
;

PED Primer

(8/73) LO LERNPED - 1

Contents

1. Introduction

2. Getting on and off the PED System

3. Permanent File Operations

4. The READ Conrnand

5. Text Output Corrmands
5.1 Displaying Fi le Contents
5.2 Copying to a Local File

6. Line-Oriented Editing Commands
6.1 Line Insertion
6.2 Line Deletion
6.3 Line Replacement
6.4 Line Copying and Hoving

]. String-Oriented Editing Commands

8. More
8. 1
8.2
8.3

about PED
Address Bounds
Environment Control
Options

9. Batch PED

Appendix - Instant PED

Page

3

4

5

6

7
7
7

8
8
8
9

10

11

12
12
14
15

15. 1

16

(8/73) LERNPED - 2

i

1.0 Introduction

PED, the Purdue Editor, is a text-editing system which can be used as both
a batch job processor and as an interactive system with input via remote terminals.
PED contains facilities to retrieve and save text information in permanent files
and to manipulate local files which contain text. Text may be edited by reference
to either the line numbers of the text or to the contents of text lines.

A complete description of the PED system is available in PUCC document LO-PED.
This 11 PED Primer" is merely an introduction to PED and omits many conrnands and
options in an effort to make the document readable in one sitting, but still give
some idea of the power of the system.

LERNPED - 3

2.0 Getting on and off the PED System

PED may be executed as a subsystem of PROCSY, the Purdue Remote On-Line
Computing SYstem. Document LO-PROCSY is an introduction to PROCSY and in
cludes a discussion of how to log on to PROCSY from a remote terminal and
how to enter the PED system.

To enter PED from the PIRATE system, one simply types

+++PED

Upon entry, PED will respond with the log-on time and date, possibly some
news messages, and an asterisk. The asterisk is a signal from PED which ·
indicates that it is ready for a coll1lland from the user. An asterisk is
issued upon completion of every coll1lland.

To end a PED session, the coll1lland TERMINATE should be used as follows:

*TERMINATE

PED will check to make sure the user has saved his files. If he hasn't, PED
will ask the user if he Is sure he wants to terminate. The user may then
type YES or NO as appropriate.

Command names may be abbreviated to their initial letters as described
in the appendix to this Primer. In the case of the TERMINATE command, the
letter T is enough to uniquely define the intended operation. Therefore,
the commands

are equivalent.

*T
~ERM

*TERMINATE

\
l

(8/73) LERNPED - 4

3.0 Permanent File Operations

The typical PED session begins by retrieving the users current text file
from permanent files and ends by saving the revised text file in permanent files.

The general form of the PED corrmand to manipulate permanent files is:

FILE parameters

where "pa rameters 11 a re keywords and opt ions which a re processed as on the PFILES
control card which is described in document QO-PFILES. lmbedded blanks are not
allowed within PED corrmands.

Some examples of using permane.nt files from PED are:

*FILE(GET,MYFILE)
The file MYFILE is copied from the user's library and made a local file.
The file is left positioned at its end.

*FILE(REW,TEMP)
*FILE(PUT,ABC,W=C02A,X=TEMP)

The local file TEMP is rewound (by the FILE(REW, •••)) and then a copy of it
is saved in the user's library as file name ABC with write key C02A.

*FILE,DELETE,FILE3,A=12345,N=SMITH.
The permanent file FILE3 is deleted from the library with user name SMITH
and account number 12345.

FILE conrnands must be terminated by either a right parenthesis or a period.
Otherwise PED will type the message ILLEGAL TERMINATION CHARACTER with an up
arrow pointing to the offending character.

Files are stored in libraries associated with account numbers and user names.
There are restrictions on how much can be stored in each such library. These
restrictions and other valuable information about the permanent file system are
discussed in document QO-PFILES.

LERNPED - 5

4.0 The READ Command

Although any number of local files may be used for input and output during
a PED session, PED's text-editing capabilities may be applied to only one file.
This file is called the internal~ and it is initially empty. The READ com-
mand is used to copy the contents of a local file to the internal file. By READing
several local files, the contents of those files may be concatenated in the internal
f i 1 e.

The simplest form of the READ command is:

READ, file

where 11 file 11 is the name of a local file. This cormiand instructs PED to read
the contents of one logical record of the named file and add the lines obtained
to any existing text in the internal file. The named file will automatically be
rewound. PED will assign line number 1.0000 to the first line in the internal
file and increment the others by 1.0000. The maximum allowable number of char
acters per line is 140. The maximum allowable content of the internal file is
approximately 13,000 SO-character lines.

An example of using the READ command is:

*READ,MYFILE

The above command instructs PED to rewind and then read the contents of one
logical record of the local file MYFILE and add the lines obtained to the exispng
in te rna 1 text.

Hence, the typical PED session will begin by using the following type of
sequence of commands:

*FILE(GET,MYTEXT)
*READ,MYTEXT

LERNPED - 6

5.0 Text Output Commands

The text in a users internal file may be displayed at his terminal and
written to a local file by using the PRINT and WRITE commands respectively.

5 .1 Displaying Fi le Contents

The PED convnand to display every line of text in the users internal file
at his terminal is:

Each line is preceded by its line number and an equals sign. To avoid the line
numbers and equal signs, the word LIST should be used in place of PRINT.

To display a block of text Jines rather than the entire file, address bounds
may be specified as a prefix to the corrrnand. For example·,

*150,210PRINT

displays only the text between lines 150 and 210 inclusive.

-!c260PRINT

displays only line 260.

A 11 CTRL-B 11 may be typed at any time to terminate the display of text 1 ines. Out
put will not stop immediately, but should stop before three more lines are printed.
Sometimes a 11 CTRL-B 11 must be repeated for it to take.

5.2 Copying to a Local File

The contents of PED's internal file may be copied to a local file by using
the WRITE command. The simplest form of this command is

WRITE, file

where "fi Je 11 is a name for a local file. This command instructs PED to rewind the
specified file and to copy the current internal file to it as one logical record.
The file is then left positioned at its end-of-record.

A typical example of using the WRITE command to save the internal file in
permanent files is:

,.cWRITE,MYFILE
*FILE(REW,MYFILE)
*FILE(PUT,MYFILE)

If you don't rewind a file before saving it, an empty file will be stored and no
warning message will be issued.

~

\ LERNPED - 7

6.0 Line-Oriented Editing Commands

This section is concerned with those PED commands which edit the text in
the internal file by taking an entire line as their smallest unit. Commands
of this type include those which insert, delete, replace, copy and move blocks
of lines.

6.1 Line Insertion

A general form of the PED command to insert one or more lines in the internal
file is:

line INSERT increment

where 11 line 11 is the line number after which the insertion is to take place and
"increment" is the amount by which consecutive inserted line numbers should be
displaced (if possible).

An example of using the INSERT conmand is:

*5 INSERTO. 1

*

5.lOOO=first inserted line is typed here
5.2000=second inserted line is typed here
5.3000=$

The above example causes two Jines (with numbers 5.1 and 5.2) to be inserted in
the internal file. PED automatically types the new line numbers and an equals
sign. The user signals the completion of the insertion by typing the character $.

If an increment is not specified, PED selects an appropriate one. Whether
or not an increment is specified, PED may decrease its value as the INSERT progresses
in order to prevent a new line from having a line number greater than the one
which originally followed the "line" of the INSERT.

One way of creating an internal file from scratch is to type INSERT without
a 11 1 ine 11 or an "increment". PED wi 11 supply 1 ine numbers to the user who can
then type in his information as required. However, the most efficient method of
creating a large internal file is to punch it on cards, store it in PFILES and then
access it by the FILE command.

6.2 Line Deletion

A general form of the PED command to delete one or more lines from the internal
file is:

1 i nes DELETE

where "lines" is required and is either a single line number or two line numbers
separated by a comma. The single line number indicates only one line is to be
deleted and the pair of line numbers indicate that all lines inclusive between the
two are to be deleted.

LERNPED - 8

Some examples of deleting Jines are:

*18DELETE
delete 1ine number 18.

*45,73DELETE
delete a11 Jines between 45 and 73 inclusive.

The most efficient way to delete a11 Jines in the internal fi1e is to use
the command PURGE as fo11ows:

*PURGE

6.3 Line Replacement

A general form of the PED command to replace one or more Jines in the internal
f i1e is :

J i nes REPLACE

The REPLACE command is a combination of the DELETE and INSERT commands. Each
11 1ine 11 specified is first DELETEd and then PED accepts a new 1ine from the user
as with the INSERT colTIT\and.

An example of using the REPLACE command on a fi1e with 1ine numbers 4, 5, 5. 1.
5.2, 6 and 7 is:

*5,6REPLACE

*

5.0000=first replacement 1ine
5.1000=second replacement 1ine
5.2000=third replacement 1ine
6.0000=fourth replacement line

PED automatica11y types the line number and equals sign to prompt the user. The
above example causes lines 5, 5.1, 5.2 and 6 to be replaced.

The replacement of lires may be terminated before the exhaustion of 1ine num
bers in the specified bounds by typing$ as in the following example which again
assumes line numbers 4, 5, 5.1, 5.2, 6 and 7 are present:

*5 ,6REPLACE

*

5.0000=first replacement line
5.JOOO=second replacement line
5.2000=$

The preceding example causes lines 5 and 5.1 to be replaced, but leaves lines 5.2
and 6 untouched.

The replacement of only one line is signaled by using on1y one line number
in the REPLACE corrmand as follows:

*5REPLACE
5.0000=replacement line ~

* LERNPED - 9

-

6.4 Line Copying and Hoving

A general form of the PED command to copy a block of lines is:

lines COPY number

where "lines" delimits the ?lock to be copied and "number" is the line number
after which the copy is to be inserted. The , line numbers and text within "1 ines 11

are not modified. "number" may not lie within "lines".

PED automatically determines the line numbers to be used for the copied
1 ines. There must be a sufficient number of unused.:. 1 i(le numbers between "number"
and the following line to allow all of the copied linei~to be inserted. No line
is copied unless all can be copied. For example it woula 'l"lot b~ possible to copy
a block of five lines to those lines between line numbers 2.995 and .3.000 inclusive.

For the fol lowing example, assume that there are 100 1 ines in the i.nternal
file, numbered from 1.0 to 100.0 in increments of 1.0. Then the PED command

··,

*20,25COPY80

would create six new lines with numbers 80.1 through 80.6 in increments of 0.1.
These new lines would contain the text which was in the original lines numbered
20 through 25. Thos·e original lines would still be present in the internal file
after the COPY was completed.

If the word MOVE is used in place of the word COPY, PED will perform the copy
and then destroy the original lines. Thus the MOVE corrrnand causes a block of lines
to be transferred.

• ,

. '

LERNPED - 10

z.o String-Oriented Editing Conrnands

In addition to its ability to edit entire lines of text, PED can locate and
manipulate strings of characters within lines. The simplest form of a PED com
mand which does this is:

lines EDIT,string 1••string2$

where 11 lines" specifies the line numbers within which the editing is to take
place and the two "strings" are strings of characters de 1 imi ted by sing le quote
marks. PED will search for every occurrence of "string(and replace it by
11string

2
11 • The dollar sign character is required after 11string2

11
•

For example, the cormiand

*l ,900EDIT, 'SINF('=0 'SIN('$

instructs PED to search between line numbers 1 and 900 inclusive for any occur
rence of the characters 11SINF(11

• When one is found, the characters "SIN(" are sub
stituted in its place and the search confinues. Since the strings are of unequal
length, PED automatically adjusts the positions of the remaining characters of each
affected line.

Some of the possible variations on this form of editing are as follows:

- 1 eave off the "1 i nes 11

By default the entire internal text file is processed.
- leave off one of the equals signs

This causes only the first occurrence of the specified characters to be replaced.
- place an integer number between the two equals signs

This causes on 1 y the first "integer" occurrences of the specified characters
to be replaced.

For example, an efficient way of correcting line number 83.4 which contains the
characters:

THIS IS A LMNE

would be to use the PED cormiand

*83.4EDIT, 'LMNE'='LINE'$

There are several other forms of the EDIT command and several other PED
commands which modify text based on line content. The interested user is invited
to read the appropriate sections of the PED Reference Manual (LO-PED) for more
information.

LERNPED - 11

8.0 More about PED

As indicated at the end of the last section and in the Introduction, the re
is quite a bit more to PED than is described in this Primer. The complete docu
mentation of the entire PED system is in the PED reference manual. At this poin t,
however, it is worth glancing at the appendix to this Primer to get a feel for
the type of commands that are available. There are two remarks worth making afte r
a quick look at that appendix. First of all, there are many more PED commands
than those which have been covered in the preceeding chapters. We leave the des
cription of those commands to the PED reference manual. Secondly, there is mo re
to the commands covered than was included in their descriptions in this Primer .
This chapter addresses itself to explaining some of those options on PED conma nds .
Once again a complete listing of all available options is included in the PED
reference manual.

8.1 Address Bounds

Most PED commands are optionally preceded by address bounds. If only one
line address is specified in the bounds, then the command applies to only one
line. If two line addresses are given separated by a comma, then the command
applies to all lines inclusively between the two specified. If address bounds
are not specified , the command applies to all text lines. (A notable exception
is the DELETE cormiand which requires address bounds.)

The normal way of specifying a line address is to give its line numbe r using
digits and possibly a decimal point. Certain special characters are also a llowed
in defining a line address. These characters and their meanings are as follows :

t The first line of text.
The last line of text.

= All the lines referenced by the preceding command.
=t The first line referenced by the preceding command.
=! The last line referenced by the preceding conmand.

Some examples of using these special characters in line addresses are:

*=PRINT
Print all lines referenced by the preceding command.

*38,!DELETE
Delete all lines from 38 to the end of the file.

*f ,=!WRITE,TEMP
Copy from the first line of the internal file to the last line referenced in
the previous command and make it a local file named TEMP.

LERNPED - 12

An alternate means of specifying a line address is by line context. let us
define a literal as a string of characters delimited by single quotes and then the
following forms are allowed as line addresses by context: ·

1 i teral

literal column
number

The first line with the string anywhere
in tha t 1i ne •

The first line with the string beginning
at the specified column of that line.

The first line with the string appearing
within the specified column bounds.

Some examples of using line context to specify addresses are:

*'PROGRAM' REPLACE
Replace the first line which contains the literal "PROGRAM" anywhere within
the line.

*21, 'END'7LIST
List all lines from line 21 to the first which contains the characters 11 END 11

in columns 7, 8 and 9.

*[50,72] 'SUB2'MOVE230
Move the first 1 ine which contains the characters "SUB2" between columns 50
and 72 to the line after line number 230.

The specification of a line address by context may be combined with other
contexts by the use of the following logical operators:

\
• II

{reverse slash)
{ampersand)
{doub 1 e quote)

NOT
AND
OR

Normally, the NOT is applied before the AND, and the AND is applied before the OR.
However, parentheses may be used to group operations and force a different order.

Some examples of using combined contexts to specify addresses are:

·k \(I PRINT 111 I READ I) PRINT
Print the first line that contains neither the characters "PRINT" not the
characters "READ".

*'ALPHA'2&'BETA'DELETE
Delete the first line that contains "ALPHA" in columns 2 through 6 and "BETA"
anywhere within the line.

LERNPED - 13

8.2 Environment Control

PED operates under the restrictions of several user-controllable "environ
ment variables. 1

' These variables may be set or reset during a PED session by
using the ENVIRONMENT corrmand as follows:

ENVIRONMENT(variable=value, ••• ,variable=value)

where the most commonly-used 11 variables 11 and their possible 11values 11 are listed
and described in the following paragraphs.

Variable Name and Default

- String quote QU='
The string quote symbol is used to delimit strings.

Possible Values

any single symbol

- Rewind control flag RE=l unsigned integer
If zero, local files are not automatically rewound before READ and WRITE.
If non-zero, they are automatically rewound.

- Line length LE=72 unsigned intege~140
Controls the length of lines used in READ and WRITE commands.
Only 11 LE 11 characters/line are read and written.

- Entry terminator TE=$ any single symbol
This symbol signals the end of user input for those commands which allow more
than one line per use such as INSERT, REPLACE and EDIT.

- 1/0 mode IO•B B or C (Binary or Coded)
Specifies the mode of READ and WRITE operations.

- Line terminator LT=undefined any single symbol
Used as a separator character for lines containing more than one command.
(However if subsequent input is expected by such commands, it must also appear
on the input line.)

It is possible to set or reset an environment variable value to 11 undefined 11 by
equating it to any number greater than 63. An example of using the ENVIRONMENT
command is

*ENVIRONMENT(TE=;,LTc64)

which makes the semi-colon the entry terminator and sets the line terminator to
undefined. Note that normally the line terminator character is undefined so that
only one PED corrmand may be entered per line.

LERNPED - 14

8.j Options

. Most PED corrmands al low "options" to be specified after the command name.
Several types of options are available.

Any combination of the following letters may be typed after the co1T1T1and
name to select the "option" as described:

- A
The "A" option means print each 1 ine after processing it.

- B
The "B'' option means print each 1 ine before processing it.

- w
The ''W" option means print each line before processing it and~ for permis
sion to process it. PED will type the message

OK?

after typing the line and will wait.
the line but will continue execution
"Y" or nothing {i.e. just a carriage
as usual and then continue execution

If the user types "NO", PED will not modify
of the corrvnand. If the user types "YES" or
return), PED will make the line modification
of the command.

Some examples of using these options are:

'1:8, 12 DELETEW
Print each line between 8 and 12 and wait for permission to delete it.

*EDITBA,'ABCD'=='WXYZ'$
Find and print each 1 ine which contains the characters "ABCD11 • Change those
characters to ''WXYZ" and then print the revised line.

A second type of PED option allows conditions on the command to be specified
in the form of line contexts. The format of line contexts and their meanings
were discussed in the section on address bounds so we will just illustrate their
use as options by examples in this section:

*PRINT'SUBROUTINE'
Print every 1 ine which contains the characters "SUBROUTINE".

*t , ! DELETE I DEBUG I 111 COMMENT I

Delete every 1 ine which contains either the characters "DEBUG" or the characters
"COMMENT".

A third type of PED option allows an "environment variable" to be reset for
one corrvnand only. Temporary environment specifications are enclosed in parentheses
as shown in the following examples:

*READ(RE=O),FILE3
Read local file FILE3 without rewinding it.

*WRITEB'A 1111 B1 (LE=20).TEMP
Copy the internal file to a local file named TEMP, but only transfer the first
20 columns of those lines which contain either the character "A" or the character
"B". Also print each 1 ine before it is written to TEHP.

LERNPED - 15

9.0 Batch PED

PED may be executed as a batch job. In the description below of the
PED control card syntax, the square brackets ([,]) indicate optional parameters.
Parameters may appear in any order on the control card.

where

PED(cfile[,ofile] [,F=fname][,evn=value, ... ,evn=value])

11 cfile11
- the name of the file containing PED commands. No file

positioning is done by PED before opening 11cfile11
•

Default 11cfile11
: none.

"of i le" - the name of the file to contain PED output. No file
positioning is done by PED before opening 11ofile11

•

Default "of i le": OUTPUT.

11 fname 11
- if the 11 F=name11 parameter is included on the control

card, file 11 fname 11 is read into the text file prior
to executing any commands from 11cfile11

• File 11 fname 11

is rewound before the read unless the RE environment
variable has been set to zero on the control card.

11 env11

If a Terminate command is encountered on 11cfile11 before
a Write command, PED will write the contents of any
text file in expanded form onto file 11 fname 11 and then
terminate. If~ Write command is encountered before
a Terminate command is encountered, PED will not write
onto file 11 fname 11 before terminating. Default 11 fname 11

:

none.

- the name of any val id environment variable as described
in section 8.2 of this document. Default 11env11

: none.

"value" - the value to which the selected permanent environment
variable is to be set prior to execution of any commands
on "cf i le". "Value" is assumed to be a decimal integer
unless post-fixed by a B in which case it is taken to
be on octal integer.

Some examples of the PED control card are given below.

(1) PED(INPUT)

Commands are read from file INPUT and PED output is placed on file OUTPUT.

(2) PED(INPUT,F=TEXT)

File TEXT is rewound and read into the PED internal text file. Commands are
then read from file INPUT, and PED output is placed on file OUTPUT.

(8/73) LERNPED - 15. 1

\
'

(3) PED(COHND,OUTFILE,F=TEXT,RE=O,LT=SOB)

File TEXT is read from its current position into the PED internal text file
since the rewind flag has been reset to zero. The 1 ine terminator character
is set to the value 50 octal corresponding to a display code slash (/).
Commands are read from file COHND and PED output is written on file OUTFILE .

(8/73) LERNPED - 15.2

Appendix - Instant PED

This appendix is a summary of all available PED commands. The commands are
listed alphabetically and contain a one-line description, command syntax, and
special options if any. Only certain initial characters of comnand names are
significant. These characters are typed in upper case in the syntax. Any member
of a class of items is indicated by enclosure in angular brackets< ••• >.

AGAIN
Repeat the immediately preceding command.

<address bounds> Again

APPEND
Add text to the end of internal text file with line number increment of 1.0
until user types the character $.

AP pend< opt ions>

BROWSE
Display fifty lines of text on the screen of the 252 graphics terminal.

Browse
or

<lower bound>
or

carriage return

CHANGE
Create or change text within specified fields until user types the character $.

<address bounds> Change <options>, <first change>

special options: L left-adjusted changes
R right-adjusted changes

COLUMNS
Display the line number and starting and ending column numbers of each
occurrence of "context".

<address bounds>COLumns<options>,<context>

COPY
Copy a block of lines to a specified line.

<address bounds>COpy<options><line number>

LERNPED - 16

CPTIME
Display the remaining central processor time in seconds.

CPtime

DELETE
Delete a block of lines.

<address bounds>Delete<options>

EDIT
Replace portions of "context".

<address bounds>Edit<options>,<context><count><replacement>$

special option: P Paired searches

ENVIRONMENT
Reset an environment variable.

ENvi ronment (<name>•< value>, ••• ,<name>=<va lue>)

EXECUTE
Execute a MESA processor.

EXecute,<MESA control card>

FILE
Manipulate a local or permanent file.

FILe,<function>,<fi le information>

functions: EOF Write end-of-file.

FIND

EOR Write end-of- record.
REL Release.
RET Return.
REW Rewind.
SE! Skip to end-of-information
SFB Skip file backward.
SFF Skip file forward.
SRB Skip record backward.
SRF Skip record forward.
UNL Unload.

Add to or delete from the FIND list.

<address bounds>F!Nd<options>

special options: +Add to FIND list
- Delete from FIND list

SNF Search for named file.
SNR Search for named record.

DELETE PFILES delete.
GET PFILES get.
INDEX PFILES index.
PUT PFILES put.

LERNPED - 17

INSERT
Insert one or more lines until user types $.

<line address> Insert<options><increment>,<first line>

JUSTIFY
Reposition character strings within a line and eliminate unwanted leading or
trailing characters in the strings.

<address bounds>Justify <options>,<column 1>,<column 2>,<column3>,<column4>

Special Options: L Left justification
R Right justification
D = <cha rl> De lete<cha rl>

r

D = {<char2>,<char3>) Delete <char2> on left end and <char3>
on right end

F • <cha r-4> Fi 11 with <cha r-4>

LABEL
Display the number and first non-blank characters for each line with a non
blank character in column one.

<address bounds>Label<options>

LENGTH
Display the length of lines.

<address bounds>LEngtheoptions>

LIST
Display the text of lines without line numbers.

<address bounds>List<options>

HOVE
Transfer a block of lines.

<address bounds>MOve<options><line number>

NUMBERS
Display the numbers of lines.

<address bounds>Numbers<options>

PRINT
Display the numbers and text of lines.

<address bounds>Print<options>

PURGE
De 1 e te a 11 1 i nes.

PUrge<options>
LERNPED - 18

....
READ

Read text from local file.

Read<options>,<file name>

Special Options: 0 Use old line numbers
N Use new line numbers

RENUMBER
Renumber 1 i nes.

<address bounds>RENumber<options>,<starting number>,<increment>

REPLACE
Replace a block of lines.

<address bounds>REPlace<options><increment>,<first line>

SHIFT
Move characters from <column-1> through <column-2> inclusive into
<column-3> through <column-Lt> inclusive.

<address bounds>Shift<options>,<column-1>,<column-2>,<column-3>,<column-4>

TAB
Set or reset tab stops.

TAb ,<integer>, ••• ,< integer>

TERMINATE
Terminate the PED session.

Terminate

WRITE
Write text into a local file .•

<address bounds>Write<options>,<file name>

Special Options: 0 Use old line numbers
N Use new line numbers
C Use compressed text formilt

LERNPED - 19

:; .

