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FUSION Design Specification

Locus Computing Corporation
IBM Corporation

1. Introduction

This FUSION Design Specification provides the detailed Internal Architecture
Specification for FUSION. It will describe the internal workings of each part of the
system at an algorithmic level and will describe key data flows between components.
Since FUSION intended to operate on a variety of underlying hardware and software
platforms, this document does not provide highly detailed module level designs
descriptions. Such designs would likely be highly specific to a particular base.
However, this document should serve as an excellent starting point for producing such
detail for a particular base.

The FUSION Functional Specification provides a rationale and an overview of the
FUSION system, as well as a specification for the functionality provided and the
interfaces to that functionality. Also provided is a description of error handling,
performance goals, and impacts on the customer. That document also contains high
level descriptions of the internal working of the system when such description is
necessary to completely explain the desired functionality.

This document logically follows the FUSION Functional Specification in sequence. It
provides a detailed specification for how to build each of the components of the
FUSION system. This includes detailed algorithms used within each module, the key
data structures used within each module, and descriptions of how data flows through
the system.

One goal of the FUSION Design Specification is to not repeat the material presented in
the FUSION Functional Specification. Consequently, this document presumes that the
reader has already read and understood the FUSION Functional Specification. Without
that background the reader of this document may become overwhelmed.

This components of FUSION are presented in this FUSION Design Specification in the
same order as they were presented in the FUSION Functional Specification. This is
done to aid the reader who is consulting both documents concurrently, as it allows the
reader switch between the two documents without having to search extensively to find
material on the same components.

Each section of the component specifications is structured in a similar way. First a
high level description of the design is presented to give the reader an overall
understanding of how the component functions. Then detailed specifications of the
algorithms and data are presented. This is specified using a combination of code,
pseudo-code, figures, and text. When appropriate, NIDL declarations for the new
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RPCs used by that component are provided. One of the principal design criteria was
to minimize changes required of the base system and of DCE. Since some such
changes are inevitable, those components that require such changes will provide
descriptions of those changes.
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2. The Distributed Execution Environment
2.1 File System Enhancements
2.1.1 Remote Devices

2.1.1.1 Introduction

This document describes the design of remote devices in FUSION. It describes how |
the device inodes will be handled though AFS, how they are opened, and their
operation after they are opened. The major issues to be addressed are:

open It must be possible to associate a particular device name with the correct |
node that the device is physically attached to. This node will be called
"the device node", to distinguish it from the node that the program is |
running on (which will be called "the execution node") or the node that
stores the inode that represents this device (which will be called the
"inode node"). In addition to associating the device name with the
appropriate device node, this design must address some book keeping |
issues at open to maintain the UNIX semantics of only calling the device
close routine on last close. One last issue for open is the design must be
able to work with AIX multiplexed devices where the device open routine
resolves that last part of the path naming the device.

read/write The design must allow for read and write operation as if the device was
stored locally. This is fairly straight forward except for cases where the
user request very large single transfer operations. This design will specify
the behavior of remote devices, but it is doubtful that a perfect solution
can be found.

ioctl Ioctl is a very tricky operation to implement remotely due to the free form
nature of this operation. This design will treat ioctls in two classes. The
first class of ioctl that will be considered are ioctl commands that are
listed in the FUSION Functional Specification as supported between
FUSION machines. These ioctls will be fully supported without any
special consideration that the device may be remote. The other class of
ioctl commands are "user defined" ioctls. These ioctl commands are not
specifically recognized by the FUSION remote device support code. A
mechanism will be provided so that a user can register an ioctl command
with the FUSION remote device code. After being registered, user
provided ioctl commands will be supported.

inode—only—operations The remote device inode must be able to be referenced as well
to support system calls such as stat, chown, chmod, etc. The design must
be able to support these operations, regardless of whether the device node |
is the same as the inode node.
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2.1.1.2 Lookup

In the current design, the lookup vnode op is handled by afs in the remote case and
the afs "glue" vnode op would handle the local case. The logical file system lookup
code will have to be modified to check to see if the vnode returned by lookup is a
remote device vnode. If it is, it will call a remote device support routine that will
allocate a new vnode that is initialized with remote device vnode ops. The vn_data of
this new vnode points to a structure that includes a pointer to the vnode returned by
lookup. The logical file system will return the new vnode in place of the vnode
returned from the lookup vnode operation. For AIX 3.1 this will have to be done
before lookuppn() checks for multiplexed device. This is so that the remote device
lookup vnode op is in place before the last lookup is performed for the multiplexed
device.

The remote device lookup vnode op will be a RPC call to a multiplex device lookup |
on the device node. The device node routine that resolves the last element of the path |
needs the vnode of the device inode, so the remote device lookup routine will use
vn_prep_export() to get a handle which the server part of remote lookup can use
vnode_reopen() to get the needed vnode. Then the reverse of this will be used to send
the vnode returned from mpx_lookup back to the client node. I

Pseudo code for rdev_lookup() is as follows:
rdev_lookup (device vnode, channel vnode, pathname, flags)

Algorithm:
Determine the node that stores the device, lookup the rpc handle
for the remote device service for that node.

device vnode handle = vn prep export (device vnode) ; |

rdev_lookup server (rpc_handle, device vnode handle, pathname, flags,
&channel vnode handle) ;

channel vnode = vnode_ reopen (channel vnode handle);

return;

rdev_lookup server (rpc_handle, device vnode handle, pathname, flags,
channel vnode handle ptr)
[in] rpc_handle;
[in] device vnode handle;
[in] pathname;
[in] flags;
[out] channel vnode handle ptr;

Algorithm:
dvp = vnode reopen (device vnode handle);
VNOP_LOOKUP (dvp, &channel vnode ptr, pathname, flags);
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channel vnode handle ptr = vp prep export (channel vnode ptr);
return;

This design has several implications for AFS. It means that AFS lookup will be able
to return a special file vnode (even though afs cannot handle other operations on

special files). It also means that AFS must be able to pass file types for device
vnodes and multiplexed device vnodes.

2.1.1.3 Open

Remote open will be implemented through a remote open vnode op. This code will
issue a RPC call to a server routine on the device storage node which will issue the
device open call. In order to do this the code must determine which node it must
contact. NEEDSWORK: The exact method of figuring out the device node is not yet
determined. This information will be retrieved from the afsFid that afs returned in the
vnode. When the remote server is called, an in—core vnode must be found (or created
if this is a first open) in order to process the open call. This will be done using the
primitives provided for open file export. The client side will call vn_prep_export()
with the vnode from lookup to get a "remote vnode handle", which the server side can
use to get the vnode using xvf_vreopen(). This handle is not the same as the "remote
device handle" that remote open will be returning, so care must be exercised to not get
them confused. In addition, the open count must be maintained. This will be done at
the device node in the device vnode/gnode. When a remote open RPC comes in to the
device node, the counts will be incremented as appropriate. In addition, a list of
remote nodes that have this device open must be maintained. This list will be hung
off a data structure that is keyed from the device vnode. A count of opens from that
node is stored in the list. If a new node is added to the list, the "keep alive" service
is notified the remote device server code cleanup routine must be called if the node
goes down.

NEEDSWORK: If this is the first open of a remote tty, and we don’t already have a
controlling terminal, we need to establish controling terminal or a new session as
needed. This looks as though it will require a change to the base operating system tty
line discipline code to understand that there may be a kproc acting as a proxy for a
remote open, otherwise it may set the kproc to be the process group for this tty.

The end result of the remote open operation is to actually open the remote device and
to return a remote device handle that will be used by the rest of the remote device
client routines to properly connect to the remote device server routines. A pointer to
the handle will be stored in the vnode data part of the client vnode. Pseudo code for
rdev_open:

rdev_open(vp, open flags, extension, vinfop)

Algorithm:
#ifdef AIX V3
rc = VNOP_ACCESS (vp, (mode from flags), ACC_SELF);
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fendif

if (rc !'= 0)
return (rc) ;

Determine the node that stores the device, lookup the rpc handle
for the remote device service for that node.

device vnode handle = vn_prep_export (vp) ;
rdev_open_server (rpc_handle, device vnode handle, flags, ext, vinfo,
nodeid, &remote io handle, &uerror, &specflags);
if (uerror != 0) {
return (stderr2errno (uerror)) ;
}
if (specflags == DEVNULL) ({
set vnode ops for data ops to local dev null ops.
} else if (specflags == DEVTTY) {
if (u.u_ttynode == curnode) {
NEEDSWORK: code to hack remote vnode to local
controlling tty vnode + extra open.
} else {
lookup the rpc handle for u.u ttynode.
rdev_open ctty(rpc_handle, u.u ttyd, u.u ttympx,
' flags, ext, vinfo, curnode, &remote io handle,
&uerror) ;
if (uerror != 0) {
return (stderr2errno (uerror) ;
}
vp->v_data = remote io handle;
} else {
vp->v_data

remote io handle;

}
return;

rdev_open server (rpc_handle, device vnode handle, flags, ext, vinfop,

nodeid, remote io handlep, uerror, specflags)
[in] rpc _handle;

[in] device vnode handle;

[in] flags;

[in] ext;

[in] vinfop;

[in] nodeid;

[out] remote io handlep;

[out] uverror;
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[out] specflags;

Algorithm:
vp = vnode reopen (device vnode handle);
if (isdevnull(vp)) {
*specflags = DEVNULL;
return;

if (isdevtty(vp)) ({
*specflags = DEVTTY;
return;

rc = VNOP_OPEN (vp, flags, ext, vinfop);
if (rc != 0) {
uerror = errnoZstderr (rc);
return;

}

/* keep track of which nodes have this dev open */

remote open node struct = find remote (vp, nodeid);

if (remote open node struct == NULL) {
remote open node struct = add remote (vp, nodeid);
remote open node struct->opencount = 1;

/* register with the "keep alive service" */

monitor nodedown (node, rdevclenup functp);
} else {

remote open node struct->opencount++;
}
remote io handlep = make remote handle (vp);
return;

2.1.1.4 Migration
Reopen operation must set up remote vnodes that are similar in function to a remote
open. Reopen is implemented in two stages. The first stage is the
"vno_prep_export()" vnode op that is used by the export file operation that is called as
part of the process migration operation. This operation will create a "reopen handle"
that will be shipped with the migrating process for use with the "fo_reopen()" VEFS
operation at the new node. The reopen VFS operation will find or create an
appropriate vnode at the new node and call its reopen vnode operation. If the new
node is remote from the device node, the reopen vnode operation will make an RPC
that will call a remote reopen function at the device node. This operation will
increment the open counts for the device vnode/gnode as well as the count that is in
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the remote node extension entry. The remote node will be added to "keep alive"
service if it is not already registered there. This RPC will return a device handle that
can be used for the rest of the remote device operations and a pointer to this handle
will be stored in the vnode data part of the new node device vnode. If this operation
is the result of a migration, the old (local) process will exit when the migration is
complete. This will result in a close of the local instance of the device, finishing the
transition from a local device to a remote device. If this was a remote to remote
migration, this procedure will be modified by having the "vno_prep_export()"
operation being set up to give a reopen handle that points at the device node. Then
the reopen operation would happen at the device node just as in the migrate from local
case.

2.1.1.5 Read/write
Remote read/write vnode op will be set to routines that will call RPC routines to
"function ship" the operation to the device node. NEEDSWORK: how are very large
user buffers handled?

2.1.1.6 inode-only—operations
This design assumes that inode only operations will be able to be supported by the
AFS operations just as if device inodes were file inodes. The remote device vnode
operations will call the coresponding AFS vnode operation that is in the saved vnode
from the original lookup though AFS. All of the arguments to the remote device
operation will be passed through to the AFS operation except that a pointer to the
AFS vnode will be passed instead of the pointer to the remote device vnode.

2.1.1.7 Ioctl

2.1.1.7.1 Introduction
One of the operations that a remote special file server must support is the ioctl() call.
This presents several problems which are outlined below, together with some proposed
solutions.

The cause of these problems is threefold. First of all, the ioctl() interface is untyped,
and therefore is difficult to express in a strongly typed language such as NIDL.

Secondly, the ioctl() interface was designed under the assumption that the target of the
call (i.e. a device driver) has unlimited and efficient access to the address space of the
caller. This is obviously not the case in the RPC-based system being built.

Thirdly, current Unix standards such as POSIX are aimed at source-code
compatibility, and not binary compatibility. But, our remote special file facility will
be a case of one kernel calling the services of another, possibly quite different kernel,
for example AIX3.1 calling System V.4. This kind of inter-operability has more of
the flavor of binary compatibility, and raises problems 2, 3, 4 and 5 below. It is
assumed such inter-operability is a requirement for FUSION software.
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The good news is that the code to solve most of these problems is fairly trivial to
write.

Section 2 outlines problems with remote ioctl()’s, and details solutions. Section 3
contains sketches of what the code for handling ioctl()’s does at the client and server.
Section 4 contains a list of well known ioctl()’s that need to be support.

2.1.1.7.2 Problems with ioctl()’s

2.1.1.7.2.1 Problem 1: ioctl() is untypable in NIDL
The ioctl() interface looks like this:

ioctl(fd, CMD, ARG);

The type (and existence) of ARG depends on the value of CMD. For example, here
are some of the types assumed by ARG, for various ioctl()’s:

none :

char

short

int

int *

long

struct termio *

struct sgtty *

struct ltchars *

struct winsize *

struct ttypagestat *

struct rtentry *

struct ifreq *

struct ifconf *

struct arpreq *

It is not possible to write down a single NIDL operation declaration which covers all
these cases, and which would actually work.

2.1.1.7.22 Problem 2: CMD encoding’s are not uniform
The encodings of CMD are not identical for all kernels. For example, in AIX 3.1
TCGETA is defined as:
#define TCGETA (TIOC | 5)
whereas in System V Release 3.2 TCGETA is defined as:
#define TCGETA (TIOC | 1)
Our solution to both of these problems is to provide a separate NIDL-defined
operation for each CMD symbol. So the interface definition includes:
void ioctl tcgeta(
[in] handle t device,
[out] termio t *arg,
[out] errno_t  *copy_of u error
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)

[idempotent]
void ioctl tcseta(

[in] handle t device,

[in] termio t *arg,

[out] errno t  *copy of u error
)i

void ioctl tcflsh(
[in] handle t device,
[in] int queue_selector,
[out] errno t  *copy of u error
)i

void ioctl tcsbrk(
[in] handle t device,
[in] int whether to send break,
[out] errno t  *copy of u error

)i

In order to support user written ioctls, the user is allowed to register a "callout" for
his command. Then his callout would have to use his NIDL interface to support his
ioctl.

2.1.1.7.23 Problem 3: bit field encodings are not uniform

The RPC layer can encode C structs, such as struct termio, in NDR form. However,
the layout of bit fields within integer fields in the struct could, in general, vary from
system to system. For example, POSIX only defines the NAMES of the bits inside
the fields of the struct termio. Each implementation is free to "#define IGNBRK" to
be any value it likes. This means the c_iflag field in the struct which is passed
through the RPC cannot have its normal type, "unsigned short", and the function
cannot rely on the local pre-processor-defined masks for the definition of the
individual bits.

The solution is to make NIDL type definitions for the bit fields using the "bitset
enum”" and "enum" type constructors, and to provide mapping functions, between the
NIDL datatype, and the native Unix datatype. The mapping functions would need to
be called in the client and in the server.

For example, the "struct termio" contains a field of type "unsigned short" called
"c_iflag". To provide a representation-independent version of this flag, one would
define, in NIDL, this datatype:

typedef short bitset enum
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/* These are POSIX defined. */

brkint,
icrnl,
ignbrk,
igncr,
ignpar,
inlcr,
inpck,
istrip,
ixoff,
ixon,
parmrk,

/* These ones are defined in AIX, inter alia. */

iucle,

ixany,

ascedit
} iflag nt;

The client code would call a function like the following to convert from "native iflag"
to "NIDL iflag":

iflag nt

native to iflag nt (unsigned short native)

{

iflag nt return value;
return value = 0;

#ifdef BRKINT

if (native & BRKINT)
return value |= brkint;

#endif

LI Y

#ifdef ASCEDIT

if (native & ASCEDIT)
return value |= brkint;

#endif

return return value;
IBM Confidential
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There would be a similar inverse function, iflag_nt_to_native(), to map the other way.

2.1.1.7.2.4 Problem 4: some struct definitions must be NIDLized

As a consequence of the above, new type definitions for those structs which appear in
ioctl() RPC’s and which have bit-fields defined in them are required.

Thus, the NIDL declaration for ioctl(TCSETA, ...) would look like:
[idempotent]
void ioctl tcseta(
[in] handle t device,
[in] termio nt  *arg,
[out] errno t  *copy of u error
):
where termio_nt is declared something like:
typedef struct termio
{

iflag nt iflag;

oflag nt oflag;

cflag nt cflag;

char size nt char size;

baud rate nt baud rate;

lflag nt 1flag;

char line; /* line discipline */

/* POSIX defined names of special characters. */

char veof;
char veol;
char verase;
char vintr;
char vkill;
char vquit;
char vSsusp;
char vstart;
char vstop;
char vmin;
char vtime;

/* AIX defines these. */

char veol2;
char vswtch;
} termio nt;
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This now means that a mapping functions to map between termio_nt format and
"native struct termio" format is required.

2.1.1.7.25 Problem §: errno encodings are not uniform

In coding the remote special file server (and possibly other servers), it will sometimes
be necessary to reflect back to the client, error conditions that originated in the
server’s kernel. These conditions, coded as numbers, must be converted to and from a
NIDL-defined (representation independent) datatype, because there is no guarantee that
all kernels will encode the same error symbol with the same integer value. For
example, POSIX defines a set of error values, but only by their symbolic name. Two
kernels can claim POSIX compliance, even though one is compiled with "#define
ENOMEM 22" and the other is compiled with "#define ENOMEM 44",

The solution here is to define, in NIDL, a type thus:
typedef enum
{
/* POSIX defined error conditions */
e2big,
eacces,
ebadf,
ebusy,

/* System V error conditions */
eadv,

ebade,

ebadfd,

ebadmsg,

ebadr,

e o0

} errno nt;

The server would contain a function like this:
errno nt errno_to_errno nt (int errno)
{
switch (errno)
{

oo o

case ENOMEM:
return enomem;
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And the client would contain a function like this:
int errno nt to errno (errno nt nidl errno)
{
switch (nidl errno)
{

case enomem:
return ENOMEM;

}
(Of course, both functions would probably be table driven.)

2.1.1.7.3 Code sketches for handling remote ioctl()’s

Here is roughly what would happen in the client and server when performing a remote
ioctl().

2.1.1.7.3.1 Client side (Special File VFS code):
switch (ioctl_cmd) {
#ifdef SAMPLE IOCTL CMD
case SAMPLE IOCTL CMD:
Get a well-typed pointer to the argument (if it’s a struct);
OR
Get a well-typed scalar containing the argument (if it’s an int, char, long);

If (the argument is a struct which needs to be NIDLized)
allocate an instance of the NIDL type;
convert the local struct to NIDL form;

Call strongly-typed client-stub code;

If (the ioctl() returns a struct which needs to be de-NIDLized)
convert the NIDL struct to local form;

If (returned nidl_ermo indicates an error)
convert nidl_errno to local_errno;
store local_errno in u.u_error;

If (appropriate)
return the value returned by the RPC;
break;
#endif SAMPLE IOCTL CMD

default:
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call user registered ioctl routines.

2.1.1.7.32 Server side (Remote device server):

(entered at the manager procedure)

int manager_proc_for_ioctl_sample(
handle_t device_handle,
sample_arg_t *arg,
errno_nt *nidl_errno)

{

#ifndef SAMPLE IOCTL CMD:
*nidl_ermo = errno_to_errno_nt (EINVAL);
return —1;

#else

Ascertain actual device (fd, or major/minor) from device_handle;

If (the argument is a struct which needs to be de-NIDLized)
allocate an instance of the local struct type;
convert the NIDL struct to local form;

Call driver (ioctl system call, or through devsw[]), with cmd =
SAMPLE IOCTL CMD, and arg = address of local struct;

If (returned errno or u.u_error indicates an error)
convert it to NIDL form and store in *nidl_errno;

If (appropriate)

return the value returned by the driver’s ioctl function;
#endif }

2.1.1.7.4 A list of most (?) well-known ioctl() CMD’s
The sources for the following were the AIX PS2 Genl source code, and include files
on System V, and BSD. The ioctl()’s have been grouped according to origin and
function. The groups are listed in approximate order of importance. (i.e. if some of

these groups are not going to be supported, they should be deleted from the end of the |
list, rather than the start.)

/* Origin: ATT Unix.

* Purpose: Terminal control.
* Arg types: struct * termio
*/
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TCFLSH,
TCGETA,
TCSBRK,
TCSETA,
TCSETAF,
TCSETAW,
TCXONC,

/* Origin: Version 7.
* Purpose: Terminal control.
* Arg types: struct * sgttyb
*/

TIOCGETP,

TIOCSETP,

TIOCSETN,

TIOCEXCL,
TIOCNXCL,

TIOCHPCL,

TIOCGETD,
TIOCSETD,

TIOCFLUSH,

/* Origin: BSD.
* Purpose: Terminal control.
* Arg types: scalars only, no structs.
*x/
TIOCSTI,

TIOCCERK,
TIOCSBRK,

TIOCCDTR,
TIOCSDTR,

TIOCSTART,
TIOCSTOP

TIOCSPGRP,
TIOCGPGRP,
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TIOCOUTQ,

TIOCBIC,
TIOCBIS,

TIOCCGET,
TIOCCSET,

TIOCGET,
TIOCSET,

TIOCGETC,
TIOCSETC,

TIOCGLTC,
TIOCSLTC,

TIOCGPAGE,
TIOCSPAGE,

TIOCLBIC,
TIOCLBIS,

TIOCLGET,
TIOCLSET,

TIOCMODG,
TIOCMODS,
TIOCMBIC,
TIOCMBIS,
TIOCMGET,
TIOCMSET,

TIOCNOTTY,

TIOCPKT,

-17 -

/* Origin: BSD (?)

* Purpose: Terminal control.

* Arg types: struct * tchars,

* struct * ltchars,

o struct * ttypagestat,
* struct * modem control,
* struct * tiocpkt.
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TIOCREMOTE,

/* Origin: BSD (?)

* Purpose: Various control functions.

* Arg types: scalars only, no structs.

* Notes: Some apply to ANY file, not just devices.

*/
FIOCLEX, /* set close on exec on fd */
FIONCLEX, /* remove close on exec */
FIONREAD, /* get # bytes to read */
FIONBIO, /* set/clear non-blocking i/o */
FIOASYNC, /* set/clear async i/o */
FIOSETOWN, /* set owner */
FIOGETOWN, /* get owner */

/* Origin: AIX (?)

* Purpose: ??
* Arg types: struct * termcb
* Notes: Found in <sys/termio.h>.
* ldopen, ldclose, ldchg interpreted by lpld.c
* (the line printer device-independent part).
* Also ttl.c interprets some.
*/
LDOPEN,
IDCLOSE,
LDCHG,
LDGETT, /* 2 */
LDSETT, /* 2 */
ILDGETDT, /* 2 %/
LDSETDT, /* 2 */
/* Origin: AIX.
* Purpose: Terminal control.
* Arg types: struct * tty page
*/
TCGLEN,
TCSLEN,
/* Origin: AIX Gen 1 (?).
* Purpose: Get and set partition info on a raw disk .
* Arg types: struct * dkpart
*/
DKGETPART,
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DKSETPART,
/* Origin: AIX.
* Purpose: Gets device-specific information.
* Arg types: struct * devinfo
* Notes: See "man devinfo" on AIX.
*/

IOCINFO, /* Gets device info */

IOCTYPE, /* Return device type, left shifted 8 bits */
/* Origin: BSD networking code.
* Purpose: Manipulate network layers below a socket.
* Arg types: struct * rtentry,
* struct * ifreq,
* struct * ifconf,
* struct * arpregq,
* struct * ie5 arpreq
* Notes: These might not belong in the special
* file server interface, but probably
* belong in the socket server interface.
x/

SIOCADDRT,

SIOCATMARK,

SIOCDARP,

SIOCDELRT,

SIOCGARP,

SIOCGHIWAT,

SIOCGIFADDR,

SIOCGIFBRDADDR,

SIOCGIFCONF,

SIOCGIFDSTADDR,

SIOCGIFFLAGS,

SIOCGIFMETRIC,

SIOCGIFMIU,

SIOCGIFNETMASK,

SIOCGLOWAT,

SIOCGPGRP,

SIOCSARP,

SIOCSHIWAT,

SIOCSIFADDR,

SIOCSIFBRDADDR,

SIOCSIFDSTADDR,

SIOCSIFFLAGS,

- 19 -
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SIOCSIFMETRIC,
SIOCSIFMIU,
SIOCSIFNETMASK,
SIOCSLOWAT,
SIOCSPGRP
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2.1.2 Remote Pipes
This document describes the design of remote pipe and FIFO in FUSION. Emphasis
is on the FIFO client/server protocol and the interface between the server’s policy and
storage modules. In addition to the major goal of providing UNIX semantics for
FIFOs in a distributed environment, two other considerations drive the FUSION FIFO
implementation: separation of data storage from distributed FIFO management, and

optimization to allow local data storage when all processes using a FIFO are running
on the same host.

Throughout, both unnamed pipes and named pipes are referred to as "FIFOs", except
where an explicit distinction is made between the two.

If all processes using a FIFO reside on the same host, no significant performance
penalty should be imposed for using the FUSION distributed FIFO code. In particular,
we envision an HP-style scheme for supporting named FIFOs. If all processes that
access a named FIFO reside on host A, then host A should do the work of storing the
FIFO data even though the named FIFO special file is stored on host B, the
controlling host for the FIFO. If an additional process on host C opens the FIFQ,
host B should then reclaim the FIFO and resume its responsibility as the storage host.
This process of transferring responsibility for the FIFO to a using host is called FIFO
lending (or borrowing). When a client host is acting as surrogate storage host, the
FIFO is said to be "on loan" to the client host.

2.1.2.1 The FIFO Virtual File System

The FUSION FIFO implementation uses the client/server paradigm, but the client and
server are really parts of the same virtual file system code. If all processes using a
particular FIFO are on one host, the client VFS at that host will be given
responsibility for managing and storing data for the FIFO. Since the client may need
to perform both storage host and using host functions (e.g. when the FIFO is on loan;
see Section 2.1.2.3.4), the code for both client and server functionality are placed in a
single FIFO VFS. Whether the FIFO VFS acts as server or client depends on the
storage host of the individual FIFO being accessed.

When we speak of the "FIFO client" or "FIFO server”, we really mean "the FIFO
VFS acting as client” or "the FIFO VFS acting as server."

Figure 1 shows the FUSION FIFO VFS. It is multi-threaded and comprises three
functional units: a VFS+ interface, an RPC interface, and a policy module (PM).
When FUSION code is added to a new vendor kernel, the VFS+ and RPC interface
code and the policy module are ported directly, and the vendor supplies their own
storage module implementation.

The VFS+ interface provides access to FIFOs for processes running on the local host.
The RPC interface provides access to locally stored FIFOs for processes running
remotely. The RPC calls used by this interface closely resemble the vnode operations
used by the VFS interface, but there are also some additional RPC calls to manage
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Figure 1. The FUSION FIFO Virtual File System

distributed FIFOs. For example, one such additional RPC informs a FIFO client that
it should take responsibility for managing a particular FIFO, since all processes using
that FIFO reside on the client’s host.

The policy module is the heart of distributed FIFO support in FUSION. It maintains
descriptors for both locally and remotely stored FIFOs. Operations on descriptors for
local FIFOs trigger corresponding calls to the storage module to store or retrieve data.
Operations on descriptors for remote FIFOs trigger RPC calls to the remote FIFO
SETVer.

The storage module presents a first in/first out byte stream abstraction to the policy
module. Storage module FIFOs can be created, written to, read from, and destroyed
by subroutine calls from the policy module. The policy/storage interface is well
defined and allows vendors to easily fit their preferred FIFO implementation into the
FUSION distributed FIFO model. Figure 2 describes the FUSION FIFO server data
structures, notice that the local VFS and FUSION VFS are connected through the
FUSION FIFO descriptor, it stores all the necessary information for the FUSION FIFO
operations. The FUSION VFS comes to exist when the pipe system call is made
locally or the remote access to a named pipe is requested from a client node. There is
a one to one correspondence between the FIFO descriptor and a remote client during
the FUSION FIFO operations.

2.1.2.2 Synchronization
In a non-preemptable uniprocessor UNIX kernel, FIFO I/O synchronization is achieved
using sleep() and wakeup(). If a process’s I/O request can be satisfied, it reads or
writes its data and returns to user mode. If not, it sleeps on some appropriate channel
and is later reawakened by the occurrence of some event, e.g. another process writing
data to an empty FIFO, and it can then proceed.

We assume kernel threads are plentiful and cheap, allowing FIFO RPC code to sleep
at the server end just as local FIFO operations do. If sleeping were to be done at the
client end, an elaborate callback mechanism would be required. We trust that the
provided kernel thread implementation will make this scheme unnecessary, all
blocking being done at the server’s FUSION VES layer and can be interrupted.
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It is possible to have multiple readers and writers for a single FIFO. It is assumed
that concurrent access is serialized in some convenient fashion, for instance by a token
passing mechanism.

2.1.2.3 End-of-file Condition

The read operation gets a return value of zero if there is no data in the FIFO and no
writing processes. Whenever data is removed from the FIFO there is a check for any
process that may be suspended, awaiting more space in the FIFO so they may
continue writing. If the FIFO storage node crashes during the read operation, the
system generates a server node down(SR_DOWN) error condition. The writer
processes receive the SIGPIPE signal when attempting to write a FIFO that has no
reading processes or the FIFO storage node went down during the write operation.

2.1.2.4 The Policy Module

The policy module maintains a pool of FIFO descriptors. A FIFO descriptor contains

all the state that the policy module needs for managing a FIFO: Infermation in the.

descriptor indicates whether it represents a locally or remotely stored FIFO. Each
descriptor is named by an ordered pair of <hostnbr, FID>, where hostnbr is a 32-bit
FUSION host number and FID is the AFS file identifier associated with the special file
of a named FIFO. For unnamed pipes, FID is not an actual AFS file identifier but a
special "cookie" assigned by the pipe’s storage host policy module. Cookies are
distinguished from real FIDs by having an illegal value in one of the FID subfields.
(Since AFS FIDs are 24 bytes long, it may be desirable to use a shorter cookie for all
FIFOs. This should be no problem as long as the name given to a FIFO descriptor
can uniquely identify the storage host FIFO.)

Figures 2 and 3 show the FUSION client/server organization in four different layers,
the top two layers are the FUSION policy module. We describe a named FIFO open
operation example, explaining the function of each layer. Suppose that a client
application issues an open system call for reading to a named pipe at remote host, this
is first handled by physical file system pathname lookup routine which will contact
client cache manager for each pathname component. A vnode with an AFS file
identifier is returned to the client at the end of pathname lookup, if the client can’t
find the vnode from the local FIFO descriptor list then it will send a message to the
server to open the named FIFO and send back the information of the named FIFO so
that this named FIFO can be opened at client. Upon receiving the RPC request from
the client, the FUSION FIFO server will search the virtual file system for this vnode.
If the search failed, the server will create a new FUSION vnode and FIFO descriptor
for this named FIFO. Otherwise, the named FIFO is opened at server node by using
base system vnode open routine, the FUSION vnode pointer is returned to the client so
that the named FIFO can be opened at client node. If a writing process exists before
the open or if the client opens the named FIFO with the no delay option, the open
returns immediately, even if there is no writer. But if neither condition is true, the
process sleeps at server end at the FUSION layer until a writer process opens the
named FIFO.
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| Figure 2. FUSION FIFO Server data structure

The data structure of the FUSION single node unnamed pipe operation is similar to
Figure 2 except that there is no AFS layer involvement at all.

2.1.24.1 FIFO Descriptors Are Objects
For purposes of the policy module to policy module RPC protocols, FIFO descriptors
are given a particular state (see Section 2.1.2.3.4, FIFO Lending Protocol). Since
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| Figure 3. FUSION FIFO client data structure

the behavior of the policy module will be different depending on the state of particular
FIFO descriptors, we envision an object-oriented approach. Read, write, open, and
close operations will be received from either the VFS+ or RPC interface, and will be
applied to particular FIFO descriptors in the same way regardless of their state. The
descriptor state can be used as an index into a "method table" of function addresses.
Thus the low level code executed for a READ operation depends on the descriptor
state. For example, the READ routine for a descriptor in CLIENT state issues an RPC
call, while the READ routine for a descriptor in SERVER state actually calls the
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storage module to read some data.

2.1.2.4.2 Preserving PIPE_BUF Semantics In A Heterogeneous Environment

The POSIX standard guarantees that WRITE requests of less than or equal to
PIPE_BUF bytes will be written atomically into a pipe or FIFO, that is, without being
interleaved with data from other WRITE requests. The value of PIPE_BUF varies
from host to host in a heterogeneous environment. To comply with the standard, the
policy module must choose the largest PIPE_BUF value from among all using hosts
that have a FIFO open for writing. Thus the client host’s PIPE_BUF value must be
passed along with an server_rfifo_reopen() RPC, and the operative value of PIPE_BUF
may be different from descriptor to descriptor on the same server host.

If a FIFO’s server host storage module implements FIFOs using a pinned memory
page of 4K bytes and the FIFO is opened for writing by a remote host whose native
PIPE_BUF is 8K, atomic writes of greater than 4K cannot be guaranteed at the server
host. In order to perform the FIFO operations efficiently, we have to find a node
which has the largest PIPE_BUF value to act as the storage node.

2.1.2.4.3 Notes on Policy Module RPC Protocol

1. Each RPC must pass a flags parameter, so that appropriate blocking behavior
can be done (i.e. O_NDELAY). The FIFO descriptor should not have to keep
track of the usage modes of all using hosts.

2. The client machine’s PIPE_BUF value must be passed with the
server_rfifo_reopen() RPC,

2.1.2.4.4 FIFO Lending Protocol
When all processes using a FIFO reside on the same host, RPC overhead can be
avoided by having that host manage the FIFO. A state transition protocol is used to
allow the controlling host to temporarily lend a FIFO to another host when all using
processes reside on the second host. If a process from a third host opens the FIFO,
the controlling host can reclaim responsibility for managing the FIFO.

Figures 4 and 5 show the state transition diagrams for controlling and non-controlling
hosts respectively.

This scheme allows diskless hosts to access named FIFOs without network overhead.
Further, it allows for smooth transition back to the controlling host when a reclaim
operation is done.

Section 2.1.2.3.4.1 presents a typical FIFO lending scenario. Section 2.1.2.3.4.2 gives
a brief description of each possible FIFO descriptor state.

2.1.2.4.4.1 FIFO Lending Example

Note: Currently we plan to have remote hosts that open a named FIFO be placed
immediately into BORROWER state, that is, a FIFO will initially be on
loan whenever possible.
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call server fifo reclaim();
returned "!empty"

| wait data to return.

v |

_—D> SERVER CLIENT

d ——— -
4+ — — — 4
+ — — — 4
+ — — - %

| -
call I I
server fifo loan (!empty)---wait data to move
to borrowing host.

Figure 4. State transitions at the controlling host

+ server fifo reclaim();
| return "!empty"
| send data back to lender.
v I
I | I I
--==> | I1ENDER | | BORROWER |
| | | |
| -
| I
server fifo loan(!empty) |
| |
+--—get data from lender—---+

Figure 5. State transitions at the non-controlling host

The primary states are CLIENT and SERVER. A FIFO descriptor on a host is
created in SERVER state when a named FIFO special file is opened on that host, or
when a process on that host makes a pipe(2) system call. A FIFO descriptor is
created in CLIENT state when a process opens a named FIFO special file on another
host, or when a process with an open FIFO migrates to this host. Note that the names
CLIENT and SERVER are not strictly correct, in that SERVER really denotes the
controlling host. I/O requests made by processes on the controlling host are fulfilled
without the FIFO descriptor ever leaving SERVER state, and without the involvement
of any CLIENT state FIFO descriptor.

Suppose that processes on host A open a named FIFO on host B¢ FIFO descriptors
are set up at both hosts. Initially the descriptor at A is in CLIENT state and the
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descriptor at B is in SERVER state.

The host B policy module may choose to lend the FIFO to host A, provided that the
only processes using the FIFO are on A. To begin the lending protocol, host B sends
a fifo_to_client() RPC call to the host A policy module. The FIFO descriptor at host
A can be identified by the FUSION vnode at host B and its node number.

The fifo_to_client() call takes an input parameter, isempty, which is true if and only if
there is no data in the FIFO. If the FIFO was empty, host B goes into LENDER
state. Upon receiving a fifo_to_client() RPC with isempty set to true, Host A becomes
responsible for managing the FIFO and is placed into BORROWER state. If there
was data in host B FIFO, then all the READ and WRITE requests are blocked until
the host B FIFO data is moved to the host A. The host A FIFO descriptor is now in
LENDER state and responsible for managing the FIFO.

When a third host, C, attempts to open the FIFO, the LENDER descriptor on host B
sends an server_rfifo_reclaim() RPC to host A. The protocol for reclaiming the FIFO
from the BORROWER host is much as described above.

2.1.2.4.42 FIFO Descriptor States

2.1.24.42.1 SERVER State.

Generally, a FIFO descriptor in SERVER state indicates that this is the controlling
host for the FIFO, and the local storage module is used to maintain the FIFO data
unless the FIFO has been loaned out to another host. When a descriptor object in
SERVER state detects that all its users are on a single host, it loans the FIFO to that
host using a fifo_to_client() RPC call. If the FIFO was empty at the time, it goes
immediately to LENDER state; otherwise, it has to wait for the FIFO data to copy to
the borrowing host.

2.1.24.42.2 LENDER State.
In this state, the controlling host FIFO descriptor is quiescent. All I/O is being
performed at the borrowing host. If a third host attempts to open the FIFO, the
LENDER descriptor must issue a server_rfifo_reclaim() RPC call to get the FIFO back
from the borrowing host. It then either reverts to SERVER state if the FIFO was
empty or wait until the FIFO data has been returned to the lending host.

2.1.24.42.3 CLIENT State.
A FIFO descriptor in CLIENT state represents a true remote FIFO client. All
operations are passed via RPC to the SERVER descriptor at the FIFO’s controlling
host. Upon receiving a fifo_to_client() RPC call, CLIENT descriptors prepare to
manage the FIFO locally by moving to BORROWER state, depending on whether
there is some data left in the FIFO on the lender host.

2.1.24.42.4 BORROWER State.
In this state the FIFO descriptor object has temporary control of the FIFO, and all I/O
is done using the local storage module. Receipt of an server_rfifo_reclaim() RPC call
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from the lending host causes the FIFO descriptor to retum. to CLIENT state if the
FIFO was empty, or return data to the lender.

2.1.2.5 Policy Module/Storage Module Interface

The policy module uses a vendor-specific storage module to store and retrieve FIFO
data. The storage module presents a simple FIFO abstraction, "pipe objects" or
pobj’s. Routines are provided to open, close, read, write and select pipe objects, test
for blocking conditions (empty FIFO, full FIFO), count the number of unread bytes in
the FIFO. To minimize data copying, storage module routines pass data to and from
the policy module using the uio structure to indicate the amount of data to transfer and
the buffer location to store the data. The storage module has no knowledge of the
FIFO lending protocol or any other aspect of the distributed environment; it simply
acts as the local repository for FIFO data.

The storage module may sleep waiting for resources (such as paged out data structures
or buffers), but it should never sleep because of a full or empty FIFO, or for
synchronization reasons. These conditions should be checked and handled by the
policy module.

2.1.2.6 Preliminary NIDL specification

/*
* Remote FIFO Interface Definition
*/

interface rfifo {

/*
* FIFO states
*/
typedef long enum { FIFO NULL,
FIFO_ SERVER,
FIFO CLIENT,
FIFO_LENDER,
FIFO_BORROWER } fifo state t;
/*

* The server send this structure to the client node in

* order to establish the server state in the client node.
*x/
typedef struct lend info {

unsigned long 1li trent; /* total readers count */
unsigned long li_twecnt; /* total writer count */
unsigned short 1li_rent; /* client read count */

unsigned short li_ wcnt; /* client write count */
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fifo state t 1li state; /* server state */

} lend info t;

/*
*
*

Return status for RPC calls

/

typedef enum {

COK,
WOULDBLOCK,
ERROR,
DRAINED,
AGAIN

} rf status t;

/*
*
*

Remote FIFO syscall-like RPC routines

/

void server rfifo reopen (

[
[
[
[
[
[
[
):
{

in ]
in
in
in
in
out ]

out ]

[ S S R W S '}

handle t h,

vnode_addr t vp,

long int open_flag,
nodeno_t reopening node,
long int ext,

pt uerror t *rc,

unsigned32 *st

struct vfs *rfifo vfs;

do locking
rc = check fifo state(vp, FIFO_SERVER);
/*

* return to caller, try again

x/
if (*rc == EBUSY) {
unlock;
exit;

}

*rc = local fifo reopen (vp,
reopening node,
open flag);
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void
server_rfifo read(
[ in ] handle t h,
[ in ] vnode addr t fusion vp,
[ in ] int flags,
[ in ] char *data buf,
[ in ] int *cnt,
[ in ] long offset,
[ in ] pt_uerror t *uerrorp,
[ in ] error_status t *st)
{
get kernel lock
*uerrorp = check fifo state(fusion vp, FIFO_SERVER);
if (*uerrorp == EBUSY) {
unlock;
return;
}
setup iovec for reading
initialize uio structure
find the FIFO descriptor associated with the remote client
get base system vnode pointer from FIFO descriptor
VNOP_RDWR (base vp, rw, flags, &uio, ext, vinfo)
release kernel lock
}
void

server rfifo write(

[ in ] handle t h,

[ in ] vnode _addr t fusion vp,
[ in ] int flags,

[ in ] char *data buf,
[ in ] int *cnt,

[ in ] long offset,

[ out ] pt_uerror t *uerrorp,
[ out ] error_status t *st)

get kernel lock
*uerrorp = check fifo state(fusion vp, FIFO SERVER);
if (*uerrorp == EBUSY) {
unlock;
return;
}
setup iovec for writing
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initialize uio structure

find the FIFO descriptor associated with the remote client
get base system(storage) vnode pointer from FIFO descriptor
VNOP_RDWR (base vp, rw, flags, &uio, ext, vinfo)

release kernel lock

server rfifo close(

}

[ in ] handle t h,

[ in ] vnode_addr_t fusion vp,

[ in ] int flag,

[ in ] nodeno_t closing node,
[ out ] pt_uerror t *rc,

[ out ] error_status t *st

get kernel lock
*uerrorp = check fifo state(fusion vp, FIFO SERVER);
if (*uerrorp == EBUSY) ({
unlock;
return;
}
find the FIFO descriptor associated with the remote client
*rc = local fifo close(fusion vp, flags, closing node);
release kernel lock

[ idempotent ] void server rfifo getattr(

“e

—~—

}
/%

[ in ] handle t h,

[ in ] vnode addr t vp,

[ out ] pt_vattr t *vattrp,
[ out ] pt_uverror t *uerrorp,
[ out ] unsigned32 *st

get kernel lock
VNOB_GETATTR(VP, vattrp)
release kernel lock

* This RPC call is used to effect protocol state transition
* in the Policy Module lending scheme at client node
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*/
[ idempotent ] fifo to client(
[ in ] handle t h,
[ in ] nodeno_t curserver,
[ in ] vnode addr t fvp,
[ in, length is(*cnt) ]char data buf [REMOBJ MAXBUF],
[ in, out ] long *cnt,
[ in ] lend info t *lend info ptr,
[ out ] pt_uerror t *rc,
[ out ] unsigned32 *st

~e

—_—

search the FUSION vfs to find the wvnode that
has the server fusion vnode
if (CLIENT state) {

allocate an inode from client pipedev

get a base system vnode from the inode

set the FIFO state in BORROWER state

update the read/write counts in the FIFO descriptor
}
if (BORROWER state) {

set up the local uio structure

flags |= FNODELAY

VNOP_RDWR (base_vp, rw, flags, &uio, ext, vinfo)
}
if (the server is in CLIENT state) {

change the client to be the SERVER state

if (total read == 0)

VNOP_CLOSE (base_vp, FREAD, vinfop);
if (total write == 0)
VNOP_CLOSE (base_vp, FWRITE, vinfop) ;
}
wakeup any reader/writer for the FIFO lending to finish.
}

} /* end of interface rfifo */

2.1.2.7 Preliminary header file describing storage module interface
/*
*

* pobj.h — Pipe OBJect interface
*
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* These routines define the interface between the FUSION FIFO
* VFS’s policy module and the vendor’s FIFO storage module.

*x/

/*

The structure of the FIFO descriptor which is allocated
* for each FUSION FIFO, when they get accessed by remote hosts.
*/
struct rfifo hdr {

int fi_node; /* client of the FIFO */ I

caddr t *fi vnode addr; /* point to the base system vnode */|

enum vtype fi type; /* type of object */ I

int fi clients; /* total clients of the FIFO */ |

int fi_trent; /* total readers */ I

int fi_twent; /* total writers */ I

unsigned long fi_ state; /* FIFO state */ I

int fi wait; /* event list of processes waiting on */|
/* FIFO data lending */ |

unsigned long fi flag; /* flag accessible to FIFO */ I

struct rfifonode *rfifo; /* point to FIFO descriptor list */ |
}

struct rfifo data {
struct rfifo data *next rfifo; /* next descriptor */
struct rfifo data *prev rfifo; /* previous descriptor */

int node; /* client node number */
short rfifo rent; /* read count */ *
short rfifo went; /* write count */
}: B *
/*
* the value of fi flag |
*/
#define O RDWR 0001 |
#define O NONBLOCK 0002 |
#define FINOREAD 0003 /* unread pipe data */ |
/* *
* The FUSION FIFO reopen routine either does the reopen of
* the FUSION vnode lcoally or create a local vnode for the remote |
* FIFO and send RPC request to the server to do the reopen. |
* I

IBM Confidential
June 28, 1991
DRAFT



-35-

* Input parameters: |
* *visp pointer to the FUSION vfs |
* *reopen data contains the FUSION vnode and the node number|
* **fvp pointer to a pointer to the FUSION vnode I
* open_flag FREAD/FWRITE I
*

I
* Output parameter: I
* **fvp the FUSION vnode I
*

I
o Return value: |
* 0 success I
* EBUSY l
* ENOMEM I
* I
*/

fusion fifo reopen(struct vfs *vfsp, I
caddr_t *reopen data, I
struct vnode **fvp, |
int open_flag, I
caddr_t *vinfo) I

loop: |
get the server vnode and server node number from reopen data |
/*
* if the vnode has returned to its originating
* site, the reopen will be local

*/
if (server node == cursite) {
fifo_reopen (server vp, I
server_node, [
open_ flag, |
vinfop) ; |
*fvp = server vp; |
return rc; |
}
/*
* build a local FUSION vnode for the remote FIFO
*/

request = CLIENT; |
vp = fusion vnode (fvfsp,
server _vp,
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server node,

FIFO_CLIENT,
request,
obj_type)
if (vp = NULL)
rc = ENOMEM;
goto out;
}
/*
* performance the server node reopen
*/
rc = ffifo remote reopen(reopen data,
open flag,
vinfop)
if (rc == EBUSY)
goto loop;
out:
if (!remote open ok) {
VNOP_RELE (vp)
vp = NULL;
}
*fvp = vp;
return rc;
}
/*
* This is the FUSION read/write routine,
* if the FUISON vnode is remote then RPC to the server to
* do the read/write.
*
* Input parameters:
* *vp pointer to the FUSION vnode
* w UIO READ or UIO WRITE
* *uiop pointer to uio struct
*
* Output parameters:
* none
*
* return value:
* 0 success
* EBUSY
*
*/
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fusion fifo rdwr (struct vnode *vp,
enum uio rw rw,
int flags,
struct uio *uiop)

loop
get the pointer to the FIFO descriptor
check fifo state(vp, 0)
if (FIFO is local) {
get the base vnode pointer
VNOP_RDWR (base vp, rw, flags, uiop, vinfop)
}
else {
rc = ffifo remote rdwr(vp, rw, flags, uiop)
if (rc == EBUSY)
goto loop;
}
return rc;
}
/ *
* This routine does the close of the FUSION vnode.
* If the FUISON vnode is remote then RPC to the server to
* do the close.
*
* Input parameters:
* *vp pointer to the FUSION vnode
* flags FREAD/FWRITE
*
* Output parameters:
* none
*
* return value:
* 0 success
* EBUSY
*
*/
fusion fifo close(struct vnode *vp,
int flags)
{
loop:

get the pointer to the FIFO descriptor
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if (FIFO is local)
local fifo close(vp, flags, cursite)
else {
rc = ffifo remote close(vp, flags, cursite)
if (rc == EBUSY)
goto loop;
}

return rc

/*

* This is the client node FIFO read/write routine
*

* Input parameters:

* *vp pointer to the FUSION vnode
* w UIO READ or UIO WRITE

* *uiop pointer to uio struct

*

* Output parameters:

* none

*

* return value:

* 0 success

* EBUSY

*

*/

ffifo remote rdwr (struct vnode *vp,
enum uio_rw,
int flag,
struct uio *uiop)

get the node number and the FUSION wvnode of the server
calculate the total fifo data in uio structure
if (rw == UIO_READ) ({
do {
num read = MIN(total data, MAX BLK SZ)
size = num read
/*
* RPC call to read remote fifo data into local buffer
*/
server rfifo read(h,
server vnode,
flags,
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loc_buf,
num read,
offset,
uerror,
st)

/*

* check return status

*x/

if (st != rpc_s ok || uerror == EBUSY)
return uerror;
rcnt = uiomove (loc_buf, num read, rw, uiop)
total data -= num read
} while (num read == size && total data > 0)
else if (rw == UIO WRITE) {
do {
/*
* save offset before uiomove change it
*/
save offset = uiop->uio_offset
num written = MIN(total data, MAX BLK SZ)
size = num written
/*
* We need to restore the uio struct, if the
* writer blocked or RPC failed
*/
uiosave (uiop, uiosave buf);
went = uiomove (loc_buf, num written, rw, uiop)
if (went < 0)

return (wcnt)
/*
* RPC call to write data into remote open fifo
*/

server rfifo write(h,
server vnode,
flags,
loc buf,
num written,
write offset,
uerror,
st)
if (st != rpc s ok || uerror == EBUSY) ({
uiorestore (uiop, uiosave buf)
return uerror
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}
total -= num written
} while(num written == size && total_data > 0)

This is the client node FIFO close routine

Input parameters:

*vp pointer to the FUSION vnode
int flag
int closing_node

Output parameters:
none

return value:
0 success

ffifo remote close(

/*

* % % % ¥

vnode_addr t vp,
int flag,
caddr_t vinfo)

find the FUSION vnode pointer
get the node number of the server
server_rfifo close(h,
server vp,
open flag,
cursite,
&rc,
&st)
return rc

This is the client node FIFO reopen routine

Input parameters:
*reopen data pointer to the FUSION vnode
flag FREAD/FWRITE
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*
* Output parameters:
* none
*
* return value:
* 0 success
* EBUSY
*x
*/
ffifo remote reopen(caddr t *reopen data,
int flag)
{
get the server vnode and server node number from recpen data
server_rfifo reopen (h,
server vp,
flag,
cursite,
&rc,
&st)
if (st != rpc_s ok) {
if (rc != EBUSY)
rc = EIO
}
return rc
}
/*
* This is the FUSION close routine at server node
*
* Input parameters:
* *vp pointer to the FUSION vnode
* flag FREAD/FWRITE
* closing node the node that request the close operation
*
* Output parameters:
* none
*
* return value:
* 0 success
*
*/
local fifo close(struct vnode vp,
int flag,
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closing node)

get the FIFO descriptor pointer
get the base vnode pointer
search the client list to find the client that requests the close ops|
if (not found)

return ENXIO
if (FREAD) {

decrement the total read count of this client

decrement the total read count of the FUSION FIFO vnode

if (total read count of the vnode == 0)

VNOP_CLOSE (base_vp, FREAD, vinfop)

| aad
Hh

(FWRITE) {
decrement the total write count of this client
decrement the total write count of the FUSION FIFO vnode
if (total write count of the vnode == 0)
VNOP_CLOSE (base_vp, FWRITE, vinfop)

if (total read count and write count of this client == 0) {
delete this client from the list
decrement the total count of the client
free up the base vnode if this is the last client on the list
}
if (all the readers/writers are on the same client node)
rfifo lend(base vp, vp, client node)
return rc

This is the FUSION reopen routine at server node

Input parameters:

*server vp pointer to the FUSION vnode
node the node requesting the reopen
flag FREAD/FWRITE

Output parameters:
none

return value:
0 success
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*/ I
local fifo reopen(struct vnode *server vp, |
int node, |
int flag) |
{ I
get the FIFO descriptor pointer |
get the base vnode pointer |
search the client on the client list |
if (not found) I
add the new client to the list I
if (FREAD) ({ |
increment the total read count of this client |
increment the total read count of the FUSION FIFO vnode I
} |
if (FWRITE) ({ |
increment the total write count of this client I
increment the total write count of the FUSION FIFO vnode I
} I
return rc |
} |
/* I
* This routine called from local fifo close() at server node |
* to invoke the FUSION FIFO lending protocol. |
* |
* Input parameters: |
* *vp base system vnode |
* *fvp the FUSION vnode at server node |
* node the node that will be the FIFO new storage node |
* |
* Qutput parameters: |
* rc 0 success. |
* -1 fail. I
* I
x/ |
rfifo lend(vp, fvp, node) |
struct vnode *vp; /* base system vnode */ |
vnode addr t  *fvp; /* FUSION vnode at server node */ |

int node;

get kernel lock |
set the FIFO state to FIFO_CLIENT |

IBM Confidential
June 28, 1991
DRAFT



initialize the struct of lend info which will get send to l
new storage node |
do {
setup the uio struct I
VNOP_RDWR (base_vp, rw, flags, &uio, ext, vinfo) '
num read -= uio.uio_resid;
/*
* Push any data to the borrower, along with an
* indication as to whether we’re done or not.

*/
err = client push fifo(node,
tvp,
pipe buf,
&num_read,
&lend info)
if (err) {
rc = -1;
unlock

}
else rc = 0;
} while(fifo_state == FIFO LENDER)
fifo state = FIFO CLIENT
wake up all the readers/writers that are waiting for
FIFO lending to finish.
return rc

/*
* This routine called from rfifo lend() |
* to push the FUSION FIFO data to new storage node. I
* I
* Input parameters: |
node the node to which the FIFO data get push |
I
I
I

*vp base system vnode
*data buf contains the FIFO data
*cnt amount of the data get pushed

*lend info ptr pointer to a struct that has the server FIFO info|

Output parameters:
*cnt

return value:
0 success

LA IS S S I I I B
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* EIO |
*
*/
client push fifo(int node,
struct vnode *vp,
char *data buf,
int *cnt,
lend inf t *lend info ptr)

get the remote node handle
fifo to client (h,

Return value:

|
|
cursite, |
VP, I
data buf, !
cnt, I
lend info ptr, l
&err, |
&st) |
if (st != rpc_s ok) { |
err = EIO I
} I
return err |
} I
/* I
* This routine allocates a FUSION vnode and the FUSION FIFO descriptor. |
* The FIFO descriptor contains all the necessary information about
* the remote FIFO if there is one exists, and two pointers which |
* point to the base system vnode and a list of remote clients of the FIFO. |
* |
* Input parameters: I
* *fvfsp pointer to the FUSION vfs. |
* *vp pointer to the FUIOSN vnode if remote, |
* or the base vnode if local. |
* node node number of the remote FIFO, or cursite if local. |
* fifo state FIFO_SERVER/FIFO_CLIENT |
* request either from the client node or the server node. |
* obj type type of the remote object of the vnode. |
* |
* Qutput parameters: |
* none |
* |
* |
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* a pointer to the FUSION vnode/gnode.
*

*/
fusion vnode (struct vfs *fvfsp,
vnode addr t *basevp,
int node,
unsigned long fifo state,
char request,
enum vtype obj_type)

if (request from client) {
find the FUSION vnode from the FUSION VFS
if (found) ({ |
return fusion vp; |
}

} else { I
allocate memory space for gnode and the FIFO descriptor|
if (state == FIFO_SERVER) { |

initialize read/write count in the FIFO descriptor|
} |
if (state == FIFO _CLIENT) { |

initialize read/write count in the FIFO descriptor|
} I
connect the FUSION vnode to base vnode |
thru the FIFO descriptor I
install the FUSION vnode ops |
/* I
* allocate the FUSION vnode |
*/ I
rc = vn_get (fvfsp, gnp, &vp); |
if (rc 1= 0) { !
xmfree (space allocated for gnode) |
return base vnode; |

} [

else return (FUSION vnode) |

|
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2.1.3 Remote Sockets
This section of the FUSION Design Specification describes the operation of remote
sockets in the FUSION environment. It explains the data structures needed, the
routines that must be changed and the code that must be added. It explains the design

of the remote socket calls and how the remote socket client/server interaction takes
place.

The Berkeley Socket abstraction defines an interface to interprocess communication,
with a socket as an endpoint of communication. There are two socket domains
commonly provided. The UNIX domain sockets is an IPC mechanism similar to a
bidirectional pipe. The Internet domain provides an interface to the networking
services of TCP/IP. Other domains to support other networking services such as OSI
could realistically be expected in the near future.

With FUSION’s remote processing capabilities, a mechanism is needed to allow
processes to transparently use sockets controlled on a remote node. This is important,
because the underlying network protocols operate below the RPC layer, and in general
do not provide mechanisms to redirect communication to another node. The FUSION
remote socket support will allow a process with open sockets to move to or be created

on another node, without any support from the underlying network protocols (e.g.,
TCP/IP).

2.1.3.1 Overall Design
The FUSION remote socket service is available for both datagram (SOCK_DGRAM)
and connection oriented services (SOCK_STREAM) for both UNIX domain
(AF_UNIX) and Internet domain (AF_INET) protocol families.

An additional flag bit SS_ISREMOTE is defined for the socket state field. If this bit
is set to one, the socket is an instantiation of a socket being used on this node that is
controlled at a remote node. A user can only create sockets on the local node. A
remote socket is only created if a process is created on or moved to another node
while a socket is open.

When a remote socket is created, the associated file operations table of the file
structure is filled in with remote socket client routines. These bundle the requests and
ship them to the node where the socket is controlled, using the DCE RPC
mechanisms. On the controlling node these RPCs are handled by a server thread.
The requests are serviced on that node, and any result or error indication is returned to
the client code. If a particular kernel implementation does not support the file
operations implementation, very small hooks into the base kernel will be added within
each system call to intercept the system call as soon as it determines the file descriptor
is a socket.

Since it is possible to access sockets through special system calls in addition to
regular file operations, the FUSION design requires minor modifications to these calls.
These changes detect if an access is to a socket controlled on a remote node. If so,
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the corresponding request is shipped to the controlling node via an RPC mechanism.
There a server routine handles the access, and ships any result or error indication to
the accessing node.

The FUSION remote socket service also provides support for the extended file
operations "fo_prepare_for_export" and "fo_reopen". These operations are part of the
general file reopen mechanisms discussed in Section 2.1.6. They are used when a
process is created on or migrates to another node while a socket is open. These
routines support the cases of when the process has a local socket open, when a
process has a remote socket open and goes to another remote node, and when a
process has a remote socket open and goes to the original node controlling the socket.

The remote socket layer does not require special support for some of the standard file
access functions. These include select(), fentl(), and tracking usage counts of local
and remote sockets. They are handled by the file operations above the socket layer.

2.1.3.2 Remote Socket Data Structures
The data structures needed to support remote sockets in FUSION are defined in this
section.

2.1.3.2.1 Support for SS_REMOTE Flag
The SS_ISREMOTE bit is added to the defines for the so_state field of the socket
structure. This is defined in the header file socketvarh in most socket
implementations.

#define SS REMOTE 0x800 /* socket is controlled at a remote node */

The value chosen here was 0x800 because this value does not conflict with any BSD,
AIX, or OSF. This value is only interpreted locally and the only requirement of this
design is that it not conflict with other flag bits in the local implementation.

2.1.3.2.2 Support for Storing the Controlling Node of the Socket
When a socket is controlled at a remote node, the socket stores the internet address of
the controlling node. This is done by an additional data structure called the remote
socket handle. The socket structure is modified to contain a pointer to this structure.
This is defined in the header file socketvar.h in most socket implementations.

caddr t so_rsohandle;

To minimize impact on the base system, this field should be overlaid with the so_pcb
field in the standard socket structure. The so_pcb field is not used when the socket is
remote. Overlaying this avoids changing the socket structure and thus avoids changes
to kernel diagnostic tools. ‘
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2.1.3.2.3 rso_reopendata Structure
The rso_reopendata structure is returned by rso_prep_export. It contains information
that can be used to uniquely identify an open file from a remote node. This
information consists of an identifier to locate the file table entry of this socket on the
controlling node (rso_re_rfileid), and a unique ID (rso_re_uniqueid) that can be used
to insure that the file table entry is still valid for this socket. The identifier of the file
structure is provided by the fo_prep_for_export file operation and is passed to the

fo_reopen fileop. It is usually the kernel virtual address of that file structure, but can
be anything significant to the generating host.

struct rso_reopendata {

int rso _re rfileid; /* ID of file structure on remote node */

int rso_re uniqueid; /* Unique ID to detect reboots */
}

2.1.3.2.4 rso_handle Structure
The rso_handle structure is used to refer to a remote socket on another site. It
contains RPC handle information (rsh_rpchandle), file reopen data (rsh_reopendata),
and socket information from the controlling node, including the domain (e.g.,

AF_UNIX or AF_INET) of the socket (rsh_domain), and the type (e.g.,
SOCK_STREAM or SOCK_DGRAM) of the socket (rsh_type).

struct rso_handle {

handle t rsh rpchandle; /* RPC handle */
struct rso_reopendata rsh reopendata; /* file reopen data */
int rsh domain; /* domain of socket */
int rsh_type; /* type of socket */

}

2.1.3.3 Functions
The functions used in the FUSION remote socket design fall into two categories,
which are file operations for remote sockets and extensions to socket specific system

calls along with the corresponding RPC server routines. In addition, subroutines to
support these functions are described.

2.1.3.3.1 File Operations for Remote Sockets
Typical file operation provided are fo_rw(), fo_ioctl(), fo_select(), fo_close(), and
fo_fstat(). Some implementations may provide fo_read() and fo_write() rather than
fo_rw(), and some implementations may not provide fo_stat. In addition to these
standard file operations, FUSION has defined two additional file operations, which are

fo_prepare_for_export() and fo_reopen() to support remote process operations, as |
described in Section 2.1.6.

2.133.1.1 rso_rw

The routine rso_rw() is called for doing reads and writes to a socket. It is
implemented by directly calling soreceive() or sosend() depending on whether the
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operation is a read or a write. This adapts easily into the FUSION architecture, which
provides remote versions of soreceive() and sosend(), called rsoreceive() and
rsosend(). Thus rso_rw() is a clone of soo_rw(), except that calls to soreceive() are
replaced with rsoreceive(), and calls to sosend() are replaced with rsosend().

Some file operations implementations such as OFS/1 provide separate read and write
fileops, called soo_read() and soo_write(). Remote versions of these are created just
as easily. The routine rso_read() is identical to soo_read() except that calls to
soreceive() are replaced with calls to rsoreceive(), and rso_write() is identical to
soo_write() except that calls to sosend() are replaced with calls to rsosend().

The routines rsoreceive() and rsosend() are described later, in sections 2.1.3.3.2.10 and
2.1.3.3.2.11.

2.1.3.3.12 rso_ioctl

The rso_ioctl file op is called when an ioctl operation is performed on a remote
socket. Ioctls require numerous RPCs because the RPC protocol cannot merely deal
with ioctl arguments as a series of bytes to be copied, but must recognize the
underlying types being dealt with by the ioctl. This routine rso_ioctl will package up
the known ioctls and send them to the remote socket server using the appropriate RPC
for that ioctl type. Unknown ioctls will pass the data to the controlling node as a
stream of bytes.

The following specifies the rso_ioctl file operation:
/ *

*

rso_ioctl(fp, cmd, data)
struct file *fp;

int cmd;

caddr_t data;

Abstract:
remote socket ioctl file op

Parameters
fp: pointer to file structure being closed
cmd: ioctl command being performed
data: user data or pointer to user data

Return Values:
error indication if an error occurred.

Algorithm:
get socket pointer from file structure
switch(cmd) {
case FIONBIO:
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case FIOASYNC:
case SIOCSHIWAT:
case SIOCSLOWAT:
copy in integer data from user space
call rso_ioctl inint RPC with the following parameters:
handle, fh, and f flags from socket structure
cmd passed as argument to routine
data copied in from user
pointer to status return variable
return status to caller

case SIOCSPGRP:

copy in unsigned long data from user space

call rso_ioctlinulong RPC with the following parameters:
handle, fh, and f flags from socket structure
cnd passed as argument to routine
data copied in.
pointer to status return variable

return status to caller

case SIOCGHIWAT:
case SIOCGLOWAT:
case SIOCGATMARK:
call rso_ioctl outint RPC with the following parameters:
handle, fh, and f flags from socket structure
cnd passed as argument to routine
pointer to int for return data
pointer to status return variable
if successful copy out integer data to user
return status to caller

case FIONREAD:

call rso_ioctloutulong RPC with the following parameters:
handle, fh, and f flags from socket structure
cnd passed as argument to routine
pointer to unsigned long for return data
pointer to status return variable

if successful copy out unsigned long data to user

return status to caller

case SIOCSARP:
case SIOCSARP 802 5:
case SIOCSARP X 25:
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case SIOCDARP:
case SIOCDARP 802 5:
case SIOCDARP X 25:
copy in ARP data from user space into rpc_arpreq structure
(byte count may be dependent on specific ioctl cmd)
call rso_ioctlinARP RPC with the following parameters:
handle, fh, and f flags from socket structure
cmd passed as argument to routine
data copied in.
pointer to status return variable
return status to caller

case SIOCGARP:
case SIOCGARP_802_5:
case SIOCGARP X 25:
call rso ioctloutARP RPC with the following parameters:
handle, fh, and f flags from socket structure
cnd passed as argument to routine
pointer to rpc_arpreq data structure for return data
pointer to status return variable
if successful copy out ARP data to user. The byte count may
be dependent on the particular ioctl cmd)
return status to caller

case SIOCGIFCONF:

call rso_ioctlIFCONF RPC with the following parameters:
handle, fh, and f flags from socket structure
cnd passed as argument to routine
max_index: maximum size of list based on size of

local internal structure

pointer to out_index value
pointer to buffer for returned interface list
pointer to status return variable

if successful copy out interface structure to user. The
out index value indicates the size of the list.

return status to caller

case SIOCGIFFLAGS:
case SIOCGIFMTU:
case SIOCGIFREMMIU:
call rso_ioctloutIFshort RPC with the following parameters:
handle, fh, and f flags from socket structure
cmd passed as argument to routine
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interface name string provided from caller
pointer to short for return value
pointer to status return variable

if successful copy out short data to user.

return status to caller

case SIOCGIFMETRIC:

call rso_ioctloutIFint RPC with the following parameters:
handle, fh, and f flags from socket structure
and passed as argument to routine
interface name string provided from caller
pointer to int for return value
pointer to status return variable

if successful copy out integer data to user.

return status to caller

case SIOCSIFMETRIC:

copy in integer data from user space

call rso_ioctlinIFint RPC with the following parameters
handle, fh, and f flags from socket structure
cmd passed as argument to routine
interface name string provided from caller
integer data copied from user space
pointer to status return variable

return status to caller

case SIOCSIFFLAGS:
case SIOCSIFMIU:
case SIOCSIFREMMIU:
copy in short data from user space
call rso_ioctlinIFint RPC with the following parameters
handle, fh, and f flags from socket structure
cand passed as argument to routine
interface name string provided from caller
short data copied from user space
pointer to status return variable
return status to caller

case SIOCGIFADDR:
case SIOCGIFBRDADDR:
case SIOCGIFDSTADDR:
case SIOCGIFNETMASK:
call rso_ioctloutIFaddr RPC with the following parameters:
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handle, fh, and f flags from socket structure
cnd passed as argument to routine
interface name string provided from caller
pointer to sockaddr t structure for return value
pointer to status return variable
if successful copy out sockaddr t structure to user.
return status to caller

case SIOCSIFADDR:
case SIOCSIFBRDADDR:
case SIOCSIFDSTADDR:
case SIOCSIFNETMASK:
copy in sockaddr t structure from user.
call rso_ioctlinIFaddr RPC with the following parameters:
handle, fh, and f flags from socket structure
cmd passed as argument to routine
interface name string provided from caller
sockaddr_t structure from user
pointer to status return variable
return status to caller

case SIOCADDRT:
case SIOCDELRT:
copy in destination sockaddr t, gateway sockaddr t,
and route flags short from user.
call rso ioctlSIFRT RPC with the following parameters:
handle, fh, and f flags from socket structure
cmd passed as argument to routine
interface name string provided from caller
destination sockaddr t structure from user
gateway sockaddr t structure from user
route flags from user
pointer to status return variable
return status to caller

default:

copy in data in raw form

call rso_ioctlUNKOWN RPC with the following parameters:
handle, fh, and f flags from socket structure
cmd parameter
size of raw data
raw data
pointer to status return variable
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* return status to caller

* }

*/
The following specifies the server side behavior for the rso_ioctl:
/ *

*

rso_ioctl* server(h, fh, f flags, cmd, RPC-specific data, st)
handle t h;

rso_rfh t fh;

int £ flags;

int cmd;

[declarations for RPC-specific data]

int *st;

Abstract:
server for rso listen RPC

Parameters
h: RPC handle for socket
fh: handle for remote file structure (local on server node)
f flags: £ flags field from client structure
cnd: ioctl command
RPC-specific data

Return Values:
return indication is made via st variable

Local Variables

Algorithm
Put parametric data into locally valid form
put cmd into locally valid format
call soo_ioctl (fp, cmd, data)
*st = u.u_error
return

N % % % %k % R ok Ok ok dF Ok k% Ok Ok % F % F % % O % X X F X %

*
~

A more general solution for unrecognized ioctls may be appropriate.

2.1.33.13 rso_select
Support for select on remote special files is specified in section 2.1.4. Special support |
for select on sockets is not required.
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2.1.3.3.14 rso_close
The rso_close file op is called when a remote socket is closed for the last time on that
node.

rso_close (fp)
struct file *fp;

Abstract:
remote socket close file op

Parameters
fp: pointer to file structure being closed

Return Values:
error indication if an error occurred.

Algorithm:
remove remote file handle structure
remove local copy of socket
indicate there is no socket associated with this file block
return error indication if any, or 0 if no error

There is no need to provide an rso_remoteClose RPC because calling of file specific
close routines is done at the file token layer. See section 2.1.5.

2.1.33.15 rso_fstat
The rso_fstat file op is called when an fstat operation is performed on an open file
descriptor that refers to a socket.
/ *

*

rso_fstat (fp, ub)
struct file *fp;
struct stat *ub;

Abstract:
remote socket fstat file op

Parameters
fp: pointer to file structure being closed
ub: pointer to stat buffer

Local Variables
st: return status code

O % % % F A X * H X H*
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Return Values:
error indication if an error occurred.

Algorithm:

get socket pointer from file block (fp->f data)
clear *ub

call rso_remoteStat RPC with the following arguments

return

return

*/
The following specifies the behavior of the server routine for the rso_remoteStat RPC:

/*

*

%% % Ok Ok R Ok Ok ok % % % Ok 3k Ok 2k % % % X X %

RPC handle from socket structure (so->rso_handle.rsh rpchandle)
remote file structure handle (so->rso_handler.rsh reopendata)
f flags field from file structure (fp—>f flags)

ub pointer to a stat buffer (ub)

pointer to st (&st)

error indication if any, or 0 if no error

rso_stat_server(h, fh, f flags, statbp, st)

handle t h;

rso_rfh t fh;

int £ flags;

struct stat *statbp;

int *st;

Abstract:

server for rso_listen RPC

Parameters

h: RPC handle for socket
fh: handle for remote file structure (local on server node)

f flags:
backlog:

f flags field from client structure
maximum length of queue of pending connections

st: pointer to variable in which to store error return value

Return Values:
return indication is made via st variable

Local Variables

struct
struct

file *fp;
socket *so;
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Algorithm:

fp = pointer file block from caller supplied handle
call soo_stat (fp, statbp)
return value from soo_stat

2.1.33.1.6 rso_prep_export

The file-op rso_prep_export() is called when a process with an open socket is being
moved to another node. This routine is to prepare for the creation of a remote socket.
A UNIX domain socket that is unbound, or a socket that is unconnected cannot be
created remotely. First, a check is made to see if the socket is eligible for becoming
remote. If it cannot, then an error is returned and the operation does not continue. If
this check succeeds, rso_prep_export() gathers all info necessary to reopen the socket
This includes the socket type, the socket options, the socket
state, and an identifier that the controlling node can use to locate the socket structure
efficiently.

on the remote node.

/*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

rso_prep export (fp)
struct file *fp;
struct sock reopen handle *srohp;

Abstract:
remote socket prepare for export file op

Parameters
fp: pointer to file structure being closed
srohp: pointer to a socket reopen handle

Return Values:
error indication if an error occurred.

Algorithm:

obtain socket pointer from file block
if socket cannot be made remote
return error indication to caller
if there is no socket associated with this file block
return error indication to caller
store the following fields from socket structure
into the socket reopen handle structure:
so_type
SO_proto—>pr_type
so_proto->pr_domain
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* store a unique identifier (e.g., the kernel address of the file
* structure) and a version ID in the reopen handle

* return 0 to the caller

*

*/

2.1.3.3.1.7 rso_reopen()
The final step in socket migration takes place when the extended file operation
fo_reopen is called at the remote node. When a process moves with an open socket,
rso_reopen() will be called. First, rso_reopen() checks t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>