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DISTRIBUTED COMPUTER SYSTEMS: STRUCTURE AND SEMANTICS 

Abstract 

This report describes on ongoing project in the area of design of 

distributed systems. The goal is to develop an effective progranming system 

that will support well-structured design, implementation, maintenance and 

control of distributed processing applications. This programming system 

combines a powerful high level language and operating system features, and 

addresses the underlying system problems that affect the reliability and 

security perceived o~ the application level. The report presents a conceptual 

~odel of distributed computation, and, in the context of this model, discusses 

our approaches to inter-node communication and cooperation, reliability, and 

protection. One of the basic goals of our project is to allow the application 

programmer to work with application-oriented entities. Thus, inter-node 

messages, error handling and protection constraints will all be expressible in 

application oriented terms. The report concludes with some exaaples of the 

language constructs and an outline of the future research under this project. 
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1 • INTRODUCTION 

Computer systems should reflect the structure and needs of the problem to 

which they are being applied. For many applications, a distributed computer 

system represents a natural realization. For both technical and economic 

reasons, it is likely that for many existing applications, distributed 

computer systems will replace conventional computer systems built around a 

large central processor, and that new applications will emerge based on 

distributed information processing. 

The area of "distributed systems" has become a popular source of systems 

research projects. This trend has been supported mainly by the rapidly 

falling cost of computing hardware and the increasing power and flexibility of 

~ini and microcomputers. However, many research efforts in this area seem to 

miss the most important aspect of the revolution in the hardware costs and 

power: the steadily decreasing entry cost of acquiring and operating a 

free-standing, complete computer system encourages lower-level units within a 

large organization to acquire their own computers that consequently will 

operate somewhat independently and autonomously from one another. .The 

administrative autonomy is really the driving force that leads to acquisition 

of local computers dedicated to the applications of a particular organization 

unit. However, it is necessary to anticipate that these autonomous computer 

systems will have to be at least loosely coupled into a cooperating 

confederacy that serves as the information system of the organization. 

The basic technical problem in chese emerging systems is to provide 

coherence in communication among the nodes in a computer network while these 

nodes retain their administrative autonomy. Technically, autonomy appears as 
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a force producing incoherence: one must assume that operating schedules, 

loading policy, level of concern for security, availability, and reliability, 

update level of hardware and software, and even choice of hardware and 

software systems will tend to vary from node to node with a minimum of central 

control. Further, individual nodes ~ay for various reasons occasionally 

completely disconnect themselves from· the confederacy, and operate in 

isolation for a while before reconnecting. Yet to the extent that agreement 

and cooperation are beneficial, there will be a need for communication of 

signals, exchange of data, mutual assistance agreements, and a wide variety of 

other internode interaction. We hypothesize that one-at-a-time ad hoc 

arrangements will be inadequate, because of their potential large number and 

the programming cost in dealing with each node on a different basis. 

The move toward distributed systems will be dictated not just by their 

"naturalness", but also by the many technical advantages they offer over 

centralized systems. These advantages include the following: 

Availability. Availability of information can be increased by 

replicating it at several nodes. This arrangement not only increases the 

access bandwidth to the information, but in case of a failure of one of 

the nodes or some communication link, the information remains accessible. 

Protection. Distributed systems provide a better environment for 

protecting information stored in the system· and for coping with run-time 

errors resulting from hardware failures or residual design and 

implementation errors. These advantages arise from the actual physical 

separation of independent or loosely coupled computations and information 

that belongs to different users. The physical boundaries of individual 

nodes provide "firewalls" that (if properly designed) will prevent 

spreading of errors originating in a particular node to the rest of the 
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system and protect information stored at individual nodes from 

unauthorized access or modification by other nodes. As the most severe 

protection measure, a self-contained node can be guaranteed privacy 

during some sensitive operation by physically detaching it from the rest 

of the system. 

Expandability. As more users join the system or new services are added, 

it is not necessary to make any physical replacements in a distributed 

system. Rather, one or more new nodes need to be added to the system; if 

the system is designed properly, it may be possible to accomplish this 

without interrupting the service of the existing system. Thus, 

distributed systems offer a potential for a more gradual and smoother 

growth than systems with a large central processor. 

Thus, there are many sound rea~ons why applications should be implemented 

as distributed systems. However, while it has been successfully demonstrated 

that it is not very difficult to interconnect remote computers at the 

electrical and information bit level, the effective utilization of such a 

network at a higher software and applications level is still missing. The 

project discussed in this report is aimed at solving the technical problems 

that hinder the development of applications for distributed systems. In 

particular, the goal of this project is to develop an integrated programming 

language and operating system to support well-structured design and 

implementation of distributed applications. 

1.1 Distributed Systems Of Interest 

The distributed systems considered in our project can be described 

loosely as organizations of highly autonomous information processing modules, 

called nodes, which cooperate in a manner that produces an image of a coherent 
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system of a certain defined level. Autonomy is the key characteristic that 

eliminates most multiprocessor organizations from this class of distributed 

systems. Certainly, a distributed system has more than one processor, since 

it has at least one processor in each node. However, in a distributed system, 

the nodes are highly independent, each having its own primary memory, possibly 

some secondary storage, and its own interface through which it communicates 

with its environment (e.g. user ter•inals, sensors). The individual nodes are 

connected by a communication network; the communication delay may be highly 

variable and unpredictable. The communication network might be a long-haul 

network such as the ARPANET [ROBE70), a local area network [CLAR78], or a 

suitable combination of these two types. Each node has access to its own 

memory only; that is, inter-node communication is possible only by explicitly 

exchanging messages, not through shared memory. Finally, physical 

(geographical) reorganization of the nodes and the COllllllunication network is 

assumed not to impair the system's functionality; tbe only change might be in 

the system's performance. 

1.2 Comparison Of Our Approach With Related Work 

The assumption of autonomy of the nodes that compose a distributed system 

is the most important ingredient that distinguishes our work. However, once 

autonomy is assumed, the next issue that arises is to devise techniqes that 

permit programs running on the autonomous nodes to COllllllunicate in a coherent 

fashion. We are aiming at a high level of coherence that is 

application-independent but permits communication among the nodes in 

application-oriented terms. This high level of application-independent 

coherence distinguishes our approach from other work that is based on the 

assumption of autonomous nodes. Most work has either provided a very low 
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level of coherence {e.g. the ARPANET) or has provided coherence within a 

specific application (e.g. the NSW works manager [MILL77]). There is some 

work related to ours in progress at Xerox PARC, but again this work is 

focussing on a very specific application -- off ice automation. 

The problem of simultaneous update, making an identical or a logically 

related change at several sites, has received considerable study [GRAY78, 

MONT78, REED78, ROTH77, STEA76, TAKA78, THOM76]. However, we remain 

uncon~inced that a solution to this particular problem is crucial to our 

research. Rather, we view our system as providing an environment in which any 

one of several simultaneous update algorithms can be implemented as needed. 

This point distinguishes our work from SDD-1 [&OTH77], for example, since that 

project assumes a very particular technique for implementing simultaneous 

update. SDD-1 also makes very restrictive asswaptions about the autonomy of 

the nodes of the system. 

Distributed systems have only lately become a focus of programming 

language research. In the past, programming languages have mostly not 

addressed concurrent programs. More recent languages (e.g. Concurrent Pascal 

[BRIN75], Modula [WIRT77]) have had features for concurrency, but within the 

context of a single processor: these languages are based on the assumption 

that programs interact through shared memory, which is not consistent with the 

concept of autonomous nodes with private memory. There is related work at 

Oxford [HOAR77], the University of itochester [FELD77] and at MIT [DENI75, 

HEWI76] , but this work does not place strong emphasis on integrating the 

language and operating system features. 

Indeed, we feel that our emphasls on Lntegration of language and system 

is a further key factor in our work that distinguishes it from other related 

work. Much of what distributed programs do falls into what is usually 
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considered to be the systems area, including such topics as synchronization of 

access to shared information, and protection. However, programs are written 

in a program.ming language, and proper primitives in that language can greatly 

influence the structure of programs. By integrating the two areas we expect 

to achieve a greater impact on the construction of distributed systems than 

could be accomplished in either area separately. 

2. STUDY OF APPLICATIONS 

- It is essential that the mechanisms we develop to support construction of 

distributed applications cover the real distributed processing problems. To 

this end, we ha~e studied a number of applications, both by direct observation 

[SVOB78A, SVOB78BJ and by surveying related work as discussed earlier. This 

study was hampered by the lack of existio,g distributed systems; for example, 

banking systems are not yet distributed, although a distributed system is 

being planned. Therefore, we haJ to supplement our study by sketching designs 

for future systems. 

Several different classes of distributed activities have been identified: 

Invocation of remote servers. A message is sent to a remote node 

instructing some server at the node to perform a certain operation; a 

reply (requested information or an acknowledgement if no data is to be 

returned) confirms that the operation has been performed. The mail 

system in the ARPANET is an example of this type of application. 

Atomic Transactions ~ Distributed Databases. To preserve the integrity 

of a database, it may be necessary to provide a mechanism that guarantees 

that either all updates specified by a transaction will be performed, or 

none, no matter how the transaction fails. 
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Distributed ~ Processing. If the large quantities of data residing at 

different nodes are processed, a problem may arise even if no updates are 

performed, which is to minimize the data moved between nodes in order to 

perform the desired operation. An example is query processing in a 

distributed database system. 

Distributed Problem Solving. This describes systems where the cost 

(overhead) of maintaining a centralized global view of the system state 

and control is prohibitive. In such systems, each node knows only a 

partial state of the system and has to make intelligent guesses, from the 

information received from other nodes, about the rest of the system. An 

example of such an application is a dynamic routing algorithm for 

store-and-forward networks. 

Distributed Programming System. This is a distributed version of a 

general purpose time sharing system. The assumption is that it is not 

possible to restrict in advance the modes of sharing among users. It is 

necessary to communicate both data and programs, but from the point of 

view of the mechanics of the actual exchange of information this type of 

system could be included in the first category. 

The distribution can take place along two main lines, based on functional 

separability or on the non-uniform distribution of the use of databases. 

Functional distribution means that different nodes support different services. 

Such systems seem natural for control of industrial processes, where different 

nodes control different parts of a process, or in such systems as aircraft, 

where different nodes process iafor~ation from different sensors. However, 

this approach seems also to be advantageous in service sectors such as banking 

[SVOB78A]. 
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Database distribution characterizes systems where an individual processor 

supports the same services but on a different part of a database. A typical 

example is a bank with many branch offices. Each branch has its local 

accounts, but it should be able to serve a bank's customer whose account is at 

another branch. Since such remote requests are much less frequent than 

manipulation of the local accounts, partitioning of the bank's accounts 

database (that is, maintaining accounts on a c011puter at their local branch) 

is a natural approach. 

It must be said that the division between functional distribution and 

database distribution is not clean; in most cases, a distributed system will 

to some extent include both. The latter case. however. implies an integrated 

database, while in the former case (functional distribution) the databases 

used by individual servers are much more independent. The functional 

distribution is the more general case. In either case. a distributed database 

represents a special problem. the need to enforce consistency constraints that 

span several nodes. It is not clear how often this problem actually arises, 

but it cannot be ignored. 

It can be concluded that the basic paradigm in the class of distributed 

systems that our project is addressing is the invocation -0f remote servers. 

This can be viewed as a cOOllllunication protocol of much higher level than, for 

example, the host-to-host communication protocols currently employed in he 

ARPANET. The implementation of such high level protocols, however, may need 

to differ, depending on the type of application, and possibly on the 

efficiency and reliability requirements of the application. Therefore, we 

should not aim to design such high level protocols, but instead develop a set 

of tools that facilitate design and implementation of such protocols. 
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Finally, an application study by d'Oliveira [DOLI77] revealed an 

important result: there are strong pressures toward decentralization for 

sociological and political rather than technical reasons. We infer from this 

study that decisions about the distribution of information among the various 

nodes will be made for external reasons that only the application itself can 

specify. Thus, the application builder must have control over and understand 

the placement of information. 

3. THE TARGET OF THE PROJECT 

Io sUlllDarize, we view a distributed system as a collection of autonomous 

nodes that communicate only by information exchange over the communication 

network that connects them. In such a system, at least two levels of 

coherence must be enforced. One level is the application level itself. The 

second level is the set of internode communication protocols that facilitate 

the physical exchange of information (packets of bits). But there is a large 

gap between the application and the low level communication protocols. 

Usually, this gap results in a rather ad hoc implementation of the 

application. 

Our target is an intermediate level, called the programming system, which 

will support a well-structured design, implementation, maintenance and control 

of distributed applications. This level is more than a programming language 

in a traditional sense. Rather, this level is envisioned as a set of tools 

that include primitives found in conventional higher level languages such as 

Pascal or PL/l, but also primiti~es normally assumed to be part of an 

operating system, for example, long-term storage and cataloging of information 

or control of protection safeguards. Thus, this programming level will 
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integrate the programming language and the operating system. More strongly, 

this level will integrate a programming language and a distributed operating 

system. 

fhe design goals for the programming system include: 

Aim for ~ high ~ level !!.! possible, ~ application independent. Our 

system is intended to be used to implement :nany diverse ·applications, for 

example, both command and control systems and administrative systems like 

inventory control systems. To adequately support such a class of 

applications, the language should be as high level as possible but 

general purpose. One need that all applications share is the ability to 

exchange potentially quite sophisticated messages. 

Support well-structured programming. Since our primary motivation is to 

ease the task of the application programmer, we feel that the embedded 

language should borrow from eEisting language work, in particular 

building on languages such as CLU [LISK77) and Alphard [WULF76) , which 

aid in the production of well-structured programs by providing powerful 

abstraction mechanisms. Of particular importance is the data 

abstraction, which consists of a set of objects together with a set of 

operations that provide the only means for manipulating those objects. 

Data abstractions have been investigated so far mainly in the context of 

centralized processing. We believe that they will be even more useful in 

the type of distributed systems assumed in our work, because they provide 

a powerful tool in organizing a coherent structure where the data of the 

application and the allowed distributed sharing is described in 

application-oriented terms, independent of the idiosyncracies of the 

individual autonomous nodes. 
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Since we are dealing with a distributed envirotllllent where an 

operation defined on the application level may require the assistance of 

several nodes, the language must support concurrent activities (process 

abstractions). Extensions of sequential languages will be necessary to 

achieve this. To enhance ease of use, we will keep the language as 

conventional and conservative as is consistent with our other goals. 

Support communication .!!!. term.s .2f abstract objects. Autonomous program 

units need to comm.unciate in terms of the kinds of high level objects 

they manipulate. For example, the ARPANET supports one sort of "high 

level object", the ASCII file, but any other form of data must be 

transmitted as a sequence of bits and explicitly transformed from one 

representation to another by a user written program. The language should 

support communication in terms of abstract objects, regardless of the 

relative location of the sender and the recipient of a message. Two 

advantages arise from this approach. First, a clear statement can be 

made about the properties of data that the units depend on. Second, it 

is clear how to accomplish the processing that is needed to translate an 

object in memory into a message transportable by the communication 

network and vice versa: the translation is acc01llplished using special 

operations of the object's type. Note that this kind of translation is 

always needed; a language that requires messages to be composed of low 

level objects simply obscures this fact. 

Allow explicit control of !!!.! application distribution. Conceptually, 

the target level can be viewed as an abstract network of processes where 

application-defined processes communicate via messages that contain high 

level commands, data and responses. In an ideal situation, this is all 

that would need to be seen by the application progralllller. However, 
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underneath this abstract network is the set of physical nodes and the 

communication lines that connect them. Our study of applications has 

indicated that the mapping of the objects used by an application into the 

physical set of nodes has to be made visible to the application 

programmer. We are assuming that objects to not move dynamically from 

node to node, depending on the degree of demand (such dynamic migration 

is often assumed in the "distributed" systems consisting of many, 

relatively tightly coupled, mini or microprocessors). Rather, when a 

specific node is chosen to be the (new) home of a particular object, an 

installation of the object has to be explicitly requested using commands 

provided by the programming system. This assumption is based on the 

belief, discussed earlier, that many of such placement decisions will be 

based on non-technical factors external to the system [DOLI77). 

Support sharing. The programming level must support sharing of 

information represented as objects that reside at different nodes and 

belong to different users, where how the information is to be shared is 

defined by the application. An important aspect of sharing is to provide 

controls that regulate the patterns of sharing so that protection and 

synchronization constraints are properly met. It is also necessary to 

solve problems of naming across nodes. 

Support reliable (robust) operations. Reliability is one of the most 

important goals of our project. A distributed system, by its very 

nature, provides a potential for enhanced reliability. However, to 

exploit this potential, the system ~ the application have to be 

properly designed. An arriving message must be tested for integrity and 

authenticity, using a combination of automatic system features and 

application dependent procedures, and there must be control over timeouts 
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and the number of retries for messages sent but for which a reply has not 

been received. It is also desirable to have a means for specifying that 

an online backup copy is requested for an object. 

Support changing patterns of !!!.!· We cannot expect an application to be 

written once and never modified. First, the system will grow by the 

addition of new nodes. Second, new patterns of use will arise involving 

existing or new pieces of information. Thus, we can expect 

synchronization and protection constraints to change with time. This 

change must not cause upheaval in the design of existing parts of the 

application. 

We want to emphasize that the envisioned programming system is not 

intended for the end user, but for the application builder (programmer), 

although in some environments (such as LCS) there is often little distinction 

between the two classes.of users. Also, it should not be necessary for all 

nodes in the distributed system to support the full language; each node need 

only support the appropriate (high level) internode communication protocol. 

4. COHERENCE VS AUTONOMY 

Since autonomy is such a basic property in our model of distributed 

systems, a natural question to ask is how much the coherence that we strive 

for in our project constrains the autonomy of individual nodes. The last 

section indicated that at least three levels of coherence are required: 

1) application level 

2) programming level for distributed applications 

3) inter-node communication protocols 
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The need for coherence on levels 1 and 3 is unquestionable. However, level 2 

may not be necessary, especially if the system is designed for a single 

specific application. Level 2 has been introduced as a result of a desire to 

provide an effective programming environment for implementation of a variety 

of distributed applications. Thus, the above question can be restated as: 

does this intermediate level impose any additional constraints on the autonomy 

of individual nodes7 Wa believe that it does not add new constraints, but 

merely divides the constraints into two categories: the constraints that have 

to be observed by the application progranaer, and the constraints that the 

application programmer QO longer has to be aware of, since the prograuming 

system handles them for him. 

Basically, autonomy has two different aspects: 

Operational Autonomy. A node can operate (at least to some degree) even 

while it is completely cut off the rest of the system. 

Administrative Autonomy. The owner of a node can exercise a certain 

degree of control over the use of the node even while the node 

participates in a distributed application. 

Both of these aspects have to be considered in the design of a distributed 

system; both interfere with the goal of coherence. 

A good discussion of the mechanisms needed to solve the problem of 

operational autonomy can be found in [MONT78]. Administrative autonomy is a 

broader and less understood issue. On the application level, administrative 

autonomy is associated with an individual or a group of people, users or 

project managers. Potentially, more than one autonomous project or service 

could be supported on the same node, or several nodes could form such an 

autonomous unit. The coherence required to join such autonomous projects or 

services is determined strictly by the application; there are also many 
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situations where, on the application level, local autonomy is completely 

supressed. Thus, the application limits the autonomy affordable in the 

individual nodes. The notion of administrative autonomy needs to be defined 

more formally; at the present time, only some practical examples of the 

possible manifestations of autonomy are given: 

Selection of the hardware components !lli! their configurations. Even if 

the overall system has to be homogeneous at the machine level, it is 

still necessary to select for each node a particular processor the amount 

of main memory and secondary storage, etc. Such decisions can be 

entirely autonomous; they weill depend mostly on the type and the amount 

of work to be done at the particular node, rather than being dictated by 

the obligation to support a common high-level language. 

Local ~oftware. In addition to supporting the common programming 

language and the inter-node communication protocols, additional software 

for local needs can be developed, maintained, and run on individual 

nodes. Also, the implementation of the common programming language and 

the communication protocols can differ from one node to another, as long 

as the implementation conforms to the specifications. It also may be 

possible that some nodes need not support more than only a small subset 

of the common language in order to be able to handle their parts of the 

distributed application. 

Naming. Each node can have its own independent way of naming its local 

objects. Lower level names may be completely inaccessible from outside 

the node. An application, however, may enforce a uniform one-level 

naming space. Alternatively, a structured name space may be used, where 

each name consists of the name of the node containing the object and the 

local name for that object. If the fact that the system is distributed 
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must be invisible to the end user, the name space seen by the user must 

be one-level. Somehow, however, this type of name must eventually be 

translated into a structured name space to locate the desired object. 

Thus the extent to which the autonomy in assigning names is constrained 

depends on the application. 

Availability of !Q£!!. resources. Each node can control access to its 

private objects (not part of the common application). Local control of 

objects that are part of the common application may be restricted by the 

application. Similarly, the need to use local hardware resources imposes 

constraints on the individual nodes; a node may not be free to refuse a 

request to perform some service in order to do some local work or 

disconnect for maintenance. While these constraints, due to the 

decentralized control of individual nodes, cannot be enforced physically 

at the moment of crisis, they can be enforced outside of the system, e.g. 

by legal means. 

5. MODEL OF DISTRIBUTED COMPUTATION 

fhis section presents a model of the universe of entities that take part 

in a distributed computation. We assllllle that each entity has an identity that 

is permanent; an entity can be referred to by giving its .!!.!!!.· We are not 

concerned here with all aspects of the behavior of entities, but rather limit 

our attention to questions concerning the locations of entities within the 

network and how entities can refer to other entities. 
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5.1 Types Of Entities 

The basic model of distributed computing provides two different kinds of 

entities: processes and everything else. A process is active, and is thought 

of as being the execution of a sequential program. Non-process entities, 

which we will call objects, are passive, i.e., they do not originate any 

activity. Examples of objects are integers, arrays, stacks, procedures, etc. 

Objects have a state (value) that may change. If the state can change during 

the object's lifetime, then the object is mutable. 

A process can communicate with another process by sending it a message. 

We assume that the syntax and semantics of message passing is independent of 

the nodes of residence of the two communicating processes (although certain 

optimizations can be performed by the system if both processes reside at the 

same node). A process can use an object by performing (invoking) an operation 

on it (or by invoking it if it is a procedure); again, the semantics of 

invocation is the same regardless of the nodes of residence. 

The decision about whether the entities used in the model of computation 

are all uniform or whether the model distinguishes different classes of 

entities is a fundamental one. Basically, the uniformity concerns the ways in 

wnich entities may be used (and may use other entities). In our model, two 

basic primitive operations are used: invocation and message passing. We 

intend that the semantics of invocation be distinct from message passing; the 

follow~ng sections will clarify the reasons for this distinction. 

An example of a computational model in which all entities are uniform is 

the Actor System [HEWI76]. In this system, every entity is an actor, and an 

actor is used by sending it a message that is also an actor. There is only 

one basic primitive, message passing, so our model seems more complicated. 

However, we believe that it is more natural than the actor model and will 
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therefore be easier for progranuners to understand. If programs built out of 

actors are examined, it is clear that there are "data-like" actors, 

"procedure-like" actors and "process-like" actors. We believe these 

differences are fundamental and should be reflected in the language in its 

semantics. 

5.2 Location Of Entities 

The universe of entities is spread across the physical nodes that make up 

the network. One important question concerns the location of entities: is an 

entity permanently located at a particular node, or can it move from node to 

node? 

To make a decision here, we must consider several issues: 

i. Earlier we discussed our conclusion, based on an analysis of 

applications, that the application programmers must be able to 

control the location of entities. Note that, at the least, this 

conclusion precludes automatic relocation of entities by the system, 

although relocation under program control would still be possible. 

ii. We are assuming that nodes are autonomous and possibly 

heterogeneous. Even under program. control it is possible to move an 

entity to an autonomous node only if that node is willing to accept 

it. Furthermore, if that node is different from the current home 

node of the entity, considerable translation may be needed to 

effectively move the entity. 

Therefore, we believe that entities should have a permanent location at 

some node in the network. An entHy comes into existence at some node (when 

it is created) and remains at that node until it ls destroyed. Moving an 

entity can be accomplished by having a program create a new entity and letting 
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it "take over" from the old one; however, the relationship between the two 

entities is not recognized by the system, and represents a higher level 

concept of identity than that introduced above. 

One consequence of this decision is that it will be easy for the system 

to cceate unique names for entities and to interpret entity names, since the 

node of residence can be part of the name. 

5.3 Restrictions On Referring To Entities 

An entity may refer to another entity by using or containing its name. 

For example, a process will have local variables that lll&Y contain the names of 

other entities (both processes and objects); as the process executes, it can 

use these names. A data object is represented by soae storage (at its node of 

residence), and some of this storage may contain names of entities (again both 

- processes and objects). 

In our model, the universe of objects is divided into mutually exclusive 

sets. A process is associated permanently (that is, for its lifetime) with a 

single specific set. The objects in this set are private to the process; the 

set forms the local address space of the process. 

~e have chosen the following restrictions on how the entities of the 

model can refer to each other: 

i. a process can refer directly only to its private objects 

ii. an object can refer only to the objects that belong to the same 

local address space. 

There are no restrictions on referring to processes: both processes and 

objects can name other processes. 

The above restriction can be enforced as follows: messages can contain 

the lt.imes of processes but not the names of objects. A model obeying this 
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restriction is illustrated.in Figure 1. The nodes labeled Pi are processes, 

while nodes labeled Oi are objects. Two kinds of directed arcs are shown. A 

solid arc from entity x to entity y means y is a process and x names y, while 

a dashed arc means y is an object and x names y. A process may (ultimately) 

refer to an object in the course of its execution if there is a path from the 

process to the object consisting entirely of dashed arcs. The set of all such 

objects form the local address space of the process. 

Our further restriction is that all objects in the same local address 

space must reside on the same physical node. Alternatively, a process could 

be allowed to perform an operation on an object whether that object resided at 

the same node or not. Invocation of an operation on a remote object can be 

made to work,* but has the disadvantage that what appears to be a simple 

invocation will involve internode communication, and therefore, can take a 

long time, and may even have slightly different semantics. In particular, a 

local invocation has two possible outcomes: 

i. the operation completed successfully 

ii. some error occurred. 

For an operation on a remote object, however, another kind of outcome is 

possible, in particular, if no reply is received from the remote node, it is 

simply not known what has actually happened. The message to or from the 

remote node could have been lost, or the node could have failed before, after, 

or in the middle of processing the request. 

* The invocation must take place at the object's node, since as discussed in 
the preceeding section the object cannot move to the invoker's node. 
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5.4 Guardians 

fhe model that we have developed thus far represents an abstract network. 

Processes are the nodes of this abstract network; each process, analogously to 

a physical node, has its private memory and can collllllunicate with other 

processes only by sending messages. 

The abstract network model has several advantages: 

i. The progran:lmer organizes the locations of en.titles by considering 

where to locate the abstract nodes, (e.g. each process with its 

local memory) • This seems easier than worrying about each entity 

individually. 

ii. Operations are always invoked locally. This is simpler to implement 

than remote invocation, and also avoids some arbitrary time delays.* 

iii. Management of storage for objects (e.g. garbage collection) can be 

done locally on each node. 

Although two processes cannot refer to the same object, they can share an 

object if they both name the process that can refer to the object. Such a 

process will be called a guardian. A guardian may guard one or several 

objects; its job is to synchronize possibly concurrent requests to perform 

operations on the guarded objects. In Figure 1, P2 is a guardian for 06 and 

07, which are shared by Pl and Pl. 

The abstract network model requires two extensions to be useful. First, 

tne requirement that local address spaces of processes are disjoint may need 

to be relaxed. There are two reasons why it might be desirable to have 

several processes in a guardian. First, the processes could provide 

* Of course, the operation activation might send a message, e.g. to some 
process whose name was contained in one of the input objects to this 
operatlon. 
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additional concurrency, which could be used to improve response. Second, a 

process could provide continuity. If a user and the guardian need to have a 

conversation, providing a process for the user to interact with would be a 

natural means of realization. The processes within a guardian would share 

objects directly. A guardian would be defined using a special syntactic 

construct, something like a serializer [HEWI77), that specifies the pro~esses 

making up the guardian and their intercommunication; all the processes in the 

guardian would reside at the same node. 

Second, in the case of a guardian that guards several objects, some 

efficient mechanism is needed that permits a user process to specify to the 

guardian the particular object of interest,* and for the guardian to determine 

that the object so specified is one it guards. Often no special mechanism is 

needed for this. For example, a query sent to a data base guardian names a 

record (or records) in the data base by means of a high level name. However, 

it appears that sometimes efficient, low level names are needed. Consider a 

guardian of a disk that provides logical tracks. When a user requests spme 

data to be stored on the disk, the manager returns the logical track number 

where the data is stored. Later, the data can be read by sending the logical 

track number back to the guardian. However, the logical track number must be 

one created by the guardian, and also must still exist at the time of the read 

request. 

The guardian construct can model different degrees of autonomy. For 

example, if a process requests an operation on data that are available only 

through the guardian, such a request may fail since the guardian may refuse to 

* Ihls should not be interpreted as a requirement that the system ought ~o 
guarantee that an object continues to exist as long as some user can specify 
it. 
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release requested data, or in some cases may even destroy the data at its own 

discretion. Also, a guardian does not have to know a priori about all 

processes that may request operations on the guarded objects. That is, a 

guardian can be a general server that accepts requests from any process or a 

class of processes. 

5.5 Summary 

In their recent paper, Lauer and Needham argue that message passing and 

procedure calling (invocation) are essentially equivalent, and consequently 

either can be used as the basic and only primitive in the implementation of an 

operating system [LAUE78J. As follows from our model, we believe that it is 

advantageous to have both. One reason is the semantic difference between 

local and remote invocations, as discusses earlier. However, the whole 

concept of the abstract network is based on the distinction between and the 

combination of message passing and invocation. The abstract network makes it 

explicit when an operation is to be performed on an object that belongs to a 

different set, where the difference may lie in the logical function of the 

set, protection constraints, or administrative responsibilities. For a 

distributed system that supports several different applications on highly 

autonomous nodes, the abstract network is an appropriate model. 

6. RELIABILITY ISSUES 

In the future, reliability will be one of the major issues in information 

processing sytems. This claim is based on two observations. First, the 

quantity of information entrusted to a COlllputer system is ever increasing. 

Second, the complexity of the operations performed by a computer is also 
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increasing. More and more organizations and systems are dependent on computer 

maintained information and a failure of these computer systems can often be 

critical. Thus high reliability is not just a requirement for real-time 

systems controlling space vehicles or industrial processes failure of which 

would endanger human lives. 

Reliability of an information processing system is not merely a question 

of software correctne·ss. Hardware failures, synchronization failures, and 

errors of the human users must be anticipated and handled gracefully. The 

only way to design a reliable system is to make it "fault-tolerant", or, 

robust in fa~e of a large variety of internal failures and misuse. 

Distributed systems are often claimed to be inherently more reliable than 

systems based on a large central processor. That is, given that a distributed 

system is properly designed, it offers better reliability. This claim is 

based on several factors. First, distributed systems by their very nature 

provide opportunities for redundancy. Second, error propagation is restricted 

by physical separation of processes and resources. And finally, individual 

nodes in the distributed system may be less complex than a large central 

processor and, as a result, ought to have lower probability of failures. 

Basically, distributed systems have a potential for being more reliable than 

systems based on a large central processor. However, this potential needs to 

be exploited through proper design. 

For the purpose of the discussion of reliability issues, the 

implementation of the abstract network introduced in the preceeding section is 

divided into two levels: the applicaton level and the system level. The 

system level is all the mechanisms needed to support the view presented to the 

application progra1111Der (that is, the hardware and software run-time support of 

the programming system). The level built on the top of this level using the 
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tools available to the application progral1111ler is referred to as the 

application ~· 

Reliability mechanisms are those mechanisms that assist in detection, 

reporting and recovery from errors and failures. An error is an internal 

state of an entity that, if special steps (recovery) are not taken, will 

result in a failure of the entity (or, in the case of data objects, failure of 

an operation on the entity). Some errors can be handl~d entirely by the 

entity itself, and thus remain invisible to other entities (e.g. users of that 

entity); such errors are said to be masked. Detected errors that cannot be 

handled internally should be reported to the users by signalling a failure. 

Undetected errors also turn into failures; it is possible that a user can 

detect this kind of failure, but the problem is much more complex than with 

the reported failures. 

To achieve reliable operations from the application point of view, both 

the system level and the application level have to include mechanisms for 

detection and handling of errors and failures. For each type of error, it is 

necessary to decide where it can be detected and how it should be handled. 

Some classes of errors, detected within the system level, can be masked, but 

for others a failure has to be reported to the application level. Other 

errors are application dependent and therefore, their detection and handling 

must be done at the application level. Basically, in the case of system 

errors, there is a gray area wnere a decision has to be made as to whether 

these errors will be masked by the system level or reported as failures to the 

application level. It may also be possible that an attempt to mask an error 

fails; it is necessary to decide if and how many times the system should 

repeat the attempt before reporting a failure. The important factors in these 

decisions are the cost and complexity of the maskirtg mechanisms on one hand 
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and the convenience to the programmer on the other hand. Both sides have to 

be carefully evaluated. 

The system must provide a means for detecting and correcting or reporting 

errors arising from the operation of the hardware and the software that 

supports the application programs. However, the system also has to provide 

suitable primitives for the application programmer to facilitate handling of 

the application specific errors and communication of the system detected 

errors to the application programs. 

6.1 Availability And Correctness 

Reliability has two aspects that, unfortunately, cannot always be 

separated; in particular, their solutions may conflict. One aspect is the 

availability of the entities needed to perform a specific task. The other is 

the correctness of the available entities; a very important special case is 

the integrity of the stored information. 

To assure correct operation, the system and the application must be 

prepared to handle errors that originate in lower levels, in particular, 

hardware faults and possible residual bugs in the software that comprises both 

the system level and the application level. It is also necessary to be 

prepared to deal with errors whose source is the user of an entity. Since the 

user may be a process running on another node, these latter errors may be 

caused by hardware or software failures in the user's node, or they may occur 

because the requesting process either doesn't know how to use the requested 

entity properly or is trying to misuse it intentionally. Thus, to ensure 

correct operation of an entity, it is necessary to ensure both that the 

operations on that entity are performed correctly in spite of possible 
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failures of the node on which the entity resides, and also, it is necessary to 

defend the entity from possible misuse by other processes. 

As described earlier, processes in different guardians can communicate 

only by sending messages. Objects can be manipulated only within their 

guardian. To protect an object from misuse, it is necessary to ensure that 

access is indeed limited to the guardian and that all incoming messages are 

carefully scrutinized to determine whether the request is reasonable and the 

effects of performing requested operations. Within the guardian, it is 

necessary to provide mechanisms that will protect the resource from being 

damaged or lost (made inaccessible) due to errors arising from the faults in 

the structures that implement the guardian. 

Availability is constrained by two factors: 

i. the efficiency of the system, that is, the actual physical delay and 

queueing time in the abstract network, and 

ii. failures in the abstract network. 

Availability has several connotations. Firstly, it is used to indicate 

whether an entity is useable, that is, if the respective process will execute 

the operation requested once the request is brought to its attention (e.g. 

gets to the head of the queue). Secondly, it is used to indicate whether an 

entity can be used i111Dediately 1 or whether there is a contention for the 

entity. Thirdly, and this aspect plays an important role in a distributed 

system, it may be used to indicate whether an entity is accessible. An entity 

may be useable and unused, but the path to it may be broken. 

[t is possible to translate all three aspects into the problem of how 

long Lt is necessary to wait for a resource. A useable entity may not be 

immediately available due to contention for the entity, but also due to long 

communication delays; if the communication path is broken, the communication 
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delays may be unusually long, even infinite. Similarly, if an entity is 

unuseable, the wait time for the entity to become useable may be very long, 

possibly infinite. Since in a distributed system it is not always possible to 

determine the cause of a long delay, the system may have to respond to poor 

performance (due to overload) in the same way it responds to functional 

failures of the resources and collllllunication paths. Thus, in a way, poor 

performance (due to overload) or turns into a failure! 

From all three of these aspects, availability can be enhanced if several 

instances (copies) of an entity are maintained at different physical nodes: 

i. Coping ~failures. If a node fails, or communication with a 

particular node fails, it should be possible for processes at other 

nodes to continue. That means that entities provided by the failed 

(or inaccessible) node have to be provided by some other node(s) in 

the remaining operational network (each operational partition of the 

network). 

ii. Coping with bottlenecks. Even if the nodes and the communication 

network of a distributed system never fail, a single instance of an 

entity may not provide sufficient availability. An entity may 

become a bottleneck; also, the c<>mmunication delays, especially in a 

long-haul network, may be substantial, and it thus may be desirable 

to have a local instance of the entity (and, consequently, support 

multiple copies). 

In the systems under consideration, the most important type of object is 

a data object. Maintaining multiple copies of data objects that need to be 

frequently updated represents a special problem. It is important to 

distinguish between failures and bottlenecks since the right solutions to the 

problem of mutual consistency are significantly different. In the first case, 

31 



only one copy needs to be actively used, that is, an object has a master copy 

and one or more backup copies. The changes made to the master copy must be 

propagated to the backup copies, immediately if every state of the object must 

be recoverable, or periodically upon special comm.and if in a case of a failure 

it is sufficient to back out ot some consistent state, not necessarily the 

last consistent state. In the second case, all copies must be available for 

active use. It ls often assumed that all copies must always be the same, but 

this requirement may defeat the very purpose for which the multiple copies 

were introduced: reduction of delays. The delay caused by synchronization of 

updates with other updates and accesses of multiple copies may exceed the 

delay that would result if only one copy were maintained. However, it is not 

always necessary to have the most current version of an object; the 

information obtainable from an older version may be entirely satisfactory. 

Thus it seems much more realistic to allow for multiple versions of an object; 

the local copy may not always be the most current version, but the most 

current version is known and a local copy of it can be obtained upon request. 

The system level ought to support, in a selective way, the kind of 

redundancy required to cope with failures. The other case is more complex and 

more application dependent. The fact that there exist several versions of an 

object may need to be visible not just to the application programmer, but to 

the application user. fhus, the solution should be left to the application 

level; the system, however, ought to provide mechanisms to make the solution 

possiole. A mechanism for maintaining multiple versions of objects in such a 

way that a consistent version of a set of objects can always be obtained was 

developed by Reed [REED78]. In addition, Reed's mechanism solves the problem 

of updates and backout in a distributed system in a most natural way. 
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However, to prevent loss of information, the most current version ought to 

have at least one backup copy. The scheme that combines multiple versions and 

backup copies is sketched in Figure 2. 

6.2 Reliable Communication Subsystem 

The communication sub.system is the part of the system level that delivers 

messages between physical nodes. This subsystem consists of the actual 

physical network of communication lines and of communication processes that 

control the delivery of messages. Figure 3 shows relationship between the 

abstract network and the communication subsystem. The application processes 

exchange messages that, logically, contain values of high level (abstract) 

objects meaningful at that level. The values of these objects have to be 

translated (encoded) into a string of bits for delivery to another node and 

decoded into the proper abstract objects at the receiving node. At the system 

level, messages, now in the form of bits, may have to be partitioned into 

packets. The messages are checksummed, so that transmission errors can be 

detected. It is difficult to correct transmission errors at the receiving 

node, since transmission errors are bursty (affect not just a single bit, but 

several bits). Checksum facilitates detection of errors, where the number of 

detectable simultaneous errors is determined by the size of the checksum 

field. Correction is performed through retransmission. In general, once a 

message has been translated into a string of bits, the protocols used by the 

communication processes should take care of the correct transmission, that is, 

either a correct message is delivered, or nothing is delivered. However, the 

primary responsibility for checking that a message has been acted on, that is, 

ensuring that a process that sent a message will not wait indefinitely, and 
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also that the message contains values acceptable fro~ the application 

standpoint,* must rest with the application. 

One of the most difficult problems in this type of distributed system is 

that unless an explicit reply (or an acknowledgement) is received, it is 

impossible to determine with certainty whether a message sent to a process at 

a different physical node has been received and if the receiving process has 

acted on it. The only defense against possibly waiting indefinitely for a 

response is to use a timeout mechanism. The sender of a message can specify a 

time interval after which it gives up waiting for the response; the timeout 

mechanism will alert the sender when such a time interval has elapsed. The 

possible reactions of the sender to a timeout event can be divided into two 

categories: the sender decides to give up the attempt to collllllunicate with the 

particular process, or, the sender decides to resubmit the request. Because 

of the uncertainty discussed above, it is possible that the first request will 

eventually be processed. Thus, in the first case, the request may be 

processed in spite of the sender's decision not to continue and may conflict 

with the subsequent actions taken by the sender after the timeout. In the 

second case, the same request may be processed twice, possibly leading again 

to an inconsistency. Thus, in situations where an inconsistency may arise 

form such internode requests, it is necessary to use special (often complex) 

protocols [LAMP76, GRAY78, REED78, MONT78, TAKA78). The question that arises 

at this point is if such protocols ought to be a part of the communication 

subsystem. We believe that many such situations represent special cases that 

* A message may contain a higher-level error: either a message has not been 
constructed properly by the application process (wrong command or wrong data) 
or the translation from abstract data to the bit representation has not been 
done correctly. 
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are more appropriately handled at the application level. However, our 

language should provide constructs for detection of duplicate messages at the 

application level. 

The reliability of the communication subsystem could be increased through 

the use of recoverable queues. That is, in addition to dealing with the 

communication errors that result in a loss or garbling of messages sent across 

a physical communication link, the cOllllllunication subsystem can guarantee that 

messages that have been presented to it by the application processes and 

queued for delivery (that is, messages accepted by the communication 

subsystem) will not be lost if the node fails. This degree of reliability may 

be important if translation from an abstract data object to the corresponding 

bit representation is a costly operation, or if the input to such a 

translation step is not automatically repeated (e.g. message typed by a user). 

This argument can be extended to the requirement that the communication 

subsystem should guarantee delivery of all messages it has accepted from the 

application processes. That means that in addition to providing recoverable 

queues for messages that have not been sent yet, the communication subsystem 

must continue trying to send the queued_ messages until it eventually 

succeeds. At the receiving node, the messages have to be stored again in 

recoverable queues until they are picked up by the target application process. 

Unless the target node is disabled permanently, it is possible to ensure that 

each request either will be processed or it can be determined that the request 

could not be processed and why. Of course, the sending application process 

may have to wait for a long time for the outcome of its request, so it may 

still be desirable to use a timeout on the application level. 

The reliability mechanisms do represent potentially large overhead, and 

their use should not be imposed on all communications. The basic 
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communication scheme should be simple, fast, and inexpensive. Rather than 

insisting on the guaranteed delivery scheme, we will investigate whether it is 

possible to vary the degree of reliability provided by the system by letting 

the application programmer choose from several different protocols, where such 

protocols would be implemented as extensions (abstractions) built from the 

basic protocol. 

7. PROTECTION ISSUES 

In the class of distributed systems considered in our project, a likely 

case is that a particular node is utilized by one user or at most by a set of 

cooperating and mutually trusting users. In this case, intra-node protection 

mechanisms are not required to have power sufficient to protect against 

subversion and malice. This is in strong contrast to a system such as Multics 

[SALT741, and many other time-shared and multiprogrammed systems that were 

designed to operate properly with a set of mutually hostile users. What is 

required within a single node is a mechanism that protects against error and 

forgetfulness. Inter-node protection, on the other hand must be able to deal 

with the potentially hostile environment: 1) individual nodes are autonomous, 

that is, it is not possible to assume tnat they will behave as desired by 

other nodes, and 2) the communication lines between nodes in general cannot be 

physically secured. 

We assume that a capability mechanism will be the basic mechanism used 

for intra-node protection. By capability we mean an unforgeable identifier 
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for an object that identifies the type of the object* and that must be 

presented as part of addressing an object. By constraining a procedure to 

execute with a limited collection of capabilities, it is easy to guarantee 

that the procedure will not do arbitrary damage to stored information. 

In the context of our model, the efficiency of capabilities in comparison 

to an alternative mechanism such as access control lists becooies very 

i~portant. Since we assume a world with a large nwnbe~ of small objects, it 

is clearly impossible to imagine that every object comes complete with an 

access control list; the overhead of the access control might be substantially 

larger than the object itself. Capabilities, on the other hand, need be no 

more than slightly enlarged addresses. We thus propose that the intra-node 

protection mechanism is based on capabilities, with some sort of capability 

cataloging mechanism playing the role now associated with the traditional file 

system. 

The inter-node protection is more a matter of policy than of mechanism. 

We believe that protection between nodes should be based on an access control 

list mechanism rather than a capability mechanism. This claim is not based on 

difficulty of implementation; either mechanisn can be imagined. Rather, it is 

based on our perception of the high level needs of distributed applications. 

A fundamental way to characterize the difference between capabilities and 

access control lists is that capabilities do not provide any easy answer to 

* "Capability" if often used to mean more than an unforgeable identifier: a 
capability may also include a specification of the access rights, that is, a 
specification of which of the operations defined for the type of the object in 
question are acutally allowed on that specific object. Alternatively, access 
control could also be achieved by making the object appear to be of the type 
that imposes the desired restrictions. The desirability of including the 
access rights in the capability and the feasibility of the other approach 
(especially in connection with providing different "views" of data bases) will 
be investigated. 

39 



the question "Who are all the people who can get to this object?", while 

access control lists make it very difficult to ask the question "What are all 

the objects that I can get to?". If one considers real world protection 

problems, including those drawn from dOGlains other than the computer domain, 

the more workable model of protection generally turns out to be that based on 

access control lists. While capabilities are often used in the real world, 

the most obvious example being keys, the drawbacks are well known. Keys are 

subject to unauthorized duplication, loss, theft, etc. More relevantly, 

capabilities (or keys) do not provide a means to support accountability. 

7.1 Protection In The Abstract Network 

The intra-node protection problem, while less severe than the problem 

that results from fully suspicious cooperation, is still not trivial. The 

programmer must be provided a means of partitioning his computations, so that 

certain objects are accessible only in certain computations. This mechanism 

will allow him to debug new versions of software without running the risk of 

destroying existing objects; however, such a mechanism is also desirable after 

the debugging stage, to limit the effect of undetected (unreported) failures 

that may arise from residual bugs or hardware failures.* 

The abstract network presented in Section 5 assumes such a partitioning: 

the local address spaces of individual guardians define protection domains 

that are assumed to be mutually exclusive. Thus, the guardian (abstract node) 

is an important logical unit of protection. Within a guardian, it is 

sufficient to provide only the simplified capabilities discussed earlier. 

Between guardians only messages can be exchanged; there is no physical sharing 

* This subject is also included in the discussion of reliability issues. 
Indeed, there is a strong overlap between reliability and protection, both in 

·their definitions, and in the mechanisms used. 
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of data. A guardian can scrutinize all incoming messages, and, using access 

control lists and authentication, can validate the request. However, not 

e~ery guardian need use this form of protecton. Just as the implementation of 

a procedure can make use of procedures, so may the implementation of a 

guardian be defined in terms of other guardians. Thus, some guardians are 

more autonomous than others; by design, some guardians will receive messages 

only from "friendly" guardians. Therefore, the system.cannot automatically 

enforce protection constraints either at physical node boundaries or at 

abstract node boundaries. 

An important consideration in maintaining autonomy of the individual 

nodes in a distributed system is the cJatrol over installation of the 

guardians. We are assuming that guardians are always created at the same 

(physical) node as the creating guardian (process).* Remote guardians can be 

created only be requesting some already existing guardian at the remote node 

to do the creation. This approach implies that each node must come into 

existence with (at least) one guardian, the primal guardian. The primal 

guardian is tailored by the owner of the node, prior to adding the node to the 

network, by specifying who has the right to install guardians at that node as 

part of a particular application. 

7.2 Protection Agents 

Let us look now at the inter-node protection problem from a slightly 

different viewpoint. It will be a rare case where a request occurring between 

nodes consists of nothing more than the reading or writing of a single 

primitive object. In most cases, we can expect the request to be composed of 

an aggregate of reads and writes on various objects, which the requesting node 

* The same is true for objects. 
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views as atomic. This is generally referred to as an atomic transaction. The 

thing that must be protected from outside is the right to execute this atomic 

transaction. It is possible that the isolated reads and writes required as 

part of this transaction are not legitimate for the outside user except as a 

part of this or some other transaction. A typical example is a situation 

where the user is allowed to see some statistics but not the individual items 

in the actual set from which the statistics are divided. 

To express such higher level protection constraints concisely, the 

language used to describe the inter-node requrests must have primitives that 

will it easy to confirm whether or not a proposed transaction falls within the 

bounds of the outstanding protection constraints. Alternatively, it is 

possible to visualize inter-node messages that contain an arbitrary algorithm 

expressed in terms of a sequence of operations on a set of objects; such an 

algorithm would have to be examined and confirmed at the receiving node before 

execution to ensure that it conforms to the higher level security constraints. 

However, the construction of a verification algorithm that ensures that an 

arbitrary program conforms to one of the number of high level protection 

constraints would be a challenge to the most optimistic of the program 

verification researchers; thus this ~pproach must be rejected. 

We postulate the idea, common in data management systems, that different 

users of a data base have different views of the data base, of ten called 

different data models. From the outside, the data model appears to describe 

physically stored information and the acceptable operations on it. However, 

internally, the data model may have little correspondence to the information 

actually stored. Rather, it may be realized as algorithms that derive the 

modeled data from the shared information. Thus, we see users first being 

divided into large groups, based on which data model they use, and then within 
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those groups being further divided according to which operations they can 

perform on the data model provided. For example, some users may be able to 

read certain records, others to read and write them. Each data model implies 

the existence of an algorithm to translate between that data model and the 

stored information. It is .these algorithms that must be provided in advance, 

one set for each data model. The progra11111ing system must provide facilities 

for creating such data models, mapping them into the actual stored 

information, and synchronizing read and write operations originating from 

different data models. 

Higher level protection constraints can be expressed through the use of 

abstract types.* Users of an abstract object are permitted to manipulate the 

object only through the operations defined by the object's type; in reality, 

an arbitrary computation may be performed on a possibly large number of 

objects that constitute the representation of the given abstract object. In 

addition, individual users may be restricted to only a subset of the 

operations defined for an abstract type. However, the concept of the data 

model calls for yet something more. The traditional view of data models 

permits a low-level information entity to be shared by different users through 

a variety of data models. To support this view via abstract types, it must be 

possible to manipulate a single low-level object as part of a number of 

different abstract data objects, depending on the rights of the different 

users.** The idea of data models is that different users have different views 

* Several research projects on the use of abstract types in impleaentation of 
data base management systems are under way (SMIT77, SCHK77). 

** This can be a very difficult problem. In the context of relational data 
bases, for anything but very simple views, "propagation of updates from views 
to base relations becomes complicated, dangerous, and aoaetiaes impossible" 
[CHA.'t75]. 
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of the world, but fundamentally, they do turn out to be views of the same 

world. Thus, in some sense, they must ultimately rest on the same physical 

data. 

The inter-node protection can be enforced as follows. Any outside user 

(process) perceives the information in a particular (abstract) node as a 

number of objects that he can manipulate independently, and a set of 

permissible operations on those objects. These externally visible objects are 

arranged in such a way that there are no explicit protection constraints that 

tie one object to another. A message arriving at a node to manipulate one of 

these objects must be processed by some active entity (e.g. a process) that 

confirms that the requestor of the action has the right to perform i~, and 

then implements the operation at the node by invoking operations on other 

objects, not directly accessible from outside. We will refer to this entity 

as a protection agent. The protection agent could be the same entity as the 

guardian. The guardian, however, presents only a single view of the guarded 

objects. The protection requirements described above lead to a model outlined 

in Figure 4. In this model, the high level protection function is separated 

from the low level protection and synchronization function of the guardian. 

The protection agents represent different view.a of the guarded objects. The 

guardian controls the actual physical access to the guarded objects; it 

imposes synchronization constraints on requests passed to it from the 

protection agents. 

While there are an infinite number of protection checks that the 

protection agent may wish to perform in a particular case, there are three 

checks that can normally be expected to occur. First, the protection agent 

will wish to confirm that the originator of the message has the right to 

invoke the protection agent at all. Second, the protection agent may wish to 
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Figure 4: Inter-node protection mechanism: the remote process 
P (node N2) can reach the objects guarded by G (node Nl) 
only through the protection agent B. 
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confirm that the particular object or objects involved in the operation 

requested are indeed accessible to the requestor, and third, that the 

particular operation to be performed on the object is permitted for the 

requestor. For example, a data base manager may wish to confirm that the 

requestor can invoke it, that the particular record being manipulated is 

accessible to the requestor, and whether or not updates or just reads are 

permissible for that requestor. In any particular case, one or more of these 

steps may be omitted. Thus, for example, provided that a user has a right to 

invoke a protection agent at all, he may have the right to manipulate any 

object normally made accessible through that agent. He may also be permitted 

to perform any of the operations defined on the objects. In this case, only 

the first of the three tests need be performed. 

We should now pause and consider how this representation of protection 

meshes with the conclusion drawn earlier that inter-node protection should be 

expressed in terms of access control lists. Clearly, the use of access 

control lists implies that the protection agent must be able to determine 

reliably the originator of every message. Using the terminology developed for 

characterization of protection mechanisms in a centralized system, we will 

assume that every message, at its origin, has associated with it a principal 

identifier, which identifies the entity to be held accountable for the request 

in the message. Some technique such as encryption will be used to ensure the 

believability of the principal id by the recipient of the message, if the 

message has originated from. a different physical node than the recipient 

[KENT76, NEED78J. Using the principal id, the first protection check 

described above is easy to implement. We can associate with every protection 

agent an access control list, and insist that the principal identifier 

associated with the message be on that list before the protection agent can be 
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invoked at all. The second test, that of ensuring that this principal is 

allowed to manipulate the particular objects in question, can be handled in a 

variety of ways. One obvious technique is to associate with each entry in the 

access control list, a list of all the·objects that the particular principal 

is allowed to use. The protection agent can then refer to the list to 

determine the access privileges of the requestor. If the third type of 

protection check is required, it can be implemented as part of this same list, 

by associating with the entry for each object a notation describing the 

operations that this principal is permitted to perform on that object. 

8. LANGUAGE CONSTIWCTS 

rhe desirability of various kinds of language constructs has been pointed 

out in several places in the preceeding discussions. We see the language 

design to be the main vehicle of our project. The language has to provide an 

effective interface for the application programaer, while at the same time it 

is necessary to take into consideration all the problems arising from the 

distributed processing envirotllllent. This section presents some examples of 

the planned language constructs. 

Guardians will be a major type of module available for program. 

construction. A guardian is a program whose purpose is to protect a resource. 

For example, a guardian might guard an entire data base, a partition of that 

data base, a physical resource, e.g. an I/O device, or an abstraction of such 

a device. The guardian may be thought of as a local collection of processes 

and data; the processes within the same guardian eay share the data, but they 

communicate with processes in other guardians only by message passing. As was 

said earlier, a guardian Ol8Y be implemented in terms of other guardians. The 
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user of a guardian is aware of its behavior: the kinds of messages that can 

be addressed to (processes in) it, and the kinds of repsonses it makes to 

these messages. The fact that the guardian is implemented in terms of lower 

level guardians is invisible to the user. 

An important issue in 'designing a language for a distributed system is 

the primitives for sending and receiving messages. The basic scenario in the 

abstract network is one process sending a message to another process 

requesting some action; later there should be another message, flowing in the 

other direction, indicating the result of the action. It must be possible to 

express in the language that a particular message is a reply to another 

message. In addition, it is necessary to address the problem that the reply 

may never arrive, or that the request message cannot be sent. Possible 

approaches differ in how long (for what event) the sending process must wait 

before it can proceed. Closely related to this degree of waiting is how the 

language will handle failures. 

8 .1 The Send Comm.and That Wai ts For A Reply 

In this approach, the sending process is forced to wait until the 

response comes back from the receiver, or some timeout or failure results. A 

possible syntax might be: 

~ C(args) !2. A Timeout Time: 

Rl(formals) Q2. Sl; 

R2(formals) Do S2; 

failure (formals) .Q.2. Sfailure; 

timeout Q2 Stimeout; 

End· _, 
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Here A is a process and C(args) is the message, consisting of a command, C, 

and some arguments. The remainder of tbe construct lists tbe various possible 

responses, together with the appropriate action to be taken by the sending 

process. Rl, R2, etc., are responses for A; some might be normal, and some 

abnormal. "Failure" covers various failures that are detected either by the 

system or by the receiving process A. The arguments of "failure" specify the 

type of failure. Some examples of a detected failure are: 

a) the message as specified cannot be constructed, 

b) the specified process (A) no longer exists, 

c) the target node is inaccessible, 

d) congestion (the target node of the target process (A) does not have 

enough buffer space), 

e) the message cannot be decoded (the abstract objects contained in a 

message cannot be reconstructed). 

Which of these failures are visible at the application level depends on the 

design of the system level. As discussed in Section 6, the system level might 

be designed in such a way that message delivery is guaranteed. This would 

eliminate the need to cope with the failures of the type c and d at the 

application level. 

The timeout action is taken if "time" is exceeded. If the system is 

designed for guaranteed delivery, the timeout action that terminates the send 

collllll8nd should release the buffers in which the system keeps the message for 

delivery to the target application process. It should be understood that this 

timeout is for the pair of aessages to be exchanged between proces&es in the 
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abstract network; a different timeout value is used in the underlying system 

to govern retransmission of packets.* 

A different kind of "send" co111Rand is needed in the receiving process, 

since the receiving process must be able to respond to the command without 

waiting for the original sender process to respond back. To receive messages, 

A might use a construct: 

COllllland ~ 

C(formals) Do ••• reply R(args); ••• ; 

End· _, 

Here, A is waiting for one of a number of messages; if several are available, 

one is selected in a fair way. The message is then decoded, the contained 

data assigned to the formals, and the statements associated with the selected 

message are executed. The above form of Reply Command sends a message back to 

the process that sent the message; the identity of the process to reply to is 

automatically extracted from the received message. Another form of reply: 

Rep!!. R(args) !,Q. B 

that explicitly names the process to reply to will probably also be needed; 

this would permit a third process to be the replier to the original sender. 

The approach sketched above has the obvious advantage of pairing sends 

and receives. It also has some obvious disadvantages~ For one thing, there 

* Ihe "timeout" parameter presents a rather difficult programming problem -­
it requires the programmer to be aware of the physical timing of the 
communication subsystem and the time needed by the recipient to process the 
request. However, unless the guaranteed delivery approach is adopted, this 
timeout is essential to cope with failures. Although, as argued in Section 6, 
some form of timeout is also desirable in the guaranteed delivery scenario, 
possibly a more intelligent way of specifying a timeout condition could be 
devised. 
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are two send commands. More important, however, is the loss of parallelism. 

If the sending process has other tasks to do while its request is being 

processed, it must either not do them, thus reducing efficiency, or it must 

spawn another process to do these tasks. Thus a language supporting this 

approach must provide rich facilities for paralleliB11l.* 

8.2 Separation Of Send Command And Reply Processing 

The second possible approach is the opposite of the waiting approach: 

the sending process does not wait at all but continues running, performing 

actions on local objects, or possibly sending more messages. Only when it 

needs a response that is not ready, it will have to wait. The language now 

has to provide additional constructs that allow the progr8lllller to distinguish 

which response goes with which request and to specify that the process wishes 

to wait for the reply to a specific message, rather than a reply to any 

message that may have been previously sent. 

There are various ways in which these problems might be solved. For 

example, send commands might be labelled: 

Sl: ~ Cl(args) !2_ Al; 

S2: ~ C2 ( args) !!?. A2; 

~ Sl Replies: ••• ; 

In this approach, each~ COllllland has a continuation (as in Actors [HEWI76]) 

that can be named to identify the responses of interest in Replies. Following 

Replies Would be the list of alternative responses, as shown in the preceding 

section, to the message sent by statement Sl. Note that the errors arising in 

* Note: this is not the only reason for which such facilities for parallelism 
might be needed. See the discussions of guardians. 
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turning Ci(args) into a message would be exceptions (abnormal terminations) of 

the~ Command; failures such as (c), (d) and (e) described earlier would 

have to be reported outside of the~ eo ... and (in lleelies). 

Another possible approach is to use ports: 

~ C(args) !.2. A Reply-!.2_ P 

where P is a port that can be named by more than one ~ Comm.and. Ports 

offer flexibility in expressing different patterns of requests and replles, 

both between a single pair of process~& and in cases where a process 

communicates with several other processes. 

This approach permits parallelism and is more flexible, especially in 

connection with ports. However, the linguistic mechanisms needed to enable 

the programmer to do the matching introduce extra complexity; how much 

flexibility is gained and how much complexity is added requires further study. 

Note that this approach does not eliminate the need for supporting timeout, 

but now the timeout is specified at the point where the process must wait for 

the reply. 

8.3 The In-Between Approach 

The third approach is to make the sender wait for some indication about 

the progress in the delivery of the message instead of waiting for the reply 

from the target process. For example, in Hoare's language [HOAll.77), the 

sender waits until the replier receiVdti the message. 

The first question to ask is: does this approach offer the programm.er 

any advantages over the other two approaches? Since sends and replies are not 

explicitly paired, from this point of view in the in-between approach offers 

similar advantages and disadvantages as the no-wait approach described in 

Section 8.2. What is gained over the no-wait approach is that certain 
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failures, for example (c) and (d), or possibly even (e) can be treated as 

exceptions of the send command. More importantly, the completion of the send 

comm.and indicates that a meaningful message (to some extent) has been 

received. However, the completion of the send does not guarantee that the 

message will be processed (e.g. the receiver's node might fail i11111.ediately 

after the message is received). It should be noted that there is a 

substantial loss of parallelism over the no-wait approach. 

The in-between approach is often advocated on implementation grounds, as 

a means to prevent flooding of the receiver. Flooding means that messages are 

delivered faster than the receiver can process them. Since the buffer space 

of the receiver is always limited, either some control must be provided to 

stop the flow of messages or some messages must be discarded. In a system 

with shared memory, a very efficient implementation is possible, namely, each 

process has one send buffer, and the message is held there until the receiver 

wants it. In a system without shared memory such as our distributed system, 

this approach is clearly impractical, since extra messages would be needed to 

inform the communicating parties that a message is ready (sender to receiver) 

and that it can be transferred (receiver to sender). 

To conclude, the in-between approach does not seem to offer any real 

advantages. The waiting approach, while simpler, is more limiting from the 

point of concurrency and flexibility; thus we believe that we should provide 

the type of constructs outlined in Section 8.2. 

9. SU..URY AHO FUTUU WOllK 

!his report presented a basic conceptual model of distributed computation 

in an environment where the individual nodes of the underlying network are 
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autonomous and may be spread over a large geographical area. Several 

important language and system issues were discussed, including reliability, 

protection, and the language constructs for sending and receiving messages in 

the abstract network. We tried to justify our decisions regarding each 

individual topic; of course, these decisions may be modified as we gain more 

experience with the use of distributed systems. 

It should be realized that many of the issues that are being attacked in 

our project go beyond the area of distributed systems. The integration of a 

programming language and an operating system is one of these issues. The 

problem of such a "total environment" has not yet been solved satisfactorily 

even for a single processor system; in the case of distributed systems, the 

design task is even more difficult. However, while for a centralized system 

the total environment is a desirable feature, we believe that for a 

distributed system it is an essential property. 

The work continues on several levels. To get a better understanding of 

what it means to do distributed computing, we must implement some distributed 

applications. This means that we need a language that will facilitate such a 

task. The CLU language [LISK77) is being extended to incorporate the guardian 

construct and corresponding message passing primitives. Extended CLU will 

serve as an experimental base for both the language work and the design of the 

reliable system support. Through this experiment, we hope to determine the 

effectiveness of different types of language constructs and their 

implementability on conventional hardware. Thia experience will be used to 

improve the language, and possibly to guide a design of a more hospitable 

machine architecture. 

On the system level, research concentrates on high level protocols and 

mechanisms needed to achieve reliable operation. The feasibility of using 
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some of the recently developed approaches to providing atomic operations 

[REED78; MONT78; rAKA78) in real systems is being investigated. Other issues 

include naming and copying objects in the abstract network [SOLL79), the 

guaranteed delivery support, and the use of backup copies. 

Ultimately, the succes.s of our programming system will depend on its 

usefulness in constructing distributed applications. In addition to a design 

of distributed implementation of several small scale &$1Dple problems, we 

envision our system to be used in implementation of a substantial distributed 

application; one of the primary candidates in an "office-automation" of our 

laboratory. This last project is dependent on two other projects within LCS: 

development of a local area network and development of advanced nodes for a 

distributed system. These two projects will provide the hardware base 

necessary for experimentation with distributed processing. 
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