
DCW" 3D-OCT-73 15:38 <DORNBUSH>CML.NLSi~ 1

<DORNBUSH>CML.NLS;8" 3-0CT-73 16:05 CFD ;

COMMAND META LANGUAGE -- CML

INTRODUCTION

The command meta-language (CML) is a venicle for describing tne
syntax and semantics of the user interface to the NLS system.
The syntax is described through the tree-meta alternation and
succession concepts. The semantics are introduced via bUilt-in
functions and semantic conventions.

No attempt is made to describe the full semantics of any command
via CML, but it is hoped that the front-end interface (parsing
and feedback operations) may be eXPlicitlY accomodated with these
facilities. It will still be necessary" and desirable, to use
execu~ion functions to perform the low-level semantics of the
command. The CMt describes how the command "looks" to the user,
rather than what it does in the system.

USE OF CML

The user interface for the NLS command language is defined in the
CML specification language. This "program" is then compiled by
the CML compiler (written using ARC's tree-meta compiler compiler
system) to produce an interpretive text Which drives a command
Parser. The command parser is cognizant of the device dependent
feedback and addressing characteristics Of the user's ilO device.

E;LEMEN1'S OF' CML

PROGRAM STRUCTURE

The basic compilation structure of a OML program is described
by:

file

system

subsys

command

rule

= "FILE " • ID f system} (dcls I rule)

#subsys lIFINISH"j

;:; "SYSTEM" .ID %system name% ':

#<'/).ID %names of su~systems % '; j

;:; "SUBSYSTEM" .ID % subsystem name

#(command I rule) "END.";

= ("COMMAND'" "INITIALIZATION" ,

"TERMINATION") rule;

:;;:; "ID ';:; exp ,. . , ,
The "file" construct bra.ckets the definition of commana
language sUbsystems and may optionally include the system

Dew, (DORNBUSH)CML.NLS;8 2

definition (which defines all SUbsystems contained in a
particular system).

parsing rules and declarations may appear at this global
level.

The sUbsystem contruct brackets a set of rules or commands.
commands beginning with the keyword COMMAND are linked
together to form a command language sUbsytem.

The sUbsystem may include a rule preceded bY the keywords
INITIALIZATION or TERMINATION. If specifieO, tnese rules Will
be executed once upon system initialization/termination
respectively.

Each rule/command is named with an identifier. This name is a
global symbol and should not conflict with any other variable
names, rule names, or keywords.

DECLARATIONS

Declarations are used to associate attributes with identifier
names which are used in cml programs. If not declared,
identifiers are defined by their first occurrence according to
the fOllowing rules.

1) Identifiers appearing on 'the left hand side of an
assignment sta tement are defined as "YARIABLES".

2) Identifiers followed by a subscripted list are assumed
to be of type "FUNCTION".

3) All other undefined identifiers are assumed to be names
of parse rules or commands.

The syntax of the declare statement is given bY:

d c 1 s = ('1 DeL It I " DEC LA RE U) (d c 1 a t t r 1 # (• ,> • I D ;

dclattr :; ("VARIABLE" I "FUNCTION" / "PARSEFUNCTIONU)j

If a declare attribute is not given, type VARIABLE is assumed.
Identifiers Which are implicitly defined as type Variable are

EXTERNAL symbOls and will be linked by the loader to
externallY defined symbOlS with that name.

RECOGNIZERS

Keyword Recognition

The process of keyword recognition is inQependent Of the
description of the keywordS for CML. In the CML
description, each keyword is represented by the full text
of the keyword. The algorithm used to match a user's
typed input against any list of alternative keywords "is
known as keyword recognition, and is a function of the

DOW .. 30-00'1>-7.3 15: 38 <DORNBUSH>CML.NLS;ij 3

command interpreter and is independent of the CML
description of the command.

Keywords are written in the meta language as upper-case
identifiers enclosed in double quote marks optionally
followed by a set of keyword qualifiers.

keyword = .SR { '1 #qualifier '1 }

The qualifiers serve to control the recognition process for
the keywords and to override the system sUPPlied internal
identification for the keywords~

qualifier = "NOTT" % DNLS only keyword %

I"NO'rn" % TNLS only keyword %

I"Ll" % first level keyword

I.NUM % explicit value for
keyword %

Selec.tion Recognition

Three types of selections are built into CML. They are
DSEL, SSEL .. and LSEL (see -. <userguides,commands .. l> for
the explicit definition of the selections). BasicallY ..
they are recognizers which require some entity type as an
argument and they return a pair of text pointers1n the
state record. The entity type is obtained either oy some
previous invocation of the recognition function for some
list of keyword entities, or use of the VALUEOF built in
function.

The DSEL, SSEL, and tSIL functions perform all evaluation
and feedback operations associated with the selection
operations.

selection ;;:: ("SSEL"/ unSEL"1 "LSEL") • (param ')

other Recognizers

The processes of viewspec recognition, level adjust
recognition and command confirmation recognition are
represented in CML by built-in parameterless functions in
the meta-language.

others = "VIEWSPECS I' % vievlspec collec~ion

I"LEVADJ I
' % levela.dj collection

I"CONFIRM" % command confirma.tion

%

%

%

%

FUNCTION EXEOUTION

Functions may be invoked at a.ny point in the parse by writing

uow, 30-0CT-73 15:38 <DORNBUSH>CML.NLS;~ 4

a name of some routine and enclosing a parameter list in
parentheses.' All functions invoked by the interpreter must
obey the grounctrules set up for interpreter routines. The
actual arguments are passed by address, rather than value, and
two additional actual arguments are appended to the head of
the argument list.

control = .ID % routine name % . ($<' I> param .)
param = factor % expression element %

/ "VALUEOF " t (.SR) % keyword value %

/ '# .SR % same a.s VALUEOF %

/ "TRUE" % boolean TRUE va.lue II

/ "FALSE" % boolean FALSE value "
I "NULL" % null pointer value %

PARSING FUNCTIONS

Functions Which are declared with the PARSEFUNCTION
attribute are assumed to be parsing functions. They are
called in "parsehelp" mode and when so called, are passed
the address of a string as a third argument. The
pa.rsefunction routine then supplies a prompt string which
tells what the parsing functon does. (see a.ppendix J for
example). Parse functions may appear as alterna~ives to
non-failing recognizers and may themselves fail. Them must
however~ precede any non-failing recognizers in the list of
alternatives.

FEEDBACK CONTROL

The feedback control elements of CML a.re used to provide
feedback in addition to the normal feedback generated by tne
recognizers. This is used to implement additional unoise
words" and help feedback.

1) adding feedback to the command feedback line.

A string may be added to the current command feedOack
line bY enclosing the quoted string in angle brackets.

extra feedback = ,< .SR ,>

2) replacing the last word in the feedback line.

It is pOSSible to replace the last string in the command
feedback line by using the string replace facility.
This is similar to (1) above except the previous word in
the feedback line is deleted before adding the new
string.

DC'W, ,30-0CT-73 1.5:38 <DORNBUSH)CML.NLS;ij 5

replace extra feedba.ck ;: ,<" SR ,>
A fUnction is also provided to initialize the command feedback
mechanisms and clea.r the command feedback line.

clear cfl :::; "CLEAR"

EXPRESSION DEFINITION

CML is an expression languge. Commands are defined to be a
single expression and expressions are composed of
successive/alternative expression factors. Alternative paths
are indicated by the character '/ in the expression.

The nesting of expressions may be explicitlY defined with
parenthesis and brackets are used to delimit optional
expression elements. The dollar sign preceeding an opt1onal
construct is used to indicate that the optional element is
repeated as long as the option character is typed in.

exp

alternative

factor

:::;

;:

:::;

/

/

#<'/)alternat1ve;

#factor;

term

' (exp ,)
. [exp , .I % opt1ona.l element %

/ '$, [exp , } % repeated opt elements
%

term ;: subname % id/ assign/ function

I confirm % command confirmation

I feedback % noise word feedbacK %

I recognition % built-in recognizers

COMPLETE FOR,MAL SYNTAX OF CML

file :::; "FILE" .ID [system} $(rulel dels)

#subsys "FINISH";

system :::; "SY sr.rEM u, • ID %system name% ':;

#<'/).ID %names of SUbsystems % I; ;

subsys :; "SUBSYSTEM" .ID % subsystem name·- %

#(command I rule) "END.";

%

%

%

command :; ("COMMANDn / It INITIALIZATION II I "TERMINATION")

DOW, 30-oc'r-73 15: 38 <DORNBUSH>CML.NLS;ij 6

rule

dels

dclattr

exp

alternative

factor

term

subname

confirm

recognition

keyword

qualifier

built1nrec

feedback

control

param

THE INTERPRETIVE TEXT

rule ;

= • I D '= exp' j ;

= (It DC L " I II DEC L A HE ") [dec 1 a t t r i # < ' ,> • I D i

= ("VARIABLE" / "FUNCTION" / "PARSEFUNCTION")j

= #('/)alternative;

= #factorj

= term/ '(exp ')1 .[exp 'il '$ 'f exp '~;

= sUbname/ confirm/ feedbackl recognition;

= .ID ('~ param/ • (S<',>param f)};

= "CONFIRM"; % call routine to terminate cmd %

= keYWordl builtinrec;

= .SR { '1 #qua11fier '1 J;

= "NOTT"/ "NOTD"I "Ll"l .NUM;

= ((" SSE L If I " D S E L II I ., L S E L") '(par a. m '))

/ "VIE'WSPECS"I "LEVADJ";

= "CLEAR"/ ,< (fl ••• ") .SR ,>;

= .ID • ($(',>param ');

= factor/ ("VALUEOF'II '(.SR .) I -# .SR)

/"TRUE"/ "FALSE"/ "NULL";

Each instruction of the interpretive text contains a structure word
at least one function execution word. The structure word defines
the alternation and successor paths of the grammar for the command
language. The function execution words perform the actions of the
interpreter.

The structure words

Each structure word consists of two pointers. The right half of
the word defines the alternative nOde to the current node. The
left half of the word points to the successor to the current
node. NUll paths are indicated by 0 valued pOinters.

The executable function word formats

Dew, 30-00T-73 15:38 <DORNfjUSH>OML.NLSj~ 7

Format 1: (OP OTL MODIFIER ADDRJ

This is the onlY interpr.eter instruction word format presentlY
defined. OP is an operation code. OTL contains control bits
used by the keyword regognition function. MODIFIER may
contain an additional value. ADDR is the address or principal
value for the function.

The functions of the interpreter.

RECOGNIZF~RS

KEYOP -- keyword recognition.

OTL = control bits for level 1 commands, DNLS commands, and
TNLS commands.

ADDR = address of keyword literal string

The current input text is matched against the keyword
string specified by the current node and all alternatives
of the current node. This function performs keyword
recognition on all of the alternatiVe nodes of the current
node simultaneously.

This function cannot fail. Control remains in the keyword
recognition function until appropriate input is recognized
or until the control is abnormally wrested via backup or
command delete functions.

The value returned in the argument record is a single word
containing the address of the string corresponding to the
keyword actually recognized.

CONFIRM -- process command confirmation characters

This function interrogates the input text for one of the
command confirmation characters. Control remains in this
routine until a proper confirmation is recognized, and
command termination state is appropriately set. This
function always returns TRUE.

The value returned is a single word containing a command
completion code which identifies the completion mode.

SSEL -~ get a source selection

ADDR = not used

The sselect routine is invoked to process a source type
selection. The return record contains two text pOinters
Which delimit the selected entity.

DSEL -- get a destination selection

ADDR ::: not used

Dew, 30-0CT-73 15:38 <DORN8USH>CML.NLS;~ 8

The dselect routine is invoked to process a destination
type selection. The return record contains two text
pointers which delimit the selected entity.

LSEL -- get a literal selection

ADDR = not used

The lselect routine is invoked to process a literal type
selection. The selection type is passed as an actual
argument. The return record contains two text pointers
Which delimit the selected entity.

VIEWSPECS -- process viewspecs information

The viewspec input routine is called ~o process the input
stream for viewspec characters. The return record contains
the two updated viewspec control words. This function
always returns TRUE.

LEVADJ -- process level adjust information

The level adjust input routine is called to process the
input stream for level adjust characters. The return record
contains a single word Which indicates tne relative level
adjust value (u = +1, d = -1, etc). This function always
returns TRUE.

CONTROL FUNCTIONS

EXECUTE -- transfer of control to another point in the tree.

ADDR = address of root of tree for transfer of control

The current pOint in the tree is marked and control 1s
transferred to the node pointed to by the address field.
Control remains in the descendent node until it has been
completelY parsed, at which time control returns to the
successor of the EXECUTE nOde.

CALL -- subroutine invocation

MODIFIER = number of actual parameters

ADDR = address of the SUbroutine

The appropriate number Of actual arguments are popped of!
of the evaluation stack and passed to the routine Whose
address is contained in ADDR.

The resultptr from this routine is pushed onto the eval
stack if it returns TRUE.

DOW, 30-0CT-73 15:38

PFCALL -- parsing function invocation

MODIFIER : number of actual parameters

ADDR = address of the sUbroutine

<DORNBUSH>CML.NLS;~ 9

The appropriate number of actual arguments are popped off
of the eValuation stack and passed to the routine wnose
address is contained in ADDR.

The resultptr from this routine is pushed onto the eval
staCK if it returns TRUE.

This function is also called in "parsehelp" mode to find
out what it does.

OPTION -- test for an optional construct.

If the next input character is the OPTION selec~ character,
then it is read and control is transferred to the node at
address ADDR. If the next character is not the OPTION
character, then control passes to the successor path of the
current node.

ANYOF -- collect alternative optional keyword values

If the next input character is the OPTION select character,
then it is read and control is transferred to the nOde at
address ADDR. After the descendent nodes have been
processed, control returns~o the ANYOF nOde, permitting
another optional selection to be made from among the set of
alternatives. The result values from the succession of
optional recognitions are logically OR'ed together to form
the value for the ANYOF node. If the next character is not
the OPTION character, then control passes to the successor
path of the ANYOF node.

FEEDBACK ELEMENTS

FECLEAR -- clear the contents of the feedback buffers.

The feedback state information and command feedback line
are set to their initial or empty position.

ECHO -- appends a noise-word string to the command feedbacK
link

ADDR = address of the text string to be appened

RECHO -- replaces the last noise-word string in the command
feedbaCK line

ADDR = address of the text string Which is to replace the
last item in the command feedback buffer

DOW, 30-0CT-73 15:38 <DORNBUSH>CML.NLS;~ 10

VALUE MANIPULATIONS

LOAD -- loads a pointer to an argument record into the top of
the eval stck.

ADDR = address of the variable containing ~he poin~er to
the argument record.

The pointer value contained in the variable whose address
is contained in ADDR is pushed onto the top of the eval
stack.

STORE -- saves a pOinter to an argument record in a variaole

ADDR -- address of the variable

The address of an argument record is fetched from the top
of the eval stacK and is saved in the variable at address
ADDR.

ENTER -- enters a constant value into the argument record
pointed to bY the top of the eval stack.

ADDR -- value to be entered (18 SITS only)

The value is taken from the ADDR field of the instruction
and is entered into the argument record for the ENTER node
in the path stack (whose address is at the top of the eval
stack).

VALUEOF -- enters the system value for a keyword into the
argument record •

ADDR -- address of tne KEYWORD string.

The ADDR pOints to a string variable. Tne literal area is
searched for a match with the argument string and the
address ,of tne literal string which matches the keyword
string is entered into the argument record for VALUEOF,
whose address is pushed onto the top of the eval stack.

FLOW OF CONTROL IN THE INTERPRETER

At any pOint in the process of parsing, the control pointer for the
interpreter points to a structure word in the grammar. A path stack
also exists which shows the nodes from which TRUE returns have been"
achieved. Some operations mark the path stack for halting the
backup process. The parser has 4 distinct control states defined as
follows:

1) parsing: recognition state Where input text is compared with
grarnatical constructs to determine the parsing path in the parse
tree.

2) bacKup: A FALSE return has been obtained from some

DOW, ,:iO-OCT-?3 15:38 <DORN8USH)OML.NLS;8 11

execution/recognition function. The path stack is backed up
until a non-NULL alternative path is found, at Which time the
parse mode is set to parsing, and recognition of tne alternative
path is attempted. If no non-NULL alternative path is found,
then the parse fails and the interpreter returns FALSE.

3) cleanup: A terminal parse has been achieved and control is
passed to each execution routine to reset any state informations
set bY the routine.

h) repeat: The command is being repeated, and each execu~1on
function is given control to redo the operation it last performed
(if its function is defaulted bY the semantic action of the
comma.nd).

The general floW of control is:

1) An initial path stack entry is constructed, and the parse mOde
is set to parsing. The execution function for the current nOde
is evaluated. A pointer to the "function state record" is passed
to the routine. The state record contains the return values for
~he function as well as a record of any state information saved
by the function (for backup purposes).

2) If the function returns TRUE, then the successor to the
current node becomes the current node. If this is NULL, tnen the
ptrstk stack is bacKed up until a non~NULL successor path is
found. If none is located before the bottom of the current parse
state is reached, then the root of a parse tree has been reached l

and a command has been successfully executed. In this case the
command reset operation is performed and the interpreter is set
to "pa.rsing" mode once more.

3) If the function returns FALSE then the parser mode is set to
"backUp" and a non-NULL alternativ~ path is sought.

After a command has been eXecuted, the parsing path for the tree is
re-evaluated in "reverse order" beginning with the terminal node of
the path. Each execution function is re"inVoked, in "cleanup~ mOde,
and is passed the handle for the state information record which it
generated on the forward pass through the grammar. Each execut~on
routine has the responsibility of resetting any state information
Which it wishes to do at the termination of a command. Cleanup
continues until a "starting pOint" is reaChed in the parse. This is
generally the beginning of the command. At this pOint, the
interpreter "shifts gears" and goes into forward or recognition mOde
and begins back down the grammar for the language.

The same baCKUp mechanism is also used during command specification
in order to back up the Parse to allow the respeciiication of all or
part of the command. The command delete function backs out of the
Parse tree until the beginning of the command is reached.

The same backup mechanism may be adapted to control the partial
backup required for executing commands in "repeat mode" where at
least one of the alternatives are defaulted to their current values.

DOW, <DORNBUSH>CML.NLS;~ l2

The process of marking some nodes in the execution path as
defaulted is as yet undefined. It seems that it should be possible
to identify tbose execution functions which need not be re~evaluated
in subsequent invocations of the command. The interpreter woula
then be smart enough to skip over defaulted parameters when in the
forward or specification phase of the command and would not invoKe
backup for defaulted parammeters.

APPENDIX 1: USING THE CML SYSTEM

WRITING CML PROGRAMS

Source programs for the CML compiler are free form NLS files.
Comments may be used wherever a blank is permitted and the
structural nesting of the source file is ignored by the compiler.

COMPILING CML PROGRAMS

CML source programs are compiled into REL files with the output
Compiler command using CML as the compiler name. The curren~
marker (top of display area) should pOint to the first statement
Of a CMt program, not the top of an NLS file.

RUNNING CML PROGRAMS

After loading the user program for the parser {(rel-nls)parser)
and your rel file, you must connect your grammar to the parser~
This is done by using NDDT to change the address field of the
instruction at PARSER+l to point to your grammar (whose address
is contained in the symbol table entry corresponding to your
SUbsystem name).

Example:

IF your SUbsystem name is "expjournal" then you cOUld
connect the parser to your grammar with the following NDDT
command:

S[how] L{ocationj PARSER+l. MOVEl Al,EXPJOURNAL(CR)

After connecting your test grammar to the parser, parsing is
initiated by the NLS command :

Gfo to} p[rogramsj E{xecute program} PARSER CA

FUNCTION INTERFACE PROTOCAL

The syntax of the function call in the CML meta-language is
similar to that of most programming languuages: the name of the
function is followed by a list of expressions enclosed in
parenthesis. In the CML system however, there are some strict
rules which apply to all execution functions invoked by the
interpreter. These rules are enumerated below:

1) Additional actUal arguments

Dew, 30-0CT-73 15:38 <DORNBUSH>CML.NLS;~ 13

Preceeding any actual arguments which appear in a function
reference in CML, the interpreter supplies two additional
actual arguments. These are:

1) a pOinter to the "function state record"

2) an integer which defines a parsing mode

= parsing:

= bacKUp:

= cleanup:
command

normal execution mode

backup after a FALSE path is taken

resetting of state after completion of

These addtional arguments must be used by all execution
functions to determine what theY are to do. The pOinter to
the "function state record" is used to return values from
the function and to save state information associated witn
a particular invocation of the fUnction. The length of the
function state record is presently 9 words and this recora
may be formatted in any manner appropriate to tne funct~on.

If 9 words is not sUfficient space to record all of the
state associated with a particular invocation of a
function, then the function must use a storage allocator to
allocate the additional storage and record the handles to
the allocated storage in the function state recoro. Note
that it this additional "local state" storage is required,
then it is the responsibility of the execution function to
de-allocaate the local state storage when called in backup
or cleanup modes.

2) Returning parse failure

All execution functions are Passed a pointer to their
function state record. If the function processes normally,
then it returns the same pOinter as its onlY return value.
If the function decides that the 'parse should fail a~ a
given paint, then it returns FALSE.

3) Passing arguments by address

All of the actUal arguments in a function call on an
execution function are passed by address rather than by
value. The values actually passed are pOinters to the
function state records corresponding to tne actual
arguments. The format Of the function state recor~s are
defined bY the execution functions which manipulated them,
and thUS the location of parameter values in these records
is determined by convention, the caller and callee having
previOUSlY agreed to a particular layout for the function
state record. The layout Of the records for the built-in
interpreter functions in given elsewhere in thiS appendix.

4) Order of control

DOW, 30-00T-73 15:38 <DORNBUSH>CML.NLS;~ 14

An execution function will always be called in parsing mOde
before it is called in backup or cleanup modes.

A function routine Which saves state information in the
function state record must initialize its state record to
some consistent state before it calls any sUbroutines which
may cause SIGNALS or otherwise cause control to aonorrnally
pass above the execution fUntion.

Format of the function state records for the bUilt-in CML
recognizers.

Each of the functions of the CML parser utilitzes the function
state records in a locally defined way summarized below.

~EGOGNIZER

keyword

viewspecs

levajd

ssel

deel

lsel

confirm

RECORD FORMAT # WORDS USED

word l: address of keyword str 1

wordl: updated VB word 1 7

word2: UPdated vs word 2

words 3-7: VB collection string

wordl: level adjust count

(u = +1, d = -1, etc)

words 2-7: vs collection string

words 1-2: txt ptf to start of entity

words 3-4: txt ptr to end of entity

same as ssel

same as ssel

word l: confirmation code 1

APPENDIX 2: SAMPLE CML PROGRAM

% the fOllowing sample program should help illustrate the use of the
CML language for describing NLS commands. %

% the grammar is taken from observation of a hypothetical first
grade class in the process of receiving art instruction %

% for a more exhauat1ve example, take a look at (dornbush,syntax,~ %

FILE sampleprogram % CML to sample~rel %

SUBSYSTEM sample

DOW .. "O-OCT-7.3 15:38 <DORNBUSH>CML.NLS;~ lS

objects =

"GLUE"lLl1

I "PASTE"lLll

I writingthings;

writingthings =

"CRAYONS" 1 L11

I "PENS"

I "PENCILS";

COMNAND zuse :;

"USE"lLll what .. writingthings

<"to draw a. pretty">

whom .. "PICTURE" 1 L11 < I' of A.unt Hary")

I whom" "SKETCH"lLl1 ("0.1' your dog"))

CONFIRM

% call execution routine process the USE command

*** commented out for now ***

xuse(what, whom)

*** *** % ;

COMMAND ztake =

"TA.KE" lLll v,tha.t .. objects

<"out of your")

w her e ... (" EARS" 1 L 11 / 'I N OS E" 1 L 1 ~ I " M 0 U '£ H fI 1 L 11)

<"PLEASE!I"> OONFIRM;

END.

FINISH

APPENDIX 3: SAMPLE INTERPRETER PARSEFUNOTION ROUTINE

Assume that in some command we want the type in of a number to appear
as an alternative of some set of keywords. we can accomplish this

Dew, 30-0CT-73 15:38 <DORNBUSH>CML.NLS;~ 16

by defining a parsefunction (call it looknum) which looks at ~he
next input character and succeeds if the next character is a digit
and fails otherwise. If we write this function as the first
alternative in some command, then control will pass from the
interpreter to the parsefunction before it passes to the keyword
interpreter.

Suppose our command looks like:

COMMAND sample =

"INSERT 111 Lll

looknum() ("number") ent .. #"NUMBER"

/ (ent ... ("TEXT ll lLll / "LINK t1 1Lll)))

% entity now contains an entity type (number, text, or
LINK). 'We now use the LSEL function to get a selection of
this type %

source .. LSEL(entity)

% get a command confirmation %

CONFIRM

% now invoke the insert execution function passing as
arguments the entity type and the selection of that type %

xinsert(entity, source);

New take a look at the parsefunction looknum which is called bY tne
interpreter both when prompting the USer and also during the actual
parse of the command •

% LOOK FOR A NUMBER %

(looknum) PROC(

% looknum lOOKS at the next input character, if it is a
digit, then a true return is taken else FALSE is returned %

% FORMAL ARGUMENTS %

reSl.lltptr, % ptr to the function state record %

pa.rsemode~ % parsing mode for the interpreter %

string); % ptr to prompting string %

REF resultptr, string;

%,..--"""--------%
CASE parsemode OF

Dew, .30-0CT-73 15: 38

= parsing:

CASE lool<c() OF

IN ['0, '9J:

NULL;

ENDCASE RETURN (FALSE);

= parsehelp:

string +- "NUl-1:";

ENDCASE;

RETURN (&resultptr);

END.

<DORNBUSH>CML.NLS;~ 17

