
,/

l

FUSION Design Specification

Locus Computing Corporation
IBM Corporation

1.

2.

CON1ENTS

Introduction
The Distributed Execution Environment •
2.1 File System Enhancements •

2.1.1 Remote Devices
2.1.1.1 Introduction 3
2.1.1.2 Lookup 4
2.1.1.3 Open 5
2.1.1.4 Migration 7
2.1.1.5 Read/write 8
2.1.1.6 inode-only-operations 8
2.1.1.7 Ioctl 8

2.1.2 Remote Pipes
2.1.2.1 The FIFO Virtual File System 21
2.1.2.2 Synchronization 22
2.1.2.3 End-of-file Condition 23
2.1.2.4 The Policy Module 23
2.1.2.5 Policy Module/Storage Module Interface 29
2.1.2.6 Preliminary NIDL specification 29
2.1.2.7 Preliminary header file describing storage module

2.1.3

2.1.4

2.1.5

2.1.6

interface 33
Remote Sockets
2.1.3.1 Overall Design 47
2.1.3.2 Remote Socket Data Structures 48
2.1.3.3 Functions 49
2.1.3.4 NIDL Prototype for Remote Socket RPCs
Remote Select
2.1.4.1 Introduction 110
2.1.4.2 Requirements for F u s I
2.1.4.3 Rationale for design 111
2.1.4.4 Design details 112
File Offset Coherency •
2.1.5.1 Overview 117
2.1.5.2 Hooks 119
2.1.5.3 Fileblock to Token Interface
2.1.5.4 Last Close 126
2.1.5.5 Generic Token Module 127
2.1.5.6 General Assumptions 133
2.1.5.7 Performance 133
2.1.5.8 Packaging 133
File Reopen and Lock Inheritance .

- 1 -

DRAFT

. .
ON 111

. . . .

125

. . . .

. . .

97
. . .

. . .

. . .

. 1

. 3

. ~ . 3

. 21

. 47

. 110

. 117

. 135

2.2

2.3

2.1.6.1 Overview 135
2.1.6.2 Reopening Files - Top Level 135
2.1.6.3 Struct-File Recreation 138
2.1.6.4 Extended File Ops 140
2.1.6.5 File Locks 141
2.1.6.6 Sockets - Non-Vnode Based Files 143
2.1.6.7 Vnode Recreation 144
2.1.6.8 AFS changes 150
2.1.6.9 General Assumptions 153
2.1.6.10 Error Handling 153
2.1.6.11 Security 153
2.1.6.12 Performance 154
2.1.6.13 Packaging 155

Remote Processing Support • • • • • • • • •
2.2.1 Vprocs • • • • • • • • •

2.2.1.1 Base Vproc Interface 156
2.2.1.2 Private Vproc Data Interface 170
2.2.1.3 Base Code Modifications 190
2.2.1.4 Remote process management 202

2.2.2 Signet Daemon • • • . • . • • • • • • • • •
2.2.2. l Assumptions 226
2.2.2.2 Detailed design 226

2.2.3 Remote Processing Primitives . • • • • • • • • •

2.2.4

2.2.3.1 Introduction 229
2.2.3.2 Migrate 230
2.2.3.3 Exec and Rexec 239
2.2.3.4 Rfork 241
2.2.3.5 Exit 242
Shell Enhancements . . .
2.2.4.1 Overview 244

.
2.2.4.2 Isolation of code changes
2.2.4.3 Nodeinfo 244
2.2.4.4 Summary of changes 245

244

2.2.4.5 Detailed description of changes
Node Status Service
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8

Description of the Product
Description of Features . .
Components of the Service .
Service Area •
Service Initialization . . .
GNSS and LNSS Protocols .
GNSS and GCMS Protocol .
Data Services Interface

- ii -
DRAFT

. . .
.

. . .
.

.

. . .

.

246
. . . . •
.
.
.

.

156
156

224

229

244

253
253
253
254
256
257
257
258
259

2.3.9 Data Maintained by the Service • • • • • • • • 264
2.4 Keep-Alive Service • • • • • • • • • • • • • • • • 286

2.4.1 Interfaces • • • • • • • • • • • • • • • • • 286
2.4.2 Internal Design • • • • • • • • • • • 287

3. The Cluster Environment • • • • • • •
3.1 Clustering of Data • • • • • • • • • •

3.1.1 The Cluster Mount Service • • • • • • •
3.1.1.1 Overview 290
3.1.1.2 Who Tells What to Whom When... 290
3.1.1.3 Registering the Mount 294
3.1.1.4 Mount Context 295
3.1.1.5 Startup, Shutdown, and Merging 296
3.1.1.6 Mount Conflicts 300
3.1.1.7 Command Interfaces 300
3.1.1.8 Modifications to AIX 3.1 301
3.1.1.9 Modifications to AFS 302
3.1.1.10 Module Interfaces 303
3.1.1.11 Data Interfaces 316

3.1.2 NFS Interoperability
3.1.2.1 Purpose 323
3.1.2.2 NFS Mount Model 323
3.1.2.3 Migration of open NFS files 325
3.1.2.4 Migration of NFS file locks 330
3.1.2.5 Migration and secure NFS 352
3.1.2.6 NFS Cache Coherency 352

3.2 Invocation Load Balancing • • • • • • • •
3.3 Dynamic Load Balancing • • • • . • • • • •

4. File System Replication Services •
4.1 Introduction • • • • •
4.2 Overview • • • • • •

. . .

4.2.1 DCE File System • • • • • • • • • •
4.2.2 F U S I 0 N Replication and the DCE File System
4.2.3 F U S I 0 N Replication Functional Overview • • •
4.2.4 Document Organization Overview • • • • • • •

4.3 F U S I 0 N REPLICATION SERVICE • • • • • • • •
4.3.1 Exception Tokens • • • • • • • • • • • • • •
4.3.2 Propagation Table • • • • • • • • • • • •
4.3.3 Multiple Replicas on a Single Node • • • • • • • •

4.4 File Access • • • • • • • • • • • • • • • •
4.4.1 Local Access • • • • • • • • • • • • • • •
4.4.2 Cache Manager • • • • • • • • •
4.4.3 Glue Layer • • • • • • • • • • • • • • • •

-iii-·
DRAFT

290
290
290

323

366
367

368
368
369
369
369
369
371
374
374
375
376
377
377
377
379

4.5

4.6

4.7
4.8
4.9

4.10

4.11

4.12
4.13

4.4.4 Scaling Replication • • • • • • • • • • • •
4.4.5 Automatic Replica Selection . • • • • • • • •
4.4.6 Using a List of Preferred Replicas • • • • • • • • •
File Propagator • • • • • • • • • • •
4.5.1 Modifications to the File System • • • • • • • • •
4.5.2 Byte-range Propagation . • • • • • • • • •
4.5.3 Propagation Instructions • • • • • • • •
4.5.4 Propagation Queue Entry States • • • • • • • •
4.5.5 Reading the Propagation Queue • • • • • • • •
4.5.6 Propagation Tokens • • • • • • • • • • •
4.5.7 Propagating the File • • • • • • • • • • •
4.5.8 Low Water Mark • • . • • • • • • • • •
Network Instability Management • • • • • • • •
4.6.1 F U S I 0 N Replication Server States • • • • • •
4.6.2 Replication Server Initialization • . • • • • • • • •
4.6.3 Replication Server Reconciliation • • •
4.6.4 Notice of node unavailability . . • • • • • •
4.6.5 Special cases • . . • . . • . • • •
4.6.6 Managing Out of Memory Situations . • . • • • • •
VLDB
File System Access for Non- F U S I 0 N Nodes
User Level Commands . . • • • • • • • • •
4.9.1 VOS Commands • • . . • • . • • •
4.9.2 FRFS_mkfs • • . • . . . • • • • •
4.9.3 FRFS_modfs . . . • • . • • • • • • •
4.9.4 Recovery • • • . • • .
4.9.5 Changing RW replicas • • • • • •
Packaging and Installation • . . • • • • •
4.10.1 F U S I 0 N Dependencies . . • • . • • • •
4.10.2 DFS Dependencies • • • . • • . • . • • • • •
Subroutines
4.11.1 Changes to Existing DCE Code • . • • • • • •
4.11.2 Exception Token Management . • • . • • • •
4.11.3 Propagation Management . • • • • • • • • •
4.11.4 Node Selection . • • • • • • •
4.11.5 Network Instability Management • . • • • • • • •
NIDL Specifications • • • • • • • • •
Detailed Design
4.13.1 Modifications to DCE Code . • • • • • • • • • •
4.13.2 Exception Token Management . . • • • • • • • •
4.13.3 Propagation • • . • • • • • • •
4.13.4 Node Selection • . • . . • • • • • • • •
4.13.5 Network Instability Management • • • . • • • • •

- iv -
DRAFT

380
382
383
385
385
387
387
387
387
388
389
391
392
392
392
395
397
399
400
402
403
404
404
405
405
405
406
408
408
408
409
409
409
410
411
412
414
417
417
421
430
435
448

4.14 Data Structures • • • • . . . • • •
4.14.1 Modifications to DCE Data Structures •
4.14.2 FRS Data Structures . • • • •

- v -
DRAFT

457
457
459

•" ·-

LIST OF FIGURES

Figure 1. The F U S I 0 N FIFO Virtual File System • • • •

Figure 2. F U S I 0 N FIFO Server data structure • • • • • • •

Figure 3. F U S I 0 N FIFO client data structure

Figure 4. State transitions at the controlling host

22

24

25

27

Figure 5. State transitions at the non-controlling host • • • • • • • • 27

Figure 6. Mapping Remote Nodes with Supported Protocols • • • • • • 169

Figure 7. Parent-Child-Sibling Relationships

Figure 8. Process Group chains

173

175

Figure 9. Session Leader chains • • • • • • • • • • • • • • 177

Figure 10. Fixed Base Code Supporting Vprocs Without Remote Processing
Installed • • • • • • • • • • • • • • • • • 203

Figure 11. Fixed Base Code Supporting Vprocs With Remote Processing
Installed 203

Figure 12. Interaction of clients and servers in the Migrate design • • • • 231

Figure 13. Pseudo-code for the Migrate Client • • • • • • 235

Figure 14. Pseudo-code for the Migrate Server

Figure 15. Pseudo-code for the Page Transmission Server •

Figure 16. Pseudo-code for the Page Fault Server

Figure 17. Pseudo-code for the Exec/Rexec Client
Figure 18. Pseudo-code for the Exec/Rexec Server • • •

Figure 19. Pseudo-code for Rfork • • • •

Figure 20. Example of GSS Service Area •

.

. . .

236

238

239

240

241

242

257

Figure 21. Keep-Alive data structure links • • • 288

Figure 22. Original locking node with F U S I 0 N server • 331

Figure 23. Start: Non-original locking node with F U S I 0 N server • • 332

Figure 24. Original locking node with non- F U S I 0 N server

- vi -
DRAFT

332

Figure 25. Non-original locking node with non- F U S I 0 N server 333

Figure 26. Non-original locking node with non- F U S I 0 N server migrating to
original locking node • • • • • • • • • • • • • • • 333

Figure 27. NFS Tokens Block Diagram

Figure 28. VLDB • • • • • • •

Figure 29. Replication and the DCE File System

Figure 30. Flow of Status Writes

- Vll -

DRAFT

353

370

372

386

1. Introduction

FUSION Design Specification

Locus Computing Corporation
IBM Corporation

This FUSION Design Specification provides the detailed Internal Architecture
Specification for FUSION. It will describe the internal workings of each part of the
system at an algorithmic level and will describe key data flows between components.
Since FUSION intended to operate on a variety of underlying hardware and software
platforms, this document does not provide highly detailed module level designs
descriptions. Such designs would likely be highly specific to a particular base.
However, this document should serve as an excellent starting point for producing such
detail for a particular base.

The FUSION Functional Specification provides a rationale and an overview of the
FUSION system, as well as a specification for the functionality provided and the
interfaces to that functionality. Also provided is a description of error handling,
performance goals, and impacts on the customer. That document also contains high
level descriptions of the internal working of the system when such description is
necessary to completely explain the desired functionality.

This document logically follows the FUSION Functional Specification in sequence. It
provides a detailed specification for how to build each of the components of the
FUSION system. This includes detailed algorithms used within each module, the key
data structures used within each module, and descriptions of how data flows through
the system.

One goal of the FUSION Design Specification is to not repeat the material presented in
the FUSION Functional Specification. Consequently, this document presumes that the
reader has already read and understood the FUSION Functional Specification. Without
that background the reader of this document may become overwhelmed.

This components of FUSION are presented in this FUSION Design Specification in the
same order as they were presented in the FUSION Functional Specification. This is
done to aid the reader who is consulting both documents concurrently, as it allows the
reader switch between the two documents without having to search extensively to find
material on the same components.

Each section of the component specifications is structured in a similar way. First a
high level description of the design is presented to give the reader an overall
understanding of how the component functions. Then detailed specifications of the
algorithms and data are presented. This is specified using a combination of code,
pseudo-code, figures, and text. When appropriate, NIDL declarations for the new

IBM Confidential
June 28, 1991
DRAFT

- 2 -

RPCs used by that component are provided. One of the principal design criteria was
to minimize changes required of the base system and of DCE. Since some such
changes are inevitable, those components that require such changes will provide
descriptions of those changes.

IBM Confidential
June 28, 1991
DRAFT

- 3 -

2. The Distributed Execution Environment

2.1 File System Enhancements

2.1.1 Remote Devices

2.1.1.1 Introduction
This document describes the design of remote devices in FUSION. It describes how
the device inodes will be handled though AFS, how they are opened, and their
operation after they arc opened. The major issues to be addressed arc:

open It must be possible to associate a particular device name with the correct
node that the device is physically attached to. This node will be called
"the device node", to distinguish it from the node that the program is
running on (which will be called "the execution node") or the node that
stores the inode that represents this device (which will be called the
"inode node"). In addition to associating the device name with the
appropriate device node, this design must address some book keeping
issues at open to maintain the UNIX semantics of only calling the device
close routine on last close. One last issue for open is the design must be
able to work with AIX multiplexed devices where the device open routine
resolves that last part of the path naming the device.

read/write The design must allow for read and write operation as if the device was
stored locally. This is fairly straight forward except for cases where the
user request very large single transfer operations. This design will specify
the behavior of remote devices, but it is doubtful that a perfect solution
can be found.

ioctl Ioctl is a very tricky operation to implement remotely due to the free form
nature of this operation. This design will treat ioctls in two classes. The
first class of ioctl that will be considered are ioctl commands that are
listed in the FUSION Functional Specification as supported between
FUSION machines. These ioctls will be fully supported without any
special consideration that the device may be remote. The other class of
ioctl commands are "user defined" ioctls. These ioctl commands are not
specifically recognized by the FUSION remote device support code. A
mechanism will be provided so that a user can register an ioctl command
with the FUSION remote device code. After being registered, user
provided ioctl commands will be supported.

inode--only--operations The remote device inode must be able to be referenced as well
to support system calls such as stat, chown, chmod, etc. The design must
be able to support these operations, regardless of whether the device node
is the same as the inode node.

IBM Confidential
June 28, 1991
DRAFT

- 4 -

2.1.1.2 Lookup
In the current design, the lookup vnode op is handled by afs in the remote case and
the afs "glue" vnode op would handle the local case. The logical file system lookup
code will have to be modified to check to see if the vnode returned by lookup is a
remote device vnode. ff it is, it will call a remote device suppon routine that will
allocate a new vnode that is initialized with remote device vnode ops. The vn_data of
this new vnode points to a structure that includes a pointer to the vnode returned by
lookup. The logical file system will return the new vnode in place of the vnode
returned from the lookup vnode operation. For AIX 3.1 this will have to be done
before lookuppn() checks for multiplexed device. This is so that the remote device
lookup vnode op is in place before the last lookup is performed for the multiplexed
device.

The remote device lookup vnode op will be a RPC call to a multiplex device lookup
on the device node. The device node routine that resolves the last element of the path
needs the vnode of the device inode, so the remote device lookup routine will use
vn_prep_expon() to get a handle which the server part 'of remote lookup can use
vnode_reopen() to get the needed vnode. Then the reverse of this will be used to send
the vnode returned from mpx_lookup back to the client node.

Pseudo code for rdev _lookup() is as follows:
rdev_lookup (device_vnode, channel_vnode, pathname, flags)

Algorithm:
Determine the node that stores the device, lookup the :rpc handle
for the remote device service for that node.

device_vnode_handle = vn_prep_export(device_vnode);
rdev_lookup_server(:rpc_handle, device_vnode_handle, pathname, flags,

&channel_vnode_handle);
channel_vnode = vnode_reopen(channel_vnode_handle);
return;

rdev_lookup_server(:rpc_handle, device_vnode_handle, pathname, flags,
channel_ vnode _handle ytr)
[in] :rpc_handle;
[in] device_vnode_handle;
[in] pathname;
[in] flags;
[out] channel_ vnode _handle ytr;

Algorithm:
dvp = vnode_reopen(device_vnode_handle);
VNOP_LOOKUP(dvp, &channel_vnodeytr, pathname, flags);

IBM Confidential
June 28, 1991
DRAFT

- 5 -

channel_ vnode _handle _ptr = vp _prep_ export (channel_ vnode _ptr) ;
return;

This design has several implications for AFS. It means that AFS lookup will be able
to return a special file vnode (even though afs cannot handle other operations on
special files). It also means that AFS must be able to pass file types for device
vnodes and multiplexed device vnodes.

2.1.1.3 Open
Remote open will be implemented through a remote open vnode op. This code will
issue a RPC call to a server routine on the device storage node which will issue the
device open call. In order to do this the code must determine which node it must
contact. NEEDSWORK: The exact method of figuring out the device node is not yet
determined. This information will be retrieved from the afsFid that af s returned in the
vnode. When the remote server is called, an in-core vnode must be found (or created
if this is a first open) in order to process the open call. This will be done using the
primitives provided for open file export. The client side will call vn_prep_export()
with the vnode from lookup to get a "remote vnode handle", which the server side can
use to get the vnode using xvf_ vreopen(). This handle is not the same as the "remote
device handle" that remote open will be returning, so care must be exercised to not get
them confused. In addition, the open count must be maintained. This will be done at
the device node in the device vnode/gnode. When a remote open RPC comes in to the
device node, the counts will be incremented as appropriate. In addition, a list of
remote nodes that have this device open must be maintained. This list will be hung
off a data structure that is keyed from the device vnode. A count of opens from that
node is stored in the list. If a new node is added to the list, the "keep alive" service
is notified the remote device server code cleanup routine must be called if the node
goes down.

NEEDSWORK: If this is the first open of a remote tty, and we don't already have a
controlling terminal, we need to establish controling terminal or a new session as
needed. This looks as though it will require a change to the base operating system tty
line discipline code to understand that there may be a kproc acting as a proxy for a
remote open, otherwise it may set the kproc to be the process group for this tty.

The end result of the remote open operation is to actually open the remote device and
to return a remote device handle that will be used by the rest of the remote device
client routines to properly connect to the remote device server routines. A pointer to
the handle will be stored in the vnode data part of the client vnode. Pseudo code for
rdev_open:
rdev_open (vp, open_flags, extension, vinfop)

Algorithm:
iifdef AIX V3

re = VNOP_ACCESS (vp, (mode from flags), ACC_SELF);

IBM Confidential
June 28, 1991
DRAFT

#end.if

- 6 -

if (re != 0)
retum(rc);

Detennine the node that stores the device, lookup the rpc handle
for the remote device service for that node.

device_vnode_handle = vn_prep_export(vp);
rdev_open_server(rpc_handle, device_vnode_handle, flags, ext, vinfo,

nodeid, &remote_io_handle, &uerror, &specflags);
if (uerror != 0) {

retum(stderr2errno(uerror));
}

if (specflags = DEVNULL) {
set vnode ops for data ops to local dev null ops.

} else if (specflags = DEVTTY) {

} else {

}

return;

if (u.u_ttynode == curnode) {

} else {

NEEDSWORK: code to hack remote vnode to local
controlling tty vnode + extra open.

lookup the rpc handle for u.u ttynode.
rdev_oPQn ctty(rpc_Jlandle, u.u_ttyd, u.u_ttympx,

· · flags, ext, vinfo, cumode, &remote_io_handle,
&uerror);

if (uerror != 0) {
retum(stderr2ermo(uerror);

}

vp->v_data = remote_io_handle;

vp->v_data = remote_io_handle;

rdev_open_server(rpc_handle, device_vnode_handle, flags, ext, vinfop,
nodeid, remote_io_Jlandlep, uerror, specflags)
[in] rpc_handle;
[in] device_vnode_handle;
[in] flags;
[in] ext;
[in] vinfop;
[in] nodeid;
[out] remote_io_handlep;
[out] uerror;

IBM Confidential
June 28, 1991
DRAFT

- 7 -

[out] specflags;

Algorithm:
vp = vnode_reopen(device_vnode_handle);
if (isdevnull(vp)) {

*specflags = DEVNULL;
return;

}

if (isdevtty (vp))

}

*specflags = DEVTTY;
return;

re= VNOP_OPEN(vp, flags, ext, vinfop);
if (re != 0) {

}

uerror = errno2stderr(rc);
return;

/* keep track of which nodes have this dev open */
rernote_open_node_struct = find_rernote(vp, nodeid);
if (rernote_open_node_struct == NULL) {

rernote_open_node_struct = add_rernote(vp, nodeid);
rernote_open_node_struct->opencount = l;

/* register with the "keep alive service" */

monitor_nodedown(node, rdevclenup_functp);
} else {

rernote_open_node_struct->opencount++;
}

rernote_io_handlep = make_remote_handle(vp);
return;

2.1.1.4 Migration
Reopen operation must set up remote vnodes that are similar in function to a remote
open. Reopen is implemented in two stages. The first stage is the
"vno_prep_export()" vnode op that is used by the export file operation that is called as
part of the process migration operation. This operation wilLcreate a "reopen handle"
that will be shipped with the migrating process for use with the "fo_reopen()" VFS
operation at the new node. The reopen VFS operation will find or create an
appropriate vnode at the new node and call its reopen vnode operation. If the new
node is remote from the device node, the reopen vnode operation will make an RPC
that will call a remote reopen function at the device node. This operation will
increment the open counts for the device vnode/gnode as well as the count that is in

IBM Confidential
June 28, 1991
DRAFT

- 8 -

the remote node extension entry. The remote node will be added to "keep alive"
service if it is not already registered there. This RPC will return a device handle that
can be used for the rest of the remote device operations and a pointer to this handle
will be stored in the vnode data part of the new node device vnode. If this operation
is the result of a migration, the old (local) process will exit when the migration i!'
complete. This will result in a close of the local instance of the device, finishing the
transition from a local device to a remote device. If this was a remote to remote
migration, this procedure will be modified by having the "vno_prep_export()"
operation being set up to give a reopen handle that points at the device node. Then
the reopen operation would happen at the device node just as in the migrate from local
case.

2.1.1.S Read/write
Remote read/write vnode op will be set to routines that will call RPC routines to
"function ship" the operation to the device node. NEEDSWORK: how are very large
user buffers handled?

2.1.1.6 inode-only-operations
This design assumes that inode only operations will be able to be supported by the
AFS operations just as if device inodes were file inodes. The remote device vnode
operations will call the coresponding AFS vnode operation that is in the saved vnode
from the original lookup though AFS. All of the arguments to the remote device
operation will be passed through to the AFS operation except that a pointer to the
AFS vnode will be passed instead of the pointer to the remote device vnode.

2.1.1.7 Ioctl

2.1.1.7 .1 Introduction
One of the operations that a remote special file server must support is the ioctl() call.
This presents several problems which are outlined below, together with some proposed
solutions.

The cause of these problems is threefold. First of all, the ioctl() interface is untyped,
and therefore is difficult to express in a strongly typed language such as NIDL.

Secondly, the ioctl() interface was designed under the assumption that the target of the
call (i.e. a device driver) has unlimited and efficient access to the address space of the
caller. This is obviously not the case in the RFC-based system being built.

Thirdly, current Unix standards such as POSIX are aimed at source-code
compatibility, and not binary compatibility. But, our remote special file facility will
be a case of one kernel calling the services of another, possibly quite different kernel,
for example AIX3.1 calling System V.4. This kind of inter-operability has more of
the flavor of binary compatibility, and raises problems 2, 3, 4 and 5 below. It is
assumed such inter-operability is a requirement for FUSION software.

IBM Confidential
June 28, 1991
DRAFT

- 9 -

The good news is that the code to solve most of these problems is fairly trivial to
write.

Section 2 outlines problems with remote ioctl()'s, and details solutions. Section 3
contains sketches of what the code for handling ioctl()'s does at the client and server.
Section 4 contains a list of well known ioctl()'s that need to be support.

2.1.1.7.2 Problems with loctlO's

2.1.1.7.2.1 Problem 1: ioctIO is untypable in NIDL
The ioctl() interface looks like this:

ioctl(fd, CMD, ARO);

The type (and existence) of ARO depends on the value of CMD. For example, here
are some of the types assumed by ARO, for various ioctl()'s:

none
char
short
int
int*
long
struct termio *
struct sgtty *
struct ltchars *
struct winsize *
struct ttypagestat *
struct rtentry *
struct ifreq *
struct ifconf *
struct arpreq *

It is not possible to write down a single NIDL operation declaration which covers aH
these cases, and which would actually work.

2.1.1.7.2.2 Problem 2: CMD encoding's are not uniform
The encodings of CMD are not identical for all kernels. For example, in AIX 3.1
TCGETA is defined as:

fdefine TCGETA (TIOC I 5)
whereas in System V Release 3.2 TCOETA is defined as:

fdefine TCGETA (TIOC I 1)
Our solution to both of these problems is to provide a separate NIDL-defined
operation for each CMD symbol. So the interface definition includes:

void ioctl_tcgeta(
[in] handle_t device,
[out] tennio t *arg,
[out] errno t *copy_of _u_error

IBM Confidential
June 28, 1991
DRAFT

) ;

[idempotent]
void ioctl_tcseta(

[in] handle_t
[in] termio_t
[out] errno t

) ;

void ioctl_tcflsh(
[in] handle_t
[in] int
[out] errno t

) ;

void ioctl_tcsbrk(
[in] handle_t
[in] int
[out] errno t

) ;

- 10 -

device,
*arg,
*copy_of _u_error

device,
queue_selector,

*copy_of _u_error

device,
whether_to_send_break,

*copy_of _u_error

In order to support user written ioctls, the user is allowed to register a "callout" for
his command. Then his callout would have to use his NIDL interface to support his
ioctl.

2.1.1.7.2.3 Problem 3: bit field encodings are not uniform
The RPC layer can encode C structs, such as struct termio, in NDR form. However,
the layout of bit fields within integer fields in the struct could, in general, vary from
system to system. For example, POSIX only defines the NAMES of the bits inside
the fields of the struct termio. Each implementation is free to "#define IGNBRK" to
be any value it likes. This means the c_iflag field in the struct which is passed
through the RPC cannot have its normal type, "unsigned short", and the function
cannot rely on the local pre-processor-defined masks for the definition of the
individual bits.

The solution is to make NIDL type definitions for the bit fields using the "bitset
enum" and "enum" type constructors, and to provide mapping functions, between the
NIDL datatype, and the native Unix datatype. The mapping functions would need to
be called in the client and in the server.

For example, the "struct termio" contains a field of type "unsigned short" called
"c_iflag". To provide a representation-independent version of this flag, one would
define, in NIDL, this datatype:

typedef short bitset enum

IBM Confidential
June 28, 1991
DRAFT

{

- 11 -

/* These are POSIX defined. */

brkint,
icrnl,
ignbrk,
igncr,
ignpar,
inlcr,
inpck,
istrip,
ixoff,
ixon,
parmrk,

/* These ones are defined in AIX, inter alia. */

iuclc,
ixany,
ascedit

iflag_nt;

The client code would call a function like the following to convert from "native iflag"
to "NIDL iflag":

iflag_nt
native_to_iflag_nt(unsigned short native)
{

}

iflag_nt return_value;

return value = 0;

#ifdef BRKINT
if (native & BRKINT)

return value I= brkint;
#endif

#ifdef ASCEDIT
if (native & ASCEDIT)

return value I= brkint;
#endif

return return value;

IBM Confidential
June 28, 1991
DRAFT

- 12 -

There would be a similar inverse function, ifiag_nt_to_native(), to map the other way.

2.1.1.7.2.4 Problem 4: some struct definitions must be NIDLized
As a consequence of the above, new type definitions for those structs which appear in
ioctl() RPC's and which have bit-fields defined in them are required.

Thus, the NIDL declaration for ioctl(TCSETA, ...) would look like:
[idempotent]
void ioctl_tcseta(

[in] handle_t
[in] termio_nt
[out] ermo_t

) ;

device,
*arg,

*copy_of _u_error

where termio_nt is declared something like:
typedef struct termio
{

iflag_nt
oflag_nt
cflag_nt
char size nt - -
baud rate nt
lflag_nt
char

if lag;
of lag;
cf lag;
char_size;
baud_rate;
lflag;
line; /* line discipline */

/* POSIX defined names of special characters. */

char veof;
char veol;
char verase;
char vintr;
char vkill;
char vquit;
char vsusp;
char vstart;
char vstop;
char vmin;
char vtirne;

/* AIX defines these. */

char
char

} termio_nt;

veol2;
vswtch;

IBM Confidential
June 28, 1991
DRAFT

- 13 -

This now means that a mapping functions to map between tennio_nt fonnat and
"native struct tennio" fonnat is required.

2.1.1.7.2.S Problem S: errno encodings are not uniform
In coding the remote special file server (and possibly other servers), it will sometimes
be necessary to reflect back to the client, error conditions that originated in the
server's kernel. These conditions, coded as numbers, must be converted to and from a
NIDL-defined (representation independent) datatype, because there is no guarantee that
all kernels will encode the same error symbol with the same integer value. For
example, POSIX defines a set of error values, but only by their symbolic name. Two
kernels can claim POSIX compliance, even though one is compiled with "#define
ENOMEM 22" and the other is compiled with "#define ENOMEM 44".

The solution here is to define, in NIDL, a type thus:
typedef enum
{

/* POSIX defined error conditions */
e2big,
eacces,
ebadf,
ebusy,

/* System V error conditions */
eadv,
ebade,
ebadfd,
ebadmsg,
ebadr,

errno nt;

The server would contain a function like this:
errno nt errno to errno nt (int errno)
{

switch (errno)
{

case ENOMEM:
return enomem;

IBM Confidential
June 28, 1991
DRAFT

- 14 -

And the client would contain a function like this:
int errno_nt_to_errno (errno_nt nidl_errno}
{

}

switch (nidl _ errno}
{

case enornem:
return ENOMEM;

(Of course, both functions would probably be table driven.)

2.1.1.7.3 Code sketches for handling remote ioctl()'s
Here is roughly what would happen in the client and server when performing a remote
ioctl().

2.1.1.7.3.1 Client side (Special File VFS code):
switch (ioctl_cmd) {
#ifdef SAMPLE IOCTL CMD
case SAMPLE IOCTL CMD: - -

Get a well-typed pointer to the argument (if it's a struct);
OR

Get a well-typed scalar containing the argument (if it's an int, char, long);

If (the argument is a struct which needs to be NIDLized)
allocate an instance of the NIDL type;
convert the local struct to NIDL form;

Call strongly-typed client-stub code;

If (the ioctl() returns a struct which needs to be de-NIDLized)
convert the NIDL struct to local form;

If (returned nidl_ermo indicates an error)
convert nidl_ermo to local_ermo;
store local_ermo in u. u_error;

If (appropriate)
return the value returned by the RPC;

break;
#endif SAMPLE IOCTL CMD

default:

IBM Confidential
June 28, 1991
DRAFT

- 15 -

call user registered ioctl routines.

}

2.1.1.7.3.2 Server side (Remote device server)lt

(entered at the manager procedure)
int manager_proc_for_ioctl_sample(

hanclle_t device_handle,
sample_arg_t *arg,
ermo_nt *nicll_ermo)

{
#ifndef SAMPLE IOCTL Q.11):

#else

- -
*nicll_ermo = ermo_to_errno_nt (EINVAL);
return -1;

Ascertain actual device (fd, or major/minor) from device_hanclle;

If (the argument is a struct which needs to be de-NIDLized)
allocate an instance of the local struct type;
convert the NIDL struct to local form;

Call driver (ioctl system call, or through devsw[]), with cmd =
SAMPLE_ IOCTL_ Q.1D, and arg = address of local struct;

If (returned ermo or u.u_error indicates an error)
convert it to NIDL form and store in *nidl_errno;

If (appropriate)
return the value returned by the driver's ioctl function;

#endif}

2.1.1.7.4 A list of most (?)well-known ioctl() CMD's
The sources for the following were the AIX PS2 Genl source code, and include files
on System V, and BSD. The ioctl()'s have been grouped according to origin and
function. The groups are listed in approximate order of importance. (i.e. if some of
these groups are not going to be supported, they should be deleted from the end of the
list, rather than the start.)

I* Origin: ATT Unix.
* Purpose: Tenninal control.
* Arg types: struct * tennio
*/

IBM Confidential
June 28, 1991
DRAFT

TCFLSH,
TCGETA,
TCSBRK,
TCSETA,
TCSETAF,
TCSETAW,
TCXONC,

TIOCGETP,
TIOCSETP,
TIOCSETN,

TIOCEXCL,
TIOCNXCL,

TIOCHPCL,

TIOCGETD,
TIOCSETD,

TIOCFLUSH,

TIOCSTI,

TIOCCBRK,
TIOCSBRK,

TIOCCDTR,
TIOCSDTR,

TIOCSTART,
TIOCSTOP

TIOCSPGRP,
TIOCGPGRP,

/* Origin:
* Purpose:

- 16 -

* Arg types:
*/

Version 7.
Terminal control.
struct * sgttyb

/* Origin: BSD.
* Purpose: Terminal control.
* Arg types: scalars only, no structs.
*/

IBM Confidential
June 28, 1991
DRAFT

r

TIOCOUTQ,

TIOCBIC,
TIOCBIS,

TIOCCGET,
TIOCCSET,

TIOCGET,
TIOCSET,

TIOCGETC,
TIOCSETC,

TIOCGLTC,
TIOCSLTC,

TIOCGPAGE,
TIOCSPAGE,

TIOCLBIC,
TIOCLBIS,

TIOCLGET,
TIOCLSET,

TIOCM:>DG,
TIOCM:>DS,
TI001BIC,
TI001BIS,
TIOCM:iET,
TIOCMSET,

TIOCNOTTY,
TIOCPKT,

- 17 -

/* Origin: BSD (?)

* Purpose:
* Arg types:

Tenninal control.
struct * tchars,

*
*
*
*
*/

struct * ltchars,
struct * ttypagestat,
struct * rnodem_control,
struct * tiocpkt.

IBM Confidential
June 28, 1991
DRAFT

TIOCREM)TE,

FIOCLEX,
FIONCLEX,
FIONREAD,
FIONBIO,
FIOASYNC,
FIOSETOWN,
FIOGETOWN,

LDOPEN,
LDCLOSE,
LDCHG,
LDGETT,
LDSETT,
LDGETDT,
LDSETDT,

TCGLEN,
TCSLEN,

DKGETPART,

/* Origin:
* Purpose:
* Arg types:
* Notes:
*I

- 18 -

BSD (?)

Various control functions.
scalars only, no structs.
Some apply to .ANY file, not just devices.

/*
/*
/*
/*
/*
/*
/*

set close on exec on fd */
remove close on exec */
get # bytes to read */
set/clear non-blocking i/o */
set/clear async i/o */
set owner */
get owner */

/* Origin: AIX (?)

* Pu:r:pose: ??
* Arg types: struct * termcb
* Notes: Found in <sys/termio.h>.
* ldopen, ldclose, ldchg interpreted by lpld.c
* (the line printer device-independent part) •
* Also ttl.c interprets some.
*/

/* ? */
/* ? */
/* ? */
/* ? */

/* Origin:
* Purpose:
* Arg types:
*/

/* Origin:
* Purpose:
* Arg types:
*/

AIX.
Terminal control.
struct * tty_page

AIX Gen 1 (?).
Get and set partition info on a raw disk •
struct * dkpart

IBM Confidential
June 28, 1991
DRAFT

- 19 -

DKSETPART,

/* Origin: AIX.
* Purpose: Gets device-specific infonnation.
* Arg types: struct * devinfo
* Notes: See "man devinfo" on AIX.
*/

IOCINFO,
IOCTYPE,

/* Gets device info */
/* Return device type, left shifted 8 bits *I

/* Origin:
* Purpose:

BSD networking code.

* Arg types:
Manipulate network layers below a socket.
struct * rtentry,

*
*
*
*
* Notes:
*
*
*/

SIOCADDRT,
SIOCATMARK,
SIOCDARP,
SIOCDELRT,
SIOCGARP,
SIOCGHIWAT,
SIOCGIFADDR,
SIOCGIFBRDADDR,
SIOCGIFCONF,
SIOCGIFDSTADDR,
SIOCGIFFIAGS,
SIOCGIFMETRIC,
SIOCGIFMI'U,
SIOCGIFNETMASK,
SIOCGLOWAT,
SIOCGPGRP,
SIOCSARP,
SIOCSHIWAT,
SIOCSIFADDR,
SIOCSIFBRDADDR,
SIOCSIFDSTADDR,
SIOCSIFFIAGS,

struct * ifreq,
struct * ifconf,
struct * arpreq,
struct * ie5_arpreq
These might not belong in the special
file server interface, but probably
belong in the socket server interface.

IBM Confidential
June 28, 1991
DRAFT

SIOCSIFMETRIC,
SIOCSIEMI'U,
SIOCSIFNETMASK,
SIOCSLOWAT,
SIOCSPGRP

- 20 -

IBM Confidential
June 28, 1991
DRAFT

- 21 -

2.1.2 Remote Pipes
This document describes the design of remote pipe and FIFO in FUSION. Emphasis
is on the FIFO client/server protocol and the interface between the server's policy and
storage modules. In addition to the major goal of providing UNIX semantics for
FIFOs in a distributed environment, two other considerations drive the FUSION FIFO
implementation: separation of data storage from distributed FIFO management, and
optimization to allow local data storage when all processes using a FIFO are running
on the same host.

Throughout, both unnamed pipes and named pipes are referred to as "FIFOs", except
where an explicit distinction is made between the two.

If all processes using a FIFO reside on the same host, no significant performance
penalty should be imposed for using the FUSION distributed FIFO code. In particular,
we envision an HP-style scheme for supporting named FIFOs. If all processes that
access a named FIFO reside on host A, then host A should do the work of storing the"'
FIFO data even though the named FIFO special file is stored on host B, th•
controlling host for the FIFO. If an additional process on host C opens the FIFO,
host B should then reclaim the FIFO and resume its responsibility as the storage host.
This process of transferring responsibility for the FIFO to a using host is called FIFO
lending (or borrowing). When a client host is acting as surrogate storage host, the
FIFO is said to be "on loan" to the client host.

2.1.2.1 The FIFO Virtual File System
The FUSION FIFO implementation uses the client/server paradigm, but the client and
server are really parts of the same virtual file system code. If all processes using a
particular FIFO are on one host, the client VFS at that host will be given
responsibility for managing and storing data for the FIFO. Since the client may need
to perform both storage host and using host functions (e.g. when the FIFO is on loan;
see Section 2.1.2.3.4), the code for both client and server functionality are placed in a
single FIFO VFS. Whether the FIFO VFS acts as server or client depends on the
storage host of the individual FIFO being accessed.

When we speak of the "FIFO client" or "FIFO server", we really mean "the FIFO
VFS acting as client" or "the FIFO VFS acting as server."

Figure 1 shows the FUSION FIFO VFS. It is multi-threaded and comprises three
functional units: a VFS+ interface, an RPC interface, and a policy module (PM).
When FUSION code is added to a new vendor kernel, the VFS+ and RPC interface
code and the policy module are ported directly, and the vendor supplies their own
storage module implementation.

The VFS+ interface provides access to FIFOs for processes running on the local host.
The RPC interface provides access to locally stored FIFOs for processes running
remotely. The RPC calls used by this interface closely resemble the vnode operations
used by the VFS interface, but there are also some additional RPC calls to manage

IBM Confidential
June 28, 1991
DRAFT

- 22 -

+-----------------------+
I

Policy Module I
I

+------------------+ R
I P
I VFS+ Interface C
I
+-----------------------+
Figure 1. The FUSION FIFO Virtual File System

distributed FIFOs. For example, one such additional RPC informs a FIFO client that
it should take responsibility for managing a particular FIFO, since all processes using
that FIFO reside on the client's host.

The policy module is the heart of distributed FIFO support in FUSION. It maintains
descriptors for both locally and remotely stored FIFOs. Operations on descriptors for
local FIFOs trigger corresponding calls to the storage module to store or retrieve data.
Operations on descriptors for remote FIFOs trigger RPC calls to the remote FIFO
server.

The storage module presents a first in/first out byte stream abstraction to the policy
module. Storage module FIFOs can be created, written to, read from, and destroyed
by subroutine calls from the policy module. The policy/storage interface is well
defined and allows vendors to easily fit their preferred FIFO implementation into the
FUSION distributed FIFO model. Figure 2 describes the FUSION FIFO server data
structures, notice that the local VFS and FUSION VFS are connected through the
FUSION FIFO descriptor, it stores all the necessary information for the FUSION FIFO
operations.. The FUSION VFS comes to exist when the pipe system call is made
locally or the remote access to a named pipe is requested from a client node:. There is
a one to one correspondence between the FIFO descriptor and a remote client during
the FUSION FIFO operations.

2.1.2.2 Synchronization
In a non-preemptable uniprocessor UNIX kernel, FIFO 1/0 synchronization is achieved
using sleepO and wakeupO. If a process's 1/0 request can be satisfied, it reads or
writes its data and returns to user mode. If not, it sleeps on some appropriate channel
and is later reawakened by the occurrence of some event, e.g. another process writing
data to an empty FIFO, and it can then proceed.

We assume kernel threads are plentiful and cheap, allowing FIFO RPC code to sleep
at the server end just as local FIFO operations de. If sleeping were to be done at the
client end, an elaborate callback mechanism would be required. We trust that the
provided kernel thread implementation will make this scheme unnecessary, all
blocking being done at the server's FUSION VFS layer and can be interrupted.

IBM Confidential
June 28, 1991
DRAFT

*

- 23 -

It is possible to have multiple readers and writers for a single FIFO. It is assumed
that concurrent access is serialized in some convenient fashion, for instance by a token
passing mechanism.

2.1.2.3 End-of-file Condition
The read operation gets a return value of zero if there is no data in the FIFO and no
writing processes. Whenever data is removed from the FIFO there is a check for any
process that may be suspended, awaiting more space in the FIFO so they may
continue writing. If the FIFO storage node crashes during the read operation, the
system generates a server node down(SR_DOWN) error condition. The writer
processes receive the SIGPIPE signal when attempting to write a FIFO that has no
reading processes or the FIFO storage node went down during the write operation.

2.1.2.4 The Policy Module
The policy module maintains a pool of FIFO descriptors. A FIFO descriptor contains
all the state that the policy module needs for managing a FIFO:> lnfermation in the.
descriptor indicates whether it represents a locally or remotely stored FIFO. Each
descriptor is named by an ordered pair of <hostnbr, FID>, where hostnbr is a 32-bit
FUSION host number and FID is the AFS file identifier associated with the special file
of a named FIFO. For unnamed pipes, FID is not an actual AFS file identifier but a
special "cookie" assigned by the pipe's storage host policy module. Cookies arc
distinguished from real FIDs by having an illegal value in one of the FID subfields.
(Since AFS FIDs are 24 bytes long, it may be desirable to use a shorter cookie for all
FIFOs. This should be no problem as long as the name given to a FIFO descriptor
can uniquely identify the storage host FIFO.)

Figures 2 and 3 show the FUSION client/server organization in four different layers,
the top two layers are the FUSION policy module. We describe a named FIFO open
operation example, explaining the function of each layer. Suppose that a client
application issues an open system call for reading to a named pipe at remote host, this
is first handled by physical file system pathname lookup routine which will contact
client cache manager for each pathname component. A vnode with an AFS file
identifier is returned to the client at the end of pathname lookup, if the client can't
find the vnode from the local FIFO descriptor list then it will send a message to the
server to open the named FIFO and send back the information of the named FIFO se
that this named FIFO can be opened at client. Upon receiving the RPC request from
the client, the FUSION FIFO server will search the virtual file system for this vnode ...
If the search failed, the server will create a new FUSION vnode and FIFO descriptor
for this named FIFO. Otherwise, the named FIFO is opened at server node by using
base system vnode open routine, ~USION vnode pointer is returned to the client SQ

that the named FIFO can be opened at client node. If a writing process exists before
the open or if the client opens the named FIFO with the no delay option, the open
returns immediately, even if there is no writer.. But if neither condition is ttue, the
process sleeps at server end at the FUSION layer until a writer process opens the
named FIFQ.

IBM Confidential
June 28, 1991
DRAFT

- 24 -

·<<--------------- FUSION Layer -------------------------->>

+------------+
FUSION I<-- RPC from FUSION client

I FIFO Serverl
I Modules 1------1
+------------+ I

I
<<-------------- FUSION Vnode Layer --1------------------>>

v
+------------+<----------+------------+
I FUSION I
I FIFO I FUSION
I Descriptor I Vnode/gnodel
+------------+ +------------+
I

<<-----1---------- Vnode Layer ---------------------------->)
I
1------->+------------+

I Base Systeml<-----------------1
1-----1 Vnode/gnodel I
I +------------+ I
I I

<<--------1----- AFS Layer ----------------1----------->)
I I

+------------+ I +------------+ +------------+
l<---1-----1 1<----1

Glue code I I I Token I I Protocol I <--RPC from
; 1----1----> I Manager I I Exporter I client
I I I I I I Cache Mgr~

+------------+ I +------------+ +------------+
v

<<----------------- Storage Layer ------------------------->~

Figure 2. FUSION FIFO Server data structure-

The data structure of the FUSION single node unnamed pipe operation is similar to
Figure 2 except that there is no AFS layer involvement at all.

2.1.2.4.1 FIFO Descriptors Are Objects
For purposes of the policy module to policy module RPC protocols, FIFO descriptors
are given a particular state (see Section 2.1.2.3.4, FIFO Lending Protocol). Since

IBM Confidential
June 28, 1991
DRAFT

- 25 -

<<------------- FUSION Layer ------------------------>> t

<-- RPC to FUSION Server modules --
1

+------------+
FUSION

I FIFO client!
I modules I

---------->+------------+
I

<<----------!--- FUSION Vnode Layer -------------------->>
I

+------------+-------------->+------------+
I FUSION I FUSION
I Vnode/gnodel I FIFO
I I I descriptor
+------------+ ------+------------+

<<---------------- Vnode Layer --!------------------------>>
I
v

+------------+
I Vnode/Gnodel
+------------+

<<---------------- AFS Layer ------------------------>>

v
<---- RPC to Server AFS +------------+

Protocol Exporter I AFS Cache
I Manager
+------------+

F!g_ure 3. FUSION FIFO client data structure ·

the behavior of the policy module will be different depending on the state of particular
FIFO descriptors, we envision an object-oriented approach. Read, write, open, and
close operations will be received from either the VFS+ or RPC interface, and will be
applied to particular FIFO descriptors in the same way regardless of their state. The
descriptor state can be used as an index into a "method table" of function addresses.
Thus the low level code executed for a READ operation depends on the descriptor
state. For example, the READ routine for a descriptor in CLIENT state issues an RPC
call, while the READ routine for a descriptor in SER VER state actually calls the

IBM Confidential
June 28, 1991
DRAFT

- 26 -

storage module to read some data.

2.1.2.4.2 Preserving PIPE_BUF Semantics In A Heterogeneous Environment
The POSIX standard guarantees that WRITE requests of less than or equal to
PIPE_BUF bytes will be written atomically into a pipe or FIFO, that is, without being
interleaved with data from other WRITE requests. The value of PIPE_BUF varies
from host to host in a heterogeneous environment. To comply with the standard, the
policy module must choose the largest PIPE_BUF value from among all using hosts
that have a FIFO open for writing. Thus the client host's PIPE_BUF value must be
passed along with an server_rfifo_reopen() RPC, and the operative value of PIPE_BUF
may be different from descriptor to descriptor on the same server host.

If a FIFO's server host storage module implements FIFOs using a pinned memory
page of 4K bytes and the FIFO is opened for writing by a remote host whose native
PIPE_BUF is 8K, atomic writes of greater than 4K cannot be guaranteed at the server
host. In order to perform the FIFO operations efficiently, we have to find a node
which has the largest PIPE_BUF value to act as the storage node.

2.1.2.4.3 Notes on Policy Module RPC Protocol

1. Each RPC must pass a flags parameter, so that appropriate blocking behavior
can be done (i.e. O_NDELA Y). The FIFO descriptor should not have to keep
track of the usage modes of all using hosts.

2. The client machine's PIPE_BUF value must be passed with the
server_rfifo_reopen() RPC,

2.1.2.4.4 FIFO Lending Protocol
When all processes using a FIFO reside on the same host, RPC overhead can be
avoided by having that host manage the FIFO. A state transition protocol is used to
allow the controlling host to temporarily lend a FIFO to another host when all using
processes reside on the second host. If a process from a third host opens the FIFO,
the controlling host can reclaim responsibility for managing the FIFO.

Figures 4 and 5 show the state transition diagrams for controlling and non-controlling
hosts respectively.

This scheme allows diskless hosts to access named FIFOs without network overhead.
Further, it allows for smooth transition back to the controlling host when a reclaim
operation is done.

Section 2.1.2.3.4.1 presents a typical FIFO lending scenario. Section 2.1.2.3.4.2 gives
a brief description of each possible FIFO descriptor state.

2.1.2.4.4.1 FIFO Lending Example

Note: Currently we plan to have remote hosts that open a named FIFO be placed
immediately into BORROWER state, that is, a FIFO will initially be on
loan whenever possible.

IBM Confidential
June 28, 1991
DRAFT

- 27 -

call server_fifo_reclaim();
-------------------- retumed "!errpty"
I wait data to retum.
v I

+---------+

---> I SERVER
I
+----------+

+---------+

CLIENT

+----------+

call I
server_fifo_loan(!errpty)---wait data to move

to borrowing host.

Figure 4. State transitions at the controlling host

+-------------------- server_fifo_reclaim();
I retum "!empty"
I send data back to lender.
v I

+----------+ +----------+

----> I LENDER

I
+----------+

I I
I BORROWER I
I I
+----------+

server_ fifo _loan (!empty)
I
+---get data from lender----+

Figure 5. State transitions at the non-controlling host

The primary states are CLIENT and SER VER. A FIFO descriptor on a host is
created in SERVER state when a named FIFO special file is opened on that host, or
when a process on that host makes a pipe(2) system call. A FIFO descriptor is
created in CLIENT state when a process opens a named FIFO special file on another
host, or when a process with an open FIFO migrates to this host. Note that the names
CLIENT and SERVER are not strictly correct, in that SERVER really denotes the
controlling host. 1/0 requests made by processes on the controlling host are fulfilled
without the FIFO descriptor ever leaving SERVER state, and without the involvement
of any CLIENT state FIFO descriptor.

Suppose that processes on host A open a named FIFO on host ~ FIFO descriptors
are set up at both hosts. Initially the descriptor at A is in CLIENT state and the

IBM Confidential
June 28, 1991
DRAFT

- 28 -

descriptor at B is in SER VER state.

The host B policy module may choose to lend the FIFO to host A, provided that th•
only processes using the FIFO are on A. To begin the lending protocol, host B sends
a fifo_to_clientO RPC call to the host A policy module. The FIFO descriptor at host
A can be identified by the FUSION vnode at host Band its node number.

The fifo_to_client() call takes an input parameter, isempty, which is true if and only if
there is no data in the FIFO. If the FIFO was empty, host B goes into LENDER
state. Upon receiving a fifo_to_client() RPC with isempty set to true, Host A becomes
responsible for managing the FIFO and is placed into BORROWER state. If there
was data in host B FIFO, then all the READ and WRITE requests are blocked until
the host B FIFO data is moved to the host A. The host A FIFO descriptor is now in
LENDER state and responsible for managing the FIFO.

When a third host, C, attempts to open the FIFO, the LENDER descriptor on host B
sends an server_rfifo_reclaim() RPC to host A. The protocol for reclaiming the FIFO
from the BORROWER host is much as described above.

2.1.2.4.4.2 FIFO Descriptor States

2.1.2.4.4.2.1 SERVER State.
Generally, a FIFO descriptor in SERVER state indicates that this is the controlling
host for the FIFO, and the local storage module is used to maintain the FIFO data
unless the FIFO has been loaned out to another host. When a descriptor object in
SERVER state detects that all its users are on a single host, it loans the FIFO to that
host using a fifo_to_client() RPC call. If the FIFO was empty at the time, it goes
immediately to LENDER state; otherwise, it has to wait for the FIFO data to copy to
the borrowing host.

2.1.2.4.4.2.2 LENDER State.
In this state, the controlling host FIFO descriptor is quiescent. All 1/0 is being
performed at the borrowing host. If a third host attempts to open the FIFO, the
LENDER descriptor must issue a server_rfifo_reclaim() RPC call to get the FIFO back
from the borrowing host. It then either revens to SERVER state if the FIFO was
empty or wait until the FIFO data has been returned to the lending host.

2.1.2.4.4.2.3 CLIENT State.
A FIFO descriptor in CLIENT state represents a true remote FIFO client. All
operations are passed via RPC to the SERVER descriptor at the FIFO's controlling
host. Upon receiving a fifo_to_client() RPC call, CLIENT descriptors prepare to
manage the FIFO locally by moving to BORROWER state, depending on whether
there is some data left in the FIFO on the lender host.

2.1.2.4.4.2.4 BORROWER State.
In this state the FIFO descriptor object has temporary control of the FIFO, and all 1/0
is done using the local storage module. Receipt of an server_rfifo_reclaim() RPC call

IBM Confidential
June 28, 1991
DRAFT

- 29 -

from the lending host causes the FIFO descriptor to return to CLIENT state if the
FIFO was empty, or return data to the lender.

2.1.2.S Policy Module/Storage Module Interface
The policy module uses a vendor-specific storage module to store and retrieve FIFO
data. The storage module presents a simple FIFO abstraction, "pipe objects" or
pobj's. Routines are provided to open, close, read, write and select pipe objects, test
for blocking conditions (empty FIFO, full FIFO), count the number of unread bytes in
the FIFO. To minimize data copying, storage module routines pass data to and from
the policy module using the uio structure to indicate the amount of data to transfer and
the buffer location to store the data. The storage module has no knowledge of the
FIFO lending protocol or any other aspect of the distributed environment; it simply
acts as the local repository for FIFO data.

The storage module may sleep waiting for resources (such as paged out data structures
or buffers), but it should never sleep because of a full or empty FIFO, or for
synchronization reasons. These conditions should be checked and handled by the
policy module.

2.1.2.6 Preliminary NIDL specification

/*
* Remote FIFO Interface Definition
*/

interface rfifo {

/*
* FIFO states
*/

typedef long enum { FIFO_NULL,
FIFO_ SERVER,
FIFO_ CLIENT,
FIFO_ LENDER,
FIFO BORROWER fifo_state_t;

/*
* The server send this structure to the client node in
* order to establish the server state in the client node.
*I

typedef struct lend_info {
unsigned long li_trcnt;
unsigned long li_twcnt;
unsigned short li_rcnt;
unsigned short li_wcnt;

/* total readers count */
/* total writer count */
/* client read count */
/* client write count */

IBM Confidential
June 28, 1991
DRAFT

fifo state t li_state;
} lend_info_t;

/*
* Return status for RPC calls
*/

typedef enum {
OK,
WOULDBLOCK,
ERROR,
DRAINED,
AGAIN

} rf _status_t;

/*

- 30 -

/* server state */

* Remote FIFO syscall-like RPC routines
*/

void server_rfifo_reopen(
[in] handle t h,
[in] vnode addr t vp,
[in] long int open_flag,

reopening_node,
ext,

[in] nodeno t
[in] long int
[out] pt_uerror_t *re,
[out] unsigned32 *st
) ;
{

}

struct vfs *rfifo vfs;

do locking
re = check_fifo_state (vp, FIFO_SERVER);
/*
* return to caller, try again
*/

if (*re == EBUSY) {
unlock;
exit;

}

*re= local_fifo_reopen(vp,
reopening_ node,
open _flag) ;

IBM Confidential
June 28, 1991
DRAFT

- 31 -

void
server_rfifo_read(

[in] handle t
vnode addr t
int

h,
fusion_vp,
flags,
*data_buf,
*cnt,
offset,
*uerrorp,
*st)

{

}

void

[in]
[in]
[in]
[in]
[in]
[in]
[in]

get kernel lock

char
int
long
pt_uerror_t
error status t

*uerrorp = check_fifo_state(fusion_vp, FIFO_SERVER);
if (*uerrorp = EBUSY) {

}

unlock;
return;

setup iovec for reading
initialize uio structure
find the FIFO descriptor associated with the remote client
get base system vnode pointer from FIFO descriptor
VNOP_RDWR(base_vp, r:w, flags, &uio, ext, vinfo)
release kernel lock

server_rfifo_write(

{

[in] handle t h,
[in] vnode addr t fusion_vp,
[in] int flags,
[in] char *data_buf,
[in] int *cnt,
[in] long offset,
[out] pt_uerror_t *uerrorp,
[out] error status t *st)

get kernel lock
*uerrorp = check_fifo_state(fusion_vp, FIFO_SERVER);
if (*uerrorp = EBUSY) {

unlock;
return;

setup iovec for writing

IBM Confidential
June 28, 1991
DRAFT

*

}

- 32 -

initialize uio structure
find the FIFO descriptor associated with the remote client *
get base system(storage) vnode pointer from FIFO descriptor
VNOP_RDWR(base_vp, rw, flags, &uio, ext, vinfo)
release kernel lock

void
server_rfifo_close(

[in] handle t
vnode addr t
int

h,

{

}

) ;
{

/*

[in]
[in]
[in]
[out]
[out]

get kernel lock

nodeno t
pt_uerror_t
error status t

fusion_vp,
flag,
closing_ node,
*re,
*st

*uerro:rp = check_fifo_state(fusion_vp, FIFO_SERVER);
if (*uerro:rp == EBUSY) {

}

unlock;
return;

find the FIFO descriptor associated with the remote client
*re= local_fifo_close(fusion_vp, flags, closing_node);
release kernel lock

idempotent] void server_rfifo_getattr(
[in] handle t h,
[in] vnode addr t vp,
[out] pt_vattr_t *vatt:rp,
[out] pt_uerror_t *uerro:rp,
[out] unsigned32 *st

get kernel lock
VNOP _ GETATTR (vp, vatt:rp)
release kernel lock

* This RPC call is used to effect protocol state transition
* in the Policy Module lending scheme at client node

IBM Confidential
June 28, 1991
DRAFT

- 33 -

*/
[idempotent] fifo_to_client (

) ;
{

}

[in] handle t
[in] nodeno t
[in] vnode _addr _ t
[in, length_is(*cnt)]char
[in, out 1 long
[in] lend info t
[out] pt_uerror_t
[out] unsigned32

h,
curserver,
fvp,
data_ buf [REM:>BJ _ MAXBUF] ,
*cnt,
*lend_ info _ptr,
*re,
*st

search the FUSION vf s to find the vnode that
has the server fusion vnode
if (CLIENT state) {

}

allocate an inode from client pipedev
get a base system vnode from the inode
set the FIFO state in BORROWER state
update the read/write counts in the FIFO descriptor

if (BORROWER state) {

}

set up the local uio structure
flags I= FNODELAY
VNOP_RDWR(base_vp, rw, flags, &uio, ext, vinfo)

if (the server is in CLIENT state) {
change the client to be the SERVER state
if (total read == 0)

VNOP _CLOSE (base_ vp, FREAD, vinfop) ;
if (total write == 0)

VNOP _CLOSE (base_ vp, FWRITE, vinfop) ;
}
wakeup any reader/writer for the FIFO lending to finish.

/* end of interface rfifo */

2.1.2.7 Preliminary header file describing storage module interface
/*

*
* pobj.h - Pipe OBJect interface
*

IBM Confidential
June 28, 1991
DRAFT

*
*
*I

- 34 -

These routines define the interface between the FUSION FIFO
VFS's policy module and the vendor's FIFO storage module.

/*
* The structure of the FIFO descriptor which is allocated
* for each FUSION FIFO, when they get accessed by remote hosts.
*/

struct rfifo_hdr {
int fi_node; /* client of the FIFO */ I

/*point to the base system vnode */I

}

caddr t *fi vnode_addr;
enum vtype fi_type;
int fi _clients;
int fi_trcnt;
int fi_twcnt;
unsigned long fi_state;
int fi_wait;

unsigned long fi flag;
struct rfifonode *rfifo;

/* type of object */ I
/* total clients of the FIFO */ I
/* total readers */ I
/* total writers */ I
/* FIFO state */ I
/* event list of processes waiting on */I
/* FIFO data lending */ I
/* flag accessible to FIFO */ I
/* point to FIFO descriptor list */ I

struct rfifo_data {

};

/*

struct rfifo data *next rfifo;
struct rfifo data *prev_rfifo;
int node;
short rfifo_rcnt;
short rfifo_wcnt;

/* next descriptor */
/* previous descriptor */
/* client node number */
/* read count */
/* write count */

* the value of fi_flag
*/

#define O RDWR 0001
#define 0 NONBLOCK 0002
#define FINOREAD 0003 /* unread pipe data */

/*

*
*
*
*

The FUSION FIFO reopen routine either does the reopen of
the FUSION vnode lcoally or create a local vnode for the remote
FIFO and send RPC request to the server to do the reopen.

IBM Confidential
June 28, 1991
DRAFT

*

*

*

(,.-

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

Input parameters:
*vfsp
*reopen_data
**fvp
open_flag

Output parameter:
**fvp

Return value:
0

- 35 -

pointer to the FUSION vf s
contains the FUSION vnode and the node numberl
pointer to a pointer to the FUSION vnode
FREAD/FWRITE

the FUSION vnode

success
EBUSY
ENOMEM

fusion_fifo_reopen(struct vfs *vfsp,
caddr_t *reopen_data,
struct vnode * * fvp,

{

loop:

int open_flag,
caddr t *vinfo)

get the server vnode and server node number from reopen_data
/*
* if the vnode has returned to its originating
* site, the reopen will be local
*/

if (server node = cursite)

}

fifo_reopen(server_vp,
server_node,
open_flag,
vinfop);

*fvp = server_vp;
return re;

I*
* build a local FUSION vnode for the remote FIFO
*/

request = CLIENT;
vp = fusion_vnode(fvfsp,

server_vp,

IBM Confidential
June 28, 1991
DRAFT

- 36 -

server_node,
FIFO_CLIENT,
request,
obj_ type)

if (vp = NULL)
re= ENOMEM;
goto out;

}

/*
* perf o:rmance the server node reopen
*/

re= ffifo_remote_reopen(reopen_data,
open_flag,
vinfop)

if (re = EBUSY)
goto loop;

out:

}

if (!remote open ok)
VNOP_RELE(vp)
vp = NULL;

*fvp = vp;
return re;

/*
* This is the FUSION read/write routine,
* if the FUISON vnode is remote then RPC to the server to
* do the read/write.

*
*
*
*
*
*
*
*
*
*
*
*
*
*/

Input parameters:
*vp pointer to the FUSION vnode
rw UIO READ or UIO WRITE
*uiop pointer to uio struct

Output parameters:
none

return value:
0 success

EBUSY

IBM Confidential
June 28, 1991
DRAFT

- 37 -

fusion_fifo_rdwr(struct vnode *vp,
enum uio _rw rw,
int flags,

{

loop

}

/*

struct uio *uiop)

get the pointer to the FIFO descriptor
check_fifo_state (vp, 0)

if (FIFO is local) {

}

else {

}

get the base vnode pointer
VNOP_RDWR(base_vp, rw, flags, uiop, vinfop)

re = ffifo_remote_rdwr (vp, rw, flags, uiop)
if (re = EBUSY)

goto loop;

return re;

* This routine does the close of the FUSION vnode.
* If the FUISON vnode is remote then RPC to the server to
* do the close.
*
*
*
*
*
*
*
*
*
*
*
*
*/

Input parameters:
*vp pointer to the FUSION vnode
flags FREAD/FWRITE

output parameters:
none

return value:
0 success

EBUSY

fusion_fifo_close(struct vnode *vp,
int flags)

{

loop:
get the pointer to the FIFO descriptor

IBM Confidential
June 28, 1991
DRAFT

}

/*

- 38 -

if (FIFO is local)
local_fifo_close(vp, flags, cursite)

else {

}

re= ffifo_remote_close(vp, flags, cursite)
if (re = EBUSY)

goto loop;

return re

* This is the client node FIFO read/write routine
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

Input parameters:
*vp pointer to the FUSION vnode
rw UIO READ or UIO WRITE
*uiop pointer to uio struct

Output parameters:
none

return value:
0 success

EBUSY

ffifo_remote_rdwr(struct vnode *vp,
enum uio_rw,

{

int flag,
struct uio *uiop)

get the node number and the FUSION vnode of the server
calculate the total f ifo data in uio structure
if (rw = UIO_READ) {

do {
num read= MIN(total_data, MAX_BLK_SZ)
size = num read
I*
* RPC call to read remote fifo data into local buffer
*/

server_rfifo_read(h,
server vnode,
flags,

IBM Confidential
June 28, 1991
DRAFT

/*

- 39 -

loc_buf,
nurn_read,
offset,
uerror,
st)

* check return status
*I

if (st != rpc_s_ok 11 uerror = EBUSY)
return uerror;

rent = uiomove (loc_buf, nurn_read, r:w, uiop)
total data -= nurn read

} while (nurn_read = size && total_data > 0)
else if (r:w = UIO_WRITE) {

do {
/*
* save off set before uiomove change it
*/

save_offset = uiop->uio_offset
nurn_written = MIN(total_data, MAX_BLK_SZ)
size = nurn written
/*
* We need to restore the uio struct, if the
* writer blocked or RPC failed
*/

uiosave(uiop, uiosave_buf);
went = uiomove (loc_buf, nurn_written, r:w, uiop)
if (went < 0)

return(went)
/*
* RPC call to write data into remote open fifo
*/

server_rfifo_write(h,
server vnode,
flags,
loc_buf,
nurn_written,
write_offset,
uerror,
st)

if (st != rpc_s_ok 11 uerror = EBUSY) {
uiorestore(uiop, uiosave_buf)
return uerror

IBM Confidential
June 28, 1991
DRAFT

*

- 40 -

}

total -= num written
} while(num_written == size && total_data > 0)

}
}

/*
* This is the client node FIFO close routine
*
*
*
*
*
*
*
*
*
*
*
*
*/

Input parameters:
*vp pointer to the FUSION vnode
int flag
int closing_ node

Output parameters:
none

return value:
0 success

ffifo_remote_close(
vnode_addr_t vp,
int flag,

{

}

/*

caddr _ t vinfo)

find the FUSION vnode pointer
get the node number of the server
server_rfifo_close(h,

return re

server_vp,
open_flag,
cursite,
&re,
&st)

* This is the client node FIFO reopen routine
*
*
*
*

Input parameters:
*reopen_data
flag

pointer to the FUSION vnode
FREAD/FWRITE

IBM Confidential
June 28, 1991
DRAFT

*
*
*
*
*
*
*
*
*/

output parameters:
none

return value:
0 success

EBUSY

- 41 -

ffifo_remote_reopen(caddr_t *reopen_data,
int flag)

{

}

/*

get the server vnode and server node number from reopen_data
server_rfifo_reopen(h,

server_vp,
flag,
cursite,
&re,
&st)

if (st != rpc_s_ok) {
if (re ! = EBUSY)

re = EIO

return re

* This is the FUSION close routine at server node

*
*
*
*
*
*
*
*
*
*
*
*
*/

Input parameters:
*vp
flag
closing_ node

output parameters:
none

pointer to the FUSION vnode
FREAD/FWRITE
the node that request the close operation

return value:
0 success

local_fifo_close(struct vnode vp,
int flag,

IBM Confidential
June 28, 1991
DRAFT

{

}

/*

- 42 -

closing_ node)

get the FIFO descriptor pointer
get the base vnod.e pointer
search the client list to find the client that
if (not found)

requests the close opsl
I

return ENXIO
if (FREAD) {

}

decrement the total read count of this client
decrement the total read count of the FUSION FIFO vnod.e
if (total read count of the vnode = 0)

VNOP _CLOSE (base_ vp, FREAD, vinf op)

if (FWRITE) {

}

decrement the total write count of this client
decrement the total write count of the FUSION FIFO vnode
if (total write count of the vnode = 0)

VNOP_CLOSE(base_vp, FWRITE, vinfop)

if (total read count and write count of this client == 0) {
delete this client from the list
decrement the total count of the client
free up the base vnode if this is the last client on the list

}

if (all the readers/writers are on the same client node)
rfifo_lend(base_vp, vp, client_node)

return re

I
I
I

* This is the FUSION reopen routine at server node
*
*
*
*
*
*
*
*
*
*
*
*

Input parameters:
*server_vp
node
flag

Output parameters:
none

pointer to the FUSION vnode
the node requesting the reopen
FREAD/FWRITE

return value:
0 success

IBM Confidential
June 28, 1991
DRAFT

- 43 -

*/
local_fifo_reopen(struct vnode *server_vp,

int node,

{

}

int flag)

get the FIFO descriptor pointer
get the base vnode pointer
search the client on the client list
if (not found)

add the new client to the list
if (FREAD) {

increment the total read count of this client
increment the total read count of the FUSION FIFO vnode

}

if (FWRITE) {

increment the total write count of this client
increment the total write count of the FUSION FIFO vnode

}

return re

/*
* This routine called from local_fifo_close() at server node
* to invoke the FUSION FIFO lending protocol.

*
* Input parameters:
* *vp base system vnode
* *fvp the FUSION vnode at server node
* node the node that will be the FIFO new storage node

*
* Output parameters:
* re 0 success.
* -1 fail.
*
*/

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I rfifo_lend(vp, fvp, node)

struct vnode *vp;
vnode addr t *fvp;
int node;

/* base system vnode */ I
/* FUSION vnode at server node */ I

{

get kernel lock
set the FIFO state to FIFO CLIENT

IBM Confidential
June 28, 1991
DRAFT

}

- 44 -

initialize the struct of lend info which will get send to
new storage node
do {

setup the uio struct
VNOP_RDWR(base_vp, rw, flags, &uio, ext, vinfo)
nurn_read -= uio.uio_resid;

/*
* Push any data to the borrower, along with an
* indication as to whether we're done or not.
*/

err= client_push_fifo(node,
fvp,
pipe_buf,
&nurn_read,
&lend_info)

if (err) {
re = -1;
unlock

}

else re = 0;
} while(fifo_state == FIFO_I.ENDER)
f if o state = FIFO CLIENT
wake up all the readers/writers that are waiting for
FIFO lending to finish.
return re

/*
* This routine called from rfifo_lend()
* to push the FUSION FIFO data to new storage node.

*
* Input parameters:
* node the node to which the FIFO data get push
* *vp base system vnode
* *data buf contains the FIFO data
* *cnt amount of the data get pushed
* *lend_info_ptr pointer to a struct that has the server FIFO
*
* Output parameters:
* *cnt
*
* return value:
* 0 success

IBM Confidential
June 28, 1991
DRAFT

info I
I
I
I
I
I
I

- 45 -

* EIO
*
*/

client_push_fifo(int node,

{

}

struct vnode *vp,
char *data_ buf,
int *cnt,
lend_inf _t *lend_info_ptr)

get the remote node handle
fifo_to_client(h,

cursite,
vp,
data_buf,
cnt,
lend_ info _ptr,
&err,
&st)

if (st != .rpc_s_ok) {
err = EIO

}

return err

/*
* This routine allocates a FUSION vnode and the FUSION FIFO descriptor. I
* The FIFO descriptor contains all the necessary inf o:rmation about I
* the remote FIFO if there is one exists, and two pointers which I
*point to the base system vnode and a list of remote clients of the FIFO.I
* I
* Input parameters: I
* *fvfsp pointer to the FUSION vfs. I
* *vp pointer to the FUIOSN vnode if remote, I
* or the base vnode if local. I

*
*
*
*
*

node node number of the remote FIFO, or cursite if local. I
I f ifo state FIFO SERVER/FIFO CLIENT

request
obj_ type

either from the client node or the server node.
type of the remote object of the vnode.

* Output parameters:

I
I
I
I
I
I
I

*
*

none

* Return value:

IBM Confidential
June 28, 1991
DRAFT

- 46 -

* a pointer to the FUSION vnode/gnode.
*
*/

fusion_vnode(struct vfs *fvfsp,
vnode_addr_t *basevp,
int node,

{

}

unsigned long fifo_state,
char request,
enum vtype obj_type)

if (request from client) {
find the FUSION vnode from the FUSION VFS
if (found) {

return fusion vp;

} else {

}

allocate memory space for gnode and the FIFO descriptor!
if (state == FIFO_SERVER) { I

initialize read/write count in the FIFO descriptor!
} I
if (state == FIFO_CLIENT) { I

initialize read/write count in the FIFO descriptor!
}

connect the FUSION vnode to base vnode
thru the FIFO descriptor
install the FUSION vnode ops
/*
* allocate the FUSION vnode
*/

re= vn_get(fvfsp, gnp, &vp);
if (re != 0) {

}

xmfree(space allocated for gnode)
return base vnode;

else return (FUSION vnode)

IBM Confidential
June 28, 1991
DRAFT

I
I
I
I
I
I
I
I
I
I
I
I
I
I

- 47 -

2.1.3 Remote Sockets
This section of the FUSION Design Specification describes the operation of remote
sockets in the FUSION environment. It explains the data structures needed, the
routines that must be changed and the code that must be added. It explains the design
of the remote socket calls and how the remote socket client/server interaction takes
place.

The Berkeley Socket abstraction defines an interface to interprocess communication,
with a socket as an endpoint of communication. There are two socket domains
commonly provided. The UNIX domain sockets is an IPC mechanism similar to a
bidirectional pipe. The Internet domain provides an interface to the networking
services of TCP/IP. Other domains to support other networking services such as OSI
could realistically be expected in the near future.

With FUSION's remote processing capabilities, a mechanism is needed to allow
processes to transparently use sockets controlled on a remote node. This is important,
because the underlying network protocols operate below the RPC layer, and in general
do not provide mechanisms to redirect communication to another node. The FUSION
remote socket support will allow a process with open sockets to move to or be created
on another node, without any support from the underlying network protocols (e.g.,
TCP/IP).

,, ·· 2.1.3.1 Overall Design
The FUSION remote socket service is available for both datagram (SOCK_DGRAM)
and connection oriented services (SOCK_STREAM) for both UNIX domain
(AF _UNIX) and Internet domain (AF _INET) protocol families.

An additional flag bit SS_ISREMOTE is defined for the socket state field. If this bit
is set to one, the socket is an instantiation of a socket being used on this node that is
controlled at a remote node. A user can only create sockets on the local node. A
remote socket is only created if a process is created on or moved to another node
while a socket is open.

When a remote socket is created, the associated file operations table of the file
structure is filled in with remote socket client routines. These bundle the requests and
ship them to the node where the socket is controlled, using the DCE RPC
mechanisms. On the controlling node these RPCs are handled by a server thread.
The requests are serviced on that node, and any result or error indication is returned to
the client code. If a particular kernel implementation does not support the file
operations implementation, very small hooks into the base kernel will be added within
each system call to intercept the system call as soon as it determines the file descriptor
is a socket.

Since it is possible to access sockets through special system calls in addition to
regular file operations, the FUSION design requires minor modifications to these calls.
These changes detect if an access is to a socket controlled on a remote node. If so,

IBM Confidential
June 28, 1991
DRAFT

- 48 -

the corresponding request is shipped to the controlling node via an RPC mechanism.
There a server routine handles the access, and ships any result or error indication to
the accessing node.

The FUSION remote socket service also provides support for the extended file
operations "fo_prepare_for_export" and "fo_reopen". These operations are part of the
general file reopen mechanisms discussed in Section 2.1.6. They are used when a
process is created on or migrates to another node while a socket is open. These
routines support the cases of when the process has a local socket open, when a
process has a remote socket open and goes to another remote node, and when a
process has a remote socket open and goes to the original node controlling the socket.

The remote socket layer does not require special support for some of the standard file
access functions. These include select(), fend(), and tracking usage counts of local
and remote sockets. They are handled by the file operations above the socket layer.

2.1.3.2 Remote Socket Data Structures
The data structures needed to support remote sockets in FUSION are defined in this
section.

2.1.3.2.1 Support for SS_ REMOTE Flag
The SS_ISREMOTE bit is added to the defines for the so_state field of the socket
structure. This is defined in the header file socketvar.h in most socket
implementations.

#define SS REMOTE Ox800 /* socket is controlled at a remote node */

The value chosen here was Ox800 because this value does not conflict with any BSD,
AIX, or OSF. This value is only interpreted locally and the only requirement of this
design is that it not conflict with other flag bits in the local implementation.

2.1.3.2.2 Support for Storing the Controlling Node of the Socket
When a socket is controlled at a remote node, the socket stores the internet address of
the controlling node. This is done by an additional data structure called the remote
socket handle. The socket structure is modified to contain a pointer to this structure.
This is defined in the header file socketvar.h in most socket implementations.

caddr_t so_rsohandle;

To minimize impact on the base system, this field should be overlaid with the so_pcb
field in the standard socket structure. The so_pcb field is not used when the socket is
remote. Overlaying this avoids changing the socket structure and thus avoids changes
to kernel diagnostic tools. ·

IBM Confidential
June 28, 1991
DRAFT

- 49 -

2.1.3.2.3 rso _ reopendata Structure
The rso_reopendata structure is returned by rso_prep_expon. It contains information
that can be used to uniquely identify an open file from a remote node. This
information consists of an identifier to locate the file table entry of this socket on the
controlling node (rso_re_rfileid), and a unique ID (rso_re_uniqueid) that can be used
to insure that the file table entry is still valid for this socket. The identifier of the file
structure is provided by the fo_prep_for_export file operation and is passed to the
fo_reopen fileop. It is usually the kernel virtual address of that file structure, but can
be anything significant to the generating host.

struct rso_reopendata {
int rso_re_rfileid;
int rso_re_uniqueid;

/* ID of file structure on remote node */
/* Unique ID to detect reboots */

}

2.1.3.2.4 rso _handle Structure
The rso_handle structure is used to refer to a remote socket on another site. It
contains RPC handle information (rsh_rpchandle), file reopen data (rsh_reopendata),
and socket information from the controlling node, including the domain (e.g.,
AF _UNIX or AF _INET) of the socket (rsh_domain), and the type (e.g.,
SOCK_STREAM or SOCK_DGRAM) of the socket (rsh_type).

struct rso_handle {

2.1.3.3 Functions

handle_t rsh_rpchandle;
struct rso_reopendata rsh_reopendata;
int rsh_domain;
int rsh_type;

I* RPC handle */
/* file reopen data */
/* domain of sock.et */
/* type of socket */

The functions used in the FUSION remote socket design fall into two categories,
which are file operations for remote sockets and extensions to socket specific system
calls along with the corresponding RPC server routines. In addition, subroutines to
support these functions are described.

2.1.3.3.1 File Operations for Remote Sockets
Typical file operation provided are fo_rw(), fo_ioctl(), fo_select(), fo_close(), and
fo_fstat(). Some implementations may provide fo_read() and fo_ write() rather than
fo_rw(), and some implementations may not provide fo_stat. In addition to these
standard file operations, FUSION has defined two additional file operations, which are
fo_prepare_for_export() and fo_reopen() to support remote process operations, as
described in Section 2.1.6.

2.1.3.3.1.1 rso_rw
The routine rso_rw() is called for doing reads and writes to a socket. It is
implemented by directly calling soreceive() or sosend() depending on whether the

IBM Confidential
June 28, 1991
DRAFT

- 50 -

operation is a read or a write. This adapts easily into the FUSION architecture, which
provides remote versions of soreceive() and sosend(), called rsoreceive() and
rsosend(). Thus rso_rw() is a clone of soo_rw(), except that calls to soreceive() are
replaced with rsoreceive(), and calls to sosend() are replaced with rsosend().

Some file operations implementations such as OFS/1 provide separate read and write
fileops, called soo_read() and soo_write(). Remote versions of these are created just
as easily. The routine rso_read() is identical to soo_read() except that calls to
soreceive() are replaced with calls to rsoreceive(), and rso_ write() is identical to
soo_ write() except that calls to sosend() are replaced with calls to rsosend().

The routines rsoreceive() and rsosend() are described later, in sections 2.1.3.3.2.10 and
2.1.3.3.2.11.

2.1.3.3.1.2 rso ioctl
The rso_ioctl file op is called when an ioctl operation is performed on a remote
socket. loctls require numerous RPCs because the RPC protocol cannot merely deal
with ioctl arguments as a series of bytes to be copied, but must recognize the
underlying types being dealt with by the ioctl. This routine rso_ioctl will package up
the known ioctls and send them to the remote socket server using the appropriate RPC
for that ioctl type. Unknown ioctls will pass the data to the controlling node as a
stream of bytes.

The following specifies the rso_ioctl file operation:
/*
* rso_ioctl(fp, and, data)
* struct file *fp;
* int and;
* caddr_t data;
*
* Abstract:
* remote socket ioctl file op

*
* Parameters
* fp: pointer to file structure being closed
* and: ioctl corranand being performed
* data: user data or pointer to user data

*
* Return Values:
* error indication if an error occurred.

*
* Algorithm:
* get socket pointer from file structure
* switch(and) {
* case FIONBIO:

IBM Confidential
June 28, 1991
DRAFT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

case FIOASYNC:
case SIOCSHIWAT:
case SIOCSLOWAT:

- 51 -

copy in integer data from user space
call rso_ioctl_inint RPC with the following parameters:

handle, fh, and f _flags from socket structure
cmd passed as argument to routine
data copied in from user
pointer to status return variable

return status to caller

case SIOCSPGRP:
copy in unsigned long data from user space
call rso_ioctlinulong RPC with the following parameters:

handle, fh, and f _flags from socket structure
cmd passed as argument to routine
data copied in.
pointer to status return variable

return status to caller

case SIOCGHIWAT:
case SIOCGLOWAT:
case SIOCGATMARK:

call rso_ioctl_outint RPC with the following parameters:
handle, fh, and f _flags from socket structure
cmd passed as argument to routine
pointer to int for return data
pointer to status return variable

if successful copy out integer data to user
return status to caller

case FIONREAD:
call rso_ioctloutulong RPC with the following parameters:

handle, fh, and f _flags from socket structure
cmd passed as argument to routine
pointer to unsigned long for return data
pointer to status return variable

if successful copy out unsigned long data to user
return status to caller

* case SIOCSARP:
* case SIOCSARP 802 5: - -* case SIOCSARP X 25:

IBM Confidential
June 28, 1991
DRAFT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

- 52 -

case SIOCDARP:
case SIOCDARP 802 5:
case SIOCDARP X 25:

copy in ARP data from user space into rpc_arpreq structure
(byte count may be dependent on specific ioctl and)

call rso_ioctlinARP RPC with the following parameters:
handle, fh, and f _flags from socket structure
and passed as argument to routine
data copied in.
pointer to status return variable

return status to caller

case SIOCGARP:
case SIOCGARP 802 5:
case SIOCGARP x 25:

call rso_ioctloutARP RPC with the following parameters:
handle, fh, and f _flags from socket structure
cmd passed as argument to routine
pointer to rpc_arpreq data structure for return data
pointer to status return variable

if successful copy out ARP data to user. The byte count may
be dependent on the particular ioctl and)

return status to caller

case SIOCGIFCONF:
call rso ioctlIFCONF RPC with the following parameters:

handle, fh, and f _flags from socket structure
cmd passed as argument to routine
max index: maximum size of list based on size of

local internal structure
pointer to out_index value
pointer to buffer for returned interface list
pointer to status return variable

if successful copy out interface structure to user. The
out index value indicates the size of the list.

return status to caller

case SIOCGIFFIAGS:
case SIOCGIEMI'U:
case SIOCGIFREMMTU:

call rso_ioctloutIFshort RPC with the following parameters:
handle, fh, and f _flags from socket structure
cmd passed as argument to routine

IBM Confidential
June 28, 1991
DRAFT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

- 53 -

interface name string provided from caller
pointer to short for return value
pointer to status return variable

if successful copy out short data to user.
return status to caller

case SIOCGIFMETRIC:
call rso_ioctloutIFint RPC with the following parameters:

handle, fh, and f _flags from socket structure
and passed as argument to routine
interface.name string provided from caller
pointer to int for return value
pointer to status return variable

if successful copy out integer data to user.
return status to caller

case SIOCSIFMETRIC:
copy in integer data from user space
call rso_ioctlinIFint RPC with the following parameters

handle, fh, and f _flags from socket structure
and passed as argument to routine
interface name string provided from caller
integer data copied from user space
pointer to status return variable

return status to caller

case SIOCSIFFIAGS:
case SIOCSIFMI'U:
case SIOCSIFREMMI'U:

copy in short data from user space
call rso ioctlinIFint RPC with the following parameters

handle, fh, and f _flags from socket structure
cmd passed as argument to routine
interface name string provided from caller
short data copied from user space
pointer to status return variable

return status to caller

* case SIOCGIFADDR:
* case SIOCGIFBRDADDR:
* case SIOCGIFDSTADDR:
* case SIOCGIFNETMASK:
* call rso ioctloutIFaddr RPC with the following parameters:

IBM Confidential
June 28, 1991
DRAFT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

- 54 -

handle, fh, and f _flags from socket structure
and passed as argument to routine
interface name string provided from caller
pointer to sockaddr_t structure for return value
pointer to status return variable

if successful copy out sockaddr_t structure to user.
return status to caller

case SIOCSIFADDR:
case SIOCSIFBRDADDR:
case SIOCSIFDSTADDR:
case SIOCSIFNETMASK:

copy in sockaddr t structure from user.
call rso_ioctlinIFaddr RPC with the following parameters:

handle, fh, and f_flags from socket structure
and passed as argument to routine
interface name string provided from caller
sockaddr t structure from user
pointer to status return variable

return status to caller

case SIOCADDRT:
case SIOCDELRT:

copy in destination sockaddr_t, gateway sockaddr_t,
and route flags short from user.

call rso_ioctlSIFRT RPC with the following parameters:
handle, fh, and f _flags from socket structure
and passed as argument to routine
interface name string provided from caller
destination sockaddr t structure from user
gateway sockaddr_t structure from user
route flags from user
pointer to status return variable

return status to caller

default:
copy in data in raw form
call rso ioctlUNKOWN RPC with the following parameters:

handle, fh, and f _flags from socket structure
and parameter
size of raw data
raw data
pointer to status return variable

IBM Confidential
June 28, 1991
DRAFT

- 55 -

*
*

return status to caller
}

*/
The following specifies the server side behavior for the rso_ioctl:
/*
* rso_ioctl*_server(h, fh, f_flags, and, RPC-specific data, st)
* handle_ t h;
* rso_rfh_t fh;
* int f _flags;
* int and;
* [declarations for RPC-specific data]
* int *st;

*
* Abstract:
* server for rso listen RPC
*
* Parameters
* h: RPC handle for socket
* fh: handle for remote file structure (local on server node)
* f _flags: f _flags field from client structure
* and: ioctl command
* RPC-specif ic data
*
* Return Values:
* return indication is made via st variable
*
* Local Variables
*
*Algorithm
* Put parametric data into locally valid form
* put end into locally valid format
* call soo_ioctl (fp, and, data)
* *st = u.u error
* return
*
*/

A more general solution for unrecognized ioctls may be appropriate.

2.1.3.3.1.3 rso _select
Support for select on remote special files is specified in section 2.1.4. Special support I
for select on sockets is not required.

IBM Confidential
June 28, 1991
DRAFT

- 56 -

2.1.3.3.1.4 rso _close
The rso_close file op is called when a remote socket is closed for the last time on that
node.
/*
* rso_close (fp)
* struct file *fp;

*
* Abstract:
*
*

remote socket close file op

* Parameters
* fp: pointer to file structure being closed
*
* Return Values:
* error indication if an error occurred.
*
* Algorithm:
*
*

remove remote file handle structure
remove local copy of socket

*
*
*

indicate there is no socket associated with this file block
return error indication if any, or 0 if no error

*/

There is no need to provide an rso_remoteClose RPC because calling of file specific
close routines is done at the file token layer. See section 2.1.5.

2.1.3.3.1.S rso fstat
The rso_fstat file op is called when an fstat operation is performed on an open file
descriptor that refers to a socket.
/*
* rso_fstat (fp, ub)
* struct file *fp;
* struct stat *ub;
*
* Abstract:
* remote socket f stat file op
*
* Parameters
* fp: pointer to file structure being closed
* ub: pointer to stat buffer
*
* Local Variables
* st: return status code

IBM Confidential
June 28, 1991
DRAFT

- 57 -

*
* Return Values:
* error indication if an error occurred.
*
* Algorithm:
* get socket pointer from file block (fp->f _data)
* clear *ub
* call rso_remoteStat RPC with the following arguments
* RPC handle from socket structure (so->rso_handle.rsh_:cpchandle)
* remote file structure handle (so->rso_handler.rsh_reopendata)
* f _flags field from file structure (fp->f _flags)
* ub pointer to a stat buffer (ub)
* pointer to st (&st)
* return
*
*
*

return error indication if any, or 0 if no error

*/
The following specifies the behavior of the server routine for the rso_remoteStat RPC:
/*
* rso_stat_server(h, fh, f_flags, statbp, st)
* handle_t h;
* rso_rfh_t fh;
* int f _flags;
* struct stat *statbp;
* int *st;
*
* Abstract:
* server for rso listen RPC
*
* Parameters
* h: RPC handle for socket
* fh: handle for remote file structure (local on server node)
* f flags: f flags field from client structure
* backlog: maximum length of queue of pending connections
* st: pointer to variable in which to store error return value
*
* Return Values:
* return indication is made via st variable
*
* Local Variables
* struct file *fp;
* struct socket *so;

IBM Confidential
June 28, 1991
DRAFT

- 58 -

*
* Algorithm:
* fp = pointer file block from caller supplied handle
* call soo_stat(fp, statbp)
* return value from soo stat
*
*/

2.1.3.3.1.6 rso _prep_ export
The file-op rso_prep_export() is called when a process with an open socket is being
moved to another node. This routine is to prepare for the creation of a remote socket.
A UNIX domain socket that is unbound, or a socket that is unconnected cannot be
created remotely. First, a check is made to see if the socket is eligible for becoming
remote. If it cannot, then an error is returned and the operation does not continue. If
this check succeeds, rso_prep_export() gathers all info necessary to reopen the socket
on the remote node. This includes the socket type, the socket options, the socket
state, and an identifier that the controlling node can use to locate the socket structure
efficiently.
/*
* rso_J>rep_export(fp)
* struct file *fp;
* struct sock_reopen_handle *srohp;
*
* Abstract:
* remote socket prepare for export file op
*
* Parameters
* fp: pointer to file structure being closed
* srohp: pointer to a socket reopen handle

*
* Return Values:
* error indication if an error occurred.

*
* Algorithm:
* obtain socket pointer from file block
* if socket cannot be made remote
*
*
*
*
*
*
*
*

return error indication to caller
if there is no socket associated with this file block

return error indication to caller
store the following fields from socket structure

into the socket reopen handle structure:
so_type
so_J>roto->pr_type
so_J>roto->pr_domain

IBM Confidential
June 28, 1991
DRAFT

- 59 -

*
*
*
*

store a unique identifier (e.g., the kernel address of the file
structure) and a version ID in the reopen handle

return 0 to the caller

*/

2.1.3.3.1.7 rso _reopenO
The final step in socket migration takes place when the extended file operation
fo_reopen is called at the remote node. When a process moves with an open socket,
rso_reopen() will be called. First, rso_reopen() checks to see if the socket has
migrated back to the original node. If this is the case, rso_reopen() just returns. If
this is not the case, the support routine rso_create() is called to create a new socket.
/*
* rso_reopen(fp, srohp)
* struct file *fp;
* struct rso handle *srohp;
*
* Abstract:
* remote socket reopen file op

*
* Parameters
* fp: pointer to file structure being closed
*
* Return Values:
* 0 if successful
* error indication if an error occurred.
*
* Local Variables
* so *socket;
*
* Algorithm:
* if this is the node where the socket is controlled
* return 0
* call rso_create(srohp->rsh_domain, &fp->f_data, rsh->rsh_type, srohp)
* return value from rso create()
*
*/

The rso_create routine is used by the reopen code to create a socket structure which
will be controlled on a remote client. The following specifies the rso_create() routine.
/*
* rso_create(dom, aso, type, proto, rso_handle)
* int dom;
* struct socket **aso;

IBM Confidential
June 28, 1991
DRAFT

- 60 -

* int type;
* int proto;
* struct rso handle *rso_handle;
*
* Parameters
*
*
*
*
*
*

dom: domain of socket
pointer to socket
type: type of socket (stream or datagram)
proto: prototype
rso handle: remote socket handle to remote node

* Return Values:
* 0 is successful
* error code otherwise
*
* Abstract:
*
*
*
*
*
*/

Identical to socreate() with the following exceptions.
the so__proto field of the socket is not set.
the pr_usrreq() routine for PRU_ATTACH is not called.
the so state field of the socket has the SS ISREMOTE bit set.

2.1.3.3.2 Socket System Call Extensions
The socket system calls do not go through a structure similar to the file operations
table. Consequently, another approach is required to extend those system calls to
support remote socket operations. The FUSION remote socket design provides two
mechanisms for extending these calls. The approach used for a particular
implementation depends on the underlying capabilities of the base system.

Some system such as OSF/l provide a mechanism to redirect system calls to an
alternate entry point. If such a mechanism is available in the target system, this will
be used. Each system call to be extended will have its entry point replaced with an
extended version. The convention used in this specification for the name of the
extended version of a standard socket system call is to prepend an 'x' to the name of
the standard call. For example, the extended version of the connect() system call will
be called xconnect(). This extended version of the system call detects whether the
socket is local or remote. If it is local it calls the standard socket system call entry
point. If it is remote, it calls a new remote version of the system call. The
convention used in this specification for the name of the remote version of the system
call is to prepend an 'r' to the name of the standard system call. Thus, the remote
version of the connect() system call will be called rconnect().

For a typical socket system call, the following model is used for the extended system
call:

IBM Confidential
June 28, 1991
DRAFT

- 61 -

/*
* xsocketcall ()
*
* Abstract:
* extended version of socketcall
*
* Parameters
* same parameters as that of socketcall
*
* Return Values:
*
*
*

same return value as that of socketcall, possibly
enhanced with additional error codes for remote failures

* Algorithm:
* call getsock() to get pointer to file structure
* if getsock() failed
*
*
*
*
*
*
*
*
*
*
*
*/

return error
get socket pointer from file structure
if the socket is local to this node

do anything necessary so socketcall sees the arguments
where it expects to find them

call socketcall ()
return to caller

call rsocketcall RPC
return any error indication
return to caller

The following model is used for the remote version of the system call:
/*
* rsocketcall ()
*
* Abstract:
* remote version of socketcall
*
* Parameters
* same parameters as that of socketcall
*
* Return Values:
* same return value as that of socketcall, possibly
* enhanced with additional error codes for remote failures
*
* Algorithm:

IBM Confidential
June 28, 1991
DRAFT

*
*
*
*
*
*
*/

- 62 -

do required local node processing
call socketcall specific RPC
copy any return values to users
return any error indication
return to caller

Other systems that do not support redirection of system calls will require minor hooks
into the base system calls. This hook is placed at the beginning of the system call as
soon as the socket associated with that system call has been found, before any
processing of the call has been performed. The hook detects if the socket is remote,
and if so calls the remote version of the system call that was described above.

Aside from the information provided by parameters to the system call, the remote
client also provides the state of the f_flags field in the file structure associated with the
open file descriptor. The socket server on the controlling node updates the flags field
in the local file structure associated with the structure before performing the operation
requested by the client. This allows file control operations performed on the client
node to be seen by the socket server before the socket operation is performed.

It is a fundamental assumption of this design that it is possible for the kernel RPC
server routine to call standard system call entry points at the local node, even though
the server routine is executing in a kernel thread. The principal implications of this
assumption is that it is possible to put the arguments into a location where the system
call will find them without modification to that call, and that data transfers between
kernel space and user space will still occur correctly. This assumption greatly
simplifies the design as well as the specification of the design, because it means that
the RPC server routines can call the standard entry points to provide the requested
server. If in fact the kernel RPC does not support this assumption, the functions can
still be implemented by cloning system call entry routines, changing them only to get
the arguments from a location where they can locate them, and doing all data using
kernel-to-kernel techniques.

The following model is used for the RPC server routines:
/*
* rso Jocketcall_ server ()
*
* .Abstract:
* RPC remote server for rsocketcall

*
* Parameters
*
*
*

Parameters are passed via the RPC mechanisms. They
typically consist of RPC control parameters, system
call input parameters, and system call output parameters.

IBM Confidential
June 28, 1991
DRAFT

- 63 -

*
* Return Values:
*
*
*

The RPC server routines do not return explicitly values.
They return values via the [out] parameters of the RPC.

* Algorithm:
*
*
*
*
*
*
*

move parameters from RPC into location suitable in order
to call the socketcall system call

call the local version of socketcall
copy return values to RPC variables
indicate RPC status
return to RPC, which transfers control back to client node

*/

The following subsections identify the various socket system calls, and provide details
about the remote version of the call and about the server side actions invoked via the
RPC.

2.1.3.3.2.1 Socket and Socketpair
Because FUSION only creates remote sockets as a result of remote processing
operations, the socket system calls socket() and socketpair() are unaffected by the
FUSION remote socket design. No extended or remote versions of these calls are
provided.

2.1.3.3.2.2 Accept
The accept() system call requires special handling on the using node, because it
creates a new socket as part of its normal operation. In the socket is controlled
remotely, a new remote socket must be created on the using node as well as on the
standard socket on the controlling node. This is accomplished using the file reopen
mechanisms described above, and an additional nested RPC call.

The following specifies the raccept call:
/*
* raccept (s, name, namelen)
* int s;
* caddr_t name;
* int *anamelen;
*
* Abstract:
* remote version of accept system call
*
* Parameters
* NOTE: parameters are passed in an architecture dependent way
* s: file descriptor of socket on which to accept the connection

IBM Confidential
June 28, 1991
DRAFT

*
*
*

- 64 -

name: domain specific address of connecting entity
anamelen: pointer to length of name parameter

* Return Values:
* -1 if connect operation failed. In this case, errno is set to indicate
* the error.
* otherwise, raccept returns the file descriptor of a new sock.et
* the address of remote entity is returned via the name parameter
* the length of the address is returned via the anamelen parameter
*
* Local Variables
* struct file *fp;
* struct socket *so;
* int fdes
* sockaddr t address
* int addrlen, addrlensv;
* int st;
*
* Algorithm:
* if name != NULL
* copy in anamelen parameter to addrlen
* if copy in fails
* provide EFAULT error to caller
* return
* addrlensv = addrlen
* call getsock(s) to get a pointer to the file structure from
* file descriptor
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

if getsock() failed
provide error from getsock() to caller

fp = return value from getsock()
so = pointer socket structure from file structure (fp->f _data)
call rso_accept RPC with the following parameters

RPC handle from socket structure (so->rso_handle.rsh_:rpchandle)
remote file structure handle (so->rso_handler.rsh_reopendata)
f _flags field from file structure (fp->f_flags)
pointer to fdes (&fdes)
pointer to address parameter (&addr)
pointer to address length parameter (&addrlen)
pointer to error return value (&st)

if an error occurred (st != 0)
provide error code to caller
return

if name != NULL

IBM Confidential
June 28, 1991
DRAFT

*
*
*
*
*/

- 65 -

if addrlen > addrlensv
addrlen = addrlensv

copy out addrlen bytes from address to name
copy out addrlen to anamelen

The following specifies the server routine for the rso_accept RPC.
/*
* rso_accept_server(h, fh, f_flags, fdes, addr, addrlen, st)
* handle_t h;
* rso_rfh_t fh;
* int f _flags;
* int *fdes;
* rpc_sockaddr_t *addr;
* int *addrlen;
* int *st;
*
* Abstract:
*
*

server for rso_accept RPC

* Parameters
* h: RPC handle for socket
* fh: handle for remote file structure (local on server node)
* f _flags: f flags field from client structure
* fdes: pointer to file descriptor for new socket
* addr: address of connection endpoint returned by accept
* addrlen: length of addr parameter
* st: pointer to variable in which to store error return value
*
* Return Values:
* fdes is filled in with the file descriptor of the new socket
* addr is filled in with the address of the communication endpoint
* addrlen is filled in with the length of the addr parameter
* return indication is made via st variable
*
* Local Variables
* int fd;
* int st;
*
* Algorithm:
* fd =
*
*
*

put
put

file descriptor for file structure referred to
This may require some setup.

fd where accept expects its s argument
addr where accept expects its name argument

IBM Confidential
June 28, 1991
DRAFT

in fh.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

- 66 -

put addrlen where accept expects its anamelen argument

call accept ()

call f_prep_export(fp, &ofroh)
make an rpc handle
call rso_doreopen RPC with the following parameters

RPC handle
remote file structure handle (&ofroh)
address of status variable (&st)

if st= 0
put fd where close expects to find it
call close fd locally

return st

The following specifies the server routine for the rso_doreopen RPC.
/*
* rso_doreopen_server(h, ofroh, st)
*
* Abstract:
* server
* NOTE:
*
*
*
*
*
*
* Parameters:

for rso_doreopen RPC
The rso_doreopen RPC is called from the server
routine of the rso_accept_server RPC and the
rso socketx RPC. This server for the rso_doreopen
RPC thus server runs on the client node that issued
the accept() or bind() system call on the remote socket,
but in a different thread

* h: RPC handle for socket
*
*

ofroh: reopen handle for remote file structure
st: pointer to status return

*
* Return Values:
* return indication is made via st variable
*
* Local Variables:
* struct file *fp
*
* Algorithm:
*
*

find file block pointer from ofroh
call f_reopen(fp, ofrop)

IBM Confidential
June 28, 1991
DRAFT

- 67 -

*
*
*

*st = return from f _reopen
return

*/

2.1.3.3.2.3 Bind
The bind system call requires special handling to handle cases where a process moves
acquires some node dependent information, moves to another node, creates a new
socket, and then tries to bind using that node dependent information (e.g., the TCP/IP
address). This is implemented in the extended version of the bind call. If the local
bind operation fails with EADDRNOTA VAIL, then a remote socket is created, and an
rbindO operation is performed.

The following specifies the xbind() system call interface:
/*
* xbind(s, name, namelen)
* int s;
* caddr_t name;
* int namelen;
*
* Abstract:
* extended version of the bind system call
*
* Parameters
* s: file descriptor of socket to be bound
* name: domain specific name to bind socket
* namelen: length of name parameter
*
* Return Values:
* 0 if bind operation succeeded
* -1 if bind operation failed. In this case, errno is set to indicate
* the error.
*
* Local Variables
* struct rso handle of roh;
*
* Algorithm:
* call getsock(s) to get pointer to file structure
* if getsock() failed
*
*
*
*
*

return error
get socket pointer from file structure
if the socket is local to this node

bind()
if (u.u_error == EADDRNOTAVAIL)

IBM Confidential
June 28, 1991
DRAFT

- 68 -

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

and (this process was created on another node)
and (name != NULL)
and (name != address of this node)
and (socket domain is AF_INET)
and (socket is SOCK_ DGRAM or socket is SOCK_ STREAM)

*/

return
rbind()
return

set up RPC handle for user-supplied remote address
ofroh.rsh_type = so->so_type
ofroh.rsh_domain = so->so_proto->pr_domain
call rso_socketx RPC with the following parameters

RPC handle
file reopen pointer (&ofroh)
pointer to status variable (&st);

if rso socketx succeeded

else

make s ref er to new file descriptor
close original socket
rbind()

restore error to EADDRNOTAVAIL

The following specifies the server routine for the rso_socketx RPC:
/*
* rso_socketx_server (h, fh, st))
* handle_t h;
* rso rfh t fh;
* int *st;
*
* Abstract:
* server for rso socketx RPC

*
* Parameters
* h: RPC handle for socket
* fh: handle for remote file structure (local on server node)
* st: success indication
*
* Return Values:
* return indication is made via st variable
*
* Local Variables
* struct file *fp;
* struct socket *so;

IBM Confidential
June 28, 1991
DRAFT

- 69 -

* int stat
*
* Algorithm:
* get a file block for an open pointer
* open a local socket with socreate
* fh->rso_opendata.rso_re_fileid = unique ID for file block (fp)
* fh->rso_opendata.rso_re_fileid = version number
* call f_prep_export (fp, fh)
* call rso_doreopen RPC with the following parameters
* RPC handle
* remote file structure handle (fh)
* address of status variable (&stat)
* *st = stat
*/

The following specifies the rbind system call
/*
* rbind(s, name, namelen)
* int s;
* caddr_t name;
* int namelen;
*
* Abstract:
* remote version of bind system call
*
* Parameters
* NOTE: parameters are passed in an architecture dependent way
* s: file descriptor of socket to be bound
* name: domain specific name to bind socket
* namelen: length of name parameter
*
* Return Values:
* 0 if bind operation succeeded
* -1 if bind operation failed. In this case, errno is set to indicate
* the error.

*
* Local Variables
*
*
*
*
*

struct file *fp;
struct socket *so;
rpc_sockaddr_t rpcname;
int st;

* Algorithm:
* call getsock(s) to get pointer file structure from file descriptor

IBM Confidential
June 28, 1991
DRAFT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

- 70 -

if getsock() failed
provide error from getsock() to caller

fp =return value from getsock()
so = pointer socket structure from file structure (fp->f _data)
copy in name parameter from user space into rpcname;
call rso_bind RPC with the following parameters

RPC handle from socket structure (so->rso_handle.rsh_i:pchandle)
remote file structure handle (so->rso_handler.rsh_reopendata)
f _flags field from file structure (fp->f _flags)
rpcname structure
name length parameter from caller
pointer to error return value (&st)

if an error occurred (st != 0)
provide error code to caller

The following specifies the seiver routine for the rso_bind RPC:
/*
* rso_bind_server(h, fh, f_flags, name, namelen, st)
* handle_t h;
* rso_rfh_t fh;
* int f_flags;
* rpc_sockaddr_t name;
* int namelen;
* int *st;
*
* Abstract:
* server for rso bind RPC

*
* Parameters
* h: RPC handle for socket
* fh: handle for remote file structure (local on server node)
* f _flags: f flags field from client structure
* name: domain specific name of remote socket
* namelen: length of name parameter
* st: pointer to variable in which to store error return value
*
* Return Values:
* return indication is made via st variable
*
* Local Variables
* int fd;
*
* Algorithm:

IBM Confidential
June 28, 1991
DRAFT

- 71 -

*
*
*
*
*
*
*

fd = file descriptor for file structure referred to in fh.
This may require some setup.

put fd where bind expects its s argument
put name where bind expects its name argument
put namelen where bind expects its anamelen argument
u.u error = 0

* call bind ()
*
* *st = u.u error
* return
*

2.1.3.3.2.4 Connect
The connect system call has no unusual states that require specialized handling on the
client node. The following specifies the rconnect call:
/*
* rconnect(s, name, namelen)
* int s;
* cadd.r_t name;
* int namelen;
*
*Abstract:
* remote version of connect system call
*
* Parameters
* NOTE: parameters are passed in an architecture dependent way
* s: file descriptor of socket to be connected
* name: domain specific name of remote socket
* namelen: length of name parameter

*
* Return Values:
* 0 if connect operation succeeded
* -1 if connect operation failed. In this case, errno is set to indicate
* the error.
*
* Local Variables

*
*
*
*
*

struct file *'fp;
struct socket *so;
rpc_sockaddr_t rpcname;
int st;

* Algorithm:
* call getsock(s) to get pointer file structure from file descriptor

IBM Confidential
June 28, 1991
DRAFT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

- 72 -

if getsock() failed
provide error from getsock() to caller

fp = return value from getsock()
so = pointer socket structure from file structure (fp->f data)
copy in name parameter from user space into :rpcname;
call rso_connect RPC with the following parameters

RPC handle from socket structure (so->rso_handle.rsh_rpchandle)
remote file structure handle (so->rso_handler.rsh_reopendata)
f _flags field from file structure (fp->f _flags)
rpcname structure
name length parameter from caller
pointer to error return value (&st)

if an error occurred (st != 0)
provide error code to caller

The following specifies the server routine for the rso_connect RPC.
/*
* rso_connect_server (h, fh, f_flags, name, namelen, st)
* handle_t h;
* rso_rfh_t fh;
* int f_flags;
* rpc_sockaddr_t name;
* int namelen;
* int *st;
*
* .Abstract :
* server for rso connect RPC
*
* Parameters
* h: RPC handle for socket
* fh: handle for remote file structure (local on server node)
* f _flags: f ~lags field from client structure
* name: domain specific name of remote socket
* namelen: length of name parameter
* st: pointer to variable in which to store error return value
*
* Return Values:
* return indication is made via st variable
*
* Local Variables
* int fd;
*
* Algorithm:

IBM Confidential
June 28, 1991
DRAFT

- 73 -

*
*
*
*
*
*
*
*
*

fd = file descriptor for file structure referred to in fh.
This may require some setup.

put fd where connect expects its s argument
put name where connect expects its name argument
put namelen where connect expects its anamelen argument
u.u error = 0

call connect ()

* *st = u.u error
* return
*
*/

2.1.3.3.2.S Getpeemame
The getpeemame system call has no unusual states that require specialized handling on
the client node. The following specifies the rgetpeername call:
/*
* rgetpeername(fdes, asa, alen)
* int fdes;
* caddr_t asa;
* int *alen;
*
*Abstract:
* remote version of getpeername system call
*
* Parameters
* NOTE: parameters are passed in an architecture dependent way
* fdes: file descriptor of socket to get peer name
* asa: address of user supplied address of buffer to return peer name
* alen: length of user supplied address buffer
*
* Return Values:
* 0 if getpeername operation succeeded
* -1 if getpeername operation failed. In this case, errno is set to
* indicate the error.
* The asa parameter is filled in with the name of the peer
* The alen parameter is filled in with the actual length of asa
*
* Local Variables
*
*
*
*

struct file *fp;
struct socket *so;
rpc_sockaddr_t rpcname;
int rpcnamelen;

IBM Confidential
June 28, 1991
DRAFT

- 74 -

* int st;
*
* Algorithm:
* call getsock(s) to get pointer file structure from file descriptor
* if getsock() failed
* indicate error from getsock()
* fp =return value from getsock()
* so = pointer socket structure from file structure (fp->f _data)
* copy in rpcnamelen from user alen parameter
* if copy in fails
* provide EFAULT error to caller
* call rso_getpeername RPC with the following parameters
* RPC handle from socket structure (so->rso_handle.rsh_rpchandle)
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

remote file structure handle (so->rso_handler.rsh_reopendata)
f _flags field from file structure (fp->f _flags)
pointer to rpcname structure
pointer to rpcnamelen (&rpcnamelen)
pointer to error return value (&st)

if an error occurred (st != 0)
provide error code to caller
return

copy out rpcname structure to asa
if copy out fails

provide EFAULT error to caller
copy out rpcnamelen structure to alen
return

The following specifies the server routine for the rso_getpeername RPC.
/*
* rso_getpeername_server(h, fh, f_flags, name, namelen, st)
* handle_t h;
* rso_rfh_t fh;
* int f _flags;
* rpc_sockaddr_t *name;
* int *namelen;
* int *st;
*
* Abstract:
*
*

server for rso_getpeername RPC

* Parameters
* h: RPC handle for socket
* fh: handle for remote file structure (local on server node)

IBM Confidential
June 28, 1991
DRAFT

*
*
*
*
*

- 75 -

f _flags: f _flags field from client structure
name: buffer for returning peer name
namelen: pointer to length of name parameter from user
st: pointer to variable in which to store error return value

* Return Values:
*
*
*
*

peer name is copied into name buff er
length of peer name is copied into namelen
return indication is made via st variable

* Local Variables
* int fd;
*
* Algorithm:
* fd = file descriptor for file structure referred to in fh.
* This may require some setup.
*
*

put fd where getpeername expects its fdes argument
put name where getpeername expects its asa argument

*
*

put namelen where getpeername expects its asalen argument
u.u error = 0

*
*
*

call getpeername()

* *st = u.u error
* return
*
*/

2.1.3.3.2.6 Getsockname
The getsockname system call has no unusual states that require specialized handling
on the client node. The following specifies the rgetsockname call:
/*
* rgetsockname(fdes, asa, alen)
* int fdes;
* caddr_t asa;
* int *alen;
*
* Abstract:
*
*

remote version of getsockname system call

* Parameters
* NOTE: parameters are passed in an architecture dependent way
* fdes: file descriptor of socket to get socket name
* asa: address of user supplied address of buffer to return socket name

IBM Confidential
June 28, 1991
DRAFT

*
*

- 76 -

alen: length of user supplied address buffer

* Return Values:
* 0 if getsockname operation succeeded
* -1 if getsockname operation failed. In this case, errno is set to
* indicate the error.
*
*
*

The asa parameter is filled in with the name of the socket
The alen parameter is filled in with the actual length of asa

* Local Variables
*
*
*
*
*
*

struct file *fp;
struct socket *so;
rpc_sockaddr_t rpcname;
int rpcnamelen;
int st;

* Algorithm:
* call getsock(s) to get pointer file structure from file descriptor
* if getsock() failed
* provide error from getsock() to caller
* fp =return value from getsock()
* so = pointer socket structure from file structure (fp->f _data)
* copy in rpcnamelen from user alen parameter
* if copy in fails
* provide EFAULT error to caller
* call rso_getsockname RPC with the following parameters
* RPC handle from socket structure (so->rso_handle.rsh_rpchandle)
* remote file structure handle (so->rso_handler.rsh_reopendata)
* f _flags field from file structure (fp->f_flags)
* pointer to rpcname structure
* pointer to rpcnamelen (&rpcnamelen)
* pointer to error return value (&st)
* if an error occurred (st != 0)
*
*
*
*
*
*
*
*/

provide error code to caller
return

copy out rpcname structure to asa
if copy out fails

provide EFAULT error to caller
copy out rpcnamelen structure to alen
return

The following specifies the server routine for the rso_getsockname RPC.
/*

IBM Confidential
June 28, 1991
DRAFT

- 77 -

* rso_getsockname_server(h, fh, f_flags, name, namelen, st)
* handle_t h;
* rso_rfh_t fh;
* int f_flags;
* rpc_sockaddr_t *name;
* int *namelen;
* int *st;
*
* Abstract:
*
*

server for rso_getsockname RPC

* Parameters
* h: RPC handle for socket
*
*

fh: handle for remote file structure (local on server node)
f _flags: f flags field from client structure

* name: buffer for returning socket name
*
*
*

namelen: pointer to length of name parameter from user
st: pointer to variable in which to store error return value

* Return Values:
*
*
*
*

socket name is copied into name buffer
length of socket name is copied into namelen
return indication is made via st variable

* Local Variables
* int fd;
* struct socket *so;
* struct rnbuf *m;
*
* Algorithm:
* fd = file descriptor for file structure referred to in fh.
* This may require some setup.
* put fd where getsockname expects its fdes argument
* put name where getsockname expects its asa argument
* put namelen where getsockname expects its alen argument
* u.u error = 0
*
*
*

call getsockname()

* *st = u.u error
* return

*
*/

IBM Confidential
June 28, 1991
DRAFT

- 78 -

2.1.3.3.2.7 Getsockopt
The getsockopt system call has no unusual states that require specialized handling on
the client node. The following specifies the rgetsockopt call:
/*
* rgetsockopt(s, level, name, val, avalsize)
* int s;
* int level;
* int name
* caddr_t val;
* int *avalsize;
*
* Abstract:
* remote version of getsockopt system call
*
* Parameters
* NOTE: parameters are passed in an architecture dependent way
* s: file descriptor of socket to get socket options
* level: level at which the option resides
* name: name of option to be set
* val: address of optional user supplied address of buffer to return option
* avalsize: address of length of user supplied address buffer
*
* Return Values:
* 0 if getsockopt operation succeeded
* -1 if getsockopt operation failed. In this case, ermo is set to
* indicate the error.
* The val parameter is filled in with result of the getsockopt() call
* The avalsize parameter is filled in with the amount of data in val
*
* Local Variables
*
*
*
*
*
*
*

struct file *fp;
struct socket *so;
rpc_sockaddr_t rpcname;
int rpcvallen;
char tmpval[:MLEN];
int st;

* Algorithm:
* call getsock(s) to get pointer file structure from file descriptor
* if getsock() failed
* provide error from getsock() to caller
* fp =return value from getsock()
* so = pointer socket structure from file structure (fp->f _data)

IBM Confidential
June 28, 1991
DRAFT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

- 79 -

copy in rpcvallen from user avalsize parameter
if copy in fails

provide EFAULT error to caller
call rso_getsockopt RPC with the following parameters

RPC handle from socket structure (so->rso_handle.rsh_rpchandle)
remote file structure handle (so->rso_handler.rsh_reopendata)
f _flags field from file structure (fp->f _flags)
level parameter from user
name parameter from user
rpcvallen value
pointer to rpcvallen
pointer to tmpval buf
pointer to error return value (&st)

if an error occurred (st != 0)
provide error code to caller
return

if val != NULL and rpcvallen != 0
copy out rpcvallen bytes of tmpval to val
if copy out fails

provide EFAULT error to caller
* return
* copy out rpcvallen to avalsize
* return
*/

The following specifies the server routine for the rso_getsockopt RPC.
/*
* rso_getsockopt_server(h, fh, f_flags, level, opt name, opt_size,
* opt_len, opt_buf, st)
* handle_t h;
* rso_rfh_t fh;
* int f _flags;
* int level;
* int opt_ name;
* ~"'t t op _size;
* int *opt_len;
* char opt_buf [];
* int *st;
*
* Abstract:
* server for rso_getsockopt RPC
*
* Parameters
* h: RPC handle for socket

IBM Confidential
June 28, 1991
DRAFT

*
*
*
*
*
*
*
*

- 80 -

fh: handle for remote file structure (local on server node)
f _flags: f _flags field from client structure
opt_name: name of option
opt_size: size of data from caller
opt_len: pointer to size of data returned to caller
opt_buf: buffer for returning socket name
st: pointer to variable in which to store error return value

* Return Values:
*
*
*
*

socket name is copied into name buffer
length of socket name is copied into namelen
return indication is made via st variable

* Local Variables
* struct file *fp;
* struct socket *so;
* struct mbuf *m;
* int valsize;
*
* Algorithm:
* fd = file descriptor for file structure referred to in fh.
*
*
*
*
*
*
*
*
*
*
*

This may require some setup.
put fd where getsockopt expects its s argument
put level where getsockopt expects its level argument
put opt_name where, getsockopt expects its name argument
put opt_buf where getsockopt expects its val argument
*opt_len = opt_size
put opt_len where getsockopt expects its avalsize argument
u.u error = 0

call getsockopt()

* *st = u.u error
* return
*
*/

2.1.3.3.2.8 Setsockopt
The setsockopt system call has no unusual states that require specialized handling on
the client node. The following specifies the rsetsockopt call:
/*
* rsetsockopt(s, level, name, val, avalsize)
* int s;
* int level;

IBM Confidential
June 28, 1991
DRAFT

- 81 -

* int name
* caddr_t val;
* int valsize;
*
* Abstract:
*
*

remote version of setsockopt system call

* Parameters
*
*
*
*
*
*
*

NOTE: parameters are passed in an architecture dependent way
s: file descriptor of socket to get socket options
level: level at which the option resides
name: name of option to be set
val: address of optional user supplied address of buffer to return option
valsize: length of user supplied address buffer

* Return Values:
* 0 if setsockopt operation succeeded
* -1 if setsockopt operation failed. In this case, errno is set to
* indicate the error.
*
* Local Variables
*
*
*
*
*
*
*

struct file *fp;
struct socket *so;
rpc_sockaddr_t rpcname;
int rpcvallen;
char trnpval[MLENJ;
int st;

* Algorithm:
* call getsock(s) to get pointer file structure from file descriptor
* if getsock() failed
* provide error from getsock() to caller
* fp = return value from getsock()
* so = pointer socket structure from file structure (fp->f _data)
* if vallen > MLEN
*
*
*
*
*
*
*
*

provide EINVAL error to caller
return

if val != NULL
copy in vallen bytes from val to tmpval
if copy in fails

provide EFAULT error to caller
return

call rso_setsockopt RPC with the following parameters

IBM Confidential
June 28, 1991
DRAFT

- 82 -

RPC handle from socket structure (so->rso_handle.rsh_:r:pchandle)
remote file structure handle (so->rso_handler.rsh_reopendata)
f_flags fi.eld from file structure (fp->f_flags)
level parameter from user
name parameter from user
vallen value
pointer to :r:pcvallen
pointer to tmpval buf

*
*
*
*
*
*
*
*
*
*
*

pointer to error return value (&st)
if an error occurred (st != 0)

provide error code to caller
* return
* return
*/

The following specifies the server routine for the rso_setsockopt RPC.
/*
* rso_setsockopt_server(h, fh, f_flags, level, opt_name, opt_size,
* opt_len, opt_buf, st)
* handle_t h;
* rso_rfh_t fh;
* int f_flags;
* int level;
* int opt_name;
* int opt_size;
* int *opt_len;
*char opt_buf[];
* int *st;
*
* Abstract:
*
*

server for rso_setsockopt RPC

* Parameters
* h: RPC handle for socket
* fh: handle for remote file structure (local on server node)
* f _flags: f flags field from client structure
* level: buffer for returning socket name
* opt_name: name of option
* opt_size: size of data from caller
* opt_len: pointer to size of data returned to caller
* opt_buf: buffer for returning socket name
* st: pointer to variable in which to store error return value
*
* Return Values:

IBM Confidential
June 28, 1991
DRAFT

- 83 -

*
*
*
*

socket name is copied into name buff er
length of socket name is copied into namelen
return indication is made via st variable

* Local Variables
*
*
*
*
*

stzuct file *fp;
stzuct socket *so;
stzuct mbuf *m;
int valsize;

* Algorithm:
* fd = file descriptor for file stzucture referred to in fh.
* This may require some setup.
* put fd where setsockopt expects its s argument
*
*
*

put level where setsockopt expects its level argument
put opt_name where setsockopt expects its name argument
put opt_buf where setsockopt expects its val argument

*
*

put opt_size where setsockopt expects its valsize argument
u.u error = 0

*
*
*

call setsockopt()

* *st = u.u error
* return
*
*/

2.1.3.3.2.9 Listen
The listen system call has no unusual states that require specialized handling on the
client node. The following specifies the rlisten call:
/*
* rlisten (s, backlog)
* int s;
* int backlog;
*
* Abstract:
* remote version of listen system call
*
* Parameters
* NOTE: parameters are passed in an architecture dependent way
* s: file descriptor of socket to listen on
* backlog: maximum length for queue of pending connections
*
* Return Values:

IBM Confidential
June 28, 1991
DRAFT

- 84 -

*
*
*
*

0 if listen operation succeeded
-1 if listen operation failed. In this case, errno is set to

indicate the error.

* Local Variables
* struct file *fp;
* struct socket *so;
*
* Algorithm:
* call getsock(s) to get pointer file structure from file descriptor
* if getsock() failed
* provide error from getsock() to caller
* fp = return value from getsock()
* so = pointer socket structure from file structure (fp->f _data}
* call rso_listen RPC with the following parameters
* RPC handle from socket structure (so->rso_handle.rsh_rpchandle}
* remote file structure handle (so->rso_handler.rsh_reopendata)
* f _flags field from file structure (fp->f _flags}
* backlog parameter from user
* pointer to error return value (&st)
* if an error occurred (st != 0)
* provide error code to caller
* return
* return
*/

The following specifies the server routine for the rso_listen RPC.
/*
* rso_listen_server(h, fh, f_flags, backlog, st}
* handle_t h;
* rso_rfh_t fh;
* int f_flags;
* int backlog;
* int *st;
*
*Abstract:
* server for rso listen RPC
*
* Parameters
* h: RPC handle for socket
* fh: handle for remote file structure (local on server node}
* f _flags: f flags field from client structure
* backlog: maximum length of queue of pending connections
* st: pointer to variable in which to store the error return value

IBM Confidential
June 28, 1991
DRAFT

- 85 -

*
* Return Values:
* return indication is made via st variable
*
* Local Variables
* struct file *fp;
* struct socket *so;
*
* Algorithm:
* fd = file descriptor for file structure referred to in
*
*
*
*
*
*
*

This may require some setup.
put fd where listen expects its s argument
put backlog where listen expects its backlog argument
u.u_error = 0;

call listen ()

* *st = u.u error
* return
*
*/

2.1.3.3.2.10 Sending Data

fh.

The system calls send(), sendmsg(), and sendto() are the socket specific calls provided
to send data. They each go through a common routine called sendit(), which in turn
calls sosend(). The routine sosend() is also used by the fileop routines for write() and
writev() on socket type files.

The strategy for FUSION is to replace the send(), sendmsg(), and sendto() entry points
with replacement system calls rsend(), rsendmsg(), and rsendto(). These routines will
be identical to the standard routines, except they will call rsendit() instead of sendit().
The routine rsendit() will be identical to sendit(), except that it calls rsosend(). A
common RPC rso_send() will be used for all cases of sending data, and it will be
called from the routine rsosend().

The following specifies the rsend() system call:
/*
* rsend(s, msg, len, flags)
* int s;
* char *msg;
* int len;
* int flags;
*
* .Abstract:
* remote version of send system call

IBM Confidential
June 28, 1991
DRAFT

- 86 -

*
* Parameters
*
*
*
*
*

s: file descriptor of socket to send data to.
msg: message to send
len: length of message
flags: flags associated with message

* Return Values:
* 0 if sendto operation succeeded
* -1 if sendto operation failed. In this case, errno is set to
* indicate the error.
*
* Algorithm:
* Identical to base send() routine, except call to sendit() is
* replaced with rsendit().
*/

The following specifies the rsendmsg() system call:
/*
* rsendmsg(s, msg, flags)
* int s;
* struct msghdr msg[];
* int flags;
*
* Abstract:
*
*

remote version of sendmsg system call

* Parameters
* s: file descriptor of socket to send data to.
* msg: message to send
* flags: flags associated with message
*
* Return Values:
* -1 if sendmsg operation failed. In this case, errno is set to
* indicate the error.
* otherwise, the number of bytes sent is returned.
*
* Algorithm:
* Identical to base sendmsg() routine, except call to sendit() is
* replaced with rsendit().
*/

The following specifies the rsendto() system call:
/*

IBM Confidential
June 28, 1991
DRAFT

- 87 -

* rsendto(s, msg, len, flags, to, tolen)
* int s;
* char *msg;
* int len;
* int flags;
* struct sockaddr *to;
* int tolen;
*
* .Abstract :
*
*

remote version of sendmsg system call

* Parameters
* s: file descriptor of socket to send data to.
* msg: message to send
* len: length of the message
* flags: flags associated with message
* to: domain specific address to send message
* tolen: length of address to send message
*
* Retum Values:
*
*

-1 if send operation failed. In this case, ermo is set to
indicate the error.

*
*

otherwise, the number of bytes sent is retumed.

* Algorithm:
* Identical to base sendto() routine, except call to sendit() is
* replaced with rsendit().
*/

The following specifies the rsendit() routine:
/*
* rsendit(s, mp, flags)
* int s;
* struct msghdr *mp;
* int flags;
*
* .Abstract :
* remote version of sendit subroutine
*
* Parameters
* s: file descriptor of socket to send data to.
* mp: pointer to message header of message to send
* flags: flags associated with message
*

IBM Confidential
June 28, 1991
DRAFT

- 88 -

* Return Values:
* 0 if sendit operation succeeded
* -1 if sendit operation failed. In this case, errno is set to
* indicate the error.
*
* Algorithm:
* Identical to base sendit() routine, except call to sosend() is
* replaced with rsosend().
*/

The following specifies the rsosend() routine:
/*
* rsosend(so, nam, uio, flags, rights)
* struct socket *so;
* struct mbuf *nam;
* struct uio *uio;
* int flags;
* struct mbuf *rights;
*
* Abstract:
* remote version of sosend subroutine
*
* Parameters
* so: pointer to socket structure
* nam: name of remote entity
* uio: pointer to uio structure containing data to send
* flags: flags associated with message
* rights: access rights associated with this socket

*
* Return Values:
* O if sosend operation succeeded
* nonzero Error code if sosend operation failed.
*
* Local Variables
* char buffer [MAXBUFLEN] ;
* int buf len;
* int st;
*
* Algorithm:
* buflen = uio->uio resid
* call uiomove(buffer, uio->uio_resid, UIO_WRITE, uio)
* call rso_send RPC with the following arguments
* RPC handle from socket structure (so->rso_handle.rsh_rpchandle)
* remote file structure handle (so->rso_handler.rsh_reopendata)

IBM Confidential
June 28, 1991
DRAFT

- 89 -

* f _flags field from file structure (fp->f _flags)
* length of data to send (buf len)
* buffer of data to send (buffer)
* message flags (flags)
* to address (nam)
* length of access rights (rights->m _ len)
* buff er of access rights (mtod(rights, char
* pointer to st (&st)
* return *st
*/

The following specifies the server routine for the rso_send RPC.
/*
* rso_send_se:rver(h, fh, f_flags, buf_len, buf, flags, to,

*)

* accrights_len, accrights, st)
* handle_t h;
* rso_rfh_t fh;
* int f_flags;
* int buf _len;
* char buf [];
* int flags;
* rpc_sockaddr_t to;
* int accrights_len;
*char accrights[];
* int *st;
*
* .Abstract:
* server for rso send :RPC
*
* Parameters
* h: :RPC handle for socket
*
*
*
*
*
*
*
*
*
*

fh: handle for remote file structure (local on se:rver node)
f _flags: f_flags field from client structure
buf len: amount of data to send
buf: buffer of data to send
flags: flags associated with message
to: address to send data
accrights_len: length of access rights data
accrights: access rights associated with send operation
st: pointer to variable in which to store error return value

* Return Values:
* return indication is made via st variable
*

IBM Confidential
June 28, 1991
DRAFT

* Local Variables
* struct file *fp;
* struct socket *so;
*
*
*

struct uio *uio;
struct mbuf *m;

* Algorithm:

- 90 -

* fp = file pointer from fh
* so = fp->fp_data
* get a uio structure
* uio = uio structure
* set up structure from buf _len and buf
* get an mbuf (or chain) to hold accrights_len of data
* m = mbuf pointer
* copy accrights into mbuf
* call sosend(so, to, uio, flags, m)
* *st = return value of sosend()
* return
*/

2.1.3.3.2.11 Receiving Data
The system calls recv(), recvmsg(), and recvfrom() are the socket specific calls
provided to receive data. They each go through a common routine called recvit(),
which in turn calls soreceive(). The routine soreceive() is also used by the fileop
routines for write() and writev() on socket type files.

The strategy for FUSION is to replace the recv(), recvmsg(), and recvto() entry points
with replacement system calls rrecv(), rrecvmsg(), and rrecvfrom(). These routines
will be identical to the standard routines, except they will call rrecvit() instead of
recvit(). The routine rrecvit() will be identical to recvit(), except that it calls
rsoreceive(). A common RPC rso_receive() will be used for all cases of receiving
data, and it will be called from the routine rsoreceive().

The following specifies the rrecv() system call:
/*
* rrecv(s, msg, len, flags)
* int s;
* char *msg;
* int len;
* int flags;
*
* Abstract:
* remote version of recv system call
*
* Parameters

IBM Confidential
June 28, 1991
DRAFT

- 91 -

*
*

s: file descriptor of socket to receive data from.
msg: buffer to hold received message

* len: length of buffer
*
*

flags: flags associated with message

* Return Values:
* 0 if recv operation succeeded
* -1 if recv operation failed. In this case, errno is set to
* indicate the error.
*
* Algorithm:
* Identical to base recv() routine, except call to recvit() is
* replaced with rrecvit().
*/

The following specifies the rrecvmsg() system call:
/*
* rrecvmsg(s, msg, flags)
* int s;
* struct msghdr msg[];
* int flags;
*
* Abstract:
*
*

remote version of recvmsg system call

* Parameters
* s: file descriptor of socket to receive data from.
* msg: msghdr structure to hold received message
* flags: flags associated with message
*
* Return Values:
* -1 if recvmsg operation failed. In this case, errno is set to
* indicate the error.
* otherwise, the number of bytes received is returned.

*
* Algorithm:
* Identical to base recvmsg() routine, except call to recvit() is
* replaced with rrecvit().
*/

The following specifies the rrecvfrorn() system call:
/*
* rrecvfrom(s, msg, len, flags, from, fromlenaddr)
* int s;

IBM Confidential
June 28, 1991
DRAFT

* char *msg;
* int len;
* int flags;
* struct sockaddr *to;
* int *fromlenaddr;
*
* Abstract:

- 92 -

*
*

remote version of recvf rom system call

* Parameters
* s: file descriptor of socket to receive data from.
* msg: buffer to hold received message
* len: length of buffer
* flags: flags associated with message
* from: domain specific address to receive message from
* fromlenaddr: pointer to length of from address
*
* Return Values:
*
*

-1 if recvfrom operation failed. In this case, errno is set to
indicate the error.

* otherwise, the number of bytes received is returned.
*
* Algorithm:
* Identical to base recvfrom() routine, except call to recvit() is
* replaced with rrecvit().
*/

The following specifies the rrecvit() routine:
/*
* rrecvit(s, np, flags, namelenp, rightslenp)
* int s;
* struct msghdr *np;
* int flags;
* caddr t namelenp;
* caddr_t rightslenp;
*
* Abstract:
* remote version of recvit subroutine
*
* Parameters
* s: file descriptor of socket to receive data from.
* np: pointer to message header to hold message received.
* flags: flags associated with message
*

IBM Confidential
June 28, 1991
DRAFT

- 93 -

* Return Values:
* 0 if recvit operation succeeded
* -1 if recvit operation failed. In this case, errno is set to
* indicate the error.
*
* Algorithm:
* Identical to base recvit() routine, except call to soreceive() is
* replaced with rsoreceive().
*/

The following specifies the rsoreceive() routine:
/*
* rsoreceive(so, anarne, uio, flags, rightsp)
* struct socket *so;
* struct mbuf **anarne;
* struct uio *uio;
* int flags;
* struct mbuf **rightsp;
*
* Abstract:
* remote version of soreceive subroutine
*
* Parameters
*
*
*
*
*
*

so: pointer to socket structure
aname: pointer to name of remote entity
uio: pointer to uio structure containing data to send
flags: flags associated with message
rightsp: pointer to access rights associated with this socket

* Return Values:
* 0 if soreceive operation succeeded
*
*

nonzero Error code if soreceive operation failed.

* Local Variables
* char buffer [MAXBUFLEN] ;
* int buflen;
* int st;
*
* Algorithm:
* call
*

rso_receive RPC with the following arguments

*
*
*

RPC handle from socket structure (so->rso_handle.rsh_rpchandle)
remote file structure handle (so->rso_handler.rsh_reopendata)
f _flags field from file structure (fp->f _flags)
length of data to send (uio->uio_resid)

IBM Confidential
June 28, 1991
DRAFT

*

- 94 -

pointer to returned length of data received (&buflen)
buffer of data to send (buffer)
message flags (flags)
pointer to fromaddress address (aname)
length of access rights (*rights->m_len)
pointer length of access rights (&(*rights->m_len))
pointer to buffer of access rights (mtod(*rights, char *))
pointer to st (&st)

*
*
*
*
*
*
*
*
*

call uiomove(buffer, uio->uio_resid, UIO_READ, uio)
return *st

*/
The following specifies the server routine for the rso_receive RPC.
/*
* rso_receive_server(h, fh, f flags, buf size, buf len, buf, flags,
* from, msg_size, msg_len, accrights, st)
* handle_t h;
* rso_rfh_t fh;
* int f _flags;
* int buf _size;
* int *buf _len;
* char buf [];
* int flags;
* rpc_sockaddr_t from;
* int msg_size;
* int *msg_len;
* char accrights[];
* int *st;
*
* Abstract:
* server for rso receive RPC
*
* Parameters
* h: RPC handle for socket
* fh: handle for remote file structure (local on server node)
* f _flags: f _flags field from client structure
* buf size: size of user's receive buffer
* buf len: pointer to caller's size variable
* buf: buffer to hold data received
*
*
*
*
*

flags: flags associated with receive call
from: address to receive data from
msg_size: length of access rights data
msg_len: pointer to caller's access rights size
accrights: received access rights

IBM Confidential
June 28, 1991
DRAFT

- 95 -

*
*

st: pointer to variable in which to store error return value

* Return Values:
* return indication is made via st variable
*
* Local Variables
* struct file *fp;
* struct socket *so;
* struct uio *uio;
* struct mbuf *m;
*
* Al.gori thm:
* fp = file pointer from fh
* so = fp->fp_data
* get a uio structure
* uio = uio structure
*
*
*
*
*
*
*
*/

call soreceive(so, to, uio, flags, &m)
*buf len = uio->uio resid - -
call uiomove(buffer, uio->uio_resid, UIO_READ, uio)
*msg_len = m->m_size
copy m->m_size bytes from mtod(m, caddr_t) to accrights
*st= return value of soreceive()
return

2.1.3.3.2.12 Sending and Receiving Access Rights
The sendmsg() and recvmsg() socket calls allow processes connected through a local
Unix domain socket to exchange file descriptors. This feature is not implemented by
all existing socket implementations due to security considerations. Consequently, the
FUSION remote socket implementation will not support this feature. The RPCs
provided are capable of supporting should a need to provide such support be needed at
a later date.

2.1.3.3.2.13 Shutdown
The shutdown system call has no unusual states that require specialized handling on
the client node. The following specifies the rshutdown call:
/*
* rshutdown(s, how)
* int s;
* int how;
*
* Abstract:
*
*

remote version of shutdown system call

IBM Confidential
June 28, 1991
DRAFT

(

!

- 96 -

* Parameters
* NOTE: parameters are passed in an architecture dependent way
* s: file descriptor of socket to get socket options
* how: how the socket should be shut down
*
* Return Values:
* 0 if shutdown operation succeeded
* -1 if shutdown operation failed. In this case, errno is set to
* indicate the error.
*
* Local Variables
*
*
*

struct file *fp;
struct socket *so;

* Algorithm:
* call getsock{s) to get pointer file structure from file descriptor
* if getsock{) failed
* provide error from getsock{) to caller
* fp = return value from getsock{)
* so = pointer socket structure from file structure {fp->f _data)
* call rso_shutdown RPC with the following parameters
* RPC handle from socket structure {so->rso_handle.rsh_rpchandle)
* remote file structure handle {so->rso_handler.rsh_reopendata)
* f _flags field from file structure {fp->f_flags)
* how parameter from user
* pointer to error return value (&st)
* if an error occurred {st != 0)
* provide error code to caller
* return
* return
*/

The following specifies the server routine for the rso_shutdown RPC.
/*
* rso_shutdown_server(h, fh, f_flags, how, st)
* handle_t h;
* rso_rfh_t fh;
* int f_flags;
* int how;
* int *st;
*
* Abstract:
* server for rso shutdown RPC
*

IBM Confidential
June 28, 1991
DRAFT

- 97 -

* Parameters
* h: RPC handle for socket
* fh: handle for remote file structure (local on server node)
* f _flags: f _flags field from client structure
* how: how the socket should be shutdown
* st: pointer to variable in which to store error return value
*
* Return Values:
* return indication is made via st variable
*
* Local Variables
* struct file *fp;
* struct socket *so;
*
* Algorithm:
* fd = file descriptor for file structure referred to
*
*
*
*
*

This may require some setup.
put fd where shutdown expects its s argument
put how where shutdown expects its how argument
u.u error = 0

* call shutdown()
*
* *st = u.u error
* return
*
*/

2.1.3.4 NIDL Prototype for Remote Socket RPCs

in fh.

The following provides a sample of a NIDL definition for the remote socket RPCs
described above. This is provided only as a sample, the further substantiate the design
described previously. It has not been compiled and tested.

[uuid(<UUID for remote socket RPCs>)
, version (1. 0), port ("ip: [<PORT for remote socket RPCs] ")]

interface rsocket {

const long RSO MAXPATHLEN

/*
* domains supported
* from /usr/include/sys/socket.h
*/

IBM Confidential
June 28, 1991
DRAFT

= 1024;

- 98 -

const short
const short

RSO AF UNIX
RSO AF INET

/*
* hardware types
*/

const short
const short
const short
const short

RSO ETHER
RSO IEEE802 3
RSO IEEE802 5
RSO X 25

/*
*requester's id
*/

typedef long handle t;

/*
* sockaddr structure
*/

typedef union switch(short sa_farnily)
case RSO AF INET:

unsigned short
unsigned short
break;

sin_port;
sin addr;

case RSO AF UNIX:
stringO[RSO_MAXPATHLEN]sun_path;
break;

}rpc_sockaddr_t;

/*
* if dependent data type
*/

typedef union switch (short arp_type) {
case RSO IEEE802 3:
case RSO ETHER:

break;
case RSO IEEE802 5:

= l;
= 2;

= l;
= 2;
= 3;
= 9;

unsigned short arp _ref;
unsigned short arp_seq[8];
break;

case RSO X 25:
unsigned long arp_channel;
break;

IBM Confidential
June 28, 1991
DRAFT

} if _dependent;

typedef struct {
rpc_sockaddr_t
rpc_sockaddr_t
int
unsigned short
if _dependent
unsigned long

}rpc_arpreq;

/*

- 99 -

arp_pa;
arp_ha;
arp_flags;
arp_halength;
arp_ifd;
arp_type;

* handle passed to socket server

/* protocol address */
/* hardware address */
/* flags */
/* length address */
/* hardware dependent info */
/* interface type */

*to identify the client's file descriptor
*/

typedef struct rso handle rso_rfh_t;

/*
* reopen data returned by
* rso_prep_export()
*/

typedef struct rso_reopendata
int rso_rfileid;
int rso_uniqeid;

} rso_reopendata_t;

/*
* RPC for remote accept() system call
*/

int rso_accept
[in)
[in)
[in)
[out)
[out)

) ;

/*

[in, out)
[out)

handle t
rso rfh t
int
rso_reopendata_t
rpc_sockaddr_t
int
unsigned32

h,
fh,
f_flags,
*reopendata,
*addr,
*addrlen,
*st

* do_reopen RPC called by accept() and bind() RPC server routines
*/

int rso_doreopen

IBM Confidential
June 28, 1991
DRAFT

- 100 -

[in] handle t
[in] rso rfh t - -
[out] unsigned32

) ;

/*
* RPC for remote bind() system call
*/

int rso bind
[in] handle t
[in] rso rfh t
[in] int
[in] rpc_sockaddr_t
[out] unsigned32

) ;

/*
* RPC for remote connect() system call
*/

int rso connect
[in] handle t
[in] rso rfh t
[in] int
[in] rpc_sockaddr_t
[in] int
[out] unsigned32

) ;

/*
* RPC for remote getpeername() system call
*/

int rso_getpeername
[in]

) ;

/*

[in]
[in]
[out]
[in, out]
[out]

handle t
rso rfh t
int
rpc_sockaddr_t
int
unsigned32

* RPC for remote getsockname()
*/

IBM Confidential
June 28, 1991
DRAFT

h,
fh,
*st

h,
fh,
f_flags,
name,
*st

h,
fh,
f_flags,
name,
namelen,
*st

h,
fh,
f_flags,
*name,
*namelen,
*st

int rso_getsockname
[in]

) ;

/*

[in]
[in]
[out]
[in, out]
[out]

- 101 -

handle t
rso rfh t
int
rpc_sockaddr_t
int
unsigned32

* RPC for remote getsockopt() system call
*/

int rso_getsockopt
[in]
[in]
[in]
[in]
[in]
[in]
[out]

[out]
) ;

/*

handle t
rso rfh t
int
int
int
int
int
char

unsigned32

* RPC for remote setsockopt() system call
*/

int rso_setsockopt
[in]
[in]
[in]
[out]
[in]
[in]
[out]

[out]

handle t
rso rfh t
int
int
int
int
int
char

unsigned32

IBM Confidential
June 28, 1991
DRAFT

h,
fh,
f_flags,
*name,
*namelen,
*st

h,
fh,
f_flags,
level,
opt_name,
opt_size,
*opt_len,
[max_is (opt_size),
last_is(opt_len),
in, out]
opt_buf [],
*st

h,
fh,
f_flags,
level,
opt_name,
opt_size,
*opt_len,
[max_is (opt_size),
last_is(opt_len),
in, out]
opt_buf[],
*st

- 102 -

) ;

/*
* RPC for remote listen() system call
*/

int

) ;

/*

rso listen (
[in]
[in]
[in)
[in]
[out]

handle t
rso rfh t
int
int
unsigned32

* RPC
*

for remote receive data calls:
recv()

* recvrnsg()

* recvfrom()
* read()
* readv()
*/

int rso receive
[in]
[in]
[in]
[in]
[out]

) ;

/*

[in]
[in, out]
[in]
[out]

[out]

handle t
rso rfh t
int
int
int
char

int
rpc_sockaddr t
int
int
struct rnsg

unsigned32

* RPC for remote send data calls
* send()

IBM Confidential
June 28, 1991
DRAFT

h,
fh,
f_flags,
backlog,
*st

h,
fh,
f_flags,
buf_size,
*buf _len,
[max_ is (buf _size) ,
last_ is (buf _ len) ,
out] buf [],
flags,
*from,
rnsg_size,
*rnsg_len,
[max_is (rnsg_size),
last_ is (rnsg_ len) ,
out] accrights[],
*st

- 103 -

* sendmsg()
* sendfrom()
* write()
* writev()
*/

int rso send
[in] handle t
[in] rso rfh t
[in] int
[in] int

char

[in] int
[in] sockaddr t rpc_
[in] int

char

[out] unsigned32
) ;

/*
* RPCs for remote shutdown() system call
*/

int rso shutdown
[in] handle t
[in] rso rfh t
[in] int
[in] int
[out] unsigned32

) ;

/*
*single integer input ioctl(s):
* FIONBIO
* FIOASYNC
* SIOCSHIWAT
* SIOCSLOWAT
*/

int rso ioctl inint
[in]
[in]
[in]

handle t
rso rfh t
int

IBM Confidential
June 28, 1991
DRAFT

h,
fh,
f_flags,
buf_len,
[last_is (buf_len),
in] buf[],
flags,
to,
accrights_len,
[last_is(accrights_len),
in] accrights [] ,
*st

h,
fh,
f _flags,
how,
*st

h,
fh,
f_flags,

- 104 -

[in] int and,
[in] int data,
[out] unsigned32 *st

) ;

/*
* single long input argument ioctl(s):
* SIOCSPGRP
*/

int rso_ioctlinulong
[in] handle t h,
[in] rso rfh t fh,
[in] int f_flags,
[in) int and,
[in) unsigned long data,
[out] unsigned32 *st

) i

/*
* single output int argument ioctls:
* SIOCGHIWAT
* SIOCGLOWAT
* SIOCATMARK
*/

int rso ioctl outint
[in) handle t h,
[in) rso rfh t fh,
[in] int f_flags,
[in) int and,
[out] int *data,
[out] unsigned32 *st

) i

/*
* single output unsigned long argument ioctl(s):
* FIONREAD
*/

int rso_ioctloutulong
[in] handle t

rso rfh t [in]
[in]
[in]
[out)

int
int
unsigned long

IBM Confidential
June 28, 1991
DRAFT

h,
fh,
f_flags,
and,
*data,

- 105 -

[out] unsigned32 *st
) ;

/*
*adding and deleting ARP infonnation ioctl(s):
* SIOCSARO
* SIOCSARP 802 5
* SIOCSARP_x_25,
* SIOCDARP
* SIOCDARP 802 5
* SIOCDARP X 25
*/

int rso ioctlinARP
[in] handle t h,
[in] rso rfh t fh,
[in] int f_flags,
[in] int and,
[in] rpc_arpreq arp_req,
[out] unsigned32 *st

) ;

/*
*retrieving ARP infonnation ioctl(s):
* SIOCGARP
* SIOCGARP 802 5 - -
* SIOCGARP X 25
*/

int rso ioctloutARP
[in] handle t h,
[in] rso rfh t fh,
[in] int f_flags,
[in] int and,
[in, out] rpc_arpreq arp_req,
[out] unsigned32 *st

) ;

/*
* ifconf ioctl(s):
* SIOCGIFCONF
*/

int rso ioctlIFCONF
[in] handle t h,
[in] rso rfh t fh,

IBM Confidential
June 28, 1991
DRAFT

- 106 -

[in] int f_flags,
[in] int and,
[in] int rnax_index,
[out] int *out _index,
struct {

string0[14] ifr_name,
sockaddr t ifr_addr,

} [last is (out_index), rnax_is(rnax_index), out] ifr_req[],
[out] unsigned32 *st

) ;

I*
* ioctl(s):
* SIOCGIFFLAGS
* SIOCGIFMTU
* SOICGIFREMMTU
*/

int rso ioctlout!Fshort
[in] handle t
[in] rso rfh t
[in] int
[in] int
[in] stringO [14]
[out] short
[out] unsigned32

) ;

/*
* ioctl (S) :

* SIOCGIFMETRIC
*/

int rso ioctloutIFint
[in] handle t
[in] rso rfh t
[in] int
[in] int
[in] string0[14]
[out] int
[out] unsigned32

) ;

/*
* ioctl(s):

IBM Confidential
June 28, 1991
DRAFT

h,
fh,
f_flags,
and,
ifr_name,
*ifr_short,
*st

h,
fh,
f_flags,
c:md,
ifr_name,
*ifr_metric,
*st

- 107 -

* SIOCSIFMETRIC
*/

int rso ioctlinIFint
[in] handle t h,
[in] rso rfh t fh,
[in] int f_flags,
[in] int and,
[in) string0[14) ifr_name,
[in) int ifr _metric,
[out] unsigned32 *st

) ;

I*
* ioctl(s):
* SIOCSIFMI'U
* SIOCSIFREMMTU
* SIOCSIFFLAGS
*/

int rso ioctlinIFshort
[in) handle t h,
[in) rso rfh t fh,
[in) int f_flags,
[in) int and,
[in) string0[14) fr_name,
[in) short ifr_short,
[out) unsigned32 *st

) ;

/*
* ioctl(s):
* SIOCGIFADDR
* SIOCGIFBRDADDR
* SIOCGIFDSTADDR
* SIOCGIFNETMASK
*/

int rso ioctloutIFaddr
[in) handle t h,
[in) rso rfh t fh,
[in) int f_flags,
(in) int and,
[in] stringO [14) ifr_name,
[out) sockaddr t *ifr_addr,
[out) unsigned32 *st

IBM Confidential
June 28, 1991
DRAFT

- 108 -

'\

) ;

/*
* ioctl(s):
* SIOCSIFADDR
* SIOCSIFNETMASK
* SIOCSIFBRDADDR
* SIOCSIFDSTADDR
*/

int rso ioctlinIFaddr
[in] handle t h,
[in] rso rfh t fh,
[in] int f_flags,
[in] int and,
[in] stringO [14) ifr_name,
[in] sockaddr t ifr_addr,
[out] unsigned32 *st

) ;

/*
* ioctl(s):

' * SIOCADDRT \

* SIOCDELRT
*/

int rso ioctlSIFRT
[in] handle t h,
[in] rso rfh t fh,
[in] int f_flags,
[in] int and,
[in] sockaddr t rt_dst,
[in] sockaddr t rt_gateway,
[in] short rt_flags,
[out] unsigned32 *st

) ;

/*
* socketx () call
*/
int rso socketx

[in] handle t h,
[in, out] rso rhf t fh,
[out] int *st

) ;

IBM Confidential
June 28, 1991
DRAFT

};

- 109 -

IBM Confidential
June 28, 1991
DRAFT

2.1.4 Remote Select

2.1.4.1 Introduction

- 110 -

This document describes a design for supporting the select and poll system calls,
within FUSION, where special files may be controlled on remote hosts. The select
system call was introduced in one of the BSD releases, to provide a mechanism for a
single Unix process to monitor more than one 1/0 device at the same time. It allows
a process to await input on any number of character devices, for example.

The poll system call, which came from System V, provides essentially the same
function as select. The syntax differs slightly but the semantics are almost the same.

Note also that the select call in AIX 3.1 differs syntactically from the select call in
BSD. In this document we will refer to all of these system calls as "select".

The essential syntax of the select function is described in NIDL as follows :
select return val t
select
(

[in] int endpoint_count,
[in, out] endpoint_query_t array[size_is(endpoint_count)];
[in] long timeout

) i

typedef enum {timeout, error, okay} select_return_val_t;

typedef struct
{

endpoint_t
event set t
event set t - -} endpoint_query_t;

endpoint;
awaited_events;
events_which_occurred;

The essential semantics are as follows: a set of 1/0 endpoints is provided. For each
endpoint a set of awaited events is provided. An overall timeout is provided. The
calling process is to be suspended if necessary, until at least one of the awaited events
has occurred, or the timeout has expired. An endpoint can be anything named by a
file descriptor (file, pipe, device, socket). The events that can be awaited include
"input available", "ready for output" and "exception occurred". Some Unix versions
extend this set somewhat (e.g. System V.4). "Input available" actually means "a
single character read() will not block". "Ready for output" actually means that "a
single character write() will not block". "Exception occurred" is not precisely defined.
For the case when the endpoint is a device driver for an RS-232 serial line, "exception
occurred" is used to indicate loss of carrier.

IBM Confidential
June 28, 1991
DRAFT

- 111 -

The timeout can be specified as any value between zero and infinity, inclusive. When
the select call returns, the caller is returned enough information to determine what
happened, i.e. which awaited events on which endpoints have occurred, or whether the
timeout expired.

2.1.4.2 Requirements for FUSION
The primary requirement for FUSION is to support the select system call when the
endpoint is remote, i.e. located on a host different to that on which the calling process
executes.

Another requirement is that of heterogeneity. Non-identical kernels should be able to
inter-operate, using the remote select functionality. Since different kernels implement
select in rather different ways, this requirement means that the RPC interfaces which
support remote select should be independent of specific kernel implementation details.

2.1.4.3 Rationale for design

2.1.4.3.l Select implementations vary widely
The mechanisms described below were designed to be as independent as possible from
kernel-specific details of select implementation. It is especially important that the
RPC interfaces be independent. Some of the internal kernel interfaces may, however,
need to change to fit in with various kernels.

2.1.4.3.2 A call back mechanism is needed
The semantics of select requires a mechanism for asynchronous notification. The
device driver needs to notify its client when the events specified in a select call have
actually occurred. This implies the need for a call back mechanism. Each client host
which can issue a remote select, must have a server (kernel) process running, to
service these remote select notifications.

2.1.4.3.3 Call backs can't be made in interrupt context
Select notifications are normally performed from the interrupt context part of device
drivers, because the occurrence of the selected events, for example "input available", is
usually discovered at interrupt level.

However, because remote select notifications require an RPC to the selecting process's
host, these notifications cannot be made directly from interrupt context. This is
because an RPC typically requires the caller to block, awaiting acknowledgement, and·
it is not permissible for interrupt code to block.

Consequently, the call backs required for remote select notifications will be performed
by a dedicated kernel process. The interrupt code which notices that select notification
must be done, will record in global kernel memory which call back needs to be done,
and will just make the dedicated process runnable.

2.1.4.3.4 Optimization: avoid unnecessary rescan of endpoints
Implementation fo select vary in the amount of information that accompanies select
notification. In the BSD, for example, no information is passed, and the notified

IBM Confidential
June 28, 1991
DRAFT

- 112 -

process must re-poll all the endpoints it is selecting, to discover which events have
occurred, and at which endpoints. In AIX 3.1, on the other hand, there is a pre­
process list of pending endpoint selects. The notification code records, in this list,
infonnation about the reason for the notification.

Since re-polling remote endpoints is even more expensive, the remote select
notification RPC will pass enough information to avoid the need for re-polling over
the network.

2.1.4.3.5 Optimization: avoid expired notifications
If a process calls select specifying a finite timeout, and the timeout expires before any
of the selected endpoint events occur, it is best to avoid subsequent unnecessary
remote select notifications, since the selecting process has already been woken by the
timeout. For this reason, the RPC for the asynchronous remote poll operations passes
the timeout value. If the timeout expires before an event occurs, the data structures
are cleaned up and no call back is made.

2.1.4.4 Design details

2.1.4.4.1 pending incoming notification list
Each host will maintain a list called the pending incoming notification list(PINL),
which will contain an element for each possible pending remote select notification
which might ARRIVE AT this host. There will be an entry for each combination of
selecting process and remote selected endpoint. This list would be scanned prior to a
remote select operation, any select on the same object would be removed from this list
and also automatically removed on the remote host when the select is sent there. An
entry will be added to this list just prior to each call to the remote_selpoll() RPC. A
dedicated kernel process will check this list to remove the entries which has X
minutes old.

Some fields in the entries will be kernel-specific, but there will be enough information
to allow:

• validation of the notification call baclt

• local notification of the appropriate selecting procesS"

• avoiding wakeups of processes whose select's have already timed-out

2.1.4.4.2 pending outgoing notification list
Each host will maintain a list called the pending outgoing notification list(PONL).
which will contain an element for each possible pending remote select notification
which might be sent from this host. An entry will be placed in this list each time an
remote_selpoll () RPC returns a negative response. The entry will be removed when
the appropriate remote_selnotify() RPC is made.

Some fields in the entries will be kernel-specific, but there will be enough information
to allow:

IBM Confidential
June 28, 1991
DRAFT

- 113 -

• validation of the notification call back

• location of the appropriate remote call back server, to which the remote_selnotif:Y()
RPC will be made

• avoiding call backs to notify processes whose select's have already timed-out

2.1.4.4.3 Select control block structure
AIX3.1 has a select control block structure in the process table. The control block is
a link list which can be used to implement the pending incoming notification list and
the pending outgoing notification list. One pointer "*rem_corl" is added to point to a
structure which stores information for remote select operations.

struct sel cb
{

struct sel cb *proc_chain; /* next blk on proc chain
struct sel cb *dev _chain_ f; /* next blk on hash chain
struct sel cb *dev chain b; - - /* prev. blk on hash chain
ushort reqevents; /* requested events
ushort rtnevents; /* returned events
int dev_id; /* device id: devno, etc.
int unique_id; /* unique id: chan, etc.
struct proc *procp; /* ptr to proc table entry
int corl; /* correlator: fp, etc.
struct rem corl *rem corl; /* ptr to a correlator struct

/* for remote select
void (*notify) (); /* function ptr for nested poll

} ;

struct rem corl {

int rem_node; /* remote selecting node
int rem corl; /* corl of the client node
int rem_flag; /* flag(read/write,exception)
int rem_pid; /* remote selecting process
ulong rem timeout msec; /* timeout value

};

2.1.4.4.4 remote select file-op interface

1.
rem_select (fp, corl, reqevent, rtneventsp, notify)
struct file *fp;
int corl;
ushort reqevents;
ushort *rtneventsp;

IBM Confidential
June 28, 1991
DRAFT

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

- 114 -

void (*notify)();
{

}

Scan pending incoming notification list

If the selected file descriptor/file pointer already exists
on the PINL list with the same correlator, then remove it from
the list.

Add a new entry on the pending select notification list

remote_selpoll(h, corl, reqevent, curnode, flags, pid,
timeout, &rtnevent, &uerror, &status)

/*
* This operation will be performed by a dedicated kernel process,
* at host where the endpoint exists, to avoid unnecessary remote
* select notification
*/
stale_selscan(PONL entry)
{

}

/*

scan the pending outgoing list of registered process
if the PONL entry is valid then remove it

* This routine is called to notify the selecting process that
* the selected event has occurred
*/
notify (sel _id, unique_ id, rt events, pid)
{

}

find entry in the PONL [pid]
setup call remote_selnotify(h, select_id, unique_id, rtevents)
remove entry PONL[pid]

2.1.4.4.5 NIDL interface details
/*
* remote_selpoll () -- poll a remote endpoint, enabling
* subsequent asynchronous notification.
*/

[iderrpotent]
remote_selpoll(

IBM Confidential
June 28, 1991
DRAFT

{

}

/*

[in] handle t
[in] rendpoint_t
[in] rpoll_events_t
[in] port_t
[in] pid_t
[in] ulong
[out] rpoll _events_ t
[out] ermo t

- 115 -

[out, cormn_status] status_t)

Fake a file struct

h,
endpoint,
events,
callback _J?Ort,
pid,
rnsec_timeout,
*returned_ events,
*copy_of_u_error,
*status

if an entry exists in the PONL remove it
add new entry to the pending select outgoing notification list
set up timeout for rnsec_tirneout
if (timeout)

/*

setup call kernel process to call stale_selscan(PONL[pid])
to do the cleanup.

* file id - file ptr or file descriptor
* corl - correlator
* reqevent- requested event
* *rtneventsp - ptr to occurred event
* flags
* notify - it knows how to notify remote selecting
* process via remot_selnotify() RPC.
*/

selpoll(file_id, corl, reqevent, rtneventsp, flags, notify)

* remote_selnotify -- notify a remote selecting process
*
*/

[idempotent]
void
remote_selnotify
(

[in] handle t

of event occurrence.

h,

IBM Confidential
June 28, 1991
DRAFT

(

)
{

}

[in] int
[in] int
[in] ushort
[out, conm_status]

- 116 -

sel_id,
unique_id,
events_occurred,

status t *status

selnotify(sel_id, unique_id, rtnevents)

IBM Confidential
June 28, 1991
DRAFT

- 117 -

2.1.S File Offset Coherency

2.1.S.1 Overview
One of the interesting aspects of process transparency is that when directly related
processes run on different nodes, multiple nodes need to share open-file structures as
if they were on a single node. In essence, a single logical file struct can have physical
manifestations at several different nodes. This means that the file offset and file flags
must appear to be shared as though through a single shared struct file in memory. To
accomplish this, FUSION controls the sharable fields in the file structure with a token
mechanism known as "file block tokens" or "file offset tokens".

+---------------+ +---------------+
I Base OS I Reopen Code
+------------+--+ +--+------------+

\
\

\

I
I

I
+-------v-----v--------+
I File/Token Interface I
+-------+-----+--------+

I \
I \

I \
+------------v--+ +--v------------+
I Meta Manager <-------> Token Passing I
+---------------+ +---------------+

The basic idea behind file block tokens is that the file offset and file flags in an open
file structure (aka "file block") are only known to be valid and modifiable at a given
node if that open file's token is present and valid at the node. Implementing this
scheme requires the following logical parts:

Base Hooks
The Base OS must consistently use the file block token macros when
accessing the controlled members of ttle file structure. This requires a
trivial change to each of three dozen or so routines. For efficiency, two
fields are added to the file structure for fileblock token bookkeeping.

Reopen Hooks
The FUSION reopen code needs to initiate the fileblock token mechanism
when related processes move between nodes.

FileBlock to Token
This module provides the only tie between the fileblock token and the file

IBM Confidential
June 28, 1991
DRAFT

- 118 -

it controls. It provides the fileblock interface hook macros to the Base
OS, the reopen related functions to the reopen hooks, and the functions
which the token passing code invokes to pass the file's fields to and from
the token's caboose.

Meta Token Manager,
This module provides the functions which create, delete, move, and
recover fileblock token management. To do its job, it keeps track of the
list of nodes using a given fileblock token. It is capable of recovering
from lost tokens or from a lost token manager. It provides problem
reporting functions to be called from the Token Passing module or from
keep alive services to invoke its recovery functionality.

Token Passing Protocol
This module implements the medium frequency operations of requesting,
recalling, and granting tokens. When tokens arrive, the token's operation
branch table is used to pass the token controlled data to or from the file
structure (allowing use of the token management function in other
contexts). to install or revoke the file's data.

This design is broken down as described to allow replacement of individual modules
to change policy or improve performance. However, any replacement modules must
provide the interfaces specified here, and should meet the following goals, which this
design strives for.

Base Hooks

• Should require minimal changes to base.

• Should be nearly free if fileblock tokens aren't used.

Reopen Hooks

• Must fit in cleanly with Reopen architecture.

FileBlock to Token Interface

• Explicit tokens only created when sharing occurs.

• Explicit tokens should disappear when there is only one node using a
file block.

Meta Token Manager

• No support required from the file object's "storage node" (i.e., doesn't
depend on AFS, NFS, remote sockets, etc.)

IBM Confidential
June 28, 1991
DRAFT

- 119 -

• Token manager should be one of the using nodes when possible.

• Recover from loss of token manager as cleanly as possible.

• Reasonably simple recovery protocol.

• Handle loss of token in a reasonable way.

Token Passing Protocol

• Good performance: no extra round trips in common cases.

• Fairness (sharing nodes guaranteed to get a chance).

• Simple protocol.

• Extensible to conflicting tokens.

2.1.S.2 Hooks

As mentioned in the introduction, Fileblock Tokens require hooks in base OS and in
the FUSION file reopen code. This section describes these hooks.

2.1.S.2.1 Hooks in the Base
The hooks in the base OS consist of the addition of macros to lock and unlock the file
block token whenever the file's offset or flags are consulted or modified. In AIX 3.1
the macro is added in about 3 dozen places. These macros are easily added to any
UNIX like OS.

As an aside, the OSFl kernel (implemented on top of the OSFl micro-kernel) already
locks and unlocks file structures in these (and a few other) places, because its kernel
code is generally preemptable. The use of FP _LOCK/UNLOCK also helps OSFl
work correctly in an MP environment. An OSFl implementation of FUSION would
presumably take advantage of the existing locks by simply changing a subset of the
FP _LOCKIUNLOCK calls to call an extended macro which also handle's File Block
Tokens.

NEEDSWORK: more detail... cleanup org.

In falloc(), add code to clear out the new fields in the file structure (set state to no­
token, and pointer to null).

In the path from any system call (or its equivalent) which uses or modifies
fp->f_offset, file-block token must be obtained before using fp->f_offset or f_flag,
and held until done.

inline void FBTOKEN_LOCK(struct file *fp);
inline void FBTOKEN_UNLOCK(struct file *fp);

IBM Confidential
June 28, 1991
DRAFT

- 120 -

After FBTOKEN_LOCK is called, and until FBTOKEN_UNLOCK is called, a file's
f_offset and f_flag fields can be freely used with the normal UNIX kernel semantics.
(These are actually macro's, to eliminate any significant performance impact of
fileblock tokens when the token is explicitly or implicitly present).

The file block token hooks also require a minor addition to the base OS's file
structure. The utility of these fields will be discussed in the Fileblock Token Interface
section.

/*
*The part of a file block token's state always instruct file.
*/

struct file token hook
{

short ft_tlckcnt;
struct ftoken *ft_tcb;

struct file
{

f ifdef FILE OFFSET TOKENS
struct file token hook f ftok;

f endif FILE OFFSET TOKENS
}

The following version of AIX/3.1 's version of rwuio() shows, via ifdef's, how the
fileblock token macros are used. Rwuio is is the low level routine eventually called
when doing a read or write (kreadv() and kwritev()) under AIX/3.1. (Some comments
and blank lines have been stripped out for presentation in this document).

static
int
rwuio (fp, iov, iovcnt,
register struct file
register struct iovec
register int
int
int

ext, seg,
*fp;
*iov;
iovcnt;
ext;
seg;

rw, countp, f flag)
/* file pointer of file for
/* vector of I/O buffers
/* number of I/O buffers
/* device driver ext value
/* segment with I/O buffers

I/0

register enum uio_rw
register int

rw; /* dir: UIO READ or UIO WRITE

int
{

struct uio
int
int

countp; / return of I/O byte count
ff lag; /* extra file flags

auio;
i;
re;

/* uio structure describing I/0
/* loop counter over buffers
/* return code

IBM Confidential
June 28, 1991
DRAFT

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

- 121 -

int
label t

count;
jbuf;

/* count of bytes read or written
/* exception return point

/* */
if ((fp->f_flag & (rw=UIO_READ ? (FREADIFEXEC)

return EBADF;

#ifdef TOKENS
FBTOKEN_LOCK(fp);

#endif /* TOKENS */
auio.uio iov = iov;
auio.uio iovcnt = iovcnt;
auio.uio_segflg = seg;
auio.uio fmode = fp->f_flag I fflag;
auio.uio offset = fp->f_offset;
auio.uio resid = 0;

for (i = 0; i < auio.uio_iovcnt; i++) {
if (iov->iov_len < 0)

#ifndef TOKENS

#else /* TOKENS */
{

#endif /* TOKENS */

return EINVAL;

re = EINVAL;
goto eout;

auio.uio resid += iov->iov len; - -
if (auio.uio_resid < 0)

#ifndef TOKENS

#else /* TOKENS */
{

#endif /* TOKENS */
iov++;

return EINVAL;

re = EINVAL;
goto eout;

count = auio.uio resid;
/* ... *I
if ((rc=setjmpx (&jbuf)) -- 0)
{

IBM Confidential
June 28, 1991
DRAFT

FWRITE)) - 0)

*/
*/

- 122 -

re= (*fp->f_ops->fo_rw) (fp, rw, &auio, ext);
clrjmpx (&jbuf);

else if (re ! = EINTR)
#ifndef TOKENS

longjmpx(rc);
#else /* TOKENS */

{

}

FBTOKEN_UNLOCK(fp);
longjmpx(rc);

#endif /* TOKENS */

/* certain death!

/* certain death!

*/

*/

/* check for interrupted system call */
if (re = EINTR)

if (count == auio.uio_resid)
re = ERESTART;

/* interrupted? */
/* no data transferred? */
/* restart (perhaps) */

else
re= 0;

count -= auio.uio_resid;.
fp->f_offset = auio.uio_offset;

if (rw = UIO_READ) {
sysinfo.sysread++;
sysinfo.readch += count;

else {

}

sysinfo.syswrite++;
sysinfo.writech += count;

if (countp)
*countp = count;

#ifdef TOKENS
eout:

FBTOKEN _UNLOCK (fp) ;
#endif /* TOKENS */

return re;
}

A complete list of the places where these need to be applied.

2.1.S.2.2 Hooks in Reopen

/* partial transfer

This section describes how the reopen code propagates fileblock token state between
nodes. NEEDSWORK: more intro stuff here.

IBM Confidential
June 28, 1991
DRAFT

*/

- 123 -

2.1.5.2.2.1 Export Side
(See the reopen design).

In pproc_export_file_state, we will call f_prep_export
for each open file being exported.

f_prep_export does the following:
exports the file type (nfs, afs, •••)
Calls the file-type specific export op (FOP_PREP_EXPORT).
does file-offset-token setup (calls
prep_export_fileblock_tokens()).

prep_export_fileblock_tokens does the following:
if (fp->f _fbtokenp == NULL) {

fbtoken_init(fp);

2.1.5.2.2.2 Reopen Side

}

pass fp->f _fbtokenp->fbtk_id to remote node in
the file-block token data (pointer to location provided
by f_prep_export.

when calling (*fp->fo_reopen) (),

/* See also reopen.pcode */
if (file_info.fbtk_id != NULL_FBTKID) {

fbtkp = find_fileblock_token(file_info.fbtk_id);
if (fbtkp !=NULL && (fp = fbtkp->filep)) {

simulate a dup to appropriate fdes;
return;

else
fbtkp->filep =new file structure •••
fp->f _fbtokenp = fbtkp;

struct fbtoken *
find_fileblock_tokenp(fbtk_id)
{

if (already have fileblock with that id in our hash table)

IBM Confidential
June 28, 1991
DRAFT

}

- 124 -

return a pointer to that fbtoken;

allocate a new fbtoken
newfbtoken = new_fbtokenctrlb();

newfbtoken->fbtk_id = fbtk_id;
/* lock the new token? */

do FBTK USING FILEBLOCK RPC to fbtk_id.tkm_nod.e,
so he will add us to the list of using nodes.
can " ... USING ••• " fail? What about when the TKM is trying to
give manager authority to another node?
If so, it could fail with "go to this node instead",
in which case we would just try FBTK_USING ••• to the new TKM.
return newfbtoken;

RPC (At the TKM)
fbtk_using_fileblock(fbtk_id, using_host)
{

}

find the token;
if didn't find it, return ENOSUCHTOKEN;
(

if token is in "moving to new TKM" state,
return new TKM with ETRYNEWTI<M

add the using host to the list of hosts on this token;

when calling the last fp->fo_close (before freeing the file block),
call FBTK_CLOSING_FILEBLOCK(fp->f_fbtokenp->fbtk_id);

at the TKM:
fbtk_closing_fileblock(fbtk_id, closing host, offset, flags)
{

find the token;
if didn't, return ENOSUCHTOKEN;
(same checks as using_fileblock about trying to move TKM) •

if the node had the token, take the offset and flags
from this call and stuff them into the token.

IBM Confidential
June 28, 1991
DRAFT

}

- 125 -

delete the specified host from the token's list of hosts.
if only one host is using the token,

give that host the token,
and tell him to stop using tokens.
free token control block

else if no more hosts are using the token,
free the token control block.

(if closing host was the local host and > 1 using host le~,
choose a new TKM and start the Switch_TKM protocol

return OK;

2.1.5.3 Fileblock to Token Interface
This module connects the fileblock token hooks to the token mechanism and to the file
reopen code.

Some internal macros:
#define _FBTK_PRESENT(fp) \

((fp)->f_fbtok. fb_tokenp == NULL I I \
((fp)->f_fbtok.fb_tokenp->tk_flags & (PRESENTIREVOKED)) \

= PRESENT

/* Lockcnt in the file structure and in token structure are shadows
* of each other. This decides which to use at a given time.
*/

#define _FBLOCKCNT(fp) (* (fp->f_fbtok.fb_tokenp \
? &(fp->f_fbtok.fb_tokenp->lockcnt) \
: &(fp->f_fbtok.fb_lockcnt)))

#define _FBTK_HOlD(fp)
#define _FBTK_RELE(fp)

(++_FBLOCKCNT (fp))
(--_FBLOCKCNT (fp))

inline
FBTOKEN_LOCK(file *fp)
{

}

if (! FBTK _PRESENT (fp))
gtk_acquire(tkp);

_FBTK_HOID (fp};
return;

IBM Confidential
June 28, 1991
DRAFT

- 126 -

inline
FBTOKEN_UNLOCK(file *fp)
{

tkp = fp->f_fbtok.f_tokenp;
ASSERT (tkp = NULL I I (tkp->tk _flags & PRESENT)) ;
_FBTK_RELE (fp);
if ((tkp = fp->f_fbtok.fb_tokenp) !=NULL) {

if (_FBLOCKCNT(fp) = 0 && (fbtkp->tk_flags&REVOKED)) {
gtk_release(fbtkp);

}

fbtoken_init(fp)
{

}

choose a TKM host. (must support FBtoken protocols.
current node is usually the best choice) .

tkp = gtkm_newtoken(preferred manager node);
fp->f _fbtokenp = tkp;
tkp->data = (char *)fp;
tkp->ops = fbtok_ops;

2.1.5.4 Last Close
NEEDSWORK: Last close of an open file block can have side effects for some kinds of
open files (eof on a pipe or socket, dropping carrier on a tty). The easiest way to
avoid having the last close of a file occur is to bump the reference count in the file
structure. Thus a remote child will keep last close from happening for sockets, fifos,
and devs. However, do we want a way to move the fileblock token management
AW A Y from the socket/fifo/dev node?

NEEDSWORK: If so, what keeps the underlying object from being closed? Who
bumps the ref count on that file structure, and when does the ref count get
decremented.

NEEDSWORK: Are such files treated differently? How does the file layer know
whether the underlying object supports multiple independent opens as identical to a
single open with dups? Does this require a flag or return code from the prep-export
or something?

NEEDSWORK: Note that if the server code for fifos, sockets, etc. use the file structure,
they should be careful not to try to acquire the fileblock token at the server side, since

IBM Confidential
June 28, 1991
DRAFT

- 127 -

it was just acquired by their client, and getting the token would really thrash! Instead
such server routines should receive f_flag and f_offset (if needed) as parameters,
rather than trusting the fields in the file structure at the object's "storage" node.

2.1.5.S Generic Token Module
The token implementation used by Fileblock Tokens is composed of two modules: the
token passing and the meta-token management. The token passing module implements
the token passing and fairness protocol. The meta-token management module
implements a protocol for choosing a token manager node, and for recovering from
the failure of nodes involved with a given token.

Although it was originally hoped that the DFS token mechanism could be used to
manage the tokens for fileblock tokens, it falls short in two areas: the token
management responsibilities can't be easily moved between nodes, and it can't recover
from the loss of the token manager node. Because of these shortcomings, File Block
Tokens provide their own (relatively) general token mechanism. However, because of
the modularity of this design, any token management scheme which fulfills the
requirements of Fileblock Tokens can be used.

For reasons of simplicity, this design describes a single token scheme, rather than a
multiple reader/single writer scheme, and there is only a single token which covers
both the file flags and the file offset. NEEDSWORK: However, the protocol should be
extensible to include a more complex token scheme without changing its RPC
interface, so a node which implements only the single-token protocol can participate in
a cluster which allows multiple tokens.

2.1.5.S.l Data Structures
NEEDSWORK: Need some intro here ... need more meat on OS's. The expanded data
structures should be entirely generic. They should include handler ops for caboose
code.

/* A file block token id implies both the id and the TKM node. */
struct token_id {

token manager node;
unique file block id cookie;

};

struct token
{

/* Token Using Node Parts */
Token id
int lockcnt;
int wantcnt;

/* replaces ft_tlckcnt, if tokens active */
/* nurn procs waiting for token to arrive. */

IBM Confidential
June 28, 1991
DRAFT

}

- 128 -

flag
AM M;R I PRESENT I REVOKING I REQUESTING I RECOVERING

struct tok locus * using_nodes;
struct tok_locus * wanting_nodes;
struct token_ops * ops;
caddr t *data;

2.1.S.S.2 Token Passing
NEEDSWORK: This is where the token fairness is... also calls out to the token's
registered arrival, recall, and released handlers.

This module implements the granting and revoking of the generic tokens onto which
fileblock tokens are piggy-backed. The operations provided are:
/* acquire the token. Returns with the token "held". */
gtk_acquire(tkp)
{

}

++tkp->wantcnt;
if (tkp->flag & REQUESTING)

}

/*someone already asked for it.*/
sleep(&tkp->flag, PTOKWAIT);
ASSERT(tkp->flag & PRESENT);
return;

tkp->flag I= REQUESTING;
request_token(tkp, &tok_data);
tkp->flag I= PRESENT;
tkp->flag &= -REQUESTING;
tkp->lockcnt += tkp->wantcnt;
tkp->wantcnt = 0;
(*tkp->ops->acquired) (tkp, &tok_data);

/*
*called at the requesting node to get token .•• caller didn't know
* if TKM was local or not.
*/

request_token(tkp, datap)
{

if (tkp->flag & AM_M:;R)

else
srv_request_token(tkp, local_node, datap);

rpc_request_token(tkp, local_node, datap);

IBM Confidential
June 28, 1991
DRAFT

- 129 -

}

srv_request_token(tkp, local_node, datap)
{

if (tkp •••
}

gtk_release(tkp)
{

}

tkp->flag &= -(PRESENTIREVOKED);
if (tkp->wantcnt)

release_flag I= RE_REQUEST;
release_token(tkp, local_node, release_flag, &status);
if (status & GRANTED) {

}

/* Is this ok? Is it a problem for tkm to grant token
* via an rpc response? Should be ok, as long as
*the keep-alive's work.
*/

tkp->flag I= PRESENT;
tkp->lockcnt += tkp->wantcnt;
if (status & WANT_BACK)

tkp->flag I= REVOKED;
(*tkp->ops->acquired) (tkp);

2.1.S.S.3 Meta Token Manager
This section describes the functioning of the meta-part of the token manager. This
module creates and destroys tokens, keeps track of which nodes are can use the token,
and deals with recovery when a using or managing node is lost. The module is
comprised of four parts:

• create and destroy tokens

• track nodes using each token

• token recovery

• token manager re-election

gtkm _ newtoken (TKM)
{

if (TKM is local host) {
tkp->fbtk_id = unique_fbtk_id();

IBM Confidential
June 28, 1991
DRAFT

}

} else {

}

- 130 -

add an entry indicating that the local node
is using (and has) the token.
tkp->tk_flags = PRESENT I LOCAL_:t-Gl;

tkp->fbtk_id = rernote_new_fb_token(TI<M.host);

add tkp to the file-block-token hash table (keyed on token-id).
it?? more here ??

unique_ fbtk id ()
{

}

bump a counter ••• return a unique token (preferably
unique across reboots, but critical) .

RPC
rernote_new_fb_token(tkrn_host)
{

perfonn "Be FileBlock Token Manager" RPC to the host.
return the token id that is returned, or an error if the
RPC fails.

Normal Ops

FBTKM is initial file-block node. a unique token id is assigned (should be
unique across reboots).

Sharing nodes get token before using or modifying offset+flags.

When file is not in use at FBTKM (perhaps after a timeout or a number of
token ops) want to choose a new tkm.

Also need to handle loss of tkm gracefully.

Clearly switching tkm and recovery should be largely common code and
protocol.

To do this, the TOKEN CARRIES the list of USING NODES.

This is cheap, and since the token must be available to recover cleanly anyway,
imperfect recovery if token is lost is not made much worse in most cases.

ISSUE: limit on the number of copies of the file descriptor (i.e. on the number of
using nodes? can we degrade slightly if this limit is exceeded?)

IBM Confidential
June 28, 1991
DRAFT

- 131 -

ISSUE: (minor) policy of when the token manager should move is an interesting
issue: could do as soon as tkm node closes the file, or could wait a while... would
probably depend on how many nodes are using the file at that time. If its just one,
then move immediately. Otherwise might wait to see if the file is really being actively
used.

TKM's using-node-set updates must be atomic w.r.t. sending back set with token.

NEEDSWORK: FBTK Suppression When the FBTK notices that the set of using nodes
is reduced to 1 node, he proposes to that node that the token overhead be eliminated.
If the node accepts, the token is made implicit at that token holding node. If the
number of using nodes is reduced to 0, the token is simply freed.

2.1.S.S.3.l Recovery
This design attempts to provide full recovery from most failures, and partial recovery
in all cases. The various failure modes possible are:

• Loss of a participating node which didn't hold a token.

• Loss of a node which held a token (a.k.a. loss of token).

• Loss of the token manager node.

• Loss of the token manager node and the token.

kicked off when tkm decides to give up its token-managing, (usually because it no
longer has the file open locally). or when some node notices that the token manager
is gone (node-down).

Old TKM Selects new tkm (current token holder, if any, otherwise a random using
node for this token). Mark token as "in motion" (to prevent new requests
or adding new nodes). Sends BecomeTKM RPC to new TKM, passing
current list of token using nodes. (TKM rejects subsequent ops on the
token, since he's not the manager anymore).

New TKM Create the token manager data structures. We have a "hint" of the using
nodes, but don't have confirmation yet. (particularly in lght of the
problem with keeping an accurate list of nodes at the non-TKM nodes)
Performs NewTKM RPC to each node on the list of using nodes for the
token that he's the new TKM. Each node which returns an ACCEPT
code to the RPC is added to the list of using nodes for the tokent The
response may also add to the hint list of nodes to query, to handle the
race between an rexec to a new node and the movement of the token
manager.

ISSUE: is there a problem figuring out when to take nodes OUT of the list of possible
using nodes? Could maintain a guess set and a known set. When receive a new set
from the TKM, we do guess &= -known ... hence getting rid of node if TKM knew of

IBM Confidential
June 28, 1991
DRAFT

- 132 -

it. However, if the tkm found out about the node we added to our guess list, but
didn't tell us until that node had gone out of our guess list, we wouldn't delete it.
NEEDSWORK: We only add nodes to the guess-set at a US when exporting the file.

Other

case 1: A token related RPC is rejected by the node we thought was the token
manager (but he hasn't crashed). assume that some other node is
becoming the new TKM; wait a reasonable amount of time for the TKM
to change, then ... fall through to case 2:

case 2: No response/node-down on a token related RPC to old TKM. Perform a
topchg like protocol with the rest of the known token using nodes. (see
later section about TKM-down recovery).

2.1.S.S.3.l.1 FBTKM-down Recovery
When a node notices that the FBTKM has "crashed" (connection is lost), the
remaining using nodes must be coordinated. This is done via a protocol vaguely
similar to our current topchg: Since each node knows a subset of the list of token
using nodes, these subsets are merged. A new token manager is elected (node holding
token at time of TKM crash, or least loaded node?). The new TKM then performs the
protocol described above under "New TKM".

NEEDSWORK: merge protocol, and election of new TKM.

Issue: Does the TKM move if there are requests pending?
Its not hard to do:

enter "in-motion" state, wakeup kprocs waiting for tokens. This
automatically rejects each pending request.

Also simplifies things, since it may not be easy to determine if there are
requests pending.

Issue: Does adding a using node to TKM's list require recalling the token? Doing so
would have the advantage of increasing the chance that the token would carry a
complete list of using nodes. However, it wouldn't make it certain, and we have to
handle the case where the token's using-node-set is incomplete anyway, so don't
bother (would slow things down even more).

2.1.S.S.3.2 RPC's

Be_TKM RPC:
Like token grant:

token id
using node list (a guess)
Does this imply the token is granted to new TKM?
(can it be refused?)

IBM Confidential
June 28, 1991
DRAFT

am_new_TKM RPC:
tok id

- 133 -

tok using node list (IN-OUT!)
Returns more nodes to poll,

did called node have the token?

Recovery - TKM down

node which first notices TKM down becomes candidate TKM

Candidate TKM:
Poll known using nodes with "am_new_TKM" RPC.
if no using nodes are found, must wait long enough for other nodes
(which may have larger US lists) to notice the TKM is down.

ASSERT: all existing using nodes can find each other if they put their info together.
i.e., if they all notice that the TKM is down, they CAN find each other and compose a
complete list of using-nodes.
(casual proof: assume sequenced access to TKM's US list. assume not: hence there
exist two nodes that have no "link" between them (neither appears in other's US list).
Since one or other must have received token first, that node MUST appear in the later
node's US list.)

ISSUE: what happens if we have two candidate TKM's collecting nodes!?!?
NEEDSWORK! ! !

2.1.S.6 General Assumptions
node-down notification

distinction between rejection and timeout or stale handle.

2.1.S.7 Performance
expected with this design

potential optimizations

Batch multiple token messages when doing large scale PT ops ("I'm using the
following fileblocks whose tokens you manage") to save round trips.

2.1.S.8 Packaging
As the design shows, fbtokens can be broken into several parts. Of those parts, only
those enumerated in the "Hooks in the Base" section of this document must be
present. All the other parts can be installed along with the rest of DEE. However,
FUSION's reopen does require all of fileblock tokens in order to operate completely
correctly.

IBM Confidential
June 28, 1991
DRAFT

- 134 -

Another aspect of this design is that the separation into 5 major modules is done along
lines which will allow replacement of meaningful pieces of the implementation. For
example, an implementation which wanted a different token passing policy (?to reduce
thrashing) could replace the token passing module. An implementation which wanted
to provide a more complex recovery protocol could provide a replacement for the
"Meta-Manager" module.

Finally, the token mechanism provided for fileblock tokens is general enough so that it
could easily be used to support other uses of tokens which need similar recovery
properties.

IBM Confidential
June 28, 1991
DRAFT

- 135 -

2.1.6 File Reopen and Lock Inheritance

2.1.6.l Overview
This section of the FUSION Design Specification describes the method FUSION uses
to allow the various flavors of open files to be moved between nodes to support full
Process Transparency. It explains the software structure which provides this
functionality, the changes this imposes on a base operating system, and the data
structures used.

This section does not describe the RPC's actually used to send the file state between
nodes. Instead, it describes the mechanism for unambiguously representing that state
in a format which can be moved between nodes via RPC's described in other parts of
the FUSION Design Specification. The mechanisms provided here (generically known
as "file reopen") are used in a number of places throughout the FUSION architecture,
including, but not limited to, rfork, rexec, and migrate.

A UNIX process's file related state consists of more than just its set of open file
descriptors. It also includes a current working directory vnode, a current root
directory vnode, and a set of vnodes associated with its current executable and any
attached shared libraries. In addition, each individual open file can have associated
record locks, flags, and an offset value. This design provides ways of moving as little
as a single vnode, as much as a process's entire file related state, or anything
meaningful in between.

This design provides the required functionality with minimal changes to the base
operating system and remote file access protocols (AFS and NFS). It handles all
current file related objects and state, and its hierarchical, modular structure will readily
accommodate future extensions.

See also DE PTrans Functional Specification, Sections 3.5.3.2 and 3.4.10.

2.1.6.2 Reopening Files - Top Level
Where the words "export" and "import" are used in sections related to file reopen,
they mean:

Export

Import

To package the complete state of an object so it can be sent to another
node. In practice this means filling in a strongly-typed data structure,
based on the state of the object. Export does NOT imply destruction of
the object.

To reproduce an object which exists on another node by decoding the data
structures produced by an "export". This is most often called "reopen" in
this document.

When performing one of the major FUSION Process Transparency operations (migrate,
rexec, or rfork) which creates a process on a destination host, the originating process

IBM Confidential
June 28, 1991
DRAFT

\

- 136 -

exports all of its file-related state. This consists of:

• current working directory and root vnodes

• open files and any associated record locks

• file offset tokens for shared open-files

When process file state is decomposed, shows its hierarchical structure. For example:
open-file is

file descriptor number
per-open-file flags
pointer to a file structure

file structure is
flags
file off set
file type
file-type dependent pointer

file-type dependent pointer points at
vnode

or
socket

vnode is
VFS pointer
ops pointer
VFS-type dependent data

The FUSION Reopen Design parallels this hierarchy, taking advantage, where possible,
of the object oriented nature of the file and vnode interfaces. Thus each file or vnode
type "knows" how to export and import itself. This also allows the internal workings
of a given level in the hierarchy to be opaque to higher levels.

The overall picture is of parallel hierarchies of export and import operations. A given
export or import operation may invoke the import or export operation of next level
below itself. The export and reopen operations for a given level (file, vnode, record
lock, socket ...) are peers; data produced by the export can ONLY be decoded by the
corresponding import operation.

2.1.6.2.1 export_procea _file_ state
Export_process_file_state() is the top level function which invokes the mechanisms
which allow the file state to be reproduced remotely. Its "output" is a potentially
large, multi-level data structure (a proc_file_state_t) which can be used as an argument
to any one of the process-transparency RPC's. It fills in this data structure by passing

IBM Confidential
June 28, 1991
DRAFT

- 137 -

pointers to the subcomponents of the data structure to the export "ops" of the"
process's various vnodes and open files; (The details of the export "ops" are
explained later in this chapter.)

Pseudo-code: (our prototype contains considerably more detail than this, but this is the
basic idea).

export_process_file_state(
proc_file_state_t *pfsp, /* output file state */

)

{

}

ptrans_op_t op_type /* rexec, migrate, rfork */

export current working directory into pf sp->cwd.
export root directory into pfsp->root.
for each open file descriptor,

call f_prep_export(fd, pfsp->open_files[], op type)
to export the struct file's internal state.

2.1.6.2.2 import _process_ file_ state
"lmport_process_file_state()" is the converse of export_process_file_state. Its function
is to decode the data structure produced by the export, and recreate all open files and
file related state for the process. A pointer to the target user structure is passed to
allow flexibility in the implementation of the process transparency operations which
call this function; In the current FUSION prototype, import_process_file_state is called
in the parent of the process being created.
Pseudo-code:

void
import_process_file_state(

pt_open_files_info_t
struct user *up

*fstate;
/* target user struct for info */

)

{

}

call vnode_reopen to reopen the current working directory.
if rootdir specified

call vnode_reopen to reopen the current root.
/*
*Reopen all the process's files, and fill in the target
* process's u.u_ofiles (up->u_ofiles).
*/

for each open file exported,
call f_reopen(fstate.of_ofiles[this file])
to reopen the given up->u_ofile[].

IBM Confidential
June 28, 1991
DRAFT

- 138 -

The Current Working Directory vnode and Current Root vnode (if specified) vnodes
are reestablished via an extended VFS operation (VFS_XVGE1' which will be
described in this document's section on vnode recreation.

2.1.6.3 Struct-File Recreation
Part of reproducing a process's file state on another node involves recreating an each
open file (i.e., struct file). This section will discuss the operations which perform this
feat, as well as the changes they require to the set of file operations. Since there is
more than one type of file, it will also discuss the requirements placed on the new file
operations for each file type.

2.1.6.3.l f_prep_export
The function f_prep_export() is responsible for exporting a struct file. This means
both the file's internal state, and its "identity". The file's external state is exported via
the file's own PREP _EXPORT operation. The file's "identity" (important to support
UNIX semantics for files shared by multiple processes) is exported via the file-offset
token package, initiated here by f_prep_export (File Offset Tokens are more fully
discussed in their own section of this design.)

The data structure built by f_prep_export() is approximately as follows (see the
prototype's NIDL for the more complex truth):

{

file-descriptor, (0, 1, 2 ••..)
file-block-token-id,
file-type,
file-type specific "reopen handle"

}

The following is a simplified version of f_prep_export from the FUSION prototype.
f_prep_export(int fd, fdes_reopen_handle_t *fdrhp, op_type_t op_type)
{

}

file_obj_reopen_handle_t *forhp;

fdrhp->fdh_poflags = u.u_pofile(fd);
if (op_type == EXEC && fd is close-on-exec)

return;
fdrhp->fdh_fdes_num = fd;
forhp = &fdrhp->fdrh_handle_union;
forhp->frh_ftype = f_export_file_type(fp->f_type);
FOP_PREP_EXPORT(fp, &forhp->frh_union);
prep_export_fileblock_tokens(fp, &ofrhp->ofrh_fbtok_id);

IBM Confidential
June 28, 1991
DRAFT

- 139 -

2.1.6.3.2 f _reopen
The function f_reopen interprets the f des_reopen_handle_t created by f_prep_export tn
reproduce an identical open file. Due to its interaction with FUSION File Offset
Tokens, this also reconnects multiple file descriptors referring to a single struct filtJ
(i.e. "dups").
int

f_reopen(

)

{

}

struct user *up,
fdes_reopen_handle_t *fdrhp

fbtoken tcb t
struct file *fp;

*fbtkp;

fbtkp = get_fileblock_token(&fdrhp->fdh_file.ofrh_fbtok_id);
if (fp = fbtk_get_filep(fbtkp)) {

}

/* File already open locally: really easy */
set_ufd(up, fdrhp->fdh_fdes_num, fp, fdrhp->fdh_fdes_flags);
fp->f _count++;
return 0;

/* Translate the file-type from net representation to local */
f_type = irrport_ftype(fdrhp->fdh_file.ofrh_handle_union.frh_ftype);
fpalloc ((struct vnode *}NULL,

fdrhp->fdh_fdes_flags,
f _type,
ftype_to_file_ops (f_type),
&fp);

/* Per-open flags */
/* file type (sock or vnode) */

/* Let file-block token code know about this new file & f offset */
fbtk_set_filep(fbtkp, fp,

fbtkp->fbtk_token.fb_f_flag, fbtkp->fbtk_token.fb_f_offset);
err= FOP_REOPEN(fp, &fdrhp->fdh_file.ofrh_handle_union.frh_union);
set_ufd(up, fdrhp->fdh_fdes_num, fdrhp->fdh_fdes_flags, fp);
return err;

2.1.6.3.3 file types ~
In order to decide whicla file ops a file uses,_to decide which file-reopen-op to call, file
reopen only needs to know the "file-type" of the file. In AIX 3.1 has a numeric file­
type in each file table entry. This is are currently:

DTYPE VNODE
DTYPE SOCKET
DTYPE GNODE

DTYPE_GNODE is only used internally by certain device access cases such as

IBM Confidential
June 28, 1991
DRAFT

- 140 -

reading a device to mount it, so this is never exported. This set of file types doesn't
currently conflict with any of OSF's exported file types. However, to ensure
interoperability with other operating systems in the future, those file-types are exported
in an OS independent representation. This is translation is performed by the routines
"f_export_file_type()", and "f_import_file_type".

2.1.6.4 Extended File Ops
The file structure in VFS based kernels contains a pointer to the set of operations
which can be done on that file, and each unique type of file (currently only sockets
and vnodes) must provide its own set of these operations. These are normally:

f o rw
f o ioctl
fo select
f o close
fo stat

To allow the export_process_file_state to export and remotely reopen files, we add the
following operations to this set:

fo_prepare_for_export
fo_reopen

2.1.6.4.1 fo _prepare _for_ export
The "fo_prepare_for_export" for a given file type is invoked via the
FOP _PREP _EXPORT macro, and has the following responsibilities:

1. perform whatever modifications are necessary to the local file and its underlying
data structures to allow the file to be shared with a remote host.

2. prepare any file locks on this file for export.

3. provide a "reopen handle" which can be used at the destination host to remote
host to reopen the file.

4. provide an indication of what file-locks need to be reacquired on the destination
node.

2.1.6.4.2 fo _reopen
The "fo_reopen" operation for a particular type of file, invoked by the FOP _REOPEN
macre, does the reverse: it takes a prototype file block and "reopen handle", and
performs the magic appropriate to the file type to make the file block refer to the same
object as the original open file, with all its locks and other state intact.

2.1.6.4.3 vno _prep_ export
For vnode based files, the export file operation is implemented by the functiol1'
"vno_prep_export()". This function just finds the file's vnode, and passes it to
vnode_prep_export, which knows how to export a vnode (and is separately callable for
use in other parts of FUSION).

IBM Confidential
June 28, 1991
DRAFT

/

- 141 -

vno _prep_ export (

)
{

struct file *fp,
frh union t *frhup /* File Reopen Handle union */

vnod.e_reopen_handle_t *vrhp;
struct vnode *vp;

vrhp = &frhup->frhu_vnode_h;
vp = fp->f_vnod.e;
vnode_prep_export (vp, fp->f_flag, vrhp);
if (process has file locks, and this file descr's

pofile flags says this file may have locks)
VNOP PREP EXPORT LOCKS (vp, fp, - - -

&vrhp->vrh_vnode_reopen_data);

2.1.6.4.4 vno_reopen
For vnode based files, the reopen file operation is implemented by the function
"vno_reopen". This simply uses the new Vnode and lock recreation mechanisms
provided by FUSION to complete the initialization of a partially filled in file structure.
See Vnode Recreation, 2.1.6.7, and Relock, 2.1.6.5.2, for the design of these
mechanisms.

vno_reopen(struct file *fp, vnode_reopen_handle_t *vnod.e_rhp)
{

}

2.1.6.5 File Locks

int err;

err = vnode_reopen(vnode_rhp, fp->f_flag,
&fp->f_vnode, &fp->f_vinfo);

if (err)
return err;

err= VOP_RELOCK(fp->f_vnode, &vnod.e_rhp->vrh_file_locks);
return err;

Several substantially different kinds of file locking currently coexist in the UNIX
world. These include BSD style "flock" and SVID style fcntl locks. "Lockf' from
/usr/group can be implemented as a subset of fcntl loclas, so lockf doesn't affect this
design. Microsoft also specifies XENIX and DOS locks, both of which are enforced
locks.

Of these flavors, only fcntl locks are currently accepted by POSIX and available in
this design's primary target OS. Flock style locks will fit within the FUSION process

IBM Confidential
June 28, 1991
DRAFT

- 142 -

transparency architecture, but the detailed design of their export-lock/relock
implementation is not included here.

To implement its file-lock related subcommands, the typical fcntl system call (like
AIX 3.1) does some correctness checking, then builds a parameter block and invokes
the file's vnode's VOP _LOCKC1L operation. The implementation of the locking data
structures is (in principle) left up to the individual vfs implementation.

For the purposes of lock inheritance across node boundaries, we only need to consider
file systems which can export files and locks between nodes. These are

NFS
This requires the FUSION NFS extensions. See section 3.1.2, NFS
Interoperability.

DFS exported file systems
This means both normal native file systems exported through a "glue" layer, and
Episode file systems.

DFS imported file systems
File systems managed by the DFS Cache Manager.

Vnodes of these VFS types must now support two new vnode operations whose
interfaces are described below. Design for how these operations will be implemented
in these VFS's can be found in the appropriate NFS and DFS sections of this design
specification.

2.1.6.5.1 Prep_ export _locks
The prep_export_locks vnode operation is performed by vno_prep_export, the prep­
export file op for vnode based files. Like other prep-export operations, it is done at
the originating node of a process performing a process transparency operation which
requires lock inheritance. Under current (fcntl/lockf) lock semantics, rexec anti
migrate require relock, but this could easily be changed to support any reasonable lock
inheritance scheme in the future.

This operation is actually invoked as VOP _PREP _EXPORT_LOCKS, as shown in the
pseudo-spec below (actually a macro, of course):

VOP_PREP_EXPORT_LOCKS(
IN struct vnode *vp,
IN ident, /* tagged: pid or file id */
OUT struct file locks *locks);

Each implementation of the operation must build and return (via *locks) a data
structure which describes any locks that the ip{dent held on the vnodt!. It must also de
whatever token magic is necessary to allow exclusive locks to be reacquired remotely··
(since the local locks won't have been removed by then). Ident is left flexible here
since it seems possible that it may eventually be necessary to provide locks keyed by
independent-open (file table slot) (like flock), in addition to the current POSIX locks,

IBM Confidential
June 28, 1991
DRAFT

- 143 -

keyed by pici.

Fenti lock's are lost on exit of the locking process, yet the implementation of rexec
and migrate depend on the ability of the originating process to exit through relatively
normal means. This apparent contradiction is handled in DFS and the FUSION
version of NFS locking by actually having two conflicting independent locks granted
at the same time for the file. The exiting of the original physical process at
originating node on successful migrate, or the exiting of the destination physical
process on migrate failure thus only cause one of the two conflicting sets of locks to
be released; the correct regions of the file remain locked continuously in either case.

Correctly implementing flock style locks with rfork would require changes in DFSr.
DFS would need to grant lock tokens to nodes based on an !dent, not just based on
normal token conflict rules. However, since true flock style locks aren't currently
called for in POSIX or other standards, and since flock style locks are currently
emulated incorrectly by most OS's which support lockf/fcntl locks, this is unlikely to
be an issue.

2.1.6.S.2 Relock
At the destination node of a migrate or rexec, the vno_reopen will invoke the
RELOCK vnode operation of any vnode based files which need locks reestablishetl.

VOP _RELOCK (
IN struct vnode *vp,
IN struct file locks *locks);

This operation must interpret the locks specified and perform any internal magic
necessary to reacquire them. Again, these locks will be reacquired BEFORE they are
released at the originating node, so the VFS must allow this, given the appropriate
verifiers placed in the file_locks structure by its peer, pre_export_locks().

2.1.6.6 Sockets - Non-Vnode Based Files
For the migration of file descriptors for non-VNODE based files, the file type must
have its own versions of "fo_prep_export" and "fo_reopen" which do what is
necessary to setup the file block and its underlying data structures.

For example, the "fo_prep_export" for socket-type files operation would create it!f
socket-side light-weight server process, and hand the original socket to that process.
The "fo_reopen" for sockets would replace the file's set of "file-ops" with a pointer to
the set of remote-socket file ops, and would change the open file's f_type on the 0

destination host to indicate that it is a "remote .. sock:et" rather than just a socket. The
file ops for remote-sockets would, of course, know how to talk to the socket-host's
server process to do the actual socket operations.

Note that another interesting thing about the file-ops for remote sockets is that its
"fo_prep_export" function could be different than that for a normal socket: it would
not be desirable to have the socket data go through multiple hops just because the

IBM Confidential
June 28, 1991
DRAFT

- 144 -

process which has the socket open had been migrated more than once, so the data sent
to the destination side would indicate the original socket host and the id of the socket.
(Of course, the normal socket migration messages could also be general enough to
handle this case).

2.1.6.7 Vnode Recreation
When an open file being moved is one whose implementation uses vnodes, its file-type
specific routines export and reopen file ops (vno_prep_export and vno_reopen) invoke
new vnode ops and VFS ops which have been added to support Process Transparency.
These operations are:

VOP _PREP _EXPORT
Creates a "reopen handle" which can be used at the destination to reopen
the vnode. This also does whatever is necessary for the VFS type to
allow the reopen to be done at the destination (magic with exclusive mode
tokens for AFS, for example).

VOP _PREP _EXPORT_LOCKS

vfs_xvgel

See Relock, section 2.1.6.5.2.

This VFS op (not Vnode op!) uses the "reopen handle" produced at the
origin node to get a held vnode in the specified VFS. This closely
resembles the existing vfs op "vfs_ vget". It is a separate op mainly due to
the fact that the "standard" vget operation varies slightly between different
Operating Systems. In any case, vfs_xvget is straight forward to write in
terms of an existing vfs_ vget.

VNOP _REOPEN
This VNODE op resembles the standard open vnode op: it "opens" a
vnode, given a pointer to the vnode and some information about the open.
It is different in that no access checking is done, and conflicts due to
exclusive open modes are ignored (since the file was already open).

VNOP _RELOCK
See Relock, section 2.1.6.5.2.

2.1.6.7 .1 vnode _prep_ export
Although the prep_export and reopen VnodeNFS ops implement most of vnode
reopen, they need help to do the job; the prep_export op doesn't know how to export
the complete logical identity of its own VFS, and since reopen is a VFS operation, the
VFS must be known before it can be called. I.e., since each VFS type can have its.
own format of vnode handle, some mechanism must wrap these functions to identify
the format of the handle.

To solve this problem, these ops are always invoked by the VFS independent
functions vnode_prep_export and vnode_reopen. These two functions are also called

IBM Confidential
June 28, 1991
DRAFT

- 145 -

independent of open file structs to allow recreation of a processes current working
directory, text and shared library vnodes, and from any other place in FUSION which
needs to unambiguously and cleanly transmit the identity of a Vnode to another node.

/*
* Invoke the export mechanism for a vnode.
* Also exports the vfs_type so the remote reopen code knows how to
* interpret the vnode_reopen_handle to find the the right vfs.
*/

int
vnode_prep_export(struct vnode *vp, int modes, vnode_reopen_handle_t *vrhp)
{

int err;

err= VNOP_PREP_EXPORT(vp, modes, &vrhp->vrh_vnode_reopen_data);
if (err = 0)

vrhp->vrh_vfs_type = vp->v_vfsp->vfs_type;
else

vrhp->vrh_vfs_type = MNT_BADVFS;
return err;

2.1.6.7.2 vnode_reopen
This function unwraps the VFS handle, and uses information in its "wrapper" to find
or create the correct incore VFS structure. When it has done so, the VFS's reopen
operation is called to recreate the desired vnode. Naming VFS's is discussed in its
own section.

int
vnode _reopen (

)

{

vnode_reopen_handle_t *vnode_rhp,
long flags,
struct vnode * *vpp,
caddr t *vinf op

struct vfs *vfsp;
extern struct vfs *nfs_find_vfs(struct nfs_reopen_data *);
extern struct vfs *dfs_find_vfs(struct nfs_reopen_data *);
caddr_t dummy_vinfo;

if (vinf op = NULL)
vinfop = &dummy_vinfo;

switch (vnode_rhp->vrh_vfs_type)
case MNT NFS:

IBM Confidential
June 28, 1991
DRAFT

}

- 146 -

/* Scan the vfs for the one which has this handle */
vfsp = nfs_find_vfs(&vnode_rhp->vrh_vnode_reopen_data);
break;

default:
return EINVAL;

case MNT DFS:
case MNT DFS GLUE:

}

/* find or create the appropriate logical volume. */
vfsp = dfs_find_vfs(&vnode_rhp->vrh_vnode_reopen_data);
break;

err= VFS_XVGET(vfsp, vnode_rhp->vrh_vnode_reopen_data, vpp);
if (err)

return err;
if (IS_SPECIAL_FILE(*vpp))

/*Allow device & fife code to setup the vnode's ops */
special_ vnops (*vpp) ;

if (flags) {
err= VNOP_REOPEN(*vpp, flags, ext, vinfop);
if (err)

VNOP _ VRELE (*vpp) ;

return err;

To export the process's current working directory, uses one of the extended vnode
operations which will be discussed in the section of his document specifically about
migrating vnode based files (VN_PREP _EXPORT).

The vnode export and reopen ops will also likely be used to reacquire a processes text
and shared library vnodes on process migration or rfork (remote-fork). See the
appropriate area of those design sections for more information about text and library
reopen.

2.1.6.7.3 VFS Naming
Naming a specific vnode given a file system is straight forward, though the precise
format of the file-handles varies between file system types. The difficult part about .
migrating open files is naming the file systetll. In particular, we need to name the
specific VFS, which includes the place where the actual file system is mounted in the
case of AIX 3.1, which can mount the same piece of a file system on more than one
mount point~

IBM Confidential
June 28, 1991
DRAFT

- 147 -

2.1.6.7.3.1 Clustered VFS Naming
In DCE without FUSION, information about a file system is normally brought into
core on a specific host when a process on the host traverse down across a mount or
junction point into the file system. The file system will then be located either via the
VLDB or the Cluster Mount Server, depending on whether it is a junction point or an
"/etc/mount" mount, respectively.

However Process Transparency adds the twist that it may be necessary to reopen a
vnode in a particular VFS when the neither the VFS nor the VFS it is mounted on arc
in core at the destination host.

The logical first step in being able to produce the needed VFS is to be able to name
the VFS. In a FUSION cluster, there are two possible kinds of names for VFSs,
though there could conceivably be arbitrarily many.

Logical VFS-ID
If the file system is mounted using an "/etc/mount" (NFS or otherwise),
the mount is given a VFSid by the AIX 3.1 mount code. However, AIX
3.1 VFSids are unique only at the node where they are generated, so the
following tuple will be use&:
~111tH9do. VFSid/

to name these mounts. In clustered operation, the the VFSid could be
assigned by the CMS. The actual network location of the file system
(uuid?), its root vnode, and the the inode the file system is mounted on
(i.e., where it appears in the cluster-wide name space) can either be
obtained from the Cluster Mount Server, or they can be pulled from the
originating node.

Interrogating the originating node:

• Involves fewer nodes, and is hence more robust"

• Facilitates out-of-cluster operations, since it may be difficult or
impossible for a host to interrogate the CMS of a cluster he isn't a
member of4.

• Can work in inter-cluster or non-clustered operation~

• Has potential security problem, since doesn't require extraordinary
privilege to cause mounts to appear on a nodet

Interrogating the CMS;

• May be more likely to be "correct" (fewer races).

• Gives the CMS more control over and information about which hosts
know of which mounts, facilitating unmounts.

IBM Confidential
June 28, 1991
DRAFT

VOL-ID

- 148 -

Given the above, this design assumes that the mount information is pulled
from the CMS. If later code is added to support pulling the information
from the origination node, the security issue will need to be dealt with.

When a file system appears in the DCE name space due to a juncti.on­
point (aka "funny symlink"), the file system will not have a VFS-id, but
will have a Volume ID which the VLDB will be able to tum into the
location of the file system. Hence we will use

<VOLUME-ID~
to name these VFS 's.

However, note that the the important distinction (currently) between a
junction and a mount is that a junction point works like a symbolic link
with respect to " .. " traversal out of its root: " .. " across a junction point
yields the "preferred" mount point (specified when the file system is
"attached"?), rather than the original path from "/".

Again, there is a choice as to whether to pull information about the
volume from the originating node or to get the needed information about
the volume from the VLDB. In this design, the VLDB will always be
used, otherwise the local VLDB cache might never get filled in for some
volumes.

NOTE: if the destination node doesn't know about the CELL of a volume,
it will need to ask either the origin node or the CMS about that cell (to
add the cell to its cell table). This should probably be done in
cm_GetCell() when the cell is not found. (or the afs_reopen op could try
to do a cm_TryBind if the reopen fails).

Now that we know the ways that VFS's can be named, we need a way to search the
set of incore VFS 's at a host for a particular name. The current AIX 3.1 code has a
similar operation which we will use as a base for our extended "find_ vfs ".

If we're unlucky and the VFS doesn't already exist at the destination host, we need to
create and setup a VFS, more or less as if a local process had traversed the Cluster~s
name space into the desired VFS.

One difference between a VFS created for a migrating file-open and and one created
via an actual path traversal is that the path traversal will automatically bring the path
of VFS's to which the desired VFS is attached into core. Hence the target VFS's
mounted-on-vnode pointer will point to a real vnode, which will point to a real VFS,
and so on, up to the root.

While creating this chain would usually be possible, it would most often be a waste,
and it could add considerable overhead to normal Ptrans-OPS. In addition, it will be
impossible to create that chain when the process is migrating outside the cluster, since

IBM Confidential
June 28, 1991
DRAFT

- 149 -

there will NOT be a path from the file system to the "alien" root, or when the
mounted on vfs has gone away due to an unmount or a node failure.

Instead of always building the complete VFS chain, we propose thar.
The VFS points at a "magic" mounted-on vnode which contains information
about how to find the mount-point when a" .. " is performe4.

The code in the base OS's lookup loop will need to be enhanced to allow FUSION to
catch and properly handle • .. '.

The details of how to perform this pseudo-mount need to be worked ou•. and they will
vary between VFS types (particularly between AFS and those VFS types already
supponed by AIX 3.1). Hopefully this will basically boil down ta:

• create a place-holder mount-point vnode (the vnode to be hidden).

• if using "magic" mounted on vnode scheme mentioned above, Initialize this vnode
with private data about how to find the real mounted on vnode and VFS.

• perform the guts of a "normal" mount operation to mount the vfs on the
placeholder vnodc~

2.1.6.7.3.2 Non-Clustered VFS Naming
When performing an rexec or similar operation between two nodes which arc not in
the same cluster (or not in clusters at all), there is no CMS to query about mount
information. When this occurs, files can only be reopened if their VFS is otherwise
present or obtainable.

For DFS junctions, since the volume id is part of each file• s "fid", a file can be
reopened if its volume is already present at the destination node, or if there is a
VLDB available and the VLDB knows about the volume:

For /etc/mounts, the actual VFS can not be recreated without a CMS. This is not fatal
since without a CMS, there isn't general name space transparency. Instead, since a
file's physical volume ID is sent to the destination as pan of its reopen handle, the.
non-clustered code will scan for any anchored VFS with the same physical volumei If
it fails to find such a VFS, it will create a "floating" VFS for the volume, and do the
reopen in that VFS. If the VFS or volume can't be recreated, or its server can't be,
contacted, the reopen fails.

This policy allows an administrator to establish a "cluster-like" environment by doing
the majority of the /etc/mounts in common for his set of machines. When a process
moves between these machines, it will usually find the "equivalent" VFS for each of
its open files and current working directory.

2.1.6.7 .4 Specific File System Types
This section briefly outlines the changes required by FUSION reopen in each of the
network visible types of file systems in DCE. More detail for each type of file system
can be found in sections specifically about them (DFS in the next section, FRFS and

IBM Confidential
June 28, 1991
DRAFT

- 150 -

NFS in their own sections elsewhere in this design document).

NFS
The NFS Token Manager will need to support the new extended vnode
operations for open-vnode migration. The mechanism is discussed in
detail in the "NFS Token Manager Design".

TRFS (Tightly Replicated File System)

AFS

TRFS will also need to support the reopen operations. It may be
necessary to change storage nodes when migrating an open file in a TRFS,
but hopefully this will be supported without extra work since changing
storage nodes is already required functionality. This area may need more
work, however.

AFS refers to Episode file systems, and to UFS or journaled file systems
which are "exported" using the Transarc's PFS glue layer.

2.1.6.8 AFS changes
This section describes the changes needed AFS to support Process Transparency.

FUSION's remote-fork, run, remote-exec, and process migration operations put special
requirements on DFS file system protocol exporters, and on the generic Token
manager, which are not present without FUSION. In particular, some tokens
(guarantees) which formerly could never be granted to more than one client at a time
may now need to be granted to several clients at once. In addition, it may be
necessary to move members of the Lock class of tokens "atomically" from one host to
another.

When process transparency operations are used, the rights which are associated with a
single open, lock, or other operation on a file may need to be moved or shared with
one or more other clients. This is basically because processes on two or more clients
must be able to view a given open as if the processes were on the same client.

2.1.6.8.1 Token Types
The AFS Token Manager supports at least the following types of tokens.

Open:

Data:

read
write
exclusive
shared-read

read
write

IBM Confidential
June 28, 1991
DRAFT

Lock:
read lock range
write lock range

stat(aka sync):
read
write

- 151 -

Most of the token types can be "shared" using the existing token services:

• Open-Write and Open-Read tokens can already be granted to more than one client
at a time. Hence recreating these tokens on another client isn't a problem.

• Read & Write Data and Read & Write Status are all short term tokens, so there
should never be a problem with revoking them to allow operations from another
client. There is no reason to explicitly obtain these tokens when migrating.

However, the following tokens will need to be used in ways that the currently
proposed TKM does not support.

• Open-Exclusive (O_NSHARE): The destination host of a remote-process operation
like rfork() or run() will need to "reopen 11 the file in exclusive mode, even though
an exclusive meQo, open token has already been granted.

• Open-Shared-Read: Because AIX-V3 allows opening a file for Shared-Read AND
Write (O_RSHAREIO_ WRONL Y) it must be possible for the remote-proc-op
destination host to reopen the file with the same mode, even though that mode is
self-conflicting.

• File Locks (Read & Write): The TKM's Lock tokens will be presumably be used
as part of the implementation of both lockf() and flock() (i.e., lockfx()). We wiU
need to transfer such locks between hosts when a process holding locks migrates.

2.1.6.8.2 Proposed Changes
The proposed extensions to VFS+ consist of four new operations: "prepare-fo1r
export", "reopen", "prepare-for-lock-export"' and "relock•. The "prepare" calls would
export the tokenID from the original open or lock, and the reopen/relock ops would
provide these token ID's as "proof' that the reopen/relock is for good cause and
should be allowed, although the open or lock would violate normal exclusivity rules.

These new operations need to be supported in the Client Cache Manager's VN-Ops, in-­
the AFS Protocol Exporter, and in the PFS-Glue's VN-Op1.

Below we outline the requirements placed on the AFS components (CM, the PFS glue,
the PE and the TKM) by the 3 new VNODE ops and 1 new VFS op.

Cache Manager:

a. For "prepare" on exclusive opens and write-locks, the source side cache.
manager must provide a way to mark the original exclusive token as "invalidate

IBM Confidential
June 28, 1991
DRAFT

- 152 -

on last release". If this were not done on either the source, receiving or both
nodes, subsequent independent opens on either machines could incorrectly
believe they had exclusive access. Invalidate-on-last-close is provided by the
Cache Manager's CM_TOKENLIST_RETURNL and
CM_TOKENLIST_RETURNO flags.

b. In addition, since a single write-lock token may be used for locks on more than
one subrange, any write-lock token being exported must be subdivided so that
the token range exactly matches the lock range. It can then be marked as
"invalidate-on-last-release" without harmful side effects. To perform this
subdivision, "cm_prep_export()" will need to perform a new call (Subdivide­
Lock) to the Protocol Exporter.

Subdivide-Lock: this is almost trivial, just by re-requesting the token parts
you've already got. The TKM interface seems to allocate a new token ID, then
grant it automatically if you've already got the tokens.

PFS Glue:

a. For "prepare" on exclusive opens or write locks, the glue must provide a way to
mark the original exclusive token as "invalidate on last release" (see Cache
Manager, above). Invalidate (or release) token on last release seems to be
accomplished by the TS_FLAG_ WAITING bit in the current glue-token-cache
code.

b. Any lock tokens will need to be subdivided to exactly match the range actually
locked, as for the CM.

PE:

a. The PE must support a GetToken operation which takes a tokenid as an
argument, and perhaps a special flag indicating that the specified token should
be granted without checking for conflicting tokens.

Since AFS_GetToken() already accepts a token id as part of one of its
arguments, reopen can use that interface. The "don't-check-conflicts" flag will
only need to be added if the token-id passed to AFS_GetToken is normally
filled in. Otherwise we can use the valid token-id as an indication to the TKM
not to check for conflicts.

b. If the simple solution for Subdivide-Lock mentioned above under CM proves to
be unworkable, the PE will need to export an operation to subdivide a (write­
lock) token. This would just be passed to the TKM.

TKM:

a. An interface is needed which allows the PE or the PFS Glue to request a toke1;1
which would normally conflict with already granted tokens. The existing routina
tkm_GetToken() will be modified to allow this when its flag argument includes

IBM Confidential
June 28, 1991
DRAFT

- 153 -

the "TKM_NO_CONFLICT_CHECK" bit. This flag must in tum be passed
down through

tkm _ GetTokenNoVolCheck. ()
tkm_TokenList_NoConflicts()

tkm_Token_CheckRevokeReqd()
In tkm_Token_CheckRevokeReqd, the comparisons of the
"hostPossessingToken" fields are considered equal if the new flag contains the
TKM_NO_CONFLICT_CHECK bit.

b. The TKM eMA Y• need to provide a new operation which subdivides a
token into up to three subranges. This will only be necessary if the trick
mentioned earlier (re-requesting the existing lock as up to three separate locks)
is unworkable. This would be similar in concept to the swap-token which is
performed when attempting a lockf, but different in that it can't fail due to a
conflict (since the subdivision of the lock is requested by the lock token holder).
The TKM would presumably then call the host module to tell it that the token
had been subdivided. This could probably use the swap_token interface, with
the minor extension that there are up to three subdivisions given to a node,
instead of just two.

tkm_Subdivide(in_token,
rangel, range2, range3,
out_tokenl, out_token2, out_token3);

2.1.6.9 General Assumptions
It is assumed throughout that the underlying kernel will be implemented using VFS's,
and will use the file-ops structure (which we will be able to extend).

It is also assumed that each type of file and VFS will be required to support the
operations necessary to allow migration of open files. If this is not true for a given
type of file or VFS, processes with such files open will not be able to migrate.

This also implies that AFS is able to export any UFS file system. This means that
either all UFS's are "glued" at mount time, or the AFS code is able to modify the
existing vnodes in core to "glue" them.

2.1.6.10 Error Handling
Errors occurring during any of the new file, VFS, and vnode operations return errors
in the normal way.

If any errors occur during a process movement operation, the operation fails. Any
files which had been successfully reopened on the destination node will eventually be
closed when the new process cleans up and exits.

2.1.6.11 Security
The export/reopen protocol described here could be a tempting security hole: an open
file's reopen handle is sent to another node, potentially in cleartext. Whether or not to

IBM Confidential
June 28, 1991
DRAFT

- 154 -

encrypt or otherwise protect the reopen handle in transit depends on several factors.

If the handle itself is or contains a "secret" in the security structure of the underlying
remote file system, and would normally be encrypted for that reason, then clearly
transmission in the clear is dangerous. A scheme like this might be used since it
allows Unix open/chmod/read semantics to work properly.

If access checking is done by authenticating the requesting user and then checking the
requesting user's rights to access the file, then sending the handle in the clear doesn't
compromise the file. However, if the handle is transmitted in the clear, then the
handle is subject to modification by gateways.

To avoid these problem, the various reopen handles should be sent encrypted when the
possibility of them being modified in transit exists. Whether or not to encrypt them
should be at least an installation option, but individual file systems can encrypt their
handles just by having their prep-expon op do so, and their reopen op decrypt.

In addition, the special handles generated for devices and fifo's by the export ops of
FUSION fifo, devices, and sockets must either be encrypted or have some other
security policy. It might even be necessary to double-encrypt such handles: in a
server's secret key to prevent forging of a handle, and in a session key, to prevent
interception of the server's secret handle. Interception of the server's secret key
would allow an interloper to access the device.

2.1.6.12 Performance

2.1.6.12.1 Expected

2.1.6.12.2 Potential Optimizations
The export loop for a process's file state could realize that a given file has already
been exported, and avoid actually doing the second export for the current pt op. (i.e.,
only do stdin, not stdout & stderr ... the latter two being handled by their fileblock
tokens).

2.1.6.12.2.l Parallel and Batched RPC
Reopen need to do a number of operations which need not be serialized. This means
that reopen could take significant advantage of parallelizing and batching if they were
made available from the RPC implementation.

To allow batching some RPC's should be delayed until a synchronize operation is
invoked. The RPC's would then be sorted by destination, and sent in batches.. That
would be straight forward:

• Add a new attribute "asynchronous" to RPC language of your choice. All such
rpc's must "return void" (enforce by RPC compiler). Code must be careful not to
use "OUT" parameters until the sync op has returned (not enforced).

• For each such rpc, three pieces of client code are generated instead of one:
The first just stashes its arguments in a queue.

IBM Confidential
June 28, 1991
DRAFT

- 155 -

The second client side routine knows how to interpret the stashed arguments,
marshal them, and put them into an area provided by the rpc batching code.
The third stub would have code to unmarshal the response data out of the area
provided by the rpc batch handling code. (note that most of this code is already
generated by the compiler).

• Code called from the sync op would just scan, sort, and perform (in parallel)
chunks of RPC's via a single round-trip to each node involved.

2.1.6.13 Packaging
The file-reopen and lock inheritance code is relatively non-invasive, requiring only that
a few new vnode ops be added to the base and to file systems the base provides. In
general, the upper level reopen modules can be dropped into an OS as an extension,
without otherwise disturbing it.

NEEDSWORK: We need to examine how the reopen stuff interacts with the CMS. In
particular, how does the reopen code know that the CMS isn't present?

IBM Confidential
June 28, 1991
DRAFT

2.2 Remote Processing Support

2.2.1 Vprocs

- 156 -

The FUSION vproc interface is a protocol used to implement remote process
management with minimal intrusion in the AIX V3.1 Unix operating system. The
vproc architecture which this design is based upon is described in the Locus
Computing Corportation vproc architecture paper entitled "Vprocs: An Architecture
Supporting Process Transparency".

The design issues with regards to implementing vprocs within a remote process
environment are divided into sections.

1. The vproc architecture has already been defined in the functional specifications
document. There are certain issues which pertain to the vproc architecture
which are implementation defined. This first section describes these areas.

2. The private vproc data, defined within the vproc structure as vp _pvproc is an
implementation defined area which needs much discussion as to its design. This
section goes into gory detail about the private data area of the vproc for this
implmentation.

3. Once the implementation issues for the vproc design have been clarified, the
modifications to the AIX V3.1 code can be discussed. Even if remote
processing is not supported in the vproc implementation described above, the
modifications to the base operating system kernel still must be done to provide
support for the vproc layer.

4. The sections above, when implemented, allow a single node system to run with
the vproc architecture. Remote support must still be added to complete the
design of vprocs for the FUSION implementation. Support for remote
processing, including the design of the message passing system and any
additional support is given in this section.

2.2.1.1 Base Vproc Interface
The base vproc interface is concerned with any implementation dependencies of the
vproc object. The vp vops field is described in detail. The table of operations is
given, along with the function declarations; The rules for the existence of a vproc are
given which are specific to this implementation. The reference count field
vp ref count is used to keep track of how many references currently exist for a
vproc. - vp loc, the field defined to be used to find vproc objects on a system has its
structure defined. In addition, the semantics of how to locate a vproc associated with
a process is also discussed, along with the operations used to implement this
functionality.

2.2.1.1.1 Vproc Operations
The table below defines the set of vproc operations which are used in this
implementation. Next to each vproc operation is the calling convention used to invoke

IBM Confidential
June 28, 1991
DRAFT

(

- 157 -

the routine. All but the last three operations are the operations as specified in tho
vproc functional specifications documena.

vops Jork _relationships
vops _exit _relationships
vops_wait
vops _proc _nice
vops_pgrp_nice
vops _sigproc
vops _sigpgrp
vops _set _stop_ state
vops _setpgid
vops _setsid
vops _get _pgrp _sid
vops _setpinit
vops _setpri
vops _getpri

VOPS_FORK_RELATIONSHIPS()
VOPS_EXIT_RELATIONSHIPSO
VOPS_WAIT()
VOPS_PROC_NICE()
VOPS_PGRP _NICE()
VOPS_SIGPROC()
VOPS_SIGPGRP()
VOPS_SET_STOP _STATEO
VOPS _ SETPGID()
VOPS_SETSID()
VOPS _GET _PG RP_ SID()
VOPS _ SETPINIT()
VOPS_SETPRI()
VOPS_ GETPRI()

pvproc _setpinit. pproc _setpri, and pproc _getpri are three extended vproc operations
which are specific to the AIX V3.1 operating system. These operations are not
required to be supported on other implementations of vprocs.

The vp ops is an array of indirect function pointers used to implement the standard
set of vproc operations to implement POSIX semantics for process management.

All vproc operations return an integer valuct. A zero return value signifies the
operation was successful; a nonzero value returned is interpreted to mean an error
occurred during the operation and the value signifies a UNIX errno which the calling
operation can subsequently store in u. u _error of the calling process.

2.2.1.1.1.1 vops_fork_relationships- Initialize a new vproc for a process

int (*vops_fork_relationships) (pp, v, pid, procp)
IN struct vproc *pp;
INOUT struct vproc **v;
IN pid_t pid;
IN struct proc *procp;

Parameter

pp - Pointer to parent's vproc which is used to initialize new process.
v - Pointer to child's vproc which is being created.
pid - Process ID for the new process. This is a unique value.
procp - Pointer to physical process structure allocated for child process.

IBM Confidential
June 28, 1991
DRAFT

- 158 -

Description

A new vproc is allocated and initialized for the process being created, specified by tho
pid parameter. The physical process data object procp, which has already been
created, is passed in as a parameter such that it can be attached to the vproc through
the private vproc data area. Information used to create the new process is taken from
the pp parameter, which will be the parent of the new process. The vproc created far
the new process is returned using the v parameter.

In addition to the vproc, the private vproc data area must also be created and any
process relationships such as parent-child-sibling lists, process group lists, and uid''
relationships must be addressed.

The semantics of this operation are such that this should be performed only after all
physical process creation of the new process has been successfully performea.

2.2.1.1.1.2 vops_exit_relationships - terminate process relationship3

int (*vops_exit_relationships) (v)
IN struct vproc *v;

Parameter

v - vproc associated with terminating process.

Description

Perform the various process relationship operations with respect to when a process
terminates. The process which is terminating is specified by the v parameter.

• Any children of the terminating process must be reassigned to the INIT process

• the terminating process sends a SIGCHLD signal to its parent to notify it of an
impending terminating child

• if the parent of the terminating child is ignoring the SIGCHLD signal, thev I
terminating process must then be removed from its parents' parent-child-sibling list'i< I
along with resigning from its current process group and session.·2 I

• In relation to the process group, the terminating process must also determine theo
effects of creating orphaned process groups of the process group which it is ir I
exiting along with the process groups of all of its children. I

2.2.1.1.1.3 vops_ wait - wait for process terminatioq

int (*vops_wait) (v, pid, options, wstat, ru_loc, found_child,
wait_satisfied, ret_val)

IN struct vproc *v;

IBM Confidential
June 28, 1991
DRAFT

IN pid_t pid;
IN int options;
INOUT char *wstat;
INOUT struct rusage *ru loc;
INOUT int found_child;
INOUT int wait_satisfied;
INOUT int ret_val;

Parameter

v-
pid-
options -
wstat -
ru loc -
found child -
wait satisfied -
ret val -

Description

- 159 -

Allow the calling process specified by the v parameter to obtain status information
pertaining to one of its child processes. The operation is used to search through th•
process relationship information which is located in the private vproc data. Various
options permit status infonnation to be obtained for child processes that have stopped
or terminated. The pid and options parameters specify the set of child processes
which status is requesteti. The wstat parameter is used to hold the child exit status;
ru _ loc contains the resource usage of the exited child.

found_child, wait_satisfied, and ret_val are used to keep track of the whether
a successful wait operation has occurred, and to return the process ID of the child.

This opuation-,,only dotennines wftic~,terminated·or «oppcd1dlild precess will status
infonnation be retrieved. Any physical wait operations, such as getting the resource " I
statistics or deallocating any resources still held by the stopped or terminated childt I
must still be performed on the node where the physical process currently existsl I

2.2.1.1.1.4 "4''~;,,alce- Read/write .process nice valufl/

int (*vops_proc_nice) (v, nice, flag)
IN struct vproc *v;
INOUT nice t *nice;
IN int flag;

Parameter

IBM Confidential
June 28, 1991
DRAFT

- 160 -

v - vproc associated with process which operation is performed.
nice - nice value to be set, or returned nice value.
flag - determines whether nice value is read or written.

Description

Retrieve or set the nice value for a process- specified by the v parameter. The fla§
parameter is set to VPROC_SET to set the nice value; VPROC_GET is used to gc.'lt
the nice value of the process. The nice parameter will contain the nice value to be
set, or the returned nice value, depending upon the operation being performed.

2.2.1.1.1.S vops_pgrp_nice - Nice operation on process group

int (*vops_pgrp_nice) (g, nice, flag)
IN struct vproc *g;
INOUT nice t *nice;
IN int flag;

Parameter

g - vproc associated with process group leader.
nice - nice value.
flag - determines whether nice value read or written.

Description

Retrieve the lowest nice value of all members of a process groul>" The process group
leader is specified by the g parameter. The flag parameter is set to VPROC_SET
to set the nice value; VPROC _GET is used to get the nice value of the process
group. The nice parameter will contain the nice value to be set, or the returned nice
value, depending upon the operation being performed.

2.2.1.1.1.6 vops_sigproc - Send a signal to a processf
Signal operations may require appropriate permissions before the signal is senu For
both operations defined below the signal privilege semantics are now defined.

Privilege is allowed if the process sending the signal has its real or effective uicf
match the real or effective uid of the process receiving the signal, or if the sending
process has appropriate privilegei. Appropriate privileges can be interpreted to mean.
superuser privilege. In the case of SIGCONT, the user ID tests are not applied if both'
processes are in the same session.

int (*vops_sigproc) (v, signo, effuid, realuid, sid, has_priv, flag)
IN struct vproc *v;
IN int signo;
IN uid t ef fuid;

IBM Confidential
June 28, 1991
DRAFT

IN uid_t realuid;
IN pid_t sid;
INOUT int *has_priv;
IN long flag;

Parameter

- 161 -

v - vproc associated with process being sent the signal.
signo - signal being sent.
effuid - effective uid of calling process.
realuid - real uid of calling process.
sid - session identifier of calling process.
has _pri v - returns whether or not calling process can send signal.
flag - determines if checking just for privilege or sending signal.

Description

Send a signal as specified by the signo parameter to the process specified by the v
parameter. The parameters effuid, realuid, and sid are used to verify the process
sending the signal has correct privileges. If has _pri v is nonzero, the process
sending the signal has superuser privilege; otherwise the remaining tests must still be
done. has _pri v will return a nonzero value if the process has correct privilege to
send the specified signal and flag is set to VPROC_PRIV.

2.2.1.1.1.7 vops_sigpgrp- Send a signal to a process group(

int (*vops_sigpg:r::p) (g, signo, effuid, realuid, sid, has_priv)
IN struct vproc *g;
IN int signo;
IN uid t ef fuid;
IN uid_t realuid;
IN pid_t sid;
IN int has_priv;

Parameter

g - vproc associated with process group leader.
signo - signal being sent.
ef fuid - effective uid of calling process.
realuid - real uid of calling process.
sid - session identifier of calling process.
has_priv - determines if calling process is superuser.

Description

IBM Confidential
June 28, 1991
DRAFT

- 162 -

Send a signal specified by the signo parameter to the process group specified by the
g parameter. The parameters effuid, realuid, and sid are used to verify the
process sending the signal has correct privileges. If has pri v is nonzero, the process
sending the signal has superuser privilege.

2.2.1.1.1.8 vops_set_stop_state - Set/clear process stopped state*

int (*vops_set_stop_state) (v, flag)
IN struct vproc *v;
IN int flag;

Parameter

v - vproc of physical process.
flag - determines action of operation.

Description

Set or clear the stopped status of a process specified by the v parameter. The flag
parameter is specified as SET_ STOP_ ST A TE if the process is to be in stopped state;
UNSET_STOP_STATE takes a process out of stopped state.

2.2.1.1.1.9 vopso._setpgid - set process group ID·'

int (*vops _ setpgid) (v, g, pid, sid)
IN struct vproc *v;
IN struct vproc *g;
IN pid_t pid;
IN pid _ t sid;

Parameter

v - vproc associated with process having process group set.
g - vproc associated with process group leader.
pid-
sid-

Description

The process specified by the v parameter either joins an existing process group or
creates a new process group within the session of the calling process. The group
leader of the process group which v is joining is specified by the g parameter. If a
new process group is being created, v and g are the same. The parameters pid and
sid are used for error checking when adding the process to its new group.

IBM Confidential
June 28, 1991
DRAFT

- 163 -

The process must first resign from its current process group and session before bein3
added to its new process group. If this is a new group, the group is added to tho
appropriate session lisl.

The effects of changing process groups in relation to creating orphaned process groups
must also be determined. The affected process groups that must be checked are the
group which the process is leaving, the process groups of all children of this process,
and the new process group of this process. The effects of changing process groups
will create new orphaned process groups or unorphan process groups.

2.2.1.1.1.10 vops_setsid- Create a new sessio!f

int (*vops_setsid) (v)
IN struct vproc *v;

Parameter

v - vproc associated with process becoming new session.

Description

The process specified by the v parameter must first resign from its current process
group and session; a new session is thus created, with this process being the session,, I
leader; A new process group is also created with this process being the process group I
leader. I

A determination must be made as to whether leaving the old process group will create
an orphaned process group. In addition, the process group of each child of this
process must also be checked for becoming an orphaned process group"" The new
process group as created by the session operation is by definition an orphaned process
group.

2.2.1.1.1.11 vops_aet_pgrp_sid- Get process group and session identifiq

int (*vops_get_pg:rp_sid) (v, pg:rp, sid)
IN struct vproc *v;
INOUT pid_t *pg:rp;
INOUT pid_t *sid;

Parameter

v - vproc associated with process.
pg:rp - return value of process group identifier.
sid- return value of session identifier.

Description

IBM Confidential
June 28, 1991
DRAFT

I

- 164 -

Retrieve the process group and session ID's of a process. The v parameter specifies
the process to be queried. The pgrp and sid parameters are used to return the
values retrieved from the process.

2.2.1.1.1.12 vops_setpinit- Create a kernel procesl

int (*vops_setpinit) (v)
IN struct vproc *v;

Parameter

v - vproc associated with kernel process.

Description

The specified process is to become a kernel process. It is removed from its current
parent and reattached to the lNIT process. This is an extended operation specific to
the AIX V3.1 implementation of the vproc layer.

2.2.1.1.1.13 vops_setpri - set the priority of a proces!I

int (*vops_setpri) (v, pri)
IN struct vproc *v;
INOUT int *pri;

Parameter

v - vproc associated with process having priority set.
pri - priority value to set, returns previous priority.

Description

Set the priority of the process specified by the vproc parameter. The physical process
structure is accessed through the vproc object and the priority is set if no error
conditions are met. The previous priority of the process is returned in pri, -1 if an
error occurred. This is an extended operation specific to the AIX V3.1
implementation of the vproc layer.

2.2.1.1.1.14 vops_aetpri - get the priority of a process,,

int (*vops_getpri) (v, uid, ruid, priv, pri)
IN struct vproc *v;
IN uid_t uid;
IN uid_t ruid;
IN int priv;
OUT int *pri;

IBM Confidential
June 28, 1991
DRAFT

- 165 -

Parameter

v - vproc associated with process specified.
uid - effective uid of calling process.
ruid - real uid of calling process.
pri v - privilege level of calling process.
pri - return value for priority of process.

Description

The priority of a specified process is returned. v is used to reference the physical
process entry. If the calling process has correct permissions as specified by the uid,
ruid, and pri v parameters, the priority is returned within the pri parameter. This is
an extended operation specific to the AIX V3. l implementation of the vproc layer.

2.2.1.1.2 Where Vprocs Exist
There are a prescribed set of rules which govern when a vproc will exist or not exist
on a given node. The conditions as to when each rule is met is given below. In the
context of this section, "marking a vproc" implies incrementing the vp _ref_ cnt of 'Ill I
the vproe. "Unmarking a vproc" implies decrementing the vp _ref_ cnt of the vproo. I
When decrementing, if the reference count goes to zero, the vproc is deallocated from I
the system. This also implies the private vproc data area is also deallocated with the I
vproc. I

Marking and unmarking a vproc reference count is performed using the operations
VPROC_HOLD(v, str) and VPROC_RELEASE(v, str~. The v parameter specifies
the vproc which this operation takes place. The str parameter is a string value
identifying the reason for changing the reference count. For example, given the rule
defining a child process, the vproc reference count would be incremented with the
operation VPROC_HOLD(v, "CHILD"). Of course the string has its value as a
debugging instrument and to make the code more readable. Under normal operation
the string value would not be use~

J\Cli"I Mark the vproc because it is a process that is currently executing on
this node. The vproc is unmarked when it no longer is executing on
this node (e.g. process migration, process termination):

Original Nodl Mark the vproc because it is a process that was initially created on thit
node (the "original execution node") and eithe. (a) the process is still
activo or (b) the process ID is still the process group leader or session.
leader for a set of processes.

Condition (b) satisfies the rule that the origin node always knows the
execution node of the vproc. If for example a process group leader
migrates to another node, the possibility exists that the origin node
would not have a vproc for the process group leader anymore.

IBM Confidential
June 28, 1991
DRAFT

Parent':'

Child~

- 166 -

Processes in the process group requesting the location for the process
group leader (more specifically, the process group list) would not be
able to find it. Marking the vproc (or not unmarking the vproc) by the
caller due to condition (b) will always keep the vproc for the process
group leader and session leader on the origin node.

The vproc will be unmarked if the process (which is the group leader)
is exiting and there are no other processes within this process group. In
this situation there is no further need to keep the vproc for the group
leader on the origin node since there are no other vprocs within this
process group.

Mark the vproc because it is the parent of a process currently executing
on this node. The child vproc marks its parent vproc on the execution
node of the child process.

The primary use of this rule is to instantiate a parent vproc on the
execution node of the child process. According to section 2.2.1.2.1.3 a
parent vproc must exist on the execution node of a child vproc while it
still is active.

Mark the vproc because it is the child of a process currently executing
on this node. The parent vproc marks a child vproc on the execution
node of the parent process.

The primary use of this rule is to instantiate a vproc for a child process
on the execution node of the parent, since the execution node of the
parent vproc contains a complete list of child vprocs that are currently
active.

Process Group Leader·tMark the vproc because it is the process group leader of a
process currently executing on this node. The process group leader
vproc gets marked by a process group member on the execution node of
the process group member.

Note that the operations are also used by process group leaders, and
thus are applied to the process itself if the process group leader is a
member of its own process group.

Process Group Membet Mark the vproc because it is a member of a process group~
for which the process group leader is active on this node.

This rule is used to instantiate a vproc on the execution node of the
process group leader to be included in the list of processes in the
process group. Note that the operations are also used by process group
leaders, and thus are applied to the process itself if the process group
leader is a member of its own process group. See section 2.2.1.2.1.4
for more information on process group leader, process group member

IBM Confidential
June 28, 1991
DRAFT

- 167 -

lists.

Stmion Leadfll Mark the vproc because it is the session leader of a process currently
active on this node. A session member executing on the node of the
session leader marks the session leader. ,

Note that the operations are also used by the session leaders, and thus
are applied to the process itself, since a session leader is always a
member of its own session.

s~ion ~ember Mark the vproc because it is a process group leader and it is 8'

member of a session for which the session leader is executing on this
node.

Gene rid

This rule is used to instantiate a vproc for a process group leader on the
execution node of the session leader to be included in the list of
sessions in the session list. Note that the operations are also used by
the session leaders, and thus are applied to the process itself, since a
session leader is always a member of its own session. See section
2.2.1.2.1.5 for more information on session lists.

Mark the vproc because it is for a process being "temporarily" referrea
to. A "temporary" referral is one where a process ID is referred to (e.g.
in a system call) and the process being referenced may not have a vproo'
on the current node (i.e. none of the above conditions may be true). In
this case a vproc may be created for the duration of the reference (i.e.
for the duration of the system call).

There are other instances where a vproc is marked temporary. The
most widely used example is when a vproc is locked and unlocked. A
lock operation implies a temporary marking on the vproc (even if the
lock isn't immediately satisfied and the process attempting the lock
becomes blocked), and an unlock operation removes the temporary
marking. This design removes the race condition where a process
requests a lock for a vproc, becomes blocked waiting for the lock, then
the vproc gets deallocated due to an operation performed by the process
which currently has the vproc locked.

2.2.1.1.3 Finding Vprocs
vp loc is defined to be a structure containing two pointers which implement a hash
cl:iain for vproos. More information is given in the section describing how vprocs are
located. The structure is accurately defined as follows:

typedef struct {
struct vproc *vp _ hashfwd;
struct vproc *vp _ hashbwd;

location_t;

IBM Confidential
June 28, 1991
DRAFT

- 168 -

In relation to the various rules that govern the existence of a vproc on specific node,
three different methods are defined to access a specific vproc.

When the vproc is known to exisr (e.g. the currently executing process needs to access
its vproc), a call to VPROCPTR(pid) will return a pointer to the vproc associatecL
with the pid argument, or NULL if the vproc cannot be found.

If access to a vproc on the current node is required, but there is no certainty that the
vproc exists on the current node, a call to LOCATE_ VPROC_PID(pid) will return a
pointer to the vproc associated with the pid argument. If the vproc exists on the
system, that vproc is returned. If the vproc is not found, a new vproc is created witlf
information specified by the calling process. The vproc does get initialized just as
other vprocs on this node are initialized, with the vproc being put on the hash chains
as long as it is in existence on this node. In either case, tho vproc is marked as a
temporary vproc according to the rules specified. If LOCATE_ VPROC_PID(pid) is
used and a vproc is returned, the vproc must be unmarked after its use with a call to
RELEASE_ VPROC(vproc) and possibly free the vproc if its use count goes to zero.

If the vproc is known not to exist on the current node •. VPROCLOC(pid, orig_node,
exec _node_ hint) should be used. A new vproc is allocated according to values
specified and this new vproc is returned.

2.2.1.1.3.1 vp~~

struct vproc * vprocloc(pid, orig_node, exec_node_hint, flag)
IN pid_t pid;
IN node_t orig_node;
IN node_t exec_node_hint;
IN int flag;

Parameter

pid - process ID of vproc to find or create.
orig_ node - original execution node of vproc.
exec_ node_ hint - guess as to where process currently executes.
flag - flag argument.

Description

This routine is used to implement VPROCLOC() and LOCATE_ VPROC_PID()
defined in the previous section. vprocloc() will attempt to find a vproc on the current
node; if it cannot be found, a new vproc is allocated and initialized with information
from the calling process. If an existing vproc is found, a pointer to the vproc is
returned without modifying any of its information.

IBM Confidential
June 28, 1991
DRAFT

- 169 -

The vproc and pvproc operations tables are initialized by analyzing the pid argument
to determine if the process is executing on a local or remote node (see the section
describing pid allocation for more information). If the pid describes a local process
the vproc operations tables will point at the set of local operations. If the pid
describes a remote process a determination needs to be made as to which remote
operations tables the vproc should refer.

The implementation of vprocs will support multiple client/server protocols and as such
a description of which protocol to use to talk to specific nodes is needed. A table is:
generated containing entries describing a node and pointers to the associated remote
operations to be used to communicate with that node. Information within the table
should be updated as soon as a node establishes communication with the local node.

node ops pointers

1 vproc ops pointer I vproc remote ops table 1 J I_
2 vproc ops pointer

3 vproc ops pointer ~ vproc remote ops table 2 J
4 vproc ops pointer

~

2 vproc ops pointer

Figure 6. Mapping Remote Nodes with Supported Protocols

The set of remote operations can be determined by a lookup into the table using the
exec_node_hint value. If the value of the orig_node and exec_node_hint arguments is
NO_NODE, extrapolate the node value from the pid for all references to a node. Of
course a single node may have multiple protocols which it supports and as such
multiple entries for that node will be in this table, as shown in Figure 6. The first
entry for the node found in the table is used to specify the set of remote operations.

The flag argument specified is provided for remote processing support, specifically if a
process is migrated to another node. In this instance a proc entry is allocated and
attached to the vproc that was either found or has been allocated.

2.2.1.1.3.2 vprocptr():,

struct vproc * vprocptr(pid)
IN pid_t pid;

Parameter

IBM Confidential
June 28, 1991
DRAFT

- 170 -

pid - process ID of vproc to locate.

Description

Locate a given vproc that should already be in existence on this node using the pid of'
the process. This function is used by the VPROCPTR() operation when the operation
cannot quickly find the vproc.

2.2.1.1.3.3 pidgen(I

pid _ t pidgen ()

Parameter

n/a

Description

Generation of a unique process ID for a process is performed by using this new
routine. When creating a new process ID, the vproc hashchains are checked to verify
the uniqueness of the identifier. The new process identifier is then returned to the
calling process.

2.2.1.2 Private Vproc Data Interface
Each vproc contains an implementation specific pvproc data structure. The pvproc *
data structure is not required to conform to any predefined structure. Its use is to
contain information required only by the current vproc implementation. Access to this
information is through the vproc ops routines. *
Additional support for an implementation of vprocs must be done using the private
vproc data area.

2.2.1.2.1 Private Vproc Data Object
The specification for the vp _pvproc data structure designed for FUSION is given:.
The sections below describe in detail each field within this data structure.

struct pvproc {
long vp_flag;
struct proc *vp_pproc;
struct vproc *vp_child;
struct vproc *vp_siblings;
struct vproc *vp_ganchor;
struct vproc *vp_pg:rpl;
struct vproc *vp_ttyl;
struct pvproc_ops *vp ops;
node t vp_orig_node;

IBM Confidential
June 28, 1991
DRAFT

- 171 -

node t vp_exec_node_hint;
it' pid _ t vp _ppid;

pid_t vp_sid;
pid_t vp_pgrp;
locks t vp_lock;
long vp_orphan_cnt;
char vp_error;
char vp_pad; /* padding */
caddr t vp _pageno;
/* padding to align pvproc st:r:ucture accordingly */ .. } ;

2.2.1.2.1.1 Pvproc Attributes (vp_tlag1
This field specifies any implementation specific flags. The values that are currently
supported are defined below:

PV _ NOSETSID process currently becoming a process group leader. This flag
is needed since a remote process can specify another process
to become group leader.

PV _PGRPLEADER process is a process group leader and VONSITE is set.
PV _SESSIONLEADER process is session leader and VONSITE is set.
PV _ORPHAN_PGRP _CONTRIBUTOR specifies if a process contributes to

its process group not becoming orphaned. Used by this
implementation to check for orphan process groups.

PV SZOMB Process is in zombie state. Set in child vproc on execution
node of parent when child process exits.

PV SSTOP Process is in stopped state. Set in child vproc on execution
node of parent when child process becomes stopped.

PV _MIG_INCOMPLETE migrate operation is in the process of moving data
pages to execution node of process.

2.2.1.2.1.2 Process Dependent Data Pointer (vp_ppro9
vp_pproc is used to point at the physical process entry (struct proc *)of a process 01)

the execution node of a process. On those nodes for which the process does not
execute, vp_pproc will be NULL. This proc structure is the same as a UNIX proc
structure except for the possible removal of fields which will be supported in the
vproc structure:

• the parent-child-sibling chain fields

• the process group membership chain fields

• the session membership chain fields

• any hashing fields used to locate the process given a process ID.

IBM Confidential
June 28, 1991
DRAFT

- 172 -

The fields in the proc structure are replaced with dummy fields so that kernel binary
compatibility with existing kernel add-on modules such as device drivers is
maintained. In addition, the proc structure fields p_pid, p_ppid, p_pgrp, and p_sid are
maintained and updated in both the proc structure and vproc structure. This is also to
maintain binary compatibility with existing add-on kernel modules such as device
drivers which may use these fields.

2.2.1.2.1.3 Parent-Child-Sibling Relationship (vp_child, vp_siblings, vp_ppid)1
There exists a parent-child-sibling chain of vprocs which defines all the children for &i·

parent vproe. The parent-child-sibling chain is maintained only on ·the execution node"
of the parent process. This implies a vproc for every child is kept on the execution
node of their parent. This list is analogous to the parent-child-sibling list for
processes that exist in standard UNIX kernels. The list is now implemented using
vprocs. A parent vproc will exist on every node for which a child process is
executing, even though the parent-child-sibling list is not kept on those nodes. This is
for when a child process needs access to its parent such as when it exits the system.
The list of child vprocs is kept on the execution node of the parent such that when the
parent exits, any children still executing can be reassigned quickly to the init process'
on the execution node of each child. ·

A parent vproc will have its vp_child point to the first of its children; this child will
then have its vp_siblings point to the next sibling (child of the paren~.

The vp_ppid is a field that identifies the parent process ID. ·This field is kept updated
only on the current execution node of the child process. otherwise).

Figure 7 illustrates the parent-child-sibling relationship of vprocs where the parent
(vprocl) and one child (vproc2) are currently executing on node one, while two other
children (vproc3 and vproc4) are executing on node two. There is a parent vproc on
both nodes since there are children which execute on nodes one and two; the parent­
child-sibling list exists only on node one, along with a vproc for every child of this
parent.

2.2.1.2.1.4 Group Leader - Group Member Relationship (vp_ganchor,vp_pgrpl,vp_pgrp)f
There exists a process group leader-process group member chain of vprocs
(vp_ganchor, vp_pgrpl) to keep track of all processes in a process group.. The
execution node of the process group leader maintains a list of all vprocs which are
process group members within this process group. This implies processes executing
on remote nodes will also have a vproc on the execution node of the process group
leader. There is also a vproc for the process group leader on all nodes which have a
process in the process group executing, though a process group list not kept on these
remote nodes.

The process group leader uses its vp_ganchor field to point at the first vproc withia
the process group. The remaining vprocs within the process group use their vp_pgrpl
fields to point at all subsequent vprocs. The two fields are used since a process group

IBM Confidential
June 28, 1991
DRAFT

/

- 173 -

Figure 7. Parent-Child-Sibling Relationships

IBM Confidential
June 28, 1991
DRAFT

- 174 -

leader can exist within another process group. If the group leader is in its own group,
the group leader vproc points at itself first using the vp_ganchor field, then points at
subsequent vprocs within the process group using its vp_pgrpl field.

If the process group leader moves (migrates or rexec' s) to another node, the entire list
is rebuilt on the remote node.

Each vproc also has a process group ID field (vp_pgrp). This field is kept updated
only on the current execution node for the process.

Figure 8 illustrates the process group chains of vprocs where the process group leader
(vprocl) and one process group member (vproc3) are executing on node one while
three other process group members (vproc2, vproc4, and vproc5) are executing on
node two. Node 1 contains a vproc for the process group leader, a vproc for the
process (vproc3) executing on this node, and vprocs for the three processes (vproc2,
vproc4, vproc5) which are executing on node 2. On node 2, their is a vproc for the
process group leader (vprocl), and vprocs for the three processes that are executing on
this node. The execution node of the process group leader contains a complete list of
processes within the process group (on all nodes).

2.2.1.2.1.5 Session Relationships (vp_ttyl, vp_sid)f
The session list on the execution node of the session leader keeps an entire list of
process group leaders in the session. In addition, on all nodes where a session
member is executing, there will be a session leader vproc.,. This also implies that a
process group leader vproc is also on this node. Since a session leader cannot reside
in another session, the vp_ttyl field is sufficient to implement the session list.

If the session moves (migrates or rexec's) to another node, the entire list is rebuilt on
the new node.

Each vproc also has a session ID field (vp_sid). This field is kept updated only on the
current execution node for the process.

Figure 9 illustrates the session leader chains that will exist. Node 1 contains a session
leader (vprocl), which according to POSIX definition makes it a process group leader.
Also on node 1 is another process group leader (vproc2) which is in this session. A
separate process group leader (vproc3) within this session is executing on node 2.

The session leader (vprocl) exists on both nodes since there are session members (e.g.
process group leaders within this session) which are executing on both nodes (vprocl,
vproc2 on node 1; vproc3 on node 2). Vproc3 also exists on node 1 since it belongs
in a session (vprocl) which is executing on node 1. The complete list of process
group leaders belonging to this session is kept on node l, which is the execution node
of the session leader.

2.2.1.2.1.6 Pvproc Operations (vp _ vopsf
Implementation specific operations performed on the pvproc structure that is associated
with a vproc use the set of operations defined in the pvproc operations table.

IBM Confidential
June 28, 1991
DRAFT

- 175 -

Figure 8. Process Group chains

IBM Confidential
June 28, 1991
DRAFT

- 176 -

vp _ vops is an array of indirect function pointers used to access the operations.i The
naming convention used to access these operations is defined to be a set of macros
with the prefix PVPOP _ <pvops name>. The complete list of operations defined in
this table is list below. A complete description is given in a subsequent section.

pvops _ wait3
pvops _reassign_ child
pvops_ rmv _child _from _parent
pvops _ rmv _child _if_ no _sigchld
pvops _proc _flag
pvops _proc _status
pvops _pvproc _flag
pvops_resign_pgrp
pvops _add _pgrp _list
pvops _ rmv _pgrp _list
pvops _add _session _list
pvops _ rmv _session _list
pvops _orphan_ child _pgrp
pvops _adjust_ orphan_ count

PVOPS_ WAIT3()
PVOPS_REASSIGN_ CHILD()
PVOPS_RMV_CHILD_FROM_PARENT()
PVOPS_RMV _CHILD _IF _NO _SIGCHLD()
PVOPS_PROC_FLAG()
PVOPS_PROC_STATUS()
PVOPS_PVPROC _FLAG()
PVOPS_RESIGN_PGRP()
PVOPS_ADD _PGRP _LIST()
PVOPS_RMV _PGRP _LIST()
PVOPS_ADD _SESSION_LIST()
PVOPS_RMV _SESSION_LIST()
PVOPS_ ORPHAN_ CHILD _PGRP()
PVOPS_ADJUST _ORPHAN_ COUNT()

2.2.1.2.1.7 Original and Execution Node (vp_orig_node, vp_exec_node_hint)'
These two fields are used when a remote operation to perform some instance of vproc
manipulation is necessary. vp_cxec_node_hint contains a current "guess" as to where,
the vproc is executing. A remote operation will first try this node. The remote node
can then return "OK", meaning the vproc is executing here; A return value of "I've
never heard of this vproc on this node" implies the remote operation should go
directly to the origin node since the origin node will always know where a process is
executing {which originated from this node); A return value of "execution node isn't
here, but try <node>" is a guess that is made by the remote node. This new execution
node is remembered for future operations and the request is subsequently made to this
new node.

The remote node also has the option of returning a message to the sender specifying
the request cannot be handled at this time and the sender should resend the request in
<t> seconds. If the sender will not wait to resend the request, the message can be
specified as urgent and must be accepted at the destination node.

There is the possibility in the third scenario that the new guess will also be incorrect,
and the remote node will then send another "guess", which could lead to a loop. To
resolve this situation, a maximum number of tries is allowed before the remote request
goes directly to the origin node. There is a small chance that the origin node will not
be able to correctly identify where the vproc is executing. In this instance, a
maximum number of tries should be made with the "guess" received from the origin
node before returning an error that the vproc cannot be located.

IBM Confidential
June 28, 1991
DRAFT

- 177 -

Figure 9. Session Leader chains

IBM Confidential
June 28, 1991
DRAFT

- 178 -

These fields are required for Process Transparency to reliably perform remote process
location. The origin node will always be kept updated in all pvprocs, however only a
best guess in most instances can be expected for the vp_exec_node_hint on those
nodes that do not have the executing process.

2.2.1.2.1.8 Vproc Lock Mechanism (vp lock)~
Operations requiring access or modifications to vproc structures requires the
appropriate vprocs to be locke4 Note that locking a vproc only locks a single vproc,
not all instances of this vproc on all nodes. In the case of reading information, a
shared locking mechanism (many readers, no writers) will suffice. In the case of
modifying data, an exclusive locking mechanism (one writer) will be used. The lock
object is kept in the pvproc data structure, but the actual lock pertains to the entire
vproc, which is inclusive of the pvproc structure. This field is valid for all vprocs on
all nodes.

The list below defines the types of locks supporting the vproc layer. The vproc fields
which are covered by the specified type of lock are also listed.

GENERIC The generic lock covers all fields in the functionally defined vproe
object and the flag field within the implementation defined pvproc object.
The generic lock has a primary use to determine whether or not the vproc
is executing on a local process, though modifying flag values is an
important operation.

PGRif' Operations on the process group leader and the associated process group
list should use this set of operations to lock the process group leader
vproc. This lock covers the pvproc fields vp_pgrp, vp_pgrpl, and
vp_ganchor. If modifications are to be made, an exclusive lock should be
used. For traversing a list or reading information, a shared lock should be
used.

SESSIO!'I Operations on the session leader and the associated session list should
use this set of operations to lock the session leader vproc. This type of
lock covers the pvproc fields vp_sid and vp_ttyl. If modifications are to
be made, an exclusive lock should be used. For traversing a list, the
shared locks should be used.

PARENT<tOperations on the parent vproc and the associated parent-child-sibling list
implemented with the pvproc fields vp_child and vp_sibling should use
this type to lock th_e parent vproc. If modifications are to be made, an
exclusive lock should be used. For traversing a list or reading
information, a shared lock should be used.

MIGRATEfThe migrate type of lock is a union of the generic, pgrp, session, and
parent locks. This type of lock is used only when a process is to be
migrated from one node to another and a guarantee is needed that none of
the lists which the process may be participating in are changed during this
operation. The specified locking hierarchies are adhered to when gaining
the locks for the migrate operation.

IBM Confidential
June 28, 1991
DRAFT

- 179 -

2.2.1.2.1.9 .~Group Orphan Count(vp_orphan_cntY
This implementation supports the POSIX definition of orphaned process groups. An
orphaned process group is a process group in which the parent of every member is
either itself a member of the group or is not a member of the group's session.

This design uses a count to determine whether or not a process group has become an
orphan process group. When the count is nonzero, there are processes· within the
group which contribute to the group not becoming orphaned. A process within a
group is a contributor when it has a parent process not in the same process group. but
within the same session.

2.2.1.2.1.10 ltrork Error Number (vp_error)l\
Errors during the execution of a remote fork operation (rfork()) are kept in the
vp_error field of the pvproc structure. For more information regarding the values
stored in this field, consult the section describing process migration and remote
execution.

2.2.1.2.1.11 A&t&.Jr1ae . .atfuests (vp _pageno)I
The section describing process migration and remote execution requires a field to store
data page requests such that the page fault server can ·notify the stub process on the
source node to send the requested page. The field vp_pageno is used during remote
operations to store such page requests.

, 2.2.1.2.2 Vproc Private Data Operations I
The operation defined below are used to implement process relationships within the I
vproc private data object. As with the vproc operations. each operation returns an I
error value; a zero is interpreted as a successful operatios. A nonzero value is I
interpreted to mean an error occurred during the operation and the value itself is I
defined to be a well known UNIX errno which the calling process can store. in I.
u.u error. I

2.2.1.2.2.1 pvops_wait3 - get resource statistics from waited child'

int (*pvops_wait3) (v, wstat, ru_loc, p_cpu, wait_satisfied, stat)
IN struct vproc *v;
OUT int *wstat;
OUT struct rusage *ru_loc;
OUT u_short *p_cpu;
OUT int *wait_satisfied;
OUT char *stat;

Parameter

v - vproc associated with process being waited upon.
wstat - return xp_stat field of terminated process.
ru _ loc - return resource statistics of terminated process.

IBM Confidential
June 28, 1991
DRAFT

- 180 -

p _ cpu - return machine architecture type of terminated process.
wait_satisfied-TRUE if child successfully waited upon.
stat - return status of physical process.

Description

Perform the wait operation on a physical procesS\ This operation is called· by a vproc
interface operation once the parent has found a child which can be waited upoa. If
the process is in SZOMB state, resource statistics, machine architecture, and xp_stat
statistics are returned to the calling process. If the process is in SSTOP state, only
the physical process status is returned. In either case, if the child process was in
either of these two states, the wait_satisfied field is set to TRUE to notify the
calling process that the child was successfully waited upon.

2.2.1.2.2.2 pvops_reassign_child- reassign child to INllt

int (*pvops_reassign_child) (v)
IN struct vproc *v;

Parameter

v - vproc associated with process being reassigned.

Description

Reassign a child process to the INIT process at the execution node of the child
process. Add the child process to INIT's parent-child-sibling list and apply the
appropriate existence rules to the child process and INIT process. If the child process
state is SZOMB, send SIGCHLD to INIT to clean it up.

2.2.1.2.2.3 pvops_rmv_child_from_parent - remove child process from current parent.,

int (*pvops_rmv_child_from_parent) (pp, v)
IN struct vproc *pp;
IN struct vproc *v;

Parameter

pp - vproc associated with parent process.
v - vproc associated with [child] process.

Description

Remove the child process from the parent-child-sibling list of its parent process. This
list is kept by the parent on its execution node. Apply the appropriate existence rules
to both parent and child to account for one less child.

IBM Confidential
June 28, 1991
DRAFT

(

- 181 -

2.2.1.2.2.4 pvops_rmv_child_lf_no_sigchld- send SIGCHLD to parent

int (*pvops_nnv_child_if_no_sigchld) (pp, v, sigchld_ignored)
IN struct vproc *pp;
IN struct vproc *v;
OUT in *sigchld_ignored;

Parameter

pp - vproc associated with parent process.
v - vproc associated with terminated process.
sigchld _ignored - return TRUE if parent ignores SIGClil..D signal.

Description

Send the parent process a SIGClil..D signal to notify it of a terminating child process.
If the parent ignores SIGCHLD, the child process must be removed from the parent­
child-sibling list of its parent. The value of TRUE is returned in the
sigchld _ignored parameter if the parent process is ignoring SIGClil..D signals.

2.2.1.2.2.5 pvops_proc_flag - Set/clear physical process flag/

int (*vpop_proc_flag) (v, flag, set_get_clear)
IN struct vproc *v;
INOUT int *flag;
IN int set_get_clear;

Parameter

v - vproc associated with process.
flag - holds value to set or return value.
set _get_ clear - value specifies semantics of operation.

Description

Access or modify the physical process flag value associated with the vproc argument
specified. The flag value will either hold the flag value to set, or will return the flag
value of the physical process. set_get_clear specifies either VPROC_SET to set
the flag value, VPROC_GET, to retrieve the flag value, or VPROC_CLEAR to clear
the flag value as specified by the flag argument.

2.2.1.2.2.6 pvops_proc_status - Set/get physical process stat value

int (*vpop_proc_status) (v, stat, flag)
IN struct vproc *v;

IBM Confidential
June 28, 1991
DRAFT

INOUT int *stat;
IN int flag;

Parameter

- 182 -

v - vproc associated with physical process.
stat - physical process stat value.
flag - determines semantics of operation.

Description

Set or get the p stat value from the physical process associated with the v
parameter. The stat parameter will hold the stat value to set, or the return value,
depending upon whether flag is set to VPROC_SET or VPROC_GET.

2.2.1.2.2.7 pvops_pvproc_ftag - Set/clear pvproc flag value'

int (*vpop_pvproc_flag) (v, pid, flag, set_clear)
IN struct vproc *v; /* determines execution node */
IN pid_t pid; /* process ID of vproc to perform op */
IN int flag; /* flag value */
IN int set clear; /* set or clear flag in pvproc */

Parameter

v - vproc which determines execution node of operation.
pid - process ID of vproc which to perform operation upon.
flag - flag value.
set_ clerar - set or clear flag in pvproc.

Description

This operation is performed on the execution node of the v parameter specified, but
the operation is performed on the vproc associated with the pid parameter. flag
holds the value; set_clear will set the flag value if it is set to VPROC_SET, or
will clear the value if it is set to VPROC CLEAR.

2.2.1.2.2.8 pvops_resign_pgrp - resign process from current process group·

int (*pvops_resign_pgrp) (v)
IN struct vproc *v;

Parameter

v - vproc associated with process resigning from process group.

IBM Confidential
June 28, 1991
DRAFT

- 183 -

Description

Remove the process specified by v from its process group list. Apply the appropriate
existence rules for process group relationships to account for the loss of a process
group member.

2.2.1.2.2.9 pvops_add_pgrp_Jist- add process to process group list ""

int (*pvops_add._pgrp_list) (g, v)
IN struct vproc *g;
IN struct vproc *v;

Parameter

g - vproc associated with process group leader.
v - vproc associated with process being added to process group.

Description

Add a process to the process group list of the specified process group. Mark the
vproc being added to the list as it is now a member of the process group.

2.2.1.2.2.10 pvops_rmv_pgrp_list - remove process from process group list..

int (*pvops_nnv_pgrp_list) (g, v)
IN struct vproc *g;
IN struct vproc *v;

Parameter

g - vproc associated with process group leader.
v - vproc associated with process being removed from process group.

Description

Remove a process from the process group list specified by the process group leader g.
If this is the last process in this process group then resign the process group from the
session list. Unmark the process being removed as it no longer is a member of this
process group.

2.2.1.2.2.11 pvops_add_session_list- add process group leader to session list

int (*pvops_add_session_list) (s, g)
IN struct vproc *s;
IN struct vproc *g;

IBM Confidential
June 28, 1991
DRAFT

- 184 -

Parameter

s - vproc associated with session leader.
g - vproc associated with process group leader being added to session.

Description

Add a process group leader to the session list specified by the session leader s. Mark
the process group leader as being a member of the· session list. If the process group
leader is in fact the session leader (i.e. we are creating a new session), initialize the
session pointer vp_ttyl rather than adding this process group leader to the list.
Mark the process group leader as being a member of the session list.

2.2.1.2.2.12 pvops_rmv_session_list - remove process group leader from session list

int (*pvops_rmv_session_list) (s, g)
IN struct vproc *s;
IN struct vproc *g;

Parameter

s - vproc associated with session leader.
g - vproc associated with process group leader being removed from session.

Description

Remove the process group leader from the session list. Unmark the process group
leader as it no longer is a member of this session.

2.2.1.2.2.13 pvops_orphan_child_pgrp - check if process group becomes orphaned'

int (*pvops _orphan_ child _pgrp) (v, flag)
IN struct vproc *v;
IN long flag;

Parameter

v - vproc associated with child process being checked.
flag - determines the semantics of how this function is called.

Description

Determine if the effect from a parent process changing process groups, sessions, or
terminating will cause the process group associated with the child process to become
an orphaned process group.

IBM Confidential
June 28, 1991
DRAFT

- 185 -

2.2.1.2.2.14 pvops_adjust_orphan_count - adjust orphan count of process group

int (*pvops _adjust_ orphan_ count) (g, adjustment)
IN struct vproc *g;
IN long adjustment;

Parameter

g - vproc associated with process group leader.
adjustment - adjustment value, either 1 or -1.

Description

Adjust the orphan count kept by the process group leader. If the orphan count goes to
zero from an adjustment of -1, the process group becomes orphaned. If the orphan
count is incremented from zero due to an adjustment of 1, the process group is no
longer considered an orphaned process group. Any other combinations do not affect
the process group becoming orphaned in a direct manner.

2.2.1.2.3 Vproc Locks
One of the requirements for the vproc layer is to provide a consistent view of all
processes within the system. This includes adding, deleting vprocs, scanning a list of
vprocs, even modifying fields within a vproc.

For each vproc object that can be locked, there exists two types of locks; an exclusive
lock exclusively locks a vproc. This guarantees the vproc is held only by the current
process. An exclusive lock is used when a vproc operation will be modifying data
within the vproc. In other terms, an exclusive lock is a write lock.

The other lock is a shared lock. A shared lock will allow many other shared locks on
the same vproc, but no exclusive locks are allowed. This type of lock is equivalent to
a read lock.

There is a locking hierarchy designed into the vproc layer that must be followed to
guarantee data consistency. This hierarchy of gaining and releasing the locks must be
followed to prevent any deadlock conditions from occurring.

2.2.1.2.3.1 Lock object
The lock object used to implement the locking strategy on AIX V3.1 is given below~

struct locks
pid_t
int
int
short
short

{

pid;
excls;
shares;
sh_cnt;
ex cnt;

IBM Confidential
June 28, 1991
DRAFT

- 186 -

}

typedef struct locks locks_t;
#define LOCK_AVAIL ((lock_t) -1)
#define LOCK - UNK _OWNER ((pid - t) (LOCK - AVAIL-1))

#define <different types of vproc locking>
#define CONDITIONAL LOCK

pid The pid contains the process which owns the lock. This field can contain
LOCK_AVAIL (the lock is available), and LOCK_UNK_OWNER (the
owner of the lock is unknown). This last condition applies when multiple
read locks are made (there is no provision to remember all the processes
making read locks, only the last read lock).

excls The specification of the exclusive lock function is such that the process
should block until the lock can be retrieved. For this implementation this
field specifies the exclusive event word. 1 The kernel uses the event_ word
parameter to anchor the list of processes ·sleeping on this event. The
event_ word parameter must be initialized to EVENT_NULL before its first
use.

shares . The specification of the shared lock function is such that the process should
block until the lock can be retrieved. For this implementation this field
specifies the shared event word. 2 The kernel uses the event_ word parameter
to anchor the list of processes sleeping on this event. The event_ word
parameter must be initialized to EVENT _NULL before its first use.

sh_cnt Used by V3 implementation to keep a count of shared locks currently held
on the associated vproc.

ex cnt Used by V3 implementation to keep a count of exclusive locks currently
held on the associated vproc. The implementation of exclusive locks is such
that the same process can gain an exclusive lock on the same vproc
numerous times, though this is not a recommended operation.

The definitions below the lock structure (above) define the various types of vproc
locks that can be attained. Each vproc lock will lock only specific fields of the
appropriate vproc. This is a fine grained locking strategy that will (hopefully) allow

1. The usage of the excls field depends upon the semantics of how the process gets blocked when the
lock cannot be gained.

2. The usage of the shares field depends upon the semantics of how the process gets blocked when
the lock cannot be gained.

IBM Confidential
June 28, 1991
DRAFT

- 187 -

other operations on the same vproc to continue if each operation is mutually exclusive.

Used in conjunction with the lock types above to conditionally gain a lock if it can be
obtained immediately, the CONDITIONAL_LOCK flag can be used with the lock
types when attempting to gain a lock If the lock is unobtainable, the conditional loclt
will not wait and returns failure. Normal unlock operations are used to relinquish a
conditional lock. A conditional lock is used at high priority times such as ·at interrupt
levels when it is highly undesirable to wait for a lock to become freed.

To implement the locking strategy, various functions need to be defined which will
perform the actual lock operations. These are now defined below.

2.2.1.2.3.2 lock_sharedO'

bool_t lock_shared(lock, locktype)
locks_t *lock;
long locktype;

Parameter

lock - lock structure associated with a vproc.
locktype - flags defining locks to gain and the lock type.

Description

Acquire a shared lock, blocking if unavailable.. The appropriate lock can be granted if
no one currently claims the lock, denoted by LOCK_A VAIL, or if the lock is held by
the same process. . To determine if the lock can be given out, there cannot be any
exclusive locks being held by other processes; as many shared locks can hold this
lock, though the lock owner will only be know as the process which gained the lock
last

If the lock cannot be gained immediately and the CONDITIONAL flag is set then
return a value of FALSE, otherwise block until the lock becomes available.

2.2.1.2.3.3 unlock_ shared()'

void unlock_shared(lock, locktype)
locks_t *lock;
long locktype;

Parameter

lock - lock structure associated with a vproc.
locktype - flags defining locks to release and the lock type.

IBM Confidential
June 28, 1991
DRAFT

- 188 -

Description

Release a shared lock, readying all processes currently blocked which waiting to gaia
this lock. Verify the lock is currently being held by a process, though the process
cannot be verified due to the rules that many processes can hold a shared lock on a
specific vproc. If however this process is the specified owner of the lock, change the
lock owner to LOCK_UNK_OWNER. If after the unlocking there are no shared or
exclusive locks set the owner of the lock to LOCK_A VAIL. If there were any
requests for exclusive locks then wakeup those processes.

2.2.1.2.3.4 lock_ exclusiveO

void lock_exclusive(lock, locktype)
locks_t *lock;
long locktype;

Parameter

lock - lock structure associated with a vproc.
locktype - flags defining locks to gain and the lock type.

Description

Acquire an exclusive lock, blocking if the lock cannot be gained. If the
CONDmONAL flag is set and the lock cannot be immediately gained then return a
value of FALSE. An exclusive lock can be granted only in two situations; if the
calling process has already gained the lock then simply increment the count of
exclusive locks on this vproc; otherwise the lock must be available, denoted by the
owner field set to LOCK_A VAIL. If the lock is gained then set the lock id to the
calling process and set the count of exclusive locks to one.

2.2.1.2.3.S unlock_ exdusiveO 7

void unlock_exclusive(lock, locktype)
locks_t *lock;
long locktype;

Parameter

lock - lock structure associated with a vproc.
locktyt:ie - flags defining locks to gain and the lock type.

Description

Release an exclusive lock, readying all processes waiting for this lock to become free.
Verify that the owner of the exclusive lock is the calling process and that the count of

IBM Confidential
June 28, 1991
DRAFT

- 189 -

exclusive locks is at least one (note that the same process can gain multiple numbers
of the same exclusive lock, and must unlock it the same number of times to become
free). Make the lock available again (LOCK_A VAIL) only if we have given up all
exclusive locks AND there are no shared locks either. If all exclusive locks are given
up and we still have a shared lock, then we still know who owns th clock so
LOCK_UNK_OWNER is not set.

2.2.1.2.3.6 Example Locking Situations
This example pertains to a parent process exiting. All of its children must be
reassigned to the init process. Note that this is an algorithm and does not necessarily
represent the actual function definitions and operations that would be in a vproc
implementation.

parent_vproc = vproc associated with parent process;
lock_exclusive(parent_vproc, PARENT);
for (child_vproc = all children on the parent_vproc list) {

remove child_vproc from parent_vproc list;
VPROC_UNMARK_CHILD(child_vproc);
unlock_exclusive(parent_vproc, PARENT);
VPOP_PVPROC_REASSIGN_CHILD(child_vproc);
look_ enelasive (parent_ vprec, P~) ;

unlock_exclusive(parent_vproc, PARENT);

The parent is initially locked with the parent exclusive lock since we will be
modifying the parent-child-sibling list. For each child on this list, it is removed from
the parents list, then the parent unmarks the child since the child no longer has a
parent executing on this node. The parent then unlocks the exclusive lock before
calling VPOP _PVPROC_REASSIGN_CHILD(). This is done because it is a function
call; possibly a remote operation to reconnect a child executing on a remote node.
Once this operation is complete, the parent gets back the exclusive lock before the
next iteration. Once all children are removed, the exclusive lock is given up since it
is no longer needed.

2.2.1.2.4 Implementation and Network Flag Values
All flag values used in this implementation of the vproc interface are given below.
These values can be used to define the attributes of a process by being set in the
vp flag field of the private data structure, or just be flags used by the operatiom. If
the flag values are involved in a remote operation, a network mapped value must exist
such that different vproc implmentations don't interpret a numeric value to mean a
different symbolic flag.

The table below lists any flag values currently supported by this vproc
implementation. The current implementation value is given, and if the flag can be
used in a remote operation the network mapped value is also given. This list of

IBM Confidential
June 28, 1991
DRAFT

- 190 -

course excludes all of the UNIX errno values which are too many to list here.
However, since errno values can come from remote operations, the network value is
defined to be the numeric values as defined by AIX V3. l. Additional errno values
which are not defined will be added to this table.

The transport layer is responsible for mapping any values on a specific node to th~
defined network · value before sending that value to another node. The network
mapped value must also be converted to the locally defined value before it can be used
by a process executing on that node. The table below describes the value used for
this implementation, along with the network mapped value. All numeric values
specified in the table are decimal.

Flag Name Implementation Value Network Mapped Valuel

PV _NOSETSID
PV _PGRPLEADER
PV _SESSIONLEADER
PV _ORPHAN_PGRP _CONTRIBUTOR
PV_SZOMB
PV_SSTOP
PV _MIG_INCOMPLETE
DECREMENT
INCREMENT
EXITOPERATION
SESSIONOPERA TION
VPROC_SET
VPROC_GET
VPROC_CLEAR
VPROC_PRIV
SET_STOP _STA TE
UNSET_STOP _STATE
NOPGRPOPERATION

2.2.1.3 Bue Code Modifications

1
2
4
8

16
32
64

1
2
4
8

64
128
256
512

64
256

13

Adding the vproc interface to AIX V3.1 does require some modifications to the base
kernel code. The routines described below are those routines which are modified ta
support the vproc interface. In this context, the phrase "modified routine" can also'
mean a routine which has been deleted; routines are deleted only if the vproc interface
will provide support for the operation.

2.2.1.3.1 strtdisp .,.

void strtdisp ()

IBM Confidential
June 28, 1991
DRAFT

11
21
41
81

161
321
641

11
21
41
81

641
1281
2561
5121

641
2561

13*

(

- 191 -

Parameter

n/a

Description

Strtdisp() initializes the process dispatcher, init, and wait processes: The additional
work which must be done is to create a vproc for each process. There is some
process relationship information which strtdisp() does modify on the physical process
and with the introduction of vprocs to the system, this information must be applied to
the associated vproc.

Under normal circumstances the vproc operations set u. u error in case of any errors
occuring. Since a u-area has set to be created when strtdisp() is called, an internal
vproc routine called vopsJork_relationshipsl is invoked. A locally defined error
value is passed as an argument to be returned with a value in case a failure occurs.

2.2.1.3.2 ~

struct proc *newproc(register int check_again, register char *error)
IN int check_again;
INOUT char *error;

Parameter

check _again - nonzero, if caller not UID 0.
error - address to return errno value.

Description

The only modification to this routine is the process ID is no longer generated here. In
addition, any process relationship operations, such as building the parent- child-sibling
lists are no longer done here either\ it is no performed in vopsJork_relationships.

2.2.1.3.3

void freeproc(p)
struct proc *p;

Parameter

p - address of process entry to be deallocated.

Description

IBM Confidential
June 28, 1991
DRAFT

- 192 -

Freeproc() returns a process slot to the free lisa Delete the process entry from the4

UID list and call freeprocslot() to return the proc entry to the free list. The procesh
group and session lists are kept in the associated vproc so the code is modified not t•
check for these lists.

2.2.1.3.4 update_proc_slot

void update__proc_slot(p)
struct proc *p;

Parameter

p - physical process slot being deallocated.

Description

Normally for V3, a terminating process sees if the physical processes for the pgrp
leader and session leader of the current process can be deallocated because the pgrp
leader and session leader are no longer needed (i.e. the last process in process group
and process group leader has already exited). This is now a null operation)' process
groups and sessions are implemented using vprocs. The function is needed due to
calls outside of the vproc layer.

2.2.1.3.S fork#

pid_t fork()

Parameter

n/a

Description

Creation of a new process image from the parent process must also take into
consideration that a vproc for the newly created process must also be created. 8nee •
the child process has been allocated a physical process structure and a new proceSi
image has been successfully created using procdup(), the child vproc can be allocated.,.
It is important to understand that the vproc allocation must occur after it is certain that?;
the new process can be created due to the fact that any process relationship
information built is almost impossible to reverse.

After the parent process finishes duplicated a new child process, a new process ID is
created using pidgen(), and vops Jork _relationships is called to allocate the child"
vproc.

IBM Confidential
June 28, 1991
DRAFT

- 193 -

2.2.1.3.6 •• ,

pid _ t creatp ()

Parameter

n/a

Description

Create a kernel process that will eventually be initialized and dispatched by initp().
The caller can set up queues and other resources prior to the process being readied.
Once the physical process structure has been allocated, a new process ID is allocated
by a call to pidgen(). The vproc of the calling process must be found and used as the
parent vproc parameter when allocating a new vproc with vops Jork _relationships.

2.2.1.3.7 JIV!f

void initp(pid, init_func, init_data_addr, init_data_length, name)
pid_t pid;
int (*init_func) ();
char *init_data_addr;
int init_data_length;
char name [] ;

Parameter

pid - process identifier.
init_func - pointer to initialization function.
init data addr - initialization data address. - -
init _data _length - initialization data length.
name - name of the process.

Description

Initialize a kernel, process, eompleting the work of building the kernel process that waSt I
started ift;••'P#· The caller must be the same process that originally called creatp(1. I
The vproc associated with the process ID passed as a parameter is located, then the I
physical process structure is accessed from the vproc. The process is then initialized I
accordingly. I

2.2.1.3.8 .plnlf I

int setpinit ()

IBM Confidential
June 28, 1991
DRAFT

- 194 -

Parameter

n/a

Description

Set the process parent id to init. This routine may only be called by a kernel process.
The kernel process calling this routine must have its parent-child-sibling list updated,
and as such the operation vops _setpinit is called to perform these operations.

2.2.1.3.9 proclrestartl

void proclrestart()

Parameter

n/a

Description This routine restarts the INIT process when it dies. A new vproc must
be allocated, along with rebuilding all of the appropriate process relationship attributes
for the INIT process.

2.2.1.3.10 kexit

void kexit(wait_stat)
int wait_stat;

Parameter

wait_ stat - return value to parent.

Description

Kexit() is the common exit code for process termination• It can be called directly
from signal code, and it is called by the system call _exit(). Release the physical
process resources and reassign all of the process' children to the INIT process. If the
parent of the exiting process is ignoring SIGCffi..,D, the vproc of the exiting process is
removed from the parent-child-sibling list and reassigned to be a child of INIT., Marie
this process as a ZOMBIE. Control should not return to the caller after this point.

All process relationship information as described in the previous paragraph is now
handled through the vops_exit_relationships() operation, including the process bein3
marked as a zombie process.

IBM Confidential
June 28, 1991
DRAFT

- 195 -

2.2.1.3.11 j;~picf

pid_t kwaitpid(stat_loc, pid, options, ru_loc)
int *stat_loc;
pid_t pid;
int options;
struct rusage *ru loc;

Parameter

stat loc - user location for returned status.
pid- pid value, -1, 0, -process group id.
options - options to vary function, see wait.h.
ru loc - pointer to child resource usage area.

Description

This function incorporates all the functionality of wait(), wait3(), and waitpid(). A
process will call kwaitpid() to wait for zombies or traced child processes. The
termination status of the found child is returned, along with any resource statistics
which the child process used during its execution.

This function is modified due to the implementation specific aspects of vprocs. After
checking for debugging processes, a vproc operation is used to scan the parent-child­
sibling list which is located in the pvproc object of a vproc.

2.2.1.3.12 ~

int kill(pid, sig)
pid_t pid;
int sig;

Parameter

pid - process(es) or process group to signal.
sig - signal to be sent.

Description

Send a signal to a process or multiple processes. If the pid argument is zero, the
signal specified is targeted for the process group of the currently running process. A
nonzero pid argument specifies that a signal be sent to a specific process. The vproc
for the specified process is used as an argument to a vproc operation to determine if
the signal can be sent by the currently executing process.

IBM Confidential
June 28, 1991
DRAFT

- 196 -

The vproc for the specified process receiving the signal is used when gaining access to
the specified process, when checking for privilege to send the signal, and when
making the signal request

The semantics of the kill -1 operation depends upon the calling process. If the calling
process has superuser authority, a signal is sent to all processes except kernel
processei; the process table is traversed on the local node and all non-kernel processes
are located and a pidsig() operation is performed. If the calling process does not have
superuser authority, the signal will be sent to all processes with the same uid in the
process's SOI (sphere of interest). An RPC operation is sent to all nodes in the SOI;
on each node the process table is searched to find those executing processes with the
same uid value. A signal is then delivered using the pidsig() operation.

Support for process migration requires an extra argument to specify the node which a.
process will be migrated. Since the kill() system call supports only two arguments,
kill() is modified to call killarg() with a NULL third parameter. Killarg() providei
complete support for the kill system call in addition to support for process migration.

2.2.1.3.13 ·~ill~

int kill3(pid, sig, node)
pid_t pid;
int sig;
node_t node;

Parameter

pid - process (es) or process group to signal.
sig - signal to be sent.
node - if SIGMIGRA TE, node to which process is migrated.

Description

Kill3() is a new system call similar to kill, but permits an addition argument to be
specified which provides information passed along when the signal is deliveredt
Kill3() is available for all signals. For SIGMIGRATE, the additional information is
interpreted as a node specifier indicating the node to which the process or processes
should be migrated.

2.2.1.3.14 ldllarg I

int killarg(pid, sig, node)
pid_t pid;
int sig;
node_t node;

IBM Confidential
June 28, 1991
DRAFT

- 197 -

Parameter

pid - process (es) or process group to signal.
sig - signal to be sent.
node - if SIGMIGRA TE, node to which process is migrated.

Description

This function is added to support both the kill() and kil/3() system calls. The
implementation is such that killarg() acquires all the functionality of the previous kill()
system call, in addition to support for the extra signal argument.

2.2.1.3.15 .~

void pgsignal(pid, signo)
pid_t pid;
int signo;

Parameter

pid - process group to signal.
signo - signal to be sent.

Description

Send a signal to all processes in the specified terminal process group. The signlfl
operatiea is performed by locating the vproc of the process group leader and sending a
signal to all processes which have their vproc objects on the process group list.

This routine is modified to operate using a vproc given a process id. A vproc
operation is used to gain access to the process group leader, then scan for vprocs on
the process group list. Support for process migration requires that an extra parameter
be sent by pgsignal; this value is initialized to NULL.

2.2.1.3.16 ..,.,

void pidsig(pid, signo)
pid_t pid;
int signo;

Parameter

pid - identifier of process to receive the signal.
signo - signal to be sent.

Description

IBM Confidential
June 28, 1991
DRAFT

- 198 -

Pidsig() sends a signal to a process. The vproc for which the pid argument identifies
is located and then a vproc operation is used to send the signal specified to the
process. Support for process migration requires that an extra parameter be sent by
pidsig; this value is initialized to NULL.

2.2.1.3.17 RPriJ
The vproc operation vops _sigproc is overloaded to perform signal privileg@
determination. This is done to reduce the overhead of two remote operations when a
process must first get privilege to signal a process before the signal is sen'4 The two
operations are now combined, along with the ability to only check for privilege to
send a signal to a process.

2.2.1.3.18 stoJI

void stop(p)
struct proc *p;

Parameter

p - process to be stopped.

Description

Stop() puts the process in STOP state, signals and/or wakes up the parenl. If the
STRC flag is not set there exists the possibility that a SIGcm...D signal will be sent to
its parent process. A vproc operation is called to potentially send the SIGcm...D
signal.

The PV _SSTOP flag is set within the pvproc object of the stopped process to optimize
the search for SSTOP and ZOMBIE processes by its parent process during the
kwaitpid() routine. This optimization will hold true only if remote processing is
installed on the system.

2.2.1.3.19 aetprif

int getpri (pid)
pid_t pid;

Parameter

pid - process id or current process.

Description

Getpri() returns the priority of a specified fixed priority process. If the pid argument
is 0, use the currently running process's priority; otherwise get the priority from the

IBM Confidential
June 28, 1991
DRAFT

- 199 -

vproc associated with the pid. Getpri() is modified to operate using vprocs. If the pid
argument is zero the vproc of the current process is used rather than the proc structure
of the current process. A nonzero pid argument requires that the vproc is located
using the pid value.

2.2.1.3.20 ...

int setpri(pid, pri)
pid_t pid;
int pri;

Parameter

pid - pid of process to change or current process.
pri - priority to be set.

Description

Setpri() enables a process to run with a fixed priority. Call privcheck() to make sure
we can reset the priority of this process. Use the current running vproc or call
LOCATE_VPROC_PID() to get the vproc for the specified PIO.

Setpri() is modified to operate using vprocs. If the pid argument is zero the vproc of
the current process is used rather than the proc entry. A nonzero pid argument
requires that the vproc is located using the pid value.

2.2.1.3.21 ~orltyf

int getpriority(which who)
int which;
int who;

Parameter

which - identifies how the "who" parameter is handled.
who - process, process group, or UID.

Description

Get the scheduling "nice" value of the process, process group, or user as indicated by
"which" and "wh•"· ''Which11 is one of PRIO_PROCESS, PRIO_PGRP, or
PRIO_US~ and "who" is interpreted relative to "which". A zero value of "who"
denotes the current process, process group, or user. A non zero "who" value requires
the location of the vproc which has the specified pid argument.

IBM Confidential
June 28, 1991
DRAFT

- 200 -

The nice value for a process is retrieved using a vproc operation to locate the process.
Getting the nice value for a process group requires a vproc operation to scan the list
of vprocs on the process group list, getting the nice value for each of them in
succession.

Getting the nice value for all processes with a specified uid uses the uidl field on th•
physical process structure. This field implements a circular list of processes with the,
same uid. In the case where the uid specified is for the currently executing process,
the uidl field of the currently executing process is used to begin a traversal to find the
nice value.

If the uid value is specified, all nodes in the SOI (sphere of interest) are located and
an RPC operation is perfonned on each of these nodes; The process table on each
node is then scanned to find those processes with a matching uid value and the nice
value is retrieved.

2.2.1.3.22 setpriority.f

int setpriority(which, who, nice)
int which;
int who;
nice_t nice;

Parameter

which- identifies how the "who" parameter is handled.
who - process, process group, or UID.
nice - nice value to be set.

Description

Set the scheduling "nice" value of the process, process group, or user, as specified by
the "which" and "who" parameters. The "nice" parameter is a value in the range -20
to 20. Lower priorities cause more favorable scheduling. If the value is less than
-20, -20 is used. If greater than 20, 20 is used.

The priority for a process is set using a vproc operation to locate the process. Setting
the nice value for the process group requires the use of a vproc operation to scan the
process group list to find all members of the process group, then set the nice value for
each in succession.

Setting the nice value for all processes with a specified uid uses the uidl field on the
physical process structure. This field implements a circular list of processes with the
same uid. In the case where the uid specified is for the currently executing process,
the uidl field of the currently executing process is used to begin a traversal to set the
nice value.

IBM Confidential
June 28, 1991
DRAFT

- 201 -

If the uid value is specified, all nodes in the SOI (sphere of interest) are located and
an RPC operation is performed on each of these nodes; The process table on each
node is then scanned to find those processes with a matching uid value and the nice
value is set.

2.2.1.3.23 7M,_n1ce11
Get _pgrp _nice() is deleted from the fixed base code. Vproc operations are available
in the linked base code to perform this function.

2.2.1.3.24 set_pgrp_nice t
Set _pgrp _nice() is deleted from the fixed base code~ Vproc operations are available in
the linked base code to perform this function.

2.2.1.3.25 ..--

pid t setpgrp()

Parameter

n/a

Description

Setpgrp() will make the currently executing process the leader of a new process group•
if not already leader. Call setpgid() with both arguments of zero. Setpgrp() is
modified to return the process group id from the vproc associated with the currently
executing process if the operation succeeded.

2.2.1.3.26 setpgic:\f

int setpgid (pid, pg:rp)
pid_t pid;
pid_t pg:rp;

Parameter

pid - process group ID of process to set.
pg:rp - process group ID to join.

Description

Setpgid() will set the process group id of the specified process in the vproo~ Check
for errors and then create a new process group with this process as the process group
leader and only process within the group.

If the pid argument is zero, use the vp_pid value from the vproc of the currently
executing process; Use LOCATE_VPROC_PID() to get the vproc's for the process

IBM Confidential
June 28, 1991
DRAFT

- 202 -

being modified and the process group leader. Vproc operations are required to remove
the process from its current group, creation of a new process group, or adding the
process to an existing process group.

After the new process group leader has been established, check to see if any orphan
process groups are created due to this operation. This is performed using a vproc
operation since certain orphan information is kept in the pvproc object of each vproc.

2.2.1.3.27 setsid·1

pid _ t setsid()

Parameter

n/a

Description

Setsid() will set the currently executing process to a session leader. If the calling
process is not a session leader, a new session is created. Perform the mechanics of
creating a new session with no controlling terminal for the currently executing
process. Resign from the previous session if this vproc was in one, then call a vproc
operation to perform the implementation specific aspects of creating a new session.

2.2.1.4 Remote process management
Support for remote processing is implemented with a client/server model and a set of
wrapper routines. The transport mechanism being used is NCS (described in another
section) which is used to connect the client routine with the appropriate server routine
on the alleged execution node of the process.

The two diagrams below illustrate the various levels of vproc support when only local
processing is allowed on a specific node, and when remote processing is installed on a
node. Local processing constitutes fixed base code along with routines which make up
the local vproc and pvproc operations. The operations installed within the fixed base
code call these local operations through the vproc/pvproc tables.

Installation of remote processing adds a certain amount of complexity to the system.

• Local vproc ops and pvproc ops tables get replaced with wrapper routines. These
routines perform any required vproc locking and determine if the process is
executing on this node.

• The local pproc/pvproc routines do not disappear, rather they are called by the
wrapper routines once it has been determined that the vproc for this operation is
executing on this node.

• Vprocs for a process that is not executing on this node have their vproc and
pvproc ops tables replaced with remote tables which call the appropriate client

IBM Confidential
June 28, 1991
DRAFT

*

- 203 -

routines to initiate a remote operation. Eventually the wrapper routine on the
execution node of the vproc gets called to perform the request on the local
execution node.

fixed base code

r---------------------, , local vprocs ops table ,
I
I
I
I
I .,__ ______ -i.,..i-t ~ pproc/pvproc

operations
I-

I
I
I
I

I I

1 local pvproc ops table 1

L---------------------~

Figure 10. Fixed Base Code Supporting Vprocs Without Remote Processing Installed

remote vproc operations table r------------------------------
remote

fixed base code
operations

1
I
I
I
I
I

transport layer : : client routines

L---------------- -------------

transport layer :: server routines

(process migrates in wrapper e)

r---------------------,
1 local vprocs ops table ,
I_ _ _,

---1...-~ f wrapper code ~ ' : -----
local vproc
operations

' I
. 1 local pvproc ops table 1

L---------------------~
Figure 11. Fixed Base Code Supporting Vprocs With Remote Processing Installed

Local vproc operations call the appropriate wrapper routine from the vproc operations
within fixed base code. Provided that the process is still local throughout the wrapper

IBM Confidential
June 28, 1991
DRAFT

- 204 -

code the local pproc/pvproc operation is ultimately called to complete the operation.

If the vproc operation is to be performed upon a remote process, the remote vproc
tables have been installed for that vproc which call the appropriate client routine.
Ultimately the wrapper code on the execution node is call by the server code for
which the RPC request from the client has been made.

Once in the wrapper code, any locks required are gained and the test is made to
determine if indeed the process is on this execution node. If the process is executing
here the appropriate operation is called through the local vproc/pvproc tables installed
within this local vproc.

The determination of whether the execution node of the process has been found is
through the operation VPROC_EXEC_NODE(v). If the vproc is not executing on this *
node, certain conditions must be explored to determine what to do next. The test to
determine if we are executing as a server process is through the operation
SERVER_PROC().

1. If we were called from server code then the vproc is no longer executing on this
remote node. A value is returned such that the client code can try another node
where the vproc may be executing.

2. If the call was not from server code, the vproc may have been migrated from
this node while we were gaining the appropriate locks. In this instance, the
vproc which has migrated will have had its vproc/pvproc tables replaced with
the remote tables which are the client routines used to initiate a remote request.
The associated vproc/pvproc table routine is called to start the remote request.

Assuming the client connects with a server on a node for which the process is
executing, the server ultimately calls the wrapper routine on the remote node.
This wrapper routine will call the local vproc/pvproc operation to complete the
request.

In addition to the requirements described in the remote processing model above,
process group operations must be dealt with accordingly such that each member in the
process group is guaranteed to have the specified operation performed on itself exactly
one time. To support this requirement, a caching scheme is introduced.

2.2.1.4.1 Data Objects
Certain definitions and data structures are used by various portions of the remote
processing sections.

The client/server routines are implemented as remote procedure calls (RPC) which
interface with routines written using the NIDL language. The set of NIDL stub
routines are for. the most part hidden from the client/ server routines. However,
specifying which node the RPC is to be sent requires the use of a handle which is a
NIDL created data object. The handle is the first argument specified when calling a

IBM Confidential
June 28, 1991
DRAFT

- 205 -

seiver routine. The fonnat of a handle is defined in the following manner.

typedef struct
{

unsigned short data_offset;
} *hand.le_t;

The implementation of vprocs dictates that certain vprocs will exist on remote nodes if
a process executes there. The pid, original execution node and current execution node
need to be sent to the remote node such that when a vproc gets created on the remote
node certain infonnation for the vproc can be filled in. For example, if a process
group leader vproc needs to be created on a remote node, the node for which the
client initiated this request probably has the best idea as to where the process group
leader is really executing. The same holds true for its origin node, and most
importantly its process id such that the vproc can initially be found or created.

A data structure is created which contains this information. Since the pid resides in a
vproc object whereas the original execution node and current execution node reside in
the pvproc data structure, the client routines are responsible for building this data
structure.

typedef ndr_long_int pt_pid_t;
typedef struct
{

pt _pid _ t vh_pid;
ndr_long_int vh_orig_node;
ndr_long_int vh_exec_node_hint

} pt_vproch_t;

2.2.1.4.2 Return values
The linked based code defined the return values SUCCESS and FAILURE which can
be returned from the vproc and pvproc operations. Remote processing allows an
additional return value known as PROC_NOT_HERE, to be returned by the client,
seiver, and wrapper routines. This error value is returned when the vproc specified
cannot be located on the remote node or is not executing on this node anymore. If the
seiver determines the process is not executing on this node, a guess is made regarding
where it is now executing. If the vproc is not found, the seiver will return the value
UNKNOWN_ NODE such that the client does not use this value and goes directly to
the origin node of the process.

2.2.1.4.3 Process Group Caching
Sending a signal to a process group, accessing the nice values of a process group, and
orphaning a process group are operations which require that each process within their
process group be visited only once within a clustel!. When processes all reside on a
single node, this operation is simple. However, installing remote processing allows

IBM Confidential
June 28, 1991
DRAFT

- 206 -

processes within a process group to execute on remote nodes. A caching mechanism
is designed to be installed with remote processes to guarantee that each process within
a process group is visited only once for the operations described above.

The cache operations (with the exception of the cache init routine) are called from the
wrapper, client and server routines described in the sections which follow. A cache
exists on each node and is described in the following manner:

#define CACHE ELEMENTS 1024 /* number of buckets in cache */
#define CACHE_HDR_ELEMENTS CACHE ELEMENTS /* cache header elements */
#define MAX RPC BUCKETS 10 /* maximum buckets reserved for

an z:pc operation */
#define MAX RPC ELEMENTS MAX RPC BUCKETS /* maximum elements delivered in

z:pc IN and OUT arrays */

struct hashtype {
long flag;
union {

sig_t signal;
int pgrp;

un;
} ;

struct hashbucket {
pid_t pid;

/* signal for pgsignal operation */
/* process group identifier */

/* uniquely identifies vproc */
struct hashtype *ht;
struct hashbucket *hptr; /* pointer to next hashbucket */

} ;

struct hashbucket *hashhdr [CACHE_ HDR _ELEMENTS] ,
*hashfreelist;

long hashfree;

/* hash header */
/* hash freelist */
/* number free */

To provide a uniform interface to the cache algorithms, the operations below are
provided. This method will effectively hide the implementation of the cache from the
client, server, and wrapper routines and does allow the cache to be expanded to handle
other data types if required.

#define SIG CACHE REM:>VE_IF_PRESENT(pid, sig, retval) {
struct hashtype ht;
ht.flag= SIGNAL_OP; ht.un.signal = sig;
retval = cache_remove_if_present(pid, &ht);

#define NICE_CACHE_REM:>VE_IF_PRESENT(pid, pgrp, retval) {

IBM Confidential
June 28, 1991
DRAFT

- 207 -

struct hashtype ht;
ht.flag = NICE_OP; ht.un.pgr.p = pgr.p;
retval = cache_remove_if_present (pid, &ht);

}

#define ORPHAN_CACHE_REMWE_IF_PRESENT(pid, pgr.p, retval) {
struct hashtype ht;
ht. flag = ORPHAN_ OP; ht. un. pgr.p = pgr.p;
retval = cache_remove_if_present (pid, &ht);

}

fdefine SIG_CACHE_ADD_TO_LIST(pid, sig, retval) {
struct hashtype ht;
ht.flag = SIGNAL OP; ht.un.signal = sig;
retval = cache_add_to_list(pid, &ht);

}

#define NICE_CACHE_ADD_TO_LIST(pid, pgr.p, retval) {
struct hashtype ht;
ht.flag = NICE OP; ht.un.pgr.p = pgr.p;
retval = cache_add_to_list(pid, &ht);

}

#define ORPHAN_CACHE_ADD_TO_LIST(pid, pgr.p, retval) {
struct hashtype ht;
ht.flag = ORPHAN_OP; ht.un.pgr.p = pgr.p;
retval = cache_add_to_list(pid, &ht);

} ~ c:;;,,,-Hvc>,....re- fi,o;,, lc..v<?.J
Cache access is guarded by high spl level. This must be so because the cache can be
accessed at interrupt level. The number of free buckets and the presence of an
element in the cache can be unreliably checked at low spl level, but reliable checks
and any list manipulation must be done at high spl level.

The cache on the execution node of the process group leader is used for a specified
process group operation. The remote client routine first determines if the vproc
specified for this operation is in the each• If so, the operation has already been
perfonned on this vproc and the client returns success. If not, the client will first
reserve the maximum number of hash buckets under the assumption that the pending
operation will be completely successful for the maximum case.

The process group list is traversed from its current point (do not start from the
beginning of the list) to find the maximum number of vprocs executing on the node
for which this operation is for. An array is used to keep a list of all vprocs which
satisfy this requirement. The array is passed as an argument to the server routine and
is used as an input parameter ... Another array of the same size is also passed as a
parameter; its use is to return the success or failure of the operation for each vproc in.
the first array.

IBM Confidential
June 28, 1991
DRAFT

- 208 -

The server routine is called, and if the operation was successful, then for each
successful operation as specified in the array, that vproc is added to the cache using
one of the reserved hash buckets. The remainder of reserved buckets, if any, are then
freed.

The server routine is not as complex as the client. The operation is first performed on
the vproc argument for which this is for. If the operation was successful, then for
each of the vprocs in the input array, perform the same operation. As long as the
vproc operation does not return PROC_NOT_HERE, note a successful operation in the
appropriate output array entry.

The wrapper code only needs to check the specified vproc is in the cache and this is a
process group operation due to the possibility that a vproc may have migrated from a
remote node after the process group operation had been successfully performed and
the vproc had been added to the cache.

2.2.1.4.3.1 cache_init - initialize the cache

void cache_init()

Parameter

Cn/a

Description This routine is responsible for initializing the cache. This entails
allocating the hashbuckets for the node and initializing the freelist and the number of
hashbuckets allocated.

2.2.1.4.3.2 cache _remove _if _presentQ,

bool_t cache_remove_if__present (pid, hashval)
IN pid_t pid;
IN hashtype *hashval;

Parameter

pid - process ID of vproc to be removed from cache.
hashval - information to create hash value.

Description

This routine will determine if the vproc specified by the process identifier and hash
value is in the cache. If the vproc is found it is removed from the cache, the
hashbucket for which it contained is put back on the freelist and TRUE is returned. If
the vproc is not found FALSE is returned. A pointer to a hash type is passed as an
argument such that the correct hash value can be constructed, depending upon the

IBM Confidential
June 28, 1991
DRAFT

- 209 -

operation being performed.

Note that the object type is also specified in the hash bucket. This is to uniquely
identify the correct hash bucket in the event that a nice value operation and orphan
operation on the same vproc (in the same process group) have added it to the cache.

2.2.1.4.3.3 cache_ add_ to_ hashlist()

void cache_add_to_hashlist(pid, hashval)
IN pid_t pid;
IN hashtype *hashval;

Parameter

pid - process ID of vproc to add to cache.
hashval - information to create hash value.

Description

This routine will add the specified arguments to the cache by first constructing a hash
value, removing a hash bucket from the freelist and putting the hash bucket into the
cache.

Note that the object type is also specified in the hash bucket. This is to uniquely
identify the correct hash bucket in the event that a nice value operation and orphan
operation on the same vproc (in the same process group) are adding it to the cache.

2.2.1.4.3.4 cache _reserveO

bool t cache_reserve(cnt)
IN int cnt;

Parameter

cnt - number of buckets to reserve.

Description

This routine will reserve the specified number of hashbuckets and return TRUE if
successful, FALSE if unsuccessful.

2.2.1.4.3.5 cache._freeO,

void cache_free(cnt)
IN int cnt;

Parameter

IBM Confidential
June 28, 1991
DRAFT

- 210 -

cnt - number of buckets to free.

Description

This routine increments the number of free buckets in the cache by the specified
argument amount.

2.2.1.4.4 Wrapper Routines
Wrapper routines replace the local vproc/pvproc ops tables when remote processing is­
installed on a node. The wrapper routines are responsible for gaining any vproc locks
which may be needed, and ultimately calling either the client or local pproc/pvproc
operations to fulfill the requested operation.

For each operation listed in the vproc operations table and pvproc operations table
there exists a wrapper routine. The list of wrapper routines are given in the table
which follows:

Vproc Wrapper Operations Pvproc Wrapper Operations
fork_relationships_wrapper wait3 wrapper
exit _relationships_ wrapper reassign_ child_ wrapper
wait_ wrapper rmv _child Jrom _parent_ wrapper
proc _nice_ wrapper rmv _child _if_ no _sigchld _wrapper
pgrp _nice_ wrapper proc _flag_ wrapper
sigproc _wrapper proc _status_ wrapper
sigpgrp _wrapper pvproc _flag_ wrapper
set _stop _state _wrapper resign _pgrp _wrapper
setpgid _wrapper add _pgrp _list_ wrapper
setsid _wrapper rmv _pgrp _list_ wrapper
get _pgrp _sid _wrapper add session list wrapper - - -
setpinit _wrapper rmv _session _list_ wrapper
setpri _wrapper orphan_ child _pgrp _wrapper
getpri _wrapper adjust_ orphan_ count_ wrapper

Confining the vproc locking code to the wrapper routines removes the overhead for
strictly local process execution and reduces the impact of adding vprocs to the fixed
and linked based code. In addition, determining whether a process is local or remote
is hidden from the local pproc/pvproc operations, thereby reducing the overhead for
systems without process transparency. Most wrapper routines will follow the
algorithm listed below.
int
vproc_operation_wrapper(

struct vproc *v,
int argl,
int arg2

IBM Confidential
June 28, 1991
DRAFT

*

- 211 -

lock_shared(v, GENERIC);
if (!VPROC _ EXEC_NODE (v)) {

unlock_shared(v, GENERIC);
if (SERVER _PROC ())

return(PROC_NOT_HERE);
(void) (*(v)->vp_vops->vpop_operation) (v, argl, arg2);
return(SUCCESS);

}

(void) (saved_vops.vproc_operation) (v, argl, arg2);
unlock_shared(v, GENERIC);
return(SUCCESS);

In almost all situations the prescribed set of vproc locks can be gained before calling
the local operation. However, if a complex locking/unlocking scheme is required that
cannot be performed within the wrapper code alone, the wrapper routine is written
such that the local operation is performed entirely within the wrapper and no other
calls are made to a pproc/pvproc operation. Appendix E contains a complete listing of
all wrapper operations.

2.2.1.4.5 Client Vproc Operations
The underlying server-to-server protocols are invoked to pass information and
negotiations outside the normal flow of client/server communications.

Two tables exist which contain the client routines to initiate a remote request for the
appropriate vproc operation. These two tables are a one to one mapping of the vproc
and pvproc tables described in earlier sections of this document.

Client Vproc Operations Client Pvproc Operations
vproc Jork _relations hips vproc wait3
vproc _exit _relationships vproc _reassign_ child
vproc_wait vproc _ rmv _child Jrom _parent
vproc _proc _nice vproc _ rmv _child _if_ no _sigchld
vproc _pgrp _nice vproc_Jlag
vproc _sigproc vproc _status
vproc _sigpgrp vproc_pvproc_Jlag
vproc _set _stop _state vproc _resign _pgrp
vproc _setpgid vproc _add _pgrp _list
vproc _setsid vproc _ rmv _pgrp _list
vproc_get_pgrp_sid vproc _add _session _list
vproc _setpinit vproc _ rmv _session _list
vproc _setpri vproc_orphan_child_pgrp
vproc _getpri vproc adjust_ orphan_ count

IBM Confidential
June 28, 1991
DRAFT

- 212 -

With a few exceptions, the basic operation of the client routines is the same:
Determine the execution node of the vproc which this operation is being requested and
call the client stub routine to initiate an RPC request to the remote node. Upon
completion check the return value for any errors that may have occurred. If the RPC
request was sent but the vproc has moved to another node (PROC_NOT_HERE) a
new guess as to the execution node will have been sent back by the server. Reattempt
to perform the operation using the new execution node until a maximum number of
tries has been made, at which time the origin site is queried to determine where the
process is executing. There is the possibility that the vproc did not exist on the
remote node; not only will PROC_NOT_HERE be returned, but the execution node
guess will be sent to UNKNOWN_NODE to notify the client to go directly to the
origin node.

The example below describes the operation for vproc_set_flag() and can be considered
the general format of each of the client routines.

error status t - -vproc_set_flag(
vproc_t *v,
int flag,

/* vproc of process to set flag value */
/* value of flag */

int set clear
)

/* detennines whether to set or clear the flag */

VPROC _HOLD (v, "GENERIC") ;
for (rpc_tries = 1;; xpc_tries++) {

}

h = handle for node where vproc is executing;
ret = vprocs_set_flag(h, &v->vp_handle, flag, set_clear, &execnod.e);
if (ret = successful vproc operation) {

}

VPROC_RELEASE (v, "GENERIC");
setuerror(ret);
return(SUCCESS);

ret = check_failure(v, xpc_tries, &first_try, &origin_node_contacted,
&h, execnode);

if (ret = FAILURE) {

}

VPROC _RELEASE (v, "GENERIC") ;
return(FAILURE);

The vproc is temporarily marked to ensure the vproc is not deallocated for the
duration of this operation. The handle retrieved is implementation dependent upon the
transport layer used and does not necessarily need defining within this document. The
call to vprocs _set _flag is a transport layer defined routine which invokes the request to
the remote node. Coincidentally its name is the same as the corresponding server

IBM Confidential
June 28, 1991
DRAFT

- 213 -

routine which satisfies the request on the specified remote node. They have nothing to
do with each other and should not be confused. If the return value from the call is
not successful, checkJailure() will determine the next action to take (described
below).

The remainder of this section describes the checkJailure() routine along with those
client operations which will deviate from the general format described above.

2.2.1.4.S.1 .. lfiltnl

error status t - -
check_failure(v, :r:pc_tries, first_try, origin_node_contacted,
IN struct vproc *v;

execnode, h) I
I

IN int :r:pc_tries;
INOUT bool_t *first_try;
INOUT bool_t *origin_node_contacted;
IN node_t execnode;
INOUT handle t *h;

Parameter

v - vproc associated with process operation.
:r:pc _tries - number of RPC attempts for this operation already.
first_ try - is this the first RPC for this operation.
origin_ node_ contacted - has origin node already by contacted.
execnode - latest clue as to the execution node for this vproc.
h - handle for new RPC to be sent.

Description

I
I
I
I
I

This operation detcaniaes tko· next action to take if an RPC for a vproc operation~ I
-.1.ted in a failure to completo. If the RPC was unable to be delivered, another try is:
.-le before returning a failure of ESRCHt In the case when PROC_NOT_HERE is
re.turned, a determination needs to be made if the server node actually had a decent
guess as to the location of the process, does the origin node need to be queried, or if
we have exceeded the maximum allowable attempts to find the process. A return"
value of SUCCESS from check_failure() is defined as another RPC should be sentr
with the values specified; a return of FAILURE indicates a failure in sending the RPC
and return to the calling function is done."

2.2.l.4.S.2 illUll~.,,.nlce<Y
Either detemurie the lowest nice value or set the nice value of all processes within a
process group. Siacc this operation occurs on a process group, the caching algorithms
BR used to guarantee each process within the process group is visited. The server
routine is responsible for determining the lowest nice value of those processes which

IBM Confidential
June 28, 1991
DRAFT

- 214 -

were successful operations. *
int
vproc _proc _nice (

vproc_t *v,
nice_t *nice,
int flag

/* vproc for which nice value is being extracted */

)

/* nice value location */ I
/* is this part of a get_pgrp_nice() operation ? */

pid_t INarray[MAX RPC ELEMENTS];
bool_t OUTarray[MAX_RPC_ELEMENTS];

VPROC_HOLD (v, "GENERIC");
max = 0;
if (flag specifies process group operation)

NICE_CACHE_REMOVE_IF_PRESENT(v->vp_pid, v->pv_pg.rp, retval)
if (retval == TRUE) {

VPROC_RELEASE(v, "GENERIC");
return(SUCCESS);

}

cache_reserve(MAX_RPC_BUCKETS);
for (m = v->pv_pg.rp; max < MAX_RPC_BUCKETS; m = m->pv_pg.rp) {

if (execution node of m == execution node of v) {
INarray[rnax] = m->vp_pid;
OUTarray[max++] = FALSE;

}

while (max < MAX_RPC_BUCKETS) {
INarray[rnax] = PID_INVALID;
OUTarray[rnax++] = FALSE;

}

for (.rpc_tries = l;; .rpc_tries++)
h = handle for node where vproc is executing;
ret = vprocs_proc_nice(h, &v->vp_handle, nice, flag, INarray,

OUTarray, &execnode);
if (successful vproc operation) {

setuerror(ret);
break;

}

ret = check_failure(v, .rpc_tries, &first_try, &origin_node_contacted,
&h, execnode);

if (ret == FAILURE) {
VPROC _RELEASE (v, "GENERIC") ;

IBM Confidential
June 28, 1991
DRAFT

- 215 -

return (FAILURE) ;
}

}

used_buckets = O;
if (flag specified process group operation) {

for (max = O; max < MAX RPC BUCKETS &&

}

}

- -
INarray[max] != PID_INVALID; max++) {

if (OUTarray[max] == TRUE) {

}

NICE_ CACHE_ .ADD_ TO_ LIST (INarray [max] , v->pv _pgrp, retval) ;
used_buckets++;

cache_free(MAX_RPC_BUCKETS - used_buckets);

VPROC_RELEASE (v, "GENERIC");

2.2.1.4.S.3 vproc_sigprocQ
Sending a signal to a process may be a subset of sending a signal to a process group.
The client function is modified to used the cache mechanism described earlier: ·

int
vproc_sigproc(

vproc_t *v,
int signo,
uid_t effuid,
uid_t realuid,
pid_t sid,
int *has__priv,
int flag
)

/* vproc being sent a signal */
/* signal number */
/* effective id of calling process */
/* real id of calling process */
/* session id of calling process */
/* used for determining signal privilege */
/* is this part of a pgsignal() operation ? */

pid _ t INarray [MAX - RPC _ELEMENTS] ;
bool_t OUTarray[MAX_RPC_ELEMENTS];

VPROC_HOLD (v, "GENERIC");
max = O;
if (flag specifies process group operation) {

SIG_ CACHE_ REM>VE _IF _PRESENT (pid, sig, retval)
if (retval == TRUE) {

VPROC_RELEASE (v, "GENERIC");
return(SUCCESS);

}

cache_reserve(MAX_RPC_BUCKETS);
for (m = v->pv_pgrp; max < MAX_RPC_BUCKETS; m = m->pv__pgrp) {

IBM Confidential
June 28, 1991
DRAFT

- 216 -

if (execution node of m == execution node of v) {
INarray[max] = m->vp_pid;
OUTarray[max++] = FALSE;

}
}

}

while (max < MAX_RPC_BUCKETS) {
INarray[max] = PID_INVALID;
OUTarray[max++] = FALSE;

}

for (rpc_tries = 1;; rpc_tries++) {
h = handle for node where vproc is executing;
ret = vprocs_sigproc(h, &v->vp_handle, effuid,

INarray, OUTarray, &execnode);
if (successful vproc operation) {

setuerror(ret);
break;

}

realuid, sid, flag, sig, I
I

ret = check_failure(v, rpc_tries, &first_try, &origin_node_contacted,
&h, execnode);

}

if (ret == FAILURE) {

}

VPROC _RELEASE (v, "GENERIC") ;
return (FAILURE) ;

used_buckets = O;
if (flag specifies process group operation) {

for (max = 0; max < MAX_RPC_BUCI<ETS &&

}

}

INarray[max] != PID_INVALID; max++) {
if (OUTarray[max] == TRUE) {

SIG_CACHE_ADD_TO_LIST(INarray[max], sig, retval);
used_buckets++;

}

cache_free(MAX_RPC_BUCI<ETS - used_buckets);

VPROC _RELEASE (v, "GENERIC") ;

2.2.1.4.S.4 ._..NPan>Of
Invocation of this routine implies a signal is being sent to a process group for which
the process group leader is executing on a remote node. liilthis operation has beea
called at interrupt time, add the signal request to the signet queue using the
appropriate routine as specified in the design specification for the signet daemon.

IBM Confidential
June 28, 1991
DRAFT

- 217 -

2.2.1.4.5.5 vproc _proc _ ftag()
If the flag value being set or cleared is SORPHAN_PGRP then this is part of a *
process group operation and the cache algorithms are used.

int
vproc_proc_flag(

vproc_t *v, /* vproc for which nice value is being set */
/* flag value to be set or cleared */ u _long flag,

int set clear
)

/* do we set or clear the flag value */

pid_t INarray[MAX RPC ELEMENTS];
bool_t OUTarray[MAX_RPC_ELEMENTS];

VPROC_HOLD (v, "GENERIC");

max = O;
if (flag == SORPHAN_PGRP then this is a process group operation) {

ORPHAN_ CACHE_ REMOVE_ IF _PRESENT (v->vp _pid, v->pv _pgrp, retval)
if (retval == TRUE) {

}

VPROC_RELEASE (v, "GENERIC");

return(SUCCESS);
}

cache_reserve(MAX_RPC_BUCKETS);
for (m = v->pv_pgrp; max < MAX_RPC_BUCKETS; m = m->pv_pgrp) {

if (execution node of m == execution node of v) {
INarray[max] = m->vp_pid;
OUTarray[max++] =FALSE;

}

}

while (max > MAX_RPC_BUCKETS) {
INarray[max] = PID_INVALID;
OUTarray[max++] = FALSE;

for (rpc_tries = 1;; rpc_tries++)
h = handle for node where vproc is executing;
ret = vprocs_proc_flag(h, &v->vp_handle, flag, set_clear,

INarray, OUTarray, &execnode);
if (successful vproc operation) {

setuerror(ret);
break;

}

ret = check_failure(v, rpc_tries, &first_try, &origin_node_contacted,
&h, execnode);

IBM Confidential
June 28, 1991
DRAFT

}

- 218 -

if (ret = FAILURE) {
VPROC_RELEASE(v, "GENERIC");
return (FAILURE) ;

}

used_buckets = 0;
if (flag = SORPHAN_PGRP then this is a process group operation)

for. (max = 0; max < MAX_;RPC_BUCKETS &&

}

INarray[max) != PID_INVALID; max++) {
if (OUTarray [max) = TRUE) {

ORPHAN_CACHE_ADD_TO_LIST (INarray[max), v->pv_pgrp, retval);
used_buckets++;

cache_free(MAX_RPC_BUCKETS - used_buckets);

VPROC_RELEASE (v, "GENERIC");

2.2.1.4.6 Process Transparency Server
The server routines handle vproc operation requests that were initiated by client vproc
operations from remote nodes. As with the client routines, the server routines follow
a basic pattern.

Obtain the vproc given the PID from the handle passed in to the server and call the
appropriate vproc operation to fulfill this request; if the return values states this is not
the execution node, set the error value to PROC_NOT_HERE and update the
execution node value passed to this server routine to the execution node value that this
vproc thinks is correct.

The example below describes vprocs_set_flag(), the server routine which ultimately
satisfies a remote request for calls to PVPOP _SET _FLAG().

int
vprocs_set_flag(

handle t
pt_vproch_t
int
int
pt_node_t
)

h,
*vh,
flag,
set_clear,
*execnode

v = vproc specified by pid vh->vh_pid;
if (v is not NULL) {

VPROC_ MARK_ TEMPORARY (v);
setuerror(O);

IBM Confidential
June 28, 1991
DRAFT

- 219 -

ret = (*v->vp_vops->vpop_set_flag) (v, flag, set_clear);
if (ret = PROC_NOT_HERE)

*execnode = v->pv_exec_node_hint;
else

ret = getuerror();
VPROC _ UNMARK _TEMPORARY (v) ;
return(ret);

else {
*execnode = UNKNOWN_NODE;
return(PROC_NOT_HERE);

The vproc is located using the process id specified within the pt_ vproch_t argument to
the server routine and the local operation is called to complete the operation. If the
return value is PROC_NOT_HERE then update the execution node "guess" as to
where the vproc is actually executing. Whether the client will use this new
information depends upon the state of the client and how many attempts to locate the
process have been made.

If the vproc is not found on this node, set the execution node guess to
UNK.NOWN_NODE and return PROC_NOT_HERE. The server node has no idea as
to the location of the vproc and the client should go directly to the origin node.

If a server routine needs access to a vproc that may not be executing on this node,
VPROCLOC() should be used. If the vproc cannot be found, the error value
ENOSPC should be returned. The remainder of this section details those operations
which deviate from this general format.

2.2.1.4.6.1 vprocs _proc _nice()
The nice value operation may be participating in an operation which involves lowest
nice value for a process group. The flag value passed as an argument determines if
this is part of a process group operation.

int
vprocs_proc_nice(

handle t
pt_vproch_t
nice t
int
pid_t
bool t
pt_node_t
)

h,
*vh,
*nice,
flag,
INarray[],
OUTarray [] ,
*execnode

v = vproc of pid specified by vh->vh_pid;

IBM Confidential
June 28, 1991
DRAFT

- 220 -

if (v is not NULL) {
VPROC_HOl.D (v, "GENERIC");
setuerror(O);
ret = (*v->vp_vops->vpop_proc_nice) (v, nice, flag, NOPGRPOPERATION);I
if (ret = PROC_NOT_HERE)

*execnode = v->pv_exec_node_hint;
else

ret = getuerror();
VPROC _RELEASE (v, "GENERIC") ;

else {

}

*execnode = UNKNOWN_NODE;
return(PROC_NOT_HERE);

if (flag == NOPGRPOPERATION)
return(ret);

if (ret != PROC_NOT_HERE)
low = *nice;
for (max = 0; INarray[max] != INVALID_PID; max++) {

m = LOCATE_VPROC_PID(INarray[max]);

}

if (m && VPROC_EXEC_NODE (m)) {

}

ret = (*m->vp_vops->vpop_proc_nice) (m, nice, flag,
NOPGRPOPERATION);

if (ret != PROC_NOT_HERE) {
OUTarray[max] = TRUE;
low= MIN(low, *nice);

}

if (m)
VPROC _RELEASE (m, "GENERIC") ;

*nice = low;
}

return;

2.2.1.4.6.2 vprocs _ sigproc()
The sigproc server may be required to initiate a sigproc() operation for various other
vprocs ·provided this is part of a pgsignal() operation. This is determined from the
flag value passed as an argument to the server routine. Note that the flag value is
turned off when calling the local operations on this node; this would result in a
recursive operation.

IBM Confidential
June 28, 1991
DRAFT

- 221 -

int
vprocs_sigproc(

handle t
pt_vproch_t
sig_t

h,
*vh,
sig,
effuid,
realuid,
sid,

uid t
uid t
pid_t
int
pid_t

flag,
INarray[],
OUTarray[],
*execnode

bool t
pt_node_t
)

v = vproc of pid specified by vh->vh__pid;
if (v is not NULL) {

}

VPROC _HOLD (v, "GENERIC") ;
setuerror(O);
ret = (*v->vp_vops->vpop_sigproc) (v, sig, effuid, realuid,

NOPGRPOPERATION);
if (ret = PROC_NOT_HERE)

*execnode = v->pv_exec_node_hint;
else

ret = getuerror();
VPROC _RELEASE (v, "GENERIC") ;

else {

}

*execnode = UNKNOWN_NODE;
return(PROC_:NOT_HERE);

if (flag = NOPGRPOPERATION)
return(ret);

if (ret != PROC_NOT_HERE) {.
for (max = 0; INarray[max] != INVALID_PID; max++) {

setuerror(O);
m = LOCATE_VPROC_PID(INarray[max]);
if (m && VPROC_EXEC_NODE (m)) {

sid, flag, I
I

ret = (*m->vp_vops->vpop_sigproc) (m, sig, effuid, realuid, sid, I
flag, NOPGRPOPERATION); I

}

if (ret != PROC_:NOT_HERE)
OUTarray[max] = TRUE;

IBM Confidential
June 28, 1991
DRAFT

}

}

retum;

- 222 -

if (m)
VPROC_RELEASE (m, "GENERIC");

2.2.1.4.6.3 "'~.J>fOC_flagO
The server routine must unmap the network mapped value passed by the client routine *
before invoking the local vproc operation. In addition, this may be part of a process
group operation to set or clear the orphan process group flag.

int
vprocs_set_flag(

handle t
pt_vproch_t
int

h,
*vh,
flag,

int
pid_t

set_clear,
INarray[],
OUTarray [] ,
*execnode

bool t
pt_node_t
)

v = vproc of pid specified by vh->vh_pid;
if (v is not NULL) {

}

VPROC _HOLD (v, "GENERIC") ;
setuerror(O);
ret = (*v->vp_pvproc->vp_vops->vpop_proc_flag) (v, flag, set_clear);I
if (ret = PROC_NOT_HERE)

*execnod.e = v->pv_exec_node_hint;
else

ret = getuerror();
VPROC _RELEASE (v, "GENERIC") ;

else {

}

*execnode = UNKNOWN_NODE;
retum(PROC_NOT_HERE);

if (flag = NOPGRPOPERATION)
retum(ret);

if (ret != PROC_NOT_HERE) {
for (max = O; INarray[max] != INVALID_PID; max++) {

m = LOCATE_VPROC_PID(INarray[max]);
if (m && VPROC_EXEC_NODE(m)) {

IBM Confidential
June 28, 1991
DRAFT

}

}

return;

}

- 223 -

ret = (*m->vp_pvproc->vp_vops->vpop_proc_flag) (m, flag, I
set_clear);I

if (ret != PROC_NOT_HERE)
OUTarray[max] = TRUE;

if (m)

VPROC _RELEASE (m, "GENERIC") ;

IBM Confidential
June 28, 1991
DRAFT

- 224 -

2.2.2 Signet Daemon
The signet daemon handles requests to send signals to remote processes and process
groups when the kernel is at an interrupt state.· The signet daemon consists of a
kernel thread known as the signet master and an unspecified number of signet slaves
wlUdl actually handle signal requests. The signet master has the responsibility oi
allocating elements for the signet queue and invoking signet slaves as they are needed·
to handle the signal requests. The signet daemon is part of remote processing and is
started as a kernel thread as remote processing support for a node is installed.

In a single site UNIX implementation a signal sent to a process group would be
handled by pgsignalO, which would traverse the list of processes in the group and
send signals to each process. In a multiple site implementation however, processes
within a process group may be executing on a remote site, which would require an
RPC message to that site to signal the process. Rather than attempting to send a
signal to a process group at the time of the interrupt, the signal request is put on a
signal request queue. The signet daemon is awakened and satisfies as many requests
as possible until the request queue is empty.

A signal request to a process group when the process group leader is a remote process
will initially be handled by a client routine. The client routine is one of the remote
operations which replace the local vproc operations when a process executes on a
remote node. This client routine, which handles remote requests to signal a process
group, will first determine if the kernel is at interrupt level, and if so the request will
be put on the signal queue.

A signal request to a process group when the process group leader is a local process
will be satisfied by going through the list of process group members, sending the
signal to each process. The same functionality exists for sending signals to individual
processes as for sending a signal to a process group. If any of the process group
members are executing on a remote node, a client routine which has replaced the local
signal routine in the vproc operations table will handle the signal request. If the client
routine determines the kernel is executing at interrupt level the request will be added
to the signal queue. Otherwise the client routine will make an RPC request to the
appropriate server routine on the remote node to complete the signal request.

The signet queue is defined to be a number of elements linked together in a circulu
queue. The queue is depicted in the following manner:

IBM Confidential
June 28, 1991
DRAFT

- 225 -

+-----------+
v

+-----+--------+------+---------+
next_on_queue ->I pid I signal I flag I nextptr I

+-----+--------+------+---------+
v

+-----+--------+------+---------+
I pid I signal I flag I nextptr I

+---+--------+------+---------+
v

+-----+--------+------+---------+
I pid I signal I flag I nextptr I
+-----+--------+------+---------+

v
+-----+--------+------+---------+

next_free_queue ->I I nextptr 1------+
+-----+--------+------+---------+

The queue contains a sequence of elements, each of which may hold a value
describing a process group or process which to signal and the specific signal to be
sent. The flag field is used to specify whether the pid is for a process group or a1'l
individual process. <next_on_queue> points to the next queue element for which a
signal will be delivered. <next_free_queue> points to the first available queue element
to store a request for a signal to be sent.

When <next_on_queue> = <next_free_queue>, the queue is empty. This condition
can occur only at startup when the linked circular queue is created, or when the signet
daemon satisfies all requests on the queue.

If <next_free_queue> is the list element before <next_on_queue> and a signal request
fills this element, the queue becomes full and <next_free_queue> can't be pointed t<>1
the next element on the list until more allocated elements are created for the list.

Rather than wait until this condition occurs, a high water mark is set to notify the
signet master to add more queue elements. This value is set to 70% in this
implementation, though the high water mark should be a tunable parameter that can be
changed at run-time. The high water mark represents the percentage of the queue
which contain valid requests to send signals. This value is based upon the total
number of queue elements which comprise the signet queue, therefore as the queue
grows larger, the number of queue elements which need to be full increases, but the
percentage stays the same. The high water mark is implemented as a counter which
contains an integer value of the percentage of queue elements available. As more

IBM Confidential
June 28, 1991
DRAFT

- 226 -

elements are added to the queue, the percentage specified is added to the high water
mark. Requests put on the queue decrement the high water mark; requests handled by
a signet slave increment the count. When the count goes to zero, the flag specifying
more quoue elements is set.

At this point additional queue elements are allocated for the signet queue by the signet
master thread, the number of elements being equal to the initial amount of elements
on the queue at system startup. The new elements are initialized and inserted into the
circular queue at the pointer after <next_free_queue> and before
<next_queue_element>. This allows free elements to be added to the queue without
having the overhead of copying the current queue to a new queue object.

In addition to adding more elements on the queue, another signet slave must be
invoked to help handle the expanded load The extra signet slave will scan the list as
described to satisfy requests. Determining when the queue is full will happen only
when adding requests to the queue., an operation called by client routines when the
kernel is at an interrupt level and a signal cannot be delivered at this time.

Duplicate signals being sent to the same process group are not put on the queue.
Duplicate signal requests are checked before the signal request is added to the queue.

2.2.2.1 Assumptions
Sending signals to processes which execute on remote nodes are handled by the
appropriate client routine which is referenced through the vproc operations table of the
process. The client routine is responsible for determining if the kernel is executing at
an interrupt level such that sending an RPC request (and subsequently waiting for a
response) would not be a good idea at this time. In this situation the signal request is
put on the signal queue to be handled by a regularly scheduled kernel thread (signet
slave).

A mechanism must exist on the base system to determine whether or not the the signal
request is being handled at interrupt time. There must also be a method to create
additional kerel threads as signet slaves while the system is operating, or have a
predetermined number of processes preallocated for the signet slaves as they are
needed.

2.2.2.2 Detailed design

2.2.2.2.1 signet_ master()'
The signet master is a kernel thread which is invoked when remote processing is
enabled on a system. Its responsibility is to determine if more queue elements are · ,
needed and to create and invoke signet slaves as they are needed.

If <signet_fiag> contains the value SIGNET_MORE_ELEMENTS, the signet master
must first expand the current circular list to accommodate more signal requests. A
specified amount of queue elements are allocated, the fields <dlvrto> and <Sig> are
initialized to the value -1 and the pointer field <nextptr> is set to point at the next

IBM Confidential
June 28, 1991
DRAFT

- 227 -

element. The last element in this new queue has its <nextptr> field point at
<next_on_queue>; <next_free_queue->nextptr> points at the beginning element of the
newly allocated list of elements.

At this point, another signet slave thread is created to help handle the extra number oi
requests to send signals to remote processes.

This design removes the extra complexity of having the slave servers allocate extra
elements. In addition, future design decisions such as performing an analysis of the
signal queue can be implemented within the master server without impacting the
current design.

2.2.2.2.2 signet_ slave()
The signet_slave() is a kernel thread which handles requests to send signals to a
process group or an individual process. This process runs at fixed priority
PRI_SIGNETD, which allows it to handle signal requests in an expedient manner.
The signet slave checks the signet_queue for signal requests. As many requests as
possible will be serviced by the signet slave until no more requests are on the queue.
As requests are handled, the high water mark is incremented. When there are no more
requests, the signet slave goes to sleep. As requests are satisfied, the queue element
fields are set to zero.

2.2.2.2.3 service_queue_request(struct signet_queue *elem)
Signal requests found on the signet queue by a signet slave are passed to the
service_queue_request() function to handle the request. The <flag> field of each
queue element specifies whether the signal specified is sent to a process group
(SIGPGRP) or a process (SIGPROC). If the signal is for a process group, the
function pgsignal() is invoked; if the signal is for a process group, the function
pidsig() is invoked.

2.2.2.2.4 sig_add_queue(pid_t pid, int signo, int flag)
Signal requests which cannot be delivered at the current time are added to the signal
queue using the routine sig_add_queue(). This function puts the signal request at the
next free queue element and updates the queue pointers according to the rules
specified by the signet queue data structure. The flag argument specifies whether the
signal is to be sent to a process group (SIGPGRP) or to a single process
(SIGPROC). Before putting the request on the queue, duplicate signals are checked.
The list of valid queue elements are from <next_on_queue> up to <next_free_queue>.
If the same request is found in these valid entries, the new request is thrown away.
Note that the signal, process id, and flag value must all match since it is possible that
a signal request is on the queue which specifies the pid of a process group leader and
the request is to be sent to the entire process group, then a request is to be added
which is for the same process, same signal, but we are really just sending a signal to
that process.

IBM Confidential
June 28, 1991
DRAFT

- 228 -

After successfully adding a request to the queue, a signet slave is awakened. The high
water mark is decremented only after the request is put on the queue. H the high.
water mark goes to zero, the circular queue is considered full and more queue
elements must be added, along with another signet slave to handle the additional
requests. This operation cannot be performed at inten-upt time so <signet_:ftag> is set
to SIGNET_MORE_ELEMENTS to notify the signet master that more elements must
be added to the queue when it is scheduled to run.

2.2.2.2.S sipetstrtdispO
Initializes a kernel thread to become a signet master or signet slave. Call creatp() and
initpQ to allocate a vproc object and initialize a physical process slot. Allocate
enough memory for the queue elements and initialize the pointers to allow free
elements in the signet queue. Set the priority of the thread to PRI_SIGNETD which
will allow signals to be handled in a timely fashion.

2.2.2.2.6 Data Structure Definitions
#define SIG_Q_SIZE 100 /* initial number of queue elements */

/* signet daemon priority value */ #define PRI SIGNETD 10

f define SIGNET MORE ELEMENTS OxlO

f define SIGPGRP
#define SIGPROC

struct signet_queue
{

pid_t dlvrto;
int sig;
int flag;

OxOl
OxlO

/* element specifies signal for process group */
/* element specifies signal for process */

/* pgrp to receive signal */
/* the signal */

struct signet_queue *nextptr;
/* for process group or process */
/* pointer to next queue element */

};

struct signet_queue

int

long
long

*signetq,
*next_on_queue,
*next_free_queue,

/* the signet queue */
/* next q element to service */

signetq_ sleep = EVENT_ NULL;
/* next free q element */
/* signet sleep queue */

signet_flag;
signet_hwm;

/* specifies when to add q elements */
/* high water mark to add q elements */

2.2.2.2. 7 Error Recovery Procedures
The queue initially contains a fixed number of elements. As the queue becomes full, a
determinate number of elements is added to the queue and another signet slave is
invoked.

IBM Confidential
June 28, 1991
DRAFT

2.2.3 Remote Processing Primitives

2.2.3.l Introduction

- 229 -

FUSION provides several new system calls for remote processing and adds some
functionality to some existing system calls. Rfork, rexec, and migrate are new, and
fork, exec, and exit are enhanced in an upward compatible manner.

The design goals for the implementation of the remote processing primitives are

• to maintain exact POSIX semantics while allowing processes to move around the
network,

• to allow these primitives to function as an add-on product together with vprocs,

• to allow processes to move around without excessive network delays,

• to optimize overall system and network performance,

• to optimize user perceived performance by allowing migrated process to resume
execution at the earliest possible time,

• to take advantage of the AIX V3 architecture without sacrificing the ability to port
this to other systems,

• and to keep code simple and avoid duplication of code.

This design interacts with the vproc design in that it deals with building and
rebuilding the process relationship aspects of the vproc structure. The vproc lock
mechanism is used to make sure that single system semantics are maintained. The
pvproc structure is utilized for flags and other needed state information.

The following sections describe

1. Migrate. This includes a section on the use of vproc locking by migrate and a
section on SIGMIGRA TE. This is followed by a discussion of the clients and
seivers which make up the migrate design:

a. Migrate Client

b. Migrate Seiver

c. Page Transmission Server

d. Page Faults

e. Page Fault Seiver

2. Exec. The Exec Client and Exec Server are described in terms of how they
differ from the very similar Migrate Client and Migrate Server.

3. Rfork. A design using local fork and migrate of the child is described.

IBM Confidential
June 28, 1991
DRAFT

- 230 -

4. Exit. The changes to exit to perform necessary vproc operations are described.
This is not really a remote processing primitive, but is described here in the
context of the "quick-exit" used in the migrate and remote exec designs.

2.2.3.2 Migrate
The migration of a process is broken into two distinct phases. The first phase copies
everything except the process data to the new node. At the completion of this phase,
the new process is completely viable except that it will page fault as soon as it begins
execution since no data pages have been created. In the second phase of migration, all
of the data pages are sent over.

On systems where it is possible to enhance the memory management system to handle
these page faults, the new process can begin execution immediately after the
completion of the first phase. The migration is considered successful at that point,
and the old copy of the process only exists as a "stub process" to transmit the data
pages to the new process. Vproc operations can proceed during phase two, and the
execution node of the process is now the destination node. No vproc operations on
the migrated process will be handled by the stub process - the stub process is now
considered to be distinct from the process which migrated.

The design for migrate has two sets of server code running on the destination node,
one for each phase of the migration. The client code running on the source node talks
to both of these servers. In addition, page faults by the new process on the
destination node communicate to a server running on the source node.

The first server is the Migrate Server. It receives the request to begin the first phase
of migration, and it does most of the work of moving the process to the new node.
Although called a server, it can also act as a client with respect to other specific
RPCs, such as when reopening files. There is no further protocol nesting and no
protocol recursion in this design.

The second server is the Page Transmission Server (PTS). It receives pages of data
asynchronously sent by the Migrate Client in the second phase of migration, and the
PTS inserts those pages into the appropriate data segment. The Client talks to the
PTS via an RPC pipe. The Client also can receive asynchronous requests to put
specific pages into the pipe to the PTS as soon as possible.

An additional set of server code exists on the source node called the Page Fault
Server. This receives requests from a process which previously migrated to get a
specific data page. These requests are forwarded to the Migrate Client so that it may
send the requested page to the PTS.

The following sections provide details of the different pieces of the migrate design.
Figure 12 illustrates the interaction between these pieces. The highlights are:

1. The Migrate Client sends the Migrate RPC to the destination node.

IBM Confidential
June 28, 1991
DRAFT

Source
Node

- 231 -

I
I
I

Destination
Node

+------------+ I +------------+
Page I (5) I I New

Fault I <-------------------------------------1 Process
Server I I I

+------------+ I +-----------+
I I I I\ /I\
I I (2) I I
I +-----------+(1) I +------------+ I I
I I Migrate 1------> I Migrate 1--/ I
I /---1 Client I I I Server I I
I I +------------+ I +------------+ I
I I (3) I I

\I I \I I I I
+------------+ I +------------+

Stub I (4) Page
Process 1-->ITransmissioril

I I I Server I
+------------+ I +------------+

F!g_ure 12. Interaction of clients and servers in the Migrate design

2. The Migrate Server creates the new process. That new process uses the data in
the RPC to open files, set up the address space, etc. Phase one of the migration
ends when the new process tells the Server to return back to the Client. The
new process then can begin user mode execution.

3. The Migrate Client now begins phase two. It now acts as the stub process, not
the original process.

4. The stub process sends data pages to the destination node of the migration. The
Page Transmission Server on the destination node uses the machine dependent
memory management system interfaces to put those pages into the memory
segments of the new process.

5. If the new process page faults, it sends a request to the source node for the
page. The Page Fault Server passes the request via the pvproc structure to the
stub process. The Stub process then gives high priority to sending that page if
it has not been sent already.

2.2.3.2.1 Vproc operations during migrate and remote exec
For a period of time during migrate and remote exec the process exists on both the
source node and the destination node. Vproc operations acting during this time must
either act on both incarnations of the process or the actions of the vproc operations on

IBM Confidential
June 28, 1991
DRAFT

- 232 -

one of the processes must be repeated on the other process once it is decided which
process will become the real one (this isn't always the process on the destination node
because of the possibility of error conditions). If repeating the actions later is chosen,
it is necessary to also consider the implications of operations being performed out of
order.

The fix is to say that no vproc operations can occur while the same process exists on
two nodes. They all have to wait in line until it is known which process is going to
become the one-and-only incarnation. By the time the migrate reaches phase two, this
lock can be released. Since the speed of phase one is independent of the size of the
process, the duration of the lock will not increase for big processes.

A pair of special locks are support by the vproc code to handle this for migrate and
remote exec. These are the Migrate Shared Lock and the Migrate Exclusive Lock.
The Migrate and Exec Servers obtain the Migrate Exclusive Lock because no vproc
operation on the process can be valid while the process is still being created. The
Migrate and Exec Clients obtain the Migrate Shared Lock. This only blocks
operations which try to obtain the Migrate Exclusive Lock. Any vproc operation
which tries to modify the process in any way must first obtain the Migrate Exclusive
Lock. All other vproc operation must obtain the Migrate Shared Lock to make sure
that a Server has not blocked them with its Exclusive Lock.

2.2.3.2.2 SIGMIGRATE
SIGMIGRA TE is the mechanism used to all one process to cause another to migrate.
An advantage of doing this as a signal is that this mechanism automatically picks up
the capability to migrate whole process groups or just single processes. It also allows
the process to ignore the signal or to catch the signal and perform special actions.
Finally, it is one way to avoid the implementation problem of having to have one
process access the user structure and data of another (possibly remote) process in
order to move the data to another node.

First, we will present a quick review of signal delivery in a typical Unix system.
When signals are delivered, all that the process sending the signal does is mark a bit
in the process being signaled. It is the responsibility of the recipient to process the
signal as appropriate. This is traditionally done in the routine psignal(); Psignal and
routines it calls are responsible for causing the process to exit, create a core dump,
stop, continue, or trap to a signal handling function.

The first step in implementing SIGMIGRATE is to put a hook into psignal (or
equivalent) to call migrate() rather than core(), exit(), etc. Combined with the vproc
changes which support having a node name passed with a signal, this is sufficient to
handle most of what is needed for SIGMIGRA TE. The remainder of this section
discusses special considerations to make the implementation complete. These issues
are

IBM Confidential
June 28, 1991
DRAFT

- 233 -

• arguments to signal handlers,

• preserving registers when SIGMIGRA TE interrupts user mode execution,

• distinguishing between completed versus interrupted system calls,

• and dealing with partially completed interruptable system calls.

Signal handlers are defined to accept one argument which is the signal number. On
many Unix systems, some or all signals are also defined to pass a second, signal
specific argument. SIGFPE generated by arithmetic exceptions, for example, may be
defined to pass an argument which specifies the type of exception. In FUSION,
SIGMIGRA TE signal handlers will be passed an argument indicating the node to
which the process is supposed to migrate. The difficulty with this is that the node is
specified by a string. We need to put the string somewhere in user space, and then we
must pass the pointer to that string. The logical place to put the string is on the stack
immediately before the arguments to the signal handler. These will look, in a sense,
like a bunch of extra garbage bytes passed as arguments to the function. Since the
function won't be declared to use all of those arguments, the extra bytes won't hurt
anything. Those bytes will be popped off the stack in the same manner as any other
function arguments. Depending on the calling convention on the machine, they will
either be removed automatically by the return of the function (as with any other
function return) or by the trampoline code which cleans up after the signal handler.

When SIGMIGRA TE interrupts a process running user code, it is important that all
registers are preserved. Normally, traps save registers on the kernel stack and restore
registers in the process of returning to user mode. In the obvious implementation of
just calling migrate() and letting it do the same thing it would do with a migrate
system call, the destination node would end up setting the user registers the same way
it does upon return from a successful system call. Machine dependent code is
necessary to extract the registers from the kernel stack on the source node, and other
machine dependent code is needed on the destination node to restore those registers
when returning to user mode after a SIGMIGRA TE which interrupts user mode while
still setting the registers to indicate successful system call completion in the case of a
migrate() system call

. I

When SIGMIGRA TE interrupts an interruptable system call, it is necessary to restart , I
the system call on the destination node. It is important for SIGMIGRA TE to I
distinguish between interrupted systems calls and signal detection Kt the end of a I
completed system call. In the latter case it is important that the system call is not I
restarted. It is also important to not decide too early that a system call should be I
restarted. If another signal is processed effectively at the same time and that signal I
should interrupt the system call with restarting it, then SIGMIGRA TE must not I
overrule that. The final decision to restart should be made only at the destination I
node after checking for all other signals. I

IBM Confidential
June 28, 1991
DRAFT

\

- 234 -

The most difficult area of all is dealing with partially completed system calls, that is
system calls which have already performed actions such as partial 1/0 and which
cannot be restarted from scratch. The only alternative here is delay the
SIGMIGRA TE action until the system call completes. On systems which allow
partially completed system calls to be interrupted, special care must be taken to not
allow SIGMIGRA TE to interrupt the system call. Special case code must be added to
places, such as sleepO or equivalent, which which test for pending signals. Other
signals should still be allowed to interrupt the system call, but SIGMIGRA TE must
not. This may require removing SIGMIGRA TE from the list of pending signals and
saving a flag indicating to the code which handles returning from system calls that
there is a· delayed SIGMIGRATE pending. NEEDSWORK: How do we do this without
being very intrusive in the base code?

2.2.3.2.3 Migrate Client (source node)
The basic structure of the Migrate Client is outlined in Figure 13.

The first phase of migration is a simple RPC request for the Client. The RPC is
called, and you wait for it to return.

In the second phase of migration the Client becomes a "stub process." The stub
process is the same physical process as the original process. Only the process
identification and process relationship information in the vproc structure is changed.
This prevents confusion with the new physical process on the destination node.

The stub process creates an RPC pipe to pass pages over to the destination node. The
server end of that pipe is the Page Transmission Server.

NEEDSWORK: The advantage of using an RPC pipe over individual requests is in the
reduced overhead of not having to set up a large number of RPC requests. The
disadvantage is that one server thread will be tied up for a long time (about a second
for a several megabyte process) while the migration completes. While this design
refers to the RPC pipe in a number of places, it is a trivial change to switch to having
the stub process make separate RPC calls for each page to be transmitted.

When the stub process is sending the "random" chunks of data, it would be desirable
but not strictly necessary to send recently referenced pages first since they are more
likely to be needed sooa. The stub process must keep track of which pages have been
sent to avoid sending the same page multiple times. This is best handled by freeing
the page and invalidating the page table entry as each page is sent. This also has the
advantage of providing free memory as soon as possible on the source node. We may
even need that memory ourselves for pages we need to bring in from the paging
device. By the time phase two is ending, all of the data pages of the process in
memory and on the page device will have been freed.

When the stub process is sending the very last page of data, it should include a flag iil\
the RPC indicating that transmission is completed. This flag is used by the PTS to•
mark the target process as complete.

IBM Confidential
June 28, 1991
DRAFT

- 235 -

If not all data has arrived from a previous migrate wait for it to arrive (The
PV _MIG_INCOMPLETE flag in the pvproc is used for this).

Lock local vproc to prevent any changes (e.g., signals, setpriority, etc.)

send Migrate RPC - this includes all information necessary to create the process
· except the contents of the writable data segments

wait for success/failure indication

Become a new, orphaned process, but hang around to send data. Call this a "stub"
process.

Unlock local vproc.

if successful {

}

open RPC pipe to the PTS on the destination node ·

while not all data has been sent {

}

if the "real" process on the destination node exited or exec' ed
break;

else if any specific data has been requested
send it

else
send "random" chunk of data

close RPC pipe

quick-exit (exit without the implications of orphaning, etc.)

Figure 13. Pseudo-code for the Mi2Tate Client

Phase two ends with the stub process performing a "quick-exit." This is an abbreviated
form of exit which does not do many of the vproc related operations such as SIGCLD
notification to the parent and doesn't require creation of a zombie process. It does
still do the vproc operations related to the fact that this is no longer an execution node
of the process, such as notification of the process group leader. As explained in the
section on exit, the vproc related pieces will be made separate so that this quick-exit
can be separated from the true exit.

A final note concerns the case where a migration begins while the second phase of &·

previous migration is still occurring asynchronously. We could allow a situation arise

IBM Confidential
June 28, 1991
DRAFT

- 236 -

Create a new process, with a new proc, vproc, and pvproc. The local vproc should
be created already locked to prevent any changes (e.g., signals, setpriority, etc.)

The following is executed in the new process:

Make yourself look like the original process (as with execO)

Open files, etc.

Use ld_getinfoO to create an appropriate address space.

Get the (shared) text segment.

Handle shared libraries:
If we can find the right library at the right origin

Use it.
else {

}

Create a new segment. This appears and behaves like a shared library
segment, but is not really shared. If the process that we create this for
forkQs, it will be shared, and so must be setup correctly. If the
process is ptrace()d, a r/w private copy of this library segment will be
constructed by ld_ptrace(), which must function correctly. When the
process exits, the segment must be cleaned up in the same manner as
private shared library segments are taken care of currently.

Set up data to be paged remotely.
Mark the pvproc as "incomplete" (the PTS will clear this when transmission of
pages is complete).

Unlock local vproc (Actually, do this as early as possible. This must be done after
we assume the identity of the new process. More important, this must be done
after we are certain that the migrate will not fail. This unlock is, essentially, a
point of no return. There shouldn't need to be very many checks, such as CPU
type, node execution permission, and ability to reopen files, before we know the
migrate will succeed).

Return to user mode execution.

Figure 14. Pseudo-code for the Mi21"ate Server

whereby one stub process is sending data to another stub process which then send the
data on to the latest execution node of the wandering process, but this has problems
with complexity of the code and with risky failure conditions involving problems at

IBM Confidential
June 28, 1991
DRAFT

- 237 -

various points along the chain of nodes. Instead, the migrate client checks whether it
is still in phase two of a previous migration before it begins phase one of the new
migration. If there is still a previous phase two in progress, the client waits. This
avoids the compounding the failure modes, but it means that successive migrates will
not get the performance advantage of the parallelism of this two phase design.

2.2.3.2A Migrate Server (destination node)
The basic structure of the Migrate Server is outlined in Figure 14.

The first job of the Migrate Server is to create a new process. The vproc, pvproc, and
proc structures must all be set up. This is essentially a local fork, except that the
vproc is initialized with the PID of the original process, and it has its parent process,
etc., set up to point to the migrating process's parent rather than to the server.

As noted above in the vproc section, there is a small possibility that system or
network failures may lead to having 2 processes with the same PID. The Migrate and
Exec Servers will reduce the possible problems which this may cause by testing for an
existing vproc which already claims to be on the execution node of the process.
Migrate and remote exec will fail in this case.

The new process uses the information provided in the Migrate RPC to reopen all of i.ts *
files including current directory, reestablish any file locks, set up any signal handlers,
set any remaining alarm time, set up its address space, open the text file and any
shared libraries and map those into the address space, and set up vproc relationships
such as parent, children, and process group information. The controlling tty
information (major, minor, channel, and node) is also passed. This is sufficient data
for the /dev/tty driver described in Section 2.1.1, Remote Devices, and for other
operations which need to know if the process has a controlling tty. If the migrate was
initiated by a migrate system call which requested that the mount context should be
preserved, then the old mount context is also established.

At this point, the new process is a perfectly valid copy of the original process except
that it does not have any data pages yet. On systems where it is possible to extend
the paging system, we will set up remote paging of these pages, The implementations
memory management functions will be called to set this up, and hooks will be added
to those functions to allow a new paging type.

The new process can then notify the Migrate Server that the migration was successful,
and the Server can return control back to the Client. This completes phase one of the
migration. The new process will continue execution, taking page faults as necessary
which will be satisfied by the Page Fault Server and Page Transmission Server
mechanism described below.

A flag in the pvproc, PV _MIG_INCOMPLETE is set in the new process to indicate
that it is still waiting for pages to arrive from the Client. The Migrate Client will
check this flag to make sure that a new migration cannot begin until the last one
completes: As described below, exit, exec, and rexec will check this flag as well. If

IBM Confidential
June 28, 1991
DRAFT

- 238 -

they detect that the flag is on, they will notify the stub process that transmission of
pages can cease. Fork, both local and remote, will wait until transmission is complete
just as migrate does (on systems which suppon copy-on-write or copy-on-reference,
local fork operation could copy the PV _MIG_INCOMPLETE flag into the child
process, but this would create great complications when exec or exit try to determine
if they can safely tell the stub process to cease transmission).

The concept of paging data remotely while the Page Transmission Server collects da~ *
asynchronously is really optional. If this is difficult to do in a particular pon of
FUSION, all that is needed is changing the point where we would otherwise set up
remote paging to instead wait for the stub process to complete transmission of all
pages. The code called to wait for the pages is the same code the Migrate Client calls
before starting a new migrate. The Page Fault Server can then be dropped from that
port and there is no need to deal with special page faults.

Put the data into a properly aligned page.

Get swap space to back it up (if that's what the memory management system
requires).

Attach and lock the segment, region, vseg, whatever.

Insen this page.

Detach and unlock the segment.

- section above is architecture dependent -
- section below is architecture independent -

If this is the last page for the process {

}

clear the PV _MIG_INCOMPLETE flag in the process's pvproc.
If the process is waiting for transmission to be complete

wake it up

If there is a process waiting in a page fault on this page
wake it up

F!g_ure 15. Pseudo-code for the Pa__g_e Transmission Server

2.2.3.2.5 Page Transmission Server (destination node)
This seiver is somewhat architecture dependent, but the basic outline is fairly general.
It is described in Figure 15. The architecture dependent part deals with allocating tho
memory and associating that memory with the appropriate segment, region, vseg, page
tables, etc. The architecture independent part deals with the communication with the

IBM Confidential
June 28, 1991
DRAFT

- 239 -

migrated process and the detection of the completion of phase two of the migration.

2.2.3.2.6 Page Faults
When a page fault is taken on a page to be brought in from a remote "stub" process,
send a request to the stub via the Page Fault Server to send that page as soon as
possible, then wait for the page to arrive. The stub process needs to be able to
recognize a request for a page which it just managed to get off a short time befor~
and it can ignore such a request This is explained under Migrate Client.

When the page arrives, it will be handled by the Page Transmission Server like any
other page.

NEEDSWORK: How do we tell that server to wake us up when it has the page? Since
page faults to disk with shared segments have a similar problem, this should not be a
big obstacle.

Get a request for a particular "stub" process to send a particular page.

While the stub process has not yet picked up a previous page request
sleep

Forward the page number to that process.

F~ure 16. Pseudo-code for the P~e Fault Server

2.2.3.2.7 Page Fault Server (source node)
The basic structure of the Page Fault Server is outlined in Figure 16.

The page number contained in the RPC message is forwarded to the stub process via
the pvproc. The stub process will check for requests stored there whenever it needs to
pick a page to send.

Normally, when a page fault has occurred, the process will have to sleep until it gets
the requested page. It would, therefore, be impossible for the PFS to get a new page
request before the process has received any previously requested page. It would then
be safe for the PFS to blindly pass the page number to the stub process. This is not
true, however, if the process consists of multiple threads and if the threads
implementation allows some threads to continue after one thread is stopped by a page
fault. To handle this case, it is necessary for the PFS to check to make sure that the
stub process has picked up any previous page request before forwarding the new one.

2.2.3.3 Exec and Rexec
The structure of the Exec Client and Server is similar to that of the Migrate Client and
Server, though there is no need for the Page Transmission Server.

2.2.3.3.1 Exec/Rexec Client (source node)
The basic structure of the Exec and Rexec Client is outlined in Figure 17. The Exec
RPC is distinct from the Migrate RPC, although some the same actions are taken by

IBM Confidential
June 28, 1991
DRAFT

- 240 -

Select the destination node if not explicitly specified.

H not all data has arrived from a previous migrate (as indicated by the
PV _MIG_INCOMPLETE flag) notify the stub process via the PTS that it can
cease transmission.

· Lock local vproc to prevent any changes (e.g., signals, setpriority, etc.)

Send Exec RPC - this includes all information necessary to create the process
including the arguments and environment

Wait for success/failure indication

Mark the vproc as not being the execution node of the physical process. This may
just mean changing identities as the stub process does in the Migrate Client.

Unlock local vproc.

Quick-exit (exit without the implications of orphaning, etc.)

F~ure 17. Pseudo-code for the Exec/Rexec Client

the seiver.

If data from a previous migrate is still being transmitted, we can tell the stub process
to cease transmission. This can be handled by sending a f akc page fault RPC to the
"stub" process which indicates that no more pages are needed. This will cause the
stub to close its RPC pipe to the PTS.

The reasons for the locking are the same as described in the section on migrate. The
same Shared and Exclusive Migrate Lock are used by exec.

See the Migrate Client and Exit sections for information regarding the quick-exit.

The main difference from the migrate design are that the RPC includes information on
the exec arguments and there is no need for a Page Transmission Seiver and Page
Fault Seiver to deal with bringing over data pages. The new process uses the exec
arguments to start up a new program, and no data pages are needed from the old
program at all.

The Exec Client is also responsible for selecting a node on which to execute. This is
discussed in Section 3.2, Invocation Load Balancing.

2.2.3.3.2 Exec/Rexec Server (destination node)
The basic structure of the Exec and Rexec Server is outlined in Figure 18.

IBM Confidential
June 28, 1991
DRAFT

- 241 -

Create a new process, with a new proc, vproc, and pvproc. The local vproc should
be created already locked to prevent any changes (e.g., signals, setpriority, etc.)

The following is executed in the new process:

Make yourself look like the original process.

Open files, etc.

Do the local exec.

Unlock local vproc (Actually, do this as early as possible. This must be done after
we assume the identity of the new process. More important, this must be done
after we are cenain that the exec will not fail. This unlock is, essentially, a point
of no return. There shouldn't need to be very many checks, such as node
execution permission, before we know the exec will succeed).

F!g_ure 18. Pseudo-code for the Exec/Rexec Server

The creation of the new process is the same as in the Migrate Server.

The new process performs the same actions as does migrate to reopen files. Like
migrate, it sets up signal actions, though unlike migrate, standard exec semantics
imply that all signal handlers will be replaced by SIG_DFL.

Once the process is set up, local exec is invoked to start running the new program.
The new process lets the Exec Server know whether or not the exec was successful,
and the Server returns the result to the Exec Client.

2.2.3.4 Rfork
The rfork function could be simulated fairly well at user level by doing a local fork
and then having the child migrate to the new node. The problem with this
implementation would be error handling. If the migrate fails, there would be no way
to notify the parent and have the rfork fail. The correct behavior of rfork when a
process cannot be created remotely is to return an appropriate errno to the parent. No
child should be created, and the parent shouldn't get any SIGCLDs. This is difficult
to arrange if the child really is created locally and it somehow has to go away without
the parent thinking it was ever there. We desire that when a rfork fails our actual
design should completely hide from the user whether it ever really created a child
process. This can only be accomplished by putting some of the code into the kernel.

It is still possible to implement rfork as local fork followed by migrate provided that
rfork is in the kernel. The basic idea is to have the parent wait on a semaphore until
it is sure that the migration is complete. In case of failure, the child needs a
mechanism by which it can pass the error number back to the parent. The semaphore
will be implemented using sleep on the address of a pvproc field together with setting

IBM Confidential
June 28, 1991
DRAFT

- 242 -

Call fork.

In the parent:
Sleep on a semaphore.

If child successfully migrated, return PID.

Otherwise, set ermo and return -1.

In the child:
Call migrate. Pass a flag indicating that the semaphore must be kicked upon
completion. The semaphore will be kicked right before the stub process
starts up at the end of a successful migration.

If the migrate returns, it failed. Pass the ermo to the parent, kick the
semaphore, and call quick-exit.

F!g_ure 19. Pseudo-code for Rfork

a flag in the pvproc. The child will tum on PV _RFORK_DONE in the parent's
pvproc and wake up the parent. The errno will also be passed via the pvproc. The
algorithm is outlined in Figure 19.

This strategy will perform as well as one which would use a special rfork RPC. Such
a strategy would look very much like migrate, except that it would most likely do a
procdup on the source node just before the stub process is created. The parent process
could then go off and return to the user while the stub takes care of pushing the
remaining data across. The strategy we have chosen here is essentially the same
except that the procdup on the source node occurs at the very beginning and the parent
sleeps until the stub process gets going. This way we get the same performance with
greatly simplified code.

A side effect of this design is that the PID of the new process is selected by the
source node, whereas in AfX 1.2 the PID is selected on the destination node. The fact
that the origin node is remote is not expected to impact performance since it is
necessary regardless to keep in contact with the parent process which is most likely to
remain on that node.

2.2.3.S Exit
The exit() function in FUSION requires only minor modification. The vproc needs to
be cleaned up, and in the process the vprocs (possibly remote) of children and of the
parent process need to be "adjusted" to correspond to this process having exited.
Similar changes need to be made for process groups and sessions. Here we consider
the vproc operations to be called, not the details of those operations. The details of
the operations are left up to the vproc layer.

IBM Confidential
June 28, 1991
DRAFT

- 243 -

The common exit code for process termination, kexit(), is modified to call
VPOP _PVPROC_REASSIGN_CHILDREN to orphan children and to send SIGCHLD
to the parent process. H the parent process is ignoring SIGCHLD, this process will be
orphaned to the INIT process to let it clean up.

In the case of quick-exit, all of the work to clean up the physical process is
unchanged, but we do not want to orphan children or send SIGCHLD to the parent
process. Quick-exit will set a flag in the vproc before it calls kexit to indicate that
VPOP _PVPROC_REASSIGN_CHILDREN should not be called.

Other cleanup actions, such as those relating to remote files, devices, sockets, etc.,
also need to be dealt with by exit. The exit code itself just sees these cleanup actions
as the normal close operations, and those cleanup actions will be covered in their
respective designs. No changes need to be made to the exit code to make this work.

In addition, if this process had recently migrated and it still has a remote "stub"
process sending data pages and a Page Transmission Server (PTS) receiving them,
then the stub process needs to be notified that it no longer needs to transmit pages.
As with exec, this can be handled by sending a fake page fault RPC to the "stub"
process which indicates that no more pages are needed. This will cause the stub to
close its RPC pipe to the PTS.

IBM Confidential
June 28, 1991
DRAFT

*

2.2.4 Shell Enhancements

2.2.4.1 Overview

- 244 -

AIX V3 sh (Bourne shell) program source code and AIX/fCF sh source code are very
similar. Both of them are derived from System V source code. To provide Process
Transparency function in AIX V3, we mostly just need to pon the AIXffCF code to
FUSION. Below we describe the changes to AIX V3 code which this would require.

The source code for ksh (Korn shell) in AIX V3 is fairly similar to the code for the
Bourne shell. Most function names have been renamed, and a moderate number of
new functions have been added to support ksh's additional functionality. The
algorithms from sh, however, are mostly unaltered. While the exact lines of code
used to add Process Transparency enhancements to sh will not work for ksh, the ideas
will be very similar and the pon will be a fairly straight forward translation.

The sh program is consist of 27 modules (.c files) and 11 include headers. They are:
args.c, blok.c, cmd.c, ctype.c, def s.c, echo.c, error.c, expand.c, fault.c, func.c, hash.c,
hashserv.c, io.c, macro.c, main.c msg.c, name.c, nls.c, print.c, pwd.c, service.c,
setbrk.c, stak.c, string.c, test.c, word.c, xec.c, brkincr.h, ctype.h, defs.h, dup.h, hash.h,
mac.h, mode.h, name.h, stak.h, sym.h, timeout.h. Those modules and headers in AIX
V3 which have to be modified or require new functions and definitions are described
in detail in the following sections.

2.2.4.2 Isolation of code changes
New code for Process Transparency will mostly appear in a new file, proctrans.c.
Hooks will be added to the existing code which make calls to routines in proctrans.c.
Slightly different versions of proctrans.c may be needed for the Bourne shell and the
Korn shell. The code in proctrans.c will include pons of routines which were added
to the AIX 1.2 version for TCF as well as new routines to replace blocks of code
which TCF had inserted into existing routines.

2.2.4.3 Nodeinfo
One change will be made from the way Process Transparency was added for the AIX
1.2 version of TCF. In that implementation, many functions had a new argument
added to point to a structure indicating the node on which execution would take place
(if explicitly given by an "onsite" command). As the shell recursively descends the
parse tree, it uses these arguments to keep track of the node. This approach has the
disadvantage that it is highly intrusive to the code. Many functions have to be
changed to accept this argument even though they do nothing with it but pass it on to
other routines.

In FUSION, we will replace this with a global variable (though "static" to proctrans.c)
which specifies the current node, combined with saving the previous node value on the
local stack of any routine which needs to change the value. This will isolate the
change and reduce by an order of magnitude the number of lines of code which need
to be modified in the shell. The new global variable, "nodeinfo", indicates the node

IBM Confidential
June 28, 1991
DRAFT

- 245 -

on which the command currently being parsed should be executed. Nested commands
are handled in this approach by having various routines save copies of nodeinfo on the
stack before changing the node value and calling other routines.

In particular, the TON code (in xec.c in the existing TCF code, but in proctrans.c in
FUSION) should save the existing "nodeinfo" on its stack. It should then put the new
node information into "nodeinfo" and recursively call execute(). When execute()
returns, the previous node data should be restored to "nodeinfo".

The execs() code in service.c is the one place where the "nodeinfo" is actually used.
The call to execve() needs to be replaced with a call to rexecve(). Since execs() is a
small routine, and it also needs to be changed to handle remote execution of shell
scripts, it should be replaced entirely with a new version which will be in proctrans.c.

The shell uses longjmp in several places for error recovery. The above method for
saving and restoring "nodeinfo" will not work is the recursive call to execute doesn't
ever pass back through the TON code do to a longjmp. Each routine which calls
setjmp must save away its own copy of "nodeinfo" on the local stack before the call
to setjmp. When setjmp return via longjmp, the global "nodeinfo" variable needs to
be refreshed with the value from the stack. To localize "nodeinfo" as a static variable
in proctrans.c, this saving and restoring of "nodeinfo" will be performed by routines in
that file. The code added to the caller of setjmp is just a call to the save routine, a
call to the restore routine, and a declaration of the local variable.

2.2.4.4 Summary of changes

• proctrans.c

new file with the bulk of new code
functions to be pulled with only minor changes from existing TCF include

• onsetup

• restLocal

• validSite

• migrateMe

• dosetpath

• scType

• scNum
some new functions will be created to replace blocks of code added in TCF,
allowing just a hook to be inserted for FUSION

• defs.c defs.h mode.h sym.h

misc definitions added as needed

IBM Confidential
June 28, 1991
DRAFT

- 246 -

• cmd.c

parse onnode command - call into proctrans.c

• fault.c

handle SIGPWR and SIGMIGRA TE

• func.c

freetreeO: add code to free nodes for onnode command
prfQ: add code to print nodes for onnode command
(code is small enough that moving to proctrans.c is unnecessary)

• hashserv.c

Don't use hash table with "onnode"
Don't put commands executed via "onnode" into the hash table

• main.c

• msg.c

Save nodeinfo before setjmp. Restore it after returning here via longjmps.

new error messages
new signals
new builtins

• seivice.c

• xec.c

execs must be able to remote exec shell scripts - no longjmp shortcut (this
requires scan() to allocate extra space for an extra arg)

add cases SYSMIG and SYSSPHERE for migrate and sphere builtins - put
bulk of code in proctrans.c
add case TON for onnode syntax - put bulk of code in proctrans.c

2.2.4.S Detailed description of changes
This section describes the details of the major changes to be made. The code
fragments illustrate how this code worked in AIX 1.2. Some small changes will be
necessary in any particular port of this code to handle issues such as differing schemes
for dealing with national languages.

2.2.4.S.1 Module xec.c
The function "execute" will be modified to handle new builtin commands, migrate, and
setspath.. Builtin commands are handled by cases in the "switch (internal)" code.
This, in tum, is in the code to handle TCOM parse tree nodes. For each of these
builtins we will call new routines in proctrans.c. For example, we will add the
following for the migrate builtin:

IBM Confidential
June 28, 1991
DRAFT

case SYSMIG:
sysmig (com) ;
break;

- 247 -

In proctrans.c we will add code comparable to what appears in TCF iri the SYSMIG
case above. If no changes are made to that code, it would appear as:

sysmig(com)
char **com;
{

char *al;
pid_t pid;
siteno_t rSite;
PCchar *pidStr;
char *end;

if (sysconf (_SC_TCF) = -1)
failed(notcf, "migrate");

al = com[l];
if (al) {

if (*al='-') {

}

else

if ((rSite = sfntonum(al+l)) = -1)
rSite = strtol(al+l, &end, 0);

com++; /* skip al */

rSite = site ((pid_t) 0);

if (*++com) /* any args? */
while (pidStr = *com++) {

pid = strtol(pidStr, &end, 0);
I*

*/

Check to see if shell or shell's
process group are being migrated
If so, we always do a setlocal
to avoid confusing the user by
having the local on a different
site.

if (pid = shellpid I I
(pid < O && -pid = shellpg:rp)
I I pid = O I I pid = -1)

IBM Confidential
June 28, 1991
DRAFT

}

}

{

}

- 248 -

migrateMe(rSite);
/*

If this is a process group
migration (or pid == 0 or
pid == -1), go on to send
the signal to the group.

*/
if (pid > 0)

continue;

if (kill3(pid, SIGMIGRATE, rSite))
failed(nomigrate, pidStr);

else
migrateMe(rSite);

} else
failed(badopt, migargs);

For the built-in command onnode,3 we need to put a new type "TON" to the switch
cases. The body of the case "TON" in existing TCF is provided as follow:

case TON:
onsetup(t,macro(onptr(t)->onsite->argval, sitet));
execute(onptr(t)->ontre, exec_link, errorflg, t);
restLocal (t) ;
break;

This will be changed as described above to manipulate a new variable, "nodeinfo",
rather than passing the node information as the extra argument, "t", to execute(). This
code will be moved to proctrans.c.

Note: in the existing TCF code, the case body of the command parsing tree type
"TFORK" was modified in order to improve error handling when rfork is used in
place of fork. Although the code to handle EBADST, EPERM, ESITEDNl, and
ESITEDN2 still exist in the existing TCF code, it is not necessary to port this change

3. Actually onnode is a reserved word. This allows greater syntactic flexibility. For example,
"onnode nodename (command!; command2)"

is allowed.

IBM Confidential
June 28, 1991
DRAFT

- 249 -

to FUSION since onnode will exclusively userexec rather than rfork to move processes.

2.2.4.S.2 Module cmd.c
The module cmd.c just needs to have a new case, "ONSYM" added to the
"switch(wdval)" statement. The function item() will have the declaration

int onnode_done = FALSE;
added. The body of the case will be:

case ONSYM:
r = onsym():
onnod.e_done = TRUE;
break;

At the end of the switch, the call to word() needs to be changed to
if (! onnode_done)

word();

The following code will be included in proctrans.c:

struct trenod *
onsym() {

register struct onnod *t;
char *ap;

t = (struct onnod *)getstor(sizeof(struct onnod));

/*
* Fail if TCF isn't installed on this site.
*/

if (sysconf (_SC_ TCF) = -1)
failed(notcf, "on");

skipnl();
if (wdval = EOFSYM)

synbad():
if ((int)wdval <= 0)
{

t->ontyp = TON;
t->onflags = O;
t->onsitenum = (siteno_t) O;
t->onlocsav = (char *) O;
if (wdval != 0)
{ /* site name is a reserved word */

extern struct sysnod reserved[];
short i;

IBM Confidential
June 28, 1991
DRAFT

} else

- 250 -

for (i=O; reserved[i].sysval != wdval; i++);
ap = reserved[i).sysnam;

ap = wdarg->argval;
if (cf (ap, "-v") = 0)
{

if (skipnl ())
break;

ap = wdarg->argval;
t->onflags I= ONV;

if (fndef 11 (wdval != 0))
{

} else

t->onsite = (struct argnod *)
alloc(length(ap) + BYTESPERWORD);

if (t->onsite = (struct argnod *) 0)
return (0);

movstr(ap, t->onsite->argval);

t->onsite = wdarg;

skipnl();
t->ontre = item(TRUE);

/* NEEDSWORK:
else

synbad();
???? *I
return (struct trenod *) t;

2.2.4.5.3 Module service.c
The routine execs needs 2 types of changes made to it. The call to execve needs to be
changed to rexecve using the node information saved in "nodeinfo". Also, execs has
code in it to optimize the execution of shell scripts which do not begin with "#! ".
Rather than exec 'ing a new shell, a longjmp is used to go back to main and start over.
This trick will not work if the exec is supposed to go to another node. These changes
significantly change the routine, so most of the code in the routine will end up being
moved into proctrans.c.

2.2.4.5.4 Module hashserv.c
The context dependent nature of path names in FUSION (due to the change in mount
context in the remote exec) means that hashing path names will not always work as

IBM Confidential
June 28, 1991
DRAFT

- 251 -

might be desired. As a result, a change needs to be made to avoid looking in the hash
table if the current command is onnode (that is, if anything is saved in "hashinfo").
Another change needs to be made to avoid saving hash information related to
commands executed with onnode.

2.2.4.S.S Module func.c
In func.c, there are two subroutines which need to be changed, one named freetree, the
other named prf. Both of these two subroutine have switch statements with cases for
every type of parse tree node. We need to add case TON to consider if the command
symbol is "onnode". The code to be added to freetree is:

case TON:
free(onptr(t)->onsite);
freetree(onptr(t)->ontre);
break;

The code to be added to prf is:
case TON:

I 2.2.4.S.6 Header defs.h

prs_buff("onnode ");
prs_buff(onptr(t)->onsite->argval);
prc_buff (SP);
prf(onptr(t)->ontre);
break;

For each new builtin, the header def s.h has to add one constant symbol such as:
4t define SYSMIG 34 /* current values have been used up to 33*/

Also add a definition for a new parse tree node type, TON.

2.2.4.S.7 Header mode.h
Header mode.h needs to add one new structure:

struct onnod
{

};

int
struct trenod
struct argnod
siteno t
char
int
char

ontyp;
*ontre;
*onsite;
onsitenum;
*onlocsav;
onflags;
*onrnachtyp;

Meanwhile, a pointer to struct onnod
struct onnod * _ onptr;

needs to be added into a union structure
typedef union
{

struct forknod * _ f orkptr;

IBM Confidential
June 28, 1991
DRAFT

- 252 -

struct comnod * _ conptr;
struct fndnod * _ fndptr;
struct parnod * _parptr;
struct ifnod * _ifptr;
struct whnod * _ whptr;
struct fornod * _ forptr;
struct lstnod *_lstptr;
struct blk *_blkptr;
struct namnod *_nanptr;
char *_bytptr;

} address;

We also need to add one macro
#define onptr(x) ((struct onnod *) (x))

2.2.4.S.8 Header sym.h
The symbol ONSYM needs to be added to the list of symbols for parsing, and the
symbol ONV needs to be added for the onflags field. of struct onnod.

IBM Confidential
June 28, 1991
DRAFT

(

2.3 Node Status Service

2.3.1 Description of the Product

- 253 -

This section covers interface and design features of the Node Status seivices. The
Node Status Seivice provides the system with:

• information about nodes participating in the cell and what their uptime is.

• information about nodes not participating in the cell and how long they have been
out of the cell.

• information about attributes of the nodes (load average, type of processor, version
of operating system, scaling factor, preference level, cluster membership, PID
ranges)

• a set of facilities for determining the least loaded node in the cell using CPU load,
network traffic and other dynamic data.

• information about signed on users.

• provide storage and retrieval interface for /etc/mount information used by the
cluster mount seivices

Node Status Seivices deal with all nodes within a cell. The most common client
seIVices will be modules, of the Process Transparency facility, requesting information
about other nodes within the same cluster or group.

The Node Status Seivice will be robust so no single machine failure should bring the
seivice down.

2.3.2 Description of Features
The Node Status SeIVice provides a variety of features to support the seIVices of
FUSION. Commands and the parts of the kernel extension that require information
about nodes in a cell or cluster obtain that information from the Node Status Seivice.
The use of the Node Status Seivice reduces retry and other delays that would be
experienced by the user or applications if they communicated directly with those
nodes each time.

The Node User Seivice uses the Node Status Seivice to obtain the current set of
signed on users. The Load Leveling function of the Cluster Environment uses the
Node Status Seivice to determine which nodes are active and to obtain load average
information for automatic node selection. The Cluster Mount Seivice makes extensive
use of the Node Status Seivice to store information about file systems that are
mounted in the cluster.

Cells and clusters may be large so users may wish to narrow the scope of nodes under
consideration. For this reason, queries to the Node Status Seivice may be restricted to
a set of nodes within the current user's "sphere of interest."

IBM Confidential
June 28, 1991
DRAFT

- 254 -

2.3.3 Components of the Service
The Node Status Services is comprised of two major components. These are the
Local Node Status Service (LNSS) and the Group Node Status Service (GNSS). All
client activity occurs between the local server and the client, application clients do not
communicate with the group server. Group servers may communicate with each other
and local servers.

2.3.3.1 The Local Node Status Server
The LNSS is responsible for collecting information about the local node, and for
caching information about other nodes. It also pushes the information about the local
node to the Group Node Status Server (GNSS) periodically so that information is
available to other nodes.

The LNSS pushes static node information to its GNSS after LNSS is first initialized,
and to a new GNSS if it does not have that information cached. The LNSS also
periodically collects information such as the set of active users and CPU load data
from the local node, and pushes it to the GNSS. The local component will be
responsible for maintaining a cache of information about other nodes retrieved from
the group server, thus eliminating redundant communications to other nodes. During
network transients (start, stop, partition recover, etc.), the local component stores local
user/system information for transmittal to the group server when it becomes available.
The group server will maintain information for all nodes within its service area. All
client requests for service will go through their LNSS. All requests made of this
service default to a user's sphere of interest.

2.3.3.1.1 Configuring the Local Node Status Server
For each node, a node info file, in the FUSION cell wide name space, will represent
membership in a group of the cell/group directory hierarchy. The basic node record,
as would appear in node files, is shown below. J:his is a hard storage version of the
node static data pushed to the Group Node Status Server. Data in /cell/group/node
represents both tuneable and machine specific information about nodes in a named
group. Node information is acquired by calling machine specific routines to determine
machine configurations. For each supported platform calls specific to a particular
hardware architecture must be made in order to determine the correct information to
store and pass to the Group Server. Tuneable parameters are modified through user
command interfaces, i.e. command line or system adminstration tools.

typedef struct static_node_data {
int node_number;
char node_name[MAXNAMELENJ;
char cpu[20];
char coproc[20J;
char os_version[20];
char os_vendor[20];
float load_scale;

IBM Confidential
June 28, 1991
DRAFT

- 255 -

long cluster_id;
int load_interval;

} nod_rec;

The LNSS does a lookup into the FUSION cell wide directory name space for a
named file entry that denote the instance of the LNSS and associated group servers.
These name files are used to help form the partial binding strings for contacting a
group server. With the formed group string the LNSS calls the DCE CDS (Cell
Directory Service) requesting a list of Group Node Status Server (GNSS) entries. The
partial handle, which represents the preferred server, is used to make the first call to
the rpcd running on the node of the group server. Complete handle information is
returned from the call to the rpcd using the partial handle. If the rpcd replies that the
service cannot be found, the LNSS then uses the next partial handle in the list to call
another designated group server. Once connection is established with the remote
server, the server may respond with NOT_A_SERVER and returns the handle to the
active GNSS. On the first call to the GNSS, the LNSS passes the handle for the call
back interface along with static node information. Dynamic loads data starts to be
pushed from the LNSS to the GNSS at some tuneable interval, this essential represents
a keepalive between the GNSS and LNSS interfaces.

2.3.3.1.2 Local Node Status and the Cluster Mount server
Passed back to the LNSS on the first call to the GNSS is the handle associated with
the Group Cluster Mount Server (GCMS). The Cluster Mount Kernel Extension,
(CMKE) contains a system call allowing the LNSS to set the current Group Cluster
Mount Server handle. At this time, and every time the LNSS contacts a new GNSS,
the handle to the GCMS is passed into the CMKE by the LNSS using the system call,
setGCMShandle. The LNSS will then fork a Local Cluster Mount Server (LCMS}
that will use the handle passed out through the getGCMShandle system call. This
eliminates the need for a RPC interface between the LNSS and LCMS.

2.3.3.2 The Group Node Status Server
The Group Status Server (GNSS) stores information about other nodes within that
GNSS's service area. Static node and dynamic load information is cached by the
GNSS for each LNSS in the service area'.. Requests for information outside the,
service area are fulfilled and cached by the GNSS for clients within the service area.
Along with the requested information, the requesting GNSS caches the handle used te
contact the GNSS which provides information about nodes outside the services area.
Group servers may be queried by the LNSS server components within its service area
and by other group servers. All nodes that are candidates for group service operations *
will start a GNSS, only one GNSS in a designated group will respond as the group
active server. Periodically the active group server will push group data to other non­
active group servers. The GNSS also supports an interface between the GNSS and the
Group Cluster Mount Server (GCMS). This interface permits the GCMS to find other
participating group cluster mount server within the cluster. The GNSS will be'
responsible for maintaining all handle data for the GNSS and GCMS components. All

IBM Confidential
June 28, 1991
DRAFT

- 256 -

LNSS will be notified of a either a pending shutdown of non-preferred GNSS or a
merge of GNSSs during partition recovery.

2.3.3.2.1 Configuration of the Group Node Status Server
Configuration of the group nodes FUSION setvices are maintained in the cell wide
name space. Entries in the cell/named_group directory denote group servers, and fcJt
each group directory there are multiple group setver configuration files. Files, in ··
preferential order, indicate which nodes will operate as a GNSS. Lookup strings are
constructed from GNSS l_nodename, GNSS2_nodename, ete. The first entry denotes ··
the preferred GNSS, subsequent entries define what nodes will operate in the absence
of the preferred group setver.

2.3.3.2.2 Group Status Server Start-up
As with the Local Node Status Setver, the GNSS will obsetve the same rules for
contacting a compatible setver through rpcds when initially started. Group servers
will start on each node in which that node has been defined as a group setver in the
FUSION cell wide name space. If, during start-up, the preferred GNSS component
starts up it will become the active GNSS.

There are three cases to consider in start-up:

• absence of any group setvers - experienced during first time start-up

• presense of group setvers - commonly encountered during multiple group setvice
start-up

• intra-group partitioning - not likely to happen with good RPC routing protocols,
but possible

2.3.3.2.2.1 Initial Start-up in a Cell
On the first invocation of a GNSS, the GNSS will be the only group setver that other
nodes or group setvers can contact. Using the node configuration file, the GNSS
determines how to represent the GNSS in the cell and creates an entry in the CDS
directory that reflects this positioning. Each GNSS is responsible for maintaining its
entry in the CDS directory namespace. Moving a GNSS setver to another group or
expanding groups is easily accomplished without shutting down any node. Since
automatic handles require a partial portion of the handle to generate a binding handle,
the first node to setvice the cell will register a single handle to the CDS in a well•
known directory. This directory containing the handle allows other setvers to find
When another group setver starts it will find that group setver.

2.3.4 Service Area
The GNSS service area can span multiple clusters. The setvice area of a GNSS setver
does not share the domain of a cluster. As a practical matter, the setvice area is not
restricted to a single cluster. In large clusters, setvice areas may be serviced by
multiple group setvers. GNSSs that can setvice a group will be reflected in an order
of the GNSS4_Group list. This list contains all the primary candidates for GNSS

IBM Confidential
June 28, 1991
DRAFT

*

- 257 -

should a new GNSS need to be started.

The GNSS will contact other GNSSs to satisfy requests from clients whos SOI spans
more then one group service area

Each node is assigned to a GNSS's service area. Group may span serveral clusters._
Nodes may dynamically join clusters and groups if the node can resign from the group
and cluster.

Cluster
..... Cluster B C

.. Cluster A•...•.....

Grp Host Grp Hostl
l->----<--1
I I

. ----

___ I I ___ _

Host >--<-
1

Fi ure 20. Exam le of GSS Service Area

An example is illustrated in Figure 20.

2.3.S Service Initialization

2.3.6 GNSS and LNSS Protocols
The GNSS and LNSS share two distinct interfaces, the first interface supports data and
control functions while the second interface provides GNSS to LNSS call-back
mechanisms. Load, active user, and static node data are controlled through the IDU
interface described in Programming Interfaces. A second interface, the GNSS to,
LNSS call-back interface allows the GNSS to determine if a node has actual gone
down when the load interval timer has expired.'

2.3.6.1 GNSS Election Protocol
All GNSS within a cell communcation through a peer to peer interface. This interface
is used to pass tables representing the participating GNSSs within the cell. Tables are
pushed to newly participating GNSSs and periodically pushed to non-servicing GNSS
allowing these nodes to quickly find other servicing GNSSs in the cell when a GNSS

IBM Confidential
June 28, 1991
DRAFT

- 258 -

servicing a group becomes inaccessible. Inactive GNSS running within the group
become active when a LNSS LNSS communication fails. Using the cached CDS
registry entries the LNSS attempts to contact alternate group servers. When an
inactive group server receives a message from a LNSS, the inactive group server then
requests to become the group server for the group. Inactive group servers then wait
for a message from an active group server indicating that should become the group,
server, or is informed that a group server has been selected and the handle for that
group server. Active group servers query all other group servers to verify that the
requesting server can indeed become the group server. This closely follows the two­
phase commit paradigm. The newly elected group server continues to attempt
contacting the designated group server tuneble interval. Once the designated group
server is contacted the group server will attempt to resign to that group server.

2.3.6.l Locating Other Group Servers
Everytime a GNSS starts it queries existing GNSSs by acquiring an automatic binding
handle to registered GNSSs. On contacting a running GNSS the newly started GNSS
determines if it must service a group of go into an inactive mode of operation. A
merging GNSS then pushes its instance to all other GNSSs.

2.3.6.3 Partition Operation
Groups may operate in partition when communications between group servers outside
a group cannot be established. When

2.3.6.4 Partition Recovery
The active group server periodically attempts to contact the primary group server. At
contacting the primary group server, the parititioned server attempts to merge with the
primary group server. An interface between the GNSS and GCMS permits the GCMS
to determine if the group can be joined. If mount conflicts exist within the scope of
the group, the group will continue to operate partitioned.

2.3.6.S Election Deadlock Reconciliation
GNSS cell wide will support an election queue, each entry reflects the group
membership and its priority within the group and the its status within the queue.
States on the queue are REQ_GRP _SERVER, GRP _RESPONE, GRP _ELECTED.
When another group server pushes a request to this queue, the node processing the
requests determines if the incoming request should be pushed on the queue or if a
response GRP _ELECTED should be retumeEl.

2.3.7 GNSS and GCMS Protocol
The GNSS is resposible for starting the GCMS, the GCMS inherits a global structure
that contains the uuid of the bound gnss_2_gcms interface. The GCMS then passes a
handle to the gcms_2_gnss interface. Then GNSS then pushes the instance of the
GCMS servicing cluster x to all GNSS within the scope of the cell.

IBM Confidential
June 28, 1991
DRAFT

- 259 -

2.3.8 Data Services Interface

2.3.8.1 Internal/External Data Services
The Node Status Server 'WllFbe responsible for storing several well defined data
elements for each type of service provided. These representation arc done through a
data service interface. Sinee IDL code must be recompiled to support new versions of~· I
a data interface, a facility in the NSS provides node client applications with the abilit}' I
to define and register new data storage requirements.. An example of this would be I
when a load leveling interface pushing data to a LNSS requires a new type or element. I
Typically this requires writing a new IDL interface for the LNSS and GNSS I
component and providing this new interface to all nodes in the cell. At the same time I
the NSS uses the data services, client node applications may use this data interface to I
define external runtime data storage elements.

Data interfaces, defined as DCE IDL code, can be converted from NIDL to schema~
definitionM *

2.3.8.1.1 Internal Data Interfaces
Services used by the LNSS may register IDL independent versions of interfaces, this
avoids tightly coupling the IDL interface to data. Version control can then be the
responsibility of the host application when calling a registered interface.

2.3.8.1.lJ Data Type Support
For each data type represented in the client storage requirements a type value is used
to expand data transmitted or received from storage entities.

/*
* Data types supported for storage and retrieval. Types are provided in the
* case data must be sent across the wire via IDL. A non-negative value I
* retumed or passed into the data structure indicates the length of a
* character array.
*I

#define SCH TYPE INT 2 -1 - - -#define SCH TYPE INT 4 -2 - - -
#define SCH TYPE FLOAT 4 -3 - - -
fdef ine SCH TYPE FLOAT 8 -4 - - -fdef ine SCH TYPE UCHAR -5 - -#define SCH TYPE CHAR -6 - -
#define SCH TYPE UUID -7 - -

2.3.8.1.1.2 Internal Data Representation
Database interfaces support different types of hashing/b-tree specifications registered
by each · client interface. Support for registering schemas and the associated data
interfaces are detailed in the following pseudo-code. This is representative pseudo
code of the NIDL database interface.

IBM Confidential
June 28, 1991
DRAFT

- 260 -

/*
* The hash and keys supported for building tables and trees.
*I

fdef ine SCH KEY HASH - - 1 /*Hash the key and perfonn hash operations */I
#define SCH KEY DUP - - 2 /* Used to fonn btree keys, allowing dup keys */I
#define SCH_KEY_UNIQ 3 /* Do not allow duplicate keys */ I
f define SCH KEY NONE 4 /* No keys for this field */ I

/*
* The match list t structure defines the query data syntax for perf onning a
* query on a data set. These are operators supported for query. I
*/

#define Q_AND OxOl
#define Q_OR Ox02
#define Q_XOR Ox04
#define Q_NOT Ox08
#define Q_GT OxlO
#define Q_LT Ox20
#define Q_EQ Ox40

type struct match_list {
char
int
char

} match_list_t;

typedef struct db_query {

*m_field;
m _operator;
*m_comparator

char *q__ fldname;
char *q__value;

/* Matches field listed in registered schema */
/* Value to perfonn logical comparison */

syntax_ t q__flag; /* Logical comparator */
struct db_query *q__next;

} db_query_t;

/*
* The following schema data structure allows service interfaces to register
* individual database storage types for other services.
*/

typedef struct db_schema {
char *sc_fldname;
int sc_type;
int sc_key;
struct db schema *sc_next;

IBM Confidential
June 28, 1991
DRAFT

- 261 -

} db_schema_t;

One of the reserved fields could be used to denote versioning of a data interface, it
then falls back on the client to deal with modifications to versions.

/*
* This structure provides interfaces for both the initialization and
* lookup functions. The dt_schema provides the pointer to the specific
* data registered under the name dt_tblname. Clients need not understand
* the data specifics of an interface at runtime, a query may be perfonned
* to retrieve a data dictionary from the database server. The database
* interface will provide data representation for the client.
* The reserved entries are for future enhancements such as:
* mapping storage strategies, service selection and typing, versioning,
* or replication masks. These are only suggestions to their use.
*/

typedef struct db_dict {
char *dt_tblnarne;
unsigned32
unsigned32
unsigned32
unsigned32
db schema t

reserved_ 1;
reserved_2;
reserved_ 3;
reserved_ 4;
*dt_schema;

} db_dict_t;

/*
* data wrapper used to pass variable length data of differing data types
* between the caller and the server.
*/

typedef struct db_ data {
void *db_data;
int db_size;
struct db data *db_next;

} rec_data_t;

I*
* On requests that contain multiple match sets, a list of these matches!
* will be returned to the caller. Storage interfaces will not need to
* understand the data representation in order for the requester
* to unwrap the response.
*/

typedef struct sel data {

IBM Confidential
June 28, 1991
DRAFT

- 262 -

rec data t *sel_data;
struct sel data *sel_next;

} sel_data_t;

/*
* It would be useful to have a virtual/file/rpc descriptor that allows
* access to local virtualized data, back store to disk, and distributed
* storage and retrieval.
*/

typedef unsigned int
typedef unsigned int

db_descriptor_t;
status_t;

2.3.8.1.2 External Database Service Interfaces
Client routines are provided calls to register, lookup, store, and retrieve information I
managed by the LNSS/GNSS.

/*
* Initialize database based on the service specified requirements. db_init
* verify that the request is well formed and create an empty slot in the
* data dictionary. A descriptor will point to the actual storage module.
* Subsequent calls using the other database functions will modify data
* stored at the descriptor.
*/

db_descriptor_t
db_init(db_dict_t *)

/* *
* Perform lookups into the data dictionary based on the visible name entry.
* This may be modified later to include other selective lookup criteria.
* On successful corrpletion of the lookup, db_lookup returns the actual
* descriptor to the data record definition.
*/

db_descriptor_t
db_lookup(db_dict_t *)

/*
* Used in conjunction with db_lookup, allows the request service to attach
* to a registered database.
*I

db_descriptor_t
db_attach(db_dict *)

/*

IBM Confidential
June 28, 1991
DRAFT

- 263 -

* Retrieves data from a specified database using keys and hashes derived
* from the registered schema.
*/

(sel_data_t *)

db_retrieve(db_descriptor_t, db_query_t *)

/* *
* Adds an entry, rec_data_t, into the database pointed to by db_descriptor_t
*/

status t
db_add(db_descriptor_t, rec data t *)

/* *
* Deletes entries from the database pointed to by db_descriptor_t matching
* the record or records supplied. I
*/

status t
db_del(db_descriptor_t, rec data t *)

/*
* Modifies entries in the database pointed to by db_descriptor_t usingl
* the recored or records supplied I
*/ I

status t I
db_mod(db_descriptor_t, rec data t *) I

/*
* Since the server will allocate match_list data pointed to by sel data t
* the client application must clean-up the space when it is no longer needed.
*/

status t
db_ml_release(db_descriptor_t, sel data t *)

/*
* Before exiting from a database service routine, this call is provided
* to release all resources allocated to the caller.
*/

status t
db release(db descriptor t)
Before data may be passed to or from an interface the data will be wrapped in a
variable length data structure to insure compact storage. The IDL interface will still
perform marshaling but the client must be able to wrap and unwrap the opaque data.

IBM Confidential
June 28, 1991
DRAFT

2.3.9 Data Maintained by the Service
Node Number'!'

- 264 -

An integral identifier that identifies the node uniquely within the cell.

Node Name
The "commonly used" node name.

CPUTypcf
The CPU type for the current CPU.

Coproc"
name of coprocessor

OS version
The OS version of the node.

OSvendor/type f
Name of vendor and OS type

SCaling Factcr A scaling factor. This scaling factor is used to determine the leas•
loaded node. A higher scaling factor indicates a more powerful node. This could
correspond to a relative MIPs rating.

~Stati

Whether the node is currently up, down, or not a good load level candidate. An
arbitrary node is not permitted to change a different node's state. If a node attempts
to do this, then the Node Status Server will itself attempt to determine if the node
status and return it to the calling node. A node may mark itself as being down. The
values far this field are NODE_UP, NODE_DOWN, NODE_TRANSmVE;

Node Time Stat'

The time the node came up (if the node's current status is up) or the time the node
went down (if the node's current status is down). P. Node In Cluster~

Whether the node is currently participating in it's cluster.

Load Average~'

LoadAveragelMif LoadAverage5Milf LoadAveragel5Miif

The one-minute, five-minute, and fifteen minute load averages for the node. These
measure the average length of the queue of runnable processes at a given node,
averaged over periods of 1 minute, 5 minutes and 15 minutes.

MaxLoadTim~

The maximum time expected between load updates from a node.

MaxLoadDeltaf

IBM Confidential
June 28, 1991
DRAFT

*

- 265 -

Load which causes reporting to be done ahead of schedule.

2.3.9.1 Programming Interfaces

2.3.9.1.1 Node Status
The Node Status Server will publish several interfaces each of which is specific for
tho- type of data which is being stored and or requested. Interfaces presently supported
are prefixed with their respective category name i.e. node_, user_, load_, and clmnt_
(cluster mount).

The return value for all of these interfaces is uniformly defined.·

GNSS PENDING
GNSS PENDING MERGE - -
NOT A SERVER
OK

2.3.9.1.1.1 Node Interface
node

server is trying to declare itself
server conversion in process
this binding handle is not useful
successful conpletion

this interface supports the organized storage and retrieval of information
about nodes. This information is referred to as static data and consists
of information about each node which will change infrequently if at all.

Tenns/ structs

node rec
a fixed structure as described below

typedef unsigned32 node_id

typedef struct node _rec {
unsigned32 version
node id t node_ id;
uuid t callback_ hnd;
unsigned8 node_name[20];
unsigned8 cpu[20];
unsigned8 coproc[20];
unsigned8 os_version[20];
unsigned8 os_vendor[20];
float scale;
unsigned32 time started;

unsigned8 stats;

unsigned32 load inter.val_l;

/* A unique node identifier */

I* internal version number */
/* Unique node number */
/* Handle used by GNSS */
/* fixed length string */
/* fixed length string */
/* fixed length string */
/* fixed length string */
/* fixed length string */
/* an arbitrary numbering scheme */
/* when the system came up, or went */
/* down */
/* nodestat, datastat, grpstat, */I
/* cluststat) */
/* load inter.vals, can be modified */

IBM Confidential
June 28, 1991
DRAFT

- 266 -

unsigned32
unsigned32

load_inte:r:val_2; /* for start-up */
load_inte:r:val_3;

};

definitions for the status member of the node info structure

#define NODEtJP OxOl /* node is up */
#define NODEX Ox02 /* node is inaccessible */
#define DATAVALID Ox04 /* data is current */
#define CLUSTIN Ox08 /* I am in a cluster */
#define GRPMINE OxlO /* I am se:r:vicing this node */

The following variables are used in the RPC calls and have the same meaning.

handle:
rec index:
records:
return status:
rec id:
a index:
a list:
soi:

max index:
cursor:

in record:

out rec index:

out records:

The RPC handle associated with this operation
The largest used index of records
A variable length array of node_recs
Return status of the server
A single node identification number
The largest used index of the a_list array
A variable length string array
A UUID (or something like it) which represents
the users sphere of interest. It expands to a
list of node id's. If it is present the next
two fields are ignored.
The largest index supported in the record array
An I/O parameter used by the server which is
processing this request. Must be initialized to
zero on first call. If the request cannot be
satisfied in a single call, this value must be
returned unchanged with each subsequent call.
A single node_rec used as a match template.
Since 0 is not valid for data in any field,
it is a wild card. The rec id must be set to 0.
Matching will occur only on valid data.

The largest index used which contains valid data.

A variable length of nodes_recs. No partial rec ids
will be returned.

The node functions are:

IBM Confidential
June 28, 1991
DRAFT

node add

node add alist
node del
nod.e_get_data
nod.e_get_alist
node match data

- 267 -

If node does not exist, adds to Node database,
else modifies data.
Add/modify the attribute list of a given node.
Delete a node from the Node servers database.
Retrieves node_recs for specified nod.es.
Retrieves a single nodes attribute list.
Retrieves node recs of nodes which match the
supplied data.

node add - If node does not exist, adds to Node database, else modifies
data.

This service will add node(s) to the Node database if it
is not already there. If the node already exists in the
database, its data is replaced by the new data.

[idempotent J
int node_add(

handle t [in] handle;
signed32 [in] rec_index;
node rec [in, last_is(rec_index)]
status t [out] return_status;
)

records[];

node add alist - Adds/modifies an attribute list to a node

This service will add a nodes attribute list to the database,
or modify an existing one.

[idempotent l
int node_add alist(

handle t
node id
signed32
unsigned8
status t
)

[in] handle;
[in] rec id
[in] a index;
[in, last_is(a_index)]
[out] return status;

a_list[];

node del - Delete a node(s) from the Host servers database.

IBM Confidential
June 28, 1991
DRAFT

- 268 -

This service will delete a node(s) record(s) from the Node Status
Server database.

[iderrpotent]
int node_del(

handle t
signed32
node id
status t
)

[in] handle;
[in] rec_index;
[in, last_is(rec_index)]
[out] return_status;

rec_ids[];

node_get_data - This function retrieves node_recs for the specified nodes

This function retrieves node recs for the specified nodes

[iderrpotent]
int node_get_data(

handle t
soi t
signed32
node id
signed32
signed32
node rec

unsigned32
status t
)

[in] handle;
[in] soi;
[in] rec index;
[in, last_is(rec_index)] rec_ids[]
[in] max_index;
[in, out] g_rec_index;
[in, out, last_is(g_rec_index), max_is(g_max_index)] I
records[];
[in, out] cursor
[out] return_status;

node_get_alist - Retrieves an attribute list

This service will retrieve a single nodes attributes list.

[idempotent]
int node_get_alist(
handle t [in] handle;
node id [in] rec id
signed32 [in] max index;
signed32 [in, out] a_index
unsigned8 [in, out, last_is(a_index), max_is(max_index]

a_list[];

IBM Confidential
June 28, 1991
DRAFT

status t
)

[out]

- 269 -

return_status;

node match data - Retrieves record ids of records which contain the
supplied field types

This function retrieves record ids of records which contain the
supplied field types

[idempotent]
int node match data(
handle t [in] handle;
soi t [in] soi;
signed32 [in] rec index;
node id [in, last_is(rec_index)] rec_ ids[]
node rec [in] in_record;
signed32 [in] rnax_index;
signed32 [in, out] out_rec index;
node rec [in, out, last_is(out_rec_index),

unsigned32
status t
)

max_is(rnax_index)] out_records[];
[in, out] cursor
[out] return_status;

node match alist - Retrieves node recs of records which contain
alist supersets of elements supplied by the caller

This function retrieves node recs of records which contain at
least the elements supplied by the caller in the stored alist.

[idempotent]
int node_match_data(

handle t [in] handle;
soi t [in] soi;
signed32 [in] rec_index;
node id [in, last_is(rec_index)] rec_ids[]
signed32 [in] a_index;
unsigned8 [in, last_is(a_index)J a_list[J;
signed32 [in] rnax_index;
signed32 [in, out] out_rec_index;
node rec [in, out, last_is(out_rec_index), rnax_is(rnax_index))

IBM Confidential
June 28, 1991
DRAFT

- 270 -

out_records[];
unsigned32
status t
)

[in, out] cursor
[out] return_status;

node nomatch alist - Retrieves node recs of records which do not contain
any of the elements supplied by the caller in their
stored alists.

This function retrieves node recs of records which do not
contain a single element in stored a lists which match those
supplied by the caller.

[idempotent]
int node_nomatch_data(

handle t [in] handle;
soi t [in] soi;
signed32 [in] rec_index;
node id [in, last_is(rec_index)] rec_ ids[]
signed32 [in] a_index;
unsigned8 [in, last_is(a_index)] a_list[];
signed32 [in] max_index;
signed32 [in, out] out_rec_index;
node rec [in, out, last_is (out_rec_index),

max_is(max_index)] out_records[];
unsigned32 [in, out] cursor
status t [out] return_status;
)

2.3.9.1.1.2 Load Interface

load
this interface supports the organized storage and retrieval of CPU load
information for nodes. The storage method is a non-shared database.

Terms/structs

typedef struct load rec{
unsigned32
unsigned32
unsigned32
unsigned32
unsigned32

last time sec; - -
last time msec;

/* seconds at time of last update */*
/* microsecs at time of last update */ - -

avail_mem;
page_rate;
io rate;

IBM Confidential
June 28, 1991
DRAFT

/* available memory in pages */I
/* current paging rate in pages */I
/* current I/Orate */I

}

unsigned32
unsigned32
unsigned32
unsigned32

- 271 -

swap_space
undefined_l;
undefined_2;
undefined_3;

/* available virtual swap space
/* User defined fields*/ I

typedef struct lrecord{
node id rec id;

load; load rec
}

typedef struct lm record {
node id rec_id;
unsigned8 node_narne[20]

}

typedef struct load max {
node id rec_id;
set load max load;

typedef struct set_load{
unsigned32 max time_sec; /* microseconds between updates */

/* microseconds between updates */ unsigned32 max_time_rnsec;
float max_load_delta; /* delta which causes load reporting */

lrec:

max load:

num recs:

rec ids:

record:

max lrecs:

An lrecord which is used to update the servers load
information
All the data necessary to change the time and delta
of reporting loads.
The index of the last record in the following records list

The node_ids of the target nodes.

A single node_rec used as a match template. Since 0
is not valid data in any field, it is a wild card.
The rec_id must be set to 0. Matching will occur
only on valid data.

The maximum number of lrec spaces available in the
buffer provided.

IBM Confidential
June 28, 1991
DRAFT

nurn lrecs:

max lm recs:

lm recs used:

lm recs:

- 272 -

The index of the number of lrecords returned in the
output buffer. i.e. number of lrecords-1.

The maximum index of lm_records (s) which fit in the
buffer provided. This is used to determine how many
nodes will be returned. i.e. if 3, it will give back
the three least loaded nodes in that order.

The index of the number of lm records returned in
the output buffer. i.e. number of lrecords-1.

The output buffer. No partial records will be returned.

The load service functions are:

load_put
load_get_data
load set max - -
load_get_max
load fastnode

load_put

Updates node load information
Retrieves load information about specified nodes(s)
Sets the max reporting time and max load delta
Gets the max reporting time and max load delta
Uses one set of fields to select records and
returns a specific node identifier

Updates node load information

This service will update load information in the node database
for the specified node.

[idempotent J
int load_put(

handle t
lrecord
status t
)

load set max

[in]
[in]
[out]

handle;
lrec;
return status;

Sets the max reporting time, and max load delta

This service changes the max reporting time and the max
reporting delta.

[idempotent J
int load_ set_ max (

handle t [in] handle;

IBM Confidential
June 28, 1991
DRAFT

load max
status t
)

load_get_max

[in]
[out]

- 273 -

max_load;
return_status;

Gets the max reporting time, and max load delta

This service changes the max reporting time and the
max reporting delta.

[idempotent J
int load_get_max(

handle t
load max
status t
)

load_get_data

[in] handle;
[in, out] max_load;
[out] return_status;

Retrieves load information about specified nodes(s)

This function retrieves load information about specified nodes

[idempotent]
int load_get_data(

handle t
soi t
unsigned32
node id
node rec
unsigned32
unsigned32
lrecord

unsigned32
status t
)

load f astnode

handle;
soi;
num_recs;

[in]
[in]
[in]
[in, last_is(num_recs)] rec_ids[]
record;
[in] max lrecs;
[in, out] num_lrecs;
[in, out, last_is(num_lrecs), max_is(max_lrecs)]
lrecs[];
[in, out]
[out]

cursor
return_status;

Uses one set of fields to select records and
returns an lm record(s)

This function processes the load information about nodes
which match the specifications set in the field ids
parameter and returns an lm_record(s).

[idempotent]

IBM Confidential
June 28, 1991
DRAFT

- 274 -

int load_ fastnode (
handle t [in] handle;
soi t [in] soi;
unsigned32 [in] num_recs;
node id [in, last~is(num_recs)] rec_ids []
node rec [in] record
unsigned32 [in] max_ lm _recs;
unsigned32 [in, out] lm_recs_used;
lm record [in, out, last_is(lm_recs_used), max_is(max_recs)]

lm_recs[];
status t [out] return_ status;
)

2.3.9.1.2 Active User
The C library entries documented on the getutent manual page (i.e. getutent(),
getutid(), getutline(), pututline(), setutent(), and endutent()) are inappropriate for
accessing the active user database. This is because the output of any particular call
depends upon what calls have previously been done (e.g. a getutid() call that
immediately follows a getutline() call would be very difficult to emulate).

New functions are provided that interface with the active user server. It is
inappropriate for the calls that manipulate the active user data base to replace the
getutent calls. This is because the getutent calls are still needed to:

• add utmp entries when there is no need to manipulate the active user data base.
Such as, adding utmp entries prior to the user logging in, adding utmp entries for
date changes and node status changes, etc.

• search through the utmp entries either when only information about the local node
is desired or if the active user server is inaccessible.

• provide source and binary compatibility for applications not yet coded to interface
with the active user service.

Therefore, these functions will remain unaltered. Additional routines for accessing the
active user service are given below.

2.3.9.2 addactuseqJRoutine
#include <utrrp.h>
int addactuser(utrrq:>)
struct utrrp *utrrp;

This function adds the specified utmp entry utmp to the active user databa~

2.3.9.3 tltJWser Routine
#include <utrrp.h>
int delactuser(utrrq:>)
struct utmp *utrrq:>;

IBM Confidential
June 28, 1991
DRAFT

- 275 -

This function deletes the specified utmp entry utmp from the active user databaseA

2.3.9.4 selactuserfRoutine
#include <utmp.h>

int selactuser(user,line,nodes,token)
char *user;
char *line;
char *nodes[];
caddr_t *token;

This function is used to select utmp records from the active user database. The utmp
records are actually returned by subsequent getactuser() calls.

The selection criteria for selecting utmp records are as follows:

• If user is a NULL pointer, then utmp entries with any user names are selected.
Otherwise, only utmp entries where ut_user is equal to user are selected ...

• If line is a NULL pointer, then utmp entries with any device names are selected.,
Otherwise, only utmp entries where ut_line is equal to line are selectea.

• If nodes is a NULL pointer, then utmp entries for all nodes within the current
user's sphere of interest are selected. Otherwise, nodes is an array of pointers to
node names, with the array terminated by a NULL pointer. Only utmp entries
where ut_node is equal to one of the node names specified by nodes are selected .

•

The "token" parameter is a generic pointer that is an output parameter of
selactuser. The memory to which it points is filled in by selactuser, and "token" is•
passed in to subsequent getactuser calls.

2.3.9.5 getactuseJf Routine
#include <utmp.h>
struct utmp *getactuser(token)
caddr_t *token;

This function is used to fetch a utmp entry that was selected by a prior call to
selactuser(). When all utmp entries have been fetched, this function returns th•
constant EOF. The "token" argument is a generic pointer that is both an input and an
output parameter. The initial value of token is filled in by selactuser, and the value is
changed on subsequent getactuser calls.

2.3.9.6 purgeactusef Routine
int purgeactuser()

This function purges the active user data base of all users for the current node (i.e.
deletes all users for the current node from the active user database).

IBM Confidential
June 28, 1991
DRAFT

- 276 -

2.3.9.7 Internal Interfaces and Design
The fields ut_user, ut_lnode, and ut_line are key fields in the Active User database.~

The library programming interfaces translate their requests into RPC calls. If a server
cannot (for some reason) be contacted by the library routines, the transactions that
cannot be transmitted are stored in a locat file. They are replayed once the server is
again available. This is done as part of the addactuser() and delactuser() library
routines and is not externalized to the caller of these routines.

2.3.9.7.t RC Interface I
The user functions are:

... _~
user_get_da.ta~

nede_rel_dataf

2.3.9.7 .2 '""""''

If the user does not exist, adds to User database, else add give~
fields to the user .

Deletes the specified user from the user database.

Remeves speeified field data from supplied records"'

Uses one set of fields to select records and returns a different set oi
fields.·

If the user does not exist, adds to User database, else add given fields to the user.

This service will add a use to the User database if it is not already there. If the user
already exists in the database, the fields are added to that user record. If a field exists,
its data is replaced by the new data.
[iderrpotent]

void user_add(
handle t
node id
struct utmp
status t
)

[in] handle;
[in] rec_id;
[in] utmp_entry;
[out] return_status;

handle

rec_id

The RPC handle associated with this operation.

A single node identification number.

utmp_entry

retum_status

2.3.9. 7.3 user dell
,',,; ' ---

A single users utmp data.

Returned status from the server.

Deletes the specified user from the user database.

This service will delete a user record from the user database.
[iderrpotent]

IBM Confidential
June 28, 1991
DRAFT

void user_del(
handle t
node id
unsigned8
status t

handle

rec_id

)

user_name

retum_status

[in] handle;
[in] rec_id;

- 277 -

[in] user_name[20];
[out] return_status;

The RPC handle associated with this operation.

A single node identification number.

A buffer containing the user name.

Returned status from the server.

2.3.9.7.4 user_get_dataf'
Retrieves specified field data from supplied records.

This function retrieves specified field data from supplied records.
[idempotent]

void user_get_data(
handle t [in] handle;
node id [in] rec_ids[];
unsigned32 [in] name_size;
unsigned8 [in, length_ is (name_size)] user_names [];
unsigned32 [in] num_fields;
field id [in, length_is(num_fields)] field_ids[];
unsigned32 [in] rnax_out_bytes;
unsigned32 [out] bytes_ used;
unsigned8 [out] buffer[];
unsigned32 [in,out] cursor;
status t [out] returfl:__status;
)

handle

rec_ids

name_size

user_names

num_fields

field_id

The RPC handle associated with this operation.

The UUIDs of the kernel-servers of the target nodes. The UUID of
this server generally identifies the node.

The size of the input name buffer.

A buffer containing a field. Each field consists of a UUID which
represents USERNAME, a length and the name string.

The number of fields in the following field list.

An array of UUIDs structures containing the UUIDs of fields to be
extracted from the nodes identified by the rec_ids provided.

IBM Confidential
June 28, 1991
DRAFT

max_ out_ bytes

bytes_ used

buffer

cursor

return_status

- 278 -

The maximum number of bytes available in the buffer provided.

The number of bytes of the output buffer which contain valid data.

The output buffer. No partial records will be returned, the format of
the output buffer is as follows:
{record_id (a uuid, fixed length)

number of fields (an unsigned16)
field_id(a uuid, fixed length)
length of data (an unsigned 16)
data (string of bytes)} repeat.

An I/O parameter used by the server which is processing this
request. Must be initialized to zero on first call. If the request
cannot be satisfied in a single call, this value must be returned
unchanged with each subsequent call.

Returned status from the server.

2.3.9.7.S Sphere of Interest
Associated with each process is a list of nodes called the Sphere of Interest (SOI).
The SOI is purely advisory. The presence or absence of a node from the list in no
way allows or prohibits any kind of access to the node. The list is used to narrow
down the list of nodes which would be considered under certain default conditions
(remote "who", automatic node selection, etc). The SOI is arbitrarily changeable by
any process, though the most common case would be for a login shell to set the
Sphere and leave it alone after that.

All requests made of this service are defaulted to a user's sphere of interest. The
sphere of interest is really just a hint about the part of the network which is interesting
to that user. A users sphere of interest should be some logical collection of nodes to
which he has access privileges and with which he has routine correspondence. Of
course, reasonable choices should be made based on network topology, frequency of
access, etc.

2.3.9.7 .5.1 User Interface
As described in the FUSION Functional Specification, a builtin command in the shells
would allow the user to add or delete nodes to/from the SOI.

Some programs will check for the existence of a file called "-/.sphere.PROGNAME".
If it is found, its contents will be used in place of the SOI for that command. This
could be used to allow different SOis to be used for who and ps, for example.

2.3.9.7.5.2 System Call Interface
The getsphere and setsphere system calls would manipulate the SOI. Nodes will be
specified using fully qualified names, allowing any accessible node to be in the SOI.

IBM Confidential
June 28, 1991
DRAFT

- 279 -

2.3.9.7.S.3 Kernel Storage and Caching
The setsphere system call will save away the SOI in a cache in kernel memory. A
UUID will be associated with the cache entry, and the UUID will be saved by th•
process. If an identical list already exists in the kernel, the existing cache entry and
UUID will be used (and a use count is incremented). Otherwise, our NSS will be
asked to supply a UUID (Soi_To_UUID()).

When a process forks, the use count on the shared SOI will be incremented. On exit,
the count will be decremented, and the SOI will be freed if it is now unused.
Similarly, the setsphere call will decrement the use count on the OLD SOI (if any)
and free if necessary.

If the SOI groups are not expanded yet, the list will be small enough that there
wouldn't be much penalty if we didn't do caching.

2.3.9.7.5.4 NSS Storage and Caching
The NSS will also cache SOis (in this case, in user memory). When the
Soi_To_UUID request is received, the NSS will check the cache and create a new
entry and UUID only if necessary.

By having each kernel check with its NSS when executing setsphere, we increase the
chance that two kernels talking to each other will already know the UUIDs for each
other's SOis (in the most common case, two kernels talking to each other will have
the same GNSS). If we did not do this, remote exec would always have to send the
whole list just to compare and see if it is already known on the new node.

2.3.9.7.S.S Process Movement
Send the UUID in place of the SOI. Only send the whole list if the UUID is
unknown on the destination node. If the SOI groups are not expanded yet, the list
will be small enough that there wouldn't be much penalty if we had to send the whole
list all the time.

2.3.9.7.S.6 Auto Node Selection
Choose from among the intersection of the set of cluster members, SOI, the set of
nodes on which the user is allowed to execute, and the set of nodes on which the
program can execute.

2.3.9.7.S.7 Fast
The "fast" and "fastnode" programs default to choosing from among the intersection
of the set of cluster members, nodes of the "same type", Xperm, and SOI~ Option~
may be desirable to leave out cluster membership or SOI from consideration (as
existing TCF already has an option to leave out the sameness criterion).

2.3.9.7.S.8 Who, loads, etc.
The basic interface to NSS would be to send the UUID for the SOI to request that the
search by limited to these nodes.

IBM Confidential
June 28, 1991
DRAFT

- 280 -

H the NSS didn't know that UUID (perhaps you switched NSSs at some time), it
needs to be able to send a response requesting that you download that SOI list.

2.3.'J.7.S.9 RPCs
The following RPCs will be needed to directly manipulate Spheres of Interest:

~fo_UU1-: sent to NSS to obtain a UUID for an SOI. NSS returns either a new
UUID or one obtained from its SOI cache.

sent by the destination node of a process movement operation (migrate,
exec, rexec, rfork) to the source node. The UUID obtained from the
Process_Movement RPC is passed and the complete SOI is returned. The
caller is then expected to add the new SOIIUUID to its cache. This call
can also be used by the NSS when a request is sent to it with the UUID of
an unknown SOI.

The UUID for the SOI will also be passed to the NSS for any operation such as "fast"
or auto-node-selection if the SOI is to be considered among the selection criteria.

2.3.9.8 Internal Design
In its first incarnation each server will maintain a hash table (the key of which is the
node identifier) which points to a fixed size record. This record contains several
pieces of quick reference information and pointers to all other data. See diagram:

hash table

1->I node id 1->I attribute list
I I I nodestat I

recptr 1-------1 I datastat I
I I grpserv I

I CPUtype I
I
I

lnode_atts 1----1 1->I nxt_utmp_ptr 1-->
lload_lmin I I I utmp entry I
I load _Smin I I
1load_15min I I
lnum_users I I
I user 1-----------1
I next rec 1--1

typedef struct node_ info {
node rec node data; - -
set load rnax_load;
load rec load data;

1--->

/* node up info */
/* max reporting data */
/* All the load info */

IBM Confidential
June 28, 1991
DRAFT

};

unsigned16

node var rec

n_utnp
node info

- 281 -

num_users;

*node_atts;

*users;
*next_node;

I* the number of users */
/* logged in to a single node */
/* pointer to variable length */
/* string data */
/* pointer to n_utnp entry */
I* pointer to next *I

All data will be aged and discarded based on tuneable parameters.

PLEASE NOTE: In the design for determining stale data (and node inaccessibility)
there is a requirement that an extended time function exist The present time function
only reports in seconds which is (probably) not fine enough granularity.

A thread will run in each server which will periodically collect load information about
its node. (NOTE: a group server acts as a local server for the node on which it is
being run). The frequency for this collection will be a tuneable parameter specified in
a file (indicated in microseconds). It will cache this information in the local server's
database and transmit it to the group server only when the Max time or Max delta
have been exceeded for the load. At such time it will transmit all the load data, i.e.
load_lmin, load_5min, load_15min, to the group server.

A companion thread will run in all servers which has two purposes 1) it checks to see
if the load data it has is out of date. It decides if this is the case by examining the
time of the last update it received (for each node it has information on) and comparing
that against the Max time interval allowed. 2) it checks the status of nodes it has
marked as suspect/down.

The actions taken with respect to these two conditions differs significantly if the
server is functioning as a group or local server.

If it is functioning as a local server: and its load data is out of date, it marks its data
as stale. When a subsequent request is made for data about this node the local server
queries the group server for the node information and updates its database.

If a node is marked suspect/down, it periodically (at intervals based on a timer/request
mechanism) requests the status of those nodes from the group server.

If it is functioning as a group server and the load data is state, it also checks to see if
it is the primary for the node. If it is, it attempts to solicit new data from the node.
If it receives no response it marks the node as suspect.

When it is functioning as a group server and a node is marked suspect/down, if it
receives no message within a finite interval (from any other group server announcing
it has taken over the role of being that nodes server), it marks the node as down. It
then waits to be updated by a message from another group server about that node.

IBM Confidential
June 28, 1991
DRAFT

2.3.9.9 Command Interfaces

2.3.9.9.1 Node Status

2.3.9.9.1.1 nodeup

- 282 -

The nodeup command is the command that is used to inform the Host Server of the
current node's status. It also transmits the non-volatile information about its node.
The previously existing values for the node are discarded. This command is typically
invoked at boot time. A sample invocation of the command is:

nodeup CPUtype=i386 NodeNarne=FredStation
NodeNumber=7864 NodeisUp--yes
NodeinCluster=yes ScalingFactor=2.0

2.3.9.9.1.2 fastnode, fast
The fastnode command selects and then displays the node name of the least loaded
node that has a compatible CPU type as the current node. fastnode has the following
options:

Broadens the selection beyond those nodes with the same CPU type as the current
node. attributes Limits the selection to nodes with specific attributes. Attribute
specification is done in a manner similar to the nodeup command.

In all cases, the selection is limited to nodes within the current user's sphere of
interest (and of course, to nodes that are up). The fast command is similar to
fastnode, except that a specified command is run upon the least loaded node.

For exarrple: fast cc foo.c

2.3.9.9.1.3 loads
The loads command displays average load information about all nodes in the current
user's sphere of interest.

The loads command has the following options:

• Display load average information only about the current node.

• Display load average information about a specific node.

• Limit the selection to nodes with specific attributes.
Attribute specification is similar to the nodeup command.

2.3.9.9.1.4 loadserver
The loadserver command allows the user to specify a (load) delta for retransmission of
load information, as well as a max time interval should no change occur within the
normal reporting times.

2.3.9.9.1.S node
The node command is used to report on information about nodes within a sphere of
interest (often a cluster). This information is obtained from the Host Service. The
command line options and various names by which the command is known control

IBM Confidential
June 28, 1991
DRAFT

- 283 -

which nodes are reported and what information about them is displayed. Any of the
data recorded for nodes will be obtainable with this command.

2.3.9.9.2 Active User
To take advantage of the extended service offered by this technology, small
modifications to a few system utilities are required. Exiting binaries will work as they
do now.

Modifications are available in the following areas:

• The auinit command has been added. Auinit notifies the active user server to
purge its database of all users for the current node each time the system goes up
or down. It is invoked by /etc/init in a startup script.

• Commands which modify the local /etc/utmp file have been changed to also notify
the active user server of the changes. This includes the commands login, rlogind,
and telnetd.

• Extended versions of commands allowing the current user to work within his/her
sphere of interest are included. These commands are altered to get information
from the active user server rather than the /etc/utmp file. Some users may not
desire the extensions made to these commands. To minimize the impact on
existing users, the modified versions of the standard commands will be delivered
with the names comsatx, fingerx, rwhox, talkx,usersx, wallx, whox, and writex. In
this way the system administrator may choose to install these commands to replace
the original commands. Individual users can use aliases to access these commands
instead of the normal versions. Options are also provided for these commands to
only get information about users logged onto the current node.

2.3.9.9.2.1 login, rlogind, and telnetd
There are no externally visible changes required for these commands. However, these
commands do modify existing /etc/utmp entries. Therefore, these commands have
been changed to use the new library routines that are described in the following
section of this document when modifying existing utmp entries.

2.3.9.9.2.2 comsatx
The comsatx command is different from the comsat command in the following way:

• Comsatx notifies the user's login sessions at all nodes within the comsatx
command's sphere of interest that mail has arrived. Not just the current node.

2.3.9.9.2.3 fingerx
The fingerx command is different from the finger command in the following ways:

• When fingerx lists the idle time and login time for a particular user name, the idle
times and login times are listed for login sessions of the user at all nodes within
the current user's sphere of interest. In addition, the node the user is logged in at
is appended to the login information.

IBM Confidential
June 28, 1991
DRAFT

- 284 -

• A -L option has been added to the command When the -L option is used, only
login sessions on the current node are listed.

2.3.9.9.2.4 rwhox
There are no differences between the user interface of rwho and rwhox. The only
difference is that rwhox does not use the rwhod interface to get at the list of remote
users. Rwhox uses the active user service to get a list of users within the current
user's sphere of interest.

2.3.9.9.2.S talkx
The talkx command is different from the talk command in the following ways:

• When a user name is specified with no node name (i.e. the constructs user@node
or node!user are not used), then the user to be contacted is searched for at all
nodes within the current user's sphere of interest.

• An additional node name parameter, to be used with the line parameter has been
added to the command. When the line parameter is used without the nodename
parameter, then the user to be contacted is searched for on device line within all
the nodes in the current user's sphere of interest. If the nodename parameter is
specified, the user is searched for only at the nodename specified.

• If the nodename parameter is not specified, a user name has been specified with no
node name, the user being written to is logged in at more than one node within the
current user's sphere of interest, and one of the user's logins is on the current
node, all the nodes the user is logged in at are displayed, but the user is contacted
at the current node.

• If the node name parameter is not specified, a user name has been specified with
no node name, the user being written to is logged in at more than one node within
the current user's sphere of interest, and none of the user's logins is on the current
node, all the nodes the user is logged in at are displayed, and the user is contacted
at an arbitrary node within the list.

2.3.9.9.2.6 usersx
The usersx command is different from the users command in the following ways:

• If the usersx command is used with no options, it lists the login name of all users
logged in on nodes within the current user's sphere of interest. If this form of the
command is used, the node name the user is logged in on is prepended to the
output of each line.

• A -L option has been added to the command. When the -L option is used, only
users logged in to the current node are listed.

• A -s nodename option has been added to the command. When this option is used,
only users logged in to the specified node name are listed.

IBM Confidential
June 28, 1991
DRAFT

- 285 -

2.3.CJ!J:J..7 wallx
The wallx command is different from the wall command in the following ways:

• By default, the wallx command sends the specified message to all users logged in
at all nodes within the current user's sphere of interest.

• A -L option has been added to the command. When the -L option is used, the
specified message is sent only to users logged onto the current user's node .

.2.3.CJ!J.2.8 whox
The whox command is different from the who command in the following ways:

• By default, the whox command displays information about users logged in at all
the nodes within the current user's sphere of interest.

• In addition to printing the normal whox output, the node name the user is logged
in to is also printed.

• A -L option has been added to the command. When the -L option is used, only
information about users on the local node is displayed. This option also
suppresses the display of the node name from the output of the whox command.

2.3.9!J.2!J writex
The writex command is different from the write command in the following ways:

• An additional optional nodename parameter has been added to the command line,
so that a user at a particular node can be conversed with.

• If no node name parameter is specified, then all nodes within the current user's
sphere of interest are searched for the specified user.

• If the node name parameter is not specified, the user being written to is logged in
at more than one node within the current user's sphere of interest, and one of the
user's logins is on the current node, all the nodes the user is logged in at are
displayed, but the login session at the current node is used as the message delivery
point.

• If the node name parameter is not specified, the user being written to is logged in
at more than one node within th_e current user's sphere of interest, and none of the
user's logins is on the current node, all the nodes the user is logged in at are
displayed, and an arbitrary node (from the list that was displayed) is used as the
message delivery point.

IBM Confidential
June 28, 1991
DRAFT

- 286 -

2.4 Keep-Alive Service

The Keep-Alive Service (KAS) is a kernel extension which may be used by other
portions of the kernel to receive notification of loss of contact with another node or of
regained contacL From the point of view of the KAS, those portions of the kernel
calling the KAS constitute the "user".

The KAS provides a general interface which allows the user to specify a pointer to a
function to be called when the status of a specified node changes. The user also
specifies a minimum time interval for the KAS to check the status of that node. The
KAS communicates with the KAS extension on the other node, and thus it does not
verify that any other particular service on the other node is functioning.

2.4.1 Interfaces
The KAS provides interfaces to

1. register a keep-alive with the server

2. cancel a previously registered keep-alive

3. and request an immediate check of the status of a node

2.4.1.1 kas_register
The interface to register a keep-alive is:

struct kas_request *
kas_register(node_t nodenarne,

time_t inte:r:val,
void (*callback) (char *nodenarne) ,
int flag)

The arguments are:

nodename

interval

callback

the node to be checked by the KAS.

the minimum time interval for checking, in seconds. The KAS may
check more frequently if other keep-alives are active or if kas_check is
called. The total time to detect that node status has changed is
"interval" plus the time it takes to timeout on any RPC messages (see
Internal Design below).

The function to be called when the keep-alive detect a change. This
function must be written such that it returns quickly to the caller. If it
does not, the KAS daemon may be tied up for extended periods. The
call back function should perform actions such as wakeups or setting
flags in data structures. If it needs to do something more complicated,
such as sending RPCs, it should either pass that work to another
daemon or it should create a thread which will perform the action. The
call back function is allowed to call any of the kas_ * functions
described here.

IBM Confidential
June 28, 1991
DRAFT

- 287 -

flag If flag is 0, KAS will call the call back function when it detects that it
has lost contact with the specified node. If flag is KAS_UP, KAS will
call the call back function when it detects that it has regained contact
with the node.

The return value of kas_register is only useful for a later call to kas_cancel.

2.4.1.2 kas _cancel
The interface to cancel a previously registered keep-alive is:

(void)
kas_cancel(struct kas_request *request)

The request argument is the return value from a previous call to kas_register. If the
request is not found on the current queue, kas_cancel will just return.

2.4.1.3 kas _check
The interface to force an immediate check is:

(void)
kas_check(node_t nodename)

kas_check forces the timeout on any pending keep-alives to zero causing the KAS to
immediately send RPC messages to check· the status of the node. kas_check does not
itself verify the status of the node. If the status has changes, the pending call back
functions will be invoked.

2.4.2 Internal Design
The KAS is made up of 3 pieces:

1. the routines called by users to interface with KAS,

2. the KAS daemon which sends keep-alive RPCs and calls the call back functions,

3. and the KAS server which receives the RPCs sent by the KAS daemon or
another KAS server.

The data structures used by these pieces are described below, followed by the design
of each of the pieces.

2.4.2.1 Data Structures
Figure 21 shows the links between the data structures used by the KAS. One node
structure is kept for each node for which keep-alives are being maintained. Each node
structure points to a doubly linked queue of keep-alive requests for that node. The
keep-alive requests on each queue are kept sorted by the time interval specified in that
request The time interval used for the node is the time interval for the first request
on the queue. The node structures contain:

struct kas_node {
struct kas_node *kn_next;
struct kas_request *kn_queue;
node_t kn_nodename;
time t kn_lastcontact;

/* link to next node */
/* list of requests */
/* the node for these keep-alives */
/* the time of the last contact */

IBM Confidential
June 28, 1991
DRAFT

- 288 -

kas nodes
I
v

+--------+ +--------------+ +--------------+ +--------------+
I node 1 1---->I keep-alive 1 1~--->I keep-alive 2 1---->I keep-alive 3 I
+--------+ +--------------+ +--------------+ +--------------+

v
+--------+ +--------------+
I node 2 1---->I keep-alive 4 I
+--------+ +--------------+

v
+--------+ +--------------+ +--------------+
I node 3 1---->I keep-alive 5 1---->I keep-alive 6 I
+--------+ +--------------+ +--------------+

Figure 21. Keep-Alive data structure links

int kn_flag;
};

The keep-alive structures contain:
struct kas_request {

};

struct kas_request *kr_prev;
struct kas_request *kr_next;
time_t kr_interval;
void (*kr_callback) ();

2.4.2.2 lnterf aces

/* node status at last contact */

/* pointers for doubly */
/* linked list */
/* requested time interval */
/* requested call back function */

NEEDSWORK: The implementation of the interfaces using the above structures is
straight forward, but some pseudo-code should be included here. It should be noted
that kas_register needs to wake up the KAS daemon in case the daemon will be
sleeping for a period longer than the specified interval.

2.4.2.3 The KAS daemon
The KAS uses a daemon to check the status of nodes for which keep-alive requests
have been made. This daemon normally runs as a single threaded job. It spawns off
threads to perform retries when it appears that a node's status has actually changed.

To determine what work to perform next, the KAS daemon scans the node list, adds
the time of last contact to the minimum keep-alive interval, and finds the node with
the earliest sum. If that time has not yet arrived, the KAS daemon sleeps until that

IBM Confidential
June 28, 1991
DRAFT

- 289 -

time or until a call to kas_register or kas_check is made. If there is no work at all to
be performed, the daemon will just sleep until kas_register or kas_check wakes it up.

When the KAS daemon wakes up, it send a RPC with the MAYBE flag to each node
which has reached its next contact time .. RPCs with the MAYBE flag do not wait for
any response. This allows the daemon to send out any number of "pings" to different
nodes without having to wait for responses. In addition, for each node whose time of
last contact is more than KAS_TIMEOUT seconds ago, a thread is spawned to send a
reliable RPC to verify if we have really lost contact with the node.

If a thread sends a reliable RPC and gets a failure, contact is assumed to be lost.
Each call back function in the node's queue is called, and each keep-alive structure is
freed. The node structure is also freed.

If the thread makes successful contact with the reliable RPC, it just updates the time
of last contact and exits.

2.4.2.4 The KAS Server
When a MAYBE RPC is received from a KAS daemon on another node, a similar
MAYBE RPC is sent back to that node except that this response RPC has a flag in it
indicating that no further response is necessary. When an original MAYBE RPC or a
response MAYBE RPC is received, that node's time of last contact in the node list is
reset (if there is such a node in the local node list). Under normal conditions this
means that the KAS daemon's MAYBE RPC will end up having the effect of updating
the time of last contact on both nodes.

When a reliable RPC is received from the K.AS daemon, the time of last contact is
also updated. The K.AS Server just returns, and it is the responsibility of the KAS
daemon thread which sent the RPC to update its time of last contact

IBM Confidential
June 28, 1991
DRAFT

3. The Cluster Environment

3.1 Clustering of Data

3.1.1 The Cluster Mount Service

3.1.1.1 Overview

- 290 -

While the DCE file system provides on-disk mounts for mounting file systems and
volumes, such a mount becomes visible in the DCE name space and, as such, as
visible to all members within the cell. Some users may desire to have mounted file
systems which are not visible to the entire cell, but only to those within the cluster.
The Ouster Mount Server (CMS) provides this ability with changes to /etc/mount,
/etc/umount, lookup() and several AFS routines.

The CMS is responsible for maintaining consistent mount tables within the cluster.
When a user attempts an /etc/mount, the CMS will grant permission for that mount by
checking the mount tables for the entire cluster and determining if there is an
inconsistency.

The CMS function consists of three parts, Cluster Mount Kernel Extension (CMKE)
which caches mount information, the Local Cluster Mount Server (LCMS), which is
part of the Local Node Status Server, and the Group Cluster Mount Server (GCMS)
which caches all information about the cluster. All updates of mount information are

1 handled by a central GCMS know as the Primary Group Cluster Mount Server
(PGCMS). The LCMS uses the Group Service provided as part of the Node Status
Server and caches and pushes information accordingly.

(

3.1.1.2 Who Tells What to Whom When .•

3.1.1.2.1 Mounting a Non-Replicated Local PFS

1. On a locally stored non-replicated directory (inside the cluster)

• get write token for local directory

• get permission from GCMS

• put mount vf s in local kernel

• put mount hint in mounted-on vnode in local kernel memory

• cache in local CMKE

2. On a remotely stored non-replicated directory

• get write token for remote directory

• contact GCMS for permission to mount on vnode

• mount vfs in local kernel

IBM Confidential
June 28, 1991
DRAFT

- 291 -

• put mount hint in mounted-on vnode in remote kernel

• cache in local CMKE

3. On a remote non-replicated DCE directory outside the cluster

• get write token for remote directory

• contact GCMS for permission to mount on vnode

• mount vf s in local kernel

• cache in local CMKE

• install mount hints in all node in the cluster

4. On a remote NFS directory outside the cluster

• get NFS write token for remote directory

• contact GCMS for permission to mount on vnode

• mount vfs in local kernel

• get list of nodes on which this NFS directory is mounted

• inform the NFS Token Exporter of the mount

• cache in local CMKE

5. On a DCE lazy replica mounted via /etc/mount

• get the write token for the directory

• contact GCMS for mount permission

• get from LCMS the list of all storage nodes currently mounted via
/etc/mount

• mount vf s in local kernel with indicator to call the CMKE

• determine where mount hints will be stored:
if replica is in cluster,

store mount hints in each storage node's kernel
if replica is outside cluster,

if other replicas are inside cluster,
mark node in LCMS as "outside"
install mount hints in all node in the cluster

if no replicas are inside cluster,
(see mounted on DCE directory outside cluster)

• cache in local CMKE

IBM Confidential
June 28, 1991
DRAFT

- 292 -

• notify GCMS of mount hint information

6. On a DCE lazy replica mounted via AFS mounts

• get write token for directory

• contact VLDB for list of nodes storing replicas

• contact GCMS for mount permission

• mount vf s in local kernel with indicator to call the CMKE

• determine where mount hints will be stored:
if replica is in cluster,

store mount hints in each storage node's kernel
if replica is outside cluster,

if other replicas are inside cluster,
mark node in CMKE as "outside"
store mounted on vnode in each node in cluster

if no replicas are inside cluster,
(see mounted on DCE directory outside cluster)

• cache in local CMKE

• notify GCMS of mount hint information

7. On a DCE r/w replica

See mounting on a directory appropriate to the locale of the r/w replica since
the r/w replica contains a different path name and will be treated like a non­
replicated file system.

8. On a FRFS r/w replica mounted via /etc/mount

• get write token for directory

• contact GCMS for mount permission

• get from LCMS a list of all storage nodes currently mounted via /etc/mount

• mount vf s in local kernel with indicator to call the CMKE

• determine where mounted on vnode will be stored:
if replica is in cluster,

store mounted on vnode in each storage node's kernel
if replica is outside cluster,

if other replicas are inside cluster,
mark node in CMKE as "outside"
store mounted on vnode in each node in cluster

if no replicas are inside cluster,
(see mounted on DCE directory outside cluster)

IBM Confidential
June 28, 1991
DRAFT

- 293 -

• cache in local CMKE

• notify GCMS with list of nodes to inform and appropriate flags to indicate
where the mounted on vnode should be created in each kernel.

9. On a FRFS read-only replica mounted via /etc/mount

See mounting on a directory appropriate to the locale of the r-o replica since
the mount will only be visible on the r-o replica on which it is mounted.

NOTE: In order to mount on a read-only replica of an FRFS the r-o replica
either there is no primary or the r-o replica is mounted on a different mount
point (see directory mounts).

10. On a FRFS r/w replica mounted via AFS mount

See mounting on a DCE Lazy replica mounted via AFS mount.

11. On a FRFS read-only replica mounted via AFS mount

See mounting on a DCE Lazy replica via AFS mount

NOTE: Since mounting on r-o replica mounted via AFS can only occur
because the primary is not up, the mount will be broadcast to all nodes as if
the primary were available.

3.1.1.2.2 Mounting FRFS

3.1.1.2.2.1 Registering FRFS File services upon mounting
When using /etc/mount to manage replicated file systems, the replication information
must be maintained by the GCMS. However, in the event that a GCMS goes down
and returns, it will be necessary for the replication information to be written on disk
so the GCMS can be updated. Each FUSION Replicated File System will have a
hidden file, .replinfo, (See section X.X of the File System Replication Services (FSRS)
for a description of the .replinfo file). which will contain information about the
replicated file system.

Whenever a file volume is mounted using /etc/mount, it will be checked for .replinfo.
H a valid .replinfo file exists, the default action is to preform mount the volume as
part of the replicated file system. A mount option, -norepl, is provided to override
this default action.

The contents of the .replinfo file are extracted and added to the the data held by the
CMS on FRFS volumes. The replica will be added to the array of replicas listed in
the fo_cms_entry. The CMS will store the address of the replica and its type. In
addition, the fo_cms_entry (See Data Interfaces, section 3.1.1.11, for the contents of
this structure) will be stored in the .replinfo file. For each additional replica, the
.replinfo file on the read/write replica will be updated. This will cause the .replinfo
file to propagate.

IBM Confidential
June 28, 1991
DRAFT

- 294 -

3.1.1.2.3 Lazy Replica
Lazy replicas will be registered with the GCMS which will have to maintain all
information about the replicas. Since these are AFS volumes, they will be registered
with the VLDB so no .replinfo file will be necessary. All this infonnation is available
through the VLDB. The GCMS will only know about those replicas which are
currently mounted via /etc/mount within the cluster and will treat them as a single
entity, ignoring all other replicas listed in the VLDB.

The Lazy read-only replica will be treated like all FRFS replicas and use the same
mounting functions. The Lazy read/write replica will be treated like a local PFS since
it represents a single volume.

3.1.1.2.4 NFS
To maintain NFS cache coherency, a NFS Token Exporter must be created for each
NFS mount within the cell. The CMS checks the cell's name space for an existing
NFS Token Exporter for the requested mount. If no NFS Token Exporter for the
mount exists, a node is selected and it's location is stored in the cell's name space.
The location of the NFS Token Exporter is also cached by the CMS. Mount hints are
created by the same rules as mounting a non-replicated local PFS

3.1.1.2.5 Directories
Works like the PFS with the mounted on restrictions similar to those of a single
UNIX site.

NEEDSWORK:

Other kernels may not support directory mounts as AIX 3.1 does. While we can
disallow the mount on such a kernel, we will need to simulate the mount somehow so
the other kernels can access the 3.1 directory mount.

3.1.1.3 Registering the Mount

3.1.1.3.1 Creating a Volume ID
When mounting a volume, CMS must give the volume a unique physical and mount
ID. Currently AFS uses a double long to contain the physical volume ID. FUSION
will reserve a range of the 64 bits available for its own use. This will guarantee that
FUSION physical volume IDs will not conflict with AFS volume IDs. This range of
physical volume IDs will be divided into two groups, pennanent volume IDs and
temporary volume IDs. Permanent physical volumes IDs are assigned to FRFS
volumes.

If the /etc/mount is for a replicated file system, the mounting node looks to see if a
valid volume ID exists. For replicated file systems, this is stored in the .replinfo file
and the VLDB volume header. If no valid volume ID exists, a random volume ID
based on the mounted text string is generated. The random generator will be one that
creates numbers that are independent of node byte order. Conflicting volume IDs are
detected and a different seed (based on the mounted text string) is tried. Mount IDs

IBM Confidential
June 28, 1991
DRAFT

- 295 -

will be created in a similar manner. A mount option is provided to allow the user to
provide the volume ID. This would normally be used to resolve conflicting IDs that
were generated during network partition.

3.1.1.3.2 Faking the VLDB Entry
Because AFS will need to fill in the volume registry for the cache manager and the
protocol exporter, it will be necessary for the CMS to contain a volume structure
similar in nature to struct vldbentry. This structure will be made up for each volume
mounted using /etc/mount.

The AFS call VL_GetEntryByName() calls the VLDB to get information about the
volume. This call will need to be modified to contact the CMS to get information
about the volume. It will get a structure of type fo_cms_entry which contains all
relevant information needed by the cache manager.

The LCMS will create this structure when the volume is mounted via /etc/mount. The
structure will be set as follows:

• only one Volld will be set for each CMS mount = volume ID

• if a lazy or FRFS read-only replica, VolType = ROVOL else, VolType =
RWVOL.

• name will be set to the volume name, if any

• volume_type will refer to the actual PFS type which /etc/mount must know in
order to perform the mount

• frfsrepl will be set if this is an FRFS volume.

• nServers is the number of replicas registered with the CMS (see replication
registry).

• siteAddr will be set to the network address of the additional servers per AFS.

• dotdot will be set to the mounted-on vnode.

• mounted will refer to the root vnode for this vf s.

• flags will be set for the type of volume, if read-only flags = VLF _ROEXISTS else,
flags = VLF _RWEXISTS

3.1.1.4 Mount Context
The CMS provides access to the cluster-wide file system thru the use of pre-process
mount context and a special CMS vfs. The pre-process mount context is composed of
root relative and dot relative stored in the user structure. The "Modifications to AIX
3.1" section for details of the changes required to support mount context.

3.1.1.4.1 Using the CMS vfs to access all the data in the cluster
Access to the mount context of other nodes is provided by the CMS vfs mounted at
"/ .. ./cellname/clustemame/CMS". This is a special vfs which supports only lookup,

IBM Confidential
June 28, 1991
DRAFT

- 296 -

readdir, getattr vnode operations. Lookups into "/ .. ./cellname/clustemame/CMS"
access the CMS and shows the node names of active cluster members. Doing a

cd / ••• /cellnarne/clusternarne/CMS/nodex
results in the root file system of nodex being mounted at
/ .. ./cellname/clustername/CMS/nodex and the user's dot relative mount context being
set to that of nodex. Since mount hints where installed on all local mounts on all
nodes, nodex's mounts are detected by the path name lookup code and mounted. This
gives the same view of nodex' s file system name space as seen from nodex.

3.1.1.4.1.1 Changing root relative mount context
A process may change it's root relative mount context by use of the chmntcontext
system call.

3.1.1.S Startup, Shutdown, and Merging

3.1.1.S.l Assumptions About Timeouts and Retries

1. Requests from a GCMS to an LCMS retry until the GNSS informs the GCMS
that the node is down.

2. Requests from a LCMS to a GCMS will eventually succeed. This is due to the
fact that the LNSS is always sending load information to the GNSS and locates
a new group server when that operation fails. When the LNSS locates a group
server, it registers the GCMS handle to the kernel through a system call. If the
LCMS detects a timeout talking to the GCMS, it performs a system call to
retrieve the new handle to the GCMS, rejoins the group, and retries the failed
operation.

3. Requests from a PGCMS to a GCMS can fail. If all members of a group
become unreachable, then the PGCMS loses contact with that GCMS. When
this happens all nodes serviced by the unreachable GCMS are marked DOWN
and the mount data as INVALID. The amount of time the PGCMS waits before
declaring a group unreachable will be based on the time interval the GNSS uses
for it's election of a new group server.

4. Requests from a GCMS to a PGCMS will eventually succeed. If a request from
a GCMS to a PGCMS results in a timeout, the GCMS will enter into an election
process to create a new PG CMS.

3.1.1.S.2 Starting a Group Cluster Mount Server
The GCMS is started by the GNSS forking an GCMS instance. As part of the startup
operation, the GCMS registers two rpc interfaces with the GNSS. One is the interface
that the GNSS will use to send merge and shutdown requests to the GCMS. The
other is needed by the LCMS to talk to it's GCMS.

When the GCMS receives at cluster join request for a client node, it creates a instance
of service for the cluster ID if it doesn't exist and informs the GNSS that it now
servicing a new cluster. The GNSS returns to the GCMS a list of all other group

IBM Confidential
June 28, 1991
DRAFT

- 297 -

servers for the cluster ID. When the last node using a cluster ID leaves the group, the
GCMS shutdowns service for the cluster ID and informs the GNSS and the PGCMS.

3.1.1.S.2.l Locating the PGCMS
The GCMS locates it's PGCMS by checking the list returned by it's GNSS. This list
contains both a RPC handle to all servers in the cluster and a flag indicating if the
server is the PGCMS for that cluster. If the list has no valid entries for a PGCMS,
then the GCMS attempt to select itself as PGCMS.

3.1.1.S.2.1.1 Selecting the PGCMS
The GCMS registers it's RPC handles with the GNSS with the flag set indicating that
this is the PGCMS for this cluster. The GNSS passes this info to all active GNSSs.
The GCMS pauses and then queries the GNSS for an updated list. The GCMS scans
the list in numeric order starting at the lowest node number and attempts to join with
any node indicating that it is the PGCMS. This continues until a PGCMS is located
or it encounters it's node number. If a PGCMS is located, the GCMS registers it's
RPC handles with the GNSS without the PGCMS flag set. Join requests that arrive
during the time the GCMS is scanning the list receive an EBUSY reply. GCMSs
receiving an EBUSY reply pause and retry the operation. Join requests which arrive
after a PGCMS is located receive an TRYNODE reply that includes a handle to the
PGCMS.

If the selection results in this node being elected PGCMS, the cluster mount table
must be built. The PGCMS has two methods for acquiring an accurate cluster mount
table.

1. get the cluster mount table from an active GCMS

2. get the mount information from all cluster members (through their GCMS)

Method I can be used only if there is an active GCMS and the GCMS has an accurate
mount table. To avoid using inaccurate data, the PGCMS and all GCMS serialize all
transactions which modify mount information. Each transaction that modifies mount
data increments the start transaction count when the operation begins and end
transaction count when the transaction ends. Before using method l, the PGCMS
checks to see if all the transaction counters match. If any of the counters are
different, then the cluster mount table held in the GCMSs can not be trusted. In this
case, method 2 is used.

3.1.1.S.2.2 Shutdown of an existing GCMS
The GNSS informs it's GCMS when it is shutting down as a result of a more
preferred GNSS becoming available. Upon receiving the shutdown request, GCMS
responds with TRYNODE to all client requests. Clients receiving a TRYNODE reply
get a new GCMS handle from the kernel and retry the operation. The GCMS sends
it's mount information for all clusters it is servicing to the more preferred GCMS.
When the shutdown message arrives at the more preferred group server, it attempts to
merge the cluster. If mount conflicts exist, the more preferred GCMS starts a new

IBM Confidential
June 28, 1991
DRAFT

- 298 -

database for the conflicting cluster data and allows the merging cluster to remain
separate from any existing instance of the cluster. The conflicting mounts are logged
and the preferred GCMS schedules an attempt to merge the cluster data. The more
preferred GCMS returns EBUSY to all requests received during the merge operation.
Clients receiving an EBUSY reply, pause and retry the operation.

3.1.1.S.2.3 Merging Group Mount Tables
The GNSS sends a merge request to the GCMS when groups discover each other.
The GCMS contacts it's PGCMS who will attempt to merge the cluster mount tables.
If the merge fails the mount conflicts are logged and the GCMS returns NOTOK to
the GNSS. The PGCMS returns EBUSY to all update requests it receives when in the
merge state. When the requesting GCMS receives an EBUSY reply, it pauses and
then retries the operation.

3.1.1.S.3 Cluster Start

3.1.1.S.3.1 At the joining node
The clusterstart system call is handled by the CMKE. The CMKE builds the list of
local and exported mounts and calls the LCMS. The LCMS prepares a list of of
mount preferences, acquires volume IDs for all mounts, and determines the type of
mount hint required. A cluster join request is sent to the GCMS which forwards the
request to the PGCMS. The cluster join completes successfully if:

1. Exported mounts don't conflict with existing mounts.

2. All nodes in the cluster accept any exported mounts whi~h have a locally stored
mount point.

3. Joining node accepts all exported mounts from other nodes in the cluster which
will be mou~ted on locally stored mount points.

If the join operation is successful, the node updates its mount information. This
includes:

1. Install mount hints for all locally mounted file systems.

2. Export all locally mounted file systems through the AFS Protocol Exporter.

3. Install mount hints on storage sites for all mounts which have a hint type of
STORAGE_NODES.

4. Have mount hints at all nodes in the cluster for all mounts which have a hint
type of ALL_NODES.

3.1.1.S.3.2 At the PGCMS node

To insure that mounts are done without conflict, each mount (both the mounted and
mounted on points) is locked for the duration of the join call.

IBM Confidential
June 28, 1991
DRAFT

- 299 -

If the joining node is exporting mounts which are stored on context dependent mount
points, then all nodes in the cluster must accept the mount before the joins succeeds.
The PGCMS has two ways of determining if a node accepts the mount. To avoid
network traffic, nodes may have registered a list of mount points which they have a
known preference. The PGCMS consults this list and queries all nodes which have
not indicated a preference for the context-dependent mount points. Since join
operations are allowed to happen in parallel, the following method is used to avoid
race conditions.

The PGCMS maintains a list of nodes which have joined the cluster. Associated with
this list is a transaction counter and a lock. Each time a node is added to the list, the
lock is acquired and the transaction counter is incremented. When a join operation
starts, the PGCMS acquires the lock, extracts a list of nodes to inform from the list
and remembers the current transaction count. The PGCMS then sends the request to
the GCMSs and waits for the replies. When all replies have been received, the
transaction counter is checked. If the transaction counter has changed, a new list is
built and the operation is repeated. This insures that nodes which are added to the
cluster during the time PGCMS was waiting for replies from GCMSs get a chance to
reject the mounts.

For each mount point that is accepted the PGCMS updates the accepting node's
preference list. If all nodes accept the joining node's mounts and the joining nodes
mounts don't conflict with existing mounts, then the PGCMS calls back to the joining
node to get acceptance for existing context-depend mounts. The PGCMS holds the
lock on the list of nodes in the cluster and defers processing any context dependent
mounts for the duration of the call back to the joining node. If the joining node
accepts the existing mounts, then the join is successful. All GCMSs are notified of
the new mounts and the joining node is added to the nodes in the cluster list. If any
NFS mounts where done, a check is made for a NFS Token Exporter for the mount.
If a NFS Token Exporter is not located, one is started. If any mounts where done on
an NFS mounted directory, then the NFS Token Exporter for that mount is informed
of the mount.

3.1.1.S.4 Cluster Stop

3.1.1.S.4.l At the LCMS
The departing node sends a leave request to it's GCMS. The GCMS forwards the
leave request to the PGCMS who then informs all of the group servers for this cluster
of the departure.

3.1.1.S.4.2 At the PGCMS
When a node leaves the cluster, all mounts that were exported to the cluster by the
leaving node become unavailable. If any of the mount points provided by the
departing node are mounted on, the leave request will return EBUSY and a list of
busy mount points. (This action could be overridden by "force" type of switch).

IBM Confidential
June 28, 1991
DRAFT

- 300 -

NEEDSWORK: What does unavailable or umount really mean? /etc/mounts are
expected to work like AFS volumes. What does AFS do when a volume is unattached
and unmounted?

Ideally, umount would get a volume token which would cause all other tokens to be
recalled. The token manager would not issue any new tokens a long as the volume
token held. The problem with this solution it that a single physical volume can be
accessed as many different logical volumes. Since the AFS token manager only
knows about physical volumes, the CMS would have to track all using nodes of a
mount and inform them of the unmount. This method is detailed below.

All nodes that have imported the mount are informed of the unmount (nodes importing
a mount informed the GCMS of the event). The PGCMS forwards the departure
message to all the GCMSs. The GCMSs marks the departing node as DOWN and
send the departure message to all nodes within it's group which have non-persistent
mounts sponsored by the departing node. The LCMS on the receiving node then
forwards the message the CMKE. The CMKE then unmounts all non-persistent vfss
that have the departing node as the mounting node. Both the CMKE and LCMS flush
any cached mount data pertaining to the departing node. All non-persistent mount
data pertaining to the departing node is marked as INVALID at the GCMS.

3.1.1.6 Mount Conflicts
The following tests are made to determine if a mount conflicts with the cluster mount
image:

1. FRFS replicated file system with more than one R/W volume

2. physical volumes with the same replication information

3. conflicting physical or mount IDs

4. mount point is not a directory

5. mount point where a node has refused to allow a mount

6. multiple mounts on the same mount ID

7. mounting on a non-empty directory (optional)

3.1.1.7 Command Interfaces

3.1.1.7.1 /etc/mountx
The FUSION /etc/mountx extends /etc/mount by providing cluster-wide mounts and
support for managing the FUSION replicas. The following additional operations are
added:

1. Modes to display mount information by cluster, sphere of interest, node, storage
nodes, and mount points.

IBM Confidential
June 28, 1991
DRAFT

- 301 -

2. Options for mounting and unmounting replicas.

3. Queries about the state of mount points.
NEEDSWORK: more detail

3.1.1.7.2 /etc/umountx
NEEDSWORK: Forced umounts.

NEEDSWORK: mount/umount permissions.

NEEDSWORK: more detail

3.1.1.8 Modifications to AIX 3.1

3.1.1.8.1 User structure changes
The user structure needs to be expanded to handle the pre process mount context.

struct mnt context {

}

u_short root; /* root relative mount context */
u_short dot; /* dot relative mount context */
u short ems dotdot; /* " " mount context of 015 vfs */

/*
*somewhere in the user struct .••••
*/

struct mnt_context u_mntcontext;

3.1.1.8.2 Path name lookup
The CMS design allows /etc/mounts to be detected during path name lookup. This is
accomplished with the use of mount hints. The path name lookup code in AIX 3.1 is
modified to detect these hints and call the CMKE to have to mount performed.

if (vp->v_flag & V_CHECKMOUNT) {

}

nvp = anke_chkmnt(vp, u.u_mntcontext.lookup)
if (nvp) {

}

VNOP _HOLD (nvp) ;
VNOP _ RELE (vp) ;
vp = nvp;

" .. " evaluation must check to see if the vnode is marked as "mounted without mounted
on vnode". If this is true and the vnode is marked as valid for " .. " evaluation, then
the mounted on vnode needs to be created.

if (vp->v_flag & V_:NOMNTDON) {
if (vp->v_flag & V_DOTDOTOK} {

nvp = anke_getmntdon(vp, u.u_mntcontext.lookup)
if (nvp) {

VNOP_HOLD(nvp);

IBM Confidential
June 28, 1991
DRAFT

}

else {

}
}

}

else

- 302 -

VNOP_RELE (vp);
vp = nvp;

goto eout;

u.u error = ENOENT;
goto eout;

lookuppn() sets the u. u_mntcontext.lookup at the start of the lookup operation.

if (*pathname = '/')
u.u_mntcontext.lookup = u.u_mntcontext.root;

else
u.u_mntcontext.lookup = u.u_mntcontext.dot;

3.1.1.8.3 chdir() modifications
Calls which change the u_cdir of the user structure must also change the dot relative
mount context.

/*
* update the dot relative mount context
* when u.u_cdir Changes
*/
u.u_mntcontext.dot = u.u_mntcontext.lookup;

3.1.1.8.4 mount() and umount() system calls
All mount and umount operations done while the node is clusterstarted need to call the
CMKE to make to mount points available cluster wide.

3.1.1.9 Modifications to AFS
Changes have been proposed that would provide the following functions:

1. Provide a means of installing and detecting mount hints using the AFS Protocol
Exporter and Cache Manager.

2. The AFS Protocol Exporter will notify the CMS when a volume is moved.
(needed to maintain the mount hints installed in #1 above).

3. Allow CMKE to perform volume lookups for CMS /etc/mounts.

4. Add logical volume IDs to the AFS cache manager and AFS Protocol Exporter
operations.

IBM Confidential
June 28, 1991
DRAFT

3.1.1.10 Module Interfaces

3.1.1.10.1 Between LCMS and GCMS

3.1.1.10.1.1 LCMS -> GCMS
/*
* join a cluster

- 303 -

* state indicates if this join is due to
* losing the previous group server
* the following are only valid when joining
* after losing the previous group server:
*
*

prev_server
imported_ mounts

*/
lans_joincluster

/* in */

/*

/* in */
/* in */
/* in */
/* in */
/* in */
/* in */
/* in */
/* in */
/* in */
/* in */
/* out */
/* out */

int
int
int
int
int
int
int
mount list
mount list
mount list
preference
conflict list
unsigned32

* leave a cluster
*/

lens leave
/* in */ int
/* in */ int
/* in */ int
/* in */ int
/* out */ unsigned32

/*
* export mounts to the cluster
*/

cell,
group,
cluster,
node,
state,
groupserver,
boot_ sequence,
local_ mounts,
exported_ mounts,
irrported_mounts,
mount _points,
list_of _mountconflicts,
*st

cell,
group,
cluster,
node,
*st

IBM Confidential
June 28, 1991
DRAFT

- 304 -

lans mount
/* in */ int cell,
/* in */ int group,
/* in */ int cluster,
/* in */ int node,
/* in */ int boot_sequence,
/* in */ mount list list_of _mounts,
/* out */ conflict list list_of _mountconflicts,
/* out */ unsigned32 *st

/*
* umount a list of mounts
*/

lans umount
/* in */ int cell,
/* in */ int group,
/* in */ int cluster,
/* in */ int node,
/* in */ int boot_ sequence,
/* in */ mount list list_ of_ mounts,
/* out */ conflict list list_of_mountconflicts,
/* out */ unsigned32 *st

/*
* get mount info for a mounted global
* file handle
*/
lans_getmntby_mntd_gfh

/* in */ int cell,
/* in */ int group,
/* in */ int cluster,
/* in */ int node,
/* in */ int mount_context,
/* in */ int boot_ sequence,
/* in */ gfh mntdgfh,
/* out */ mntinf o mount,
/* out */ unsigned32 *st

/*
* get mount info for a mounted-on global

IBM Confidential
June 28, 1991
DRAFT

- 305 -

* file handle
*/

lans_getmntby_mntdon_gfh
/* in *I int cell,
/* in */ int group,
/* in */ int cluster,
/* in */ int node,
/* in */ int mount_context,
/* in */ int boot_sequence,
/* in */ gfh mntdgfh,
/* out */ mntinf o mount,
/* out */ unsigned32 *st

/*
* get mount info for a list of nodes
*/
lans_getmntby_nodes

/* in */ int cell,
/* in */ int group,
/* in */ int cluster,
/* in */ int node,
/* in */ int boot_sequence,
/* in */ int mount_context,
I* in */ int nodes[],
/* out */ rnntinf o mount,
/* out */ unsigned32 *st

/*
* get a sequence of temporary volume IDs
* type_of _ID is either logical or physical
*/

lans_get_volIDs
/* in */
/* in */
/* in */
/* in */
/* in */
/* in */
/* in */
/* out */
/* out */

int
int
int
int
int
int
int

cell,
group,
cluster,

int
unsigned32

node,
boot_sequence,
number_ of_ IDs,
type_of _ID,
*ternpID,
*st

IBM Confidential
June 28, 1991
DRAFT

- 306 -

/*.
* add mount hints to all nodes in cluster
*/

lcrns addhints
/* in */
/* in */
/* in */
/* in */
/* in */
/* out */

3.1.1.10.1.2 GCMS -> LCMS
/*

int cell,
int group,
int cluster,
int node,
hint list list_of _mounthints,
unsigned32 *st

* see pgcrns_ok2mnt
*/

for details

gems_ ok2mnt (
/* in */
/* in */
/* in */
/* in */
/* in */
/* out */
/* out */

/*

int
int
int
int
mount list
conflict list
unsigned32

cell,
group,
cluster,
node,
list_of _mounts,
list_of _mountconflicts,
*st

* see pgcrns_getmntinfo
*/

gcrns_getmntinfo
/* in */
/* in */
/* in */
/* in */
/* out *I
/* out */
/* out */
/* out */

NEEDSWORK:

int cell,
int group,
int cluster,
int node,
mntinf o local_ mounts,
mntinf o exported_ mounts,
mntinf o imported_ mounts,
preference mount _points,

IBM Confidential
June 28, 1991
DRAFT

- 307 -

3.1.1.10.2 Between GCMS and PGCMS

3.1.1.10.2.1 PGCMS -> GCMS

/*
* update the cluster mount table stored in group
* servers
*/

pgc::rns_addmounts
/* in */ int cell,
/* in */ int group,
/* in */ int cluster,
/* in */ int node,
/* in */ mount list list_of _mounts,
/* in */ hint list list_of _mounthints,
/* out */ unsigned32 *st

/*
* update the cluster mount table stored in group
* servers
*/

pgc::rns_deletemounts
/* in *I
/* in */
/* in */
/* in */
/* in */
/* out */

/*
* install mount
*/

pgc::rns_addhints
/* in */
/* in */
/* in */
/* in */
/* in */
/* out */

/*

int cell,
int group,
int cluster,
int node,
mount list list_ of _mounts,
unsigned32 *st

hints

int cell,
int group,
int cluster,
int node,
hint list list_of _mounthints,
unsigned32 *st

IBM Confidential
June 28, 1991
DRAFT

)

- 308 -

* PGQ.15 inf onns all group servers when any node goes down
*/

pgcms_nodedown

/*

· /* in */
/* in */
/* in */
/* in */
/* out */

int
int
int
int
unsigned32

cell,
group,
cluster,
nodes2down[],
*st

* a join or mount operation is mounting over
* a context-dependent mount point
* the PGQ.15 requests all group servers to get
* from all their clients
*/

int
int
int
int

cell,
group,
cluster,
node,

acceptance

pgcms_ok2mnt
/* in */
/* in */
/* in */
/* in */
/* in */
/* out */
/* out */

mount list
conflict list
unsigned32

list_of _mounts,
list_of _mountconflicts,
*st

/*
* PGQ.15 callback to GCl1S to have the joining node (node2ask)
* to accept the context-dependent mounts that
* currently exist in the cluster
*/

pgcms_accept2join (

)

/*

/* in */ int cell,
/* in */ int group,
/* in */ int cluster,
/*
/*
/*
/*
/*

in */
in */
in */
out *I
out */

int node,
int node2ask,
mount list list_of _mounts,
conflict list list_of _mountconflicts,
unsigned32 *st

IBM Confidential
June 28, 1991
DRAFT

- 309 -

* Return a list of mounts for the indicated cluster
*/

pgcms_get_mntinfo (

/* in */ int cell,
/* in */ int group,
/* in */ int cluster,
/* in */ int node,
/* out */ mntinf o local_mounts,
/* out */ mntinf o imported_ mounts,
/* out */ mntinf o exported_ mounts,
/* out *I preference mount _points,
/* out */ unsigned32 *st

/*
* Return number of transactions
*/

started and completed

pgcms_get_transcnt (

/*

/* in */ int
/* in */ int
/* in */ int
I* in */ int
/* out */ u int
/* out */ u int
/* out */ unsigned32

cell,
group,
cluster,
node,
db trans_in;
db trans out; - -
*st

* reset the cluster mount table
* issued when PGCMS starts up and
* the cluster mount table had to be rebuilt
*/

pgcms _reset (
/* in */
/* in */
/* in */
/* in */
/* in */
/* out */

)

NEEDSWORK: more detail

int
int
int
int

cell,
group,
cluster,
node,

cluster list
unsigned32

cluster mount_table,
*st

IBM Confidential
June 28, 1991
DRAFT

- 310 -

3.1.1.10.2.2 GCMS -> PGCMS
/*
* Join the cluster as a group server.
* fails if a more perferred group server exists for this group.
* PG0-15 returns the cluster mount table if the
* join succeeds.
*/

gcms_joincluster (

/* in */ int cell,
/* in */ int group,
/* in *I int cluster,
I* in *I int node,
/* in */ int boot_sequence,
/* in */ int fs_types_supported[],
/* out */ cluster list cluster_mount_table,
/* out */ handle t newserver,
/* out */ unsigned32 *st

/*
* Inform the PGCl1S that this node no longer services
* the indicated cluster.
*/

gcms_leavecluster (

/* in */ int cell,
/* in */ int group,
/* in */ int cluster,
/* in */ int node,
/* in */ int boot_ sequence,
/* out */ handle t newserver,
/* out */ unsigned32 *st

/*
* Inform the PGCl1S of a inactive node.
* Node down is detected by the GNSS and
* passed to the GCl1S.
*/

gcms_nodedown
/* in */ int
/* in */ int
/* in */ int
/* in */ int

cell,
group,
cluster,
node,

IBM Confidential
June 28, 1991
DRAFT

- 311 -

)

/* in */ int node2down,
/* out */ handle t newse:rver,
/* out */ unsigned32 *st

3.1.1.10.2.3 PGCMS -> PGCMS/GCMS

,,

I*
* shutdown as group server
* called when the GNSS has detected a more
* preferred GNSS
* mount conflicts are allowed to continue by creating
* an instance of the cluster database in the
* more preferred node
*/
pgcms_resign

/* in */ int cell,
/* in */ int group,
/* in */ int cluster,
/* in */ int node,
/* in */ cluster list cluster_mount_table,
/* out */ unsigned32 *st

/*
* merge groups
* fails if mount conflicts exist
*/
pgcms_merge (

/* in */ int cell,
/* in */ int group,
/* in */ int cluster,
/* in */ int node,
/* in *I cluster list cluster_mount_table,
/* out */ conflict list list_of _mountconflicts,
/* out */ unsigned32 *st

3.1.1.10.3 Between CMKE and LCMS

3.1.1.10.3.l CMKE -> LCMS
/*
* get mount info for a mounted global

IBM Confidential
June 28, 1991
DRAFT

* file handle
*/

anke_getmntby_mntd_gfh
/* in */ int
/* in */ gfh
/* out */ mntinfo

- 312 -

/* out */ unsigned32

/*

mount_context,
mntdgfh,
mount,
*st

* get mount info for a mounted-on global
* file handle
*/

anke_getmntby_mntdon_gfh

/*

/* in */ int
/* in */ gfh
/* out */ mntinfo
/* out */ unsigned32

mount_context,
mntdgfh,
mount,
*st

* get mount info for a list of nodes
*/

anke_getmntby_nodes (

/*

/* in */ int
/* in */ list
/* out */ mntinfo
/* out */ unsigned32

* called at clusterstart
*/

anke_joincluster (

/* in */ int
/* in */ int
/* in */ int
I* in */ mount list
/* in */ mount list
/* in */ mount list
/* in *I preference
/* out */ conflict list -
/* out */ unsigned32

mount_context,
nodes,
mount,
*st

boot_ sequence,
cluster,
fs_types_supported(J,
local_ mounts,
exported_mounts,
imported_mounts,
mount _points,
list_of_mountconflicts,
*st

IBM Confidential
June 28, 1991
DRAFT

- 313 -

cmke_leavecluster (
/* in */ int
/* in */ int
/* out */ unsigned32

/*
* export a list
*/

cmke_mount (
/* in */
/* in */
/* out */
/* out */

/*

of mounts

int
mount list
conflict list
unsigned32

* umount a list of mounts

boot_sequence,
cluster,
*st

boot_sequence,
list_of_mounts,
list_of_mountconflicts,
*st

* returns a list of conflicts if the operation fails
*/

cmke umount (

/* in */ int boot_sequence,
/* in */ mount list list_of _mounts,
/* out */ conflict list list_of _mountconflicts,
/* out */ unsigned32 *st

/*
* locate NFS Token Exporter for mounted gfh
* returns handle to NFS Token Exporter
* called by the NFS client code when it is unable
*to talk to it's NFS Token Exporter
* this call is forwarded to the PGCMS (thru the LQ.1.5,GCMS)
* were a NFS Token Exporter is located/started
*/

cmke_get_NFSexporter (
/* in */ int
/* in */ int
/* in */ int
/* in */ int

cell,
group,
cluster,
node,

IBM Confidential
June 28, 1991
DRAFT

/* in */
/* in */
/* out */
/* out */

- 314 -

int
gfh
handle t
unsigned32

boot_sequence,
mntdgfh,
NFSexporter,
*st

NEEDSWORK:

3.1.1.10.3.2 LCMS -> CMKE
/*
* return inf onnation about all mounts
* called when a new PGQ.15 is rebuilting the mount table
*/

lcms_get_mntinfo (

/*

/* out */ mntinfo
/* out */ mntinfo
/* out */ mntinfo
/* out */ preference
/* out */ unsigned32

* install mount hints
*I

lcms_set_mnthints (
/* in */ hintlist
/* out */ unsigned32

local_ mounts,
imported_ mounts,
exported_ mounts,
mount _points,
*st

hints,
*st

3.1.1.10.4 Between GCMS and GNSS

3.1.1.10.4.1 GNSS -> GCMS

/*
* merge groups
* GNSS provides a list of merging group servers
* operation fails if conflicting mounts exist
*/

gnss _merge (

/*

/* in */ handle t
/* out */ unsigned32

gems_ servers [] ,
*st

* stop providing GQ.1S services and transfer

IBM Confidential
June 28, 1991
DRAFT

- 315 -

* cluster mount data to a more preferred node
*/

gnss _shutdown (
/* in */ handle t
/* out */ unsigned32

3.1.1.10.4.2 GCMS -> GNSS
/*

preferred_gcms,
*st

* register RPC handles of the GCMS
*/

gcms_registerhandle(

/*

/* in */ handle t
/* in */ handle t
/* out */ unsigned32

GNSS2GCMS_handle,
L0152GCMS_handle,
*st

* inform the GNSS of new cluster(s) instance
* the GNSS returns a list of handles to other
* group servers
*/

gcms_startcluster(

/*

/* in */ cluster list
/* out */ cluster list
/* out */ unsigned32

myserverarea[],
gems_ servers [] ,
*st

* inform the GNSS when the last node using a
* cluster leaves
*/

gcms_stopcluster(
/* in */ int cluster_ID,
/* out */ unsigned32 *st

3.1.1.10.S System Calls
/*
* change root relative mount context
* fails if:
* chroot has already been perf onned
* requested node is unavailable

*

IBM Confidential
June 28, 1991
DRAFT

- 316 -

* NEEDSWORK: error numbers
*/

chmntcontext (
/* in */ char *nodename

/*
* clusterstart
* fails if mount conflicts exist
*/

clusterstart (
I* in */ cluster id

/*
* clusterstop
*/

clusterstart ()

/*
* get RPC handle to G01S
*/

getG01Shandle (
/* out */ G01S handle

/*
* set the RPC handle to the L0'1S (used by the CMKE)
*/

setLGCMShandle (
/* in */ LGCMS handle

/*
* get RPC handle to CMKE
*/

getCMKEhandle (
/* out */ G01S handle

NEEDSWORK: more detail

3.1.1.11 Data Interfaces

IBM Confidential
June 28, 1991
DRAFT

- 317 -

3.1.1.11.1 Volume Structures
/*
* One structure per volume, describing where the volume is located
* and where its mount points are.
*/

struct cm_volume {

};

/*

struct cm_volume *next;
struct cm_cell *cellp;
struct lock_data lock;
struct af sHyper volume;
char *volnamep;
struct cm server *serverHost

/* Next volume in hash list. */
/*this volume's cell */
/* the lock for this structure */
/* This volume's ID number. */
/* This volume's name, or 0 if unknown */

[AFS_MAXHOSTS]; /* servers serving this volume */
struct afsFid dotdot; /* dir to access as . . *I
struct afsFid mtpoint; /* The mount point for this volume. */
struct afsHyper roVol; /* RO volume id associated with vol (if any) */
struct afsHyper backVol; /* BACKUP vol id associated with vol (if any) */
struct afsHyper rwVol; /* RW volume id for this volume */
long accessTime; /* last time we used it */
long vtix; /* volume table index */
long copyDate; /* copyDate field, for tracking vol releases */
short refCount; /* reference count for allocation */
char states; /* added here for alignment reasons */

* sections of vldbentry needed to create cm volume for /etc/mount volumes
*/

struct fo_ans_entry {

}

struct afsHyper Volids[MAXVOLTYPES);
unsigned long VolTypes[MAXVOLTYPES);
char name [MAXNAMELEN) ;
unsigned long volumeType;
char frfsRepl;
unsigned long nServers;
struct fo_ans_replentry[MAXNTYPES);
struct afsFid dotdot;
struct afsFid mtpt;
unsigned long flags;

struct fo_ans_replentry {
struct afsNetAddr siteAddr;

IBM Confidential
June 28, 1991
DRAFT

char type;
}

3.1.1.11.2 GCMS Private data
/*
* group server membership
*/

struct ans id

} ;

/*

u short
u short
u short

cell;
group;
cluster;

* info kept for each node
*/

struct ans members
nodenum;
node_h;

- 318 -

u short
rpc_handle_t
u int node_state;
ans members *next;

} ;

/*
* list of nodes which
* require a lock to access
*/

struct ans_list {
struct ans members *members;
u int lock;
u int cnt;

} ;

/*
* busy mount points

/* internal node number */
/*node's rpc handle */

/* lock required to update list */
/* # of members in list */

* kept by mounted and mounted on mount IDs
*/

struct ans_bsymnt
volume t

};

/*

volume t
ans_bsymnt

mntd_ID;
mntdon_ID;
*next;

/* mounted ID */
/* mounted on ID */

IBM Confidential
June 28, 1991
DRAFT

(

- 319 -

* data kept by each group server
* entries marked with (PGCMS) are
* only valid when the entry is also the primary group server
*/

struct gans {
struct ans id id; /* service area where this data

u int
u int
u int
struct ans list
struct ans list
struct ans list
struct ans_bsymnt
mutex t
rpc_handle_t
db handle t
mutex t
db handle t
mutex t
u int
u int
u int
ans_gans

};

gans_state;
pgans_state;
flags;
*group;
*cluster;
*servers;
*busymnts;
bsymnts_lock;
pgans_h;
db _mount_ h;
db_mount_lock;
db_node_h;
db_node_lock;
db _pode _ cnt;
db_ trans_ in;
db_trans_out;
*next;

* applies
*/

/* (PGCMS) */

/* nodes in this group */
/* nodes in cluster (PGCMS) */
/* group servers in cluster (PGCMS) */
/* in transit mount points */
/* lock for busy mounts list */
/* rpc handle to PGCMS */
/* mount data base handle */
/* lock for mount data base */
/* node data base handle */
/* lock for node data base */
/* # of additions to node db */
/* data base mods started */
/* mount data base mods completed */

static struct gans *gans; /* service info for each

/*

* cluster this node services
*/

* states of the PGCMS I GCMS (pgans_state I gans_state)
*/

#define NOTASERVER
#define RUN
#define PENDING
#define SHUTDOWN

#define MERGING

OxOOOl
Ox0002
Ox0004
Ox0008

OxOOlO

I* shutdown */
/* fully operational instance */
/* instance is starting up */
/* instance has encountered a
* server with a higher priority
* and is attenpting to shutdown
*/

/* instance is involved with a
* merger with an group

IBM Confidential
June 28, 1991
DRAFT

#define PARTITION Ox0020

/*

- 320 -

*/
/* mount conflicts prevented
* cluster join
*/

* state held by the GCMS for each of
*I

it's group members (node_state)

#define NOTACTIVE
#define WAITING

3.1.1.11.3 LCMS Private data
struct lems {

OxOOOl
Ox0002

/* not a cluster member */
/* node is waiting for a reply */

struct ems id id;

};

u int
rpc_handle_t
rpc_handle_t

3.1.1.11.4 CMKE Private data
/*

lcms_state;
ank.e_h;
gems_h;

/* rpc handle to 01KE */
/* rpc handle to GCMS */

* cached info about mounts
*/

struct ank.e mount {

} ;

struct vf s
struct vnode

struct mntinf o

struct ems mount

struct ank.e {
struct ems id
u int
rpc_handle_t
struct ank.e mount
struct ank.e mount
struct ank.e mount
struct preference

*vf s;
*vp_held;

*info;

*next;

id;
ank.e _state;

/* mounted vfs */
/* list of vnodes being held to
* provide mount hints
* must be released when umounted
*/
/* information needed to
* recreate this mount
*/

lems_h; /* rpc handle to LCMS */
*local_mounts;
*exported_ mounts;
*imported_mounts;
predefined; / list of predefined mount points

IBM Confidential
June 28, 1991
DRAFT

- 321 -

} i

/*

* that this node will accept or
* reject
*/

* state of node (cmke_state)
*/

#define CMKE CLUSTERSTARTED
#define CMKE MOUNTCONFLICTS

OxOOOl;
Ox0002; /* mount conflicts prevented node

* from joining cluster

3.1.1.11.5 Gobal Files

3.1.1.11.5.1 NFS Token Exporter

*/

Each unique NFS mount requires a NFS Token Exporter. The node selection is
handled by the PGCMS when a NFS mount is performed. Handles to the seiver are
stored in the as:

name : / •.. /cellname/clustername/Cl1S/NFSTokenExporter4_ROOTFH
contents: RPC handle to NFS TokenExporter

were ROOTFH is the root file handle (in ascii) that the NFS Token Exporter seivices.
Note that a NfS Token Exporter service area is cell wide.

3.1.1.11.6 Between GCMS and GNSS database
The GCMS cluster mount information is managed by routines provided by the GNSS.
The GCMS stores two types of data in this data base; cluster mount information and
information about nodes in the cluster.

Mount Record

STRING
STRING
OPAQUE
GFH
GFH
INT
INT
INT
MOUNT ID
LIST
LIST

mounted on text
mounted text
mount arguments
mounted on global file handle
mounted global file handle
mounting node
flags
mount context
mount ID of this mount
list of mount hints for this volume
list of physical volumes storing the mount
each entry contains:

storage node

IBM Confidential
June 28, 1991
DRAFT

LIST

Node Record

INT
INT
INT
INT
LIST
LIST

NEEDSWORK: more detail

- 322 -

type (RW, RO, REPL_TYPE, etc)
physical volume ID
server's network address

list of nodes which have imported the mount
valid only at the group servers

node number
group number
flags
boot sequence number
list of mount preferences
list of file system types supported

3.1.1.11.7 Between kernel extensions and CMS
NEEDSWORK: Other FUSION modules may need an interface to the CMS. These
would (probably) include reopen, automatic load leveling, and remote devices. These
details need to be worked out when more information is available.

3.1.1.11.7 .1 Between replication user programs and CMKE
The FRFS replication service provides tools which allows the the storage locations and
types of volumes to change while the replicas are mounted. This information needs to
be sent to the CMKE when the changes are made. NEEDSWORK: define the interface

IBM Confidential
June 28, 1991
DRAFT

3.1.2 NFS Interoperability

3.1.2.1 Purpose

- 323 -

This design specification provides desing information for changes to the NFS
extensions required for the FUSION project.

3.1.2.2 NFS Mount Model

3.1.2.2.1 Overview
Mounts must be consistent throughout the cluster with a high degree of availability.
The enhancements to NFS to provide this break down into two major areas. This first
is allowing multiple mounts of the same file system on different nodes while at the
same time detecting conflicting mounts. The second area is providing hints that the
cluster mount server should be consulted about the mounted on status of a vnode.

3.1.2.2.1.1 Mount support
In order to increase availability it is desirable to allow more than one node within a
cluster perform a given NFS mount. In order to allow this and detect conflicts when
different file systems are mounted on the same vnode a unique id is assigned to each
mount. This unique id is referred to in this document as a mount id. The mount id
can either be assigned automatically or be manually assigned and passed in as a mount
option.

) 3.1.2.2.1.2 Automatic assignment of mount id
This is the procedure which would typically be used for a mount which is of a very
temporary nature. This type of mount is referred to either as a normal mount or a non
administered mount. The mount id for this mount will be composed of a flag which
identifies the mount as normal and a uuid. It is therefore guaranteed that any other
mount attempted on a vnode which has had automatic mount id assignment will
conflict.

3.1.2.2.1.2.1 Advantages
The primary advantage of this type of mount is ease of use. The mount command can
be used exactly as it would on any other system. It is not possible to make an error
and end up with conflicting mounts on the same vnode.

3.1.2.2.1.2.2 Disadvantages
The primary disadvantage of this type of mount is availability. As only one node can
mount a file system that file system will not be available until that node joins the
cluster. Also if the node which did the mount crashes or otherwise leaves the cluster
the file system must be force unmounted. The reason for this is on a crash or other
reboot the mounting node will get a different uuid to create the mount id. The
mounting node would then be unable to join the cluster because the mount ids would
conflict.

IBM Confidential
June 28, 1991
DRAFT

- 324 -

3.1.2.2.1.3 Administered mounts
File systems which have mount ids assigned by hand, perhaps with automated help,
are called administered mounts. The mount id is either gotten from the mount
command line or from the local control file.

3.1.2.2.1.3.1 Advantages
The primary advantage of this type of mount is availability. Multiple nodes can have
mount the same file system at the same place. As soon as the first node which does
the mount joins the cluster the mount becomes available to all nodes within the
cluster. When other nodes which have done the mount are allowed to join the cluster
because the mount ids do not conflict. Administered mounts do not need to be
unmounted when the mounting node goes away as presumably on reboot the mount
will have the same mount id. In short administered mounts overcome the
disadvantages of normal mounts.

3.1.2.2.1.3.2 Disadvantages
Human intervention is required to select the mount id. If the administrators setting up
the mounts are not careful different file systems can be mounted on the same point
causing random inconsistencies.

3.1.2.2.1.4 Mount hints
In a large cluster it becomes expensive to contact every node when a mount is done.
To circumvent this hints will be supplied that tell a node that the cluster mount server
should be contacted to see if the directory in question is mounted on.

3.1.2.2.1.4.1 Mount and Unmount Count
There is a mount and unmount count associated with directory vnodes and with the
LOOKUP token. When a vnode is created on a client both the mount and unmount
counts are initialized to zero. When tokens are created by the NFS token exporter the
counts are also initialized to zero. The reason for both mount and unmount counts is
to allow a NFS token exporter to serve multiple clusters. This is a future
enhancement that is very easy to accommodate now.

3.1.2.2.1.4.2 Hint detection
XXX Possible base code change - this needs to be worked out with cluster mount
server.

Hopefully by a vnode operation but otherwise by a direct call the code above the
vnode layer will ask if a vnode is mounted on. The code below the vnode layer will
get the LOOKUP token from the NFS token cache manager, which may have had to
get the token from the NFS token exporter. The mount and unmount counts in the
token and vnode are compared to see if the cluster mount server should be contacted.

3.1.2.2.1.4.3 Hint mount and unmount
Whenever a mount or unmount occurs on top of a NFS vnode the cluster mount sever
will have to contact the NFS token exporter for the mounted/unmounted file system.
Whenever the NFS token exporter is told of a mount the mounted count will be

IBM Confidential
June 28, 1991
DRAFT

- 325 -

incremented. Whenever the NFS token exporter is told of an unmount the unmount
count will be incremented. The NFS token exporter will return to the cluster mount
server the number of mounts and unmounts on the vnode to allow for more reliable
operation when a NFS token exporter is moved to a new node.

3.1.2.2.2 New Functions

3.1.2.2.2.1 nfs_checkmount(vp)

3.1.2.2.2.1.1 Overview
Checks the mount and unmount counts in the vnode and it's associated token and
determines if the cluster mount server should be contacted. The vnode mount and
unmount counts are updated from the token. Returns TRUE if the cluster mount
server should be contacted.

3.1.2.2.2.1.2 Detailed Design
nfs_checkmount(vp)
{

}

flag = don't talk to cluster mount server
if(the vnode is not already mounted on) {

if(counts in token != counts in vnode) {

}
else {

}

}

if(token mount count !=token unmount count) {
flag = talk to cluster mount server

}

if(counts in token != counts in vnode) {
flag = talk to cluster mount server

}

counts in vnode = counts in token
return(flag)

3.1.2.3 Migration of open NFS files

3.1.2.3.1 Overview
When a process migrates any vnodes which are being referenced by the process need
also to be migrated. Two NFS vf s operations (nfs_prepare_for_export() and
nfs_reopen()) are added to support process migration. The nfs_prepare_for_export()
vfs operation returns a global file handle (gtb) for the vnode which can be used on
any FUSION node. The nfs_reopen() vf s operation is passed the gfh and creates a
vnode given a global file handle.

When migrating a vnode to a new node it will often be true that the file system that
the vnode is part of has not yet been mounted on the migrated-to node. The file

IBM Confidential
June 28, 1991
DRAFT

- 326 -

system will have to be mounted when this occurs. For this reason vnode migration
and file system mount are very intertwined. The following support is needed from the
cluster mount server to implement this approach.

1. When a mount is done the cluster mount server will be given the global file
handle (gfh) for both the mounted on and mounted vnode along with all the
mount options.

2. The cluster mount server must be able to supply the root vnode global file
handle given a mount id.

3. The cluster mount server must be able to supply the global file handle that a
given mount id is mounted on.

4. The cluster mount server must contact the appropriate hint code for the mounted
on file system.

5. The cluster mount server must be able to supply mount information given a
mount id.

A new vnode operation , gfh2vnode(), is added. This vnode operation is given a
global file handle and returns a vnode. gfh2vnode() handles any mount operations
required to make the vf s referenced by the global file handle available.

3.1.2.3.2 New Functions

3.1.2.3.2.1 nfs _prepare_ for_ export(vp)

3.1.2.3.2.1.1 Overview
Additional vfs operation prepare_for_export() for preparing a vnode for migration.
Returns a global file handle for the vnode.

3.1.2.3.2.1.2 Detailed Design
nfs__prepare_for_export(vp)
{

}

/*
* xxx
*/

3.1.2.3.2.2 nfs _prepare _for_ export(gtb)

3.1.2.3.2.2.1 Overview
Additional vfs operation reopen() to reopen a vnode on a migrated-to node. Calls
nfs_gfh2vnode() which will perform any necessary mount and create a vnode from the
global file handle. If the vnode is created by nfs_gfh2vnode(), then a call to the NFS
token cache manager is made to acquire the OPEN token for the vnode. If this vfs is
mounted with the secure NFS option, a call is made back to the migrated-from node to
get the login information required by secure NFS.

IBM Confidential
June 28, 1991
DRAFT

3.1.2.3.2.2.2 Detailed Design
nfs_reopen(reopen_data)
{

}

/*
* xxx
*/

3.1.2.3.2.3 nfs _ vnode2gtb(vnode)

3.1.2.3.2.3.l Overview

- 327 -

Create global file handle (gfh) for a given vnode. Called by nf s_prepare_for_export()
to build the global file handle. The following is placed in the private data section of
the global file handle:

1. NFS file handle

2. useful vnode fields

a. v_type

b. v_flags

c. v_rdev

3.1.2.3.2.3.2 Detailed Design
gfh *
nfs_vnode2gfh(vnode)
{

}

/*
* xxx
*/

3.1.2.3.2.4 nfs_gtb2vnode(gtb, address of routine to get mount info)

3.1.2.3.2.4.1 Overview
Create a vnode for a given global file handle. If the vfs is not currently mounted,
performs the necessary mount operation. Returns a pointer to the vnode or NULL if
the vnode creation failed.

3.1.2.3.2.4.2 Detailed Design
nfs_gfh2vnode(gfh, address of routine to get mount info)
{

pick the mount id out of the gfh
if (this mount id is not already mounted on this node)
{

call passed in routine to get mount info
/*

IBM Confidential
June 28, 1991
DRAFT

}

*
*
*/

- 328 -

if just migrated in it will be from migrate from node
else if will be from cluster mount server

if (mounted on mount id is not already mounted on this node) I
{

else
{

make fake vnode
do NFS mount vf s op to mount file system on fake vnode
if (mount error)
{

trash vnode
return (error)

trash fake vnode

mark root vnode as "mount point without a mounted
on vnode"

if (migrate from node is in another cluster)
{

mark root vnode as not eligible for " " evaluation.
}

do NFS mount vf s op to mount file system on mounted on
vfs

if (mount error)
{

return(error)

create vnode using NFS file handle in gfh
stat vnode
if (stat failed)

return(error)
return (success)

3.1.2.3.3 Changes to existing functions

IBM Confidential
June 28, 1991
DRAFT

I

- 329 -

3.1.2.3.3.1 " •• " evaluation

3.1.2.3.3.1.1 Overview
When a mount is done a part of process migration, a vnode is created without a
mount-on vnode. When 11

••
11 evaluation detects these vnodes one of two actions are

perf onned. If the migration was from outside the cluster, the vnode will be marked as
not eligible for 11

••
11 evaluation. If this is the case 11

••
11 evaluation returns with an error.

If the vnode is eligible for 11 •• 11 evaluation, the new vnode operation gtb2vnode() is
called to create the mount point. This code change is made in the AIX 3.1 base.

3.1.2.3.3.1.2 Detailed Design
if (vnode marked mount point without mounted on vnode)
{

}

if (vnode marked not eligible for " " evaluation)
{

go to ENOENT processing
}

give cluster mount server mounted mount id get back gfh
for mounted on vnode

call global file handle to vnode(mounted on gfh, address
of routine to get info from cluster mount server)

if (mount error)
{

go to ENOENT processing

clear vnode marked mount point without mounted on vnode

3.1.2.3.4 Data Structures

3.1.2.3.4.1 Additions

3.1.2.3.4.1.1 global file handle
/*
* global file handle
*/

typedef struct
{

u_short gfh_type;
u int gfh_mntid;
caddr_t *private_data;

/* identifier vfs type */
/* mount id */
I*
* For NFS:
* 1) file handle
* 2) useful vnode fields

IBM Confidential
June 28, 1991
DRAFT

} nfs_gfh;
I*

- 330 -

* types of global file handles
*/

#define GFH TYPE NFS OxOOOl
••. other file system types

3.1.2.3.4.2 NIDL Definitions

3.1.2.3.4.3 Changes
struct vnodeops in /usr/include/sys/vnode.h

Add the gfu2vnode() operation.

3.1.2.4 Migration of NFS file locks

3.1.2.4.1 Overview

*
*
*
*/

a) v_type
b) v_flags
c) v rdev

NFS file locks are supported outside of the normal NFS protocol by two daemons -
rpc.lockd and rpc.statd. This document outlines the changes required to support
process migration of NFS file locks. These changes are based on the V3.1 NFS code,
current Locus NFS code and Sun NFS code.

There will be two possible states for each file after process migration. If the NFS
server is a FUSION node, the local node will access the NFS server directly. For
non-FUSION NFS servers, the original locking node will provide access to the NFS
server.

3.1.2.4.1.1 Lock Migration
Two additional vnode operations nfs_prepare_to_relock() and nfs_relock() are added to
migrate locks. The nfs_prepare_to_relock() returns an opaque list of info used by
nfs_relock() in the local node to recreate the locks.

A new XDR protocol, rim (Remote Lock Manager), is used to perform lock migration
and maintain remote locks. This operates like the nlm (Network Lock Manager)
protocol - message passing RPCs with async replies.

3.1.2.4.1.1.1 Lock Migration - FUSION NFS server
Two changes are made to rpc.lockd to support lock migration. First, the FUSION
server's rpc.lockd is modified to reply to the IP address of the requesting node.
Second, the "sysid" field of the lock structure passed to the underlying physical file
system will not be derived from the IP connection address. With these changes, the
rpc.lockd on any node can directly control the migrated NFS file locks without having
to use a surrogate locking node.

IBM Confidential
June 28, 1991
DRAFT

}

)

- 331 -

3.1.2.4.1.1.2 Lock Migration - non-FUSION NFS server
Generic Sun rpc.lockd uses the client node name that was provided as part of the lock
request as a key for locking files and to determine the response path for rpc.lockd
messages. To allow existing locks to persist after migration, the local node uses the
original locking node as a surrogate locking node. After migration, the lock will exist
in the original locking node and the local node. The in-memory tables in both nodes
are updated to reflect the surrogate lock.

Before migration:
FUSION server
original locking node
new node

After relock:
FUSION server
original locking node
new node

Close in original locking node:
FUSION server
original locking node
new node

Lock reference count
1<-\
1--/
0

Lock reference count
2
1
1

Lock reference count
1<-\
0 I
1--/

Fig_ure 22. Original lockin_g_ node with FUSION server

Figures 22 through 26 show the lock relationships for the possible node
configurations.

Notes for Figures 22 through 26:

1. Arrows represent the path for the lock requests.

2. The new node informs the controlling node (FUSION server or original locking
node) of the migrated lock. The controlling node is allowed to fail the request
if it is involved in any lock reclaim operations.

3. Once the lock has been installed in the new .node, either the migrated-from node
or the new node will close the file.

3.1.2.4.1.2 Surrogate Locks
Lock operations for surrogate locks are identical to normal locks until the request goes
over-the-wire. Before going over-the-wire, a check is make of the owner flag. If the
requesting node is not the owner of the lock, the request is passed to the surrogate
node using the rim handler. The rim handler in the surrogate node locates the existing
lock entry in the in-memory table and places the request on the wire. When the reply
arrives, the nlm response routine checks the rlm_lock field in the lock and passes
control of the lock to either the nlm handler or to the rim handler. If this is a

IBM Confidential
June 28, 1991
DRAFT

- 332 -

Before migration: Lock reference
FUSION se:rver 1<--
original locking node 0 I
non-original locking node 1--/
new node 0

After relock: Lock reference
FUSION se:rver 2
original locking node 0
non-original locking node 1
new node 1

After close in non-original locking node:
Lock reference

FUSION se:rver 1<--
original locking node 0 I
non-original locking node 0 I
new node 1--/

F!g_ure 23. Start: Non-ori_ginal lockin_g_ node with FUSION server

Before migration: Lock
non-FUSION se:rver
original locking node
new node

After relock: Lock
non-FUSION se:rver
original locking node
new node

After close in non-original locking node:

non-FUSION se:rver
original locking node
new node

Lock

reference
1<-\
1--/
0

reference
1
2
1

reference
/-->1
\---1<--\

1---/

Figure 24. Original lockin_g_ node with non-FUSION server

count

count

count

count

count

count

surrogate lock, control is passed to the rlm handler which sends the replies to the
using node, and then continues to process the reply in the surrogate node. The using
node's rlm handler passes the response on to the nlm handler for local processing.
Processing the surrogate requests in both nodes is used to keep the in-memory lock
tables in sync.

IBM Confidential
June 28, 1991
DRAFT

/

- 333 -

Before migration:
non-FUSION server
original locking node
non-original locking node
new node

After relock:
non-FUSION server
original locking node
non-original locking node
new node

Lock reference count
/-->1
\---1<--\

1---/
0

Lock reference count
1
2
1
1

After close in non-original locking node:

non-FUSION server
original locking node
non-original locking node
new node

Lock reference count
1-->1
\---1<--\

0 I
1---/

F!g_ure 25. Non-original locking node with non-FUSION seiver

Before migration: Lock reference count
non-FUSION server 1-->1
new node == original locking node \---1<--\
non-original locking node 1---/

After relock: Lock reference count
non-FUSION server 1
new node == original locking node 2
non-original locking node 1

After close in non-original locking node:
Lock reference count

non-FUSION server 1<--\
new node == original locking node 1---/
non-original locking node 0

Figure 26. Non-original locking node with non-FUSION seiver migrating to original
lockin__g_ node

3.1.2.4.1.3 Crash Recovery

3.1.2.4.1.3.1 Current Version
rpc.statd provides crash recovery for NFS seivers and clients. Nodes involved in
locking operations are kept in /etc/sm directory by node name. On reboot, rpc.statd

IBM Confidential
June 28, 1991
DRAFT

- 334 -

notifies all nodes in this directory of the fact. The notified node performs the function
indicated in the in-memory monitor tables. When a server reboots, clients are allowed
a grace period in which to reclaim their locks. Servers destroy the client's locks when
notified of the client's reboot.

3.1.2.4.1.3.2 Changes Required for Surrogate Locks
Surrogate locks require a different crash recovery than that provide in the current
version. As part of the migrate process, both the surrogate and migrated-to node
added monitor table and /etc/sm directories entries for the opposing node. The
surrogate node unlocks on all locks held for the migrated-to node if the migrated-to
node reboots. The migrated-to node signals all processes that held locks on the
surrogate node if the surrogate node reboots.

3.1.2.4.2 New Functions

3.1.2.4.2.1 nfs _prepare_ to _relock(filehandle, reopendata, ...)

3.1.2.4.2.1.1 Overview
This the an addition vf s operation for process migration which is called in the
migrated-from node to gather the locking information required to relock the vnode in
the migrated-to node. Places the info needed to relock the vnode in the reopendata
pointer. Lock information is acquired through rpc calls the remote lock manager (rim)
code. Returns:

NOLOCKS no locks held on the vnode

OK reopendata has lock info for vnode

FAIL server or client has lock reclaim is in progress

3.1.2.4.2.1.2 Detailed Design
nfs_J>repare_to_relock(vp, relockdata, , .•.)
{

/*
* avoid the rpc call if file has no locks
*/

if (vnode_has_no_locks)
return (NOLOCK)

/*
* call the local rlm rpc.lockd extension;
* loop until all locks transferred
*/

do
{

rlm_getlockres = talk2rlm(GETLOCKS, lockreq)

/*

IBM Confidential
June 28, 1991
DRAFT

* doing lock reclaim?
*/

- 335 -

if (lockreply->status == denied)
return (FAIL)

/*
* move data into relockdata buffer
*/
move_lock_data(lockreq, reopendata)

while (! r lm _getlockres. eof)

return(OK)

3.1.2.4.2.2 proc _rlm _getlocks(filehandle, pid)

3.1.2.4.2.2.1 Overview
Get the locks for the filehandle owned by pid. This function is called in the
migrated-from node as part of the prepare_to_relock() vfs operation. Since a
maximum of 8K of data can be transferred by a single rpc call, multiple calls may be
required to transfer the entire list of locks. A offset in kept in the record lock struct
to indicate the starting position of the next call. proc_rlm_getlocks() returns either a
list of xdr's locks or a denied status if this node is involved in lock reclaim
operations. This code resides in rpc.lockd.

3.1.2.4.2.2.2 Detailed Design
proc_rlm_getlocks(filehandle, pid)
{

/*
* skip forward to reclock.offset
* copy locks into reclock struct
* adjust off set for next call
* set eof if last lock found
*/

3.1.2.4.2.3 proc _rim _putlocks(lock _list)

3.1.2.4.2.3.1 Overview
This function is called in the migrated-to node to setup file locks as part of the relock
vfs operation. The following operations are performed:

1. 1) updates in-memory lock tables

2. 2) checks resources (access to servers, locking nodes, etc)

IBM Confidential
June 28, 1991
DRAFT

- 336 -

3. 3) informs either the FUSION server or the original locking node of the
migrated lock

4. 4) adds either the FUSION server or the original locking node to the monitor
table

Results are returned by calling rlm_relock_reply(). This operation will fail if
resources are unavailable or a lock reclaim operation is in progress. This code resides
in rpc.lockd.

3.1.2.4.2.3.2 Detailed Design
proc_rlm_putlocks(lock_list)
{

/*
* add locks from remote node to in-memory lock tables
*/

if ((reclock = rlm_relock_add(lock_list)) = FAIL)
{

}

/*

results = FAIL
rlm_relock_reply(results)

* check state of remote nodes
*/

if ((results= rlm_relock_check(reclock)) =FAIL)
{

}

/*

nfs_relock_cleanup(reclock)
rlm_relock_reply(results)

* infonn the controlling node (either the FUSION NFS server or
* the original locking node) of the migration.
*Add the controlling node to the this node's list of monitor nodes.
*/

if (rlm_getsrvtype() = FUSION_SRV)
{

}

else

if ((results = rlm_call (server, MIGRATED_LOCK)) = FAIL)
{

nfs_relock_cleanup(reclock)
klm_relock_reply(results)

rlm_add_monitor(server, reclock)

IBM Confidential
June 28, 1991
DRAFT

}

{

}

- 337 -

if ((results = rlrn_call (original_node, MIGRATED_LOCK)) = FAIL)
{

}

nfs_relock_cleanup(reclock)
klrn_relock_reply(results)

rlrn_add_monitor(original_node, reclock)

klrn_relock_reply(results)

3.1.2.4.2.4 rim _relock_ add(lock _list)

3.1.2.4.2.4.1 Overview
Add the list of locks received from the migrated-from node to in-memory lock tables.
Called by proc_rlm_putlocks() as part of the relock vf s operation. Returns OK or the
error value returned by either blocked() or add_reclock(). This code resides in
rpc.lockd.

3.1.2.4.2.4.2 Detailed Design
rlrn_relock_add(lock_list)
{

}

struct fs_rlck *fp;
reclock *insrtp;
reclock a;

/*
* loop thru the lock_list
* placing info from current list entry in the reclock
* then call blocked() then add_reclock()
*/

while(lock_list && !error)
{

}

extract lock info from list
error = blocked(&fp, &insrtp, &a)
if (!error)

error= add_reclock(fp, insrtp, &a)
lock_list = next_entry

return (error)

3.1.2.4.2.S rim_ add_ monitor(node, reclock)

IBM Confidential
June 28, 1991
DRAFT

- 338 -

3.1.2.4.2.5.1 Overview
Add a node to the monitor table. This function is called in the migrated-to node by
proc_rlm_putlocks() to set a status monitor entry for the controlling node of a reclock.
The pointer to the private data record is set to NULL so this entry will not be process
by the prot_priv _crash(). This code resides in rpc.lockd.

3.1.2.4.2.5.2 Detailed Design
rlm_add_rnonitor(node}

{

}

3.1.2.4.2.6 nfs _relock_ cleanup(reclock)

3.1.2.4.2.6.1 Overview
Free all resources allocated during proc_rlm_putlocks(). Called when the relock
operation fails. This code resides in the rpc.lockd.

3.1.2.4.2.6.2 Detailed Design
nfs_relock_cleanup(reclock)
{

/*
* xxx
*/

3.1.2.4.2.7 rlm_prog(Rqstp, Transp)

3.1.2.4.2.7.1 Overview
Service program for the rim xdr protocol. This will service all the requests needed to
run the rlm_prog().

3.1.2.4.2.7.2 Detailed Design
rlm_prog(Rqstp, Transp)

{

struct svc_req *Rqstp;
SVCXPRT *Transp;

reclock
remote result
char
int

*req;
*reply;
*(*Local) ();
oldmask;

oldmask = sigblock (1 << (SIGALRM - l));
switch (Rqstp->rq_proc)
{

/*
* set xdr_Argument, xdr_Result, and routine to process
* the request

IBM Confidential
June 28, 1991
DRAFT

(

}

- 339 -

*/
}

if (surrogate_request)
{

}

/*
* pass surrogate lock requests to network lock manager
*/

if (surrogate_response)
{

/*
* pass surrogate lock responses to local processing
*/

if (relock_request)
{

}

/*
* pass relock requests to local handler
*/

if (relock_response)
{

}

/*
* do local processing of rlrn replies
* then pass response to nlrn handler
*/

3.1.2.4.2.8 rlm_res_routine(reply, local_cont)

3.1.2.4.2.8.1 Overview
Surrogate lock response handler. Called in the original locking node when the nlm
response arrives from the NFS server. Builds the response message for the migrate-to
node and continues the lock processing in the original locking node. This code
resides in rpc.lockd.

3.1.2.4.2.8.2 Detailed Design
rlrn_res_routine(reply, local_cont)

remote result *reply;

{
remote result *(*local_cont) ();

reclock *lckp;

IBM Confidential
June 28, 1991
DRAFT

}

lckp = find_msg(reply)

I*
* build rlm response
*/

*local_cont(lckp)
rlm _reply(,,,)

3.1.2.4.2.9 rlm_xtimer()

3.1.2.4.2.9.l Overview

- 340 -

I* continue local operation */
/* forward reply to migrated-to node */

Retransmit timed-out rlm messages in queue. Called by xtimer() before it does any
processing. Functions like xtimer except rlm locks do not expire. This code resides
in rpc.lockd.

3.1.2.4.2.9.2 Detailed Design
rlm _ xtimer ()
{

}

/*
* process all messages in the msg_q that belong to rlm
* see xtimer() for details.
*/

3.1.2.4.2.10 rim _relock_ check(reclock)

3.1.2.4.2.10.1 Overview
Check resources needed to complete a lock migration. Called in the migrated-to node
as a result of the nf s_relock() vnode operation. This code resides in rpc.lockd.

3.1.2.4.2.10.2 Detailed Design
rlm_relock_check(reclock)
{

reclock *lckp

/*
* fail if the migrated-to node involved in lock reclaim
*/
if (doing_reclaims)

return (FAIL)

I*
* fail if any node's rpc.lockd is inaccessible
*/

if (rlm_check_network(servername) ==FAIL)

IBM Confidential
June 28, 1991
DRAFT

()

}

- 341 -

return (FAIL)

if (!FUSION_NFS_server)
if (rlm_check_network(original_locking_node) ==FAIL)

return (FAIL)

return (PASS)

3.1.2.4.2.11 rim_ check_ network(node)

3.1.2.4.2.11.1 Overview
Check for access to the node's rpc.lockd. Called in the migrated-to node as a part of
the nfs_relock() operation. This code resides in rpc.lockd.

3.1.2.4.2.11.2 Detailed Design
rlm_check_network(node)

{
char *node

/*
* scan the in-memory lock tables
* for a reference to this node

) * if found, return OK
*/

if (node_in_locktables)
return(OK)

/*
* no locks held for this node,
* see if the node's rpc.lockd is running
*/

else
return (rlm_talk2node (node, NLM_PROG, NLM_VERS))

}

3.1.2.4.2.12 find_re(a)

3.1.2.4.2.12.l Overview
Find an entry in the rlm lock table. This code resides in rpc.lockd.

3.1.2.4.2.12.2 Detailed Design
struct fs rlck *
find_re(a)

reclock *a
. {

/*
* see find _fe ()

IBM Confidential
June 28, 1991
DRAFT

*/
}

3.1.2.4.2.13 find re(a)

3.1.2.4.2.13.1 Overview

- 342 -

Add entry to remote lock table. This code resides in rpc.lockd.

3.1.2.4.2.13.2 Detailed Design
void
insert_re(rp)

{

}

struct fs rlck *rp

/*
* see insert_ fe ()
*/

3.1.2.4.2.14 release _reO

3.1.2.4.2.14.1 Overview
Release remote lock table entry. This code resides in rpc.lockd.

3.1.2.4.2.14.2 Detailed Design
release _re ()
{

}

/*
* see release_fe()
*/

3.1.2.4.2.15 rlm_reply(proc, reply, reclock)

3.1.2.4.2.15.1 Overview
Send remote lock manager reply over-the-wire. Called in the original locking node
when a nlm reply arrives for an rim request. Called in the original locking node or
FUSION server to reply to to a migrate request. This code resides in rpc.lockd.

3.1.2.4.2.15.2 Detailed Design
rlm_reply(proc, reply, reclock)

{

int proc;
remote result *reply;
reclock *a;

/*
* build network reply
* see nlm_reply()

IBM Confidential
June 28, 1991
DRAFT

- 343 -

*/
udp _call (••••)

}

3.1.2.4.2.16 rim_ call(proc, reclock, retransmitted)

3.1.2.4.2.16.1 Overview
Send remote lock manager request over-the-wire. Called in the migrated-to node
when surrogate locks are inuse or as part the nfs_relock(). Adds the request to
message queue if first call. This code resides in rpc.lockd.

3.1.2.4.2.16.2 Detailed Design
rlm_call(proc, reclock, retransmitted)
{

}

/*
* build_network_request
*see nlm_call()
*/

udp_call ()

if (!retransmitted)
queue(reclock, proc)

3.1.2.4.2.17 rim _locate_ surrogate(reclock)

3.1.2.4.2.17 .1 Overview
Search the table_fp for a matching lock entry. Called by rlm_prog() when a surrogate
request arrives. Sets rlm_lock in the lock entry. Returns a pointer to the matching
lock or NULL if matching entry not found. This code resides in rpc.lockd.

3.1.2.4.2.17.2 Detailed Design
relock *
rlm_locate_surrogate(reclock)
{

}

3.1.2.4.2.18 rim _locate_ request(reclock)

3.1.2.4.2.18.1 Overview
Search the msg_q for a matching lock entry. Called by rlm_prog() in the migrated-to
node when a surrogate response arrives. Returns a pointer to the matching lock or
NULL if matching entry not found. This code resides in rpc.lockd.

3.1.2.4.2.18.2 Detailed Design
relock *
rlm_locate_request(reclock)

IBM Confidential
June 28, 1991
DRAFT

{

}

/*
* xxx
*/

3.1.2.4.2.19 proc _ rlm _ migratelock(reclock)

3.1.2.4.2.19.1 Overview

- 344 -

Mark in-memory lock as migrated. Increments the reference count for this lock and
setups a monitor entry for migrated-to node. Called in either the FUSION server or
original locking node as part of nfs_relock() vf s operation. Sends results to migrate-to
node by calling rlm_reply(). This operation will fail if the node is involved in a
reclaim operation. This code resides in rpc.lockd.

3.1.2.4.2.19.2 Detailed Design
proc_rlm_migratelock(reclock)
{

if (doing_reclaim)
{

results = FAIL
rlm_reply(,,,)

reclock->ref cnt++
rlm_add_monitor(calling_node);
results = PASS;
rlm_reply(,,,);

3.1.2.4.2.20 rlm _priv _ crash(statp)

3.1.2.4.2.20.1 Overview
Process any remote lock entries in file table for the rebooted client. Called from
prot_priv _crash() after rpc.statd notices that a client has rebooted. All locks for all
locks for which this node is the original locking node and are inuse by the rebooted
client are unlocked. A signal is send to all processes which using the rebooted client
as a surrogate locking node.This code resides in rpc.lockd.

3.1.2.4.2.20.2 Detailed Design
rlm_priv_crash(statp)
{

/*
* xxx
*/

IBM Confidential
June 28, 1991
DRAFT

3.1.2.4.2.21 rlm_getsrvtype(server)

3.1.2.4.2.21.1 Overview

- 345 -

Returns the server type of "server" held in the vf s mount info for the server. Locates
the vfs for the server and checks the vf s mount info server type field. If the field is
UNK_SRV, then a call to rlm_talk2node() is made to setup the server type in the
mount info of the vf s. Returns the server type held in the vf s mount info.

3.1.2.4.2.21.2 Detailed Design
rlm_getsrvtype(server)

char *server;
{

}

locate vf s for server

if server type in vf s mount info = UNK SRV
{

if (rlm_talk2node(server, NIM_PROG, NIM_VER) ==OK
set vfs server type to FUSION_SRV

else
set vf s server type to STD SRV

return vf s server type

3.1.2.4.2.22 rim_ talk2node(node, prognum, vers)

3.1.2.4.2.22.1 Overview
Attempt to talk to "node" with rpc "prognum" and "vers". Called to determine if the
server's rpc.lockd support FUSION extensions (rlm_prog) or as part of nfs_relock() to
check access to a NFS server's rpc.lockd. Returns FAIL node didn't respond to the
XDR protocol else returns OK. This code resides in rpc.lockd.

3.1.2.4.2.22.2 Detailed Design
rlm_talk2node (node, prognum, vers)

char *node;

{

}

int prognum;
int vers;

/*
* xxx
*/

3.1.2.4.3 Changes to existing functions
File: prot __proc. c
Routine: nlm_call 0

IBM Confidential
June 28, 1991
DRAFT

Change:

File:
Routine:
Change:

File:
Routine:
Change:

File:
Routine:
Change:

File:
Routine:
Change:

File:
Routine:
Change:

File:
Routine:
Change:

File:
Routine:
Change:

Change:
Routine:
Change:

File:
Routine:
Change:

- 346 -

Allow rlm_call() to process call if not owner of lock.

prot_pnlm.c
nlm_res_routine()
Allow rlm_res_routine() to process response if not user
of lock.

prot_msg.c
xtimer()
Allow rlm_xtirner () to preprocess message queue.

prot_libr.c
map_ kernel_ klm ()
Set user and owner fields in reclock.

prot_msg.c
queue()
Only set klm_msg if !rlm active.

prot_priv.c
prot_priv_crash()
Allow rlm_priv_crash() to preprocess entries.

prot_lock.c
delete_reclock()
Setup the user and owner any new
lock entries created by delete_reclock().

prot_rnain.c
nlm_prog()
Get the node name of the connection address. Place
this name in the "reply_to" field of the lock structure.
Set the req->sysid to a constant value.
main()
Add startup code for rlm protocol service.

prot_pnlm.c
nlm_reply ()
Use the "reply_to" field instead of the "clnt" field of lock
structure when generating the name to pass to udp_call().

3.1.2.4.4 Data Structures

IBM Confidential
June 28, 1991
DRAFT

- 347 -

3.1.2.4.4.1 Changes

3.1.2.4.4.1.1 reclock structure additions in nfs/com/cmd/etc/rpc.lockd/prot_lock.h
bool t owner /* client is the original lock node
bool t user /* client is user of lock */
bool t rlrn lock /* this lock inuse·by rlrn */
u char ref cnt /* number of lockds holding locks

* this lock */
char *reply_to /* name of client node to

* reply */

3.1.2.4.4.1.2 mntinfo structure additions in /usr/include/nfs/nfs_clnt.h
/*
* server type used by rpc.lockd
* to dete:i::mine if the NFS server
* supports is running a FUSION rpc. lockd
*/

u_int mi_srvtype :2;
#define UNK SRV OxO
#define FUSION SRV Oxl
#define STD SRV Ox2

3.1.2.4.4.2 Additions

3.1.2.4.4.2.1 Globals

send

on

fs rlck table_re[HASH_SIZE]
int rlm active
int r lm _ rnsg

/* table of files being relocked */
/* current operation is for rlrn */
/* last message processed by rlrn */

3.1.2.4.4.2.2 rim protocol
/*
* Over-the-wire protocol used between the remote lock managers
* and kernel to local remote lock manager.
* All the nlrn message passing style request plus:
* RLM MIGRATE MSG - -* RLM MIGRATE RES
* RLM GETLOCKS
* RLM PUTLOCKS
*/

program RLM_PROG
version RLM VERS {

/*
* message passing style of requesting lock
* (same as the nlm protocol)

IBM Confidential
June 28, 1991
DRAFT

*/

} =
} = 1;

??????• ,

*/
void
void
void
void
void
void
void
void
void
void
void
void
/*

- 348 -

RIM_TEST_MSG(struct rlm_testargs) = 1;
RIM_ LOCK_ MSG (struct r lm _ lockargs) = 2;
RIM_ CANCEL_ MSG (struct r lm _ cancargs) =3;
RIM_UNLOCK_MSG(struct rlm_unlockargs) = 4;
RIM_GRANTED_MSG(struct rlm_testargs) = 5;
RIM_MIGRATED_MSG(struct rlm_migrateargs) = 6;
RIM_TEST_RES(rlm_testres) = 7;
RIM_LOCK_RES(rlm_res) = 8;
RIM_CANCEL_RES (rlm_res) = 9;
RIM_UNLOCK_RES (rlm_res) = 10;
RIM_GRANTED_RES(rlm_res) = 11;
RIM_MIGRATED_RES (rlm_res) = 12;

* Migration :rpc style requests
* Kernel <-> local remote lock manager
*/

rlm_getlockres RIM_GETLOCKS(struct rlm_getlockargs) = 13;

#define IM 'MAXSTRLEN 1024

/*
* status of a call to the lock manager
*/

enum rlm_stats {

};

rlm_granted = 0,
rlm_denied = 1,
rlm_denied_nolocks = 2,
rlm_blocked = 3,
rlm_denied_grace__period = 4

struct rlm_holder {

};

bool exclusive;
int svid;
netobj oh;
unsigned l_offset;
unsigned l_len;

IBM Confidential
June 28, 1991
DRAFT

- 349 -

union rlm test:rply switch (rlm_stats stat) {
case rlm_granted:

};

void v; /* the lock is 'grantable' */
case rlm denied:

struct rlm_holder;
case rlm denied nolocks:

void v;
case rlm blocked:

void v;
case rlm_denied_grace_period:

void v;

struct rlm_stat {
rlm stats stat;

};

struct rlm_res {
netobj cookie;
rlm stat stat;

};

struct rlm_testres {
netobj cookie;
rlm_test:rply stat;

};

struct rlm_lock {
string caller_name<lM_MAXSTRLEN>;

} ;

netobj fh; /* identify a file */
netobj oh; /* identify owner of a lock */
int svid; /* generated from pid for svid */

/* XXX missing in AIX 3.1 */
unsigned l_offset;
unsigned l_len;

struct rlm_cancargs
netobj cookie;

};

bool block;
bool exclusive;
struct rlm lock lock;

IBM Confidential
June 28, 1991
DRAFT

struct rlm_testargs {
netobj cookie;

};

bool exclusive;
struct rlm lock lock;

struct rlm_unlockargs {
netobj cookie;
struct rlm lock lock;

};

struct rlm_migratedargs {
netobj cookie;

};

/*

struct rlm lock lock;
bool reclaim;
int state;

* Arguments to getlocks
*/

struct rlm_getlockargs {
netobj fh;

};

int pid;
netobj cookie;
unsigned count;

struct rlm_entry {

};

unsigned l_offset;
unsigned l_len;
rlm_entry *nextentry;

struct rlm_locklist {

};

struct rlm lock lock;
rlm_entry *entries;
bool eol;

- 350 -

/* used for recovering locks */
/* specify local status monitor state */

union getlockres switch (rlm_stat status) {
case rlm_granted:

rlm locklist reply;

IBM Confidential
June 28, 1991
DRAFT

} ;

/*

case rlm denied:
void v;

* Arguments to putlocks
* relock extension
*/

struct rlm_putlocksargs
rlm locklist entries;

};

/*

- 351 -

* protocol used between the UNIX kernel (the "client") and the
* local lock manager FUSION remote locking extension (rlm) .
*/

/*
* lock manager status returns
*/

enum krlm stats {
krlm_granted = 0,
krlm_denied = 1,

/* lock is granted */
/* lock is denied */

krlm denied nolocks = 2, /* no lock entry available */
};

/*
* lock manager lock identifier
*/

struct krlm_lock {
string server_name<LM_MAXSTRLEN>;
netobj fh; /* a counted file handle */
int pid; /* holder of the lock */

};

/*

unsigned l_len;
unsigned l_offset;

* reply to KLM_RELOCK
*/

* zero means through end of file */
/* byte length of the lock;

IBM Confidential
June 28, 1991
DRAFT

struct krlm_stat {
krlm stats stat;

};

3.1.2.5 Migration and secure NFS
xxx

3.1.2.6 NFS Cache Coherency

3.1.2.6.1 Overview

- 352 -

* 1

*
*
*

NFS
Client Code

*
*
*
*

*
*

*

* 2 *

*

*
*

* 6 *

* NFS ***************** NFS *
* Token Cache \ Token *
* Manager \ Revoker *
* ***************** *

*
*

*

*
*
*
*

RPC
Layer

*
*
*
*

*
*

*

*
*

*
*
*
*

RPC
Layer

*
*
*
*

IBM Confidential
June 28, 1991
DRAFT

*

*

*

- 353 -

*

* 3 ***************** 5 *
NFS Token
Exporter

\
\

NFS Token *
Host Module *

*
*
* ***************** *

*
*

*

*

*
*

* 4
*
*

NFS Token Manager
*
*
*

Figure 27. NFS Tokens Block Diagram

NFS being stateless in design precludes having both client caching of data and having
a consistent view of the data on all clients. Also as many operations require more
than a single RPC call disabling of client caching results in the data only being mostly
consistent. In order to provide the required data consistency a method of providing
guarantees to the various clients about data they hold in the local caches must be
provided. This is accomplished by having a central registry of these guarantees.
These guarantees are referred to as tokens and the central registry is referred to as the
NFS token exporter. The implementation and use of these tokens has six major
functional pieces. These are shown in Figure 27.

3.1.2.6.1.1 NFS Client code
The existing NFS client code has to be modified to request the appropriate tokens
before any operation. In some cases when the token is granted additional information
will be returned in order that cached data which is still valid does not have to be
flushed. In cases where multiple tokens are required it may be necessary upon
deadlock detection to release tokens which have been acquired. It will then be
necessary to re-execute some or all of the vnode operation when deadlocks are
detected.

3.1.2.6.1.2 NFS Token Cache Manager
The NFS client code calls the NFS token cache manager when a token is required. A
check is done to see if the token is locally held and if not the token is requested from
the NFS token exporter. When the client code returns a token it is marked as being
unused. Unused tokens are returned to the NFS token exporter when a revoke request
is received or the NFS token cache manager needs to reclaim storage space. The NFS

IBM Confidential
June 28, 1991
DRAFT

- 354 -

token cache manager calls the NFS client code to have any data flushed before
returning tokens to the NFS token exporter.

3.1.2.6.1.3 NFS Token Exporter
Each NFS mounted file system within a cluster has a single token exporter. The NFS
token exporter in called by the NFS cache managers to get tokens for a particular file
handle. If the file handle is not known about a token structure will be created. The
NFS token exporter then asks the NFS token manager for the appropriate tokens. If
the token is granted it along with any required time stamps are returned to the NFS
cache manager. If the NFS token manager returns an error this is passed along to the
cache manager.

3.1.2.6.1.4 NFS Token Manager
This will be supplied by DCE. It is called by the NFS token exporter to get tokens
for a particular file handle. The NFS token manager will call the NFS host module to
revoke (call back) tokens from the various nodes within the cluster when the requested
token conflicts with tokens which have already been granted.

3.1.2.6.1.S NFS host module
This module shares both data and code with the NFS token exporter. The NFS host
module is responsible for getting tokens back from the various clients. This module is
planned to be heavily built on DCE code. Until this code is functional, exact detail of
operation can not be specified at this time. However the function it will provide can
be specified.

3.1.2.6.1.6 NFS token revoker
This module shares both data and code with the NFS token cache manager. When the
NFS host module requests a token back the NFS token revoker will in general return
the token if it is not busy or wait for some short period (seconds) for it to become
unbusy. If it is still busy it will return a error indicating that the NFS server is down.
If there are dirty buffers associated with the token the NFS token revoker will
schedule the 1/0 on the buffers in a manner which guarantees that the NFS token
revoker will not get put to sleep waiting for the I/0 to complete.

3.1.2.6.1.7 Token time stamps
In a typical use of tokens no time stamps would be required. When a guarantee about
some item was needed a token would be gotten and when that guarantee was no
longer needed the token would be released. There is however a generic problem with
this approach. Any data which is gotten by the same action which gets the handle to
talk about the data is useless. An example of this is the NFS lookup RPC call. The
two basic arguments to the RPC call are a file handle and a string. The file handle
references the directory in which to lookup the string. What is returned from the
lookup RPC is a file handle for the file which was looked up and stat information
about the file. However as no token is held for the looked up item other nodes may
have already already altered the stat data. To circumvent this problem time stamps are
associated with the various tokens. The client saves the current time before doing the

IBM Confidential
June 28, 1991
DRAFT

- 355 -

lookup RPC. After the RPC is complete the client asks the NFS token exporter for a
stat token. The token exporter returns the token along with how far in the past the
token can be guaranteed. If this is prior to the lookup RPC call then it is known that
the information returned with the lookup is still valid. If the time is after the RPC
call started then the file stat information can not be trusted.

3.1.2.6.1.8 Time synchronization
It is unlikely that the clocks on the various nodes will be synchronized well enough to
pass around absolute time data. Also an unknown amount of time will pass
transporting the data from one node to another. This unknown amount of time could
be in minutes if there are communication problems. For this reason the time stamps
are not absolute times but deltas into the past that a token was good. If the token is
delayed by communication problems the time delta into the past may no longer be
large enough to guarantee the token. This results is the client having to talk to the
NFS server again. The time used to reference the tokens should be a time since boot
rather than one of the operator settable clocks.

3.1.2.6.1.9 NFS Client code
The following rules must be followed to obtain correct operation with variable RPC
delays. These delays occur both between the NFS client and the NFS server and the
NFS client and the NFS token exporter.

3.1.2.6.1.9.1 Stat time reference to beginning of NFS RPC.
When getting stat information from an NFS server the stat information that is returned
could be from any time after the RPC call is made. In order to insure that the data
hasn't changed after the RPC reply it must be assumed that the stat information was
put in the packet at the same instant that the request was made. When the stat token
is gotten in order for the stat data to be valid the guarantees must extend back until at
least when the RPC call was made.

3.1.2.6.1.9.2 Mod time referenced to end of NFS RPC.
When a RPC call is made to an NFS server which changes the stat information the
time that the call completed must be saved. This guarantees that when another client
gets stat information it will be considered invalid unless it occurred after the RPC call
which updated the vnode completed, and therefore after the server saved the updated
stat information.

3.1.2.6.1.9.3 Lookup time reference to end of NFS RPC.
The first time a lookup RPC completes on a file handle the time is save in with the
token information for the file handle the lookup was done in. When the lookup token
is surrendered the directory name lookup cache (dnlc) is not flushed. If the lookup
token is reacquired for the directory the dnlc will be flush if the token time is after the
time saved. The time of completion can be save as lookups and deletes are conflicting
tokens and can not happen at the same time.

IBM Confidential
June 28, 1991
DRAFT

- 356 -

3.1.2.6.1.9.4 Lookup time referenced to start of NFS RPC
The first time a delete RPC is done on a file handle the time is save with the delete
token information. When the delete token is returned this time will also be returned.
This time will be used when a lookup token is gotten to deterinine if the dnlc needs to
be flushed.

3.1.2.6.1.9.S Lookup time not really needed
There is nothing about the lookup function which prohibits using a standard token
mechanism for flushing the dnlc. The lookup token could be gotten whenever a
lookup in a directory was going to occur. It could then be held until some other node
did a delete which required the token to be returned. At that time the dnlc would be
flushed. This would result in virtually the same performance as is achieved using
lookup time. The use of time stamps to flush the dnlc leaves a easy path for future
performance improvement. It would work basically as follows:

1. Return file handles of entries deleted from a directory when returning the delete
token for the directory.

2. The NFS token exporter also passes the file handles and time stamps of recently
deleted directory entries when giving out the lookup token.

3. Token cache manager causes dnlc entries which match up with file handles
gotten with lookup token to be flushed.

3.1.2.6.2 NFS client code I NFS token cache manager interface

3.1.2.6.2.1 nfs_gettoken(vp, token, flag, result)

3.1.2.6.2.1.1 Overview
NFS client code request for token(s) from the NFS cache token manager.

3.1.2.6.2.1.2 Detailed Design
nfs_gettoken(vp, token, flag, result)
{

/*
* xxx
*/

3.1.2.6.2.2 nfs_puttoken(vp, tokt:n, flag, result)

3.1.2.6.2.2.1 Overview
NFS client returns token(s) to NFS token cache manager.

3.1.2.6.2.2.2 Detailed Design
nfs_puttoken(vp, token, flag, result)
{

/*
* xxx

IBM Confidential
June 28, 1991
DRAFT

*/
}

3.1.2.6.2.3 nfs_flushdata(vp)

3.1.2.6.2.3.1 Overview

- 357 -

NFS token cache manager requests NFS client to flush data cache.

3.1.2.6.2.3.2 Detailed Design
nfs_flushdata(vp)
{

}

/*
* xxx
*/

3.1.2.6.2.4 data structures
struct vnode
token t

*vp
token

struct tokresult *result
int flags

3.1.2.6.2.4.1 Tokens

vnode to be operated on
token(s) being gotten or returned
return information from operation
bit encoded operation dependent flags

LOOKUP This token must be gotten for a directory vnode before using the dnlc or
using the lookup RPC on the vnode. This token conflicts with DELETE.
When this token is gotten if the time stamp associated with the token is
prior to the time stamp for this token keep in the remote node (mode) any
dole entries for this vnode must be flushed.

DELETE This token must be gotten for a directory vnode before using a RPC call
which will result in an entry being removed or renamed in the directory.
The basic purpose of this token is to cause the LOOKUP token to be
recalled. This token conflicts with STAT, LOOKUP, RDATA, OPEN,
and ADD.

ADD This token must be gotten for directory vnode before using a RPC call
which will result in a entry being added to the directory. This token
conflicts with STAT, RDATA, DELETE. Because the non existence of
files are not cached in the dole this token does not conflict with LOOKUP.

STAT This token must be gotten before checking the attribute cache or doing an
RPC call to fetch the attributes for a vnode. This token conflicts with
ADD, DELETE, RDATA, WDATA.

RDATA This token must be gotten before checking for valid buffer data or doing
an RPC call to fetch data for a vnode. This token conflicts with ADD,
DELETE, WDATA, STAT.

IBM Confidential
June 28, 1991
DRAFT

- 358 -

WDATA This token must be gotten before copying data from use space into a
system buffer. This token conflicts with STAT, WDATA, RDATA.

OPEN This token must be gotten when a vnode is to be opened. The OPEN
token can only be returned when reference count for the vnode goes to
zero. The purpose of this vnode is to:

a. prevent open files from being deleted.

b. prevent in use file systems from being unmounted.

This token conflicts with EXCLUSIVE.

EXCLUSIVE This token must be gotten before a vnode can be unlinked. The
purpose of this token is to detect open files. If a delete is attempted and
this token can not be gotten then the directory entry must be renamed.

3.1.2.6.2.4.2 flags
This field is a bit encoded catch all which means different things at different times.

MULTI This is used with nfs_gettoken() to indicate that this token request is part
of a multi token operation which may deadlock. This information is
needed to make deadlock detection easier.

NOCHANGE This flag is used with the nf s_puttoken to indicate that data associate
with this token was not changed. When this flag is asserted time stamps
associated with this token will not be updated.

vp This is the vnode for which a token is being requested or released.

3.1.2.6.2.4.3 result
There are four pieces of info in result struct. They are:

Deadlock If other locks are held deadlocks may occur. If a possible deadlock is
detected the nfs_gettoken() function will return with deadlock asserted.
the calling function must then release any locks it has, sleeps and then
restart the vnode operation.

Sleeptime This is the amount of time to sleep before trying to reacquire locks after a
dead lock was detected or the NFS server is not responding.

Stalecache This indicated that the directory for which a lookup token is being
requested has changed since that last time the lookup token was released.
It is therefore necessary to flush the directory name lookup cache (dnlc).

Stalestat This indicates that since the last time the stat token was granted for this
file or directory the stat info has become invalid. This means that the
attribute cache must be flushed for this entry.

IBM Confidential
June 28, 1991
DRAFT

- 359 -

3.1.2.6.3 NFS token cache manager I NFS token exporter interface

3.1.2.6.3.1 gettokens(filehandle, tokens, result)

3.1.2.6.3.1.1 Overview
The NFS token cache manager talks to the NFS token exporter though the NFS token
RPC layer. This layer can not be described at this time as it is desired to use much of
the DCE code for token timeout and renewal. In general the NFS token ca~he manger
request token it does not already hold from the NFS token exporter. The cache
manager also receives information about how long in the past the token could have
been granted.

3.1.2.6.3.1.2 Detailed Design
gettokens(filehandle, tokens, result)
{

}

/*
* xxx
*/

3.1.2.6.3.1.3 data structures

filehandle

tokens

result

This is an identifier which uniquely identifies this file to the NFS token
exporter. Within this field are the NFS file handle and a unique
identifier for the mounted file system.

This field contains the tokens being requested. Multiple tokens may be
requested in a single transaction. This field is subdivided into two
fields one containing the token which is required and the other contains
other tokens the cache manager would like if they arc available. These
are the same tokens as described in 3.1.2.6.2.

This field contains the reply to the get token request. Within it arc
several sub-fields.

status This field contains one of four values:

GRANTED

DEADLOCK

NOSERVER

Operation succeeded primary token granted.

Operation may be blocked. Release any
tokens associated with this process and try
again.

The NFS server appears not to be
responding. Wait a while and retry the
operation. No requirement to give up any
tokens.

IBM Confidential
June 28, 1991
DRAFT

tokens

deltas

GOTOCMS

- 360 -

Node is no longer the NFS token exporter,
consult the cluster mount server (CMS) for
location of the NFS token exporter.

These are the tokens which are being granted to the requesting
site. These contain the primary token, some or all optional
tokens and any other tokens which the cache manager decided
to grant. If the primary token could not be granted no tokens
will be granted.

For lookup and stat the length of time in the past the
corresponding token could have been granted. This value is
NOT an absolute time but the length of time in the past the
appropriate token could have been granted. It is mandatory
that all times which are on the wire are expressed in deltas
rather than absolute time.

3.1.2.6.4 NFS token exporter I NFS token manager interface

3.1.2.6.4.1 Overview
This interface can not be described until the DCE token manager is fully functional.
In general, the NFS token exporter will ask the NFS token manager for a particular
token or set of tokens for a file handle. The NFS token manager will respond with
granted, deadlock, or server down.

3.1.2.6.5 NFS token manager I NFS host module interface

3.1.2.6.5.1 Overview
This interface can not be described in much detail until the DCE token manager is
fully functional. In general, the NFS token manager will ask the NFS host module to
revoke a set of tokens from a particular node. Possible returns from the NFS token
revoker are success or NFS server not responding.

3.1.2.6.6 NFS host module I NFS token revoker interface

3.1.2.6.6.1 nfs_revoketoken(filehandle, token, result)

3.1.2.6.6.1.1 Overview
The NFS host module through the NFS token RPC layer requests a token be revoked.
When the token is returned data is also present about how long in the past the token
could have been revoked.

3.1.2.6.6.1.2 Detailed design
nfs_revoketoken(filehandle, token, result)
{

IBM Confidential
June 28, 1991
DRAFT

}

/*
* xxx
*/

- 361 -

3.1.2.6.6.1.3 data structures

filehandle

tokens

result

This is an identifier which uniquely identifies this file to the NFS token
revoker. This is the same file handle which is described 3.1.2.6.3.

These are the tokens which need to be revoked. These are the same
tokens as described in 3.1.2.6.2.

This field contains the reply to the get token request Within it are
several subfields.

status This filed contains one of three values:

GRANTED

DEADLOCK

NOSERVER

Operation succeeded primary token granted.

Operation may be blocked by other process
release any tokens associated with this
process and try again.

The NFS server appears not to be
responding. Wait a while and retry the
operation. No requirement to give up any
tokens.

tokens These are the tokens which are being returned to the NFS host
module. These contain the requested tokens along with any
other the NFS token revoker decided to return.

deltas For DELETE, ADD, RDATA, WDATA the length of time in
the past that this token could have been revoked. These fields
are only valid if the corresponding token is being returned.
This value is NOT an absolute time but the length of time in
the past the appropriate token could have been returned.
Along with the number portion of this field is a Nochange
flag. If this flag is asserted the NFS token exporter can ignore
the value being returned and retain the time stamp it currently
holds.

3.1.2.6.7 NFS token exporter I NFS host module

3.1.2.6.7.1 Overview
This interface can not be described in much detail until the DCE token manager is
fully functional. The additional functionality needed for NFS are described below.

IBM Confidential
June 28, 1991
DRAFT

- 362 -

In order to for the NFS client to be able to use the stat information supplied from the
lookup RPC the NFS token exporter must supply a time stamp which precedes the
lookup RPC. This requires that the NFS token exporter be able to provide a time
stamp somewhat in the past for files handle that it has no history. To accomplish this
the NFS token exporter I NFS host module must remember the most recent time stamp
for file handles which have been flushed from its cache.

The following is a short example using stat to show the guarantees which can be
made. When the NFS token exporter receives its first request it can guarantee that the
stat token that it is giving out was good back to the time when the NFS token exporter
started execution. Subsequent request for tokens can have the same guarantee made.
Once some tokens have been returned then the time stamp which is given out is either
that contained in the token if it exists or the time when the NFS token exporter started
execution. At some point it will be necessary to discard tokens which are no longer
referenced to reclaim storage. If the time stamp in the tokens is ignored then the NFS
token exporter can make guarantees back to the point in time when tokens where
discarded. If a token is being discarded has a time stamp five seconds previous then
the NFS token exporter can guarantee not only from the current time but also five
seconds back from the current time. If at the same time another token is discarded
with a 10 second old time stamp it is ignored as the NFS token exporter is already
only guaranteeing 5 seconds into the past.

3.1.2.6.8 Detailed Designs

3.1.2.6.8.1 NFS client code

3.1.2.6.8.2 NFS token cache manager

3.1.2.6.8.3 NFS token exporter

3.1.2.6.8.4 NFS token manager

3.1.2.6.8.S NFS token revoker

3.1.2.6.9 NIDL prototypes
const

struct gfh_t {
short
int
char

};

/*

GFH MAXDATA

gfh_type;
gfh_mntid;

????

gfh _data [GFH _ MAXDATA];

* Structure used by kernel to store most
* addresses.
* from socket.h

IBM Confidential
June 28, 1991
DRAFT

- 363 -

*/
struct nfs_sockaddr {

short sa_family;
char sa_data[14];

};

/*
* mount arguments
* from mount.h
*/

struct nfs_mntargs {
[out]
[out]

struct nf s sockaddr
int

};

/*

[out]
[out]
[out]
[out]
[out]

[out]
[out]
[out]
[out]
[out]

[out]
[out]

int
int
int
int
int
char

int
int
int
int
int
char

int
int

* get mount info from migrated-from node
*I

int nfs_getmntargs (
[in] handle t h,

*addr,
*flags,
*wsize,
*rsize,
*timeo,
*retrans,
*host_len,
[last_is (host_len),
in, out]
hostname[],
*acregmin;
*acregmax;
*acdinnin;
*acdirmax;
*net_len,
[last_is (net_len),
in, out]
netname[],
*biods,
*st

[in] int
[out] struct nfs_mntargs
[out] unsigned32

mntid,
*mntinfo,

) ;

IBM Confidential
June 28, 1991
DRAFT

*st

- 364 -

/*
* nf s I cluster mount interface
* push mount info to Q.1S

* 1) mounted-on gfh
* 2) root gfh
* 3) mount arguments
*/

int nfs_ans_pushrnntinfo
[in] handle_t
[in] struct gfh_t
[in] struct gfh_t
[in] struct nfs_rnntargs
[out] unsigned32

) ;

/*
* nf s I cluster mount interface
* give Q.1S global file system id
* get mount info
*/

int nfs_crns_getrnntargs

) ;

/*

[in] handle t
[in] int
[out] struct nfs_rnntargs
[out] unsigned32

* nf s I cluster mount interface
* give Q.1S global file system id
* get mounted-on global file handle
*/

int nfs_crns_getrnntdongfh

) ;

[in] handle t
[in) int
[out J struct gfh _ t
[out] unsigned32

XXX - Q.1S I token exporter interface
XXX - token cache manager I Q.1S interface

h,
rnnton _gfh,
root_gfh,
rnntinfo,
*st

h,
rnntid,
*rnntinfo,
*st

h,
rnntid,
*gfh,
*st

XXX - token cache manager I token exporter interface
XXX - token host module I token revoker interface

IBM Confidential
June 28, 1991
DRAFT

- 365 -

XXX - token exporter I token exporter interface

IBM Confidential
June 28, 1991
DRAFT

- 366 -

3.2 Invocation Load Balancing

In the initial release of FUSION, exec and rexec will automatically select a node if no
node was explicitly specified and either

1. the load module is not executable on the current node

2. the load module is marked in its header indicating that it is "load levelable"

If no node was explicitly specified and neither of those conditions is true, then the
program will be executed locally. (Note that you never explicitly specify a node when
you use exec, and you may or may not specify a specific node when you use rexec.)

On systems with COFF or XCOFF object file formats, the mark can be put into the
header in a new type of section. This section will also contain lists of attributes
specifying the needs and expected behavior of the program. An invocation load
balancing kernel extension could make use of this information to provide arbitrarily
sophisticated load balancing algorithms. On systems with other object file formats, as
much of this functionality as possible will be provided.

When automatic node selection is performed, the system will choose from among the
intersection of the following sets of nodes:

a. nodes in the Sphere of Interest,

b. nodes in the cluster,

c. nodes on which the program can execute,

d. nodes on which the user is authorized to execute.

Given the set of nodes in this intersection, the NSS is queried to determine the relative *
loads and speeds of those nodes. Among the 5 (a configurable parameter) fastest
nodes, the probability of selecting the node is proportional to "speed I (load + 1)".

If the selected node is found to be unacceptable (for example, Kerberos denies access),
then the search is resumed with that node excluded. The set of nodes on which a user
is forbidden to execute is cached so those nodes may be avoided in future searches.

IBM Confidential
June 28, 1991
DRAFT

- 367 -

3.3 Dynamic Load Balancing

For long running processes process migration provides the most desirable load
balancing mechanism.

This design provides sample dynamic load balancing code and the tools necessary
with which a user supplied load balancer can accomplish its task. The most important
tool provided is SIGMIGRATE itself. This allows a load balancer to migrate other
processes as needed. In addition, the migrate system call allows processes to move
themselves.

A load balancer needs information about the expected behavior of processes to be able
to achieve a reasonable balancing strategy. The same information from the program
header which is used at exec time can also be used by a load balancer. In particular,
the mark indicating that processes running this program are load levelable is saved in
the vproc to allow load balancers to easily check this. This allows a migrator to
choose the best candidates.

Finally, the NSS provides central locations for determining necessary load information.
A general interface to NSS allows application programs to consult this server.

In the sample load balancer, processes will only be migrated within their own Spheres
of Interest. A run time option should allow the load balancer to decide whether only
processes load levelable at execution time will be migrated. Only processes which
have already been running for more than a set time threshold should be considered
candidates for migration. The sample load balancer will also take care not to migrate
the same process more often than a particular frequency.

IBM Confidential
June 28, 1991
DRAFT

4. File System Replication Services

4.1 Introduction

- 368 -

Currently DCE offers a read-only form of replication termed "lazy" replication
designed for "read-mostly" types of file systems where up-to-date versions are non­
essential and updates are done relatively seldom. There are three primary limitations
of "lazy" replication:

1. a different path name is necessary to access the read/write replica than that used
to access the read-only replicas.

2. the read-only replicas are not guaranteed to be current but simply no more than
"n" minutes old. Sometime within "n" minutes, the read/write file system will
be cloned and the clone copied to the local storage node, thus updating all files.

3. lazy replicas use episode specific features such as cloning to propagate files so
there is some limitation with regard to physical file system implementation.

FUSION provides two additional types of replication: full UNIX semantic (full) which
strictly conforms to single site UNIX semantics and "loose" replication which does
not. Loose replication is similar to the current DCE lazy replication in that it does not
guarantee latest version access for a file. However, DCE lazy replication propagates
an entire file system within a specified time period where FUSION loose replication
asynchronously propagates each file immediately after modifications are complete. In
addition, since FUSION replication is designed to run on any underlying physical file
system including Episode, it does not have the same limitations as lazy with regard to
the physical file system on which it resides.

In addition, FUSION replication has no fixed limit on the number of file system
replicas, the upper limit being determined by system resources. For file access, the
server selection will be automatic based on type of access requested and the attributes
of the storage node. Changing file servers within a single file access will be
transparent to the application.

IBM Confidential
June 28, 1991
DRAFT

- 369 -

4.2 Overview

4.2.1 DCE File System
FUSION replication is based on the DCE distributed file system. A cursory
knowledge of the DCE File System is helpful in reading this document. The
following section briefly describes DCE. ·

The DCE File System is designed to maximize performance for access to remote files
by caching files and performing all operations on the locally cached version, writing
any changes to the file system when all modifications are complete. The DCE File
System uses a Cache Manager to manage all caching of file data on the client side and
a Protocol Exporter which manages file system access on the server side. For local
access, the DCE File System uses a Glue Layer which wraps around the vnode ops.

In order to manage remote client access, the Protocol Exporter requires that each client
have the appropriate tokens for the file in question. The DCE Token Manager issues
tokens to clients and guarantees that no two clients have incompatible tokens by
revoking incompatible tokens when a new token request is made. The Glue Layer
gets its tokens directly from the Token Manager rather than going through the
Protocol Exporter.

The DCE File System also uses a Volume Location Data Base (VLDB) to create and
manage file systems. The Cache Manager finds out which server to talk to by
obtaining that information from the VLDB. See Figure 28.

4.2.2 FUSION Replication and the DCE File System
Figure 29 shows how FUSION Replication works with the DCE File System. The
main component of FUSION Replication is the FUSION Replication Service (FRS).
This service wraps around the Token Manager and intercepts all calls which either
obtain, renew, or release tokens. The FRS keeps a record of tokens granted to each
file within a replicated file system and determines which FUSION File Servers a client
should use based on the activity within the FUSION Replicated File System (FRFS).

In addition to the FRS, extensions will be added to the local volume registry within
the Protocol Exporter, the VLDB, the Volume Server within the Cache Manager, and
the VOS applications. These extensions identify a file system as FUSION Replicated
and identify the type of replica the server is managing.

The Cache Manager will contain hooks which will manage switching servers for FRFS
clients. The Glue Layer will have similar hooks for accessing the FRS and for
switching from local access to remote by going to the Cache Manager when
appropriate. Additional modifications to the Glue Layer will manage file versioning,
critical to the propagation of files among the replicas.

4.2.3 FUSION Replication Functional Overview

Each FUSION Replicated File System (FRFS) is allowed to have an indefinite number

IBM Confidential
June 28, 1991
DRAFT

- 370 -

Figure 28. VLDB

IBM Confidential
June 28, 1991
DRAFT

- 371 -

of copies. Only one copy will be a read/write (RW) replica. All other replicas will
be read-only (RO). All RO replicas are additionally classified as either Principal RO
or Secondary RO replicas. See Section 4.4.4, "Scaling Replication". When it is
created, the file system will be defined as either a fully or loosely replicated file
system.

All calls to modify a file stored on a FRFS will be forwarded to the RW replica.
Calls which access a file will be forwarded to a server selected based on the type of
replication, full or loose. In full replication, the call will go to a RO server unless the
file is currently being modified or is out of date. If the file is being modified the call
will be forwarded to the RW replica. If the file is out of date, the call will be
forwarded to a replica which has an up-to-date version. This allows remote access to
emulate single site full UNIX semantics. In loose replication, all access calls will be
handled by the local server if one exists or by any other RO server regardless of
current modifications being made. Local access will only be redirected if the RW
replica has informed the RO replicas that a new version of the file is available for
propagation. At that time the access will be redirected to an up-to-date server until
the local copy can propagate the latest version.

When a file is modified at the RW node, each replica will asynchronously propagate
the file to its storage node. Once the latest version of the file has propagated to a RO
storage node, file access requests will once again use the node for file service.

· In order to eliminate the limitations of having a single node serve as a reference point
for all replicas, FUSION provides a hierarchical registration system for its RO replicas.
This allows RPC's to be handled in parallel with one small group of nodes being
responsible for informing a subset of replicas for each instruction sent from the RW
replica. In addition to allowing RPCs to run in parallel, the hierarchical configuration
avoids the bottleneck of having a single node for propagation.

In order to manage replication information and replica versioning, two files will be
hidden within the root of the FUSION replicated file system: .frfsinfo, which contains
file system information and is the same file propagated to all replicas and .replinfo,
which contains replica specific information and does not propagate but, instead, is
different on each replica. These files cannot be modified except by the FUSION
replication services. By having a secret user listed in the ACL list for the file and
having the FUSION replication services change to this secret user, these files cannot be
modified even by the super user.

4.2.4 Document Organization Overview
This document is organized into seven sections describing the functional sections of
the FUSION Replication design followed by sections on subroutine functionality,
pseudo code, and data structure definitions.

The seven main functional components of the FUSION Replication design are:

IBM Confidential
June 28, 1991
DRAFT

- 372 -

Figure 29. Replication and the DCE File System

IBM Confidential
June 28, 1991
DRAFT

- 373 -

1. FUSION Replication Service

2. File Access (includes cache manager and glue layer enhancements)

3. File Propagation

4. File System Registration (include VLDB and CMS)

5. Network Instability Management

6. User Programs

7. Packaging and Installation

The FUSION Replication Service manages redirecting applications to various servers
for file service and propagating the files modified on the RW replica. It interfaces
with the DCE cache manager and glue layer which are servicing the application's4 file
access. This is covered in sections 4.4 and 4.5.

In order to create a FUSION Replicated File System, the replicas must be registered
with either the VLDB or the CMS. This is covered in section 4.7. Because the
network may have nodes leaving and joining, the FUSION Replication Service must be
able to coordinate services among those replicas rejoining a network. The manner in
which FUSION Replication manages network instability is discussed in section 4.6.
User programs are also provided to assist the system administrator in managing
FUSION Replicated File Systems. These are described in section 4.9. The section on
Packaging and Installation includes dependencies on DCE installation and
dependencies on other parts of the FUSION product. These dependencies are
discussed in in setion 4.10.

Each section within this document discusses the operation of FUSION Replication with
regard to fully replicated file systems. Loose replication will be discussed at the end
of each section if its behavior is different than that described for full.

4. For puqx>ses of this document the term "application" is being used to indicate a process, either
user or system originated, which is accessing or modifying a file.

IBM Confidential
June 28, 1991
DRAFT

- 374 -

4.3 FUSION REPLICATION SERVICE

In DCE, each file system has a token manager which coordinates access to files within
the file system. In a FUSION Replicated File System (FRFS), each replica has a
FUSION Replication Service (FRS) which wraps around the DCE token manager at
the node which stores the replica. The FRS determines which file system replica to
access on a file by file basis. Once the replica is selected, access will be gained using
the DCE cache manager or glue layer.

The FRSs for RW and RO replicas function slightly differently. The FRS which
manages the RW replica (RW FRS) is responsible for keeping status on all
modifications to the file system and notifying the FRSs for the RO replicas (RO
FRSs). The RO FRSs keep information sent from the RW FRS and refer clients to
the appropriate server based on the information they have received.

4.3.l Exception Tokens
The FRS keeps track of which files are being modified with the use of exception
tokens. The tokens used in DCE are open_exclusive, open_shared, open_read,
open_write, lock_read, lock_write, status_read, status_write, data_read, and data_write.
The FRS classifies the following tokens as "exception tokens" since they are
incompatible with other tokens in their class (classes being open, lock, status, and
data): open_exclusive, open_shared, lock_write, status_write, and data_write. All
other tokens are compatible with one another.

When an application wishes to access a file with a call requiring an exception token,
the call is referred to the RW replica. If the RW replica grants the token then the file
id is placed in the exception token table. Once a file has an exception token listed in
the exception table, all accesses to that file will be referred to the RW replica.

4.3.1.1 Granting Exception Tokens
The RW FRS keeps a table of all exception tokens granted for each file. Only the
RW FRS can grant an exception token and it is responsible for updating all exception
tokens as necessary.

FUSION replication services use timestamps to coordinate activities among the servers.
Each time a RW FRS sends an RPC regarding and exception token or file propagation,
the RPC will contain a timestamp.5 The timestamps are always generated at the RW
node and represents the time at which the RPC was generated. These timestamps are
recorded in the exception token table and propagation queues and are used for tracking
propagation activities.

S. The use of timestamps makes the assumption that time will not go backward at the RW replica's
node.

IBM Confidential
June 28, 1991
DRAFT

- 375 -

When a request for an exception token is received, the RW FRS checks its exception
table for the file and determines whether or not this exception token has already been
granted. If it has, the timestamp for the token is updated. If another exception has
been granted for this file, then the new token is added to the token list in the
exception table and the timestamp is updated. In both these cases, the token request
call is then passed on to the DCE token manager.

If, however, the file has had no exception tokens granted the RW FRS must contact all
RO nodes to revoke all outstanding tokens on this file. If the RO replica is successful
in revoking all its tokens, it will notify the RW replica, add the file and token to its
exception table and refer all subsequent calls to the RW replica.

The RW replica may only grant the exception token if all RO nodes have successfully
revoked their tokens. In the event that a RO node is unable to to revoke its tokens,
the call fails and the RW notifies all nodes to relinquish the exception token.

Whenever the RW replica is unable to contact a node, it places that node in a list of
nodes which it knows are potentially out of sync. If that node later contacts the RW
replica, it will be told to reconcile itself before continuing. The RW replica will then
remove this node from its list of out-of-sync replicas.

At the RO FRS, the exception table contains the file and the timestamp for the last
exception token granted. Each time the RW grants a new exception token, it sends
this information to all RO nodes. If the file exists in the RO's exception table then
the timestamp for that token is updated. Otherwise, the file is added with the
timestamp of this call.

4.3.1.2 Relinquishing Exception Tokens
In the RW node's exception table is a list of all exception tokens granted for a file.
This list contains the file id, the token, and the timestamp for which the token is
granted. Byte range tokens are considered as whole file tokens for the purpose of
replication. A background activity, frfs_CheckEx() will run periodically at the RW
node to see if a token has timed out. This process will check the elapsed time based
on the timestamp and, if this time is greater than the timeout listed in the token id, it
V'ill call the DCE Token Manager with tkm_LookupToken() to see if the token is still
valid.

Tokens are removed from the RW's exception token table whenever the token is given
back to the token manager, either by timing out or by a call to tkm_ReturnToken().
When this occurs, the RW replica informs the RO replicas telling them to relinquish
this token. If modifications were made to the file, the relinquish token call will also
indicate that the file should be propagated.

4.3.2 Propagation Table
FUSION replication uses a form of versioning known as the commit count. The
commit count is an increasing version number and represents the state of the file after
the last write. The current design uses the value of ctime for its commit count. This

IBM Confidential
June 28, 1991
DRAFT

- 376 -

assumes time on the RW replica's storage node does not go backward. In order to
guarantee incremental versions with updates more frequent than one per second, the
current design plans on borrowing time values from the future.

When a file is given a new commit count (see Section 4.5.1.1 Status Writes) because
of file modifications, the RW replica will issue a propagation instruction. The RO
replica FRS contains a propagation queue which contains a list of files which are out­
of "'1ate and the commit count of the propagation instruction.

Upon receiving a propagation instruction the RO FRS will check its queue to
determine if a previous instruction to propagate that file is waiting to be processed. If
an entry for a previous instruction on the file does exist, the entry will be updated
with the commit count for the most recent instruction. If no entry exists, one will be
added for this file.

The propagation queue is accessed by the File Propagator which is responsible for
actually propagating the file and notifying the FRS when the file has successfully
propagated. Once the file has propagated, it may be removed from the exception
table. Whether or not the file is removed from the exception table is determined by
comparing the timestamp of the propagation queue entry with the timestamp of the
exception table. If the timestamp in the propagation queue is greater then no
exception tokens have been granted on the file since the propagation instruction was
sent so the file is now up-do-date and the token is removed from the exception table.

4.3.3 Multiple Replicas on a Single Node

4.3.3.1 One node servicing replicas for several file systems
Only one FRS will run on any given node. If a node functions as the storage node for
replicas for several different replicated file systems, the FRS will manage a separate
exception table and prop queue for each file system for which it stores a replica.

4.3.3.2 One node servicing several replicas for the same file system
If a single node contains more than one replica of the same file system, the FRS will
treat all copies of the same file system as a single entity unless one replica is the RW
replica. The RW replica will always keep its own set of data.

Access to a file from any of the replicas will be checked against the same exception
table. For each entry in the propagation queue, the propagator will propagate the file
to all copies before removing it from the propagation queue or the exception table.

The FRS will determine which physical file system it is accessing by distributing the
access requests evenly among the replicas such that if the node stores two replicas,
every other simultaneous access will use the same replica. If the node stores three
replicas, every third simultaneous access will use the same replica.

IBM Confidential
June 28, 1991
DRAFT

- 377 -

4.4 File Access

There are two types of file access in DCE, remote and local. The DCE file system is
designed to maximize ease of access by a remote client by caching the file at the
client side. This allows the client processes to perform multiple operations on a
remote file without having to talk to the remote node. There will be hooks in the
cache manager to allow the FUSION Replication Service to switch servers without
interrupting service to the client process.

Local access is achieved through the glue layer which provides an extended set of
vnode operations for coordinating local file access with remote. This layer will
contain hooks to allow the FRS to have the client move from local access to remote
by switching from the glue layer to the cache manager.

Both the cache manager and the glue layer communicate with the protocol exporter.
One of the functions of the protocol exporter is to manage the tokens for each client
using the node. It does so by calling the token manager. The FUSION Replication
Service wraps around the token manager and manages replica services for both the
cache manager and the glue layer.

4.4.1 Local Access
If the application for a FRFS is running on a storage node for the FRFS, the
application will access the local FRS. For full replication, the local copy will be used
as long as there are no exception tokens for this file and as long as the local version is
up-to-date. As with remote clients, the local client will be sent to the RW node for
files which are either out of date or are currently being modified, i.e. an exception
token exists.

In loose replication, the local copy will be used for all files which are not known to be
out of date. Once the FRS has been told to propagate the file, the local application
will be told to access that file remotely until the local copy is up-to-date.

4.4.2 Cache Manager

4.4.2.1 File System Registry
The cache manager communicates with the VLDB or CMS and uses the information
stored there to select a FRS for the client. Once a server has been selected, hooks in
the cache manager will enable it to access a server on a file by file, rather than file
system by file system basis. The new server information will be stored in the private
data area of the vnode. The cache manager will use this server for the file rather
than using the server associated with the file system in the volume registry.6

6. Because of the unique nature of Episode to store more than one file system on a physical partition,
Transarc refers to the physical partition as the file system and the various complete subtrees stored
on the physical partition as volumes. However, since FRFSs are not limited to the Episode
physical file system, this document will refer to all complete subtrees as file systems, whether they
be UFS file systems or AFS volumes. However, references to those registry services provided by

IBM Confidential
June 28, 1991
DRAFT

- 378 -

Hooks into the VLDB and volume registry (struct cm_volume) will allow a new field
for FUSION Replicated File Systems. This field will be used to determine if a file
system is a FRFS and, if so, if it is fully or loosely replicated.

4.4.2.2 Communicating with the Token Manager
The cache manager uses the protocol exporter for all file system operations requiring
access to the physical file system. All calls to the protocol exporter are set up through
cm_ConnO which looks up the file system for a specific file and sets up the RPC
connection to one of the servers listed in the volume structure. Hooks will be
provided in cm_ConnO so that if the file system is of type FRFS, cm_ConnO will
check for a server stored in the vnode. If one exists, then the RPC will be set up for
that node. If not, cm_Conn() will call frfs_SelectServer() to select a server and place
this server in the vnode.

After setting up the RPC the cache manager performs one of many DCE RPC calls to
the protocol exporter at the storage node. Among the many tasks of the protocol
exporter is that of ensuring the cache manager has the appropriate tokens for the call.
Therefore, all RPC calls received at the protocol exporter side will ensure the
appropriate tokens have been granted for that function. This involves a call to
tkm_GetToken(). 7

The FUSION Replication Service intercepts all calls to tkm_GetToken() with a call to
frfs_PickSS(). A hook will be placed in ObtainSet() to call frfs_PickSS() if the file
system type is FRFS. frfs_PickSS() will either pass the call on to tkm_GetToken() or
return one of four new return codes, collectively referred to as GOTO<SERVER>.
The four codes are GOTORW, GOTOPRINCIPAL, GOTOANYSERVER, or
GOTOSERVER. If the error code is GOTOSERVER, a subsequent call must be made
to frfs_ whichServer() to obtain which specific server should be used.

If either the call to cm_Conn() or the DCE call fail, the cache manager analyzes the
failure with a subroutine called cm_Analyze() which determines the reason for the
failure based on the errorCode set by cm_Conn() and the subsequent DCE call.
Hooks will be added to cm_Analyze() to accept the return codes GOTO<SERVER>.

Two additional token manager calls will be intercepted by the FRS:
tkm_ReturnToken() called by SAFS_ReleaseTokens() and tkm_RenewTokens() called
by SAFS_RenewTokens(). Hooks will be provided to call frfs_FreeToken() and

the DCE file system will be referred to as volume registries for consistency with the current DCE
code.

7. All calls call lkset_AddTokenSetO which in turn calls ObtainSet() which calls tkm_GetToken().
These must pass the new GOTO<SER VER> return codes back to the client

IBM Confidential
June 28, 1991
DRAFT

- 379 -

frfs_RenewTokens(), respectively. These interceptions are merely for FRS
bookkeeping purposes and will not affect the cache manager functionality.

Additionally, the cache manager subroutine cm_FidToServer() looks up the file system
server for a given file. Hooks will be added to cm_FidToServer() so that if the file
system is of type FRFS, cm_FidToServer() will return the server located in the vnode
rather than one listed in the volume entry. If no server has yet been selected,
cm_FidToServer() will call frfs_SelectServer().

4.4.2.3 Automatic Switching to the Read/Write Replica
The cache manager has its own set of vnode_ops. Each operation calls
cm_GetTokens() to ensure that the client has the appropriate token for the required
operation. Hooks will be added to cm_GetTokens() to ensure that if the token
requested is an exception and the server listed in the vnode is not the RW server, the
client will be switched to the new server. The same routines will be used as those
called by cm_Analyze() when a GOTO<SERVER> return code is recieved.

4.4.2.4 Changing File Servers
When the cache manager receives the return code of GOTO<SER VER> it is necessary
to ensure that whatever tickets and tokens have already been granted by the old server
are granted by the new one. The authentication tickets are automatically handled and
it appears that the current DCE implementation will suffice. However, a new call,
frfs_ChangeTokens() will be added to the cache manager. frfs_ChangeTokens()
checks to see what tokens, if any, have been granted. If tokens were granted from the
old server, the new server is contacted and those tokens are requested. Once the
tokens for the new server have been obtained, the old server's tokens will be returned
to the token manager. 8

4.4.3 Glue Layer

4.4.3.1 Volume Registry
The local volume registry registers all locally attached file systems. Hooks will be
provided in the local volume structure similar to those in the cache manager file
system structure. These hooks will provide for a new type of file system, the FRFS.
Only locally attached file systems are registered with the volume registry. The local
application only accesses the VLDB or CMS after it has been switched to the cache
manager for remote access.

8. It may be possible to reduce RPC overhead by allowing the old tokens to timeout rather than
returning them to the old server's token manager.

IBM Confidential
June 28, 1991
DRAFT

- 380 -

4.4.3.2 Communicating with the Token Manager
In order to coordinate local access with remote, the glue layer obtains the appropriate
tokens by calling the token manager. Each glue layer operation calls
ts_GetOneToken(). Hooks will be placed in the glue layer operations to accept the
new return codes of GOTO<SERVER> after each call to ts_GetOneToken().9 If
ts_GetOneToken() returns GOTO<SERVER> the local application will jump into the
cache manager using the appropriate server and operations will continue from there.10

In addition to ts_GetOneToken() hooks will be put in ts_PutOneToken() which calls
tkm_ReleaseTokens() so that frf s_FreeToken() will be called for file systems of type
FRFS. Currently ts_RenewToken() is a stub. However, it is reasonable to assume it
will eventually call tkm_RenewTokens() in which case it will need a hook to call
frfs_RenewTokens() for FRFS file systems.

4.4.3.3 Changing File Servers
Once the code for changing from the glue layer to the cache manager becomes
available, it will be necessary to ensure that all tokens held locally are granted
remotely. This will be done with frfs_ChangeTokens() just as in the cache manager.

4.4.4 Scaling Replication
The FUSION replication service can support an unlimited number of replicas the only
limitations being based on network resources. However, there is a point of
diminishing return when a single node is providing replication services for more
replicas than it can easily manage, with some types of machines being capable of
serving more replicas than others.

Two limitations are quickly met when too many replicas are using the same node for
all communications: the load on the serving node becomes so high its performance is
severely degraded and the number of network messages becomes so many that waiting
for round trip messages impacts performance negatively.

FUSION provides a hierarchical registration system for its replicas. This system
eliminates the limitations of having a single node serving as a reference point for all
replicas. It allows for RPC's to be handled in parallel with one small group of nodes
being responsible for informing a subset of the replicas for each instruction sent from

9. ts_GetOneTokenO calls GetTokensO which calls tcache_GetElementO which calls
ProcessNewEntryO which calls GetToken() which calls Lkm_GetTokenO. All of these will ensure
that the new return code from frfs_PickSS() is returned in the call to ts_GetOneToken().
GetToken() will need the hook to call frfs_PickSS() if the file system is of type FRFS.

10. Current research has not revealed whether the code which allows a local applications to become a
remote client of another server exists in the DCE Snap 2 source. This code must exist for local
applications to traverse a mount point for a remote AFS file system. This will provide the entry
point for switching from local to remote access.

IBM Confidential
June 28, 1991
DRAFT

- 381 -

the RW replica. In addition, a hierarchical configuration avoids the bottleneck of
having a single node for file access or propagation.

The hierarchical configuration involves designating RO replicas as either principal or
secondary replicas. The principal replicas are responsible for talking to the RW and
disseminating information to and from the secondaries for which it is responsible.
The principal is also responsible for propagating modified files from the RW replica
and providing the propagation service to the secondaries which will propagate their
files from a principal.

4.4.4.1 Registering Replicas
FUSION replicated file systems are created either by registering the file system with
the VLDB using vos_create or by using frfs_mkfs or frfs_modfs which register the
file systems with the CMS for mounting using /etc/mount. (See section 4.9.1, VOS
Commands and section X.X in Cluster Mount Service).

When a FRFS is created it can be specified as either a principal or secondary replica.
By default, all replicas will be defined as principal. This way if there are a small
number of replicas the scaling hierarchy is not utilized. For a small number of
replicas, this will be more efficient.

4.4.4.2 Secondary Registration With Principals
When a secondary replica joins a network (See section 4.6.2.2, Principal Initializing
from a VALID RW Replica). it will obtain the list of principal replicas from either
the VLDB or the CMS. The secondary FRS will rank the list of servers based on the
load leveling algorithm described in section 4.4.5, Automatic Replica Selection. The
first server in the ranked list will be its principal. The secondary server will contact
this server and register with it. The secondary may select the RW replica as its
principal. When a secondary registers with a principal the principal adds that node to
the list of nodes for which it is responsible.

The secondary FRS is responsible for staying in contact with the principal. Should
the secondary be unable to talk to its principal, it will try to register with another
principal. If no other principals are available, it registers with the RW replica which
will add the secondary to the list of nodes for which it is responsible which
automatically includes all principals.

4.4.4.3 Loose Replication
Since loose replication uses whatever node is selected as a server regardless of the
state of the file, the hierarchical configuration does not impact loose replication with
regard to file access. However, propagation for loose replication will be faster with
the hierarchical configuration, both because it allows parallel propagation using
principals, and because the loose replica can use the principal for file access while
propagating the file to its own node.

IBM Confidential
June 28, 1991
DRAFT

- 382 -

4.4.S Automatic Replica Selection
The volume structure in the cache manager contains an array of servers for the
replicated file systems. This array is currently able to store 16 servers for each file
system. Though there may be more than 16 replicas for a given FRFS, only 16 need
to be stored in the volume structure. FRFS provides a load leveling algorithm for
creating a ranked list of servers. The ranked list will contain the RW replica, a
principal replica and 14 other RO replicas as long as there are 14 additional replicas.

H during operation any one server becomes unavailable, one of the remaining 14 will
be selected using the load leveling algorithm to select among the remaining servers in
the file system structure. H, at any time, the principal server becomes unavailable, a
new principal server will be selected in the same manner. H, at any time during
operation, all 14 servers and the principal become unavailable, the list will be reranked
to include 14 currently operating servers and an available principal.

4.4.S.1 Load Leveling
The load leveling algorithm is not completely designed at this point. It will provide a
better than random choice when ordering the list of preferred servers.

The following will be considered when ordering the list of servers for load leveling:

• average IO response time

• average ping time

• average load on the node

• network load

Other conditions such as the number of clients the node is serving and the number of
replicas on a node, while relevant, do not give decisive information since different
nodes may have different capacities for serving clients and managing replicas. This
information will not be used in determining the ranked list of servers. However, it is
available to any node which may need to offload clients in order to keep its load
reasonable.

4.4.S.1.1 IO Response
I am not at this time certain how we will track IO response.

4.4.S.1.2 Ping Time
Currently AFS provides a service which pings all nodes with which it is
communicating. This service will be expanded to provide keep-alives for all nodes a
FUSION node needs to remain in contact with. The average ping times for these
nodes will be maintained and used as part of the load leveling algorithm. If nodes are
being considered for possible replication servers and they are not currently being
polled, these nodes will be added to the keep-alive function. The frequency of
pinging will be long for those nodes which have consistent ping times and shorter for
those nodes whose ping times are wildly divergent. Once the ordered list of server

IBM Confidential
June 28, 1991
DRAFT

- 383 -

has been selected, only those servers in the list will continue to remain in the keep­
alive service, but with ping times set for infrequent pinging. (See section 4.6.4.1,
Keep-Alives.)

4.4.S.l.3 Load Average
The Node Status Server contains load level averages for each FUSION node in the
cell. This information can be obtained by a simple query to the NSS regarding the
node in question.

4.4.S.l.4 Network load
I am also not certain how to best determine network load.

4.4.S.l.S Weighing the various features when determining ranking
Rapid ping time and rapid IO response are most important for selecting a replication
server. Load average and network load will have less influence in determining the
rank.

4.4.S.2 Changing servers for load leveling
Each node storing a FRFS will register with the NSS a set of ideal conditions for
servicing FRSs. These conditions include a maximum number of replicas to be
serving, a maximum number of clients, a maximum load, etc. These will be listed as
part of the node attributes list.

If a principal finds that it is exceeding its maximum values for ideal FRS performance,
it will need to level its load. This is done by moving secondaries to another principal.
When a principal server discovers that it needs to move some secondaries to another
node, it will notify the least ideal secondaries (ranked in inverse order using the same
load leveling algorithm if possible) that they need to move to another principal. This
allows the FRS activities to remain as evenly distributed among available nodes as
possible.

4.4.6 Using a List of Preferred Replicas
Only the cache manager needs to concern itself with the list of preferred replicas since
the glue layer only uses the local server. Any time an application is referred to
another server it enters the cache manager for access.

The cache manager first accesses a FRFS via a lookup. If the FRFS is accessed via
AFS on-disk mounts, the cache manager will contact the VLDB for information
regarding the file system. If, however, the FRFS is accessed via /etc/mount, the cache
manager will not actually traverse the mount point. The mount point will be traversed
at the logical file system level and the file system structure will be built by the CMS
and put into the cache manager volume registry. (See section x.x in Cluster Mount
Service).

The VLDB stores all replica information in a vldbentry structure. The vldbentry
structure has an array of 16 replicas for a given file system. Currently the DCE
documentation indicates that the VLDB will be modified to allow multiple vldbentry

IBM Confidential
June 28, 1991
DRAFT

- 384 -

structures for a single file system. FUSION will use this increased functionality to
allow an undetermined number of replicas.

The cache manager uses the the call VL_GetEntryByName() to get the file system
information from the VLDB. The following two subroutines are used to access the
VLDB: cm_CheckVLDB() and cm_GetVolumeByName(). These subroutines contain
the following code:

VL _ GetEntryByName () ; I* gets entry from VIDB *I
an_InstallVolumeEntry O; /* caches entry */

The following hooks will be added after cm_InstallVolumeEntry():
/* modifications for FRFS */
if (voltype = FRFS)
{ frfs_storeVol();

}

while (nextentry ! = NULL)
{ nextentry = VL_GetNextServersByName ();

frfs_storeVol();
}

frfs_setServers();

This reads all servers in the VLDB and selects MAXSERVERS from the list. These
servers are stored in cm_volume.servers[]. They are stored as follows:

an_volume.servers [0] = RW
an_volume.servers[l] =principal (RW if no principals are up)
an_volume.servers[2-MAXSERVERS] = secondaries or principals

IBM Confidential
June 28, 1991
DRAFT

- 385 -

4.5 File Propagator

The file propagator is responsible for file synchronization among the replicas. It reads
the propagation queue and propagates files from the appropriate replica.

4.S.1 Modifications to the File System
In order to manage propagation, a replacement set of vnode-ops will be added to write
the commit count to the disk both before each write begins and when each write is
complete.

The following vnode operations in the DCE Physical File System (Episode) modify
the status of the file:

vnd _Create ()
vnd _Delete ()
vnd _Replace ()
efs_rdwr()
ef s _set at tr ()
efs_symlink O
efsx_makemountpoint()

Each of these vnode operations calls epif_Mark() which updates the ctime, among
other status information. FUSION will provide replacement vnode_ops which will call
frfs_CommitFile() to manage the status writes necessary for file versioning.

4.S.1.1 Status Writes
FUSION defines two types of status writes, the increment commit count write and the
full status write. The increment commit count write is necessary before beginning
modifications on a file so that if the write fails after partially modifying the file, the
commit count accurately reflects a different version of the file. The full status write is
necessary when a write is completed in order to write out the new length of the file,
mod times, etc.

Commit count writes can be triggered not only by the beginning of a write, but also
whenever a writer loses the modification tokens, when a request for a propagation
token is made and the file is actively being written, or when the file is being written
and a maximum time period has elapsed since the last incremental commit count write
(been too long). 11 Status writes, however, are only written when the file modifications
are complete. If the last write was a full status write, an incremental commit count

11. Certain files, like log files, never complete their updates. If FUSION replication did not interrupt
such modifications, these files would never propagate to the RO replicas. This would mean that all
access to these files would always end up at the RW replica thus causing a performance
degradation for file access. This is a particularly serious degradation with regard to loose
replication.

IBM Confidential
June 28, 1991
DRAFT

- 386 -

begin write

write
write

end write
begin write

write
write

prop request
write
write
write

writer lost token
write
write
write
write
write
write
write
write

been too long
write

end write

cormnit count status write

full status write
cormnit count status write

cormnit count status write

cormnit count status write

cormnit count status write

full status write

Figure 30. Flow of Status Writes

write will be necessary at the beginning of the next write Figure 30 shows the fl.ow of
status writes.

4.S.1.2 FRS Management of Status Writes
The above mentioned Episode vnode operations will be modified to call
frfs_CommitFile() before actually performing the write. If frfs_CommitFile() returns
TRUE, the vnode operation will call epif_Mark() to write the status. At the end of
the operation, where the call is currently calling epif_Mark(), frfs_CommitFile() will
be called as well. Similar functionality will be provided for UFS and JFS file systems
as well.

frfs_CommitFile() will keep track of when an incremental commit count write needs
to be made, when the writer loses the modification tokens, and when it has been too
long since the last incremental commit count write. In addition, it will store the last
commit count on a file and ensure that the commit counts are incremental.
frfs_CommitFile() will convert the vnode used in the vnode operation into an afsFid
using VOPX_AFSFID. The last type of status write will be stored according to the
afsFid. If the last type of status write was a full status write and the request is for the

IBM Confidential
June 28, 1991
DRAFT

- 387 -

begin of a modification, then frfs_CommitFile() will change the last type of status
write to incremental commit count and return TRUE. If the request is for the end of
the operation, frfs_CommitFile() will change the last type of write for the file to full
status write and return TRUE. Other information pertinent to propagation and time
since last status write will be stored with the file handle as well.

The RW FRS will issue a propagation instruction whenever frfs_CommitFileO returns
TRUE.

4.5.2 Byte-range Propagation
In addition to managing commit count status writes, frfs_CommitFile() will keep track
of byte ranges modified. DFS uses 64K byte ranges when doing partial caching of
files. These same ranges will be used for file propagation. If only part of a file is
modified and need to be propagated, the propagation instruction will include the byte
range to be propagated.

4.5.3 Propagation Instructions
When the FRS receives a propagation instruction from the RW replica, it places that
file in the propagation queue. Each queue entry contains two commit counts, original
commit count and current commit count. When the first instruction to propagate a file
is queued, these two commit counts are equal. Subsequent instructions to propagate
the same file will result in the the current commit count being updated to reflect the
highest commit count for which a propagation instruction has been received. In
addition, if the byte ranges for propagation has changed, this range will be expanded
in the propagation queue entry.

The original commit count will be used for determining the replica's commit count.
See section 4.5.8, Low Water Mark.

4.5.4 Propagation Queue Entry States
The propagation queue entries have the following states:

WAITING this is a new entry waiting to be serviced

HOLDING this entry failed to propagate and is holding to be retried

BEGUN the appropriate tokens have been granted to begin propagating

WRITING the file is now being written to the disk

ERROR an error occurred when writing to the disk and this file is potentially
corrupt

These states are referenced when aborting a propagation, determining if a local copy is
up-to-date, or being asked to relinquish propagation tokens.

4.5.S Reading the Propagation Queue
When the FUSION Replication Service is initialized, a background activity will be
created which waits for an entry to appear in the propagation queue. If an entry is

IBM Confidential
June 28, 1991
DRAFT

- 388 -

added to the queue this background activity will wakeup and start the file propagation.
If the propagation is successful, the entry will be removed from the queue. If not, the
status of the entry will be changed to HOLDING. Holding indicates that it has been
tried and is "on hold" to try again at a later time. If an error occurred once data was
written to the disk but before the propagation was completed, the queue entry's status
is set to ERROR indicating the file is corrupt and should not be used.

4.5.6 Propagation Tokens
Because propagation affects file access differently than other operations, FUSION will
define two new token types, FRS_READPROP and FRS_ WRITEPROP.

DCE provides a call tkm_AddCompatRelation() which allows the addition of new
compatibility relationships to the token manager. This allows the addition of new
tokens. However, the new token will have to be added to the structure
tkm_TokenType_t in tkm_tokens.h in order to be recognized by
tkm_AddCompatRelation().

A compatibility relationship is currently restricted to two states, conflict or no conflict.
The structure containing the relationship contains the two token types and a value of 0
(no conflict) or 1 (conflict). Currently, the token relationships are kept in a
token_conflict table. For two tokens, X and Y, token_conflict[X][Y] =
token_conflict[Y][X] = relationship. value. The following conflicting relationships will
be established for FRS_READPROP and FRS_ WRITEPROP using
tkm_AddCompatRelation():

FRS - READPROP I
FRS _ READPROP I
FRS_READPROP,
FRS _ READPROP I

FRS - WRITEPROP I
FRS _ WRITEPROP I

FRS _ WRITEPROP I

FRS - WRITEPROP I
FRS _ WRITEPROP,

FRS _ WRITEPROP,

FRS _ WRITEPROP,

FRS_WRITEPROP,
FRS _ WRITEPROP I

FRS _ WRITEPROP,

FRS _ WRITEPROP,

FRS_WRITEPROP,
FRS _ WRITEPROP,

TKM DATA WRITE
TKM STATUS WRITE

TKM NUKE
FRS WRITEPROP

TKM LOCK READ

TKM LOCK WRITE - -
TKM DATA READ

TKM DATA WRITE

TKM OPEN READ - -
TKM OPEN WRITE

TKM OPEN SHARED

TKM OPEN EXCLUSIVE
TKM OPEN DELETE - -
TKM OPEN PRESERVE

TKM STATUS READ

TKM STATUS WRITE

TKM NUKE

Whenever a token conflict is present and an application attempts to gain one of the
conflicting tokens, the token manager tries to revoke the existing token. The
subroutine hs_RevokeToken() has a stub for future use. Currently it always agrees to

IBM Confidential
June 28, 1991
DRAFT

- 389 -

revoke all tokens without actually doing so.

Hooks will be added to hs_RevokeToken() to call the FRS to see if the propagation
token should take precedence over the current token. In general, the propagation
token will cause a modification token to be revoked. However, since the revocation of
a modification token causes a status write to disk and since the status write generates a
new propagation instruction, file writes could end up being continuously interrupted to
propagate a limited number of changes. But if the propagation token did not generally
revoke the modification token, it would be possible for a node to never find a window
from which to propagate a file which is frequently modified. If such a window were
never found, certain files would never propagate and the replica's low water mark
would be allowed to be incremented. Since this would cause a severe performance
degradation, it is necessary to allow propagation interrupts while limiting their
frequency.

To limit the number of interrupts a node can cause on a file in order to propagate a
newer version, the FRS may refuse to revoke the token. The RW FRS keeps a list of
every node for which it has revoked a modification token since the last full status
write. This information is stored with the frfs_CommitFile() data within the FRS. If
the request to revoke the token for propagation comes from a node which has already
interrupted this write, the FRS refuses to revoke the token. The node already has a
version of the file which caused the initial propagation instruction. The propagation
entry will be placed on HOLD and wait for a new propagation instruction. A new
propagation instruction will cause the file to go from HOLDING to WAITING.

Whenever a full status write or been_to_long commit count status write occurs, the list
of nodes which have propagated from this version is cleared.

4.5.7 Propagating the File
The subroutine frf s_Propln() is the heart of the propagation mechanism. It sets up the
RPC connections to the server, gets the appropriate tokens, fetches the file from the
server and writes the file to disk.

4.5. 7 .1 Selecting the Server
In order to propagate a file, the secondary storage node functions as a cache manager
for retrieving the data and as the protocol exporter for storing the data on disk. The
node from which to obtain the file for propagation is selected based upon the storage
type of the propagating node. If the node is a principal replica, the RW will be the
storage node from which to propagate. If the node is a secondary replica, the
principal with which the secondary is registered will serve as the propagation node.

Before propagation begins, the FRS will obtain the FRS_ WRITEPROP token from its
local token manager. Then, after selecting a server, the RPC will be set up with
cm_Conn() and the FRS_READPROP token requested from the serving node's token
manager. If the token cannot be gotten, the connection is released and a new server,
if one is available, will be tried.

IBM Confidential
June 28, 1991
DRAFT

- 390 -

If either the FRS_ WRITEPROP token cannot be obtained or no server can be found
which will grant the FRS_READPROP token the queue entry is put on HOLDING to
try again later.12 Once both propagation tokens have been received, the status of the
queue entry is changed to BEGUN. If. the status equal BEGUN when the token is
revoked, the FRS_READPROP and FRS_ WRITEPROP tokens will be returned. Until
the propagation tokens are relinquished frfs_KeepCurrent() will keep them current.

4.5.7.2 Fetching the File
The routine AFS_FetchStatus() is used to get the status of the file from which
propagation is taking place and store it in the scache. The commit count of the file is
checked against that in the prop queue and if the stored file is an older version than
the current commit count, the propagation fails. The FRS will return the
FRS_READPROP token to the server and go to another server, if any. If no other
server is available, the FRS will release the FRS_ WRITEPROP token, set the status to
HOLDING and continue with the next file in the queue.

Once it has been determined that the file is to be propagated to this node, the FRS
calls AFS_FetchData() which gets the data from the propagation node's protocol
exporter. The routine SAFS_PutData() is used to put data onto the local disk. The
data from AFS_FetchData() will be piped into SAFS_PutData(). Once the data has
begun to be written, the status of the entry is changed to WRITING. Any request to
revoke either propagation token will fail until the propagation is complete. If an error
should occur during writing, the prop queue entry will have the status changed to
WAITING and the propagator will exit. This will cause the failed entry to be first in
the queue and be tried again immediately. If the propagation fails three times the
entry is set to ERROR and retried periodically. No file access will be granted to a file
with a propagation queue entry whose status is ERROR.

Once the data has successfully been written to disk, the cached status will be written,
via SAFS_PutStatus() to the disk. The status is written last to ensure that the commit
count reflects the true version of the file in case of node failure during propagation.

If a failure occurs during propagation or if the propagation tokens are revoked, the call
frfs_Cleanprop() will manage all token releasing and cleanup based on the status of
the propagation queue entry. Once the file is written to disk, frfs_CleanProp() will
release the FRS_ WRITEPROP and FRS_READPROP tokens, remove the entry from
the propagation queue and remove the file from the exception token table if no more

12. There will be two types of HOLDING states. HOLDING I indicates a problem accessing the file
and the propagation queue will retry whenever there are no other entries marked WAITING.
HOLDING2 indicates that the server is not yet ready to process this entry. A HOLDING2 entry
will not be retried by the propagator since its status will be changed by the server for which it is
holding.

IBM Confidential
June 28, 1991
DRAFT

- 391 -

recent exception tokens have been granted.

4.S.8 Low Water Mark
Each file system has a commit count referred to as the Low Water Mark (LWM).
This value is stored in a non-propagating file called .replinfo. The L WM represents a
guarantee that all files with a lower commit count than the L WM have successfully
propagated to this replica.

Since not all writes to the RW server's disk will result in the propagation of a file and
because propagation can take place out of order, the commit count of the RO storage
node's file system will need to be updated after each propagation. The routine
frfs_UpdateLWM() will check the propagation queue. If there are no entries for
which the original commit count is lower than the commit count of the propagated
file, the low water mark will be set to the commit count of the recently propagated
file. The replica's L WM is used by the recovery program when initializing a replica
which has been off the net for some time.

IBM Confidential
June 28, 1991
DRAFT

- 392 -

4.6 Network Instability Management

Because a distributed computing network is a dynamic rather than static environment,
FUSION replication must contend with nodes leaving and joining the network
throughout its normal activity. The goal of FUSION replication is for the application
to see no difference in file access should a node leave the network.

In the current design, this is true for RO nodes. However, since there is only one RW
replica and because modifications can only take place on the RW replica, if the RW
replica becomes unavailable modification to the file system will fail. Read-only file
access, though, will still be available through the RO nodes. A slight delay in access
may occur while the principal replicas find the latest copies of all files within the file
system. Only versions of files which have been propagated to at least one principal
will be available so without the RW the application is not guaranteed an up-to-date
version. With the scaling of propagation to relieve the load on the RW replica, it is
hoped that in most cases at least one replica will have the latest version.

4.6.1 FUSION Replication Server States
To manage conditions of network instability the FUSION replication server has four
possible states. So far this document has only discussed FRSs whose state is VALID.
However, the following additional FRS states are also possible:

INVALID this server has not begun initialization; use another server if
possible.

RECONCILING this server is currently reconciling its tables with another replica;
please wait.

NORWREPLICA the network is running without the RW replica; RO replicas agree
on the current state of the file system; access is guaranteed to the
most recent version able to propagate to any node within the current
partition.

NOMEMORY the kernel is out of memory and the RO FRS cannot keep all
bookkeeping data; access is same as for VALID or
NORWREPLICA, but full reinitialization is required as soon as
memory is available.

4.6.2 Replication Server Initialization
The replication service will be initialized any time a FRFS replica becomes available
to clients. There are two ways a replica becomes available: by starting the AFS
bosserver or by having /etc/mount mount the replica on the current node.

In order for the bosserver to initialize and keep the FRS running, the FUSION
Replication Service must be listed in /usr/af s/local/BosConfig for the node on which
the service is to be maintained. This entry will be created whenever a FRFS is
created using vos_create or when a replicated file is created using frfs_mkf s or
frfs_fsmod. If the file system is created for mounting via /etc/mount, the initialization

IBM Confidential
June 28, 1991
DRAFT

- 393 -

code will only run if the replica is mounted. If the replica is not mounted until after
Bosconfig is run, /etc/mount will force the initialization code to be run.

If the bosserver is not currently running when the /etc/mount of a replicated file
system begins, the FRS initialization code will be called. A subsequent call to
bosserver will not cause the FRS to reinitialize as the initialization code will prevent
restarts of the service. The entry in the BosConfig file should indicate as well that no
restarts should take place (most services restart every Sunday morning at 4:00 AM).13

4.6.2.1 RW Initialization
When the RW first comes up, it simply zeroes its exception token table and sets its
state to VALID.

The RW has no way of knowing that it is entering a currently running
NORWREPLICA system, as opposed to being the first node up, since it does not take
responsibility for knowing which nodes it is talking to (it assumes all nodes are up).
It is up to the various running nodes to reconcile themselves with the RW replica and
detect any conflicts.

All nodes running in NORWREPLICA state will be polling the RW replica to see if it
is back. If a principal FRS finds the RW, it sets its state to RECONCILING, notifies
its secondaries, and reconciles itself with the RW replica. If the node is a secondary,
it informs its principal and waits to get the new information. If the principal notifies
the secondary that it cannot talk to the RW, the secondary reconciles from the RW
and registers with it for service.

4.6.2.2 Principal Initializing From a VALID RW Replica
When a principal FRS initializes from a VALID RW replica, it sets its state from
INVALID (the state the server begins in) to RECONCILING. It contacts the RW
informing it of its LWM. The RW replica returns to the RO FRS the current list of
exception tokens. The RW checks for all files it stores and passes a list of files and
their commit counts for all those files whose commit counts are higher than the
replica's low water mark. For each file in the list, if the commit count on the RW
replica is greater than that currently stored on the replica, the file is placed in the
propagation queue and added to the exception token table.

Once the FRS knows all files for which it is not up-to-date and those which are
currently being modified, it sets its state to VALID and begins servicing clients of this
replica.

13. Is there a reason we would ever want to restart the FRS once it is running?

IBM Confidential
June 28, 1991
DRAFT

- 394 -

4.6.2.3 Principal initializing from NORWREPLICA Principal
If the principal FRS entering the network is unable to contact the RW replica, it looks
for a principal in the NORWREPLICA state. If the principal it tries to contact is
RECONCILING, it waits for the state to change. If no principals are available, it
looks for a secondary. If no secondaries exist it sets its state to NORWREPLICA.

The NORWREPLICA principal's exception table only has those files the principal can
propagate from within the current partition. Since these are different for each node,
the exception table is not obtained from the NORWREPLICA principal as it would be
from the RW, but built from the list of files which need to be propagated to this node.

During the NORWREPLICA state, the FRS maintains a reconciliation propagation
queue which remains separate from the propagation queue used in VALID states.
This allows the node's propagation queue to remain intact while out of touch with the
RW replica.

Because the NORWREPLICA principal may not have the latest copy of all files in
addition to returning all files it stores whose commit counts are higher than the L WM,
the NORWREPLICA also checks all files in the reconciliation propagation queue. If
there is a file in the propagation queue whose commit count is higher than the low
water mark, that file will be added to the list of files which the initializing replica will
need to add to its reconciliation propagation queue. The propagation instruction will
include the node from which to propagate the file.

4.6.2.4 Principal waiting to initialize
The principal waits to initialize from the RW replica if the RW's state is INVALID or
RECONCILING. It waits to initialize from a NORWREPLICA principal whose state
is RECONCILING. However if the NORWREPLICA principal's state is INVALID,
the initializing principal will look for another principal. If no other principals or
secondaries can be found, the initializing principal will set its state to RECONCILING
and contact the principals whose state was INVALID so they can reconcile themselves
into a functioning partition.

When a FRS contacts another FRS either the request can be granted, because the state
is VALID or NORWREPLICA, or the calling server will be told to wait if the servers
state is RECONCILING or this server is the RW FRS and its state is INVALID. The
calling server will be told to try another server if this is not the RW FRS and its state
is INVALID. Whenever a calling FRS is told to wait, the FRS telling the server to
wait will record the node in a list of nodes to notify when the state of the server
changes.

4.6.2.5 Secondary initializing from VALID Principal
A secondary initializes from a principal exactly as the principal initializes from the
RW. In addition, all files in the principal's propagation queue will be sent as
propagation instructions.

IBM Confidential
June 28, 1991
DRAFT

- 395 -

4.6.2.6 Secondary initializing from NORWREPLICA Principal
A secondary initializes from the NORWREPLICA Principal just as a principal
initializes from a NORWREPLICA Principal.

4.6.2.7 Secondary initializing from NORWREPLICA Secondary
If the secondary cannot find a principal, it will look for a NORWREPLICA secondary
from which to initialize. If no other secondaries are available it sets itself to
NORWREPLICA. As well as looking for the RW replica, the secondary will look for
a principal to come up and reconcile with the NORWREPLICA principal as soon as
possible.

4.6.2.8 Secondary waiting to initialize
If a secondary finds a principal or other secondary in the state of RECONCILING it
will wait and initialize from that node. If the secondary finds only other secondaries
whose states are also INVALID, it sets its state to RECONCILING and contacts the
other INVALID nodes so they can reconcile among themselves and form a functioning
partition.

4.6.3 Replication Server Reconciliation
As well as initialization triggering a reconciliation of servers, simple leaving and
rejoining an active network may trigger reconciliation. For example, if the network is
partitioned and comes together, some nodes may be running as NORWREPLICA
while others are running as VALID. In this case the nodes running in
NORWREPLICA state will need to reconcile themselves with the RW replica.

4.6.3.1 Running in NORWREPLICA state
When the RW replica is unavailable, the RO replicas will service the file system with
the most recent files available. This is referred to as running a NORWREPLICA
partition.

4.6.3.1.1 Principal Reconciliation
When the RW becomes inaccessible to a principal, it sets its state to RECONCILING
and sets a special bit to indicate that it is reconciling with a principal rather than the
RW. After notifying its secondaries, it then contacts all principals telling them the
RW is down and including this nodes's lwm. Those principals which can
communicate form the partition. The node with the highest low water mark is elected
"reconciler". If more than one node has the same lwm the first in the file system list
stored in .frf sinfo will be the reconciler. The principals in the partition keep track of
who their reconciler was at the time of reconciliation. This will be used to simplify
reconciliation among two or more NORWREPLICA partitions.

The reconciler goes through its exception table and sends a list of all files in its table
and the commit count of the file on the reconciler's node to all reconciling principals.
If any node has a more recent version than the reconciler, it will notify the reconciler
who will in tum notify the other principals. Once the reconciler has a list of all files
it needs to propagate it will add those files and the node from which to propagate to

IBM Confidential
June 28, 1991
DRAFT

- 396 -

the reconciliation propagation queue and to its exception table. It will then set its
state to NORWREPLICA and notify its secondaries that they can now reconcile with
it.

The principals receive a list of files from the reconciler. This list contains the commit
count of the version stored on the reconciler's node. For each file in the list, the FRS
checks the commit count on its replica and, if the commit count stored locally is less
than that of the reconciler it adds the file to its reconciliation propagation queue. If
the file is not in the exception table, it is added. If the commit counts are equal, it
removes the file from its exception table. If it has a more recent commit count, it
removes the file from its exception table and notifies the reconciler that it has a more
recent version.

Once the reconciler has received notifications from all the principals for the files in its
lits, it sends an end-of-reconciliation message to the principals. When a principal
receives the end-of-reconciliation message, it creates an entry for all files left in its
exception table to its reconciliation propagation queue and sets its state to
NORWREPLICA. The principal then notifies all secondaries for which it is
responsible that they can now reconcile with it.

4.6.3.1.2 File Access in a NORWREPLICA network
When running in the NORWREPLICA state the exception tables at all nodes contain
those files which need to be propagated to that replica. If a request comes in to any
FRS, the FRS checks its exception token table. If it does not have the most recent
version, it looks in its reconciliation propagation queue for the node which has it and
refers the client to that replica.

4.6.3.2 RW Replica reentering the network
When the RW reenters the NORWREPLICA network it can either be coming from a
partition in which the RW was continuing to function and for which modifications
may have been made or it can have actually been down, in which case it is initializing
on reentering the network.

4.6.3.2.1 Low Water Mark
When a server goes to reconcile with a returning RW replica, it checks the last low
water mark it knows of (the most recent commit count in the prop queue) against that
of the RW. If the low water marks are the same, then the RO server rebuilds its
exception token table from those files waiting to propagate from the RW replica and
the exception table sent from the RW FRS. The FRS then sets its state to VALID.

However, if the RW has a more recent LWM, the RO FRS will initialize from the
RW using the RO replica's LWM. In either case, the RO replica will queue any
incoming instructions for processing after reconciliation is complete.

4.6.3.2.2 Initialization number
Each time the RW FRS is initialized, it registers an atomically increasing number.
Whenever a RO FRS reconciles with the RW it stores this initialization number. This

IBM Confidential
June 28, 1991
DRAFT

- 397 -

number represents the state of the RW replica the last time a node reconciled with it.
Whenever the node communicates with the RW replica it checks the initializing
number. So, if the RW went down and rebooted before the RO node knew it was
gone, the RO FRS would know that its current tables are incorrect and will reconcile
with the RW. The principal nodes pass this number on to their secondaries so that the
secondary will be guaranteed to be reinitialized whether it detected the RW down or
not. The RW replica's initialization number is stored in its .replinfo file along with
the low water mark.

In addition, if the RW FRS does not receive a return message to one of its requests, it
lists that node in an array of nodes it knows are out of sync. If the node contacts the
RW again, the RW FRS tells the node to reconcile before it continues since this node
missed at least one instruction.

4.6.3.3 Principal reentering the network
A partitioned principal may reenter the network at any time. It may reenter by having
a poll to the RW replica respond that the RW replica is again available. When a
principal rejoins a VALID network, it initializes itself from the RW replica and
notifies all its secondaries that it is now VALID.

As well as being responsible for reconciling the principals, the reconciler also has the
responsibility of polling those principals which are not currently in the partition.
When the reconciler discovers it can talk to a new principal, it finds the reconciler for
that partition. If the reconciler cannot talk to the new principal's reconciler, it
reconciles with the new principal and the new principal contacts its own reconciler
with any later versions of files which can be propagated. If the two reconcilers can
communicate, they reconcile and notify the other principals in their partitions of any
changes that are made to the reconciliation propagation queues. Once all principals
have been notified, the first of the two reconcilers in the volume entry will become the
new reconciler.

4.6.3.4 Secondary reentering network
When a secondary node is out of contact with the network, it not only polls the RW
replica, but also the principals. In the meantime it is running as NORWREPLICA and
servicing all files stored on the replica. When the secondary node contacts either the
RW or a principal replica, it reconciles with that FRS.

4.6.4 Notice of node unavailability
The DCE File System has a service which runs from the client to all nodes with
which it is communicating and pings them every 4 to 10 minutes to ensure that the
file service node is still available. FUSION will also be providing a similar service to
other parts of the product. The DCE service will need to be coordinated with the
FUSION service to reduce network traffic.

The FRS will use these services by adding all replicas a FRS needs to keep track of to
the service. Currently only the DCE client maintains a list of nodes to keep in contact

IBM Confidential
June 28, 1991
DRAFT

- 398 -

with. In addition to coordinating the client server changes will need to be made to the
file server to access the polling service.

4.6.4.1 Keep-alives
The following assumptions are being made with regard to the polling service:

• A FUSION service can register a node with the polling service and the FUSION
service will be notified whenever the node's state changes (either UP or DOWN).

• A FUSION service with a registered node will inform the polling service whenever
that node was contacted so the polling service does not do unnecessary pings.

• Minimum and maximum ping times can be requested for the service based on the
need for immediacy when the node's state actually changes. For example: a node
may suspect that a routing problem is about to be resolved and want to ping a
specific node more often. Or it may suspect that a node is gone for some
significant period of time and want a long wait between pings. These times can be
modified by the registering service during normal operations.

4.6.4.2 Receiving notice
When the RW node notices the demise of a node, the FRS stores that node in a list
and if the node comes back, tells it that it is out of date. The RW does not notice
nodes which come back unless they are in the list. For nodes in the list, the node is
told to reconcile before continuing. The RW does not poll nodes that are down. It is
each node's responsibility to keep in contact with the RW.

A RW receives notice that a node is up when that node's FRS registers with the RW
and begins initialization. The RW FRS keeps registration information only for those
secondaries which have come up and are unable to contact a principal. It keeps this
registration in order to make sure that these secondaries receive all the information
normally sent to principals. If the secondary discovers a principal has become
available, it will register with the principal and remove itself from the list on the RW
FRS.

4.6.4.2.1 Principal and RW
When a principal node notices the demise of contact with the RW it notifies all
principals and all its secondaries. If the principal's state is VALID, it notifies all its
secondaries and they set their states to NORWREPLICA referring all calls in their
exception table to the principal until the principal has completed reconciling. Once the
principal has reconciled itself, it tells all its secondaries who, in tum, reconcile with
the principal.

If a principal is notified from another principal that the RW is down, the second
principal will test to see if the RW is down to it. If not, it tells the notifying principal
that it can talk to the RW and the notifying principal can increase its polling waiting
for the routing problems to resolve themselves. While waiting, all modification
requests will fail as though the network were running in a NORWREPLICA partition.

IBM Confidential
June 28, 1991
DRAFT

- 399 -

If neither principal can contact the RW then they begin reconciling themselves. Each
sets its state to RECONCILING and indicates that it is reconciling from a principal.

If the principal's state is RECONCILING when it is notified that the RW has gone
down, the principal checks to see if it is RECONCILING with the RW or from a
principal. If reconciling from the RW FRS, it begins reconciling with the other
principals in the partition. If reconciling from a principal, it simply adds that node's
lwm to its list for selecting a reconciler. If a reconciler has already been selected then
it ignores the information as the node will contact a NORWREPLICA principal soon.

When the RW comes up, if the principal node's state is RECONCILING and the
principal was reconciling with another principal, it immediately stops its current
reconciliation and contacts the RW FRS and begins reconciliation. If the principal
was reconciling with the RW FRS and it has gone down during reconciliation, the
principal contacts the other principals and they begin reconciliations. However, this
principal will not be a first choice for the reconciler since its tables are not guaranteed
to be accurate.

4.6.4.2.2 Secondary and RW
When a secondary node notices the demise of contact with the RW it notifies its
principal. The principal tests to see if it can contact the RW. If so, it notifies the
secondary which will set its state to RECONCILING and wait until the router
problems resolve themselves. If the principal cannot contact the RW it behaves as
described in 4.6.4.2.1.

When a secondary node notices the return of the RW replica, if its state is
NORWREPLICA it notifies its principal. If the secondary was unable to contact a
principal, it reconciles with the RW FRS and registers itself so that it will receive all
communications which are normally sent to principal servers.

Otherwise, once the secondary notifies the principal it sets its state to RECONCILING
and waits for further information from the principal.

4.6.S Special cases
Because user level programs will be provided which allow a user to convert a RW
replica to a RO replica, it is possible for strange cases of files system synchronization
to occur. For example, a network partitions, the RW continues functioning and then
crashes. We now have two partitions functioning without RW replicas, but one
partition is more current than the other. If all the nodes from the more current
partition are brought down, it would be possible to convert a RO node from the less
current partition into a RW. When one of the nodes on the more recent partition then
comes back, the two nodes may have conflicts. Determining which data to keep may
not be possible without human interference.

At this time, the RW replica will be considered the accurate file system and replicas
with conflicts will not be allowed to join. The .replinfo file which contains
information about the replicated file system will contain a history of the past updates

IBM Confidential
June 28, 1991
DRAFT

- 400 -

made on the primary. Out of sync replicas will be discovered by comparing the RO's
history with that of the RW. If a replica which had more recent contact with the old
RW replica were to join a network with a converted RW, the file system histories will
differ. If these differ there is a potential conflict between the two replicas and the
new node will not be allowed to join.

Because special conditions make it possible for replicas to be out_of_sync with the
rest of the partition, it is necessary to allow a special type of mount to allow
maintenance of the out_of_sync replica. When a replica is mounted this way, its FRS
state will be INVALID, but certain maintenance operations will be allowed.

4.6.6 Managing Out of Memory Situations
FUSION will manage its in-kernel tables by allocating what should be a sufficient
amount of memory for the exception token table and propagation queues. These
tables and queues will then be able to grow should the need arise. Even though many
kernels, such as AIX 3.1 are able to grow, there is still the potential problem of a
heavily modified file system running on a fully loaded machined causing all kernel
memory to be utilized. FUSION Replication Servers manage out-of-memory
differently, depending on the type of server.

4.6.6.1 Read Only FRS
RO FUSION Replication Servers keep a large amount of data which is used primarily
for ease of maintenance and performance enhancements for network instability. If this
data were not kept, the tables would be 1/3 smaller. However, the FRS would be less
efficient and would require full initialization when reconciling with other nodes.

To manage such a condition, FUSION will define an additional state called
NOMEMORY. When the FRS is set to this state it can still redirect users to the RW
node if modifications are being made to a file and it can still propagate files to its
replica. It does not know the commit count of the files it needs to propagate, cannot
update its low water mark, and must be initialized as though rebooting if it is asked to
reconcile with another node. An FRS which is running NOMEMORY cannot be
selected as the reconciler unless all nodes are running NOMEMORY, in which case
reconciliation will involve all other nodes initializing from the NOMEMORY
reconciler.

When a RO FRS discovers it cannot expand its tables because the node has run out of
memory, it sets its state to NOMEMORY and begins rewriting its tables. The FRS
has a reserved structure which is the beginning of the NOMEMORY exception token
table. The first three file IDs listed in the exception token table will be listed in this
reserved structures. The data area containing these three entries is then freed to
contain the next entries in the exception token table. This process will continue until
all entries in the exception token table have been copied to a linked list which contains
only the file ID's of the table.

IBM Confidential
June 28, 1991
DRAFT

- 401 -

Once the exception token table has been transferred, the remaining entries are freed
and can be used to begin transferring the propagation queue entries into a similar
linked list containing only the fileIDs of those files requiring propagation. Propagation
entries which are HOLDING or ERROR will be placed in separate linked list
containing only file IDs whose state should be set to the appropriate state.

Because the FRS is not doing the requisite record keeping to make its own decisions
regarding file propagation and token releasing, propagation must change for a FRS in
NOMEMORY state. Once the file has propagated, the RW FRS will be asked
whether or not this file is still in the exception token table. If not, the RO FRS will
remove the file. If so, the file will stay in the exception table. In addition, because
there is no record of those commit counts waiting to be propagated, the RO FRS
cannot update its low water mark.

While changing tables from VALID state to NOMEMORY state, all incoming RPC's
will wait. This will not affect user access, since all user requests get the state of the
FRS before continuing. However, secondaries trying to register or RW instructions
will wait until the tables have been modified.

If, after the data has been stripped from the RO FRS it still runs out of memory, the
RO FRS will have to resort to a memory swapping scheme such as that which will be
used by the RW FRS. This is defined in the next section.

4.6.6.2 Read Write FRS
Unlike the RO FRSs, all data kept at the RW node is essential to the operation of the
file system. Therefore, it will be unable to declare the RW FRS as running in a state
of NOMEMORY. Instead, the memory can be expanded by utilizing some of the on­
disk memory accessible to the cache manager. The RW FRS will reserve a data cache
for its tables and swap them to and from the disk as necessary to preserve its data.

4.6.6.3 Reclaiming Memory
The RO FRS will know both the number of files in its exception token table and in its
propagation queue when it ran out of memory. When the number of files in both
these lists gets lower than the numbers when the node ran out of memory, enough
memory to manage table of this size will be requested. If the memory is available,
the RO FRS will reinitialize from the RW node and begin functioning as a VALID
FRS once again.

IBM Confidential
June 28, 1991
DRAFT

- 402 -

4.7 VLDB

The DCE documentation promises two routines to manage the addition of more than
one vldb entry per volume. Though the code does not currently exist in snap 2, it can
be assumed that it will exist in a future release. We will use the routines
VL_GetNextServersByID() and VL_GetNextServersByName() to get the additional
server entries used by the cache manager. It is possible that Transarc may be
expanding the cache manager's file system cache to accept more than 16 servers as
well, though I have found no indication of this. Therefore, FUSION will continue to
store an ordered list of servers in the 16 slots provided for the cache manager's file
system cache.

IBM Confidential
June 28, 1991
DRAFT

- 403 -

4.8 File System Access for Non-FUSION Nodes

Because FUSION Replicated File Systems may coexist in cells with non-FUSION
nodes, it is important that the file system be accessible to the non-FUSION client.
Such clients will access the FRFS as though it were only one replica - the RW. The
following code will need to be added cm_ConnByMHosts():

if (volumetype = FRFS)
an_ConnByHost (vldbentry.server[O]);

IBM Confidential
June 28, 1991
DRAFT

- 404 -

4.9 User Level Commands

4.9.1 VOS Commands
The vos commands are used by DCE to create file systems in the VLDB and to
modify their entries once they have been created. A new set of commands, vosx, will
be used for creating and managing replicated volumes. Hooks will be added to the
commands to tell the user to use the equivalent vosx command if the file system is of
type FRFS. The following commands will be used to create and manage replicated
volumes:

vosx_create

vosx_addsite

vosx_move

vosx_rename

vosx_remove

creates a FUSION Replicated File System and establishes the RW
replica. Accepts a new argument, -type, which sets the frf srepl
field in the vldbentry to either FULL or LOOSE depending on the
type or replication. In addition to creating the VLDB entry and
creating the volume header, vosx_create will also make an entry into
/usr/afs/local/BosConfig to initialize FRS for the RW replica. It will
also create a file called .frf sinfo and place the vldbentry information
in this file.

adds RO replicas to the specified FRFS. vosx_addsite accepts a
new argument, -secondary, to determine the type of RO replica. If
no flag is given, the replica is a principal replica. In addition to
adding the new entry into the VLDB as in vos_addsite, vosx_addsite
will create a volume header similar to that created with vos_create.
Because DCE' s lazy replication uses vos_release to release a new
clone of the RW replica, vos_addsite does not create a volume
header. FUSION Replication does not use the vos_release command
to manage propagating to the new node, so the vosx_addsite
command will need to create the volume header for the new node.
vosx_addsite will also place an entry in /usr/afs/local/BosConfig to
initialize the FRS for the RO replica.

moves the RW replica from one partition to another. When this
takes place, the entry for BosConfig is deleted on the old node and
added to the new node. The file .frf sinfo is updated to reflect the
move.

renames the FRFS. This will not only cause the vldb entry to be
modified, but also all RO volume headers. In addition, the
BosConfig entries will be modified to reflect the new name and the
.frf sinfo file will be modified to reflect the change as well.

removes the RW replica from the VLDB and removes the volume
header as well. If no RO replicas exist, the entry will be removed
from the VLDB. If a RO replica exists, the .frfsinfo file will be
modified first to reflect the removal of the RW replica. The

IBM Confidential
June 28, 1991
DRAFT

vosx_remsite

vosx_zap

vosx_examine

vosx_help

- 405 -

command will not return until at least one node has propagated this
file. Then the volume header will be removed. In addition, the
FRFS initialization entry will be removed from the BosConfig file.

removes a RO replica from the VLDB. Unlike vos_remsite,
vosx_remsite will remove the volume header as well. The .frfsinfo
file will be modified (unless there is no RW replica), and the FRFS
initialization entry will be removed from the BosConfig file.

removes a volume without modifying the VLDB. This will also
remove the BosConfig entry for initializing the FRS.

will be modified to indicate fields for FUSION Replicated File
Systems.

will be modified to include help for FUSION Replicated File
Systems.

vosx_listpart will be modified to include FRFS information.

vosx_listvldb will be modified to include FRFS information.

vosx_listvol will be modified to include FRS information.

vosx_syncserv will be modified to synchronize FUSION Replicated File Systems
including FUSION relevant data entries. It will update .frf sinfo files
as applicable.

vosx_syncvldb will be modified to synchronize FUSION Replicated File Systems
including FUSION relevant data entries. It will update .frfsinfo files
as applicable.

4.9.2 FRFS mkfs
This application will make a FUSION Replicated File System. It accepts the same
arguments as mkfs and FRFS_modfs and basically calls mkfs to make the file system
and FRFS_modfs to convert it to a FRFS.

4.9.3 FRFS modfs
This application will modify a file system created with mkfs or its equivalent into a
FUSION Replicated File System. It notifies the CMS of the new replica and, in turn,
updates the .frf sinfo files for the file system. This application can also be run to
modify already existing replicas by changing principal replicas to secondaries or vice
versa. No such equivalent will be able for the VOSX commands. To change from a
secondary to principal the vosx_rmentry command will be used to remove the original
entry and vosx_addentry will be used to add the new entry.

4.9.4 Recovery
The application level recovery program is available so that a system administrator can
force a replica to reconcile with another replica. This program is run when a replica

IBM Confidential
June 28, 1991
DRAFT

- 406 -

appears to be seriously out of sync. The recovery program, frfs_fsrecover accepts as
its arguments the node from which to recover, the node which is recovering, and a
special flag to indicate that all files in the file system should be examined rather than
only those above the low water mark.

When application level recovery begins, the FRS on the node which is recovering is
set to INVALID, the node from which recovery is taking place is sent a low water
mark and responds with a list of files which are more recent than the low water mark.
This is the same way a node reconciles with a principal or the RW replica when it
initializes. Once the recovery program is complete, the recovering node will set its
state to RECONCILING and reconcile with the appropriate principal or RW replica.

4.9.5 Changing RW replicas
It is possible that it will be necessary to change the replica which is serving as the
RW replica for a FRFS. Two things must happen for this to take place. Because a
FRFS can only have one RW replica at a time, the current RW replica must first be
converted to a RO replica, and the list in the VLDB and CMS file system entries for
the FRFS must be modified.

4.9.5.1 Converting the RW replica to RO
A RW replica does not have to be running to be changed to a RO replica. If the
replica is not running when the conversion takes place the FRS will discover it is no
longer the RW when it tries to initialize itself. If this happens the FRS will change its
internal flags and get the name of the node which is now the RW replica. The old
RW replica will propagate the .frf sinfo file and then initialize itself as a RO replica.

If the replica was created using the vos command, the vldb entry for the file system
will be modified so that the replica will be moved from the first entry in the volume
structure, reseived for the RW, to a later entry in the same list. The seiver flags will
be changed from RW to either PRINCIPAL or SECONDARY, depending on which
flags were passed to the conversion program.

If the replica was created using /etc/mount, the replica must first be unmounted. It is
also necessary that at least one replica for the FRFS must be available. The CMS is
contacted and changes the status of the RW replica to PRINCIPAL or SECONDARY,
depending on which flags were passed to the conversion program. This changed
information is then written into all .frfsinfo files on all currently mounted replicas of
the FRFS. The modified replica must be remounted via /etc/mount after the
conversion program has completed.

4.9.S.2 Converting a RO replica to a RW replica
There can only be one RW replica per FRFS. If a RW replica already exists, the
conversion will fail.

The RO replica does not have to be running to be changed to a RW replica.
However, a lot of checking to ensure that the replica is as up-to-date as possible
within its current partition will not run if the RO replica is not currently part of a

IBM Confidential
June 28, 1991
DRAFT

- 407 -

partition. If the node is not running, the replica will discover it is the RW when it
begins its initialization.

If the replica was created using the vos commands, the entry for this FRFS will be
modified so that the RO replica will have its server flags changed to RW and have its
current entry in the list of servers deleted while a new entry in the list will be created
at the head of the list, where the RW replica is listed. During this operation, if the
replica is up, the FRS will change its state to INVALID. When the conversion is
complete, the FRS will initialize itself as the RW replica.

If the replica was created using /etc/mount the file system does not have to be
unmounted before being converted. In fact, it is best if it is mounted so that all the
up-to-date checking can take place. Once the node has been checked to ensure it is
up-to-date with regard to its current partition, the FRS changes its state to INVALID.
The CMS will be contacted to change the frfs_repltype to RW. All currently mounted
FRFS replicas will have their .frfsinfo files modified to indicate the change. Once the
CMS has completed the changes, the FRS begins initializing itself. This enables the
application to convert a RO replica to a RW replica without having to unmount and
remount the replica.

IBM Confidential
June 28, 1991
DRAFT

- 408 -

4.10 Packaging and Installation

FUSION Replication can be packaged independently from much of the rest of the
FUSION kernel extensions. However, it has several dependencies upon the rest of the
FUSION product and replication perfonnance will differ without all these components.
In addition, FUSION replication depends on special DFS installation configurations.

4.10.1 FUSION Dependencies

4.10.1.1 Cluster Mount Server
Without the Cluster Mount Server, all FUSION Replicated File Systems must be
registered with the VLDB and mounted using DCE on-disk mount junctions.

4.10.1.2 Node Status Server
FUSION uses the node status server to provide polling services for nodes which the
FRSs need to keep in contact with. This particular service is the only service essential
to FUSION replication.

In addition the NSS provides the FRS and client with information used to determine
which servers are optimum file access and to help with load balancing. Without the
NSS these features of FUSION replication will be hindered and access will be done by
selecting servers randomly.

4.10.2 DFS Dependencies
There is no intrinsic requirement in DFS for a file server node to also provide a cache
manager running on the node. However, FUSION replication requires that all nodes
serving FRFS replicas have cache managers running on them.

IBM Confidential
June 28, 1991
DRAFT

- 409 -

4.11 Subroutines

The subroutines which make up the FUSION Replication Service can be divided into
five categories:

1. Changes to Existing DCE Code

2. Exception Token Management

3. Propagation Management

4. Node Selection

5. Network Instability Management

4.11.1 Changes to Existing DCE Code
The following DCE modules need modifications:

cm_Analyze

cm_ Conn

cm_FidToServer

hs_RevokeToken

cm_ServerDown

used to analyze errors in either the connection made by
cm_Conn() or by the DCE call itself. This routine will be
modified to accept the new error codes for GOTO<SERVER>.

used to make all remote connections within the cache
manager. This subroutine will be modified to look in the
vnode for the FRS server to use and call frfs_SelectServer()
should no server be listed in the vnode.

finds the server handling a particular file ID. It will be
modified to look in the vnode for an FRS file and return that
server or call frf s_SelectServers() if a server has not been
selected for this file.

revokes outstanding tokens for the token manager. It will be
modified to manage propagation tokens FRFS_READPROP
and FRFS_ WRITEPROP revoking tokens as appropriate.

will contain a hook to call frfs_ServerDown if FRFS.

See also sections 4.4.2, 4.4.6, and 4.8 for additional DCE modules to be modified and
those modifications required.

4.11.2 Exception Token Management
The following subroutines will manage the exception token tables:

frf s_EXaddfile adds a file to the exception token table.

frfs_EXaddnode

frf s_EXfindfile

frfs_EXfindnode

adds a node to a file entry in the exception token table.

finds a file entry in the exception token table.

finds a node in a file entry in the exception token table.

IBM Confidential
June 28, 1991
DRAFT

frfs_EXnnfile

frfs_EXrmnode

frfs_ExTblHash

frfs_EXCheck

frfs_EXFree

frfs_EXupdate

frfs_FreeToken

frfs_GetNode

frfs_GrantEx

frf s_KeepCurrent

frfs_ReleaseToken

frfs_RenewTokens

frfs_StripEx

- 410 -

removes a file entry from the exception token table.

removes a node from a file entry in the exception token table.

manages the exception token hash table and returns pointers to
to exception token structures as requested.

runs in background on the RW and periodically polls the
token manager for all files in the exception token table to
ensure the tokens have not timed out.

frees a token from the exception token table.

updates a token in the exception token table

wraps around calls to tkm_FreeToken. Calls
frfs_ReleaseToken() if this is the RW and the token is an
exception token.

gets the node from the protocol exponer. Called by
frfs_FreeToken.

sent from RW to ROs which will put the token in their
exception token tables and revoke tokens as necessary.

runs in background and keeps tokens from timing out while
being manipulated by the FRS.

removes the token form the RW exception token table and
notifies all principal nodes if this is the last entry in the table.

wrap around for tkm_RenewTokens(). Updates the timestamp
for this token if it is in the exception token table.

strips exceptions tokens from those granted by RO node's
token managers.

4.11.3 Propagation Management
The following subroutines will manage propagation:

frfs_CommitFile will manage status writes and
when appropriate.

send propagation instructions

frf s_ CFfindfile

frfs_CFfindnode

frfs_CFaddfile

frfs_CFaddnode

frfs_CFrmentry

looks up file in commit file list

looks up node in commit file list file entry

adds file to commit file list

adds node to commit file list file entry

removes entry from commit file list

IBM Confidential
June 28, 1991
DRAFT

frfs_ CleanProp

frfs_PropFile

frfs_PropAnalyze

frfs_ReadPropQ

frfs_Propln

frfs_PQfindfile

frfs_PQaddentry

frfs_PQnnentry

frfs_UpdateLWM

4.11.4 Node Selection

- 411 -

cleans up propagation which has been aborted either because
of an error or a revoked token.

notifies replicas that this file, commit count #, needs to be
propagated.

analyzes errors returned during propagation and either aborts
the propagation or tries propagating from another node
depending on the error.

runs in background waiting for an entry on the propagation
queue and begins propagation as soon as an entry appears

manages propagation of a file.

find file in propagation queue.

adds file to propagation queue.

remove entry from propagation queue.

looks in the propagation queue for a file with a lower original
commit count than that of the most recently propagated file
and if none is found resets the low water mark to the commit
count for the most recently propagated file.

The following subroutines are used to handle automatic node selection:

frfs_ChangeTokens

frfs_ConvertServer

frf s_ GetIDServer

frfs_ GetServer

frfs_ Get VolServer

frfs_ OrderServers

f:rfs_PickRepl

frfs_PicksSS

gets all outstanding tokens from the new server and frees
them from the old server. Called whenever a client is
changing servers on a file.

converts the VLDB or CMS server list into a cm_server
structure adding FRFS features where applicable.

returns a pointer to an frfs_serverid structure given a host ID.

returns a server of type from all available servers stored in the
VLDB.

returns a pointer to an f:rfs_server structure which contains the
file system requested.

orders a list of server nodes based on load and client count
information received from the NSS.

manages the selection of a replica when a single node stores
more than one replica of a given file system.

wraps around all calls to the token manager. This routine
selects which server to use based on the exception token table

IBM Confidential
June 28, 1991
DRAFT

frfs_RORegister

frfs_RefreshServers

frf s_SelectServers

frfs_RenewServers

frfs_SetServers

frfs_Store Vol

frfs_AddVolServer

frf s_ WhichServer

- 412 -

and status of the FRS. It will either select itself as the file
server or return the error code GOTO<SER VER> indicating
which server should be used.

registers a server with the RW as a principal server. If this is
a secondary server, marks itself as temporarily functioning as
a principal server.

reoptimizes the list of servers to use when a number of
servers have gone down.

selects a server of type from the optimized list and places that
server in the vnode for a file.

renews list of available servers for selection.

puts selected servers in cm_server.servers[MAXSERVERS].

stores replication servers retrieved from the VLDB or CMS.

adds a volume server to the list of frfs_ volume servers.

called after an error return of GOTOS ER VER to specify
which server the FRS intends the client to goto.

4.11.S Network Instability Management
The following subroutines manage network instability:

frfs_BeginRecon

frfs_EndRecon

frfs_GetRecon

frfs_NoRW

frf s_Reconciler

zeroes all current commit count values in the propagation
queue, obtains a list of all principal nodes and notifies them
that the RW is down, and chooses a reconciler based on their
returned low water marks.

receives notice from the reconciler that reconciliation is
complete. Adds any remaining files in its exception token
table to the propagation queue and sets the FRS status to
NORWREPLICA.

receives notice from the reconciler for a file and returns the
commit count of the file as it is stored on this node. Clears
the entry from the exception token table.

changes the state of the server and begins reconciliation and
notification as necessary.

walks the exception token table and notifies all other
principals of any files contained within. Waits for responses
and adds the file to the propagation queue if necessary.
Notifies other principals of any files to be propagated. Also
notifies other principals when reconciliation is complete and

IBM Confidential
June 28, 1991
DRAFT

- 413 -

sets its status to NORWREPLICA.

frfs_RPQaddentry adds an entry into the reconciliation propagation queue

frfs_RPQrmentry removes an entry from the reconciliation propagation queue

frfs_Repllnit initializes all tables and queues for the FRS when a new node
joins the network or when the RW returns and the node must
reconcile with it.

frfs_Readlnfo reads information from .frf sinfo

frfs_ Verifylnfo verifies information from .frfsinfo with that in CMS or
VLDB.

frfs_ROinit initializes into a NORWREPLICA file system

frfs_PollNode adds node to list to be polled

frfs_CompHist compares file system history with node from which FRS is
initializing.

frf s_EXtblinit initializes exception token table.

frfs_PQinit initializes propagation queue.

ROreconcile reconciles read only node with FRS.

frf s_ServerDown sets the server status as DOWN if the node has gone down
according to the NSS.

frfs_FRSServerDown sets the server status as DOWN if the node has gone down
according to the NSS. Begins reconciliation if RW or
reconciler down.

IBM Confidential
June 28, 1991
DRAFT

- 414 -

4.12 NIDL Specifications

The following RPC's will be defined using NIDL:

interface frf s {

typedef struct fs_entry {
char name [MAXNAMELEN) ;
u_long replType;
u_long nServers;
struct afsNetAddr siteAddr[MAXNSERVERS);
u_long sitePartition[MAXNSERVERS);
u_long siteFlags[MAXNSERVERS);
u_long flags;

} fs_entry_t;

typedef struct extbl
struct af sFid fid;
u_long timestanp;

} extbl_t;

typedef struct f ilelist {
struct af sFid f id;
u_long corranitcount;

} filelist_t;

typedef struct hyper tkm_tokenID_t;

/* Initialization routines */
boolean
frf s _ Writelnf o (

[in) handle t handle,
[in) fs_entry_t entry)

boolean
frfs_UpdateBosConfig

[in) handle t
[in) char

boolean
frf s ROReconcile

[in) handle t
[in) long
[in) long

handle,
frs_entry[FRSENTRYSIZE)

handle,
lwm,
repltype,

IBM Confidential
June 28, 1991
DRAFT

short
char
extbl t

- 415 -

[out]
[out]
[out]
[out] f ilelist t

ini t _number,
history[HISTORYLEN],
extable,
filelist[MAXFILES]

/* Server selection routines */
boolean
f rf s GrantEx

[in]
[in]
[in]
[in]

handle t handle,
afsFid_t file,
tkm tokenID t extoken,
u_long timestamp)

boolean
f rf s WhichServer

[in] handle t
[in] afsFid t
[out] server t

handle,
file,
server

/* Propagation routines */
VOID
f rf s EXf ree

[in]
[in]
[in]
[in]

handle_t handle,
afsFid t file,
tkm tokenID t extoken,
u_long timestamp)

VOID
f rf s GetFile

[in]
[in]
[in]
[in]

handle t
af sFid t
long
u_long

boolean
frfs_StartProp

[in] handle t
[in] afsFid t
[out] token t

handle,
file,
corranmitcount,
timestamp)

handle,
file,
extoken

/* Network Instability Management */
boolean

IBM Confidential
June 28, 1991
DRAFT

- 416 -

frfs_NoRW (
[in]
[in]
[out]

handle t handle,
long mylwm,
long hislwm)

boolean
frf s _ RORegister

VOID

[in] handle t
[in] char
[out] short

f rf s GetRecon

handle,
history[HISTORYLEN],
ermo)

[in] handle t handle,
[in] filelist t filelist[MAXFILES]

VOID
f rf s EndRecon

[in] handle t handle
} /* end of NIDL interface */

IBM Confidential
June 28, 1991
DRAFT

- 417 -

4.13 Detailed Design

The following section contains detailed design specifications for FUSION Replication.
Some sections contains pseudo code. However, the pseudo code has not been
thoroughly checked for inconsistencies and is primarily a guide to the logic.

4.13.1 Modifications to DCE Code

------------------------ an_Analyze()

I* This routine is used by DCE to analyze errors from either an_Conn() or
* the AFS _Call () sent to the storage node. It is being modified to accept
* new return codes GOTO<SERVER> for FRFS file systems.
*
*/

int an_Analyze(connp, errorCode, fidp, rreqp)
register struct an_conn *connp;

{

}

long errorCode;
register struct an rrequest *rreqp;
struct af sFid *f idp;

long *pp;
register long i, code, returnCode;
struct an server *serverp;
register struct an volume *volp;

if (errorCode = GOTO<SERVER>)
frfs_Analyze ();

end an_ Analyze ()

------------------------ an Conn() --

/* The following subroutine is used by DCE to make all remote connections
* within the cache manager. It includes the modifications needed to support
* FUSION Replicated File Systems.
*/

st.ruct an_conn *an_Conn (fidp, service, rreqp)
register struct afsFid *fidp;
long service;
register struct an_rrequest *rreqp;

IBM Confidential
June 28, 1991
DRAFT

{

- 418 -

register struct cm_volume *volp;
register struct cm_conn *connp;

if (! (volp = cm_ Get Volume (f idp, rreqp)))
{ if (rreqp)

{ cm_FinalizeReq(rreqp);
rreqp->volumeError = 1;

return (struct cm conn *)0;
}

if (ISFRFS(volp))
connp = frfs_Conn(...);

else
connp = cm_ConnByMHosts(•..);

cm_PutVolume(volp);
return connp;

end cm_ Conn ()

------------------------ frfs Conn() --

/* frfs_Conn ()
*
*
*
*/

looks in private area of vnode and, if no server listed,
sets it.

frf s _Conn ()
{

}

struct cm_ server * serverptr;

if (fidp->vnode->v_data) /* See Note 1 */
serverptr = fidp->vnode->v_data;

else
{ serverptr = frfs_SelectServer (fid, ANY) ;

fidp->vnode->v_data = serverptr;
}

return (cm_ConnByHost (serverptr, •..)) ;

IBM Confidential
June 28, 1991
DRAFT

- 419 -

frfs_Conn() ------------------------~--------------

cm_FidToServer()

/*
* Find the server handling a f id
*/

struct cm_server *cm_FidToServer(afidp)
register struct afsFid *af idp;

{

}

register struct cm volume *tvp;
register struct cm server *tsp= (struct cm_server *)0;

if (tvp = cm_GetVolurne (afidp, (struct cm_rrequest *) 0))
{

/* BEGIN FRFS MODIFICATIONS HERE */
if (tvp. type == FRFS)
{

} else

tsp = afidp.vnode.v_data;
if (tsp == NULL)
{ tsp= frfs_SelectServer(srvrptr,ANY);

afidp.vnode.v_data =tsp;
}

/* END FRFS MODIFICATIONS HERE */

/*
* RW server is always first guy in the list
*/

tsp= tvp->serverHost[O];

cm_PutVolurne(tvp); /*put back file system reference*/

return tsp; /* all done */

------------------------ end cm FidToServer() --------------------------------

------------------------- hs Revoke Token ---------------------------------------

/* hs _ RevokeToken (hostP , revoke4tkn)

*
*
*

Currently used to revoke tokens. This is just a stub which pretends
it has revoked all tokens as necessary.

IBM Confidential
June 28, 1991
DRAFT

*
*
*
*
*
*
*
*
*
*/

- 420 -

If revoke4tkn includes FRFS WRITEPROP
if prop queue entry status equal BEGUN,

call frfs_CleanProp to clean up before revoking
if prop queue entry status equal WRITING,

fail
else

revoke the token

------------------------------ end hs Revoke Token -----------------------------

frfs_Analyze
/* frf s _Analyze
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

if GOTO<SERVER> return code,
if GOTOSERVER,

CALLS:

send RPC frf s _ WhichServer tCY get server for connection
else

get server of type from frfs_SelectServer
set the private data region to the correct server
get new tokens from the new server, return old tokens to old
return 1 (causes the loop calling cm_Conn() to reiterate

f rf s SelectServer - select server for retry
frfs_ChangeTokens - get tokens from new server
cm PutConn - return connp

* RPCS:
*
*
*
*
*/

f rf s WhichServer
RETURNS:

0 - don't retry
1 - retry

- gets server to connect to

frfs_Analyze(errorCode, fidp, connp)
{

if (errorCode = GOTORW)
{ oldserver = serverp;

serverp = frfs_SelectServer(fidp,RW);
fidp->vnode->v_data = serverp;
frfs_ChangeTokens(fidp,oldserver,serverp,rreqp);

IBM Confidential
June 28, 1991
DRAFT

}

- 421 -

cm_PutConn(connp);
return 1;

} else if (errorCode = GOTOPRINCIPAL)
{ oldserver = server.p;

server.p = frfs_SelectServer(fidp,PRINCIPAL);
fidp->vnode->v_data = server.p;
frfs_ChangeTokens(fidp,oldserver,server.p,rreqp);
cm_PutConn(connp);
return 1;

} else if (errorCode = GOTOANYSERVER)
{ oldserver = server.p;

server.p = frfs_SelectServer(fidp,.ANY);
fidp->vnode->v_data = serverp;
frfs_ChangeTokens(fidp,oldserver,server.p,rreqp);
cm_PutConn(connp);
return 1;

} else if (errorCode == GOTOSERVER)
{ oldserver = server.p;

}

server.p = RPC (frfs_WhichServer(afsFid));
fidp->vnode->v_data = server.p;
frfs_ChangeTokens(fidp,oldserver,server.p,rreqp);
cm_PutConn(connp);
return 1;

------------------------------ end frfs_Analyze --------------------------------

------------------------------ cm ServerDown -----------------------------------
/ * cm ServerDown
*
* - call frf s serverDown to set server down
*
*/

------------------------------ cm ServerDown -----------------------------------

4.13.2 Exception Token Management

------------------------- frf s EXaddf ile --------------------------------------

/* frfs_EXaddfile (AFSfid, token, node, timestanp)
*
* Adds an entry to the exception token table

IBM Confidential
June 28, 1991
DRAFT

- 422 -

*
* If I am RW
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

else

CALLS:

RETURNS:

add af sFid entry to table
add token and node to token/node pair list
set timestarnp

add af sFid entry to table
set tirnestarnp

frf s EXtblhash - get entry from hash table

TRUE

FALSE - unable to expand table to add entry

-------------------------- end f rf s EXaddf ile ---------------------------------

-------------------------- f rf s EXaddnode --------------------------------------

/* frfs_EXaddnode (EXtblentry, token, node, timestarnp)
*
* if node exists,
*
*
*
*
*
*
*
*
*
*
*/

else

RETURNS:

update token
update timestarnp

add token/node pair to entry
update timestamp

EXISTED - node existed and was updated
ADDED - node did not exist and was added
FAILURE - unable to expand table and add entry

-------------------------- end f rf s EXaddnode ----------------------------------

-------------------------- f rf s EXcheck --

/* frfs EXcheck
*
* Started in background when the RW FRS is initialized. Checks the
* exception table at the RW and calls tkm_LookupToken for all tokens

IBM Confidential
June 28, 1991
DRAFT

- 423 -

* in the table. If the token has timed out or is no longer valid,
* releases the token at the RW node.
*
*
*
*
*

CALLS:

* RETURNS:

tkm_LookupToken - looks up all token infonnation for token
f rf s ReleaseToken - releases token from exception table

* VOID
*/

frfs _ EXcheck ()
{

}

while (foreve.1 /*-this process runs in background continually */
{ for (i = ,0; i < HASHl; i++)

}

{ for (j = 0; j < HASH2; j++)
{ entry= extbl[i] [j];

}

sleep (30);

if (entry == NULL)
continue;

do
{ do

{ if (tkrn_GetToken (entry.AFSFid, entry.node.token)
= TKM _ERROR _TOKENCONFLICT)

frfs_ReleaseToken (AFSfid, token);
entry.node = entry.node.next;

' while (entry.node != NULL)
entry = entry.next;

while (entry != NULL)

---------------------------- end frf s EXcheck ---------------------------------

---------------------------- frf s EXtblhash ------------------------------------

/* frfs_EXtblhash (inode, request, newentry)
*
* Manipulates the exception table entries. Each entry in the exception
* table is a pointer to a linked list of exception tokens whose inodes
* hash to this position within the table.
*

IBM Confidential
June 28, 1991
DRAFT

- 424 -

* If request is -1, remove entry.
* If request is 0, return current entry.
* If request is 1, replace current entry with newentry.

*
* RETURNS: Pointer to structure extoken.
* NULL
*/

frfs EXtblhash (inode, request, newentry)
{

i = inode % HASHl;
j = i % HASH2;

if (request == -1)
{ extbl[i) [j] =NULL;

return (NULL) ;

if (request)
extbl[i] [j] = newentry;

else
if (extbl[i] [j] ==NULL)

extbl[i] [j] = malloc (sizeof struct(extokens));

return extbl[i] [j];

---------------------------- end f rf s EXtblhash --------------------------------

---------------------------- frf s EXrmf ile -----------------------------------

/* frfs EXrmfile (AFSfid)

*
* Removes file entry from token table

*
* For each entry in propagation queue
* If queue.entry.afsFid is AFSfid,
* return

*
* find entry in hash table
* unlink entry
* return entry to free pool
*
* RETURNS:
* VOID

IBM Confidential
June 28, 1991
DRAFT

- 425 -

*/

---------------------------- end f rf s EXrmf ile --------------------------------

---------------------------- f rf s EXnnnode ----------------------------------

/* frfs_EXnnnode (AFSfid, node)
*
*
*
*
*
*
*

Removes node from exception table entry

find entry in hash table
unlink node
return node to free pool

* RETURNS:
* VOID
*/

---------------------------- end f rf s EXnnnode --------------------------------

---------------------------- f rf s Free Token ------------------------------------

/* frfs _FreeToken (AFSfid, token)
*
*
*
*
*
*
*
*
*
*
*
*

Intercepts tkm_FreeToken calls.

If token is an exception token and this is the RW, call
frfs ReleaseToken. Otherwise, pass this on to the token manager.

CALLS:
frfs_GetNode - gets the node which is freeing this token

from the protocol exporter
frfs_ReleaseToken - removes token from exception table

and tells replicas if this is the last entry

* RETURNS: return code from token manager
*/

frfs _FreeToken (AF Sf id, token)
{

if (iam = RW && token = exception)
{ node= frfs_GetNode(AFSfid, token);

}
frfs ReleaseToken (AFSfid, token, node);

IBM Confidential
June 28, 1991
DRAFT

- 426 -

return (tkm_FreeToken (AFSfid, token));

}

---------------------------- end frf s FreeToken --------------------------------

---------------------------- frf s GrantEx --------------------------------------

/* frfs_GrantEx (AFSfid, token, timestamp)
*
*
*
*
*
*
*
*
*
*
*

RPC sent by the RW to grant and exception token to the client.

add entry to exception token table (avoids race conditions)

get the token from local token manager (which revokes all outstanding
tokens in order to grant it)

if unable to get token,
return FAILURE
remove entry from exception token table

* release token
* return TRUE
*
* CALLS:
*
*
*
*/

tkm GetToken - get exception token from local TKM
frf s EXaddfile - adds file to exception token table
f rf s EXaddnode - addnode to exception token table entry

end f rf s GrantEx

frfs_KeepCurrent

/* frfs_KeepCurrent (AFSfid, token)
*
* This routine runs in background whenever it is necessary to keep
* a token from timing out while manipulating it in the replication
* server. It sleeps for 10 seconds less than the timeout period
* and then asks for the token again.
*
* When the token no longer needs to be kept valid, f rf s KillCurrent
* will kill it.
*
* RETURN: void
*/

IBM Confidential
June 28, 1991
DRAFT

- 427 -

frfs _KeepCurrent (AFSfid, token, node)
{

}

while (true)
{ sleep(timout-10);

}

/* renew the token */
token= tkm_GetToken(AFSfid, token, node);
if (token ! = VALID)
{ print error;

break;
}

timeout = token ;_imeout;

end frfs_KeepCurrent ----------------------------

f rf s EXf indf ile -----------------------------------

/* frfs_EXfindfile (afsFid)
*
*
*
*
*
*
*
*
*
*/

Looks up the entry in the exception table.

CALLS:

RETURNS:

frfs_ExTblHash - get entry from hash table

pointer to entry
NULL

frfs _LookupEx (AFSfid)
{

entry = frfs_ExTblHash (AFSfid.vnode.inode, 0, NULL);

while
{

}

(entry .next != NULL)
if (entry.AFSfid == AFSfid)

break;
entry = entry.next;

if (entry.AFSfid != AFSfid && entry.next =NULL)
return (FALSE);

IBM Confidential
June 28, 1991
DRAFT

- 428 -

return (TRUE) ;
}

---------------------------- end f rf s EXf indf ile -----------------------------

---------------------------- f rf s EXf indnode --------------------------------

/* frfs_findnode (EXtableentry, node)
*
*
*
*
*
*
*/

Finds node in exception table for this entry

RETURNS:
pointer to node entry
NULL

---------------------------- end frf s EXfindnode -----------------------------

---------------------------- f rf s ReleaseToken ---------------------------------

I* frfs_ReleaseToken (AFSfid, token, node)
*
* Called from either frfs FreeToken or frfs EXcheck.
*
*
*
*
*
*
*
*
*
*
*
*
*

lookup node in exception table
if this is last node,

remove entry

CALLS:

send RPC to all replicas in responsible list
else

remove node from entry

f rf s EXf indf ile - finds file entry in exception table
frf s EXfindnode - finds node in entry
f rf s EXrmf ile - remove file entry from exception table
f rf s EXnnnode - remove node from entry

* RPCS:
* f rf s EXf ree - this exception table entry has been freed

*
* RETURNS: void
*/

---------------------------- end f rf s Release Token ---------------------------

---------------------------- f rf s RenewTokens ---------------------------------

IBM Confidential
June 28, 1991
DRAFT

- 429 -

/* frfs_RenewTokens (hostp, tokenCount, tokensToRenew, newExpTime, refTime)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Wraps around calls to tkrn RenewTokens

If this is the RW,

CALLS:

For each exception token in the list,
If token is in the exception list,

update tirnestamp
else

report error
add to exception list
notify other nodes as necessary

pass on to tkrn RenewTokens

f rf s EXf indf ile - finds file in exception token table
frf s EXfindnode - finds node in exception token entry
tkrn RenewTokens - renew the token at TKM

* RPCS:
* f rf s GrantEx - add this token to exception table
*
* RETURNS:
* return code from tkrn RenewTokens
*/

-------------------------- end f rf s RenewTokens --------------------------------

frfs_StripEx --------------------------------------

/* frfs_StripEx (token)
*
*
*
*
*/

Called after tokens granted form RO token manager. Removes
all exception tokens from the token before returning the value to the
cache manager.

---------------------------- end frfs_StripEx ----------------------------------

---------------------------- frfs_EXupdate

/* frfs_EXupdate (AFSfid, token, timestamp, node)

IBM Confidential
June 28, 1991
DRAFT

- 430 -

*
* Add node and token to the entry in the exception table.
* Update the timestamp.
*
*
*
*
*
*
*

CALLS:
frfs EXf indfile - finds file entry in exception table
f rf s EXaddf ile - adds file entry to exception table
f rf s EXf indnode - finds node in file entry
f rf s EXaddnode - adds node to file entry

* RETURN: void
*/

end frfs_EXupdate

4.13.3 Propagation
-------------------------- frfs_CommitFile() -----------------------------------
/* frfs_CommitFile (calledby, afsFid, node, token)
*
* Keeps table of files requiring full status writes
*
* If calledby a write system call,
* if a data write,
* if afsFid is in list,
* if (current_time - last time) < been_too_long,
* return SUCCESS
*
*
*
*
*
*
*
*
*
*
*
*
*

commit count status write
send RPC to all nodes in responsible list to propagate
if afsFid is not in list,

create entry
zero list of nodes to fail
update time

else if status write,
if commit count status write

return SUCCESS
else

remove af sFid entry from list
return SUCCESS

* Else if calledby a token revoke call,
* if afsFid is in list,
* if token revoking for is PROP token,
* if node is in entry
* return FAILURE

IBM Confidential
June 28, 1991
DRAFT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

CALLS:

* RPCS:
*
*
* RETURNS:

- 431 -

else
add node to list of nod.es to fail

conunit count status write
send RPC to all nod.es in responsible list to propagate
update time

return SUCCESS

How do we do conunit count status writes? f ##
frfs CFfindfile - finds fj1e in list
frfs CFfindnode - finds r .• ~ in entry
frfs CFaddfile - adds f: to list
f rf s CFaddnode - adds nooo to entry
frfs_CFnnentry - removes entry from list

frfs_PropFile - tells replica to propagate file

* SUCCESS
* FAILURE
*/

--------------------------end frfs_ConunitFile() -------------------------------

-------------------------- frfs_CleanProp()

/* frfs_CleanProp(propq,serverptr)
*
* looks at the status of the propq and cleans up as necessary
*
* if BEGUN
* free the FRS READPROP token for serverptr
* free the FRS WRITEPROP token
* set status to HOIDING
*
*
*
*
*
*
*
*

if WRITING (we have disk corruption so reget the file immediately)
free the FRS_READPROP token for serverptr
free the FRS WRITEPROP token
increment entry error number
if entry error number > 3

else,
set status to ERROR

IBM Confidential
June 28, 1991
DRAFT

*
*
*/ RETURN void

- 432 -

set status to WAITING

-------------------------- end frfs_CleanProp(}

-------------------------- frfs_PropAnalyze(}

/* frfs_PropAnalyze(errorCode, serverptr)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

if this was the RW
return not to try again

if the connection failed,
set the server to DOWN
select a new server
return to try again

if the token manager was unable to grant the FRS_READPROP token,
either someone else is propagating from this file or it is
being modified. At any rate, we will wait and try again later.

return to not try again (success or unable to get a new server)

RETURNS: 0 - do not try again
1 - try again

frfs_PropAnalyze(errorCode, serverptr, fid, connP)
int errorCode;

{

}

struct cm_ server * serverptr;
struct afsFid *fid;
struct cm conn *connP;

if (serverptr. type == RW)
return (0);

if !connP 11 (errorCode == -1)) /* no connection was made */
{ frfs_FRSServerDown(};

if (frfs_SelectServer (fid, PRINCIPAL))

}

return (0);

return (1);

IBM Confidential
June 28, 1991
DRAFT

i"'

- 433 -

--------------------------end frfs_prop.Analyze() ------------------------------

-------------------------- frfs_Propin()

/* frfs_Propin (propq.entry)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Propagates the file from the appropriate server.

If FRS status is NORWREPLICA,
set server to queue entry server

Else if FRS status is VALID
if I am PRINCIPAL,

set server to RW replica
else

set server to PRINCIPAL replica

Send RPC to get FRS_READPROP token and status
Keep FRFS_READPROP token from timing out
Get FRFS WRITEPROP from local TKM:
Keep FRFS_WRITEPROP token from timing out
set propq.entry.status to BEGUN
if (corranit count < propq.corranitcnt)

Send RPC to fetch the data
* Set up pipe to read data directly to disk
* s2t propq.entry.status to WRITING
* Write status to disk
* Release tokens
*
* If error,
* if error number < 3,
* increment error number
* else,
* zero error number
* set propq. entry. status to ERROR
* ~l~~t~
* log error
* return VOID
* set propq.entry.status to WAITING
* call frfs_Propin to try again
* return VOID
*
*
*

Update LWM
Remove QUEUE entry

IBM Confidential
June 28, 1991
DRAFT

- 434 -

* return VOID
*
*
*
*
*
*
*
*
*
*
*
*
*

CALLS:

RPCS:

* RETURNS:

SAFS WriteData - write data to disk
SAFS WriteStatu - write status to disk
frfs_Propin - try to propagate the file again
tkm GetToken - get FRFS_WRITEPROP token
frfs_UpdateLWM - updates low water mark for replica
frfs_PQ:rmentry - remove entry from prop queue

AFS FetchStatus - gets file status (get additional READPROP tkn)
AFS FetchData - gets file data

* VOID
*/

--------------------------end frfs_propin()

frfs_ReadPropQ()

/* frfs_ReadPropQ ()
*
* This is a background activity started at initialization time.
*
* It waits for an entry to appear in the propagation queue and processes
* it appropriately.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Loop forever:
zero holding counter
wait for new entry to appear in queue

if FRS status is RECONCILING or INVALID
wait for status change

for each entry in queue
if status is WAITING

propagate file
else if status is HOlDINGl

increment hodling counter
if holding counter

for each entry in queue
if status is WAITING or HOlDINGl

set status to WAITING

IBM Confidential
June 28, 1991
DRAFT

- 435 -

* propagate file
* End loop
*
* CALLS:
* frfs_Propin - propagate this file
*
* RETURNS:
* never
*/

-------------------------- end frfs_ReadPropQ()

-------------------------- frfs_Upd.ateLWMO

/* frfs_Upd.ateLWM (commit_count)
*
*
*
*
*
*

loops through the prop queue looking for commit counts

if no entry with a commit count lower than commit_count is found,
set aggregate commit count to commit count

* RETURN: void
*/

end frfs_Upd.ateLWM()

4.13.4 Node Selection

frfs_ChangeTokens()

/* frfs_ChangeTokens(afsFid,oldserver,newserver,rreqp)
*
*
*
*

for each entry in the scache tokenList, get a new token from the
new server and call the old server to release the token

* NOTE: we do not modify the tokenList since the tokens will still
* remain. Instead, we handle the AFS GetToken call ourselves.

*
* RETURN: void
*/

frfs_ChangeTokens(fidp, oldsvr, newsvr, rreqp)
struct afsFid *fidp;
struct cm_server *oldsvr, newsvr;
struct cm_rrequest rreqp;

IBM Confidential
June 28, 1991
DRAFT

{

}

- 436 -

struct cm_scache *scp;
struct afsToken *token, *realToken;
struct cm_tokenList *tlp;
register struct cm_conn *connp;
register long code;
struct afsFetchStatus OutStatus;
struct af sVolSync tsync;
long startTime;

scp = cm_FindScache(fidp);

for (tlp = (struct cm tokenList *) scp->tokenList.next;
tlp != (struct cm_tokenList *) &scp->tokenList;
tlp = (struct cm_tokenList *) tlp->q.next)

{

}

if (tlp->token.expirationTime < now)
continue; /* expired, skip it */

/* get token from new server */
token = (struct cm_tokenList *) tlp->token;
startTirne = osi_Time();
cm_StartTokenGrantingCall();
do {

if (connp = cm_Conn(fidp,AFS_FSSERVICEID,rreqp))

else

code= AFS_GetToken(connp->connp,fidp,token,
&cm_hyperZero,0,&realToken,&OutStatus,&tsync);

code = -1;
} while (cm_Analyze(connp,code,fidp,rreqp);
cm_EndTokenGrantingCall();
realToken.expirationTime += startTirne;
cm_MergeStatus(scp,&OutStatus,&realToken,rreqp);

/* release this token from the old server */
cm_QueueAToken(oldsvr,&token);

end frfs_ChangeTokens()

frfs_ConvertServer()

/* frfs_ConvertServer(vldb_entry,cm_server)

IBM Confidential
June 28, 1991
DRAFT

- 437 -

*
* Adds FRFS infonnation to the struct an server
*
* RETURNS: void
*/

end frf s _Convert Server ()

frfs_GetIDserver()

/* frfs_Getir ,=rver (srvrp, serverID)
*
*
*

loop through frfs_serverid structures for serverID

* RETURN: struct frfs serverid
* FAILURE if not found
*/

end frfs_GetIDserver()

frfs_GetServer ()

/* frfs_GetServer(frfs_server,type,offset)
*
* type is eit!;er RW, PRINCIPAL or ANY
* if type == any, return the first UNKNOWN server
* else loop through the list looking for a server of type
* return the nth server where n == off set
*
* RETURNS: an server.serverID
* FAILURE if no more servers of type are found
*/

frfs GetServer (srvrp, type, offset
struct frfs server *srvrp;

{
int type, offset;

struct frfs_serverid *idptr;
register int i = 0;

idptr = srvrp.RW.next;
while (idptr != NULL)
{ if (type == ANY)

{ if (idptr. status == UNKNOWN)

IBM Confidential
June 28, 1991
DRAFT

}

} else
{

}

- 438 -

return (idptr.cm_server.serverID);

if ((type = PRINCIPAL && idptr. cm_ server. f store = AIL)
I I (type = idptr. cm_ server. fstore))

{ if (offset = i++)
return (idptr.cm_server.serverID);

idptr = idptr.next;
}

return FAILURE;

end frf s _Get Server ()

frf s _ GetVolServer ()

/* frfs_GetVolServer(volID)
*
*
*

searches the frfs_server array for the server frfs server structure
which matches the file system ID

*
* RETURNS: pointer to struct frf s server
*/

end frfs_GetVolServer()

frfs_OrderServers()

/* frfs_OrderServers (serverList)
*
* For each server in serverList
* Call NSS and get load average and client count
*
* Reorder serverList such that the server with the lowest
* load average + client count is first in the list and that with
* the highest is last. If two servers have the same value, randomly
* select the order.
*
* RETURNS:
* void
*/

IBM Confidential
June 28, 1991
DRAFT

- 439 -

-------------------------end frfs_OrderServers() ---------------------------

------------------------- frfs_PickRepl()

/* frfs_;PickRepl (numServers)
*
*
*
*
*
*
*

Called whenever an FRS has responsibility for more than one replica
stored on a single node with numServers the number of servers
stored on this node.

Keeps a static counter which increments each time it i called.

* server selected is counter mod numServers
*
*
*
*
*/

RETURNS
pointer to server to be used

------------------------end frfs_PickRepl() -----------------------------------

------------------------- frfs_PickSS() --

/* frfs_PickSS (AFSfid, token, timestamp)
*
* This is the main entry point into the replication server.
*
*
*
*
*

This routine is called instead of tkm_GetToken() and with the
same arguments. If this server can manage the call, it will
call tkm_GetToken () and return the token.

* If I am the RW FRS,
* if status is INVALID or RECONCILING
* wait for status change
* if this is not an exception token,
* call tkm Get Token()
* return token
* else
* if token in exception table for this node,
* update timestamp
* else if token in exception table for another node,
* call tkm Get Token()
* if success,

IBM Confidential
June 28, 1991
DRAFT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

- 440 -

add node to exception table
return token

return failure
else (token is not in exception table)

for each node in responsibility list
send RPC revoking conf ilcting tokens
(RPCs are sent in parallel)

wait for all nodes to respond
if a node timed out (no response)

add node to out_of _sync list
if a node responded failure to revoke tokens

for each node in responsibility list
send RPC canceling token

add token to exception token table
call tkm_GetToken()
if failure,

for each node in responsibility list
send RPC canceling token

remove from exception token table
return failure code

return token

* else if RO FRS status is VALID,
* if this is an exception token,
* return GOTORW
* else if file in exception table,
* return GOTORW
* else,
* call tkm GetToken()
* strip exception tokens from token returned
* return token
*
* else if RO FRS status is NORWREPLICA,
* if this is an exception token,
* return ESITEDOWN for RW replica
* else if file in exception table,
* return GOTOSERVER
* else,
* call tkm GetToken()
* strip exceptiontokens from token returned
* return token
*
* else if RO FRS status is RECONCILING

IBM Confidential
June 28, 1991
DRAFT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

- 441 -

wait for status change
else if RO FRS status is INVALID

if iam PRINCIPAL

CALLS:

return GOTOPRINCIPAL
else

return GOTOANYSERVER

tkm_GetToken() - gets requested token for file afsFid
frf s _Std pEx () - strips exception token from token

granted by RO TKM
frf s _ E} ;1df ile - lookup file af sFid in exception table
frfs_EXl.ndnode - lookup node in file entry
frfs_EXupdate - updates entry in exception table
f rf s EXaddf ile - adds an entry in exception table for af sFid
f rf s EXaddnode - adds node to file entry

* RETURNS: GOTORW
*
*
*
*
*
*/

GOTOPRINCIPAL
GOTO.ANY SERVER
GOTO SERVER
return code from tkm GetToken
TKM ERROR TOKENCONFLICT

end frfs_PickSS()

frfs_RefreshServers()

/* frfs_RefreshServers(volp,type)
*
*
*
*
*
*
*
*
*
*

if type = PRINCIPAL
get a new principal server whose status is UNKNOWN or UP

else (type = ALL)

for all servers in the list,
check with the NSS to see if the server is back up
if UP, mark status UP
else replace server with one whose status is UNKNOWN

or UP

* RETURN: SUCCESS
* FAILURE if unable to find a server which is up
*/

frfs_RefreshServers (volp, type)

IBM Confidential
June 28, 1991
DRAFT

{

- 442 -

st:ruct an_volume volp;

st:ruct frfs server *srvrp;
st:ruct frfs_serverid *idptr;
register int i,j,stat;
st:ruct afsHyper *srvrid;

srvrp = frfs_GetVolServer (volp. volID);
if (type = PRINCIPAL)
{ for (idptr=srvz:p.RW.next; idptr!=NULL; idptr=idptr.next)

}

for (i
{

}

{ if (idptr.srvrp.fstore =ALL && idptr.status != DOWN

}

{ volp.servers[l] = idptr.srvrp;
return SUCCESS;

return FAILURE;

= 2, stat = 0; i < MAXSERVERS; i++)
if (nss_isup(volp.servers[i].serverID)
{ idptr=frfs_GetIDserver(srvz:p,volp.servers[i].serverID);

idptr.status = UP;
stat++;

}

/* if we found a server which is up, don't bother refilling the
* the server st:ructures at this time
*/

if (stat)
return SUCCESS;

/* none of the servers in the list are up, so find some that are
*note that we're not too picky here, we'll take anything that's up
*/

for (i
{

= 2; i < MAXSERVERS; i++)
for (idptr=srvrp.RW.next; itdptr!=NULL; idptr=idptr.next)
{ if (idptr.srvz:p.serverID = volp.servers[i].serverID)

continue;
if (idptr.status =DOWN)

continue;
idptr.status = UP;
volp.servers[i] = idptr.srvrp;

IBM Confidential
June 28, 1991
DRAFT

}

}

- 443 -

break;
}

if (idptr == NULL)
break;

if (i = 2)
return FAILURE;

else
return SUCCESS;

end frfs_RefreshServers()

frfs_SelectServer ()

/* frfs_SelectServer(afsFid,type)
*
*
*
*
*
*
*
*
*
*
*

returns a server structure pointer of type for file afsFid

gets file system inf o:rmation for af sFid

if type equal RW, returns RW server (first in list)
if type equal PRINCIPAL, returns principal

if principal which is second in list is down, find others
if type equal .ANY, choose next available RO
we might want to enhance selection of ROs to be more random

* RETURNS: struct cm server
* NOTFOUND
*/

frfs_SelectServer(fidp, type)
struct afsFid fidp;

{
int type;

struct cm volume *volp;
struct cm server *srvrp;

volp = cm_GetVolurne(fidp);

if (type = RW)
return (volp->cm_server[O]);

if (type = PRINCIPAL)
{ if (volp->cm_server[l].status =UP)

IBM Confidential
June 28, 1991
DRAFT

- 444 -

return (volp->an_server(l]);
srvrp = frfs _ RenewServer (volp, PRINCIPAL) ;
if (srvrp)

return (srvrp);
else

return NOTFOUND;

tryagain:

}

/* type ~ ANY */
for (i = 2; i < MAXSERVERS; i++)
{ if (volp->an_server[i] .status = UP

return (volp->an_server(i]);
}

if (frfs_RefreshServers(volp,ALL) ~SUCCESS)
goto tryagain;

if (volp->an_server[l] = UP)
return (volp->an_server[l]);

if volp->an_server[O] = UP)
return (volp->an_server[O]);

return NOTFOUND;

end frfs_SelectServer()

frfs_SetServer()

/* frfs_SetServer(an_volume)
*
*
*
*
*
*·

*

Selects MAXSERVERS servers for an_volume.servers[] and fills in
the an_volume.servers[] array.

sets an_volume.servers[OJ to RW, an_volume[l] to a principal,
and the rest of the servers to the next 14 severs in ordered list

* if the number of secondaries < MAXSERVERS-2
* add principals
*
* RETURNS: void
*/

frf s _Set Servers (volptr

IBM Confidential
June 28, 1991
DRAFT

{

- 445 -

struct cm_volume *volptr;

struct frfs server *srvrptr;
struct af sHyper *replicas;
struct afsHyper *principals;
struct af sHyper *ordered;
struct frfs_serverid *idptr;
struct attributes *attrs;

srvrptr = frfs_GetVolServer(volptr.volID);

srcrptr.RW.status = UP;
cm_volume.server[O] = srv...:9tr.RW.svrp;

replicas= rnalloc((srvrptr.replicas+l) * sizeof(cm_server.serverID));
principals =

rnalloc((srvrptr.principals+l) * sizeof(cm_server.serverID));

for(i = 0; i < srcrptr.principals; i++)
principals[i] = frfs_GetServer(srvrptr,principal,i);

principals[i] = 0;

/* Call the Node Status Server to prioritize the servers in the
* argument list
*
* ## Define exact nodess interface call
*/

ordered= rnalloc(srvrptr.principals + 1 * sizeof(cm server.serverID));
nss_PrioritizeNodes(&principals, &ordered);
for(i = 0; i < srvrptr.principals; i++)

principal[i] = ordered[i];
free (ordered) ;

idptr = frfs_GetIDServer(srvrptr,principal[O]);
cm_ volume. server [1] = idptr. srvrp;
idptr.status = UP;

for(i = 0; i < srvrptr.replicas; i++)
{ replicas[i] = frfs_GetServer(srvrptr,ANY,i);

if (replicas[i] == 0)

}
break;

IBM Confidential
June 28, 1991
DRAFT

- 446 -

ordered= malloc(i+l * sizeof(crn_server.serverID));
nss_PrioritizeNodes(&replicas, &ordered);

for(j = 0; j < i; j++)
{ if (j+2 >= MAXSERVERS)

}

break;
idptr = frfs_GetIDServer(srvrptr,replicas[j]);
crn_volume.server[j+2] = idptr.srvrp;
idptr.status = UP;

free (ordered) ;

/* We have filled in the RW, principal and as many partials as
* possible. If there are more slots, fill them in with
* remaining principals.
*/

j+=2;
if (j < MAXSERVERS)
{ for(i = O; i+j < MAXSERVERS; i++

}

{ if (principals[i+l] == 0
break;

idptr = frfs_GetIDServer(srvrptr, principals[i+l]);
crn_volume.server[j+i] = idptr.srvrp;
idptr.status = UP;

end frfs_SetServer()

f rf s _Store Vol ()

/* frfs_StoreVol (vldb_entry)
*
* Gets all replicas from the VLDB and stores them for future reference
*
* Searches the frfs server list for file system ID.
*
*
*
*
*
*
*

If file systemid is not found, then
add a server to the frfs server list
initialize the server
set frfs_server.RW to vldb_entry.servers[O]
frfs _ ConvertServer ()
set frfs serverid.status to UP

IBM Confidential
June 28, 1991
DRAFT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

- 447 -

set index to 1
else (this is not the first vldb_entry to be read for this file system)

loop through the server list to the end
set index to 0

starting with vldb_entry.servers[index], loop through vldb_entry.servers
allocate serverid storage
frfs _ ConvertServer ()
set frfs serverid.status to UNKNOWN

call frfs_SetServer() to set the servers in the file system array to
the "best" servers

CALLS:
frfs_GetVolServer - looks for entry in volume list
frfs_AddVolServer - add entry to volume list
frfs_ConvertServer - converts server entry into frfs entry
frfs SetServer - set server array to 16 ordered servers

* RETURNS: void
*/

end frfs_StoreVol()

frfs_ WhichServer ()

/* frfs_WhichServer (afsFid)
*
* Called by 01 when an errorcode of GOTOSERVER was received
*
* Loops through prop queue for af sFid
* return server listed in queue

*
* CALLS:
* frfs_PQfindfile

*
* RETURNS:
* pointer to server to use for this file
* error if file not listed
*/

----------------------- end frfs WhichServer() ---------------------------------

IBM Confidential
June 28, 1991
DRAFT

- 448 -

4.13.5 Network Instability Management

-------------------------- frfs_BeginRecon()

/* frfs_BeginRecon(node type

*
*
*
*
*
*

Called when PRINCIPAL or SECONDARY is trying to select a reconciler
and reconcile into a NORWREPLICA partition

Spawn this as a background process and return immediately

* if I am SECONDARY
* reconcile list contains all secondaries
* else if node type is SECONDARY
* for each node in responsible list
* send RPC notifying of NoRW
* reconcile list contains all principals
*
*
*
*

for each replica in reconcile list
send RPC notifying no RW

wait for nodes to return

* for each node returning,

*
*

put lwrn in reconciliation table

* select reconciler based on highest lwrn and position in volume list

*
* if I am reconciler
* send out reconciliation information

*
* CALLS:
* f rf s Reconciler - manages actual reconciliation information

*
* RETURNS:
* VOID
*/

/* frfs_EndRecon()

*

end frfs_BeginRecon() ----------------------------------

frfs_EndRecon ()

IBM Confidential
June 28, 1991
DRAFT

/---

*
*
*
*
*
*
*
*
*
*
*
*/

- 449 -

RPC received from reconciler

for each entry in exception token table,
add entry to propagation queue

original conunit count = current conunit count
current conunit count =reconciler's lwrn

set status to NORWREPLICA

RETURNS:
void

end frfs_EndR.econ() --------------------------------

frfs_FindRW() ---------------------------------

/* frfs_FindRW() (Will be replaced with keep-alive service - keep for logic)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

runs in background when status is NORWREPLICA

sleeps for a maximum of 60 seconds on an address which is updated
whenever a request for modification comes and the status is NORWREPLICA

sets static counter to time of last poll
if time elapsed since last poll is greater than 5 seconds

call NSS to see if RW is still down

if NSS indicates RW is up, set state to RECONCILING
if (iarn == principal)

else

notify all secondaries
frfs_Replinit ()

notify principal
frfs_Replinit O

* RETURNS: void
*/

---------------------------- end frfs_FindRW() --------------------------------
---------------------------- frfs GetExTable() ---------------------------------

IBM Confidential
June 28, 1991
DRAFT

- 450 -

/* frfs_GetExTable()
*
*
*
*
*
*
*
*
*
*/

Called by RO replica to either a principal or RW

If principal and status == RECONCILING
wait until status changes

RETURNS:
exception table

----------------------------end frfs_GetExTable()

frfs_GetFiles ()

/* frfs_GetFiles (lwm)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

Called by RO replica to either a principal or RW

If principal,
for each file in the propagation queue,

send propagation instruction

for each file in the file system

RETURNS:

check commit count against lwm
if (commit count > lwm)

send propagation instruction

SUCCESS when all propagation instructions have been acknowledged
FAILURE if a propagation instruction times out

--------------------------end frfs_GetFiles() ---------------------------------

-------------------------- frfs_GetRecon()

/* frfs_GetRecon (filelist)
*
*
*
*

called by the reconciler and contains list of files it needs

for each file in filelist,

IBM Confidential
June 28, 1991
DRAFT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

CALLS:

RETURNS:

- 451 -

look up locally stored file afsFid
if corranitcount < stored corranitcount

clear file from exception token table
put file in list to return

else if corranitcount == stored corranitcount
clear file from exception token table
return 0

else
add file to propagation queue; node = reconciler
,return 0

frfs_RPQaddfile - add file to reconciliation prop qUeue

list of files whose corranit count is higher
NULL

end frfs_GotRecon() ----------------------------

frf s _NoRW ()

/* frfs_No: ,; (node, LWM)
*
* RPC recieved when a node discovers there is no RW
*
* If FRS status is VALID
* set status to RECONCILING
* if I am PRINCIPAL or node is SECONDARY (secondaries reconciling)
* begin reconciliation (returns irranediately)
*

Return my lwm *
*
*
*

CALLS: frfs_BeginRecon - begin reconciliation into NOREREPLICA state

* RETURNS:
* Low Water Mark
*/

end frf s _NoRW ()

IBM Confidential
June 28, 1991
DRAFT

- 452 -

frfs_Reconciler()

/* frfs_Reconciler()
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

for each entry in the exception token table
add file and commit count to list of files to get
zero entry

for each node reconciling
send RPC containing list of files to get

wait for all RPCs to return
for each node returning

for each file in file list returned
add file to exception table
add file and node to reconciliation prop queue

for each node reconciling
send RPC indicating end of reconciliation (send recon prop q)

set status to NORWREPLICA

CALLS:
frf s EXaddfile - add entry to exception table
frfs_RPQaddentry - add entry to reconciliation prop q

* RPCS:
*
*
*

frfs GotRecon - sends lits of files to get for reconciliation
frfs EndRecon - end reconciliation (sends recon prop queue)

* RETURNS:
* VOID
*I

end frfs_Reconciler() -------------------------------

frfs_Replinit

I* frfs_Replinit (fsname)
*
* Initialize FRS for file system fsname.
*
*
*
*
*

Set state to RECONCILING
Get file system information from VLDB and °'15
Verify .frfsinfo file (### How to handle errors? ###)
Set iam to RW, PRINCIPAL, or SECONDARY

IBM Confidential
June 28, 1991
DRAFT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

If RW,

- 453 -

allocate memory for replica lists
put all principals in list of nodes for which RW is responsible
zero lock table
zero RPCwait table
zero exception token table

else if PRINCIPAL,
allocate memory for secondary replica ~ist
send RPC f rf s ROreconcil to RW replic

if unable to contact,
for each principal replica,

send RPC frf s ROreconcil to replica
if successful, break

if successful,

else
initialize for NORWREPLICA partition

for each untried replica
send RPC f rf s ROreconcil to replica
if successful, break

if successful,

else
initialize for NORW.REPLICA partition

set state to NORWREPLICA
set poll for RW
return VOID

return void

corrq:>are RW history with local history
if incorrq:>atible,

set state to INVALID
log error
return VOID

set initialization number
zero exception token table
zero propagation queue

set exception token table using RW exception table
create prop queue entries from file returned from RW

IBM Confidential
June 28, 1991
DRAFT

*
*
*
* CALLS:
*
*
*
*
*
*
*
*
*
*

- 454 -

set state to VALID
return VOID

VL_GetEntry
015_GetEntry
f rf s Readinf o
frfs_Verifyinfo
frfs ROinit
f rf s PollNode
frfs_CompHist
frfs EXtblinit

frfs _PQinit

- get volume header entry for file system
- get file system entry from 015
- read .frfsinfo file
- verify .frfsinfo against VIDB and 015 info
- initialize into NORWREPLICA partition
- add node to list to be polled for state change
- compare history of remote node with local
- read initialization table from remote node

and enter into local exception table
- read file list from remote node and enter

* into propagation queue and exception table
* if appropriate
* RPCS:
*
*
*

f rf s ROreconcil RPC telling replica the node is ready to
reconcile.

* RETURNS:
* VOID
*
*/

end frfs_Replinit

------------------------ frfs_ServerDown()
/* frfs_ServerDown (server, afsFid, flag)
*
* call the NSS to verify the server is down
* if server is up,
* return TRYAGAIN
*
* set server to DOWN in server list
*
* if flag is TRUE,
* if server is RW, return FAILURE
* select another server
* put new server in vnode
*
* CALLS:
* f rf s SelectServer - select a new server
*

IBM Confidential
June 28, 1991
DRAFT

.•
/

- 455 -

* RETURNS:
* TRYAGAIN
* FAILURE
* OK
*/

end frfs_ServerDown()

frfs_FRSServerDown()

/* frfs_FRSServerDown(afsFid,serverID)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

call t. NSS to verify the server is down
if server is up,

return TRYAGAIN

set server to DOWN in server list

if server is RW
set FRS state to RECONCILING
if I am PRINCIPAL,

for each principal replica
send RPC notifying RW is down

else
send RPC to principal notifying RW is down

else if server is PRINCIPAL
if another PRINCIPAL available,

else

send RPC to principal registering
mark principal as registered server

send RPC to RW registering
mark RW as registered server
set up poll for principal server

return DOWN

RPCS:

RETURNS:

f rf s NoRW - notify replica that RW is not available
frfs_RORegister - register with replica for responsibility

TRYAGAIN - node is still up, try again
DOWN - node is down

IBM Confidential
June 28, 1991
DRAFT

- 456 -

end frf s _ ServerDown ()

IBM Confidential
June 28, 1991
DRAFT

- 457 -

4.14 Data Structures

The following data structures are used by the FUSION Replication Service.

4.14.1 Modifications to DCE Data Structures

/* external view of the vldbentry structure as stored in the VIDB */
struct vldbentry {

char name[MAXNAMELEN]; /*Volume name*/
u_long volumeType; /* Volume type (RWVOL, ROVOL, BACKVOL) */

/**** BEGIN FRFS MODIFICATIONS HERE ****/
u_long replType; /* Full or Loose FRFS Repl3 tion */

/**** END FRFS MODIFICATIONS HERE ****/

} ;

/*

u_long nServers; /* Number of servers that have thi~ file system */

/* Server # for each server that holds file system */
struct afsNetAddr siteAddr[MAXNSERVERS];

u_long sitePartition[MAXNSERVERS]; /*Server Partition number*/
u_long siteFlags[MAXNSERVERS]; /*Server flags*/
u_long sitemaxR.eplicaLatency[MAXNSERVERS]; /*Per-site max latency*/
struct afsHyper VolIDs[MAXVOLTYPES];
u_long VolTypes[MAXVOLTYPES];
struct afsHyper cloneid;
u_long flags;
u_long maxTotalLatency;
u_long hardMaxTotalLatency;
u_long minimumPounceDally;
u_long hardMaxR.eplicaLatency;
u_long reclaimDally;
u_long WhenLocked;
u_long sparel;
u_long spare2;
u_long spare3;
u_long spare4;
char k_principal[MAXKPRINCIPALLEN];
char LockerName[MAXLOCKNAMELEN];
char charSpares[SO];

I* Used during cloning */
I* General flags */

* One structure per file system, describing where the volume is located
* and where its mount points are.
*/

IBM Confidential
June 28, 1991
DRAFT

- 458 -

struct cm_volume {
struct cm_volume *next; /* Next volume in hash list. */
struct cm_cell *cellp; /* this file system's cell */
struct lock_data lock; /* the lock for this structure */
struct afsHyper volume; /* This volume's ID number. */
char *volnamep; /* This file system's name, or 0 if unknown */

/*** BEGIN FRFS MODIFICATIONS HERE ***/
u_long repltype; /* full or loose FRFS replication */

/*** END FRFS MODIFICATIONS HERE ***/
struct cm server *serverHost -

[AFS _ MAXHOSTS] ; /* servers serving this file system */
struct af sFid dotdot; /* dir to access as •• */
struct af sFid mtpoint; /* The mount point for this file system. */
struct af sHyper roVol; /* RO filsys id assoc. with volume (if any)
struct afsHyper backVol; /* BACKUP filsys id assoc. with vol (if any)
struct afsHyper rWVol; /* RW file system id for this volume */
long accessTime; /* last time we used it */
long vtix; /* file system table index */
long copyDate; /* copyDate field, for tracking vol releases
short refCount; /* reference count for allocation */
char states; /* sneak in here for alignment reasons */

} ;

/************* token ID *********************/
/* token ID returned by token manager */
typedef struct hyper tkm_tokenID_t;

/*********** all the different types of tokens *****************/
/* all the different types of tokens that may be requested */
typedef enum tkm _ tokenType {

TKM NO TOKEN = -1,
TKM _LOCK - READ I TKM - LOCK_ WRITE,
TKM _DATA_ READ I TKM _DATA - WRITE,
TKM _OPEN_ READ, TKM _OPEN_ WRITE, TKM _OPEN SHARED, TKM _OPEN_ EXCLUSIVE,
TKM _OPEN _DELETE, TKM _OPEN _PRESERVE,
TKM_STATUS_READ, TKM_STATUS_WRITE,
TKM_NUKE,

/*** BEGIN FRFS MODIFICATIONS HERE ***/
FRS _READPROP I FRS - WRITEPROP I

/*** END FRFS MODIFICATIONS HERE ***/

/* If more members are added to the enumeration, TKM_ALL_TOKENS must */
/* remain last in the enumeration to avoid breaking things like arrays */

IBM Confidential
June 28, 1991
DRAFT

*/
*/

*/

, ..

- 459 -

/* indexed by instances of this type.
TKM ALL TOKENS
tkm_tokenType_t;

4.14.2 FRS Data Structures

struct extokens {

struct extokens * previous;
struct af sFID af sFID;
struct node token · oken;
u_long imestamp;
struct extokens * next;

};

struct node token { -
struct node token * next;
struct token id t token;
char * node;

};

struct extokens * extbl [HASHl] [HASH2];

struct propq {
struct propq * previc;us;
struct af sFID af sFID;
u_long occ; /* original commit count */
u_long ccc; /* current conunit count */
u_long timestamp;
struct propq * next;

} ;

struct frf slock {
struct afsFID afsFID;
struct afshyper nodes[MAXLOCKHOSTSJ;

} frfslock[MAXLOCKS];

IBM Confidential
June 28, 1991
DRAFT

*/

