
DISTRIBUTED COMPUTER SYSTEMS: STRUCTURE AND SEMANTICS

Liba Svobodova

Barbara Liskov

David Clark

March 1979

(£:) Massachusetts Institute of Technology

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was

monitored by the Office of Naval Research under
contract number N00014-75-C-0661

CAMBRIDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE

MASSACHUSETTS 02139

This empty page was substih1ted for a
blank page in the original document.

TABLE OF CONTENTS

ACKNOWLEDGEMENT

ABSTRACT •

1. INTRODUCTION •

..

1.1 Distributed Systems Of Interest •

1.2 Comparison Of Our Approach With Related Work

2. STUDY OF APPLICATIONS

3. THE TARGET OF THE PROJECT

4. COHERENCE VS AUTONOMY

5. MODEL OF DISTRIBUTED COMPUTATION •

5.1 Types Of Entities •

5.2 Location Of Entities

5.3 Restrictions On Referring To Entities •

5.4 Guardians •

5.5 Swnmary •

6. RELIABILITY ISSUES •

6.1 Availability And Correctness

6.2 Reliable Cotllllunication Subsystem

7. PROTECTION ISSUES

7.1 Protection In The Abstract Network

7.2 Protection Agents •

8. LANGUAGE CONSTRUCTS

8.1 The Send Command That Waits For A Reply •

8.2 Separation Of Send Command And Reply Processing •

8.3 The In-Between Approach •

9. SUMMARY AND FUTURE WORK

REFERENCES •

i

1

2

3

5

6

8

11

15

18

19

20

21

24

26

26

29

33

38

40

41

47

48

51

52

53

56

This empty page was substih1ted for a
blank page in the original document.

Acknowledgement

This report is an outcome of a series of discussion meetings that brought

together people from different research groups from within the Laboratory for

Computer Science, in particular the Programming Methodology group and the

Computer Systems Research group. In addition to the authors, Irene Greif

participated most actively in these meetings; her comments often exposed the

need to clarify our approaches and conclusions. All other participants

contributed in their own way through our lively discussions. Jerry Saltzer,

who was on a leave of absense durin6 the period covered by this report,

provided valuable comments on an earlier presentation of this material.

Keywords and Phrases: Abstract Types, Distributed Systems, Information Sharing,
Inter-Process Coumwnication, Programming Languages,
Protection, Reliability.

l

DISTRIBUTED COMPUTER SYSTEMS: STRUCTURE AND SEMANTICS

Abstract

This report describes on ongoing project in the area of design of

distributed systems. The goal is to develop an effective progranming system

that will support well-structured design, implementation, maintenance and

control of distributed processing applications. This programming system

combines a powerful high level language and operating system features, and

addresses the underlying system problems that affect the reliability and

security perceived o~ the application level. The report presents a conceptual

~odel of distributed computation, and, in the context of this model, discusses

our approaches to inter-node communication and cooperation, reliability, and

protection. One of the basic goals of our project is to allow the application

programmer to work with application-oriented entities. Thus, inter-node

messages, error handling and protection constraints will all be expressible in

application oriented terms. The report concludes with some exaaples of the

language constructs and an outline of the future research under this project.

2

1 • INTRODUCTION

Computer systems should reflect the structure and needs of the problem to

which they are being applied. For many applications, a distributed computer

system represents a natural realization. For both technical and economic

reasons, it is likely that for many existing applications, distributed

computer systems will replace conventional computer systems built around a

large central processor, and that new applications will emerge based on

distributed information processing.

The area of "distributed systems" has become a popular source of systems

research projects. This trend has been supported mainly by the rapidly

falling cost of computing hardware and the increasing power and flexibility of

~ini and microcomputers. However, many research efforts in this area seem to

miss the most important aspect of the revolution in the hardware costs and

power: the steadily decreasing entry cost of acquiring and operating a

free-standing, complete computer system encourages lower-level units within a

large organization to acquire their own computers that consequently will

operate somewhat independently and autonomously from one another. .The

administrative autonomy is really the driving force that leads to acquisition

of local computers dedicated to the applications of a particular organization

unit. However, it is necessary to anticipate that these autonomous computer

systems will have to be at least loosely coupled into a cooperating

confederacy that serves as the information system of the organization.

The basic technical problem in chese emerging systems is to provide

coherence in communication among the nodes in a computer network while these

nodes retain their administrative autonomy. Technically, autonomy appears as

3

a force producing incoherence: one must assume that operating schedules,

loading policy, level of concern for security, availability, and reliability,

update level of hardware and software, and even choice of hardware and

software systems will tend to vary from node to node with a minimum of central

control. Further, individual nodes ~ay for various reasons occasionally

completely disconnect themselves from· the confederacy, and operate in

isolation for a while before reconnecting. Yet to the extent that agreement

and cooperation are beneficial, there will be a need for communication of

signals, exchange of data, mutual assistance agreements, and a wide variety of

other internode interaction. We hypothesize that one-at-a-time ad hoc

arrangements will be inadequate, because of their potential large number and

the programming cost in dealing with each node on a different basis.

The move toward distributed systems will be dictated not just by their

"naturalness", but also by the many technical advantages they offer over

centralized systems. These advantages include the following:

Availability. Availability of information can be increased by

replicating it at several nodes. This arrangement not only increases the

access bandwidth to the information, but in case of a failure of one of

the nodes or some communication link, the information remains accessible.

Protection. Distributed systems provide a better environment for

protecting information stored in the system· and for coping with run-time

errors resulting from hardware failures or residual design and

implementation errors. These advantages arise from the actual physical

separation of independent or loosely coupled computations and information

that belongs to different users. The physical boundaries of individual

nodes provide "firewalls" that (if properly designed) will prevent

spreading of errors originating in a particular node to the rest of the

4

system and protect information stored at individual nodes from

unauthorized access or modification by other nodes. As the most severe

protection measure, a self-contained node can be guaranteed privacy

during some sensitive operation by physically detaching it from the rest

of the system.

Expandability. As more users join the system or new services are added,

it is not necessary to make any physical replacements in a distributed

system. Rather, one or more new nodes need to be added to the system; if

the system is designed properly, it may be possible to accomplish this

without interrupting the service of the existing system. Thus,

distributed systems offer a potential for a more gradual and smoother

growth than systems with a large central processor.

Thus, there are many sound rea~ons why applications should be implemented

as distributed systems. However, while it has been successfully demonstrated

that it is not very difficult to interconnect remote computers at the

electrical and information bit level, the effective utilization of such a

network at a higher software and applications level is still missing. The

project discussed in this report is aimed at solving the technical problems

that hinder the development of applications for distributed systems. In

particular, the goal of this project is to develop an integrated programming

language and operating system to support well-structured design and

implementation of distributed applications.

1.1 Distributed Systems Of Interest

The distributed systems considered in our project can be described

loosely as organizations of highly autonomous information processing modules,

called nodes, which cooperate in a manner that produces an image of a coherent

5

system of a certain defined level. Autonomy is the key characteristic that

eliminates most multiprocessor organizations from this class of distributed

systems. Certainly, a distributed system has more than one processor, since

it has at least one processor in each node. However, in a distributed system,

the nodes are highly independent, each having its own primary memory, possibly

some secondary storage, and its own interface through which it communicates

with its environment (e.g. user ter•inals, sensors). The individual nodes are

connected by a communication network; the communication delay may be highly

variable and unpredictable. The communication network might be a long-haul

network such as the ARPANET [ROBE70), a local area network [CLAR78], or a

suitable combination of these two types. Each node has access to its own

memory only; that is, inter-node communication is possible only by explicitly

exchanging messages, not through shared memory. Finally, physical

(geographical) reorganization of the nodes and the COllllllunication network is

assumed not to impair the system's functionality; tbe only change might be in

the system's performance.

1.2 Comparison Of Our Approach With Related Work

The assumption of autonomy of the nodes that compose a distributed system

is the most important ingredient that distinguishes our work. However, once

autonomy is assumed, the next issue that arises is to devise techniqes that

permit programs running on the autonomous nodes to COllllllunicate in a coherent

fashion. We are aiming at a high level of coherence that is

application-independent but permits communication among the nodes in

application-oriented terms. This high level of application-independent

coherence distinguishes our approach from other work that is based on the

assumption of autonomous nodes. Most work has either provided a very low

6

level of coherence {e.g. the ARPANET) or has provided coherence within a

specific application (e.g. the NSW works manager [MILL77]). There is some

work related to ours in progress at Xerox PARC, but again this work is

focussing on a very specific application -- off ice automation.

The problem of simultaneous update, making an identical or a logically

related change at several sites, has received considerable study [GRAY78,

MONT78, REED78, ROTH77, STEA76, TAKA78, THOM76]. However, we remain

uncon~inced that a solution to this particular problem is crucial to our

research. Rather, we view our system as providing an environment in which any

one of several simultaneous update algorithms can be implemented as needed.

This point distinguishes our work from SDD-1 [&OTH77], for example, since that

project assumes a very particular technique for implementing simultaneous

update. SDD-1 also makes very restrictive asswaptions about the autonomy of

the nodes of the system.

Distributed systems have only lately become a focus of programming

language research. In the past, programming languages have mostly not

addressed concurrent programs. More recent languages (e.g. Concurrent Pascal

[BRIN75], Modula [WIRT77]) have had features for concurrency, but within the

context of a single processor: these languages are based on the assumption

that programs interact through shared memory, which is not consistent with the

concept of autonomous nodes with private memory. There is related work at

Oxford [HOAR77], the University of itochester [FELD77] and at MIT [DENI75,

HEWI76] , but this work does not place strong emphasis on integrating the

language and operating system features.

Indeed, we feel that our emphasls on Lntegration of language and system

is a further key factor in our work that distinguishes it from other related

work. Much of what distributed programs do falls into what is usually

7

considered to be the systems area, including such topics as synchronization of

access to shared information, and protection. However, programs are written

in a program.ming language, and proper primitives in that language can greatly

influence the structure of programs. By integrating the two areas we expect

to achieve a greater impact on the construction of distributed systems than

could be accomplished in either area separately.

2. STUDY OF APPLICATIONS

- It is essential that the mechanisms we develop to support construction of

distributed applications cover the real distributed processing problems. To

this end, we ha~e studied a number of applications, both by direct observation

[SVOB78A, SVOB78BJ and by surveying related work as discussed earlier. This

study was hampered by the lack of existio,g distributed systems; for example,

banking systems are not yet distributed, although a distributed system is

being planned. Therefore, we haJ to supplement our study by sketching designs

for future systems.

Several different classes of distributed activities have been identified:

Invocation of remote servers. A message is sent to a remote node

instructing some server at the node to perform a certain operation; a

reply (requested information or an acknowledgement if no data is to be

returned) confirms that the operation has been performed. The mail

system in the ARPANET is an example of this type of application.

Atomic Transactions ~ Distributed Databases. To preserve the integrity

of a database, it may be necessary to provide a mechanism that guarantees

that either all updates specified by a transaction will be performed, or

none, no matter how the transaction fails.

8

Distributed ~ Processing. If the large quantities of data residing at

different nodes are processed, a problem may arise even if no updates are

performed, which is to minimize the data moved between nodes in order to

perform the desired operation. An example is query processing in a

distributed database system.

Distributed Problem Solving. This describes systems where the cost

(overhead) of maintaining a centralized global view of the system state

and control is prohibitive. In such systems, each node knows only a

partial state of the system and has to make intelligent guesses, from the

information received from other nodes, about the rest of the system. An

example of such an application is a dynamic routing algorithm for

store-and-forward networks.

Distributed Programming System. This is a distributed version of a

general purpose time sharing system. The assumption is that it is not

possible to restrict in advance the modes of sharing among users. It is

necessary to communicate both data and programs, but from the point of

view of the mechanics of the actual exchange of information this type of

system could be included in the first category.

The distribution can take place along two main lines, based on functional

separability or on the non-uniform distribution of the use of databases.

Functional distribution means that different nodes support different services.

Such systems seem natural for control of industrial processes, where different

nodes control different parts of a process, or in such systems as aircraft,

where different nodes process iafor~ation from different sensors. However,

this approach seems also to be advantageous in service sectors such as banking

[SVOB78A].

9

Database distribution characterizes systems where an individual processor

supports the same services but on a different part of a database. A typical

example is a bank with many branch offices. Each branch has its local

accounts, but it should be able to serve a bank's customer whose account is at

another branch. Since such remote requests are much less frequent than

manipulation of the local accounts, partitioning of the bank's accounts

database (that is, maintaining accounts on a c011puter at their local branch)

is a natural approach.

It must be said that the division between functional distribution and

database distribution is not clean; in most cases, a distributed system will

to some extent include both. The latter case. however. implies an integrated

database, while in the former case (functional distribution) the databases

used by individual servers are much more independent. The functional

distribution is the more general case. In either case. a distributed database

represents a special problem. the need to enforce consistency constraints that

span several nodes. It is not clear how often this problem actually arises,

but it cannot be ignored.

It can be concluded that the basic paradigm in the class of distributed

systems that our project is addressing is the invocation -0f remote servers.

This can be viewed as a cOOllllunication protocol of much higher level than, for

example, the host-to-host communication protocols currently employed in he

ARPANET. The implementation of such high level protocols, however, may need

to differ, depending on the type of application, and possibly on the

efficiency and reliability requirements of the application. Therefore, we

should not aim to design such high level protocols, but instead develop a set

of tools that facilitate design and implementation of such protocols.

10

Finally, an application study by d'Oliveira [DOLI77] revealed an

important result: there are strong pressures toward decentralization for

sociological and political rather than technical reasons. We infer from this

study that decisions about the distribution of information among the various

nodes will be made for external reasons that only the application itself can

specify. Thus, the application builder must have control over and understand

the placement of information.

3. THE TARGET OF THE PROJECT

Io sUlllDarize, we view a distributed system as a collection of autonomous

nodes that communicate only by information exchange over the communication

network that connects them. In such a system, at least two levels of

coherence must be enforced. One level is the application level itself. The

second level is the set of internode communication protocols that facilitate

the physical exchange of information (packets of bits). But there is a large

gap between the application and the low level communication protocols.

Usually, this gap results in a rather ad hoc implementation of the

application.

Our target is an intermediate level, called the programming system, which

will support a well-structured design, implementation, maintenance and control

of distributed applications. This level is more than a programming language

in a traditional sense. Rather, this level is envisioned as a set of tools

that include primitives found in conventional higher level languages such as

Pascal or PL/l, but also primiti~es normally assumed to be part of an

operating system, for example, long-term storage and cataloging of information

or control of protection safeguards. Thus, this programming level will

11

integrate the programming language and the operating system. More strongly,

this level will integrate a programming language and a distributed operating

system.

fhe design goals for the programming system include:

Aim for ~ high ~ level !!.! possible, ~ application independent. Our

system is intended to be used to implement :nany diverse ·applications, for

example, both command and control systems and administrative systems like

inventory control systems. To adequately support such a class of

applications, the language should be as high level as possible but

general purpose. One need that all applications share is the ability to

exchange potentially quite sophisticated messages.

Support well-structured programming. Since our primary motivation is to

ease the task of the application programmer, we feel that the embedded

language should borrow from eEisting language work, in particular

building on languages such as CLU [LISK77) and Alphard [WULF76) , which

aid in the production of well-structured programs by providing powerful

abstraction mechanisms. Of particular importance is the data

abstraction, which consists of a set of objects together with a set of

operations that provide the only means for manipulating those objects.

Data abstractions have been investigated so far mainly in the context of

centralized processing. We believe that they will be even more useful in

the type of distributed systems assumed in our work, because they provide

a powerful tool in organizing a coherent structure where the data of the

application and the allowed distributed sharing is described in

application-oriented terms, independent of the idiosyncracies of the

individual autonomous nodes.

12

Since we are dealing with a distributed envirotllllent where an

operation defined on the application level may require the assistance of

several nodes, the language must support concurrent activities (process

abstractions). Extensions of sequential languages will be necessary to

achieve this. To enhance ease of use, we will keep the language as

conventional and conservative as is consistent with our other goals.

Support communication .!!!. term.s .2f abstract objects. Autonomous program

units need to comm.unciate in terms of the kinds of high level objects

they manipulate. For example, the ARPANET supports one sort of "high

level object", the ASCII file, but any other form of data must be

transmitted as a sequence of bits and explicitly transformed from one

representation to another by a user written program. The language should

support communication in terms of abstract objects, regardless of the

relative location of the sender and the recipient of a message. Two

advantages arise from this approach. First, a clear statement can be

made about the properties of data that the units depend on. Second, it

is clear how to accomplish the processing that is needed to translate an

object in memory into a message transportable by the communication

network and vice versa: the translation is acc01llplished using special

operations of the object's type. Note that this kind of translation is

always needed; a language that requires messages to be composed of low

level objects simply obscures this fact.

Allow explicit control of !!!.! application distribution. Conceptually,

the target level can be viewed as an abstract network of processes where

application-defined processes communicate via messages that contain high

level commands, data and responses. In an ideal situation, this is all

that would need to be seen by the application progralllller. However,

13

underneath this abstract network is the set of physical nodes and the

communication lines that connect them. Our study of applications has

indicated that the mapping of the objects used by an application into the

physical set of nodes has to be made visible to the application

programmer. We are assuming that objects to not move dynamically from

node to node, depending on the degree of demand (such dynamic migration

is often assumed in the "distributed" systems consisting of many,

relatively tightly coupled, mini or microprocessors). Rather, when a

specific node is chosen to be the (new) home of a particular object, an

installation of the object has to be explicitly requested using commands

provided by the programming system. This assumption is based on the

belief, discussed earlier, that many of such placement decisions will be

based on non-technical factors external to the system [DOLI77).

Support sharing. The programming level must support sharing of

information represented as objects that reside at different nodes and

belong to different users, where how the information is to be shared is

defined by the application. An important aspect of sharing is to provide

controls that regulate the patterns of sharing so that protection and

synchronization constraints are properly met. It is also necessary to

solve problems of naming across nodes.

Support reliable (robust) operations. Reliability is one of the most

important goals of our project. A distributed system, by its very

nature, provides a potential for enhanced reliability. However, to

exploit this potential, the system ~ the application have to be

properly designed. An arriving message must be tested for integrity and

authenticity, using a combination of automatic system features and

application dependent procedures, and there must be control over timeouts

14

and the number of retries for messages sent but for which a reply has not

been received. It is also desirable to have a means for specifying that

an online backup copy is requested for an object.

Support changing patterns of !!!.!· We cannot expect an application to be

written once and never modified. First, the system will grow by the

addition of new nodes. Second, new patterns of use will arise involving

existing or new pieces of information. Thus, we can expect

synchronization and protection constraints to change with time. This

change must not cause upheaval in the design of existing parts of the

application.

We want to emphasize that the envisioned programming system is not

intended for the end user, but for the application builder (programmer),

although in some environments (such as LCS) there is often little distinction

between the two classes.of users. Also, it should not be necessary for all

nodes in the distributed system to support the full language; each node need

only support the appropriate (high level) internode communication protocol.

4. COHERENCE VS AUTONOMY

Since autonomy is such a basic property in our model of distributed

systems, a natural question to ask is how much the coherence that we strive

for in our project constrains the autonomy of individual nodes. The last

section indicated that at least three levels of coherence are required:

1) application level

2) programming level for distributed applications

3) inter-node communication protocols

15

The need for coherence on levels 1 and 3 is unquestionable. However, level 2

may not be necessary, especially if the system is designed for a single

specific application. Level 2 has been introduced as a result of a desire to

provide an effective programming environment for implementation of a variety

of distributed applications. Thus, the above question can be restated as:

does this intermediate level impose any additional constraints on the autonomy

of individual nodes7 Wa believe that it does not add new constraints, but

merely divides the constraints into two categories: the constraints that have

to be observed by the application progranaer, and the constraints that the

application programmer QO longer has to be aware of, since the prograuming

system handles them for him.

Basically, autonomy has two different aspects:

Operational Autonomy. A node can operate (at least to some degree) even

while it is completely cut off the rest of the system.

Administrative Autonomy. The owner of a node can exercise a certain

degree of control over the use of the node even while the node

participates in a distributed application.

Both of these aspects have to be considered in the design of a distributed

system; both interfere with the goal of coherence.

A good discussion of the mechanisms needed to solve the problem of

operational autonomy can be found in [MONT78]. Administrative autonomy is a

broader and less understood issue. On the application level, administrative

autonomy is associated with an individual or a group of people, users or

project managers. Potentially, more than one autonomous project or service

could be supported on the same node, or several nodes could form such an

autonomous unit. The coherence required to join such autonomous projects or

services is determined strictly by the application; there are also many

16

situations where, on the application level, local autonomy is completely

supressed. Thus, the application limits the autonomy affordable in the

individual nodes. The notion of administrative autonomy needs to be defined

more formally; at the present time, only some practical examples of the

possible manifestations of autonomy are given:

Selection of the hardware components !lli! their configurations. Even if

the overall system has to be homogeneous at the machine level, it is

still necessary to select for each node a particular processor the amount

of main memory and secondary storage, etc. Such decisions can be

entirely autonomous; they weill depend mostly on the type and the amount

of work to be done at the particular node, rather than being dictated by

the obligation to support a common high-level language.

Local ~oftware. In addition to supporting the common programming

language and the inter-node communication protocols, additional software

for local needs can be developed, maintained, and run on individual

nodes. Also, the implementation of the common programming language and

the communication protocols can differ from one node to another, as long

as the implementation conforms to the specifications. It also may be

possible that some nodes need not support more than only a small subset

of the common language in order to be able to handle their parts of the

distributed application.

Naming. Each node can have its own independent way of naming its local

objects. Lower level names may be completely inaccessible from outside

the node. An application, however, may enforce a uniform one-level

naming space. Alternatively, a structured name space may be used, where

each name consists of the name of the node containing the object and the

local name for that object. If the fact that the system is distributed

17

must be invisible to the end user, the name space seen by the user must

be one-level. Somehow, however, this type of name must eventually be

translated into a structured name space to locate the desired object.

Thus the extent to which the autonomy in assigning names is constrained

depends on the application.

Availability of !Q£!!. resources. Each node can control access to its

private objects (not part of the common application). Local control of

objects that are part of the common application may be restricted by the

application. Similarly, the need to use local hardware resources imposes

constraints on the individual nodes; a node may not be free to refuse a

request to perform some service in order to do some local work or

disconnect for maintenance. While these constraints, due to the

decentralized control of individual nodes, cannot be enforced physically

at the moment of crisis, they can be enforced outside of the system, e.g.

by legal means.

5. MODEL OF DISTRIBUTED COMPUTATION

fhis section presents a model of the universe of entities that take part

in a distributed computation. We assllllle that each entity has an identity that

is permanent; an entity can be referred to by giving its .!!.!!!.· We are not

concerned here with all aspects of the behavior of entities, but rather limit

our attention to questions concerning the locations of entities within the

network and how entities can refer to other entities.

18

5.1 Types Of Entities

The basic model of distributed computing provides two different kinds of

entities: processes and everything else. A process is active, and is thought

of as being the execution of a sequential program. Non-process entities,

which we will call objects, are passive, i.e., they do not originate any

activity. Examples of objects are integers, arrays, stacks, procedures, etc.

Objects have a state (value) that may change. If the state can change during

the object's lifetime, then the object is mutable.

A process can communicate with another process by sending it a message.

We assume that the syntax and semantics of message passing is independent of

the nodes of residence of the two communicating processes (although certain

optimizations can be performed by the system if both processes reside at the

same node). A process can use an object by performing (invoking) an operation

on it (or by invoking it if it is a procedure); again, the semantics of

invocation is the same regardless of the nodes of residence.

The decision about whether the entities used in the model of computation

are all uniform or whether the model distinguishes different classes of

entities is a fundamental one. Basically, the uniformity concerns the ways in

wnich entities may be used (and may use other entities). In our model, two

basic primitive operations are used: invocation and message passing. We

intend that the semantics of invocation be distinct from message passing; the

follow~ng sections will clarify the reasons for this distinction.

An example of a computational model in which all entities are uniform is

the Actor System [HEWI76]. In this system, every entity is an actor, and an

actor is used by sending it a message that is also an actor. There is only

one basic primitive, message passing, so our model seems more complicated.

However, we believe that it is more natural than the actor model and will

19

therefore be easier for progranuners to understand. If programs built out of

actors are examined, it is clear that there are "data-like" actors,

"procedure-like" actors and "process-like" actors. We believe these

differences are fundamental and should be reflected in the language in its

semantics.

5.2 Location Of Entities

The universe of entities is spread across the physical nodes that make up

the network. One important question concerns the location of entities: is an

entity permanently located at a particular node, or can it move from node to

node?

To make a decision here, we must consider several issues:

i. Earlier we discussed our conclusion, based on an analysis of

applications, that the application programmers must be able to

control the location of entities. Note that, at the least, this

conclusion precludes automatic relocation of entities by the system,

although relocation under program control would still be possible.

ii. We are assuming that nodes are autonomous and possibly

heterogeneous. Even under program. control it is possible to move an

entity to an autonomous node only if that node is willing to accept

it. Furthermore, if that node is different from the current home

node of the entity, considerable translation may be needed to

effectively move the entity.

Therefore, we believe that entities should have a permanent location at

some node in the network. An entHy comes into existence at some node (when

it is created) and remains at that node until it ls destroyed. Moving an

entity can be accomplished by having a program create a new entity and letting

20

it "take over" from the old one; however, the relationship between the two

entities is not recognized by the system, and represents a higher level

concept of identity than that introduced above.

One consequence of this decision is that it will be easy for the system

to cceate unique names for entities and to interpret entity names, since the

node of residence can be part of the name.

5.3 Restrictions On Referring To Entities

An entity may refer to another entity by using or containing its name.

For example, a process will have local variables that lll&Y contain the names of

other entities (both processes and objects); as the process executes, it can

use these names. A data object is represented by soae storage (at its node of

residence), and some of this storage may contain names of entities (again both

- processes and objects).

In our model, the universe of objects is divided into mutually exclusive

sets. A process is associated permanently (that is, for its lifetime) with a

single specific set. The objects in this set are private to the process; the

set forms the local address space of the process.

~e have chosen the following restrictions on how the entities of the

model can refer to each other:

i. a process can refer directly only to its private objects

ii. an object can refer only to the objects that belong to the same

local address space.

There are no restrictions on referring to processes: both processes and

objects can name other processes.

The above restriction can be enforced as follows: messages can contain

the lt.imes of processes but not the names of objects. A model obeying this

21

restriction is illustrated.in Figure 1. The nodes labeled Pi are processes,

while nodes labeled Oi are objects. Two kinds of directed arcs are shown. A

solid arc from entity x to entity y means y is a process and x names y, while

a dashed arc means y is an object and x names y. A process may (ultimately)

refer to an object in the course of its execution if there is a path from the

process to the object consisting entirely of dashed arcs. The set of all such

objects form the local address space of the process.

Our further restriction is that all objects in the same local address

space must reside on the same physical node. Alternatively, a process could

be allowed to perform an operation on an object whether that object resided at

the same node or not. Invocation of an operation on a remote object can be

made to work,* but has the disadvantage that what appears to be a simple

invocation will involve internode communication, and therefore, can take a

long time, and may even have slightly different semantics. In particular, a

local invocation has two possible outcomes:

i. the operation completed successfully

ii. some error occurred.

For an operation on a remote object, however, another kind of outcome is

possible, in particular, if no reply is received from the remote node, it is

simply not known what has actually happened. The message to or from the

remote node could have been lost, or the node could have failed before, after,

or in the middle of processing the request.

* The invocation must take place at the object's node, since as discussed in
the preceeding section the object cannot move to the invoker's node.

22

_...-·-
pl-.......

\
\

~

' -- _
\ I

\~o /
.::L- ,..- .,....._

/ p "' I 4 \

I l I
\ t I
' 0 010/__,,,,

Fiaure 1: Example of possible relation•hip
of processes and objecte.

23

5.4 Guardians

fhe model that we have developed thus far represents an abstract network.

Processes are the nodes of this abstract network; each process, analogously to

a physical node, has its private memory and can collllllunicate with other

processes only by sending messages.

The abstract network model has several advantages:

i. The progran:lmer organizes the locations of en.titles by considering

where to locate the abstract nodes, (e.g. each process with its

local memory) • This seems easier than worrying about each entity

individually.

ii. Operations are always invoked locally. This is simpler to implement

than remote invocation, and also avoids some arbitrary time delays.*

iii. Management of storage for objects (e.g. garbage collection) can be

done locally on each node.

Although two processes cannot refer to the same object, they can share an

object if they both name the process that can refer to the object. Such a

process will be called a guardian. A guardian may guard one or several

objects; its job is to synchronize possibly concurrent requests to perform

operations on the guarded objects. In Figure 1, P2 is a guardian for 06 and

07, which are shared by Pl and Pl.

The abstract network model requires two extensions to be useful. First,

tne requirement that local address spaces of processes are disjoint may need

to be relaxed. There are two reasons why it might be desirable to have

several processes in a guardian. First, the processes could provide

* Of course, the operation activation might send a message, e.g. to some
process whose name was contained in one of the input objects to this
operatlon.

24

additional concurrency, which could be used to improve response. Second, a

process could provide continuity. If a user and the guardian need to have a

conversation, providing a process for the user to interact with would be a

natural means of realization. The processes within a guardian would share

objects directly. A guardian would be defined using a special syntactic

construct, something like a serializer [HEWI77), that specifies the pro~esses

making up the guardian and their intercommunication; all the processes in the

guardian would reside at the same node.

Second, in the case of a guardian that guards several objects, some

efficient mechanism is needed that permits a user process to specify to the

guardian the particular object of interest,* and for the guardian to determine

that the object so specified is one it guards. Often no special mechanism is

needed for this. For example, a query sent to a data base guardian names a

record (or records) in the data base by means of a high level name. However,

it appears that sometimes efficient, low level names are needed. Consider a

guardian of a disk that provides logical tracks. When a user requests spme

data to be stored on the disk, the manager returns the logical track number

where the data is stored. Later, the data can be read by sending the logical

track number back to the guardian. However, the logical track number must be

one created by the guardian, and also must still exist at the time of the read

request.

The guardian construct can model different degrees of autonomy. For

example, if a process requests an operation on data that are available only

through the guardian, such a request may fail since the guardian may refuse to

* Ihls should not be interpreted as a requirement that the system ought ~o
guarantee that an object continues to exist as long as some user can specify
it.

25

release requested data, or in some cases may even destroy the data at its own

discretion. Also, a guardian does not have to know a priori about all

processes that may request operations on the guarded objects. That is, a

guardian can be a general server that accepts requests from any process or a

class of processes.

5.5 Summary

In their recent paper, Lauer and Needham argue that message passing and

procedure calling (invocation) are essentially equivalent, and consequently

either can be used as the basic and only primitive in the implementation of an

operating system [LAUE78J. As follows from our model, we believe that it is

advantageous to have both. One reason is the semantic difference between

local and remote invocations, as discusses earlier. However, the whole

concept of the abstract network is based on the distinction between and the

combination of message passing and invocation. The abstract network makes it

explicit when an operation is to be performed on an object that belongs to a

different set, where the difference may lie in the logical function of the

set, protection constraints, or administrative responsibilities. For a

distributed system that supports several different applications on highly

autonomous nodes, the abstract network is an appropriate model.

6. RELIABILITY ISSUES

In the future, reliability will be one of the major issues in information

processing sytems. This claim is based on two observations. First, the

quantity of information entrusted to a COlllputer system is ever increasing.

Second, the complexity of the operations performed by a computer is also

26

increasing. More and more organizations and systems are dependent on computer

maintained information and a failure of these computer systems can often be

critical. Thus high reliability is not just a requirement for real-time

systems controlling space vehicles or industrial processes failure of which

would endanger human lives.

Reliability of an information processing system is not merely a question

of software correctne·ss. Hardware failures, synchronization failures, and

errors of the human users must be anticipated and handled gracefully. The

only way to design a reliable system is to make it "fault-tolerant", or,

robust in fa~e of a large variety of internal failures and misuse.

Distributed systems are often claimed to be inherently more reliable than

systems based on a large central processor. That is, given that a distributed

system is properly designed, it offers better reliability. This claim is

based on several factors. First, distributed systems by their very nature

provide opportunities for redundancy. Second, error propagation is restricted

by physical separation of processes and resources. And finally, individual

nodes in the distributed system may be less complex than a large central

processor and, as a result, ought to have lower probability of failures.

Basically, distributed systems have a potential for being more reliable than

systems based on a large central processor. However, this potential needs to

be exploited through proper design.

For the purpose of the discussion of reliability issues, the

implementation of the abstract network introduced in the preceeding section is

divided into two levels: the applicaton level and the system level. The

system level is all the mechanisms needed to support the view presented to the

application progra1111Der (that is, the hardware and software run-time support of

the programming system). The level built on the top of this level using the

27

tools available to the application progral1111ler is referred to as the

application ~·

Reliability mechanisms are those mechanisms that assist in detection,

reporting and recovery from errors and failures. An error is an internal

state of an entity that, if special steps (recovery) are not taken, will

result in a failure of the entity (or, in the case of data objects, failure of

an operation on the entity). Some errors can be handl~d entirely by the

entity itself, and thus remain invisible to other entities (e.g. users of that

entity); such errors are said to be masked. Detected errors that cannot be

handled internally should be reported to the users by signalling a failure.

Undetected errors also turn into failures; it is possible that a user can

detect this kind of failure, but the problem is much more complex than with

the reported failures.

To achieve reliable operations from the application point of view, both

the system level and the application level have to include mechanisms for

detection and handling of errors and failures. For each type of error, it is

necessary to decide where it can be detected and how it should be handled.

Some classes of errors, detected within the system level, can be masked, but

for others a failure has to be reported to the application level. Other

errors are application dependent and therefore, their detection and handling

must be done at the application level. Basically, in the case of system

errors, there is a gray area wnere a decision has to be made as to whether

these errors will be masked by the system level or reported as failures to the

application level. It may also be possible that an attempt to mask an error

fails; it is necessary to decide if and how many times the system should

repeat the attempt before reporting a failure. The important factors in these

decisions are the cost and complexity of the maskirtg mechanisms on one hand

28

and the convenience to the programmer on the other hand. Both sides have to

be carefully evaluated.

The system must provide a means for detecting and correcting or reporting

errors arising from the operation of the hardware and the software that

supports the application programs. However, the system also has to provide

suitable primitives for the application programmer to facilitate handling of

the application specific errors and communication of the system detected

errors to the application programs.

6.1 Availability And Correctness

Reliability has two aspects that, unfortunately, cannot always be

separated; in particular, their solutions may conflict. One aspect is the

availability of the entities needed to perform a specific task. The other is

the correctness of the available entities; a very important special case is

the integrity of the stored information.

To assure correct operation, the system and the application must be

prepared to handle errors that originate in lower levels, in particular,

hardware faults and possible residual bugs in the software that comprises both

the system level and the application level. It is also necessary to be

prepared to deal with errors whose source is the user of an entity. Since the

user may be a process running on another node, these latter errors may be

caused by hardware or software failures in the user's node, or they may occur

because the requesting process either doesn't know how to use the requested

entity properly or is trying to misuse it intentionally. Thus, to ensure

correct operation of an entity, it is necessary to ensure both that the

operations on that entity are performed correctly in spite of possible

29

failures of the node on which the entity resides, and also, it is necessary to

defend the entity from possible misuse by other processes.

As described earlier, processes in different guardians can communicate

only by sending messages. Objects can be manipulated only within their

guardian. To protect an object from misuse, it is necessary to ensure that

access is indeed limited to the guardian and that all incoming messages are

carefully scrutinized to determine whether the request is reasonable and the

effects of performing requested operations. Within the guardian, it is

necessary to provide mechanisms that will protect the resource from being

damaged or lost (made inaccessible) due to errors arising from the faults in

the structures that implement the guardian.

Availability is constrained by two factors:

i. the efficiency of the system, that is, the actual physical delay and

queueing time in the abstract network, and

ii. failures in the abstract network.

Availability has several connotations. Firstly, it is used to indicate

whether an entity is useable, that is, if the respective process will execute

the operation requested once the request is brought to its attention (e.g.

gets to the head of the queue). Secondly, it is used to indicate whether an

entity can be used i111Dediately 1 or whether there is a contention for the

entity. Thirdly, and this aspect plays an important role in a distributed

system, it may be used to indicate whether an entity is accessible. An entity

may be useable and unused, but the path to it may be broken.

[t is possible to translate all three aspects into the problem of how

long Lt is necessary to wait for a resource. A useable entity may not be

immediately available due to contention for the entity, but also due to long

communication delays; if the communication path is broken, the communication

30

delays may be unusually long, even infinite. Similarly, if an entity is

unuseable, the wait time for the entity to become useable may be very long,

possibly infinite. Since in a distributed system it is not always possible to

determine the cause of a long delay, the system may have to respond to poor

performance (due to overload) in the same way it responds to functional

failures of the resources and collllllunication paths. Thus, in a way, poor

performance (due to overload) or turns into a failure!

From all three of these aspects, availability can be enhanced if several

instances (copies) of an entity are maintained at different physical nodes:

i. Coping ~failures. If a node fails, or communication with a

particular node fails, it should be possible for processes at other

nodes to continue. That means that entities provided by the failed

(or inaccessible) node have to be provided by some other node(s) in

the remaining operational network (each operational partition of the

network).

ii. Coping with bottlenecks. Even if the nodes and the communication

network of a distributed system never fail, a single instance of an

entity may not provide sufficient availability. An entity may

become a bottleneck; also, the c<>mmunication delays, especially in a

long-haul network, may be substantial, and it thus may be desirable

to have a local instance of the entity (and, consequently, support

multiple copies).

In the systems under consideration, the most important type of object is

a data object. Maintaining multiple copies of data objects that need to be

frequently updated represents a special problem. It is important to

distinguish between failures and bottlenecks since the right solutions to the

problem of mutual consistency are significantly different. In the first case,

31

only one copy needs to be actively used, that is, an object has a master copy

and one or more backup copies. The changes made to the master copy must be

propagated to the backup copies, immediately if every state of the object must

be recoverable, or periodically upon special comm.and if in a case of a failure

it is sufficient to back out ot some consistent state, not necessarily the

last consistent state. In the second case, all copies must be available for

active use. It ls often assumed that all copies must always be the same, but

this requirement may defeat the very purpose for which the multiple copies

were introduced: reduction of delays. The delay caused by synchronization of

updates with other updates and accesses of multiple copies may exceed the

delay that would result if only one copy were maintained. However, it is not

always necessary to have the most current version of an object; the

information obtainable from an older version may be entirely satisfactory.

Thus it seems much more realistic to allow for multiple versions of an object;

the local copy may not always be the most current version, but the most

current version is known and a local copy of it can be obtained upon request.

The system level ought to support, in a selective way, the kind of

redundancy required to cope with failures. The other case is more complex and

more application dependent. The fact that there exist several versions of an

object may need to be visible not just to the application programmer, but to

the application user. fhus, the solution should be left to the application

level; the system, however, ought to provide mechanisms to make the solution

possiole. A mechanism for maintaining multiple versions of objects in such a

way that a consistent version of a set of objects can always be obtained was

developed by Reed [REED78]. In addition, Reed's mechanism solves the problem

of updates and backout in a distributed system in a most natural way.

32

However, to prevent loss of information, the most current version ought to

have at least one backup copy. The scheme that combines multiple versions and

backup copies is sketched in Figure 2.

6.2 Reliable Communication Subsystem

The communication sub.system is the part of the system level that delivers

messages between physical nodes. This subsystem consists of the actual

physical network of communication lines and of communication processes that

control the delivery of messages. Figure 3 shows relationship between the

abstract network and the communication subsystem. The application processes

exchange messages that, logically, contain values of high level (abstract)

objects meaningful at that level. The values of these objects have to be

translated (encoded) into a string of bits for delivery to another node and

decoded into the proper abstract objects at the receiving node. At the system

level, messages, now in the form of bits, may have to be partitioned into

packets. The messages are checksummed, so that transmission errors can be

detected. It is difficult to correct transmission errors at the receiving

node, since transmission errors are bursty (affect not just a single bit, but

several bits). Checksum facilitates detection of errors, where the number of

detectable simultaneous errors is determined by the size of the checksum

field. Correction is performed through retransmission. In general, once a

message has been translated into a string of bits, the protocols used by the

communication processes should take care of the correct transmission, that is,

either a correct message is delivered, or nothing is delivered. However, the

primary responsibility for checking that a message has been acted on, that is,

ensuring that a process that sent a message will not wait indefinitely, and

33

_,,,,,. . .----. . . __,.

I I
I
I
I
I
I

OM master copy of the object (current version)

OB backup copy of the object (current version)

Ovi object version i (current or older version)

Uk users

~ update requests
----.> propagation of changes
-·-·)lo read requests

Figure 2: Multiple version scheme with backup.

34

communication
medium ~

Hl

Ai application processes
Ci communication processes
1'1 nodes

R3

I I
I I ___ J,

-------'

<~> possible cODDUnications on the application level
<- -~ flow of information in the network

R2

Figure 3: The abstract network: c~icationa on and between the application
and the C0111DU11ication subsystem.

35

also that the message contains values acceptable fro~ the application

standpoint,* must rest with the application.

One of the most difficult problems in this type of distributed system is

that unless an explicit reply (or an acknowledgement) is received, it is

impossible to determine with certainty whether a message sent to a process at

a different physical node has been received and if the receiving process has

acted on it. The only defense against possibly waiting indefinitely for a

response is to use a timeout mechanism. The sender of a message can specify a

time interval after which it gives up waiting for the response; the timeout

mechanism will alert the sender when such a time interval has elapsed. The

possible reactions of the sender to a timeout event can be divided into two

categories: the sender decides to give up the attempt to collllllunicate with the

particular process, or, the sender decides to resubmit the request. Because

of the uncertainty discussed above, it is possible that the first request will

eventually be processed. Thus, in the first case, the request may be

processed in spite of the sender's decision not to continue and may conflict

with the subsequent actions taken by the sender after the timeout. In the

second case, the same request may be processed twice, possibly leading again

to an inconsistency. Thus, in situations where an inconsistency may arise

form such internode requests, it is necessary to use special (often complex)

protocols [LAMP76, GRAY78, REED78, MONT78, TAKA78). The question that arises

at this point is if such protocols ought to be a part of the communication

subsystem. We believe that many such situations represent special cases that

* A message may contain a higher-level error: either a message has not been
constructed properly by the application process (wrong command or wrong data)
or the translation from abstract data to the bit representation has not been
done correctly.

36

are more appropriately handled at the application level. However, our

language should provide constructs for detection of duplicate messages at the

application level.

The reliability of the communication subsystem could be increased through

the use of recoverable queues. That is, in addition to dealing with the

communication errors that result in a loss or garbling of messages sent across

a physical communication link, the cOllllllunication subsystem can guarantee that

messages that have been presented to it by the application processes and

queued for delivery (that is, messages accepted by the communication

subsystem) will not be lost if the node fails. This degree of reliability may

be important if translation from an abstract data object to the corresponding

bit representation is a costly operation, or if the input to such a

translation step is not automatically repeated (e.g. message typed by a user).

This argument can be extended to the requirement that the communication

subsystem should guarantee delivery of all messages it has accepted from the

application processes. That means that in addition to providing recoverable

queues for messages that have not been sent yet, the communication subsystem

must continue trying to send the queued_ messages until it eventually

succeeds. At the receiving node, the messages have to be stored again in

recoverable queues until they are picked up by the target application process.

Unless the target node is disabled permanently, it is possible to ensure that

each request either will be processed or it can be determined that the request

could not be processed and why. Of course, the sending application process

may have to wait for a long time for the outcome of its request, so it may

still be desirable to use a timeout on the application level.

The reliability mechanisms do represent potentially large overhead, and

their use should not be imposed on all communications. The basic

37

communication scheme should be simple, fast, and inexpensive. Rather than

insisting on the guaranteed delivery scheme, we will investigate whether it is

possible to vary the degree of reliability provided by the system by letting

the application programmer choose from several different protocols, where such

protocols would be implemented as extensions (abstractions) built from the

basic protocol.

7. PROTECTION ISSUES

In the class of distributed systems considered in our project, a likely

case is that a particular node is utilized by one user or at most by a set of

cooperating and mutually trusting users. In this case, intra-node protection

mechanisms are not required to have power sufficient to protect against

subversion and malice. This is in strong contrast to a system such as Multics

[SALT741, and many other time-shared and multiprogrammed systems that were

designed to operate properly with a set of mutually hostile users. What is

required within a single node is a mechanism that protects against error and

forgetfulness. Inter-node protection, on the other hand must be able to deal

with the potentially hostile environment: 1) individual nodes are autonomous,

that is, it is not possible to assume tnat they will behave as desired by

other nodes, and 2) the communication lines between nodes in general cannot be

physically secured.

We assume that a capability mechanism will be the basic mechanism used

for intra-node protection. By capability we mean an unforgeable identifier

38

for an object that identifies the type of the object* and that must be

presented as part of addressing an object. By constraining a procedure to

execute with a limited collection of capabilities, it is easy to guarantee

that the procedure will not do arbitrary damage to stored information.

In the context of our model, the efficiency of capabilities in comparison

to an alternative mechanism such as access control lists becooies very

i~portant. Since we assume a world with a large nwnbe~ of small objects, it

is clearly impossible to imagine that every object comes complete with an

access control list; the overhead of the access control might be substantially

larger than the object itself. Capabilities, on the other hand, need be no

more than slightly enlarged addresses. We thus propose that the intra-node

protection mechanism is based on capabilities, with some sort of capability

cataloging mechanism playing the role now associated with the traditional file

system.

The inter-node protection is more a matter of policy than of mechanism.

We believe that protection between nodes should be based on an access control

list mechanism rather than a capability mechanism. This claim is not based on

difficulty of implementation; either mechanisn can be imagined. Rather, it is

based on our perception of the high level needs of distributed applications.

A fundamental way to characterize the difference between capabilities and

access control lists is that capabilities do not provide any easy answer to

* "Capability" if often used to mean more than an unforgeable identifier: a
capability may also include a specification of the access rights, that is, a
specification of which of the operations defined for the type of the object in
question are acutally allowed on that specific object. Alternatively, access
control could also be achieved by making the object appear to be of the type
that imposes the desired restrictions. The desirability of including the
access rights in the capability and the feasibility of the other approach
(especially in connection with providing different "views" of data bases) will
be investigated.

39

the question "Who are all the people who can get to this object?", while

access control lists make it very difficult to ask the question "What are all

the objects that I can get to?". If one considers real world protection

problems, including those drawn from dOGlains other than the computer domain,

the more workable model of protection generally turns out to be that based on

access control lists. While capabilities are often used in the real world,

the most obvious example being keys, the drawbacks are well known. Keys are

subject to unauthorized duplication, loss, theft, etc. More relevantly,

capabilities (or keys) do not provide a means to support accountability.

7.1 Protection In The Abstract Network

The intra-node protection problem, while less severe than the problem

that results from fully suspicious cooperation, is still not trivial. The

programmer must be provided a means of partitioning his computations, so that

certain objects are accessible only in certain computations. This mechanism

will allow him to debug new versions of software without running the risk of

destroying existing objects; however, such a mechanism is also desirable after

the debugging stage, to limit the effect of undetected (unreported) failures

that may arise from residual bugs or hardware failures.*

The abstract network presented in Section 5 assumes such a partitioning:

the local address spaces of individual guardians define protection domains

that are assumed to be mutually exclusive. Thus, the guardian (abstract node)

is an important logical unit of protection. Within a guardian, it is

sufficient to provide only the simplified capabilities discussed earlier.

Between guardians only messages can be exchanged; there is no physical sharing

* This subject is also included in the discussion of reliability issues.
Indeed, there is a strong overlap between reliability and protection, both in

·their definitions, and in the mechanisms used.

40

of data. A guardian can scrutinize all incoming messages, and, using access

control lists and authentication, can validate the request. However, not

e~ery guardian need use this form of protecton. Just as the implementation of

a procedure can make use of procedures, so may the implementation of a

guardian be defined in terms of other guardians. Thus, some guardians are

more autonomous than others; by design, some guardians will receive messages

only from "friendly" guardians. Therefore, the system.cannot automatically

enforce protection constraints either at physical node boundaries or at

abstract node boundaries.

An important consideration in maintaining autonomy of the individual

nodes in a distributed system is the cJatrol over installation of the

guardians. We are assuming that guardians are always created at the same

(physical) node as the creating guardian (process).* Remote guardians can be

created only be requesting some already existing guardian at the remote node

to do the creation. This approach implies that each node must come into

existence with (at least) one guardian, the primal guardian. The primal

guardian is tailored by the owner of the node, prior to adding the node to the

network, by specifying who has the right to install guardians at that node as

part of a particular application.

7.2 Protection Agents

Let us look now at the inter-node protection problem from a slightly

different viewpoint. It will be a rare case where a request occurring between

nodes consists of nothing more than the reading or writing of a single

primitive object. In most cases, we can expect the request to be composed of

an aggregate of reads and writes on various objects, which the requesting node

* The same is true for objects.

41

views as atomic. This is generally referred to as an atomic transaction. The

thing that must be protected from outside is the right to execute this atomic

transaction. It is possible that the isolated reads and writes required as

part of this transaction are not legitimate for the outside user except as a

part of this or some other transaction. A typical example is a situation

where the user is allowed to see some statistics but not the individual items

in the actual set from which the statistics are divided.

To express such higher level protection constraints concisely, the

language used to describe the inter-node requrests must have primitives that

will it easy to confirm whether or not a proposed transaction falls within the

bounds of the outstanding protection constraints. Alternatively, it is

possible to visualize inter-node messages that contain an arbitrary algorithm

expressed in terms of a sequence of operations on a set of objects; such an

algorithm would have to be examined and confirmed at the receiving node before

execution to ensure that it conforms to the higher level security constraints.

However, the construction of a verification algorithm that ensures that an

arbitrary program conforms to one of the number of high level protection

constraints would be a challenge to the most optimistic of the program

verification researchers; thus this ~pproach must be rejected.

We postulate the idea, common in data management systems, that different

users of a data base have different views of the data base, of ten called

different data models. From the outside, the data model appears to describe

physically stored information and the acceptable operations on it. However,

internally, the data model may have little correspondence to the information

actually stored. Rather, it may be realized as algorithms that derive the

modeled data from the shared information. Thus, we see users first being

divided into large groups, based on which data model they use, and then within

42

those groups being further divided according to which operations they can

perform on the data model provided. For example, some users may be able to

read certain records, others to read and write them. Each data model implies

the existence of an algorithm to translate between that data model and the

stored information. It is .these algorithms that must be provided in advance,

one set for each data model. The progra11111ing system must provide facilities

for creating such data models, mapping them into the actual stored

information, and synchronizing read and write operations originating from

different data models.

Higher level protection constraints can be expressed through the use of

abstract types.* Users of an abstract object are permitted to manipulate the

object only through the operations defined by the object's type; in reality,

an arbitrary computation may be performed on a possibly large number of

objects that constitute the representation of the given abstract object. In

addition, individual users may be restricted to only a subset of the

operations defined for an abstract type. However, the concept of the data

model calls for yet something more. The traditional view of data models

permits a low-level information entity to be shared by different users through

a variety of data models. To support this view via abstract types, it must be

possible to manipulate a single low-level object as part of a number of

different abstract data objects, depending on the rights of the different

users.** The idea of data models is that different users have different views

* Several research projects on the use of abstract types in impleaentation of
data base management systems are under way (SMIT77, SCHK77).

** This can be a very difficult problem. In the context of relational data
bases, for anything but very simple views, "propagation of updates from views
to base relations becomes complicated, dangerous, and aoaetiaes impossible"
[CHA.'t75].

43

--···--------------------

of the world, but fundamentally, they do turn out to be views of the same

world. Thus, in some sense, they must ultimately rest on the same physical

data.

The inter-node protection can be enforced as follows. Any outside user

(process) perceives the information in a particular (abstract) node as a

number of objects that he can manipulate independently, and a set of

permissible operations on those objects. These externally visible objects are

arranged in such a way that there are no explicit protection constraints that

tie one object to another. A message arriving at a node to manipulate one of

these objects must be processed by some active entity (e.g. a process) that

confirms that the requestor of the action has the right to perform i~, and

then implements the operation at the node by invoking operations on other

objects, not directly accessible from outside. We will refer to this entity

as a protection agent. The protection agent could be the same entity as the

guardian. The guardian, however, presents only a single view of the guarded

objects. The protection requirements described above lead to a model outlined

in Figure 4. In this model, the high level protection function is separated

from the low level protection and synchronization function of the guardian.

The protection agents represent different view.a of the guarded objects. The

guardian controls the actual physical access to the guarded objects; it

imposes synchronization constraints on requests passed to it from the

protection agents.

While there are an infinite number of protection checks that the

protection agent may wish to perform in a particular case, there are three

checks that can normally be expected to occur. First, the protection agent

will wish to confirm that the originator of the message has the right to

invoke the protection agent at all. Second, the protection agent may wish to

44

--- /
/ /~-;- ~

I 0 I \"-. { B ~,\
\

/ I \
/ A J \0 \JI , _____ /

A, B, C: protection agents
G: guardian

guarded
objects

Nl

Figure 4: Inter-node protection mechanism: the remote process
P (node N2) can reach the objects guarded by G (node Nl)
only through the protection agent B.

45

N2

confirm that the particular object or objects involved in the operation

requested are indeed accessible to the requestor, and third, that the

particular operation to be performed on the object is permitted for the

requestor. For example, a data base manager may wish to confirm that the

requestor can invoke it, that the particular record being manipulated is

accessible to the requestor, and whether or not updates or just reads are

permissible for that requestor. In any particular case, one or more of these

steps may be omitted. Thus, for example, provided that a user has a right to

invoke a protection agent at all, he may have the right to manipulate any

object normally made accessible through that agent. He may also be permitted

to perform any of the operations defined on the objects. In this case, only

the first of the three tests need be performed.

We should now pause and consider how this representation of protection

meshes with the conclusion drawn earlier that inter-node protection should be

expressed in terms of access control lists. Clearly, the use of access

control lists implies that the protection agent must be able to determine

reliably the originator of every message. Using the terminology developed for

characterization of protection mechanisms in a centralized system, we will

assume that every message, at its origin, has associated with it a principal

identifier, which identifies the entity to be held accountable for the request

in the message. Some technique such as encryption will be used to ensure the

believability of the principal id by the recipient of the message, if the

message has originated from. a different physical node than the recipient

[KENT76, NEED78J. Using the principal id, the first protection check

described above is easy to implement. We can associate with every protection

agent an access control list, and insist that the principal identifier

associated with the message be on that list before the protection agent can be

46

invoked at all. The second test, that of ensuring that this principal is

allowed to manipulate the particular objects in question, can be handled in a

variety of ways. One obvious technique is to associate with each entry in the

access control list, a list of all the·objects that the particular principal

is allowed to use. The protection agent can then refer to the list to

determine the access privileges of the requestor. If the third type of

protection check is required, it can be implemented as part of this same list,

by associating with the entry for each object a notation describing the

operations that this principal is permitted to perform on that object.

8. LANGUAGE CONSTIWCTS

rhe desirability of various kinds of language constructs has been pointed

out in several places in the preceeding discussions. We see the language

design to be the main vehicle of our project. The language has to provide an

effective interface for the application programaer, while at the same time it

is necessary to take into consideration all the problems arising from the

distributed processing envirotllllent. This section presents some examples of

the planned language constructs.

Guardians will be a major type of module available for program.

construction. A guardian is a program whose purpose is to protect a resource.

For example, a guardian might guard an entire data base, a partition of that

data base, a physical resource, e.g. an I/O device, or an abstraction of such

a device. The guardian may be thought of as a local collection of processes

and data; the processes within the same guardian eay share the data, but they

communicate with processes in other guardians only by message passing. As was

said earlier, a guardian Ol8Y be implemented in terms of other guardians. The

47

user of a guardian is aware of its behavior: the kinds of messages that can

be addressed to (processes in) it, and the kinds of repsonses it makes to

these messages. The fact that the guardian is implemented in terms of lower

level guardians is invisible to the user.

An important issue in 'designing a language for a distributed system is

the primitives for sending and receiving messages. The basic scenario in the

abstract network is one process sending a message to another process

requesting some action; later there should be another message, flowing in the

other direction, indicating the result of the action. It must be possible to

express in the language that a particular message is a reply to another

message. In addition, it is necessary to address the problem that the reply

may never arrive, or that the request message cannot be sent. Possible

approaches differ in how long (for what event) the sending process must wait

before it can proceed. Closely related to this degree of waiting is how the

language will handle failures.

8 .1 The Send Comm.and That Wai ts For A Reply

In this approach, the sending process is forced to wait until the

response comes back from the receiver, or some timeout or failure results. A

possible syntax might be:

~ C(args) !2. A Timeout Time:

Rl(formals) Q2. Sl;

R2(formals) Do S2;

failure (formals) .Q.2. Sfailure;

timeout Q2 Stimeout;

End· _,

48

Here A is a process and C(args) is the message, consisting of a command, C,

and some arguments. The remainder of tbe construct lists tbe various possible

responses, together with the appropriate action to be taken by the sending

process. Rl, R2, etc., are responses for A; some might be normal, and some

abnormal. "Failure" covers various failures that are detected either by the

system or by the receiving process A. The arguments of "failure" specify the

type of failure. Some examples of a detected failure are:

a) the message as specified cannot be constructed,

b) the specified process (A) no longer exists,

c) the target node is inaccessible,

d) congestion (the target node of the target process (A) does not have

enough buffer space),

e) the message cannot be decoded (the abstract objects contained in a

message cannot be reconstructed).

Which of these failures are visible at the application level depends on the

design of the system level. As discussed in Section 6, the system level might

be designed in such a way that message delivery is guaranteed. This would

eliminate the need to cope with the failures of the type c and d at the

application level.

The timeout action is taken if "time" is exceeded. If the system is

designed for guaranteed delivery, the timeout action that terminates the send

collllll8nd should release the buffers in which the system keeps the message for

delivery to the target application process. It should be understood that this

timeout is for the pair of aessages to be exchanged between proces&es in the

49

abstract network; a different timeout value is used in the underlying system

to govern retransmission of packets.*

A different kind of "send" co111Rand is needed in the receiving process,

since the receiving process must be able to respond to the command without

waiting for the original sender process to respond back. To receive messages,

A might use a construct:

COllllland ~

C(formals) Do ••• reply R(args); ••• ;

End· _,

Here, A is waiting for one of a number of messages; if several are available,

one is selected in a fair way. The message is then decoded, the contained

data assigned to the formals, and the statements associated with the selected

message are executed. The above form of Reply Command sends a message back to

the process that sent the message; the identity of the process to reply to is

automatically extracted from the received message. Another form of reply:

Rep!!. R(args) !,Q. B

that explicitly names the process to reply to will probably also be needed;

this would permit a third process to be the replier to the original sender.

The approach sketched above has the obvious advantage of pairing sends

and receives. It also has some obvious disadvantages~ For one thing, there

* Ihe "timeout" parameter presents a rather difficult programming problem -­
it requires the programmer to be aware of the physical timing of the
communication subsystem and the time needed by the recipient to process the
request. However, unless the guaranteed delivery approach is adopted, this
timeout is essential to cope with failures. Although, as argued in Section 6,
some form of timeout is also desirable in the guaranteed delivery scenario,
possibly a more intelligent way of specifying a timeout condition could be
devised.

50

are two send commands. More important, however, is the loss of parallelism.

If the sending process has other tasks to do while its request is being

processed, it must either not do them, thus reducing efficiency, or it must

spawn another process to do these tasks. Thus a language supporting this

approach must provide rich facilities for paralleliB11l.*

8.2 Separation Of Send Command And Reply Processing

The second possible approach is the opposite of the waiting approach:

the sending process does not wait at all but continues running, performing

actions on local objects, or possibly sending more messages. Only when it

needs a response that is not ready, it will have to wait. The language now

has to provide additional constructs that allow the progr8lllller to distinguish

which response goes with which request and to specify that the process wishes

to wait for the reply to a specific message, rather than a reply to any

message that may have been previously sent.

There are various ways in which these problems might be solved. For

example, send commands might be labelled:

Sl: ~ Cl(args) !2_ Al;

S2: ~ C2 (args) !!?. A2;

~ Sl Replies: ••• ;

In this approach, each~ COllllland has a continuation (as in Actors [HEWI76])

that can be named to identify the responses of interest in Replies. Following

Replies Would be the list of alternative responses, as shown in the preceding

section, to the message sent by statement Sl. Note that the errors arising in

* Note: this is not the only reason for which such facilities for parallelism
might be needed. See the discussions of guardians.

51

turning Ci(args) into a message would be exceptions (abnormal terminations) of

the~ Command; failures such as (c), (d) and (e) described earlier would

have to be reported outside of the~ eo ... and (in lleelies).

Another possible approach is to use ports:

~ C(args) !.2. A Reply-!.2_ P

where P is a port that can be named by more than one ~ Comm.and. Ports

offer flexibility in expressing different patterns of requests and replles,

both between a single pair of process~& and in cases where a process

communicates with several other processes.

This approach permits parallelism and is more flexible, especially in

connection with ports. However, the linguistic mechanisms needed to enable

the programmer to do the matching introduce extra complexity; how much

flexibility is gained and how much complexity is added requires further study.

Note that this approach does not eliminate the need for supporting timeout,

but now the timeout is specified at the point where the process must wait for

the reply.

8.3 The In-Between Approach

The third approach is to make the sender wait for some indication about

the progress in the delivery of the message instead of waiting for the reply

from the target process. For example, in Hoare's language [HOAll.77), the

sender waits until the replier receiVdti the message.

The first question to ask is: does this approach offer the programm.er

any advantages over the other two approaches? Since sends and replies are not

explicitly paired, from this point of view in the in-between approach offers

similar advantages and disadvantages as the no-wait approach described in

Section 8.2. What is gained over the no-wait approach is that certain

52

failures, for example (c) and (d), or possibly even (e) can be treated as

exceptions of the send command. More importantly, the completion of the send

comm.and indicates that a meaningful message (to some extent) has been

received. However, the completion of the send does not guarantee that the

message will be processed (e.g. the receiver's node might fail i11111.ediately

after the message is received). It should be noted that there is a

substantial loss of parallelism over the no-wait approach.

The in-between approach is often advocated on implementation grounds, as

a means to prevent flooding of the receiver. Flooding means that messages are

delivered faster than the receiver can process them. Since the buffer space

of the receiver is always limited, either some control must be provided to

stop the flow of messages or some messages must be discarded. In a system

with shared memory, a very efficient implementation is possible, namely, each

process has one send buffer, and the message is held there until the receiver

wants it. In a system without shared memory such as our distributed system,

this approach is clearly impractical, since extra messages would be needed to

inform the communicating parties that a message is ready (sender to receiver)

and that it can be transferred (receiver to sender).

To conclude, the in-between approach does not seem to offer any real

advantages. The waiting approach, while simpler, is more limiting from the

point of concurrency and flexibility; thus we believe that we should provide

the type of constructs outlined in Section 8.2.

9. SU..URY AHO FUTUU WOllK

!his report presented a basic conceptual model of distributed computation

in an environment where the individual nodes of the underlying network are

53

autonomous and may be spread over a large geographical area. Several

important language and system issues were discussed, including reliability,

protection, and the language constructs for sending and receiving messages in

the abstract network. We tried to justify our decisions regarding each

individual topic; of course, these decisions may be modified as we gain more

experience with the use of distributed systems.

It should be realized that many of the issues that are being attacked in

our project go beyond the area of distributed systems. The integration of a

programming language and an operating system is one of these issues. The

problem of such a "total environment" has not yet been solved satisfactorily

even for a single processor system; in the case of distributed systems, the

design task is even more difficult. However, while for a centralized system

the total environment is a desirable feature, we believe that for a

distributed system it is an essential property.

The work continues on several levels. To get a better understanding of

what it means to do distributed computing, we must implement some distributed

applications. This means that we need a language that will facilitate such a

task. The CLU language [LISK77) is being extended to incorporate the guardian

construct and corresponding message passing primitives. Extended CLU will

serve as an experimental base for both the language work and the design of the

reliable system support. Through this experiment, we hope to determine the

effectiveness of different types of language constructs and their

implementability on conventional hardware. Thia experience will be used to

improve the language, and possibly to guide a design of a more hospitable

machine architecture.

On the system level, research concentrates on high level protocols and

mechanisms needed to achieve reliable operation. The feasibility of using

54

some of the recently developed approaches to providing atomic operations

[REED78; MONT78; rAKA78) in real systems is being investigated. Other issues

include naming and copying objects in the abstract network [SOLL79), the

guaranteed delivery support, and the use of backup copies.

Ultimately, the succes.s of our programming system will depend on its

usefulness in constructing distributed applications. In addition to a design

of distributed implementation of several small scale &$1Dple problems, we

envision our system to be used in implementation of a substantial distributed

application; one of the primary candidates in an "office-automation" of our

laboratory. This last project is dependent on two other projects within LCS:

development of a local area network and development of advanced nodes for a

distributed system. These two projects will provide the hardware base

necessary for experimentation with distributed processing.

SS

REFERENCES:

BRIN75 Brinch Hansen, P., "The Programming Language Concurrent Pascal," .ill§.
Transactions~ Software Engineering, Vol. SE-1, No. 2, (1975).

CHAt175 Chamberlin, D. D., et al., "Views, Authorization, and Locking in a
Relational Data Base System," Proc. ~ ~. 1975, pp. 425-430.

CLAR78 Clark, D.D., et al., "An Introduction to Local Area Networks," Proc.
Of IEEE, Vol. 66, No. 11, November 1978, pp. 1497-1517.

DOLI77 D'Oliveira, C.R., "An Analysis of Computer Decentralization," M. I.T.
Laboratory for Computer Science, Technical Memo No. 90, (October
1977) .

DENI75 Dennis, J.B., "First Version of a Data Flow Procedure Language,"
M.I.T. Laboratory for Computer Science, Technical Memo No. 61, No. 11,
(November 1976), pp. 624-633.

FELD77 Feldman, J.A., "A Programming Methodology for Distributed Computing,"
University of Rochester, Depart.nent of Computer Science, Technical
Report No. 9, (1977).

GRAY78 Gray, J.N., "Notes on Data Base Operating Systems," in Operating
Systems: An Advanced Course, Lecture Notes on Computer Science, Vol.
60, Springer-Verlag, 1978, pp. 393-481.

HEWI76 Hewitt, C., "Viewing Control STructures as Patterns of Passing
Messages," M.I.T. Artificial Intelligence Laboratory, A.I. Memo 410,
(December 1976). Accepted for publication in A.I. Journal.

HEWI 77 Hewitt, C., et al., "Parallelism and Synchronizaiton in Actor
Systems," Record .2f 1977 Conference£!!. Principles .2f Programming
Languages, Los Angeles, California, January 1977, pp. 267-280.

HOAR77 Hoare, C.A.R., "Communicating Sequential Processes," Oxford,
University Computing Laboratory, Programming Research Group, (1977),
DRAFT.

KENT76 Kent, S.T., "Encryption-Based Protection Protocols for Interactive
User-Computer Communication, M.I.T., Laboratory for Computer Science,
Technical Report No. 162, June 1976.

LAMP76 Lampson, B., Sturgis, H., "Crash Recovery in a Distributed 'Data
Storage System," Xerox Palo Alto Research Center, (1976), (to appear
in Comm. of the ACM) •

LAUE78 Lauer, Needham, R., "On the Duality of Operating System Structures,"
~· Second International Symposium £!!. Operating Systems, IRIA,
October 1978.

56

LISK77 Liskov, B., et al., "Abstraction Mechanisms in CLU," £2.!!.· 2f ~ ~.
Vol. 20, No. 8, (August 1977), pp. 564-576.

MILL77 Millstein, R.E., "The National Software Works: A Distributed
Processing System.," ~· 2f !9! Conference, (October 1977), pp.
44-52.

MONT78 Montgomery, W., "Robust Concurrency Control for a Distributed
Information System.," M.I.T. Departaent of Electrlcal Engineering and
Computer Science, PhD Thesis, December 1978.

NEED78 Needham, R.M., Schroeder, M.D., "Using Encryption for Authentication
in Large Networks of Computers," Q2!!_. of ACK,. Vol. 21, No. 12,
December 1978, pp. 993-999.

REED78 Reed, D.P., "Naming and Synchronization in a Decentralized Computer
System," M. I. T. Department of Electrical Engineering and Computer
Science, PhD Ihesis, September 1978.

ROBE70 Roberts, L~G., Wessler, 8.D., "Computer Network Development to Achieve
Resource Sharing," ~· AFIPS ~. (1970).

ROTH77 Rothnie, J .8., et al., "The Redundant Update Methodology of SDD-1: A
System For Distributed Databases," Computer Corporation of America,
Report CCA-77-02, (February 1977).

SALT74 Saltzer, J.H., "Protection and the Control of Information Sharing.in
Multics," fei!!!.· 2f !h!, ACM, Vol. 17, No. 7, (July 1974), pp. 388-402.

SCHM.77 Schmidt, J. W. , "Type Concepts for Database Definition: An
Investigation Based on Extensions to Pascal," Institut fur Informatik,
Universitat Hamburg, June 1977.

SMIT77 Smith, J.M., Smith, D. C.P., "Databa11e Abstractions: Aggregation,"
£2.!!!. of El!!. !91• Vol. 20, No. 6, June 1977, pp. 405-413.

SOLL79 Sollins, K.R., "Copying in A 1)istributed System," M. I. T. Depratment of
Electrical Engineering and Computer Science, MS Thesis, 1979 (in
preparation).

SIEA76 Stearns, R.E., et al., "Concurrency Control For Database Systems,"
Extended Abstract, ~ Symposium ~ Foundations 2!. Computer Science,
October 1976, pp. 19-32.

SVOB78A Svobodova, L., "Distributed Computer System in a Bank: Notes on the
First National City Bank," M.I.T. Laboratory for Computer Science,
Computer Systems Research Division, Request for Comments NO. 155,
January 23, 1978.

SVOB788 Svobodova, L., "Distributed Computing in the Bank. of America," M.I.T.
Laboratory for Computer Science, Computer Systems Research Division,
Request for eo.aents No. 157, (February 1978).

57

!AKA78 Takagi, A., "Concurrent and Reliable Updates of Distributed
Databases," M.I.T. LAboratory for Computer Science, Computer Systems
Research Division, Request for Comaents No. 167, Novemberr 22, 1978.

THOM76 Thomas, R.H., "A Solution to the Update Problem for Multiple Copy Data
Bases which Use Distributed Control," Bolt Beranek. & Newman, Inc.,
Report No. 3340, July 1976.

WIRT77 Wirth, N., .. Modula: A Language for Modular Multiprogramming,"
Software Practice and Experience, Vol. 7, No. l, January 1977.

WULF76 Wulf, W.A., et al., "An Introduction to the Construction and
Verification of Alphard Programs, !.§!! Transactions ~ Software
Engineering, Vol. SE-2, No. 4, December 1976, pp. 253-265.

58

