
I N T E G R A T E D S Y S T E M S

PSOSYSTEM

PROGRAMMER’S REFERENCE

68K Processors

MRI Release

Copyright 1996 Integrated Systems, Inc. All rights reserved. Printed in U.S.A.

Integrated Systems, Inc. • 3260 Jay Street • Santa Clara, CA 95054-3309
Support: 408-980-1500, x501 or 1-800-458-7767
FAX: 408-980-0400 (corporate); 408-980-1647 (support)
e-mail: psos_support@isi.com • Home Page: http://www.isi.com

LICENSED SOFTWARE - CONFIDENTIAL/PROPRIETARY

This document and the associated software contain information proprietary to
Integrated Systems, Inc., or its licensors and may be used only in accordance with the
Integrated Systems license agreement under which this package is provided. No part
of this document may be copied, reproduced, transmitted, translated, or reduced to
any electronic medium or machine-readable form without the prior written consent of
Integrated Systems.

Integrated Systems makes no representation with respect to the contents, and
assumes no responsibility for any errors that might appear in this document.
Integrated Systems specifically disclaims any implied warranties of merchantability or
fitness for a particular purpose. This publication and the contents hereof are subject
to change without notice.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS252.227-7013 or its equivalent. Unpublished rights reserved under
the copyright laws of the United States.

TRADEMARKS

The following are trademarks of Integrated Systems, Inc.:

ESp, OpEN, pHILE+, pNA+, pREPC+, pRISM, pROBE+, pRPC+, pSOS, pSOS+,
pSOS+m, pSOSim, pSOSystem, pX11+, SpOTLIGHT.

All other products mentioned are the trademarks, service marks, or registered trademarks
of their respective holders.

Document Title: pSOSystem Programmer’s Reference
Part Number: 000-5078-001
Revision Date: March 1996

Contents

pSOSystem Programmer’s Reference iii

Contents

About This Manual

Purpose ...vii

Audience ...vii

Organization ...vii

Related Documentation .. viii

Notation Conventions ...ix

1 System Services

bootpc.. 1-3

bootpd ... 1-5

FTP Client .. 1-11

FTP Server ... 1-19

Loader.. 1-23

mmulib .. 1-39

NFS Server... 1-47

pSH+.. 1-51

RARP ... 1-73

Contents

iv pSOSystem Programmer’s Reference

routed .. 1-75

Telnet Client... 1-79

Telnet Server .. 1-85

TFTP Server.. 1-87

2 Interfaces and Drivers

NI... 2-3

KI... 2-21

DISI.. 2-31

DISIplus ... 2-57

SCSI... 2-93

SLIP ... 2-101

3 Configuration Tables

Node... 3-3

Multiprocessor ... 3-5

pSOS+.. 3-9

pROBE+ ... 3-15

pHILE+... 3-25

pREPC+.. 3-29

pNA+ .. 3-31

pRPC+.. 3-39

4 Memory Usage

pSOS+.. 4-3

pHILE+... 4-7

pREPC+.. 4-9

pNA+ .. 4-11

pRPC+.. 4-15

Contents

pSOSystem Programmer’s Reference v

Appendix A: Assembly Language Information

pSOS+ ... A-3

I/O .. A-11

pHILE+ .. A-15

Index

Contents

vi pSOSystem Programmer’s Reference

pSOSystem Programmer’s Reference vii

About This Manual

Purpose

This manual is part of a documentation set that describes pSOSystem, the modular, high-
performance real-time operating system environment from Integrated Systems.

This manual documents pSOSystem services and provides important reference material on
device drivers, configuration tables, error codes, and memory usage.

For conceptual information or information on other areas of pSOSystem, refer to the other
manuals of the pSOSystem basic documentation set, which include the pSOSystem
Installation Guide, pSOSystem Getting Started, pSOSystem System Concepts, pSOSystem
System Calls, and the pROBE+ User’s Guide.

Audience

This manual is targeted primarily for embedded application developers who want to
implement pSOSystem. Basic familiarity with UNIX terms and concepts is assumed.

Organization

This manual is organized as follows:

Section 1, "System Services," describes pSOSystem system services, such as boot ROMs,
FTP Client and FTP Server, pSOSystem Loader, NFS Server, pSH+ command line interface,
Telnet Client and Telnet Server, and TFTP Server.

Section 2, "Interfaces and Drivers," describes the pSOSystem Network Interface and
Kernel Interface, as well as the interface to SCSI drivers.

About This Manual

viii pSOSystem Programmer’s Reference

Section 3, "Configuration Tables," describes each software component’s configuration
table, which contains parameters that characterize the hardware and application
environment.

Section 4, "Memory Usage," describes formulas used to calculate the amount of RAM
required by each pSOSystem software component.

Appendix A, "Assembly Language Information," gives information that is useful to
system programmers who understand 68K assembly language.

Related Documentation

When using pSOSystem you might want to have on hand the other two manuals included
in the basic documentation set:

■ pSOSystem Getting Started - explains how to create and bring up pSOSystem-
based applications. This manual also contains a number of tutorials.

■ pSOSystem System Concepts - provides theoretical information about the operation
of pSOSystem.

■ pSOSystem System Calls - describes the system calls and C language interface to
pSOS+, pHILE+, pREPC+, pNA+, pRPC+, and pX11+.

■ pROBE+ User's Manual - describes how to use the pROBE+ System Debugger/
Analyzer.

Based on the options you have purchased, you might also need to reference one or more of
the following manuals:

■ C++ Support Package User’s Manual - describes how to implement C++ applic-
ations in a pSOSystem environment.

■ OpEN User’s Manual - describes how to install and use pSOSystem’s OPEN (Open
Protocol Embedded Networking) product.

■ SNMP User's Manual - describes the internal structure and operation of SNMP,
Integrated System’s Simple Network Management Protocol product. This manual
also describes how to install and use the SNMP MIB (Management Information
Base) Compiler.

■ pSOSim User's Manual - describes how to install and use pSOSim, a UNIX-based
pSOS+ kernel simulator.

■ XRAY+ User's Manual - describes how to use the XRAY+ Source-Level Cross
Debugger.

About This Manual

pSOSystem Programmer’s Reference ix

Notation Conventions

The following notation conventions are used in this manual:

■ Function names (q_receive), filenames (pdefs.h), keywords (int), and operators (!)
that must be typed exactly as shown are presented in bold.

■ Italics indicate that a user-defined value or name (drive:pathname) can be
substituted for the italicized word(s) shown. Italics also indicate emphasis, such
as when important terms are introduced.

■ Keynames [Enter] are shown within square brackets. Keynames separated by
hyphens are typed together. For example, to type [Ctrl-Shift-E], hold down the
[Ctrl] and [Shift] keys and type the letter E.

■ Code examples are shown in constant width.

About This Manual

x pSOSystem Programmer’s Reference

Section 1. System Services intro

pSOSystem Programmer’s Reference 1-1

NAME

intro -- Introduction to Section 1: System Services

DESCRIPTION

This section describes the following pSOSystem system services:

• Bootpc Pseudo driver that requests BOOTSTRAP protocol information.

• Bootpd Implementation of the BOOTSTRAP protocol server.

• FTP Client Transfers files to and from a remote system.

• FTP Server Allows remote systems running FTP to transfer files to and from a
pHILE+ device.

• Loader Allows run-time target loading and unloading of application
programs.

• MMU Library Provides mapping tables for the Memory Management Unit.

• NFS Server Allows systems to share files in a networked environment.

• pSH+ Interactive command line shell.

• RARP Reverse Address Resolution Protocol which can be used to
identify a workstation’s IP address, or obtained a dynamically
assigned IP address from a domain name server (DNS).

• Routed Implementation of the Routing Information Protocol, or RIP.

• Telnet Client Supports communication with a remote system running a Telnet
Server.

• Telnet Server Allows remote systems running the Telnet protocol to log into
pSH+.

• TFTP Server Allows TFTP clients to read and write files interactively on pHILE+
managed disks.

intro Section 1. System Services

1-2 pSOSystem Programmer’s Reference

Section 1. System Services bootpc

pSOSystem Programmer’s Reference 1-3

NAME

bootpc -- BOOTP client

DESCRIPTION

With the bootp client feature, you can send a BOOTP request packet and get the necessary
information for booting your target. As a minimum, this includes your IP address; it can
also include the IP address of your router, the client’s subnet mask, and the IP address of
your domain name server (DNS).

NOTE: The bootpc is provided in the Network Utilities library as position dependent
code.

BOOTP Client Code

The BOOTP client code uses User Datagram Protocol (UDP) and implements the following
procedure:

get_bootp_params {

 long (ni_entry)(),

 char *bootp_file_name,

 char *bootp_server_name,

 int num_retries,

 int flags,

 char *ret_params

 };

ni_entry Network interface entry point. This parameter is set to the network
interface entry procedure (for example, NiLan) in the lan.c file in the
applicable board-support package.

bootp_file_name
The BOOTP filename is copied into the file field in the BOOTP request
packet. It can be null, or its length can be up to 127 bytes.

bootp_server_name
The BOOTP server name is copied into the sname field in the BOOTP
request packet. It can be null, or its length can be up to 63 bytes.

num_retries This parameter sets the number of retries for BOOTP requests. The
retry interval is exponentially increased with the first retry interval of 1
second, the second retry interval of 2 seconds, and so on. If this
parameter is set to 0, get_bootp_params uses BOOTP_RETRIES as the
default value.

bootpc Section 1. System Services

1-4 pSOSystem Programmer’s Reference

flags The BOOTP flags include the following:

RAW Return a raw BOOTP reply packet.
COOK Return extracted information from the BOOTP reply.
PSOSUP Set this flag if the pSOS+ kernel is already running when

get_bootp_params is called.

ret_params If the RAW flag is turned on, it should point to a data structure of type
bootppkt_t, or it should point to a data structure of type
bootpparms_t; both types are defined in the bootpc.h file. The result
is copied into the area indicated by this parameter.

EXAMPLE of BOOTP Client Code

The following code segment provides an example of how to use the get_bootp_params
procedure:

...

bootpparms_t bootp_parms;

extern long NiLan();

...

memset(&bootp_parms, 0, sizeof(bootpparms_t));

get_bootp_params(NiLan, 0, "ram.hex", 10, COOK, &bootp_parms);

...

In a makefile, you can add the bootpc.lib file in PSS_DRVOBJS, and include the following
file:

$(PSS_ROOT)/drivers/bootpc/rules.mk

System Services bootpd

pSOSystem Programmer’s Reference 1-5

NAME

bootpd -- BOOTP daemon

DESCRIPTION

The bootpd server contained in pSOSystem’s Networking Utilities product is an
implementation of the BOOTSTRAP protocol server and is based on RFC951 and RFC1395.

NOTE: The bootpd is provided in the Network Utilities library as position dependent
code.

It provides additional features by implementing: (a) a tag field (ps) in the bootpd
configuration database, which identifies the forwarding server to which bootpd requests
from a specific hardware device can be forwarded; (b) an optional default parent bootpd
server address (parentIP) in the bootpd configuration table to which unresolved BOOTP
requests can be forwarded.

bootpd creates a daemon task, BTPD, to handle BOOTP requests from clients. When BTPD
starts, it reads configuration information from a user-supplied string, which it stores in its
hash tables. When a BOOTP request comes in, if there is a match in the BTPD configuration
database, BTPD first verifies whether the forwarding server field (ps) is set for the matching
address. If it is set, the request is forwarded to the specified server regardless of other fields.
Otherwise, BTPD processes the request and may send back a reply packet, if appropriate.
If no match is found in BTPD’s configuration database and a parent bootpd server is
supplied when BTPD starts, BTPD forwards requests to its parent server.

The bootpd server in pSOSystem always ignores the server name field in BOOTP requests.

System/Resource Requirements

To use the bootpd server, you must have the following components installed:

• pSOS+ Real-Time Kernel.

• pNA+ TCP/IP Network Manager.

• pREPC+ Run-Time C Library.

• (Optional) pHILE+ File System Manager (not required for a bootpd server that only
forwards requests).

In addition, bootpd requires the following system resources:

• Two Kbytes of user stack and two Kbytes of system stack.

• Two UDP sockets. One is used to receive BOOTP requests and send/forward
BOOTP replies. The other is used to set an ARP cache entry in certain cases.

bootpd System Services

1-6 pSOSystem Programmer’s Reference

• The static memory requirement is four Kbytes. The dynamic memory size is affected
by the server’s database entries.

Starting the Routing Daemons

In order to use bootpd in an application, you need to link the pSOSystem network utilities
library. bootpd is started with bootpd_start(bootpdcfg_t*). The following code fragment
gives an example of a database string and shows how to start bootpd:

#include <netutils.h>

char *bootp_table =

"scg.dummy:\

 sm=255.255.255.0:\

 td=3.0:\

 hd=/tftpboot:\

 bf=null:\

 dn=isi.com:\

 hn:\n\

subnetscg.dummy:\

 tc=scg.dummy:\

 gw=192.103.54.14:\

 ps=1.2.3.4:\n\

board1:\

 tc=subnetscg.dummy:\

 ht=ethernet:\

 ha=08003E20F810:\

 ip=192.103.54.229:\

 bf=ram.hex:\

 bs=123:\

 ps@:\

";

void start_bootpd_server()

{

static bootpdcfg_t bootpd_cfg;

 bootpd.priority = 200;

 bootpd_cfg.flags = BOOTPD_SYSLOG;

 bootpd_cfg.bootptab = bootp_table;

 bootpd_cfg.parentIP.s_addr = htonl(0xC0D8E61D);

System Services bootpd

pSOSystem Programmer’s Reference 1-7

 if (bootpd_start(&bootpd_cfg))

 printf("bootpd_start: failed to start\n");

}

The BOOTP Daemon Configuration Table and Database String

The bootpd server requires a user-supplied configuration table, defined as follows:

struct {

 unsigned long priority; /* Priority of BTPD task */

 unsigned long flags; /* Optional flags */

 char *bootptab; /* The bootpd database string */

 struct in_addr parentIP; /* Parent BOOTP server IP address */

 unsigned long reserved[2]; /* Reserved for future */

 } bootpdcfg_t;

typedef struct bootpdcfg_t;

priority This defines the priority at which the BTPD daemon task starts
executing.

flags This specifies the following bootpd server options:

BOOTPD_SYSLOG This displays logging information on the
pREPC+ standard error channel.

bootptab This is a pointer to a string that contains the bootpd configuration
database. The string is defined as follows:

"hostname:\

tg=value:\

...\

tg=value:\n\

hostname:\

tg=value:\

...\

tg=value:"

where hostname is the actual name of a BOOTP client and tg is a two-
character tag symbol. Most tags must be followed by an equals sign and
a value, as above. Some may also appear in a boolean form with no
value (i.e. tg:). For a list of currently recognized tags, see ‘‘Two-
Character Tag Symbols,’’ on page 1-8.

bootpd System Services

1-8 pSOSystem Programmer’s Reference

parentIP This is the IP address in network byte order of this server’s parent
server, to whom this server can forward BOOTP requests.

Two-Character Tag Symbols

The following tags are currently recognized by the bootpd server:

bf Bootfile

bs Bootfile size in 512-octet blocks

cs Cookie server address list

dn Domain name

ds Domain name server address list

gw Gateway address list

ha Host hardware address

hd Bootfile home directory

hn Send client's hostname to client

ht Host hardware type (see Assigned Numbers RFC)

im Impress server address list

ip Host IP address

lg Log server address list

lp LPR server address list

ns IEN-116 name server address list

rl Resource location protocol server address list

rp Root path to mount as root

sa TFTP server address client should use

ps BOOTP server address forwarding server should use

sm Host subnet mask

sw Swap server address

tc Table continuation (points to similar "template" host entry)

td TFTP root directory used by TFTP servers

to Time offset in seconds from UTC (Universal Time Coordinate)

ts Time server address list

vm Vendor magic cookie selector

There is also a generic tag, T n, where n is an RFC1084 vendor field tag number. Thus, it
is possible to immediately take advantage of future extensions to RFC1084 without being
forced to modify bootpd first. Generic data may be represented as either a stream of

System Services bootpd

pSOSystem Programmer’s Reference 1-9

hexadecimal numbers or as a quoted string of ASCII characters. The length of the generic
data is automatically determined and inserted into the proper field(s) of the RFC1084-style
BOOTP reply.

The following tags take a whitespace-separated list of IP addresses: cs, ds, gw, im, lg, lp,
ns, rl, and ts. The ip, sa, ps, sw, and sm tags each take a single IP address. All IP addresses
are specified in standard Internet ‘‘dot’’ notation and may use decimal, octal, or
hexadecimal numbers (octal numbers begin with 0, hexadecimal numbers begin with '0x'
or '0X').

The ht tag specifies the hardware type code as either an unsigned decimal, octal, or
hexadecimal integer, or as one of the following symbolic names: ethernet or ether for 10Mb
Ethernet, ethernet3 or ether3 for 3Mb experimental Ethernet, ieee802, tr, or token-ring
for IEEE 802 networks, pronet for Proteon ProNET Token Ring, or chaos, arcnet, or ax.25
for Chaos, ARCNET, and AX.25 Amateur Radio networks, respectively. The ha tag takes a
hardware address, which must be specified in hexadecimal; optional periods and/or a
leading '0x' may be included for readability. The ha tag must be preceded by the ht tag
(either explicitly or implicitly; see tc below).

The td tag is used to inform bootpd of the root directory used by tftpd. The hd tag is
actually relative to the root directory specified by the td tag. For pHILE+ files, the td tag
should always be there to include the volume name. For Sun files, the td tag is optional.
For example, if your BOOTP client bootfile is /tftpboot/bootimage on volume 3 in your
system, then specify the following in the bootptab string:

 :td=3.0:hd=/tftpboot:bf=bootimage:

The hostname, home directory, and bootfile are ASCII strings that may be optionally
surrounded by double quotes ("). The client's request and the values of the hd and bf
symbols determine how the server fills in the bootfile field of the BOOTP reply packet.

If the client specifies an absolute pathname (an absolute pathname in pHILE+ begins with
a volume name followed by a complete path) and that file exists on the server machine, that
pathname is returned in the reply packet. If the file cannot be found, the request is
discarded; no reply is sent. If the client specifies a relative pathname, a full pathname is
formed by prepending the value of the hd tag and testing for existence of the file. If the hd
tag is not supplied in the configuration file or if the resulting boot file cannot be found, then
the request is discarded.

Clients that specify null boot files always elicit a reply from the server. The exact reply
depends again upon the hd and bf tags. If the bf tag gives an absolute pathname and the
file exists, that pathname is returned in the reply packet. Otherwise, if the hd and bf tags
together specify an accessible file, that filename is returned in the reply. If a complete
filename cannot be determined or the file does not exist, the reply will contain a zeroed-out
bootfile field.

In all these cases, existence of the file means that, in addition to actually being present, the
file must have read access to public, since this is required by tftpd to permit the file

bootpd System Services

1-10 pSOSystem Programmer’s Reference

transfer. Also, all filenames are first tried as filename.hostname and them simply as
filename, thus providing for individual per-host bootfiles.

The sa tag may be used to specify the IP address of the particular TFTP server you wish the
client to use. In the absence of this tag, bootpd tells the client to perform TFTP to the same
machine bootpd is running on.

The ps tag may be used to specify the IP address of a peer BOOTP server address to which
the BOOTP request will forward.

The time offset to may be either a signed decimal integer specifying the client's time zone
offset in seconds from UTC, or the keyword auto, which sets the time zone offset to 0.
Specifying the to symbol as a boolean has the same effect as specifying auto as its value.

The bootfile size bs may be either a decimal, octal, or hexadecimal integer specifying the
size of the bootfile in 512-octet blocks, or the keyword auto, which causes the server to
automatically calculate the bootfile size at each request. As with the time offset, specifying
the bs symbol as a boolean has the same effect as specifying auto as its value.

The vendor magic cookie selector (the vm tag) may take one of the following keywords: auto
(indicating that vendor information is determined by the client's request), rfc1048 or
rfc1084 (which always forces an RFC1084-style reply).

The hn tag is strictly a boolean tag; it does not take the usual equals-sign and value. It's
presence indicates that the hostname should be sent to RFC1084 clients. bootpd attempts
to send the entire hostname as it is specified in the configuration file; if this will not fit into
the reply packet, the name is shortened to just the host field (up to the first period, if
present) and then tried. In no case is an arbitrarily-truncated hostname sent (if nothing
reasonable will fit, nothing is sent).

Often, many host entries share common values for certain tags (such as name servers, etc.).
Rather than repeatedly specifying these tags, a full specification can be listed for one host
entry and shared by others via the tc (table continuation) mechanism. Often, the template
entry is a dummy host that does not actually exist and never sends BOOTP requests. Note
that bootpd allows the tc tag symbol to appear anywhere in the host entry. Information
explicitly specified for a host always overrides information implied by a tc tag symbol,
regardless of its location within the entry. The value of the tc tag may be the hostname or
IP address of any host entry previously listed in the configuration file.

Sometimes it is necessary to delete a specific tag after it has been inferred via tc. This can
be done using the construction tag @ which removes the effect of tag. For example, to
completely undo an IEN-116 name server specification, use ":ns@:" at an appropriate place
in the configuration entry. After removal with @, a tag is eligible to be set again through the
tc mechanism.

Host entries are separated from one another by newlines in the configuration string; a
single host entry may be extended over multiple lines if the lines end with a backslash (\).
It is also acceptable for lines to be longer than 80 characters. Tags may appear in any order,
with the following exceptions: the hostname must be the very first field in an entry, and the
hardware type must precede the hardware address.

System Services FTP Client

pSOSystem Programmer’s Reference 1-11

NAME

FTP Client -- Transfer files to and from a remote system

DESCRIPTION

The FTP (File Transfer Protocol) Client contained in the Network Utilities product, transfers
files to and from a remote system. The remote system must run an FTP server program that
conforms to the ARPANET File Transfer Protocol. The FTP Client runs as an application
under pSH+ and is invoked with the following command:

pSH+ > ftp [remote_system]

where remote_system is a remote system IP address.

If no arguments are given, FTP Client enters command mode (indicated by the ftp>
prompt). In command mode, FTP accepts and executes commands described under “FTP
Commands” on page 1-12.

If the command contains arguments, FTP executes an open command with those
arguments. See “FTP Commands” on page 1-12 for a description of open and the other FTP
commands.

The normal abort sequence, [CTRL]-C does not work during a transfer.

NOTE: The ftp client is provided in the Network Utilities library as position dependent
code.

Configuration and Startup

The FTP Client requires the following:

• pSOS+ or pSOS+m Real-Time Kernel

• pREPC+ Run-Time C Library

• pHILE+ File System Manager

• pSH+ interactive shell command

• Four Kbytes of user stack space

• Four Kbytes of supervisor stack space

pSH+ starts FTP Client by calling ftp_main(). pSOSystem includes a pre-configured version
of pSH+ and FTP Client, but to add FTP Client to pSH+, an entry for it must be made in the
pSH+ list of user applications. The following shows an example of a user application list
containing FTP and Telnet:

FTP Client System Services

1-12 pSOSystem Programmer’s Reference

struct appdata_t appdata[] = {
{"ftp", "file transfer application", ftp_main, "ft00", 250,
 4096, 4096,1, 0},
{"telnet", "telnet application", telnet_main, "tn00", 250,
 4096, 4096, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0}

};

You can define the other elements in the preceding example ("ft00", and so on).

FTP Commands

The following commands can be entered at the FTP prompt (ftp>). File naming conventions
and descriptions of transfer parameters follow these command descriptions.

! [command] Run command as a shell command on the local machine.

account [passwd] Provide a supplemental password required by a remote system for
access to resources after a successful login. If no argument is
included, you are prompted for an account password in a non-
echoing input mode.

append local_file [remote_file]
Append a local file to a file on the remote machine. If remote_file
is unspecified, the local filename is used to name the remote file.
File transfer uses the current settings for representation type, file
structure, and transfer mode.

ascii Set the representation type to network ASCII (the default type).

bell Sound a bell after each file transfer command completes.

binary Set the representation type to image.

bye Terminate the FTP session to the remote server and exit FTP. An
EOF also terminates the session and causes an exit.

cd remote_directory Change the working directory on the remote machine to
remote_directory.

cdup Change the working directory on the remote machine to the parent
of the current working directory on the remote machine.

close Terminate the FTP session with the remote server and return to
the command interpreter.

cr Toggle [RETURN] stripping during network ASCII-type file
retrieval. Records are denoted by a [RETURN] or [LINEFEED]
sequence during a network ASCII-type file transfer. When cr is on
(the default), [RETURN] characters are stripped from this
sequence to conform to the UNIX system single-LINEFEED record
delimiter. Records on non-UNIX system remote hosts may contain

System Services FTP Client

pSOSystem Programmer’s Reference 1-13

single [LINEFEED] characters; when a network ASCII-type
transfer is made, the [LINEFEED] characters can be distinguished
from a record delimiter only when cr is off.

delete remote_file Delete the file remote_file on the remote machine.

dir [remote_directory] [local_file]
Print a listing of the directory contents in the directory, the remote
directory, and, optionally, the local file. If no directory is specified,
the current working directory on the remote machine is used. If no
local file is specified or if the local file is specified by a dash (-),
output goes to the terminal.

disconnect Synonymous to close.

get remote_file [local_file]
Retrieve the remote file and store it on the local machine. If the
local filename is not specified, it receives the same name it has on
the remote machine. When no name is specified, the program-
generated name can be altered because of the current case,
ntrans, and nmap settings. The current settings for
representation type, file structure, and transfer mode apply during
file transfers.

glob Toggle globbing (filename expansion) for mdelete, mget and
mput. If globbing is off, filenames are taken literally.

Globbing for mput is done the same as with the csh UNIX
command. For mdelete and mget, each remote filename is
expanded separately on the remote machine, and the lists are not
merged.

Expansion of a directory name is likely to be very different from
expansion of the name of an ordinary file: the exact result depends
on the remote operating system and FTP server. The result can be
previewed by executing the following:

mls remote_files -

The mget and mput commands are not meant to transfer entire
directory subtrees of files: instead, transfer directory subtrees of
files by transferring a tar (UNIX command) archive of the subtree
(using the image representation type as set by the binary
command).

hash Toggle hash-sign (#) printing for each data block transferred.

help [command] Print information about the command. With no argument, ftp lists
the known commands.

FTP Client System Services

1-14 pSOSystem Programmer’s Reference

lcd [directory] Change the working directory on the local machine. If no directory
is specified, the user's home directory is used.

ls [remote_directory] [local_file]
Print a listing of the contents of a directory on the remote machine.
If remote_directory is unspecified, the current working directory
is used. If no local file is specified or if local_file is a dash (-), the
output goes to the terminal.

mdelete [remote_files]
Delete the specified remote_files on the remote machine.

mdir remote_files local_file
The mdir command is like dir, except that mdir supports
specification of multiple remote files. If interactive prompting is on,
ftp prompts you to verify that the last argument is the local file
targeted to receive mdir output.

mget remote_files Expand the remote_files on the remote machine and execute a
get for each filename thus produced. See glob for details the
filename expansion. Resulting filenames are then processed
according to case, ntrans, and nmap settings. Files are
transferred into the local working directory, which can be changed
by executing lcd directory. New local directories can be created
with !mkdir directory.

mkdir [directory_name]
Make a directory on the remote machine.

mls remote_files local_file
The mls command resembles ls(1V), except that mls supports
specification of multiple remote files. If interactive prompting is on,
ftp prompts you to verify that the last argument is the local file
targeted to receive mls output.

mode [mode_name] Set the transfer mode to mode_name. The only valid mode name
is stream, which corresponds to the default stream mode.

mput local_files Expand wild cards in the list of local files given as arguments and
do a put for each file in the resulting list. See glob for details on
filename expansion.

nlist [remote_directory] [local_file]
Print an abbreviated listing of the contents of a directory on the
remote machine. If remote_directory is unspecified, the current
working directory is used. If no local file is specified or if local_file
is a dash (-), the output goes to the terminal.

System Services FTP Client

pSOSystem Programmer’s Reference 1-15

open host [port] Establish a connection to the specified host FTP server. A port
number is optional. If port is specified, ftp attempts to contact an
FTP server at that port. If the auto-login option is on (the default),
ftp also attempts to automatically log the user into the FTP server
(refer to the description of user).

prompt Toggle interactive prompting. Interactive prompting during
multiple file transfers allows you to selectively retrieve or store
files. Prompting is on by default. If prompting is off, an mget or
mput transfers all files, and an mdelete deletes all files.

put local_file [remote_file]
Store a local file on the remote machine. If remote_file is
unspecified, the local filename is used to specify the remote file.
File transfer uses the current settings for representation type, file
structure, and transfer mode.

pwd Print the name of the current working directory on the remote
machine.

quit Synonymous to bye.

quote arg1 arg2... Send the arguments specified verbatim to the remote FTP server.
A single FTP reply code is expected.

recv remote_file [local_file]
Synonymous to get.

remotehelp [command_name]
Request help from the remote FTP server. If a command_name is
specified, it also goes to the server.

rename from to Rename the file specified by from on the remote machine to have
the name specified by to.

reset Clear reply queue. This command synchronizes command/reply
sequencing with the remote FTP server. Synchronization may be
necessary if the remote server violates FTP protocol.

rmdir directory_name Delete a directory on the remote machine.

runique Toggle storing of files on the local system with unique filenames.
The generated unique filename is reported. The runique command
does not affect local files generated from a shell command. By
default runique is OFF.

If a file already exists with the same name as the target local
filename for a get or mget, a.1 is appended to the name. If the
resulting name matches another existing filename, a .2 is
appended to the original name. If the additions reach .99, an error
message is printed, and the transfer does not take place.

FTP Client System Services

1-16 pSOSystem Programmer’s Reference

send local_file [remote_file]
Synonymous to put.

sendport Toggle the use of PORT commands. By default, ftp attempts to use
a PORT command when it establishes a connection for each data
transfer. The use of PORT commands can prevent delays during
multiple file transfers. If the PORT command fails, ftp uses the
default data port. When the use of PORT commands is disabled,
no attempt is made to use PORT commands for each data transfer.
This is useful for certain FTP implementations that ignore PORT
commands but incorrectly indicate they have been accepted.

status Show the current status of FTP.

sunique A toggle for storing of files on a remote machine under unique
filenames. For successful file storage, the remote FTP server must
support the STOU command. The remote server reports the
unique name. The default state is OFF.

tenex Set the representation type to the value needed for communication
with TENEX machines.

type [type_name] Set the representation type to type_name. Valid type names are
as follows:

ascii For network ASCII.

binary or image For image.

tenex For local byte size of eight bits (used to talk to
TENEX machines).

If no type is specified, the current type is printed. The default type
is network ASCII.

user username [password] [account]
Identify the user to the remote FTP server. If the password is not
specified and the server requires it, ftp prompts for the password
after it disables local echo. If an account field is unspecified and
the FTP server requires one, the user prompts for an account field.

If the remote server does not require an account input for login and
if it is nevertheless specified, an account command is relayed to
the remote server after the login sequence is completed. Unless ftp
is invoked with auto-login disabled, this process is done
automatically upon initial connection to the FTP server.

System Services FTP Client

pSOSystem Programmer’s Reference 1-17

verbose Toggle verbose mode. In verbose mode, all responses from the FTP
server are displayed to the user. If verbose mode is on, statistics
about the efficiency of the transfer are reported when a file transfer
completes. By default, verbose mode is on if FTP commands come
from a terminal (and off otherwise).

? [command] Synonymous to help.

A command argument can have embedded spaces if the argument is enclosed in quote
marks (").

If a required command argument is absent, ftp prompts for that argument.

File Naming Conventions for FTP Command Arguments

Arguments for some commands in the preceding list can be local files. Local files specified
as arguments to FTP commands are processed according to the following rules:

• If the specified filename is a dash (-), the standard input (for reading) or standard
output (for writing) is used.

• If the filename is not a dash and if globbing is enabled, local filenames are expanded
according to the rules used in the csh UNIX command. (See also the glob
command.) If the FTP command expects a single local file (for example, with a put
command), only the first filename generated by the globbing operation is used.

• For mget and get commands that have unspecified local filenames, the local
filename is the same as the remote filename. The resulting filename can then be
altered if runique is on.

• For mput and put commands with unspecified remote filenames, the remote
filename is the local filename. The resulting filename can then be altered by the
remote server if sunique is on.

File Transfer Parameters

FTP command specification (described in the preceding pages) includes three parameters
that can affect a file transfer. The three parameters are the representation type, the file
structure, and the transfer mode. The representation type can be one of the following:

• Network ASCII

• EBCDIC

• Image

The network ASCII and EBCDIC types also have a subtype. This subtype specifies whether
vertical format control ([NEWLINE] characters, form feeds, and so on) are to be processed
in one of the following ways:

FTP Client System Services

1-18 pSOSystem Programmer’s Reference

• Passed through (nonprint)

• Provided in Telnet format (TELNET format controls)

FTP supports the network ASCII (subtype non-print only) and image types.

Next, the file structure can be one of file (no record structure), record, or page. FTP
supports only file.

Lastly, the transfer mode can be either stream, block, or compressed. FTP supports only
stream.

FTP Client Bugs

Correct execution of many commands depends on correct operation by the remote server.
An error in the treatment of carriage returns in the 4.2 BSD code handling transfers with
a representation type of network ASCII has been corrected. This correction can result in
incorrect transfers of binary files to and from 4.2 BSD servers using a representation type
of network ASCII. Avoid this problem by using the image type.

System Services FTP Server

pSOSystem Programmer’s Reference 1-19

NAME

FTP Server -- Allow remote systems running FTP to transfer files to/from a pHILE+ device

DESCRIPTION

FTP Server allows remote systems that are running the ARPANET File Transfer Protocol to
transfer files to and from a pHILE+ device. FTP Server is implemented as a daemon task
named ftpd. The ftpd daemon listens for connection requests from clients and creates
server tasks for each FTP session that a client establishes.

NOTE: The ftpd task is provided in the Network Utilities library as position dependent
code.

Configuration and Startup

FTP Server requires the following:

• pSOS+ Real-Time Kernel.

• pHILE+ File System Manager.

• pNA+ TCP/IP Network Manager.

• pREPC+ Run-Time C Library.

• Eight Kbytes of user stack and two Kbytes of supervisor stack per session.

• One TCP socket, which is used to listen for client session requests, and two
additional TCP sockets per session.

• Eight Kbytes of dynamic storage, which a pREPC+ malloc() system call allocates

• A user-supplied configuration table.

The user-supplied FTP Server Configuration Table defines application-specific parameters,
and the following is a template for this table. This template exists in the include/netutils.h
file.

struct ftpcfg_t {

 long task_prio; /* priority for ftpd task */

 long max_sessions; /* max # of concurrent sessions */

 char *vol_name; /* name of the login volume */

 char **hlist; /* list of trusted clients */

 struct ulist_t *ulist; /* list of permitted users */

 long reserved[2]; /* must be 0 */

 };

FTP Server System Services

1-20 pSOSystem Programmer’s Reference

Definitions for the FTP Server Configuration Table entries are as follows:

task_prio Defines the priority at which the daemon task ftpd starts
executing.

max_sessions Defines the maximum number of concurrently open sessions.

vol_name Defines the name of the volume to use when a client logs into
pSOSystem.

hlist Contains a pointer to a list of the IP addresses of the trusted
clients. If this field is 0, FTP Server accepts a connection from any
client.

ulist Points to a list of structures that contain login information of
permitted users. If this field is 0, all users are allowed to log in. The
following is a template for one of these structures:

struct ulist_t {
char *login_name; /* user name */
char *login_passwd; /* user password */
long reserved[4]; /* must be 0 */
};

The following is an example structure with three entries:

struct ulist_t ulist[] {
{"guest", "psos0", 0, 0, 0, 0},
{"scg", "andy0", 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0}
}

reserved Reserved for future use, and each must be 0.

FTP Server comes as one object module and must be linked with a user application. Calling
the function ftpd_start(ftpdcfg) at any time after pSOSystem initialization (when ROOT is
called) starts it. The parameter ftpdcfg is a pointer to the FTP Server Configuration Table.
If FTP Server starts successfully, ftpd_start() returns 0, otherwise it returns a non-zero
value.

System Services FTP Server

pSOSystem Programmer’s Reference 1-21

EXAMPLE

The following code fragment shows an example configuration table and the call that starts
FTP Server. The complete example code exists in the apps/netutils/root.c file.

#include <ftpdcfg.h>
start_ftp_server() {

/* FTP server configuration table */
static ftpcfg_t ftpcfg =
{
250, /* Priority for ftpd task */
4, /* Maximum number of concurrent sessions */
"4.0", /* Name of the login volume */
0, /* List of trusted clients */
0, /* List of permitted users */
0, 0 /* Must be 0 */
};
/* start the FTP server */
if (ftpd_start(&ftpcfg))
printf("ftpd_start: failed to start\n");
}

FTP Server System Services

1-22 pSOSystem Programmer’s Reference

System Services Loader

pSOSystem Programmer’s Reference 1-23

NAME

Loader -- Allow run-time target loading and unloading of application programs

DESCRIPTION

The pSOSystem loader included in the pSOSystem base package, provides a programmatic
interface for controlling run-time target loading and unloading of application programs
from a variety of I/O interfaces. The loader is supplied as a library of functions that can be
called from a user application.

Powerful loader applications can be written using just three functions (load, unload, and
release). The loader library has been designed to depend only on pSOS+ system services; it
does not depend on any other components. However, you may need to include other
components like pHILE+ and pNA+, depending on the type of I/O interface being used to
load applications.

The loader supports the loading of object files residing on pHILE+ media (pHILE+ volumes,
CD_ROM volumes, MS-DOS volumes, or remote file systems mounted through NFS). The
loader also supports loading from any device driver that conforms to the interface standard
defined by pREPC+. Additional requirements for device drivers are described in “Guidelines
for Writing Device Drivers” on page 1-37. A pseudo device driver that uses TFTP (Trivial File
Transfer Protocol) to transfer files from a remote host is also provided with pSOSystem. You
can use the TFTP device driver in conjunction with the loader.

The loader can load object files that are either in Motorola S-record (SREC) format or in the
IEEE-695 format generated by MRI compiler tools. The following types of object files are
supported by the loader:

• SREC object files containing absolute (position-dependent) code.

• SREC object files containing position-independent code.

• IEEE-695 object files containing absolute code.

• IEEE-695 object files containing relocatable code.

The term relocatable refers to object files that contain relocation information. Such object
files are produced as intermediate files during the compilation/linking process. The
relocatable object (.o) files are produced by various MRI tools, as follows:

• All object files produced by the assembler are relocatable.

• Object files produced by the C compiler with the -c option specified are relocatable.

• Object files produced by the MRI linker with the incremental linking (-i) option
specified are relocatable.

The ability to load relocatable files with the loader provides extra flexibility. For example,
you can generate position-dependent code but defer the decision of where to place the code
in target memory until runtime.

Loader System Services

1-24 pSOSystem Programmer’s Reference

NOTE: Relocatable files must not contain unresolved external symbol references.

Loader Configuration

The following files are associated with the loader:

sys/libc/loader.lib MRI library file containing the loader.

include/loader.h Header file that contains typedefs, defines, and function
prototypes for the functions provided in the loader library.

configs/std/ldcfg.c Configuration file for customizing the loader. It controls
what modules get linked with the user loader application.

apps/loader/README Contains detailed on-line instructions for generating and
running a sample loader application.

apps/loader/Makefile Contains the rules to build a sample loader application and
is used by the UNIX make utility.

apps/loader/sys_conf.h The pSOSystem configuration file.

apps/loader/*.[csh] Source programs for the sample application demonstrating
how to use loader functions in applications. To run this
sample application, you may need to configure pREPC+,
pHILE+, pRPC+, pNA+, and/or the TFTP pseudo device
driver in the system.

apps/loader/loadable/* Source files for a simple pSOSystem application that is
intended to be loaded by the sample loader application.

configs/std/configpi.mk System makefile for generating position-independent
loadable applications.

configs/std/configre.mk System makefile for generating relocatable loadable
applications.

configs/std/beginapi.s Application startup file for use by position- independent
loadable applications (similar to the begina.s file provided
with pSOSystem).

The loader contains two user-configurable modules. One supports the loading of Motorola
S-records and the other supports the loading of MRI IEEE-695 object files. It is possible to
generate a loader application that contains any one or both of the modules. By default, both
of the modules are enabled. The apps/loader/sys_conf.h file contains the following two
#define statements:

#define LD_SREC_MODULE YES /* Motorola S-record support */

#define LD_IEEE_MODULE YES /* MRI IEEE-695 support */

System Services Loader

pSOSystem Programmer’s Reference 1-25

To exclude a particular module from getting linked to the loader application, change YES
to NO for the module you want to exclude.

sys_conf.h also contains the following #define, which determines the maximum number
of loading operations that can be handled simultaneously by the code in the loader library:

#define LD_MAX_LOAD 8 /* Max number of simultaneously active load */

You must make any necessary changes to LD_SREC_MODULE, LD_IEEE_MODULE,
or LD_MAX_LOAD by modifying sys_conf.h before generating the loader application.

In addition to the files listed above, a host-executable utility called ld_prep is present under
the various bin/<host> subdirectories in the pSOSystem directory tree. You must include
the proper subdirectory in your PATH, depending on the host environment you are using
for pSOSystem application development.

For example, if using a Sun SPARCstation as the development platform, modify your path
as follows:

set path = ($path $PSS_ROOT/bin/sparc) # if csh is the working shell

or

PATH=$PATH:$PSS_ROOT/bin/sparc # if sh or ksh is the working shell

where PSS_ROOT is an environment variable specifying the pathname of the pSOSystem
root directory.

Copy the files under the apps/loader directory to a working directory of your choice before
making any modifications or generating the sample application. (The UNIX cp -r or MS-DOS
xcopy commands can be used for this purpose.) The README file contains detailed
information about the sample application. It also contains instructions for generating and
running this application. You must follow these instructions to compile and run the sample
loader application. Run this application and view the sample code to help familiarize
yourself with the loader.

Concepts and Operation

The loader is useful in situations where you are dealing with multiple applications (running
simultaneously on a target), and they can be partitioned so that no two applications share
symbol references with each other. There can be many reasons for partitioning applications
into multiple executable files and/or using dynamic loading. Some of these are as follows:

• All of the applications, taken together, are too big to fit in target memory. In certain
cases, you may want to load/unload the applications on an as-needed basis.

• Depending on the hardware configuration, you may want to configure and load
certain applications at runtime.

• In the development environment, you may want to load a new version of an
“already-running” application without bringing down the whole system.

Loader System Services

1-26 pSOSystem Programmer’s Reference

• In a situation where it is difficult or impossible to determine the final load address
of an application, you may want to delay this decision until runtime.

Typically, you will make the loader run as part of the root task. This task remains resident
on the target and loads other applications as and when needed. This is one of the suggested
approaches and, as demonstrated by the sample application, the loader functions can be
used in many other ways.

For ease of explanation, assume the presence of a single task called the loader task, which
takes care of loading other application tasks, called loadable applications. The loader task
is linked with pSOSystem and gets loaded on the target system using the standard method
for bootstrapping the system. First, an outline is provided of a simple method for writing
the loader task using the functions provided by the loader library, loader.lib.

The load() function is provided for loading loadable applications. These applications may
remain resident on the target forever, or only temporarily. Loadable applications can be
unloaded using the unload() function. A call to unload() frees up any memory allocated by
load() for the run-time image of a loadable application; it also frees up any state information
associated with the loadable application [saved by the loader library during the call to
load()].

If the loadable application is to remain resident on the target forever, the release() function
must be called to free up any state information associated with the loadable application. A
call to release() does not free up the memory occupied by the run-time image of the loadable
application, and the application can keep running without any hindrance. A detailed
description of these functions is provided later in this section.

You open the file containing the loadable application using either the pHILE+ open_f() call
or the de_open() function, which opens the device driver through which the loadable
application will be read. The file descriptor returned by open_f() or the device number of the
device driver must be passed to the load() function as the first argument (fd). You must also
specify whether the first argument refers to a pHILE+ file descriptor or a device number.
This is done by setting either LD_DESC_PHILE or LD_DESC_DEV in the second argument
(flags) passed to load().

The load() function reads in the loadable application using either the read_f() function of
pHILE+ or the de_read() function, whatever the case may be. It determines the object file
format of the loadable application and invokes the appropriate module (SREC or IEEE) to
convert the object file into a binary image suitable for execution. The exact behavior of
load() depends on the type of code (position independent, absolute, or relocatable), as
follows:

• Loading Absolute Code
Any object files containing absolute code (that is, position-dependent and non-
relocatable code) are loaded at the address specified at the time of linking. The
load() function does not allocate any memory for loading the run-time image. It is
the responsibility of the calling task to make sure that it is safe to load the

System Services Loader

pSOSystem Programmer’s Reference 1-27

application at the address to which it was linked. You cannot override the default
addresses, as it does not make sense to load absolute code at a location to which it
was not linked.

• Loading Position-Independent Code
When loading object files containing position-independent code, the load addresses
that were specified during the time of linking are ignored. load() allocates the
memory needed to load the binary image from pSOS+ Region 0 (RN#0). It is possible
to override the addresses selected by load().

• Loading Relocatable Code
Object files containing relocatable code are also treated like files containing
position-independent code. By default, the needed memory is allocated from Region
0, and it is possible to override the default load addresses. Internally, the load()
function does the necessary processing to relocate an otherwise position-dependent
code using the relocation information present in the object file.

Loading absolute code is a one-step process. Similarly, loading position-independent or
relocatable code at the default load address chosen by the loader is also a one-step process.
You simply call load() with the LD_LOAD_DEF flag set in the flags argument.

If for some reason you want to control where the various parts (sections) of an object file get
loaded into target memory, a two-step process must be followed:

1. Call load() with the LD_GET_INFO flag set in the flags argument. The load()
function reads in the object file information from the header present therein and
returns a pointer to this information in the third argument (of_info) passed to
load(). You can modify the load addresses (part of the information returned
through of_info) of one or more of the sections.

2. Call load() again with the LD_LOAD_MOD flag set in the flags argument and with
the modified object file information (pointed to by *of_info) passed as the third
argument.

Once the load() call returns, you are free to close the object file (or device driver) by calling
close_f() (or de_close()). At this point the binary image of the loadable application has been
loaded into memory. If the binary image corresponds to a pSOS+ task, you can create and
start the task at any time. In most cases, the entry point to the task can be obtained from
the object file information returned by load(). If the entry point is not known, it is set to zero
by load(). You must call the t_create() and t_start() system services of pSOS+ with
appropriate arguments to create and start the task, respectively.

Once the task is running there are two possibilities, as explained earlier:

• You want the task to keep running and you never intend to stop it and unload it
from the memory. In this case, the release() function must be called with the object
file information returned by load() as the only argument. Once release() is called,
you must not reference the object file information.

Loader System Services

1-28 pSOSystem Programmer’s Reference

• The other possibility is that after the loaded task completes its job, you may want to
delete the task and free up the memory it was using. In such cases, you must call
unload(), with the only argument to unload() being the object file information
returned by the earlier call to load(). Once unload() is called, you must not
reference the object file information. It is your responsibility to delete the task being
unloaded in a graceful manner, so that it unlocks any locked resources and frees up
any allocated resources before it gets deleted and unloaded. The sample loadable
applications provide examples for your reference.

The Loader API

Following is a template for the three data structures used by the pSOSystem loader. The
first is the OF_INFO structure, a pointer to which is returned by load() and also gets passed
to unload() and release(). The second is the SECN_INFO structure, which is contained in
the OF_INFO structure. The third is the TASK_INFO structure, which is also contained in
the OF_INFO structure. These structures are defined in the <include/loader.h> file.

typedef struct OF_INFO{

int desc; /* Object file descriptor */

char format[5]; /* Object file format */

char code_type; /* Code Type (Absolute/Relocatable) */

char filler[2]; /* Reserved, do not use */

int nsecns; /* Number of sections */

SECN_INFO *secn_info; /* Section information */

TASK_INFO task_info; /* Info needed to create & start task */

} OF_INFO;

desc Used by the loader to identify the loaded object file. This is a read-only
element. You must not modify it.

format Four-character null-terminated string that identifies the object file
format of the file loaded by the loader. The values returned in this field
are SREC or IEEE, which correspond to Motorola S-record or MRI IEEE-
695 formats, respectively. This is a read-only element.

code_type Can take one of two values: LD_ABSOLUTE or LD_RELOCATABLE.
LD_ABSOLUTE implies that the code is position dependent, and
LD_RELOCATABLE implies that the code is either position independent
or the object file contains relocation information and can be loaded
anywhere in target memory. This is a read-only element.

nsecns Tells the number of independently loadable sections of the object file. A
file in SREC format always has one section. This is a read-only element.

secn_info Points to an array of SECN_INFO structures that has nsecns elements.
As described below, the SECN_INFO structure contains information
regarding each of the separately loadable sections of the object file.

System Services Loader

pSOSystem Programmer’s Reference 1-29

task_info Structure of type TASK_INFO. The information contained herein may be
used by the loader to create and start the task, once the loader has
loaded the object file into target memory.

The second structure, SECN_INFO, contains information regarding the individually
loadable sections of an object file and is defined as follows:

typedef struct secn_info{

char name[LD_SECNAMELEN]; /* Name of the section */

unsigned long type; /* Type of the section */

unsigned long size; /* Size of the section */

unsigned long base; /* Section load address */

} SECN_INFO;

name Describes the name of the section. This field is compiler dependent and
is supplied for your information. The loader does not make use of this
field. This is a read-only element.

type Describes the type of the section. This field is This field is compiler
dependent and is supplied for your information. The loader does not
make use of this field. This is a read-only element.

size Specifies the size of the section in bytes. This is a read-only element.

base Specifies the address in memory where the section will be loaded. You
can modify base, as explained in the description of the load() function
later in this section, to control the placement of the section in memory if
the code_type is LD_RELOCATABLE.

Modifications done to any other fields of this structure in between any two loader calls are
ignored by the loader.

The third structure, TASK_INFO, contains information necessary to create and start a task.
This structure is not used by the loader but is intended to be used by the application to
create the task and start it after it has been loaded using the pSOS+ t_create() and t_start()
system services. This information is obtained from the object file by load() and can be stored
in the object file by running ld_prep on the object file and specifying the appropriate values
for various task-specific parameters (see the man page for ld_prep for further details).
TASK_INFO is defined as follows:

typedef struct task_info{

char name[4]; /* Name of the task to be created */

unsigned long priority; /* Task priority */

unsigned long sstack_sz; /* Supervisor stack size */

unsigned long ustack_sz; /* User stack size */

unsigned long create_flags; /* Flags used by t_create() */

unsigned long start_mode; /* Mode used by t_start() */

Loader System Services

1-30 pSOSystem Programmer’s Reference

void (*entry) (); /* Task entry point */

} TASK_INFO;

name Four-character name of the task passed to t_create().

priority Starting priority of the task passed to t_create().

sstack_sz Size of the supervisor stack (in bytes) passed to t_create().

ustack_sz Size of the user stack (in bytes) passed to t_create().

create_flags Flags passed to t_create().

start_mode Mode passed to t_start().

entry Entry point, if any, for the task passed to t_start().

All elements in the TASK_INFO structure are read-only.

The load() Function

load() is defined as follows:

#include <loader.h>
unsigned long load (

unsigned long fd,
unsigned long flags,
OF_INFO **of_info
);

load() reads an object file from an open file descriptor fd and converts the incoming stream
of data into a binary image ready for execution. The information about the object file is read
and a pointer to it is returned in the location pointed by of_info. The fd is either a file
descriptor returned by a call to the pHILE+ open_f() routine or it is the device number of a
pREPC+-compatible device driver. You must set the LD_DESC_PHILE or LD_DESC_DEV
fields in the flags argument to specify whether fd is a file descriptor returned by open_f()
or a device number.

The exact behavior of load() is controlled by the load type specified by the flags argument.
You can specify one of three load types (LD_GET_INFO, LD_LOAD_DEF, LD_LOAD_MOD)
by bitwise OR-ing one of the three values in the flags argument.

If LD_LOAD_DEF is specified, load() reads the object file and loads the binary image into
target memory, using the default load address specified by the object file header. The values
used to load the file are stored in an OF_INFO structure, and a pointer to this structure is
returned through of_info.

If LD_GET_INFO is specified, load() reads the object file header information and returns a
pointer to it through of_info. No binary image of the object file is loaded in target memory.

System Services Loader

pSOSystem Programmer’s Reference 1-31

You can modify certain values returned in the OF_INFO structure and call load() to load
the binary image by specifying the load type as LD_LOAD_MOD.

load() can handle both absolute and relocatable object files. The term relocatable also
covers the position-independent code generated by MRI compiler tools.

If the object file is absolute, it is always loaded at the address specified by the object file
header, and you may not be able to modify these values. Also, it is assumed that it is safe
to load an absolute object file at the address specified by the object file header. If the object
file is relocatable, then the memory needed to load the object file is automatically allocated
by load().

For relocatable object files, you can control the loading of file on a per-section basis by
modifying the relevant fields in the OF_INFO structure returned by calling load() with load
type LD_GET_INFO, and passing the modified structure to load() with load type
LD_LOAD_MOD.

On success, load() returns 0; otherwise, it returns a non-zero error number.

The following errors are returned by load():

ERR_SYNTAX The loader encountered a syntactic construct in the object file that
is not understood by the loader.

ERR_INVAL An invalid operation was attempted (like trying to call load() with
flags LD_LOAD_MOD without previously calling load() with flags
LD_GET_INFO). Also, this error is returned if the desc field of
of_info is invalid, or an invalid flag is specified.

ERR_NO_OFM The format of the object file being loaded is not supported by the
loader.

ERR_OFM_FULL An attempt was made to load an object file while the configured
maximum number of files has already been loaded and has neither
been released nor unloaded.

ERR_UNSUPP The object file being loaded contains some unsupported feature
(like an IEEE-695 relocatable file containing unresolved
externals).

ERR_NOT_EXEC The object file did not compile properly and is not ready for
execution.

ERR_INTERNAL The loader discovers an inconsistency in the internal data
structures.

ERR_TOOBIG One of the sections of the file being loaded is too big to fit in the
memory.

ERR_NOSEG The object file (or a part thereof) cannot be loaded because of a
temporary shortage of memory.

Loader System Services

1-32 pSOSystem Programmer’s Reference

Other errors may be returned due to the failure of either a pSOS+ system call or a call made
internally by the loader to pHILE+ or a device driver.

CAUTION: When calling load() with flags LD_GET_INFO or LD_LOAD_DEF, you must
not allocate memory for the of_info structure, as this is done by load(). The
proper way of calling load() is as follows:

#include <loader.h>
OF_INFO *my_of_info;

unsigned long fd, flags;
...
...

load (fd, flags, &my_of_info);
...
...

The unload() Function

unload() is defined as follows:

#include <loader.h>
unsigned long unload (

OF_INFO *of_info
);

This function unloads an executable file image from the target memory, where it was loaded
previously using load(). of_info points to the object file information returned by a previous
call to load().

If the type of executable being unloaded is LD_ABSOLUTE, the unload() function does
nothing to free the memory associated with the executable -- it is the responsibility of the
caller to free up the memory (if any) that it allocated previously.

If the type of executable is LD_RELOCATABLE, this function frees up any memory allocated
earlier for loading the executable. However, it does not free any memory for sections of
executable files that were allocated by the caller. Those must be taken care of by the caller.

unload() frees up any state information associated with of_info and preserved internally by
the loader. It also frees up the object file information pointed to by of_info, and it must not
be referred to subsequently by the caller.

The unload() function must be called only after the task(s) associated with the loaded
executable have been deleted, since all of the memory allocated to load executable code and
data is returned to the free storage pool by unload() and can be re-used for any purpose at
any time.

System Services Loader

pSOSystem Programmer’s Reference 1-33

On success, unload() returns 0; otherwise, it returns a non-zero error number.

The following errors are returned by unload():

ERR_INVALID The desc field of of_info is invalid. or you tried to unload an
executable that has never been loaded.

Other errors may be returned that can be due to the failure of a pSOS+ system call made
internally by the loader.

The release() Function

release() is defined as follows:

#include <loader.h>
unsigned long release (

OF_INFO *of_info

);

This function frees up the object file information pointed to by of_info, and also any state
information associated with of_info and preserved internally by the loader. It must be
called in one of the following situations:

• You have called load() with the LD_GET_INFO flag but decide not to load the
executable image.

• You have loaded the executable with load() by specifying either LD_LOAD_DEF or
LD_LOAD_MOD flags and do not intend to ever unload these executables (that is, if
the executable corresponds to task(s) that remain memory resident forever).

The object file information pointed to by of_info must not be referred to subsequently by
the caller.

On success, release() returns 0; otherwise, it returns a non-zero error number.

The following errors are returned by release():

ERR_INVALID The desc field of of_info is invalid, or you tried to release a stale
of_info.

Other errors may be returned that can be due to the failure of a pSOS+ system call made
internally by the loader.

The ld_prep Utility

The syntax for ld_prep is as follows:

ld_prep {-a|-r} [-v] [-d defaults_file] [-n task_name]
[-p priority] [-c create_flags] [-m task_mode]

Loader System Services

1-34 pSOSystem Programmer’s Reference

[-e entry_point] [-s supv_stack_size]
[-u user_stack_size] [-o out_file] in_file

ld_prep is a post-processor that must be run on an object file in_file before it can be loaded
by the pSOSystem loader. The object file can be in either Motorola SREC format or MRI
IEEE-695 format. ld_prep analyzes the input object file, prepends a header to it, and writes
the file to a user-specified output file out_file (or to a file out.ld by default). The header
contains certain information about the object file that is used by the loader.

You must specify whether the input object file has to be loaded at the absolute address
specified at link time or whether it can be relocated by the loader to any address of its
choosing. You must specify whether the input object file is absolute or relocatable.

Additionally, if the file being loaded corresponds to a task that will be created and started
eventually by the user, it is possible to specify all of the task-specific information using
ld_prep. This information is passed to the loader application via the TASK_INFO sub-
structure of the OF_INFO structure, the pointer to which is returned by load(). This
information typically consists of the task name, the priority at which it runs, the sizes of
the user and supervisor stacks, the task entry point, and various other task attributes that
get passed to t_create() and tstart().

You must run ld_prep on an object file that needs to be loaded by the loader or else an error
will be flagged by the loader at runtime.

The following options are provided:

-a Specifies that the input object file is absolute.

-r Specifies that the input object file is relocatable.

-v Specifies the verbose option. Some useful information about the
file is printed on stdout.

-d defaults_file Specifies the name of the file from which the defaults must be
picked up for options not specified on the command line. The
defaults_file must have one or more lines containing the options
as they are specified on the command line. A sample defaults_file
is shown in the examples.

-n task_name Specifies the user-assigned name of the task. If this option is
omitted, the task name is set to LDBL.

-p priority Specifies the task’s initial priority within the range 1 to 239. If this
option is omitted, the priority is set to 0.

-c create_flags Specifies the flags that get passed to t_create(). The flags can be
one or both of G and F.

System Services Loader

pSOSystem Programmer’s Reference 1-35

The G flag specifies that the task is global and addressable by
external tasks residing on other nodes. If this flag is omitted,
the task is assumed to be local.

The F flag specifies that the task uses floating point units. If
this flag is omitted, the task is assumed not to use floating
point units.

-m task_mode Specifies the task mode that gets passed to t_start(). The mode
can be one or more of A, N, T, and S.

A specifies that the task’s ASRs are disabled. If this flag is
omitted, the task’s ASRs are assumed to be enabled.

N specifies that the task is non-preemptible. If this flag is
omitted, the task is assumed to be preemptible.

T specifies that the task can be timesliced. If this flag is
omitted, it is assumed that the task cannot be timesliced.

S specifies that the task runs in supervisor mode. If this flag
is omitted, the task is assumed to run in user mode.

-e entry_point Specifies the address at which the task execution is to begin. If
this option is omitted, ld_prep first tries to find out the execution
start address from the file and stores that in the header. If it
cannot be determined, it is set to 0.

-s supv_stack_size Specifies the size of the task’s supervisor stack in bytes, and must
be greater than 128. If unspecified, it is set to 0.

-u user_stack_size Specifies the size of the task’s user stack in bytes, and may be 0
if the task executes only in supervisor mode. If unspecified, it is
set to 0.

-o out_file Specifies the name of the output file that will become input to the
loader. If this option is omitted, ld_prep creates a file out.ld in the
current directory by default.

in_file Object file.

If you specify a defaults file using the -d option, it is parsed first to pick up the defaults.
Next, ld_prep parses any command line options. Options specified on the command line
override values specified in the defaults file

In most cases, when an option is specified neither in the defaults file nor on the command
line, the corresponding parameter is set to 0. When detecting the 0 values, the loader
application must determine the appropriate values to use. Note that you must specify either
the -a or -r option, either in the defaults file or on the command line; otherwise, an error is
flagged by ld_prep.

Loader System Services

1-36 pSOSystem Programmer’s Reference

ld_prep exits with status 0 upon successful execution; otherwise, it exits with exit status 1
and an error message is printed to stderr. The error messages are self explanatory.

Examples

ld_prep -r -o app.ld app.x

ld_prep -a -v -p 180 -n NApp -cF -mAT -e 0x3c0000 -s 512 -o napp.ld newapp.x

is the same as

ld_prep -d task.defs -o napp.ld newapp.hex

where the file task.defs contains the following line:

-a -v -p 180 -n NApp -cF -mAT -e 0x3c0000 -s 512 -o app.ld

Note that a command line option overrides the options specified in the defaults file (-o in
the above example).

Warnings

If an option is specified more than once on the command line, the last (rightmost) such
definition takes precedence over any previous definition. However, if an option is specified
more than once in the defaults file, the behavior of ld_prep is undefined.

A warning is issued if the defaults file contains the -d option and the option is ignored.

Supported Platforms

The ld_prep utility is provided for Sun SPARCstations, Hewlett Packard series 700
workstations, IBM RS6000 workstations, and machines running MS-DOS.

Compiling and Running Applications Using the pSOSystem Loader

The procedure for compiling and running applications using the loader is as follows:

1. Write the loader task, then compile and link it with the loader library and
pSOSystem to generate the ram.hex file.

2. Next, decide whether to use the SREC format or the IEEE-695 format for the
applications that get loaded through the loader task. The SREC format must be
chosen if you are generating position-independent code or if the application’s
location in target memory can be determined at compile time. The IEEE-695
format must be chosen when you cannot generate position-independent code and
it is not possible to determine at compile-time where the application gets loaded in
target memory. The IEEE-695 can also be chosen for loading absolute code.

System Services Loader

pSOSystem Programmer’s Reference 1-37

3. Change the sys_conf.h configuration files and Makefiles provided with the
sample loader application for your application and use it to generate app.hex (the
SREC version) or app.x (the IEEE-695 version) files for the application task, which
are to be loaded with the loader.

4. Run the ld_prep utility with app.hex (or app.x) as the input file. On the ld_prep
command line, specify the entry point, the code type (relocatable/absolute), and
any other parameters that may be appropriate. A file out.ld will be generated, by
default, in the current working directory. If you want, you can specify a name of
your choice (instead of out.ld) using the -o command-line option to ld_prep.

5. Copy the file produced in Step 4 to the appropriate file system volume and
directory from where the loader has been programmed to load this application.
For example, when using TFTP pseudo driver to load applications, you may need
to copy this file to the /tftpboot directory on certain host systems that provide a
restricted TFTP facility.

6. Using the bootstrap loader on the target, load the ram.hex file generated in Step 1
and restart pSOSystem. If the loader task runs successfully, you should be able to
load your application.

Guidelines for Writing Device Drivers

As stated earlier, a device driver that interfaces with the loader must meet the interface
requirements set by pREPC+. See the guidelines for writing device drivers in Section 2,
"Interfaces and Drivers".’’ The loader calls only the de_read() function internally. It passes
an I/O parameter block with the following format:

typedef struct {

unsigned long count; /* Number of bytes to read */

void *address; /* Address of data buffer */

} iopb;

The loader needs the device driver to be capable of skipping data (i.e. seeking in the forward
direction). To seek in the forward direction, the loader calls de_read() with the count field
in the iopb structure set to the number of bytes to skip, and with the address field in the
iopb structure set to (void *)NULL.

The device driver read function, on receipt of an iopb structure with address field set to
NULL, reads count number of bytes from the device and discards those. Thus, this case is
treated the same as any other read operation, except that the driver does not copy the data.
This is the only additional requirement set by the loader, and it is very easy to implement.
For an example, you can refer to the TFTP pseudo device driver sources that are provided
with pSOSystem in the drivers directory.

Loader System Services

1-38 pSOSystem Programmer’s Reference

System Services mmulib

pSOSystem Programmer’s Reference 1-39

NAME

mmulib -- mmu library

DESCRIPTION

mmulib included in the pSOSystem base package provides the following memory
management services for 68030, 68040, and 68060 processors:

• Creation of MMU maps (mapping tables for the Memory Management Unit).

• Control of attributes for individual pages in those maps.

• Activation of the maps and enabling of the MMU.

mmulib supports only a logical equal-to-physical mapping. This allows the access
characteristics of memory to be managed without introducing the complexities associated
with virtual addresses.

mmulib can be used to disable caching of certain areas of memory. This is most useful for
memory that is used for I/O, DMA (direct memory access), or memory that is shared
between multiple CPUs (and hardware snooping is not implemented).

mmulib can also be used to restrict write access to certain areas of memory. This allows
protection of both the OS and application code. Additionally, access to certain data areas
can be limited to a particular task or set of tasks.

A map specifies the access characteristics of a segment of memory. That segment can be as
large as the entire 4 Gigabyte address space. A map divides an address space into pages,
each containing 4 Kbytes. All memory locations within the same page have the same access
characteristics. A particular map is implemented via mapping tables stored in memory and
is read by the MMU hardware.

Several maps can exist simultaneously; however, only one may be in use by the MMU
hardware at any given time. The map that is in use by the MMU hardware is referred to as
the active map.

In addition to the memory described by the MMU maps, other sections of memory can be
described by Transparent Translation Registers. For example, you might want to use MMU
mapping to control the access characteristics only in physical RAM. A Transparent
Translation Register can then control the access characteristics for the memory-mapped
I/O area.

A page (and the memory it contains), which is explicitly described by a mapping table entry,
is said to be defined by the map. All other pages are undefined. Any attempt to access a
page that is not defined by the active map causes a hardware exception.

mmulib System Services

1-40 pSOSystem Programmer’s Reference

mmulib Concepts and Operation

Control of memory defined by the MMU map is done on the scale of a page. Pages defined
by a map have associated attributes that further control access to memory within that page.
Every defined page may have none, some, or all of the following attributes:

Invalid Accessing the page is disabled. Any attempt to access it causes
a hardware exception.

Read-Only The page is write protected. Any attempt to write to it causes a
hardware exception.

Cache-Disabled The page is not cached.

Copyback If cache is enabled, use copyback as opposed to write-through
mode. (68040 and 68060 only)

Serialized If cache is disabled, use serialized access. (68040 and 68060
only)

Supervisor The page can be accessed only in supervisor mode. (68040 and
68060 only)

mmulib lets you provide a default map and additional maps associated with individual
tasks. Additional mmulib services examine and modify maps, and they integrate mmulib
with pSOS+ and pROBE+ operations.

Mapping tables are created by the mmulib call map_create(). The caller provides a
description of the desired map via a map template. Memory to store the mapping tables can
be provided by the caller, or it can be dynamically allocated by the map_create() call.
map_create() sets a map ID, which is used in subsequent mmulib calls. Numerous
mapping tables can be created by calling map_create() multiple times.

Once created, any page defined by the map can be examined with the map_getattr() call.
The attributes associated with any page defined by the map can be altered via the
map_setattr() call. However, undefined pages can not be added to the map. Thus, the map
template should define enough memory to cover anticipated needs, even if this amount is
initially invalid.

Following the creation of at least one map, the MMU can be enabled and a map made active.
You can control which map is active at any time by defining a default map, and you can
define other maps associated with one or more tasks. When a task with no associated map
is executing, the default map is the active map. Otherwise, the task’s associated map is the
active map. The user and supervisor mode maps are always the same.

mmulib assumes the MMU is disabled when the ROOT task begins execution. The
map_default() call is used to define the default map and to enable the MMU with the default
map active. Note that because it must alter the MMU registers, map_default() must be
called from supervisor mode.

If all tasks are to use the default map (for example when the MMU is simply being used to
inhibit data caching in certain memory areas), then no further action is required. If some

System Services mmulib

pSOSystem Programmer’s Reference 1-41

tasks require a map that is different from the default map, then map_task() is used to
associate an alternate map with a task.

As can be seen, a single map can be associated with many tasks. The default map can also
be associated with one or more tasks through the use of the map_task() call (although this
is a superfluous operation).

Finally, the map_getid() service returns either the ID of the map associated with a task or
the ID of the default map.

Page Attributes

When application code exchanges page attributes with mmulib, a bit map is used. For each
attribute, the bit positions and meanings are defined in mmulib.h by the following
constants:

MAP_INVBIT When set, the page is invalid.

MAP_WPBIT When set, the page is read only.

MAP_CIBIT When set, the page is cache inhibited.

MAP_CBBIT When set, copyback mode is used. (68040 and 68060 only)

MAP_SERBIT When set, serialized access is used. (68040 and 68060 only)

MAP_SUPBIT When set, the page can be accessed only in supervisor mode.
(68040 and 68060 only)

Map Template

You can create mapping tables by using the map_create() call, which puts information into
an array of structures. Each map_t structure describes one contiguous area of physical
memory, defined in mmulib.h as follows:

struct map_t
{
void *addr,
unsigned long len,
unsigned long attr
}

where addr is the start address of the section, len is it length in bytes, and attr specifies
its initial attributes. addr must be on a page boundary and len must be a multiple of the
page size. attr is created by OR-ing together any combination of MAP_INVBIT, MAP_WPBIT,
MAP_CIBIT, MAP_CBBIT, MAP_SERBIT, and MAP_SUPBIT.

PAGE_ALIGMENT Mask that can be used to test an address to see if it is
aligned to a page boundary.

PAGE_SIZE Define statement that gives the size of a page of memory.

mmulib System Services

1-42 pSOSystem Programmer’s Reference

MAP_SIZE(mem_size) Macro that will give the amount of memory needed to hold
the map tables for a size of contiguous memory. mem_size
must be in bytes.

mmulib Functions

mmulib provides two types of functions, user-callable and callout. User-callable functions
are called from a user application. Callout functions are called from pSOS+ and pROBE+
code. mmulib.h contains prototypes of all mmulib functions.

User-Callable Functions

User-callable mmulib functions are as follows:

map_create Create a memory map.

map_default Define default map and enable MMU.

map_getattr Get the attributes of a page.

map_getid Get the ID of a task’s map or of the default map.

map_setattr Change the attributes of a map.

map_task Associate a map with a task.

The syntax of the map_create() function is as follows:

#include <mmulib.h

map_create(struct map_t *map,
unsigned long maplen,
void *mapmem,
unsigned long mapmemlen,
unsigned long *mapid,
unsigned long *tablesize
)

map_create() creates mapping tables from a map description provided by the array of
map_t structures pointed to by map. maplen specifies the number of array elements in
map.

mapmem points to the memory area to hold the mapping tables and mapmemlen specifies
the length, in bytes, of mapmem. If mapmem is zero, mmulib allocates memory for the
mapping tables from Region 0. In this case, mapmemlen is ignored. If mapmen is too
small, or Region 0 lacks sufficient space, a fatal error occurs, an error code is returned, and
mapping tables are not created.

mmulib calculates the amount of memory required to hold the map tables and returns it
in the variable pointed to by tablesize. If a new map is successfully created, the ID of the

System Services mmulib

pSOSystem Programmer’s Reference 1-43

map is returned in the variable pointed to by mapid. This ID is then used in subsequent
calls to mmulib.

map_create() returns 0 or an error code, which can be one of the following:

EMMU_INSUFMEM Map area was too small or map_create() could not
allocate enough memory from Region 0.

EMMU_DUP_PAGE_ENTRY A duplicate page is referenced in the map_t array.

EMMU_ADDR_NOT_ON_PAGE The starting address of a section is not on a page
boundary.

EMMU_LEN_NOT_PAGE_MULT The length of a section is not a multiple of the page
size.

The syntax for map_default() is as follows:

void map_default (unsigned long mapid)

map_default() makes the map specified by mapid the default map and enables the MMU.
Unless the calling task has an associated map, upon return, the map specified by mapid is
active. Since it enables the MMU, map_default() must be called from supervisor mode or a
privilege violation occurs.

map_default() is normally called just once. However, if it is called multiple times, the most
recent call determines the default map.

map_default() has no return value. It does not check the validity of mapid. If it is not valid,
a hardware exception or other erroneous behavior is likely to result.

The syntax for map_task() is as follows:

map_task (unsigned long tid, unsigned long mapid)

map_task() associates the map specified by mapid with the task specified by tid. If mapid
is zero, then the task’s current association, if any, is removed so that the task subsequently
uses the default map. If tid is zero, then calling task’s map is changed.

The new map does not become active until the task next gains the CPU through a context
switch. If a task sets its own map and needs it to be active before proceeding, the task
should use tm_wkafter() to block for one clock tick.

map_task() returns 0 or the following error code:

EMMU_TID_NOT_VALID The task ID is not valid.

map_task does not check the validity of mapid. If not valid, a hardware exception or other
erroneous behavior will probably result.

map_setattr() alters the attributes of a contiguous memory area. map_setattr() syntax is
as follows:

mmulib System Services

1-44 pSOSystem Programmer’s Reference

map_setattr(
unsigned long mapid,
void *addr,
unsigned long len,
unsigned long mask,
unsigned long attr
)

mapid specifies the map to be changed. addr specifies the start address of the memory
region and len specifies its length. If len is zero, then the attributes of the single page
containing addr are changed. Otherwise, addr must be on a page boundary, and len must
be a multiple of the page size.

mask specifies which attributes of the region are to be changed. It is formed by OR-ing
together any or all of the page attributes:

MAP_INVBIT, MAP_WPBIT, MAP_CIBIT, MAP_CBBIT, MAP_SERBIT, MAP_SUPBIT

attr specifies the new attributes of the region and is also formed by OR-ing together any or
all of the above attributes. If a bit is set in mask, then the value in the corresponding bit of
attr is assigned to the page(s). If a bit is not set in mask, the corresponding bit in attr is
ignored and remains unchanged.

If the map is active, the changes take effect immediately. Otherwise, they take effect the
next time the map becomes active.

map_setattr() returns 0 or an error code. Possible error returns by map_setattr are:

EMMU_ADDR_NOT_ON_PAGE The starting address of a section is not on a page
boundary.

EMMU_LEN_NOT_PAGE_MULT The length of a section not a multiple of the page size.

EMMU_PAGE_NOT_DEFINED A page in the memory area is not defined.

map_getattr() returns the attributes of a given page as defined by the map specified by
mapid. The syntax for map_getattr() is as follows:

map_getattr (unsigned long mapid, void *addr, unsigned long *attr)

addr is any memory location within the page. The pages attributes are returned in the
variable pointed to by attr. The value returned is formed by OR-ing together any or all of
the following page attributes, as appropriate:

MAP_INVBIT, MAP_WPBIT, MAP_CIBIT, MAP_CBBIT, MAP_SERBIT, MAP_SUPBIT

map_getattr() returns 0 or the following error code:

EMMU_PAGE_NOT_DEFINED A page in the memory area is not defined.

The syntax for map_getid() is as follows:

System Services mmulib

pSOSystem Programmer’s Reference 1-45

unsigned long map_getid (
unsigned long tid,
unsigned long *defmapid,
unsigned long *taskmapid
)

map_getid() returns, in the variables pointed to by defmapid and taskmapid, respectively,
the ID of the default map and the ID of the map associated with the task specified by tid.
A tid of zero refers to the calling task. If the specified task has no associated map, then zero
is returned in taskmapid.

map_getid() returns 0 or the following error code:

EMMU_TID_NOT_VALID The task ID is not valid.

Callout Functions

Callout mmulib functions are as follows:

map_csco/map_cscoa Context switch callout procedure.

map_reco pROBE+ entry callout procedure.

map_rxco pROBE+ exit callout procedure.

map_cocs() and map_cocsa() are special-purpose procedures that change the active map
when a context switch occurs. Unless all tasks use the default map, one of these two
procedures must be called from the pSOS+ context switch callout. The syntax for these
functions is as follows:

void map_csco (unsigned long old_tid, unsigned long new_tid)
void map_cscoa(void)

void map_cscoa() is called from assembly language and expects its input parameters to be
in processor registers, as described in the pSOSystem Programmer's Reference manual in
the Section 4, ‘‘Configuration Tables.’’ The address of map_cscoa() can be entered directly
into the kc_startco entry in the pSOS+ Configuration Table.

void map_csco (unsigned long *TCB, unsigned long tid) is called using C language
calling conventions. As such, it cannot be entered directly into kc_startco. This syntax is
used when a C language callout procedure written in C needs to call map_csco. TCB is the
pointer to the task control block of the task that is gaining the CPU. tid is the task ID of
the task that is gaining the CPU.

map_reco() and map_rxco() are special purpose procedures that can be called from the
user supplied pROBE+ ENTRY and EXIT callouts, respectively. They must be used
together. The syntax for these functions is as follows:

void map_reco(void)
void map_rxco(void)

mmulib System Services

1-46 pSOSystem Programmer’s Reference

map_reco() stores the current MMU state and then disables the MMU. This ensures that
pROBE+ has complete access to all physical memory. map_rxco() restores the MMU to its
state prior to the last map_reco() call.

The addresses of map_reco() and map_rxco() can be entered directly into the rc_entry and
rc_exit entries in the pROBE+ Configuration Table, or they can be invoked from more
sophisticated callout procedures.

System Services NFS Server

pSOSystem Programmer’s Reference 1-47

NAME

NFS Server -- Allow systems to share files in a networked environment

DESCRIPTION

NFS Server contained in the Network Utilities product allows systems to share files in a
networked environment. It permits NFS clients to read and write files transparently on
pSOSystem disks that pHILE+ manages.

The pSOSystem NFS Server is implemented as two application daemon tasks. The mntd
task is the mount daemon. It processes requests for mounting and listing exported
directories. The nfsd task processes all other NFS requests after exported directories have
been mounted.

NOTE: The mntd task and nfsd task are provided in the Network Utilities library as
position dependent code.

Configuration and Startup

NFS Server requires:

• pSOS+ Real-Time Kernel.

• pHILE+ File System Manager.

• pNA+ TCP/IP Network Manager.

• pRPC+ Remote Procedure Call Library.

• pREPC+ Run-Time C Library.

• Zero Kbytes of user stack and 16 Kbytes of supervisor stack.

• Two UDP datagram sockets used to listen for client requests (port number 2049 is
bound to one of these sockets and therefore unavailable) set in pNA+ configuration
table.

• Two Kbytes of dynamic storage (which a pREPC+ malloc() system call allocates)
from region 0.

• A user-supplied configuration table.

NFS Server System Services

1-48 pSOSystem Programmer’s Reference

The user-supplied NFS Server Configuration Table defines application-specific parameters.
A template for this configuration table (shown below) exists in the include/netutils.h file.

struct nfscfg_t

{

long task_prio; /* Priority for nfsd task */

long unix_auth; /* UNIX authentication-required flag */

long error_opt; /* Error reporting option */

long vol_blksize; /* System-wide volume block size */

char *def_vol_name;/* Name of the default volume */

nfselist_t *elist; /* Pointer to the list of exported directories */

long reserved[4]; /* Must be zero */

};

Definitions for the NFS Server Configuration Table entries are as follows:

task_prio Defines the initial priority of the daemon tasks mntd and nfsd.

unix_auth Determines if client authorization is checked. If unix_auth equals 1
(TRUE), NFS Server checks a client’s UNIX ID for the value 0
(indicating a root client) before mounting. If unix_auth equals 0
(FALSE), any client on a trusted machine can mount any of the
exported directories.

error_opt Relates to error response. If error_opt equals 1 (TRUE), NFS Server
returns the appropriate error status on operations that attempt to
modify file attributes. If error_opt equals 0 (FALSE), NFS Server
returns ok even if the requested operation did not happen. This allows
UNIX utilities that modify file attributes to operate on pHILE+ files
even when pHILE+ does not behave exactly the same as UNIX.

vol_blksize Defines the system-wide block size of the volumes that pHILE+
manages. The system-wide block size must match the size defined by
the pHILE+ Configuration Table entry fc_logbsize. However, the
notation for the vol_blksize value differs from that of fc_logbsize, as
follows: vol_blksize is specified as the actual block size, and
fc_logbsize is specified as the exponent of 2 for the block size. For
example, if vol_blksize is 512 bytes, then fc_logbsize is 9 (29 = 512).

def_vol_name Defines the name of the default volume to use when a client issues a
mount request without specifying a volume name.

elist Points to a structure. The structure contains a list of exported
directories and trusted clients. If elist equals 0, NFS Server looks for
the export information in the /etc/exports file on the default pHILE+
volume (defined by def_vol_name). If no such file exists, NFS Server
assumes everything in the system is exportable and accepts all mount
requests. When elist is specified, its structure must be as follows:

System Services NFS Server

pSOSystem Programmer’s Reference 1-49

struct nfselist_t

{

char *dir_path; /* Export list */

char *hlist; /* List of trusted clients*/

};

The following is an example of an export list with three entries:

struct nfselist_t nfselist[] =

{

{"4.0/", "111.111.11.111", 999.999.99.999"},

{"5.0/etc", 0},

{0, 0}

};

where the first entry permits the client machines with IP addresses
111.111.11.111 and 999.999.99.999 to mount on the root directory /
on volume 4.0, and the second entry allows any client to mount on
directory etc on volume 5.0. The last entry defines the end of the
export list.

reserved Reserved for future use, and each must be 0.

NFS Server comes as one object module and must be linked with a user application. Calling
the function nfsd_start(nfscfg) any time after pSOSystem initialization (by calling ROOT)
starts NFS Server. The parameter nfscfg points to the NFS Server Configuration Table. If
NFS Server is started successfully, nfsd_start() returns 0; otherwise, it returns a non-zero
value.

EXAMPLE

The following code fragment shows an example configuration table and the call that starts
NFS Server. The complete example code exists in the apps/netutils/root.c file.

#include <nfsdcfg.h>

start_nfs_server()

{

/* NFS server configuration table */

static nfscfg_t nfscfg =

{

250, /* Task priority for nfsd task */

1, /* Requires "root" UNIX client to mount */

0, /* No error reporting */

512, /* System-wide volume block size */

NFS Server System Services

1-50 pSOSystem Programmer’s Reference

"4.0", /* Default volume name */

0, /* Everything exported */

0, 0, 0, 0 /* Zeros for all reserved entries */

};

/* start the NFS server */

if (nfsd_start(&nfscfg))

printf("nfsd_start: failed to start\n");

}

The following features are not supported in the current version:

• Symbolic and hard link files.

• File truncation (for example, ftruncate() in SunOS).

• Lseek beyond the end of a file.

• Specification of a file's attributes for mode (read/write/execute), ownership (uid/
gid), and time (accessed/created/modified).

• File locking.

• Mounting MS-DOS volumes.

On the other hand, the following parameters do apply:

• A file's access, create, and modification times are all updated to the same value
whenever a file's content is modified.

• All files are owned by root (uid=0 and gid=0).

• All users have read, write, and execute permissions for all regular files.

• All users have read and execute permissions for all directory files.

• All users have read permission for all system files.

System Services pSH+

pSOSystem Programmer’s Reference 1-51

NAME

pSH+ -- Interactive command line shell

DESCRIPTION

pSH+ contained in the Network Utilities product provides an interactive, command line
shell. pSH+ consists of two parts:

• An application task (pshc), which provides the console login shell.

• An application daemon task (pshd), which listens for connection requests from the
Telnet server daemon and dynamically spawns shell tasks to process Telnet logins.

pSH+ is provided as part of the system utilities object library (sys/libc/netutils.a). pSH+
contains a set of built-in commands. Commands or complete applications that will be
spawned as separate tasks can be added to pSH+.

Configuration And Startup

pSH+ requires the following components:

• pSOS+ Real-Time Kernel.

• pHILE+ File System Manager.

• pNA+ TCP/IP Network Manager.

• pREPC+ Run-Time C Library.

• Four Kbytes of user stack and two Kbytes of supervisor stack per session.

• One TCP socket, which is used to listen for Telnet server requests, and two
additional TCP sockets per shell session.

• Two Kbytes of dynamic storage (which a pREPC+ malloc() system call allocates).

The user-supplied pSH+ Configuration Table defines application-specific parameters. The
following is a template for this configuration table. The template exists in the file include/
netutils.h:

struct pshcfg_t {

long flag; /* Services options */

long task_prio; /* Priority for each shell task */

char *def_vol_name; /* Default login volume name */

struct ulist_t *ulist; /* List of permitted users */

appdata_t *app; /* Pointertr to the list of user apps */

cmddata_t *cmd; /* Pointer to the list of user cmds */

unsigned long console_dev;/* The pSH+ console device number */

unsigned long psedo_dev; /* pSH+ pseudo device number */

pSH+ System Services

1-52 pSOSystem Programmer’s Reference

char *cprompt; /* Console prompt */

char *tprompt; /* Telnet prompt */

long reserved[2]; /* Must be 0 */

};

Definitions of the pSH+ Configuration Table entries are as follows:

flag Specifies which services to provide. If this field is 1, only the part of
pSH+ that serves the console login is activated. If this field is 2, only
the part of pSH+ that serves Telnet logins is activated. If flag is neither
1 nor 2, both parts of pSH+ are activated.

task_prio Defines the priority at which shell tasks start executing.

def_vol_name Names of the default volume to use when a user logs into pSOSystem.

ulist Points to a list of structures. The structures contain login information
about permitted users. If this field is 0, any user can log in. The
structure format is as follows:

struct ulist_t
{
char *login_name; /* User name */
char *login_passwd; /* User password */
long reserved[4]; /* Must be 0 */
};

If ulist is provided, the last structure in the array must be all 0’s to
indicate the end of the list. The following example defines two users:

struct ulist_t ulist[] = {
{"guest", "psos0", 0, 0, 0, 0},
{"scg", "andy0", 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0}
};

app Points to a list of structures. Each of the structures contains
information for executing a user application. The app entry allows
users to add system applications (FTP, Telnet, and so on) and user-
defined applications to the shell. (pSH+ comes without built-in user
applications. The subsection ‘‘Adding Applications to pSH+’’ on page
2-60 explains how to specify user applications.) The structure format
is as follows:

struct appdata_t {

char *app_name; /* Application name */
char *app_help; /* Help string */
void (*app_entry)(); /* Entry point */

System Services pSH+

pSOSystem Programmer’s Reference 1-53

char *app_tname; /* Task name */
long app_tprio; /* Task priority */
long app_sssize; /* System stack size */
long app_ussize; /* User stack size */
short app_reentrant_flag; /* Reentrant flag */
short app_reentrant_lock; /* Reentrant lock */
};

The last structure in the array must be all 0‘s to indicate the end of the
list. The following is an example with two entries:

struct appdata_t appdata[] = {

{"ftp", "file transfer application", ftp_main,

 "ft00", 250, 2048, 2048,1, 0},

{"telnet", "telnet application", telnet_main, "tn00",

 250, 2048, 2048, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0}

};

cmd Points to a list of structures. The structures contain information for
executing user commands. pSH+ comes with a number of built-in
commands (such as cd, pwd, ls), and users can add commands. The
cmd entry allows users to add commands to the shell. (The subsection
‘‘pSH+ Built-in Commands’’ on page 2-42 describes built-in
commands, and ‘‘Adding Commands to pSH+’’ on page 2-40 explains
how to specify user-defined commands to pSH.) The structure format
is as follows:

struct cmddata_t {

char *cmd_name; /* Command name */

char *cmd_help; /* Help string */

void (*cmd_entry)(); /* Entry point */

short cmd_reentrant_flag; /* Reentrant flag */

short cmd_reentrant_lock; /* Reentrant lock */

};

The last structure in the array must be all 0’s to indicate the end of the
list. The following is an example with three entries:

struct cmddata_t cmddata[] = {

{"type", "list content of a file", type_main, 1, 0},

{"volume", "show current working volume",

 volume_main, 1, 0},

{0, 0, 0, 0, 0}

};

pSH+ System Services

1-54 pSOSystem Programmer’s Reference

For each built in command, users can add an entry to cmddata[], for
example:

{"xxx",xxxman,psys_xxx,1,0}

The type definitions for xxxman and psys_xxx is in <netutils.h>.

NOTE: xxx is any built-in command supported by network utilities library.

console_dev Represents the console device for this application.

psedo_dev Stands for the pseudo device, used for I/O redirection. It is set to
DEV_PSEDO, and is defined in sysconf.h The pseudo driver is
provided as part of the network utilities package. The pseudo driver is
used for redirecting socket or file I/O to standard I/O and vice-versa.

cprompt Stands for the pSH+ prompt. If null, the cprompt is set to "<pSH+>".

tprompt Telnet prompt for incoming telnet connections. If null, the tprompt is
set to "<pSH+>".

reserved Reserved for future use, and each word must be 0.

Making the psh_start(pshcfg) system call from the application starts pSH+. The parameter
pshcfg is a pointer to the pSH+ Configuration Table. If pSH+ is started successfully,
psh_start() returns 0; otherwise, it returns a non-zero value.

The following code fragment shows an example configuration table and the call that starts
pSH+. The complete example code exists in the apps/netutils/root.c file.

start_psh()
{
/* user configured command list */
cmddata_t cmds_tab[] = {

 {"arp", arpman, psys_arp, 1, 0},
 {"cat", catman, psys_cat, 1, 0},
 ...
 {0,0,0,0,0}
 };

{
/* psh configuration table */
static struct pshcfg_t pshcfg =

{
0x03, /* Services options */
250, /* Priority for each shell task */
"4.0", /* Default login volume name */
0, /* List of permitted users */
0, /* Pointer to the list of user apps */
0, /* Pointer to the list of user cmds */

System Services pSH+

pSOSystem Programmer’s Reference 1-55

DEV_CONSOLE, /* Console device */
DEV_PSEDO, /* Pseudo device */
"pSH+>", /* Pshell prompt */
"Telnet+>", /* Incoming telnet connection prompt */
0, 0, /* Must be 0 */
};

/* start the FTP server */
if (psh_start(&pshcfg))

printf("psh_start: failed to start\n");
}

Adding Commands to pSH+

The command set of pSH+ can be extended by specifying the command handlers in a table.
The cmd entry in the pSH+ Configuration Table must contain the address of this table. The
pSH+ task then executes these commands as subroutines. This differs from applications
because they execute as separate tasks.

The command table must have the following information about each command:

• The name of the command.

• The starting address of the routine that performs the command.

• An optional help string for the command.

• Whether or not the routine that implements the command is reentrant: if a
command is not reentrant, pSH+ prevents simultaneous calls to the handler by
different shell tasks.

When a shell command is executed, the parameters argc, argv, and env are passed to the
subroutine.

The int argc parameter is the number of arguments on the command line that were used
to invoke the command. The number of arguments includes the command itself.

The char *argv[] parameter is an array of pointers to null-terminated character strings, and
each string contains one of the arguments to the command as parsed by the shell: argv[0]
points to the command name as entered on the command line; argv[1] points to the first
argument (if any); and so on.

The char *env[] parameter is an array of pointers to null-terminated character strings. The
strings contain the definitions of all of the environment variables. The last element in env[]
is a null pointer that indicates the end of the environment variables. Two of the environment
variables, CVOL and CDIR, define the current working volume and current working
directory, respectively.

When a command completes, it exits by executing a return to pSH+.

pSH+ System Services

1-56 pSOSystem Programmer’s Reference

Adding Applications to pSH+

pSH+ applications can be added by placing entries in a table. This table is pointed to by the
app entry in the pSH+ Configuration Table. Each application described by the table
requires:

• The name of the application.

• The starting address of the application.

• An optional help string for the application.

• The name and priority to be used for the application task.

• The sizes of the supervisor and user stacks for the application task (in bytes).

• Whether or not the code that implements an application is reentrant. If it is
nonreentrant, pSH+ prevents simultaneous instances of the application.

When a shell command is entered with the name of an application, that application is
invoked and entered at the specified entry point. The application is also passed four
parameters: argc, argv, env, and exit_param. The first three parameters are defined in the
same way for applications as they are for commands (see the preceding subsection, ‘‘Adding
Commands to pSH+’’). exit_param is a parameter used in the psh_exit function when an
application terminates.

Subroutines

pSH+ provides two subroutines that can be called from the code that implements user-
commands and/or applications. The subroutines are psh_getenv and psh_exit.
psh_getenv gets the pointer to the value of an environment variable. It has the following
syntax:

char *psh_getenv (name, env);

where name is the name of an environment variable (for example, CDIR), and env is the
same parameter passed at the entry point of an application or command.

psh_exit is used when an application that was invoked from pSH+ terminates. It has the
following syntax:

void psh_exit (exit_param);

where exit_param is the same parameter passed at the entry point of an application.

NOTE: An application cannot interpret the contents of exit_param.

pSH+ Built-In Commands

This subsection contains descriptions of the built-in pSH+ commands. The shell task
executes each of these commands as a subroutine. The commands are as follows:

System Services pSH+

pSOSystem Programmer’s Reference 1-57

cat Concatenate and display files.

cd Change working directory.

clear Clear the terminal screen.

cmp Perform a byte-by-byte comparison of two files.

cp Copy files.

du Display disk blocks usage.

date Display or set the date.

echo Echo arguments to the standard output.

setenv Set environment variables.

getid Get NFS user ID and group ID.

getpri Get task priority.

head Display the first few lines of the specified files.

help Display reference manual pages.

kill Terminate a task.

ls List the contents of a directory.

mkdir Create a directory.

mkfs Construct a pHILE+ file system.

mount Mount a pHILE+ file system.

mv Move or rename files.

netstat Show network status.

nfsmount Mount a NFS file system.

pcmkfs Construct an MS-DOS file system.

pcmount Mount an MS-DOS file system.

ping Send ICMP ECHO REQUEST packets to network hosts.

popd Pop the directory stack.

pushd Push current directory onto the directory stack.

pwd Display pathname of the current working directory.

resume Resume a task.

rm Remove files.

rmdir Remove directories.

setid Set NFS user ID and group ID.

setpri Set task priority.

sleep Suspend execution for a specified interval.

suspend Suspend a task.

pSH+ System Services

1-58 pSOSystem Programmer’s Reference

sync Force all changed blocks to disk.

tail Display the last part of a file.

touch Update the modification time of a file.

umount Unmount a file system.

The following are descriptions of the pSH+ commands:

cat [-benstv] [filename...]
Concatenate and display. cat sequentially reads each filename
and displays the contents of each named file on the standard
output. The following input displays the contents of goodies on
the standard output:

psh> cat goodies

Note that cat does not redirect the output of a file to the same file.
For example, cat fails for filename1 > filename1 or filename1 >>
filename1. You should avoid this type of operation, because it can
cause the system to go into an indeterminate state.

cat options are as follows:

b Number the lines, but omit the line numbers from blank lines
(similar to -n).

e Display non-printing characters, and additionally display a $
character at the end of each line (similar to -v).

n Precede each line output with its line number.

s Substitute a single blank line for multiple adjacent blank
lines.

t Display non-printing characters (like the -v option), and
additionally display [TAB] characters as ^I (a [CTRL]-I).

v Display non-printing characters (with the exception of [TAB]
and [NEWLINE] characters), so they are visible. Control
characters print like ^X (for [CTRL]-X); the [DEL] character
(octal 0177) prints as ^?. Non-ASCII characters (with the high
bit set) are displayed as M-x where M- stands for ‘‘meta’’ and
x is the character specified by the seven low-order bits.

cd [directory] Change working directory. The argument directory becomes the
new working directory.

cmp [-ls] filename1 filename2 [skip1] [skip2]
Perform a byte-by-byte comparison of filename1 and filename2.
With no arguments, cmp makes no comment if the files are the
same. If they differ, it reports the byte and line number at which

System Services pSH+

pSOSystem Programmer’s Reference 1-59

differences occur, or else it reports that one file is an initial
subsequence of the other. Arguments skip1 and skip2 are initial
byte offsets into filename1 and filename2, respectively, and can
be either octal or decimal (a leading 0 denotes octal).

cmp options are as follows:

l Print the byte number in decimal and the differing bytes in
octal for all differences between the two files.

s Silent. Print nothing for differing files.

cp [-i] filename1 filename2

cp -rR [-i] directory1 directory2

cp [-irR] filename ... directory
On the first line of the synopsis, the cp command copies the
contents of filename1 to filename2. If filename1 is either a
symbolic link or a duplicate hard link, the contents of the file that
the link refers to are copied, but the links are not preserved.

On the second line of the synopsis, cp recursively copies
directory1 along with its contents and subdirectories to
directory2. If directory2 does not exist, cp creates it and
duplicates the files and subdirectories of directory1 within it. If
directory2 does exist, cp makes a copy of directory1 (as a
subdirectory) within directory2, along with its files and
subdirectories.

On the third line of the synopsis, each filename is copied to the
indicated directory. The basename of the copy corresponds to that
of the original. The destination directory must already exist for the
copy to succeed.

cp does not copy a file to itself. cp options are as follows:

i Interactive: a prompt for confirmation of the copy appears
whenever the copy would overwrite an existing file. A y answer
confirms that the copy should proceed. Any other answer
prevents cp from overwriting the file.

r See R.

R Recursive. If any of the source files are directories, copy the
directory along with its files (including any subdirectories and
their files). The destination must be a directory.

pSH+ System Services

1-60 pSOSystem Programmer’s Reference

Example:

In the following example, the first command line entry starts the
copy operation. The second command line lists the contents of the
directory to verify the results of the copy.

To copy a file:

psh> cp goodies goodies.old

psh> ls

goodies goodies.old

To copy a directory, first to a new and then to an existing directory,
enter the following:

psh> cp -r src bkup

psh> ls -R bkup

x.c y.c z.sh

psh> cp -r src bkup

psh> ls -R bkup

src x.c y.c z.sh

src:

x.c y.c z.sh

date [yyyymmddhhmm [.ss]]
Without an input argument, date displays the current date and
time. Otherwise, date sets the current date according to the input
argument.

The argument part yyyy is the four digits of the year; the first mm
is the month number; dd is the day number in the month; hh is
the hour number (24 hour system); the second mm is the minute
number; and .ss (optional) specifies seconds. If yyyy is the current
year, it can be omitted because the current year value is the
default.

Example:

To set the date to Oct 8, 12:45 AM, type

date 10080045

du [-sa] [filename ...] Display the number of 512-byte disk blocks used per file or
directory. This command can display the block count of one or
more specified files; all files in either the current or another
specified directory; or, recursively, the number of blocks in
directories within each specified directory. If no filename is given,

System Services pSH+

pSOSystem Programmer’s Reference 1-61

the current directory (symbolized by a.) is used. Filenames can
contain wildcards.

du options are as follows:

s Display only the total for each of the specified filenames.

a Generate an entry for each file.

Entries are generated only for each directory in the absence of
options.

Example:

The following is an example of du usage in a directory. The
example uses the pwd command to identify the directory, then
uses du to show the usage of all the subdirectories in that
directory. The total number of blocks in the directory (1211) is the
last entry in the display:

psh> pwd
/junk

psh> du
5 ./junk1

33 ./xxxxx

44 ./vvvvv/vvvv.junk1

217 ./vvvvv/vvvv.junk2

401 ./vvvvv

144 ./mmmmm

80 ./gggggg

388 ./ffffff

93 ./mine

15 ./yours

1211 .

echo [-n] [argument ...]
Echo argument(s) to the standard output. Arguments must be
separated by [SPACE] characters or [TAB] characters and
terminated by a [NEWLINE].

The -n option keeps a [NEWLINE] from being added to the output.

getid Get the user ID and group ID of the shell task.

Example:

psh> getid

uid: 23, gid: 140

pSH+ System Services

1-62 pSOSystem Programmer’s Reference

where the second line is output displayed on standard output.

getpri tname|-tid Return the priority of a task, specified by either the task name
(tname) or the task identifier (tid).

Example:

psh> getpri ROOT

ROOT task priority = 250

head [-n] filename... Copy the first n lines of each filename to the standard output. The
default value of n is 10.

When more than one file is specified, the start of each file appears
as follows:

==>filename<==

For example, the following line

psh> head -4 junk1 junk2

produces

==> junk1 <==

This is junk file one

==> junk2 <==

This is junk file two

help [command_name]
Print information about shell commands to the console. If a valid
command name is given, help prints out information about that
command. With no command name for an input, help prints out
a list of shell commands.

The following example shows the results of help without an
argument:

psh> help

cat cmp echo help mkfs pcmkfs pushd rmdir sleep

cd cp getid kill mount pcmount pwd setenv

suspendclear date getpri ls mv ping resume setid

sync console du head mkdir nfsmount popd rm setpri

The following example shows the result of help cat.

psh> help cat

cat - concatenate and display (reentrant, not

locked)

System Services pSH+

pSOSystem Programmer’s Reference 1-63

kill tname|-tid Terminate the task indicted by either the task name (tname) or the
task identifier (tid). The kill command does this by calling
t_restart with a second argument of -1. The task must be
designed to read this second argument and do its own resource
cleanup, then terminate.

Example:

psh> kill tftd

ls [-aACdfFgilqrRs1] filename ...
For each filename that is a directory, ls lists the contents of the
directory; for each filename that is a file, ls repeats its name and
any other information requested. By default, the output is sorted
alphabetically. With no input arguments, ls lists the contents of
the current directory.

ls options are as follows:

a List all entries.

A (ls only) Same as -a, except that the. and the.. are not listed.

C Force multi-column output, with entries sorted down the
columns; for ls, this is the default when output goes to a
terminal.

d If argument is a directory, list only its name (not its contents);
often used with -l to get the status of a directory.

f Force each argument to be interpreted as a directory and list
the name found in each slot. This option turns off -l, -s, and -
r and turns on -a; the order is the same as the order of the
entries appearing in the directory.

F Mark directories with a trailing slash */ and executable files
with a trailing asterisk (*).

g For ls, show the group ownership of the file in a long output.

i For each file, print the i-number in the first column of the
report.

l List in long format. Long format shows the mode, the number
of links, the owner, the size (in bytes), and the time of each
file’s last modification. If the last modification occurred more
than six months ago, the display format is month-date-year;
the format for files modified in six or less months is month-
date-time.

pSH+ System Services

1-64 pSOSystem Programmer’s Reference

q Display nongraphic characters in filenames as the ?
character; for ls, this is the default when output goes to a
terminal.

r Reverse the order of the sort either to reverse the alphabetic
order or list the oldest data first.

R Recursively list subdirectories encountered.

s Give size of each file. Include indirect blocks used to map the
file. Display in Kbytes.

l Force single-column output.

mkdir [-p] dirname... Create a directory. The -p option allows missing parent directories
to be created, as needed.

Example:

psh> ls -lR

total 8

-r--r--r-- 1 root 512 Mar 31 94 00:00 BITMAP.SYS

-r--r--r-- 1 root 2048 Mar 31 94 10:01 FLIST.SYS

drwxrwxrwx 1 root 32 Mar 31 94 13:34 test_dir

./test_dir:

psh> mkdir -p new_dir/next_dir

psh> ls -lR
total 9

-r--r--r-- 1 root 512 Mar 31 94 00:00 BITMAP.SYS

-r--r--r-- 1 root 2048 Mar 31 94 10:01 FLIST.SYS

drwxrwxrwx 1 root 16 Mar 31 94 13:36 new_dir

drwxrwxrwx 1 root 32 Mar 31 94 13:34 test_dir

./new_dir:

total 0

mkfs [-i] volume_name label size num_of_fds
Initialize a file system volume_name and label it with label. The
argument size is the volume size, and num_of_fds is the number
of file descriptors.

System Services pSH+

pSOSystem Programmer’s Reference 1-65

The -i option initializes a device driver for the device.

Example:

psh> mkfs 5.6 HDSK 2096 512

Warning: this operation will destroy all data on the

specified volume.

Do you want to continue (y/n)? y

psh>

mount volume_name [sync_mode]
Mount a pHILE+ formatted volume on the file system. (A volume
must be mounted before any file operations can be executed on it.)

Permanent (non-removable media) volumes need to be mounted
only once. Removable volumes must be mounted and unmounted
as required.

The sync_mode is one of the following:

0 Specifies immediate-write synchronization mode.

1 Specifies control-write synchronization mode.

2 Specifies delayed-write synchronization mode (the default).

Example:

psh> mount 5.6/

mv [-if] filename1 filename2

mv [-if] directory1 directory2

mv [-if] filename... directory
Move around files and directories in the file system. A side effect of
mv is that it renames a file or a directory. The three major forms
of mv appear in the preceding synopses.

The first form of mv moves (and changes the name of) filename1
to filename2. If filename2 already exists, it is removed before
filename1 is moved.

The second form of mv moves (and changes the name of)
directory1 to directory2 but only if directory2 does not already
exist. If directory2 exists, the third form applies.

The third form of mv moves one or more filenames (can also be
directories) with their original names into the last directory in the
list.

pSH+ System Services

1-66 pSOSystem Programmer’s Reference

mv does not move either a file to itself or a directory to itself.

mv options are as follows:

i Interactive mode. mv displays the name of the file followed by
a question mark whenever a move would replace an existing
file. If a line starts with y, mv moves the specified file;
otherwise, mv does nothing with the file.

f Force. Override any mode restrictions and the i option.

netstat [-airs]
netstat displays the contents of various network-related data
structures in various formats. netstat with no option will display
all sockets other than the ones related to server tasks.

netstat options are as follows:

a Show the state of all sockets including ones that are listening
(server tasks).

i Show the state of all network interfaces.

r Show the routing tables.

s Show per-protocol statistics.

nfsmount host_address: host_directory directory
Mount the remote file system using NFS protocol. The host
host_address should advertise the directory, host_directory for
this command to complete successfully.

pcmkfs [-i] volume_name size
Do a pcinit_vol of the volume volume_name for the disk type
size, where size is one of the following:

1 360 Kbyte (5 1/4" double density)

2 1.2 Mbyte (5 1/4" high density)

3 720 Kbyte (3 1/2" double density)

4 1.4 Mbyte (3 1/2" high density)

The -i option initializes the device.

System Services pSH+

pSOSystem Programmer’s Reference 1-67

Example:

psh> pcmkfs 5.3 4

Warning: this operation will destroy all data on the

specified volume.

Do you want to continue (y/n)? y

pcmount volume_name [sync_mode]
Mount an MS-DOS file system volume_name. (A volume must be
mounted before any file operations can be executed on it.) The
argument sync_mode can be one of the following:

0 Immediate write synchronization mode.

1 Control write synchronization mode.

2 Delayed write synchronization mode (default).

Example:

psh> pcmount 5.3

ping [-s] host_address [timeout]
The ping command uses the ICMP protocol's mandatory
ECHO_REQUEST datagram to elicit an ICMP ECHO_RESPONSE
from the specified host or network gateway. ECHO_REQUEST
datagrams (pings) have an IP and ICMP header followed by a
struct timeval and then an arbitrary number of bytes to pad out
the packet. If the host responds, ping prints host is alive on
the standard output and exits. Otherwise, after timeout seconds,
it writes no answer from host . The default value of timeout is
10.

When the s option is specified, ping sends one datagram per
second and prints one line of output for every ECHO_RESPONSE
that it receives. No output is produced if no response occurs. The
default size for a datagram packet is 64 bytes.

When using ping for fault isolation, first ping the local host to
verify that the local network interface is running.

Example:

psh> ping 192.103.54.190

PING (192.103.54.190): 56 data bytes

192.103.54.190 is alive

pSH+ System Services

1-68 pSOSystem Programmer’s Reference

popd Pop the directory stack and change to the new top directory.

Example:

psh> pushd test_dir

psh> pwd
5.5/test_dir

psh> popd

psh> pwd
5.5/

pushd directory Push the current directory onto the directory stack and change
the current working directory to that directory.

Example:

psh> pwd
5.5/

psh> pushd test_dir

psh> pwd
5.5/test_dir

pwd Display the pathname of the current working directory

Example:

psh> cd 5.5//usr

psh> pwd
5.5//usr

resume tname | -tid Resume a suspended task by the task name (tname) or the task
identifier tid.

Example:

psh> resume ROOT

rm [-fir] filename... Remove (unlink directory entries for) one or more files. If an entry
was the last link to the file, the contents of that file are lost.

rm options are as follows:

f Force removal of files without displaying permissions or
questions and without reporting errors.

i Prompt whether to delete each file and, under -r, whether to
examine each directory. (This is sometimes called the
interactive option.)

System Services pSH+

pSOSystem Programmer’s Reference 1-69

r Recursively delete the contents of a directory, its
subdirectories, and the directory itself.

Example:

psh> ls -lR
total 9
-r--r--r-- 1 root 512 Mar 31 94 00:00 BITMAP.SYS
-r--r--r-- 1 root 2048 Mar 31 94 10:01 FLIST.SYS
drwxrwxrwx 1 root 16 Mar 31 94 13:36 new_dir
drwxrwxrwx 1 root 32 Mar 31 94 13:34 test_dir
./new_dir:
total 0
drwxrwxrwx 1 root 0 Mar 31 94 00:00 next_dir
./new_dir/next_dir:
./test_dir:
total 1
-rwxrwxrwx 1 root 33 Mar 31 94 00:00 test_file
psh> rm -rf new_dir
psh> ls -lR
total 8
-r--r--r-- 1 root 512 Mar 31 94 00:00 BITMAP.SYS
-r--r--r-- 1 root 2048 Mar 31 94 10:01 FLIST.SYS
drwxrwxrwx 1 root 32 Mar 31 94 13:34 test_dir
./test_dir:
total 1
-rwxrwxrwx 1 root 33 Mar 31 94 00:00 test_file

rmdir directory... Remove each named directory. rmdir removes only empty
directories.

setenv

setenv variable_name value
Change a pSH+ environment variable_name to a new value. If
used without arguments, setenv prints a list of pSH+ variables
and their values.

Note that the only variable that can be changed is TERM.

Example:

psh> setenv
CVOL=5.5
CDIR=/
SOFLIST=5
LOGNAME=guest
IND=0

pSH+ System Services

1-70 pSOSystem Programmer’s Reference

OUTD=0
TERM=sun

psh> setenv TERM vt100

psh> setenv
CVOL=5.5
CDIR=/
SOFLIST=5
LOGNAME=guest
IND=0
OUTD=0
TERM=vt100

setid uid gid Change the uid and gid ID of the current pSH+ session.

Example:

psh> getid

uid: 23, gid: 140

psh> setid 2 3

psh> getid

uid: 2, gid: 3

setpri tname | -tid new_priority
Set the new_priority of the task identified by either the task name
(tname) or task identifier (tid).

Example:

psh> getpri ROOT
ROOT task priority = 76

psh> setpri ROOT 252

psh> getpri ROOT
ROOT task priority = 252

sleep time Suspend execution for the number of seconds specified by time.

suspend tname | -tid Suspend the task identified by either the task name (tname) or the
task identifier (tid).

Example:

psh> suspend tnpd

System Services pSH+

pSOSystem Programmer’s Reference 1-71

sync Update a mounted volume by writing to the volume all modified file
information for open files and cache buffers that contain modified
physical blocks.

This call is superfluous under immediate-write synchronization
mode and is not allowed on an NFS volume.

Example:

psh> sync

tail + | -number [lc] filename
Copy filename to the standard output beginning at a designated
place.

tail options are typed contiguously and are not separated by
dashes (-). The options are as follows:

+number Begin copying at distance number from the
beginning of the file. number is counted in units of
lines or characters, according to the appended
option l or c. When no units are specified, counting
is by lines. If number is not specified, the value 10
is used.

-number Begin copying at distance number from the end of
the file. The number argument is counted in units
of lines or characters according to the appended
option l or c. When no units are specified, counting
is by lines. If number is not specified, the value 10
is used.

l number is counted in units of lines.

c number is counted in units of characters.

touch [-cf] filename...
Set the access and modification times of each argument to the
current time. A file is created if it does not already exist.

touch options are as follows:

c Do not create file if it does not already exist.

f Attempt to force the touch regardless of read and write
permissions on filename.

pSH+ System Services

1-72 pSOSystem Programmer’s Reference

umount directory Unmount a previously mounted file system where directory is the
mount point of the file system. Unmounting a file system causes it
to be synchronized (all memory-resident data is flushed to the
device).

Example:

psh> mount 5.6

psh> cd 5.6/

psh> ls
BITMAP.SYS FLIST.SYS

psh> cd 5.5/

psh> umount 5.6

psh> cd 5.6/
5.6/: no such file or directory

System Services RARP

pSOSystem Programmer’s Reference 1-73

NAME

RARP -- Reverse Address Resolution Protocol

DESCRIPTION

With RARP (Reverse Address Resolution Protocol), you can send a RARP request (for
example, from a diskless workstation) and identify a workstation’s IP address, or obtain a
dynamically assigned IP address from a domain name server (DNS).

The RARP request is a link-layer broadcast with the following syntax:

ULONG RarpEth(long (*NiLanPtr)(ULONG fn_code))

RarpEth RARP Ethernet broadcast address. The RARP request is a broadcast
message to this address.

NiLanPtr Network interface pointer. This parameter is set to the network
interface entry procedure (for example, NiLan) in the lan.c file in the
applicable board-support package.

fn_code Pointer to the network interface entry routine.

EXAMPLE of RARP Dialog

The following example shows a typical RARP dialog:

8:0:20:3:f6:24 ff:ff:ff:ff:ff:ff rarp 60

rarp who-is 8:0:20:3:f6:24 tell 8:0:20:3:f6:24

0:0:c0:6f:2d:20 8:0:20:3:f6:24 rarp 24

rarp reply 8:0:20:3:f6:24 at sun

8:0:20:3:f6:24 0:0:c0:6f:2d:20 ip 56:

sun.24999 > bsdi.tftp: 32 RRQ “8CFC0D21.SUN4C”

RARP can be quite useful, but if you need to identify more than an IP address or if you need
to query a domain name server (DNS) located across a router, you can use the BOOTP client
feature described in ‘‘BOOTP Client Code,’’ on page 1-3.

NOTE: If your RARP request fails, it returns a zero (0) for no reply or 0xffffffff for other
network errors.

RARP System Services

1-74 pSOSystem Programmer’s Reference

System Services routed

pSOSystem Programmer’s Reference 1-75

NAME

routed -- routing daemon

DESCRIPTION

The routed daemon contained in pSOSystem’s Networking Utilities product is an
implementation of the Routing Information Protocol, or RIP. routed creates two tasks,
RTDM and RTDT. The former maintains the daemon’s routing tables, exchanges RIP
information, and modifies pNA+ routing tables, as appropriate. The latter serves as a timer
that wakes up every 30 seconds to remind RTDM to time out some routing information and
to broadcast a routing message. The two tasks use a semaphore, RTSM, to achieve mutual
exclusion on their shared data.

System/Resource Requirements

To use the routed daemon, you must have the following components installed:

• pSOS+ Real-Time Kernel

• pNA+ TCP/IP Network Manager

In addition, the routed daemon requires the following system resources:

• Four K bytes of user stack and Four Kbytes of system stack used by RTDM and
RTDT.

• Two UDP sockets. One is used to exchange routing information. The other is used
to acquire information about the networking interface.

• One pSOS semaphore for mutual exclusion between task RTDM and RTDT.

• The static memory requirement is 2.5 Kbytes. The dynamic memory size is
decided by routing entries. For each routing entry, routed needs 68 bytes for its
routing entry structure and 74 bytes for its interface structure.

The Routing Daemon Configuration Table

routed requires a user-supplied configuration table, defined as follows:

struct routedcfg_t {

 unsigned long priority;

 int intergtwy;

 int supplier;

 int syslog;

 int maxgates;

 struct gateways *gways;

};

routed System Services

1-76 pSOSystem Programmer’s Reference

typedef struct routedcfg_t routedcfg_t;

where

priority This defines the priority at which two daemon tasks, RTDM and RTDT,
start executing.

intergtwy This flag is set either to 1 or 0. 1 means an inter-network router, which
offers a default route. This is typically used on a gateway to the
Internet, or on a gateway that uses another routing protocol whose
routes are not reported by other local routers.

supplier This flag is set to either 1 or 0. 1 forces routed to supply routing
information, whether it is acting as an inter-network router or not. This
is the default if multiple network interfaces are present, or if a point-to-
point link is in use.

syslog This defines the device number of the serial port for the log display. A
negative integer means the log display is disabled.

maxgates This defines the number of entries in the gateways structure.

gways This is a pointer to the following structure:

struct gateways {
 struct in_addr destination;
 struct in_addr gateway;
 int metric;
 int state;
 int type;

};

The gateway structure supplies routed with ‘‘distant’’ passive and active gateways that can
not be located using only information from the SIOGIFCONF ioctl() option. Each parameter
is used as follows:

destination Defines destination address in network byte order.

gateway Defines gateway address in network byte order.

metric Defines hop count to the destination.

state Identifies passive(RT_PASSIVE), active(RT_ACTIVE) or
external(RT_EXTERNAL). A passive router does not run routed to
exchange RIP packets. An active router runs routed to
exchange routing information. The use of an external router indicates
that another routing daemon will install the route. Active and
passive routers are added into the pNA+ routing table. External routers
are kept in the routed internal routing table. Only active routers are
broadcast in RIP packets.

System Services routed

pSOSystem Programmer’s Reference 1-77

type Indicates whether the destination type is a host(RT_HOST) or a
network(RT_NETWORK). When the destination is of host type, routed
treats it as a point-to-point link.

Starting the Routing Daemons

In order to use routed in an application, you must link the network utilities library. routed
is started with routed_start(routedcfg_t *). The following code fragment gives an example
of a configuration table and shows how to start routed:

#include <netutils.h>

#include "sys_conf.h"

void start_routed_server() {

 static routedcfg_t rcfg;

 static gateways_t gways[] = {0xC0d8e800, 0xC0d8e702, 2,

 RT_ACTIVE, RT_NETWORK};

 rcfg.priority = 250;

 rcfg.intergtwy = 0;

 rcfg.supplier = 1;

 rcfg.syslog = DEV_SERIAL+2;

 rcfg.maxgates = 1;

 rcfg.gways = gways;

 if (routed_start(&rcfg))

 printf("routed_start: failed to start\n");

}

routed System Services

1-78 pSOSystem Programmer’s Reference

System Services Telnet Client

pSOSystem Programmer’s Reference 1-79

NAME

Telnet Client -- Supports communication with a remote system running a Telnet Server

DESCRIPTION

The Telnet Client contained in the Network Utilities product supports communication with
a remote system that is running a Telnet Server. The Telnet Client runs as an application
under pSH+ and is invoked with the following command:

pSH+ > telnet [remote_system [port]]

where remote_system can be either a system name or an IP address in dot notation. The
port option specifies the port number on the remote system to establish the connection.

If no arguments are present, Telnet Client enters command mode (indicated by the telnet>
prompt). In command mode Telnet accepts and executes the commands described under
‘‘Telnet Commands’’ on page 2-58.

Once a connection has been opened, Telnet enters character-at-a-time input mode. Typed
text immediately goes to the remote host for processing.

If the localchars toggle is TRUE, the user's quit, intr, and flush characters are trapped
locally and sent as Telnet protocol sequences to the remote side. Options exist that cause
this action to flush subsequent output to the terminal (see toggle autoflush and toggle
autosynch under ‘‘Telnet Commands’’). The flush proceeds until the remote host
acknowledges the Telnet sequence. In the case of quit and intr, previous terminal input is
also flushed.

While a connection to a remote host exists, Telnet command mode can be entered by typing
the Telnet escape character. Initially, the escape character is ^] (a [CTRL]-right-bracket). In
command mode, the normal terminal editing conventions are available.

Configuration and Startup

A Telnet Client requires:

• pSOS+ or pSOS+m Real-Time Kernel

• pNA+ TCP/IP Network Manager

• pREPC+ Run-Time C Library

• pSH+ interactive shell command

• Four Kbytes of user space

• Four Kbytes of supervisor stack space

pSH+ starts Telnet Client by calling telnet_main(). pSOSystem includes a pre-configured
version of pSH+ and Telnet Client, but to add Telnet Client to pSH+, an entry for it must be
made in the pSH+ list of user applications.

Telnet Client System Services

1-80 pSOSystem Programmer’s Reference

The following shows an example of a user application list that contains Telnet and FTP:

struct appdata_t appdata[] = {
{"telnet", "telnet application", telnet_main, "tn00", 250,
 4096, 4096, 0, 0},
{"ftp", "file transfer application", ftp_main, "ft00", 250,
 4096, 4096,1, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0}

};

You can define the other elements in the preceding example ("tn00", and so on). The
telnet_main() function expects four parameters: argc, argv, env, and exit_param. Their
definitions as follows:

int argc Number of arguments on the command line that were used to invoke
the command. The number of arguments includes the command name
itself.

char *argv[] Array of pointers to null-terminated character strings, and each string
contains one of the arguments to the command as parsed by the shell:
argv[0] points to the command name as entered on the command line;
argv[1] points to the first argument (if any); and so on.

char *env[] Array of pointers to null-terminated character strings. The strings
contain the definitions of all of the environment variables. The last
element in env[] is a null pointer that indicates the end of the
environment variables. Two of the environment variables, CVOL and
CDIR, define the current working volume and current working
directory, respectively.

int exit_param Value to use when exiting by way of the psh_exit() call.

Telnet Commands

This subsection describes Telnet commands and supported arguments. You need only type
enough of each command to uniquely identify it. This also applies to arguments of the
mode, set, toggle, and display commands.

close Close a Telnet session and return to command mode.

display [argument...] Display all or some of the set and toggle values (refer to the set and
toggle descriptions).

? [command] Get help. With no arguments, Telnet prints a help summary. If a
command is specified, Telnet prints the help information for that
command.

open host [port] Open a connection to the specified host. If no port number is
specified, Telnet attempts to contact a Telnet server at the default
port. The host specification must be an Internet address specified
in dot notation, for example:

System Services Telnet Client

pSOSystem Programmer’s Reference 1-81

telnet> open 999.999.99.999

quit Close any open Telnet session and exit Telnet. An EOF (in
command mode) also closes a session and exits.

send arguments Send one or more special character sequences to the remote host
(more than one argument per command is allowed). The supported
arguments are as follows:

escape Send the current Telnet escape character. Initially,
the escape character is ^] (input by a [CTRL]-right-
bracket).

synch Send the TELNET SYNCH sequence. This sequence
causes the remote system to discard all previously
typed--but not yet read--input. This sequence is
sent as TCP urgent data (and may not work if the
remote system is a 4.2 BSD system: if it does not
work, a lowercase r might be echoed on the
terminal).

brk Send the TELNET BRK (Break) sequence, which
might be significant to the remote system.

ip Send the TELNET IP (Interrupt Process) sequence,
which should cause the remote system to abort the
currently running process.

ao Send the TELNET AO (Abort Output) sequence,
which should cause the remote system to flush all
output from the remote system to the user's
terminal.

ayt Sends the TELNET AYT (Are You There) sequence,
to which the remote system may or may not
respond.

ec Sends the TELNET EC (Erase Character) sequence,
which should cause the remote system to erase the
last character entered.

el Sends the TELNET EL (Erase Line) sequence, which
should cause the remote system to erase the line
currently being entered.

ga Sends the TELNET GA (Go Ahead) sequence, which
probably has no significance to the remote system.

nop Sends the TELNET NOP (No Operation) sequence.

Telnet Client System Services

1-82 pSOSystem Programmer’s Reference

? Prints out helpful information for the send
command.

set argument value Set one of the Telnet variables to a specific value. The special value
off turns off the function associated with the variable. The values
of variables can be interrogated with the display command. The
supported variables follow:

escape This Telnet escape character (initially `^]') causes
entry into Telnet command mode (when connected
to a remote system).

interrupt If Telnet is in localchars mode (see toggle
localchars) and the interrupt character is typed, a
TELNET IP sequence is sent to the remote host (see
the send ip description). The initial value for the
interrupt character is taken to be the terminal’s
intr character.

quit If Telnet is in localchars mode (see toggle
localchars) and the quit character is typed, a
TELNET BRK sequence is sent to the remote host
(see also the send brk description). The initial quit
character value becomes the terminal's quit
character.

flushoutput If the flushoutput character is typed and Telnet is
in localchars mode (see toggle localchars), a
TELNET AO sequence is sent to the remote host.
(See also the send ao description.) The initial value
for the flush character is taken to be the terminal's
flush character.

erase If Telnet is in localchars mode (see toggle
localchars), a TELNET EC sequence is sent to the
remote system when the erase character is typed.
(See also the send ec description) The initial value
for the erase character becomes the terminal's
erase character.

kill If Telnet is in localchars mode (see toggle
localchars), a TELNET EL sequence is sent to the
remote system when the kill character is typed.
(See also the send el description.) The initial value
for the kill character becomes the terminal's kill
character.

System Services Telnet Client

pSOSystem Programmer’s Reference 1-83

status Show the current status of Telnet. The status
information also describes the current mode and
the peer to which the user is connected.

toggle argument ... Toggle various flags (TRUE or FALSE) that control how Telnet
responds to events. More than one argument can be specified.
The state of these flags can be checked with the display command.
The valid arguments are:

localchars If localchars is TRUE, the flush, interrupt, quit,
erase, and kill characters are recognized locally
(see the set description). These five characters are
also transformed into appropriate Telnet control
sequences (ao, ip, brk, ec, and el, respectively).
Refer also to the send description). The initial value
for localchars is FALSE.

autoflush If autoflush and localchars are both TRUE, when
the ao, intr, or quit characters are recognized and
transformed into Telnet sequences, Telnet does not
display data on the user-terminal until the remote
system acknowledges its Telnet sequence
processing by issuing a Telnet Timing Mark. (See
also the set description.)

autosynch If autosynch and localchars are both TRUE, when
either the intr or quit characters are typed the
resulting Telnet sequence sent is followed by the
TELNET SYNCH sequence. (See set for descriptions
of the intr and quit characters). This procedure
should cause the remote system to begin
discarding all previously typed input and continue
to do so until both of the Telnet sequences have
been read and acted upon. The initial value of this
toggle is FALSE.

crmod Toggle RETURN mode. When this mode is enabled,
most RETURN characters received from the remote
host are mapped into a RETURN followed by a
LINEFEED. This mode does not affect the
characters typed by the user: it affects only those
received from the remote host. This mode is not
very useful unless the remote host sends only
RETURN (never LINEFEED). The initial value for
crmod is FALSE.

options Toggle the display of some internal Telnet protocol
processing (having to do with Telnet options). The
initial value for options is FALSE.

Telnet Client System Services

1-84 pSOSystem Programmer’s Reference

netdata Toggle the display of all network data (in
hexadecimal format). The initial value for this
toggle is FALSE.

? Display the legal toggle commands.

Bugs in the Current Version

• No adequate way exists to deal with flow control.

• The normal abort sequence ([CTRL]-C) does not work during a transfer.

System Services Telnet Server

pSOSystem Programmer’s Reference 1-85

NAME

Telnet Server -- Allow remote systems running the Telnet protocol to log into pSH+

DESCRIPTION

Telnet Server contained in the Network Utilities product allows remote systems that are
running the Telnet protocol to log into pSH+. It is implemented as a daemon task named
tnpd. Telnet listens for connection requests from clients and creates server tasks for each
Telnet session established by a client.

Configuration and Startup

Telnet Server requires:

• pSOS+ Real-Time Kernel.

• pNA+ TCP/IP Network Manager.

• pREPC+ Run-Time C Library.

• pSH+ interactive shell command.

• Four Kbytes of user stack and four Kbytes of supervisor stack per session.

• One TCP socket, which is used to listen for client session requests, and two
additional TCP sockets per session.

• Two Kbytes of dynamic storage (which a pREPC+ malloc() system call allocates).

• A user-supplied configuration table.

The user-supplied Telnet Server Configuration Table defines application-specific
parameters. The following is a template for this configuration table. The template exists in
the include/netutils.h file.

struct telcfg_t {

long task_prio; /* Priority for tnpd task */

long max_sessions; /* Maximum number of concurrent sessions */

char **hlist; /* List of trusted clients */

long reserved[2]; /* Must be 0 */

};

Definitions for the Telnet Server Configuration Table entries are as follows:

task_prio Defines the priority at which the daemon task tnpd starts executing.

max_sessions Defines the maximum number of concurrently open sessions.

hlist Points to a list of IP addresses of the trusted clients. If this field is 0,
Telnet Server accepts connection from any client.

reserved Reserved for future use, and each must be 0.

Telnet Server System Services

1-86 pSOSystem Programmer’s Reference

Telnet Server comes as one object module and must be linked with a user application.
Calling the function tnpd_start(tnpdcfg) any time after pSOSystem initialization (when
ROOT is called) starts Telnet Server. The parameter tnpdcfg is a pointer to the Telnet Server
Configuration Table. If Telnet Server is started successfully, tnpd_start() returns 0;
otherwise, it returns a non-zero value.

EXAMPLE

The following code fragment shows an example configuration table and the call that starts
Telnet Server. The complete example code exists in the apps/netutils/root.c file.

#include <tnpdcfg.h>

start_telnet_server()

{

/* Telnet Server Configuration Table */

static telcfg_t telcfg

{

250, /* Priority for tnpd task */

4, /* Maximum number of concurrent sessions */

0, /* List of trusted clients */

0, 0 /* Must be 0 */

};

}

if(tnpd_start(&tnpdcfg))

printf("tnpd_start failed\n");

System Services TFTP Server

pSOSystem Programmer’s Reference 1-87

NAME

TFTP Server -- Allow TFTP clients to read/write files interactively on pHILE+ file systems.

DESCRIPTION

TFTP Server in the Network Utilities component allows TFTP clients to read and write files
interactively on the pSOSystem file systems that pHILE+ manages. The transfer modes that
are currently supported are netascii and binary.

TFTP Server is implemented as one application daemon task named TFD$. TFD$ listens
for client connection requests on the TFTP PORT. When it detects a connection request,
TFD$ calls on a child to process the request, then it resumes listening.

Two objects are created for communications between a child and the parent tasks. The
objects are a semaphore named TSM4 and an error message queue named TFEQ.

Configuration and Startup

TFTP Server requires:

• pSOS+ Real-Time Kernel.

• pHILE+ File System Manager.

• pNA+ TCP/IP Network Manager.

• pREPC+ Run-Time C Library.

• Two Kbytes of supervisor stack for TFD$ and two Kbytes for each session.

• One UDP socket, which is used to listen for client session requests, and one
additional UDP socket per session.

• 2656 bytes of dynamic storage per session, which a pREPC+ malloc() system call
allocates.

• One semaphore.

• One message queue.

TFTP Server System Services

1-88 pSOSystem Programmer’s Reference

The user-supplied TFTP Server Configuration Table defines application-specific
parameters. The following is a template for this configuration table. The template exists in
the include/netutils.h file:

struct tftpdcfg_t {

char *tftpdir; /* Default directory for files */
long task_prio; /* Priority for "TFD$" task */

long num_servers; /* Maximum number of concurrent sessions */

long verbose; /* 1 - yes; 0 -no */

long enable_log; /* Logging 1 = yes, 0 = no */
long reserved[1]; /* Must be 0 */

};

Definitions for the TFTP Server Configuration Table entries are as follows:

tftpdir Defines the volume and directory that serves as the default TFTP
directory for read and write operations. (The runtime path name
specified by a client can override tftpdir.)

task_prio Defines the priority at which the daemon task TFD$ starts executing.
All child daemon tasks run at level task_prio - 1.

num_servers Defines the maximum number of concurrently open sessions.

verbose Determines if log messages are printed by way of a pREPC+ printf(). If
verbose is 1, TFTP Server runs in verbose mode. A 0 disables it.

enable_log Determines the logging code where:

1 = yes
0 = no

reserved Reserved for future use, and each must be 0.

TFTP Server comes as an object module in the networking utilities library. To use it, sys/
libc/netutil.lib must be linked with the user application. Calling the function
tftpd_start(tftpdcfg) at any time after pSOSystem initialization (when the ROOT task is
called) starts TFTP Server. The parameter tftpdcfg points to the TFTP Server Configuration
Table. If TFTP Server is started successfully, tftpd_start() returns 0; otherwise, it returns
a non-zero value.

System Services TFTP Server

pSOSystem Programmer’s Reference 1-89

EXAMPLE

The following code fragment shows an example configuration table and the calls that start
and stop TFTP Server. The complete example code exists in the apps/netutils/root.c file.

#include <netutils.h>
start_tftp_server()
{

/* TFTP server configuration table */
static struct tftpdcfg_t tftpdcfg =
{

"4.0/tftpboot" /* Default tftpboot directory */
250, /* Priority for tftpd task */
4, /* Maximum number of concurrent sessions */
0, /* Not verbose */
0, /* Not logging */
0, /* Must be 0 */

};
if (make_dir (tftpdcfg. tftpdir))

printf("tftpd_start: failed to make directory\n")

/* start the TFTP server */
if (tftpd_start(&tftpdcfg))

printf("tftpd_start: failed to start\n");
/* do other stuff */
/* ... */

/* this usually is not desired */
if (tftpd_stop())

printf("tftpd_stop: failed to shut\n);
}

The preceding example illustrates the use of tftpd_stop(). The tftpd_stop() call shuts down
TFTP Server gracefully. It frees all the resources that TFTP Server allocated, then returns.
A return value of 0 indicates a successful shut down. Otherwise, the return value indicates
the error status.

TFTP Server System Services

1-90 pSOSystem Programmer’s Reference

Section 2. Interfaces and Drivers intro

pSOSystem Programmer’s Reference 2-1

NAME

intro -- Introduction to Section 2: Interfaces and Drivers

DESCRIPTION

The following interfaces and drivers are described in this section:

• Network Interface (NI) (See page 2-3)

• Kernel Interface (KI) (See page 2-21)

• DISI (See page 2-31)

• DISIplus (See page 2-57)

• SCSI (See page 2-93)

• SLIP (See page 2-101)

For more information on driver-related topics, see pSOSystem System Concepts.

intro Section 2. Interfaces and Drivers

2-2 pSOSystem Programmer’s Reference

Section 2. Interfaces and Drivers NI

pSOSystem Programmer’s Reference 2-3

NAME

N I -- Network Interface

DESCRIPTION

pNA+ accesses a network by calling a user-provided layer of software called the Network
Interface (NI). The interface between pNA+ and the NI is standard and independent of the
network’s physical media or topology; it isolates pNA+ from the network’s physical
characteristics.

The NI is essentially a device driver that provides access to a transmission medium. The
terms network interface, NI, and network driver are all used interchangeably in this manual.

There must be one NI for each network connected to a pNA+ node. In the simplest case, a
node is connected to just one network and has just one NI. However, a node can be
connected to several networks simultaneously and can therefore have several network
interfaces. Each NI must be assigned a unique IP address.

Your Network Interface to pSOSystem should include the following services called by pNA+:

Service Function Code Description
NI_BROADCAST 5 Broadcast an NI packet.

NI_GETPKB 2 Get an NI packet buffer.

NI_INIT 1 Initialize the NI.

NI_IOCTL 7 Perform I/O control operations.

NI_POLL 6 Poll for pROBE+ packets.

NI_RETPKB 3 Return an NI packet buffer.

NI_SEND 4 Send an NI packet.

These services are defined by #define in the file include/pna.h. In addition, the NI can
include an interrupt service routine (ISR) to handle packet interrupts.

Packets and Packet Buffers

The fundamental unit of communication in pNA+ is a packet. To transmit data, pNA+
prepares a packet and then passes it to the NI for transmission. It is the responsibility of
the NI to deliver the packet to the specified destination.

pNA+ supports two types of packet interfaces:

1. pNA+-Independent Packet Interface

2. pNA+-Dependent Packet Interface.

pNA+ determines which type of packet interface the supporting device driver uses, by the
setting of the flag element in the ni_init structure of the interface table entry for each
driver. See the file include/pna.h for a description of the ni_init structure. If the pNA+

NI Section 2. Interfaces and Drivers

2-4 pSOSystem Programmer’s Reference

Independent Packet Interface is used the IFF_RAWMEM bit is not set. If the pNA+
Dependent Packet Interface is used, the IFF_RAWMEM bit is set.

pNA+-Independent Interface

This interface supports packets that are contained in contiguous blocks of memory called
packet buffers. When pNA+ calls the NI to send a packet, it passes a pointer to a packet
buffer containing the packet. Similarly, when a packet is received, the NI passes the packet
to pNA+ by returning a pointer to the packet buffer used to hold the packet.

The NI is responsible for maintaining a pool of packet buffers and allocating them to pNA+.
This approach enables the NI to have its own memory management. First, the NI can create
packet buffers within an area of memory best suited for direct retrieval and transmission.
Second, for purposes required by the communications protocol, the NI often needs an
envelope for the packet. This is certainly a common requirement for all network
connections. In such cases, the NI can easily maintain a pool of envelopes. When pNA+
requests a packet buffer, the NI allocates an envelope, and returns to pNA+ a pointer to the
packet that is contained inside the envelope. pNA+ does not need to know about the
envelope.

pNA+ uses the NI_GETPKB and NI_RETPKB services, respectively, to allocate and return
packet buffers. The number of packet buffers necessary is dependent on the
implementation and hardware requirements of the NI.

pNA+-Independent Packet Transmission

To prepare and send a packet, pNA+

1. Uses NI_GETPKB to obtain a packet buffer.

2. Stores data in the packet buffer.

3. Calls NI_SEND or NI_BROADCAST to send the packet to the destination; these
services have the responsibility of returning the packet buffer to the NI packet
pool.

pNA+-Independent Packet Reception

On most systems, the arrival of a packet triggers an interrupt. In this case, the following
actions occur on the receiving system:

1. The interrupt transfers control to a Packet ISR, which should be part of the NI,
and which receives the packet into a packet buffer.

2. For each pending packet (several may arrive nearly simultaneously), the ISR calls
the pNA+ Announce_Packet entry (see ‘‘The pNA+ Announce_Packet Entry’’ on
page 2-6) to transfer the packet to pNA+. pNA+ enqueues the packet and returns
to the ISR.

Section 2. Interfaces and Drivers NI

pSOSystem Programmer’s Reference 2-5

3. After all packets have been transferred to pNA+, the ISR exits using the pSOS+
i_return system call (see ‘‘pROBE+ Debug Support’’ on page 2-9 for one exception
to this rule).

4. pNA+ processes the packet(s) that were just received.

5. pNA+ calls NI_RETPKB to return each packet buffer to the NI.

It is also possible to implement a system in which incoming packets are detected via polling
by setting an NI’s POLL flag. If this flag is set, NI_POLL is called every 100 milliseconds.

pNA+-Dependent Interface

Internally, pNA+ uses optimized memory management to transfer packets between various
protocol layers. Each packet is represented by a linked list of data structure triplets:
Message Block, Data Block and Data Buffer.

This interface supports packet transfer using message block linked lists. When pNA+ sends
a packet, it passes the NI a pointer to a message block. Similarly, when the driver receives
a packet, it attaches a message block to the data buffer and passes pNA+ a pointer to the
message block via the Announce_Packet entry.

This facility offers maximum performance by eliminating the need for copying between the
NI and pNA+. Also, the driver requires less memory to operate, since the need for transmit
buffers is eliminated.

A pointer to the memory management routines pna_allocb, pna_esballoc, pna_freeb, and
pna_freemsg is passed to the NI during NI_INIT calls. The NI should use these routines to
allocate and deallocate message block triplets.

A pointer to an interface callback function is passed to the NI during ni-init. The callback
function may be used by the NI to inform pNA+ of changes in the status of the interface.

pNA+-Dependent Packet Transmission

pNA+ calls NI_SEND or NI_BROADCAST to prepare and send a packet to a destination.
pNA+ passes a pointer to a message block list to be transmitted. The services are
responsible for freeing the message block linked list.

pNA+-Dependent Packet Reception

Upon receipt of a packet, typically via an Interrupt Service Routine (ISR), the driver
performs the following actions:

1. The interrupt transfers control to a Packet ISR, which should be part of the NI,
and which receives the packet into a packet buffer.

NI Section 2. Interfaces and Drivers

2-6 pSOSystem Programmer’s Reference

2. The driver attaches the packet buffer to a message block using the pna_esballoc
service call. The driver then calls the Announce_Packet entry and passes the
message block pointer to pNA+. pNA+ enqueues the packet and returns to the
ISR.

3. The driver repeats Step 2 for each pending packet. The ISR then exits using the
pSOS i_return system call. (If you are using pROBE+, there is an exception to this
rule. See ‘‘pROBE+ Debug Support,’’ on page 2-9.)

4. pNA+ processes the packet and then calls the free routine (passed via
pna_esballoc) to free the buffer.

The pNA+ Announce_Packet Entry

When a packet arrives, the NI driver must inform pNA+ by calling the special pNA+
Announce_Packet entry. The address of this entry point is passed to the NI by pNA+ as
input when it calls NI_INIT.

To call Announce_Packet, the NI driver pushes six input parameters onto the stack and
then uses a JSR instruction to pass control to the Announce_Packet entry. pNA+
processes the packet and returns to the NI using an RTS instruction. There are no output
parameters.

The following is a list of the input parameters. Each parameter is 32 bits long.

Parameter Explanation

type Type of packet. It must be one of the following:

0x00000800 = IP packet

0x00000806 = ARP packet

Packets with headers other than IP or ARP are not passed to pNA+;
they are discarded by the NI.

buff_addr Pointer to the packet buffer containing the packet. When
IFF_RAWMEM is set, buff_addr contains a pointer to the message
block list containing the packet.

count Size, in bytes, of the packet.

if_num Number of the NI that received the packet. Network interface numbers
are assigned to each NI by pNA+ during initialization and are returned
to the NI by the NI_INIT call.

src_addr Pointer to the source hardware address of the packet.

dest_addr Pointer to the destination hardware address of the packet.

Section 2. Interfaces and Drivers NI

pSOSystem Programmer’s Reference 2-7

The C syntax for the announce_packet function is:

*announce_packet {

unsigned long type,
char *buff_addr,
unsigned long count,

unsigned long IF_NUM,
unsigned long src_addr,
unsigned long dest_addr,
}

In the above syntax, announce_packet is the function pointer handed down to the NI driver
from pNA+ in the NI_INIT service call.

To summarize, upon receiving control via the Announce_Packet entry, pNA+ expects the
stack to look like the following:

Announce_Packet preserves all registers except D0. D0 is used to return a pSOS+ status
flag, which is used by the ISR if pNA+ is providing communication facilities for pROBE+ (see
‘‘pROBE+ Debug Support’’ on page 2-9).

pNA+ Interface Callback

pNA+ provides the NI with an interface callback function.The callback function is passed to
the NI by pNA+ during NI_INIT. The callback function may be used by the NI to inform pNA+
of changes in the status of the interface. The calling format resembles pNA+ ioctl() call.

The NI may set parameters such as the IP Address, IP Mask, IP Destination address for
point-to-point links, the MTU, IP broadcast address or the flags of the interface. This
callback is only meant to be used for setting and not for retrieving interface parameters. For

 + 4 type

 + 8 buff_addr

 + 12 count

 + 16 if_num

Stack ptr + 0 Return addr

 + 20 src_addr

 + 24 dest_addr

NI Section 2. Interfaces and Drivers

2-8 pSOSystem Programmer’s Reference

instance PPP may use this callback to notify pNA about the new IP address after a
negotiation is complete and that the interface is now UP.

To call the interface callback, the NI pushes 4 input parameters on the stack and then uses
a JSR instruction to pass control to the Interface_Callback entry. pNA+ process the
interface request and returns to the NI using the RTS instruction. There are no output
parameters.

The following is a list of input parameters. Each parameter is 32 bits long.

 Parameter Explanation

cmd is the request code. This must be one of:

SIOCSIFADDR Set the interface address.

SIOCSIFBRDADDR Set the IP broadcast address of the NI.

SIOCSIFDSTADDR Set point-to-point address for the interface.

SIOCSIFNETMASK Set the network mask.

SIOCSIFMTU Set the maximum transmission unit of the NI.

SIOCSIFFLAGS Set interface flags field. If the interface is
marked down, any processes currently
routing packets through the interface are
notified. IFF_POLL, IFF_EXTLOOPBACK and
IFF_UP flags can be set by using this call.

argbuf Pointer to the command data. This must be filled with the ifreq
structure in pna.h.

size Size of the argbuf - must be sizeof(struct ifreq)

if_num Number of the NI making the request. It is the number returned by the
NI_INIT call.

To summarize, upon receiving control via the interface callback entry, pNA+ expects the
stack to look like the following:

 + 4 cmd

 + 8 argbug

 + 12 size

 + 16 if_num

Stack ptr + 0 Return addr

Section 2. Interfaces and Drivers NI

pSOSystem Programmer’s Reference 2-9

pROBE+ Debug Support

If pNA+ is used by pROBE+ to communicate with XRAY+, then two additional requirements
must supported by the NI.

The first requirement arises because pNA+ (and the NI) may be operating before pSOS+ is
initialized. Normally, every ISR should exit by calling the pSOS+ i_return system call.
Obviously, this is not possible if pSOS+ is not running; therefore, the NI ISR must be coded
so that it will exit using an RTE instruction before pSOS+ is initialized and using an
i_return after pSOS+ is initialized. The following code fragment can be inserted at the end
of your NI ISR to implement this feature:

TST.B PSOS_FLAG ;IS PSOS INITIALIZED?

BEQ.S DO_RTE ;NO, EXIT WITH AN RTE

TRAP #13 ;YES, EXIT VIA I_RETURN

DO_RTE:

RTE

The variable PSOS_FLAG must be zero prior to pSOS+ initialization, and non-zero
afterwards. There are a number of ways the ISR can detect pSOS+ initialization. However,
to simplify the process, Announce_Packet returns a pSOS+ status flag in register D0. This
flag indicates the status of pSOS+ as follows:

0x00000000 = pSOS+ not initialized

0x00000001 = pSOS+ initialized.

By storing the low byte of D0 into PSOS_FLAG after each Announce_Packet call, the above
code fragment operates correctly.

The second requirement is a result of the fact that pROBE+ sometimes polls for incoming
packets. The NI must provide an additional NI service called NI_POLL, which is described
under ‘‘NI Services,’’ later in this section.

If your NI driver ISR is written in C, you may use the NI_WRAPPER code provided with
pSOSystem instead of the assembly code above. The interrupt vector can be set to the
NI_WRAPPER code which will in turn call your ISR. When your ISR exits, it should return
the value that was returned from the announce_packet call. To use the NI_WRAPPER
code, you should use the SysSetVector utility function that comes with pSOSystem. For
example,

SysSetVector (V_ENET, (void(*)())ni_isr, NI_WRAPPER);

V_ENET is the vector number for the interrupt of the Ethernet chip, and ni_isr is the
interrupt function. NI_WRAPPER is a #define statement located in the file include/
bspfuncs.h. It is a flag SysSetVector uses so that it knows to use the NI_WRAPPER.

NI Section 2. Interfaces and Drivers

2-10 pSOSystem Programmer’s Reference

NI Calling Conventions

pNA+ calls the NI services as subroutines with a JSR instruction. The address used is
contained in the network interface table entry nit_entry. The NI should perform the
requested service and return to pNA+ using an RTS instruction. A return value is returned
in register D0. Before calling the NI, pNA+ pushes two 32-bit input parameters onto the
stack.

The input parameters are as follows:

fn_code An integer indicating the service requested

pblock A pointer to a parameter block which contains input parameters
specific to the requested service

In other words, on entry to the NI, the stack looks like the following:

The following conventions must be observed by the NI:

1. All registers except D0.L, D1.L, A0.L and A1.L must be preserved.

2. The NI must return a value in D0. Return values are documented in individual
service descriptions.

3. The NI may use pSOS+ services only if pSOS+ is running. Recall that pNA+ may
be started by pROBE+ before pSOS+ has been initialized. In this case, the NI must
not call pSOS+. In any case, the NI must never block.

NI Services

The NI services explained in this section must be provided by the specific NI driver. For each
service, the structure of the arguments passed to the driver, and the arguments themselves
will be explained. The driver may be written in C code. The pSOSystem provides a union
that can be used to facilitate the argument passing in C code. This union is called “nientry”.
The nientry union is located in the file include/pna.h. The syntax to the entry point of the
NI driver is as follows:

long NiLan (unsigned long function, union nientry *args)

 function Code of the function to execute. Function codes may be one of the
following:

Function Code Description
NI_INIT NI init call.

Stack ptr + 0 Return addr

+ 4 fn_code

+ 8 pblock

Section 2. Interfaces and Drivers NI

pSOSystem Programmer’s Reference 2-11

NI_GETPKB NI buffer call.

NI_RETPKB NI return buffer call.

NI_SEND NI send packet call.

NI_BROADCAST NI broadcast call.

NI_POLL NI poll call.

NI_IOCTL NI ioctl call.

These codes are #defines located in the include/pna.h file.

args Pointer to the argument structure for a particular function code. The
individual structures, their names, and the specific return value for
the function code will be explained in the specific section that covers
the function code.

NI_BROADCAST

NI_BROADCAST is called by pNA+ to transmit a packet to all nodes in the network. The
parameter block for this service is as follows:

buff_addr Address of the buffer containing the packet. When RAWMEM is set,
buff_addr contains a pointer to the message block list.

count Size of the packet in bytes.

type Packet type. Its use depends on the data link protocol implemented
(Ethernet, token ring, and so on).

if_num Network interface number assigned to this NI.

The C structure in the nientry union for the NI_BROADCAST function is as follows:

struct nibrdcast
{

char *buff_addr; /* Address of the packet buffer */
long count; /* Size of the packet */
long type /* Type of the packet ARP/IP */
long if_num /* NI interface number */
} nibrdcast;

pblock + 0 buff_addr

 + 4 count

 + 8 type

 + 12 if_num

NI Section 2. Interfaces and Drivers

2-12 pSOSystem Programmer’s Reference

An example of addressing the count field of structure is as follows:

args->nibrdcast.count

NI_BROADCAST returns 0 if the packet is successfully broadcast. Otherwise, it returns an
error.

Note the following:

1. NI_BROADCAST is responsible for returning the packet buffer whether or not the
packet is successfully broadcast.

2. This service is similar to NI_SEND except that NI_BROADCAST transmits the
packet to all other nodes in the network. If the medium (Ethernet) permits, this
can be accomplished by a single transmission. Otherwise, the packet must be
individually sent to each node.

3. If the application does not use ARP or does no IP broadcasts, this service is
unnecessary, and pNA+ never calls it.

NI_GETPKB

NI_GETPKB is called by pNA+ to allocate a packet buffer. This call is not necessary for the
drivers that support the pNA+ Dependent Packet interface, that is if:

IFF_RAWMEM == TRUE

The parameter block for this service is as follows:

count Specifies the size of the requested packet buffer. NI can allocate a
larger buffer but not a smaller one. Normally, this parameter is not
used (see Notes).

hwa_ptr Points to the destination hardware address. Normally, this parameter
is not used (see Notes).

if_num Network interface number assigned to this NI.

The C structure in the nientry union for the NI_GETPKB function is as follows:

struct nigetpkb
{
long count; /* Size of the packet */
char *hwa_ptr; /* Pointer to dest hardware address */

pblock + 0 count

+ 4 hwa_ptr

+ 8 if_num

Section 2. Interfaces and Drivers NI

pSOSystem Programmer’s Reference 2-13

long if_num /* NI interface number */
} nigetpkb;

An example of addressing the count field of structure is as follows:

args->nigetpkb.count

NI_GETPKB should return either the address of the allocated buffer, or a -1 if no buffers
are available.

Note that in most cases, the NI allocates all buffers from a pool of fixed-size buffers. The
input parameters passed by pNA+ can, however, be used to select different sized buffers,
based on the size of the requested buffer and the packet’s destination.

NI_INIT

NI_INIT is called by pNA+ to initialize the NI. It is called during pNA+ initialization if the NI
is defined in the Initial NI Table. Otherwise, it is called when add_ni() is used to install the
NI.

NI_INIT should initialize the network hardware; create a pool of packet buffers; and
initialize all other NI data structures. In addition, it should save the pNA+
Announce_Packet Entry address and the network interface number, both of which are
passed to NI_INIT by pNA+ in the parameter block, as follows:

ap_addr Address of the Announce_Packet entry point and is returned by
pNA+. The NI must save this address.

if_num Network interface number assigned to this interface and is returned by
pNA+. The NI must save this address.

ip_addr Internet address of the network interface. This is the address provided
by the user in the network interface table and is passed by pNA+.
Normally it can be ignored.

ni_funcs Pointer passed to memory management routines (pna_allocb,
pna_esballoc, pna_freeb, and pna_freemsg), and the interface
callback routine (pna_intf_cb); it points to the ni_funcs structure
defined in <pna.h>.

pblock + 0 ap_addr

 + 4 if_num

 + 8 ip_addr

 + 12 ni_funcs

NI Section 2. Interfaces and Drivers

2-14 pSOSystem Programmer’s Reference

The C structure in the nientry union for the NI_INIT function is as follows:

struct niinit
{

long (*ap_addr) (); /* pNA entry to receive packet */
long if_num; /* NI interface number */
long ip_addr; /* NI interface IP address */
struct ni_funcs *funcs; /* pNA functions (memory) */
} niinit;

An example of addressing the if_num field of structure is as follows:

args->niinit.if_num

The NI must return a pointer to the hardware address of the network interface. A return
value of -1 is interpreted to mean the network interface is not functional.

Note the following:

1. If the interface is not using ARP, the hardware address returned by NI_INIT is not
used.

2. NI_INIT may raise the processor interrupt level. It should never lower the
interrupt level. On exit, it must restore the level to its value upon entry to NI_INIT.
If NI_INIT is called from pNA+ initialization, the interrupt level is always 7. If
NI_INIT is called as a result of an add_ni(), the interrupt level is the same as that
of the calling task.

3. If called during pNA+ initialization (that is, the NI is in the Initial NI table), then
NI_INIT must not make pSOS+ system calls. If NI initialization requires pSOS+
services, NI_INIT can set a flag that is detected during the next NI call. If NI_INIT
is called as a result of an add_ni() call, pSOS+ services can be used.

NI_IOCTL

NI_IOCTL is called by pNA+ to perform various I/O control operations on the Network
Interface. The requested operation is indicated by the value of the command element in the
parameter block passed to the function.

The command element contains a constant, which is defined in the include files pna.h and
pna_mib.h, and can be one of the following:

SIOCSIFADDR: Inform NI of setting of NI’s IP address.

SIOCSIFDSTADDR: Inform a Pnt-to-Pnt NI of the destination IP address.

SIOCPSOSINIT: Inform NI that pSOS is initialized.

Multicasting Related Operations

SIOCADDMCAST Add multicast hardware address for packet reception.

Section 2. Interfaces and Drivers NI

pSOSystem Programmer’s Reference 2-15

SIOCDELMCAST Delete multicast hardware address for packet
reception.

SIOCMAPMCAST Map a protocol multicast address to a hardware
address. arg is a pointer to ni_map_mcast structure in
pna.h. The type field in the structure defines the type
of protocol. For IP a value of 0x0800 is set. The
hardware multicast address must be returned in the
field hdwraddr.

MIB-II Related Operations:

SIOCSGIFDESCR: Get the NI descriptor.

SIOCGIFTYPE: Get NI type.

SIOCGIFMTUNIT: Get NI maximum transmission unit.

SIOCGIFSPEED: Get NI interface speed.

SIOCGIFPHYSADDRESS: Get NI physical address.

SIOCGIFADMINSTATUS: Get NI administrative status.

SIOCGIFOPERSTATUS: Get NI operational status.

SIOCGIFLASTCHANGE: Get NI last change of status.

SIOCGIFINOCTETS: Get number of octets received by the NI.

SIOCGIFINUCASTPKTS: Get number of unicast packets received by the NI.

SIOCGIFINNUCASTPKTS: Get number of multicast/broadcast packets received
by the NI.

SIOCGIFINDISCARDS: Get number of packets discarded by the NI.

SIOCGIFINERRORS: Get number of error packets received by the NI.

SIOCGIFINUNKNOWNPROTOS: Get number of packets with unknown higher layer
protocols.

SIOCGIFOUTOCTETS: Get number of octets sent by the NI.

SIOCGIFOUTUCASTPKTS: Get number of unicast packets sent by the NI.

SIOCGIFOUTNNUCASTPKTS: Get number of multicast/broadcast packets sent by
the NI.

SIOCGIFOUTDISCARDS: Get number of outbound packets discarded by the NI
due to resource problems.

SIOCGIFOUTERRORS: Get number of outbound packets discarded due to
errors.

SIOCGIFOUTQLEN: Get length of outbound queue of the NI.

SIOCGIFSPECIFIC: Get NI specific object.

SIOCSIFADMINSTATUS: Set NI administrative status.

NI Section 2. Interfaces and Drivers

2-16 pSOSystem Programmer’s Reference

The parameter block for the NI_IOCTL service is as follows:

command Operation to be performed by the NI. The operations that can be called
by pNA+ are defined in pna.h.

arg Argument for the operation indicated by command. Unless specified,
arg is a pointer to data type structure ifreq (defined in pna.h). For
MIB-II related operations, arg is a pointer to the data type struct
mib_ifreq, defined in the C header file pna_mib.h.

if_num Network interface number to which the call is made.

The C structure in the nientry union for the NI_IOCTL function is as follows:

struct niioctl
{
long cmd; /* ioctl command */
long *arg; /* Pointer to ioctl argument */
long if_num; /* NI interface IP address */
} niioctl;

An example of addressing the if_num field of structure is as follows:

args->niioctl.if_num

The NI returns a 0 if successful, or an error value if an error condition exists.

Note the following:

1. MIB-II operations might not be implemented if the application does not require
MIB-II support. A call to the NI to retrieve/set the MIB object is made when the
application makes an ioctl() call on the NI MIB object.

2. The operations SIOCSIFADDR and SIOCSIFDSTADDR are called by pNA+ when
an application changes the NI's IP address or the destination's IP address (Point-
to-Point links) by using the ioctl() function call.

3. NI can implement a private operation, and the call can be made available to the
ioctl() call.

pblock + 0 command

+ 4 arg

+ 8 if_num

Section 2. Interfaces and Drivers NI

pSOSystem Programmer’s Reference 2-17

4. The operation SIOCPSOSINIT is called when pNA+ is initialized by pSOS+. This
call is useful when pNA+ is used by pROBE+. Since pNA+’s memory is re-
initialized during the pSOS+ initialization, the driver should remove all references
to pNA+ data structures. The driver typically has references to message block
pointers.

NI_POLL

NI_POLL is called by pNA+ on behalf of pROBE+ to poll for incoming packets. It is only
called when pNA+ is being used by pROBE+ to support network debugging.

If a packet has been received, NI_POLL must pass the packet to pNA+ using the
Announce_Packet entry point as described in the pSOSystem System Concepts manual.

The parameter block is as follows:

if_num Network interface number assigned to this NI by pNA+.

The C structure in the nientry union for the NI_POLL function is as follows:

struct nipoll

{
long if_num; /* NI interface number */
} nipoll;

An example of addressing the if_num field of structure is as follows:

args->nipoll.if_num

NI_POLL should always return 0.

Only one packet can be passed to pNA+ with each Announce_Packet call.
Announce_Packet should continue to be called until all packets have been transferred to
pNA+.

NI_RETPKB

NI_RETPKB is called by pNA+ to return a packet buffer to the NI. This call is not necessary
for drivers that support the pNA+ Dependent Packet interface, that is if:

IFF_RAWMEM == TRUE

pblock + 0 if_num

NI Section 2. Interfaces and Drivers

2-18 pSOSystem Programmer’s Reference

The parameter block is as follows:

buff_addr Address of the packet buffer being returned.

if_num Network interface number assigned to this NI by pNA+.

The C structure in the nientry union for the NI_RETPKB function is as follows:

struct niretpkb

{

char *buff_addr; /* Address of the buffer */
long if_num /* NI interface number */
} niretpkb;

An example of addressing the if_num field of structure is as follows:

args->niretpkb.if_num

This service should always return 0.

NI_SEND

NI_SEND is called by pNA+ to send a packet. The parameter block is as follows:

hwa_ptr Pointer to the hardware address of the destination.

buff_addr Address of the packet buffer containing the packet. When
IFF_RAWMEM is set it contains the pointer to the message block list.

count Size of the packet in bytes.

type Packet type. Its use depends on the data link protocol implemented
(Ethernet, token ring, and so on).

pblock + 0 buff_addr

+ 4 if_num

 + 4 buff_addr

 + 8 count

+ 12 type

 + 16 if_num

pblock + 0 hwa_ptr

Section 2. Interfaces and Drivers NI

pSOSystem Programmer’s Reference 2-19

if_num Network interface number assigned to this NI.

The C structure in the nientry union for the NI_SEND function is as follows:

struct nisend
{
char *hwa_ptr; /* Pointer to dest hardware address */

char *buff_addr; /* Address of the packet buffer */
long count; /* Size of the packet */
long type; /* Type of the packet IP/ARP */
long if_num; /* NI interface number */
} nisend;

An example of addressing the if_num field of structure is as follows:

args->nisend.if_num

This service returns 0 if the packet is successfully sent. Otherwise, it returns an error code.

NI_SEND is responsible for returning the packet buffer whether or not the packet was
successfully sent. When the RAWMEM flag is set the system call pna_freemsg is used to
free the message block linked list.

NI Section 2. Interfaces and Drivers

2-20 pSOSystem Programmer’s Reference

Section 2. Interfaces and Drivers KI

pSOSystem Programmer’s Reference 2-21

NAME

KI -- Kernel Interface

DESCRIPTION

On every node in a multiprocessor system, user-supplied Kernel Interface (KI) software
must be present. Its purpose is to provide a set of standard services that pSOS+m uses to
transmit and receive packets.

The pSOSystem supplies a shared memory Kernel Interface for supported boards that can
used a shared memory via a VME bus. The pSOSystem contains a generic driver for this
purpose. Refer to the chapter on “Understanding and Developing Board Support Packages”
in pSOSystem Getting Started for more information on the generic driver.

The KI is dependent on the medium and logical protocol chosen for node-to-node
communication. For example, the connection may use a memory bus, Ethernet, MAP,
point-to-point link, or a mixture of the above. However, the KI interface to pSOS+m is fixed,
as are certain restrictions on its implementation and behavior.

A node’s KI must provide the following services called by pSOS+m:

ki_getpkb Get a packet buffer from the KI.

ki_init Initialize the node’s KI.

ki_receive Get a received (incoming) packet.

ki_retpkb Return a packet buffer to the KI.

ki_roster Provide roster information to the KI.

ki_send Send a packet to another node.

ki_time Allow the KI to perform its own timing; for example, to time
transmission retries.

pSOS+m calls the above KI operations as simple subroutines. Input parameters are passed
in registers. The KI performs the requested service and simply returns to pSOS+m using a
subroutine return. Output parameters, if any, are also passed in registers. The operations
and their calling interfaces are described in detail later in this section.

Packets And Packet Buffers

The fundamental unit of communication between nodes is a packet. Whenever pSOS+m
needs to communicate with its counterpart on another node, it prepares a packet and then
passes it to the KI for transmission. It is the responsibility of the KI to reliably deliver the
packet to the destination node.

KI Section 2. Interfaces and Drivers

2-22 pSOSystem Programmer’s Reference

Packets are physically contained within packet buffers. When pSOS+m calls the KI to send
a packet, it passes a pointer to a packet buffer containing the packet. Similarly, when a
packet is received, the KI passes the packet to pSOS+m by returning a pointer to the packet
buffer used to hold the packet.

The KI is responsible for maintaining a pool of packet buffers and allocating them to
pSOS+m. This approach results in optimum efficiency, notably by eliminating any need for
the KI to copy the packet. First, the KI can create the packet buffers within a memory area
best suited for direct retrieval and transmission. Second, for purposes required by the
communication protocol, the KI often needs an envelope for the packet. This is certainly a
common requirement for all network connections. In such cases, the KI can easily maintain
a pool of envelopes. When pSOS+m requests a packet buffer, the KI allocates an envelope,
and returns to pSOS+m a pointer to the packet that is contained inside the envelope.
pSOS+m does not need to know about the envelope.

pSOS+m uses the ki_getpkb and ki_retpkb services to allocate and return packet buffers,
respectively. The number of such packet buffers necessary is dependent on the
implementation and hardware requirements of the KI.

Packet Buffer Sizes

When requesting a packet buffer, pSOS+m passes the KI the length of the packet to be sent
so that the KI can allocate a packet buffer of the appropriate size. With two exceptions, all
packets sent through the KI take no more than 100 bytes. These exceptions are as follows:

1. Systems with mc_nnode > 576 nodes. In such systems, whenever a node joins,
the master node will request a packet buffer of size

28 + ceil(mc_nnode / 32) * 4

where ceil is the ceiling function.

For example, if the system has 900 nodes, then a packet buffer containing 144
bytes will be required whenever a node joins.

2. Systems that transmit variable length messages larger than 28 bytes. Whenever
such a message is sent or requested, pSOS+m will request a packet buffer of size

72 + message size

For example, if a q_vreceive call is made with buf_len equal to 128, then pSOS+m
will request a 200-byte packet buffer from the KI.

If neither of the above exceptions applies to a system, then the KI can ignore the packet size
parameter and simply provide fixed-size 100-byte packet buffers. This is the simplest
implementation. However, if the characteristics of a system require that the KI provide
packet buffers of widely varying sizes, then a more sophisticated KI implementation may be
required.

Section 2. Interfaces and Drivers KI

pSOSystem Programmer’s Reference 2-23

For example, if it is known that a node send/receives messages of lengths 256 and 512,
then the KI could create three pools of buffers having sizes 100, 328 and 584. When
ki_getpkb is called, the KI can allocate the buffer from the appropriate buffer pool based
on the required size.

The Multiprocessor Configuration Table entry mc_kimaxbuf specifies the maximum buffer
size that the KI is capable of allocating. It must be the same on every node, and a slave node
will not be allowed to join if its mc_kimaxbuf is different from that of the master node.
mc_kimaxbuf is used by pSOS+m in two ways:

1. During startup, pSOS+m verifies the mc_kimaxbuf is at least 100 and also large
enough based on the value mc_nnode. If not, a fatal startup error occurs.

2. Any attempt to create a global variable length message queue will fail if
mc_kimaxbuf is too small to accommodate the largest message that might be sent
to the queue.

pSOS+m also provides the KI with the packet size when calling ki_send. However, do not
confuse packet size with packet buffer size. For example, pSOS+m may request a packet
buffer for a packet of size 80. The KI may allocate a packet buffer of size 256. Subsequently,
pSOS+m calls ki_send to send the packet. At this time, pSOS+m will pass a packet size of
80, not 256. If the KI has multiple packet buffer pools, then certain KI services, most
notably ki_retpkb will need to know the packet buffer size of a packet provided by pSOS+m.
This is best accomplished by embedding the packet buffer size in the packet envelope.

Packet Transmission

pSOS+m calls the KI to send a packet as a result of numerous system activities. To prepare
and send a packet, pSOS+m does the following:

• It uses ki_getpkb to obtain a packet buffer.

• It constructs and stores the packet in the packet buffer.

• It calls ki_send to send the packet to the destination node. This call has the
responsibility of returning the packet buffer to the KI.

The KI on the source node must deliver the packet to the KI on the target node. The target
node’s KI is then responsible for delivering the packet to pSOS+m on that node.

Packet Reception

On most systems, the arrival of a packet at a node triggers an interrupt. In this case, the
following actions occur on the receiving node:

1. The interrupt vectors control to a Packet ISR, which should be part of the KI, and
the Packer ISR receives the packet into a packet buffer.

2. The ISR calls the pSOS+m Announce_Packet entry (see page 2-24) to inform
pSOS+m that one or more packets are pending in the KI.

3. The ISR exits using the pSOS+m i_return system call.

KI Section 2. Interfaces and Drivers

2-24 pSOSystem Programmer’s Reference

4. At the next dispatch (normally part of i_return), pSOS+m calls ki_receive to
obtain the received packet.

5. pSOS+m processes the packet.

6. What happens from this point is dependent on the packet.

Since several packets may arrive nearly simultaneously at a single node, the KI may have
to maintain an inbound packet queue. If implemented, this queue must preserve the order
of the packets received. Since several packets may be in the queue after Step 6 above,
pSOS+m actually returns to Step 4. If the queue is empty, ki_receive returns a NULL
pointer and pSOS+m terminates packet processing.

If hardware or other limitations make it impossible or impractical for an incoming packet
to generate an interrupt, then a node must periodically poll for packets that have arrived.
This is normally accomplished from the real-time clock/timer ISR. The ISR simply calls a
routine (which is normally part of the KI) to check for arrived packets and processes it as
described in Steps 1 and 2 above.

Note that while a polled KI does not affect the features available with pSOS+m, it does
significantly affect the transmission time, since in the worst case, an entire clock tick may
elapse before the packet is delivered to pSOS+m.

The pSOS+m Announce_Packet Entry

When a packet arrives at a node, the KI must inform pSOS+m by calling the special
pSOS+m Announce_Packet entry. The address of this entry point is passed by pSOS+m as
input when it calls ki_init.

The KI must call Announce_Packet with a JSR instruction from supervisor mode. This
pSOS+m subroutine neither accepts nor returns any parameters, and it preserves all the
caller’s registers.

NOTE: Announce_Packet must be called only from an ISR. If an inbound packet
causes an interrupt at the node, it is natural to call it from the packet ISR. On
the other hand, if a node must poll for incoming packets, then this polling
should be done, and Announce_Packet called, from the node's real-time
clock/timer ISR.

Transmission Requirements

pSOS+m assumes the KI implementation supports:

• RELIABLE TRANSMISSION -- The KI must be responsible for delivery of packets.
Failure detection, retransmission (if necessary) and reporting must be done in the
KI. Rule No.1: Packets must be delivered correctly to the destination node or an
error code must be returned to pSOS+m.

• ORDER PRESERVATION -- Between any two nodes, packets must be received in
exactly the order in which they are sent. However, packets destined for different

Section 2. Interfaces and Drivers KI

pSOSystem Programmer’s Reference 2-25

nodes may be sent or received out of temporal order. Rule No. 2: Between any node
pair, packet order must be strictly preserved.

• NO DUPLICATION -- pSOS+m cannot handle duplicates of the same packet. Rule
No. 3: Packets must be delivered without duplicates.

Aside from the above requirements, pSOS+m does not impose any restrictions regarding
routing, protocol, or any other implementation dependent KI behavior.

KI Error Conditions

Every KI service call must return an error code to pSOS+m. A value of 0 indicates the call
completed successfully. Any other value indicates an error occurred. No specific KI error
codes are defined since they are highly implementation dependent. However, pSOS+
reserves error codes 0x10000 and above for user-generated errors, including KI errors. No
ISI product generates a code in this range.

Although supported by pSOS+m, most multiprocessor applications do not anticipate and
hence will not tolerate node failure. In these cases, the best KI implementation is to always
return 0. In the event of any error condition, the KI should simply call k_fatal() and trigger
a system abort. This simple implementation has the advantage that the application does
not need to manage errors resulting from low-level KI failures, which will be, at best,
difficult to recover.

Systems that tolerate node failure will need to use KI error codes, since the KI services
ki_getpkb and ki_send may fail if the destination node has failed. In these cases, the KI
may first take corrective action such as aborting either the source or destination node via
k_fatal() or k_terminate(), and then, if k_fatal() was not called, return an error code to
pSOS+m. pSOS+m then takes further actions based on the identity of the source and
destination nodes and type of packet that it was trying to deliver.

The following rules summarize the behavior of pSOS+m when ki_getpkb or ki_send return
an error. There are three cases to consider:

Slave to Master If a slave node cannot send a packet to the master node, then pSOS+m
on the slave node shuts down operation of the slave node. The ability
to communicate with the master node is essential to slave node
operation.

Master to Slave If the master node cannot send a packet to a slave node, pSOS+m on
the master node internally invokes k_terminate() to terminate the
slave node. Again, communication between the master and slave is
essential to proper slave node operation. In addition, if the packet was
an RSC, then pSOS+m on the master node will return the KI error code
to the calling task.

Slave to Slave The only packets that are passed between two slave nodes are RSC,
RSC reply and asynchronous RSC error notification packets (see

KI Section 2. Interfaces and Drivers

2-26 pSOSystem Programmer’s Reference

pSOSystem System Concepts). If an RSC packet cannot be delivered,
the RSC call is aborted and the error code returned by the KI is passed
back to the calling task. If an RSC reply or asynchronous RSC error
notification packet cannot be delivered, then pSOS+m on the source
node internally invokes k_terminate() to abort the destination node.

If ki_init, ki_retpkb, ki_receive, ki_time, or ki_roster return an error, pSOS+m will
simply shut down the node for lack of anything better to do. Even in systems that tolerate
node failure, these KI calls should never return an error.

KI Conventions and Restrictions

pSOS+m calls KI services as subroutines. Parameters are passed in registers. The KI should
perform the requested service and return to pSOS+m by a subroutine return, passing any
output parameters in their assigned registers. The following calling conventions apply:

Entry: pSOS+m calls the KI with a JSR instruction. The address used will be
that contained in the Multiprocessor Configuration Table entry
mc_kicode. pSOS+m passes a function code in D0.L to select the
specific KI service. Additional input parameters are passed in assigned
registers.

Return: The KI should use an RTS to return to pSOS+. An error code must
always be returned in D0.L. Zero indicates success. All other error
codes must be > 0x10000. All registers except D0.L and those used to
return output parameters must be restored. The KI is called by
pSOS+m from the supervisor state. The interrupt level may be raised,
but must not be lowered, provided that it is restored prior to returning
to pSOS+.

The KI is logically an extension to pSOS+. It is not, and must not be confused with, a
pSOS+m I/O driver. As such, there are critical restrictions regarding the pSOS+m system
calls that can be made from KI. In general, KI may use any of the system calls allowed from
an ISR. In addition, the KI can make a system call if the following are true:

1. That call does not generate a recursive request to the KI (e.g. an RSC). This is
normally not a problem, since the pSOS+m system calls needed by the KI are
unlikely to require remote service.

2. That call does not attempt to block. Recall that the KI executes as an extension to
the kernel, not in the context of any particular task. Therefore, blocking is not
possible. This is also not a serious limitation, since most KI implementations
should have no need to block. If blocking is needed, then the KI should defer some
of its operations to a server task, which of course can block.

Section 2. Interfaces and Drivers KI

pSOSystem Programmer’s Reference 2-27

Note carefully the following consequence of the first limitation. The KI can use a pSOS+m
local-only (i.e. un-exported) partition to create its packet buffer pool and to allocate and
deallocate packet buffers. This is sufficient for a network-connected system. Now consider
a memory-bus-connected system. Whereas it may appear convenient and natural, to create
a pSOS+m global partition and use it as the KI packet buffer pool, in practice this is
difficult. The reason is that the pt_create() system call, if called from ki_init to create and
export this partition, will recursively call the KI to deliver the partition information to the
master node.

KI Services

ki_getpkb

ki_getpkb obtains a packet buffer from the KI. Its syntax is as follows:

INPUT: D0 = 2

D1 = Packet size in bytes

D2 = Destination node number. 0 means packet will be broadcast.

OUTPUT: D0 = 0, or KI-specific error code.

A0 = Pointer to packet buffer

The packet size and destination node number is provided for KI implementations that need
to allocate the buffer from different pools, based on either the node to which the packet will
be sent or the size of the packet, or both. This might be the case, for example, in a shared
memory implementation that writes the packet directly into the visible memory on the
target node. Most KI implementations can likely ignore one or both parameters.

ki_init

ki_init initializes the node’s KI. Its syntax is as follows:

INPUT: D0 = 1

A0 = Address of pSOS+ Announce_Packet Entry

OUTPUT: D0 = 0, or KI-specific error code

ki_init is called during pSOS+ startup to initialize the KI. ki_init is only called once for each
system startup. This service should do the following:

1. Initialize the communication hardware.

2. Initialize all KI data structures.

KI Section 2. Interfaces and Drivers

2-28 pSOSystem Programmer’s Reference

3. Create a pool of packet buffers. If enough buffers are not created, a system failure
can result.

4. Save the pSOS+ Announce_Packet Entry address.

ki_init is called after all local pSOS+m facilities (including creation of the ROOT and IDLE
tasks) have been initialized, and are thus usable. ki_init is subject to the same restrictions
as all other KI services (see ‘‘KI Error Conditions’’ on page 2-25), except that

• It is always called with the interrupt mask at Level 7, and

• ki_init can drop the interrupt mask, provided that the necessary steps have been
taken (for example, setting up ISRs) to handle any possible interrupt sources, and
the mask is restored to level 7 before returning to pSOS+.

ki_receive

ki_receive obtains a received packet. Its syntax is as follows:

INPUT: D0 = 6

OUTPUT: D0 = 0, or KI specific error code.

A0 = Pointer to packet buffer. 0 means none.

pSOS+ calls ki_receive only after a call has been made by the KI to the special pSOS+
Announce_Packet Entry.

ki_retpkb

ki_retpkb returns a packet buffer to the KI. Its syntax is as follows:

INPUT: D0 = 3

A0 = Pointer to packet buffer.

OUTPUT: D0 = 0, or KI specific error code.

NOTE: pSOS+m does not provide the size of the packet buffer. If the KI needs this
information, it should embed the size in the packet buffer envelope.

ki_roster

ki_roster provides roster information to the KI. Its syntax is as follows:

INPUT: D0 = 9

D1 = Type of roster change. (see below)

OUTPUT: D0 = 0, or KI specific error code.

Section 2. Interfaces and Drivers KI

pSOSystem Programmer’s Reference 2-29

D1 specifies the type of change as follows:

D1 Type of Change

0 Initial roster. A0 points to the internal pSOS+m roster.

1 A node has joined. D2 and D3 contain, respectively, the node number
and sequence number of the new node.

2 A node has failed. D2, D3, and D4 contain, respectively, the node
number of the failed node, the failure code, and node number of the
node that initiated removal of the node from the system (which may be
the failed node itself).

ki_send

ki_send sends a packet to another node. Its syntax is as follows:

INPUT: D0 = 4

D1 = Packet size. (in bytes)

D2 = Destination node number.

A0 = Pointer to the packet buffer.

OUTPUT: D0 = 0, or KI-specific error code.

ki_send must deliver the packet to the destination node. The packet size, specified in D1,
is provided for systems which must transmit the packet over a relatively slow medium. In
such cases, the KI can transmit only the packet, if it is much smaller than 100 bytes. Most
kernel interfaces can likely ignore this parameter.

ki_send is responsible for returning the packet buffer after a successful transmission, or
whenever it is no longer needed. Note, pSOS+m does not provide the size of the packet
buffer. If the KI needs this information, it should embed the size in the packet buffer
envelope.

ki_time

ki_time allows the KI to implement its own timing and timing-dependent operations, if
necessary. Its syntax is as follows:

INPUT: D0 = 7

OUTPUT: D0 = 0, or KI-specific error code.

ki_time is called by pSOS+m at each clock tick to allow, if necessary, the KI to implement
its own timing and timing-dependent operations, such as transmission retries.

If the KI does not need any timing operations, then ki_time should simply return.

KI Section 2. Interfaces and Drivers

2-30 pSOSystem Programmer’s Reference

Section 2. Interfaces and Drivers DISI

pSOSystem Programmer’s Reference 2-31

NAME

DISI -- Device Independent Serial Interface

DESCRIPTION

The Device Independent Serial Interface (DISI) is the interface between the device-
dependent and the device-independent parts of a serial driver. The DISI interface is used
by pSOSystem Terminal, SLIP, PPP, and pROBE+ upper level drivers to interface with the
chip dependent lower level driver.

The DISI separates the hardware dependent driver and the independent serial protocols.
The DISI is the standard interface between the upper level hardware independent drivers
to a low-level hardware-dependent driver. You would use this interface specification if you
needed to write a serial driver for a serial chip that was not supported by pSOSystem. This
specification will tell you what lower-level chip-dependent functions you need to write and
the functionality they need. There is a template of a lower-level serial driver that you can
start from. This template contains skeleton functions and some common code that can help
you organize the chip dependent part of your driver. This template is called disi.c and is
located in drivers/serial. There is an include file in the include directory called disi.h that
contains definitions of the #defines and structures discussed in this specification.

You can also use this specification if you have a new protocol or custom serial needs that
you wanted to add on top of a lower-level serial chip driver that is supported by pSOSystem.
This specification will tell you what services are provided by those drivers. Figure 1 on
page 2-32 illustrates the DISI interface.

DISI Section 2. Interfaces and Drivers

2-32 pSOSystem Programmer’s Reference

The DISI interface consists of two parts:

1. Functions that must be provided by the lower-level hardware dependent device
driver.

2. Callback functions that must be provided by the upper level hardware
independent device driver.

Function Calls

The DISI function calls are called from the upper-level serial driver to:

• Initialize the interface.

• Initialize and open a serial channel.

pROBE+

SLIP/PPPTerminal Driver

Serial Devices

DISI

SerialCloseSerialInit SerialOpen SerialSend SerialIoctl

pROBE+
Interface Driver

pREPC+ pNA+/STREAMS

Figure 1 DISI Interface

Section 2. Interfaces and Drivers DISI

pSOSystem Programmer’s Reference 2-33

• Send data.

• Issue control operation.

• Close down a serial channel.

The five functions that must be implemented in the device-dependent lower-level serial
code are:

SerialInit Initialize the driver.

SerialOpen Open a channel.

SerialSend Send data on the channel.

SerialIoctl Perform a control operation on the channel.

SerialClose Close the channel.

NOTE: All of these functions must be non-blocking asynchronous functions.

Callback Functions

The callback functions are supplied by one of the upper level drivers such as the pROBE+
interface driver, SLIP, PPP, and Terminal driver. The callback functions are called from the
device-dependent lower-level serial driver to:

• Indicate data reception.

• Indicate exception condition.

• Confirm data sent.

• Confirm a control operation.

• Access memory services.

The seven callback functions that must be supported by the upper-level serial driver are:

UDataInd Indicate reception of data.

UExpInd Indicate an exception condition.

UDataCnf Indicate completion of a SerialSend operation.

UCtlCnf Indicate completion of a SerialIoctl operation.

UEsballoc Attach external buffer to message block.

UAllocb Allocate a message block triplet.

UFreemsg Free a message block triplet list.

DISI Section 2. Interfaces and Drivers

2-34 pSOSystem Programmer’s Reference

The addresses to these callback functions are passed to the lower-level serial code when
the SerialOpen function is called.

Figure 2 below illustrates function calls and callbacks in the serial interface:

Data is transferred between the upper-level drivers and the DISI using the SerialSend call
to send data out a channel and UDataInd call to receive data from a channel. Data is
transferred using the Streams message block structure.

The DISI implements various features such as:

• Character mode asynchronous

• Block mode Asynchronous

• Flow control, special character detection

If a feature is not supported by a chip set, it should be emulated by software in the device-
dependent lower-level code. For example, if software flow control is not a function of the
chip set, then the lower-level code should emulate it.

UExpInd

Device Dependent Lower Level Code

Memory Access Callback

SerialInit SerialOpen SerialSend SerialIoctl Serial Close
initialize
interface

open a send
channel command

Upper Level Serial Driver

send control close a
channel

UEsballoc UDataInd UAllocb UFreemsgUCtlCnfUDataCnf

Serial Devices

data

Figure 2 Function calls and callbacks in the Serial Interface

Section 2. Interfaces and Drivers DISI

pSOSystem Programmer’s Reference 2-35

DISI Functions

The following sections explain the functions that must be implemented in the device-
dependent layer of the DISI.

SerialInit Function

The SerialInit function initializes the device-dependent lower-level code.

void SerialInit (void);

SerialInit is called before any components are initialized. It sets the driver to a default state
with all channels closed, interrupts off, and all buffer pools empty.

SerialOpen Function

The SerialOpen function opens a channel for a particular mode of operation.

long SerialOpen(
 unsigned long channel, input
 ChannelCfg *cfg, input
 Lid *lid, output

unsigned long *hdwflags) output
);

channel Indicates the serial channel to be opened.

cfg Points to the configuration table that defines various configuration
parameters such as baud rate, various line parameters, and the
addresses of the callback functions. See Data Structures for more
details on the configuration table.

lid Set by the lower-level driver and is the lower level’s reference ID for this
channel. All calls to the DISI by the upper layer pass lid except for the
SerialInit command.

hdwflags Not used for DISI.

EXAMPLE

The following example shows the use of a SerialOpen function call to open a channel.

/***/
/* The Open function is an example of the use of the*/
/* SerialOpen function */
/* */
/* It takes one argument the channel number to open.*/
/***/

DISI Section 2. Interfaces and Drivers

2-36 pSOSystem Programmer’s Reference

/***/
/* The global array called lids will be used to store*/
/* the lower IDs*/
/***/
unsigned long lids[NUMBER_OF_CHANNELS];

unsigned long Open(int channel)
{
ChannelCfg channelcfg;

/***/
/* Set up configuration structure that will be passed*/
/* to DISI interface.*/
/***/
/* Clear the ChannelCfg structure */
/***/
bzero(&channelcfg, sizeof(ChannelCfg));

/***/
/* Set Mode to UART mode*/
/***/
channelcfg.Mode = SIOCASYNC;

/***/
/* Set character size to 8 bits */
/***/
channelcfg.Cfg.Uart.CharSize = SCS8;

/***/
/* Set Flags for software flow control and to cause an*/
/* interrupt when a break is received.*/
/***/
channelcfg.Cfg.Uart.Flags = SBRKINT | SWFC;

/***/
/* Set Xon and Xoff characters to be used for software*/
/* flow control */
/***/
channelcfg.Cfg.Uart.XOnCharacter = XON;
channelcfg.Cfg.Uart.XOffCharacter = XOFF;

/***/
/* Set the len of transmit request to 4 so there can*/
/* be only 4 requests outstanding at one time*/
/***/

Section 2. Interfaces and Drivers DISI

pSOSystem Programmer’s Reference 2-37

channelcfg.OutQLen = 4;

/***/
/* Set the channels baudrate.NOTE SysBaud is a global*/
/* variable defined by pSOSystem to the default baud rate*/
/***/
channelcfg.Baud = SysBaud;

/***/
/* Set the line mode to full duplex*/
/***/
channelcfg.LineMode = FULLD;
/***/
/* Set the pointers to the call back functions */
/***/
channelcfg.dataind = term_dataind;
channelcfg.expind = term_expind;
channelcfg.datacnf = term_datacnf;
channelcfg.ctlcnf = term_ctlcnf;
channelcfg.allocb = gs_allocb;
channelcfg.freemsg = gs_freemsg;
channelcfg.esballoc = gs_esballoc;

/***/
/* Set the ID to be used by the lower driver when*/
/* referencing this channel. */
/***/
channelcfg.uid = channel;

/***/
/* Call the DISI interface open*/
/***/
if(error = SerialOpen(channel, (ChannelCfg *)&channelcfg,
 (Lid)&lids[channel],
 (unsigned long *)&DChanCfg[minor].hdwflags))
 {
 /***/
 /* Return error code.*/
 /***/
 switch (error)
 {
 case SIOCAOPEN:
 /**/
 /* The Channel has already been opened by */
 /* another driver*/
 /**/

DISI Section 2. Interfaces and Drivers

2-38 pSOSystem Programmer’s Reference

 return(1);

 case SIOCBADCHANNELNUM
 /***/
 /* Channel is not a valid channel for this*/
 /* hardware*/
 /***/
 return(2);

 case SIOCCFGNOTSUPPORTED
 /***/
 /* Hardware cannot be configured by the*/
 /* DISI as given*/
 /***/
 return(3);

 case SIOCBADBAUD:
 /***/
 /* Baud rate not supported by hardware.*/
 /***/
 return(4);

 case SIOCNOTINIT:
 /***/
 /* This error shows that the lower driver*/
 /* thinks it has not been initialized.*/
 /***/
 return(6);
 }

SerialSend Function

The SerialSend function is used by the upper level serial driver to transfer data to the
lower-level driver.

long SerialSend(
Lid lid, input
mblk_t* mbp input
);

lid The lower-level ID that was acquired during SerialOpen operation for
the channel to which this is directed.

mbp A pointer to the message block that contains the data to be
transmitted.

Section 2. Interfaces and Drivers DISI

pSOSystem Programmer’s Reference 2-39

A 0 return code indicates that the message block has been queued to send. The UDataCnf
callback will be used by the lower-level driver when the data in the message block has
actually been sent.

NOTE: If a SIOCOQFULL error is received, no data was sent because the transmit
queue is full. SerialSend continues to return SIOCOQFULL until the next
UDataCnf callback happens. Since UDataCnf is the confirmation of a
message being sent, the transmit queue will no longer be full.

EXAMPLE

The following example shows the use of a SerialSend call to send data to the lower serial
driver.

/*---*/
/* This is an example of a function that will get a mblock from*/
/* the mblock pool, fill the mblock's data buffer with some */
/* information and send it to the lower serial driver. */
/*---*/
#include <gsblk.h>
#include <disi.h>

static char test_string[] = "This is a Test Buffer";

/***/
/* SendData: Gets a mblock, puts some data into it and sends */
/* it to the lower driver. */
/* */
/* (Lid)lid lower level id gotten when the */
/* SerialOpen call was made. */
/* */
/* RETURNS: 0 on success */
/* 1 gs_allocb failure */
/* 2 SerialSend failure */
/* NOTE(S): */
/* */
/***/
int SendData((Lid)lid)
{
int i;

/***/
/* The typedefs frtn_t and mblk_t are found in pna.h. */
/***/
mblk_t *m;

/***/

DISI Section 2. Interfaces and Drivers

2-40 pSOSystem Programmer’s Reference

/* Call gs_allocb to get a buffer attached to a mblock */
/* structure. */
/* */
/* gs_allocb is a function supplied by pSOSystem in the file */
/* drivers/gsblk.c. It is compiled into bsp.lib. */
/* gs_allocb takes two arguments */
/* size: size of message block to be allocated */
/* pri: allocation priority (LO, MED, HI) */
/* */
/* gs_allocb is a utility that allocates a message block of */
/* type M_DATA and a buffer of a size greater than or equal to */
/* specified size. pri indicates the priority of the allocation*/
/* request. Currently pri is not used and should be set to 0 */
/* On success, gs_allocb returns a pointer to the allocated */
/* message block. gs_allocb returns a NULL pointer if it could */
/* not fill the request */
/* */
/* mblk_t *gs_allocb(int size, int pri) */
/* */
/* A mblk_t structure looks like this: */
/* */
/* struct msgb */
/* { */
/* struct msgb *b_next; next msg on queue */
/* struct msgb *b_prev; previous msg on queue */
/* struct msgb *b_cont; next msg block of msg */
/* unsigned char *b_rptr; first unread data byte in */
/* buffer */
/* unsigned char *b_wptr; first unwritten data byte */
/* in buffer */
/* struct datab *b_datap; data block */
/* } */
/***/
if(m = gs_allocb(sizeof(test_string), 0) == 0)
 return(1);

/***/
/* Copy data to buffer */
/***/
for (i = 0; i < sizeof(test_string); i++, m->b_wptr++)
 *(m->b_wptr) = test_string[i];

/***/
/* Send mblock to lower driver */
/***/
if(SerialSend(lid, m) != 0)

Section 2. Interfaces and Drivers DISI

pSOSystem Programmer’s Reference 2-41

 return(2);
else
 return(0);
}

SerialIoctl Function

The SerialIoctl function specifies various control operations that modify the behavior of the
DISI.

 long SerialIoctl(
Lid lid, input
unsigned long cmd, input
void *arg input
)

lid The lower-level ID that is acquired during a SerialOpen operation.

cmd The type of control operation.

arg Specific information for the operation.

In some cases, a SerialIoctl operation may not complete immediately. In those cases, the
UCtlCnf function is called when the operation has completed with the final status of the
command.

SerialIoctl Commands

The SerialIoctl commands are:

SIOCPOLL Polls the serial device for asynchronous events such
as data indication and exception indication. It
provides an ability to perform as a pseudo ISR and call
the callback functions when the channel is in
SIOCPOLL mode or when interrupts are disabled. For
example, when pROBE+ is in control, the processor
operates with interrupts turned off. This command
checks for data received, data transmitted, or
exceptions and then triggers the callback function for
these conditions, as needed.

SIOCGETA Gets the channel configuration and stores this
information into a ChannelCfg structure pointed to
by the arg parameter. This command is immediate, so
no callback is made.

SIOCPUTA Sets the channel configuration using the information
stored in a ChannelCfg structure pointed to by the

DISI Section 2. Interfaces and Drivers

2-42 pSOSystem Programmer’s Reference

arg parameter. The effect is immediate, so no callback
is made.

SIOCSACTIVATE Activates the channel. This enables the receiver and
transmitter of the channel and waits until the channel
becomes active. In dial-in connections, the
SIOCSACTIVATE command puts the hardware in a
mode capable of handling an incoming call. The
UCtlCnf callback is made when the call arrives.
When using HDLC (even when no dial-up connection
is involved), the UCtlCnf callback is made when the
link is active, i.e., it starts receiving flags.

SIOCBREAKCHK This command will check to see if a break character
has been sent. This command is used by pROBE+ to
see if the user wants to enter pROBE+. The arg
parameter is set to SIOCBREAKR if there has been a
break sent to the channel.

SIOCPROBEENTRY This command tells the driver that pROBE+ is being
entered. The driver should now switch to the debugger
callouts, uid and switch from interrupt mode to polled
mode.

SIOCPROBEEXIT This commands tell the driver the pROBE+ is being
exited and the driver should now switch from the
debugger callouts to the normal callouts, normal uid
and allow interrupts. Normal callouts and uid are the
ones from a SerialOpen call. If pROBE+ is the only
user of the channel then the normal callouts and uid
and the debugger callouts and uid will be the same.

SIOCMQRY Gets information about which modem controls are
supported by the channel and stores this information
into the long int pointed to by the arg parameter. A
set bit indicates that the particular control line is
supported by the channel. This command is
immediate, so no callback is made.

The modem control lines are:

 SIOCMDTR Data terminal ready.

 SIOCMRTS Request to send.

 SIOCMCTS Clear to send.

 SIOCMDCD Data carrier detect.

SIOCMRI Ring indicator.

Section 2. Interfaces and Drivers DISI

pSOSystem Programmer’s Reference 2-43

SIOCMDSR Data set ready.

 SIOCMCLK Clock (sync support).

Since the interface is a DTE, DTR and RTS are
outputs and CTS, RI, DSR, and DCD are inputs.

SIOCMGET Gets the current state of the modem control lines and
stores this information into the long int pointed to by
the arg parameter. SIOCMGET uses the same
encoding as SIOCMQRY. Bits pertaining to control
lines not supported by the channel and the
SIOCMCLK bit are cleared. This command is
immediate, so no callback is made.

SIOCMPUT Sets the modem controls of the channel. The arg
parameter is a pointer to a long int containing a new
set of modem control lines. The modem control lines
are turned on or off, depending on whether their
respective bits are set or clear. SIOCMPUT uses the
same encoding as SIOCMQRY. Bits pertaining to
control lines not supported by the channel and the
SIOCMCLK bit have no effect. The effect is immediate,
so no callback is made.

SIOCRXSTOP Stops the flow of receive characters. This is used when
the upper level serial driver needs to stop the flow of
characters it is receiving. The lower-level serial code
takes the correct action such as sending an XOFF
character if software flow control is being used or
changing the hardware lines if hardware flow control
is being used. The effect is immediate so no call back
is made.

SIOCRXSTART Indicates that the upper level serial driver wants to
continue to receive characters. The lower-level serial
code will take the correct action such as sending an
XON character if software flow control is being used
or changing the hardware lines if hardware flow
control is being used. The effect is immediate so no
call back is made.

SIOCNUMBER Gets the total number of serial channels and stores
this information into the long int pointed to by the
arg parameter. This command is immediate, so no
call back is made

DISI Section 2. Interfaces and Drivers

2-44 pSOSystem Programmer’s Reference

EXAMPLE

The following example shows the use of a SerialIoctl function call to get the baud rate of
the channel.

/***/
/* This get_number_of _ports function is an example of a */
/* SerialIoctl function call. */
/***/
int get_number_of_ports(unsigned long number)
{
/***/
/* Assume the lower level ID is stored by the SerialOpen */
/* call in a global array called lids. Use the */
/* SIOCNUMBER I/O control command to get the total */
/* number of serial channels and number as a place to */
/* store that number. */
/***/
if(SerialIoctl(lids[channel], SIOCNUMBER, (void *)&number)
 return(-1);
else
 return(number);
}

SerialClose Function

The SerialClose function terminates a connection on a serial channel and returns the
channel to its default state.

long SerialClose(
Lid lid input
)

lid The lower-level ID that was acquired during SerialOpen operation for
the channel that is to be closed.

If the channel is not open, SIOCNTOPEN is returned.

EXAMPLE

The following example shows a SerialClose function call to close the channel.

/***/
/* This function TermClose is an example of a SerialClose call */
/* SerialClose will close the channel. This will flush all */
/* transmit buffers, discard all pending receive buffers and */
/* disable the receiver and transmitter of the channel. All */
/* rbuffers associated with the channel will be released */
/* (freed) and the device will hang up the line */

Section 2. Interfaces and Drivers DISI

pSOSystem Programmer’s Reference 2-45

/* */
/***/

void TermClose (channel)
{

SerialClose((Lid)lids[channel]);

/*All semaphores and queues for the channel should be deleted here.*/
}

User Callback Functions

This section contains the templates of the callback functions that must be provided by the
upper-level driver. Pointers to these functions are passed in the ChannelCfg structure
during the SerialOpen of the channel to the device-dependent lower-level code. These
pointers can be changed via the SerialIoctl command SIOPUTA.

NOTE: These calls must be callable from an interrupt. Consequently, it is important
that they do not block within the call and only call OS functions that are
callable from an ISR.

UDataInd Callback Function

The UdataInd callback function will be called during an interrupt by the device-dependent
lower-level code to indicate reception of data to the upper level serial driver.

static void UDataInd(
Uid uid, input
mblk_t * mbp, input
unsigned long b_flagsinput
);

uid The upper-level serial driver’s ID for the associated channel. The ID is
passed to the lower-lever serial driver during the SerialOpen of the
channel on which the data is arriving.

mbp A pointer to message block that contains the data received by the
channel.

b_flags The status flags associated with this message block. The flags can be:

SIOCOKX Received with out error.

SIOCMARK Idle Line Condition.

SIOCBREAKR Break Received.

SIOCPARITY Parity Error.

DISI Section 2. Interfaces and Drivers

2-46 pSOSystem Programmer’s Reference

SIOCOVERRUN Overrun of buffers.

SIOCCDLOST Carrier Detect Lost.

UDataInd must unblock any task that is waiting for data from this channel.

NOTE: If the SerialOpen call returned hdwflags that had the SIOCHDWRXPOOL bit
set, then the lower-level code has a receive buffer pool. This pool will need
replenishing through the use of a call to SerialIoctl with the command
SIOCREPLENISH.

The user supplied functions in the upper layer serial driver must use SerialIoctl to
replenish the buffers. The upper level serial driver must free the message block (pointed to
by mbp) when it is emptied by calling UFreemsg.

EXAMPLE

The following example shows a UDataInd function call to send data and status to a task.

/***/
/* This function term_dataind is an example of a UDataInd */
/* function. It will get as input: */
/* */
/* Uid uid pointer to channels configuration */
/* mblk_t mblk message block containing data */
/* unsigned long b_flags condition code for block */
/* */
/* term_dataind will use a message queue to send the mblock */
/* and status on to a task that is waiting for data. */
/* */
/* Assume receive_ques is an array of message queue IDs. */
/***/
static void term_dataind(Uid uid, mblk_t *mblk, unsigned long b_flags)
{
/***/
/* Set up the message buffer with the pointer to the mblock */
/* and status */
/***/
msg_buf[0] = (unsigned long)mblk;
msg_buf[1] = b_flags;
/***/
/* Send message to channels message queue. */
/***/
q_send(receive_ques[(unsigned long)*uid], msg_buf);
}

Section 2. Interfaces and Drivers DISI

pSOSystem Programmer’s Reference 2-47

UExpInd Callback Function

The UExpInd callback function is called by the device-dependent lower-level code to
indicate an exception condition.

static void UExpInd(
Uid uid, input
unsigned long exp input
);

uid The upper-level serial driver’s ID for the associated channel which is
passed to the lower-lever serial driver during the SerialOpen of the
channel on which the exception has occurred.

exp Type of exception.

Exceptions can be one of the following:

SIOCMARK Idle Line Condition.

SIOCBREAKR Break Received.

SIOCFRAMING Framing Error.

SIOCPARITY Parity Error.

SIOCOVERRUN Overrun of buffers.

SIOCCDLOST Carrier Detect Lost.

SIOCCTSLOST Clear To Send has been lost.

SIOCCTS Clear To Send found.

SIOCCD Carrier Detect detected.

SIOCFLAGS Non Idle Line Condition.

UDataCnf Callback Function

The UDataCnf callback function is called by the device-dependent lower-level code to
confirm that the data sent using SerialSend call has been transmitted.

static void UDataCnf(
Uid uid, input
mblk_t * mbp, input
unsigned long b_flags input
);

uid The upper-level serial driver’s ID for the associated channel which is
passed to the lower-lever serial driver during the SerialOpen of the
channel on which the data was sent.

mbp Points to the message block sent using SerialSend call.

DISI Section 2. Interfaces and Drivers

2-48 pSOSystem Programmer’s Reference

b_flags Status flags associated with the message block. The b_flags must be
one of the following:

SIOCOK Completed without error

SIOCUNDERR Tx underrun (HDLC)

SIOCABORT Tx aborted

The UDataCnf function must unblock any task that was waiting for data to be sent. The
task is responsible for any maintenance necessary to the message block such as freeing it
or reusing it.

EXAMPLE

The following example shows a UDataCnf function call to confirm that data has been sent.

/***/
/* This function term_datacnf is an example of a UDataCnf */
/* function. It takes as inputs: */
/* */
/* Uid uid pointer to channels number */
/* mblk_t mblk message block containing data */
/* unsigned long b_flags condition code for block */
/* */
/* This code assumes that the driver is not waiting for */
/* completion of a transmission. */
/***/
static void term_datacnf(Uid uid, mblk_t *mblk, unsigned long b_flags)
{
gs_freemsg(mblk);
}

UCtlCnf Callback Function

The UCtlCnf callback function is used to confirm the completion of a SerialIoctl control
command.

 static void UCtlCnf(
Uid uid, input
unsigned long cmd input
);

uid The upper-level serial driver’s ID for the associated channel which is
passed to the lower-lever serial driver during the SerialOpen of the
channel on which the I/O control call was made.

cmd The command being confirmed.

Section 2. Interfaces and Drivers DISI

pSOSystem Programmer’s Reference 2-49

EXAMPLE

The following example shows a UCtlCnf function call to confirm the completion of a
SerialIoctl control command.

/***/
/* static void term_ctlcnf */
/* */
/* This function term_ctlcnf is an example of a UCtlCnf */
/* function. It takes as inputs: */
/* */
/* Uid uid pointer to a configuration */
/* unsigned long cmd I/O control cmd that */
/* is being confirmed. */
/* */
/* term_ctlcnf assumes that a task is waiting for a */
/* semaphore. */
/* semaphore_ctl_ids is an array that stores the ID for */
/* each channel */
/***/
void term_ctlcnf(Uid uid, unsigned long cmd)
{

/*---*/
/* Release the channels I/O Control semaphore */
/*---*/
sm_v(semaphore_ctl_ids[(unsigned long)*uid]);
}

Access Memory Services

The following callback functions are used to manage message blocks and a buffer pool. The
message blocks are similar to those used by Streams I/O. See the pna.h file in the include
directory of the pSOSystem release for a definition of the message block structures used
here. All of these functions are provided with the pSOSystem software. They are found in
the file drivers/gsblk.c.

UEsballoc Callback Function

The UEsballoc callback function returns a message block triplet by attaching the user
supplied buffer as a data block to a message block structure. See the SendFrame example
under the SerialSend function for an example of this call.

 static mblk_t * UEsballoc(
char *bp, input
long len, input
long pri, input

DISI Section 2. Interfaces and Drivers

2-50 pSOSystem Programmer’s Reference

frtn_t *frtn input
);

bp Points to the use-supplied buffer.

len Specifies the number of bytes in the buffer.

pri Specifies the priority for message block allocation.

frtn Pointer to the free structure of type frtn_t. This structure is as follows:

typedef struct
{
void (*free_func)();
void *free_arg;
} frtn_t

free_func UFreemsg calls the function pointed to by free_func when the caller-
supplied buffer needs to be freed. The caller must supply the function
pointed to by free_func.

free_arg A pointer to the user supplied buffer.

frtn_t The pointer to frtn_t must be stored by the UEsballoc call. This makes
it available to the UFreemsg call when UFreemsg is used to free the
message block.

The UEsballoc call may be used by the upper or the lower levels of the interface. In either
case the “user” is who ever is making the call. One use of UEsballoc is a case where there
is a special ram area to be used by the serial chip.

NOTE: This function corresponds to the gs_esballoc function supplied by
pSOSystem in the file drivers/gsblk.c. It is compiled into bsp.lib. You may use
a pointer to gs_esballoc for the UEsballoc callback function.

UAllocb Callback Function

The UAllocb callback function returns a message block triplet or a NULL if no buffer or
message block could be found. See the SendData example under the SerialSend function
for an example of this call.

 static mblk_t * UAllocb(
long size, input
long pri input
);

size Specifies the size of the buffer.

pri Specifies the priority for message block.

Section 2. Interfaces and Drivers DISI

pSOSystem Programmer’s Reference 2-51

NOTE: This function corresponds to the gs_allocb function supplied by pSOSystem
in the file drivers/gsblk.c. It is compiled into bsp.lib. You may use a pointer
to gs_allocb for the UAllocb callback function.

UFreemsg Callback Function

The UFreemsg callback function is used to free a message block. See the term_ctlcnf
example under the UDataCnf function for an example of this call.

 static void UFreemsg(
mblk_t *mbp, input.
);

mbp Points to the message block triplet for this specific message block pool.
If the message block was formed using the UEsballoc call, UFreemsg
calls the function pointed by free_func with a pointer to free_arg as
its argument.

NOTE: This function corresponds to the gs_freemsg function supplied by
pSOSystem in the file drivers/gsblk.c. It is compiled into bsp.lib. You may use
a pointer to gs_freemsg for the UFreemsg callback function.

Data Structures

Following are templates of data structures. They can be found in include/disi.h.

CCfg
typedef struct ccfg {

unsigned long Mode;
Modecfg Cfg;
unsigned long NRBuffs;
unsigned long RBuffSize;
unsigned long OutQLen;
unsigned long Baud;
unsigned long LineMode;
void (*dataind)(uid,mblk_t, unsigned long);
void (*expind)(uid, unsigned long);
void (*datacnf)(uid,mblk_t,unsigned long);
void (*ctlcnf)(uid, unsigned long);
mblk_t * (*allocb)(long, long);
void (*freemsg)(mblk_t);
mblk_t * (*esballoc)(char,long, long,frtn_t);
Uid uid;
unsigned long Reserve[4];
} ChannelCfg;

DISI Section 2. Interfaces and Drivers

2-52 pSOSystem Programmer’s Reference

Mode Mode can be:

SIOCASYNC Asynchronous mode MUST BE SET

SIOCPOLLED Poll mode - interrupt if not set

SIOCLOOPBACK Local loop back mode

SIOCPROBEMODE pROBE+ mode

SIOCPROBEMODE is used to tell the lower driver that it should save
the call back function pointers and the uid to be used for the I/O
control SIOCPROBEENTRY.

NRBuffs The number of receive buffers to allocate for the receive queue.

RBuffSize NOT USED

OutQLen The maximum number of message buffers waiting to be transmitted.
If the maximum number is exceeded, SerialSend fails with an
SIOCOQFULL error.

Baud Set to the actual desired baud rate. If the selected baud rate is not
supported by the lower-level device-dependent code, SerialOpen or
SerialIoctl fails, an error is returned.

LineMode Line mode can be:

HALFD Half-Duplex

FULLD Full-Duplex

dataind Pointer to a data indication routine. See UDataInd for additional
information.

expind Pointer to an exception indication routine. See UExpInd for additional
information.

datacnf Pointer to a data confirmation routine. See UDataCnf for additional
information.

ctlcnf Pointer to a control confirmation routine. See UCtlCnf for additional
information.

allocb Pointer to an allocate message block routine. See UAllocb for
additional information.

freemsg Pointer to a free message list routine. See UFreemsg for additional
information.

esballoc Pointer to an attach message block routine. See UEsballoc for
additional information.

Section 2. Interfaces and Drivers DISI

pSOSystem Programmer’s Reference 2-53

UartCfg
struct UartCfg{

unsigned long CharSize;
unsigned long Flags;
LineD Lined[2];
unsigned char XOnCharacter;
unsigned char XOffCharacter;
unsigned short MinChar;
unsigned long MaxTime;
unsigned long ParityErrs;
unsigned long FramingErrs;
unsigned long OverrunErrs;
unsigned long Reserve[4];
}

CharSize CharSize can be:

CS5 5 bits per character

CS6 6 bits per character

CS7 7 bits per character

CS8 8 bits per character

Flags Flags can be:

C2STOPB Send two stop bits, else one

PARENB Parity enable

PARODD Odd parity, else even

HWFC Hardware flow control on

SWFC Software flow control on

SWDCD Software data carrier detect

LECHO Enable local echo

BRKINT Interrupt on reception of Break

DCDINT Interrupt on loss of DCD

When PARENB is set, parity generation and detection is enabled and
a parity bit is added to each character. When parity is enabled, odd
parity is used if the PARODD flag is set, otherwise even parity is used.

When HWFC is set, the channel uses CTS/RTS flow control. If the
channel does not support hardware flow control, this bit is ignored.

When SWFC bit is set, XON/XOFF flow control is enabled.

DISI Section 2. Interfaces and Drivers

2-54 pSOSystem Programmer’s Reference

When SWDCD is set, the channel responds as if the hardware data
carrier detect (DCD) signal is always asserted. If SWDCD is not set, the
channel is enabled and disabled by DCD.

When BRKINT is set, the channel issues an UExpInd exception
callback function if a break character is received.

When DCDINT is set, the channel issues an UExpInd exception
callback function upon loss of the DCD signal.

LineD Not used for DISI.

XOnCharacter Software flow control character used to resume data transfer.

XOffCharacter Software flow control character used to temporarily terminate data
transfer.

ParityErrs Keeps track of the parity errors that happen on the channel. This
information is used by MIB.

FramingErrs Keeps track of the framing errors that happen on the channel. This
information is used by MIB.

 OverrunErrs Keeps track of the overrun errors that happen on the channel. This
information is used by MIB.

Error Codes

The following error codes can be returned:

SIOCAOPEN Channel already open.

SIOCBADCHANNELNUM Channel does not exist.

SIOCCFGNOTSUPPORTED Configuration not supported.

SIOCNOTOPEN Channel not open.

SIOCINVALID Command not valid.

SIOCBADARG Argument not valid.

SIOCOPERATIONNOTSUP Operation not supported.

SIOCOQFULL Output queue full, send failed.

SIOCBADBAUD Baud rate not supported.

SIOCWAITING Waiting for previous command to complete.

SIOCNOTINIT Driver not initialized.

Section 2. Interfaces and Drivers DISI

pSOSystem Programmer’s Reference 2-55

Multiplex Driver Mapping

This describes how the lower chip level serial drivers for different chip types are to be
multiplexed under the DISI so they can be used by one upper level driver. This is used when
there is more then one type of serial chip. The method described here uses a private table
under the bsp. The mapping tells the DISI what lower chip specific driver to call and the
port number in that driver to use. This table would be set up in board.c.

SDRVCNFG Structure

There is one SDRVCNFG for each serial channel in the system. This is an array of
structures that maps a channel number to a serial driver and physical port number in that
driver. The structure is defined in include/disi.h as:

typedef struct
{
unsigned long dnum; /* Driver number */
unsigned long pnum; /* Physical port number */
Lid lid; /* Lower driver port ID */
}SDRVCNFG

SERIALFUNCS Structure

In order to multiplex more then one driver the names of the function call entry points for
the lower-level driver code need to be different for each driver. For example, instead of
SerialOpen function name for the port open function you might use ser_360_Open in a
driver for the MC68360 chip. Each lower-level serial driver will have an entry in an array of
structures called SerialFuncs. The SerialFuncs is an array of SERIALFUNCS structures.
The SERIALFUNCS structure maps the DISI function calls with corresponding driver
functions. The structure is defined in include/disi.h as follows:

typedef struct
{
long (*Init)(void);
long (*Open)(unsigned long, ChannelCfg *, Lid *, unsigned long) *;
long (*Send)(Lid, mblk_t *);
long (*Ioctl)(Lid, unsigned long, void *);
long (*Close)(Lid);
}SERIALFUNCS;

There is one SERIALFUNCS for each chip level driver.

The file drivers/ser_mplx.c contains multiplexed DISI driver entry functions. To used
these functions requires a #define int bsp.h called BSP_NUM_SER_DRVRS. This #define
should be set to the number of serial drivers that will be multiplexed. Also required to use
these functions are two structures that should be declared in board.c SerialFuncs and
SDrvCnfg. The following is an example of these two structures. These examples assumes
there are two drivers to multiplex, a MC6836 serial driver called ser_360 and a Zilog 8530
driver that will be called Z8530:

DISI Section 2. Interfaces and Drivers

2-56 pSOSystem Programmer’s Reference

/* Driver Driver #*/
 #define ser_360 0
 #define Z8530 1

SERIAL_FUNCS SerialFuncs[] =

/* INIT OPEN SEND IOCTL CLOSE */
ser_360_Init,ser_360_Open, ser_360_Send,ser_360_Ioctl,ser_360_Close,
Z8530_Init, Z8530_Open, Z8530_Send, Z8530_Ioctl, Z8530_Close;

SDRVCFNG SDrvCnfg[BSP_SERIAL + 1] =

/* Driver Port Lid Channel */
0, 0, 0 /* Channel 0 - not used */
ser_360, 1, 0 /* Channel 1 */
ser_360, 2, 0 /* Channel 2 */
ser_360, 3, 0 /* Channel 3 */
Ser_360, 4, 0 /* Channel 4 */
Z8530, 1, 0 /* Channel 5 */
Z8530, 2; 0 /* Channel 6 */

Index zero of the array is not used because pSOSystem uses 0 for the default system
console. The system console is mapped to an actual channel before being looked up in the
SDrvCnfg array.

The Lid element of the SDrvCnfg will be set by the call to SerialOpen for each port.

In the above example, channel 4 corresponds to index 4 which is the 68360 driver port 4
and channel 6 corresponds to index 6 the Z8530 driver port 2.

Section 2. Interfaces and Drivers DISIplus

pSOSystem Programmer’s Reference 2-57

NAME

DISIplus -- Device Independent Serial Interface

DESCRIPTION

DISIplus is an enhancement of the DISI interface. In addition to the features provided for
by the DISI specification DISIplus adds several new I/O control calls and specifications for
the use of HDLC. DISIplus is a super-set of DISI.

The Device Independent Serial Interface (DISI) is the interface between the device-
dependent and the device-independent parts of a serial driver. The DISI interface is used
by pSOSystem Terminal, SLIP, PPP and pROBE+ upper level drivers to interface with the
chip dependent lower level driver. DISIplus adds the use of X.25 and synchronous PPP to
the list of protocols used by the DISI specification.

The DISI separates the hardware dependent driver and the independent serial protocols.
The DISI is the standard interface between the upper level hardware independent drivers
to a low-level hardware-dependent driver. You would use this interface specification if you
needed to write a serial driver for a serial chip that was not supported by pSOSystem. This
specification will tell you what lower-level chip-dependent functions you need to write and
the functionality they need. There is a template of a lower-level serial driver that you can
start from. This template contains skeleton functions and some common code that can help
you organize the chip dependent part of your driver. This template is called disi.c and is
located in drivers/serial. There is an include file in the include directory called disi.h that
contains definitions of the #defines and structures discussed in this specification.

You can also use this specification if you have a new protocol or custom serial needs that
you wanted to add on top of a lower-level serial chip driver that is supported by pSOSystem.
This specification will tell you what services are provided by those drivers. Figure 3 on
page 2-58 illustrates the interface.

DISIplus Section 2. Interfaces and Drivers

2-58 pSOSystem Programmer’s Reference

The DISI interface consists of two parts:

1. Functions that must be provided by the lower-level hardware dependent device
driver.

2. Callback functions that must be provided by the upper level hardware
independent device driver.

Function Calls

The DISI function calls are called from the upper-level serial driver to:

• Initialize the interface.

• Initialize and open a serial channel.

SLIP/PPP
Stacks

Protocol
(x.25)

Terminal Driver

Serial Devices

DISI

SerialCloseSerialInit SerialOpen SerialSend SerialIoctl

pROBE+
Interface Driver

pROBE+ pREPC+ pNA+/STREAMS

Figure 3 DISIplus Interface

Section 2. Interfaces and Drivers DISIplus

pSOSystem Programmer’s Reference 2-59

• Send data.

• Issue control operation.

• Close down a serial channel.

The five functions that must be implemented in the device-dependent lower-level serial code
are:

SerialInit Initialize the driver.

SerialOpen Open a channel.

SerialSend Send data on the channel.

SerialIoctl Perform a control operation on the channel.

SerialClose Close the channel.

NOTE: All of these functions must be non-blocking asynchronous functions.

Callback Functions

The callback functions are supplied by one of the upper level drivers such as the pROBE+
interface driver, SLIP, PPP, and Terminal driver. The callback functions are called from the
device-dependent lower-level serial driver to:

• Indicate data reception.

• Indicate exception condition.

• Confirm data sent.

• Confirm a control operation.

• Access memory services.

The seven callback functions that must be supported by the upper-level serial driver are:

UDataInd Indicate reception of data.

UExpInd Indicate an exception condition.

UDataCnf Indicate completion of a SerialSend operation.

UCtlCnf Indicate completion of a SerialIoctl operation.

UEsballoc Attach external buffer to message block.

UAllocb Allocate a message block triplet.

UFreemsg Free a message block triplet list.

DISIplus Section 2. Interfaces and Drivers

2-60 pSOSystem Programmer’s Reference

The addresses to these callback functions are passed to the lower-level serial code when the
SerialOpen function is called.

Figure 2 on page 2-34 illustrates function calls and callbacks in the serial interface:

Data is transferred between the upper-level drivers and the DISI using the SerialSend call
to send data out a channel and UDataInd call to receive data from a channel. Data is
transferred using the Streams message block structure.

The DISI implements various features such as:

• Character mode asynchronous.

• Block mode Asynchronous and Block mode synchronous.

• Flow control, special character detection and protocol control.

If a feature is not supported by a chip set, it should be emulated by software in the device-
dependent lower-level code. For example, if software flow control is not a function of the
chip set, then the lower-level code should emulate it.

DISI Functions

The following sections explain the functions that must be implemented in the device-
dependent layer of the DISI.

SerialInit Function

The SerialInit function initializes the device-dependent lower-level code.

void SerialInit (void);

SerialInit is called before any components are initialized. It sets the driver to a default state
with all channels closed, interrupts off, and all buffer pools empty.

SerialOpen Function

The SerialOpen function opens a channel for a particular mode of operation.

long SerialOpen(
 unsigned long channel, input
 ChannelCfg *cfg, input
 Lid *lid, output

unsigned long *hdwflags) output
);

channel Indicates the serial channel to be opened.

cfg Points to the configuration table that defines various configuration
parameters such as baud rate, various line parameters, and the

Section 2. Interfaces and Drivers DISIplus

pSOSystem Programmer’s Reference 2-61

addresses of the callback functions. See Data Structures for more
details on the configuration table.

lid Set by the lower-level driver and is the lower level’s reference ID for this
channel. All calls to the DISI by the upper layer pass lid except for the
SerialInit command.

hdwflags Returned by the DISI to indicate the capabilities of the lower-level
serial code. The hdwflags flags can be:

SIOCHDWHDL HDLC supported

SIOCHDWRXPOOL Has receive buffer pool

SIOCHDMAXTIM Can do intercharacter timing

SIOCAUTOBAUD Can do autobaud (sync only)

If SIOCHDWRXPOOL is set, the lower level contains a buffer pool to
receive characters and, as they are sent up through the DISI, these
buffers need to be replenished. (See the SerialIoctl command
SIOCREPLENISH and UDataInd call for more information.)

The following example shows the use of a SerialOpen function call to open a channel:

EXAMPLE

/***/
/* The Open function is an example of the use of the*/
/* SerialOpen function */
/* */
/* It takes one argument the channel number to open.*/
/***/

/***/
/* The global array call lids will be used to store*/
/* the lower IDs*/
/***/
unsigned long lids[NUMBER_OF_CHANNELS];

unsigned long Open(int channel)
{
ChannelCfg channelcfg;

/***/
/* Set up configuration structure that will be passed*/
/* to DISI interface.*/
/***/
/* Clear the ChannelCfg structure */
/***/

DISIplus Section 2. Interfaces and Drivers

2-62 pSOSystem Programmer’s Reference

bzero(&channelcfg, sizeof(ChannelCfg));

/***/
/* Set Mode to UART mode*/
/***/
channelcfg.Mode = SIOCASYNC;

/***/
/* Set character size to 8 bits */
/***/
channelcfg.Cfg.Uart.CharSize = SCS8;

/***/
/* Set Flags for software flow control and to cause an*/
/* interrupt when a break is received.*/
/***/
channelcfg.Cfg.Uart.Flags = SBRKINT | SWFC;

/***/
/* Set the channels baudrate.NOTE SysBaud is a global*/
/* variable defined by pSOSystem to the default baud rate*/
/***/

channelcfg.Cfg.Uart.LineD[0].LChar = NL;
channelcfg.Cfg.Uart.LineD[0].LFlags = 0;
channelcfg.Cfg.Uart.LineD[1].LChar = EOT;
channelcfg.Cfg.Uart.LineD[1].LFlags = ENDOFTABLE;

/***/
/* Set Xon and Xoff characters to be used for software*/
/* flow control */
/***/
channelcfg.Cfg.Uart.XOnCharacter = XON;
channelcfg.Cfg.Uart.XOffCharacter = XOFF;

/***/
/* Set MinChar and MaxTime so at least one character will*/
/* be received and at most four characters. If three*/
/* tens of a second pass between characters, a read*/
/* request will be considered filled and the UDataInd*/
/* function will be called*/
/***/
channelcfg.Cfg.Uart.MinChar = 4;
channelcfg.Cfg.Uart.MaxTime = 3;

/***/

Section 2. Interfaces and Drivers DISIplus

pSOSystem Programmer’s Reference 2-63

/* Set the receive buffer size to 4 characters */
/***/
channelcfg.RBuffSize = 4;

/***/
/* Set the len of transmit request to 4 so there can*/
/* be only 4 requests outstanding at one time*/
/***/
channelcfg.OutQLen = 4;

/***/
/* Set the channels baudrate.*/
/***/
channelcfg.Baud = SysBaud;

/***/
/* Set the line mode to full duplex*/
/***/
channelcfg.LineMode = FULLD;
/***/
/* Set the pointers to the call back functions */
/***/
channelcfg.dataind = term_dataind;
channelcfg.expind = term_expind;
channelcfg.datacnf = term_datacnf;
channelcfg.ctlcnf = term_ctlcnf;
channelcfg.allocb = gs_allocb;
channelcfg.freemsg = gs_freemsg;
channelcfg.esballoc = gs_esballoc;

/***/
/* Set the ID to be used by the lower driver when*/
/* referencing this channel. */
/***/
channelcfg.uid = channel;

/***/
/* Call the DISI interface open*/
/***/
if(error = SerialOpen(channel, (ChannelCfg *)&channelcfg,
 (Lid)&lids[channel],
 (unsigned long *)&DChanCfg[minor].hdwflags))
 {
 /***/
 /* Return error code.*/
 /***/

DISIplus Section 2. Interfaces and Drivers

2-64 pSOSystem Programmer’s Reference

 switch (error)
 {
 case SIOCAOPEN:
 /**/
 /* The Channel has already been opened by */
 /* another driver*/
 /**/
 return(1);

 case SIOCBADCHANNELNUM
 /***/
 /* Channel is not a valid channel for this*/
 /* hardware*/
 /***/
 return(2);

 case SIOCCFGNOTSUPPORTED
 /***/
 /* Hardware cannot be configured by the*/
 /* DISI as given*/
 /***/
 return(3);

 case SIOCBADBAUD:
 /***/
 /* Baud rate not supported by hardware.*/
 /***/
 return(4);

 case SIOCBADMINCHAR:
 /***/
 /* MinChar is greater then receive buffer*/
 /* size.*/
 /***/
 return(5);

 case SIOCNOTINIT:
 /***/
 /* This error shows that the lower driver*/
 /* thinks it has not been initialized.*/
 /***/
 return(6);
 }

Section 2. Interfaces and Drivers DISIplus

pSOSystem Programmer’s Reference 2-65

SerialSend Function

The SerialSend function is used by the upper level serial driver to transfer data to the
lower-level driver.

long SerialSend(
Lid lid, input
mblk_t* mbp input
);

lid The lower-level ID that was acquired during SerialOpen operation for
the channel to which this is directed.

mbp A pointer to the message block that contains the data to be
transmitted.

A 0 return code indicates that the message block has been queued to send. The UDataCnf
callback will be used by the lower-level driver when the data in the message block has
actually been sent.

NOTE: If a SIOCOQFULL error is received, no data was sent because the transmit
queue is full. SerialSend continues to return SIOCOQFULL until the next
UDataCnf callback happens. Since UDataCnf is the confirmation of a
message being sent, the transmit queue will no longer be full.

EXAMPLE

The following example shows the use of a SerialSend call to send data to the lower serial
driver.

/*---*/
/* This is an example of a function that will get a mblock from*/
/* the mblock pool, fill the mblock's data buffer with some */
/* information and send it to the lower serial driver. */
/*---*/
#include <gsblk.h>
#include <disi.h>

static char test_string[] = "This is a Test Buffer";

/***/
/* SendData: Gets a mblock, puts some data into it and sends */
/* it to the lower driver. */
/* */
/* (Lid)lid lower level id gotten when the */
/* SerialOpen call was made. */
/* */
/* RETURNS: 0 on success */
/* 1 gs_allocb failure */
/* 2 SerialSend failure */

DISIplus Section 2. Interfaces and Drivers

2-66 pSOSystem Programmer’s Reference

/* NOTE(S): */
/* */
/***/
int SendData((Lid)lid)
{
int i;

/***/
/* The typedefs frtn_t and mblk_t are found in pna.h. */
/***/
mblk_t *m;

/***/
/* Call gs_allocb to get a buffer attached to a mblock */
/* structure. */
/* */
/* gs_allocb is a function supplied by pSOSystem in the file */
/* drivers/gsblk.c. It is compiled into bsp.lib. */
/* */
/* gs_allocb takes two arguments */
/* size: size of message block to be allocated */
/* pri: allocation priority (LO, MED, HI) */
/* */
/* gs_allocb is a utility that allocates a message block of */
/* type M_DATA and a buffer of a size greater than or equal to */
/* specified size. pri indicates the priority of the allocation*/
/* request. Currently pri is not used and should be set to 0 */
/* On success, gs_allocb returns a pointer to the allocated */
/* message block. gs_allocb returns a NULL pointer if it could */
/* not fill the request */
/* */
/* mblk_t *gs_allocb(int size, int pri) */
/* */
/* A mblk_t structure looks like this: */
/* */
/* struct msgb */
/* { */
/* struct msgb *b_next; next msg on queue */
/* struct msgb *b_prev; previous msg on queue */
/* struct msgb *b_cont; next msg block of msg */
/* unsigned char *b_rptr; first unread data byte in */
/* buffer */
/* unsigned char *b_wptr; first unwritten data byte */
/* in buffer */
/* struct datab *b_datap; data block */
/* } */

Section 2. Interfaces and Drivers DISIplus

pSOSystem Programmer’s Reference 2-67

/* */
/***/
if(m = gs_allocb(sizeof(test_string), 0) == 0)
 return(1);

/***/
/* Copy data to buffer */
/***/
for(i = 0; i < sizeof(test_string); i++, m->b_wptr++)
 *(m->b_wptr) = test_string[i];

/***/
/* Send mblock to lower driver */
/***/
if(SerialSend(lid, m) != 0)
 return(2);
else
 return(0);
}

The next example shows the use of the SerialSend function to take a list of data buffers
and attach them to an mblock and chain the mblocks together so they will all be part of one
HDLC frame.

#include <gsblk.h>
#include <disi.h>

/**/
/* In this sample we will use LEN as the length of the buffers */
/* that are being sent. However the length of a buffer could */
/* vary in the code. You just need a way to compute each */
/* buffers length. */
/**/
#define LEN 512

/**/
/* SendFrame: Attaches buffers of data to mblocks so that the */
/* buffers will be sent in a single HDLC frame. This */
/* is also known as scatter-gather. */
/* */
/* INPUTS: char **buffs - array of buffer pointers */
/* terminated by a null pointer. */
/* */
/* (Lid)lid lower level id gotten when the */
/* SerialOpen call was made. */
/* */

DISIplus Section 2. Interfaces and Drivers

2-68 pSOSystem Programmer’s Reference

/* RETURNS: 0 on success */
/* 1 gs_esballoc failure */
/* 2 SerialSend failure */
/* NOTE(S): */
/* */
/**/
int SendFrame(char **buffs, (Lid)lid)
{

/**/
/* The typedefs frtn_t and mblk_t are found in pna.h. */
/**/
frtn_t frtn;
mblk_t *m, *mfirst, *mprevious = (mblk_t *)0;

while(*buffs)
 {

 /**/
 /* Set up the frtn structure so the retbuff function will */
 /* be called with an argument that contains the pointer */
 /* to the buffer that can be reclaimed. */
 /* */
 /* NOTE: retbuff is a function that needs to be supplied */
 /* by the user as part of the upper layer code. */
 /**/
 frtn.free_func = (void (*)())retbuff;
 frtn.free_arg = (char *) *buffs;

 /**/
 /* Call gs_esballoc to attach buffer to a mblock structure. */
 /* */
 /* gs_esballoc is a function supplied by pSOSystem in the */
 /* file drivers/gsblk.c. It is compiled into bsp.lib. */
 /* */
 /* gs_esballoc takes four arguments: */
 /* */
 /* unsigned char *base Base pointer of user buffer */
 /* int size Size of user buffer */
 /* int pri Not Used */
 /* frtn_t *frtn Free function and argument for */
 /* user buffer. */
 /**/
 if(m = gs_esballoc((unsigned char *)*buffs, LEN, 0, &frtn)) == 0)
 {

Section 2. Interfaces and Drivers DISIplus

pSOSystem Programmer’s Reference 2-69

 /**/
 /* Free any mblocks used so far. */
 /**/
 while (Mfirst)
 {
 m = mfirst;

 while (m->b_cont != (mblk_t *) 0)
 m = m->b_cont;

 if (m == mfirst)
 mfirst = (mblk_t *) 0;

 gs_freemgs(m);
 }

 return(1);
 }

 /**/
 /* Increment the mblock's write pointer so it points to */
 /* the first unwritten character in the buffer. */
 /**/
 m->b_wptr = (m->b_rptr + LEN);

 /**/
 /* If this is not the first mblock, then chain this mblock */
 /* into the mblock chain by setting b_cont of the previous */
 /* mblock to point the current mblock. */
 /* */
 /* If this is the first mblock then save a pointer to it */
 /* in mfirst. mfirst will be used in the SerialSend call. */
 /**/
 if(mprevious != (mblk_t *)0)
 mprevious->b_cont = m;
 else
 mfirst = m;
 mprevious = m;

 ++buffs;
 }

if(SerialSend(lid, mfirst) != 0)
 return(2);
else
 return(0);

DISIplus Section 2. Interfaces and Drivers

2-70 pSOSystem Programmer’s Reference

SerialIoctl Function

The SerialIoctl function specifies various control operations that modify the behavior of the
DISI.

 long SerialIoctl(
Lid lid, input
unsigned long cmd, input
void *arg input
)

lid The lower-level ID that is acquired during a SerialOpen operation.

cmd The type of control operation.

arg Specific information for the operation.

Not all operations listed below need be supported by the lower layer chip set code. Any non-
supported operation returns with the error code SIOCOPERATIONNOTSUP.

In some cases, a SerialIoctl operation may not complete immediately. In those cases, the
UCtlCnf function is called when the operation has completed with the final status of the
command.

SerialIoctl Commands

The SerialIoctl commands are:

SIOCPOLL Polls the serial device for asynchronous events such as data
indication and exception indication. It provides an ability to
perform as a pseudo ISR and call the callback functions when
the channel is in SIOCPOLL mode or when interrupts are
disabled. For example, when pROBE+ is in control, the
processor operates with interrupts turned off. This command
checks for data received, data transmitted, or exceptions and
then triggers the callback function for these conditions, as
needed.

SIOCGETA Gets the channel configuration and stores this information
into a ChannelCfg structure pointed to by the arg parameter.
This command is immediate, so no callback is made.

SIOCPUTA Sets the channel configuration using the information stored in
a ChannelCfg structure pointed to by the arg parameter. The
effect is immediate, so no callback is made.

SIOCBREAKCHK This command will check to see if a break character has been
sent. This command is used by pROBE+ to see if the user
wants to enter pROBE+. The arg parameter is set to
SIOCBREAKR if there has been a break sent to the channel.

Section 2. Interfaces and Drivers DISIplus

pSOSystem Programmer’s Reference 2-71

SIOCPROBEENTRY This command tells the driver that pROBE+ is being entered.
The driver should now switch to the debugger callouts, uid
and switch from interrupt mode to polled mode.

SIOCPROBEEXIT This commands tell the driver the pROBE+ is being exited and
the driver should now switch from the debugger callouts to the
normal callouts, normal uid and allow interrupts. Normal
callouts and uid are the ones from a SerialOpen call. If
pROBE+ is the only user of the channel then the normal
callouts and uid and the debugger callouts and uid will be the
same.

SIOCBREAK Sends a break character out the channel. Any argument
passed is ignored. This command is immediate, no callback is
made.

SIOCMQRY Gets information about which modem controls are supported
by the channel and stores this information into the long int
pointed to by the arg parameter. A set bit indicates that the
particular control line is supported by the channel. This
command is immediate, so no callback is made.

The modem control lines are:

 SIOCMDTR Data terminal ready
 SIOCMRTS Request to send
 SIOCMCTS Clear to send
 SIOCMDCD Data carrier detect
 SIOCMRI Ring indicator
 SIOCMDSR Data set ready
 SIOCMCLK Clock (sync support)

Since the interface is a DTE, DTR and RTS are outputs and
CTS, RI, DSR, and DCD are inputs.

SIOCMGET Gets the current state of the modem control lines and stores
this information into the long int pointed to by the arg
parameter. SIOCMGET uses the same encoding as
SIOCMQRY. Bits pertaining to control lines not supported by
the channel and the SIOCMCLK bit are cleared. This
command is immediate, so no callback is made.

SIOCMPUT Sets the modem controls of the channel. The arg parameter is
a pointer to a long int containing a new set of modem control
lines. The modem control lines are turned on or off, depending
on whether their respective bits are set or clear. SIOCMPUT
uses the same encoding as SIOCMQRY. Bits pertaining to
control lines not supported by the channel and the SIOCMCLK
bit have no effect. The effect is immediate, so no callback is
made.

DISIplus Section 2. Interfaces and Drivers

2-72 pSOSystem Programmer’s Reference

SOCFLGET Gets the current state of the flags (defined by the UartCfg
structure) and stores this information into an unsigned long
int pointed to by the arg parameter. This call is ignored when
the channel is being used in synchronous mode (HDLC). This
command is immediate, so no call back is made.

SIOFLPUT Sets the flags for the channel. The arg parameter is a pointer
to a long int containing a new set of flags defined by the flag
element in the UartCfg structure. This call is ignored when the
channel is being used in synchronous mode (HDLC). The
effect is immediate, so no call back is made.

SIOCXFGET Gets the current XOFF character and stores this information
into the long int pointed to by the arg parameter. This
command is immediate, so no call back is made.

SIOCXFPUT Sets the new XOFF using the long int pointed to by the arg
parameter. The effect is immediate, so no call back is made.

SIOCXNGET Gets the current XON character and stores this information
the long int pointed to by the arg parameter. This command
is immediate, so no call back is made.

SIOCXNPUT Sets the new XON using the long int pointed to by the arg
parameter. The effect is immediate, so no call back is made.

SIOCREPLENISH Causes the receive buffer pool (if any) to be replenished with
new buffers. In some cases, the lower drivers uses a ring of
buffers to receive data. As a buffer in the ring is used, it is
attached to a mblk and sent to the upper driver via a
UDataInd call. For more efficient operation and to keep the
interrupt latency down, the upper driver must use the
SIOCREPLENISH command so the lower driver replenishes
those buffers. The upper driver configures the size of the
buffers in the ring in the SerialOpen call by the setting of
RBuffSize in the ChannelCfg structure. The number of
buffers in the ring is also set in the SerialOpen call by setting
NRBuffs. The upper driver code should keep track of the
number of buffers used (one used each time UDataInd is
called) and use the SIOCREPLENISH command when it
determines more should be added to the receive buffer pool.
This level should be a factor of the amount of data being
received and the baud rate. It should then be set so the lower
driver does not run out of buffers. Of course, the upper driver
can also use the SIOCREPLENISH command every time
UDataInd is called. Since UDataInd is called as part of the
interrupt routine, using the SIOCREPLENISH command
causes the interrupt to take longer.

Section 2. Interfaces and Drivers DISIplus

pSOSystem Programmer’s Reference 2-73

SIOCREPLENISH is necessary only if the hdwflags passed in
the SerialOpen call had the SIOCHDWRXPOOL bit set. If
SIOCHDWRXPOOL is not set, the lower driver maintains its
own buffer pool and the command is ignored. This command
is immediate, so no call back is made.

SIOCGBAUD Gets the baud rate of the channel and stores this information
into the long int pointed to by the arg parameter. This
command is immediate, so no call back is made.

SIOCSBAUD Sets the new baud rate for the channel using the information
stored in the long int pointed to by the arg parameter. The
effect is immediate so no call back is made.

SIOCGCSIZE Gets the character size (in bits) and stores this information
into the long int pointed to by the arg parameter. This
command is immediate, no call back is made.

SIOCSCSIZE Sets the new character size (in bits) using the information
stored in the long int pointed to by the arg parameter. The
effect is immediate so no call back is made.

SIOCSACTIVATE Activates the channel. This enables the receiver and
transmitter of the channel and waits until the channel
becomes active. In dial-in connections, the SIOCSACTIVATE
command puts the hardware in a mode capable of handling an
incoming call. The UCtlCnf callback is made when the call
arrives. When using HDLC (even when no dial-up connection
is involved), the UCtlCnf callback is made when the link is
active, i.e., it starts receiving flags.

SIOCSDEACTIVATE Deactivates the channel. This disables the receiver and
transmitter of the channel. The SIOCSDEACTIVATE command
drops the connection (DTR) and invalidates the transmitter
and the receiver. The effect is immediate so no call back is
made.

SIOCTXFLUSH Discards all characters in the transmit queue for the channel.
The UDataCnf callback is made for each message that was
discarded with b_flags set to SIOCABORT. A UCtlCnf callback
is made when the transmit queue is empty.

SIOCRXFLUSH Closes the current receive buffer. This causes UDataInd to be
called for the current mblock. Serial interrupts must be
blocked before making this call. A UCtlCnf callback is made
when the command is completed. Serial interrupts should be
enabled when the UCtlCnf callback is received for this
command.

DISIplus Section 2. Interfaces and Drivers

2-74 pSOSystem Programmer’s Reference

SIOCRXSTOP Stops the flow of receive characters. This is used when the
upper level serial driver needs to stop the flow of characters it
is receiving. The lower-level serial code takes the correct
action such as sending an XOFF character if software flow
control is being used or changing the hardware lines if
hardware flow control is being used. The effect is immediate
so no call back is made.

SIOCRXSTART Indicates that the upper level serial driver wants to continue
to receive characters. The lower-level serial code will take the
correct action such as sending an XON character if software
flow control is being used or changing the hardware lines if
hardware flow control is being used. The effect is immediate
so no call back is made.

SIOCNUMBER Gets the total number of serial channels and stores this
information into the long int pointed to by the arg parameter.
This command is immediate, so no call back is made.

SIOCAUTOBAUD Allows the channel to automatically set the baud instead of
using the given baud rate, parity, and character size.

EXAMPLE

The following example shows the use of a SerialIoctl function call to get the baud rate of
the channel.

/***/
/* This get_baud_rate function is an example of a */
/* SerialIoctl function call. */
/***/
int get_baud_rate(unsigned long channel)
{
int baud;

/***/
/* Assume the lower level ID is stored by the SerialOpen */
/* call in a global array called lids. Use the */
/* SIOCGBAUD to get the baud rate and baud as a place to */
/* store the baud rate. */
/***/
if(SerialIoctl(lids[channel], SIOCGBAUD, (void *)&baud)
 return(-1);
else
 return(baud);
}

Section 2. Interfaces and Drivers DISIplus

pSOSystem Programmer’s Reference 2-75

SerialClose Function

The SerialClose function terminates a connection on a serial channel and returns the
channel to its default state.

long SerialClose(
Lid lid input
)

lid The lower-level ID that was acquired during SerialOpen operation for
the channel that is to be closed.

If the channel is not open, SIOCNTOPEN is returned.

EXAMPLE

The following example shows a SerialClose function call to close the channel.

/***/
/* This function TermClose is an example of a SerialClose call */
/* SerialClose will close the channel. This will flush all */
/* transmit buffers, discard all pending receive buffers and */
/* disable the receiver and transmitter of the channel. All */
/* rbuffers associated with the channel will be released */
/* (freed) and the device will hang up the line */
/* */
/***/

void TermClose (channel)
{

SerialClose((Lid)lids[channel]);

/*All semaphores and queues for the channel should be deleted here.*/
}

User Callback Functions

This section contains the templates of the callback functions that must be provided by the
upper-level driver. Pointers to these functions are passed in the ChannelCfg structure
during the SerialOpen of the channel to the device-dependent lower-level code. These
pointers can be changed via the SerialIoctl command SIOPUTA.

NOTE: These calls must be callable from an interrupt. Consequently, it is important
that they do not block within the call and only call OS functions that are
callable from an ISR.

DISIplus Section 2. Interfaces and Drivers

2-76 pSOSystem Programmer’s Reference

UDataInd Callback Function

The UdataInd callback function will be called during an interrupt by the device-dependent
lower-level code to indicate reception of data to the upper level serial driver.

static void UDataInd(
Uid uid, input
mblk_t * mbp, input
unsigned long b_flagsinput
);

uid The upper-level serial driver’s ID for the associated channel. The ID is
passed to the lower-lever serial driver during the SerialOpen of the
channel on which the data is arriving.

mbp A pointer to message block that contains the data received by the
channel.

b_flags The status flags associated with this message block. The flags can be:

SIOCOK Rx received with out error

SIOCLGFRAME Frame with exceeding length

SIOCCONTROL Control Character Received

SIOCMARK Idle Line Condition

SIOCBREAKR Break Received

SIOCFRAMING Framing Error

SIOCPARITY Parity Error

SIOCOVERRUN Overrun of buffers

SIOCCDLOST Carrier Detect Lost

UDataInd must unblock any task that is waiting for data from this channel.

NOTE: If the SerialOpen call returned hdwflags that had the SIOCHDWRXPOOL bit
set, then the lower-level code has a receive buffer pool. This pool will need
replenishing through the use of a call to SerialIoctl with the command
SIOCREPLENISH.

The user supplied functions in the upper layer serial driver must use SerialIoctl to
replenish the buffers. The upper level serial driver must free the message block (pointed to
by mbp) when it is emptied by calling UFreemsg.

In the case of SIOCCONTROL (Control Character Received) the control character will be the
last character in the receive buffer if REJECTCHAR was not set for the LineD entry of that
character. If REJECTCHAR was set, the control character will not be part of the buffer. In
this case UDataInd will be call when the control character is received with the current

Section 2. Interfaces and Drivers DISIplus

pSOSystem Programmer’s Reference 2-77

receive buffer. The last character in the buffer will be the character received just before the
control character was received.

EXAMPLE

The following example shows a UDataInd function call to send data and status to a task.

/***/
/* This function term_dataind is an example of a UDataInd */
/* function. It will get as input: */
/* */
/* Uid uid pointer to channels configuration */
/* mblk_t mblk message block containing data */
/* unsigned long b_flags condition code for block */
/* */
/* term_dataind will use a message queue to send the mblock */
/* and status on to a task that is waiting for data. */
/* */
/* Assume receive_ques is an array of message queue IDs. */
/***/
static void term_dataind(Uid uid, mblk_t *mblk, unsigned long b_flags)
{

/***/
/* Set up the message buffer with the pointer to the mblock */
/* and status */
/***/
msg_buf[0] = (unsigned long)mblk;
msg_buf[1] = b_flags;

/***/
/* Send message to channels message queue. */
/***/
q_send(receive_ques[(unsigned long)*uid], msg_buf);
}

UExpInd Callback Function

The UExpInd callback function is called by the device-dependent lower-level code to
indicate an exception condition.

static void UExpInd(
Uid uid, input
unsigned long exp input
);

DISIplus Section 2. Interfaces and Drivers

2-78 pSOSystem Programmer’s Reference

uid The upper-level serial driver’s ID for the associated channel which is
passed to the lower-lever serial driver during the SerialOpen of the
channel on which the exception has occurred.

exp Type of exception.

Exceptions can be one of the following:

SIOCMARK Idle Line Condition

SIOCBREAKR Break Received

SIOCFRAMING Framing Error

SIOCPARITY Parity Error

SIOCOVERRUN Overrun of buffers

SIOCCDLOST Carrier Detect Lost

SIOCCTSLOST Clear To Send has been lost

SIOCNAFRAME Frame not divisible by 8

SIOCABFRAME Frame aborted

SIOCCRCERR CRC error

SIOCCTS Clear To Send found

SIOCCD Carrier Detect detected

SIOCFLAGS Non Idle Line Condition

UDataCnf Callback Function

The UDataCnf callback function is called by the device-dependent lower-level code to
confirm that the data sent using SerialSend call has been transmitted.

static void UDataCnf(
Uid uid, input
mblk_t * mbp, input
unsigned long b_flagsinput
);

uid The upper-level serial driver’s ID for the associated channel which is
passed to the lower-lever serial driver during the SerialOpen of the
channel on which the data was sent.

mbp Points to the message block sent using SerialSend call.

b_flags Status flags associated with the message block. The b_flags must be
one of the following:

Section 2. Interfaces and Drivers DISIplus

pSOSystem Programmer’s Reference 2-79

SIOCOK Completed without error

SIOCUNDERR Tx underrun (HDLC)

SIOCABORT Tx aborted

The UDataCnf function must unblock any task that was waiting for data to be sent. The
task is responsible for any maintenance necessary to the message block such as freeing it
or reusing it.

EXAMPLE

The following example shows a UDataCnf function call to confirm that data has been sent.

/***/
/* This function term_datacnf is an example of a UDataCnf */
/* function. It takes as inputs: */
/* */
/* Uid uid pointer to channels number */
/* mblk_t mblk message block containing data */
/* unsigned long b_flags condition code for block */
/* */
/* This code assumes that the driver is not waiting for */
/* completion of a transmission. */
/***/
static void term_datacnf(Uid uid, mblk_t *mblk, unsigned long b_flags)
{
gs_freemsg(mblk);
}

UCtlCnf Callback Function

The UCtlCnf callback function is used to confirm the completion of a SerialIoctl control
command.

 static void UCtlCnf(
Uid uid, input
unsigned long cmd input
);

uid The upper-level serial driver’s ID for the associated channel which is
passed to the lower-lever serial driver during the SerialOpen of the
channel on which the I/O control call was made.

cmd The command being confirmed.

EXAMPLE

The following example shows a UCtlCnf function call to confirm the completion of a
SerialIoctl control command.

DISIplus Section 2. Interfaces and Drivers

2-80 pSOSystem Programmer’s Reference

/***/
/* static void term_ctlcnf */
/* */
/* This function term_ctlcnf is an example of a UCtlCnf */
/* function. It takes as inputs: */
/* */
/* Uid uid pointer to a configuration */
/* unsigned long cmd I/O control cmd that */
/* is being confirmed. */
/* */
/* term_ctlcnf assumes that a task is waiting for a */
/* semaphore. */
/* semaphore_ctl_ids is an array that stores the ID for */
/* each channel */
/***/
void term_ctlcnf(Uid uid, unsigned long cmd)
{

/*---*/
/* Release the channels I/O Control semaphore */
/*---*/
sm_v(semaphore_ctl_ids[(unsigned long)*uid]);
}

Access Memory Services

The following callback functions are used to manage message blocks and a buffer pool. The
message blocks are similar to those used by Streams I/O. See the pna.h file in the include
directory of the pSOSystem release for a definition of the message block structures used
here. All of these functions are provided with the pSOSystem operating system. They are
found in the file drivers/gsblk.c.

UEsballoc Callback Function

The UEsballoc callback function returns a message block triplet by attaching the user
supplied buffer as a data block to a message block structure. See the SendFrame example
under the SerialSend function for an example of this call.

 static mblk_t * UEsballoc(
char *bp, input
long len, input
long pri, input
frtn_t *frtn input
);

Section 2. Interfaces and Drivers DISIplus

pSOSystem Programmer’s Reference 2-81

bp Points to the use-supplied buffer.

len Specifies the number of bytes in the buffer.

pri Specifies the priority for message block allocation.

frnt Pointer to the free structure of type frtn_t. This structure is as follows:

typedef struct
{
void (*free_func)();
void *free_arg;
} frtn_t

free_func UFreemsg calls the function pointed to by free_func when the caller-
supplied buffer needs to be freed. The caller must supply the function
pointed to by free_func.

free_arg A pointer to the user supplied buffer.

frtn_t The pointer to frtn_t must be stored by the UEsballoc call. This makes
it available to the UFreemsg call when UFreemsg is used to free the
the message block.

The UEsballoc call may be used by the upper or the lower levels of the interface. In either
case the “user” is who ever is making the call. One use of UEsballoc is a case where there
is a special ram area to be used by the serial chip.

NOTE: This function corresponds to the gs_esballoc function supplied by
pSOSystem in the file drivers/gsblk.c. It is compiled into bsp.lib. You may use
a pointer to gs_esballoc for the UEsballoc callback function.

UAllocb Callback Function

The UAllocb callback function returns a message block triplet or a NULL if no buffer or
message block could be found. See the SendData example under the SerialSend function
for an example of this call.

 static mblk_t * UAllocb(
long size, input
long pri input
);

size Specifies the size of the buffer.

pri Specifies the priority for message block.

NOTE: This function corresponds to the gs_allocb function supplied by pSOSystem
in the file drivers/gsblk.c. It is compiled into bsp.lib. You may use a pointer
to gs_allocb for the UAllocb callback function.

DISIplus Section 2. Interfaces and Drivers

2-82 pSOSystem Programmer’s Reference

UFreemsg Callback Function

The UFreemsg callback function is used to free a message block. See the term_ctlcnf
example under the UDataCnf function for an example of this call.

 static void UFreemsg(
mblk_t *mbp, input.
);

mbp Points to the message block triplet for this specific message
block pool. If the message block was formed using the UEsballoc
call, UFreemsg calls the function pointed by free_func with a
pointer to free_arg as its argument.

NOTE: This function corresponds to the gs_freemsg function supplied by
pSOSystem in the file drivers/gsblk.c. It is compiled into bsp.lib. You may use
a pointer to gs_freemsg for the UFreemsg callback function.

Data Structures

Following are templates of data structures. They can be found in include/disi.h.

CCfg
typedef struct ccfg {

unsigned long Mode;
Modecfg Cfg;
unsigned long RBuffSize;
unsigned long NRBuffs;
unsigned long OutQLen;
unsigned long Baud;
unsigned long LineMode;
void (*dataind)(uid,mblk_t, unsigned long);
void (*expind)(uid, unsigned long);
void (*datacnf)(uid,mblk_t,unsigned long);
void (*ctlcnf)(uid, unsigned long);
mblk_t * (*allocb)(long, long);
void (*freemsg)(mblk_t);
mblk_t * (*esballoc)(char,long, long,frtn_t);
Uid uid;
unsigned long Reserve[4];
} ChannelCfg;

Section 2. Interfaces and Drivers DISIplus

pSOSystem Programmer’s Reference 2-83

Mode Mode can be:

SIOCSYNC Sync mode - async if not set

SIOCPOLLED Poll mode - interrupt if not set

SIOCLOOPBACK Local loop back mode

The Mode decides which structure to use; if SIOCSYNC is set,HdlcCfg
is used, otherwise UartCfg is used.

typedef union {

struct HdlcCfg Hdlc;

struct UartCfg Uart;

} ModeCfg;

RBuffSize The size of the receive buffers. RBuffSize can only be set during the
SerialOpen call. It cannot be changed by a SerialIoctl call.

NRBuffs The number of receive buffers to allocate for the receive queue.

OutQLen The maximum number of message buffers waiting to be transmitted.
If the maximum number is exceeded, SerialSend fails with an
SIOCOQFULL error.

Baud Set to the actual desired baud rate. If the selected baud rate is not
supported by the lower-level device-dependent code, SerialOpen or
SerialIoctl fails, an error is returned.

LineMode LineMode can be:

HALFD Half-Duplex

FULLD Full-Duplex

MULTIDROP Multi-Drop lines

dataind Pointer to a data indication routine. See UDataInd for additional
information.

expind Pointer to an exception indication routine. See UExpInd for additional
information.

datacnf Pointer to a data confirmation routine. See UDataCnf for additional
information.

ctlcnf Pointer to a control confirmation routine. See UCtlCnf for additional
information.

allocb Pointer to an allocate message block routine. See UAllocb for
additional information.

DISIplus Section 2. Interfaces and Drivers

2-84 pSOSystem Programmer’s Reference

freemsg Pointer to a free message list routine. See UFreemsg for additional
information.

esballoc Pointer to an attach message block routine. See UEsballoc for
additional information.

HdlcCfg
struct HdlcCfg{

unsigned char TxClock;
unsigned char RxClock;
unsigned char Modulation;
unsigned char Flags;
unsigned short Crc32Bits;
unsigned short MaxFrameSize;
unsigned short Address[4];
unsigned short AddressMask;
unsigned long FrameCheckErrs;
unsigned long TransmitUnderrunErrs;
unsigned long ReceiveOverrunErrs;
unsigned long InterruptedFrames;
unsigned long AbortedFrames;
unsigned long Reserve[4];
};

TxClock and RxClock
Can be:

CLK_INTERNAL Internal clock (xmit only)

CLK_EXTERNAL External supplied clock

CLK_DPLL Digital Phase Lock Loop

CLK_INVERT Transmit DPLL invert data

Modulation Can be:

MOD_NRZ

MOD_NRZI_MARK

MOD_NRZI_SPACE

MOD_FM0

MOD_FM1

MOD_MANCHESTER

MOD_DMANCHESTER

Flags Number of interframe flags

Section 2. Interfaces and Drivers DISIplus

pSOSystem Programmer’s Reference 2-85

Crc32Bits Can be CRC32. If not set, 16 bit CRC is assumed.

MaxFrameSize Used to discard any frame that is greater than the value of
MaxFrameSize.

Address The addresses to be recognized. There must be 4 values in the Address
fields (duplicates are allowed) because, in HDLC, no single character
can serve as an end-of-list indicator.

AddressMask Determines which of the possible 16 bits (of each Address[i]) are used
to filter the addresses of the received frames: 0 means no filtering,
0xFF means 8-bit addresses and 0xFFFF means 16-bit addresses.
Other masks are allowed to filter on fewer than 8 bits: for example the
mask 0x00F0 with Address[i] set to 0x00C0 will cause the driver to
receive only frames that have their first byte starting with 0xC0 to
0xCF.

FrameCheckErrs
The total number of frames with an invalid frame check sequence
input from the channel since the system re-initialized and while the
channel was active. This data is collected for the MIB.

TransmitUnderrunErrs
The total number of frames that failed to be transmitted on the
channel since the system was re-initialized and while the channel was
active. TransmitUnderrunErrs can occur because data was not
available to the transmitter in time. This data is collected for the MIB.

ReceiveOverrunErrs
The total number of frames that failed to be received on the channel
since the system was re-initialized and while the channel was active.
ReceiveOverrunErrs can occur because the receiver did not accept
the data in time. This data is collected for the MIB.

InterruptedFrames
The total number of frames that failed to be received or transmitted on
the channel since the system was re-initialized and while the channel
was active. InterruptedFrames can occur because of loss of modem
signals. This data is collected for the MIB.

AbortedFrames
The number of frames aborted on the channel since the system was re-
initialized and while the channel was active. AbortedFrames can
occur due to receiving an abort sequence. This data is collected for the
MIB.

Reserved Reserved field.

DISIplus Section 2. Interfaces and Drivers

2-86 pSOSystem Programmer’s Reference

UartCfg
struct UartCfg{

unsigned long CharSize;
unsigned long Flags;
LineD Lined[2];
unsigned char XOnCharacter;
unsigned char XOffCharacter;
unsigned short MinChar;
unsigned long MaxTime;
unsigned long ParityErrs;
unsigned long FramingErrs;
unsigned long OverrunErrs;
unsigned long Reserve[4];
}

CharSize CharSize can be:

CS5 5 bits per character

CS6 6 bits per character

CS7 7 bits per character

CS8 8 bits per character

Flags Flags can be:

CANON Canonical mode

C2STOPB Send two stop bits, else one

PARENB Parity enable

PARODD Odd parity, else even

HWFC Hardware flow control on

SWFC Software flow control on

SWDCD Software data carrier detect

LECHO Enable local echo

BRKINT Interrupt on reception of Break

DCDINT Interrupt on loss of DCD

AUTOBAUDENB Enable autobaud

When CANON is set, the input is processed and assembled in blocks
of data with the use of the line-delimiters in LineD. When the block is
assembled, the UDataInd callback function is called. The MinChar
and MaxTime arguments are ignored when CANON is set. If CANON
is not set, the delimiters in LineD are ignored and the values of

Section 2. Interfaces and Drivers DISIplus

pSOSystem Programmer’s Reference 2-87

MinChar and MaxTime are used to determine when to call the
UDataInd callback function.

When PARENB is set, parity generation and detection is enabled and
a parity bit is added to each character. When parity is enabled, odd
parity is used if the PARODD flag is set, otherwise even parity is used.

When HWFC is set, the channel uses CTS/RTS flow control. If the
channel does not support hardware flow control, this bit is ignored.

When SWFC bit is set, XON/XOFF flow control is enabled.

When SWDCD is set, the channel responds as if the hardware data
carrier detect (DCD) signal is always asserted. If SWDCD is not set, the
channel is enabled and disabled by DCD.

When BRKINT is set, the channel issues an UExpInd exception
callback function if a break character is received.

When DCDINT is set, the channel issues an UExpInd exception
callback function upon loss of the DCD signal.

When AUTOBAUDENB is set, the channel may use the auto baud
feature if it is supported by the lower-level driver.

LineD An array of structures defined as follows:

typedef struct

{

unsigned char LChar;

unsigned char LFlags;

} LineD;

LChar Any 8 bit value that the user wants to use as a character that, when
received, causes an interrupt that will cause the UDataInd function to
be called.

LFlags A bit field that controls the characters use as follows:

 ENDOFTABLE - non valid (last entry in table)

If table has 2 entries none will have this bit set

REJECTCHA - character is rejected

If REJECTCHAR is set, the character does not become part of the
buffer and an interrupt is generated but the buffer is not closed
(characters will still be received). If REJECTCHAR is not set, an
interrupt is generated and the character is the last character in the
buffer. The buffer is closed and another buffer is used to receive data.

DISIplus Section 2. Interfaces and Drivers

2-88 pSOSystem Programmer’s Reference

If this function is not supported by the chip set it must be emulated by
the lower-level device-dependent code.

XOnCharacter Software flow control character used to resume data transfer.

XOffCharacter Software flow control character used to temporarily terminate data
transfer.

MinChar/Maxtime
Used in non-canonical mode processing (CANON bit not set in flags).
In non-canonical mode input processing, input characters are not
assembled into lines. The MinChar and MaxTime values are used to
determine how to process the characters received.

MinChar represents the number of characters that are received before
UDataInd callback function is called. MinChar cannot be larger than
RBuffSize.

MaxTime is a timer of 0.10 second granularity that is used to override
the MinChar value so the driver does not wait forever for that amount
of characters. The four possible values for MinChar and MaxTime and
their interactions are described below.

1. If MinChar > 0 and MaxTime > 0 then MaxTime serves as an
intercharacter timer and is activated after the first character is
received. Since it is an intercharacter timer, it will be reset after a
character is received. The interaction between MinChar and Max-
Time is as follows: as soon as one character is received, the inter-
character timer is started. If MinChar characters are received
before the intercharacter timer expires, UDataInd is called which
sends the receive buffer up to the next level. If the timer expires
before MinChar characters are received, UDataInd is called with
the characters received to that point.

2. If MinChar > 0 and MaxTime = 0 then, since the value of Max-
Time is zero, only MinChar is significant. UDataInd is not called
until MinChar characters are received.

3. If MinChar = 0 and MaxTime > 0 then, since MinChar = 0, Max-
Time no longer represents an intercharacter timer but serves as
a read timer. It is activated as soon as a read() is started.
UDataInd is called as soon as a single character is received or the
timer expires.

4. If MinChar = 0 and MaxTime = 0 then no action is required by
the lower-level code. The lower-level code uses RBuffSize as the
number of characters to receive before calling UDataInd.

Section 2. Interfaces and Drivers DISIplus

pSOSystem Programmer’s Reference 2-89

ParityErrs Keeps track of the parity errors that happen on the channel. This
information is used by MIB.

FramingErrs Keeps track of the framing errors that happen on the channel. This
information is used by MIB.

 OverrunErrs Keeps track of the overrun errors that happen on the channel. This
information is used by MIB.

Error Codes

The following error codes can be returned:

SIOCAOPEN Channel already open.

SIOCBADCHANNELNUM Channel does not exist.

SIOCCFGNOTSUPPORTED Configuration not supported.

SIOCNOTOPEN Channel not open.

SIOCINVALID Command not valid.

SIOCBADARG Argument not valid.

SIOCOPERATIONNOTSUP Operation not supported.

SIOCOQFULL Output queue full, send failed.

SIOCBADBAUD Baud rate not supported.

SIOCBADMINCHAR MinChar > RBuffSize.

SIOCWAITING Waiting for previous command to complete.

SIOCNOTINIT Driver not initialized.

Multiplex Driver Mapping

This describes how the lower chip level serial drivers for different chip types are to be
multiplexed under the DISI so they can be used by one upper level driver. This is used when
there is more then one type of serial chip. The method described here uses a private table
under the bsp. The mapping tells the DISI what lower chip specific driver to call and the
port number in that driver to use. This table would be set up in board.c.

DISIplus Section 2. Interfaces and Drivers

2-90 pSOSystem Programmer’s Reference

SDRVCNFG Structure

This is an array of structures that maps a channel number to a serial driver and physical
port number in that driver. The structure is defined in include/disi.h as:

typedef struct
{
unsigned long dnum;/* Driver number */
unsigned long pnum;/* Physical port number */
Lid lid; /* Lower driver port ID */

} SDRVCNFG

There is one SDRVCNFG for each serial channel in the system.

SERIALFUNCS Structure

In order to multiplex more then one driver the names of the function call entry points for
the lower-level driver code need to be different for each driver. For example, instead of
SerialOpen function name for the port open function you might use ser_360_Open in a
driver for the MC68360 chip. Each lower-level serial driver will have an entry in an array of
structures called SerialFuncs. The SerialFuncs is an array of SERIALFUNCS structures.
The SERIALFUNCS structure maps the DISI function calls with corresponding driver
functions. The structure is defined in include/disi.h as follows:

typedef struct
{
long (*Init)(void);
long (*Open)(unsigned long, ChannelCfg *, Lid *, unsigned long) *;
long (*Send)(Lid, mblk_t *);
long (*Ioctl)(Lid, unsigned long, void *);
long (*Close)(Lid);
}SERIALFUNCS;

There is one SERIALFUNCS for each chip level driver.

The file drivers/ser_mplx.c contains multiplexed DISI driver entry functions. To use these
functions requires a #define int bsp.h called BSP_NUM_SER_DRVRS. This #define should
be set to the number of serial drivers that will be multiplexed. Also required to use these
functions are two structures that should be declared in board.c SerialFuncs and
SDrvCnfg. The following is an example of these two structures. These examples assumes
there are two drivers to multiplex, a MC6836 serial driver called ser_360 and a Zilog 8530
driver that will be called Z8530:

/* Driver Driver #*/
 #define ser_360 0
 #define Z8530 1

Section 2. Interfaces and Drivers DISIplus

pSOSystem Programmer’s Reference 2-91

SERIAL_FUNCS SerialFuncs[] =

/* INIT OPEN SEND IOCTL CLOSE */
ser_360_Init, ser_360_Open, ser_360_Send, ser_360_Ioctl,ser_360_Close,
Z8530_Init, Z8530_Open, Z8530_Send, Z8530_Ioctl, Z8530_Close;

SDRVCFNG SDrvCnfg[BSP_SERIAL + 1] =

/* Driver Port Lid Channel */
0, 0, 0 /* Channel 0 - not used */
ser_360, 1, 0 /* Channel 1 */
ser_360, 2, 0 /* Channel 2 */
ser_360, 3, 0 /* Channel 3 */
Ser_360, 4, 0 /* Channel 4 */
Z8530, 1, 0 /* Channel 5 */
Z8530, 2; 0 /* Channel 6 */

Index zero of the array is not used because pSOSystem uses 0 for the default system
console. The system console is mapped to an actual channel before being looked up in the
SDrvCnfg array.

The Lid element of the SDrvCnfg will be set by the call to SerialOpen for each port.

In the above example, channel 4 corresponds to index 4 which is the 68360 driver port 4
and channel 6 corresponds to index 6 the Z8530 driver port 2.

DISIplus Section 2. Interfaces and Drivers

2-92 pSOSystem Programmer’s Reference

Section 2. Interfaces and Drivers SCSI

pSOSystem Programmer’s Reference 2-93

NAME

SCSI -- Small Computer System Interface Driver

DESCRIPTION

The SCSI driver is divided into an upper part and a lower part. The upper part is located
the file named scsi.c, which resides in the drivers directory. The lower part is located in
the file named scsichip.c, which resides in the src directory. The location of the src
directory depends on the CPU board as the following path illustrates:

bsps/board/src

where board can be m147, m167, and so on.

The scsi.c file is a system-supplied file that is an interface to all systems that support a
SCSI interface. It contains the I/O switch table subroutine calls that pSOS+ uses as an
entry point into the SCSI driver. The scsi.c driver responds to a SCSI call by formatting a
SCSI command and passing it the lower driver (scsichip.c). scsichip.c then proceeds to
execute the SCSI operation in a method determined by the hardware on the individual
board.

The scsichip.c driver is the software interface to the SCSI device interface (often one or
more SCSI chips). scsichip.c takes the SCSI operation passed from the upper driver, then
it controls the execution of that operation through the SCSI hardware interface. The status
of the operation is subsequently returned to the upper driver.

User Interface

The application interacts with the SCSI driver through system calls to the pSOS+ kernel.
The paragraphs that follow describe the contents of the four system calls that apply to SCSI
operations.

de_init(long DEV, long *IOPB, long *return, long *data_area)

The de_init() call initializes the SCSI driver. It must be the first call to the SCSI driver. DEV
is the major device number of the SCSI driver. IOPB, return, and data_area are dummy
pointers that the SCSI driver does not use and which should be set to null.

NOTE: The following two descriptions are for the de_read() and de_write() calls.
These calls are the direct way to access a SCSI device. However, a file
system type device (such as a disk drive) can be accessed and managed
through pHILE+ by using calls to pHILE+. When pHILE+ is used, it supplies the
pointer of the buffer_header structure to the SCSI driver. For more
information, refer to the pSOSystem System Concepts manual.

de_read(long Dev, long *IOPB, long *return)

The purpose of de_read is to read from a SCSI device. Dev is the result of an OR of the major
device number of the SCSI driver (upper 16 bits) with the minor number of the specific SCSI

SCSI Section 2. Interfaces and Drivers

2-94 pSOSystem Programmer’s Reference

device (lower 16 bits); IOPB is a pointer to the SCSI-specific I/O parameter block structure;
and return is a pointer to the long word that receives the return value.

de_write(long Dev, long *IOPB, long *return)

The purpose of de_write is to write to a SCSI device. Dev is the result of an OR of the major
device number of the SCSI driver (upper 16 bits) with the minor number of the specific SCSI
device (lower 16 bits); IOPB is a pointer to the SCSI-specific I/O parameter block structure;
and return is a pointer to the long word that receives the return value.

The SCSI-specific I/O parameter block (IOPB) that de_read and de_write pass resides in
the phile.h include file. This include file resides in the include directory and has the
following format:

/*--*/

/* Device Driver Buffer Header Structure */

/*---*/

typedef struct buffer_header{

ULONG b_device;

ULONG b_blockno;

USHORT b_flags;

USHORT b_bcount;

void *b_devforw;

void *b_devback;

void *b_avlflow;

void *b_avlback;

void *b_bufptr;

void *b_bufwaitf;

void *b_bufwaitb;

void *b_volptr;

USHORT b_blksize;

USHORT b_dsktype;

} BUFFER_HEADER;

The following are the only elements from the preceding structure that a SCSI driver uses:

b_device Must contain the minor device number (the SCSI id of the device).

b_blockno Must contain the starting block number of the device to start reading
or writing.

b_bcount Must contain the number of blocks to be read from the device.

b_bufptr Pointer to the buffer to read or written.

Section 2. Interfaces and Drivers SCSI

pSOSystem Programmer’s Reference 2-95

b_blksize Size of the block to be read or written in base 2.

de_cntrl(long Dev, long *IOPB, long *return)

The de_cntrl call performs one of three special functions on the SCSI device. Although
de_cntrl can be optional for other I/O calls, the SCSI interface requires it. This subsection
describes the three special function commands.

Dev is the major/minor device number of the SCSI driver; IOPB is a pointer to the SCSI-
specific I/O parameter block structure; and return is a pointer to the long word that
receives the return value.

The three special functions the SCSI driver can perform by using de_cntrl are:

• Formatting a device (SCSI_CTL_FORMAT)

• Getting device information (SCSI_CTL_INFO)

• Passing a SCSI command to the lower driver (SCSI_CTL_CMD)

The #define statements for the preceding control commands reside in the drv_intf.h
include file. This include file resides in the include directory. The SCSI-specific IOPB that
the de_cntrl call passes appears in the drv_intf.h file as follows:

struct scsi_ctl_iopb{

long function

union

{

struct scsi_info info;

struct scsi_cmd cmd;

} u;

}

If the function command SCSI_CTL_FORMAT is specified (for example,
scsi_ctl_iopb.function=SCSI_CTL_FORMAT), no other information in the structure
should be specified.

If the function command SCSI_CTL_INFO is specified (for example,
scsi_ctl_iopb.function=SCSI_CTL_INFO), the driver fills in the info element of the
scsi_ctl_iopb structure for the application’s use. The scsi_info structure appears in the
drv_intf.h file as follows:

struct scsi_info{

unsigned char devtype; /* Type of device - values defined below */

unsigned char scsi_id; /* Devices address on the SCSI bus */

unsigned char char lun; /* Device’s LUN */

unsigned char removable; /* Removable media */

char vendor[SCSI_VENDOR_SIZE]; /* Device’s manufacturer */

char product[SCSI_PRODUCT_SIZE];/* Model name */

long blocks; /* Capacity in blockd */

SCSI Section 2. Interfaces and Drivers

2-96 pSOSystem Programmer’s Reference

long blocksize; /* Size of each block in bytes */

};

If the function command SCSI_CTL_CMD is specified (for example,
scsi_ctl_iopb.function=SCSI_CTL_CMD), the application must fill in the command
structure. The scsi_cmd structure appears in the drv_intf.h file as follows:

struct scsi_cmd{

unsigned int target_id; /* Target id of SCSI device */

unsigned char *data_ptr; /* Pointer to in/out data area */

unsigned int data_in_len; /* Max data to take in if in */

unsigned int data_out_len; /* Amount of data if out */

unsigned int command_len; /* Length of SCSI CDB */

unsigned char *cdb; /* Pointer to SCSI CDB */

};

where

target_id SCSI device id.

data_ptr Pointer to the area where data for read or write operations is stored.

data_in_len Length of the buffer (specified as a character count) that stores input
data. If the data is output data, this should be 0.

data_out_len Length of the data (specified as a character count) that stores output
data. If the data is input data, this should be 0.

command_len Size (specified as a character count) of the SCSI CDB.

cdb Pointer to the SCSI Command Descriptor Block (CDB). The CDB
describes the actual command that goes to the SCSI device. The CDB
must conform to the ANSI SCSI-2 spec and be supported by the device.

Section 2. Interfaces and Drivers SCSI

pSOSystem Programmer’s Reference 2-97

pSOS-to-Driver Interface

The pSOS-to-driver interface consists of data structures and subroutine calls that the
pSOS+ kernel uses to send requests to the SCSI device driver.

/*---*/

/* I/O Driver Parameter Structure */

/*---*/

struct ioparms{

unsigned long used; /* Set by driver if out_retval/err used */

unsigned long tid; /* task id of calling task */

unsigned long in_dev; /* Input device number */

unsigned long status; /* Processor status of caller */

void *in_iopb; /* Input pointer to IO parameter block */

void *io_data_area; /* not used */

unsigned long err; /* For error return */

unsigned long out_retval; /* For return value */

};

The upper driver contains the following subroutines, which comprise the pSOS-to-driver
interface:

void SdrvSetup(void)
This subroutine initializes variables that require a starting value
before the subroutine SdrvInit can be called. pSOS+ calls SdrvSetup
during system initialization.

void SdrvInit(register struct ioparms *s_ioparms)
This subroutine initializes the SCSI driver and any DMA driver needed
for SCSI operation. pSOS+ calls SdrvInit when a de_init call is made
for the SCSI driver.

void SdrvCntrl(register struct ioparms *s_ioparms)
This subroutine can issue commands to the SCSI interface; return
information about a SCSI device; or format a SCSI device. pSOS+ calls
SdrvCntrl when a de_cntrl call is made for the SCSI driver.

void SdskRead(struct ioparms *sd_ioparms)
This subroutine reads blocks of data from a SCSI disk. pSOS+ calls
SdskRead when a de_read call is made for the SCSI driver.

void SdskWrite(struct ioparms *sd_ioparms)
This subroutine writes blocks of data to a SCSI disk. pSOS+ calls
SdrvWrite when a de_write call is made for the SCSI driver.

SCSI Section 2. Interfaces and Drivers

2-98 pSOSystem Programmer’s Reference

The preceding upper driver subroutines create the proper SCSI CDB and call lower driver
routines to communicate with the SCSI device interface.

Upper-to-Lower Driver Interface

The lower driver in scsichip.c must contain the subroutines in the following descriptions.
These subroutines comprise the upper-to-lower driver interface. All board support
packages from ISI that support SCSI devices contain the upper-to-lower driver interface.
User-created board support packages must contain an appropriate user-supplied upper-to-
lower driver interface. In either case, the interface must contain the following subroutines:

long chipinit(void)
This function should initialize the lower SCSI driver and return status.
The upper driver subroutine SdrvInit calls chipinit.

long dma_init()
This function should initialize any DMA device that SCSI operation
requires and then return status. This subroutine may be empty if no
DMA initialization is necessary. The preferable location for this
function is the dma.c file.

long chipexec(TRANS_blk)
This function takes a CDB input, executes the SCSI command, and
returns status. chipexec is the lower entry point from the upper
driver.

The status that chipexec returns must be one of the following:

#define STAT_OK 0 /* Operation was successful */

#define STAT_CHECKCOND 1 /* Contingent allegiance condition (should */
/* issue a Request Sense to get cause of */
/* failure) */

#define STAT_ERR 2 /* A Gross error has occurred. A command */
/* may be formatted incorrectly: retry may */
/* correct problem */

#define STAT_TIMEOUT 3 /* A selection timeout occurred. More than */
/* likely no device exists at this SCSI id. */

#define STAT_BUSY 4 /* Device busy: it cannot accept another */
/* command. */

#define STAT_SEMFAIL 5 /* An s_mp operation has failed, and the */
/* driver cannot continue with the */
/* current command */

The preceding #defines reside in the scsi.h include file. This include file resides in the
include directory.

Section 2. Interfaces and Drivers SCSI

pSOSystem Programmer’s Reference 2-99

The following typedef must be defined in drv/scsichip.h (lower driver). It must contain the
elements in the list that follows. For individual applications, users can add appropriate
elements to this typedef for the lower driver’s use.

/***************************************/

/* Transaction interface structure */

/**************************************/

typedef struct trans_blk{

unsigned int id; /* SCSI device id/interrupt level */

unsigned int lun; /* Logical Unit Number */

unsigned int cmdl; /* Command Descriptor Block Length */

unsigned char cmd[MAX_CDB]; /* Command Descriptor Block */

unsigned int data_len; /* Number of data bytes to transfer */

unsigned char *data_ptr; /* Pointer to data area */

unsigned char *original_data_ptr; /* Data area to use */

int original_data_len; /* Data out length (actual) */

unsigned char *next_trans_blk; /* Pointer to next trans_blk */

TARGET_DEV *target_dev; /* Pointer to target device struct */

}TRANS_BLK

The upper driver passes the preceding transaction structure to the lower driver by
executing the chipexec subroutine. The structure contains all the information needed to
perform the requested SCSI operation.

SCSI Section 2. Interfaces and Drivers

2-100 pSOSystem Programmer’s Reference

Section 2. Interface and Drivers SLIP

pSOSystem Programmer’s Reference 2-101

NAME

SLIP- Serial Line Internet Protocol

DESCRIPTION

Serial Line Internet Protocol (SLIP) is a packet-framing protocol that defines a sequence of
characters to frame IP packets on a serial line. It does not provides addressing, packet type
identification, error detection/correction, or compression mechanisms. SLIP is commonly
used on dedicated serial links and is usually used with line speeds between 1200bps and
19.2Kbps. It is useful for allowing a mix of hosts and routers to communicate with one
another (host-host, host-router and router-router are all common SLIP network
configurations).

The SLIP driver in pSOSystem is an implementation of the SLIP protocol as defined in
RFC1055. It also supports Van Jacobson TCP/IP header compression as defined in
RFC1144. The driver is implemented as a Network Interface (NI) to the pNA+ component to
allow TCP/IP operations over serial lines. It can be used by networking applications or it
can be configured as a standard pNA+ Network Interface to support the Integrated Systems
source-level debugger.

SLIP driver can be configured into pNA+ either by using a add_ni() call or by configuring it
into the pNA+ Network Interface table. It must be configured into the initial Network
Interface table if it is to be used by the debugger.

Configuration

There are several site-dependent parameters that are required to configure the SLIP driver
into pSOSystem. These are defined in the file slip_conf.h. The parameters are defined using
the C define statement.

SLIP_CHANNEL Specifies the serial channel number for the SLIP interface.

SLIP_MTU Specifies the Maximum Transmission Unit (MTU) for the SLIP
interface. This value must be equal to the peer’s MTU. The
parameter additionally defines the size of the buffers allocated at the
local node.

CSLIP If set to 1, Van Jacobson TCP/IP header compression is performed
on the SLIP interface. If set to 0, Van Jacobson header compression
is not performed on the SLIP interface.

SLIP_LOCAL_IP Defines the IP address of the SLIP interface.

SLIP_PEER_IP Defines the peer IP address of the SLIP interface.

SLIPBUFFERS Defines the number of buffers configured in the SLIP driver. This
includes both the receive and transmit buffers. The size of the
buffers configured will be twice the SLIP_MTU value.

SLIP Section 2. Interface and Drivers

2-102 pSOSystem Programmer’s Reference

SLIP_CONF Example

An example of a slip_conf.h is shown below:

/***/

/* */
/* MODULE: slip_conf.h */
/* PRODUCT: pNA+ */
/* PURPOSE: User configurations for SLIP driver */
/* DATE: 93/11/15 */
/* */
/***/

/* */
/* Copyright 1993, Integrated Systems Inc. */
/* ALL RIGHTS RESERVED */
/* */
/* This computer program is the property of Integrated Systems Inc.*/
/* Santa Clara, California, U.S.A. and may not be copied */
/* in any form or by any means, whether in part or in whole, */
/* except under license expressly granted by Integrated Systems Inc. */
/* */
/* All copies of this program, whether in part or in whole, and */
/* whether modified or not, must display this and all other */
/* embedded copyright and ownership notices in full. */
/* */
/***/

#ifndef __SLIP_CONF_H__
#define __SLIP_CONF_H__

/*===*/
/* User configuration parameters */
/*===*/

#define SLIP_CHANNEL3 /* which channel to use as SLIP */
#define SLIP_MTU1006 /* also used for buffer size */
#define CSLIP1 /* define to 0 for plain SLIP! */
#define SLIP_LOCAL_IP0xc1000002 /* 193.0.0.2 */
#define SLIP_PEER_IP0xc1000004
#define SLIPBUFFERS32 /* Number of slip buffers */

/*===*/
/* End of user configurations */
/*===*/

#endif /* __SLIP_CONF_H__ */

Section 3. Configuration Tables intro

pSOSystem Programmer’s Reference 3-1

NAME

intro -- Introduction to Section 3: Configuration Tables

DESCRIPTION

The pSOSystem components configure themselves at startup based on information
contained in a collection of user-supplied Configuration Tables. These tables contain
parameters that characterize the hardware and application environment.

The pSOSystem software contains functions that build all configuration tables for you. A
user supplied file called sys_conf.h is used for this purpose.This file contains #define
statements for the various parameters needed to construct the configuration tables. The
“Configuration and Startup” chapter in pSOSystem Getting Started details the use of the
sys_conf.h file. Also examples of its use appear in all the sample applications. This section
explains the configuration tables on a more basic level for those who want to build their
own configuration tables or just want more detailed information on it. It describes the
structures for the following Configuration Tables:

• Node (See page 3-3)

• Multiprocessor (See page 3-5)

• pSOS+ (See page 3-9)

• pROBE+ (See page 3-15)

• pHILE+ (See page 3-25)

• pREPC+ (See page 3-29)

• pNA+ (See page 3-31)

• pRPC+ (See page 3-39)

The structure definitions for these configuration tables reside in the include/configs.h
directory.

The Configuration Tables can be located anywhere in memory. pSOSystem locates the
tables via a Node Configuration Table, from which a set of pointers fans out to the individual
component configuration tables.

The Node Configuration Table can also be located anywhere in memory; it is located via the
Node Anchor, which is the one fixed point of reference. The Node Anchor exists to enable
any component to locate the Node Configuration Table, and subsequently the individual
configuration tables. Figure 4 on page 3-2 shows the relationships between the Node
Anchor and the various tables.

pSOSystem components expect the Node Anchor to be set up at memory address 0x44. It
may be moved, if necessary, by making a patch within each individual component.

intro Section 3. Configuration Tables

3-2 pSOSystem Programmer’s Reference

pSOS+
Configuration

Table

Multiprocessor
Configuration

Table

Node
Configuration

Table

0x44 (Default)

Node Anchor

CPU_TYPE

MP_CT

PSOS_CT

PROBE_CT

PHILE_CT

PREPC_CT

PNA_CT

pNA+
Configuration

Table

Subcomponent
Tables

Figure 4 Configuration Tables

Section 3. Configuration Tables Node

pSOSystem Programmer’s Reference 3-3

NAME

Node -- Pointers to Configuration Tables of software components

SYNTAX

typedef struct NodeConfigTable {
unsigned long cputype; /* CPU type */
MP_CT *mp_ct; /* Pointer to Multiprocessor Config Table */
pSOS_CT *psosct; /* Pointer to pSOS+ Configuration Table */
pROBE_CT *probect; /* Pointer to pROBE+ Configuration Table */
pHILE_CT *philect; /* Pointer to pHILE+ Configuration Table */
pREPC_CT *prepct; /* Pointer to pREPC+ Configuration Table */
unsigned long rsvd1; /* Unused entry */
pNA_CT *pnact; /* Pointer to pNA+ Configuration Table */
pSE_CT *psect; /* Pointer to pSE+ Configuration Table */
pMONT_CT *pmct; /* Pointer to pMONT+ Configuration Table */
unsigned long rsvd2 [2]; /* Unused entries. */
} NODE_CT;

DESCRIPTION

The Node Configuration Table is a user-supplied table that is used to locate each individual
component configuration table; it contains a list of pointers, one for each component
configuration table. This table can reside anywhere in RAM or ROM. The Node Anchor must
contain a pointer to the location of the Node Configuration Table. The C language template
for the Node Configuration Table is located in include/configs.h:

Node Section 3. Configuration Tables

3-4 pSOSystem Programmer’s Reference

Definitions of the Node Configuration Table entries are as follows:

cputype CPU type and has the following meaning:

BITS MEANING

31 - 10 Must be all 0‘s

9 1 = Use MMU; 0 = No MMU used

8 1 = Use FPU; 0 = No FPU used

7 - 0 Processor type, as follows:

0 = 68000, 68008, or 68302

1 = 68010

2 = 68020

3 = 68030

4 = 68040

6 = 68060

7 = 68070

33 = CPU32 family: 68332, 68340

36 = 68360

The MMU or FPU bit should be 1 only if these units exist in the system.

mp_ct Starting address of the Multiprocessor Configuration Table: it should be 0
if the system is single-processor.

probe_ct Starting address of the pROBE+ Configuration Table: it should be 0 if
pROBE+ is not installed.

phile_ct Starting address of the pHILE+ Configuration Table: it should be 0 if
pHILE+ is not installed.

prep_ct Starting address of the pREPC+ Configuration Table: it should be 0 if
pREPC+ is not installed.

rsvd1 Reserved for future use and should be set to 0.

pna_ct Starting address of the pNA+ Configuration Table: it should be 0 if pNA+ is
not installed.

pse_ct Starting address of the pSE+ Configuration Table: it should be 0 if pSE+ is
not installed.

pm_ct Starting address of the pMONT+ Configuration Table: it should be 0 if
pMONT+ is not installed

rsvd2[2] Reserved for future use and should be set to 0.

Section 3. Configuration Tables Multiprocessor

pSOSystem Programmer’s Reference 3-5

NAME

Multiprocessor — Hardware and application-specific parameters for multiprocessor
systems

SYNTAX

typedef struct {
unsigned long mc_nodenum; /* This node's node number */
void (*mc_kicode)(); /* Address of this node's kernel interface */
unsigned long mc_nnode; /* Max number of nodes in system */
unsigned long mc_nglbobj; /* Max num of global objects on each node */
unsigned long mc_nagent; /* Max number of RSC agents in this node */
unsigned long mc_flags; /* Operating mode flags */
void (*mc_roster)(); /* Address of roster change callout */
void *mc_dprext; /* Dual-port ram external starting address */
void *mc_dprint; /* Dual-port ram internal starting address */
unsigned long mc_dprlen; /* Dual-port ram length in bytes */
unsigned long mc_kimaxbuf; /* Max KI buffer length */
void (*mc_asyncerr)(); /* Asynchronous call error callout */
unsigned long mc_reserved[6]; /* Unused, set to 0 */

} mp_ct;

DESCRIPTION

The Multiprocessor Configuration Table is a user-supplied table that is used to specify
hardware- and application-specific parameters in a multiprocessor system. This table can
reside anywhere in RAM or ROM. The nc_mpct entry in the Node Configuration Table must
contain the starting address of the Multiprocessor Configuration Table. The C language
template for this table is located in include/psoscfg.h.

Parameters in this table describe characteristics, some of which are system-wide, some of
which are local to the node. Some of the parameters are verified by the master node as part
of the multiprocessor system startup verification procedure. Definitions for parameters in
the Multiprocessor Configuration Table entries are as follows:

mc_nodenum Specifies the node number of the local node. The following rules must be
observed:

• Node number 0 is reserved and must not be used.

• Node number 1 is the master node.

• The node number must be unique.

• The node number must be less than or equal to mc_nnode, which
specifies the maximum number of nodes in the system.

Multiprocessor Section 3. Configuration Tables

3-6 pSOSystem Programmer’s Reference

mc_kicode Contains the address of the entry point for the user-supplied Kernel
Interface (KI) functions. See Section 2, “Interfaces and Drivers” for detailed
descriptions of the eight KI functions.

mc_nnode Specifies the maximum number of nodes in the system (must not exceed
16383). This is a maximum number. Not all nodes need to be present.

mc_nglbobj Specifies the maximum number of global objects that may be created and
exported by any one node in the system. mc_nglbobj must be the same on
every node, so it should be chosen to accommodate the node that creates
the maximum number of such exported objects. mc_nglbobj is used
during pSOS+m initialization to calculate the amount of memory that must
be reserved for the Global Object Table

mc_nagent Specifies the number of agents allocated for this node. Agents operate on
behalf of RSCs that have been received from other nodes in the system. In
particular, if an RSC must be blocked (e.g. a q_receive() call from a remote
node), then one agent is tied up until the RSC completes or times out. The
number of agents required may vary from one node to another. In general,
the more RSCs that are expected to be directed at a node, the more agents
that may be needed.

Agents are described in detail in the pSOSystem System Concepts manual.

mc_flags Assigns values to either of two flags that control the operation of the
pSOS+m kernel:

KIROSTER: If set, the pSOS+m kernel will call the ki_roster service
whenever the node roster changes.

SEQWRAP: On a slave node, this flag determines the action taken when
its sequence number reaches the maximum allowable value.
If SEQWRAP is set, then the sequence number wraps around
to 1. If clear, the node fails to restart and shuts down instead.
On the master node, this bit is meaningless, since the master
node may not fail.

Section 3. Configuration Tables Multiprocessor

pSOSystem Programmer’s Reference 3-7

mc_roster Contains the address of an optional user-provided routine that is used to
provide roster information to the KI. If mc_roster is not NULL, then the
pSOS+m kernel calls this routine whenever the node roster changes. The
mc_roster routine is called with a JSR instruction and should return with
an RTS instruction. mc_roster should preserve all register values> On
entry, D1 specifies the type of roster change as follows (note that this
interface is identical to that of ki_roster):

D1 Type of Change

0 This is the initial roster. A0points to the internal pSOS+m roster.

1 A node has joined. D2 and D3 contain, respectively, the node number
and sequence number of the new node.

2 A node has failed. D2, D3, and D4 contain, respectively, the node
number of the failed node, the failure code, and the node number of
the node that initiated removal of the node from the system (which may
be the failed node itself).

mc_dprext, mc_dprint, and mc_dprlen
Specify the local node’s dual-ported memory, if any. If there is none, then
all three entries must be set to 0. Note that only one contiguous dual-port
memory block can be entered here for automatic address conversion by the
pSOS+ kernel. See the pSOSystem System Concepts manual for a
discussion on the use of dual-ported memory.

mc_kimaxbuf Specifies the maximum size packet buffer that the KI can allocate. Refer to
Section 2, “Interfaces and Drivers,” for a description of the this value. Also,
note the following:

1. As explained in Section 2, ‘‘Interfaces and Drivers for most KI
implementations, a value of 100 is sufficient.

2. Recall from the pSOSystem System Concepts manual that this value
must be the same on all nodes.

3. For compatibility with previous versions of the pSOS+m kernel, a value
of 0 means 100.

mc_asyncerr Contains the address of an user provided callout routine described in the
pSOSystem System Concepts manual. If no mc_asyncerr is provided, this
entry should be 0 (NULL), in which case the pSOS+m kernel generates a
fatal error.

reserved3[6] Reserved for future use and must be set to 0.

NOTE: The parameters mc_nnode, mc_nglbobj and mc_kimaxbuf must be
identical on every node in a multiprocessor configuration. pSOS+m startup
validates this coherency; any discrepancy causes a fatal error.

Multiprocessor Section 3. Configuration Tables

3-8 pSOSystem Programmer’s Reference

Section 3. Configuration Tables pSOS+

pSOSystem Programmer’s Reference 3-9

NAME

pSOS+ -- Hardware and application-specific parameters required by pSOS+

SYNTAX

typedef struct pSOSConfigTable {
void (*kc_psoscode) (); /* Start address of pSOS+ */
void *kc_rn0sadr; /* Region 0 start address */
unsigned long kc_rn0len; /* Region 0 length */
unsigned long kc_rn0usize; /* Region 0 unit size */
unsigned long kc_ntask; /* Maximum number of tasks */
unsigned long kc_nqueue; /* Maximum number of message queues */
unsigned long kc_nsema4; /* Maximum number of semaphores */
unsigned long kc_nmsgbuf; /* Maximum number of message buffers */
unsigned long kc_ntimer; /* Maximum number of timers */
unsigned long kc_nlocobj; /* Maximum number of local objects */
unsigned long kc_ticks2sec; /* Clock tick interrupt frequency */
unsigned long kc_ticks2slice; /* Time slice quantum, in ticks */
unsigned long kc_nio; /* Number of I/O devices in system */
struct pSOS_IO_Jump_Table *kc_iojtable; /* Address of I/O switch table */
unsigned long kc_sysstk; /* pSOS+ sys. stack size (bytes) */
void (*kc_rootsadr) (); /* ROOT start address */
unsigned long kc_rootsstk; /* ROOT supervisor stack size */
unsigned long kc_rootustk; /* ROOT user stack size */
unsigned long kc_rootmode; /* ROOT initial mode */
void (*kc_startco) (); /* Callout at task activation */
void (*kc_deleteco) (); /* Callout at task deletion */
void (*kc_switchco) (); /* Callout at task switch */
void (*kc_fatal) (); /* Fatal error handler address */
void (*kc_idleco) (); /* Idle task callout */
void (*kc_rtcinit) (); /* Real-time clock initialization callout */
unsigned long kc_reserved1; /* Reserved */
unsigned long kc_rootpri; /* ROOT priority */
unsigned long kc_reserved2[5]; /* Reserved for future use */

} pSOS_CT;

DESCRIPTION

The pSOS+ Configuration Table is a user-supplied table used to specify hardware and
application-specific parameters required by pSOS+. This table can reside anywhere in RAM
or ROM. The starting address of the pSOS+ Configuration Table must be specified as the
nc_psosct entry in the Node Configuration Table. The C language template for the pSOS+
Configuration Table is located in include/psoscfg.h

pSOS+ Section 3. Configuration Tables

3-10 pSOSystem Programmer’s Reference

The definition of the pSOS+ Configuration Table entries are as follows:

kc_psoscode Defines the starting address of pSOS+ code.

kc_rn0sadr Defines the starting address of region 0. This address must be long word
aligned.

kc_rn0len Defines the length of region 0 (in bytes). The value of kc_rn0len depends
on the values of various entries in the pSOS+ Configuration Table and, in
a multi-processor configuration, some values from the Multi-processor
Configuration Table. The sections of this manual that describe the memory
considerations for individual processors explain how to calculate
kc_rn0len by using these configuration table entries.

kc_rn0usize Defines the unit size (in bytes) of region 0.

kc_ntask Defines the number of Task Control Blocks (TCB) that will be statically
preallocated by pSOS+ at startup. This value must accommodate the
expected number of simultaneously active tasks (excluding ROOT and
IDLE).

kc_nqueue Defines the number of Queue Control Blocks that will be statically
preallocated by pSOS+ at startup.

kc_nsema4 Defines the number of Semaphore Control Blocks that will be statically
preallocated by pSOS+ at startup.

kc_nmsgbuf Defines the number of Message Buffers that will be statically preallocated
by pSOS+ at startup. If a task sends a message to a queue where no task
is presently waiting, the message (4 long words) must be copied to a
message buffer (5 long words, to hold the message plus a link) obtained
either from the system-wide pool, or from the queue’s private pool, if any.
If the system or private buffer pool is temporarily exhausted, the message
cannot be posted, and an error condition is returned to the message
sender. Thus, kc_nmsgbuf should reflect the anticipated number of
system message buffers needed to buffer messages under the worst
operating conditions.

One fail safe method for handling worst case scenario is to always create
queues with private buffers. Another method is to set length limits on all
queues, and then set the sum of all queue limits as the size of the system
message buffer pool.

kc_ntimer Defines the number of Timer Control Blocks that will be statically
preallocated by pSOS+ at startup.

kc_nlocobj Defines the size of the Local Object Table for the current node. The size of
the Local Object Table is specified as the number of object entries. Every
task, queue, semaphore, partition, and region created on a node (but not
exported) requires an entry in the Local Object Table. The size that
kc_nlocobj represents is the sum of kc_ntask, kc_nqueue, and kc_sema4
plus the maximum number of memory partitions and regions expected on
the node (including region 0). kc_nlocobj may not exceed 16383.

Section 3. Configuration Tables pSOS+

pSOSystem Programmer’s Reference 3-11

kc_ticks2sec Defines the number of clock ticks in one second (that is, the frequency of
the tm_tick system call).

kc_ticks2slice Defines the number of clock ticks in a timeslice. If kc_ticks2slice is
defined to be 5 and kc_ticks2sec is 10, for example, then pSOS+ performs
roundrobin scheduling among tasks of equal priority approximately every
half-second, other circumstances permitting.

kc_iojtable Contains the starting address of an I/O Switch Table.

kc_nio Specifies the number of major devices in the system (and therefore the size
of the I/O Switch Table).

kc_sysstk Specifies the size of the pSOS+ system stack. It must be large enough to
accommodate the worst case, nested interrupt usage. The sections of this
manual that describe processor-specific memory considerations explain
how to determine kc_sysstk.

kc_rootsadr Starting address of the ROOT task. The next three parameters are used by
pSOS+ when it internally calls t_create and b_start to create and activate
the ROOT task. pSOS+ defaults the task’s priority and flags to 240, local,
and no FPU.

kc_rootsstk Defines the size (in bytes) of the ROOT task’s supervisor stack (must be at
least 128).

kc_rootustk Defines the size (in bytes) of the ROOT task’s user stack.

kc_rootmode ROOT task’s initial execution mode.

kc_startco Supplies the address of a user-defined, optional procedure that is called
during task startup. See below for additional details.

kc_deletco Supplies the address of a user-defined, optional procedure that is called
during task deletion. See below for additional details.

kc_switchco Supplies the address of a user-defined, optional procedure that is called
during task context switching.

The kc_startco, kc_deletco, and kc_switchco pSOS+ callout procedures
allow you to perform special functions at the designated points within the
normal execution of pSOS+. A zero in any of the three callout entries
indicates to pSOS+ that no such procedure is necessary.

When implemented, callout procedures must observe the following
conventions:

(1) Upon entry, the CPU is in the supervisor state. The user procedure
must not at any time cause the CPU to exit this state. In addition, the
hardware mask level is typically, but not necessarily at 0. The user
procedure must not drop this mask level. However, it may raise the
level, provided that it also restores the original level before exiting.

pSOS+ Section 3. Configuration Tables

3-12 pSOSystem Programmer’s Reference

(2) Upon return, all registers and the stack must be restored.

(3) Only those system calls that are allowed from ISRs are allowed from
callout procedures. See the pSOSystem System Concepts manual for a
list of such calls.

(4) kc_startco is called after the target task has been put into the ready
state, but before any of its context has been loaded. Upon entry,
register D1.L contains the task identifier tid and A6.L contains the
Task Control Block (TCB) address of the task being started. A5.L
points at the pSOS+ system data area.

(5) kc_deletco is called after the target task has been removed from all
active-task structures, its stack segment reclaimed, and the TCB
returned to the free-TCB list. Upon entry, register D1.L contains the
task identifier tid and A6.L contains the TCB address of the task being
deleted. A5.L, as usual, points at the pSOS+ system data area.

(6) kc_switchco is called after the context of the old running task has
been completely saved, and before the context of the next task to be
run is loaded. Upon entry, register D1.L contains the task id tid and
A6.L the TCB address of the next task to run. D4.L contains the task
identifier and A4.L the TCB address of the last running task. A5.L, as
usual, points at the pSOS+ system data area.

Due to varying compiler procedure-linkage conventions, some of which
may alter register contents, you should exercise caution if you program
any callout procedure in a high-level language.

kc_fatal Contains the address of an optional, user-specified procedure that is
invoked by the pSOS+ shutdown procedure. kc_fatal processes fatal errors
detected during pSOS+ execution; these result from several sources:

(a) Explicit k_fatal system calls from the user’s application code;

(b) Configuration defects detected during pSOS+ startup;

(c) Certain non-recoverable run-time errors.

After a fatal error, pSOS+ consults the kc_fatal entry. If this entry is non-
zero, pSOS+ jumps to this address. If kc_fatal is zero, and the pROBE+
System Debug/Analyzer is present, then pSOS+ simply passes control to
the System Failure entry of pROBE+. If pROBE+ is absent, pSOS+
internally executes a divide-by-zero to cause a deliberate divide-by-zero
exception. In all cases, pSOS+ pre-loads the following:

(a) D1.L with the error code; and

(b) D2.L = 0, unless the fatal error is caused by a remote k_fatal system
call with the global bit set, in which case D2.L equals the node number
of the node from which the k_fatal call was made. For details regarding
global errors, see pSOSystem System Calls.

Section 3. Configuration Tables pSOS+

pSOSystem Programmer’s Reference 3-13

kc_idleco (68360 only). kc_idleco is used only for the 68360 kernel. For all other
versions, this entry must be 0.

This entry supplies the starting address of the user-defined IDLE task.
This callout procedure allows you to perform special functions when no
other tasks are running in the system. A zero in this entry instructs pSOS+
to use its own default IDLE task.

The user-supplied IDLE task can operate the device in low-power standby
mode by executing the LPSTOP instruction in a software loop. The
following is an example of a user IDLE task:

MyIdle:
LPSTOP #$2000
BRA.S MyIdle

For more information on the LPSTOP instruction, see the MC68360 Quad
Integrated Communications Controller Manual.

Upon entry to the user IDLE task callout, the CPU is in the supervisor
state. Note that the user IDLE task must never return.

kc_rtcinit (68360 only). kc_rtcinit is used only for the 68360 kernel. For all other
versions, this entry must be 0.

This entry supplies the address of the real-time clock initialization routine.
At startup, pSOS+ calls this procedure, if provided. A zero indicates that
no such procedure is provided. When implemented, the procedure must
adhere to the following conventions:

(a) Upon entry, the CPU is in the supervisor state and the interrupt mask
level is 7. The initialization routine must not lower the interrupt level.

(b) Upon entry, register A0 contains the address of the clock interrupt
service routine (ISR). The callout should install this ISR at an
appropriate interrupt vector.

(c) Upon return, register A5 must be restored.

On each timer interrupt, the timer ISR within pSOS+ processes the clock
tick and exits through the scheduler.

kc_reserved1 Should be 0 for upward compatibility.

kc_rootpri Defines the initial priority of the ROOT task. For backward compatibility,
if this entry is zero, the ROOT task is assigned a priority of 255.

kc_reserved2 Should be all zeros for upward compatibility.

pSOS+ Section 3. Configuration Tables

3-14 pSOSystem Programmer’s Reference

Section 3. Configuration Tables pROBE+

pSOSystem Programmer’s Reference 3-15

NAME

pROBE+ -- Hardware and application-specific parameters required by pROBE+

SYNTAX

typdef struct pROBEConfigTable {

void (*rc_probecode) (); /* Address of pROBE+ code module */

void *rc_data; /* Addrress of pROBE+ data area */

void (*rc_ioinit) (); /* Address of IOINIT procedure */

unsigned long(*rc_consts) (); /* Address of CONSTS procedure*/

unsigned char (*rc_conin) (); /* Address of CONIN procedure */

void (*rc_conout) (unsigned char c); /* Address of CONOUT procedure */

unsigned long (*rc_hststs) (); /* Address of HSTSTS procedure */

unsigned char (*rc_hstin) (); /* Address of HSTIN procedure */

void (*rc_hstout) (unsigned char c); /* Address of HSTOUT procedure */

unsigned long rc_brkopc; /* Instruction break opcode */

unsigned long rc_ilevel; /* pROBE+ interrupt mask */

unsigned long rc_flags /* Initial flag settings */

unsigned long (*rc_symval) (); /* Address of SYMVAL procedure */

unsigned long (*rc_valsym) (); /* Address of VALSYM procedure */

unsigned long (*rc_urcom) (); /* Address of URCOM */

unsigned long rc_smode; /* Start mode */

unsigned long (*rc_dicode) (); /* Address of DI code */

void (*rc_entry) (); /* Address of ENTRY procedure */

void (*rc_exit) (); /* Address of EXIT procedure */

unsigned long reserved[4]; /* All must be 0’s (4 words long */

} pROBE_CT;

DESCRIPTION

The pROBE+ Configuration Table is a user-supplied table used to specify hardware and
application-specific parameters required by pROBE+. The table can reside anywhere in
RAM or ROM. The starting address of the pROBE+ Configuration Table must be specified
as the nc_probect entry in the Node Configuration Table. The C language template for the
pROBE+ Configuration Table is located in include/probecfg.h:

Definitions for the pROBE+ Configuration Table entries are as follows:

rc_probecode Contains the starting address of the pROBE+ code.

pROBE+ Section 3. Configuration Tables

3-16 pSOSystem Programmer’s Reference

rc_data Define an area in RAM that pROBE+ uses for a data area and a stack.
pROBE+ requires 5 Kbytes for static data structures and at least 1.5
Kbytes for its stack. rc_data points to the start of the 5-Kbyte data area,
with the memory below reserved for the stack. Figure 5 illustrates the
pROBE+ Data Area Organization.

Figure 5 pROBE+ Data Area Organization

If interrupt activity can occur while pROBE+ is running, the stack size
must be large enough to accommodate the worst-case stack requirements
for all nesting ISRs. This is true even on CPUs with a Master Stack,
because pROBE+ executes with the MASTER bit OFF, so that it always
uses the interrupt stack.

rc_ioinit Points to a user-supplied initialization procedure (IOINIT), which is called
once by pROBE+ during startup to initialize console of pROBE+ and host
communication ports. IOINIT has no input or output parameters.

Low Address

High Address

5 Kbytes

At Least
1.5 Kbytes

rc_data
pROBE+ Stack

pROBE+ Data

Section 3. Configuration Tables pROBE+

pSOSystem Programmer’s Reference 3-17

rc_consts Points to a user-defined console status procedure (CONSTS). pROBE+ calls
CONSTS when it wants to determine the input status of the console port.
The interface to this procedure is:

INPUT:

D0 = pROBE+ is polling for:

0 = any console input

1 = BREAK, CTRL-S or CTRL-Q only

2 = BREAK only

OUTPUT:

D0 = console status:

0 = no character received

1 = a character received

2 = BREAK detected

On input, pROBE+ indicates to your driver the type of information for
which it is polling. In installations where the port is connected to a
character-oriented device, you can ignore this parameter. It is useful only
in special configurations, notably those where the I/O device is line or
block-oriented.

On output, status = 2 has priority over status = 1, and should be reported
first when both a character and a break has been detected.

BREAK, known elsewhere as a console-induced break, is user-
implementation dependent. You can define it to be a true RS-232 break-
detect. Or, alternatively, you can use a special character (e.g. CTRL-C).
True RS-232 breaks require special treatment, since terminals normally
generate break pulses with a duration of 250 ms or longer. Your driver
must wait long enough for the pulse to end, before returning status = 2.
Otherwise, pROBE+ will probably call CONSTS again, only to see the same
break.

CONSTS should only return status = 2 once for each break detected.
However, status = 1 should be latched (i.e. not cleared) until the received
character is read when pROBE+ calls CONIN.

CONSTS, with input D0 = 2, is regularly called during execution of a
pSOS+ application to poll for a manual break. You should, at least for this
case, code CONSTS to execute as quickly as possible so that intrusion on
the application is minimized.

pROBE+ Section 3. Configuration Tables

3-18 pSOSystem Programmer’s Reference

rc_conin Points to a user-supplied console input procedure (CONIN). pROBE+ calls
CONIN when it wants to read a character from the console, but only after
receiving a status of 1 from CONSTS. The interface to this procedure is:

INPUT:

none

OUTPUT:

D0.B = character entered on console

rc_conout Points to a user-supplied console output procedure (CONOUT). pROBE+
calls CONOUT when it wants to send a character to the console. The
interface to this procedure is:

INPUT:

D0.B = character to print

OUTPUT:

none

CONOUT should wait for the output channel to become ready, send the
character, and return immediately to pROBE+ without waiting for the
transmission to complete. Implementations that send the character and
then wait for completion of transmission before returning may suffer
dropped characters under certain operating conditions.

rc_hststs Points to a user-supplied host status procedure (HSTSTS) if the host port
is used; otherwise, it can be zero. pROBE+ calls HSTSTS when it wants to
determine the input status of the host port. The interface to this procedure
is:

INPUT:

none

OUTPUT:

D0.B = host channel status:

0 = no character received

1 = character received

Status = 1 should be latched (i.e. not cleared), until the character has been
read by pROBE+ (using HSTIN).

This procedure is used by the DL, VL, UL, and HO commands if the HOST
flag is set, and by all commands if the ECHO and HOST flags are both set.
If you do not need a host link, set this entry to zero. Also, it is possible for
the console and host ports to share a single I/O connection. In such cases,

Section 3. Configuration Tables pROBE+

pSOSystem Programmer’s Reference 3-19

you can set the rc_flags HOST bit to zero, or alternatively set rc_consts
and rc_hststs to point to the same driver procedure.

rc_hstin Points to a user-supplied host input procedure (HSTIN) if the host port is
used. pROBE+ calls HSTIN when it wants to read a character from the host
port, but only after receiving a status = 1 from HSTSTS. The interface to
this procedure is:

INPUT:

none

OUTPUT:

D0.B = character received

This procedure is used by the DL, VL, UL, and HO commands if the HOST
flag is set, and by all commands if the ECHO and HOST flags are both set.
If you do not need a host link, set this entry to zero. Also, it is possible for
the console and host ports to share a single I/O connection. In such cases,
you can set the rc_flag HOST bit to zero, or alternatively set rc_conin and
rc_hstin to point to the same driver procedure.

rc_hstout Points to a user-supplied output procedure (HSTOUT) if the host port is
used. pROBE+ calls HSTOUT when it wants to send a character to the host
port. The interface to this procedure is:

INPUT:

D0.B = character to send

OUTPUT:

none

This procedure is used by the DL, VL, UL, and HO commands if the HOST
flag is set, and by all commands if the ECHO and HOST flags are both set.
If you do not need a host link, set this entry to zero. Also, it is possible for
the console and host ports to share a single I/O connection. In such cases,
you can set the rc_flag HOST bit to zero, or alternatively set rc_conout and
rc_hstout to point to the same driver procedure.

Like CONOUT, HSTOUT should wait for the channel to become ready, send
the character, and return immediately to pROBE+ without waiting for the
transmission to complete. Implementations that send the character and
then wait for completion of transmission before returning may suffer
dropped characters under certain operating conditions.

rc_brkopc Must be zero in the high half and contain a two-byte opcode - the
breakpoint opcode - in the low half of this long-word entry, which pROBE+
will use to implement instruction breakpoints. You can use one of the
following:

pROBE+ Section 3. Configuration Tables

3-20 pSOSystem Programmer’s Reference

Preferred: A TRAP instruction - 4E4n where n = 0,1...F

Alternative: The Illegal instruction - 4AFC

Depending on the choice, you must set the corresponding exception vector
to point to the address of the Breakpoint Entry of pROBE+.

rc_ilevel Specifies the initial pROBE+ interrupt level. The interrupt level should
initially be 7, unless your application has special requirements. This will
disable all interrupt activity (except NMI, of course) while pROBE+ is in
control.

rc_flags Specifies the initial settings for the pROBE+ flags. One bit in rc_flags
corresponds to each pROBE+ flag, as follows:

RC_FLAGS 7 6 5 4 3 2 1 0

RBUG: disabled0

enabled1

HOST: disabled0....

enabled1....

TRFR: disabled0........

enabled1........

NODOTS: disabled0............

enabled1............

NOMANB: disabled0.................

enabled1.................

NOPAGE: disabled0.....................

enabled1.....................

ECHO: disabled0..........................

enabled1..........................

PROFILE: disabled 0..............................

enabled 1..............................

For example, if you want to initialize the NOMANB and ECHO bits to be on,
set rc_flags = 0x00000050. The normal setting for each flag is off.
Therefore, unless you specifically want one or more to come up in the on
state, simply set rc_flags = 0. It is recommended that RBUG, NOMANB,
NOPAGE, ECHO, and PROFILE be set to 0 (off). Note that all the flags can
be changed interactively with the pROBE+ FL (flag) command.

Section 3. Configuration Tables pROBE+

pSOSystem Programmer’s Reference 3-21

rc_symval Specifies the address of an optional user-supplied procedure (SYMVAL),
used to implement symbolic references within your command inputs.
pROBE+ calls SYMVAL when it encounters a symbol, defined as a
character string prefixed by a dollar sign. SYMVAL should translate the
symbol into a 32-bit value, and return this value to pROBE+. This
procedure is optional. If not used, set rc_symval to zero.

The interface to this procedure is as follows:

INPUT:

A0 = points to the character after the '$' within the input buffer.

OUTPUT:

A0 = updated input buffer pointer, or 0 if symbol not found.

D0 = value of symbol if found.

For example, when you enter the command

PM 3+$VAR1-10

then upon entry to SYMVAL, A0 points to the 'V' (in $VAR1) in the input
buffer. SYMVAL should translate the symbol VAR1, return its value in D0,
and advance A0 to point to the minus sign (after the token $VAR1). If not
found, then A0 should return 0, which causes pROBE+ to abort the
command and output the following error message:

"Symbol Not Found"

Note that the pointer returned in A0 must not be positioned past the
carriage return at the end of the input line.

rc_valsym Specifies the address of an optional user-supplied procedure (VALSYM),
used to implement symbolic output in pROBE+ displays. pROBE+ calls
VALSYM within certain commands to translate a 32-bit value to a symbol
name. This procedure is optional. If not used, set rc_valsym to zero.

The interface to this routine is as follows:

INPUT:

D0 = 32-bit value

OUTPUT:

A0 = pointer to a null-terminated string containing the symbol name
associated with the value, or 0 if there is no matching symbol.

Note that the string returned can have any format, depending on the scope
of your symbolic translation. For example, you may return 'VAR1+4' ,
indicating an offset within a structure.

rc_urcom Specify the address of an optional user-supplied procedure (URCOM).
pROBE+ calls URCOM whenever it encounters an unrecognized command,

pROBE+ Section 3. Configuration Tables

3-22 pSOSystem Programmer’s Reference

allowing you to extend the command set by pROBE+. This procedure is
optional. If not used, set rc_urcom to zero. In this case, any unrecognized
command is considered an error.

The interface to this procedure is:

INPUT:

A0 = pointer to command line, as entered by user

OUTPUT:

D0 = 0 if command accepted.

D0= -1 if command unrecognized.

Any command line parsing and console output is the responsibility of this
URCOM procedure. If -1 is returned, pROBE+ displays the message
"Unrecognized Command".

rc_smode Starts pROBE+ ahead of pSOS+, and pROBE+ normally takes control and
prompts you for your first command. At any point thereafter, you can use
the GS command to start pSOS+. However, in an operational system, you
may want to start pROBE+ but pass control to pSOS+ without waiting for
a command. With this method, pROBE+ can be present, initialized and
ready to run, but live in a quiescent state until an exception or manual
break passes control to it. Note that in the silent mode, pROBE+ will not
display its sign-on banner or prompt.

rc_smode can be used to specify the pROBE+/pSOS+ startup method, as
follows:

0 = normal start-up, stops in pROBE+

1 = silent start-up, passes control to pSOS+

rc_dicode Should be set to 0 if the XRAY debugger for pSOSystem is not used. (If
rc_dicode has a non-zero value, refer to the XRAY documentation for
instructions on setting the rc_dicode value.)

rc_entry Specifies the address of an optional user-supplied procedure (ENTRY).
pROBE+ calls ENTRY whenever it receives control via startup, breakpoint,
or exception occurrence. ENTRY is not called in cases where pROBE+ has
not exited, such as single stepping. This procedure is optional. If not used,
set rc_entry to zero. The procedure you supply may be used to flush or
disable off-CPU caches, or disable write-protection, or any other steps that
may be needed to give pROBE+ a proper working environment.

The interface to this procedure is:

INPUT: None.

OUTPUT: None

Section 3. Configuration Tables pROBE+

pSOSystem Programmer’s Reference 3-23

rc_exit Specifies the address of an optional user-supplied procedure (EXIT).
pROBE+ calls EXIT whenever it returns control back to user code (using
the GO command, and so forth). In the case of single stepping, EXIT is not
called. This procedure is optional; if not used, set rc_exit to zero. This
procedure typically performs the opposite actions of the ENTRY procedure.

The interface to this procedure is:

INPUT: None.

OUTPUT: None.

reserved[4] Should be set to 0.

pROBE+ Section 3. Configuration Tables

3-24 pSOSystem Programmer’s Reference

Section 3. Configuration Tables pHILE+

pSOSystem Programmer’s Reference 3-25

NAME

pHILE+ -- Hardware and application-specific parameters required by pHILE+

SYNTAX

typedef struct pHILEConfigTable{
void (*fc_phile)(); /* Address of pHILE+ module */
void *fc_data; /* Address of pHILE+ data area */
unsigned long fc_datasize; /* Size of pHILE+ data area */
unsigned long fc_logbsize; /* Block size (base-2 exponent) */
unsigned long fc_nbuf; /* Number of cache buffers */
unsigned long fc_nmount; /* Max # of mounted volumes */
unsigned long fc_nfcb; /* Max # of opened files per system */
unsigned long fc_ncfile; /* Max # of opened files per task */
unsigned long fc_ndnlc; /* Max # of cached directory entries */
unsigned long fc_msdos; /* MS-DOS volume mount flag */
unsigned long fc_cdrom; /* CD_ROM volume mount flag */
unsigned long res[5]; /* Must be 0 */

} pHILE_CT;

DESCRIPTION

The pHILE+ Configuration Table is a user-supplied table that provides hardware and
application-specific information required by pHILE+. It can reside anywhere in RAM or
ROM. The starting address of the pHILE+ Configuration Table must be specified as the
nc_philect entry in the Node Configuration Table. The C language template for the pROBE+
Configuration Table is located in include/configs.h:

Definitions for the pHILE+ Configuration Table entries are as follows:

fc_phile Defines the starting address of the pHILE+ code.

fc_data Defines the starting address of the pHILE+ data area, which must be
located in RAM. You must reserve enough space for the memory
requirements of pHILE+.

If the fc_data and fc_datasize entries are both 0, pHILE+ automatically
allocates the required amount of memory from pSOS+ region 0 during
initialization. In this case, fc_data is ignored. pHILE+ calculates the
amount of memory it requires by examining entries in its Configuration
Table.

fc_datasize Defines the size of the pHILE+ data area. The value of fc_datasize depends
on various pHILE+ Configuration Table entries.

fc_logbsize Defines the system-wide block size for pHILE+ formatted volumes. Note
that this parameter is specified as a base 2 exponent. For example, if the
desired block size is one Kbyte, fc_logbsize is 10. The range for fc_logbsize

pHILE+ Section 3. Configuration Tables

3-26 pSOSystem Programmer’s Reference

8 through 15 (the smallest permissible block size is 256 bytes, and the
largest is 32 Kbytes).

A block is the basic unit of data transfer and all I/O requests are made by
pHILE+ in terms of blocks. Therefore, its size should be selected carefully.
To avoid unnecessary blocking/deblocking by device drivers, fc_logbsize
should be equal to or greater than the natural sector or cluster size of a
physical device. Within limits, a larger block size will improve throughput.
On the other hand, a larger block size requires more memory for buffering
purposes and can waste disk space. In the absence of other
considerations, a block size of 512 bytes or 1 Kbyte appears reasonable
and is thus recommended.

fc_logbsize has no effect on NFS volumes. MS-DOS volumes always have
a 512-byte block size.

fc_nbuf Defines the number of cache buffers used by pHILE+. The size of each
buffer is defined by fc_logbsize but will not be less than 512 if MS-DOS
volumes are in use (fc_msdos = 1). A minimum of two cache buffers is
required for proper operation of pHILE+.

This value is the single most influential parameter with respect to
optimizing overall file system throughput. With few exceptions, file data
transfers always go through the buffer cache. Therefore, the larger the
number of cache buffers, the more likely that a read or write request will
find its data lingering in a cache buffer, thus obviating the need to execute
a physical read operation. Increasing the number of buffers will directly
improve the throughput of the file system.

Experimentally determine the optimum number of cache buffers for an
application. In applications where file throughput is important, one
approach might be to allocate to the cache as much memory as can be
spared. Note that cache buffers are not used with NFS volumes.

fc_nmount Specifies the maximum number of volumes that can be mounted
simultaneously. It defines the number of entries in the mounted volume
table.

fc_nfcb Defines the maximum number of files that can be open simultaneously; it
is used to allocate space for file control blocks (FCBs).

Note that this parameter should not be confused with the number of open
files attached to each task. In particular, each FCB may be connected to
one or more tasks.

fc_ncfile Defines the maximum number of simultaneously open files that a task can
have. It determines the number of entries in each task's open file table.

Section 3. Configuration Tables pHILE+

pSOSystem Programmer’s Reference 3-27

fc_msdos Indicates the intention to mount MS-DOS volumes. A 0 means no MS-DOS
volumes will be mounted. A 1 means MS-DOS volumes will be mounted,
and pHILE+ will ensure that cache buffers are at least 512 bytes long,

fc_cdrom Indicates the intention to mount CD-ROM volumes. A 0 means no
CD-ROM volumes will be mounted. A 1 indicates that CD-ROM volumes
will be mounted and pHILE+ will ensure that cache buffers are at least
2048 bytes long.

reserved Should be 0 for upward compatibility.

pHILE+ Section 3. Configuration Tables

3-28 pSOSystem Programmer’s Reference

Section 3. Configuration Tables pREPC+

pSOSystem Programmer’s Reference 3-29

NAME

pREPC+ -- Hardware and application-specific parameters required by pREPC+

SYNTAX

typedef struct pREPCConfigTable{
void (*lc_code) (); /* Start address of pREPC+ code */
void *lc_data; /* Start address of pREPC+ data area */
unsigned long lc_datasize; /* Size of pREPC+ data area */
unsigned long lc_bufsize; /* I/O buffer size */
unsigned long reserved1; /* Reserved entry; must be 0 */
unsigned long lc_numfiles; /* Maximum number of open files per task */
unsigned long lc_waitopt; /* Wait option for memory allocation */
unsigned long lc_timeopt; /* Timeout option for memory allocation */
char *lc_tempdir; /* Pointer to temporary file directory */
char *lc_stdin; /* Pointer to stdin */
char *lc_stdout; /* Pointer to stdout */
char *lc_stderr; /* Pointer to stderr */
unsigned long lc_ssize; /* Size of print buffer */
unsigned long reserved[3]; /* Reserved, must be zero */

}; pREPC_CT;

DESCRIPTION

The pREPC+ Configuration Table is a user-supplied table that provides hardware and
application-specific information required by pREPC+. The table can reside anywhere in
RAM or ROM. The starting address of the table must be specified as the nc_prepct entry in
the Node Configuration Table. The C language template for the pREPC+ Configuration Table
is located in include/prepccfg.h.

Definitions for the pREPC+ Configuration Table entries are as follows:

lc_code Defines the starting address of the pREPC+ code.

lc_data Defines the starting address of the pREPC+ data area, which must be
located in RAM. You must reserve enough space for the memory
requirements of pREPC+.

If lc_data and lc_datasize are both 0, pREPC+ automatically allocates the
required amount of memory for its data area from pSOS+ region 0 during
initialization. In this case, lc_data is ignored. pREPC+ calculates the
amount of memory it requires by examining entries in its Configuration
Table.

lc_datasize Defines the length of the data area. If lc_data is non-zero, lc_datasize
should be 256. The value of lc_datasize depends on various pREPC+
Configuration Table entries.

pREPC+ Section 3. Configuration Tables

3-30 pSOSystem Programmer’s Reference

lc_bufsize Specifies the size of the buffers allocated for open files.

lc_numfiles Defines the maximum number of files that a task can have open at the
same time. (This number excludes stdin, stdout, and stderr.) This entry
determines the number of file control blocks that pREPC+ allocates.

lc_waitopt Input to rn_getseg when pREPC+ calls pSOS+ to allocate memory. If
lc_waitopt is 0 and a request is not satisfied, the caller is blocked until the
first of two possible conditions occurs. The caller remains blocked until
either a segment is allocated or a timeout occurs (if lc_timeopt is non-
zero). If lc_waitopt is 1, rn_getseg returns unconditionally.

lc_timeopt Clock tick count that is input to rn_getseg when pREPC+ calls pSOS+ to
allocate memory. It is relevant only if lc_waitopt is 0.

lc_tempdir Supplies the address of a string that names a file directory. If pHILE+ is
not in the system or if the tmpfile() function is not used, this entry should
point to a NULL string.

lc_stdin Supplies the address of a string that contains the pathname for stdin. It is
opened automatically for every task that issues a pREPC+ system call.
stdin can be an I/O device or disk file. If stdin cannot be opened, a fatal
error results.

lc_stdout Supplies the address of a string that contains the pathname for stdout. It
is opened automatically for every task that issues a pREPC+ system call.
stdout can be I/O devices or disk files. If stdout cannot be opened, a fatal
error results.

lc_stderr Supplies the address of a string that contains the pathname for stderr. It
is opened automatically for every task that issues a pREPC+ system call.
stderr can be an I/O device or disk file. If stderr cannot be opened, a fatal
error results.

lc_ssize Defines the size of the temporary print buffer required by ‘‘printing’’
functions for storing characters generated by pREPC+ output functions
(for example, printf). The size of the print buffer determines the maximum
length of the output string generated for each conversion. If a converted
string is longer than lc_ssize, it will be truncated.

For each task, a buffer is allocated from pSOS+ region 0 the first time it is
needed. Once allocated, a buffer is held indefinitely by the task. An
fclose(0) can be used to free the buffer. A single task never holds or uses
more than one buffer.

If many tasks do printing, this parameter may have a significant impact on
the amount of RAM used by pREPC+. If lc_ssize is 0, a default value of 512
is used. This conforms to the ANSI standard maximum length output
string; however, most applications can use a much smaller value.

reserved Should be 0 for upward compatibility.

Section 3. Configuration Tables pNA+

pSOSystem Programmer’s Reference 3-31

NAME

pNA+ -- Hardware and application-specific parameters required by pNA+

SYNTAX
typedef struct pNAConfigTable {

void (*nc_pna) (); /* Address of pNA+ code module */
void *nc_data; /* Address of pNA+ data area */
long nc_datasize; /* Size of pNA+ data area */
long nc_nni; /* Size of pNA+ NI Table */

struct ni_init *nc_ini; /* Pointer to Initial pNA+ NI Table */
long nc_nroute; /* Size of pNA+ Routing Table */
struct route *nc_iroute; /* Pointer to Initial pNA+ Routing Table */
long nc_defgn; /* Address of default gate node */
long nc_narp; /* Size of pNA+ ARP Table */
struct arp *nc_iarp; /* Pointer to Initial pNA+ ARP Table */

void (*nc_signal) (); /* Pointer to signal handling routine */
long nc_defuid; /* Default user ID of a task */
long nc_defgid; /* Default group ID of a task */
char *nc_hostname; /* Hostname of the node */
long nc_nhentry; /* Number of Host Table entries*/
struct htentry *nc_ihtab; /* Pointer to Initial Host Table */

pNA_SCT *nc_sct; /* Address of pNA+ subcomponent config. table */
long nc_mblks; /* Number of mblks*/
struct pna_bufcfg *nc_bcfg; /* Pointer to buffer configuration table */
long nc_nsockets; /* Number of sockets*/
long nc_ndescs; /* Number of descriptors per task*/
unsigned long nc_nmc_socs; /* Number of multicast sockets*/

unsigned long nc_nmc_memb; /* Number of multicast group memberships*/
unsigned long nc_nnode_id; /* Network node ID or router ID*/
long reserved[3]; /* Reserved for future use */

} pNA_CT;

DESCRIPTION

The pNA+ Configuration Table is a user-supplied table that provides hardware and
application-specific information required by pNA+. The table can reside anywhere in RAM
or ROM. The starting address of the pNA+ Configuration Table must be specified as the
nc_pnact entry in the Node Configuration Table. The C language template for the pNA+
Configuration Table is located in include/pnacfg.h.

Definitions for the pNA+ Configuration Table entries are as follows:

pNA+ Section 3. Configuration Tables

3-32 pSOSystem Programmer’s Reference

nc_pna Defines the starting address of pNA+ code.

nc_data Defines the starting address of the pNA+ data area, which must be located
in RAM. You must reserve enough space for the memory requirements of
pNA+.

If nc_data and nc_datasize are both 0, pNA+ automatically allocates the
required amount of memory for its data area from pSOS+ Region 0 during
initialization. In this case, nc_data is ignored. pNA+ calculates the amount
of memory required by examining its Configuration Table entries.

Note that if pNA+ is used by pROBE+ to communicate with the XRAY
debugger for pSOSystem, nc_data must be used to specify a pNA+ data
area, and nc_datasize must be non-zero.

nc_datasize Defines the size of the pNA+ data area. The value of nc_datasize depends
on various pNA+ Configuration Table entries.

nc_nni Specifies the maximum number of Network Interfaces (NIs) to be installed
in your system (that is, the maximum number of networks connected to
pNA+). This entry is used by pNA+ to define the size of its NI Table.

nc_ini Should point to an Initial Network Interface (NI) Table, which defines the
characteristics of the network interfaces that are initially installed in your
system. The contents of the Initial NI Table will be copied to the actual NI
Table during pNA+ initialization. Note that the Initial NI Table may be
smaller than the actual NI Table. In other words, the Initial NI Table may
have less than nc_nni interfaces defined. This is possible because network
interfaces may be added dynamically after pNA+ has been started, using
the add_ni system call. Of course, it can never have more.

The Initial NI Table contains a set of eight 32-bit entries for each initially
installed network interface. The table must be terminated by a 0. The
ni_init structure is defined in the file include/pna.h. A template for one
entry in the table is as follows:

struct ni_init{

 int (*entry)(); /* Addr of NI entry point */

 int ipadd; /* Internet addr of the NI */

 int mtu; /* MaxIMUM transmission unit */

 int hwalen; /* Length of hardware address */

 int flags; /* Defines NI flags */

 int subnetaddr; /* Netmask */

 int dstipaddr; /* Destination network address */

 int reserved[1]; /* Reserved for future use */

};

where

Section 3. Configuration Tables pNA+

pSOSystem Programmer’s Reference 3-33

entry Defines the address of the NI driver's entry point.

ipadd Defines the internet address assigned to the network
interface.

mtu Specifies the maximum transmission unit for the NI
(minimum 64).

hwalen Specifies the length of the NI hardware address in bytes
(maximum 14).

flags Specifies the initial setting of the NI flags, as follows (all
unlisted bits must be 0):

Flag Bit Meaning

BROADCAST 0: 0 = Disabled

1 = Enabled

ARP 1: 0 = Enabled

1 = Disabled

POINTTOPOINT 4: 0 = Disabled

1 = Enabled

MULTICAST 11: 0 = Disabled

1 = Enabled

UNNUMBERED 12: 0 = Disabled

1 = Enabled

RAWMEM 13: 0 = Disabled

1 = Enabled

EXTLOOPBCK 14: 0 = Disabled

1 = Enabled

POLL 15: 0 = Disabled

1 = Enabled

subnetaddr Defines the netmask (the netmask consists of the bits in the
internet address that should be included when extracting
the network identifier from an internet address).

dstipaddr Defines the IP address of the host on the other side of a
point-to-point network.

reserved Must be 0.

nc_nroute Determines the amount of memory required for the Routing Table. It
should be set equal to 1 plus the number of network interfaces planned for
the system, plus the number of additional user-supplied routes. In other
words, the following formula can be used to calculate the value of
nc_nroute: (nc_nroute = 1 + nc_nni + User Supplied Routes). The User

pNA+ Section 3. Configuration Tables

3-34 pSOSystem Programmer’s Reference

Supplied Routes can be supplied by the Initial Routing Table (see
nc_iroute), or by an ioctl() system call.

nc_iroute Should point to the Initial Routing Table (if one exists). pNA+ copies the
contents of the Initial Routing Table to the actual Routing Table during
initialization. If no routes are to be supplied during initialization,
nc_iroute should be 0. It is possible to add routes dynamically after pNA+
has been started, using the ioctl() system call.

The Initial Routing Table contains a set of four 32-bit variables for each
route. The table is terminated by a 0.

The following is a template for one entry in the Initial Routing Table:

struct route{

 unsigned long nwipadd;/* Host or Network address */

 unsigned long gwipadd;/* Gateway internet address */

 unsigned long flags; /* Route type */

 unsigned long netmask;/* Subnet mask use */

};

where

nwipadd Specifies an IP address of the destination.

gwipadd Defines the internet address of a gateway node that should
be used to route packets to the destination given by
nwipadd.

flags Specifies the type of route (which can be the value of either
rt_host or rt_network defined in the pna.h file).

netmask Specifies the subnet mask associated with the route. This
field is ignored if the RT_MASK flag is not set in flags.

If the number of Initial Routing Table entries is greater than the number
specified by nc_nroute, a fatal error occurs during pNA+ initialization.

nc_defgn Specifies the internet address of a default gateway node (if one is used). The
nc_defgn entry should be 0 if no default gateway exists on the system.

nc_narp Determines the amount of memory required for the ARP Table. nc_narp
must be at least 1 plus the number of network interfaces planned for the
system.

nc_iarp Should point to the initial ARP Table (if one is supplied). pNA+ copies the
contents of the Initial ARP Table to the actual ARP Table during
initialization. nc_iarp can be 0 if no Initial ARP Table is supplied.

Section 3. Configuration Tables pNA+

pSOSystem Programmer’s Reference 3-35

The Initial ARP Table contains four 32-bit entries to support each internet
address-to-hardware address mapping. A template for one entry in the
Initial ARP Table is as follows:

struct arp {
int arp_ipadd; /* Internet addr for NI */
char *arp_hadd; /* Hardware addr for NI */
int reserved[2]; /* Reserved for future use */
};

where

arp_ipadd Specifies the internet address of a network interface.

arp_hadd Supplies the address of the corresponding hardware address
for that NI.

reserved Values must be 0.

One question that arises is how to determine the size of the ARP Table.
Unfortunately, there is no definitive answer. The larger the table, the more
memory is consumed, but the better the performance. If pNA+ does not
find an <IP address, hardware address> tuple in the table, it must execute
ARP, which takes time and creates network traffic. This suggests that the
size of the table should be equal to the number of nodes with which pNA+
will communicate.

Of course, this has to be balanced against memory consumption (that is,
the table takes space). It may not be necessary to have one entry for every
other node on a network, if your application rarely communicates with
every node. However, the number of ARP entries should at least be equal
to 1 + nc_nni.

nc_signal Contains the address of the user signal handler, if provided. This entry
should be 0 if no handler is present.

When implemented, the handler must observe the following conventions:

1) Upon entry, the CPU is in the supervisor state. The handler must not
at any time cause the CPU to exit this state.

2) Upon return, all registers and the stack must be restored.

3) Only pSOS+ system calls that are allowed from ISRs are allowed.

pNA+ Section 3. Configuration Tables

3-36 pSOSystem Programmer’s Reference

4) Upon entry, the stack is setup as follows:

NOTE: Due to varying compiler procedure-linkage conventions, some of which
may alter register contents, exercise caution if programming your signal
handler in C.

nc_defuid Defines the user ID. This ID is assigned to a task upon the task’s creation.
Every task that uses NFS services must have a user ID. An NFS server uses
this value to recognize a client task and either grant or deny services based
on its identity. These default values may be changed by the set_id system
call. If pHILE+ NFS services are not used, nc_defuid can be 0.

nc_defgid Defines the group ID. Every task that uses NFS services must have a group
ID. An NFS server uses this value to recognize a client task and either grant
or deny services based on its identity. These default values may be changed
by the set_id system call. If pHILE+ NFS services are not used, nc_defgid
can be 0.

nc_hostname Points to a null terminated string that contains the hostname for the node.
The maximum length for the hostname is 32 characters (including the
terminating null character). The nc_hostname value can be 0, in which
case a null hostname is used.

nc_nhentry Determines the amount of memory required for the Host Table.
nc_nhentry must be at least the number of hostname-to-IP address
mappings installed in the system.

nc_ihtab Points to the Initial Host Table (if supplied). pNA+ copies the contents of
the Initial Host Table to the actual Host Table during initialization. If no
Initial Host Table is present, nc_ihtab can be 0. The Initial Host Table
contains four 32-bit variables for each hostname-to-IP address mapping.
The following is a template for the Initial Host Table:

struct hentry{
long ipadd; /* IP address of host */
char *hname; /* Hostname */
long reserved[2]; /* Reserved for future use */

};

stack ptr + 0 return address

 + 4 signals number

 + 8 tid

 + 12 socket descriptor

Section 3. Configuration Tables pNA+

pSOSystem Programmer’s Reference 3-37

where

ipadd Specifies the internet address of the host associated with the
hname field.

hname Character pointer to a null terminated string specifying the
host name (maximum 32 bytes).

reserved Are each 0.

nc_sct Points to a table that contains pointers to configuration tables for pNA+
subcomponents. The table is defined as follows:

typedef struct{
pXLIB_CT *px_cfg; /* pX11+ Cfg. Table */
struct nr_cfg *nr_cfg.; /* pRPC+ Cfg. Table */
long reserved[6]; /* for future use */

} pNA_SCT;

where

px_cfg Points to the pX11+ Configuration Table.

nr_cfg Points to the pRPC+ Configuration Table.

reserved Entries should be 0.

nc_nmblks Defines the number of mblks configured in the system.

nc_bcfg Pointer to the buffer configuration table, which contains entries that define
the data buffers configured in pNA+. Each entry contains four 32-bit
variables describing the characteristics of a buffer. The table is zero
terminated.

The structure of each buffer configuration table entry is as follows:

struct pna_bcfg

{

unsigned long pna_nbuffers; /* Number of buffers */

unsigned long pna_bsize; /* Size of buffer */

unsigned long reserved[2]; /* Reserved entries */

};

pna_nbuffers Defines the number of data buffers in the system.

pna_bsize Defines the size of the data buffers to be configured.

reserved Entries should be 0; this table is zero terminated.

nc_nsockets Defines the maximum number of sockets configured in the system.

nc_ndescs Defines the maximum number of socket descriptors per task.

pNA+ Section 3. Configuration Tables

3-38 pSOSystem Programmer’s Reference

nc_nmc_socs Specifies the number of sockets that may be used for multicast IP. This
does not allocate new sockets in addition to nc_nsockets.

nc_nmc_memb Specifies the total number of distinct multicast IP group
memberships that can be added in the system. A maximum of 20
distinct group memberships (an internal constant) can be added per
multicast socket. Adding an existing group membership address on the
same interface is counted as one membership, except that the reference
count is incremented.

nc_nnode_id Defines the Network node ID or the Router ID. This is required
when configuring unnumbered links in the system. It could be set to one
of the IP addresses of the node.

reserved (bytes at the end of the pNA+ Configuration Table) Should all be 0.

Section 3. Configuration Tables pRPC+

pSOSystem Programmer’s Reference 3-39

NAME

pRPC+ -- Hardware and application-specific parameters required by pRPC+

SYNTAX

typedef struct nr_cfg {

void (*nr_code) (); /* pRPC+ code address */

char *nr_data; /* Address of pRPC+ data area */

long nr_datasize; /* Length of pRPC+ data area */

long reserved[10]; /* Reserved entries of pRPC+ */

} pRPC_CT;

DESCRIPTION

The pRPC+ Configuration Table is a user-supplied table that provides hardware and
application-specific information required by pRPC+. The table can reside anywhere in RAM
or ROM. The starting address of the pRPC+ Configuration Table must be specified as the
nr_cfg entry in the pNA+ Subcomponent Configuration Table. (Refer also to the pNA+
Configuration Table in this manual.) The C language template for the pRPC+ Configuration
Table is located in include/prpccfg.h.

The meaning of this table’s entries are as follows:

nr_code Contains the starting address of the pRPC+ code.

nr_data Defines the starting address of the pRPC+ data area, which must be
located in RAM. You must reserve enough space for the memory
requirements of pRPC+.

If nr_data and nr_datasize are both 0, pRPC+ automatically allocates the
required amount of memory for its data area from pSOS+ region 0 during
initialization. In this case, nr_data is ignored. pRPC+ calculates the
amount of memory it requires by examining entries in its Configuration
Table.

nr_datasize Defines the size of the pRPC+ data area. The current value for nr_datasize
is fixed at 2 Kbytes.

reserved Should all be 0 for upward compatibility.

pRPC+ Section 3. Configuration Tables

3-40 pSOSystem Programmer’s Reference

Section 4. Memory Usage intro

pSOSystem Programmer’s Reference 4-1

NAME

intro -- Introduction to Section 4: Memory Usage

DESCRIPTION

The amount of RAM required by each pSOSystem software component depends on the
user’s application. This section provides formulas for calculating these requirements based
on application parameters. The following components are discussed:

• pSOS+ Real-Time Kernel (See page 4-3)

• pHILE+ File System Manager (See page 4-7)

• pREPC+ Run-Time C Library (See page 4-9)

• pNA+ TCP/IP Network Manager (See page 4-11)

• pRPC+ Remote Procedure Call Library (See page 4-15)

intro Section 4. Memory Usage

4-2 pSOSystem Programmer’s Reference

Section 4. Memory Usage pSOS+

pSOSystem Programmer’s Reference 4-3

NAME

pSOS+ -- RAM requirements

DESCRIPTION

pSOS+ needs RAM for the following elements:

• Data Area

• Task and System Stacks

• Region Header Memory

• Partition Header Memory

• TCB Extensions

• Variable Length Queue Message Storage

Data Area

pSOS+ uses the beginning of the user-defined memory Region 0 to build its data area. The
size of this data area is calculated as the sum of the items in the table that follows. In the
Size column of this table, the parameters that begin with kc and mc are entries in the
pSOS+ Configuration Table and the Multiprocessor Configuration Table, respectively:

Usage Size (bytes, decimal)

Internal Variables 3500
System stack kc_sysstk
Task Control Blocks (TCBs) (kc_ntask + 2) x 348
Queue Control Blocks (QCBs) kc_nqueue x 76
Semaphore Control Blocks (SCBs) kc_nsema4 x 36
Message Buffers kc_nmsgbuf x 20
Timer Control Blocks (TMCBs) kc_ntimer x 48
Local Object Table (kc_nlocobj x 32) + 84
Global Object Table (Master Node) mc_nnode x ((mc_nglbobj x 32) + 84)
Global Object Table (Slave Node) (mc_nglbobj x 32) + 84
Agents mc_nagent x 56
IO Devices kc_nio x 32

If Region 0 is not large enough to contain the pSOS+ data area and the Region 0 header, a
fatal error occurs during pSOS+ startup. To accommodate future expansion, it is
recommended that the pSOS+ data area be padded with an extra 20% of space.

pSOS+ Section 4. Memory Usage

4-4 pSOSystem Programmer’s Reference

Task and System Stacks

Every task must have a supervisor stack. A task must also have a user stack if it executes
in the user state (otherwise, it fails). Furthermore, pSOS+ must have its own system stack.
The CPU automatically selects and uses the right stack, and memory for all stacks is
allocated from Region 0. The sizes of a task’s supervisor and user stacks are defined by
parameters passed in the t_create() system call. The size of the system stack is defined in
the pSOS+ Configuration Table. The following paragraphs describe issues that must be
considered when sizing these stacks.

A task’s user stack is used exclusively by any task code that executes in the user state.
Sizing this task requires a determination of the worst case, nested procedure stack usage.

Sizing a task’s supervisor stack is more involved because both pSOS+ and interrupts can
use it. Any of the following can use a task’s supervisor stack:

• The task’s code (including its ASR), if the task runs in the supervisor state.

• pSOS+, if the task makes pSOS+ system calls (The worst case use within any
pSOS+ system call is 72 bytes.)

• Device drivers, if the task makes pSOS+ I/O calls (The worst case use within an I/O
call is 68 bytes plus the additional use within the user’s drivers.)

• ISRs on 68000/68010/68060 systems.

On the 68000/68010/68060, since interrupt activities use the supervisor stack of the
running task, every task’s supervisor stack must be large enough to accommodate worst
case interrupt usage. This usage must include the nesting of all possible interrupt levels. If
an ISR makes a pSOS+ system call, pSOS+ usage of the stack must also be considered.

On the 68020/68030/68040, ISRs automatically use a separate interrupt stack, which is
also the system stack, so duplication of stack space does not occur. Therefore, each task’s
supervisor stack must be able to accommodate only the first three stack uses shown in the
preceding list.

On the 68000/68010/68060, the system stack is used only briefly, and a size of 72 bytes
is adequate.

As previously stated, on the 68020/68030/68040, the system stack is used as the
interrupt stack. It must be large enough to accommodate the worst case interrupt usage,
and this usage must include the nesting of all possible interrupt levels. If an ISR makes a
pSOS+ system call, pSOS+’s usage must also be considered.

Region Header Memory Usage

When a region is created, some memory for its management is reserved at the beginning of
the region memory. This memory space is the Region Header. The size of a Region Header
is computed from the following formula:

70 + ((length/unit_size) x 6) bytes, rounded up to the next even multiple of unit_size

Section 4. Memory Usage pSOS+

pSOSystem Programmer’s Reference 4-5

where length and unit_size are parameters to the rn_create() call.

In addition to regions in general, this formula is also valid for Region 0 if length has the
value of the pSOS+ Configuration Table entry kc_r0len minus the memory requirements of
the pSOS+ Data Area. For example, if kc_r0len is 10 Kbytes and the pSOS+ Data Area is 3
Kbytes, then length should be 7 Kbytes in the preceding formula to calculate the Region 0
header size.

Segments obtained from a region have no additional memory overhead.

Partition Header Memory Usage

A Partition Header is the memory reserved in a partition for management of partition
buffers. The following formula gives the amount of memory reserved for a Partition Header:

(52 + (((length/bsiz) + 7) / 8)) bytes, rounded up to the next even multiple
 of bsiz + (length modulo bsiz)

where length and bsiz are parameters passed to the pt_create() call, and / means integer
division. Buffers allocated from a partition have no additional memory overhead.

TCB Extensions

At task creation, pSOS+ can add memory blocks called TCB extensions to the task’s Task
Control Block (TCB) for specific functions. Example functions of a TCB extension are to save
FPU status and to support the needs of other components in the system.

If a task uses the FPU, 328 bytes are allocated for a TCB extension. The sizes of other TCB
extensions appear in each component’s Memory Usage section.

Variable Length Queue Message Storage

When a variable length message queue is created, pSOS+ allocates memory from Region 0
to store any messages that are pending at the queue during use. The following formula gives
the amount of memory requested from Region 0:

maxnum x ((maxlen + 11) & -4)

where ’&’ is the bit-wise AND operator, and maxnum and maxlen are input parameters to
q_vcreate(). No memory is allocated when either maxnum or maxlen is zero. The actual
amount of memory allocated depends on the unit size for Region 0. The pSOS+
Configuration Table entry kc_rn0usize specifies the unit size for Region 0.

pSOS+ Section 4. Memory Usage

4-6 pSOSystem Programmer’s Reference

Section 4. Memory Usage pHILE+

pSOSystem Programmer’s Reference 4-7

NAME

pHILE+ -- RAM requirements

DESCRIPTION

pHILE+ needs RAM for the following elements:

• Data Area

• Stack

• TCB Extensions

Data Area

Data area requirements for pHILE+ depend on user-supplied entries in the pHILE+
Configuration Table. The size of the data area is the sum of the values generated by
incorporating the relevant configuration table entries (each of which begins with fc) in the
following formulas:

Usage Size in bytes

Static pHILE+ variables 636
Buffer headers fc_nbuf x 48
Cache buffers fc_nbuf x BUFFSIZE
Mounted volume table fc_nmount x 356
File control blocks (FCB) (fc_nfcb + fc_nmount) x 172

Refer to pSOSystem System Concepts to determine the buffer size. Normally it is
2FC_LOGBSIZE.

Memory for pHILE+’s data area can be allocated from Region 0, or it can be allocated from
a fixed location. The location depends on the pHILE+ Configuration Table entry fc_data.

Stack Requirements

pHILE+ executes in supervisor mode and uses the caller's supervisor stack for temporary
storage and automatic variables. pHILE+’s worst case usage of the caller's stack is fewer
than 4096 bytes. Therefore, a task that uses pHILE+ should be created with at least that
much stack space.

Task Extension Areas

With pHILE+ in a system, pSOS+ allocates a pHILE+ TCB extension for each task at task
creation. Memory for a TCB extension comes from Region 0, and the following formula gives
its size:

156 + (34 x fc_ncfile)

pHILE+ Section 4. Memory Usage

4-8 pSOSystem Programmer’s Reference

where fc_ncfile is the entry in the pHILE+ Configuration Table that specifies the maximum
number of open files allowed per task.

Section 4. Memory Usage pREPC+

pSOSystem Programmer’s Reference 4-9

NAME

pREPC+ -- RAM requirements

DESCRIPTION

pREPC+ needs RAM for the following elements:

• Data Area

• Stack

• TCB Extensions

Data Area

pREPC+ requires a fixed-size data area of 256 bytes. Memory for pREPC+’s data area can
be allocated from Region 0, or it can be allocated from a fixed location. The location depends
on the pREPC+ Configuration Table entry lc_data.

Stack Requirements

pREPC+ executes in supervisor mode and uses the caller’s supervisor stack for temporary
storage and automatic variables. pREPC+ requires a maximum of 1 Kbyte of stack space.
The 1 Kbyte specification assumes that no more than 10 floating point numbers are passed
to a formatted I/O function. If more than 10 floating point numbers must be able to pass,
the size of the calling task's supervisor stack must be increased to make room for the
additional arguments.

TCB Extensions

With pREPC+ in a system, pSOS+ allocates a pREPC+ TCB extension for each task at task
creation. Memory for a pREPC+ TCB extension comes from Region 0, and the following
formula gives its size:

184 + (28 x (lc_numfiles + 3)) bytes

where lc_numfiles is the pREPC+ Configuration Table entry for the maximum number of
simultaneously open files that a task can have (excluding stdin, stdout, and sterr).

pREPC+ Section 4. Memory Usage

4-10 pSOSystem Programmer’s Reference

Section 4. Memory Usage pNA+

pSOSystem Programmer’s Reference 4-11

NAME

pNA+ -- RAM requirements

DESCRIPTION

pNA+ needs RAM for the following elements:

• Data Area and Buffers

• Stack

• TCB Extensions

Data Area and Buffer Requirements

Data area requirements for the pNA+ data area depend on user-specified entries in the
pNA+ and pSOS+ Configuration Tables. The size of the data area is the sum of the values
generated from the following formulas. The pNA+ Configuration Table entries begin with the
letters nc, and kc_ntask is a pSOS+ Configuration Table entry. The parameters passed to
pna_init() are npages and nmbufs.

Usage Size in Bytes

Static pNA+ variables 4668

Network Interface Table nc_nni x 120

Routing Table nc_nroute x 100

ARP Table nc_narp x 40

Host Table nc_nhentry x 42

Socket Control Blocks nc_nsockets x 152

Protocol Control Blocks nc_nsockets x 68

Open Socket Tables (kc_ntask + 2) x 4 x (nc_ndescs)

Multicast sockets nc_nmc_socs x 92

Multicast memberships nc_nmc_memb x 24

The sum of the following is the total memory needed for pNA+ buffer configuration:

Usage Size in Bytes

Message Blocks (mblks) nc_mblks x 24

Data Block Table Number of different buffer sizes x 40

Nonzero-Sized Buffers pna_nbuffers x pna_bsize

Data Blocks for Nonzero-Sized Buffers pna_nbuffers x 24

Data Blocks for Zero-Sized Buffers pna_nbuffers x 32

pNA+ Section 4. Memory Usage

4-12 pSOSystem Programmer’s Reference

Memory for pNA+’s data area can be allocated from Region 0, or it can be allocated from a
fixed location. The location depends on the pNA+ Configuration Table entry nc_data.

Stack Requirements

pNA+ executes in supervisor mode and uses the caller’s supervisor stack for temporary
storage and automatic variables. The worst case supervisor stack usage by pNA+ is 900
bytes plus the worst case stack usage for network interface drivers. pNA+ does not use any
user stack space.

If pROBE+ is using pNA+ for communication purposes, the pROBE+ stack size must be
increased by 1.5 Kbytes.

TCB Extensions

With pNA+ in a system, pSOS+ allocates a pNA+ TCB extension for each task at task
creation. Memory for a pNA+ TCB extension comes from Region 0, and its size is 28 bytes.

pNA+ uses STREAMS memory management internally for data transfer. Data is represented
in the form of messages. Each message is a three-structure triplet: Message Block, Data
Block, and Data Buffer.

Message Blocks

A packet in pNA+ consists of a linked list of mblks (message blocks). Each message block
represents part of the packet. The message structure is defined as follows:

struct msgb {
struct msgb *b_next; /* Next message on the queue */
struct msgb *b_prev; /* Previous message on the queue */
struct msgb *b_cont; /* Next message block */
unsigned char *b_rptr; /* First unread byte in buffer */
unsigned char *b_wptr; /* First unwritten byte in buffer */
struct datab *b_datap; /* Pointer to data block */
};

typedef struct msgb mblk_t;

where

b_next Contains a pointer to the next message in the queue.

b_prev Contains a pointer to the previous message in the queue.

b_cont Contains a pointer to the next message block of the message (packet).

b_rptr Pointer to the first unread byte in the data buffer referred by the message
block.

Section 4. Memory Usage pNA+

pSOSystem Programmer’s Reference 4-13

b_wptr Pointer to the first unwritten byte in the data buffer referred by the
message block.

b_datap Pointer to the data block referred by the message block. The data block
specifies the characteristics of the data buffer.

Data Blocks

A data block specifies the characteristics of the data buffer to which it refers. The structure
is defined as follows:

struct datab {
struct datab *db_freep; /* Internal Use */
unsigned char *db_base; /* First byte of the buffer */
unsigned char *db_lim; /* Last byte+1 of buffer */
unsigned char db_ref; /* Number of refs to data buffer */
unsigned char db_type; /* Message type */
unsigned char db_class; /* Used internally */
unsigned char db_debug; /* Used internally */
unsigned char db_frtn; /* Free function and argument */
};

typedef struct datab dblk_t;

where

db_freep Used internally by pNA+.

db_base Points to the first byte in the data buffer.

db_lim Points to the last byte + 1 of the data buffer.

db_ref Number of references to the data buffer.

db_type Type of data buffer.

db_class Used internally by pNA+.

db_debug Used internally by pNA+.

db_frtn Free function and argument.

Data Buffers

A data buffer is a contiguous block of memory used for storing packets/messages.

pNA+ Section 4. Memory Usage

4-14 pSOSystem Programmer’s Reference

Section 4. Memory Usage pRPC+

pSOSystem Programmer’s Reference 4-15

NAME

pRPC+ -- RAM requirements

DESCRIPTION

pRPC+ requires:

• Two Kbytes for a data area to store static variables.

• Two Kbytes of supervisor stack (pRPC+ executes in supervisor mode only, uses the
calling task’s supervisor stack, and requires no user stack space).

• Thirty six bytes for pRPC+ extensions to each task control block.

pRPC+ Section 4. Memory Usage

4-16 pSOSystem Programmer’s Reference

Appendix A. Assembly Language Information intro

pSOSystem Programmer’s Reference A-1

NAME

intro -- Introduction to Appendix A: Assembly Language Information

DESCRIPTION

This section gives helpful information to system programmers who understand 68K
assembly language.

The 68K Assembly Language Interface is described in relation to the following:

• pSOS+ Real-Time Kernel (page A-3)

• I/O (page A-11)

• pHILE+ File System Manager (page A-15)

intro Appendix A. Assembly Language Information

A-2 pSOSystem Programmer’s Reference

Appendix A. Assembly Language Information pSOS+

pSOSystem Programmer’s Reference A-3

NAME

pSOS+ -- 68K Assembly Language Interface for pSOS+

DESCRIPTION

This section describes the assembly language interface for pSOS+. Although it is possible
to write almost an entire pSOS+ application in C or a C-compatible language, various
elements of a pSOS+ system can optionally be coded in assembly language. The following
important assembly language programming topics are discussed:

• Calling Convention

• Table of System Calls

• Shutdown Register Usage

Calling Convention

All pSOS+ system calls except i_return() are invoked identically, as follows:

1. Input parameters are loaded into the processor’s registers.

2. Register D0.L is loaded with a system call function number, which is unique for
each call.

3. The processor executes a Trap #11 instruction, which puts it in the supervisor
state. Through the previously installed Trap #11 vector in the vector page,
program execution is passed to pSOS+.

Each system call has a unique set of input and output parameters, and all parameters
occupy 32 bits.

Input parameters must be formatted and loaded into the specified registers before the
system call is made. All address parameters should be on word boundaries, and pSOS+
checks for address and other parametric errors.

Output parameters are returned in registers and, in some cases, overwrite input
parameters that use the same registers. System calls use register D0.L to return an error
code. In general, this code indicates error conditions relevant and unique to the system
service.

Most registers, including the processor status register and stack pointers, are preserved by
pSOS+ and restored to their original content upon return to the caller--except the following:

• Registers used to return output parameters.

• Register D0.L, which returns an error code.

• Where specially noted.

pSOS+ Appendix A. Assembly Language Information

A-4 pSOSystem Programmer’s Reference

Table of System Calls

The following table shows the calling conventions for each pSOS+ service call. The value
shown in the Function Number column contains the system call function number (in
decimal) that is loaded into D0.L. The Parameters column shows the service calls’ other
input and output parameters.

System Call
Function
Number

I/O List & Parameters

as_catch 47 Input: A0: start_addr; D2: mode
Output: D0: 0 or error

as_return 49 Input: None
Output: If no error, doesn’t return.

Otherwise, D0: error

as_send 48 Input: D1: tid; D2: signals
Output: D0: 0 or error

errno_addr 12 Input: None
Output: D0: address of task’s errno

ev_asend 74 Input: D1: tid; D4: events
Output: D0: 0 or error

ev_receive 45 Input: D4: events; D5: flags; D6: timeout
Output: D0: 0 or error; D4: events_r

ev_send 44 Input: D1: tid; D4: events
Output: D0: 0 or error

k_fatal 67 Input: D1: err_code; D5: flags
Output: doesn't return

k_terminate 68 Input: D1: err_code; D2: node; D5: flags
Output: D0: 0 or error

m_ext2int 69 Input: A1: ext_addr
Output: D0: 0; A1: int_addr

m_int2ext 70 Input: A1: int_addr
Output: D0: 0; A1: ext_addr

pt_create 20 Input: D1: name; D2: length; D3: bsize;
D5: flags; A0: laddr; A1: paddr

Output: D0: 0 or error; D1: ptid; D4: nbuf

Appendix A. Assembly Language Information pSOS+

pSOSystem Programmer’s Reference A-5

pt_delete 22 Input: D1: ptid
Output: D0: 0 or error

pt_getbuf 23 Input: D1: ptid
Output: D0: 0 or error; A0: buf_addr

pt_ident 21 Input: D1: name; D2: node
Output: D0: 0 or error; D1: ptid

pt_retbuf 24 Input: D1: ptid; A0: buf_addr
Output: D0: 0 or error;

pt_sgetbuf 25 Input: D1: ptid;
Output: D0: 0 or error; A0: laddr; A1: paddr

q_asend 75 Input: D1: qid; D2: msg_buf[0];
D3: msg_buf[1]; D4: msg_buf[2];
D5:msg_buf[3]

Output: D0: 0 or error

q_aurgent 76 Input: D1: qid; D2: msg_buf[0];
D3: msg_buf[1]; D4: msg_buf[2];
D5: msg_buf[3]

Output: D0: 0 or error

q_avsend 84 Input: D1: qid; D2: msglen; A0: msg_buf
Output: D0: 0 or error

q_avurgent 85 Input: D1: qid; D2: msglen; A0: msg_buf
Output: D0: 0 or error

q_broadcast 41 Input: D1: qid; D2: msg_buf[0];
D3: msg_buf[1];
D4: msg_buf[2]; D5: msg_buf[3]

Output: D0: 0 or error; D2: count

q_create 36 Input: D1: name; D2: count; D5: flags
Output: D0: 0 or error; D1: qid

q_delete 38 Input: D1: qid
Output: D0: 0 or error

q_ident 37 Input: D1: name; D2: node
Output: D0: 0 or error; D1: qid

System Call
Function
Number

I/O List & Parameters

pSOS+ Appendix A. Assembly Language Information

A-6 pSOSystem Programmer’s Reference

q_receive 42 Input: D1: qid; D5: flags; D6: timeout
Output: D0: 0 or error; D2: msg_buf[0];

D3: msg_buf[1]; D4: msg_buf[2];
D5: msg_buf[3]

q_send 39 Input: D1: qid; D2: msg_buf[0];
D3: msg_buf[1]; D4: msg_buf[2];
D5: msg_buf[3]

Output: D0: 0 or error

q_urgent 40 Input: D1: qid; D2: msg_buf[0];
D3: msg_buf[1]; D4: msg_buf[2];
D5: msg_buf[3]

Output: D0: 0 or error

q_vbroadcast 82 Input: D1: qid; D2: msg_len; A0: msg_buf
Output: D0: 0 or error; D2: count

q_vcreate 77 Input: D1: name; D2: maxnum; D3: maxlen;
D5: flags

Output: D0: 0 or error; D1: qid

q_vdelete 79 Input: D1: qid
Output: D0: 0 or error

q_vident 78 Input: D1: name; D2: node
Output: D0: 0 or error; D1: qid

q_vreceive 83 Input: D1: qid; D2: buf_len; D5: flags;
 D6: timeout
A0: msg_buf;

Output: D3: msg_len

q_vsend 80 Input: D1: qid; D2: msg_len; A0: msg_buf
Output: D0: 0 or error

q_vurgent 81 Input: D1: qid; D2: msg_len; A0: msg_buf
Output: D0: 0 or error

rn_create 14 Input: D1: name; D2: length;
D3: unit_size;
D5: flags; A1: saddr

Output: D0: 0 or error; D1: rnid; D2: asize

System Call
Function
Number

I/O List & Parameters

Appendix A. Assembly Language Information pSOS+

pSOSystem Programmer’s Reference A-7

rn_delete 16 Input: D1: rnid
Output: D0: 0 or error;

rn_getseg 17 Input: D1: rnid; D3: size; D5: flags;
D6: timeout

Output: D0: 0 or error; A0: seg_addr

rn_ident 15 Input: D1: name
Output: D0: 0 or error; D1: rnid

rn_retseg 18 Input: D1: rnid; A0: seg_addr
Output: D0: 0 or error

sm_av 73 Input: D1: smid
Output: D0: 0 or error

sm_create 51 Input: D1: name; D2: count; D5: flag
Output: D0: 0 or error; D1: smid

sm_delete 53 Input: D1: smid
Output: D0: 0 or error

sm_ident 52 Input: D1: name; D2: node
Output: D0: 0 or error; D1: smid

sm_p 54 Input: D1: smid; D5: flags; D6: timeout
Output: D0: 0 or error

sm_v 55 Input: D1: smid
Output: D0: 0 or error

t_create 1 Input: D1: name; D2: prio; D3: sstack;
D4: ustack; D5: flags

Output: D0: 0 or error; D1: tid

t_delete 5 Input: D1: tid
Output: D0: 0 or error

t_getreg 10 Input: D1: tid; D2: regnum
Output: D0: 0 or error; D3: reg_value

t_ident 2 Input: D0: name; D2: node
Output: D0: 0 or error; D1: tid

System Call
Function
Number

I/O List & Parameters

pSOS+ Appendix A. Assembly Language Information

A-8 pSOSystem Programmer’s Reference

t_mode 9 Input: D1: mask; D2: new_mode
Output: D0: 0 or error; D2: old_mode

t_restart 4 Input: D1: tid; D3: targs[0]; D4: targs[1];
D5: targs[2]; D6: targs[3]

Output: D0: 0 or error

t_resume 7 Input: D1: tid
Output: D0: 0 or error

t_setpri 8 Input: D1: tid; D2: new_prio
Output: D0: 0 or error; D2: old_prio

t_setreg 11 Input: D1: tid; D2: regnum; D3: reg_value
Output: D0: 0 or error

t_start 3 Input: D1: tid; D2: mode; D3: targs[0];
D4: targs[1]; D5: targs[2]; D6: targs[3]
A0: start_addr

Output: D0: 0 or error

t_suspend 6 Input: D1: tid
Output: D0: 0 or error

tm_cancel 64 Input: D1: tmid
Output: D0: 0 or error

tm_evafter 62 Input: D4: events; D6: ticks
Output: D0: 0 or error; EBX: tmid

tm_evevery 65 Input: ESI: events; EDX: ticks
Output: EAX: 0 or error; D1: tmid

tm_evwhen 63 Input: D1: date; D2: time; D3: ticks;
D4: events

Output: D0: 0 or error; D1: tmid

tm_get 59 Input: N/A
Output: D1: date; D2: time; D3: ticks

tm_set 58 Input: D1: date; D2: time; D3: ticks
Output: D0: 0 or error

tm_tick 57 Input: N/A
Output: 0

System Call
Function
Number

I/O List & Parameters

Appendix A. Assembly Language Information pSOS+

pSOSystem Programmer’s Reference A-9

Shutdown Register Usage

When the fatal error handler performs node shutdown, pSOS+ either passes control to the
user provided fatal error handler, passes control to pROBE+ (if present), or forces a divide
by zero exception. In all cases, pSOS+ makes information describing the cause of the
shutdown available to the processing entity.

On entry to the processing entity. the stack will contain a short exception frame (refer to
the processor manual for the format of the short exception frame). If an application invokes
k_fatal(), then the program counter (PC) in the exception frame will be the address of the
TRAP instruction in the user code or interface library which invoked k_fatal(). If pSOSystem
internally generated the fatal error or the shutdown occurred as a result of a shutdown
packet from the master node, then the PC in the exception frame will not be meaningful.

In addition, pSOS+ loads the CPU registers as follows:

D1.L = The failure code.

D2.L = In multiprocessor systems, if the shutdown occurred due to a
k_terminate() or a GLOBAL k_fatal() call, then D2.L will contain the node
where the call was made. If the shut down occurred due to a LOCAL
k_fatal() call or internally detected error condition, then D2.L will contain
the node's own node number. In single processor systems D2.L is
undefined.

tm_wkafter 60 Input: D6: ticks
Output: D0: 0 or error

tm_wkwhen 61 Input: D1: date; D2: time; D3: ticks
Output: D0: 0 or error

System Call
Function
Number

I/O List & Parameters

pSOS+ Appendix A. Assembly Language Information

A-10 pSOSystem Programmer’s Reference

Appendix A. Assembly Language Information I/O

pSOSystem Programmer’s Reference A-11

NAME

I/O -- 68K Assembly Language I/O Interface

DESCRIPTION

This section describes the assembly language interface for I/O. The following topics are
discussed:

• Calling Convention

• Backward Compatibility for Older Drivers

• Driver Register Usage

Calling Convention

I/O services are called in much the same way as other pSOS+ system calls. The conventions
are as follows:

• Upon entry, register D0.L must contain a function number. The function number
specifies the I/O operation, as follows:

1 = de_init()

2 = de_open()

3 = de_close()

4 = de_read()

5 = de_write()

6 = de_cntrl()

D1.L must contain the device number (both major and minor), and A0.L must
contain the address of an I/O Parameter Block (a user-defined structure).

• Entry into pSOS+ must happen through a Trap #12 instruction. The Trap #12
vector must have been loaded with the address of the pSOS+ I/O service entry.

• Upon return to the caller:

D0.L contains an error code (0 = success)

D1.L contains a quick-reference return value

When the I/O Supervisor is called from assembly language, pSOS+ returns the following
additional error code if an invalid function code is loaded into D0.L:

HEX MNEMONIC DESCRIPTION

0103 ERR_IOOP Illegal I/O function number.

I/O Appendix A. Assembly Language Information

A-12 pSOSystem Programmer’s Reference

Backward Compatibility for Older Drivers

pSOS+ actually supports two interfaces between pSOS+ and a device driver. These are
known as the old and new interfaces. The preceding section (Calling I/O Services) describes
the new interface. This section describes how to write a driver by using the old interface.
Early versions of pSOS+ contain only the old interface. These versions pass parameters to
and from a device driver through processor registers and therefore require that at least part
of a device driver be in assembly language.

Newer versions of pSOS+ support both the old and the new interface. With the new
interface, parameters pass to and from the device driver through the ioparms structure and
therefore allow a device driver to be written entirely in C or a C-compatible language.

A driver written in assembly language can use either the new or old interface. (Specifically,
the driver uses the values in ioparms in the same way a C language program would and
returns to pSOS+ by using an RTS instruction.) Although the old interface is obsolete, it is
supported by pSOS+ and documented here because many older pSOS+ drivers still use it.
The remainder of this section describes the old interface.

When pSOS+ calls a device driver, in addition to putting a pointer to ioparms on the stack,
it loads the CPU registers as follows:

• D0.L contains the caller's task id.

• D1.L contains dev as provided by the calling task.

• D2.L contains the calling task's processor status word in the lower 16 bits.

• A0.L contains iopb (a pointer to the I/O parameter block), which is provided by the
calling task.

On exit from the driver, pSOS+ can use the following registers to pass parameters back to
the calling task:

• D0.L is returned to the application as the I/O function call return value.

• D1.L is copied to the variable pointed to by the service call input parameter retval.

Device drivers return two scalar values to pSOS+. These are a quick-reference return value
and an error code. When the C interface is used, they are returned to pSOS+ through the
err and out_retval parameters in the ioparms structure, and when the old interface is
used, they are returned through registers D0.L and D1.L. To determine which interface is
being used and, hence, where to find the return values, pSOS+ examines a parameter in
ioparms called used. If used is 0 (its value upon entry to the driver), pSOS+ assumes the
old interface is being used. Otherwise, pSOS+ assumes the new interface is being used.

A driver must restore all register contents (except those used for output), restore any
execution mode that it changed, and use a subroutine exit (RTS) to return control to pSOS+.

Appendix A. Assembly Language Information I/O

pSOSystem Programmer’s Reference A-13

Driver Register Usage

This section provides additional information on how register values are managed while
control passes from the application code to a device driver and back again.

When control passes from a calling task to a device driver, most register values pass
through unchanged. The exceptions are D2.L, which will contain the calling task's ID, and
A1.L, which pSOS+ uses internally. In addition, the C language bindings (de_init(),
de_open(), and so on) alter D0.L, D1.L, and A0.L before pSOS+ gains control.

When control passes from the device driver back to the calling task, all register values are
passed through unchanged. Thus, if the driver has altered a register value, the altered value
remains when control returns to the task.

Finally, earlier pSOS+ manuals document a convention by which the address of a driver's
data area is passed between pSOS+ and the driver through register A1. Although this
convention is obsolete, pSOS+ still supports it for backward compatibility. If an explanation
of how to use A1 in this way is needed, Integrated Systems Technical Support will provide it.

I/O Appendix A. Assembly Language Information

A-14 pSOSystem Programmer’s Reference

Appendix A. Assembly Language Information pHILE+

pSOSystem Programmer’s Reference A-15

NAME

pHILE+ -- 68K Assembly Language Interface for pHILE+

DESCRIPTION

This section describes the assembly language interface for pHILE+.

Although it is now possible to write almost an entire pSOSystem application in C or a C-
compatible language, various elements may optionally be coded in assembly language. This
section provides useful information for assembly language users of pHILE+.

Calling Convention

All pHILE+ system calls are invoked in the following manner:

1. All call parameters are pushed onto the stack in a right-to-left order. Each
parameter occupies four bytes.

2. Register D0.L is loaded with a system call function number that is unique for each
call.

3. A Trap #11 instruction is executed.

Execution of the Trap #11 puts the processor into the supervisor state and passes control
to pSOS+ through the previously installed Trap #11 vector. By examining the function
number in D0, pSOS+ determines the call is a pHILE+ call and passes control to pHILE+.

Control returns to the caller at the instruction following the Trap #11 instruction. At this
time, register D0.L contains the error code. (A 0 indicates a successful call, and any other
value indicates an error.) All other registers (including the stack pointers) are fully restored
to their original content upon return to the caller.

The following example shows how a system call can be programmed using assembly
language:

The C language call

lseek_f(fid, position, offset, &old_ptr)

could be written in assembly language as:

PEA.L old_ptr ;PUSH ADDRESS TO GET OLD L_PTR

MOVE.L offset,-(SP) ;PUSH THE OFFSET

MOVE.L position,-(SP) ;PUSH POSITIONING METHOD

MOVE.L fid,-(SP) ;PUSH THE FILE DESCRIPTOR

MOVE.L #20EH,D0 ;LOAD FUNCTION CODE

TRAP #11 ;AND CALL PHILE+

TST.L D0 ;ANY ERRORS?

pHILE+ Appendix A. Assembly Language Information

A-16 pSOSystem Programmer’s Reference

BNE ERROR ;YES, PROCESS IT

Table of System Calls

The following table shows the function codes for each pHILE+ service:

System Call Function Number System Call Function Number

access_f 0x213 nfsmount_vol 0x224

annex_f 0x211 open_dir 0x216

change_dir 0x20C open_f 0x20D

chmod_f 0x225 open_fn 0x21A

chown_f 0x227 pcinit_vol 0x21B

close_dir 0x218 pcmount_vol 0x21C

close_f 0x214 read_dir 0x217

create_f 0x208 read_f 0x20F

fchmod_f 0x226 read_link 0x22B

fstat_f 0x222 read_vol 0x205

fstat_vfs 0x21D remove_f 0x20A

ftruncate_f 0x220 stat_f 0x221

get_fn 0x219 stat_vfs 0x215

init_vol 0x201 symlink_f 0x22A

link_f 0x229 sync_vol 0x203

lock_f 0x212 truncate_f 0x21F

lseek_f 0x20E unmount_vol 0x204

lstat_f 0x223 utime_f 0x207

make_dir 0x209 verify_vol 0x21E

mount_vol 0x202 write_f 0x210

move_f 0x20B write_vol 0x206

Index

pSOSystem Programmer’s Reference Index-1

Index

A
Assembly Language, 68K A-1

for pHILE+ A-15
for pSOS+ A-3
I/O interface A-11

B
bootpd 1-3, 1-5

configuration database 1-7
configuration table 1-7
daemon task 1-5
generic tag 1-8
parent IP address 1-8
resource requirements 1-5
server options 1-7
starting Routing Daemons 1-5, 1-

6
system requirements 1-5
tag symbol 1-8

BTPD 1-5

C
Configuration Tables 3-1

multiprocessor 3-5
node 3-3
pHILE+ 3-25
pNA+ 3-31
pREPC+ 3-29
pROBE+ 3-15
pRPC+ 3-39
pSOS+ 3-9

D
Device Driver

guidelines for writing 1-37
DISI 2-31

callback functions 2-33
data structures 2-51
error codes 2-54
features 2-34
function calls 2-32
multiplex driver mapping 2-55
SerialClose function 2-44
SerialInit function 2-35
SerialIoctl commands 2-41
SerialIoctl function 2-41
SerialOpen function 2-35
SerialSend function 2-38
user callback functions 2-45

DISIplus 2-57
callback functions 2-59
data structures 2-82
error codes 2-89
function calls 2-58
multiplex driver mapping 2-89

Index

Index-2 pSOSystem Programmer’s Reference

F
FTP Client 1-11

commands 1-12
configuration 1-11
help 1-13
startup 1-11

FTP Client Bugs 1-18
FTP Command

file naming conventions 1-17
file transfer parameters 1-17

FTP Server 1-19
configuration 1-19
configuration table 1-19
startup 1-21

G
gateway structure 1-76

parameter 1-76

K
Kernel Interface 2-21

conventions 2-26
error conditions 2-25
packet buffer sizes 2-22
packets

packet buffers 2-21
services 2-27
transmission requirements 2-24

L
Loader 1-23

concepts and operations 1-25
configuration 1-24

functions 1-23
load function 1-26, 1-30
load function errors 1-31
loader API 1-28
object files 1-23
procedure for compiling

running application on 1-36
release function 1-26, 1-33
release function errors 1-33
unload function 1-32
unload function errors 1-33
user configurable modules 1-24

M
Memory Usage 4-1

pHILE+ 4-7
pNA+ 4-11
pREPC+ 4-9
pRPC+ 4-15
pSOS+ 4-3

mmulib 1-39
concepts and operations 1-40
functions 1-42
map template 1-41
page attributes 1-41

N
Network Interface 2-3

calling conventions 2-10
MIB-II related operations 2-15
packets

packet buffers 2-3
pNA+-dependent interface 2-5
pNA+-independent interface 2-4
pROBE+ debug support 2-9

Index

pSOSystem Programmer’s Reference Index-3

services 2-3, 2-10
NFS Server 1-47

configuration 1-47

P
pSH 1-51

adding applications to 1-56
adding commands to 1-55
built-in commands 1-56
command descriptions 1-58
configuration 1-51
shell 1-51
subroutines 1-56

R
RARP 1-73
routed 1-75

configuration table 1-75
starting routing daemons 1-77
system/resource requirements

1-75

S
SCSI

pSOS-to-Driver interface 2-97
upper to lower driver interface

2-98
user interface 2-93

System Calls A-4
for pHILE+ A-16
for pSOS+ A-4

T
Telnet Client 1-79

commands 1-80
configuration 1-79

Telnet Server 1-85
configuration 1-85

TFTP Server 1-87
configuration 1-87

Index

Index-4 pSOSystem Programmer’s Reference

Document Title: pSOSystem Programmer’s Reference

Part Number: 000-5078-001

Revision Date: March 1996

	Contents
	About This Manual
	Purpose
	Audience
	Organization
	Related Documentation
	Notation Conventions

	Section 1. System Services
	bootpc -- BOOTP client
	bootpd -- BOOTP daemon
	FTP Client -- Transfer files to and from a remote system
	FTP Server -- Allow remote systems running FTP to transfer files to/from a pHILE+ device
	Loader -- Allow run-time target loading and unloading of application programs
	mmulib -- mmu library
	NFS Server -- Allow systems to share files in a networked environment
	pSH+ -- Interactive command line shell
	RARP -- Reverse Address Resolution Protocol
	routed -- routing daemon
	Telnet Client -- Supports communication with a remote system running a Telnet Server
	Telnet Server -- Allow remote systems running the Telnet protocol to log into pSH+
	TFTP Server -- Allow TFTP clients to read/write files interactively on pHILE+ file systems.

	Section 2. Interfaces and Drivers
	NI -- Network Interface
	KI -- Kernel Interface
	DISI -- Device Independent Serial Interface
	DISIplus -- Device Independent Serial Interface
	SCSI -- Small Computer System Interface Driver
	SLIP- Serial Line Internet Protocol

	Section 3. Configuration Tables intro
	Node -- Pointers to Configuration Tables of software components
	Multiprocessor — Hardware and application-specific parameters for multiprocessor systems
	pSOS+ -- Hardware and application-specific parameters required by pSOS+
	pROBE+ -- Hardware and application-specific parameters required by pROBE+
	pHILE+ -- Hardware and application-specific parameters required by pHILE+
	pREPC+ -- Hardware and application-specific parameters required by pREPC+
	pNA+ -- Hardware and application-specific parameters required by pNA+
	pRPC+ -- Hardware and application-specific parameters required by pRPC+

	Section 4. Memory Usage i ntro
	pSOS+ -- RAM requirements
	pHILE+ -- RAM requirements
	pREPC+ -- RAM requirements
	pNA+ -- RAM requirements
	pRPC+ -- RAM requirements

	Appendix A. Assembly Language Information intro
	pSOS+ -- 68K Assembly Language Interface for pSOS+
	I/O -- 68K Assembly Language I/O Interface
	pHILE+ -- 68K Assembly Language Interface for pHILE+

	Index

