O supervisor. pREPC+ and pHILE+ drivers are al-
ways called via the I/O supervisor.

7.1 I/O System Overview

Figure 7-1 illustrates the relationship between a device driver, the pSOS+ I/O sys-
tem, and tasks using I/O services.
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As shown, an I/O operation begins when an application task calls the pSOS+ I/O
system. The pSOS+ kernel examines the call parameters and passes control to the
appropriate device driver. The device driver performs the requested I/O service and
then returns control to the pSOS+ kernel, which in turn returns control back to the
calling task.

Because device drivers are hardware dependent, the exact services offered by a de-
vice driver are determined by the driver implementation. However, the pSOS+ kernel
defines a standard set of six I/O services that a device driver may support. These
services are de_init() , de_open() , de_close() , de_read() , de_write() , and
de_cntrl() . A driver may support any or all six of these services, depending on the
driver design.

The pSOS+ kernel does not impose any restrictions or make any assumptions about
the services provided by the driver. However, in general, the following conventions
apply:

de_init()  is normally called once from the ROOT task to initialize the device. It
should be called before any other I/O services are directed to the driver.

de_read()  and de_write()  perform the obvious functions.

de_open()  and de_close()  are used for duties that are not directly related to
data transfer or device operations. For example, a device driver may use

pSOS+ I/O System

Application Task

Device Driver

FIGURE 7-1  I/O System Organization
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de_open()  and de_close()  to enforce exclusive use of the device spanning
several read and/or write operations.

de_cntrl()  is dependent on the device. It may include anything that cannot
be categorized under the other five I/O services. de_cntrl()  may be used to
perform multiple sub-functions, both input and output. If a device does not re-
quire any special functions, then this service can be null.

Note that the pSOS+ I/O system has two interfaces — one to the application, the
second to the device drivers. These two interfaces are described in more detail later
in this chapter. First, it is helpful to introduce the I/O Switch Table.

7.2 I/O Switch Table

The pSOS+ kernel calls device drivers by using the I/O switch table. The I/O switch
table is a user-supplied table that contains pointers to device driver entry points.
The pSOS+ configuration table entries KC_IOJTABLE and KC_NIO describe the I/O
switch table. KC_IOJTABLE points to the table and KC_NIO defines the number of
drivers in the table.

The I/O switch table is an array of pSOS_IO_Jump_Table  structures. This struc-
ture is defined as follows:

struct pSOS_IO_Jump_Table {
void (*dev_init) (struct ioparms *);
void (*dev_open) (struct ioparms *);
void (*dev_close) (struct ioparms *);
void (*dev_read) (struct ioparms *);
void (*dev_write) (struct ioparms *);
void (*dev_cntrl) (struct ioparms *);
unsigned long rsvd1;
unsigned short rsvd2;
unsigned short flags;

};

The index of a driver’s entry pointers within the I/O switch table determines the ma-
jor device number associated with the driver. The pSOS_IO_Jump_Table  structure
is also defined in <psoscfg.h> . The flags  element is defined in <psos.h> .

flags  is a 16-bit field used to control driver options. Bit number 8 of flags , the
IO_AUTOINIT  bit, controls when the driver’s initialization function is called. If this
bit is set, pSOS+ calls the driver’s initialization function after all pSOSystem compo-
nents have been started and just before the root task is started. This event, called
device auto-initialization, is described in detail in section 7.6.
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Figure 7-2 illustrates the I/O Switch table structure for a system with two devices.

7.3 Application-to-pSOS+ Interface

The application-to-pSOS+ Interface is defined by the following six system calls:
de_init() , de_open() , de_close() , de_read() , de_write(), and
de_cntrl() . The calling convention for each is as follows:

err_code = de_init(dev, iopb, &retval, &data_area)

DEVICE  0  INIT

DEVICE  0  OPEN

DEVICE  0  CLOSE

DEVICE  0  READ

DEVICE  0  WRITE

DEVICE  0  CNTRL

RESERVED

RESERVED

DEVICE  1  INIT

DEVICE  1  OPEN

DEVICE  1  CLOSE

DEVICE  1  READ

DEVICE  1  WRITE

DEVICE  1  CNTRL

RESERVED

RESERVED

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Major Device 0
Entry

Major Device 1
Entry

FLAGS

FLAGS

FIGURE 7-2 Sample I/O Switch Table
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err_code = de_open(dev, iopb, &retval)

err_code = de_close(dev, iopb, &retval)

err_code = de_read(dev, iopb, &retval)

err_code = de_write(dev, iopb, &retval)

err_code = de_cntrl(dev, iopb, &retval)

The first parameter, dev , is a 32-bit device number that selects a specific device.
The most significant 16-bits of the device number is the major device number,
which is used by the pSOS+ kernel to route control to the proper driver. The least
significant 16 bits is the minor device number, which is ignored by the pSOS+ kernel
and passed to the driver. The minor device number is used to select among several
units serviced by one driver. Drivers that support only one unit can ignore it.

The second parameter, iopb , is the address of an I/O parameter block. This struc-
ture is used to exchange device-specific input and output parameters between the
calling task and the driver. The length and contents of this I/O parameter block are
driver specific.

The third parameter, retval , is the address of a variable that receives an optional,
32-bit return value from the driver; for example, a byte count on a read operation.
Use of retval  by the driver is optional because values can always be returned via
iopb . However, using retval  is normally more convenient when only a single sca-
lar value need be returned.

de_init()  takes a fourth parameter, data_area . This parameter is no longer
used, but remains for compatibility with older drivers and/or pSOS+ application
code.

Each service call returns zero if the operation is successful or an error code if an er-
ror occurred. A few of the error codes are returned by pSOS+, and these codes are
defined in <psos.h> . Error codes returned by Integrated Systems drivers are de-
fined in <drv_intf.h> . Error codes from other drivers, of course, are not defined
by Integrated Systems.

With the following exceptions, error codes are driver specific:

■ If the entry in the I/O Switch Table called by the pSOS+ kernel is -1, then the
pSOS+ kernel returns a value of ERR_NODR, indicating that the driver with the
requested major number is not configured.

■ If an illegal major device number is input, the pSOS+ kernel returns ERR_IODN.
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Note that although the pSOS+ kernel does not define all of them, error codes below
0x10000 are reserved for use by pSOSystem components and should not be used by
the drivers.

Finally, note that if a switch table entry is null, the pSOS+ kernel returns 0.

7.4 pSOS+ Kernel-to-Driver Interface

The pSOS+ kernel calls a device driver using the following syntax:

xxxxFunction (struct ioparms *);

xxxxFunction is the driver entry point for the corresponding service called by the ap-
plication. By convention, Function is the service name, while xxxx identifies the
driver being called. For example, a console driver might consist of six functions
called CnslInit , CnslOpen , CnslRead , CnslWrite , CnslClose , and CnslCntrl .
Of course, this is just a convention — any names can be used, because both the
driver and the I/O switch table are user provided. Figure 7-3 illustrates this rela-
tionship.

ioparms  is a structure used to pass input and output parameters between the
pSOS+ kernel and the driver. It is defined as follows:

struct ioparms {
unsigned long used; /* Usage is processor-specific */

pSOS+

Application

de_write( )

Driver

CnslWrite( )

FIGURE 7-3 . pSOS+ Kernel-to-Driver Relationship
7-6



pSOSystem System Concepts I/O System

7

unsigned long tid; /* Task ID of calling task */
unsigned long in_dev; /* Input device number */
unsigned long status; /* unused */
void *in_iopb; /* Input pointer to IO parameter block */
void *io_data_area; /* No longer used */
unsigned long err; /* For error return */
unsigned long out_retval; /* For return value */

};

Usage of the used  parameter is different on different processors. Processor-specific
information is provided below:

On entry to the driver, tid  contains the task ID of the calling task. It should not be
changed by the driver.

On entry to the driver, in_dev  contains dev  as provided by the calling task; that is,
the 32-bit device number. It should not be changed by the driver.

status  is no longer used.

On entry to the driver, in_iopb  points to the iopb  provided by the calling task. It
should not be changed by the driver.

io_data_area  is no longer used.

err  is used by the driver to return an error code, or 0 if the operation was success-
ful. See section 7.3 for a discussion on error codes.

On 68K and 960 processors, used  is set to zero by the pSOS+
kernel on entry to the driver. The driver must set used  to a non-
zero value. It is used internally by pSOS+ when it receives control
back from the driver.

NOTE:If the driver does not set used to a non-zero
value, improper operation results.

On Coldfire, PowerPC, MIPS, x86, and Super Hitachi processors,
used  is an obsolete field that is present only to maintain compat-
ibility with older versions of pSOSystem.

68K 960

CF

MIPS

PPC

x86

SH
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out_retval  is used by the driver to return an unsigned long value to the calling
task’s retval  variable. The contents of out_retval  is copied into the variable
pointed to by the service call input parameter retval .

7.5 Device Driver Execution Environment

Logically, a device driver executes as a subroutine to the calling task. Note that de-
vice drivers always execute in the supervisor state.

Other characteristics of a task’s mode remain unchanged by calling a device driver.
Therefore, if a task is preemptible prior to calling a device driver, it remains pre-
emptible while executing the driver. If a driver wants to disable preemption, it
should use t_mode()  to do so, being careful to restore the task’s original mode be-
fore exiting. Similar caveats apply to Asynchronous Service Routines (ASRs).

Because a device driver executes as a subroutine to the calling task, it can use any
pSOS+ system call. The following system services are commonly used by drivers:

In addition, a device driver usually has an ISR, which performs wakeup, queueing,
and buffer management functions. For a complete list of system calls allowed from
an ISR, see Chapter 2, “pSOS+ Real-Time Kernel.”

Note the following caveats regarding driver usage:

1. You must account for device driver (supervisor) stack usage when determining
the stack sizes for tasks that perform I/O. The I/O calls can never be made from
the pSOS+ task creation, task deletion, or context switch callouts.

2. I/O calls can never be made from the pSOS+ task creation, task deletion, or
context switch callouts.

Function System Call

Waiting q_receive(), ev_receive(), sm_p()

Wakeup q_send(), ev_send(), sm_v()

Queueing q_receive(), q_send()

Timing tm_tick(), Timeout parameters on Waits

Mutual exclusion sm_p(), sm_v()

Buffer management pt_getbuf(), pt_retbuf()

Storage allocation rn_getseg(), rn_retseg()
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3. I/O calls can never be made from an ISR.

4. In multiprocessor systems, I/O service calls can only be directed at the local
node. The pSOS+ kernel does not support remote I/O calls. However, it is possi-
ble to implement remote I/O services as part of your application design; for ex-
ample, with server tasks and standard pSOS+ system services.

5. On some target processors, I/O service calls do not automatically preserve all
registers. Refer to the “Assembly Language Information” appendix of the pSOS-
ystem Advanced Topics for information on register usage by the I/O subsystem.

7.6 Device Auto-Initialization

The pSOS+ kernel provides a feature whereby it can invoke a device’s initialization
function during pSOS+ kernel startup. This is needed in special cases where a de-
vice is accessed from a daemon task that starts executing before control comes to
the ROOT task. Examples are the timer and serial devices that can be accessed by
pMONT+ daemons.

You control auto-initialization of a device through the flags  element of the device’s
pSOS_IO_Jump_Table  structure. You set flags  to one of the following symbolic
constants, which are defined in <psos.h> :

For example, if the variable JumpTable is a pointer to a pSOS_IO_Jump_Table
structure and you want its driver to be initialized by pSOS+, you write the following
line of code:

JumpTable->flags = IO_AUTOINIT;

When auto-initialization is enabled for a device, pSOS+ invokes the driver’s
dev_init  routine and passes an ioparms  structure that is initialized as follows:

■ The higher order 16 bits of the device number (in_dev ) are set to the device ma-
jor number; the lower sixteen bits are set to 0.

■ The calling task’s ID (tid ) and the used  field are set to 0.

■ The pointer to the IOPB (in_iopb ) and data area (io_data_area ) are set to
NULL.

IO_AUTOINIT Driver is initialized by pSOS+.

IO_NOAUTOINIT Driver is not initialized by pSOS+.
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The auto-initialization occurs just after pSOS+ initializes itself and all the compo-
nents configured in the system, and just before it transfers control to the highest
priority task in the system.

During auto-initialization, no task context is available. This places certain restric-
tions on the device initialization functions that can be called during auto-initializa-
tion. Follow these guidelines when writing a device initialization function that you
intend to use for auto-initialization:

■ Use only system calls that are callable from an ISR.

■ Do not use pSOS+ system calls that block.

■ You can create or delete global objects, but do not make other calls to global ob-
jects residing on a remote node, because they can block. Note that system calls
that are non-blocking if made locally are blocking if made across node bound-
aries.

■ Do not use system calls from components other than the pSOS+ kernel, as they
require a task context.

These restrictions are not severe for a routine that simply initializes devices. A de-
vice initialization function can be divided into two parts: one that executes during
device auto-initialization, and another that executes when the device initialization
routine is explicitly invoked by the application from within the context of a pSOS+
task. The tid  field of the ioparms  structure can be checked by the device initializa-
tion procedure to identify whether the call originated in device auto-initialization or
was made by a task. Note that under pSOSystem every task has a non-zero tid ,
whereas the tid  passed during auto-initialization is zero.

7.7 Mutual Exclusion

If a device may be used by more than one task, then its device driver must provide
some mechanism to ensure that no more than one task at a time will use it. When
the device is in use, any task requesting its service must be made to wait.

This exclusion and wait mechanism may be implemented using a message queue or
semaphore. In the case of semaphores, the driver's init()  service would call
sm_create()  to create a semaphore, and set an initial count, typically 1. This
semaphore represents a resource token. To request a device service, say
de_read() , a task must first acquire the semaphore using the system call sm_p()
with SM_WAIT attribute. If the semaphore is available, then so is the device. Other-
wise, the pSOS+ kernel puts the task into the semaphore wait queue. When a task
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is done with the device, it must return the semaphore using sm_v() . If another task
is already waiting, then it gets the semaphore, and therefore the device.

In summary, a shared device may be protected by bracketing its operations with
sm_p()  and sm_v()  system calls. Where should these calls take place? The two
possibilities, referred to later as Type 1 and Type 2, are as follows:

1. sm_p()  is put at the front of the read and write operation, and sm_v()  at the
end.

2. sm_p()  is put in de_open() , and sm_v()  in de_close() . To read or write, a
task must first open the device. When it is finished using the device, the device
must be closed.

Type 2 allows a task to own a device across multiple read/write operations, whereas
with Type 1 a task may lose control of the device after each operation.

In a real-time application, most devices are not shared, and therefore do not require
mutual exclusion. Even for devices that are shared, Type 1 is usually sufficient.

7.8 I/O Models

Two fundamental methods of servicing I/O requests are known; they are termed
synchronous and asynchronous. Synchronous I/O blocks the calling task until the
I/O transaction is completed, so that the I/O overlaps with the execution of other
tasks. Asynchronous I/O does not block the calling task, thus allowing I/O to over-
lap with this, as well as other tasks. The pSOS+ kernel supports both methods.

The following sections present models of synchronous and asynchronous device
drivers. The models are highly simplified and do not address hardware-related con-
siderations.

7.8.1 Synchronous I/O

A synchronous driver can be implemented using one semaphore. If it is needed,
Type 1 mutual exclusion would require a second semaphore. To avoid confusion,
mutual exclusion is left out of the following discussion.

The device’s init()  service creates a semaphore rdy  with initial count of 0. When a
task calls read()  or write() , the driver starts the I/O transaction, and then uses
sm_p()  to wait for the rdy  semaphore. When the I/O completion interrupt occurs,
the device’s ISR uses sm_v()  to return the semaphore rdy , thereby waking up the
waiting task. When the task resumes in read()  or write() , it checks the device
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status and so forth for any error conditions, and then returns. This is shown as
pseudo code below:

SYNC_OP: DEV_ISR:

Begin Begin
  startio; transfer data/status;
  sm_p (rdy, wait); sm_v (rdy);
  get status/data; End;
End;

An I/O transaction may of course trigger one or more interrupts. If the transaction
involves a single data unit, or if the hardware provides DMA, then there will nor-
mally only be a single interrupt per transaction. Otherwise, the ISR will have to keep
the data transfer going at successive device interrupts, until the transaction is done.
Only at the last interrupt of a transaction does the ISR return the semaphore to
wake up the waiting task.

7.8.2 Asynchronous I/O

Asynchronous I/O is generally more complex, especially when error recovery must
be considered. The main advantage it has over synchronous I/O is that it allows the
calling task to overlap execution with the I/O, potentially optimizing throughput on
a task basis. The effect that this has at the system level is less clear, because multi-
tasking ensures overlap even in the case of synchronous I/O, by giving the CPU to
another task. For this reason, synchronous I/O should be used, unless special con-
siderations require asynchronous implementation.

Note that if Type 1 mutual exclusion is required, it is normally taken care of by the
asynchronous mechanism, without the need for extra code.

A simple, one-level asynchronous driver can be implemented using just one mes-
sage queue. The device’s init()  service creates the queue rdy  and sends one mes-
sage to it. When a task calls read()  or write() , the driver first calls q_receive()
to get a message from the queue rdy , starts the      I/O transaction, and then imme-
diately returns.

The device’s ISR, upon transaction completion, uses q_send()  to post a message to
the queue rdy . This indicates that the device is again ready. If this, or another, task
calls the same device service before the last I/O transaction is done, then the
q_receive()  puts it into the wait queue, to wait until the ISR sends its completion
message.
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The pseudo code is as follows:

ASYNC_OP: DEV_ISR:

Begin Begin
q_receive (rdy, wait); transfer data/status;
startio; q_send (rdy);
End; End;

This simplified implementation has two weaknesses. First, it does not provide a way
for the device driver to return status information to more than one task. Second, at
most only one task can overlap with this device. Once the device is busy, all re-
questing processes will be made to wait. Hence the term “one-level” asynchronous.

A more general and complex asynchronous mechanism requires one message queue
and one flag, as follows. The device's init()  service creates an empty message
queue called cmdq. It also initializes a flag to ready .

The device’s read()  or write()  service and ISR are shown below as pseudo code:

ASYNC_OP: DEV_ISR:
Begin Begin

q_send (cmdq);  cmd := q_receive (cmdq, no-wait);
t_mode (no-preempt := on); if cmd = empty then
if flag = ready then flag := ready;
flag := busy; else
cmd := q_receive (cmdq, no-wait); flag := busy;
if cmd = empty then startio (cmd);

         exit; endif;
    else End;
        startio (cmd);
    endif;
  endif;
  t_mode (no-preempt := off);
End;

In essence, the queue cmdq serves as an I/O command queue for the device opera-
tion. Each command message should normally contain data or a buffer pointer, and
also the address of a variable so that the ISR can return status information to a call-
ing task (not shown in the pseudo code).

The flag  global variable indicates whether the device is busy with an I/O transac-
tion or not.

The q_send()  system call is used to enqueue an I/O command. The q_receive()
system call is used to dequeue the next I/O command.
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The clause cmd = empty  actually represents the test for queue = empty , as re-
turned by q_receive() .

Calling t_mode()  to disable preemption is necessary to prevent a race condition on
the flag  variable. In this example, it is not necessary to disable interrupts along
with preemption.

7.9 pREPC+ Drivers

As described in Chapter 6,” pREPC+ I/O can be directed to either disk files or phys-
ical devices. Disk file I/O is always routed via the pHILE+ file system manager while
device I/O goes directly to the pSOS+ I/O Supervisor. An I/O device driver that is
called by the pREPC+ library directly via the pSOS+ kernel is called a pREPC+
driver, while a disk driver is called a pHILE+ driver, as illustrated in Figure 7-4.

This section discusses pREPC+ drivers; section 7.11 covers pHILE+ drivers.

The pREPC+ library uses four pSOS+ I/O calls: de_open() , de_close() ,
de_read() , and de_write() . Therefore, a pREPC+ driver must supply four corre-
sponding functions, e.g. xxxxOpen() , xxxx Close() , xxxx Read() , xxxx Write() .

pREPC+ pHILE+

pSOS+

pHILE+pREPC+
Driver Driver

FIGURE 7-4 pHILE+ and pREPC+ Drivers
7-14



pSOSystem System Concepts I/O System

7

The pREPC+ library calls de_open()  and de_close()  when fopen()  and
fclose()  are called, respectively, by your application. The corresponding driver
functions that are called, xxxx Open()  and xxxx Close() , are device specific. How-
ever, in general, xxxx Open()  will initialize a device, while xxxx Close()  will termi-
nate I/O operations, such as flushing buffer contents. For many devices, these two
routines may be null routines. The pREPC+ library does not pass an IOPB when
calling de_open()  and de_close() .

The pREPC+ library calls de_read()  and de_write()  to transfer data to or from a
device. The I/O parameter block (IOPB) looks like the following:

typedef struct {
unsigned long count; /* no of bytes to read or write */
void *address; /* addr. of pREPC+ data buffer */

} iopb;

Recall that the IOPB is pointed to by the in_iopb  member of the ioparms  struc-
ture passed to the driver. de_write()  results in a call to the driver function xxxx-
Write() , which must transfer count  bytes from the pREPC+ data buffer pointed to
by address .

de_read()  causes xxxx Read()  to be invoked, which transfers count  bytes from
the device to the pREPC+ buffer. xxxx Read()  is usually coded so that characters
are read until a delimiter is detected or count bytes are received. Also, a pREPC+
xxxx Read()  driver routine usually implements backspace, line-erase and other line
editing facilities.

xxxx Read()  and xxxx Write()  must return the number of bytes successfully read
or written.

7.10 Loader Drivers

The pSOSystem loader is capable of loading applications directly from a device
driver. The driver must comply with the requirements mentioned in Section 7.9,
‘‘pREPC+ Drivers”. The loader invokes only the de_read()  function internally.

Drivers that work with a loader must satisfy an additional requirement. The loader
can call the device read function with the address  field of the I/O parameter block
(IOPB) set to NULL. On receiving a request with address  set to NULL, the driver
must read count  bytes from the device and discard them. This enables the loader to
skip huge sections of object files that it does not need to load. With some devices,
this can be accomplished by skipping count  bytes, without actually reading them.
An example of a loader-compatible device driver is the TFTP pseudo device driver
supplied with pSOSystem.
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7.11 pHILE+ Drivers

Except for NFS volumes, the pHILE+ file system manager accesses a volume by call-
ing a device driver via the pSOS+ I/O supervisor. A driver invoked by the pHILE+ file
system manager is called a pHILE+ driver.

When the pHILE+ file system manager needs to read or write data, it calls the driver
corresponding to the major/minor device number specified when the volume was
mounted. The pHILE+ file system manager uses only two of the six standard I/O
system calls, de_read()  and de_write() . Therefore, a pHILE+ driver only has to
supply two functions, xxxx Read()  and xxxx Write() . In practice, most pHILE+
drivers also provide an xxxx Init()  service, even though it is not called by the
pHILE+ file system manager. It must be called independently by your application
[via de_init() ] prior to mounting the volume corresponding to the device. Simi-
larly, even though de_open() , de_close() , and de_cntrl()  are not used by the
pHILE+ file system manager a driver can implement these operations for physical
I/O, error sensing, formatting, and so forth.

Like all drivers called by the pSOS+ I/O supervisor, pHILE+ drivers receive an io-
parms  parameter on input. Before a pHILE+ driver exits, it must store an error code
indicating the success or failure of the call in ioparms.err . A value of zero indi-
cates the call was successful. Any other value indicates an error condition. In this
case, the pHILE+ file system manager aborts the current operation and returns the
error code back to the calling application. Error code values are driver defined.
Check the error code appendix of pSOSystem System Calls for the error code values
available to drivers.

7.11.1 The Buffer Header

When dealing with pHILE+ drivers, the IOPB parameter block pointed to by io-
parms.in_iopb  is called a buffer header. A buffer header has the following struc-
ture:

typedef struct buffer_header

{
unsigned long b_device; /* device major/minor number */
unsigned long b_blockno; /* starting block number */
unsigned short b_flags; /* block_type: data or control */
unsigned short b_bcount; /* number of blocks to transfer */
void b_devforw; /* system use only */
void b_devback; /* system use only */
void b_avlflow; /* system use only */
void b_avlback; /* system use only */
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void *b_bufptr; /* address of data buffer */
void b_bufwaitf; /* system use only */
void b_bufwaitb; /* system use only */
void *b_volptr; /* system use only */
unsigned short b_blksize; /* size of blocks in base 2 */
unsigned short b_dsktype; /* type of disk */

} BUFFER_HEADER;

A pHILE+ driver uses only six of the parameters in the buffer header. They are the
following:

b_blockno  specifies the starting block number to read or write.

b_bcount  specifies the number of consecutive blocks to read or write. For more
information on these parameters see section 7.11.3.

b_bufptr  supplies the address of a data area; it is either the address of a
pHILE+ cache buffer or a user data area. During a read operation, data is trans-
ferred from the device to this data area. Data flows in the opposite direction
during a write operation.

b_flags  contains a number of flags, most of which are for system use only.
However, the low-order two bits of this field indicate the block type, as follows:

b_flags is used by more sophisticated drivers that take special action when
control blocks are read or written. Most drivers will ignore b_flags .

b_flags  low bits = 00 (unknown type) can occur only when read_vol()  or
write_vol()  is issued on a volume that was initialized with intermixed control
and data blocks. In this case, the pHILE+ file system manager will be unable to
determine the block type. If read_vol()  or write_vol()  is used to transfer a
group of blocks that cross a control block/data block boundary, these bits will
indicate the type of the first block.

b_blksize  specifies the size (in base 2) of blocks to read or write.

b_dsktype  specifies the type of MS-DOS disk involved. It is set by the dktype
parameter of pcinit_vol()  and is only valid when pHILE+ calls the driver as a

Bit 1 Bit 0 Explanation

0 0 Unknown
block type

0 1 Data block

1 0 Control block
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result of a call to pcinit_vol() . During all other system calls, this value is
undefined. pcinit_vol()  is described in section 5.2 and in pSOSystem Sys-
tem Calls.

The remaining fields are for system use only.

The contents of the buffer header should not be modified by a driver. It is strictly a
read-only data structure.

7.11.2 I/O Transaction Sequencing

pHILE+ drivers must execute transaction (i.e. read and write) requests that refer to
common physical blocks in the order in which they are received. For example, if a
request to write blocks 3-7 comes before a request to read blocks 7-10, then, be-
cause both requests involve block 7, the first request must be executed first.

If a pSOS+ semaphore is used to control access to a driver, then that semaphore
must be created with FIFO queuing of tasks. Otherwise, requests posted to the
driver might not be processed in the order in which they arrive.

7.11.3 Logical-to-Physical Block Translation

The b_blockno  and b_count  parameters together specify a sequence of logical
blocks that must be read or written by the driver. However, most physical devices
are not organized as a linear sequence of blocks. They are divided into sectors,
tracks, cylinders, heads, and so forth. A pHILE+ driver must therefore translate
“logical” block numbers provided by the pHILE+ file system manager into “physical”
block addresses on the device. How this is done depends on the type of device being
accessed.

pHILE+ Format Volumes

For pHILE+ format volumes, a driver may implement any translation scheme that
maps each logical block to a unique physical block. However, the pHILE+ file system
manager operates at maximum efficiency if blocks that are logically contiguous are
also physically contiguous. Because of track to track transitions and other such
boundaries, this usually is not entirely feasible, but a pHILE+ driver should mini-
mize discontinuities.

MS-DOS Floppy Disk Format

For MS-DOS volumes, a driver must implement the same mapping used by MS-
DOS; otherwise, your diskette will not be MS-DOS compatible. This section de-
scribes the required block mapping for each of the five MS-DOS floppy disk formats.
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MS-DOS floppy disks have two sides, side 0 and side 1. On each side there are T
tracks, numbered 0 to T-1. Each track contains S sectors numbered 1 to S. A sector
is 512 bytes and maps directly to a pHILE+ block. A diskette thus contains (2 * T *
S) sectors. The characteristics of each MS-DOS diskette are shown in table 7-1.

A block is mapped to a sector (head, track, sector) by the following rules:

1. The track number is first determined by dividing the block number by (2* S).
The remainder, R1, is saved for Step 2.

2. R1 is divided by S to obtain the side, 0 or 1. The remainder, R2, is saved for Step
3.

3. One is added to R2 to obtain the sector number.

These rules are summarized by the following equations:

Track = Block / (2 * S) (remainder = R1)

Side = R1 / S (remainder = R2)

Sector = R2 + 1

An example:

On a 360-Kbyte diskette, T = 40 and S = 9. Block 425 is mapped as follows:

Track = 425 / (2 * 9) = 23 (remainder 11)

Side = 11 / 9 = 1 (remainder 2)

Sector = 2 + 1 = 3.

Thus, on a 360-Kbyte floppy, logical block 425 maps to:

TABLE 7-1 . Characteristics of MS-DOS Diskettes

Capacity Track Number Sectors per Track

360 Kbyte        40             9

1.2 Mbyte        80           15

720 Kbyte        80             9

1.4 Mbyte        80           18

2.8 Mbyte        80           36
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Side = 1

Track = 23

Sector = 3

Partitioned Hard Disk Format (Standard MS-DOS)

The following equations apply to hard disks:

Cylinder = block/(sectors-per-track * heads)

Head = (block/sectors-per-track) MOD heads

Sector = (block-((block/sectors-per-track)*sectors-per-track))+1

Under the pHILE+ file system manager an MS-DOS volume can be larger than 32
Mbytes. Due to an MS-DOS limit, the number of clusters in a volume can be up to
only 65,535. To support volumes larger than 32M, the cluster size should be larger
than 512 bytes. A larger cluster size can cause inefficient use of disk space. To avoid
this, a hard disk drive can be logically divided into partitions.

Each partition is used to hold one file volume. Hence, a partition can be either a
DOS or pHILE+ volume. Partitioning allows heterogeneous file volumes to share a
single drive. With partitions, multiple DOS volumes can be generated to cover large
disk drives.

When a single hard disk drive contains multiple partitions, your driver must read
the partition table (located in the master boot sector) during initialization and use
the information in the table to translate sector addresses. This process is called par-
tition table block translation. Your application code and driver should use the upper
byte of the minor device number to encode the partition number. Partition 0 should
refer to the entire volume without partition table block translation. This convention
allows the pHILE+ file system manager and your application code to read any sector
on the disk, including the master boot sector. Information about the encoding of
partition numbers is explained in section 7.11.4.

7.11.4 MS-DOS Hard Drive Considerations: Sector Size and Partitions

This section describes special considerations required when using MS-DOS hard
drives with the pHILE+ file system manager.

You must provide a driver that performs partition table block translation if your
hard disk contains multiple partitions.
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pHILE+ itself places no restrictions on the number of types of partitions supported
on a hard disk. It merely passes the partition number to the hard disk driver with-
out interpreting it. The partition number and drive number are encoded in the 16-
bit minor device number. The upper eight bits are the partition number. The lower
eight bits are the drive number.  shows the mapping of minor device number to
drive number and partition number for drive number zero.

. Minor Number to Drive/Partition Mapping

NOTE:Use only devices with a 512-byte sector size (which is standard) for
MS-DOS file systems. Although the pHILE+ file system manager allows
you to initialize an MS-DOS partition file system on devices with other
sector sizes, if you connect such devices to an MS-DOS system, it will not
be able to read them.

The disk drivers supplied with pSOSystem support the following partitioning
scheme. The driver reads logical sector 0 (512 bytes) of the disk and checks for a
Master Boot Record signature in bytes 510 and 511. The signature expected is 0x55
in byte 510 and 0xAA in byte 511. If the signature is correct, the driver assumes the
record is a Master Boot Record and stores the partition information contained in the
record in a static table. This table is called the driver’s Partition Table.

The driver’s Partition Table contains entries for each partition found on the disk
drive. Each entry contains the beginning logical block address of the partition, the
size of the partition, and a write-protect flag byte. The driver uses the beginning
block address to offset all reads and writes to the partition. It uses the size of the
partition to ensure the block to be read or written is in the range of the partition.

Minor Number Drive Partition

256 (0x100)     0      1

512 (0x200)     0      2

768 (0x300)     0      3

1024 (0x400)     0      4

1280 (0x500)     0      5

1536 (0x600)     0      6

. .     .      .

. .     .      .
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You can set the write-protect byte through an I/O control call to the driver. The
driver checks this byte whenever a write is attempted on the partition. If the write-
protect byte is set, it doesn’t perform the write and returns an error to indicate the
partition is write-protected.

If the driver finds a Master Boot Record, it expects the disk’s partition table to start
at byte 446. The driver expects the disk’s partition table to have four entries, each
with the following structure:

struct ide_part {
unsigned char boot_ind; /* Boot indication, 80h=active */
unsigned char start_head; /* Starting head number */
unsigned char start_sect; /* Starting sector and cyl (hi)*/
unsigned char start_cyl; /* Starting cylinder (low) */
unsigned char sys_ind; /* System Indicator */
unsigned char end_head; /* Ending head */
unsigned char end_sect; /* Ending sector and cyl (high) */
unsigned char end_cyl; /* Ending cylinder (low) */
unsigned long start_rsect; /* Starting relative sector */
unsigned long nsects; /* Number of sectors in partition.*/
};

The driver computes the starting relative sector and size of each partition table en-
try. If the driver is an IDE driver, it computes these values from the cylinder, head,
and sector fields (start_head  through end_cyl ). If the driver is a SCSI driver, it
computes these values from the Starting Relative Sector (start_rsect ) and Num-
ber of Sector (nsects ) fields.

The driver checks the System Indicator (sys_ind ) element of the first entry. If the
System Indicator is 0, the driver considers the entry to be empty and goes on to the
next entry. If the System Indicator is 0x05, the driver considers the entry to be an
extended partition entry that contains information on an extended partition table. If
the System Indicator is any other value, the driver considers the entry to be a valid
entry that contains information on a partition on the disk. The driver then stores
the computed starting relative sector and the computed size of the partition in the
driver’s Partition Table. No other values in the Master Boot Record are used. (The
driver never uses cylinder/head/sector information.)

If an extended partition entry is found, the Starting Relative Sector (start_rsect )
is read as an extended Boot Record and checked the same way the Master Boot
Record is checked. Each extended Boot Record can have an extended partition en-
try. Thus, the driver may contain a chain of Boot Records. While there is no limit to
the number of partitions this chain of Boot Records can contain, there is a limit to
the number of partitions the driver will store for its use in its Partition Table. This
limit is set to a default value of eight. This value may be changed by editing the
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SCSI_MAX_PART define statement found in the include/drv_intf.h  file in pSOS-
ystem and compiling the Board Support Package you are using for your application.
SCSI_MAX_PART can be any integer between 1 and 256, inclusive.

NOTE:Once an extended partition entry is found, no other entries in the current
Boot Record are used. In other words, an extended partition entry marks
the end of the current disk partition table.

Refer to the “Interfaces and Drivers” chapter of the pSOSystem Programmer’s Refer-
ence for more information on the SCSI driver interface.

Your driver should recognize partition 0 as a partition spanning the entire disk; that
is, your driver should not perform partition table translation on accesses in parti-
tion 0.

Assuming your driver follows these guidelines, prepare and make use of DOS hard
drives in the pHILE+ environment as described in Section 5.2, ‘‘Formatting and Ini-
tializing Disks.”
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