
FUSION Functional Specification

Locus Computing Corporation
IBM Corporation

April 26, 1991

TABLE OF CONTENTS

1. PRODUCT RATIONALE • • • • • • • • • • • • • •
1.1 BACKGROUND • • • • • • • • • • • • •
1.2 F U S I 0 N : PRODUCT DEFINITION • • • •
1.3 GOALS

1.3.1 CUSTOMER GOALS • • • • • • • • •
1.3.2 CUSTOMER CONSTRAINTS • • • • •.
1.3.3 ARCHITECTURE GOALS • • • • • • • • • •
1.3.4 FUNCTIONALITY GOALS • • • • • • •
1.3.5 PERFORMANCE GOALS • • • • • •

1.4 ASSUMPTIONS • • • • • • • . • • •
1.4.1 BASE SYSTEM ASSUMPTIONS • • • • • . • •
1.4.2 DCE ASSUMPTIONS • • • •

1.5 DEFINITIONS • • • • • • • • •

2. F U S I 0 N : DESCRIPTION OF THE PRODUCT
2.1 THE DISTRIBUTED EXECUTION ENVIRONMENT . • .

2.1.1 FILE SYSTEM ENHANCEMENTS IN THE

2.1.2

DEE . . • • . . • • . .
2.1.1.1 ACCESS TO REMOTE DEVICES • • • • •
2.1.1.2 ACCESS TO REMOTE PIPES • • • • • •
2.1.1.3 ACCESS TO REMOTE SOCKETS • • • • •
2.1.1.4 SELECT ON REMOTE SPECIAL

FILES
2.1.1.5 FILE OFFSET COHERENCY • • • •
2.1.1.6 FILE REOPEN AND RE-LOCK

CAPABILITY • • • • • • . • •
2.1.1.7 OTHER DISTRIBUTED FILE SYSTEM

EXTENSIONS • • • • • • • • • • .
REMOTE PROCESSING SUPPORT IN THE
DEE • • . . .
2.1.2.1 REMOTE PROCESSING

1
1
2
3
3
4
5
6
8
8
8
9
9

11
11

11
11
12
12

12
12

13

13

13

EXTENSIONS • • • • • • • • • . • 15
2.1.3 THE NODE STATUS SERVICE • • • . 15

2.2 THE CLUSTER ENVIRONMENT • • • • • • • • • 16
2.2.1 THE F U S I 0 N CLUSTERING CAPABILITY 16
2.2.2 F U S I 0 N HETEROGENEOUS CLUSTER LOAD

BALANCING • • • • • • • • • • • • • . 17
2.2.3 F U S I 0 N HOMOGENEOUS CLUSTER LOAD

BALANCING • • • • • • • • • • • • 18
2.3 THE FILE SYSTEM REPLICATION SERVICE • • • • • 18

2.3.1 READ/WRITE FILE SYSTEM REPLICATION • • • 18

- 1 -

2.3.2 REPLICATION EXTENSIONS 19

3. DESCRIPTION OF F U S I 0 N FEATURES 20
3.1 THE DIS1RIBUTED EXECUTION ENVIRONMENT . . . 20

3.1.1 FILE SYSTEM ENHANCEMENTS OF THE
DEE 20
3.1.1.1 REMOTE DEVICES 20
3.1.1.2 REMOTE PIPES . · 23
3.1.1.3 REMOTE SOCKETS 26
3.1.1.4 SELECT ON REMOTE SPECIAL

FILES 27
3.1.1.5 FILE OFFSET COHERENCY 29
3.1.1.6 FILE REOPEN AND LOCK

INHERITANCE 31
3.1.2 REMOTE PROCESSING ENHANCEMENTS OF THE

DEE 33
3.1.2.1 REMOTE PROCESS PROGRAMMING

PRIMITIVES 33
3.1.2.2 CELL WIDE PROCESS NAMESPACE . . . 33
3.1.2.3 VIRTUAL PROCESSES 34
3.1.2.4 REMOTE PROCESS CLIENT/SERVER

FUNCTION 36
3.1.2.5 EXECUTION PERMISSION 36
3.1.2.6 REMOTE PROCESSING COMMAND

INTERFACE • 37
3.1.3 NODE STATUS SERVICE 38

3.1.3.1 LOCAL NODE STATUS SERVICE
FUNCTIONS 39

3.1.3.2 GROUP NODE STATUS SERVICE 41
3.1.3.3 SPHERE OF INTEREST 44

3.2 THE F U S I 0 N CLUSTERING CAPABILITY 45
3.2.1 CLUSTERING OF DATA 45

3.2.1.1 THE CLUSTER MOUNT SERVER 45
3.2.1.2 NFS INTEROPERABILITY IN THE

CLUSTER 59
3.2.2 INVOCATION LOAD BALANCING IN THE

CLUSTER 62
3.2.2.1 LOAD LEVEL KERNEL EXTENSION . . . 62
3.2.2.2 USER INSTALLED LOAD LEVEL

EXTENSION 63
3.2.2.3 LOAD LEVELING LIBRARY

ROuTINES 63
3.2.2.4 LOAD LEVELING VIA SYSTEM

CALLS 63

- ii -

3.2.3 DYNAMIC LOAD BALANCING IN THE
CLUSTER • • • . • • • 63
3.2.3.1 LOAD BALANCING SPECIFIC

PROCESSES • • • • • • 64
3.2.3.2 SYSTEM CALL EXTENSIONS FOR DYNAMIC

LOAD LEVELING • • • • • • • . . • 64
3.2.3.3 PROCESS MIGRATION LOAD BALANCING

SERVICE • • • • . . • • • . . • . 64
3.3 THE F U S I 0 N FILE SYSTEM REPLICATION

SERVICE • • • • • • . . • • • • • • . 64
3.3.1 FILE SYSTEM REPLICATION SERVICES 64

3.3.1.1 CREATING F U S I 0 N REPLICATED FILE
SYSTEMS 66

3.3.1.2 THE F U S I 0 N REPLICATED MOUNT
MODEL . . . • • • . • 66

3.3.1.3 ACCESS TO F U S I 0 N REPLICA TED FILE
SYSTEMS 67

3.3.1.4 VERSION MANAGEMENT 68
3.3.1.5 PROPAGATION 69
3.3.1.6 ADMINISTRATIVE CONTROLS 70
3.3.1.7 F U S I 0 N REPLICATION AND NETWORK

INSTABILITY . . . • • 70

4. COMMAND AND PROGRAMMING INTERFACE
DEFINITIONS • . . • • • 72
4.1 THE DISTRIBUTED EXECUTION ENVIRONMENT • . . 72

4.1.1 FILE SYSTEM ENHANCEMENTS OF THE
DEE 72
4.1.1.1 REMOTE DEVICE INTERFACES 72
4.1.1.2 REMOTE PIPES AND FIFOS 74
4.1.1.3 REMOTE SOCKETS 74
4.1.1.4 SELECT ON REMOTE SPECIAL

FILES 74
4.1.1.5 FILE OFFSET COHERENCY 74
4.1.1.6 FILE REOPEN AND LOCK

INHERITANCE 74
4.1.2 REMOTE PROCESSING ENHANCEMENTS OF THE

DEE 74
4.1.2.1 REMOTE PROCESS PROGRAMMING

PRIMITIVES 74
4.1.2.2 CELLWIDE PROCESS NAMESPACE . . . 75

I

4.1.2.3 VIRTUAL PROCESSES 76
4.1.2.4 REMOTE PROCESS CLIENT/SERVER

FUNCTION 76
4.1.2.5 EXECUTION PERMISSION 76

- 111 -

4.1.2.6 REMOTE PROCESSING COMMANDS
INTERFACE • • • • . • • • • .

4.1.3 NODE STATUS SERVICE • • • . • • • .
4.1.3.1 NODE ATTRIBUTE SERVICE • • . •
4.1.3.2 NODE USER SERVICE • • • • • • • •
4.1.3.3 SPHERE OF INTEREST • • • • • • • •

4.2 THE F U S I 0 N CLUSTERING CAP ABILITY • • •
4.2.1 CLUSTERING OF DATA • • . • • • • • • •
4.2.2 CLUSTER LOAD BALANCING

(INVOCATION) • • • • • • • • • . • • •
4.2.3 CLUSTER LOAD BALANCING

(MIGRATION) • • . . • •
4.3 FILE SYSTEM REPLICATION INTERFACES • • •

5. INTERFACE TO OTHER PRODUCTSS • • • •
5.1 INTERFACE TO UNIX • • • . • • •

5.1.1 INTERFACE TO INSTALLATION • . . . • • .
5.1.2 INTERFACE TO ADMINISTRATION
5.1.3 INTERFACE TO SYSTEM UTILITIES • • . . • •
5.1.4 INTERFACE TO BASE OPERATING

SYSTEM
5.1.5 INTERFACE TO NFS • • • • • • • • • • .

5.2 INTERFACE TO DCE • • • • •
5.2.1 INTERFACE TO NCS • . • • •
5.2.2 INTERFACE TO DIRECTORY AND NAME

SERVICES • • • • • . • • • • •
5.2.3 INTERFACE TO DCE DISTRIBUTED FILE

SYSTEM . . • • • • • • • • •
5.2.4 INTERFACE TO DCE SECURITY SERVICES . • •

6. ERROR HANDLING . • .. · ~ • • . • • • • • • •
6.1 ERRORS DETECTED BY THE KERNEL • • • . • • •
6.2 REMOTE SYSTEM ERROR HANDLING • • •
6.3 NE1WORK PARTITIONING ERRORS • • • •
6.4 DEBUGGER SUPPORT • • • • • •

7. PERFORMANCE • • • • • • . • • •
7.1 F U S I 0 N HOOKS IN THE BASE OS •
7 .2 F U S I 0 N HOOKS IN DCE . • • • •
7.3 F U S I 0 N CODE IMPACT • • • • • •

76
76
77
78
79
81
81

82

82
82

84
84
84
84
85

85
87
88
88

88

88
90

91
91
92
92
92

94
94
94
94

8. IMPACT OF F U S I 0 N ON EXISTING CUSTOMERS 95

APPENDIX A: RATIOS, RELATIONSHIPS TO DCE, AND
ALTERNATIVES TO DCE • • • • . . • • • • 96

APPENDIX B: OPEN ISSUES 99

- IV -

FUSION Functional Specification

Locus Computing Corporation
IBM Corporation

1. PRODUCT RATIONALE

1.1 BACKGROUND

April 26, 1991

The evolution of distributed computing technologies over the past twenty years
has created a general consensus. Accessing remote resources should be no
different from accessing local resources. In other words, the network
environment should be "transparent" to the users and to the software, which
should view a single, but more capable, system.

Early distributed computing solutions offered no form of transparency. They
provided mechanisms to connect to remote nodes, and obtain services from
those nodes, such as logging in, transferring files, and running programs. The
users of these mechanism had to know explicitly which node was appropriate,
had to explicitly connect to that node, and had to use special commands to do
particular things. The software interfaces to these services were very different
from local methods.

Second generation systems, most notably NFS, began to provide some level of
transparency. It was possible to virtually "connect" remote resources such as
file systems to a local machine. Once connected, the user could use that
resource as if it were locally attached. In order to set up the appropriate
connections for this level of function, the user or administrator had to know the
location of the resources. In addition, the semantics of accessing remote
devices were not always identical _to that used for local accesses.

The third generation of systems provide a fully integrated transparent
distributed operating system. IBM's AIX Transparent Computing Facility, or
TCF, is the only commercially available system in this category. TCF provides
a complete implementation of network transparency for programs and users.
TCF provides the ability to access remote file system data while preserving
correct Unix semantics. TCF also provides network process transparency,
where processes can be started on any machine, and can move from one
machine to another in the middle of operation.

The release of OSF's Distributed Computing Environment (DCE) is a major
opportunity to provide an expanded version of the TCF technology on an
industry standard base environment. The FUSION product (Full UNIX
Semantics Integrated Over Networks) is a highly portable version of the TCF
technology with expanded capabilities to operate across a wide range and
potentially large number of network nodes.

IBM Confidential

- 2 -

With the FUSION product, networked systems can be grouped in a cluster to
form a "network multiprocessor" or "loosely coupled multiprocessor"
configuration. A networked MP system provides the following benefits to a
potential customer:

a. Network MP systems are scalable and can be heterogeneous; they can be
built incrementally with existing hardware or combined with new
hardware.

b. Network MP systems can scale to a much higher number of processors,
and can in fact be composed of symmetric MP systems. Memory
contention is avoided by having private memory per node.

c. Network MP systems provide flexibility in local autonomy; a feature not
typically found in the symmetric MP world.

d. Network MP systems provide flexibility in office proximity and physical
dispersion. One can have clusters that are multiple CPUs in a single box
as well as work groups that are cross-country.

The stage is set for an evolutionary growth in transparent distributed computing
technology. LAN technology such as optical networks is becoming cheaper
and more powerful. Consequently, less and less performance penalty is
extracted when accessing remote resources. Processor and memory hardware
are becoming cheaper. This makes extremely powerful multiprocessor systems
more affordable than ever.

1.2 FUSION: PRODUCT DEFINITION

The FUSION Product can be viewed as containing three layers. The lowest
layer extends the services available in OSF's DCE with a set of distributed file
system enhancements and remote execution facilities that can be used within an
environment of heterogeneous machines from multiple vendors. The highest
layer builds onto the lower layer a clustering mechanism that provides a
consistent name space between the machines, and a set of extensions to allow
the processing load to be automatically balanced among the machines in the
cluster. In a homogeneous environment, the load- leveling capabilities can be
extended so that the collection of machines appear as a network multi­
processor. A third layer which functions somewhat independently of the other
two provides a file system replication service that is more general than that
available from DCE. These layers are called the Distributed Execution
Environment, the Cluster Environment, and the File System Replication
Service.

The principal reason for separating the functions into these layers is the variety
of requirements in the marketplace. There is strong demand today for products
that provide enhanced distributed file system support and the ability to run
processes on other machines from a variety of vendors, without requiring the

IBM Confidential

- 3 -

grouping of machines into clusters. Vendors are willing to support this type of
product because it does not require close coordination with other vendors.
There is also demand in the market for a more cohesive computing
environment spread among many machines, but some vendors are not willing
to provide such products at this time. Generalized file system replication is
useful in both of the above scenarios but is not strictly necessary in either one.
By separating the functions along these lines, the FUSION product can obtain a
wide acceptance among vendors, and also provide a more complete distributed
system solution.

1.3 GOALS

There are several goals driving the FUSION project. These include a set of
customer goals, a set of architecture goals, a set of functionality goals, and a
set of performance goals.

1.3.l CUSTOMER GOALS
FUSION attempts to satisfy two major goals of the customer. These are
achieving the correct ratio of price to performance, and achieving enhanced
productivity of existing resources.

There are several ways that FUSION offers reasonable price/performance. It
allows existing single site applications to take advantage of a distributed I
computing environment. No changes are required in the application software I
to operate in this manner. It provides a software solution to build a "network I
multiprocessor", where each node can have private memory, and the processors I
can be put in a single cabinet or physically distributed, even beyond a single I
building or even a single city. Such an architecture can be scaled to sizes I
much larger than a conventional multiprocessor, even to hundreds or thousands I
of processors. Load leveling can be easily built within the FUSION I
environment. Such load leveling can be automatic, application specific, and I
controlled by users and system administrators. Such functions allows hardware I
to be shared more effectively, thus serving greater computing requirements I
with a smaller investment. I

The customer is continually searching for methods to enhance productivity. I
The FUSION system should thus support an incremental growth strategy so that I
additional computing resources can be added as the needs grow without a I
serious disruption of service. In a similar manner, the system should degrade I
gracefully if components of the system fail. This offers greater availability I
than a single large system which impacts all users if a failure occurs. The I
system should make the network transparent to users, both to support program I
portability as well as allowing users to move to the larger system without I
incurring additional training costs. The system should supply a high level I
distributed programming model that complements RPC mechanism. Finally, I
the system should provide a migration path, to new hardware, between
different operating systems and also between different versions of the same

IBM Confidential

- 4 -

operating system.

1.3.2 CUSTOMER CONSTRAINTS
While the goals mentioned in the previous section are important for satisfying
the requirements of the customer, these goals must be satisfied within a set of
identifiable constraints. These constraints include binary compatibility,
adherence to standards, acceptable performance, easy installation and
administration, understandability, affordability, tunability for a variety of
configurations, scalability to large numbers and wide areas, flexibility in
configurations, availability from multiple vendors, and support within a broad
range of environments.

Binary compatibility is an important constraint, because customers have made
large investments in application software and need to continue to utilize that
software as the environment evolves. Thus FUSION must not require changes
to applications that wish to take advantage of the environment it offers.

Standards within the computing industry continue to appear. They are
important because such standards define what interoperability and portability
the users expect. The FUSION system must operate within the framework of
existing and forthcoming industry standards. Equally important, FUSION must
be suitable as an industry standard.

The FUSION system must perform well from the perspective of the users. Bad
performance would limit the suitability of the system to most customers. This
includes the impact on performance of existing operations as well as the
performance of new functions.

The FUSION system must be easy to install. Complex installation procedures
discourage any installation, and will impact the popularity of the software.
Similarly, it must be relatively easy to administer. This includes making
administration of many machines . much easier than the administration of those
machines running separate independent systems.

The FUSION system must be understandable by the users, system
programmers, system administrators, and even MIS executives. To achieve
this, the system should introduce few new concepts.

The FUSION system must be affordable. If the system is too expensive, it will
not be a viable solution to many installations.

The FUSION system must be tunable to operate within a large variety of
configurations. The default tuning should be suitable for most small
configurations. When large configurations require special tuning, FUSION
should supply the necessary.-data collection tools and tuning guidelines, as well
as adequate mechanisms to allow tonging.

The architecture and design of the FUSION system should permit the number
of processors to scale. This includes scaling to very large numbers of

IBM Confidential

l '

- 5 -

processors. Similarly the design should not preclude a wide geographic
distribution of the processors, which might entail greater network latencies.

The FUSION system should allow for flexible configurations. This includes the
ability to join or not join with other nodes, and the ability for a node to change
between clusters.

The FUSION system should be general enough to be supportable by more than
one vendor. Today's customers are demanding such flexibility today, so that
they can choose from a much wider selection of hardware and software
options, without discarding much of their existing investment. They want to
avoid being locked in by one particular vendor.

Finally, the FUSION system should provide support within a broad range of
environments. This includes suitability for operating beyond the confines of
the UNIX environment into proprietary OS offerings. It also should be
suitable for a wide range of hardware options and also networking
technologies.

1.3.3 ARCHITECTURE GOALS
From the above stated customer goals and customer constraints, a set of goals
for the FUSION architecture have been identified. The architecture goals of
FUSION include portability, scalability, modularity, flexibility, installability,
and support of an open architecture.

One of the key goals of the FUSION architecture is portability. Portability
implies that the system should be built with very few hooks in the base
operating system and very few hooks in DCE. The system should be layered
above DCE to the degree possible. The architecture should not require any
assumptions about the underlying hardware, and the requirements on the
underlying operating system should be as general as possible. Doing so would
make it applicable to UNIX and non-UNIX systems that support DCE. Special
dependencies should be extremely limited, and avoided when at all possible.

Another important goal is scalability. Configurations containing thousands of
nodes are quite conceivable with existing and emerging technologies. The
FUSION architecture should permit reasonable operation within such large
systems. With such large systems, some of the components may be spread out
over large distances. The architecture should support such widespread
configurations. Also, in large possibly widespread configurations, some
autonomy is required.

Modularity is a key goal of the FUSION architecture. The architecture should
support a separation of function into individual modules. The modules should
be able to plug and play 'together. The specifications should be clear and
accurate enough to allow alternate implementations of the same technology to
work effectively together.

IBM Confidential

- 6 -

Flexibility is an important architecture goal so that the system can be adapted
to suit a wide variety of uses. The architecture should not be dependent on
any particular hardware feature, but should still be able to take advantage of
special hardware when it exists. It should be operatable over a wide variety of
networking technologies, from Wide Area Networks to Local Area Networks
and even high speed backplane networks. The architecture should be resilient
to networking problems. A single node should still be fully functional for the
user. The network protocols and data should be extensible.

The FUSION system should be easily installed. It should be possible to install
it onto running systems. Limited human interaction should be required at
installation time. The system should provide optional tuning capabilities. The
architecture should provide for different subscription levels to obtain different
degrees of cooperation.

Finally, the architecture for FUSION should be open. The goal for being an
open architecture is essential for its widespread acceptance as an industry
standard. To be open, the base hooks should be as general as possible, to
allow for competing implementations. The required hooks into the underlying
environments should be made available to the Open Systems Foundation, Unix
International, and other interested standards bodies. Finally, the network
protocols and semantics should be published and made available to the
industry.

1.3.4 FUNCTIONALITY GOALS
Within the above framework, the following functionality goals have been
identified. The operation within clusters that appear as a network MP
environment, operation in an more autonomous environments, support of
automatic load leveling, and reasonable autonomy and security in a networked
environment. Other functional goals include providing a superset of TCF and
DEcorum functionality, applicability to UNIX and non-UNIX environments,
and providing the basis for highly available computer systems.

A principal functionality goal of FUSION is to provide software support of a
network multiprocessor. This means that FUSION should provide location,
name, access, semantic, and performance transparency for system resources
that are spread throughout the nodes. Each node must be potentially full
function when not cooperating with other nodes. The system should not
require shared memory. Invocation and dynamic load balancing should be
provided to spread the load among the processors. Single-site POSIX
semantics should be maintained so the available existing software can be used.
The system should be heterogeneous to provide an effective interoperation
between diverse hardware. , Finally, the system should scale to thousands of
processors, something not generally achievable with shared memory
multiprocessors.

IBM Confidential

- 7 -

Another functionality goal is to provide a more autonomous environment for
some applications. This implies a relaxation of the file system name space
consistency, while still providing most of the functions. Such an environment
should at least scale to the size of a DCE cell. This environment should
provide full process transparency with POSIX semantics, support for
heterogeneity, and load leveling data and primitives. However, automatic load
leveling would not be performed due to the potential name space
inconsistencies on different nodes.

Load leveling is an important functional goal because it allows the users to
make effective use of the available machine resources. The load leveling
support should be automatic, but controllable by administrators and users. A
programming interface is also provided so that particular applications can make
their own load leveling decisions. Load leveling can be done at program
invocation time as well as after the program is running. The FUSION system
should permit alternate load leveling policies to be installed via extension
mechanisms. Policies modules should be able to account for batch versus
interactive machines and loads, fairness, and a flexible preference list. Query
and diagnostic services should be provided with the load leveling. The load
leveling functionality should be applicable to RPC servers as well as general
remote processing.

To maintain autonomy, it the FUSION system should permit particular users to
be restricted to a certain set of nodes in a fairly static way. Also, privileged
users on particular node should be able to dynamically restrict use of that node.

In the area of security, the FUSION system should use authenticated RPC
mechanisms for all of its services. This avoids problems of phony messages
and spoofing. Also, certain features such as performing some kinds of mounts
and the semantics of setuid programs should be optionally restricted.

Functionally, it is desirable to have FUSION provide a superset of TCF and
DEcorum functionality for several reasons. One reason for providing a similar
functionality is the existing user base for TCF. To provide these users a
migration path a similar function is required. A reason for providing a
superset of TCF functionality is that lessons learned from the TCF system can
be applied to make an even better system. For example, having all nodes be
updated on the status of all other nodes in the same cluster requires complex
and time consuming algorithms that do not scale effectively. Limiting the
number of nodes operating together in a cluster to thirty~one limits the
configuration options in modern hardware environments. Similar arguments
apply to DEcorum functionality.

Another functional requirement for FUSION is to be applicable to both UNIX
and non-UNIX environments. While UNIX with DCE is the target of the
initial work, it is desirable to consider expansion beyond the UNIX framework
as DCE becomes available on other OS platforms.

IBM Confidential

- 8 -

A final functional goal of FUSION is to offer a high availability system.
Where possible, ~_!'.JJSION design should minimize the need for particular
nodes to stay up. As an example, when a set of processes that are sharing an
unnamed pipe that was created on node A and all move to other nodes, then
node A should no longer be required to support the pipe. Only when specific
resources of a node are involved should that node be required.

1.3.5 PERFORMANCE GOALS
A set of performance goals for FUSION has also been defined. The system
with only base hooks added should see no impact. The system with the
FUSION installed but working locally should see very little impact. The
aggregate performance of a set of machines or processors on realistic
benchmarks should be significantly improved. Small configurations should
require no special tuning to operate effectively. Large configurations should
have data, tools, and guidelines for performance tuning. Performance
requirements are specified in Chapter 6.

1.4 ASSUMPTIONS

Some assumptions have been made for the specification and design of FUSION.
This section outlines some of those assumptions.

1.4.1 BASE SYSTEM ASSUMPTIONS
The initial design work has focussed on a system that can be built on an AIX
Version 3 or an OSF/1 base. While this does not impact the design, there are
some underlying assumptions that these systems satisfy.

It is assumed that the base kernel provides common hooks for remote file
system support, such as the vnode layer and file operations table. It is also
assumed that the pipe implementation utilizes this interface.

Much of the design assumes that it is possible to load in kernel extensions to
provide the extended FUSION .. function within the kernel. The interface
between these extensions and the base kernel will be through well defined
hooks. Many of these hooks (e.g., the vnode layer) exist already. Other hooks
are new and are defined by FUSION in a way that is applicable to a wide base
of kernels.

Similarly, it is assumed that it is possible to alter the kernel linkage to
substitute routines for policy modules and system call entry points. It is also
assumed that user supplied code may be substituted for FUSION supplied
routines to alter policy.

It is assumed that the new hooks defined for FUSION will eventually be
accepted by code owners. lf this is not the case, part of the FUSION porting
effort would be in providing these hooks. This is viewed as more intrusive
than desirable.

IBM Confidential

- 9 -

Much of the FUSION function is implemented by shipping the functions from
the node where the user of a resource is operating to the node where the
resource is currently controlled, via the DCE RPC mechanisms. It is assumed
that the RPCs will be serviced by kernel threads. It is thus assumed that these
kernel threads are inexpensive. Since some of these operations may sleep
during the course of satisfying the request, it is assumed that the kernel threads
are plentiful so that deadlock is avoided. These assumptions permit the design
to utilize the RPC architecture in the way it was intended. If these
assumptions are not satisfied, other designs could be proposed that rely on
message based semantics. Such a mechanism is used in the TCP system.
However, building message passage systems with RPC mechanisms is probably
more inefficient than a directly implemented message passing system would be.

1.4.2 DCE ASSUMPTIONS
Not many assumptions are made about DCE. The design is based on features
found in the early releases of DCE. It is possible that late changes to DCE
could adversely affect the FUSION design, but that is not anticipated.

The FUSION architecture assumes that as a practical limit, there are no more
than 4096 nodes within a cell. This limit is not hard and fast, but supporting
larger cells requires a process ID mapping mechanism that

There are hooks required in DCE to implement /*(Fn. This design assumes
that these hooks will be accepted by OSF for inclusion in the first release of
DCE.

1.5 DEFINITIONS

Within this document, several technical terms are used where a particular
concept is intended. To avoid confusion, this section defines those terms.

cell

cluster

groups

The term cell arises from the DCE architecture itself. It
refers to several things, though primarily it is the domain
of the DCE authentication server. The FUSION definition
of cell is thus the same as the DCE cell, to avoid any
confusion.

The term cluster refers to a set of machines that are
operating in close coordination together. In particular
they share a common name space (or a large portion of a
common name space). Because of this naming
transparency, it is possible to apply automatic load
leveling functions within a cluster.

Withiq FUSION, groups are an administrative domain for
keeping track of node information. Groups are defined
because it is neither practical to have all nodes store the
information about all other nodes nor to have a single

IBM Confidential

mount

- 10 -

n<.lde store the. informatiei>n about the nodo. Providing
groups permits, a two level mechanism to be defined.
Membership in a group is defined in a relatively static
way. Being in one group or another does not impair
function in any way, nor does it imply or prevent
membership in a cluster.

Each group as defined above has one node at any given
time designated as a server for the group. This node
stores infonnation 1tbout ·the nodes within the group, and
communicates with other group servers to exchange
information about nodes in each other's groups when
necessary. The group server is chosen in a dynamic way.
If a group is partitioned then each partition has an active
group server. When partitions are rejoined a single group
server resumes service to the whole group.

Within a cluster a common name space is maintained to
the degree possible. Several factors prevent this name
space from being 100% common. For example, various
vendors are not likely to have a shared root file system~
Some nodes may require private mounted file systems
(such as /tmp). A mount context is defined to identify
which name space is used by a process. If a process
moves to another node, its mount context can be used to
ensure that the file names are interpreted as they would
be on the original execution node. This ensures that the
program will produce the same results regardless of the
node is happens to run on.

Several standard UNIX utilities provides information
about a node or a set of nodes. For example, the who
command lists the users on a particular node and the
mount command lists the the file systems mounted. In a
distributed environment such as that provided by FUSION
these programs may need to display information about
several of the nodes. However with a large configuration
it is not practical to display information for all of the
nodes. The concept of. sphere of interest is introduced to
limit the list of nodes to be considered for these types of
operations. Each. user has a sphere of interest which can
be customized as required for that user . ..

···IBM Confidential

- 11 -

2. FUSION: DESCRIPTION OF THE PRODUCT

As described in chapter 1, the FUSION Product consists of three layers, the
Distributed Execution Environment, the Cluster Environment, and the File
System Replication Service, This chapter provides a greater depth of
description of the individual functions that make up each layer.

2.1 THE DISTRIBUTED EXECUTION ENVIRONMENT

The Distributed Execution Environment, or DEE, is a set of enhancements to
OSF's DCE. It consists of a set of File System Enhancements to the
distributed file system capabilities of DCE, support for remote processing
operations and a Node Status Service which provides dynamiC information
about resources in the distributed environment. The remote processing
operations make use of some of the file system enhancements provided by the
DEE. However, the services of the Clustering Environment are not required to
support basic remote processing.

2.1.1 FILE SYSTEM ENHANCEMENTS IN THE DEE
There are several enhancements within the FUSION product that fall into the
category of File System Enhancements. Each of the enhancements described
here are provided for one of two principal reasons (or perhaps both reasons).
They are useful in their own right in a distributed computing environment, and
they are the useful as the basis for a remote processing implementation. These
are the following:

1. Access to remote devices

2. Access to remote pipes

3. Access to remote sockets

4. Select on remote devices, pipes, and sockets

5. Fileoffset coherency

6. File reopen and re-lock capability

Following these items, possible future extensions are described.

2.1.1.1 ACCESS TO REMOTE DEVICES
FUSION provides support for processes to access devices that are attached to
other nodes. This support is called the remote device function. There is an
underlying assumption that the program can name the device, which would be
possible, for example, if the device were accessible via the DCE global name
space.

One reason this support 1s provided is because other distributed system
environments have shown that operations such as using tar to read from or
write to a tape drive are best done on the node storing the data rather than on
the node with the tape drive. Remote devices are also required for support of

IBM Confidential

- 12 -

remote process execution, since a remote process could inherit an open device,
such as a user's workstation. In this case it is not necessary to be able to
name the device on the remote node, though it is desirable to be able to do so.
The FUSION remote device support allows processes to open remote devices,
read from and write to remote devices, and also to perform device specific ioctl
operations on the device.

2.1.1.2 ACCESS TO REMOTE PIPES
FUSION also provides access to remote pipes. This is desirable because
named pipes (often referred to as FIFOs) could exist in a globally visible place,
and hence be opened on more than one node. A remote pipe is one in which
the data is stored on a node different from where the reading process or the
writing process is executing. Although the program does not see a data storage
function, the data is temporarily stored between the time it is written to the
pipe by the writer and when it is read from the pipe by the reader.

FUSION provides mechanisms to support the opening of, writing to, and
reading from pipes that are stored at another node. This support allows the
reader and writer to be on different nodes. In addition to the named pipe case,
the remote unnamed pipes are supported by FUSION for when remote
processes inherit open file descriptors for unnamed pipes.

2.1.1.3 ACCESS TO REMOTE SOCKETS
FUSION provides support for remote sockets in both the Internet Domain and
UNIX Domain. This is used to support remote process execution, since a
process running on the node where the socket was created may move to
another node with the socket still open. The support for UNIX Domain
sockets will also handle the case where two unrelated processes on different
nodes bind to the same socket in the global name space.

2.1.1.4 SELECT ON REMOTE SPECIAL FILES
Relating to the support for remote devices, remote pipes, and remote sockets is
support for the remote select function. The basic UNIX select function allows
a program to determine if a particular file can be written to or read from. In
the case of a remote device, pipe, or socket, this function must be coordinated
between the node where the program is running and the node where the device
is attached or where the pipe or socket is controlled. Since the methods for
doing this are the same whether the special file is a device, pipe, or socket, this
function has been separated out and provided using a single mechanism.

2.1.1.S FILE OFFSET COHERENCY
In standard· UNIX implementations, file offsets and certain file open flags are
shared between parent and child processes. FUSION provides a mechanism to
preserve this sharing when the parent and child processes are not executing on
the same node. This mechanism insures that the file offsets and related
information are consistent in all file blocks that represent the same open of a
particular file. This mechanism is called fileblock tokens, and is required to

IBM Confidential

- 13 -

properly support remote processing operations.

2.1.1.6 FILE REOPEN AND RE-LOCK CAPABIUTY
FU8l{:)N ~·a .. mocaanism topenamv.a."Bla.-. .•. epeneci oaMoae,ftOda to
be reopened on another··node• white ~til.,Qf .die dlaracteriatios. ~ as
die eummt file offset from the first nod&. This*'is· 1110fuL for all forms of
remote p1~ng. since remote prowu ·eNl.ti• operations and process
movement epora&ions hoek •peat to be able to have the files that were open
stil open. For the cases of process movement, locks that were held by the
process need to be preserved as well. ~·~··a ism.fOI"
~''held ltreb aerossz·1tdde'Mtlftda.ries.· These ·tiwnetkms . .,.,._are
referred to u ftte reepen.

2.1.1.7 OTHER DISTRIBU1ED FILE SYSTEM EXTENSIONS
Tiftt sockets f.wity as··~··· above is res.Weed in that the node where die
u~ng service is huttM' ·temaiftS' ift'\l'Ot'Vf!tt"even if all processes using the
socket are operating on other oodea No straightforward mechanism for
moving the controlling node that is applicable to all domains has been
identified. However, future work may determine solutions that are acceptable
to a large class of problems. One possible extension to the file system
enhancements in the DEE would be some form of socket endpoint relocation;
to make remote socket support more robust.

The streams facility is available in some Unix implementations and full remote
prooesa support·~ that processes with open su:oams. can move. Providing
this fDDCtion is feasible within dle FUSION architecture, but is not include<i in
this·,~tion.

The set of IPC mechanisms ... referred. to as .. Systcm V IPC consist of
semaplun.s, mess&@e queues, and sh&Nd. memory,. Full remote process support
needs distributed versions of these mechanism and prototype work suggests
that implementation is quitoJoasiWezwithin die i'UilON mdti~ It might
be particularly desirable for use with clusters built in a single box. However,
full~Beatlon·and Qesip. have.been 4eferred.

The TCF system introduced a concept called hidden directories. These are
special directories, which for most ordinary accesses are treated as ordinary
files. In these cases one of the files within the directory is selected. These
were used to store binary executable files that had to be different for different
machine types under a common name. Hidden ~ were.,~.aon>­
essentiat in die. initial release .of FUSION. At some future point such support
might be desirable.

2.1.2 REMOTE PROCESSING SUP.PORT IN THE DEE
The FUSION system provides support for basic remote processing at the DEE
layer. Within the technical community, the term remote processing can
encompass several different facilities, including RPC, remote command

IBM Confidential

- 14 -

execution, remote process creation, and process migration, as well as certain
types of access to processes executing remotely. In the context of FUSION,
RPC mechanisms from OSF's DCE (known as NCS) is an existing tool upon
which FUSION remote processing services are built. A function related to the
remote processing support in FUSION is the Node Status Service, which
collects information about the available nodes that can be used to select
potential execution sites. It is described in section 2.1.3.

At the abstract level there are two types of remote processing operations within
FUSION. These are remote process creation and process movement. However,
there are more than one function in FUSION to provide them. Tiie·f~wing

romot&procossing funetiom are provided by FUSION at the DEE layer;

rexec

rfork

remote,,wniGfts of the- standard UNIX exec family of
sy&lem Galls. The caller explicitly identifies the node on
which the .. load module is executed. This is a process
movement operation.

a remote ·version. of the standard UNIX fork: system· call.
The caller explicitly identifies the node on which the
chitd process will run. This is a remote process creation
operation.

a new system call that causes the process to change the
node on which it is running. This is a process movement
operation.

SlGMIGRATE a new UNIX signal that when received causes.theprocess
to change the node on which it is executing. This is a
process movement operation.

In addition to the remote process creation and process movement operations,
FUSIQN also provides transparent_ .access to remote processes. Remote process
access·require a process··nmning Stra.tegy··whieh allows processes to retain'their
pi-ocess· ID regardless of Which node they are running on; and to guaran_tee that
a particular process ID is not used by more than one process at· a time.
FUSION provides a mechanism to ensum process IDs are. unique within a DCE
cell. The FUSION architecture can also support remote process access beyond
the cell, but the full specification and design of this capability has been
deferred.

The architecture for supporting remote processes is built using two pieces of
function. The first involves a small restructuring of the base kernel process
access code to add the concept of virtual processes, or vprocs. Vproes are an
abstraction of standard UNIX processes to reeognizo that the aspects of. naming
processes and identifying the relationships .between processes can logically be···
placed at a higher level than the . physical implementation of the operations
performed on processes. The Qn.plementatioR of vproes requires rearranging

IBM Confidential

- 15 -

some of the process related code in the kernel, so the code that implements the
operations on physical processes is separated into service routines (called
virtual process operations), and the ~e that performs the operations on the
process calls the virtual process operations via a procedure switch. Within this
architecture, it is possible to implement remote processes as an installable
client and server. The client code is an alternate set of virtual process
operations that ships operations on remote processes to the node where the
process is currently executing. Each server function on the node where the
process is executing calls the corresponding standard virtual process operation
on that node.

FUSION provides user level commands to access the remote processing
functions. The on command permits the user to run a command on a
specified node. The migrate command allows the user to migrate a process to
another node. For convenience, these commands are provided as extensions to
the standard UNIX shells. FUSION also provides a command called fast that
will select a relatively less loaded node to run a command.

The functional area related to remote process creation is that of execution
permission, or xperm. This feature is used to restrict where a user can
execute, either as a signed on user or via the remote processing capabilities of
rexec, rfork, and either form of process migration.

2.1.2.1 REMOTE PROCESSING EXTENSIONS
As process threads become more commonplace the FUSION system must
accommodate them. The most obvious area is with process migration. When
a multi-threaded process migrates to another node, the migration mechanisms
need to ensure that all threads migrate at the same time. This includes
migrating kernel managed mutex locks.

The migration mechanism could possibly be used as a mechanism for building
process checkpoint and restart. This is a possible extension to the remote
processing facilities of the DEE.

2.1.3 THE NODE STATUS SERVICE
A major supporting service for remote processing is the Node Status Service
(or NSS), which collects and disseminates static and dynamic node status
information about nodes in a cell. Each node can register both static
information··· about itself (e.g., instruction: tietS' supperted, machine cpu power,
optional equipment available, memory size, and paging space) and dynamic
information (system load, I/Orates, paging rates, free memory, free page space
and related).

The NSS also maintains information on the users that are signed onto each
node. This is useful for some UNIX system utilities such as who, last, talk,
write, finger, and mail notification. FUSION will include modifications to these
programs so that users have the option of seeing one large pool of signed on

IBM Confidential

- 16 -

users, rather than just that group of users that happen to be signed onto the
same node where the program is running.

A FUSION feature related to the Node Status Service is the sphere of interest.
This function permits a user or a process to limit the list of nodes to be
considered in a given operation. This is very important when cells scale to
hundreds or thousands of nodes.

2.2 THE CLUSTER ENVIRONMENT

The FUSION Cluster Environment is built on top of the DEE. The goal of the
Cluster Environment is to make a collection of machines on the network appear
as a single system, to the degree possible. This includes a common file name
space that is consistent on all machines within a cluster, and a set of tools to
automatically run some programs on machines deemed best suited to run the
program, and among machines of the same type, to move processes
automatically to balance the load.

The Cluster Environment can be viewed as three pieces of function. The first
is the data clustering capability itself, which provides a consistent view of file
system mounts and a common file name space among all of the machines in
the cluster. The second is a heterogeneous cluster load balancing function,
which, for appropriate applications, will select the node in the cluster most
appropriate for executing the application. The third is a homogeneous cluster
load balancing function, which will balance the load among machines of the
same type, by moving process among machines. Each of these functions will
be discussed individually.

2.2.1 THE FUSION CLUSTERING CAPABILITY
The Clustering Capability of FUSION is based upon the cluster mount model.
The cluster mount model insures that all files are visible with the same name
on all machines in a cluster. This function is called the clustermount function.
It ensures that a file system mount performed anywhere within the cluster is
visible to all nodes in the cluster, so that path names are resolved to the same
file regardless of which node evaluated the name.

The most difficult aspect of providing file name space consistency is with the
root file system. One approach to providing name space consistency in the
root is to provide a single common root file system. With this approach the
highest level of file name space consistency is achieved. However, there are
three obvious disadvantages of the single common root. These are:

1. the risk of the root being unavailable

2. the potential performap.ce penalties for accessing root files that are stored
on another node

3. the difficulty in getting consensus on the contents of the root among
multiple vendors and across different platforms, even from one vendor.

IBM Confidential

- 17 -

To address the first two disadvantages, FUSION supports a replicated root.
The access and update semantics of a FUSION replicated root are the same as
those· of a single node and the local ·performance closely matches that of a
single node. Also, the failure semantics are consistent with what users would
expect.

The problem of getting consensus on the contents of the root is addressed by
having the FUSION clostermount ·function also support multiple root file
systems within a cluster, while still striving to preserve the highest degree of
transparent naming possible. This function is termed extended clustermount
services. Extended clustermount provides that cluster-wide mounts are visible
from the same name on all different versions of the root, so that the name
consistency is preserved. The potential for inconsistencies using the extended
clustermount is increased, and must be managed by the cluster administrator.
The extended clustermount services also allows for. local only mounts, so that
(for example) different machines can have different /tmp file system, even
when the root it is mounted on is replicated.

One additional aspect of the FUSION Clustering Capability is supporting NFS
in a cluster-wide manner. There are two aspects of the NFS function. One is
making NFS mounts on one node visible to all nodes within the cluster. This
function is provided by the clustermount function. When accessing an NFS file
from a node in the cluster, FUSION is designed so that the using node will
communicate with the NFS file server directly, without going through the node
that performed the NFS mount. The other aspect of enhanced NFS suppon in
FUSION is cache consistency among nodes of the cluster. NFS1 unlike DCE's
version of AFS, does not provide cache consistency between clients of the
same .file• Without providing this service within a cluster, serious errors could
occur if inconsistent caches. were accessed. Consequently FUSION has made
changes to the NFS client code to allow all members of a cluster to be cache­
consistent with respect to each ... NFS file. This does not require any NFS
protocol changes and is transparent to the NFS server.

2.2.2 FUSION HETEROGENEOUS CLUSTER LOAD BALANCING
FUSION's heterogeneous cluster load balancing function is provided to allow
the system load caused by particular programs to be balanced among nodes of
a cluster. Because the name space of the cluster is consistent among all of the
nodes in the cluster, it does not particularly matter which node executes a
program in order to get the correct result. However, some machines may be
more appropriate for running particular programs, perhaps because they are less
loaded, are more powerful machines, they support some capability that is not
generally available, or they execute the instruction set for which the program is
compiled. The FUSION het~rogeneous load balancing function takes advantage
of the name space consistency, and can automatically select the execution node,
without specific intervention from the user.

IBM Confidential

- 18 -

This function is provided by a kernel extension, which at the time .of an exec
will make use of system .capability and system load information from the Node
Status Service (NSS) of the DEE, and select a node that is best suited to run
the·program. This is not done for every program, but only for executable files
marked as candidates for exec time load leveling and for programs that cannot
run on the local node.

FU&IOlil permits a replacement load leveling algorithm to be installed by the
adminittntor. Such a replacement could access all of the NSS data that the
supplied load leveling extension had available. FUSIDN also provides a set of
library rouanes to access the NSS data, so that a particular applioation. can
make its own evaluation, and select a node explici.tly using the rexec function.

2.2.3 FUSION HOMOGENEOUS CLUSTER LOAD BALANCING
The hermgeneous system has the added ability to balance load within the
cluster ·using the process migration facilities provided by the DEE. Again this
function makes use of the fact that a FUSION cluster environment guarantees
that the file name space is consistent among all nodes within a cluster, and
consequently it does not really matter on which node a process runs. It also
utilizes the fact that process migrations induced by a signal are not visible to
the running program and no program modifications are required to move the
program to another node. By spreading out processes among nodes of a
cluster, the load can be balanced. This function makes the cluster appear as a
multi- processor system, and consequently is sometimes referred to as network
MP.

While this function is called Homogeneous Cluster Load Balancing, it is useful
in heterogeneous clusters as well as homogeneous clusters. However, the
migration functions used te balance the cluster load will only be attempted
between nodes in the cluster that are of the same processor type and running
compatible operating systems.

FUSIDN supports system daemons. that monitor the load on the nodes within a
cluster, and move certain processes around to balance the load. These
daemons can operate on a per user basis or operate for all users. Tho i>ase
FUSIDN• ·system will not provide complex programs to provide dynamic load
leveling, as the policy decisions need to be quite elaborate and tuned to
particular installations.

Automatic process. migration is limited· to executable .files that are designated. as
candidates for load leveling. Within this environment, 1.tsers .. • . .aad ... system
administrators can choose to manl.tally move processes between nodes as well.

2.3 THE FILE SYSTEM REPLICATION SERVICE

2.3.1 READ/WRITE FILE SYSTEM REPLICATION
FUSIDN provides replication capabilities that complement the functions and
capabiiities of the underlying distributed file system of DCE. The replication

IBM Confidential

- 19 -

is called single system semantics readfwt:B· Rplication because it provides the
sin~ nockl/aingle-eopy ~ of1 a ~ UNIX "°""'.,mpticMed file
sysaem. 'Rte·repiioatie& capa9ilitiosief,aue,.llCR are limUe41.ju, ~v~al ,.wayL
nae multiplo ~i-·.a"'.w.; •. ,,.,,,..,Jm .;._ .~~.~ . .­
copies ·are1not1guuanteld to always ·be Uf1·to·•~ .anci·the ~to. bling
oopiu:'11P to.~require oloning'the eltUrCIMIOlmne.

FUSION niplication is lmitt~'""''e~·~·~·~Jkie1
provide4 by DC& The replication support automatically manages the
consistency of all replicas. To provide this function, u,._, capa&itiU. exist
with only one of the copies. By pro¥iciing this restriction; u'f'dates can be
synohroaiad and COR~"'·1updtlm9•1'*ll'e;:~.,,ig··e·t~v~w

environment. The limitation of having a single update copy, however, requires
the Ulel'8' to only hawo readlunly· eopiw· "of thc·data ·&¥ailablo-·if a failure OCCU1"6

at the ·nc:Jde sturing the' single ~'C6f'Y or if· that 'nc:Jde' ~s panitioned
from the usw's Dede.

2.3.2 REPLICATION EXTENSIONS
In addition to the basic replication setvices specified in this document, there is
additional functionality that may be added to the replication setvices in the
future. These possible extensions are described here.

Reptieation wilbia TCF provided an opea .. time option called O_RBPLSYNC.
WMD· use&· in conjUttction Wittl · O.::._S"YNC, dlis lllGCk ~teed .tbat file
propagation to the replicas ocounvd ·as soon as the write operation, completed.
FUSION<Replioation,,._ .. ~l qppert thiS,dllOde. It migkt be
appropriate to add this in the future.

As laptop machines become more commonplace, specialized support within the
FUSION environment may be necessary. With laptop machines, the likelihood
of shutdown and relocation is much greater. Consequently the replication
mechanisms might need to be ··adapted to the disconnect/reconnect/update
scenarios that would be more likely.

One of the limitations of the replication services specified here is the support
of a single read-write copy. With this strategy if the site storing this read­
write copy fails then the file system become read-only. In the case of network
partitioning one or more of the partitions have only read-only copies. A
poniMe extomiea ·to the 0 PU818fit"'repRe&tion servieei is to support multiple
reaci-write copies of a replicated file system, and provide meckanisms fos
reeoneiliation of the multiple copies after they have been disconnected.

IBM Confidential

- 20 -

3. DESCRIPTION OF FUSION FEATURES

This section provides a detailed description of every major subcomponent of
the product. These descriptions are divided into two categories, covering the
three fundamental layers of the FUSION product as described in the previous
chapter. These three layers are the Extensions to the services of the DCE,
referred to as the Distributed Execution Environment, or DEE, the FUSION
Cluster Environment, and the File System Replication Service. The features of
the DEE will be provided in the first section. The second section presents the
FUSION Ouster Environment. The last section describes the File System
Replication Service.

3.1 THE DISTRIBUTED EXECUTION ENVIRONMENT

There are three major components of the Distributed Execution Environment,
or DEE. Section 3.1.1 discusses the various enhancements to the remote file
system provided with OSF's Distributed Computing Environment (DCE).
Section 3.1.2 describes support for remote processing within the cell. Section
3.1.3 describes the Node Status Server.

3.1.1 FILE SYSTEM ENHANCEMENTS OF THE DEE
Several functional areas fall into the category of file system enhancements.
Included are:

a. Remote device support, including character, raw and block devices along
with special devices like /dev/tty and /dev/null;

b. named and unnamed pipes (FIFOs) with readers and writers on
potentially different nodes;

c. remote sockets, both internet and unix domain; rexec and migration with
open sockets is the principle function;

d. select on remote objects like·pipes, devices and sockets;

e. Open file off set coherency;

f. Open file and lock movement, given remote execution;

3.1.1.1 REMOTE DEVICES
With DCE, regular files can be shared and distributed transparently across a
network. FUSION extends this level of transparency to the sharing of most
special files (terminals, disks, tapes, pipes, and sockets). This section describes
the component of FUSION which makes devices fully transparent to the user.
FIFOs and Remote socket endpoint access are discussed in Sections 3.1.1.2 and
3.1.1.3., and the select operation on all remote special files is discussed in
Section 3.1.1.4.

IBM Confidential

. '
- 21 -

3.1.1.1.1 MOTIVATIONS FOR REMOTE SPECIAL FILES
Scenarios in which remote devices are necessary include:

A process is started up on a remote machine, but is connected for input and
output to a tty or console on the originating node.

A remote tape drive is read to extract a dump.

A remote process accesses its "/dev/tty" on another node.

Remote device support is key in order to enable and fully support process
transparency.

3.1.1.1.2 REMOTE CHARACTER DEVICES
R.W16Nc,··~····eupport· .. f.a ... ·~······~ to remote····~ ~;
al~··de'ftees ·timr11&e ·w·~~·Mamtrnt···~ in~ s~b as
memory mapped i/e:., wilt .not ee MIJ'·sappmted·remeteiy. ~ thM are
operating with a memory mapped d.evioe will not he ~· .tarmipMe~iaw&&'
from.the.a~.~.th&.acm.,, ~.··that are eperatiag·~ely
from&@. adAwice.willnotbe 1ble·•·epen•it·if it ii.al.w&ys memory mapped,
and will not he able to switch it inte that mode if it is oontrolled by &R•·iocd.

Perhaps the most common use for remote devices is to support remote
terminals. FUSION processes will he able to inherit terminals in a completely
transparent fashion from anywhere in the cell. Programs will he ablo. to issue
terminal ioetls.widleuth;~, J.oga .. of, ... ~. OporatioDs
iaue& apinst 1 ~·•nBnai··•I~lt in ttt.~,ile·ay a.ie
being called thfoup.•tho. wa ; .. to ,,.,.._..tho function~ 'tile server·
code at tho device's node .wilt•.a.a ~ tile requested··~ osin§·the>
device vnode/gnod.e's VFS+ interi'aee.,:.A\IUmin@··•~ ~·•·•
client code which in tum passes it se the initiating process.

Other character devices, like raw tape devices, are also supported. The
underlying mechanism handles the input and output buffering.

3.1.1.1.3 REMOTE BLOCK DEVICES
FeH remote accas to bleek 1'de¥iees •wilt .. ·be·provided. Users are able to
perform all standard functions on block devices independent of whether that
device is connected to another machine in the cell or cluster. Block devices
look much like files when accessed. The primary differences are in the area of
mapping offsets to blocks of the device and in the ability to issue ioctl
operations against devices. Like remote terminals, remote block devices can he
supported by the client machine talking to the server machine to perform the
function.

The VFS+ in&orfa.ce ii use<t to ·tftde·,·tke medlanics of· oonneemr1rlhe ·'elient·to
the proper server. VFS• interface code is responsible for intercepting
operations on iaoote ·special files and rerouting them to the remote node using
the RPC ·mechanism.

IBM Confidential

- 22 -

3.1.1.1.4 REMOTE /DEV /TTY
In order to support remote access to a process's controlling tty, FUSION
augments the controlling terminal information currently kept in the user
structW"O! (u.u_ttyp, u.u_ttyd, u.u_ttympx) with u.u_ttyrdevnode (node number
where the actual controlling tty device actually exists). The driver for the
/dev/tty pseudo-device, and other code whidt depends on u.u'-tty* is modified
or roplaced with code which communicates with the node where the
controlling- tty exists, if it is not the local node.

In·~ to"8Upp0ft the modification of a process's controlling tty, the· various
controlling tty fields in the user structure will be passed and returned during
RPCs ·which can effect them. The RPC sewers for. these operations will copy
the fields into their user structure for the duration of the operation. If
moditieci, they .will be copied back into. the calling process's user structure,
thU& p.rtierVing the single~ system semantics of these operations.

3.1.1.1.5 REMOTE /DEV/NULL
As one might expect, writing or reading from /dev/null leads to rather
predictable results independent of the /dev/null used. Consequently, code will
be pmvtded to map remote /dev/nuU requests to the local /dev/null where
possible. This will be done on the basis of the major and minor numbers of
the dePtice, and not on the name of the device.

3.1.1.1.6 IOC:TLS
UNIX 1/0 controls (IOC1Ls) are a general mechanism provided to allow a
wide range of operations which don't fall into the more common classes of
reading, writing, etc. Due to their general nature, they differ widely in their
functional interfaces. Some take simple values as arguments, others take
pointers to complex trees of data structures.

FUSION will support all host IOCTLs by providing a vnode ioctl operation
which takes advantage of NCS· RPC's NIDL (Network Interface Design
Language) to completely specify the ioctl interface and the data stmetures it
operates on (struct sgttyb, etc.). Tkis will allow.,eaca ioctl perfermed on a
remote, object to be implemented lal'!ClY via function shipping. A list of the
ioctls supported will be found in Section 3.1.1.1.

A meohanism will be providetl by FUSION to add remote support for
additienal''iootls that may be required by new device drivers. ·This Wftl ·be
implemented by defining a secomiary ioctl NIDL declaration and RPC client
set that ··are initially e~ The··bue FUSION ioetl support will search this
seoondary set if no match is found in principal ioctl support~ System
administrators can augment this secondary client as required to support new
ioctls and link them in with ,.the FUSION support.

IBM Confidential

. '

- 23 -

3.1.1.1.7 IOCTLS BETWEEN INCOMPATIBLE SYSTEMS
When FUSION support extends across product lines which are not completely
compatible with respect to IOCILs, it must be possible to link in new RPC
clients and servers for the new IOCTL commands, using the mechanisms
described in the previous section. wa.e. posaib-. &he. server code would
traMlate incompatible iecd com1D811Cb:imo dleirlocal equivalen&y .. bat:dtol:c will
prohaBLy beiecd3 whidt oan't:8e~.oa."11ain.ioreign dc¥iccs.

3.1.1.1.8 NAMING AND OPENING REMOTE DEVICES
Collwide,··deviees f«··~·~1ftlllY''eP!IR8Y·aot<hc!NmnoaW.; depending
on waat is plaeee in··thcr·p,w·'1iie··•y1tera··aaming·vee. IAiMl··~·ef·
devices Bal!lle8 .. ,., •. ~jnaetiaa1 .. :1~.-,.._. • ..,..,01·&hc~,,appreadf·••
di&kkm. ~.. Thal.".appreaah•·•~·.·•;,liJe .. buctl.;oa ... pamnwten
associated with .&hc meuntw a ~stem . ..all· to idenrify devices in a :v•Bt'
as belonging to a station.

Once remote devices are opened, they may be inherited across remote process
operations are accessible via the Reopen code described in Section 3.1.1.6.

Within a cluster, all files are nameable; dlerefore ail devices are··Nl1Reable. In
the absence of other device node specification, ~ .i~ ... will· ho:-.~
toapply to the node whieh didU.,~.of &hcfile.,sptem,.~taiaiag.the
device, mode. Dallice. in.ode& ia.~. File.iSystema .. will .4-.assumtd ... aa
appl)' ,JQ,,. tAe node which has the wn.W. .. ,copy of tAe file sy~.,,u .. u..
~··~~--,-~:~OOsto·U..Gevice.~i
fail.

3.1.1.1.9 SIGNALS FROM DEVICES
Devices can generate signals, either in response to external events or due to
explicit programming. These signals are always be seen by whichever
processes would have seen the same signals in a single-machine environment,
assuming that the machines on . which those processes are executing remain
available.

3.1.1.2 REMOTE PIPES
Throughout this document, both named and unnamed pipes will be referred to
as pipes unless an explicit distinction is made between the two.

The implementation of remote pipes will provide single-system UNIX
semantics for pipes used in the distributed environment. This functionality is
necessary to allow users to move a process throughout the cell or cluster
without concern for where the input or output of the process is directed.

~··ttre~'~ w-.•a.' ··llMl""'wn•·.,. aot local to die machine
~s·the pipe. In addition, multiple readers or writers may exist and they
may all be on different nodes.

IBM Confidential

- 24 -

Pipelines will be supported in FUSION without sacrificing single-system Unix
semantics. Each such pipeline may be composed of an arbitrarily long series
of processes connected by pipes. Each of the processes may be running on
any of the active nodes.

The current design of FUSION pipes does not try to recover from a broken
pipe condition due to the loss of a controlling node. If the node where a pipe
is being controlled fails during a pipe operation, the system generates a broken
pipe error message, generates the SIGPIPE signal, and terminates the pipe
operation. Furthermore, if the node where a named pipe inode is stored (or the
read/write node if that named pipe is stored in a replicated file system) goes
down during while the pipe is open, the pipe is broken in the same way.

In FUSION, pipes are implemented as a virtual file system. The design uses a
client/server paradigm, but the client and server are really parts of the same
virtual file system code. The FUSION remote pipe virtual file system code is
designed to utilize the local implementation of pipes on the controlling node of
the pipe.

PIPE STORAGE

The FUSION remote pipe support utilizes the underlying pipe implementations
to store ·pipe data. This leaves vendors free to chose the storage method most
appropriate for their system. Vendors often have strong reasons for choosing a
particular storage method. Conventional systems use a file system and the
buffer cache to store data. A real-time system might require all pipe data to be
kept pinned in memory so that no disk activity will occur during time-sensitive
operations. Another vendor that supports a paging kernel memory might wish
to simply call a kernel malloc() routine to allocate space for pipe data.

From the FUSION perspective, the underlying pipe storage module presents a
simple first in/first out byte stream abstraction. The vendor supplied storage
module needs to provide routines to allocate pipes, deallocate pipes, read from
pipes, write to pipes, and to test for blocking conditions (such as an empty
pipe on read and a full pipe on write). The storage module requires no
knowledge of any aspect of the distributed environment; it simply acts as the
local repository for pipe data.

FUSION REMOTE PIPE POLICY MODULE

The remote pipe policy module is the heart of distributed pipe support in
FUSION. It maintains descriptors for both locally and remotely stored pipes
being used on the node. Operations on descriptors for local pipes trigger
corresponding calls to the storage module to store or retrieve data. Operations
on descriptors for remote pipes trigger RPC calls to the remote pipe server.

The policy module maintains a pool of FIFO descriptors. A FIFO descriptor
contains all the state information that the policy module needs for managing a

IBM Confidential

- 25 -

remote pipe. Information in the descriptor indicates whether it represents a
locally or remotely stored pipe.

In the case of an unnamed pipe, the node that controls the pipe is the node
where the pipe was created with the pipe() system call. If the processes .·using
the pipe change. execution nodes, then the controlling node of the pipe is
moved when the last processes using 'that pipe moves to another node or exits.
When that occurs another node is selected from the set of using nodes, This
scheme allows the set of cooperating processes to continue even if the node
where the pipe was originally created fails.

In the ~ase of a named· pipe the official control point of a pipe is the node that
stores the file system. where the ,pipe: <inode exists (or the node where the
read/write· copy is stored if the .filesystemis replicated). For efficiency, a state
transition protocol is used to allow the node storing the pipe inode to
temporarily lend a pipe to another node when all using processes reside on the
second node. If a process from a third node opens the pipe, the controlling
node can reclaim responsibility for managing the pipe without any interruption
of service.

PRESERVING PIPE_BUF SEMANTICS IN A HETEROGENEOUS
ENVIRONMENT

The POSIX standard guarantees that WRITE requests of less than or equal to
PIPE_BUF bytes will be··written atomically into a pipe, •that is without being
interleaved with data from other WRITE requests. The value of PIPE_BUF
can vary from node to node in a heterogeneous environment. To comply with
the standard, the policy module must choose the largest PIPE_BUF value from
among all using nodes that have a pipe open for writing. Thus the client
node's operative value of PIPE:....:BUF may be different from descriptor to
descriptor on the same server node.

,'

If a using node's value of.PIPE...:BUF is greater than the amount of data that
can be stored in a pipe by the servel" node's, implementation (i.e client
PIPE_BUF > server PIPE_MAX), the pipe wm be lent to the node with the
largest PIPE--BUF value. If the dient·PIPE_BUF is larger than the server
PIPE_BUF but not l•arger than the server PIPE_MAX, the server will
implement the larger PIPE_BUF value in the policy module.

PIPE SYNCHRONIZATION

In a nonpreemptable uniprocessor UNIX kernel, pipe 1/0 synchronization is
achieved using sleep() and wakeup(). If a process's 1/0 request can be
satisfied, it reads or writes its data and returns to user mode. If not, the
process sleeps and is later reawakened by the occurrence of some event, (e.g.
another process riting data to an empty pipe) and it can then proceed. It is
assumed to be acceptable for kernel threads setvicing the pipe RPCs to sleep at
the setver end just as local pipe operations do.

IBM Confidential

- 26 -

3.1.1.3 REMOTE SOCKETS
The Berkeley socket abstraction defines an interface for interprocess
communication with a socket as an end- point of communication. There are
two socket domains commonly provided. The UNIX domain of sockets is an
IPC mechanism similar to a bidirectional pipe. The Internet domain provides
an interface to the networking services of TCP/IP. Other domains to support
other networking services such as OSI could realistically be expected in the
near future.

With FUSION' s remote processing capabilities, a mechanism is needed to allow
processes to use sockets controlled on a remote nodes transparently. This is
important because the underlying network protocols operate below the RPC
layer, and in general do not provide mechanisms to redirect communication to
another node. The FUSION remote socket support will allow a process with
open sockets to move to or be created on another node, without any support
from the underlying protocols.

Remote socket support will be provided for both the datagram
(SOCK_DGRAM) and connection oriented services (SOCK_STREAM) for the
local unix (AF _UNIX) and DARPA internet (AF _INET) protocol families.
Since raw sockets (SOCK_RA W) are only used to directly access the
underlying communication protocols on the local node, they cannot be accessed
remotely.

It should be noted that only processes with ''Well Behaved" sockets will be
allowed to fork, exec, or migrate to another node. A well behaved socket is a
socket in a known state where system cans upon it will result in known results
regardless of the underlying protocol. A precise definition of what it takes for
a socket to be well behaved is provided in a few paragraphs. If this restriction
was not enforced it would be possible for applications to create one or more
sockets, migrate and not understand why the communications failed.

The remote socket layer will be implemented with a client/server model using
NCS RPC calls. When a remote socket is required, a server process is created
on the machine where the socket was ·created. It then transfers the node­
independent fields of the socket (socket type. socket options, and socket state)
to the .. new node. The new node allocates a. socket structure for each remote
socket, and attaches a file structure with a new set of fileops to the newly
created sockets. A flag is set in the socket structure indicating the endpoint is
remote.

After the remote socket is established, the server keeps track of all nodes that
have the socket open. When the process running on the remote node accesses
the socket, the socket system calls detect that the socket is remote and ship the
socket requests to the original host. The remote socket server in the original
host identifies the individual sockets by a bound handle and issues the
requested socket operation on the individual socket.

IBM Confidential

- 27 -

If a process with an open remote socket moves to or creates a process on
another node. the new remote socket is linked back to the original node. This
minimizes the multiple hops required to support remote sockets. If however
this node is the original node, the process will access the socket directly.

WELL BEHAVED SOCKETS

Using node-dependent information in creating sockets can cause migration· of
partially connected sockets to fail. This would most commonly occur in
AF_ UNIX domain sockets where the connection name is derived from some
node-specific information. If the node endpoint of a socket were changed
before this information is obtained from the original node, the subsequent
connection would fail. To minimize the effects of this problem, the following
restriction will be applied; AF_ UNIX domain sockets cannot become remote
until either the connect() or bind() socket call is performed.

Note that this only protects sockets created before the migration. Processes
which acquire node dependent information such as the nodes network address
after becoming remote may still produce incorrect results.

REMOTE SOCKET SYSTEM CALLS

The remote socket client intercepts all socket system calls and forwards them
to the remote socket server at the original host.

The socket system calls that send data (send(), sendmsg(), sendto(}) are
intercepted at the sosend() routine.

The socket system call& that ,receive data (recv(), recvmsg(), recvfrom()) are
intercepted at the soreoeive() routine.

The file operations ioctl(), close(), and stat() are intercepted and forwarded to
the original host by the substituted file operations. The read() and write() file
operation will be intercepted ·when they call soreceive() or sosend(),
respectively. The fontl() operations are not intercepted by the socket layer.
Instead• the flags field from the .file descriptor is included in all RPCs
forwarded to the original host.

The select() file operation is handled by the generalized support for select on
remote special files, which is described in Section 3.1.1.4.

3.1.1.4 SELECT ON REMOTE SPECIAL FILES
The select system call allows a process to wait for data or other events on
multiple file-descriptors simultaneously. Remote select allows a process to
wait for data or other events on file descriptors which include files which
correspond to remote objects ·like devices, pipes, and sockets.

INTERFACES OF REMOTE SELECT

IBM Confidential

- 28 -

Like etlopm filos. a tile which refers to a selectable remote object points to a
set ofc fua£tioas thtOY@h,. the tile operations switch. These are the fileoP~$ for
objects of the given type. (There are several different sets of fileops in the
system, but a given open file only refers to one of them at a given time).

Among the operations for each file type is a select (or poll) operation,
generically known as the type's fo_select routine. For files which refer remote
objeots'" fur which the select operation is legal, the select operation will be
rem_seieet().

The rem._select function will provide a standard select- file-op interface:

rem_select(fp, corl, reqevents, rtneventsp, notify)
struct file *fp;
int corl;
ushort reqevents;
ushort *rtneventsp;
void (*notify)();

This means that the main ,select code in the1 kernel is unchang~ since .it enly
requires that the underlying file object implement the fo_select functionality.
The location of the actual resource is hidden from this layer.

MODULES TH.AT COMPRISE REMOTE SELECT

The remote select functionality will be implemented as two main remote
procedure calls (RPC's). The RPCs are remeto_setp&tl, and remote_selnotify.
These two RPCs are in some sense symmetric. Remote_selpoll is a call made
from dte,,,~s's node 10 die'>ot;,ject'1~ (FlliO; SOCKET, DEV)' node.
Remote_selnotify is the opposite, coming ;from the object's node, 'to the
process's node. In addition, each RPC can be thought of as having two sides:
a client side (work done at the caller), and a server side (work done at the
called side). remote_selpoll

RMD:.:.se~('Wi.U,call··remote_selpoll (RPC); te G. its wor~ .. The server.~ for.
tbe'fOlftOte'.:...selpoll RPC (at the objeet~s node) will simulate a file struct for the
specified object, and then call selpoll() (the guts of select) to setup the
necessary select event blockl. It will also pass a pointer to a special
notification routine. That notification routine will know how to notify the
remote selecting process via remote_sel_notify(). The RPC will tben pass back
the return value and modified reqevents and.·rtaevents.

remote_selnotify

As mentioned above, tbe~.::.::~~.«'l'CNtme wiH be used to• ooeif,. romote
processes selecting on an .object when an. awaited· event' ·happens to tho ~
(data becomes available to read, ...). The remote_selootify RPC will be
invoked by the remote notification routine passed into selpoll on the object
node. The remote_selnotify server code (executed at the node where the select

IBM Confidential

- 29 -

call isn waiting) will then eaH ske atandaRi AIX selnotify routine to notify the
selecting process of remote events.

CLEANUP OF REMOTE SELECT

Due to the large potential overhead (due to multiple RPC's), and to the non­
procedural interface, select cleaaup wilLbe leit up to ,timeouts or subsequent
selects. Hence if a process is selecting on several devices, and one device has
data ready. the process will awake and his select will return. At this point, no
attempt will be made to cleanup die data structures associated with the previous
selccli.1' Timeans (if speoificd)1,wili·1>ctJ& ·Uled te· cnse thae1 selectscto
eventually 19e11cleaned ·up. Oa1 1a.. oloae 1:of .,,tfte·. fiJa,,Qlaject (dn1 te111aormal
closes. •· to·Z'~11) any;~ seteet resomees ··wiU be released.

In the case where a remote select has terminated, but the select data structures
at the ~ ebject"'ft0do1,rfta¥C' flOt 1 ~._~,.1·up, it1 is1peniWo ;,tftat
spurious ~"'1RPC'W·1118¥····0...~.'1 1;1iThelo will:,1he igneRG,1,at. the
~ . ..te due1t81tfte 1uniqie in therpenciin~ ·select Gata: itrlletures.

OTHER SELECT IMPLEMENTATIONS

The remote select RPC protocol is iftdependent of the· unGoli,Hrg select
implementations, provided mat the underlying impkmlon~. provides and
uses the select fileop. A select implementation like OSF/1 may require a little
more code at the remote select's setver (the node where the selected object is
stored or exists) than AIX 3.1. This is primarily due to the inferior
performance of OSF's select code. Once this is done, however, the various
implementations of select will be completely interoperable.

3.1.1.S F1LE OFFSET COHERENCY
One of the requirements for true process location transparency is that processes
on multiple machines be able to interact with the same semantics as if they
were running on a single node ... ·UNIX processes on a single node can share
open files (inherited across forks). The semantics of this sharing requires that
the file offset and file flags (NDELA Y, etc.) be shared. Thus if one of the
processes reads a byte from the file, the file offset will increase by one, and the
next process that reads from the file will see the next byte. This must be
maintained even if the processes are on different physical machines.

F~1_1.-.itller...aanism:1GU1111nU,h~e,.~11ftJ;1~
access to v1~1ileMoek~11 ' ftJSftW1 wtft!!la1apief•rBilailu·~ · T4le
filebloek: is the kemel data ~· w~ .~~ tllo. file offaet and·ftags.

Suppmtu.ior ..,,$91~ ·ef" ·~Hofiaa:,:*.-l,01~;;.between nodes reqWres
rol~· fow "1leeksu m··•;·~ilevels of dile i~ti.ng. gystem,. 0wWch.
support& FUSION.

These hooks are calls to u.Q releaso dile filebloek token for any file
being operated .. $)11 by a sy~ call which modifies or interrogates that file's

IBM Confidential

- 30 -

offset or flags. Examples of such calls are read, write, fcntl and lseek. The
exact places for these hooks will vary from OS to OS, but the calls should be
the same:

fbtoken_lock(struct file *fp);

operation which uses or modifies the file's offset or flags.
fbtoken _unlock (struct file *fp);

The implementation of fileblock tokens will use Remote Procedure Calls, as
provided by NCS.

Among the primary functional requirements in the design is a large measure of
Token Managing Node independence. To provide a high level of robustness,
the underlying fileblock token protocol will provide an automatic mechanism to
move fileblock token management to one of the nodes using the fileblock.

The fileblock tokens implementation will provide a means to allow underlying
protocols (like remote pipes, sockets. terminals, and other devices) to take
advantage of the synchronization provided by the protocol. This will be
implemented as a new operation in the file_ops structure, the fo_fbtok_revoke
operation.

void
fo fbtok_revoke (
struct file *fp,
token_seq_t tokseq
) i

File-types which provide the fo_fbtok_revoke operation will use it to guarantee
that all data that they've written to the underlying object (socket, pipe, ...) has
been flushed to the object's storage node. They might also return unconsumed
(unread) data at this point.

The token-sequence number in. ·fo_fbtok_revoke is provided to allow the
underlying remote-object access protocol to implement flushing of data in a
non- synchronous manner to minimize the performance impact of supporting
fileblock tokens. A simple protocol could just provide a version of
fo_fbtok_revoke which doesn't return until all data is guaranteed to have been
flushed back to the storage node's real object. A more complex protocol could
simply begin the flush procedure when its fo_fbtok_revoke is called, and use
the token~sequence number at the storage node to guarantee that no other data
is allowed into the object until that token sequence has been completed.

In addition, the file structure will be extended with a small data structure to
maintain the state of its fileblock token, if any. The exact format of this data
structure will be specified 'in the Detailed Design Specification for Fileblock
Tokens.

IBM Confidential

- 31 -

3.1.1.6 FILE REOPEN AND LOCK INHERITANCE
Transparent remote processing while preserving UNIX and POSIX semantics
requires the following:

1. The inheritance of open files when processes are created on remote
nodes, and,

2. The preservation of open files and locks when processes are moved
between nodes.

FUSION implements the movement of open files by a protocol which involves,.,
a "prepare" phase, done on the originating node where the files are open. and a
"reopen" phase which is performed on the destination node.

INTERNAL INTERFACES TO Fll..,E REOPEN

~t~,.._...,,,..4.,$.. tl~~·-~·~·· waiclt
creates a prooess on a destination node, the·. destination node,JWilli;1i~' &ho
GET_LOCK_PILE_DATA R'.PC to the originating node, specifying the source
process. Despite the simple name, the oliont and server for this RPC are
responsible for setting up a:H file related state for the new process. These
includes:

- ~.-.• ,.,...,.ftles.

- migrating any file locks.

- setting up "fileblock tokens" for shared file "blocks".

- settin& up current working directory, current root, and the mount context
(See Section 3.2.1.1.6 for a description of the mount context)

INTERFACES USED:

The file Stmoture in \lFS. Ducd ·keaaels contaim e,poimer at a set of optfttiens
which can be done on that file. These are normally:

f o :rw
f o ioctl
f o select
fo· ose
fo stat

To allow the GET_LOCK_FILB_DATA seIVer to remotely reopen .. ,filos,
FUSION will add the following oporatiolls.to thi,$ set:

fo _prepare _for_ export
fo~

The.fOAflapalDJ°Or'L;OXpolL.~··--\~:

1. perform the modiieatkms dlat ue necessary to the local file and its
underlying data structures to allow the file to be shared with a remote
node.

IBM Confidential

- 32 -

2. provide a reopen handle which can be used at the destination node to
reopen the file.

The fo--nopen operation for a particular type of file does the reverse; it takes a
prototype fileblock and reopen handle, and perf onns the actions appropriate to
the file type to make the fileblock refer to the same object as the original open
file.

As mentioned above, each file type must provide functions to implement
fo_prepare_for_export() and fo_reopenQ for the particular type.

FUSION pmvidcs these file-operations for both of the two types of files which
are visible to users, vnode- based files and non-vnode-based files.

For vnode .. based files (e.g .. NFS, AFS, and local physical file system files), the
fileops require support from each virtual file system type. This support
consiMS .of. eJKtensions to the staftdard set of virtual-file-system 'operations.
T-..,.,~.,ere:·

ORIGIN NODE:·

VN:l~~~RT

Create5 a reopen handle which can be used at the destination to reopen the
vnode. This also does whatever is BOQessary for the VFS type to allow the
reopen to be done at the destination (magic with exclusive mode tokens for
AFS, for example).

VN_PRBP _liXPORT_LOCKS

Creates a data structure which describes any locks that the process held on the
file, and, again, does whatever token magic is necessary to allow exclusive
locks to be reacquired remotely (since the local locks won't have been removed
by then). This is only called for _migrate and all remote execs, since file locks
are per process. ··

DESTINATION NODE:

VN_&E.OPEN

Uses the reopen handle produced at the origin node to get a vnode, and opens
it.

VN:i.l.RBLQCK

Reacquires any locks which the process held on the file.

For non-vnode based files . (e.g., some flavors of sockets) which are not
normally accessed remotely~ the ~ extension routines are responsible for
invoking the new mechanisms which FUSION provides for remote access to
these oDjects.

IBM Confidential

- 33 -

3.1.2 REMOTE PROCESSING ENHANCEMENTS OF THE DEE
The remote processing functionality is described via seven subsections: remote
process programming primitives, cellwide process name space, virtual
processes, remote process client/server function, execution permission, remote
processing commands and shell enhancements.

3.1.2.1 REMOTE PROCESS PROGRAMMING PRIMITIVES
The programming level interface to the remote processing functions of FUSION
provides the programmer a wide range of flexibility to control processes. New
system calls are provided which allow programmers to explicitly indicate
remote nodes or otherwise take advantage of the distributed system.

FUSION protides a new fonn of the fork system can called rfork. Rfork takes
arguments to specify the environment in which the child process should be
created. FUSION a1~o *J'1'0Vides new versions of a11 fonns of the exec system
call (excel, execv, execle, execve, execlp, and execvp) which together are
called the rex.ec system calls. Tttese new calls are rexecl, rexecv, rex.ecle.
rexecve, rexeclp, and rexCCVfh They tab tM: same arguments as the equ1va1ent
exec call, but in addition take arguments to indicate which environment the
process should execute.

In addition to the capabilities of rfork and rexec, it is also desirable to be able
to replace the current process with an exact copy on a new node. This is
provided with the migration functionality. Tke emigrate*.,.., ant' tabl'*•the
same arguments are rfork, indicating· tho new environment: in which the process
should run. The migration of a process can also be initiated through a new
signal called SIGMIORA TE. This signal, when delivered, has a default
behavior of migrating the process. Pre8f&IDS may catch this signal and
implement any desired behavior. If either form of the migrate operations fail
the process continues to execute on the original machine.

Mi8f8tion, of ·~·· wit&,~thmads,rwill migrate. all ef the·· threads. of
the process to the new node~, <AU .. kerftel supported1 mutext looks*' will also .be
migrated in .a traasparent1 manneP ..

3.1.2.2 CELLWIDE PROCESS NAMESPACE
Central to all aspects of Precess Transparency is the name space for processes.
The name space for processes is the set of process identifiers (pids). The
algorithm used to generate pids varies from UNIX system to UNIX system, but
UNIX guarantees at least uniqueness for each pid with respect to other
processes in the system.

For Precess Transparency, this guarantee must be extended into the network
environment. In a single qi.achine environment, a process doesn't change its
pid during an exec and a user or process can signal or otherwise access any
process to which they have permission. Expanding to the distributed
environment should not unnecessarily break these semantics and ~iliiSIQiltl

IBM Confidential

- 34 -

there are unique pids ceUwide. A wider level of distribution is desirable but
difficult to manage, given the restricted nature of pids.

FUS'ION assumes that all participating nodes can support 31 bit pids. Within
this.· constraint, .. FUSION can support 16,383 (l 6k~ 1) participating nodes per
cell. Each node will have a minimum of 128k pids to use and control, with
the option of many more 128k chunks of pid space. The cost of each range is
that one .. fewer total nodes can be supported. For example, if one had three
machines in the cell which each needed over one million process ids (and thus
an extra seven ranges each), while the others needed no more than 128k, the
total supported number of nodes would drop from 16383 to 16362.

To support this cellwide pid capability, each node, as part of FUSION
installation, is given a primary pid range. Ranges can be added during system
operation. Releases of ranges can be done only while the machine is disabled.
PID range allocation is kept cellwide via the directory name service. In the
unlikely event that conflicting updates are done to the pid allocation data, the
Node Status Service (See Section 3.1.3) will detect the problem and isolate an
offender so as to avoid duplicate pid name confusion. To allow processes to
be created before the FUSION extension is added to the system and a primary
pid range is allocated, the pid range of 0-(128k-l) is reserved as a special case:
processes in this range are "local only'' - they are not allowed to become
remote processes. These processes may . also no be parents of remote
processes, with the special case exception being the init process.

3.1.2.3 VIRTUAL PROCESSES
Virtual Processes are a generalized mechanism to support remote process
operations. They represent a simple restructuring of the kernel so that code to
access a process is directed through a. virtual process switch. This
restructuring is possible because the name of the process and the grouping with
its relatives are logically at a higher level from how the operations are
performed on the processes. For local processes, the routines below the
process switch manipulate the physical process directly, as before. Once this
restructuring is done, one or more remote process implementations can be
installed within the kernel.

Users, processes, and kernel code can access local processes and remote
processes transparently. The virtual process concept does for processes what
vnodes do for files. Vnodes and vnode operations allow users, processes, and
kernel code to access local and remote files transparently, and also allows
different remote file implementations to be installed in the kernel at the same
time, simultaneously.

The virtual process level represents names and relationships of processes. The
latter is necessary because certain system calls reference processes not by their
name but by their relationship to some process. For example, a process can
find out the process ID of its parent via a getppid system call. Another

IBM Confidential

- 35 -

example is the signaling of a process group, which is a collection of related
processes.

The virtual process de:sign divides the data at the virtual process level into to
structures: The implementation< independent vproc structure and the
implementation dependent pvproc structure. The vproc structure points to the
pvproc structure. It also has a pointer to an may of function pointers, which
establish the operations which can be performed on the underlying physical
process implementation. ·The vproc structure also·has a··pointer to the physical
process structure, which is· valid if the process· is executing locally.

The specific fields included in the pvproc structure are defined by the particular
implementation. In general, however, these fields are typically those that
specify relationships between processes, such as sessions, groups, parents,
children~ and siblings.

When a process moves from one node to another the physical process entry is
destroyed on the source node and new physical process entry is created at the
destination node. The array of function pointers on the originating node is also
changed from physical process ops to client code functions. However, the
vproc remains on the source node, and a new vproc is created on the
destination node (if one does not already exist there). The array of function
pointers on the originating node is also changed from the local physical process
operations to a set of remote· client functions.

WHERE VPROCS EXIST

Like vnodes, a vproc for a given physical process may exist on several
different nodes simultaneously. There are several reasons a vproc for a process
may exist on a give node. Some of these reasons are given below. When
more than one of these applies, a use count field in the vproc structure is used
to keep track of the number of re~erences to the vproc.

A vproc is needed for a process thatis currently executing on this node.

A vproc is needed for a process that was initially created on this node (the
original execution node) and either (a) the process is still active or (b) the
process ID is still the process group leader for a set of processes.

A vproc is needed for the parent of a process currently executing on this node.

A. vproc is needed for a child of a process .. currently executing on this node.

A vproc is needed for the process group leader of a process currently executing
on this node.

A vproc is needed for the 'session leader of a process currently executing on
this node.

IBM Confidential

- 36 -

A vproc is needed for a process being "temporarily" referred to. A "temporary"
referral is a referral in which a process ID is referred to (e.g. in a system call)
and the process being referred to may not have a vproc on the current node
(i.e. none of the above conditions may be true). Jn this case a vproc may be .
created for the duration of the referral (i.e. for the duration of the system call).

3.1.2.4 REMOTE PROCESS CLIENT/SERVER FUNCTION
Remote processes are implemented as a client/server model using NCS RPCs.
The remote process client takes virtual process operation calls from the local
kernel and translates them to RPCs addressed to the proper remote node. The
remote process server handles all such RPCs for processes physically residing
on· its node, or returns information to help the client locate the proper node for
the involved process(es).

The client also implements the Process Transparency system calls - migrate(),
rexecve(), and rfork() - and handles default SIGMIGRA TE behavior. The
remote process server, when it receives a virtual process request, uses the same
local virtual process ·operations that the local caller would use for a ·local
process.

Remote process client and server support can therefore be seen primarily as a
location, routing and pass- through mechanism to deliver process context and
parameters from a client to the current physical location of a process,
whereupon existing local virtual process code is used to complete the request.

The Remote Process Client checks several statuses to determine if further
action is required. If the<Remote Proces.s Server return value indicates that the
requested ··process has moved; a· query is sent to· the original execution node to
obtain the current execution node.

If the original execution node is unavailable, a surrogate origin node is used
instead. ·Surrogate nodes are assigned dynamically based on a preferred order
as established by the network administrator. Remote Process Servers are
obligated to tell the surrogate origin node of any processes they are hosting as
soon as they detect that the origin execution node of that process is no longer
operable. Thus, if the query to original node fails, the Remote Process Client
contacts the surrogate for the execution node information. Error recovery
continues until a bad RPC status is detected or the maximum number of tries
of different execution nodes has been reached.

When a vproo operation fails, the Remote Process Client updates the u_error
field in the user block with an appropriate error code.

3.1.2.5 EXECUTION PERMISSION
In going from a single machine to a distributed environment, authorization
controls are required be added to restrict which users can execute on specific
nodes. The authorization data should be managed by the DCE Authorization
Services. To minimize the cost of queries to the DCE Authorization Services,

IBM Confidential

- 37 -

this information will be cached the kernel.

Both positive and negative caches are needed. The positive cache is the actual
tickets to do remote operations. A negative cache would record nodes a given
user can't execute on. The negative cache is important in relation to the user's
sphere of interest (SOI). The cache avoids repeatedly picking a node from the
SOI for which execution is not permitted.

Besides the static data kept in the kerberos database, it is also important that
users with appropriate privilege can dynamically restrict execution on particular
nodes. A flexible mechanism to accomplish this is provided.

3.1.2.6 REMOTE PROCESSING COMMAND INTERFACE
FUSION provides three commands for users to access the remote processing
features from the command line. The onnode command allows the user to
specify a particular on which to run a command. The migrate command
permits the user to migrate a process or a process group to a particular node.
The fast command allows the system to pick a site on which to run a program
based on system load.

SHELL ENHANCEMENTS FOR REMOTE PROCESSING

There are two primary reasons for enhancing the shells: to provide superior
semantics for context manipulation operations like sphere, and, to initiate,
monitor and control remote processes within the shell environment.

KORN SHELL

An overview of the extensions to the Korn shell is given below:

The jobs built-in command is altered so that the execution node name is
displayed for each job if the "- l" option is used.

The onnode control command is provided. The command is used to initiate a
job on a remote machine. The r0mote machine can either be specified by a
node name or a set of node attributes. Input-output redirection is performed
prior to doing any file system context changes. Options are provided to display
the destination node name.

The migrate built~in command is provided. The command is used to
synchronously migrate the shell or to asynchronously migrate a process or
process group. The destination node is provided either as a node name, or a set
of node attributes. 'Fhe process or process groups to be migrated are specified
via process identifiers. For ·.the migrate to· succeed the destination node must
be the same node type with a compatible operating system as the current
execution node of the process or process group.

Note that a process does not migrate until it starts to run. Stopped processes
must be started before they migrate. In most signal implementations, a signal
sent to a stopped process will be stored. If the shell is migrated, then it will

IBM Confidential

- 38 -

change its mount context (as described in SeGtion 3.2.1.1.6) after completing
the migrate. In addition, it will rebuild the hash table for the search path.

Note: if the migrate fails the process continues on its original node, retaining
its original context. The sphere built-in command is provided. The semantics
of this command are equivalent to those defined in SeGtion 3.1.3.3, except that
a new shell is not created. The change is performed directly on the shell
process.

BOURNE SHELL AND C SHELL Bnltaneements similar to the above will be
made ta the Bourne and C Shells.

3.1.3 NODE STATUS SERVICE
The .. Necie.· · Status Service is intended to provide clients with at least the
following information regarding nodes wither currently participating or
previously participating in the cell:

1. whothef they are curr.atly participaling and for how low;

2. whether they have ceased to participate and how long ago;

3. the node attributes lis&, including OS vendor, OS version, instruction sets
supported, load average scaling facter, preference level, cluster
membeFship; process id ranges;

4. the load average and other .dynamic data, including network cost data
with respect to the local machine;

5. which users are currently logged in for each node

6. /etc/mount information if the node is part of a cluster

Commands and the kernel which require information concerning other nodes
participating in the cell or cluster will use the Node Status Service. This
service' ·will. reduce retry delays by knowing which nodes are currently
participating. The Node Status Service is extensively used by the process
transparency cluster function for automatic node seleGtion. It is also used for
presentation of a Single System Image view of logged on users via extended
version of standard commands like who, users, talk, write, wall finger and mail
notification.

Since cells and clusters may be large, the users of these commands may not be
interested in information about all the participating nodes within the cell. For
this reason, the key commands normally operate upon information about the
nodes within one of the process's or user's Sphere Of Interest.

The· ·Nede·"~ Service is actually six setVices working tegether to gather
processor, mount and signed on user information from participating nodes and
to· ~ly disseminate1 this.,,jnformation.. 'ffto services are:

IBM Confidential

- 39 -

- l..oeal. Node· AuribU:te Service;

- Loea1 Cluster Mount Service;

- Loea1 Node User Service;

- Group Node AuribU:te Servioo;

- 0Nup·Ott1ter Mount· Service;

- ~Node.User Service;

~~''nOOe*W,.~~·••l!f'RSof tn.•Node Statw Servioe··(1lftCi
th•· the·thle9 local sewi~ 1lt_.,.,_). TttewftJeatlWefVices lr~'iffforrmttion
aboltt the local node (which they push to the ·gi·ou1vversions) and cache
infonnation obtained from the group versions about other nodes., The· local
services never communicate with anyone other than group services or potential
group services. Very few nodes run an active Group Node Status Service.
Each such group service can support dozens of nodes.

The Group. Node Status SelMce communicates primarily with the Local Node
Stattt1, Servioe en a tiefiRed act. of nodca, and with .Qther Group N~ Status
Servrices. It collects the information about caeh of its clients and answers
queries from either those clients or .otheJ; .. group seivWes. Ttte.'!Heries .from
local clients can be about other local clients or about nodes supported by other
group servers. In the later case, the group service will contact the relevant
other group services to obtain the requested infonnation. 1l1wt ~"''of'
w~,~.u0r,.in ... which. groups and"Which nodes .are to run a· version of:the
grottp .acrvice is available through &JDCB.gloltally eooessible •t of files.

Below are discussions first of the Local Node Status Service function, then the
Group Node Status function and finally the sphere of interest capability.

3.1.3.1 LOCAL NODE STATUS SERVICE FUNCTIONS
The Local Node Status Service ii a ·daemon (together with a kernel extension)
which is started after the node is booted. Below we look at the activities of
this service from the standpoint of startup, ongoing background activity,
update requests from local clients, queries from local clients, requests from the
Group Node Status Service, and actions to take when the Group Node Status
Service becomes unavailable.

STARTUP

wa..,.the Loea1 Node Status daemon is initiated; it obtains the ~ .OOe
auribU:tes, the local mount infonnation and infonnation about .any .. curmntly
signed on users. Nntdtl·Ullil&t,find.i~ Group·Node Status Service. A query to
the DCE Cell Directory sem.ee gives an ordered list of nodes (RPC handles)
to try to find where the Group Node Status Service is ·executing. Wiaea die
GNSS is found, the LNSS registers with it and pushes node attribute and node
user infonnation to it. Whea r.equested to join a cluster (a separate function

IBM Confidential

- 40 -

from just joining the group), the LNSS will push mount information to the
GNSS.

ONGOING ACTIVITIES

Independent of any query or update activity involving the LNSS, this service
will do a keep alive with it's GNSS by sending dynamic load and other
resource utilization information with at least a minimal frequency. This
information includes the current set of signed on users, the system load, 1/0
rates, paging rates, amount of free memory, and amount of free swap space. A
more rapid, frequency is used if significant changes occur. Both frequencies
and the definition of "significant resource utilization change" are tunable,
subject to group wide upper bounds.

UPDATES

Updates to the Node Attribute Service could be changes either to the static
local node attributes or to local loads. Only users with appropriate privilege
can change the static node attributes and only the Local Node Status Service or
the kernel can update resource utilization data. Updates to the Node User
Service would be the result of users logging in or out of the local machine.
Updates to the Cluster Mount Service would be the result of local file system
mounts or unmounts, including NFS mounts.

QUERIES

Queries to the Node Attribute Service are typically attribute based queries with
a scope limited by a Sphere Of Interest (SOI), returning a set of node attribute
records. Node attribute records will accommodate expansion and the protocol
will have daia versions capability.

One example query might be for

All nodes with attribute X in SOI A

while another might be

All nodes with attributes X and Y and Z in SOI A.

Example queries to the Node User Service include:

- All logins of user X in SOI A

- All users on node Y

- All users on all nodes in SOI A
Cluster Mount Service queries include:

- All mounts on site X

- All mounts in SOI A

IBM Confidential

- 41 -

- The mount which is mounted on mount point K

- A pathname query to get into site X's mount context (see Section 3.2.1.1)

INTERFACE BE1WEEN LOCAL AND GROUP SERVICES

TheM _. two interfaces from the Oroup· Ssviee back to the Local Node Status
Service. The first is a simple "are you there." This can. be sent at any time,
but more specifically, will be sent:

- by a new GNSS

- by a GNSS who has reason to believe the LNSS is unavailable

The other interface from the Group Service to the Local Service is to push
mount information ·as a result of mounts or umounts done by other nodes in
the local node• s cluster.

LOSING Tiffi CONTROLLING GROUP NODE STATUS SERVICE

One can lose one's Oroup Node Status Service either suddenly.,~ftOtt:espollding
to messages) or via a redirect to use a different GNSS. The redirect would
typically be the result of a more preferred GNSS node becoming available.

Changing to a new GNSS mnpty·requires: pushing all local node attribute and
node user information. ~·clmter·mmmtrinformation will be pulled from the
new GCMS if necessary (he may get it from another GCMS). The Local Node
Status Service cache is not affected by changing to a new Group Node Status
Service.

Selecting a new GNSS if the current one becomes unavailable can be done via
the algorithm described in the STAR'UJP ,section above.

To deal with Group Node Status Service ,tf~sient availability, each protocol to
the GNSS has both a "retry later" .and a "try him" response.

3.1.3.2 GROUP NODE STATUS SERVICE
Gmups are ·named ·in the :Directory Service name space and Group SeNers
locate other Group· Servers by·using ·the Directory Service, relating a group to
tho ordered list of/possible group servm. A0·.-y concerning a node outside
of the iocal group requires knowing the group of the node in question. Group
servers will· tend to cache such information but if needed, there· is infonnation
in the Directory Service which relates nodes to their group.

Note that raco..,GOnditions concerning either cached data or DiMCtory Ssviee
replication are caught with retry return codes on messages to the Group Node
Status Service.

UPDATE

The general update interfaces for the Group Node Status Service are:

IBM Confidential

- 42 -

- I'm seivicing group XYZ

- I'm shutting down as a group seivice

- Node Xis seIVicing XYZ so you shouldn't

The Cluster Mount update interfaces are:

- Adding site X to cluster A

- Deleting site X from cluster A

- Adding/deleted file system Z from site X, cluster A

QUERY

The general query interface for the Group Node Status Seivice is:

- Are you the group seiver for group XYZ ?

- The Node Attribute Seivice Query interface is:

- Ship node attribute records for sites X,Y,Z

- Ship node attribute records for all active sites in your group

- Ship node attribute records for nodes with attributes X in SOI A

The Node User Seivice Query interface is the same as the one from the LNSS
to the GNSS.

The CMS Query interface is:

- Ok to add/delete site X to cluster A ?

- Ok to add/delete file system Y from site X on cluster A ?

- Read complete CMS data for cluster A

DECLARING A NODE UNAVAILABLE

Greup Node Status Services are responsible for knowing if each of .the nodes
in their group is available. It is impractical and inefficient for each
participating node to discover the state of all other nodes independently,
especially since with FUSION, any given node may have a reasonably intimate
interest with quite a few other nodes (transparent site selection to those nodes,
replication of data with those nodes, etc.).

The Group Node Status SeIVice (GNSS) should not be spurious about declaring
a node unavailable but some algorithm is needed. 'fk6.~al strategy, is:

a. Wait for the LNSS .-on the node to do its keep alive. There is a
maximum timeout for this message, which can be configured.

b. Aft« this timeout the node in question is marked as indeterlllinate.
Requests with respect to it are delayed, however, it is not selected as a

IBM Confidential

.. '

- 43 -

good candidate for load leveling.

c. If the node fails to send its keep alive in the designated time, send a
probe to that LNSS and again wait· a specifiable. time,·•· doiag retries as
necessary. The node will respond even if it is no longer in the same
group.

d. With no response to this message, the GNSS can optionally ask other
Group Servers if they .have any .. objecSoa to dcoluing that node as
Wll.vailable. One reason one Jna¥ .wish: -to makenthis request is to
discover the possible topology problom w8ere another . .QNSS for your
group is being created and the other GNSS servers for the other groups
are aware of it.

e. At this point the node is declared unavailable and the GNSS can
optionally tell· the other GNSS so they can update their status caches and
not assume the node· is still available.

S.aeps d) and e) are optional both because operations will work even if the
messages are not sent and because ··sending these messages may ·be a scaling
problem in very large cells.

Note that if the GNSS is told that a node is suspected: of. being una¥ailabt• it
oan skip step a) and go directly to sending the probe in step c). Nodes rejoin
the group by sending status to their GN8S. ~ a· node is declared
unavailable, it is exduded from whatever cluster it was in before by telling the
Group Cluster Mount Service· (GCMS). That service wiH initiate cleanup
activities with respect to the node which became unavailable.

GROUP SERVICE SCALING

The objective of the overall Node Status Service design is to handle several
thousand nodes. To do this, wo apect eaeh ·Oronp Server to handle up to 100
or more oodes. but ·pmbably not uj, ·to· §00 nodes. bhe number of grwps which
cOuld ·be supported is, in general, bounded· only if we insist on having
agreement between all the Group Servers as to who the active Group. Server fw.
each group is. Such a requirement helps to simplify some complicated network
partitioning situations described below. Very large scale cells would alSd
require that the optional messages sent between group servers and outlined
above are not sent. Even if some small amount of traffic does go between
Group Servers, 100 or more such servers can participate in a cell concurrently.

The real scaling constraint for very large environments is making the definition
of each group optimal with respect to the Sphere Of Interest of the users on
nodes in that group. If many users have spheres which span many groups, and
they execute operations which require interrogating the loads or status of the
machines in their sphere, the overhead will grow quickly. Thus, pro¥Wiag
tools to help tune the number«·~•, the·&ia1of .. each greup and···the· li•-0f

IBM Confidential

- 44 -

nodes in each group is very important in the large scale environment.

NETWORK PARTIDONING

The goal of the FUSION software is to be no more dependent on DCE setvices
(Name Service, Kerberos, VLDB), than DCE itself. Being partitioned away
from one or more of these services will no cause any additional limitation due
to FUSION.

With respect to FUSION function, network partitions can come in two flavors.
The first is a partition on a group boundary. The other is a partition inside a
group. Below we look at each in turn.

PARTITIONS BETWEEN GROUPS

If a group is isolated from the other groups then it will work independently.
Periodically each side of the partition will try to reach the various Group Node
Status Services in the other partition so that reconnection can take place
automatically. On reconnection, the GNSSs will merge, recording the
existence of each other, exchanging a list of nodes supported by each Group
Server and the list of clusters supported the GCMS in each GNSS. If any of
the clusters overlap, a cluster merge is attempted.

PARTIDONS INSIDE A GROUP

Inside the group one could end up with two or more independent instances of
the group, each with an active GNSS. As with the inter-group case above,
each of these group instances will be periodically trying to find the rest of their
group but, until they do, they operate independently. When the subgroups are
able to communicate, they join into a single group, with a single GNSS. This
presents no particular problem unless either some of the nodes in one of the
groups cannot communicate with this chosen GNSS or there is a problem in
trying to cluster merge because of some mounts conflict.

The proposed resolution of the first problem is that nodes which cannot
communicate with their GNSS will either be isolated or will form a subgroup
of nodes with the same problem.

The proposed resolution of the second problem is that a unified cluster will be
created, but the node causing the conflict (by definition the node in the
subgroup whose GNSS is becoming inactive in favor of the other subgroup's
GNSS) will not be able to join the unified cluster and will become isolated.

Both these policy proposals could be altered if necessary.

3.1.3.3 SPHERE OF INTEREST
In a large cell or cluster, it may be important to be able to limit the list of
nodes to be considered for various operations. Automatic load leveling is one
such area. Additionally, it is desirable for applications which display
information about more than the local machine to restrict their scope to a small

IBM Confidential

- 45 -

set of nodes about which the user really cares. This functionality is called the
Sphere of Interest.

The Sphere of Interest (SOI) is a list of nodes associated with each process.
The SOI is purely advisory. The presence or absence of a node on the list in
no way allows or prohibits any kind of access to the node. The list is used
purely to narrow down the list of nodes which would be considered under
certain default conditions (distributed who, automatic node selection, etc). For
convenience, a sphere of interest aliasing mechanism is provided so that names
can be given to commonly used spheres.

The SOI may be changed arbitrarily by any process, though the most common
case would be for a login shell to set the Sphere and leave it alone after that.
Some system utilities, including those modified to consult with the Node Status
Service such as who, finger and mount, will search the user's home directory
for a file named 7sphere/PROGNAME. If a such a file is found, its contents
will be used as the sphere for that program. This allows users to customize
their SOI on a program by program basis. If the file is not found, the SOI
associated with the process and used for node selection will be used for any
application making calls to NSS.

3.2 THE FUSION CLUSTERING CAPABILITY

The FUSION cluster environment relies heavily on most of the DEE function
of Section 3.1. Augmenting that function are the clustering functions, which
are the clustering or Single System Image of data and the automatic load
balancing of processing, both heterogeneous and homogeneous. Below there
are major sections on clustered data, invocation load leveling and dynamic load
leveling.

3.2.1 CLUSTERING OF DATA
Clustering of data has two maj01: functional components. First is the cluster
mount capability, which, using the underlying DCE distributed file system
transport, allows all mount file systems to be visible cluster wide. This
provides a uniform file name space. All machines in the cluster have the same
view of the file system, going beyond that provided in base DCE.

The second major function is cluster wide NFS coherency, which includes not
only mounts but also client cache consistency.

3.2.1.1 THE CLUSTER MOUNT SERVER
The Cluster Mount function complements the DCE distributed file system
global naming function in the following way.. In a base DCE environment,
only File Systems registered in the VLDB (DCE may have a new name for
this) are visible beyond the machine on which they are stored. File Systems
mounted by /etc/mount are not visible beyond the machine on which the mount
operation is done. ·

IBM Confidential

- 46 -

Clearly, to provide a Single System Image out of a cluster of machines, the
/etc/mount must be visible cluster-wide (if /etc/mounts are to be allowed at all).
There are several possible reasons why an /etc/mount would be used even after
DCE is installed. They are:

1. Historically, /etc/mounts are the way File Systems were made visible, so
some administrators may wish to continue with it.

2. One may not wish the visibility of a particular file system to be galactic.
Qmently the only export restriction one has is to /etc/mount rather than
use DCE file system registration.

3. One would prefer not to have to rely upon the existence of the VLDB to
attain clustered capability.

This section is organized as a series of 8 subsections. First a simple or
completely transparent global name space is introduced (including a cluster
wide replicated root). Within this model the scope of which objects can be
mounted on which other objects is described. Then the functional components
of the Cluster Mount Service are introduced, followed by the specification of
normal file system operations. Next is the specification of how the Cluster
Mount Service works in the context of the Node Status Service. Then the
general mount model is presented. The general model relaxes the restriction
that all file systems must have a cluster wide unique mount point and allows
independent root file systems. The final two sections consider multiple roots
per node (useful in preparing for a system upgrade) and the authority required
to do various mount operations.

3.2.1.1.1 SIMPLE MODEL FOR CLUSTER MOUNT
The ideal cluster consists of machines with a replicated root and no conflicting
mounts, so that file system naming can be constructed into a Single System
view. However, the FUSION archJtecture supports a much more general mount
environment.

To ease in the explanation, the next few sections are written with the cluster
wide replicated root environment in mind. This is the most transparent and
simplest environment. Section 3.2.1.1.6 describes the truly general
environment supported, together with the associated extended semantics.

3.2.1.1.2 WHAT CAN BE MOUNTED ON WHAT?
lJle,,ifttent is that anything a single-system UNIX could mount can be mounted
in the clustered environment and be visible cluster wide.

This includes:

1. any form of physical file system mount,

2. single system semantics read/write replicated file system mounts (see I
Section 3.3.1),

IBM Confidential

- 47 -

3. DCE read/only replicated File Systems,

4. NFS remote File Systems, and

5. any namable subtree (directory mount).

Neto that mounts of files and mounts of remote devices are not permitted. The
remote devices restriction is imposed because, if the functionality was useful, it
is simpler to have the mount program function-ship the system call to the
appropriate machine (i.e. the machine which has the named device) rather than
having much of the function-shipping inside the kernel. However, this means
that the remote device must .be on a node in the cluster, because the mount
done on that node will be visible only within that cluster.

Momlted objects will, in general, have a physical file system i~, In addition,
as part of the mount, a virtual file system id will be assigned so that two
virtual File Systems can refer t1b the same physical one. Both file system ids
will come out of the DCE file system id space so remote open, read, write etc.
can operate using the standard DCE remote file system code.

As a default, a mount will be undone either when a umount operation is done
on the node where the mount was done or when the node which did the mount
becomes unavailable. Hewever, it is sometimes desirable to have a mount
persist even after the mounting node becomes unavailable.. An NFS mount
onto a directory in a replicated file system is one such example. The
persistence is accomplished by having the same mount operation done on
multiple nodes and by having that mount take a permanent file system id as a
parameter (this is one of the changes to /etc/mount referred to in Section
3.2.1.1.3). The functionality is very similar to the concept of administered
mounts in AIX!fCF. Besides having a rich set of mounted objects, FUSION
allows these objects to be mounted almost anywhere. In particular, they can be
mounted on:

a. locally stored non-replicated directories;

b. non-replicated directories stored elsewhere in the cluster;

c. non-replicated directories stored outside the cluster and named through
DCE on-disk junctions;

d. non-replicated directories stored outside the cluster and named through
NFS;

e. DCE read/only replicated directories mounted via /etc/mount;

f. DCE read/only replicated directories accessed via DCE on-disk junctions; ..
g. FUSION replicated directories accessed via /etc/mount;

h. FUSION replicated directories accessed via DCE on- disk junctions;

IBM Confidential

- 48 -

Note that, in the above scheme, the writable replica in DCE replication is
considered a nonreplicated directory.

3.2.1.1.3 CLUSTER MOUNT FUNCTIONAL COMPONEN'FS
The Cluster Mount function is realized by a collection of sub-functions which
execute in six different areas. Working together, this code presents a Single
System Image mount model to applications and users. The code consists of:

a. hooks in the base Operating System;

b. the Cluster Mount Kernel Extensioa (CMKE)

c. hooks in the base DCE distributed file system

d. the Local Cluster Mount Service, which is part of the Local Node Status
Service (LNSS) (Section 3.1.3.1)

e. the Group Cluster Mount Service (GCMS~,. which is integrated into the
Group Node Status Service (Section 3.1.3.2).

f. system utility enhancements, specifically to create the /etc/mount~:

program.

The hooks in the base operating system center around the system calls mount
and umount, as well as a test in .the lookup function. These hooks enable entry
to the Cluster Mount Kernel Extension (CMKE). It may be the case that the
mount and umount extensions can be integrated via a layer in the vfs code and
thus not require any base changes.

The Kernel Extension caches mount information both about the local node and
about other nodes. Other node information is obtained either by querying
through the NSS to the CMS on the Group Server or by having the CMS tell
the Kernel Extension via the local NSS. The Kernel Extension is also used to
create mounted on vnodes in th~ base so subsequent lookup operations will
invoke the Kernel Extension.

The hook in the base DCE involves the Protocol Exporter. In the base DCE
the Protocol Exporter does not look for mounted-on status in vnodes and thus
does not inform the client that a requested vnode is mounted-on, For clients
which are clustered, the Protocol Exporter must return this information so all
cluster sites see a consistent name space.

The Local Node Status Service is non-kernel code which, with respect to the
Cluster Mount function, is largely a conduit from the CMKE to the GCMS. It
supports and passes on requests for mounts or unmounts and queries about
what is mounted. It also pu~hes GCMS requests into the CMKE.

The GCMS is also non-kernel code. It is a service which maintains all the
/etc/mount information for the entire cluste1i; so it can:

IBM Confidential

- 49 -

a. Do consistency checking on subsequent mount requestSi

b. Infonn nodes when something is mounted on a directory they store;

c. Ans.wer queries about what is mounted where and who stores it.

The CMS can be a replicated service. If it is, the data in each replica is
identical (except, perhaps, when the network is partitioned).

The extensions to the /etc/mount program and thus the inclusion of the
/etc/mountx program are in two categories:

1. Additional options and parameters which must be passed the CMKE.
Uses of these extended options was discussed in Section 3.2.1.1.2 and is
referred to in Section 3.2.1.1.6.

"'2. Display option& Either by default or under optional control, the
/etc/mount program is able to display the mount information for all or
part of a cluster. This is done, in part, by having /etclmount gather.
information from the CMS~ibly through the local NSS),rather than
just displaying /etc/mnttab information or whatever /etc/mount was doing
in the single-system environment.

For each mount, the CMKE tells the local Node Status Server (NSS) which in,
turn tells the GCMS. The GCMS determines if the mount is consistent and, ii
so, tells the other GCMS replicas. The GCMSs tell the necessary NSS(s) se
the incore mounted-on bit can be set.

3.2.1.l.4 CLUSTER MOUNT NORMAL OPERATIONS
In this section we describe how the Cluster Mount function operates to:

a. join a cluster;

b. leave a cluster;

c. mount a file system;

d. unmount a file system;

e. do a lookup through a mount point;

f. do mount queries from /etc/mount;

g. support a mount or umount done on another node.

h.

a. Joining a cluster involves:

1. Having the CMKE push the request to the NSS along with all the
local moQnt. information;

2. Having NSS negotiate with CMS. CMS gets the requested 10c8'
mount information from the NSS, analyses it for inconsistenc){

IBM Confidential

- 50 -

with existing mounts in the cluster, and if there are none,,
propagates the information to any other CMS's for the cluster.

3. Any of the CMS's may, as a consequence of the requestin8'
machine joining, tell other nodes to keep some mounted-on vnodeSl<
incol"Ci This is done by the CMS pushing information to the NS&
on the relevant nodes, and those NSSs pushing the information in~
the CMK.1!, which in turn sets up the mounted-on vnodes in th&
base operating system.

b. Leaving a cluster cleanly simply means telling the CMS, which in tum
MU,•ll tho other CMS.. Together, the CMSs will inform any CMKE on
any other node if some cleanup is necessary. Additionally, the local
CMKE will clean up unnecessary incore mounted-on vnodes.
w..hed:uled departures from the eluster are trigga-ed. via ._"'"1oupa I
Serftp (Section 3.1.3.2) -. ,i~~ the SMiie ..•• .,"~*• I
~lt~• \Y!len a node leaves the cluster. processes from that node I
that are now . ..Qll....Other nodes will be permitted...1.Q ~tinue ex:ecutin1» I
~ince the remo~ processin~ sup,port is enahJc.d wtsi<if< of a clustc:!: I
However, the processes mail fail if they were dependent on resources on I
that node that had been available only by clustering mechanisms. Also~ I
parts of the mount context of that process may become unavailable.

c. The mount operation is a subset of the joining the cluster operatioA
described above.

d. The umount operation is a subset of the leaving the cluster operation
described above.

e. The lookup or pathname resolution software is altered only slightly to
work in the clustered environment. Upon finding a mounted on vnode
(either locally or from a file system server in the cluster), the lookup
code must not only check the standard kernel mount table but also cali
the CMKE which might redirect the lookup to a new file system,
potentially on a different node.

f. Mount queries from /etc/mount will go directly to the NSS, which ca0;;
either answer the query directly or will get the necessary infonnation
from the CMS at the Group Server te answer the quef}fi. These queries
will be influenced by one of the Spheres Of Interest associated with the
user or process (see Section 3.1.3.3).

g. Lastly there is supporting the effect of a mount or unmount done on
another node. Many remote mounts and unmounts will not require any
activity on the local node, but some wilt. In particular, mounts done on
directories stored locally or not stored in the cluster at all will involve a
message from a CMS to the local NSS and down to the CMK& If· the.
operation is approved. the CMKE will then record the operation and

IBM Confidential

- 51 -

create an i~ vnooe with a mowtted"'Ofl hit·set.

Unmounts will undo what mounts have done.

CACHING MOUNT INFORMATION

For most non-local mount points encountered during pathname lookup, the
8M*fi0 'Witt obtain·mounHnfonnatioo .. hffi eitlter the NSS or directly from the
@MS~ <ff:.theft . ..-.&ftis mount infonnatioa to avoid requesting it again later.>
The CMS need not keep track of which clients have cached which mounts
because scale tDOUnt infonnation will be detected if it is used and corrected at
that time due to the token mechanisms. The performance in the case of
crashes of mounters or clients is no worse than with the DFS in DCE.

3.2.1.1.5 CLUSTER MOUNT OPERATIONS WITH NODE STATUS SERVICE
There are several types of operations that involve the NSS and CMS. First,
._,NS& must fine its controlling CMS~ ~·operation is done as a side-effec•
of finding the Group Node Status Services since the eMS function.is done as a,
wbservice of the GNS8'. By definition, one's Group Service Node is als0
oae~&,.CMS. Node. The Group Service Node is found by searching an ordered
list kept either by the DCE Directory Service or in a highly replicated DCE
file. More detail on Group Service interaction is given in Section 3.1.3.2.

Having found the CMS, the NSS does the Cluster Join described in Section
3.2.1.1.4. The Cluster Leave, mount, umount and lookup operations were also
discussed in Section 3.2.1.1.4, as were the effects of other nodes doing mounts
and umounts.

If the NSS detects the loss of a Group Server (and thus the CMS), it attempts
to find a replacement using the ordered list just described. Joining the new
CMS is very similar to the initial join except the new CMS is told that this
node was already a cluster member. To avoid arbitrarily complicated
interconnection topologies, the. selected backup CMS will only agree to be
CMS if it agrees that all the higher priority nodes are unavailable. The general
principle is to have only a single active Group Server (and thus a single CMS
per group).

A situation can arise where two or more Group Servers for the same group
can't communicate and thus each believes it should be the Group Server. If
more than one such Group Server can communicate with another group's
Group Server, that other group's Group Server will help to arbitrate to the
more senior local Group Server. Another group's Group Server should never
see more than a single Group Server per group.

In one of these unlikely seenarios, a given node may become isolated with
respect to clustering and other group services.

If a backup has become Group Server, it periodically attempts to find -the
principal Group Server for the group (or any more senior Group Server node).

IBM Confidential

- 52 -

In addition, the principal Group Server will, on startup, attempt to contact the
backup and the other group's Group Servers. Once one of the schemes
determines that the principal is back, the backup Group Server tells all its
NSSs to move back to the principal Group Server. The backup then ceases to
be a Group Server and starts using the principal. The CMS service moves
with the other Group Server services.

INTRA CLUSTER MOUNT OPERATIONS

This section outlines the operations which occur between replicas of the Group
Cluster Mount Service. Since the Group Service can have a scope broader
than a given cluster, it is possible for a Group Server to be running without the
CMS for a given cluster. When the first member of that cluster joins the group
and subsequently does a cluster join, the Group Server initializes the GCMS
for that cluster and group and finds any other instances of the CMS. Having
found an instance, the new CMS downloads the CMS replicated data and thefi
attempts to add the new client to the existing cluster.

Network partitions due to gateway failure make it possible for two activ@
CMSs to be operating in a stable state for the same groupc: When the gateway'
reappears, the two CMSs will suddenly see one another: The goal at this point
is to have the more senior Group Server take over and the other Group Server
to stop functioning. There could, however, be mount conflicts which could
hamper a smooth takeover. The resolution of this class of conflict is that the
conflicting groups will not join until the conflicts are resolved.

Gateways becoming available can also cause two or more principal Group
Servers for different groups to join. This is done, in the most general case, by
having one CMS from one partition negotiate with one CMS from the other
partition. The pair exchange client mount information. If there are conflicts,
the partitions remain as they were, effectively ignoring the fact that they can
communicate. Periodically they will try to rejoin. Any conflict preventing the
rejoin will be logged in system error logs. If there are no conflicts then a
merged set of data is sent to all CMSs. They, in turn, disseminate the
necessary information to the appropriate NSSs, as was done for any given
mount on a remote machine.

CLUSTER MOUNT OPERATIONS DURING UPDATES

Adding a single node to a cluster is done in a two- phase, serialized manner.
Between phases, questions concerning mounts on the node(s) joining are
deferred until the completion of the second phase. Queries about all other
mounts on all other nodes are answered with no delay. Losing a node is
handled similarly.

Losing a CMS would mean losing a whole group of nodes when perhaps only
the CMS node itself became unavailable. Consequently all the nodes which
were in the cluster and which were being serviced by that CMS are marked as

IBM Confidential

- 53 -

neither up nor down. Mount queries concerning them are deferred back to
clients and retried until the new CMS for that group is fully operational.

~---'\'ft&iy ~ah aqaew OMS Brat ,talk11 to the existing CMS
servers• ·leams·wttictr'nc:!ldes··in its group it should be servicing, polls thos•
nedu, · ami ·then waits· 'for replies; As each node is found it is marked as ..
opeationat.!1$ The loss of the CMS does not cause any other nodes to ,,be
marked ·as unavailable. If indeed some machines are unavailable, the new
Group Server will discover their unavailability just as any Group Server would.

3.2.1.1.6 THE GENERAL CLUSTER MOUNT MODEL
While the replicated root model outlined in Section 3.2.1.1.1 provides an
important data point for distributed systems, reality is that some very
interesting environments exist and will continue to exist where the file system
naming scheme across a collection of machines is not fully integrated. For
example, machines not already clustered may have conflicting directory
hierarchies and mounts. Machines from different vendors will have slightly
different root file layouts.

Clustering, load leveling and remote execution are very interesting in these
environments. The model presented here deals with some of the areas where
integration may not be practical, namely:

a. Independent root File Systems on different machines or more than one
independent replicated root;

b. Independent /tmp mounted File Systems;

c. Mounts of machine-type dependent binaries;

d. Mounts of node specific data (/var, perhaps); ·

e. Multiple independent user File Systems with the same name (e.g. /u).

Again, while it is recognized that a completely integrated naming environment
improves transparency and is encouraged, the architecture supports a much
more general environment.

This model is designed specifically for a collection of machines, some of
which have an independent root and some have replicated roots. However, the
model really treats the root like any other file system and thus allows
independent versions of other File Systems as well, while striving to retain the
Single System Image. The mount model allows two flavors of mount and an
interface to uniquely name all data in the cluster. Specifically:

1. If a mount is applicable only to a specific machine and would confliet
with similar mounts oh other machines, it can be mounted "locally". The
root file system is considered to be mounted this way, with all roots
being "local." /tmp and /var are other examples of mounts which would
qualify as being "local". Mounts of this variety would issue warnings if

IBM Confidential

- 54 -

a cluster-wide mount had already been done at that mount point. "Local"
mounts are not the default.

2. By euawt, mounts m& c1uster-wid•. lf the mount is on a directory in a
mounted file system which is visiWe cluster-wide, only, nodes with 1copie1
of that directory need be notified. If the mounted- on directory file
system is itself "locally" mounted, all nodes must know about the mount.
Note that, using these semantics, one wants to be sure that all nodes ar;
prepared for the requested mount at the mount point indicated." If some,
machine had a subdirectory it was using at that mount point directory,~
that subdirectory would disappear.

Section 3.2.1.1.8 explains that this form of mount should require special
privilege. Avoiding this form of unintended behavior could optionally be,
done by only allowing mounts on empty directories or by using ~
directory attribute bit which indicates "mounted on" and only allowing
mounts on marked directorie1. While either of these restrictions could be
useful in a given implementation, neither is required in the architecture.
These cluster-wide mounts would fail if there was already a cluster-wide
mount at the same mount point.

If the cluster-wide mount can not be successfully executed on each
machine (perhaps because the mount point is a file on som~ machine), 81!1

warning will be issued to allow intervention to eliminate the problem.

Note that a mount point not existing in some environment will often be
solved by having it created automatically.

3. All data in the cluster is uniquely nameable within the cluster via a CM&
interface. For instance,

/ ... /cellnarne/clustername/CMS/nodatc
would name the root on N~e Ji!:

Note that this "name" for the root of any given node is not like a second
mount of that root. Multiple mounts of the same data, -if supported by the
underlying base operating system, do not in general preserve nested mounts.

Said differently, if you mount on one pathname and the mounted-on directOt:;'
is available via a different name, the mount will not be seen via that different
name1 This is the case whether the mounted-on directory is nameable via othe»
/etc/mounts or via DCE on-disk junction• The CMS interface ''name~.
however, is a service which directs naming 1to thtr 1apprnpriate tne syste~
consequently submounts are seen.

Below we consider the feasibility and semantics of this model.

IMPACT ON TIIB CUSTOMER

IBM Confidential

- 55 -

This model potentially requires virtually no disruption to the single machine
environment to become part of the cluster. In the simplest case the
administrator need only change his /etc/mounts to do "local" by default. If
moun&s aren't made "local", however, they may get confticts or may mownt
over a subtree on another machine (/bin on one machine is mounted, while it is
part of the root on another machine).

To attain the greatest degree of Single System Image, one would want all
mounts to be cluster-wide. To do so would probably require at least some
reorganization and/or integration (e.g .. the TCF <LOCAL> context dependent
symbolic link).

The only other impact on the customer is the necessity of determining the
permissions necessary to do various types of mounts. The system
administrator must set up these permissions (see Section 3.2.1.1.8 for details).

IMPACT ON THE SINGLE SYSTEM IMAGE

The more "local" File Systems there are, the less transparent the environment
becomes. The straightforward "make everything local" installation strategy
could get a cluster off the ground quickly, but an effort should be made to
allow some File Systems to be cluster-wide.

It. would be advantageous, for example, to integrate the various /u File Systems
that might exist on different nodes in the cluster so that a single, perhaps
replicated, /u could be seen cluster-wide and different contents were not seen
from different machines.

SCALING CONSIDERATION

For "local" mounts it should not be necessary to alert every member of the
cluster. However, cluster-wide mounts done on directories which arc;,:
themselves in a "local" mounted . file system will, in general, require alerting"
each cluster node.

A given machine can avoid being notified when there are mounts done on it~
locally stored File Systems by preissuing mounthint calls on the directories
other machines might do moun&s ont

The effect of these calls is twofold?

a. It puts a mounted-on vnode for the designated directories''·incwe·«> thali'
subsequent lookups investigate to see if a mount does exist at this
potential mount point.

b. The CMS is informed ·that the hint is registered. Thus, when a cluster­
wide mount is done, 'the CMS can determine that no message need be
sent that node.

IBM Confidential

- 56 -

MOUNT CONTEXT

Given that there are potentially different root layouts on different machines and
that one would like to be able to look at a different node's mount tree and
perhaps change to that node's mount tree for remote execution, we have added
a general set of mount contexts to each process. A mount context specifies
which node's mount context a lookup is to evaluate when a mount marked
"local" is encountered. The full generality outlined in this section may seem
excessive for the non-replicated root case but will be needed when replicated
roots are used.

There are actually three mount contexts for each proceS!S.

The first is the root relative mount context. It is needed to determine whioh
node's mount context to use when a pathname begins with f.

Explicit changing of the root relative mount context (or RRMC) is mad~
available via a Cluster Mount Kernel Extension (CMKE) chmntcontext caW. If
this call succeeds, it changes the RRMC to the indicated node (chmntcontext.
takes a node identifier) and changes the u.u_rdir (root directory used in root
relative pathname lookups) to the root in the RRMC. The call fails if the node
is unavailable or if a preexisting chroot had already set the process's u.u_rdir
somewhere other than the root of the node in the current RRMC.

The other mount contexts are the dot-relative mount context and the lookup
mount context. These are not changed explicitly. Their need and use is
outlined below.

As we have outlined, all data in the cluster is cluster-wide visible via the CMS
interface and name structure like

/ ••• /cellname/clustername/CNS/nodex/ •••...•

In the rest of this section we shofl:hand this syntax to
"CNS/nodex/ ••..• "

The semantics of naming through this pathname into other node's mount
context should be:

1. A single lookup through CMS/nodex/... should do lookups with respect
to Node X's mount context so one can say

ls -1 CNS/nodex/trnp
and get the obvious resulii.

2. A change directory (cd) to CMS/noden should allow dot relative naming
to be in Node N's mount context while retaining root or I relativo
naming to stay as it was".(for finding binaries, for example). Thus a

cd CNS/noden.
followed by

ls -1 /trnp

IBM Confidential

- 57 -

yields the same result as
ls -1 015/noden/tmp

3. While cd'd to CMS/noden, a reference to CMS/nodex/tmp should be
done in the mount context of Node X.

A -nference to /bin/grep should be done in the same mount context the process
had before the ed., To ~omplish the semantics outlined above, each process
should have three mount contexts which are defined to operate as follows:

a. A root relative mount context, which changes only explicitly via the
chmntcontext call described earlier or via some remote process operations
described in the next section. This context is used for all root relative
naming (by putting the value in the lookup mount context described
below).

b. A dot relative mount context, which is used in lookups which are dot
relative (again by putting it in the lookup mount context described
below). This value is inherited in fork, exec and migrate and should
represent the mount context of the current working directory (cwcil). It is
changed by:

1. cd through CMS/nodex will change it to Node X's mount context.

2. . cd /anything will change it to the value in the root relative mount
context.

3. cd .. from CMS/nodex will change it to the root relative mount
contex'- Note that cd / ... /cellname/clustemame/CMS is illegal.

A lookup mount context (LMC) which is set equal to either the RRMC or the
DRMC at the beginning of each name expansiofk It changes during the name
expansion only if the name goes through the CMS (e.g ..
/ .. ./cellname/clustemame/CMS/nodex). If the name does go through the CMS,
the LMC is changed to Node X's RRMC for the duration of the current name
expansion.

REMOTE EXECUTION SEMANTICS

In this section we discuss the desired semantics of various forms of remote
execution with respect to the root relative mount context. For this discussion
there are three classes of remote execution -

1. explicit command, via on,

2. explicit system calls, and

"3. implicit or load leveled system calls.

Thro on program will cause the exec to end up with a root relative moun.­
context of the destination node. Explicit rexecs, rforks and migrates (the

IBM Confidential

- 58 -

system call, not the signal) will also change the root relative mount context
(RRMC) by default to the destination node: However the capability is
provided for the caller to override these semantics and retain the originating
node's context.

Normal load leveling operations, which include implicit remote execs, remote
execs with the load leveling options, migrate with the load leveling option, and
migrations induced via SIGMIGRA TE are handled differently. >The default
behavior is to retain the root relative mount context of the processr: This
insures that the program will produce the same results if the load leveling
operation had not been performed. However, a flag bit in the load moduk
header will be assigned to override this behavioF~ If this bit is 1, then the root
relative is set to the new node where the process is running. This bit would be
set for programs that are computationally intensive and favor long terillc
availability over complete single system semantics.

Depending on the policy chosen, there is the possibility that the node
corresponding to a given process's root relative mount context could be down.

One would expect that the process would subsequently get failures for root
relative pathname lookups. This would not be the case if the root from that
node is replicated. In that case lookups can continue to occur successfully
until a "local" mount point is encountered.

A mechanism to allow the lookup to continue to succeed (assuming the data in
question is still available, for example through dual path disks, replication or
because the data was not on the unavailable node) could be created by
extending the CMS to retain mount information on nodes determined to be
unavailable. Specification of this capability is has been deferred.

3.2.1.1.7 MULTIPLE ROOTS ON A SINGLE NODE
An interesting case of multiple rO()tS in a cluster could occur when one wanted
two roots on the same node. The rationale for wanting such an environment
concerns operating system upgrades.

In some environments, the system administrator may wish to retain the old root
and system utilities for users while simultaneously a new root is tested and"'
possibly customized. In such an environment, one would expect the new
kernel to be running and the assumption is that, not only can that kernel
support the dual root environment, but it can also run the older versions of the
binaries successfully. If a problem with the new kernel arises, the old kernel
can easily be rebooted with just the old root environment.

With respect to the cluster mount model we are well poised to support such a
capability with the function 'outlined above. The major extension needed is th~
ability for one machine with one kernel to act as two "nodes" with respect tel)

the cluster mount fun~tion and for operations directed to a machine to· be
identified as to which "node" they pertain t€>.

IBM Confidential

- 59 -

Specification of this capability has been deferred.

3.2.1.1.8 MOUNT AUTHORITY IN THE CLUSTER
This section discusses the issues of which users and what authority are needed
to do the various mounts discussed in this section. The architecture does not
require any particular privilege, but a given implementation may find the
guidelines below important.

First, one should expect the agent doing a mount to have write access in the
directory being mounted on, since one is effectively changing the contents of
that directory. One would expect this rule to apply to all mounts. It is not
specific to clustering or DCE. Second, for local mounts, one shouldn't need
any more authority than that imposed by each local machine. Similarly,
cluster-wide mounts done onto objects which themselves (and their parent tree)
are not local, should not require special privilege. Cluster-wide mounts on
local objects may require additional privilege as described below.

The reason for special restrictions on cluster-wide mounts on an object that has
any local parentage is that the system will attempt to create a similar mount iR
each instance of the local mount, causing potentially significant effects. As an
example, imagine if a user had permission to mount on his local /bin. If that
mount were made cluster-wide, then the entire cluster might become non­
functional. It seems appropriate to require greater authority for such potentially
dramatic effects.

3.2.1.2 NFS INTEROPERABILITY IN THE CLUSTER
With respect to NFS 4.0, there are three areas where NFS functionality must be
enhanced to meet clustering goals. The first area is the mount model, which
must be expanded to allow cluster wide visibility. The second area is file
access in the face of remote processing. The third area is added cache
consistency for the cluster so cooperating processes on different nodes see
single system semantics. Below· is a discussion of each of these areas of
enhancement.

3.2.1.2.1 NFS CLUSTER MOUNT MODEL
The NFS cluster mount model goal is that any node within the cluster can de
an NFS mount that will subsequently be seen by all nodes within the cluster:>
Each node communicates directly with the NFS server, without the need to1

double hop through the mounting node.'

Normally, when the node mounting a file system goes down, the file system
will no longer be mounted throughout the rest of the cluster. This is not
always the appropriate action for an NFS mounted file system. The design
therefore/provides for NFS.mounts to optionally persist if communication is
losti ,with the original mounting n~

The potentially large number of nodes within a cluster make it impracticar to
notify each node when an NFS mount is done. Instead the mounting node wiM

IBM Confidential

- 60 -

contact the cluster mount service with the mount information.· There are two•
methods by which other nodes within the cluster can acquired the mouQit:

1. A local process traverses the mounted on vnode during path name>
evaluation.

2. A process which is accessing the file system is migrated onto the node.

In either case the needed mount information is obtained from the cluster mount'
service. Setting up the mounted-on vnode can, in some cases, require
communication through the CMS to each cluster node (see Section 3.2.1.1).

Without special token code, mounting anything on an NFS directory would
require communication with each node. This overhead is avoided by havin~
the NFS token manager.(Section 3.2.1.2.3) keep track of NFS directories whica
are mounted-or); thereby allowing each node to discover the mount only wheb
needed.

3.2.1.2.2 REMOTE PROCESSING AND OPEN NFS FILES
Whenever a process migrates from one node to another the vnodes for the ope°"
files will be moved along with the process if they don't already exist on thct
migrated to node. This movement of vnodes is required because the only wa)t'
an NFS vnode can be created is by looking up the name of the file/directory ht
the directory that contains it.

The first time a given user migrates a process from one node to another it Mi
likely that the mount information for the vnodes that have been migrated wijl
not exist on the migrated-to node. Then it will be necessary to do the mouns.
without having the mounted-on vnode for the roo~ It is retrieved from the
CMS only when necessa.I)I. If having the mounted on vnode were to be
required, then a single mount could require an unknown number of mounts to.
get back to a file system that was already mounted. The vnode for the currenP
working directory will also have to be moved to allow lookups that do not start_

at the root to functioR.

File locks are supported in the kernel. The base code is modified to support
moving a process from one node to another. In addition single-system
semantics within the cluster are fully supported.

AUTHENTICATION

The NFS DES conversation key encrypted verifier contains a time stamp that
must always be chronologically greater than the previous transactioa. This
makes the use of a common conversation key between multiple nodes
impractical from a performance point of view. Any node desiring to use the
key would have to synchronize every request with a common registry. If a
migrating process accesses data that is m<'anted via secure NFS, it'"'WiU ~
necessary to transport the user's login string to the new node. The login will
already be available, as the local NFS security routines will have an ongoing

IBM Confidential

- 61 -

need for it. This data will be transported in a secure fashion.

3.2.1.2.3 USING DCE TOKENS TO SUPPORT NFS COHERENCY
NFS has no built-in mechanism to provide single-system semantics across
multiple nodes. Said differently, there is no strict cache coherency between
NFS .. clients. While one might argue such a capability is inherently important,
it is even more important in the clustered environment. In order to provide this,
tokens will have to be added to the NFS client, similar to those in the current
versions of TCF and DCE.

There are three major differences between the tokens required for NFS and
DCE.

1. 1) The first major difference between DCE token management and NFS
token management is that the NFS token management cannot happen at
the NFS storage site as it can in DCE. In DCE requests for tokens go
back to the token manager that serves the physical file system that is
exported. There is no token manager for an NFS exported file system
from a non-FUSION node.

The FUSION code will provide a token manager for each NFS mount.

Because the token manager node is not the storage node, there are times
when it will be necessary to merge multiple token managers into a single
token manager. In general this will happen whenever two token manage~,
within the same cell and for the same file system notice the existence of
each other.

There are two primary events that lead to token consolidation. The first
is when a gateway connecting a cluster together comes up. The second i~
when a process is migrated to another cluster that already has the same
file system mounted. In either event consolidation will be by recalling
all the read/write tokens. This will force all data to be written to the NFS
server. If multiple write tokens for the same file existed, data might be
lost, as in normal multi-node NFS operation. If open conflicts exist they
will be allowed to remain until the file is closed.

2. The second difference between DCE tokens and those needed for NFS
concerns the way directories are treated. DCE locks directories much the
same as they do files. As NFS caches only the existence of directory
entries it will be necessary to get the write token only when entries are
to be either deleted or changed. In NFS, directories cannot be locked by
range. It will therefore be necessary to recall the read token for an entire
directory whenever the· write token is given out .

•
3. The third way tokens have to be treated differently is in the area of

timeouts. This is the result of the token manager and the storage node
not being the same node. If an NFS server goes down after a client has

IBM Confidential

- 62 -

been requested to give back a read or write token the client may not be
able to comply for an indefinite period of time. In the DCE case, if the
server goes down the node requesting the token back has also gone away
so an analogous situation cannot occur. For NFS tokens, it will therefore
be necessary to have a WAIT reply to a request for the return of a token.
Clients receiving a WAIT reply must retry their requests after the wait
interval returned in the WAIT reply has expired.

The DCE token mechanism will be used to support single- system semantic file
locking within the cluster as well as cache consistency.

There is no provisions in the FUSION NFS cache consistency support for
interaction with DCE client mounts of NFS file systems. If the same file
system is mounted with NFS via DCE mounts and a cluster mount, cache
inconsistencies may result.

3.2.2 INVOCATION LOAD BALANCING IN THE CLUSTER
With the FUSION cluster environment, the automatic application of the
FUSION remote processing functions becomes feasible. Once a clusterwide
name space is established, programs can run on any node within the cluster and
see the same computation environment as any other node. So if the system
decides to run a process on another node to help balance the load, the user will
not be given inconsistent results.

Making intelligent automatic load leveling depends heavily on the services of
the Node Status Server, which was described in Section 3.1.3.

Load leveling services can be obtained in FUSION by a several different
methods. A Kernel Extension supplied by FUSION can be used to
automatically select an execution site within the cluster. FUSION also supports
having a node administrator install an alternate user supplied kernel extension
to support alternate algorithms. FUSION supplies a set of library routines so
that new applications can be written to make application specific load leveling
decisions. The system calls rexec and rfork take an explicit parameters to
cause the new node to be selected automatically. Below we consider each of
theses in tum.

3.2.2.1 LOAD LEVEL KERNEL EXTENSION
The FUSION Load Level Kernel Extension is invoked if any of the following
events occurs:

a. a load module marked for load leveling is encountered during an exec
call;

b. an rexec or rfork call. is done with special parameters that designate an
automatic load leveling should be performed;

c. an exec is done of a load module that cannot be run locally and thus,
must run remotely and should thus be load leveled.

IBM Confidential

- 63 -

One hook in the base exec code, inserted after the load module has been
selected and its header has been read, is enough to invoke the Kernel Extension
to select the node for execution. In selecting the node, the Kernel Extension
considers at the least the following:

- machine attributes

- sphere of interest of the process

- node execution permission of the process

- loads and other resource utilization on nodes

- load scaling factor and preference.

3.2.2.2 USER INSTALLED LOAD LEVEL EXTENSION
A customer can install an additional Kernel Extension which the load level
Kernel Extension will recognize and call. The added Kernel Extension, which
has full access to the NSS information, can chose to do node selection in some
or all cases. For cases it does not want to handle it can defer back to the
supplied Kernel Extension.

3.2.2.3 LOAD LEVELING LIBRARY ROUTINES
FUSION provides a set of library routines so an application can make its own
load leveling decisions. These routines provide a uniform interface for
accessing the load leveling information from the Node Status Service. In
addition to the information provided, the application may wish to take other
factors into account, such as time of day, availability of other machines or
resources, or information that is pertinent to that application.

After making a decision on which node to run, the application can use the
rexec, rfork or migrate with an explicitly node argument to effect its own load
leveling.

3.2.2.4 LOAD LEVELING VIA SYSTEM CALLS
As outlined in Section 3.2.2. l, rexec and rfork system calls can take a
parameter which indicates that loads balancing should be considered in doing
the operation. The load level kernel extension actually does the decision
making based on Node Status Service information.

3.2.3 DYNAMIC LOAD BALANCING IN THE CLUSTER
Much emphasis has been put (and rightly so) on node selection at process
invocation, or exec, time. Nonetheless, dynamic load balancing via process
migration is the correct load balancing mechanism for some long running
processes. Since process migration is restricted to occur between homogeneous
nodes. Those nodes, however, could be part of a heterogeneous cluster so
process migration is not limited to homogeneous clusters.

Outlined below are the functions and facilities in FUSION for dynamic load
balancing. Included are sections on marking load modules for load balancing,

IBM Confidential

- 64 -

system call extensions for load balancing and load balancing daemons.

3.2.3.1 LOAD BALANCING SPECIFIC PROCESSES
As was mentioned in Section 3.2.2.l, eliecatables in the FUSION environment­
can be marked as load leveling candidates. Such a mark (to be extended to
general attributes in the future) is used not only at invocation time but also
during execution. The process is a candidate for process migration.

To facilitate this form of load leveling, the load level indication from the load
module header is stored to the vproc so process migrators know which
processes are the best candidates.

3.2.3.2 SYSTEM CALL EXTENSIONS FOR DYNAMIC LOAD LEVELING
There are basically two system call extensions for dynamic load balancing - the
migrate system call and the SIGMIGRA TE signal. These can be used in a
couple of different ways. One way is for a process to provide a specific node
to which that process is to migrate. The other is to specify a load level
parameter and cause the load leveling kernel extension to select an appropriate
node as a destination for the process.

3.2.3.3 PROCESS MIGRATION LOAD BALANCING SERVICE
A user or system administrator can do manual load leveling by just sending
SIGMIGRA TE signals to processes or process groups.

Additionally a user could run his own load leveler. It would consult NSS data
and move his processes around to optimize their elapsed run time. On a
cluster wide basis a system administrator could enable the load leveling service
that consulted NSS data and moved eligible processes around to optimize
processor utilization and consequently reduce task run time.

While the details of a process migration load leveling service are not included
in this specification, a sample dynamic load leveling program will be provided
as part of the FUSION offering .. ·· -·

3.3 TH.E FUSION FILE SYSTEM REPLICATION SERVICE

The third major area of FUSION is provision of a single-system semantics
read/write file system replication service. This service leverages off the DCE
distributed file system capability to provide a richer and more transparent form
of file system replication than is available in base DCE. This section specifies
the services of the FUSION File System Replication Services.

3.3.1 FILE SYSTEM REPLICATION SERVICES
Data replication allows multiple storage nodes for a given file system. There
are several reasons why such replication is important in a distributed file
system environment. ·

1. The first involves availability needs. It is unacceptable for the failure of
a sin.gle node to put thousands of other nodes out of operation because of

IBM Confidential

- 65 -

the unavailability of required data files and programs. Replication allows
all critical user and system files to be simultaneously stored on multiple
servers. Thus, if one node goes down, another node immediately
resumes service, without any apparent disruption.

2. Another key reason for replicated data is performance. Having more than
one node service a file system decreases the load on the servers. This
provides increased performance for the system. However, writes to the
data are more expensive because of the cost of synchronizing multiple
copies.

LAzy REPLICATION

Currently DCE offers a read-only form of replication termed "lazy" replication,
Designed for "read-mostly" types of file systems where up-to-date versions are
non-essential and updates are infrequently done. There are three primary
limitations of "lazy" replication:

1. A different pathname is necessary to access the read/write replica than
that used to access the read-only replicas, and

2. The read/only replicas are not guaranteed to be current but simply ne
more than "n" minutes or hours old. Sometime within "n" minutes or
hours, the read/write volume will be cloned and the clone copied to the
local storage node, thus updating all files.

3. The full functioning lazy replication requires support for the Episode
physical file system.

The advantages of DFS replication are:

1. The amount of network traffic is limited.

2. There is less latency seen_. by programs modifying the replicated file
system.

3. The cloning mechanisms provides a good way to make backups.

FUSION Replication Additions

In addition to DCE lazy or read/only replication, FUSION offers two other
forms of replication, tight and loose. Both the new forms allow access to the
read/write and read/only copies via the same pathname and neither require
clone capability on the underlying physical file system~

The primary difference between tight and loose types of replication is latest
version guarantee. "Tight" replication guarantees UNIX semantics and access
to the latest available version, while "loose" replication does not~

"Tight" replication guarantees UNIX file semantics. It is provided for files
which will be updated more often than the "read-mostly" file systems, and for

IBM Confidential

- 66 -

which up- to-date versions are essential. In "tight" replication the replicas are
updated on a file-by-file basis as soon as modifications have taken place.
Access to file is handled by the local server only if that server's copy of the
file is up-to-date and the modifiable replica is not currently undergoin~

modificationt Otherwise, the file access will be handled remotely, either by a
server which stores the latest version or by the server on which the~

modii.cations are currently being made.

In the most general case, "tight" replication does not scale gracefully beyond a
few dozen replicas" (The TCF replication scheme is similar to FUSION tight
replication and was capable of supporting up to thirty-one replicas). After th~
the read/write replica can become a bottleneck. With less than general update,
frequency, however, scaling levels can comfortably increase. Nonetheless,
scaling to hundreds or thousands of replicas requires "loose" replication.

"Loose" replication does not guarantee that changes are seen as they are
happening. The changes are seen shortly after they are completed. System
files, including program binaries and manuals are good candidates for loose
replication. As would be expected, loose replication will scale more gracefully
than tight replication, primarily because access is always local if a copy is
stored locally, without needing to ensure that the latest version is being
accessed.

3.3.1.1 CREA TING FUSION REPLICA TED FILE SYSTEMS
A file system is designated as either "tight" or "loose" either when it is createc>
or when it is converted from a non-replicated file system. The initial replica is'"
also designated as the read/write replica (this can be change4 later, see Section
3.3.1.6). The rest of the replicas are created as read/only versions of the
read/write replica. As a scaling aid, two types of read/only versions can be
designated, principal and secondary~ The optional designation can allow
hierarchical propagation of chang~~· as described in Section 3.3.1.4.

Although subscription into the VLDB is not necessary, a permanent volume
number must be assigned so that replicas can be identified as such by havin3
the same volume number.

Any underlying physical file system type can be used for FUSION replication
and replicas need not all have the same underlying type.

3.3.1.2 THE FUSION REPLICA TED MOUNT MODEL
Any node within a cell can function as a replication storage node for any file
system within the cell. There is no requirement that all replicas be within a
single cluster. However, for replication to work outside the cluster, the replica
must be mounted using DCE on-disk mounts. lJsing /etc/mount to moant a~
replicated file system will only work within the cluster.

In addition, only nodes running FUSION can function as storage Rodes f<>1i
replicas. The propagation routines are part of the kernel and a non-FUSION

IBM Confidential

- 67 -

kernel will not know how to update the replica.

Access to a replicated file is not restricted to FUSION nodes, howevei::. The
DCE remote file system client will be slightly enhanced so that, if a non­
FUSION client wishes to access a FUSION replicated file system, it will access,
the read/write replica as though it were the only storage node of the file
system.

3.3.1.3 ACCESS TO FUSION REPLICA TED FILE SYSTEMS
Section 3.3.1.2 above outlined the form of access available to non-FUSION
clients. For FUSION clients the access model is slightly richer. The access
model for regular files and directories is based on how the file is opened, what
other activity is ongoing for that file and what subsequent operations are done.
Access to special files are directed through the node storing the read/write
copy. Note that support for special files in replicated file systems does not
result in replication hardware or reference to devices on more than one node.
This is supported only to maintain UNIX File System semantics within
FUSION Replicated File Systems.

More specifically, for tight replication, if the file is currently undergoing·
modification, all accesses (read, read/write and write) will use the read/write.'
copy. For loose replication, only the opens which are actively modifying the
file will use the read/write copy. More specifically:

OIBN.~0R RBAD (Tight ReplicationY

Opens for read will be assigned to a replica server based, to some extent, on
load and locality of the server. If there is another ongoing modification,
however, all opens will use the read/write replica.

Even though the open can be assigned to any replica, a replica is rchosen on·ly
if it has the latest version of the file~ (see Section 3.3.1.4 for Version
Management). If, after the open has been assigned a server, a modification is
done by another open, the server for this open for read will be changed to b<t.
the read/write server in a way transparent to the user, so strict single system,
semantics are preserve6l.

OPEN FOR READ/WRITE (Tight Replication,

Opens for read/write are initially treated just like opens for read only, on the
arpment that processes often open .4of read/write but never writ« The
difference between read only and read/write is that, if the process with this
open does a write operation+,,opens to that file move to the read/write replica"

~·FOR WRITE ~~f{oplicationi

Opens for write use the read/write replica at all time§! Whether other opens
move to the read/write replica when this open is done or only when the first
write is done is a design detail.

IBM Confidential

- 68 -

OPEN FOR READ (Loose Replication)

Opens for read are assigned a serv~r independent of whether there are ongoing
modifications and independent of whether the server chosen has the latest
version. The open will stay with that server unless it becomes unavailable. If
the file is being propagated to that copy at that the time of the open. the
contents of the file may be unpredictable. However, this is consistent with the
semantics of existing UNIX systems.

OPEN ~OR READ/WRITE (Loose Replication)i

Opens for read/write are very similar to opens for read, except that, again,
when a modification request is made by the process with the open, the server is
changed to the read/write replica. No other opens are moved as a result.

OPEN FOR WRITE (Loose Replication}:

Opens for write use the read/write replica at all times. Neither the open nor
any subsequent writes, however, cause any other opens to move to the
read/write replica.

In any of the above scenarios when a read access is performed, the access time
of the file is updated only on the copy that is actually read.

Note from the above description that sharing a file between cooperating
processes is not practical in the loose replication case. Programs that attempt
to use loose replication in this manner may result in unpredictable errors~

Loose replication is intended for read-mostly applications.

Open Shared and Open Exclusive for both tight and loose replication use the
read/write replica at all times.

File Locking

Read locks can access any valid replica, while write locks will access the
read/write replica. However, all locks will be coordinated cell-wide via the
token manager: If a request for a write lock is made at the read/write replica
and a user on any local replica holds the read lock token, the attempt to get the
write lock token will fail. This ensures full Unix semantics.

3.3.1.4 VERSION MANAGEMENI'
It is important to accurately determine, under many failure conditions, whether
two copies of a file have the same content, without actually comparing the
files. Consequently something in each replica must uniquely describe the
version of the data contents in that replica. Modification to the underlying
physical file system, as was done in AIX/370, can simplify this task.
However, FUSION does not use this approach to avoid any changes to the
physical file system.

IBM Confidential

- 69 -

The strategy is to use hidden files to store file system and replica specific
information. The file .frf sinfo contains file system implementation specific to
replication and is the same on all replicas. When the file system replication
services updates this file it is propagated to all copies. The file .replinfo
contains replica specific information.· Consequently this file is maintained
independently by each replica and is not propagated. This file is used to
indicate what version of each file is stored in that replica. It should be noted
that both of these files are treated specially by the FUSION File System
Replication Service. They cannot be modified or removed by any user,
including the super user.

The general principle is that, on the read/write replica, a new version is
declared and that declaration committed before any data changes are made.
(Note that a new version could just be a new ctime value and committing is
just writing out the inode.) Then any number of changes can be made until
another node starts to propagate that version. After the propagation, a new
version must be declared before any changes can be made.

These simple principles allow versions at any two nodes to be compared
without requiring data to be compared.

3.3.1.S PROPAGATION
All modifications to files within a replicated file system use the read/write
replica, although this is transparent to the user and to the process doing the
modification. Below is the propagation model for tight and loose replication,
followed by a scaling discussion, and the description of how read/only replicas
are synchronized after a disconnect with the read/write replica.

TIGHT REPLICATION PROPAGATIO:N

At the point when a modification request is made, the implicit read token is
taken back from all replica serve!S. This forces all requests to the read/write
replica. Each replica records this state so all read or read/write opens can
accurately determine whether they can be serviced by a read/only replica or if
they must use the read/write replica. When a modification is completed, each
replica is notified and can commence pulling of that version of the file. Each
read/only replica service keeps a queue of outstanding propagations so bursts
of changes will not force repeated unnecessary propagations:

LOOSE REPLICATION PROPAGATIONt

In loose replication a modification request does not revoke the implicit read
token from all replicas; thus, during the update, clients using read/only replicas
see the unmodified data, Only at the completion of the update are the
read/only replicas notified of the change. After the notification but before the
propagation, the read/only replica server continues to export the local version.
Access will be switched to the read/write replica during the actual propagation
to ensure a consistent version of the file while the local version is being

IBM Confidential

- 70 -

overwritten.

RBON, UPUCA TIQN,SCALIN<;r

To aocommodate scaling the number of replicas, a hierarchy of read/only,
replicas can be defined, with principal and secondary read/only replicaSt If this
is done, only the principal read/only replicas will propagate directly from th0i\
read/write replica. The principal replicas are responsible for servicing th&
secondary replica's requests for propagation.

RllPUCATIQN SYNCHRQNIZATIQN AFl'ER DISCONNECT(

FUSION replication also provides a mechanism by which the read/only replica,
can obtain from the read/write replica all the modifications it may need in order<
to come up-to-date~ This mechanism is used when a replica has been off the,,
net or has been unable to keep up with propagation and is extremely out-of­
sync.

3.3.1.6 ADMINISTRATIVE CONTROLS
FUSION provides functions to create FUSION Replicated File Systems, and to
add and delete replicas, and to perform other services pertaining to the
management of FUSION Replicated File Systems. Some of these additional
services include the ability to convert read/only replicas to read/write replicas,
and back. Additional information is provided in Section 4.3.1.

If possible in the context of DCE and the underlying base operating system,
tools will be provided to monitor the distribution of replica copy access to thus
allow replication related tuning.

3.3.1.7 FUSION REPLICATION AND NETWORK INSTABILITY
A distributed network is a dynamic environment in which nodes may join and
leave a cluster at any given time. Replication allows the disappearance of a
server to have minimum impact on the user. The read/write replica manages all
reconciliation between servers which are just joining the network. If the
reaaJwrite replica is unavailable, a read/only replica will serve this function.

With the exception of the read/write replica, the disappearance of a storage
node is invisible to the user. If the node goes down, extensions to the DCE
cache manager will automatically select another server and the user will
continue undisturbed.

If the read/write replica becomes inaccessible and a user is modifying a fil8'
the operation will fail with Elti. If the user is accessing a file, the extensions,,
to the cache manager will automatically select another server and the user will
continue. However, the version the user will access may not be the latest
version on the read/write replica. It will be the latest version which has
propagated from the read/write replica at the time of the it's unavailabili~

IBM Confidential

- 71 -

If the read/write replica becomes inaccessible, the read/only replicas do
synchronize to ensure that all replicas have all the latest data.

IBM Confidential

- 72 -

4. COMMAND AND PROGRAMMING INTERFACE DEFINITIONS

This section describes the command and programming interfaces of the basic
FUSION components. It includes both system programmer interfaces and
system command interfaces.

For the reader's convenience, the subsections of SECTION 4 have been
numbered in a sequence consistent with the numbers used in SECTION 3.
This allows the reader to page back and forth between the two sections. For
any FUSION component, the reader can easily find discussions of FEATURES
in SECTION 3 and INIBRFACES in SECTION 4.

Please note, however, that some numbers appear to be missing from SECTION
4. All subsections in SECTION 4 appear in sequential order, but not all topics
covered in SECTION 3 have corresponding headings in SECTION 4. Where a
subsection number appears to be missing, it means either that the concept of
interfaces does not apply to that topic, or that interfaces have already been
sufficiently covered. The interfaces are organized below into two major
subsections - those for the Distributed Execution Environment and those for
the Cluster Environment.

4.1 THE DISTRIBUTED EXECUTION ENVIRONMENT

The interfaces for the Distributed Execution Environment are described in three
sections - the file system enhancement interfaces, the remote processing
interfaces and the node status service interfaces.

4.1.1 FILE SYSTEM ENHANCEMENTS OF THE DEE
The file system enhancement interfaces are described in seven sections below:
remote device interfaces, remote pipe interfaces, remote socket interfaces,
select on remote object interfaces, file offset coherency interfaces and interfaces
for file reopen and re-locking.

4.1.1.1 lmMOTE'BIWI~ HfPERFA~
No specific command or programming interface changes or additions are need
to complement this functionality. However, we are expecting a DCE
/etc/mount interface to allow device inodes to be declared as describing devices
on the local machine (this is functionality for diskless machines).

The ioctls which will be supported between FUSION machines includoi..
IOCTYPE IOCINFO
IOCCONFIG TXISATTY
TXTTYNAME TXGETLD
TXSETLD TXGETCD
TXADOCD TXDELCD
TIOCGSIZE TIOCSSIZE
TIOCGETD TIOCSETD
TIOCHPCL TICXM:>DG

IBM Confidential

- 73 -

Ticx::MJDS TIOCGETP
TIOCSETP TIOCSETN
TIOCEXCL TIOCNXCL
TIOCFLUSH TIOCSETC
TIOCGETC TIOCLBIS
TIOCLBIC TIOCLSET
TIOCLGET TIOCSBRK
TIOCCBRK TIOCSDTR
TIOCCDTR TIOCGPGRP
TIOCSPGRP TIOCSLTC
TIOCGLTC TIOCOUTQ
TIOCSTI TIOCNOTTY
TIOCPKT TIOCSTOP
TIOCSTART TIOCMSET
TIOCMBIS TIOCMBIC
TIOCM.;ET TIOCREM)TE
TIOCGWINSZ TIOCSWINSZ
TIOCUCNTL FIOCLEX
FIONCLEX FIONREAD
FIONBIO FIOASYNC
FIOSETOWN Ficx:;ETOWN
SIOCSHIWAT SIOCGHIWAT
SIOCSLOWAT SIOCGLOWAT
SIOCATMARK SIOCSPGRP
SIOCGPGRP SIOCADDRT
SIOCDELRT SIOCSIFADDR
SIOCSIFDSTADDR SIOCGIFDSTADDR
SIOCSIFFLAGS SIOCSIFBRDADDR
SIOCGIFADDR SIOCGIFBRDADDR
SIOCGIFFLAGS ·SIOCGIFCONF
SIOCGIFNETMASK SIOCSIFNETMASK
SIOCGIFMETRIC SIOCSIFMETRIC
SIOCADDNETID SIOCSIFMTU
SIOCSIFREM.fI' SIOCSARP
SIOCGARP SIOCDARP
SIOCSNETOPT SIOCGNETOPT
SIOCDNETOPT SIOCSIFSECURITY
SIOCGIFSECURITY SIOCSIFAUTHORITY
SIOCGIFAUTHORITY SIOCSARP
SIOCGARP SIOCDARP
SIOCSARP SIOCGARP
SIOCDARP SIOCSX25XLATE
SIOCGX25XLATE SIOCDX25XLATE

IBM Confidential

- 74 -

4.1.1.2 REMOTE PIPES AND FIFOS
No command or programming interface changes or additions are need to
complement this functionality.

4.1~1.3 REMOTE SOCKETS
No command or programming interface changes or additions are need to
complement this functionality.

4.1.1.4 SELECT ON REMOTE SPECIAL FILES
No command or programming interface changes or additions are need to
complement this functionality.

4.1.1.5 FILE OFFSET COHERENCY
No command or programming interface changes or additions are need to
complement this functionality.

4.1.1.6 FILE REOPEN AND LOCK INHERITANCE
No command or programming interface changes or additions are need to
complement this functionality.

4.1.2 REMOTE PROCESSING ENHANCEMENTS OF THE DEE
Remote Processing Interfaces are described in six subsections below:
programming primitives, cellwide process name space, virtual processes,
client/server function, execution permission and remote process commands.

4.1.2.1 REMOTE PROCESS PROGRAMMING PRIMITIVES
Programming Interface

The execl, execv, execle, execve, execlp, and execvp system calls have the
same interface as standard Unix but their semantics are extended in FUSION.
The Sphere Of Interest and execution permissions are inherited on exea. If the
load module is not marked otherwise, the mount context is also inherited."

The rexecl, rexecv, rexecle, rexecve, rexeclp, and rexecvp system calls are used
to initiate a program on either the local node or a remote node. Each system
call form has semantics similar to the corresponding exec form. In general, tae
arguments are the file name to initiate, the arguments for the program, the
environment variables, the destination node, and a flag used for Mount Context•
(see SECTION 3.2.1.1.6). The first three arguments match their meanings for
exec. The destination node may be used both to determine the execution node
and to determine the execution object, by searching in that nodes mount
context when evaluating the file name. The mount context flag is a binary,
value. If non-zero, the mount context is not changed. If zero, the mount.
context is changed to that of the new execution noda

The rfork system call creates a new process on the destination node specified.
The new process is a copy of the current process. The initiating process's
properties are preserved or altered in the same ways as a fork system call.
rfork' a two arguments are the node specifier of the destination node, and a flag

IBM Confidential

- 75 -

indicating the Mount Context to use for subsequent name lookups,

The existing fork system call is extended by FUSION to pass additional context
information to the new child. In particular, the execution node permissions,
Sphere Of Interest and Mount Contexts are all inherited by the child process.

The new migrate system call+ moves the current process to the destination node
specified, altering the Mount Context if so indicated. Its arguments are the'
destination node and a Mount Context flag: The destination node must be the.
same or compatible type as the current execution type. Its value may also be a
special indicator to do a load leveled migrate automatically, or it may be a
special indicator to do a load-level migrate automatically and ensure that it
does not remain on the current node, if possible.

SIGMIGRA TE is a new signal. The default behavior is to attempt to migrate
the signaled process or process group to the specified node. The node i&
specified via the argument of kill3. If no argument is specified then the
destination node is the execution node of the kill3 system call 11that sent the,
signal. The SIGMIGRA TE signal delivery does not interrupt executing system
calk so EINTR will never be returned.

Note: if the migrate fails the process continues on its original node without
impact.

Kill3 is a new system call. Kill3 is similar to kill but permits an additional
argument to be specified which provides information passed along when the
signal is delivered. Kill3 is available for all signals. For SIGMIGRA TE, the
additional information is interpreted as a node specifier indicating the node to
which the process or processes should be migrated.

The time accounting information is managed as follows:

1. If the process remains on th~ local node, the information is unaltered.

2. If the process moves, an accounting record is written on the local node.
Then the process's user and system times are added to the process's
accumulated child user and system times, and the process's user and
system times are reset.

This mechanism is provided to provide accurate accounting records of
resources used on each node. This is important because time on differing
machines may be very different in cost. Adding the time to the child user and
system time is suboptimal. However it appears better than discarding it and
another approach would require changes to the base.

4.1.2.2 CELLWIDE PROCESS NAMESPACE
This function requires no 'command or programming interface. There are,
however, interfaces in the INSTALLATION, PACKAGING AND
ADMINISTRATION SPECIFICATION (TBD).

IBM Confidential

- 76 -

4.1.2.3 VIRTUAL PROCESSES
No specific command or programming interface changes or additions are
needed for this function other than augmented error codes to handle network
failures.

4.1.2.4 REMOTE PROCESS CLIENT/SERVER FUNCTION
No specific command or programming interface changes or additions are
needed for this function other than augmented error codes to handle network
failures.

4.1.2.5 EXECUTION PERMISSION.
No command or programming interface changes or additions are identified at
this time. The execution permission data should be kept by the DCE
Authorization Services. It may be necessary to provide the DCE Authorization
Services interfaces.

4.1.2.6 REMOTE PROCESSING COMMANDS INTERFACE
There is a set of new commands to access the remote processing functions.
These include onnode, fastnode, fast and migrate. Besides being available
commands, some of these are also provided as shell builtins, as described in
SECTION 3.1.2.6.

The onnode command allows remote execution selection to be done in two
ways. A specific node may be selected, or an attribute or set of attributes can
be specified, leaving the actual node selection to the on command. The -v
option directs the command to display the name of the node chosen.

The fastnode command selects and then returns the node name of the least
loaded node that has compatible machine attributes with the current node. The
fastnode command may also broaden the selection beyond those nodes with the
same attributes or it may limit the selection to nodes with a specific set of
attributes. In all cases the choice is limited to nodes within the current
program's Sphere Of Interest and~ of course, to nodes which are up.

The fast command is similar to fastnode, except a specified command is run
upon the selected node. The migrate command permits a user to migrate a
process or process group to a particular node.

4.1.3 NODE STATUS SERVICE
As described in CHAPTER 3, the Node Status Service has two major pieces,
the Local Node Status Service, which runs on each participating node, and the
Group Node Status Service, which runs on a subset of the nodes, managing the
status of a group of nodes. Within each of the Node Status Services, there are
three subservices, Node Attribute Service, Node User Service and Cluster
Mount Service. Below we '1ook at the interfaces Node Attribute Service and
Node User Service. The Cluster Mount Service is discussed in section 4.2. In
addition, interfaces to the sphere of interest function are specified.

IBM Confidential

4.1.3.1 NODE ATTRIBUTE SERVICE
Command Interface

- 77 -

There are two new commands that make extensive use of the data provided by
the Node Attribute Service. These are loads and node.

The loads command displays average load information about all nodes in th~
current program's Sphere Of Interest. It can display the load average
information about the current node, a specific node, or a selection of nodes
with specified attributes.

'llleiiaede:cemmand is used to report on static information about nodes. This
information is obtained from the Local Node Status Service. The command
line options and the various names by which the command is known control
which nodes are reported and what information about them is displayed. Any
of the data recorded for nodes will be obtainable with this command.

An administrative function to allow tuning the load delta for retransmission of
load information, as well as the maximum time interval for pushing
information will be provided. This will be specified in the

ADMINISTRATION SECTION (TBD).

Programming Interface

There are interfaces to get and set the local machine's attribute list and there is
an interface to cause the Local Node Status Service Kernel Extension to check
and possibly update its cache of attribute data with respect to a given set of
nodes.

The setmachattr system call sets the local machine's machine attribute lisa
This system call can only be used by a privileged process. No validation is
doDc,J:ay .. this system ~ en the contents of the attribute list, except making
sure that the components are . separated by slashes and the list is nuH.
terminated.

setmachattr(attrlist)
char *attrlist;
/* ptr to the input machine attr list */

The getmachattr system call places the local machine's machine attribute list in
the provided output buffen

getmachattr(attrlist, len)
char *attrlist; /* address of buffer for output attr list */
int len; /* length of output buffer, in bytes */

The cachatudata call indi<rates to the Local Node Status Service Kernel
Extension that attribute data about certain sit~ should be checked to see if it i•
current and if it is not current, the Group Node Status Service should . be
queried to ensure current data locallYt The cmd arguR10M~tileW&,~~r'te •

IBM Confidential

- 78 -

request either a specific site. specific sites, or to use the·· process's Sphere of
lnteresb

cacheattrdata(and, params)

There will also be library routines to interrogate the Local Node Attribute
Service data, specifically to select an appropriate node to execute on.

4.1.3.2 NODE USER SERVICE
Command Intetface

This service has data provided to it by several commands and is interrogated
by other commands. Commands which modify the local /etc/utmp filo hav•
been changed to also notify the Node Status Service of the change~ This
includes the commands login, init, rlogind, and telnetd.

The comsatx command differs from the standard comsat command in that it
notifies the user's login sessions on all nodes within the comsatx command's
Sphere Of Interest that mail has arrived.

The fingerx command differs from the standard finger command in that it lists
the idle time and login time for a particular user name for all nodes within the
current user's Sphere Of Interest on which the user is logged in. The option ' -
L' allows only the current nodes login sessions to be listed.

The talkx command is a modification to the standard talk command. When no
node name is given, all nodes within the current user's Sphere Of Interest will
be searched. An additional nodename parameter can be used with the line
parameter. The line parameter, when issued WITIIOUT the nodename
parameter, causes the search for the user being contacted to be done on device
lin~ within all nodes in the current user's Sphere Of Interest. When the line
parameter is issued WITII the nodename parameter, only the specified node
will be searched. In the case where neither the nodename parameter nor a
node is specified, if the user has multiple logins, and one is the current user's
node, then that login will be notified. If none of the logins are the current
user's node, the most recently accessed node will be notified.

The usersx command differs from the users command such that if no options
are given all login names of users logged in on nodes within the current user's
Sphere Of Interest will be listed. If this form of the command is used, the
name of the node on which each user is logged in is prepended to the output of
each line. The node. The '-n' option allows the user to specify a node. In this
case only users on the specified node will be listed.

The wallx command differs from wall by sending the specified message to all
users logged in on all nodes within the current user's Sphere Of Interest. The
'-L' option has been added to send only to user's logged onto the current
user's node.

IBM Confidential

- 79 -

The whox command differs from the who command by displaying information
about users logged in at all nodes within the current user's Sphere Of Interest.
The node name is listed along with the user information. A '-L' option has
been added to list only those users on the current node.

The writex command differs from the write command in the same manner in
which the talkx command differs from the talk command.

Programming Interface

Updating signed on user data will be done via an enhanced version of th•
setutent library routines."' For display commands (e.g. usersx, whox, talkx,
comstatx, fingerx, writex, wallx, etc), there are two intetfaces which force the
Local Node User Service to have timely data which can be interrogated. They
are:

~e!~:Ar~B,P~J

The cmd argument can specify either a specific node, a Sphere Of Interest, OJi

indicate that information about all nodes serviced by the Group Node User
Service~

GETUSERDATA (USERNAME)

This interface ensures that data about the user, within the calling program's
Sphere Of Interest, is cached for interrogation. ·

New functions will be added to interrogate Local Node User data, to be used,
instead of the getutent library routine~ The getutent library routines will still
work as they do now, accessing only the local signed on user data.

4.1.3.3 SPHERE OF INTEREST
The sphere of interest is used for remote execution load leveling as well as for
limiting the search scope for queries about logged in users, mounted file
systems and possibly other resoun:es.

Command Interface

'Bl91! 1pll IH"eemmand allows•.-~ add er delete nodes or groups t.o/U::oai
.tllo sphere of interest (SOI) and 1'disp!aJ,.ae,am-ent SOI.

For the convenience of the user or administrator, a Sphere of Interest may be
specified by referring to "groups" of nodes. Groups are defined by files
containing the list of nodes. They may be defined either by the system
administrator or by the user. The sphere command built into the shells woula
manipulate. the SOI. A separate ,command is also provided ... which c~,~llle,
sphere and then execs $SHEU! (this could be used from user supplied shells
which don't have a built-in,· sphere commands). The sphere command would
allow nodes or groups of nodes to be added or subtracted from the SOI as weij
as ellowing the.ntire list to'• ~

sphere t print SOI

IBM Confidential

- 80 -

sphere [nodelgroup] .•.• #reset entire SOI
sphere [+I-] [nodelgroup] # modify existing SOI

The default for the Sphere Of Interest is set by the administrator.

The who and loads commands would pass the SOI to the Node Status Server
to limit the response to information concerning the specified nodes.

The mountx and dfx commands will pass the SOI to the Cluster Mount Server
to limit the response to information concerning file systems on the specified
nodes.

The fast and fastnode commands default to choosing from among the
intersection of the set of nodes of the "same type," Xperm, and SOI.

Programming Interface

The getsphere and setsphere system calls W<>uld manipulate the SOit. The user
process setting the SOI is responsible for expanding the group lists. These
system calls take pointers to the expanded lists.

result = setsphere(char **nodelist, int nnodes)
(result == O for success, -1 for failure)
result = getsphere(char **nodelist, int nnodes)

(on success, "result" is the number of entries in "nodelist", but no more thaa
"nnodes" entries will be returned)

In all of the RPCs which send spheres of interest (except for Soi_to_UUID),
the sphere of interest is passed as unique identifier (UUID) representing the
SOI rather than passing the entire list. The Local Node Status Service and
Group Node Status Service will cache the mapping of these UUIDs t the
corresponding SOI. If the LNSS or GNSS does not recognize a given UUU~.
it ean -request the full list by sending a Get_Soi request to the site whiclt
proaentecl·tne·UUIDt

Get Soi(UUID)

This request is used to get the full SOI list for a SOI known only by its UUIJ;>.
It 0.caa·,·• ·sent by the destination ·node l)f'''fr•process movement operatioo
(migrate, exec, rexec, tfork) te?.n.~·,_,.,. The UUID obtained from the
process movement RPC is padded and the complete SOI is returned. The­
caller is then expected to add the new SOIIUUID to its cache. This· call can.i
also be used by the GNSS when a request is sent to it with the UUID of an
unlmewn 801!'

Spj)1tDlb1'* 1 iP"'8~_."4efttifters are obtained by ·registering 'a sphere· of interess,
witlt 1dle ONSS. ,-

Soi_To_UUID (SOI)

This request is sent to the GNSS to o~,~ .. UV~ for a SGa The GNS.S
returns either a new UUID or one obtained from its SOI cache.

IBM Confidential

- 81 -

4.2 THE FUSION CLUSTERING CAPABILITY

The clustering capability has interfaces for data clustering a process load
leveling.

4.2.1 CLUSTERING OF DATA
Included in this section are interfaces to join and leave a cluster, mount
interfaces and any NFS coherency related interfaces.

Command Interface

The clusterjoin command will issue a clusterop system call to join a specific
cluster.

The clusterleave command will issue a clusterop system call to take the local
node out of the cluster. The mountx command is very similar to the standard
mount command but is extended in several ways. First, a display option of -I:.
is added to permit local only display. If that option is no used, the semantics
are to display all mounts in the Sphere Of Interest. For non-display options,
there is mount hinting, an option to specify a file system id, and an option to
specify scoping of the mount (see the mountx programming interface below).

The umountx command is an extended version of the umount command.
Added is the capability to force unmounts, using the umountx system call
described below.

The dfx command will be modified to contact the CMS for mount information.

The NFS coherency function requires no command changes or additions other
than extensions to mountx used to aid NFS system administration.

Programming Interface

The clusterop system call extension is used both to join a cluster, which
involves contacting the GCMS and negotiating mount information, and leaving
a cluster, which involves telling the GCMS and then cleaning up local mount
information.

The mountx system call, used by the mountx program above, has extensions to
allow mount hints, assignment of file system ids and flags to indicate the scope
of the mount (this is relevant when multiple root file systems are involved; the
scope can be either restricted to the local machine or clusterwide). The
umountx system call, used by the umountx program above, has an extension tQ
allow forced unmounts. While this is a generally useful kernel extension, it is
included here because remaing quiescent so as to allow unmounting in the
clustered environment could be very difficult.

I

The semantics of the standard mount and umount system calls are extended to
negotiate with the CMS in the case where the node is a cluster member,

IBM Confidential

- 82 -

If DCE does not provide something, an interlace may be needed to allow
determination of which node or nodes a given file is stored.

No programming interlace changes or additions are needed to complement the
NFS coherency functionality.

4.2.2 CLUSTER LOAD BALANCING (INVOCATION)
Many of the basic load balancing primitives were described in the previous
section. This section will identify those remaining interlaces.

A load module marked for exec time load leveling will have its execution node
selected automatically by the system.

During the exec operation, the load module object type is examined and
compared with the acceptable local values. If the object is not compatible with
the local machine, FUSION will attempt to execute the load module on an
appropriate node in the cluster.

Command Interlace

A command will be provided to mark executables to be automatically load
leveled. Some of the fields that may be set include suitability for load
leveling, don't preserve mount context when load leveling, 1/0 intensive, CPU
intensive, and memory intensive.

Programming Interlace

The are load level options on rexec and rlork.

4.2.3 CLUSTER LOAD BALANCING (MIGRATION)
Command Interlace

There will be a sample load leveling daemon which will load level by I
migrating processes between compatible architectures.

Programming Interlace

There are load level options on migrate.

4.3 FILE SYSTEM REPLICATION INTERFACES

Command Interlace

The f s where is command is used to determine where in the file system a file is
stored. This DCE file system command will be modified to accommodate
replicated file systems.

There will be administrative interlaces to create and manage replicated file
systems. Included will be.· the capability to convert a read/write replica te
read/only and convert a read/only to read/write.

Programming Interlace

IBM Confidential

- 83 -

There will be a library interface to retrieve information on where a file is
stored.

IBM Confidential

- 84 -

S. INTERFACE TO OTHER PRODUCTSS

The overall goal of the FUSION software is to provide a portable transparent
distributed operating environment on top of Unix systems with OSF/DCE. In
order to be portable, intrusions into the existing unix base must be minimal,
and those that are required must be done in a clean, well defined way. Below
is the outline of the interfaces and hooks needed in Unix and those related to
DCE.

S.l INTERFACE TO UNIX

Where possible, FUSION components will exist outside of the standard Unix
base. Standard interfaces to the systems will be used to the degree possible.
When extensions to the kernel are required, they will be made using well
defined hooks.

Below are the interfaces and required changes in the areas of installation,
administration, system utilities, base kernel and NFS extension.

5.1.1 INTERFACE TO INSTALLATION
There are several pieces of setup which must be done at the time the FUSION
extension is installoo. At installation time, a primary process id (pid) range
must be assigned to the node. This will be done in a transparent manner.

At installation time enhanced versions of login, init, telnetd and rlogind must
be installed so signed on user information can be gathered cellwide.

At installation time, the node must be assigned to a group for collection of
node status information. This will be done transparently, at least until the
environment is larger than a couple of dozen nodes.

At installation time the Local Node Status Service must be registered and set to
start execution during single- to-multi.

At installation time the installer is given the option of having each f oox
command replace the corresponding foo command in the base.

5.1.2 INTERFACE TO ADMINISTRA 1ION
Several administrative capabilities are needed to support FUSION.

It will be possible to request additional process id (pid) ranges and to
relinquish any no longer needed, except the primary range.

It will be possible to rearrange the group (for node status information)
membership and the preferred Group Node Status Service nodes.

It will be possible to detepnine, programmatically, the active Group Node
Status Server for any given node. so as to obtain status information about that
node.

IBM Confidential

- 85 -

It will be possible to tune the reporting of node status information.

It will be possible to register cluster membership and to join or leave a cluster.

It will be possible to specify the mount characteristics desired for particular file
systems.

It will be possible to create replicated file systems using any physical file
system layout.

It will be possible to monitor and tune replicated file system activity.

It will be possible to convert read/write replicas to read/only replicas and to
convert read/only replicas to read/write replicas.

5.1.3 INTERFACE TO SYSTEM UTILITIES
The FUSION function depends on very few changes to base system utilities.
As outlined above in section 4.1.3.2, only commands which modify /etc/utmp
need be augmented and thus overlay the base versions. In addition to updating
/etc/utmp, those commands will also update the Local Node Status Service
component (it may be the case that no system utility code need change and the
added code can be in a library). In AIX these changes may be placed in the
setpcred system routine.

As was described in chapter 4, enhanced versions of a dozen or so utilities are
provided to allow viewing a collection of machines as a single machine. The
standard version will function, however, on the local node.

5.1.4 INTERFACE TO BASE OPERATING SYSTEM
The FUSION function is largely a set of installable kernel extensions.
However, a few hooks and a small bit of restructuring is important to allow the
extension to function.

Without having completed the detailed design and exhaustive analysis of
various Unix kernels, it is difficult to lay out a complete list of changes needed
to those kernels. Below is an attempt to capture all the changes needed,
organized by the function which requires the change.

¥fj1Ges-'

Analogous to vnodes, the proc structure is split into a vproc structure and th•
regular proc structure.- "'The vproc structure has identification fields anci
relationship pointeJ&. The physical proc structure is largely unchanged. The
changes needed to support and use the vproc concept are less than 1024 lines
of code, involving small changes to 20 to 30 routines that access the proc
structure currently.

Process Id (PID) Allocation

FUSION introduces the idea of cellwide process ids. Each machine can use the
range 0 --> 128K for special processes (like, init, pager, swapper, kprocs, etc.)

IBM Confidential

- 86 -

but most processes should be assigned from the one or more pid pools
assigned to that node. The name seivice should keep track of the ranges
assigned to each machine but that machine can also cache that information
across reboots as it is static data. There is no implication that the ranges
should be given out in a sequential manner.

EXEC

A hook or two are needed in the exec strain of code to allow certain marked
load modules to be load leveled. A bit (at least) is needed in the executable
header to be used as an indication that the load module can/should be load
leveled.

File Offset Tokens

The struct file should be extended to at least point to a a token structure, which
is used via some extension code to maintain a single logical fileblock between
processes sharing that fileblock across multiple machines. In addition to the
structure enhancement, each place a fileblock is interrogated (maybe 10 places)
needs two lines of hooks to call the token management routines for the object.

File Reopen and Lock Movement

New struct file operations (fo_reopen and fo_prep_export) and new vnode
operation (v_reopen and v_prep_export) are needed to allow a remote exec to,
keep its files open and any locks intact. The vnode changes should be part of
DCE+. Support for the extensions is not complicated and not physical file
system dependent.

Read/Write Replication

At this point it looks like all the necessary hooks will be in the DCE
distributed file system code and not in the base. However, only early versions
of DCE distributed file system have been researched. In case the DCE does
not provide the necessary file versioning capability, it is described here.

To correctly assure that two copies of a file labeled the same have the same
contents, each "version" of a file must be uniquely marked. ,A "version" is any
snapshot of the file that can be replicated. Without atomic updates via shadow
paging (as was done in TCF), versioning must be very carefully done to avoici
the possibility that two replicas think they have the same contents when indeed:
they don't. Versioning can be done using the crime inode field with the
following conditions and hooks:

1. time must never go backwanls;

2.

3.

.-
there is an interface to force an inode write with a specified ctime;

crime of a one second granularity may be unacceptable

IBM Confidential

- 87 -

If condition 1 cannot be met, a new commit count mechanism should be added
that is guaranteed to not decrease.

Pipes and Fifos

Some small restructuring of the pipe storage code may be necessary to allow
the code to handle both local and remote requesters. Special bookkeeping will
be done using a new structure pointed to by the vnode in the pipe VFS.

Sockets

Remote socket support requires that alternate system call entry points be linked
for the socket related system calls. Ioctl, close, stat, and select are intercepted
with substitute file operations in the file ops table.

Remote Devices

The user structure should be extended to describe remote controlling ttys.

The incore inode should be extended to add an rdevnode field, which could be
a pointer to a host table entry. Additionally some small changes may be
necessary to initialize the vnode operations correctly to allow operations like
read,write,ioctl to go to the device node while chmod,chown,etc. go to the
inode storage node.

The /dev/tty and /dev/null devices may need extensions but this could be done
by just replacing them in the kernel extension.

Select

There may not need to be any changes to provide select on remote objects
because select is done largely through the fo-select file block operation, which,
if the object is remote, will be a kernel extension routine. A small hook may
be necessary to set this up, however.

Clustermount

The mount and umount system calls need hooks to call the kernel extension to
negotiate the mount or umount and to inform any other nodes necessary. In
addition, lookups will have to recognize mount points which do not have local
mount table entries. Finally, the kernel extension needs a way to set up vnodes
with mounted-on bits.

The entire set of base kernel changes is projected to be less than 2000 lines of
code, with vprocs (already built) being the major piece.

5.1.S INTERFACE TO NFS
To provide the correct coherency of NFS mounts within a cluster, minor
modifications to a node's NFS support is required. This modification involves
adding a token mechanism similar to that provide in DCE distributed file
system, with some differences. The addition of the token mechanism should

IBM Confidential

- 88 -

not require any changes to the NFS coder: A small change to allow " .. "
evaluation to work correctly outside the cluster may be needed.

Secure NFS requirements may mean that remote NFS user logins be shared
between cluster nodes. Accomplishing this should not require changes to the
base NFS code, however.

5.2 INTERFACE TO DCE

FUSION will be built using OSF's DCE as a base operating environment. DCE
provides the basic mechanisms for inter-machine communication with NCS,
directory services and naming, remote distributed file systems, and
authentication services with Kerberos. FUSION will interface with each of
these components of DCE.

5.2.1 INTERFACE TO NCS
All inter-machine communication will be accomplished using NCS remote
procedure calls, or RPCs. NCS provides mechanisms for in-kernel RPCs and
application level RPCs. No non-standard interfaces to NCS are required.
However, it is assumed that the in-kernel NCS can communicate with the
application level NCS.

5.2.2 INTERFACE TO DIRECTORY AND NAME SERVICES
It is planned that several pieces of information will be stored in the directory
service but there are no plans to request changes or additions to this services.

5.2.3 INTERFACE TO DCE DISTRIBUTED FILE SYSTEM
DCE provides the basic mechanisms for remote file access and limited
read/only file replication. FUSION will use DCE as a basis for all file related
activity, including cluster wide mount visibility and file replication.

There are three areas where modifications to DCE distributed file system code
are required. One set is to support reopening of files and movement of file
locks, needed for remote execution and process migration. Another set is to,
support the single cluster wide view of file system mounts. The final set is to
support tight file system replication; Some of these changes are required in the
initial release of DCE, not just in FUSION provided versions. However, the
changes will be developed as part of FUSION.

File Reopen and Lock Movement

To support remote process execution and process migration, hooks are required
to permit an opened file to be reopened on another node. This must be
supported even when multiple opens are not normally permitted. In addition,
file locks must be able to m9ve with remote execution.

Cluster Wide View of File System Mounts

Three small changes are needed in DCE to allow the support of a cluster wide
view of mounted file systems to operate successfully. The objective is that,

IBM Confidential

- 89 -

within a cluster, all file system mounts will be visible to all other cluster
nodes. First, a way is needed to generate volume or file system id numbers
without registering them with the VLDB. Since the file system id is 64 bits,
some range reservation for this purpose seems practical. Second, there must be
a way to add entries to the cache manager's volume or file system table.
Lastly, a small changes must be made to the protocol exporter so that it will
pass on "mounted-on" information, so it can be inspected during lookups
within the cluster.

Read/Write Replication

The read/write replication service depends on almost all the DCE distributed
file system mechanism. In particular, it depends on the documented features of
the VLDB to support large numbers of replicas. It also depends on the ability
to switch flow of lookup from the "glue" code to the cache manager and back
and in fact it depends on being able to switch an already open file from local
to remote service and from remote service back to local. If any of these
dependencies are not in the base DCE code, additional code will be needed to
provide the service.

Several hooks are needed to fully support read/write replication. They include:

File System Location Data Base (VLDB):

Support is needed for a new file system type, which should be transparent to
the VLDB other than the type indication itself. In addition, an added field may
be needed for the file system data structure and this field would need to be sent
from the VLDB to the client code.

Client Code (Cache Manager)

Most of the changed needed for read/write replication are in the client code.
The first change would be to allow base DCE code access to read/write
replicas, even if locally the FUSION code was not installed. The proposal is,
under this condition, to just access the read/write replica as if the file system
was not replicated at all. The second change would be to have hooks so that if
the FUSION code is installed, full access to the replicated file system would be
supported. To do this, the volume or file system registry may need additional
fields to support the new file system type. Also, the storage node must be put
in cache manager part of the inode so different files in the same file system can
be serviced by different storage nodes.

Token Processing

The plan is that each call ,to the token manager will be intercepted by the
replication token manager, which will only analyze requests on read/write
replicated file systems. All requests will eventually be passed to the regular
DCE token manager.

IBM Confidential

- 90 -

The replication token manager may, however, pass back a new return code
which indicates the request should be retried at the node storing the read/write
replica The cache manager and glue code need a hook to check for this return
code, passing control to the kernel extension when this happens. None of the
requested changes are of any significant size and none pose any risk or
performance penalty to the overall DCE.

S.2.4 INTERFACE TO DCE SECURITY SERVIC~
Kerberos is a network authentication subsystem used by all DCE RPC services.
It operates using a ticket- granting mechanism. Passwd.etc is a related service
to provide authorizations for logging in. These services will also be used by
FUSION services, including remote processing and remote device kernel
extensions.

There is one known area where Kerberos tickets and FUSION remote execution
need to coordinate. Kerberos has the concept of a ticket-granting ticket, which
is sort of a supper ticket and is used to obtain specific tickets for access to
services. Clearly a remote process execution or a process migration would
have to either take this ticket along with it or be able to reobtain it. Our
understanding is that to reobtain it, the user would have to "login" again, which
of course is unacceptable. Thus we must be able to copy the ticket granting
ticket to another node. At present it is not clear if this will require any
changes to the kerberos code.

IBM Confidential

- 91 -

6. ERROR HANDLING

Error handling will be provided as a basic extension to the existing Unix error
handling mechanisms. In most cases no extension will be necessary. The
areas to be addressed are at the kernel level, at the application level, and at the
remote system level.

6.1 ERRORS DETECTED BY THE KERNEL

Errors detected by the kernel are indicated through a few well defined
interfaces. The most common errors are indicated via return codes from system
calls. Some abnormal conditions are indicated via special signals, but these are
usually somewhat hardware dependent."

Some kernel errors are indicated via console log entries or messages directed to
users."

Most additional errors detected by the kernel will be surfaced via additional
return codes. The following error return indications will be added:

ESITEDNl Required node is not available
ESITEDN2 Operation tenninated due to node failure
ENOSTORE File or working directory is unavailable
ENIDEV Not a local device.
EBADST Bad node specification
EIDWRG Load module not for this machine
Eux::ALONLY Operation restricted to local node

The supporting perror(S) library routine will also be enhanced to display
reasonable strings for those errors. In addition to this list, some detected errors
will be indicated using already existing error indication codes.

No special generation of signals for error indications will be introduced as part
of this functionality. The addition. of console log or special user messages will
be kept to a minimum. Additionally, new system panics will be kept minimal
as well. 6.2 APPLICATION LEVEL ERROR HANDLING Application
errors are usually indicated via an error message from the program,
Occasionally, application programs indicate errors via the system error log
facilities. Some applications experience errors and exit suddenly, perhaps with
a core dump file.

It is expected that most new error indications at the application level will be
made via error messages. This is the most portable form of error handling,
and the one most widely used. For some critical system applications, the
ability to log errors via a system logging mechanism would be extremely
desirable.

Messages of this type will be entered into the log via the syslogd mechanisms,
which incorporate a time stamp with the message.

IBM Confidential

- 92 -

For this system, applications are expected not to exit mysteriously or produce a
core dump.

6.2 REMOTE SYSTEM ERROR HANDLING

Remote system error handling will be handled much as local system errors are
handled. Indications of problems at remote systems will typically be obtained
from the RPC layer. In some cases, the higher level protocols may detect an
error. Some errors pertaining to security will be detected by the Kerberos
mechanism.

Errors detected by the RPC layer will typically be errors where the other node
fails to respond in a timely or appropriate way. The most common of these is
the case where the remote node has failed in the middle of an operation.

Errors detected by higher level protocols will be indicative of state
inconsistencies between the two nodes. For example, two nodes may have
different notions of the present state of a process, which would be detected at
this level.

The DCE Security Mechanisms mechanisms will detect errors that involve user
authorization to perform functions or obtain services from a particular system~
Examples of such a failure would be a user who did not have correct
permission attempting to read or write a copy of a replicated file.

The nature of reporting errors pertaining to remote systems will be the same as
reporting local errors to the user, as described above in SECTION 6.1
ERRORS DETECTED BY THE KERNEL and 6.2 APPLICATION LEVEL
ERROR HANDLING.

6.3 NETWORK PARTITIONING ERRORS

At some point during normal system operations the system may experience
failures in the underlying communications. This may be a network hardware
failure, a routing failure, a failure of a gateway device, or one of several other
causes.

A principal goal of FUSION design is to minimize the impact of such failures.
At most, the failure is to be restricted to the nodes that are providing resources
and nodes that are using those resources. When such a failure occurs, the
failure is to be limited to the failure of particular operations on those nodes,
and not to the nodes in general. The design is to be resilient to intermittent
partitioning errors as well as longer term problems. An important goal is to
avoid long, chaotic recoveries.

6.4 DEBUGGER SUPPORT .

Some extensions to the existing dbx interface to support debugging of
processes on different nodes are required.

IBM Confidential

- 93 -

Changes to the crash command are required to operate with the restructuring of
the kernel into vprocs.

IBM Confidential

- 94 -

7. PERFORMANCE

There are three areas of performance to be considered. These are the
performance impact of the FUSION hooks on existing Unix software, the
performance impact of the FUSION hooks on the DCE software and the
performance impact of the FUSION software itself.

7.1 FUSION HOOKS IN THE BASE OS

The changes made to the base Unix to support FUSION shall not result in
performance degradations for existing Unix setvices when compared to the
same system running without the FUSION modifications. The goal is to
presetve the execution path for the strictly local case; nothing will be added
except a simple test to determine if the operation is, indeed, strictly local.

7.2 FUSION HOOKS IN DCE

The changes made to OSF/DCE to support FUSION shall not result in
performance degradations for existing OSF/DCE setvices when compared to
the same system running without the FUSION modifications.

7.3 FUSION CODE IMPACT

Performance of the new software is critical. For a distributed system solution
to offer true transparency, Performance Transparency is an important goal. If
obtaining remote setvices takes substantially longer or consumes substantially
more system resources, then users would prefer to not utilize the remote
resources.

Without DCE performance numbers, however, it is premature to specify
performance requirements.

IBM Confidential

- 95 -

8. IMPACT OF FUSION ON EXISTING CUSTOMERS

The addition of the FUSION software will not affect any existing binaries or
source, either syntactically, semantically or with respect to performance.

IBM Confidential

- 96 -

APPENDIX A: RATIOS, RELATIONSHIPS TO DCE, AND
ALTERNATIVES TO DCE

This appendix provides a discussion of parameters and ratios of services within
the FUSION system, the relationship of the FUSION components to DCE, and
some alternatives to DCE.

RATIOS

In order for the FUSION design to scale, several hierarchical structures have
been created. This section is provided to discuss the ratios that are assumed
within these structures.

The concept of Sphere of Interest has been introduced in FUSION to permit
various commands and other activities to restrict their concern to a user
controllable set of nodes that they are interest in, because it is relevant to them.
For example, the 'who' command examines the sphere of interest and only
identifies the users on the nodes within that sphere. For typical users, it is
expected that the sphere of interest would be less than fifty nodes within the
cell. However, there is not limit enforced by the design.

In order to manage node status information, the concept of node groups was
introduced. A group of nodes will share a single group server (though that
server is assigned in a dynamic way). This group server acts as a repository
for information about the nodes in that group. When a node requires
information about another node, it inquires the group server. If the node in
question is within the group the information is returned right away. If it is
within another group, then this group server contacts that node's group server.
It is expected that the groups will typically be less than 100 nodes.
Furthermore, group membership should be defined in a logical way, such that
the groups are not strictly arbitrary. For example, at a University the Electrical
Engineering Department might be a group, and the Mechanical Engineering
Department might be another group. It is hoped that within a typical group,
most users of the nodes in that group will have sphere of interests that are
mostly if not completely contained within the group. This will minimize much
of the inter-group network traffic.

The Group Servers interact closely with the name service and the network
security server. It is expected that in a typical installation, there would be one
group server per name server (maybe even the same node).

A FUSION Cluster could potentially contain as many as 4096 nodes, although
most clusters will probably be much smaller than that. Clusters are conceived
as not spanning a DCE cell. .

'

The concept of a cluster and a group are only marginally related. For
administrative reasons, however, it might be convenient that if members of a
group are members of some cluster that the be members of the same cluster.

IBM Confidential

- 97 -

Since clusters can be larger than groups, it may be made up of several groups.

The replication design for scaling supports a hierarchical propagation model.
There is a single read/write copy from which all changes originate. The
hierarchy is to define some of the replicas as principal replicas, which
propagate directly from the read/write copy. Secondary copies then propagate
from the principal replicas. The rule of thumb for allocating principals and
secondaries is to have the read/write copy serving as many principals as each
principal serves secondaries. For the pathological case of 111 replicas, one
would be the read write replica, which would serve ten principals, each of
which would serve 10 secondaries. While these ideal ratios will not always be
achievable, this is the target model.

Another issue affecting all of the above services is network location of critical
resources within the cell. In a complex network topology with multiple
networks, gateways, and even slow point-to-point links, a reasonable
configuration goal is to centrally locate resources critical to the system. For
example, group servers and read/write copies of file systems should be roughly
equally distanced from all remote nodes. It would be a poor idea from a
performance perspective to put these resources at the far end of a remote link.

RELATIONSHIPS TO DCE

The FUSION product as defined within this specification is built upon DCE.
This section describes the particular aspects of DCE that are required.

All of the FUSION functions that require communication between nodes use
the NCS RPC mechanisms to obtain that communication. Consequently, NCS
is required for all aspects of FUSION.

Several of the FUSION functions use the services of the DCE Distributed File
System. These services are remote processing (for file reopen support), the
Node Status Service, the Cluster Mount Service, the clustered NFS service, and
the FUSION File System Replication.

The Node Status Service uses the DCE Name Service and Directory Service.

The security of FUSION is to be based upon the security services of DCE.
This includes the authentication server and the authorization services. Also,
some security is achieved by using security features of NCS. It is possible for
FUSION to run without these services, but the security features will be absent.

ALTERNATIVES TO DCE

As specified, the FUSION requires DCE as an underlying mechanism. This is
beneficial because DCE is an industry standard. However the FUSION
architecture is general enough to not require DCE. The system could be
specified to use alternate underlying services.

IBM Confidential

- 98 -

The use of NCS could be supplanted by some other RPC mechanism. NCS is
nice because easily handles some of the heterogeneity issues, such as byte
ordering and data formats. However, additional software such as that provided
in TCF could be substituted, to be used with an alternate RPC mechanism.
With additional restructuring, FUSION could be built using a message passing
protocol instead.

The DFS portion of DCE could be replaced with other distributed file system
services, and provide functionality. This would perhaps be at a reduced level
of functionality, depending on what was chosen. Additional software (such as
a token manager) might have to be built, which is not necessary with DFS.

Another name service could be substituted. This should not pose any difficult
technical problems.

The DCE Security services could have substitute services provided or built as
required. Or, as stated in the previous section, could be eliminated if security
concerns were not an issue.

IBM Confidential

- 99 -

APPENDIX B: OPEN ISSUES

At the design review and from individual comments, a set of open issues with
respect to FUSION has been identified. These issues need to be discussed and
resolved before the FUSION functionality is fully defined. The remaining
issues are on extensions and other unspecified functionality that may be
considered now or at some time in the future.

This appendix lists those issues in detail.

1. The general FUSION security model needs to be resolved, both in terms
of the DEE as well as inside the cluster. The issues to be resolved are
listed here. Security issues are listed here because that area is perhaps
the most significant to be addressed. The second set of items are
comments pertaining to specified functionality, in the order they were
presented in the body of the specification.

a. Authentication should be done by Kerberos. This is consistent
with the DCE Security Mode. The authorization should be
managed as part of the DCE Authorization Services. The services
from DCE are not well understood at this time. Perhaps an
alternate mechanism should be investigated.

b. There is an open issue with Kerberos, with regard to whether users
want restrictions on where their Ticket Granting Ticket (TGT) can
be moved.

c. More investigation of Kerberos is required to understand if we
have to move tickets other than the TGT.

d. The issue of what authorizations are required to perform mounts
that are visible to the cluster needs to be resolved. The current
approach is limited to.a single super-user per cluster model.

e. At the review the issue was raised as to the possibility of creating
a finer grained privileged user model, where an intermediate level
of privilege would allow a particular user (or set of users) to have
effectively root authority on their particular node, but that authority
would not extend beyond the node. This needs to be resolved, and
if the answer is yes, the function needs to be defined a design
proposed.

f. Programs that are marked setuid create a unique set of problems in
a distributed environment. If multi-granular privileges are created,
it becomes even more complex. The DCE model for this also
needs to be understood, because globally visible setuid binaries
could be set up even without the option of remote execution.

IBM Confidential

- 100 -

g. The issue of network security has been raised several times.
Rather than use a piecemeal approach, a unified approach to
network security needs to be addressed. This should include
encryption and authentication at or below the RPC layer.

2. Sockets and Streams currently have limited support.

a. Some concern was addressed regarding the performance of double
hop socket support. Investigations into the X-windows use of
TCP/IP indicate that the double hop should not be a big
performance impact.

b. Additional concerns were address regarding the impact of double
hop socket support on availability. The initial node of the socket
is fixed with the current design. Redesigning sockets to support
redirection would require some significant amount of study and
experimentation. There are also issues of what the failure modes
would be with respect to applications that were not prepared for
the remote endpoint to be relocated. This is probably more
significant with network protocol domains than with UNIX-domain
sockets, particularly in a cluster where the view of the file system
is maintained.

c. The potential to support streams is sketchy at best, and further
design and specification work has been deferred. It may be
appropriate to reconsider the priorities of remote streams support in
FUSION.

3. There are some specific issues pertaining to process migration that
require final resolution.

a. It was suggested that having migrate take a pid argument would be I
useful functionality. While this could be implemented trivially by I
having this routine send SIGMIGRA TE with the appropriate I
argument to the process specified, the goal was to provide a call I
that would not return until the migration had completed, and would I
indicate whether the migration had succeeded. The initial I
investigations indicated that this would be very difficult to build in I
a reasonable way. I

b. The current plan for specifying what process can migrate to which
nodes is based on static attributes of the node where it is running.
Some dynamic constraints have been identified, such has a 370
vector process with a fixed section size. This could perhaps be
resolved by supporting some form of process attribute, which is set
when particular features are used. The mechanisms to build this
are not understood.

IBM Confidential

- 101 -

4. There are some outstanding issues regarding the Node Status Service.

a. The current set of statistics kept at the Node Status Service are
only loosely defined. It is doubtful this will be enough. What is
being proposed needs to be reviewed. A mechanism to easily
expand the information stored there is also desirable.

b. Bruce indicates the algorithms need to be enhanced to allow
"group: to be bigger than three nodes. Is there really a problem
this serious?

5. There are a few issues open pertaining to the cluster mount function.

a. It was suggested that making mounts persistent for the Directory
and NFS mount cases would be better than providing both types of
mounts. However this must still work in the case of partitioned
operation. One possibility is to pick the volume ID based on the
mount string so the same mount would use the same volume ID
when partitioned.. Any such algorithm would need to work in
heterogeneous environment.

b. It is conceivable at an abstract level that multi-ported disks could
be used in some interesting way to keep a file system mount
available even though a failure occurred. This requires additional
study to propose a mechanism for doing this. The semantics under
these circumstances would also have to be defined (such as what
would happen to files open for modification at the time of the
failure)

c. The significance of linking with shared libraries and the effect on
mount context decisions needs to be investigated. This is
particularly relevant if the base executable comes from a different
mount context than the one the process runs in. The shared library
mount context probably needs to be the same one as where the
executable came from.

d. There has been a suggestion made that clusters are not that
meaningful in the expanded context of the DEE. It might be more
reasonable to have users define their own cluster by allowing SOI
to control load leveling.

e. Supporting TCP/IP operations to a cluster was expressed as a
desirable goal, having the name server do load leveling. The work
on this has been deferred up until now.

f. There is some 'concern that the interaction between mounted-on
vnodes and DFS tokens might be a problem. This should be
investigated.

IBM Confidential

- 102 -

6. The NFS function is fairly well understood. There is one issue
remaining involving interaction with DFS support for NFS.

a. Should we do NFS the way DFS is planning? The current scheme
proposed would likely perform better but may be more complex.

7. The FUSION function includes support for automatic load leveling at
execution time and while processes are running. There are a couple of
open issues remaining in this area.

a. The plan for FUSION is to supply a sample load leveling daemon.
However little FUSION work has actually be done to provide
reasonable load leveling algorithms. Perhaps some work from a
previous LCC R&D project is applicable.

b. A set of load leveling information access library routines are
described. This description needs to be fleshed out to a
specification level of detail.

8. More of the review comments pertained to the FUSION replication
function than any other single area. Replication has been taken out of
the DEE layer since the other FUSION functions do not strictly depend
on it. There are still several issues for discussion.

a. Jim has suggested a variation of replicated file systems that are
used primarily as a backup mode. This needs to be thought about
further, and if agreed as a proposal, the functionality and interfaces
need to be described.

b. It is conceivable at an abstract level that multi-ported disks could
be used in some interesting way to keep the read/write copy of a
replicated file system available even though a failure occurred.
This requires additio~al study to propose a mechanism for doing
this. The semantics under these circumstances would also have to
be defined (such as what would happen to files open for
modification at the time of the failure)

c. An alternative to the multi-ported disk that requires no special
hardware is to provide a mechanism to convert a read-only copy to
the read/write copy when the original read/write copy becomes
unavailable, and to convert the previous read/write copy to a read­
only copy when it returns. There is a potentially difficult problem
here that could result in two writable copies if a network partition
occurred. The resolution is no less difficult than supporting
multiple read/wtite copies in the first place.

d. The replication portion of FUSION has been moved to a separate
layer in the architecture. There was some discussion that maybe it
ought to be a stand-alone product. This is probably not a big

IBM Confidential

- 103 -

technical issue, but an agreed position is required.

e. When a process is reading from a file in a replicated file system
and the read/write copy goes away, if there is no up to date read­
only copy, the current specification says that the read will stiM
switch to one of the read-only copies. There is a suggestion that
this is not the correct thing to do, or at least it should be a user
controlled policy.

f. The current replication version information is designed to be based
on the inode crime. There is some concern that the time
granularity is not good enough, that time going backwards would
be a problem with this design, and that crime may not be updated
for all file modifications. These need to be resolved, perhaps by
proposing an alternate file version mechanism to initiate
propagation.

g. The current design for file propagation is to read the whole file.
This can result in unacceptable propagation times when small
changes are made to large files. Some form of page level or range
oriented propagation might be desirable.

h. In the current design, a file with unallocated blocks on the
read/write node will propagate as files with zero-filled blocks in the
othe1 copies.

1. If a binary in a replicated file system is replaced, the current
specification is not clear as to how propagating the new version
affects current running versions, particularly with respect to
demand paging of load modules. Returning ETXTBSY is
undesirable as it would restrict replacement of programs like 'init'
and 'shells' which te~d to always be running. Keeping shadowed
versions may not be supportable in all underlying physical file
systems. One interesting point to investigate here is what DFS
does in its replication scheme. One possibility would be building a
shadow mechanism in the kernel extension, using the same
mechanism that unlinking a running binary uses.

j. Some comments expressed doubts about the semantics for loosely
replicated file systems relating to file access and read locks.
Agreement is required on the suitability of the current loose
replication design.

k. If an executable is replaced in a loosely replicated file system and
then 'execed', fhe user would probably expect to get the new
version. The current semantics do not guarantee this. A
suggestion was made to provide a mechanism to insure it had
propagated. It is not clear exactly how this would work.

IBM Confidential

- 104 -

1. The names of .replinfo and .frfsinfo files in the root directory of a
replicated file system could cause name space collisions, which
would be a minor deviation from UNIX semantics. This solution
or some other one needs to be agreed upon.

m. Much speculation was made as to just how well the FUSION
replication designs will perform and to how many copies they will
scale. We need to propose some simulations to model these
designs and get a better handle on this.

n. A feature was added to TCF after its initial release to cause
propagations to occur synchronously. Such a feature might be
useful in FUSION replication. This needs to be decided, and if it
is to be added, the functionality and design need to be specified.

o. At some point multiple read/write copies of a replicated file system
should be supported. This requires substantial design work.

p. It was noted at the review that access times are managed on a per­
copy basis. Some believed that it might be good to keep these
synchronized, though the cost of doing so would likely be
prohibitive.

9. In order for FUSION to support multiple versions and releases
simultaneously, support for more general expandability needs to be
addressed. Expandability

a. Critical Protocols and visible global data structures need to supply
version information. Also a mechanism to guarantee upward
compatibility and interoperability is needed.

b. Some features of FUSION may be optional in the first release.
Additional features might be added later. A mechanism to support
negotiation of common function between participating nodes is
probably required in this complex environment.

c. The current design does not support hidden directories but still
support heterogeneity. Without hidden directories, the execution
search path could be much more complicated and searching it
could become inefficient. The best way to do this within the
constraints needs to be determined.

10. One of the goals of FUSION is availability in the face of failure.
Another is robustness in non-transitive and non-symmetric situations.
The current failure modes need further investigation with respect to these
goals. In some cases 'changes may be required.

a. There are places where a non-transitivity failure mode could cause
significant problems.

IBM Confidential

- 105 -

b. Similarly, non-symmetric transient problems could result in
inconsistent results.

c. Methods to support clean shutdown of processors or machines with
minimal impact to ongoing computations need to be provided. ·

11. Some of the seivices of DCE may limit overall performance.

a. A mechanism to support parallel concurrent RPCs from a single
thread is highly desirable. An alternative of using multiple threads
to do them in parallel might offer a satisfactory substitute
approach.

12. Several extensions to FUSION might be appropriate now or in the future.

a. Supporting a pmake program in the FUSION might be an added
selling point. Such a program can take good advantage of the
FUSION environment to improve performance significantly.

b. The current RPC mechanisms is synchronous in natur~. TCF
experience has shown that asynchronous. write operations may;
perform better, particularly for devices, sockets, and pipes. Such
an approach might prove desirable in FUSION though it may
require parallel RPC mechanisms or using greater numbers of
threads to build it.

c. Support of POSIX style Asynchronous I/O is going to be important
at some point for some vendors. FUSION will need to provide this
in the distribute environment it provides.

d. The ps interface maybe should be improved to avoid reads from
kernel memory. Other programs that read from kernel memory
could also be enhanced in this way.

e. SVR4 provides the /proc interface. Support for remote /proc might
be appropriate when porting FUSION to the SVR4 environment.

f. At some point the FUSION protocols should be published in order
to support implementations on other platforms, such as Windows
3.0. This needs additional study.

IBM Confidential

