
HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

This version of the NLS File svstem document will appear as an
appendix in the 1975 final rep;rt. The principal difference
between it and earlier versions is its discussion of elements of
the new property list based NLS file system in operation
experimentally since January 1974. Programmers' attention is
directed to the sections on primitives for dealing with the
property entities (lower level procedures need not and probably
should not be used) and to the sections which describe the ring
and data block headers which are different from their earlier
versions. Other changes are minor.

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

In trod uc tion 1

NLS operates on a heirarchica1, random file system with
several unique features evolved over the years that make
possible the efficient online interaction used by the ARC
community. Having information stored within separate
structure and data blocks aids in rapid movement within and
between NLS files; a "partial copy" locking mechanism provides
security against attempted modification of a file by more than
one user at the same time and provides a high degree of backup
security against system failure or user error. This appendix
includes a technical description of the file system as well as
a discussion of motivating factors leading to its
implementation. The design of the file system provides room
for further extensions, some of which are also examined. la

Discussion of the heirarchical structure of NLS files at a
user level, as well as a description of the user commands that
permit movement through the files, may be found in [1]. Ib

This appendix is a revision of an earlier document which
described the NLS·file system as of July, 1974 and is current
to January 1976. Discussed here are the most recent additions
to the NLS file system, including property lists and inferior
trees, which are currently used in the new graphics subsystem
and offer great potential for the creation of new user
entities. 1c

General Considerations Leading to the Current Design 2

The format and structure of NLS files were determined by
certain design considerations: 2a

It is desirable to have virtually no limit on the size of a
file. This means it is not practical to have an entire
file in core when viewing or editing it. 2a1

The time required for most operations on a file should be
independent of the file length. That is, small operations
on a large file should take roughly the same time as the
same operations on a small file. The user and the system
should not be penalized for large files. 2a2

In executing a single editing function, there may be a
large number of structural operations. 2a3

A random file structure satisfies these considerations. Each
file is divided into logical blocks that may be accessed in
random order. 2b

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

An early version of the file system was implemented on the
XDS-940. Minor changes in the logical structure of the file
system were made in the conversion of the system from the
XDS-940 to the PDP-I0 for two reasons: 2c

1) The current ARC programming language, LIO, is more
powerful than the several languages it replaces, MOL and
the SPLs. LIO permits special purpose constructions
anywhere in its code. It is a higher level language and
provides greater compiler optimization. 2cl

2) An effort has been made to further modularize the
functions within the system to ease development by a team
of programmers. 2c2

In Winter 1975 extensions to the file system were made
introducing property lists as data elements at each structural
node. The first use of this capability was in the recently
developed graphics subsystem. Further discussion of these
changes may be found below. 2d

Reliability and the NLS File System 3

The reliability and security of file data both against system
crashes and in face of the possibility of attempted
simultaneous modification by more than one user were central
goals in the design of the NLS file system. An attempt was
made to minimize the amount of work which would be lost due to
both hardware and operating system difficulties. 3a

Unlike the sequential file systems of some editors which
require copying large sections of a file whenever an edit is
made, NLS modifies copies of pages in which structural or data
changes are made: all data in the original file is secure and
a minimum of unaffected data is copied. Still other editors
maintain recent changes in a dynamic buffer which may not be
incorporated into the file in the event of a system crash; in
NLS, barring a major hardware collapse, all changes other than
those specified by the command being processed are present in
the copied pages. Again, the original file is untouched. 3b

Other techniques to assure high reliability have been used
such as organizing the code and sequence of operations in a
way to minimize time windows of high vulnerability. 3c

An important problem in an online team environment such as
that at ARC involves group collaboration on the same data
files. The current file system permits multiple readers and a
single writer to a file. The person obtaining write access to

1

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

a file locks it in a manner described below; no other user is
then permitted to write on the file, though they may read the
original material. Readers without write access do not see
the changes of the user currently editing the file until the
file is explicitly "updated ,n causing the incorporation of
edits and the unlocking of the file. Thus there can be no
conflict between the edits of more than one writer.

Details on the partial copy locking mechanism which
implements these features of the NLS file system are
discussed below in s~ction (XXX).

Recent Extensions to the Nls File System

ARC recently extended the NLS file system to include a list of
data blocks (a property list) rather than the single textual
data block which existed before. These property lists are now
associated with NLS structural nodes in the same manner that
the single data block had been associated before. There is no
restriction on the types of data nodes: for instance, graphic
or numerical information may be possible as well combinations
of data types within a single node. Additionally, data nodes
may themselves have structure in the form of "inferior trees".
The extended file system is upwardly compatable with the older
file system: old files are still useable on the new file
system without conversion.

Silor t Techn ic al Overv iew

This section gives a brief overview of the implementation of
NLS files. For more detail see section (XXX).

Block Header and Types of Blocks

An NLS file is made up of a file header block, and up to a
fixed number (currently 465) of 5l2-word (=equals one TENEX
page) structure blocks (up to 95), and data blocks (up to
370) •

There are several types of blocks, each with its own
structure:

File header block--always page 0: contains general
information about the file.

Structure (ring) blocks--contain ring elements that
implement the NLS structure: there currently may be a
maximum of 95 of these blocks, each containing 102

2

3d

3dl

4

4a

5

5a

5b

5bl

5b2

5b2a

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

five-word ring elements. They may appear in file pages
6 through 100.

Data blocks--contain the data (in linked property lists
associated with structural nodes) of NLS statements:
each data block is composed of individual data elements
made up of a five-word header followed by text strings
or other data. There currently may be a maximum of 370
data blocks. They may appear in file pages 101 through
471.

Miscellaneous blocks--not used in the current
implementation.

File Header Block

In each file there is a header block that contains general
information about that particular file. The header block
remains in memory while the file is in use.

The file header is read into core by the procedure (nls,
ioexec, rdhdr). This procedure checks for the validity of
certain keywords. If the file is locked and has a partial
copy, the header is read in from the partial copy. If the
partial copy header block is invalid in the key spots, the
file is unlocked and the header read in from the original
file. If that is bad, the file may be initialized.

,;

RDHDR sets the value of the FILENO-th element in the table
FILEHEAD. FILENO is the NLS file number of the file. (It is
an index into the file status table that provides, among
other things, a correlation between JFNs for the original
and partial copy and the single NLS file number) •

Procedures in (nls, filmnp,) are responsible for reading,
manipulating, creating, garbage collecting, and storing
into ring blocks and ring elements within those blocks, and
data blocks and statement data blocks within them.

Structure Blocks -- Ring Elements

Conceptually an NLS file is a tree. Each node has a
pointer to its first subnode and a pointer to its
successor. If it has no subnode, the sub-pointer points to
the node itself. If the node has no successor, the
successor pointer points to the node's parent. (These
conventions are used to aid in providing a set of
primitives for rapidly moving around in NLS files.) Each
node is currently represented by a ring element. These

3

5b2b

Sb2c

Sb2d

Sc

ScI

Sc2

Sc3

Sc4

Sd

HGL 9-JAN-76 11: 01 ' 27292
NLS File System (Revised)

ring elements point in turn to the first data block in the
node's property list. 5dl

Structure blocks contain five-word ring elements with a
free list connecting those not in use.

Data Block -- Property Lists and (Textual) Statement Data
Blocks

Data blocks are composed of variable sized elements called
(Textual) Statement Data Blocks (SOBs) that contain the
text of NLS statements and other types of data elements.
Other data element types are currently used in the NLS
graphics system though the number of available types and
uses may be easily extended. All data elements have a five
word header followed by data appropriate to the element
type. Each SDS has this five-word header with node related
information followed by the text made up of 7-bit ASCII
characters packed five to a word. New data elements are
allocated in the free space at the end of a data block
page. Data elements no longer in use (because of editing
changes) are marked for garbage collection when the free
space is exhausted.

Data elements associated with node are linked together in a
property list. This property list may in turn have a
structured inferior tree associated with it; the nodes on
the inferior tree structure of a data element may also have
associated property lists. This feature may prove to be
useful in the creation of a comment entity in NLS for
comments associated with a particular NLS statement.

Statement (or String) Identifiers (STIDS) and Text Pointers

A statement identifier (STID) is a data structure used
within NLS to identify NLS statements (structural nodes) or
str ing s.

If the string is in an NLS statement, the STID contains
a file identifier field (STFILE) and a ring element
identifier (STPSIO).

The presence of a file identifier within the STIO permit
all editing functions to be carried out between files.

Procedures in (nls, filmnp,) and (nls,strmnp,) permit
traversal through the ring structure of a file given an
STID. See, for example, (nls, filmnp, getsuc), which gets
the STID of the successor of a statement; see also (nls,

4

Sd2

5e

Sel

Se2

5f

Sfl

5fla

Sflb

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

filmnp, getsdb) , which returns the STDB for the statement
whose STID is provided as an argument. (An STDB has, like
an STID, a file number field and a pointer to the textual
property block in the property list, a STPSDB). Additional
primitives are available for other data properties. 5f2

Text pointers are two-word data structures used with the
string analysis and construction features of L1D. They
consist of an STID and a character count. 5f3

Locking Mechanism -- Partial Copies 5g

The NLS file system under TENEX provides a locking
mechanism that protects against inadvertent overwrite when
several people are working on the same file. Once a user
starts modifying a file, it is "locked" by him against
changes by other users until he deems his changes
consistent and complete and issues one of the commands:
Update File, Update File Compact, or Delete Modifications,
which unlock the file. A user can leave a file locked
indefinitely--this protection is not limited to one console
session. 5g1

5

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

When a file is locked (is being modified), the user who
has modification rights sees all of the changes that he
is making. However, others who read the file will see
it in its original, unaltered state. If they try to
modify it, they will be told that it is locked by a
particular user. Thus the users can negotiate for
modification rights to the file.

This feature is implemented through the use of flags in the
status table in the File Header and through the partial
copy mechanism.

All modifications to a file are contained in a partial
copy file. These include modified ring elements and
data blocks.

Any file page that is to be and that is not in the
partial copy (discovered through a write
pseudo-interrupt) is copied into the partial copy.
editing takes place there. The TENEX user-settable
in the FOB (TENEX file data block) for the original
contains locking information.

All
word
file

The NLS Update file command merely replaces those structure
and data pages in the original file that have been
superseded by those in the partial copy, unlocks the file,
and deletes the partial copy. For Update file old, this is
done in the original file; for Update to new version, the
pages are mapped to a new file from the original or partial
copy where necessary. The Update file compact command
garbage collects unused space~ the update file command does
not.

Core Management of File Space

When space is needed for more data, the following steps are
taken, in order, until enough is found to satisfy the
request (See (nls, filmnp, nwrngb), (nls, filmnp, newsdb) ,
and related routines):

1) Core-resident pages are checked for sufficient free
space.

2) Other pages are checked for free space. If one has
sufficient space, it is brought in.

3) If garbage collection on any page in the file will
yield a page with sufficient free space, then the page

6

5gla

5g2

5g2a

5g2b

5g3

5h

5hl

5hla

5hIb

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

that will give the most free space is brought into core
and garbage-collected; otherwise a new page is created. 5hlc

Detailed Technical Discussion 5

Note on Fields in NLS Records and Other LIO Language Features 6a

Several parts of this section are taken directly from
record declarations in the code of the NLS system written
in the LIO programming language. 6al

Record declarations in the LIO language serve as templates
on data structures declared in the system. Byte pointer
instructions are dropped out by the compiler permitting
access to specified parts of the array. Multiword records
are filled from the lowest to the highest address of the
array. Within words, bits are allocated from the first bit
on the right. If several fields fail to fill a 36-bit word
and the next field definition would go over the remalnlng
bits in the word, the field is allocated in the next word
available. 6a2

Example: 6a2a

Bit 0 is the leftmost bit in the word; bit 35 the
rightmost. Suppose there is a record declaration of
the form: 6a2al

(newrecord) RECORD % A two word record ~ 6a2ala
fieldl [10]. %bi ts 26 through 35 (r ightmost) 0 f
first word% 6a2alal
field2[25], %bits 1 through 25 of first word % 6a2ala2
field3[15]; %bits 21 through 35 of second word
(field would not fi t in remainder of first
word%

DECLARE array(2];

There may be code within a program of the form:

variable array.field2;
array.field3 _ 20;

In LIO, false is zero and true is nonzero.

See the LIO manual for further information.

Block Header and Types of Blocks

An NLS file is made up of a file header block page and up

7

6a2ala3
6a2alb

6a2a2

6a2a2a
6a2a2b

6a3

6a4

6b

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

to a fixed number (currently 465) of 512-word (= one TENEX
page) structure block pages (up to 95) and data block pages
(up to 370).

Each page has a two-word header telling the type and giving
the file page number and an index into a core status table.
The record declaration from (nls, utility,) follows:

(fileblockheader) RECORD %fbhdl = 2 is length%
fbnull[36], %unused%
fbind[9], %status table index%
fbpnum[9], %page number in file of this block%
fbtype[5]i %type of this block {types declared in
(nls, const,»

hdtyp = 0 = header
sdbtyp = 1 = data
rngtyp = 2 = ring
jnktyp = 3 = misc (such as keyword, viewchange,
etc. Not currently used.)%

PAGE HEADER BLOCK
XXX
X
X free
X
X 36
X

X--
X
X free
X
X
X
X 13

* Type * Page * Status

* * Number * Table

* 5 * 9 * 9
X
XXX
X

There are several types of block pages, each with its own

6bl

6b2

6b2a
6b2al
6b2a2
6b2a3

6b2a4
6b2a4a
6b2a4b
6b2a4c

6b2a4d

6b3

structure. 6b4

File header block pages--always page 0: contains general
information about the file. 6b4a

Structure (ring) block pages--contain ring elements that
implement the NLS structure: there currently may be a
maximum of 95 of these blocks, each containing 102

8

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

five-word ring elements. They may appear in file pages
6 thro ugh 100.

Data block pages--contain the data properties of NLS
statements: each data page has properties with five-word
headers followed by data (text, graphics instructions,
etc.). There currently may be a maximum of 370 data
pages. They may appear in file pages 101 through 471.

Miscellaneous blocks--not used in the current
implemen tation.

File Header Pag e

In each file, there is a header block page that contains
general information about that particular file. The header
block remains in memory while the file is in use.

FILE HEADER CONTENTS (taken from (nls, data,»:

DECLARE EXTERNAL
% ••• file header ••• %

% DONT CHANGE THE ITEMS IN THE HEADER %
fi lhed [5] ,

% these extra words may be taken for additions
to header%

fcredt, % file creation date--TENEX gtad jsys
internal format %
nlsvwd = 1,

% nls version word; changed when NLS file
structure changes %

sidcnt, %count for generating SID's%
% An SID (statement identifier) should not be
confused with PSIDs (see below). The SID is
uniquely generated for each statement in a file
and is not reused if a statement is deleted;
it is unchanged if a statement is moved. It
may be used by a user for accessing particular
statements in a file without worrying about
changes because of additions or deletions (as
is the case with statement numbers). The
sidcnt field in the header is increased by one
as statements are created. The value is stored
in the RSID field of the ring element (see
description below). %

finit,
% initials of user who made the last write (by
updating or outputting the file)--see DATA

9

6b4b

6b4c

6b4d

5c

6cl

6cla

6clal
6cla2

6cla2a
6cla2b

6cla2bl

6cla2c
6cla2d

5 cla2dl
6cla2e

6cla2el
6cla2f

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

BLOCK description below for explanation of
initials %

funo, % user number (file owner) %
6cla2fl

6cla2g
lwtim, % last write time--TENEX internal JSYS
gtad format %
namdll, % left name delimiter default character
%
namd12,
%
rngl,

% right name delimiter default character

% upper bound on ring (structure) file blocks

6cla2h

6cla2i

6cla2j
6cla2k

used %
dtbl,
rfbs [6] ,

6c1a2kl
% upper bound on data file blocks used % 6cla2l

6cla2m
% start of random file block status tables
description below) ~

rngst[95], % ring block status table %
dtbst[370], % data block status table %
mkrtxn = 20, % marker._ table maximum length %
mkrtbl, % marker table current length %
mkrtb[20], % marker table %

(see

% Markers provide an alternative form of NLS
addressing; see NLS Users Guide for
description %

filhde; %end of the file header%

6cla2ml
6cla2n
6cla20
6cla2p
6cla2q
6cla2r

6cla2r1
6cla2s

Notes on File Header 6clb

The fil e header is read in to core by the procedure
(nls, ioexec, rdhdr). This procedure checks for the
validity of certain keywords. If the file is locked
and has a partial copy (the file that includes
current modifications--see below), the header is read
in from the partial copy. If the partial copy header
block is invalid in the key spots, the file is
unlocked and the header read in from the original
file. If that is bad, the file may be initialized.
RDHDR sets the value of filehead[fileno] where fileno
is the NLS file number of the file (an index into the
file status table which provides, among other things,
a correlation between JFNs for the original and
partial copy and the single NLS file number; see
description of the file status table below.) 6clbl

(nls, ioexec, setfil) initializes a file header. 6clb2

It should be noted that fields within a file header
are accessed by full word indexing rather than by
record pointers for speed. Thus we have the

10

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

following typical code (from (nls, utilty, esc» that
reads the default name delimiters from an NLS file
header:

ELSE IF rplsid.stpsid = orlgln THEN
BEGIN %use standard delimiters for that file%
fhdloc filehead[rplsid.stfile] - $filhed;
dlleft [fhdloc + $namdll];
dlrght [fhdloc + $namd12];
END

Also, code from (nls, ioexec, rdhdr) that gets the
address of the word in core that contains the nls
version word for the file whose header has been read
in order to check its validity:

&vwd (header filhdr(fileno» - $filhed +
$nlsvwd;
filehead[fileno] header;

The file header is initialized by (nIs, ioexec,
rdhdr) which fills up contiguous words declared in
(nls, data,) and then moves the contents of those
words to page zero of the file.

11

6clb3

6clb3a
6clb3b
6clb3c
6clb3d

6clb3dl
6clb3d2
6clb3d3
6clb3d4
6clb3d5

6clb3e
6clb3f
6clb3g

6clb4

6clb4a
6clb4b

6clb4c
6clb4d
6clb4e
6clb4f

6clb5

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

FILE HEADER BLOCK (FULL WORDS)
XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
X free[5] X X Max structure pages X
X---------------------------X
X----------------------------X
X Creation data X X Max data pages
X
X---------------------------X
X----------------------------X
X Version Number (=1) X X Start of block tables(6]
X
X---------------------------X
X----------------------------X
X SID Count X X Ring block status
table[95]X
X---------------------------X
X----------------------------X
X Initials last write X X Data blck status
table(370]X
X---------------------------X X----------------------------X
X File Owner X X Marker table size (=20)
X
X---------------------------X
X----------------~-----------X
X Time last write X X Marker table length X
X---------------------------X
X----------------------------X
X Left name delimiter X X Marker table[20]
X
X---------------------------X X----------------------------X
X Right name delimiter X X
X
XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Procedures in (nls, filmnp,) are responsible for reading,
manipulating, creating, garbage collecting, and storing
into ring blocks and ring elements within those blocks, and

6c1c

data blocks and statement data blocks within them. 6c2

Random File Block Status Table Entries in File Header 6d

The random file block status tables appear in the file

12

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

header. There is one word per ring block or data block
page. Each entry contains the following: record
declaration and comments from (nls, utilty,) •

(rfstr) RECORD % Random file block status record. (The
entry will be equal to 0 if the page (i.e., block) in
the file is unallocated. Otherwise, the entry will be
an instance of the following record.)%

6d1

6d1a
rfexis[l], %true (i.e., nonzero) if the block
exists in the file%
rfpart[l] , %true if block comes from partial copy%

%Whether page has been modified by a user.
(rfpart will be true in that case.)%

rfnull [2] , %unused%
rfused[10], %used word count for the block%

6d1al
6d1a2

6dla2a"
6d1a2al

6d1a3
6d1a4

%Current used word count (may be used to cal cuI ate
post-garbage collection free space count.)%

rffree[10], %free pointer for the block%
%Free space count (for data block)

Pregarbage collection tree space count.
Free list pointer (for ring block)%

rfcore [9] ; %0 then not in core, else page index%

6d1a4a
6dla5

6d1aSa
6d1a5al
6dlaSb

6d1a6

BLOCK STATUS TABLE ENTRIES (STRUCTURE OR DATA)
XXxx
XXXX
X * Page index else * Free * Used
Part-*ExistX
Xfree* =0 if not in
? X

* pointer * word

* *
* free* ial *

x
X

* core * or * count * * copy?*

X
X

*
X 3 * 9

* count *
* 10 * 10

* * *
* 2 * 1 * 1

X
XX
XXXX

Notes on Random File Block Status Tables

The table RFBS in the file header is broken into two
sections, each of which contains a collection of records
of the above type. The first section includes RNGM
entries from RFBS[RNGBAS] up to and including
RFBS[RNGBAS+RNGM-1] and contains information about the
ring block pages in the file. (RNGBAS is currently 6
and is the first page in a file that may be a ring page;

13

6d1b

6d2

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

RNGM is currently 95 and is the maximum number of ring
block pages permitted.)

The second section includes DTBM entries from
RFBS[DTBBAS] up to and including RFBS[DTBBAS+DTBM-l] and
contains information about the data block pages in the
file. (DTBBAS is currently 101 and is the first page in
a file that may be a data block page; DTBM is currently
370 and is the maximum number of data block pages
permitted.) The entry RFBS(RNGBAS+i] may also be
referenced as ru~GST[i]; likewise RFBS[DTBBAS+i] may be
referenced as DTBST[i]. The index in RFBS is the actual
page number of a data page in the file.

A pointer to a data element or property (PSDB) consists
of a nine-bit data page number in the range [O,DTBM) and
a nine-bit displacement from the start of the page. The
variable DTBL is maintained in each file header as the
current upper bound on allocated data pages for that
file. This is used to limit the search for a location
for a new data element. The variable DBLST contains the
index of the block from which a property was last
allocated or freed.

A pointer to ring element (PSID) consists of a nine-bit
ring page number in the range [O,RNGM) and a nine-bit
displacement from the start of the page. The variable
RNGL is maintained in each file header as the current
upper bound on allocated ring pages for that file. This
is used to limit the search for a location for a new
ring block. The variable RNGST contains the index of
the page from which a ring was last allocated or freed.

Structure Blocks -- Ring Elements

These blocks contain five-word ring elements with a free
list connecting those not in use.

(ring) RECORD %ringl is length% % from (nls, utilty,) %
rsub[18] , %psid of sub of this statment%

% A pointer to the first substatement of this
statement %

rsuc[18] , %psid of suc of this statement%
% A pointer to the successor of this statement (to
the parent if no successor) %

rsdb(18] , %psdb of first property for this statement%
% Pointer to the first property in the property list
of data blocks for this statement. %

rinstl[7], %DEX interpolation string-- scratch space%

14

6d2a

6d2b

6d2c

6d2d

6e

6el

6e2
6e2a

6e2al
6e2b

6e2bl
6e2c

6e2cl
6e2d

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

% Information in scratch fields may be reset and used
by other subsystems such as DEX. No other assumption
concerning their contents shold be made. %

rinst2[7], %DEX interpolation string-- scratch space%
rdummy[l] , %DEX dummy flag-- scratch space%
repet[3] , %DEX repetition-- scratch space%
rhf[l], %head flag. true (= 1) if this is head of
plex%
rtf[l], %tail flag, true if tail of plex%
rnamef[l], %name flag, true if statement has a name%
rtorgin[l], %inferior tree origin flag, true if origin%
rnull[l], %unused%
rnameh[30], %name hash for this statement%

% hash algorithm may be found in (nls, utilty, hash)
%

rsid[30]; %statement identifier%
% See SIDCNT description in file header above. %

%although only need four words, use five so that have
room to grow%

RING ELEMENT
XXX
X
X PSID of Successor * PSID of Substatement (Down)
X
X 18 * 18
X
X--
X
X Scratch space used by DEX * PSDB (pointer to data block)
X
X 18 * 18
X
X--
X
Xfree* Name Hash *free*org
*name*tai1*headX
X 1 * 30 * 1 * 1 * 1 * 1 * 1
X
X--
X
X free * Statement Identifier
X
X 6 * 30
X

X--
X
X free
X

15

6e2dl
Ge2e
6e2f
6e2g

6e2h
6e2i
6e2j
6e2k
6e21
6e2m

6e2m1
6e2n

6e2nl

6e20.

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

X 36
X
XXX
X

PSIDs and PSDBs are pointers to other ring or data blocks
ina f i 1 e • Th e y have two n in e- bit fie Ids: 0 n e (s t b 1 k) is
a page index; the other (stwc) is a word displacement
within that page. procedures in (nls, filmnp,) permit the

6e3

traversal of a file's structure. 6e4

Given an STID (see below) , one may use the primitive
pr 0 c ed ur e sin (nl s, film n p ,) - - e • g ., (n1 s, E i 1 m n p ,
getsuc)--or the more elaborate procedures in that
file--e.g., (nls, filmnp, getnxt) --to move around to
related ring elements and retrieve or change (display or
edit) relevant data. 6eS

There are two "fixed" values for PSIDs for special
statements:

The PSID of the origin statement is always 2.

The entire STID (and hence PSID) of the end of a file
is endfil (=-1), which does not correspond to any
real statement in the file, but which is returned by
the "get" procedures in filmnp to indicate the end

6eSa

6eSal

has been reached or an error has been found. 6eSa2

Some other conventions implemented in the file structure
make possible special features in NLS: 6eSb

The successor of a statement with no real successor
is its "pa r en t • " 6 e S b 1

The substatement of a statement with no sub is
itself. 6eSb2

The origin is at a unique level; thus statement 1 is
the sub of the origin. 6eSb3

Data Block -- Property Data and Statement Data Blocks 6f

Property lists are made up of linked lists of property data
blocks. An example of a property is the Statement Data
Block (SDB) which contains the text of an NLS statement. 6fl

Each property has a five-word general header with the

16

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

following information. There then follows data appropriate
to the particular property type. For example, (Textual)
Statement Data Blocks (SDBs) contain the text in NLS
statements; this text follows the property header and is
composed of seven-bit ASCII characters packed five to a
word. in a variable length block. New properties are
allocated in the free space at the end of a data page.
Properties no longer in use (because of editing changes)
are marked for garbage collection when the free space is
exhausted. 6f2

(sdbhead) RECORD %sdbhdl is length% % from (nls, utilty,)
sgarb[1], %true (non-zero) if this sdb is garbage,
i.e., no onger used%
slength[9], %number of words in this sdb%
schars[ll], %number of characters in this statement%
slnmdl[7] , %left name delimiter for statement%
srnmdl[7] , %right name delimiter for statement%
spsid[18), %psid of the statement for this sdb%

%Pointer to ring element.%
sname[ll), %position of character after name%

% This is 1 for a statement with no name. Thus if
the text of the statement were:

(author) The person who
and the name delimiters were "(" and H)", the value
of this field would be 9. %

stime[36], %date and time when this SOB created%
% This is stored in the TENEX internal format; see
the TENEX JSYS manual, gtad jsys %

sinit[21], %initials of user who created this sdb%
sptype[1S], %property type of this data b10ck%

%
txttyp
dhtyp
chtyp
gtftyp
lwtyp
%

spsdb[lS],
O=tail %

= text data block (SDB)
= graphics diagram header
= graphics cell header
= graphics text format
= graphics line work

%PSDB of the next property data block;

sitpsid[18]; %PSID to head of inferior tree if any%
%sgarb and slength must be in the first word of the
header for newsdb%

%

D~TA BLOCK HEADER
XXX
X
X *Right name *Left name *Character*Block
*Garb-X

17

6f3

6f3a
6f3b
6f3c
6f3d
6f3e
6£3f

6f3£1
6f3g

6£3gl
6f3g1a

6f3g2
5f3h

6f3h1
6f3i
6£3· .J

6f3J1
5f3j2
6f3j3
6f3j4
6f3jS
6f3j6
6f3j7

6f3k
6f31

6f3m

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

X free *delimiter *delimiter *count *length*age?
X
X 1 * 7 * 7 * 11 * 9 * 1
X

X------------------~---------------------------------------
X
X free * Position of char * PSID pointer to ring element
X

X 7 * 11 after name * 18 for this statement
X

X--
X
X Creation time
X
X 36
X

X--
X
X Property * Authors initials
X
X 15 type * 21
X

X--
X
X PSID of inferior tree * PSDB of the next property
X
X 18 * 18
X
XXX
X

STATEMENT DATA BLOCK (SDB'S) Text type block
XX X
X
X Data block header
X
X 5 full words
X

X--
X
X Text
X
X Block length - 5 words of 5 characters each
X
XXX
X

18

6f4

6f5

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

Statement (or String) Identifiers (STIDS) and Text Pointers

A statement identifier (STID) is a data structure used
within NLS to identify NLS statements (structural nodes) or
strings.

If the string is in an NLS statement, the STID contains
a file identifier field (STFILE) and a ring element
identifier (STPSID). (See PSID description above under
ring el ements.)

The presence of a file identifier within the STID permit
all editing functions to be carried out between files.

Procedures in (nls, filmnp,) and (nls,strmnp,) permit
traversal through the ring· structure of a file given an
STID. See, for example, (nls, filmnp, getsuc) , which gets
the STID of the successor of a statement; see also (nls,
filmnp, getsdb) , which returns the STDB for the statement
whose STID is provided as an argument. (An STDB has, like
an STID, a file number field and a pointer to the textual
property block in the property list, a STPSDB). Additional
primitives are available for other data properties.

Text pointers are used with the string analysis and
construction features of LID. They consist of an STID and
a character count.

Other Relevant Arrays

The following arrays are used in system core and file
management. They are described here to facilitate the
study of the NLS file-handling code.

Filehead

An array of pointers (each contained in a single word)
to the file headers of files currently in use is
FILEHEAD. At present, up to 25 files (and their partial
copies, if any) may be open simultaneously.

CORPST (Core Page Status Table) and CRPGAD (Core Page
Address Tabl e)

The array CORPST provides the correspondence between the
100 (octal) pages in core reserved for file pages and
user program buffer and the pages in files that are
currently loaded into core. (This is really a maximum
of 100 octal since the user program buffer may be

19

6g

6gl

6gla

6glb

6g2

6g3

6h

6hl

6h2

6h2a

6h3

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

enlarged into this area; the maximum is given by RFPMAX
- RFPMIN +1.)

(corpgr) RECORD %one word. core page status record.
gives status for a given core page for random files.%

ctfull[l], %true if the page is in use%
ctfile[4], %file to which the page belongs; an
NLS file number%
ctpnum[9], %page number within the file%
ctfroz[3]; %number of reasons why frozen
(locked into core because of some current NLS
system need-- editing is in progress on a
statement, a statement is being displayed, etc) %

The array CORPST is the core page status table and is
made up of instances of the above record. (RFPMAX
(dependent on the current user program buffer size)
gives the number of core pages that may contain file
pages. The core pages are located at positions
indicated by the array CRPGAD (core page address) •
CQRPST is indexed by numbers in the range (RFPMIN,
RFPMAX). The elements in this array are actual
addresses. The starting location of page k is given qy
crpgad[k]. RFPMIN is initialized to be 7; six pages
are initially allocated for a user program buffer. See
(nls, usrpgm, gpbsz) for the procedure that changes
these limits.

FILST (File Status Table)

An NLS file number provides an index into the FILST, the
file status table. This lOO-word array is made up of 25
four-word entries and contains the following information
for files of interest that have NLS file numbers at any
time (these mayor may not at that time be open; they
do, however, have JFNs.) The information comes from
the record declaration in (nls, util ty,) :

(filstr) RECORD %File status table record. entry
length = filstl = 4, max no. entries = filmax = 25%

flexis[l], %true: entry represents an existing
file%
flhead[9], %crgpad index of the file header%
flbrws[l], %this file in browse mode%
fllock[l], %This file was locked by another user
when loaded%
flpcread[l], %PC read only--write open failed
(openpc)--see discussion of partial copies below%
flaccm[8], %file access mask%

20

6h3a

6h3a1
6h3ala

6h3alb
6h3alc

6h3ald

6h3b

6h4

6h4a

6h4al

6h4a1a
6h4alb
6h4alc

6h4ald

6h4a1e
6h4alf

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

% Used to tell whethar or not the file may be
written on by the current user. Used primarily
for files such as those in the Journal that are
read-only to most usars. % 6h4alfl

fldirno[12], %directory number for the original
file%
flpart [18] ,
flbpart[18] ,
florig[l8],
flastr[18] ,
flpcst[18] ,
flbpcst [18];
string%

%JFN for
%JFN for
%JFN for
%address
%address
%address

the partial copy%
the browse partial copy%
the original file%
of the file name string%
of partial copy name string%
of browse partial copy name

6h4alg
6h4alh
5h4ali
6h4alj
6h4alk
6h4all

6h4alm

Primitives for Use with Basic NLS File Entities 6i

Introduction 6il

The following primitives will be available for
manipulation of basic file entities. While they make
use of even more basic procedures, most programmers
should have no reason for accessing lower level
routines. These primitives and lower level procedures
live in the file FILMNP. 6ila

Property types must be assigned numbers by ARC. Code
for management and portrayal of properties not generally
available or useful for all NLS users will be managed
and written by the prime users. The procedures listed
below will provide access to property blocks and nodes
in the files. 6ilb

The code which manages graphics file entities lives,
currently, in the graphics subsystem. 6ilbl

Entity types 6i2

Primitives will be available to operate on the following
file entity types: 6i2a

NODE -- a ring element and its associated data
contained in a property list. 6i2al

PROPERTY -- a data block and any associated inferior
tree within the property list associated with a node. 6i2a2

INFERIOR TREE -- structure and data associated with a
property block. 6 i2a3

21

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

An example of the use of an inferior tree may be
found in the graphics subsystem in which diagrams
have structure reflected by the existence of this
inferior tree. Another possible use could be for
imposing the structure (NLS Plex-like in nature)
of comments associated with a statement's text.
Normal NLS structural procedures for examining
structure and modifying it at the file level may
be used at the inferior tree level as well. 6i2a3a

Note that while no direct primitives are provided for
operating on property lists or portions of them, such
primitives exist at lower levels. It is not felt that
higher level primitives for such entities are necessary.
The operations listed below follow the currently
existing examples for text nodes in NLS files. 6i2b

Operands and procedures 6i3

READ -- Most read functions are dependent on the
property type and are to be managed by formatters and
other specific application code. Thus a set of "get"
and "set" routines are available for examining and
setting fields in the statement text nodes and similar
procedures exist in the graphics subsystem. A general
primitive to load particular 'property types into core is
provided. Also, the usual procedures for moving around
in structure will be available. 6i3a

lodprop (stid, proptype) -- 6i3al

loads the indicated property block into core.
Returns three items: first is FALSE if error, page
number in core if success; second is address of
block in core (which must be frozen if you want to
do anything wi th it!) , third is stdb of property
block 6i3ala

Note change: as originally written, lodprop also took
"occurence" of property in list. we now will not
permit more than one property of a particular type in
a particular list. Multiple occurences may be
handled by a structural inferior tree hanging off the
property block. 6 i 3a 2

CREATE -- Allocate space for entity and link the blocks
into existing structure and/or data. 6i3b

crenod (stid, rlevcnt) -- 6i3bl

22

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

Gets a new ring element with no associated data
blocks and links it into the structure at the
location specified by stid and rlevcnt (a relative
level count: < 0 is down, =0 is successor, > 0 is
up by rlevcnt levels). Returns stid of new ring
or 0 if error. 6i3bla

creprop (stid, proptype, length, data) -- 6i3b2

Builds a data block of property type proptype
which must be a valid type assigned (and declared
) by ARC and links it into the property list
associated with the stid in the proper order
(determined in the procedure linkprop). If such a
property already. exists in the node, we have an
error: it must first be deleted. Returns stdb of
new block or 0 if error. length is the length of
the data and data is a pointer to an array of
length words in which the data is stored. 6i3b2a

creit (stid, proptype) -- 6i3b3

Creates the origin of an inferior tree and links
it to the data block property specified by stid
and proptype. Returns 0 if error or stid of
origin of inferior tree. 6i3b3a

DELETE -- Unlink entity from other structure and data.
Release space. 6i3c

delprop (stid, proptyp) -- 6i3cl

deletes the property block and any associated
inferior tree structure for the block proptype
block of the indicated node. Returns TRUE if
successful, 0 if not. 6i3cla

delit (stid, proptype) -- 5i3c2

deletes the inferior tree of the indicated
property block. Unlinks it and releases space.
Returns True if successful, 0 if not. 6i3c2a

Currently no primitive exists to directly delete a
node, though the primitives remgrp and delgrp perform
this function together. The x-routines which
implement structural deletes call these file system
primitives. 6i3c3

23

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

MOVE -- Unlink entity and reI ink it at new location in
file.

movprop (stid, proptyp, destid) --

Moves the property indicated from node specifed by
stid to node specified by destid. Accomplishes
this by unlinking and reI inking the block. If a
property type of the type being moved exists at
the destination, we have an error. Returns true

6i3d

6i3dl

if OK, 0 if error. 6i3dla

movit (stid, proptype, destid) -- 6i3d2

moves the inferior tree associated with property
block indicated by stid and proptype to the
property block proptype associated with node
destid. Returns true if OK, 0 if error 6i3d2a

X-routines currently exist to move and move filtered
other strucural entities. 6i3d3

COpy -- Allocate space for new entity, copy old entity,
and link the new entity into the file. 6i3e

copprop (stid, proptype, destid) 6i3el

copies property block (and associated inferior
tree if any) from block indicated by stid and
proptype to a new block to be created on destid.
Returns TRUE if OK. 0 if error 6i3ela

citree (stid, proptyp, destid) -- 5i3e2

copies inferior tree of property block at node
indicated by stid and proptype to the proptype
block of destid. Returns TRUE if successful, 0 if
error

Primitives exist to do structural copies both in
filtered and unfiltered modes.

REPLACE -- In keeping with the mode which exists for
text statements, a replace primitive will not be
provided for the inferior tree entity or the node
entity. These functions may be accomplished using
existing x-routines or primitives which delete nodes
followed by a copy or create.

24

6i3e2a

6i3e3

6i3f

HGL 9-JAN-76 11:01 27292
NLS File System (Revised)

reprop (stid, proptype, length, data) -- 6i3f1

replaces the property block indicated by stid and
proptyp 6i3fla

with a block with data as indicated. If length is
the same as 6 i3f 1b

the length of data in the existing property block,
a short cut may 6i3flc

be taken and the data overwrites the old data.
If, however, 6i3f1d

the length is different, a new block is built and
linked in. 6i3f1e

The inferior tree is not replaced in any case: it
remains the 6i3f1f

same. The inferior tree's pointer to the "owning"
property 6 i3f1g

block is changed to point to the new block. Uses
fi1esc if this is a text block. Si3f1h

References 7

(17b2) Douglas C. Engelbart and Staff of ARC.
Computer-Augmented Management-System Research and Development
of Augmentation Facility [Final Report]. Augmentation
Research Center, Stanford Research Institute, Menlo Park,
California 94025. APR-70. (5139,) 7a

25

