
AN INTRODUCTION TO THE FRONTEND 

Donald I. Andrews 
Beverly R. Boli 

Andrew A. Poggio 

January 5, 1977 

ARC Catalogue Number 28743 



OIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

PREFACE 

This document introduces the NSW Frontend to users and 
tool-builders. It should be read before going on to A GUIDE TO 
THE COMMAND META LANGUAGE AND COMMAND LANGUAGE INTERPRETER [1] 
and the FRONTEND SYSTEM DOCUMENTATION [2]. A brief overview of 
the NSW is provided, followed by a discussion of the Frontend 
design and system components, features to be added to the 
Frontend in the future, Frontend interfaces, and tool 
characteristics. 

Augmentation Research Center page 1 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

NSW OVERVIEW 

ARPANET technology is now well established. Recently it has 
moved from the development to the production phase. Sixty-four 
IMPs with 120 host computers are currently connected to the 
network. 

Although the physical resources of the network are on a sound 
footing, the communication protocols that use these resources are 
still at a rudimentary level. Only TELNET and FTP are widely 
used. These primitive protocols impose little semantics on their 
messages. When a user connects to a host via TELNET, he must 
have an account on the host, know the host's login and operating 
system conventions, know which programs exist on the host and how 
to run them, know the communication conventions of each program, 
know how files and directories are described, and so on. 

The user must also know the TELNET and FTP conventions to get to 
the host, to switch between hosts, and to leave the host. If he 
goes to a different host, he must know these same things for the 
new host, and for every other host to which he wishes access. 

The NSW was designed to alleviate this situation by creating a 
framework for sharing computer resources based on a communication 
network and improved management control of resources. The NSW 
goal is a network-wide "virtual" operating system spanning 
multiple hosts. 

Rather than talking to individual hosts through TELNET, the NSW 
user communicates with a single program, the NSW operating 
system. This system communicates with the different hosts, thus 
hiding their idiosynracies from the user. In fact, the user 
communicates only with a single component of the NSW, the 
Frontend. The primary virtue of the Frontend is that it imposes 
order on the plethora of host-specific and program-specific 
protocols that exist in the ARPANET world. It uses a single, 
uniform, powerful protocol for all communication. 

A brief description of the Frontend and other NSW components is 
provided below. This is followed by an extensive discussion of 
the design and development of the Frontend. 

NSW Components 

NSW software is comprised of the following components: 

1) The Frontend system that provides terminal access to the 
ARPANET, a set of services creating a coherent NSW user 

Augmentation Research Center page 2 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

environment, and an environment to decrease the cost of new 
tool creation. 

2) The Works Manager that supplies special services such as 
resource control, authentication, record keeping, file system 
and file transfer, and management aids. 

3) Protocols and conventions needed between the Frontend and 
Works Manager, Frontend and tools, and Works Manager and 
tools. 

4) The Foreman that furnishes tools with a uniform operating 
environment and access to NSW resources. 

5) The tools (computers and software) that reside in the 
NSW. 

The individual components of NSW software are viewed as 
independent, concurrent processes, even if they reside on the 
same host. 

The NSW system provides the user with access to a number of 
general or specialized tools in such a way that the 
communication conventions he uses remain constant, even though 
the particular vocabulary changes from tool to tool as 
appropriate to describe that tool's functions. This user 
interface resides not only on a PDP-Ie but also on a dedicated 
Frontend computer (PDP-II) for better response and less 
expense. 

We anticipate that heavily used tools or commands will, in 
time, actually be executed on the dedicated Frontend computer. 
In addition to increased system responsiveness, this will 
reduce network communication and will protect users from 
network or large-computer unavailability. 

Works Manager 

The Works Manager is fundamentally a purveyor and allocator 
of resources. It maintains a list of the rights, privileges, 
and responsibilities of the users known to the system, and a 
list of the available tools. This information allows the 
Works Manager to control access to the tools. The Works 
Manager also maintain~ the file system catalog to control the 
existence of copies of files on different hosts in the 
network. 

Augmentation Research Center page 3 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Froniend 

Protocols (MSG) 

The standard communication between two NSW processes will be 
by messages, expressed in an 8 bit message format, and 
dispatched through a message-handler named MSG. 

A process sends a message requesting a service and later 
receives a message in response. Two NSW processes may 
establish a direct network connection, if desirable. But the 
initial communication between them and the agreement to set 
up the direct connection are accomplished via MSG. 

In the ARPANET implementation, the several MSGs are 
privileged processes on their hosts, with exclusive rights to 
reserved network sockets. This permits the NSW to bypass a 
local host's login procedure when executing a process on that 
host. 

Foreman 

The Foreman is the local-to-the-tool component of the NSW. 
Each instance of a tool has a Foreman responsible for the 
smooth operation of the tool with other NSW components. 
Along with the Frontend and Works Manager, the Foreman 
provides the tool instance with its NSW execution' 
environment. 

The Foreman has at its disposal empty file directories for 
tools running on that host. When the Works Manager wants to 
run a tool on a particular host, it sends a message to the 
Foreman asking it to load and start up an instance of the 
tool process. The tool then runs out of (or "in") a local 
directory assigned to it. 

To open an input file the tool passes the NSW Filename to the 
Foreman, requesting the file. The Foreman then sends a 
message to the Works Manager, requesting that a copy of the 
file be sent to the local directory assigned to the tool. 
When the copy has arrived in that directory, the Foreman 
returns to the tool the local directory name of the copy, 
which it will have "opened" for the tool in the local file 
system. A similar process closes an output file. 

Tools 

Initially most NSW tools will be preexisting tools that were 
designed outside the NSW framework. Some preexisting tools 

Augmentation Research Center page 4 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

(such as NLS) and many new tools will be configured as 
"split" tools--that is, divided into command execution 
functions in one package (the Backend), and user interface 
functions such as command recognition, prompting, and 
feedback in another (the Frontend). 

The Frontend (FE) and Its Role in the NSW Environment 

The Frontend provides the interface between the NSW user and 
other NSW components, primarily the Works Manager and Tools. 
The user will always talk to the Frontend, which runs on a 
machine as close to the user as possible. The FE gives user 
input, in some form, to the appropriate component and puts 
user-destined output where the user can see it. 

The NSW Frontend is divided into three logical modules, each 
of which is responsible for specified tasks or areas of 
operation. In the current implementation the Frontend 
consists of an interprocess communication module, a terminal 
handler, and the Command Language Interpreter (CLI). 

The terminal handler is responsible for managing the 
terminal. It knows what kind of terminal is being used and 
any special characteristics about the terminal, and handles 
terminal input and output.' It includes window and text 
manipulation primitives for display terminals. Other 
Frontend modules operate exactly the same way regardless of 
the terminal type. 

The CLI is a software package that carries on a dialog with 
the user, helping him specify commands in a command language. 
The grammar, or command language specification, and the CLI 
form a general production system: a wide variety of command 
languages can be implemented including pseudo-English. The 
grammar is a data base from which the CLI operates. In 
addition to commands, it contains instructions to coll.ect 
parameters from the user and to invoke functions in a tool or 
tools. The CLI can quickly switch from one grammar to 
another. 

The tool builder writes his command language in the Comand 
Meta Language (CML), a high level command language 
specification language. He specifies exactly what 
interactions take place between the human user and the CLI. 
That specification is 'compiled' to form the grammar data 
base which the CLI uses as described above. 

Augmentation Research Center page 5 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

The user communicates with the Works Manager by way of a CLI 
running the NSW-EXEC grammar: the CLI/NSW-EXEC collects 
commands from the user and makes service requests on the 
Works Manager. From the Frontend point of view, the most 
significant re9uest he may make is to run a tool. 

When a user runs a tool, the Frontend provides the user 
access to the tool. How this is done depends on the tool. 
To run a split tool, the CLI obtains the grammar from the 
Works Manager, a Foreman/tool instance is created, and the 
CLI/tool-grammar communicate with the Foreman/tool via MSG. 
There are two ways to run an unsplit tool: the CLI can 
obtain a "transparent grammar", which simply passes the 
characters typed by the user to the unsplit tool, or it can 
obtain a tool-specific grammar, which would provide an 
improved user interface. 

Augmentation Research Center page 6 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

DESIGN FACTORS AND REQUIREMENTS FOR THE FRONTEND 

The Frontend is designed to meet user interface, efficiency, and 
system requirements. The major factors considered are listed 
here, with a discussion of each one below. 

Fast command specification response for the user. 

Efficient transmission. 

Uniform user interface and effective help facilities. 

A central "coordination" function allowing user control of the 
user interface. 

A separate command language. 

Typewriter terminal and two-dimensional display terminal 
interface. 

An environment to encourage experimentation with new tools. 

User-level programming. 

Fast Response. Compute-bound programs and interactive programs 
usually work against one another in a time-sharing system. 
Normally the first users to complain about response are 
experienced users of interactive programs. The command 
recognition task involves frequent process activation and 
terminal handling that are expensive in large scale 
time-sharing systems, but it does not require high power 
computing. Thus it makes sense to ·separate the command 
recognition and terminal handling functions, interactive in 
nature, from the command execution functions, slightly to very 
compute-bound in nature. 

The Frontend is designed to give the best possible command 
specification response to the user by breaking the command 
recognition functions away from the tool. This makes it 
possible to move the CLI function closer to the user. The CLI 
can be on a dedicated host, a minicomputer, or ultimately a 
one-user mini/micro at or within the user's terminal. 

Efficient Transmission. Providing the user with a highly 
interactive, well engineered user interface may conflict with 
minimizing transmission costs and process activation costs. 
Some systems provide interactive interfaces but transmit on 

Augmentation Research Center page 7 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

each character (resulting in one or two characters per packet 
on the ARPANET), while others provide no ·feedback to the user 
until he types "end-of-line" or "transmit" (i.e., a 
line-at-a-time system). 

The Frontend seeks to resolve the dichotomy by interacting with 
the user until a complete and syntactically correct command is 
specified. Then the command specification is sent to the tool. 
Of course this does not reduce network transmission if the 
Frontend is just as far from the terminal as the tool, but the 
Frontend has been designed for the purpose of placing it as 
close to the terminal as possible. 

Maximum effectiveness is obtained when the Frontend resides on 
a dedicated minicomputer hardwired to the terminal, or within 
the terminal. In a dedicated system or non-swapping time 
sharing system, the expense of character-at-a-time activations 
is minimized. Small computers are less expensive per computing 
operation for the kind of operations performed by the CLI. 

The command-at-a-time nature of such a configuration makes 
excellent use of the transmission medium--even better than the 
line-at-a-time terminal--because commands often are longer than 
one line. Furthermore, the commands are syntactically correct 
when transmitted; if the us'er backspaces within a command 
specification or aborts a command, no transmission takes place. 
The dedicated character-at-a-time service that the user gets is 
far better than character-at-a-time response obtained from a 
large-scale time sharing system. 

Uniform User Interface. In an environment such as the NSW 
there may be many tools available to anyone user. The user 
should be able to learn to use many NSW tools with a minimum of 
study or instruction. A good way to do this is to make the 
commands for all NSW tools have as much in common as possible 
and to provide effective help features. 

The Frontend provides every command language with a set of 
control functions common in many tools, such as command abort, 
command accept, and backspace character. The Frontend makes 
these functions uniform over all NSW tools that are "split" 
into separate Frontend and Backend modules. In addition, an 
individual user can specify what his own set of control 
function keys are to be. The Frontend also makes additional 
functions available to the user that may not be common in all 
tools, such as repeat command and back up within a command. 

Augmentation Research Center page 8 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

The Frontend also provides the following Help features for all 
tools: 

noise words--words in a command supplied by the grammar 
writer to help the user understand the purpose of the command 
and what input is expected of him. 

prompts--symbols (frequently a word or abbreviation) printed 
by the system to indicate what command input is expected next 
from the user. 

? facility--typing a ? at any point in a command shows the 
command alternatives available to the user at that point. 

echoing--a system response to something the user types. 
Echoing is presented just as it is designed for the tool; the 
Frontend does not modify it. 

In addition, by typing a HELP function key the Help tool is 
invoked. This presents the user with English prose 
descriptions of the command he is specifying or any other 
command or term relevant to the tool he is using (provided, 
of course, the term has been defined in the tool description 
file accessed by the Help tool). 

All types of help are available in all "split" tools and the 
user can always get help in exactly the same way in all 
grammars. 

Central Coordination. Imagine an NSW user working with several 
tools, and consider some services that could be performed for 
him, over all tools, if there were a central coordination point 
to do them. The user could' specify which keys performed which 
command language control functions; he could specify how much 
command feedback and command prompting he was to see; he could 
define and start up Command Sequences (umbrella commands that 
automatically invoke several other commands); statistics on his 
command usage and his errors could be compiled; he could 
construct "meta" tools, multi-function tools that call upon 
several tools to perform them; and the user could actually have 
several tools working for him at once, though he would only 
talk to one at a time. 

The Frontend is such a central point. The Frontend is designed 
to be with the user at every point. It knows who he is and 
what tool(s) he is running. It will adjust certain user 
interaction characteristics to suit each user by consulting the 
User Profile, a data structure containing information such as a 

Augmentation Research Center page 9 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

user's control function set, and feedback and prompting 
parameters. The Frontend is designed to permit recognition and 
execution of Command Sequences, and to gather statistics. 

This central Frontend function also makes other enhancements 
possible. The user can run several tools or single grammars 
that calIon many tools to present a unified user environment. 
He can also specify that he wants to perform some task and have 
that automatically translated into the necessary commands and 
executed for him (e.g., "run this program" given a source 
file) • 

Separate Command Language. When a new tool is developed it is 
not always clear what is the best command language. Command 
language design problems are frequently not apparent until the 
command language is used, sometimes by many individuals. 
Obviously it is advantageous to have the command language 
somewhat separate from the rest of the tool, and easily 
changed. Command languages could then be tailored for 
different communities of users; that is, functions that are 
really the same could be named or controlled differently by 
users in different communities. 

The command languages that drive the Frontend are written in 
the Command Meta Language (CML) , a high level and rather simple 
language used to produce command languages. New grammars are 
easily made by editing the CML specification and compiling it. 
Running a tool with a new user interface amounts to using an 
experimental grammar with the Frontend. A grammar can be 
compiled and tested in a few minutes, without the user leaving 
his terminal or getting a special Frontend. Using the CML 
allows a consistent user command language interface across 
tools. 

Terminal Interface. Most programs work for many kinds of 
terminals because they treat each terminal as though it were a 
typewriter, expecting the operating system closest to the 
terminal to do any special handling for the terminal (e.g., 
padding). Potentially, displays offer much more to the user 
than typewriters, especially when they have pointing devices, 
because they can be programmed to operate in a two dimensional 
way. Yet there is no uniform set of display manipulation 
commands, so that any programs that make use of them as 
two-dimensional displays are usually tied to a particular 
brand. 

The Frontend provides the tool with a set of primitives for 

Augmentation Research Center page 10 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

writing on a typewriter terminal. It also contains a 
two-dimensional display package that provides the tool with 
primitives for finding out about the terminal characteristics 
(e.g., typewriter or display, screen size), writing on a 
display screen, defining windows (sections of the display 
screen), and manipulating text on the screen, independent of 
the display terminal brand. The display package is designed to 
interface to a wide variety of alphanumeric displays including 
SRI Line Processors (which have a pointing device). A tool's 
grammar can test Booleans to find out if the terminal isa 
typewriter or a display, so that the grammar can actually be 
different for displays (e.g., the user may be able to point to 
something on the screen: the tool would get the "address" of 
the item he pointed to in the command specification). 

Innovative Environment. One of the original NSW goals is to 
create a marketplace for tools. It is going to be a busier 
marketplace if it is relatively easy to introduce, change, 
experiment with, and verify tools. 

One of the Frontend goals is to make it less expensive to 
develop an NSW tool. The tool builder need not build a user 
interface. He need only write a grammar and a set of execution 
functions. 

User-Level Programming. Frequently users of interactive 
systems find themselves repeating the same command or series of 
commands over and over, for example: 

Compile a program 
Load the program 
Run the program. 

Many systems combine the most common series into a single 
command, but no system can anticipate all of the possible 
combinations, any more than a programming language can 
anticipate all of the possible programs. Therefore, the 
Frontend is designed to provide a Command Sequence facility, a 
way for the user to collect a group of commands into a single 
executable unit. We c~ll Command Sequences "user-level 
programs" because they are written in the languages (commands) 
the user normally uses. Command Sequences are decribed more 
fully below in "Future Additions to the Frontend." 

Augmentation Research Center page 11 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

Frontend System Components 

Although the Frontend is responsible for presenting a 
consistent and responsive user interface for all tools, the 
user is not conscious that he is going through the Frontend. 
He seems to be talking directly to the tool. In fact, of 
course, the Frontend is providing him with many services, some 
of which he uses at all times (such as the Command Language 
Interpreter) and others he may request only when necessary 
(such as the Help tool). The various components that make up 
the Frontend, listed briefly here and described more fully 
below, may reside on one machine or many, although they are 
most effective on machines near the user. 

(1) A formal language, the Command Meta Language (CML), for 
specifying NSW user interfaces. 

(2) A compiler for that formal language that runs under 
TENEX as a subsystem or from NLS and produces tool grammar 
data structures. 

(3) Tool grammars, products of the CML compiler or any other 
such program. 

(4) A Command Language Interpreter (CLI) that processes a 
tool grammar and interacts with the user in specifying 
syntactically correct commands to the NSW. 

(5) A User Profile facility consisting of a tool and data 
base that allow the Frontend interactions to be tailored to 
the individual preferences of the users. 

(6) A semantic Help tool, which is employed by the Frontend 
when the user requests help with a tool or a command. It is 
presumed that each tool, in addition to supplying the 
Frontend with a grammar, will also supply it with the name of 
a Help data base whose structure and content are the 
responsibility of the tool builder/supplier. 

The Command Meta Language 

The Command Meta Language (CML)is a language for describing 
the command syntax of the user interface to application 
programs. CML syntax relies on two simple 
concepts--alternation (denoted by I ) and succession 
(indicated by juxtaposing elements). For example, a command 
with branching choices in it may be represented by a command 

Augmentation Research Center page 12 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

word, followed by several command words separated by a I. 
Further interactions are specified by following elements. 
CML semantics are composed of built-in functions, semantic 
conventions, and parse functions. 

The CML produces the full syntactic description of a command. 
The Backend uses execution functions to perform the low-level 
semantics of the command. In other words, the CML describes 
how the command "looks" to the user, rather than what it does 
inside the tool. 

The CML program defining the user interface for a tool is 
compiled by the CML compiler to produce object code (called a 
grammar) which is interpreted by a Command Language 
Interpreter (CLI). The Command Language Interpreter is 
cognizant of the device dependent feedback and addressing 
characteristics of the user's terminal and it manipulates the 
terminal, according to the grammar, in a way most suitable 
for that device. The grammar author need not know the type 
of terminal that will be used. 

The Compiler 

CML programs are compiled to produce a binary data base (a 
grammar) that drives the CLI. The CML compiler is a TENEX 
subsystem that accepts ASCII text files as input and produces 
TENEX compatible "REL" or relocatable binary files as output. 
The compiler also runs under the NLS system to compile NLS 
structured files. 

Grammar s 

A grammar, or compiled CML program, describes the command 
words, noise words, selection requests, and so forth, that 
make up the user interface to a tool or subsystem. It calls 
on Backend procedures that execute the actual command 
functions. The way the grammar interacts with the Command 
Language Interpreter is described below. 

The Command Language Interpreter (CLI)--the CML "Machine" 

The Frontend's command parsing capability could have been 
implemented in several ways; for example, table driven 
techniques or a subroutine per command approach could have 
been used. Instead, an interpreter and a set of instructions 
for an idealized machine were designed. The tool grammar 

Augmentation Research Center page 13 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

serves as the program and the Command Language Interpreter 
executes the instructions. 

Conceptually, the grammar is a computer program which the CLI 
"executes". The instruction set for this "fictitious" 
computer (the CLI) has been carefully chosen to correspond to 
the CML primitives. The programs are organized in such a way 
that a minimum of program memory is required. 

This approach has several advantages: it is general; the 
tool dependent part (grammar) is relatively small; and when 
found inadequate, the instruction set can be expanded. The 
generality and flexibility of the CLI are especially 
important design considerations. 

A CML grammar is actually a pseudo-computer program that 
embodies the command language discipline for a tool. The eLI 
embodies the interaction discipline for all grammars. Thus, 
while commands (and arguments) may be quite different from 
one tool to another, the discipline for specifying, aborting, 
accepting, rejecting, and interrupting commands is always the 
same. 

The CLI interacts with the user to help him specify commands 
for the system to execute. It prompts him for the type of 
input required (if the user wants it to), shows him the 
syntactic form of specific commands on request, shows him his 
actual alternatives at any point in the specification of a 
command on request, and can invoke the prose description Help 
facility. 

The CLI provides a terminal-independent interface to tools. 
This means that even though the creators of a tool envisioned 
the user sitting at a typewriter terminal, the user who 
happens to be using a display terminal with a pointing device 
may be able to interact with the tool in a two dimensional 
sense, pointing to arguments on his screen instead of typing 
them. For tools that make more extensive use of a display 
terminal, the CLI presents primitives for allocating windows 
on the display and allows the tool to write, delete, or move 
items displayed within the windows. In addition, the 
creators of a display oriented tool can program in 
contingencies to handle a typewriter terminal, and even 
present different commands to the user where necessary. 

Augmentation Research Center page 14 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

The Help Tool 

The Frontend helps the user specify commands by providing 
command word recognition, noise words, prompts, and a "next 
option" list. All of these are based on the grammar and 
contain no semantics beyond the meaning implicit in the 
command names and noise words. 

If the above facilities are not sufficient because of 
uncertainty about a basic concept or vocabulary word, or the 
user wishes more information about the effects or use of a 
command, he can type the HELP key (or <CTRL-Q» to use the 
Help facility. Help is implemented as a special tool rather 
than a Frontend function. When Help is invoked, information 
about the command being used is passed to the Help tool so it 
can take the user to an initial point that describes the 
command. If the user is not in the middle of specifying a 
command, the tool takes him to appropriate information about 
the system he is using, or else he may type in a term and the 
correct description will be furnished. 

Once in the Help tool, a simple set of command conventions 
and the organization of the data base allow the user to 
easily reference related subjects, move to new subjects, or 
move up to higher level descriptions. 

A structured Help data base, derived from the grammar syntax 
and text provided by the tool implementers, describes in 
English the intended use of the tool and its commands. 

User Profile Facility 

The User Profile facility consists of two parts. Together 
they give the user the ability to tailor the Frontend user 
interaction to suit his proficiency and/or preferences. 

The Profile itself is a data structure loaded by the Frontend 
when the user is authenticated by the Works Manager. It is 
unique to each individual user, describing to the CLI how 
much prompting and feedback the user wants, the command word 
recognition scheme he wishes, and many other idiosyncratic 
features of the user interface. 

The second part is the User Profile Tool, which allows the 
user to modify his profile data base and consequently the 
behavior of the system. 

Augmentation Research Center page 15 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

FUTURE ADDITIONS TO THE FRONTEND 

Design and implementation of the features described in this 
section are in various stages of completion. Some features will 
be implemented in the short term; others are still being 
designed, with various possible design alternatives being 
considered. To simplify their descriptions, each feature is 
described in the present tense, except where design options are 
open. 

Command Sequence Facility 

A Command Sequence (CS) is a pre-defined operation using one or 
more different, but already existing, user-level commands. The 
user need not learn a new language to write a Command Sequence. 
It is written in textual form, exactly as the user would see 
the commands when actually executing them, and assigned a 
unique name. The Command Sequence can be given a command 
syntax and invoked by its name, just like any other command. 
The only difference is that its execution causes other 
pre-defined commands to be executed. 

A Command Sequence may be defined with a command, a CS-defining 
tool, or a text editor. Using a text editor to put a Command 
Sequence into a file has the disadvantage that mistakes are 
easily made in writing down a series of command words, even for 
very familiar commands. A more promising approach is to enter 
the command at the terminal as usual, but have it placed into a 
file rather than executed. This method makes syntactic errors 
impossible. An option is to execute the command in addition to 
putting it into a file, to make sure it works. 

To make a Command Sequence "active", the user specifies to the 
Frontend that he wants to use a particular Command Sequence or 
set of Command Sequences. He then types the Command Sequence 
name when he is at the top level command state in whatever 
(split) grammar he is using (e.g., the EXEC). The Command 
Sequence name is recognized as a command. Confirmation starts 
the Command Sequence execution. 

Three Levels of Command Sequence Capability 

The first level of Command Sequence capability simply allows 
the user to place a Command Sequence and text in a file and 
have it executed automatically from there; the system behaves 
exactly as if the user had specifie.d commands and typed in 
text. A Command Sequence of arbitrary length can be placed 
in the file. The entire sequence or any designated part of 

Augmentation Research Center page 16 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

it can be executed. The sequence can be executed 
immediately, saved and executed later, executed more than 
once, or executed as part of the execution of another 
sequence (sub-routine). 

The second level of capability allows the collection of 
parameters from the user in addition to specifying commands 
and textual input. The Command Sequence may prompt for and 
collect several parameters from the user for input to the 
Command Sequence commands. The parameters may be collected 
at the beginning of Command Sequence execution or at the 
point when they are needed. 

Third level capability requires decision making on the part 
of the Command Sequence. The decision may be based on user 
input or command results. This makes it possible for Command 
Sequences to handle error conditions properly and to perform 
operations in a variety of ways, as directed by the user at 
Command Sequence execution time. 

For the second and third level capabilities, the system will 
provide a "Control Language" which will contain an iteration 
command, a conditional command for testing the success or 
failure of other commands, a way'to collect parameters from the 
user when a Command Sequence is executed, and other programming 
kinds of features. 

The Command Sequence facility is a feature of the Frontend and 
is not tied to a particular grammar or tool. Hence the Command 
Sequence execution can invoke any tool (split or unsplit) and 
perform any command in the tool. 

Multiple Tools 

Because the Frontend process is not directly involved in the 
execution of tool commands, the user may run several tools 
concurrently. Typically, the user will interact with one tool 
for awhile, escape back to the EXEC and run another tool, then 
escape back again and resume the first, etc. 

The display user can divide his screen into windows and run a 
different tool in each window. He may even be able to 
determine with which tool he wishes to interact by placing his 
cursor in the proper window. 

Augmentation Research Center page 17 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

Meta Tools 

Occasionally a user may need more than one tool to accomplish 
his task. A specialized tool that incorporates commands from 
several tools meets this need. As the name implies, a meta 
tool grammar makes u.se of several tools to perform high level 
commands. The user does not necessarily know what tools are 
invoked--he thinks in terms of commands in the meta tool. 

Although meta tools could be implemented as Command Sequences, 
there may be cases in which the user wants to include many 
commands, making it more efficient to make them grammars 
instead of Command Sequences. A meta tool also solves the 
problem of restricted tool (or file) access. When a user does 
not have access to a tool (or special file) but would like to 
use a few commands in that tool, he could be given access to 
the meta tool, which would only make limited use of the 
restricted tool. 

Tool Interaction 

The meta tool feature is a way to combine capabilities of 
several tools in ways predetermined by the meta tool commands. 
Tool interaction is a way to combine tool capabilities in 
unforeseen ways. 

Tool interaction is based on the idea that every tdol will 
support the concept of a "source address". This may be a line 
number in an editor, a message sequence in a mail system, or an 
NLS address. Every tool provides a way for the Frontend to 
request that it make an NSW file, given a source address. 

Tool interaction is necessary whenever the user wants to supply 
something from one tool as input to another. TypicallYt the 
user runs both tools concurrently. He executes the command in 
the first tool, but as input to the command he gives the 
Frontend a source address and indicates that it be applied to 
the second tool. The source address is specified in terms 
proper for the second tool. The Frontend then asks the second 
tool to create a file containing the text addressed, using that 
as input to the first tool's command. 

Terminal Linking 

The Frontend permits one user to talk (i.e., type) to another 
by means of terminal linking. Linking terminals in NSW is 

Augmentation Research Center page 18 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

roughly parallel with the RSEXEC linking capability. One 
Frontend contacts another (after asking the Works Manager where 
it is) and sets up a two-way link, perhaps across hosts. 

A more interesting and powerful capability is display screen 
linking. This allows two users at display terminals to share a 
screen while simultaneously carrying on a conversation by 
telephone or conventional linking. 

This feature works across hosts, for users with different 
brands of display terminals and different screen sizes, and 
without cooperation from any tools. 

User Statistics Collection 

The Frontend is an ideal place to install measuring devices. 
Tool builders and managers often ask two common questions: (1) 
how are users using the tool, and (2) what level of service are 
they getting. One measurement package in the Frontend collects 
data to answer both of these questions for all split tools. 
Further, the data could be used by tutorial-type help systems 
to point out common errors, level of command usage by the user, 
etc. 

The statistics package has two components. A measurement 
package in the Frontend collects data on command usage by user, 
user errors, and tool responsiveness. The result is a data 
file for each user session. An analysis tool summarizes the 
data in a variety of ways, as specified by the analysis tool 
user (e.g., tables and graphs of averages, distributions of 
various measurements). The analysis tool also provides an 
interface to user programs so that users, managers, and/or tool 
builders can write their own analysis programs. 

Augmentation Research Center page 19 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

TOOL CHARACTERISTICS 

Each tool has two important characteristics for the Frontend: 
composition (split or unsplit) and Frontend communication mode. 
Basically, split tools use the Frontend for command recognition 
while execution functions are performed by the Backendi in 
unsplit tools Frontend and Backend functions are combined. But 
there is a spectrum of intermediate configurations. 

(1) At the low end of the spectrum, unsplit character-at-a-time 
tools expect character-at-a-time interaction with the-terminal, 
(i.e., the CLI is transparent). For line-at-a-time tools the 
CLI can be equally transparent and the transmision discipline 
more efficient, but the user interface capabilities will be 
limited. 

(2) In a primitive split tool the grammar may send one 
character at a time to the tool--and essentially implement 
TELNET. (No improvement is made over 1.) 

(3) The grammar may collect strings from the user (observing 
termination characters) and send them on to the tool. This 
implements local echoing/buffering and minimal editing, and 
gains transmission efficiency. 

(4) Or the grammar may recognize commands and translate them 
into text strings as input for the tool--which will look like 
normal user input for that tool. 

Any existing tool may be split as described in configurations 2 
through 4, gaining definite benefits and requiring absolutely 
no changes to the tool (e.g., TECO, SOS, etc.). With slightly 
more effort the two-dimensional display facilities of the CLI 
Frontend can be utilized to give such a tool a two-dimensional 
interface, again without altering the tool itself. 

(5) The other end of the spectrum includes split tools like NLS 
that contain only execution functions in the Backend, and 
interface with the grammar and the Frontend functional 
primitives. In addition to providing good FE service, such 
tools should be considerably less expensive to build than 
present unsplit tools. 

An unsplit tool could be used as a split tool in schemes 2 
through 4 above. 

There are two possible modes of communication between the 
Frontend and a tool: character-oriented and message-oriented 
communication. 

Augmentation Research Center page 20 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

Character-oriented communication is implemented as a Telnet 
connection (obtained from MSG-3 or other means). 
Message-oriented communication is done via MSG-3 messages. 
Although it would be possible for message-oriented 
communication to be done over direct connections obtained from 
MSG-3, we have not seen a need for that. Existing unsplit 
tools and split configurations 2 through 4 above require 
character (Telnet) communication. More sophisticated split 
tools require message (MSG-3) communication. 

Augmentation Research Center page 21 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

FRONTEND INTERFACES 

The Frontend interfaces to tools, the Works Manager, and the 
Foreman by means of interface modules within the Frontend. As 
explained above, there are two types of interface, character 
oriented (for unsplit tools) and message oriented (for split 
tools and the Works Manager). 

Throughout the development of the Frontend it has been necessary 
to implement several interface modules, because the interprocess 
communication mechanism has completely changed from time to time. 
Some modules were also used for more expedient debugging. 

The Frontend proper is completely independent of the interface 
modules--the same Frontend object file may be loaded with any of 
the interface modules to create a Frontend that uses the desired 
interprocess communication mechanism. Those interface modules 
are described briefly below. Any given Frontend will contain 
only one interface set (character- and message-oriented 
communication). The standard NSW Frontend will use the MSG-3 
Telnet character interface and the MSG-3 message interface. 

Character-Oriented Interfaces 

In early NSW systems the TENEX Frontend obtained job-relative 
network sockets which were used by a User Telnet process within 
the Frontend. That User Telnet process then communicated with 
the encapsulated unsplit tool much as any User Telnet. 

More recent versions obtain Telnet connections to the unsplit 
tool process (by process name) by way of the MSG-3 Telnet 
direct connection feature. The Frontend then communicates as 
above, with the added feature that 'the unsplit tool input may 
be taken from the keyboard or generated by the grammar. The 
tool output may also be captured and displayed to the user as 
desired. This provides for the implementation of local command 
recognition, as outlined in the previous section. 

Message-Oriented Interfaces 

Message-oriented communication has three aspects: 
communication medium, message semantics, and data structure 
within messages. 

The message format for Frontend communication has been well 
defined. (See "How Tools Interface to the CLI" in A GUIDE TO 
THE CML AND CLI.) Elements of the message format determine the 

Augmentation Research Center page 22 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

semantics of the message, typically "procedure invocation" and 
"reply". By convention the data structure format is determined 
by the communication medium. 

The data representations are listed here. Format definitions 
appear in Appendix 3 of A GUIDE TO THE CML AND CLI. 

PCPB36 

A 36-bit word data structure that contains integers, 
indicies, Booleans, character strings, and lists of the 
above. 

PCPB8 

Similar to PCPB36 but the entire structure is made up of 
8-bit bytes--indicies are 2 bytes long, integers are 4 bytes, 
etc. 

L10 

A 36-bit (or l6-bit) word oriented non-linear data structure 
paralleling PCPB36 and PCPB8 but containing memory addresses. 
This is simply an in-memory representation of PCPB36. It is 
more suitable for program manipulation, while PCPB36 and 
PCPB8 are more suitable for transmission. 

Augmentation Research Center page 23 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

CONCLUSION 

The NSW Fronteud system provides the kind of consistent, 
responsive user environment necessary for the maturation of a 
network marketplace. It also opens up other possibilities. The 
ease with which the user interface can be changed and user 
statistics gathered makes the system an excellent vehicle for 
human factors research. Automatic adaptation of both the grammar 
and User Profile data structures according to the user's 
proficiency with a tool is possible. The system also provides an 
environment for applying advanced technology, such as computer 
voice recognition, to change the physical nature of the 
man/machine interface. 

Augmentation Research Center page 24 



DIA BEV ANDY 3-FEB-77 15:18 28743 

An Introduction to the NSW Frontend 

REFERENCES 

1. Andrews, Donald I., Beverly R. Boli, and Andrew A. Poggio. A 
Guide to the Command Meta Language and Command Language 
Interpreter. Augmentation Research Center, Stanford Research 
Institute, Menlo Park, California. February 3, 1977. (28744,). 

2. Andrews, Donald I., Lawrence L. Garlick, and Andrew A. 
Poggio. Frontend System Documentation. Augmentation Research 
Center, Stanford Research Institute, Menlo Park, California. 
February 3, 1977. (28745,). 

Augmentation Research Center page 25 


