
u
u

v
w

u

v
w

u

v
w

u

v
w

u

v
w

u

v
w

u

v
w

u

v
w

"
'

0
\

u
v

0
w

0

u
v

w

u
+:

-
v

w

C
J)

u

\J
I

v
w

0

m

::5
u

v
w

:::

0
0

u
v

w

0
"

"
'

u
v

w

tr

-
I

u
v

w

CD

m

u
v

w

..,
~

u
v

w

....
u

v
w

g

:,

u
v

w

)>

CD

m

....
u

v
w

•

n
:::

0
u

v
w

•

u
v

w

C
J)

u
v

w

':T
'

.....

a
..

u
v

w

u
v

w

..,
.....

u

v
w

"'O

~

u
.

v
w

CD

~"
'

. .
u

vw

u
w

v

u
w

v

u
w

v

u
w

v

u
w

v

v
v

v
v

v

EERIE

INTRODUCTION

This EERIE description applies to an interpretive system for the CYCLONE
DIGITAL COMPUTER with a 16,384 word memory. The 1961 EERIE description applied
to the CYCLONE when its memory was limited to 1024 words. It may also be noted
that the present input tape preparation equipment is Friden FLEXOWRITER equip~
ment instead of the previous TELETYPE equipment. This change has involved a
shift to 8 level paper tape from the previous 5 level paper tape. From the
standpoint of the user this means a rather significant convenience of tape prep
aration for EERL~ programs since the keyboard is now essentially equivalent to
a conventional typewriter.

**Rather significant changes have been made in EERIE itself. As a conse
quence the task of writing EERIE for the new machine was far from a trivia l
one. Some of the important changes are:

1 . The new EERIE program uses floating binary arithmetic so that
integer arithmetic may be performed exactly. This necessitated
completely rewriting all of the arithmetic routines. It should
be noted that this change also payed a dividend of about 30 per
cent faster oprating speed.

2. The ORDER structure of EERIE was approximately doubled and now
includes trss1, trss2, tan, sinh, cosh, tanh, lxa, sxa, intgr,
copy, swap, clear, tab, punch, crlf, space, trz, and other
orders.

3. ALL ROUTINES were rewritten to take advantage of the order struc
ture, expanded memory and block facilities.

4. A new organizational philosophy was used in the EERIE program so
that the program could be rapidly and conveniently checked for
accuracy and so that faulty student programs could not in general
cause any harm to EERIE.

5. A NEW METHOD of addressing was added using ASTERISK notation.

6. ADDITION of an automatic debugging aid with the order FLAG.

7. ADDITION of constant listing facilities to improve program read
ability and minimize clerical effort.

**Mr. Paul Sampson progranmted the arithmetic routines during the sunmter of
1961 .

Mr. LaFarr Stuart wrote up, debugged, and tested the arithmetic routines
during the fall of 1961. Mr. Stuart also aided the author in assembling and
testing the complete EERIE program which used a total of 80 subroutines total
ling more that 2800 machine language instructions and requiring more than 1
hour of FLEXOWRITER time to merely type out the complete program. The esti
mated total man time involved in the preparation of EERIE is 1000 hours.

Constant listing facilities were added by Mr. Robert Croft in early fall
of 1962.

- 2 -

DESCRIP!'ION

Many additions have been made to the order structure of EERIE in order to
make the program as versatile as possible. These are described in considerable
detail in the section named EERIE ORDER CODES. At this . point I wish to consider
the changes involved in program tape preparation. First, note that each EERIE
order must be typed as follows:

!margin !tab ltab 2 !tab 3 !tab 4 !tab 5

add 200;

The mnemonic operation code must appear at tab stop 1. It is Nor sufficient to
set the margin over. The address must appear at tab stop 2. The address usually
consists of a number giving the location in memory of the operand for the order.
Less frequently an index is also specified. Still less frequently a decrement
(or parameter) is required. Several examples are shown to illustrate how conunas
are used to control the decoding of the address information by EERIE.

add
add
add
add

200;
,5;
,,73;
200,5,73;

address only
index only
decrement only
address, index, and decrement

The ADDRESS specifies where an operand for the order is to be placed into or
obtained from in execution of an order. The INDEX specifies one of 15 registers
which may be used to modify the value of the address before the order is executed.
INDEXING in EERIE is always SUBTRACTIVE. In other words, the order [add 200,5]
will cause the computer to add the contents of location (200- present value in
register 5) to the accumulator. Orders are available for setting , modifying, and
testing these 15 registers. By convention index 0 is always maintained exactly
zero. Thus, [add 200;] causes the machine to add the contents of location 200
to the accumulator. The DECREMENT is normally used to carry a parameter such as
the size of an increment or the number of decimal places to be printed.

1. The address is limited to the range 0-4095. An address of 0
always references the accumulator.

2. The index is limited to the range 0-15. An index of 0 always
causes the order to be obeyed without modification.

3. The decrement is limited to the range 0-4095.

Two types of information are typed on a program tape for EERIE. The FIRST
type is simply an order which is to be stored directly in memory such as
[add 200;]. The SECOND type is a PSEUDO order which is NEVER stored in the memory,
but rather simply instructs EERIE what is to be done (e.g. [begin 200;] says to
store subsequent orders at location 200 and following while lend 100;J says to
stop storing orders and to start executing orders beginning at location 100).

- 3 -

lmH APDBESSING MEIHOD

A method of addressing has been added to EERIE which facilitates
greatly the construction of library subroutines. For this purpose an
asterisk is used to denote the PRESENT LOCATION. Thus, if we wish to
transfer unconditionally forward four orders we would write in the pro
gram merely [tru ~;]. This addressing method also works very well
for loading index registers since we may put 54 into index register 11
with the order [lxd *,11 ,54;] regardless of what location this order is
to be stored in memory. Addresses may be formed as [*], [*+17), [*-25),
or (37].

SAMPLE PROGRAM

!valuate the polynomial that follows for 15 consecutive values of
the variable x ranging from 0.00 to 0.14 in increments of 0.01. The
polynomial is:

2.37 + 4.43 x + 7.38 xt2 + 9.22 xt3 - 5.17 xt4 + 4.42 xt5 + 2.13 xt6

The first consideration in this example problem is a mathematical
method. Polynomials are most conveniently evaluated using the method of
nested factors---regardless of whether it is done by computer or by hand
---but this method has special significance for machine computation since
i t may be arranged to proceed iteratively. Thus, we arrange the evaluation
in the form:

((((((2.13)x+4.42)x-5.17)x+9.22)x+7.38)x+4.43)x+2.37

Consider first how we would evaluate this polynomial in EERIE. What we
would like to do is to pick up the highest order coefficient, multiply it
by "x" then add the next lower coefficient, multiply it by "x", etc. until
at the last step we add the lowest order coefficient. The address modifi
cation instructions are a natural for this operation. We will suppose that
"x" is stored in location 1, the constant 2.13 in location 10, the constant
4.42 in location 11, etc. for the rest of the constants. Our program would
then be:

lxd
cla
mul
add
tix

*,1,6;
10;
1 ;
1 7, 1 ;
*-2 '1 , 1 ;

load index one with the constant 6
load the accumulator with 2.13
multiply the accumulated result by "x"
add the coefficient "ai"
loop back to "mul" by 'x" to repeat 6 times

After this sequence of orders the accumulator would contain the value of
the polynomial.

Our complete program may be written as shown on next page. The double
carriage returns have only been used for emphasis in separating connected
sections of material and are not to be typed in the program---though they
wouldn't hurt anything.

begin
lxd
inp
tix

stz
lxd

lxd
cla
mul
add
tix

crlf
out
cla
add
sto

tix
end

DATA TAPE:

100;
*,1,8;
18 '1 ;
*-1 '1 '1 ;

1 ;
*,2,15;

*,1,6;
10;
1 ;
17 '1 ;
*- 2 '1 '1 ;

1 ;
;
1 .

' 17;
1 ;

*-10 ,2 '1 ;
100;

- 4 -

begin storing the program at location 100
load index to input eight data values
input into location (18-value in index 1)
decrement index 1 and loop back 7 times

initialize value of ''x" to zero
prepare to loop a total of 15 times

arithmetic loop shown above

evaluation of polynomial complete

punch a carriage return and line feed
output the accumulator

increment 11x 11 by 0 .01

completion of outside loop counting to 15
pseudo order terminating input and storage
of orders

2.13 4.42 -5.17 9.92 7.38 4.43 2.37 0.01

CONSTANT LISTING FEATURES

Quite frequently constants such as +2.0, +4.0, e = 2.7182818 and
~ = 3.14159265 are required in a program. For example, in finding the
roots of a quadratic we need to evaluate a term of the form (b2 - 4ac).
The constant of 4 in this expression is not connected with the equation,
but nevertheless is required in the evaluation of the roots. Similarly,
if we wish to find the circumference of a circle using the relationship
s = 2 ~ r we need the constant 2~. Other common constants required are
12 to convert feet to inches, 60 to convert minutes to seconds, and 5280
to convert miles to feet. All of these constants are important, since
they are required in the solution of a problem, but they do not represent
~since they remain the same for all problems of the same types.

The constant listing feature of EERIE is especially important for
representing constants such as those just mentioned. For example, EERIE
permits the following specialized order construction:

cla
add
sto

157;
+1 .o;
157;

notice this order

This simple section of program will cause the number in location 157 to
be increased by +1 .0 every time that this sequence of orders is obeyed.
Similarly, location 157 could be modified by any other numerical value.

- 5 -

In order that you may use this facility to best advantage you should
understand how the constant listing feature of EERIE works. During the
loading of an EERIE program into memory actual address of 157 will be
supplied to the first and last order in the sequence given on previous
page. The middle order, however, will receive quite special treatment.
When a number is discovered in the address of this order---by the first
address character being a plus or minus slgn---then this constant will be
listed at the end· of the memory, and the address where it has been listed
will be supplied as the actual address of this order. If this is the
first constant listed then the constant +1 .O will be stored in location
4095 and the address 4095 supplied as the address of the order. The list
ing process attempts to make maximum memory utilization by storing a given
constant only once and supplying the address of the first listing to all
subsequent references to any particular constant.

As a consequence of the previous considerations certain rules may be
deduced. These basic rules of usage are:

1. Zero may never be listed as a constant.

2. Program storage and variable storage is not permitted in a
space at the end of the memory equivalent in size to the
number of distinct constants which have been listed.

3. A constant should never be listed as the address of an order
which stores anything in memory.

4. Any constant to be listed must start at the regular address
position and must begin with a plus or minus sign.

Certain problems require a series of constants, but the nature of
the evaluation involves a looping process which prohibits the use of the
address constant listing feature just described. For example, consider
the series evaluation of some basic function such as the exponential:

n x ... + -,
n.

If we suppose that 5 terms are sufficient for the accuracy we require then
we could use the constant listing feature by completely writing out the
evaluation of the series---nested factor form---as follows:

cla +o.00833333333; 1/5!
mul 100; 100 is assumed location of x
add +o.0416666667; +1 /4 !
mul 100; times x
add +o .16666666 7; +1/3!
mul 100; times x
add +o.5; +1/2!
mul 100; times x
add +1 .o; +1 /1 !
mul 100; times x
add +1 .o; value now in accumulator

- 6 -

Although this program is reasonably compact for only 5 terms it is still
more than twice as long as the looping form shown in an earlier example.
Also, quite clearly the address constant listing feature is not applicable
when the program is revised to use looping.

However, another feature of the input program with EERIE permits
constants to be conveniently listed with the program, but without the
bother of including a series of input orders and placing the constants
on the data tape. All that is required is to simply type the constants
one per line starting at the first tab stop. Each constant must be signed.
In looping form the series evaluation of the exponential could then be
written:

relative
loc lxd * '1 ,5 initialize index 1 to 5

cla tt5; initialize accumulator
mul 100; multiply by x
add tt9'1 ; add next coefficient
tix *-2 '1 '1 ; loop back until index exhausted
tru 1 '15; assumed exit back to main program
+o.00833333333; listed constant
+o.0416666667; listed constant
+o .166666667; listed constant
+o .5; listed constant
+1 .o; listed constant
+1 .o; both of these ones are required

SUBROUIINES

Subroutines, as implied by the name, are sections of program designed
to perform a task subordinate to a complete program. Subroutines deserve
special attention for at least two very important reasons:

1 • Libraries of subroutines may be constructed for many of the
common tasks. In this way the job of the programmer may be
rather dramatically reduced since he can then simply coordi
nate the use of the subroutines rather than program all de
tails of the entire program.

2. However, even if no library routines are available for his
partic 1.ar task, he may rather significantly reduce the
effort in writing and debugging a program by careful de
composition of his program into a series of subroutines--
each one of which may be rather rapidly and conveniently
tested. If the subprograms have sufficient generality he
may save them to use later and so avoid the necessity of
duplicating his own effort.

A subroutine is in principle just a section of a more complicated and complete
program. There is however, a special feature which distinguishes a subroutine
from a subprogram. This special feature consists of a single ~in EERIE,
but the generality and convenience implied by its use far outweighs the almost
trivial effort required to learn how to constnicta subroutine.

loc

- 7 -

A trivial example program will be considered in illustrating the con
struction of a subroutine so that emphasis may be kept on the subroutine
formation rather than on the task to be performed by the subroutine. Since
there is no cube root connnand directly in EERIE suppose that we construct a
subroutine to extract the cube root. This task can be most conveniently
performed using logarithms as follows:

~ = (x)1/3 = e1/3 ln (x)

Assuming that x is in the accumulator we may find the cube root of x with the
answer in the accumulator with the series of EERIE orders:

log
div
exp

O· ,
+3.0;
O· ,

Now as the orders are shown this is simply a section of a larger program. In
order to convert it to a subroutine we simply have to add the single order as
shown:

log O· ,
div +3.0;
exp O;
tru 1 , 1 5;

How do we use this subroutine? Simple. Suppose that inour main program that
we are required to evaluate the expression:

Our program would appear as follows in EERIE if we assume that x is in location
100 and that the cube root subroutine given previously begins at location 50:

10) cla 100; load x into the accumulator
11) tsx 50, 1 5; take the cube root of x
12) add 100; add x to the cube root of x
13) tsx 50,15; take the cube root of (x plus cube root of x)

Now let us look at how the subroutine works. The order [tsx 50,15;] causes
control to be transferred to location 50 and the negatiye of the location of
the order to be placed in index register 15. After the cube root has been
evaluated then the order [tru 1 ,15;] returns us to (1-(-location of order])
which is the location of the TSX order plus one---regardless of the location of
the TSX order which branched to the subroutine. Thus, control passes through
the sequence of orders as illustrated:

cla 100; log O;
tsx 50, 15; div +3.0;
add 100; exp O;
tsx 50, 15; tru 1 , 15;

- 8 -

Insofar as the program is concerned it appears that the order [tsx 50,15;]
is a cube root connnand. Similarly, a single such command can call upon a sub
routine to perform any task which can be programmed.

An interesting and important saving in effort is produced in our program
by virtue of the fact that the same coding for performing the cube root is
used twice, but without having to repeat it twice. For commonly used subrou
tines this may save substantial memory space, minimize programming effort and
significantly reduces the chance of a programming blunder.

Our illu.stration considers the simplest case where the subroutine operates
on a single variable and produces a single answer. You might consider how
several variables could be handled. Like most problems this one has many
answers. One of the most elegant solutions is illustrated by a subroutine to
convert from rectangular to polar form. The conversion formulas are as follows:

m theta = arctan (y/x)

We will suppose that the values of x and y are always placed by the main pro
gram in the two locations immediately following the TSX order which transfers
to the conversion subroutine. If the subroutine begins at location 50 then a
single call on the subroutine would appear as follows:

tsx 50 '1 5; cla 1 '15; obtain x
nop mul 1 '1 5; form square
nop sto 1 .

'
temporary

xxx ddd; cla 2 '15; obtain y
mul 2 '1 5; form square
add 1 .

'
add square

sqrt O·
'

square root
sto 1 .

'
temporary

cla 1 '15; obtain x
trz *+12; zero is special
idiv 2 '15; form y/x

case

itan O·
'

form arctan (y/x)
sto 2 '1 5; replace y
cla 1 '1 5; test quadrant
trp *1-4; result ok
cla 2 '1 5; no, must add 7r

add + 3 . 141 5 9 2 6 54 ;
sto 2 '15;
cla 1 ; obtain m
sto 1 '1 5; store in place of x
tru 3'15; return to ca 11 ing p:ogi:ar

cla 2 '1 5; obtain y
trp tt3
els +1 .570796327; if neg. then --rr/2
tru *-7;
cla +1 . 570796327; if pos. then +-rr/2
tru *-9;

- 9 -

Notice that this program replaces the values of x and y carried into the program
in the locations following the TSX order with the computed values m and theta.
Also, the argument is returned in radians with the range -tr/2 to +3tr/2. Any
other range could be selected by suitable program modification. The addresses
following the TSX order are easily referenced:

1. first address is 1 ,15;
2. second address is 2,15;
3. third and return address is 3,15;

In order to avoid the machine hang up condition which prevails when x is zero
in the evaluation of y/x a small program addition has been made to substitute
+tr/2 or -tr/2 for the angle theta rather than attempting the division.

DATA HANDLING

Although a digital computer performs tasks at a very high rate, this should
not cause the user to become careless and inefficient in his programming. For
example, suppose that you can think of two ways to evaluate a given quantity;
the first taking 12.4 milliseconds and the second taking 11 .4 milliseconds. Even
at a CYCLONE cost of $40.00 an hour this time savings doesn't seem worth the
added effort. However, suppose now that this operation must be repeated over and
over for tens of thousands of times so that the program requires several minutes
computation time. If the first program required 12.4 minutes to run then it
should be evident that the second would only run 11 .4 minutes. This saving of 1
minute represents nearly a dollar and should not be lightly dismissed. If the
first program should run 12.4 hours---and useful type programs might---then our
1 millisecond saving has mushroomed into an hour of time which is equivalent to
a 40 dollar saving.

Now consider a subroutine for multiplication of two one-dimensional arrays
together. Suppose that the x's are in location 3700-3799, the y's in 3800-3899
and the xy's are to be placed in locations 3900-3999. Then our program would be
as follows:

lxd * '1 '100; load index for counting
cla 3800'1 ; obtain x
mul 3900'1 ; form xy
sto 4000'1 ; store xy
tix *-3 I 1 > 1 ; loop back

If we wished to use such a section of program as a subroutine we would have to
include a subroutine exit of the form [tru 1 ,15;] if we were to enter the
program with the conventional subroutine linkage [tsx address,15;] . We
could, however, generalize our program considerably by omitting the [lxd *•1 ,100;
from the subroutine and placing it before the TSX transfer to the subroutine. In
this way the program may be organized to only multiply together the desired number
of elements.

The subroutine, as presently envisioned, is not very satisfactory or conven
ient because we have to move the data into the working locations 3700-3899 before
calling on the subroutine and then move the data back from location 3900-3999
after using the subroutine. For example, consider use of our subroutine to mul
tiply together x's from 250-299 with y's from 500-549 and place the xy's in loca
tion 350-399. Subroutine is assumed to begin in location 60.

lxd
copy
copy
tix
lxd
tsx
lxd
copy
tix

* '1 ,50;
300, 1 ,3800;
550 '1 , 3900;
*-.2, 1 , 1 ;
*, 1 ,50;
60, 15;
*, 1 , 50;
4000,1 ,400;
*-1 '1 , 1 ;

- 10 -

cla
mul
sto
tix
tru

3800, 1 ; obtain x
3900, 1 ; form xy
4000,1; store xy
*-3, 1 , 1 ; loop back
1 , 1 5; return

One feature which is poor about this program is that so much unnecessary data
movement is required. For example, about 0.275 seconds data movement is required
before entering the subroutine and about 0.175 seconds data movement is required
after exiting from the subroutine---and only 50 points were moved. Another poor
feature is that a maximum of 100 points can be multiplied together since only
that much temporary working space has been allocated at the end of the memory.

Virtually all the poor features of the above program can be eliminated
with one simple change in philosophy. Never move data if it can be avoided!
This can be accomplished with great convenience in our example as illustrated
by the following entry(on left) and subroutine (on right):

lxd
lxd
lxd
lxd
tsx

*, 1 , 50;
*,2,300;
*,3,550;
*,4,400;
60, 15;

sxa
sxa
sxa
cla
mul
sto
tix
tru

*+3 ,2;
tt3,3;
tt3 ,4;
0'1 ;
0, 1 ;
0, 1 ;
*-3, 1 , 1 ;
1 , 1 5;

You should notice that index registers have been used to carry vital infor
mation to the subroutine. This is an especially important method since index
registers may be loaded and unloaded faster than even the simplest arithmetic
operations. The index register usage is as follows:

index 1
index 2
index 3
index 4

carries
carries
carries
carries

number of x's (or y's)
final data address plus one for the x's
final data address plus one for the y's
final data address plus one for the xy's

These four index registers are loaded before entry to the subroutine. Then the
first business in the subroutine involves "planting" addresses in the correspond
ing orders. The whole process of loading and unloading the index registers re
quires only 0.010 seconds---regardless of the size of the arrays to be operated
on. Compare this to 0.450 seconds required for a modest 50 points; the improve
ment is 45 to 1 even for this case.

Two more rather important considerations may be illustrated by this rather
trivial example. First, notice that the size of the subroutine is relatively

- 11 -

unimportant compared with the size of the call on the subroutine when the sub
routine is to be called on several times from several locations in the program.
And second, notice that the GOOD WAY has the advantage of having an elegantly
simple and clear entry; this feature is of fundamental importance when minimi
zation of progrannning errors is considered.

PROGRAMMING TO AVOID EXCESSIVE DEBUGGING

One of the most perplexing problems facing the aspiring father of a pro
gram is that it doesn't work. Unfortunately, most programs of over SO words
do not work---at least when first tried. The errors may come from many sources.
Thaiewhich result from miscopying and mistyping can be reduced by careful
proofreading---but never seem to be entirely eliminated. It is not this type
of error which is our present concern. We are concerned here with developing
an overall philosophy of construction which tends to prevent the "unavoidable"
errors of oversight---but even ~ importantly sharply reduces the time re- .
quired by the programmer to eliminate the inevitable "bugs" from his program.

Probably the most serious mistake made by the novice programmer on a
medium to large size problem is overestimating his ability to write error free
programs. YOU WILL MAKE ERRORS! Anyone who claims otherwise either hasn't
written any programs or is an outright liar. Now once you admit to YOURSELF
that you program will have errors in it you have made a major step toward
avoiding wasteful and expensive use of time on the computer to debug your pro
gram. The secret to success is careful organization of your program into sec
tions and subroutines which can be individually tested and debugged. The situa
tion is s~what comparable to attempting to t)ll>e up a SO page manuscript--
without error---on a continuous scroll of paper. As you can readily visualize
this would be nearly impossible---even for the most proficient secretary. How
ever, the task is relatively trivial in page form for a secretary of average
ability.

It might pay at this point to estimate just how much is saved by dividing
the task into smaller sections. Suppose that a secretary could type SO percent
of the pages perfectly the first time. The complete task then would require
the typing of about 100 pages and this could be accomplished easily in three
or four days. However, with the same degree of typing competence our secretary
would likely have to attempt the task of typing an error free scroll a total of
two to the fiftieth times---millions of millions---before producing an error
free copy. ENOUGH SAID?

The task of arranging your program in subsections is not a trivial one,
but the time spent is usually returned many fold. Not much help can be given
with how and where to split a program since it depends so critically on the
particular problem. However, the task of mechanizing the separation and test
ing of the subroutines can be simplified by considering the following ~xperience
of the author:

1. SIZE. Subroutines should be limited to approximately ~ne page
of EERIE orders. If necessary you can arrange to have subroutines
of subroutines. The only caution in ~his case is to make certain
that subroutine linkages to the various levels be made with differ
ent index registers---linkages on the same level can be made with
the same index register _since the saved information is always used
before it is replaced with new information.

- 12 -

2. METHOD OF SECTIONING. Each tape should always be started with
a carriage return and case shift---normally lower case. Each tape
should always end in a carriage return and stop code. In this way
each tape will stop without running out of the reader. The next
tape may then be inserted in the reader and a BLACK SWITCH start
will cause it to be read in the same manner. In general it is un
wise to include BEGIN orders on subroutine tapes.

3. ADDRESSING. Avoid the use of absolute addresses wherever possible,
since this makes it terribly time consuming and inconvenient to re
locate the program. The examples in these notes have illustrated
how * type addressing along with the constant listing features
can permit subroutines to be constructed which do not depend in any
way upon their location or the location of the data. The main pro
gram must use absolute addressing.

4. MEMORY ALLOCATION. A sound policy is to start your program at loca
tion 100. In this way you have locatiom1-99 for temporary or work
ing storage. Remember that location 0 is the accumulator and cannot
be used for other temporary storage. Data for the program can usually
be stored most conveniently from location 4000 back toward the front
of the memory. Locations 4001-4095 have been avoided so that the
constant listing feature can store its constants here without fear
of storage overlap.

5. TAPE MARKING. Mark all tapes with program name, date, and number
of the correction. The number of the correction helps avoid confu
sion as to which tape is the latest one. The importance of marking
tapes immediately cannot be overemphasized. This simple task makes
the difference between fun and frustration when you are working with
your program.

6. TESTING. In general each subroutine should be thoroughly tested
before incorporating it with the main program. Furthermore, do
not just put all the routines together to form the main program.
Rather, pick "core" routines and then keep adding to this nucleus
a subroutine or two at a time until the whole program is assembled.
Do not worry about the ''wasted" time required to do this additional
testing. Remember that you have localized the source of error in
this fashion and that you will only have to change one short routire
rather than to completely revise the whole program.

7. TAPE PREPARATION. Always rerun a tape that has been corrected to
obtain an "untouched by human hands" copy of the program. If you
do not do this you will end up hunting down "impossible" errors which
exist because what is on the printed copy of the program does not
agree with that read from the paper tape into the memory of the com
puter and executed.

8. FINAL PROGRAM. If you have used a .§.tQ£ code to halt each of your
tapes you will find it very convenient to assemble the complete and
final program when the errors have all been removed. The assembly
is done by rerunning your tapes through the FLEXOWRITER in the same
sequence as read into the computer. The~ code at the end of
each tape will halt the FLEXOWRITER for convenient insertion of the
next tape. TEST THIS COMPLETE TAPE BEFORE YOU ASSUME THE JOB IS OONE.

- 13 -

This list fairly well covers the basic items required in the production of
a medium to large size program. One consideration with regard to testing the
program in sections which is often overlooked is the possibility of replacing
a complex ~ubroutine by a dunnny subroutine. In many cases the dununy subroutine
can perform a trivial task---such as returning some special case such as zero
or one. Furthermore, testing of routines can in many cases be done much more
conveniently on special cases than on the actual data. Start out with very
simple tests and work up to the complex tests. In this way gross blunders can
be easily isolated and removed.

COMMON ERRORS

A list of connnon errors will be given at this point in an attempt to
simplify your task of locating the errors.

1. Inyalid mnemonics. When the computer halts at any point other
than expected you have a mistake. DO NCYI' GO ON UNTIL YOU DIS
COVER AND CORRECT THE DIFFICULTY. For some strange reason the
computer is assumed to be a sort of extra-sensory-perception
device which can read the mind of the user. NCYI' SO!

2. Address omission. An address other than zero is required for
the orders TAB, SPACE, and CRLF. An index is required on all
orders which contain an X in their mnemonic. A decrement is
required on TIX, TNX, TXI, COPY, and SWAP.

3. Oyerstorage. If your program behaves very strangely and you
become firmly convinced that the computer or EERIE is func
tioning incorrectly then look for orders which store data over
program which is yet to be executed. For example, the follow
ing program will function most strangely and unpredictably:

begin 100;
inp 101;
out 101 ;
end 100;
+5.2713;

4. Incorrect transfer. Perhaps the most conunon error is made with
transfer orders. This situation usually is produced by either
miscounting or a correction which modifies the number of words
in the program. In the latter case· any transfer which occurs
over the insertions or deletions must have its address changed.
Infinite loops and other nonsense can easily be produced by a
simple miscount of 1 • A connnon error occurs on input when the
TIX transfers one too early in the program:

lxd *, 1 ,5;
inp 200,1;
t ix *-2 • 1 • 1 ;

In tnis case the data tape will simply run through the reader
without stopping and the program will go no further. This is
because the index is reset every time and can never count down
for exiting by the TIX order. The TIX must have a nonzero
decrement or an infinite loop will also be formed.

- 14 -

5. Failure t.Q. initialize. When your program works fine for the
first set of data and then fails for the second set of data it
usually means that you have failed to initialize to zero all
locations where results are accumulated. It is considered
good programming practice to always initialize before using
rather than initializing after use ready for the next use. For
example,- in computing the sum of the squares of the numbers in
locations 100-199 we would write:

stz
lxd
cla
mul
add
sto
tix

1 ;
*' 1 '100;
200 '1 ;
O·

' 1 ;
1 ;
*-4 '1 '1 ;

initialize temporary
prepare to loop
obtain xi
form xi squared
add temporary
return to temporary
loop back

Failure to include the STZ will not cause any difficulty the
first time because EERIE clears the entire memory before load
ing a program, but a subseqent use would include the last sum
of squares.

~ COMPLETE EXAMPLE PROGRAM

At this point we shall consider the steps required to solve a typical
computer problem. The example selected is that of determining the path of a
baseball thrown at various velocities and angles. Air drag will be neglected
in the computation so that our main attention may be directed to the method
of organization rather than lost to the numerical details of the problem.

It will be assumed that the ball is thrown with an initial velocity of
vO feet/second and an initial angle to the ground of thetaO. Our problem is
then to determine the path of the ball described in the plane of flight. The
equations of motion that we are concerned with are:

vx = vO cos (thetaO)

vy = vO sin (thetaO) - gt

Notice that the velocity in the x direction, vx, is constant until the ball
strikes the ground. Also notice that the velocity in the y direction, vy,
starts at its component velocity and linearly decreases because of the constant
acceleration of gravity toward the center of the earth. The acceleration of
gravity, g, is approximately 32.2 feet/sec/sec.

Our method of solution will be to choose a very small interval of time
6t and evaluate the distance traveled in the x direction as /::ix. = (vx)(6t) and
the distance traveled in they direction as 6v = (vy)(6t). Then x, y and t
will be updated by these intervals and the process repeated again---and again •
.Although this method is only approximate---since in reality the velocity may
change a small amount during the small time interval---we may make the accuracy
sufficient for our use by simply choosing a small enough interval of time.

Another very basic consideration is how to present the data. While it
could be presented as simply pages of numbers such an approach would turn out

- 15 -

to be both a waste of the time on the computer as well as a waste of your time
in deciphering the significance of the results. A better way to present much
computer output data is in the form of a graph. We shall choose to use this
latter method of output. The particular method chosen is to draw a graph on
the FLEXOWRITER by spacing over a distance on the page corresponding to the
size of the number and print a distinctive character. We shall assume for the
moment that we take care of this problem with an appropriate subroutine. Later
we shall program the subroutine.

At this point we should precisely define the problem to be solved. Let us
assume that we wish to find the relationship between the path of a ball thrown
at the same initial velocity, but at different angles. One use of this com
parison might be the selection of the optimum angle to throw a baseball if we
wished to win at competition in a baseball distance throw. For definiteness
we will assume that three different angles are to be considered for each ini
tial velocity. We will also select the symbology on the plotted results as
"u", "v" and ''w". This presumably will be taken care of in the plot subroutine.

The next order of business is to allocate memory space for our program and
working data storage. We shall assume that our main program begins at location
100 and that our plotting subroutine begins at location 200. Furthermore, we
can assign data storage quite arbitrarily as follows:

location 3000) vO
3001) theta1
3002) theta2
3003) theta3

3004) 6t1
3005) 6t2
3006) 6t3

3007) vO sin (theta1)
3008) vO sin (theta2)
3009) vO sin (theta3)

3010) t1
3011) t2
3012) t3

3013) y1
3014) y2
3015) y3

1) position1
2) position2
3) position3

4) position-variable
5) position-end

You may notice that no space allocation has been made for x1, x2, and x3.
We can avoid direct consideration of the x's in this special case because the
velocity is constant in the x direction and so the x position is linearly con
nected with the time t. Thus, we choose an interval of time for each case, the
tot's, such that we advance a fixed amount in the x direction during each time

- 16 -

interval---we have chosen +o.5 feet for this purpose. For the normal range
of velocities encountered in throwing a baseball---less than 140 feet per
second---this corresponds to time intervals in the 5 millisecond range and
should be small enough to permit reasonable accuracy in the results.

Rather than give any more prelude we shall directly consider the main
program to perform the task described thus far. Explanatory material appears
on the line with each order and should permit the program to be followed
rather easily.

MAIN PROGRAM

begin 100;
inp 30000-inp 3001 ;
inp 3002;
inp 3003·
lxd *,1,3;
cla 3004 '1 ;
div +57.3;
sto 3010 '1 ;
cos O·

' mul 3000;
id iv +o.5;
sto 3007 '1 ;
sin 3010 '1 ;
mul 3000;
sto 3010 '1 ;
tix *-10 '1 '1 .
clear 3010,,6;
lxd *,3,60;
lxd *•1 ,3'.J-intgr 3016 '1 ;
sto 4 '1 ;
tix *-2 '1 '1 ;
crlf 1 ;
tsx 200,15;
lxd *,2,10;
lxd *,1,3;
els +32.2;
mul 3013'1 ;
add 3010 '1 ;
mul 3007'1 ;
add 3016 '1 ;
sto 3016'1 ;
cla 301 3 '1 ;
add 3007 '1 ;
sto 3013'1 ;
tix *- 9 '1 '1 ;
tix *-11 '2 '1 ;
tix *-19'3'1 ;
halt 100;
end 100;

begin storing orders at location 100;
input vO into location 200;
input theta1
input theta2
input theta3

pick up thetai
convert to radians
store temporarily, but still in acc.
cos(thetai)
vO cos(thetai)
+o.5/(vO cos(thetai)) 6ti
store 6ti
sin(thetai)
vO sin(thetai)
store

clear 3010 to 3015, ti's and yi's

pick up integer portion of yi
store in temporaries to be used by plot

punch a carriage return and line feed
plot the three yi's as u, v, and w

-g
-g (ti)
vO sin(thetai) - g(ti) vyi
vyi(6ti) = 6yi
yi + 6yi = new yi
store new yi in place of old yi
ti
ti + 6ti = new ti
store new ti in place of old ti

- 17 -

Notice that a plot of the yi's for a horizontal displacement of only
+o.5 ft. would yield a very long graph for typical values of initial velocity
and angle. Consequently, an inner loop repeats the computation 10 times so
that calls on the subroutine for plotting occur only every +5 ft. This is
much better---insofar as accuracy is concerned---than to take time intervals
corresponding to a step of +5 ft.

At this point we can use some of our previous suggestions and begin test
ing this program before we even bother writing the plotting subroutine. In
order to do this we would simply write a dunnny routine to replace plot for the
time being. For this purpose a simple printout of the three integers in loca
tions 1, 2 and 3 would be sufficient. Such a dunnny subroutine could be whipped
right out as:

begin
lxd
out
tix
tru

200;
*,1,3;
4 '1 ,40;
*-1 '1 '1 ;
1 '15;

output positions as 4 place integers

return to calling program

In order to test the program we also need a data tape with the constants
vO, theta1, theta2 and theta3 typed in that order. This order is forced by
the sequence of input orders in our main program. Suppose that we choose the
initial velocity as 100 ft/sec and the angles to be 30, 45 and 60 degrees,
respectively.

We then load our subroutine tape and it will stop on the stop code punched
innnediately after the last carriage return---a carriage return following the
last order is essential. Then we load the main program and it will stop follow
ing the END pseudo order---not on the stop code in this case, but on the terminal
carriage return and line feed. We then place the data tape under the reader and
BLACK SWITCH START the program. When the computer stops, as determined by no
sound from the loudspeaker, then remove the output tape and print it up on a
FLEXOWRITER.

Providing we haven't made a blunder somewhere in the programming or typing
we will get answers which we can hand check for accuracy. If they are incorrect
then we know that the main program must be checked for errors. If they are cor
rect then we can proceed to write the subroutine for plotting the results.
Suppose that the main program is correct.

PLQrTING SUBROUTINE

The subroutine for plotting the three data points is supplied with 3 in
tegers---because positions across a page are integer---and is expected to print
the three characters u, v and w at positions matching these three integers.
For example, if the three integers were 5, 23 and 45 we would want to space
over 5 positions print au, space over 17 more positions---note that the letter
occupies one position---and print a v and finally spac~ over 21 more positions
and print aw. An important consideration arises at this point: Shouldn't
tabulation codes be used where possible to minimize the computer time required
to punch out the result? If we assume the tabulation stops are their normal 8
spaces apart then the savings in time is quite significant. For example, sup
pose that we consider a 66 line page with u, v and w a constant 64 positions
from the left margin. The time required to punch this out with spaces would
be over 1 minute as compared with about 8 seconds when tabs are used. Further
more, the time required to type the spaced copy would be 6 minutes as contrasted
with less than 1 minute for the tabbed copy.

- 18 -

One interesting feature shown in the plotting subroutine is the fact
that orders can be moved with the COPY and SWAP orders. It is also possible
to use the sequence CLA and STO to move an order---no other arithmetic sequence
will work, however. Another interesting fact concerns the manner in which
tabulation occurs on the FLEXOWRITERS. If the position of the carriage is
within 1 position of a tab stop then a tab code will cause that tab stop to
be skipped. Consequently, a sneaky little bit of coding was required in the
plotting subroutine to advance the position counter in the manner that the
carriage on the FLEXOWRITER would advance. We may calculate the resultant
position of the carriage from the initial-position of the carriage by the
formula:

resultant-position = 8 (1 + (1 +initial-position])
8

We have used the notation (x] to mean the integer portion of x. Thus, if
initial position is 6 then the formula gives:

resultant-position = 8(1 + (1 ~ 6)) = 8(1 + [~]) 8(1+o) = 8

And if the initial position is 7 then the formula gives:

(1 + 7) [8] resultant-position= 8(1 + 8) = 8(1 + 8 = 8(1+1) = 16

Now consider how we would test this subroutine. In this case we would
not use our main program given earlier, but would instead prepare a simple
test program. In the test main program we would probably choose to have u
and v zero and let w range from 0 to 20. In this way we would check to see
that the tabbing is functioning correctly and would avoid all the swap orders
in the sequence arranging prelude. Our test program might thus be:

begin 100;
stz 3;
lxd *,2,20;
stz 1 ;
stz 2;
tsx 200,15;
cla 3;
add +1 .o;
sto 3;
tix *-6 ,2 '1 ;
end 100;

If the results of this test program---a straight line of w's---then you
should make a test with all three variables changing. For example, you could
have u start at zero, v start at 10 and w start at 20. Then u could be advanced
+1 each time, v left alone and w advanced by -1 each time. An even better test
would let u follow a sine wave, v be constant and w follow a cosine wave. If
each had a reference value of 30 then the curves would cross each other in all
combinations.

Notice that locations 1 and 2 must in general be restored each time that
plot is used since it rearranges the values. Also notice that index 1 cannot
be used in the test program since it would be destroyed in value by the use of
index 1 in the subroutine.

begin
copy
copy
copy
stz
cla
sub
trp
swap
swap
cla
sub
trp
swap
swap
cla
sub
trp
swap
swap
lxd
cla
sto
cla
sto
sub
trn
cla
add
div
intgr
add
mul
sub
trz
trp
punch
add
sto
tru
cla
add
sub
trz
trp
punch
add
sto
tru
punch
cla
add
sto
tix
tru
punch
punch
punch

l VARIABLE

200·

-K+-54 ,, 11 n-·
tt54,, 12 j
tt54,, 13 j
4;
2-;------,

1 ;
-K+-3;
1 ~ , 2;
11,,12;
3;
2;
*+3;
2, , 3;
12,,13;
2;
1 ;
-K+-3;
1 , , 2 ;
11,,12;
*,1,3;
14,1;1_
*+27~
4,1 ;--i_
5;__J
4;
-K+-2 7;
4;
+1 .o;
+8.0;
O;
+1 .o;
+8.0;
5;
tt2;

*+Si
62;
5;
4;
*-11 .
4;
+1 .o;
5;
tt2;
tt5;
48;
.5;
4;
*-7;__
52;

~i~
4;~
*-32, 1 , 1 ;
1 , 1 5;
52;
53;
54;

- 19 -
PI.OTTING SUBROUTINE

move punch commands to working area

set position back to zero

this portion of the program
arranges the values of the
positions for u, v and w
into numerical sequence,
and at the same time arranges
the punch conunands for u, v and w
into a matching sequence

place i'th punch connnand in position

place i'th position into position temporary

skip printing if left of present position

continue tabbing until the present
position would exceed the position
of the character to be printed; this
is complicated by the fact that a
tab is skipped if within one space
before a tab stop

then after tabbing as far as possible
space over until the present position
would exceed the position of the
character to be printed

punch the i'th character u, v or w

advance position by one to account
for printing the i'th character

return from subroutine to main program

EERIE ORDER CODES

The EERIE order codes will be described in this section with the aid of
specific examples for each order. The examples are typed in exactly the
same form as they would be typed in a program, treating the left margin
on each page as the left margin on the program sheet itself.

cla 127;

CLear and Add. Clear the accumulator to zero. Add the value in location
127 to the accumulator and leave the result in the accumulator . If the number
in location 127 were -3.3372 then the final value of the accumulator would be
-3.3372 after performing the order. This order does not disturb the value in
location 127. This order is indexable and does not require a decrement.

els 7;

CLear and Subtract. Clear the accumulator to zero. Subtract the value in
location 7 from the accumulator and leave the result in the accumulator. If
the number in location 7 were -3.3372 then the final value of the accumulator
would be +3.3372 after performing the order. This order does not disturb the
value in location 7. This order is indexable and does not require a decrement.

add 4091 ;

ADD. Add the value in location 4091 to the accumulator and leave the accumu
lated sum in the accumulator. If the accumulator originally contained +2.73
and the number in 4091 were -1 .32 then the final value of the accumulator would
be +1 .41 after performing the order. This order does not disturb the value in
location 4091. This order is indexable and does not require a decrement.

sub 133;

SUBtract. Subtract the value in location 133 from the accumulator and leave
the accumulated result in the accumulator. If the accumulator originally con
tained +2.73 and the value in location 133 were -1 .32 then the final value of
the accumulator would be +4.05 after performing the order. This order does
not disturb the value in location 133. This order is indexable and does not
require a decrement.

mag 121 ;

MAGnitude. Place the magnitude of the value in location 121 into the accumu
lator. If the value in location 121 were -2.73 then the final value of the
accumulator would be +2.73, regardless of its previous content. This order
does not disturb the value in location 121. This order is indexable and does

not require a decrement.

- 2 -

nmag 72;

Negative MAGnitude. Place the negative magnitude of the value in location
72 into the accumulator. If the value in location 72 were +3.2143 then the
final value of the accumulator would be -3.2143, regardless of its previous
content. This order does not disturb the value in location 72. This order
is indexable and does not require a decrement.

mul 106;

MULtiply. Multiply the accumulator by the value in location 106 and leave
the product in the accumulator. If the accumulator originally contained
-2.4 and the value in location 106 were -2.0 then the final value in the
accumulator would be +4.8 after performing the order. This order does not
disturb the value in location 106 . This order is indexable and does not
require a decrement.

div 2134;

DIVide. Divide the accumulator by the value in location 2134 and leave the
quotient in the accumulator. If the accumulator originally contained -3.63
and the value in location 2134 were -3.00 then the final value in the accumu
lator would be +1 .21 after performing the order. This order does not disturb
the value in location 2134. This order is indexable and does not require a
decrement.

idiv 2134;

Inverse DIVide. Divide the value in location 2134 by the value in the accumu
lator and leave the quotient in the accumulator. If the accumulator originally
contained -3.63 and the value in location 2134 were -7.26 then the final value
in the accumulator would be +2.00 after performing this order. This order does
not disturb the value in location 2134. This order is indexable and does not '
require a decrement.

sqrt 170;

SQuare RooT. Place the square root of the value in location 170 in the accumu
lator. If the value in 170 were +3.00 then the final value in the accumulator
would be +1 .7320508 after the operation, regardless of the original content of
the accumulator. This order does not disturb the value in location 170. This
order is indexable and does not require a decrement.

sin 24;

- 3 -

SINe. Place the sine of the value in location 24 in the accumulator. If
the value in 24 were -0.785398163 then the final value in the accumulator
would be -0.70710678 after the operation, regardless of the original value
in the accumulator. Angles are assumed in radians and may be in any quadrant
as well as greater than one revolution in magnitude. This order does not dis
turb the value in location 24. This order is indexable and does not require
a decrement. Accuracy is lost if the angle is greater than 2 pi radians.

cos 24;

COSine. Place the cosine of the value in location 24 in the accumulator. If
the value in 24 were -0.785398163 then the final value in the accumulator
would be +-0.70710678 after the operation, regardless of the original content
of the accumulator. Angles are assumed in radians and may be in any quadrant
as well as greater than one revolution in magnitude, This order does not dis;
turb the value in location 24. This order is indexable and does not require
a decrement. Accuracy is lost if the angle is greater than 2 pi radians.

log 1022;

LOGarithm. Place the natural logarithm (i.e. base e=2.71828 .••) of the value
in location 1022 in the accumulator. If the value in location 1022 were
+o.36787944 then the final value in the accumulator would be -1 .0000000 after
the operation, regardless of the original content of the accumulator. Natural
logarithms may be taken of numbers in the full machine range of about 10-150 to

10+150. If logarithms to any other base are desired then this result may be
modified by division by the logarithm to the base e of the desired base. The
most common base change to base 10 is accomplished by multiplication of the
natural logarithm result by +o.4342944819. Conversion of the natural logarithm
result to base 2 is accomplished by a division by +o.6931471806. This order
does not disturb the value in location 1022. This order is indexable and does
not require a decrement.

exp 2170;

EXPonentiation. Place the value obtained by raising e (i.e. e=2.71828 •..) to
the value found in location 2170 in the accumulator. If the value in location
2170 were +2 then the final value in the accumulator would be +7.3890561 after
the operation, regardless of the original content of the accumulator. Exponen
tiation to any other base may be determined by standard combination
exp[power*log(base)]. This order does not disturb the value in location 2170.
This order is indexable and does not require a decrement.

itan 243;

Inverse TANgent. Place the inverse tangent of the value in location 243 in
the accumulator in radians. If the value in location 243 were -1 .0000000 then

- 4 -

the final value in the accumulator would be -0.78539816 after the operation,
regardless of the original content of the accumulator. Since only one value
is carried into this routine the result is limited to a determination of the
principal value of the angle. Conversion of this result to degress may be
done by a multiplication by +57.2957795. This order does not disturb the
value in location 243. This order is indexable and does not require a decre
ment.

sto 2157;

STOre. Store a copy of the accumulator in location 2157, destroying the pre
vious contents of location 2157, but leaving the value in the accumulator
unchanged. If the value in the accumulator were -7.31 before the operation
then after execution of the store order location 2157 would contain -7.31,
regardless of its previous content, and the accumulator would still contain
-7.31. This order is indexable and does not require a decrement.

stz 3152;

STore Zero. Store zero in location 3152 without affecting the value in the
accumulator. This order would set the value in location 3152 to zero, regard
less of its previous content. This order is indexable and does not require a
decrement.

inp 250;

INPut. Input one number from paper tape and store in location 250, destroying
the previous contents of location 250, but leaving the value in the accumulator
unchanged. The number may be typed on tape in either fixed point form (e.g.
+2 2.000000 3147 .00314672 2130000000) or in floating point form (e.g. ~03
-6.10210-19 9.10710-31 -107 3.141592653~0-+-00 0.003141592653~03). The rules
for typing are so flexible that it is quite difficult to make an error. How
ever, for definiteness we shall point out the following rules to be inflexibly
followed:

1 •
2.

3.

4.

This order is

No spaces, commas, or special characters may appear within a number.
Each number must be terminated in a space, tab, comma, semicolon, or

carriage return and line feed---don't forget that the last num
ber needs to be terminated too!

The number need not be signed plus if it is positive; the exponent
need not be signed plus if it is positive; leading zeros are
ignored before the decimal point; the decimal point is assumed
to the right of the number if none is typed; numbers are limited
to the range between 10-150 and 10+150 on input.

Each number, regardless of size or number of digits is compacted
internally in floating point binary notation, accuracy is
truncated to approximately 8 decimal digits, and the whole
result stored in compacted form in exactly one CYCLONE word.

indexable and does not require a decrement.

- 5 -

out 102,,124;

Ot.rrput. Output the value in location 102 as a floating point number with
two places before the decimal point and 4 places after the decimal point.
This order does not affect the value of the accumulator, nor does it affect
the value contained in location 102. The decrement portion of this order
is used to specify the format of the printing. If we think of the decrement
in terms of units, tens, and hundreds digits then we have:

1. hundreds digit 1 for floating point, 0 for fixed point
2. tens digit 0 to 9 digits before decimal point
3. units digit 0 to 9 digits after decimal point

The following conventions have been followed on output format:
1. A positive sign on number is replaced by a space, but

l~v 1 a negative sign is always printed.
2. The decimal point is not printed if zero digits are

called for after the decimal point.
3. Two spaces are printed out before floating point numbers,

however no additional spaces are printed before fixed
point numbers.

4. All leading zeros, except for the one irmnediately before
a decimal point are suppressed and replaced by spaces.

5. Spacing between columns of fixed point output is most
easily accomplished therefore by simply requesting
about 2 more places to be printed out before the
decimal point than is warranted by the size of the
numbers.

It is unwise to ask for more significant digits to be printed than is warranted
by the accuracy of the data. In any case, however, the maximum number of signi
ficant digits should be limited to 8 since the numbers have been internally
truncated to this length. If more than 11 significant digits are requested
then the printed results will be complete nonsense. Several examples of output
in various formats is shown below:

FORMAT: 20
1111111111111

0
-1
20

0
1

80
1111111111111

0
-1
20

0
1

42
1111111111111

0.00
-1 .00
20.00
0.48
0.96

135
11111111111111

000 .OOOOOi0-99
-100. OOOOOi0-02
200 .OOOOOi0-01
479.2345710-03
958. 31232i0-03

This order is indexable and does use a decrement for format specification.

tru 235;

TRansfer Unconditionally. Transfer unconditionally to location 235 and start
executing orders sequentially from this location forward. This order does not
affect the accumulator or memory. This order is indexable and does not require
a decrement.

trp 417;

TRansfer on Positive accumulator. If the accumulator is positive (zero is

- 6 -

treated positive) then the next order to be obeyed will come from location
417, otherwise the next order in sequence will be obeyed. This order does
not affect the accumulator or memory. This order is indexable and does not
require a decrement.

trn 735;

TRansfer on Negative accumulator. If the accumulator is negative (zero is
treated positive) then the next order to be obeyed will come from location
735, otherwise the next order in sequence will be obeyed. This order does
not affect the accumulator or memory. This order is indexable ·and does not
require a decrement.

trz 233;

TRansfer on Zero accumulator. If the accumulator is identically zero then
the next order to be obeyed will come from location 233, otherwise the next
order in sequence will be obeyed. This order does not affect the accumulator
or memory. Care must be exercised in the use of this order since the test
is for an exact zero. For example, if a process required increments of 0.01
up to a final value of 1 .00 it would be unsatisfactory to 'increment from zero
to one in one-hundredths increments and test for termination by subtracting
one from the running value and testing for zero. This test would fail to work
because 0.01 is not expressable exactly in binary, just as 1/3 is not exactly
expressable in decimal. Consequently, the addition of 0.01 a total of 100
times would yield 0.999999991 instead of exactly 1 .000000000 and so a subtrac
tion of exactly 1 .00000000 would not yield a zero result. Notice, however,
that integers are exactly expressable in binary and so it would be quite per
missible to count from 0 to 100 in unit steps and test for a termination by
subtraction of 100 from the running value and testing for zero. This process
is adaptable, and very much preferred, for the case just cited. Simply divide
the integer value by 100 (which is exact) to obtain intervals of 0.01 very
precisely. This order is indexable and does not require a decrement.

ainp 334;

Alphabetic INPut. Input an alphabetic chain of characters and store them,
five to a location, beginning at location 334 and continuing sequentially
upward for however many locations required. The alphabetic chain must be
delimited by quote marks. In determining the number of locations of storage
which will be occupied by any alphabetic chain it must be noted that the
count includes all characters within the quotes---including such things as
tape feeds, backspaces, spaces, tabs, carriage returns, etc.---as well as
the terminal quote mark. It also must be noted that if the material is to
appear in upper case then an upper case must appear after the first quote
mark---even though the FLEXOWRITER is already in upper case at this point.
Ending up in lower case is automatically taken care of by the alphabetic
output routine which supplies a lower case after each alphabetic output.
For example, in order to have the sequence P17a= be stored in memory

- 7 -

it would be necessary to type [uc]["][uc][p][lc][1][7][a][uc][=]["] on the
data tape; note each character has been included within brackets and the
abbreviations uc and le have been used for upper and lower case, respectively.
In counting the memory space required we would find 9 characters and so a
total of 2 locations in memory would be used. For the order given in the
example this would amount to locations 334 _and 335. This order is indexable
and does not require a decrement.

aout 334;

Alphabetic OUTput. Output an alphabetic chain of characters from memory
starting at location 334 and continuing until the terminating quote mark is
found. For the example input glven above we would have the output [uc][p]
[lc][1][7](a](uc][=][lc]. Notice that the terminating quote mark is not
printed out and that a lower case has been supplied automatically by the
alphabetic output routine. This order does not affect the accumulator or
memory. This order is indexable and does not require a decrement.

lxd 200,7,5-3;

Load indeX from Decrement. Load index 7 from the decrement of location 200.
If location 200 happens to be the location of this order then 53 will be placed
in index 7. This situation need not be true but is quite convenient since the
decrement of this order (i.e. lxd) is unused. The value placed in an index is
unsigned and is maintained in the range 0 to 4095 (i.e. modulo 4096). Only
unsigned integers may be placed in an order. This order is not indexable and
no decrement is required. This order does not affect the content of the
accumulator or the content of location 200.

sxd 200,7;

Store indeX in Decrement. Store the contents of index 7 into the decrement
portion of location 200. If location 200 happens to be the location of this
order then the present value in index 7 will be placed in the decrement of
this order- - -which is otherwise mused anyway. The value in an index is un
signed and is maintained in the range 0 to 4095 (i.e. modulo 4096). This
order does not affect the accumulator, or the content of index 7. This order
is not indexable and no decrement is required.

lxa 200,5;

Load indeX from Address. Load index 5 from the address of location 200. If
the address of location 200 should be 173 then 173 would be placed in index
5, regardless of the previous content of this index register. The value in
an index is unsigned and is maintained in the range 0 to 4095 (i.e. modulo
4096). This order does not affect the accumulator, or content of location

- 8 -

200. This order is not indexable and no decrement is required.

sxa 200,5;

Store indeX in Address. Store the contents of index 5 into the address por
tion of location 200. The value in an index is unsigned and is maintained
in the range 0 to 4095 (i.e. modulo 4096). This order does not affettthe
accumulator or the content of index register 5. This order is not indexable
and no decrement is required.

txh 205,3,15;

Transfer on indeX High. If the value in index 3 is currently greater than
the decrement portion of this order then control is transferred to location
205, otherwise if the value in the index is less than or equal to the decrement
of this order the next order in sequence is obeyed. Thus, control is given to
location 205 if the value in index 3 is 16 or larger, but the next order in
sequence is taken if the value in index 3 is between 0 and 15. This order does
not affect the accumulator or memory or index value. This order is not index
able and a decrement is required.

txl 205,3,15;

Transfer on indeX Low. If the value in index 3 is currently less than or equal
to the decrement portion of this order then control is transferred to location
205, otherwise the next order in sequence is obeyed. Thus, control is given to
location 205 if the value in index 3 is 0 to 15, but the next order in sequence
is taken if the value in index 3 is 16 or larger. This order does not affect
the accumulator or memory or index value. This order is not indexable and a
decrement is required.

txi 312,3,1;

Transfer with indeX Incremented. The value in index 3 is raised by the value
in the decrement of this order and then control is transferred unconditionally
to location 312. Thus, if the value in index 3 is 17 before this order is
obeyed then index 3 will contain 18 (i.e. 17+1) after this order is obeyed.
Values in indexes are contained modulo 4096. Thus, repeated use of this order
would cause the sequence in index 3 to be 17,18,19, ... ,4094,4095,0,1 ,2,3,4,5,
6,7, etc. on successive passes. The value in the decrement determines the
amount by which the index is incremented and may be any value in the range of
Oto 4095 (i.e. the decrement is also kept modulo 4096). Consequently, it is
possible to count ~ with this order by the simple expedient of using a
decrement of [4096-count]. Thus, a decrement of 4095 will have the effect of
decreasing the count in an index by 1 each pass through (e.g. 17+4095 taken
modulo 4096 is 4112-4096=16).

- 9 -

tix 222,5,1;

Transfer on Index. The value in index 5 is decreased by the decrement of this
order (i.e. 1) if the value in index 5 is greater than the decrement of this
order and control is transferred to location 222. If, however, the value in
index 5 is less than or equal to the decrement of this order then the index is
unaffected and the next order in sequen~e is obeyed. Thus, if index 5 originally
contained 5 then it would be decreased to 4 on the first pass through and con
trol returned to location 222. On the next pass the value in index 5 would be
decreased to 3 and control again returned to location 222. This would continue
until the value in index 5 reached 1 • On the very next test it would be found
that the value in index S was not greater than the decrement and so the trans
fer to 222 would be disobeyed and the next order in sequence executed.

tnx 314, 5, 1 ;

Transfer on No indeX. The value in index 5 is decreased by the decrement of
this order (i.e. 1) if the value in index 5 is greater than the decrement of
this order and the next order in sequence is obeyed. If, however, the value
in index 5 is less than or equal to the decrement of this order then the index
value is unaffected and control is transferred to location 314. This order is
therefore identical to the "tix" order except for a reversal of control trans
fer. This order does not affect the value of the accumulator or memory.

tsx 233,5;

Transfer and Set indeX. Transfer unconditionally to location 233 and set
index 5 to contain the value [4096-location of tsx order]. Thus, if this
order were located at address 116 then control would be transferred to loca
tion 233 and index 5 would contain 3980 regardless of its previous value.
This order is intended for subroutine linkages. The exit from the subroutine
can be simply written as [tru .1 ,5;] and upon its execution control will
be given to location 117 (i.e. 1-3980 modulo 4096 is -3979+4096 which is loca
tion 117). The important thing to note is that control is transferred one
location down from location of the tsx order used to enter the subroutine--
regardless of where the entry came from. Thus, a given sequence of orders can
be used many different times from many different locations in the program with
out any concern about returning from the subroutine to the correct place in
the program.

tan 225;

TANgent. Compute the tangent of the angle expressed in radians in location
225 and leave the result in the accumulator, regardless of the previous con
tent of the accumulator. Thus, if location 225 contained -0.7853981633 then
the accumulator would be -1 .0000000 after the operation. This order is index- ,
able and does not require a decrement. The value in location 225 is unaffected.

- 10 -

sinh 224;

SINe Hyperbolic. Compute the hyperbolic sine of the value expressed in loca
tion 224 and leave the result in the accumulator, regardless of the previous
content of the accumulator. The value in location 224 is unaffected. This
order is indexable and does not require a decrement.

cosh 26;

COSine Hyperbolic. Compute the hyperbolic cosine of the value expressed in
location 26 and leave the result in the accumulator, regardless of the pre
vious content of the accumulator. The value in location 224 is unaffected.
This order is indexable and does not require a decrement.

tanh 153;

TANgent Hyperbolic. Compute the hyperbolic tangent of the value expressed
in location 153 and leave the result in the accumulator, regardless of the
previous content of the accumulator. This value in location 153 is unaffected.
This order is indexable and does not require a decrement.

halt 103;

HALT. Halt and transfer control to location 103 on a black switch start. How
ever, on a white switch start take the next order in sequence. This order is
indexable and does not require a decrement. This order does not affect the
value in accumulator or memory.

lxn 212,5;

Load indeX from a Number. Load index 5 from the number contained in location
212. Thus, if the number in 212 is +217.00 then index 5 will contain 217 after
this operation is performed. The numbers are not rounded before they are placed
in an index so +217.0001, +217.545, and +217.999 will all be loaded into an
index as 217. Furthermore, the next smallest integer is always loaded so that
-.00001 will be loaded as 4095 (i.e. -1 modulo 4096). Similarly, -1 .53 will be
loaded as 4094 (i.e. -2 modulo 4096). Also, the modulus operation will cause
+4137.37 to be loaded into an index as 41 (i.e. 4137-4096). The accumulator is
not affected by this order. This order is not indexable and no decrement is
required.

sxn 212,5;

Store indeX as a Number. Store the value in index 5 as a floating point number
in location 212. Thus, if index 5 contains 217 then +217.000000 will be stored

- 11 -

in location 212 by this operation. The number stored from an index is always
positive. The combination of an "lxn" and an "sxn" may be used to retrieve
the integer portion of any number---and also the fractional portion by sub
traction. This order does not affect the accumulator. This order is not
indexable and does not require a decrement.

intgr 453;

INTeGeR. The integer portion of the number in location 453 will be placed in
the accumulator, regardless of the previous content of the accumulator. Thus,
if location 453 contained 2143.317 then the accumulator would contain +2143
after this order had been executed. There is no rounding in determining the
result in the accumulator. Thus, 2143.0001, 2143.5000, and 2143.9999 will all
cause 2143 to be placed in the accumulator. Rounding may be easily accomplished
by the user, however. One-half is merely added to the number before the "intgr"
order is executed. Negative numbers are entered in a fashion equivalent to the
positive numbers although it appears different. For example, -.0001 would be
entered as -1 .00000, -0.9999 would also be entered as -1 .0000, and -1 .000001
would be entered as -2.00000. This really amounts to applying the rule that
the "integer" value is determined as the SMALLEST integer which is contained
in the value in the memory location.

crlf 3;

Carriage Return and Line Feed. Punch 3 carriage return and line feed characters
on paper tape. The address may range from 1 to 15. Addresses outside of this
range will caqse either a machine halt or the printing of another character.
This order does not affect the accumulator or the memory. This order is not
indexable and does not require a decrement.

space 4;

SPACE. Punch 4 spaces on paper tape. The address may range from 1 to 15.
Addresses outside of this range will cause either a machine halt or the print
ing of another character. This order does not affect the accumulator or the
memory. This order is not indexable and does not require a decrement.

punch 17;

PUNCH. Punch one character "a" on paper tape. Whether or not it will print in
lower case as "a" or in upper case as"A" is determined by the state of the FLEXO
WRITER __ at_ the time the code is read in and printed. It is the responsibility of
the user to see that this case shifting is taken care of before the character is
punched---by punching the appropriate case shift character on tape first.
Characters other than "a" are printed with codes given in the table below:

- 12 -

0 or) =O + or * =10 a or A =17 j or J =33 s or s =50
1 or =1 - or =11 b or B =18 k or K =34 t or T =51
2 or T =2 or =12 c or c =19 1 or L =35 u or u =52
3 or fl =3 or II =13 d or D =20 m or M =36 v or v =53

' 4 or [=4 or =14 e or E =21 n or N =37 w or w =54
5 or] =5 10 or t =15 f or F =22 o or 0 =38 x or x =55
6 or < =6 stop =32 g or G =23 p or p =39 y or y =56
7 or > =7 space =48 h or H =24 q or Q =40 z or z =57
8 or .E =8 feed =31 i or I =25 r or R =41 back sp =61
9 or (=9 lower c =58 crlf =59 upper c =60 tab =62
? or I =42 p. off =49

randu 205;

RANDom Uniformly distributed number. Generate one random uniformly distributed
number in the range between -1 and +1 and store in location 205. This order
does not affect the accumulator. This order is indexable and does not require
a decrement.

randn 224;

RANDom Normally distributed number. Generate one normally distributed number
and store in location 224. The mean of these numbers is zero and the variance
is 1 .00. This number is obtained by simply adding three uniformly distributed
numbers together and so is a good, but not highly exact, uniformly distributed
number. Better distributions can be obtained by adding two of these numbers
together and dividing by sqrt (2.0). This order is indexable and does not re
quire a decrement.

nop

No OPeration. This order performs no operation. Thus, it may be used rather
indiscriminately in a program to correct errors which leave extra words in a
program. It is often found convenient to insert a "nop" order every 10 words
or so in the program so that a logical omission in a program can be corrected
without causing serious address modification problems. HOWEVER, notice that
if addresses are specified in the relative form given in the operation des
cription of EERIE then little effort is usually required to add or delete
statements from your program.

trss1 205;

TRansfer on Sense Switch 1 . If sense switch one is in the OBEY position then
control is unconditionally transferred to location 205. But if sense switch
one is in the DISOBEY position then the next order in sequence is executed.
This order does not affect the accumulator. This order is indexable and does
not require a decrement.

- 13 -

trss2 205;

TRansfer on Sense Switch 2. If sense switch two is in the OBEY position then
control is unconditionally transferred to location 205. But if sense switch
two is in the DISOBEY position then the next order in sequence is executed.
This order does not affect the accumulator. This order is indexable and does
not require a decrement.

clear 225,,23;

CLEAR. Clear locations starting at 225 and running to 225+22 = 247. The
address thus specifies the beginning location to clear while the decrement
specifies the NUMBER of locations to clear. This order is indexable and re
quires a decrement. This order does not affect the accumulator. The parti
cular advantage of this order is its rapidity. It will clear locations at a
rate which is more than ten times that of a [lxd ;][stz ;J[tix ;]
combination. In fact, the time required is about 1500+200[n] microseconds
for [n) locations.

copy 225' ,325;

COPY. Copy the contents of location 225 into location 325. If this order is
indexed then the single index modifies both the "from" and "to" locations.
This order does not affect the accumulator nor the contents of the "from"
address, but replaces the ''to" locat.ion with the "from" value regardless of
its previous contents.

swap 225,325;

SWAP. Swap the contents of location 225 with location 325. If this order is
indexed then the single index modifies both the "from" and "to" locations.
This order does not affect the accumulator. This sinsle order replaces the
sequence [cla x;J[sto t;J[cla y;][sto x;J[cla t;J[sto y;].

tab 5;

TAB. This order causes 5 tabulation codes to be punched on paper tape. The
address may range from 0 to 15, but notice than an address of 0 causes ·the
order to behave as NOP. This order is not indexable and does not affect the
accumulator.

eerie 24;

EERIE. This order causes an immediate switch from execution of orders to
input of a new EERIE program. This order is the counterpart of the pseudo

- 14 -

order END1 which causes an innnediate switch from inputting an EERIE program
to the execution of the stored program. The address of this order is imma
terial. This order is stored in memory. It may be noted that the input and
execution programs in EERIE are completely separate so that during order
execution the location counter of the input program is not disturbed and
during order inputting the accumulator is not disturbed. Consequently, a
section of program may be input, this program run to compute some informa
tion, and -finally control returned to continue inputting tape without a
pause. This process is called an interlude in computing parlance. It may
be used, for example, to conveniently place headings on program output
material. Thus, we might prepare our program as:

begin
ainp
a out
eerie
end1

"This would be
begin
lxd
inp

1 ;
5;
5;
O;
1 ;

the heading which is to be printed out on the output data"
1 ;
*,1,5;
200'1 ; portion of the main program

This tape would load into memory in the following way:

1. The orders AINP, AOUT, and EERIE would be input and stored
in memory in locations 1, 2, and 3 as specified by the pseudo
order BEGIN.

2. Then a switch would be made from inputting orders to execution
of orders beginning at location 1 by the pseudo order END1 .

3. Then the orders AINP and AOUT would be executed and this would
read the heading into memory and then immediately punch it out
on paper tape.

4. Then the order EERIE would be executed and this would cause
control to switch back to the portion of EERIE which inputs
and stores orders. This would cause reading of the pseudo
order BEGIN and then continuation of order storage at 1 and
following.

You should notice that in this way we have managed to punch out out heading
without using any memory space at least as far as our main program is con
cerned.

flag 1 54 , , 1 ;

Fl.AG. This order instructs EERIE to flag the order in location 154 to a 1.

- 15 -

If the order is so flagged then automatic printout of this order will occur
eyery time the order is encountered in execution of the program. This print
out will include the location of the order, the order itself, the content of
the index (if one is specified) after execution of the order, and the content
of the accumulator after the order has been executed. If the decrement of
this order is a 1 then the order will be flagged for printout, if the decre
ment is a 0 then the order will behave conventionally. It is thus possible
to FLAG an order to be printed out and then to later FLAG the same order to
inhibit printing. All orders are loaded with the FLAG a zero.

This order is indexable so that a sequence of orders may be flagged with
a simple 3 word program. For example, suppose that we wished to FLAG to a
one 35 orders beginning at location 123:

lxd
flag
tix

*, 1 , 35;
1 58 , 1 , 1 ;
*-1 , 1 , 1 ;

prepare to loop 35 times
flag to a 1
loop back to flag

Later on in execution of the program we could FLAG these same 35 orders to a
zero (i.e. so that they would not be printed on subsequent execution) with the
order sequence:

lxd
flag
tix

*,1,35;
158,1,0;
*-1 , 1 , 1 ;

flag to a 0

CAUTION: Index 1 has been used here for simplicity. Care must be taken to
insure the choice of index does not conflict with usage in ~
program.

You might wonder why provisions have been made to FLAG the orders back
to the zero or nonprinting state. The answer is very simple, time. EERIE
normally executes orders at an average rate of 500 per second. When the
orders have been flagged for printout the execution time is limited by punch
speed and is reduced to approximately 1 per second. Consequently, you !!ll!§t.
~~good judgment in the choice of orders to flag. Notice further that
FLEXOWRITER types only about 1/6 as fast as the tape is punched so that only
about 1Q orders can be printed out per minute. However, since the order FLAG
is stored in the memory as a conventional EERIE order it is possible to print
out only essential material by proper timing of flagging to the print and non
print states. No hard and fast rules may be given except possibly to say that
if more than 1-2 minutes of debugging order printout is taken on an EERIE pro
gram you probably are wasting both your times---the time on the computer and
the time on the flexowriter.

It is not necessary---nor particularly desirable---to prepare modifica
tions to flag for printing or nonprinting as part of your main program. In
stead, you should prepare them as corrections. In this way you will auto
matically end up with a final program tape---without the necessity for re
moving the debugging and without the possible errors caused by their removal.
Suppose that you wish to FLAG location 137 to the printing mode between the
orders in location 101 and 102 and FLAG location 137 back to the nonprinting
mode between orders in location 141 and 142. Then the correction tape might
look as follows:

- 16 -

begin 101 ;
tru 4000;
begin 4000;
xxx ddd; order in location 101 that was overwritten by tru 4000;
flag 137,,1;
tru 102;

begin 141
tru 4003;
begin 4003;
xxx ddd; order in location 141 that was overwritten by tru 4003;
flag 137,,0;
tru 142;

The effect of this correction tape is to replace the orders in location 101
and 141 by unconditional transfers to a section in memory where the over
written order is written followed by the FIAG order and then unconditional
transfers back to locations 102 and 142, respectively.

CAUTION: Locations 4000-4005 have been used for simplicity. Care must be
taken to insure that the location selected for the correction is
clear. Also, the order transplanted in this way must not be one
which is modified during execution of the program---or else the
replacement unconditional transfers will be modified to nonsense.

A correction tape prepared as above may be entered into the computer
any time after the program which it is to modify has been entered. For
further details consult the section in the first half of the manual on
general makeup and correction of program tapes.

- 17 -

PSEUOO ORDERS:

In addition to tho::eorders in EERIE which must be stored in the memory
for later execution we have also certain pseudo orders which merely instruct
EERIE upon the handling of the program tape during its storage. These orders
are _NEVER stored in the memory.

begin 153;

BEGIN. This pseudo order instructs EERIE that it is to begin storing orders
at location 153 and following. Consequently, the first order following
[begin 153;] will be stored in location 153, the next order found on tape
will be stored at location 154, etc. until this order is countermanded by a
new order "begin". In many cases one "begin" instruction will be sufficient
to store the entire program. As many "begin" orders as desired may be in
cluded in a program, however.

end 75;

END. This pseudo order instructs EERIE that it is to end the order storing
phase and begin the order execution phase; taking the very first instruction
to be EXECUTED from location 75. The END order must have an address specifying
where the beginning of the program to be executed is located. This order is
NOT stored in the memory. This order causes the machine to execute a black
switch stop so that a data tape may be placed under the reader.

end1 75;

END1 • This pseudo order is identical to END except that the computer does not
stop, but rather goes immediately into execution of the program beginning at
location 75. This pseudo order can be used to permit the inclusion of certain
constants on the program tape---but after the program in the conventional
fashion. A halt and transfer order can then be included in the program after
the suitable number of input orders for inputting the data which has been in
cluded on the program tape. In this way it will seem as if the program and
constants had been loaded as a complete entity. ·

pause

PAUSE. This pseudo order causes the EERIE program to halt during the inputting
of orders. This order has been included to permit the program to be assembled
from several separate tapes, rather than requiring that all of the various tapes
be reperforated as a complete package. You may achieve this same result using
only a single stop code character if you obey the following rules:
RULES FOR USING STOP CODE AS A PAUSE:

1. Each section of program must begin with a carriage return.
2. Each section of program must be terminated in a carriage return.
3. This termination carriage return is immediately followed by a stop code.

- 18 -

PREPARATION OF PAPER TAPES:

!margin !tab !tab 2

cla 200,3,54;

Tapes containing orders for EERIE should be typed in the fashion shown above.
The vertical bars at the top of the page have been typed at each of the preset
tab stops on the FLEXOWRITER. The typing rules are simple but inflexible.

1. The operation code mnemonic must be typed at tab stop 1. It is
absolutely not sufficient to set the margin right to the first
tab stop.

2. The address must be typed starting at tab stop 2---leading zeros
may be omitted from the address.

3. No spaces should occur within the address.

4. Address, index, and decrement must be separated with connnas.

5. Every address must be terminated in a semicolon.

6. Comments may be typed to the right of the semicolon.

7. A carriage return and line feed MUST come after the "end" command
on the program tape.

In actual tape preparation it is wise to follow the rules given below since
from experience they lead to a minimum wasted time.

1. ALWAYS punch at least 6 inches of leader at the beginning of any
tape using the TAPE FEED button. This key repeats and so punches
the leader with a minimum effort.

2. NEVER advance the tape in the tape punch manually. The sprocket
holes must be punched in the tape by the punch and this is done
as the tape is advanced during punching.

3. NEVER manually interfere with the carriage on the typewriter. If
during correction of a tape you find it necessary to position the
carriage without ~ishing this information typed on the tape, then
merely turn off the punch and use the SPACE, BACKSPACE, or CARRIAGE
RETURN keys. BE CERTAIN THAT YOU TURN rr BACK ON BEFORE CONTINUING
TYPING.

4. ALWAYS punch a carriage return and case shift at the beginning of a
tape.

5. THEN start typing your program.

6. ALWAYS terminate your program in a carriage return.

7. ALWAYS punch at least 6 inches of tail at the end of a tape.

8. Tear the tape off at the punch, but DO Nor manually advance the
punch---see 2 above.

- 19 -

CORRECTION OF PAPER TAPES IS MOST EASILY ACCOMPLISHED USING THE FOLLOWING
RULES:

1. Try to avoid making errors by having the PROGRAM written very
NEATLY and ORDERLY on a programming sheet.

2. Break up. the typing into sections not more than one page long.
Regardless of whether you think that you have ma.de an error in
typing a page or not, separate this material on the paper tape
from the following typing by a section of TAPE FEEDS about 6
inches long.

3. Try to catch as many errors as possible at the time that they
are made. At this time you can BACK UP the tape punch a suit
able number of characters and DELETE the incorrect characters
by using the TAPE FEED key which punches bottom 7 levels and
is ignored on reading by the FLEXOWRITER. Then type the correct
material manually and continue typing new material. This printed
copy will be wrong, but the tape will be correct and a later re
perforation may be used to delete the extraneous tape feeds if
desired.

4. If some errors slip by do not worry about it at the moment. Simply
continue typing up the program.

5. After the typing has been completed then take each section of tape--
corresponding to no more than one page---and correct it in the follow
ing way:

a. Set the FLEXOWRITER to ALL PUNCH and copy a new tape while
typing a new copy of the program.

b. As the error is neared depress the START READ key. This
will halt the machine as long as it is kept depressed. Now
advance the tape one character at a time by releasing the
START READ key and IMMEDIATELY depressing again. When you
are one character ahead of incorrect character hold down the
STOP READ key as you release the START READ key.

c. Advance the reader tape over the error manually and manually
type in the correct information.

d. Push the START READ key and continue duplication until you
near the next error and then correct this error as before.

6. When each of the sections of tape has been corrected in the fashion
indicated in step 5 then reperforate all of these tapes into one
complete tape which should now be error free.

7. Proper use of the FLEXOWRITER should permit you to prepare an error
free page of EERIE orders in about 15 minutes.

8. You need learn only three paper tape codes to permit you to rapidly
find the error on the tape being read and bypass it. These are
CARRIAGE RETURN AND LINE FEED, TABULA.TION, and SPACE. From exper
ience you can easily find line and word by checking only these
characters. Then delete and retype whole word ·if in doubt.

- 20 -

CYCLONE OPERATING PROCEDURE

1. ALWAYS bring a well marked copy of your program tape and a copy
of the printed program to the CONSOLE of the CYCLONE. The printed
copy of the program should be one which has come from printing the
very LATEST program tape WITHOUT any MANUAL INTERVENTION on your
part---the CYCLONE cares little for your intentions, it just does
what you have placed on the tape.

2. BEFORE touching the computer you must SIGN IN on the LOG BOOK.
You are to sign the beginning TIME to the nearest minute, your
PROBLEM NUMBER---you are not to use the machine without having
obtained one FIRST, your NAME, and whether the use is CC--code
checking or P--paid.

3. YOU ARE NOT TO DISTURB THE MACH~NE unless it is available for use.
This can usually be determined from the log book. IF an ENGINEER
ING CODE is presently running then in general it is available for
use---this is determined by the present problem number being pre
ceded by EC (e.g. EC-111 or EC-117). IF THERE IS ANY DOUBT con
sult the MACHINE OPERATOR.

4. DO Nar PUSH ANY OF THE BUTTONS UNLESS YOU HAVE BEEN INSTRUCTED
IN THEIR USE. If you fail to heed this warning you may destroy
programs which have been previously stored in the memory.

5. ALWAYS clean up your work space at the FLEXOWRITER and most es
pecially at the CONSOLE of CYCLONE when you leave. SQUARE GREY
BASKETS are NOT wastebaskets, but paper tape storage bins. Two
large ROUND WASTEBASKETS have been supplied for your use.

- 21 -

COMPLETE LIST OF CODES, PAGE REFERENCES, AND TIMING:

add ADDITION TO ACCUMULATOR Page 1 3.6 ms
ainp ALPHABETIC INPUT TO MEMORY Page 6 * a out ALPHABETIC OUTPUT FROM MEMORY Page 7 *
cla CLEAR AND ADD TO ACCUMULATOR Page 1 2.0 ms
els CLEAR AND SUBTRACT FROM ACCUMULATOR Page 1 2.0 ms
clear CLEAR MEMORY MACRO INSTRUCTION Page 13 2.0+0.2n ms
copy COPY Page 13 2.4 ms
cos COSINE OF MEMORY TO ACCUMULATOR Page 3 13 .6 ms
cosh HYPERBOLIC COSINE TO ACCUMULATOR Page 10 27.5 ms
crlf CARRIAGE RETURN AND LINE FEED Page 11 *
div DIVISION OF MEMORY INTO ACCUMULATOR Page 2 4.2 ms

eerie EERIE. LOAD ORDERS WITHOUT HALTING Page 13 1.0 ms
exp EXPONENTIATION TO BASE E Page 3 14.5 ms

flag FLAG. DEBUGGING AID CONTROLLING ORDER
PRINTOUT Page 14 1.4 ms

halt HALT. TRANSFER ON BLACK SWITCH START Page 10 **
id iv INVERSE DIVIDE(ACC. INrO MEMORY) Page 2 4.2 ms
inp INPUT A NUMBER FROM PAPER TAPE Page 4 *
intgr INTEGER VALUE TO ACCUMULATOR Page 11 2.6 ms
itan INVERSE TANGENT IN RADIANS TO ACC • Page 3 16.6 ms

log NATURAL LOGARITHM Page 3 14.0 ms
lxa LOAD INDEX FROM ADDRESS Page 7 1 .2 ms
lxd LOAD INDEX FROM DECREMENr Page 7 1. 7 ms
lxn LOAD INDEX FROM A NUMBER Page 10 2.2 ms

mag MAGNITUDE OF MEMORY TO ACCUMULATOR Page 1 2.0 ms
mul MULTIPLICATION Page 2 4.2 ms

nmag NEGATIVE MAGNITUDE.TO ACCUMULATOR Page 2 2.0 ms
nop NO OPERATION Page 12 0.8 ms

out OUTPUT NUMBER ONTO PAPER TAPE Page 5 *
punch PUNCH A CHARACTER ON PAPER TAPE Page 11 *
randn RANDOM NORMALLY DISTRIBUTED NUMBER Page 12 6.0 ms
randu RANDOM UNIFORMALLY DISTRIBUTED NUMBER Page 12 4.0 ms

sin SINE OF ANGLE IN RADIANS TO ACC. Page 2 13.6 ms
sinh HYPERBOLIC SINE TO ACCUMULATOR Page 10 27.5 ms
space PUNCH A SPACE ON PAPER TAPE Page 11 *
sqrt SQUARE ROOI TO ACCUMULATOR Page 2 10 .1 ms
sto STORE A COPY OF ACC. IN MEMORY Page 4 1.4 ms
stz STORE A ZERO IN MEMORY Page 4 1.4 ms
sub SUBTRACTION FROM ACCUMULATOR Page 1 3.6 ms
sxa STORE INDEX AS AN ADDRESS Page 8 1.4 ms
sxd STORE INDEX AS A DECREMENT Page 7 1.9 ms
sxn STORE INDEX AS A NUMBER IN MEMORY Page 10 3.0 ms
swap SWAP TWO NUMBER IN MEMORY Page 13 3.4 ms

tab
tan
tanh
tix
tnx
trn
trp
trss1
trss2
tru
tsx
txh
txi
txl
trz

- 22 -

PUNCH A TABULATION COPE ON TAPE
TANGENT OF ANGLE IN RADIANS TO ACC .
HYPERBOLIC TANGENT TO ACCUMULATOR
TRANSFER ON INDEX
TRANSFER ON NO INDEX
TRANSFER ON NEGATIVE ACCUMULATOR
TRANSFER ON POSITIVE ACCUMULATOR
TRANSFER ON SENSE SWITCH ONE
TRANSFER ON SENSE SWITCH TWO
TRANSFER UNCONDITIONALLY
TRANSFER AND SET INDEX
TRANSFER ON INDEX INCREMENT
TRANSFER WITH INDEX INCREMENT
TRANSFER ON INDEX LOW
TRANSFER ON ZERO ACCUMULATOR

/

Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page

13 *
9 28.8 ms

10 35.0 ms
9 1.8 ms
9 1.8 ms
6 1 • 1 ms
5 1.1 ms

12 1.0 ms
13 1.0 ms

5 0.9 ms
9 2.0 ms
8 1.9 ms
8 1.6 ms
8 1.9 ms
6 1.1 ms .

* These orders involve mechanical input-output equipment. Present
times are approximately 60 characters per second. The situation
is complicated on output, however, by the fact that a buffer
memory of 64 words links the CYCLONE and the output punch. If
the buffer is not full then outputting requires negligible time,
but outputting is limited to 60 characters per second after the
buffer has been filled. IT THERE~ORE BEHOOVES THE USER TO ARRANGE
HIS COMPUTING AND PUNCHING IN BLOCKS OF 64 CHARACTERS OR LESS (I.E.
ONE PRINTED LINE) IF IT IS AT ALL POSSIBLE.

** Timing does not apply.

LISTING OF THE OPERATION CODES IN RELATED GROUPS:

ARITHMETIC :
add,sub,mul,div,idiv,mag,nmag,cla,cls,sto,stz;

SUBROUTINES:
sqrt,sin,cos,tan,sinh,cosh,tanh,log,exp,itan,randu,randn;

TRANSFERS:
tru,trp,trn,trz; trss1 ,trss2; tix,tnx; txh,txl; txi; tsx;

INPUT- OUTPUT
inp,out; ainp,aout;

FORMAT:
crlf,space,tab,punch;

INDEX MODIFICATION:
lxa,lxd,lxn; sxa,sxd,sxn;

MISCELLANEOUS:
copy,swap,clear,halt,nop,eerie;

DEBUGGING:
flag;

ISU

COMPUTING
CENTER

EERIE
Left Margin Tab I Tab 2

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

OPERATION ADDRESS INDEX,DECREMENli

~~~ 

~ 

~ 

~ 

CYCLONE 
Page of __ 
Name ____ _ 

COMMENTS 



EERIE 

White Switch 

START LOAD ORDERS Halt On: 
1 • Initial Loading 
2 • Blank Word Exec. ~-B-l_a_c_k_S_w_i_t_c_h---1 CLEAR MEMORY 1--------------1 
3. PGM Order Exec . 
4. Retrieve EERIE 

White Switch 

LOAD ORDERS Order END HALT Black Switch 

Loading END1 
Routine invalid o code HALT 

a use HALT 
sto code 

Insert Black Switch 
'------------------~Blank Word White Switch 

EXECUTE ORDERS Order 
i------------------1Executing 

(Next order instead) White Switch Routine 

Normal Orders 

P o Blank Wo d 

(Norma 1 tr ans fer) Black Switch ______ _J---"HA=-L-"T---1 HALT 1-----. 

EXECUTE ORDERS 

START 

LOAD ORDERS 


