CS53

A PROGRAMMI NG LANGUAGE FOR THE 360 COMPUTERS
BY

NIKLAUS W IRTH

TECHNICAL REPORT NO. CS53
DECEMBER 20, 1966

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

A PROGRAMMING LANGUAGE FOR THE 360COMPUTERS

by

Niklaus Wirth

December 20, 1966

Abstract

A programming language for the IBM 360 computers and

is implementation are described. The language, called
PI360, provides the facilities of a symbolic machine
language, but displays a structure defined by a recur-
sive syntax. The compiler, consisting of a precedence
syntax analyser and a set of interpretation rules with
strict one-to-one correspondence to the set of syntactic

rules directly reflects the definition of the language.

k-th syntax rule k-th interpretation rule

Sg ii= 885...8 Vg i= fk(vl,ve,..., Vn)

PI360 was designed to improve the readability of programs
which must take into account specific characteristics

and limitations of a particular computer. It represents
an attempt to further the state of the art of program-
ming by encouraging and even forcing the programmer to
improve his style of exposition and his principles and
discipline in program organization, and not by merely
providing a multitude of "new" features and facilities.
The language is therefore particularly well suited for

tutorial purposes.

The attempt to present a computer as a systematically
organized entity is also hoped to be of interest to

designers of future computers.

A Programming Language for the 360 Computers

Contents
1. Introduction, aim and purpose
II. Definition of the language

1. Terminology, notation, and basic definitions
2, Data manipulation facilities

3. Control facilities

ITI. Examples
Iv. The object code
V. Addressing and segmentation

1. Program segmentation

2. Data segmentation ¢«00 ..

3. Program loading

L. Problems connected with input-output programming
VI. Compiler methodology

1. General organization

2. Identifier tables

3. Handling of syntactic errors

VII. The development of the compiler

-VIII. Performance.
IX. Reflections on the 360 architecture . . ,
X. How to use the PL360 system .
Acknowledgments
References

ii

Page

11

22

.29

34
38
39
40
L1
b1
45
43
L
L6
5k
.57
. 58

81
81

I. Introduction, Aims and Purpose

In an era of feverish and prolific activity in the design of more
and more sophisticated and intricate programming aids, the proposal of
a machine language may seem anachronistic to some readers. This report
describes an attempt to provide a tool for those applications where it
is essential to conceive the program as closely as possible in terms of
an existing computer in order to directly take into account its particular
capabilities and limitations. Sophistication has not been an aim in this
attempt, but emphasis was rather put on a clear and conceptually syste-
matic exposition of the available facilities. The result is reliability
on the part of the implemented system as well as on the part of the user
who 1s not subject to misunderstandings about the nature of complicated
and 1ill-defined--facilities. None of these objectives should be called

anachronistic.

In the summer of 1965, the author decided to undertake efforts to
implement the proposed successor to ALGOL described in [2] on the IBM
360 computer which at that time had been chosen as Stanford's next genera-
tion machine. It was felt that the evolving project should be conducted
in a thorough and systematic manner, worthy of an academic endeavour, and
making use of the best available methods on compiler construction known.
The results should consist of a well-organized system whose structure and
principles were sound and precisely understood, and which was intelligibly

documented.

After many years of experience with ALGOL, it was clearly recognized
that a compiler written in 360 Assembly Language would neither be able
to meet the desired documentation standards, nor constitute a sufficiently
convenient programming tool. The only other language available on the
360, FORTRAN, was not deemed adequate either. Against the strong argu-
ments of the undesirability of the large amount of additional efforts re-
quired to produce a new language and its compiler, it was decided to
develop a tool which would:

1. allow full use of the facilities provided by the 360 hardware,

2. provide convenience in writing and correcting programs, and

3. encourage the user to write in a clear and comprehensible style.

As a consequence of 3., it was felt that programs should not be able
to modify themselves. The language should have the facilities necessary
to express compiler and control programs, and the programmer should be
able to determine every detailed machine' operation. In this respect, the
language features the property of a conventional assembly code. In its
appearance, however, it resembles a high level programming language due
to the presence of structure. Being specifically tailored for the 360

computer, the language was appropriately named PL360.

Chapter II is the definition of the language. It is given in terms
of a syntax, and the semantic explanations of the individual syntactic
constructions. Knowledge about the nature of the 360 architecture is
prerequisite (cf. [1]); however, the definition does not require familiar-
ity with the 360 Assembly Language. A few self-explanatory examples of

programs are listed in Chapter III.

The following two chapters are devoted to the implementation of
PL360. They exhibit the code which the compiler generates corresponding
to various language statements, and the method of segmentation and addres-
sing. Chapter VI gives an account of the organization of the compiler,
which relies on a rigorous syntax analysis of the text while at the same
time generating the target code. The compiler constitutes a large scale
practical example for the application of the techniques described in [3],
which have been extended to process incorrectly constructed texts and to
- meaningfully diagnose errors. The success of this facility is considered
to be a major contribution to make predecence grammars useful in practical

applications.

© The methods employed in producing the compiler are described in Chap-
ter VII. A bootstrapping technique was used to make the compiler available
on the 360 computer without prior use of any of the languages existing on
that machine. Programming the compiler in its own language provided a

thorough test for the adequacy of the language to its anticipated purpose.

Chapter VIII gives a brief account of the size and the performance
of the translator on a 360/50 computer. Concluding remarks about the
language and its implementation lead to a brief examination of the appro-

priateness of the 360 architecture for this experiment.

2

II. Definition of the Language
Contents
1. Terminology, notation, and basic definitions

1.1. The computer.

1.2. Relationships

1.3. The program.

1.4. Syntax

1.5. Syntactic entities

1.6. The vocabulary of basic symbols
2. Data manipulation facilities

2.1. Identifiers

2.2. Numbers and strings

2.3. Register declarations

2.4, Cell declarations

2.5. Cell designators

2.6. Register assignments

2.7. Cell assignments

2.8. Function declarations

2.9. Function statements

2.10. Synonym declarations

2.11. Segment base.declarations
3. Control facilities

3.1. If statements

3.2. Case statements

3.3. While statements

3.4, For statements

3.5. Blocks

3.6. Goto statements « « « « « « « o « .

&
&
&
&
&
&
&
&

3 .7. Procedure declarations

3.8. Procedure statements

Page

O N N oo

10

11
11
11
13
14
15
16
18
19
20
21
22

1. Terminology, notation, and basic definitions

The language is defined in terms of a.(/§60) computer which comprises

a number of processing units and a finite set of storage elements. Each

of the storage elements holds a content, glso called value. At any given

time, certain significant relationships may hold between storage elements

and values. These relationships may be recognized and altered, and new
values may be created by the processing units. The actions taken by the
processors are determined by a program. The set of possible programs
form the language. A program is composed of, and can therefore be decom-
posed into elementary constructions according to the rules of a syntax,

or grammar. To each elementary construction corresponds an elementary

action specified as a semantic rule of the language. The action denoted
by a program is defined as the sequence of elementary actions corres-
ponding to the elementary constructions which are obtained when the pro-

gram is decomposed (parsed) by reading from left to right.

1.1. The computer

According to their specific capabilities, processing units are divided

into central processing units (CPU), input-output processing units (chan-

nels), and input-output devices. At any time, the status of a unit is

described by a sequence of bits, called the program status word (PSW) for

CPUs and the channel status word (CSW) for channels. A status word con-

tains, among other information, a pointer to the currently executed in-
‘struction. In particular, the program status word also contains a quan-

tity which is called condition code.

Storage elements are classified into registers and core memory cells,
simply called cells. Registers are divided into three kinds according to
their size and the operations which can be performed on their values.

The kinds of registers are:

a. integer or logical (a sequence of 32 bits)

b. real (a sequence of 32 bits)

c. long real (a sequence of 6k bits)

Cells are classified into seven types according to their size and the
type of value which they may contain. A cell may be structured or simple.

The types of simple values and simple cells are:

a. byte, or character (a sequence of 8 bits),

b. short integer (a sequence of 16 bits, usually interpreted as an

integer in two's complement binary notation),

c. integer or logical (a sequence of 32 bits, usually interpreted

as an integer in two's complement binary notation),

d. real (a sequence of 32 bits to be interpreted as a floating point
binary number),

e. long real (a sequence of 64 bits to be interpreted as a floating
point binary number),

f. command (a sequence of 64 bits, usually interpreted as a data

channel command).

1.2. Relationships

The most fundamental relationship is that which holds between a cell

and its value. It is known as containment; the cell is said to contain
the value.
Another relationship holds between the cells which are the components

of a structured cell, called an array, and the structured cell itself.

It is known as subordination. Structured cells are regarded as containing

the Cartesian product of the values of the component cells. The component

cells themselves are well-ordered.

A set of relationships between values is defined by monadic and dyadic
functions or operations, which the processors are able to evaluate or per-
form. The relationships are defined by mappings between values (or pairs
of values) known as the operands and values known as the results of the
evaluation. These mappings are not to be precisely defined in this report;
instead, references will be given to their definition in official publica-

tions on the /360 computer [4].

1.3. The program

A program contains declarations and statements. Declarations serve
to list the quantities which are involved in the algorithm denoted by the
program, and to associate a name, a so-called identifier, with each quan-
tity. Statements specify the operations to be performed on these quanti-

ties, to which they refer through use of the identifiers.

A program is a sequence of tokens, which are basic symbols, strings,
or comments. Every token is itself a sequence of characters. The follow-

ing conventions are used in the notation of the present article:

a. basic symbols constitute the basic vocabulary of the language
(cf. 1.6.). They are either single non-alphanumeric characters
or underlined letter sequences;

b. strings arémsequences of characters enclosed in quote marks ");

c. comments are sequences of characters (not containing a semicolon)
preceded by the basic symbol comment and followed by a semicolon
(;). It is understood that during execution of a program, all

comments are ignored.

In order that a sequence of tokens be an executable program, it must be

constructed according to the rules of the syntax.

1.4, Svntax

. A sequence of tokens constitutes an instance of a syntactic entity
(or construct), if that entity can be derived from the sequence by one or
more applications of syntactic substitution rules. In each such appli-
cation, the sequence equal to the right side of the rule is replaced by

the ‘symbol which is its left side.

Syntactic entities (cf. 1.5.) are denoted by English words enclosed

in the brackets (and) . These words describe approximately the

nature of the syntactic entity, and where these words are used elsewhere
in the text, they refer to that syntactic entity. For reasons of nota-
tional convenience and brevity, the script letters ¥ and T are also

used in the denotation of syntactic entities. They are understood to

stand for any kind of register or type of cell, possibly subject to re-

strictions mentioned in the accompanying text of the paragraph.

Syntactic rules are of the form

(A) ::= &

where (A) is a syntactic entity (called the left side) and ¢ is a
finite sequence of tokens and syntactic entities (called the right side

of the rule). The notation

Wy so= gleg oo L

n

is used as an abbreviation for the n syntactic rules
~ (A) ::= gl, (A) ::= 52’ ooy (B) =g

If in the denotations of constituents of the rule the script letters ¥
or J occur more than once, they must be replaced consistently. As an

example, the syntactic rule
(¥ register) ::= (K register identifier)

is an abbreviation for the set of rules

(integer register) ::= (integer register identifier)
(real register) ::= (real register identifier)
(long real register) ::= (long real register identifier)

1.5.

Syntactic Entities

(arithmetic operator)
(base declaration)
(block body)
(block head)
(block)
(case clause)
(case sequence)
(case statement)
(condition)
(decimal digit)
(decimal integer number)
(decimal scale factor)
(declaration)
(for clause heading)
(for clause)
(for statement)
(fractional number)
(function declaration)
(function heading)

(function identifier)
(function name)

(function statement)

(got0 statement)

(hexadecimal number)

(1f clause)

(1f statement)

(increment)
(¥ register assignment)
(¥ register declaration head)
(¥ register declaration)
(¥ register identifier)
(¥ register)

label definition)

(
(
(logical operator)

(monadic operator)

(procedure declaration)
(procedure head)

(procedure heading)

(procedure identifier)
(procedure name)

(procedure statement)
(program)

(relational operator)

(shift operator)

(simple ¥ register assignment)
(simple statement)

(simple T type)

(statement)

(string)

RDWMPHDWMPHDMLMHDWWLWLBWIIN O W WD MPDWWLWPODPODNPODMNNDMPODWOLDIVDIOW D NN MNDNRODWWDWOUW D PO PNDWWWWWWW O D

DU FUONRN NP9 NORFU R, OWNOF H N OW - 000N FFF0 N NN R0 UGG Oy

[l

(continued)

533
A

1.6.

(T cel1 assignment)

(T cell declaration)

(T cell designator)

(T cell identifier)

(T number)

(T subcell designator)

(T synonym declaration)

(T type)

(T value)

(true part)

(unsigned integer number)
(unsigned long real number)
(unsigned real number)
(
(

~ .

« O

while clause)
while statement)

DO DR DWW DN DN
WP EEaN o EN

Basic symbols

als|c|p|ele|c|n|z|s|k|L|M|v]o]pla|r|s|T|Ulv|Ww|x|¥|Z]|
alb|clalelf|gn|i]ilx|1|m|n|olp|alz s|tlulv]wlx|y]|z]
ol1]e|3|4]5|6]|78]9]

=P/ l<l=l>1= 2= 1 1D el |

andlg;IxorlabslnotlshllIshrllshlalshral

if|then|else|case|of|while|do|for|step|until]

beginlendlgotolcomment'null|

integerlrealllogical“arraykwracter‘longlshort

command|functionlprocedurelregisterlgxg

segmentlbase

10

2. Data manipulation facilities.

2.1. Identifiers

(letter) ::= AlBlc|p|E|F|c|u|z|slk|n|M|N|olp|alr|s|T|Ulv|W]|X|Y|2Z]|
alblclalelflglnlilslxt1imidolplqizlsitlulviwix]y)z

(identifier) ::= {letter)|(identifier)(letter)|({identifier){digit)

(¥ register identifier) ::= (identifier)

(T cell identifier) ::= (identifier)

(procedure identifier) ::= (identifier)

(function identifier) ::= (identifier)

An identifier is a ¥ register-, T cell-, procedure-, or function
identifier if it has respectively been associated with a ¥ register,
T cell, procedure, or function (called a quantity) in one of the blocks
surrounding its occurrence. This association is achieved by an appro-
priate declaration. The identifier is said to designate the associated
quantity. If the same identifier is associated to more than one quantity,
then the considered occurrence designates the quantity to which it was
associated in the smallest block embracing the considered occurrence. In
any one block, an identifier must be associated to exactly one quantity.
In the parse of a program, that association determines which of the rules

given above applies.

Any processing computer can be considered to provide an environment
in which the program is embedded, and in which some identifiers are per-
manently declared. Some identifiers are assumed to be known in every

environment; they are called standard identifiers, and are listed in the

respective paragraphs on declarations.

2.2. Numbers and strings

(decimal digit) ::= o|1|2|3|4|5]6]|7]8]9
(decimal integer number) ::= (decimal digit)]
(decimal integer number)(decimal digit)
(unsigned integer number) ::= (decimal integer number)
(fractional number) ::= (decimal integer number)) . (decimal digit)l

(fractional number) (decimal digit)

11

(decimal scale factor) ::= (decimal integer mmmerﬂ
(decimal integer number)

(unsigned real number) ::= (fractional number”
(fractional number) E (decimal scale factor”
(decimal integer number) E éaecimal scale factor)

(unsigned long real number) ::=
(fractional number) D (decimal scale factor”
(decimal integer number) D (decimal scale factor)

(T number) ::= (unsigned J number)‘_(unsigned T number)

(hexadecimal digit) ::= (decimal digit)|A|B|c|D|E|F|

Here T stands for any one of
integer
real

long real

(hexadecimal number) ::= #(hexadecimal digit”
(hexadecimal number){hexadecimal digit)

(integer number) ::= (hexadecimal number)

Numbers have their conventional meaning. They can either be given in

decimal or hexadecimal notation. The scale factor signifies that the

preceding number be multiplied by the indicated power of ten. The symbol _

stands for a minus sign.

A string is any sequence of characters enclosed by quote marks, with-

in which a single quote mark (") is always denoted by a pair of adjacent

quote marks (""). Examples:

"ABC" denotes the sequence ABC
"A"'"Z" denotes the sequence A"Z

Tt denotes the sequence "A"

Examples:
integer numbers

0 1066 > #A #FOO

real numbers

1.0 0.1 -3.1416 2.7TE5 1E10

12

long real numbers
5.37861289D0 _1D10 8.9D 5

strings
"A STRING IS A CHARACTER-SEQUENCE"
"DATE: 29/9/ 1966"

2.3. Register declarations

In the following rules, the letter K must be replaced by any one

of the following words (or word pairs):

integer
real
long real
(% register declaration head) ::=
(simple ¥ type) REGISTER (identifier)]
(K register declaration),(identifier)
(¥ register declaration) ::=

(% register declaration head)((integer number))

Every identifier in a ¥ register declaration is associated with the X
register specified by the integer number enclosed in parentheses following
the identifier. It herewith becomes a ¥ register identifier. This

number must designate one of the existing integer (or logical) registers
numbered O-15, or one of the existing real or long real registers numbered
0, 2, 4, and 6.

Examples:

integer register count(l), m(2), n(3)

‘long real register sum(4), product (O)

The following are standard register identifiers:
RO, Rl,..., R9, RA,..., RF

designating the 16 integer registers, and
FO, F2, F4, F6, FOl, F23, F45, F67

designating the 4 real and long real registers respectively.

13

2.4, cell declarations

(simple integer type) ::= integer|logical
(simple short integer type) ::= short integer
(simple real type) ::= real

(simple long real type) ::= long real

(simple byte type) ::= bytelcharacter

(simple command type) ::= command

(T type) ::= (simple T type) |

array ((integer'number)) {simple T type)
(T cell declaration) ::= (T type){identifier)|

(T cell declaration) , (identifier)\

(IO cell declaration) ((Tl number))|

(character cell declaration) ((string))

Every identifier occurring in a cell declaration is associated to
one unique cell of the indicated type, if that type is simple, or other-
wise to a unique array of cells of the indicated type. The number of
cells in an array is given by the number enclosed in parentheses following

the symbol array .

If a cell declaration is followed by one or more numbers or strings
within parentheses, then the cell is declared to contain those numbers
or strings as its values. TO and Tl must either be identical, or

be selected from the following combinations:

TO Tl
short integer integer
byte integer
command integer

The number of such values must not exceed the number of declared elements
in the array. A string can only be assigned to a character cell, and the
number of characters must not exceed the number of indicated array ele-
ments. This assignment of values must be understood to take place only

upon the first time the block, in which the cell declaration occurs, 1is

entered.

14

Examples:

yte a g
short integer i, j

integer, age(2l), hight (68)

long real x, y, z
array (3) integer size(36)(23)(37)

array (1000) real quant, price

array (8)byte flags
array (132) character line(" ")

Note : The symbols integer and logical, and byte and character are treated

as synonymous in the language.

2.5. Cell designators

(T subcell designator) ::= (J cell identifier)({integer number))

(T cell designator) ::= (T cell identifier)|(J subcell designator)|
(T cell identifier) ((integer register)) |
(T subcell designator) ((integer register))

A cell identifier which is followed by a number or an integer regis-
ter enclosed in parentheses (called a subscript), must designate an array
of cells. When n is the subscript (number or current value of register),
then the construct designates that cell of the array which is located n
memory unit positions (1) from the beginning of the array, if the sub-
-script is preceded by the cell identifier, or (2) from the designated
position, 1f the subscript is preceded by a subcell designator. The num-
ber of memory units occupied by cells of various types are: character (1),
byte (1), shortinteger (2), integer (4), logical (&), real (4), long
real (8). The subscript used to designate any element of an array must

therefore be a multiple of the appropriate number.
Note: A subscript must not specify register 0

Examples of cell designators:

age
size(2)
prize(R1)
line(16)(R2)

15

2.6. Register assignments

({ register) ::= (¥ register identifier)
(T value) i:= (T number)‘(T cell designator)
(integer value) ::= (string)kf

A K register designates the value contained in the identified register.
A value is either a constant, i.e., a number or a string, or the content
of a designated cell. In the case of a logical value being a string,
that string must consist of not more than 4 characters. If it consists
of fewer than 4 characters, the string is extended to the left with null
characters. The bit representation of characters is defined in [1]

(EBCDIC) .

(simple ¥ register assignment) ::=

(1) (K réQister identifier) := (¥ value)|
(K register identifier) := (K register)|
(2) (X register identifier) := (monadic operator)(T value)
(% register identifier) := (monadic operator){K register)

A simple register assignment is said to specify a register, namely
the one designated by the register identifier to the left of the assign-
ment operator (:=) . To this register is assigned the -value designated
by the construct to the right of the assignment symbol. That designated
value may be obtained through execution of a monadic operation specified

by a monadic operator.

The following are legal combinations of kinds and types to be sub-
stituted respectively for the letters ¥ and T in the rules (1) and (2):

X T
integer integer
integer short integer
integer command
real real
long real 1B real
long real long real

16

(monadic operator) ::=_abs |ggg| neqg abs

The monadic operations are those of taking the absolute value, of sign

inversion, and of sign inversion after taking the absolute value.

Examples of simple register assignments:

RO :=1
R2 :=RA
R6 := age
FO := quant(Rl)
F23 :=x
F45 := neg FOL
RD := abs hight
FO := neg abs F6
(% register assignment) ::= (simple ¥ register assignment)l
(3) (K register assigmment){arithmetic operator)(T value)|

(K register assignment){arithmetic operator)(¥ register)|

(integer register assignment)(logical operator)(integer value)|
(integer register assignment){logical operator)(integer register>|
(integer register assignment)(shift operator)(unsigned integer number>|

(integer register assignment)(shift operator)(integer register identifier)

A register assignment specifies a register, namely the one which is spe-
cified by the simple register assignment or the register assignment from
which it is derived. To this register is assigned the value obtained by
applying a dyadic operator to the current value of that specified register
and the value designated by the construct following the operator. The
operations are the arithmetic operations of addition (+), subtraction (-),
multiplication (*), and division (/), the logical operations of conjunction
(and » exclusive and inclusive disjunction (xor, gﬁ, and those of shifting
to the left and right, as implemented in the /360 system. The operators ++
and —- denote "logical" or unnormalized addition and subtraction when

applied to integer or real registers respectively.

(arithmetic operator) ::= +|=|¥|/|+|--
(logical operator) ::=_§ggjg§|§9;
(shift operator) ::= shll]ﬂua|shrljsh;a

17

In the syntactic rule (3), the same combinations of ¥ and T are

;

permitted as specified for rules (1) and (2).

Examples of register assignments:

RO = R3
R1 = 10
RA =1 + age - R3 + size(R1)

R9 :=R8 and R7 shi{8or RE
F2 :=3,1416

FO := quant(Rl) * price(Rl1)
F45 := F45 + FOL

Note : The syntax implies that sequences of operators (including assign-

ment) are executed strictly in sequence from left to right. Tpyus
Rl :=R2 + Rl

is not equivalent to
Rl :=1Rl + R2

but rather to the two statements

Rl := R2; RL :=Rl + Rl

2.7. Cell Assignments

(T cell assignment) ::=

(T cell designator) := (X register)

The value of the designated ¥ register is assigned to the desig-
nated J cell. The allowable combinations of cell-type and register

kind are indicated in the table of section 26.

Examples of cell assignments:

i := RO
price(Rl) := FO
x := F67

18

2 . 8Bunction declarations

(function name)
(function declaration) ,
(function heading) ::=

(function declaration) ::=

::= function (identifier)|
(identifier)
(function name)({integer number))

(function heading)({integer number))

There exist various data manipulation facilities in the 360 computer

which cannot be expressed by an assignment.

To make these facilities

amenable to the language, the function statement is introduced (cf. 2.9.),

which uses an identifier to designate an individual computer instruction.

The function declaration serves to associate this identifier, which there-

by becomes a function identifier,

code,

and to define the meanings of the parameters of the function,

with the desired computer instruction

i.e.,

to specify the format of the instruction. While the number in the func-

tion heading specifies the format (cf.
format code,

two bytes of the instruction code.

table below)

the number in the function declaration specifies the first

and is called the

In the following examples, the identi-

fiers were chosen to be the symbolic codes used in (4], and they are

standard identifiers.

Examples

MVI(L)(#9200),
MvC (5) (#D200),
sTM(3) (#9000),
SRDL(9) (#8C00),
1C(2) (#4300),
LA(2) (#+100),
SET(8) (#92FF),
CVD(2) (&4+E00),
ED(5) (#DE0O),

function

19

CLI(4)(#9500),
CLC(5)(#D500),
LM(3) (#9800),
SLDL(9) (#8D00),
STC(2) (#4+200),
TEST (8)(#95FF),
RESET(8) (#9200),
UNPK (10) (#F%00),
EX(2) (#4+400)

Format No. of Assignment of fields

Code parameter in instruction
fields in
function
2
1 12
2 2 I EY
3 3 112 3
4 2 1 3 3
5 3 1
6 1 1] |
7 1 L |
8 1 1
9 2. 1 2
10 4 1|2 3 4
0 3 16 32

2.9. Function statements

(function statement) ::= (function identifier))
(function statement) ((integer number)ﬂ
(function statement)({(¥ register identifier))]

(function statement)({(T cell designator))|

(

function statement)({string))

A function statement represents the computer instruction designated
by the function identifier. The sequence of quantities enclosed in paren-
theses specifies the parameter‘fields of the function statementin accor-

‘dance with its format, to which the fields must comply.

Examples
SET (flag)
RESET (flag)
IA(R1)(line)
MvC(15)(1ine) (buffer)
STM(RO) (RF) (save)
MVI("*")(1line)
I1C¢(RO) (flags(R1))

20

2.10. Synonym declarations

(TO synonym declaration) ::=
(To type) (identifier) syn (Tl cell designator)|
(TO type)(identifier) syn (integer number)|

(TO synonym declaration) , (identifier) syn(Tl cell designator))

(To synonym declaration) , (identifier) syn (integer number)

A synonym declaration serves to associate identifiers with the cell

which is designated immediately following the symbol syn, either by a

previously established cell designator or by an integer number representing

its absolute address in the computer's core memory.

Examples:

integer xlow syn x(4)
array (32768) integer mem syn 0

logical CAW syn 72
integer Bl syn mem(R1)

Note: The synonym declaration can be used to associate several different

types with a single cell. Each type is connected with a distinct

identifier.

Example:
long real x (4E00000000000000)

integer xlow syn x(4)

- A conversion operation from a number of type integer contained in regis-

ter RO to a number of type long real contained in register

now be denoted by

xlow := RO; FOl := x

and a conversion vice-versa by

FOl := FOl ++ zero; x := FOl; RO := xlow

No initialization can be achieved by a synonym declaration.

21

0l can

2.11. Segment base.declarations

(segment base declaration) ::= segment base (integer register identifier)

A base declaration causes the compiler to reference the specified
register as a base address for all cells subsequently declared in the
block in which the base declarationoccurs. Upon entrance to this block,
the appropriate base address is assigned to the specified register.

(cf. v.2).

3. Control facilities

3.1. If statements

(relational operator) ::= = |-1=| <| <= |>= |>

(condition) ::= (K register)(relational operator)(T value)|
(K register)(relational operator) (@ register)l
(relational operator)loverflow

The 360 computer records one of four possible states in the so-
called condition code. A condition specifies one or more of these states,
which are numbered O, 1, 2, 3. The relational operators and the sym-

bol overflow designate the following states:

operator states
= 0
= 1,2
< 1
<= 0,1
s = 0,2
> 2
overflow 3

22

If a relational operator is enclosed by two operands, then those
operands are compared, and the condition code is set to state 0, if equal-
ity holds, to state 1 if the first operand is numerically smaller, and to

state 2 if it is greater than the second operand.

(1f clause) ::= if (condition) then

(true part) <simple statement) else
(if statement) ::= (if clause)({statement)|

(if clause){true part)({statement)
The if statement permits the conditional execution of statements:

1. (if clause)(statement)

The statement is executed if and only if the condition code is in

one of the states designated by the condition in the if clause.

2. (1f clause){true part)(statement)

The simple statement in the true part is executed and the statement
~following it is ignored, if and only if the condition code is in one
of the states designated by the condition in the if clause; other-

wise the true part is ignored and the statement following it is

executed.
Examples
if RO < 10 then RL :=1
if FO>= F2 then F2 := FO else FO := F2
if < _then SET(flags(0)) else
if = then SET(flags(l)) else SET(flags(2))
Note: if the condition consists of a relational operator without operands,

then the decision is made on the basis of the condition code as

determined by a previous instruction.

Example:
CcLc(15)(a)(b); if = then ...

23

3.2. Case statements

(case clause) ::= case (integer register) of
(case sequence) ::= (case clause) beginl
(case sequence)(statement,;

(case statement) ::= (case sequence) end

Case statements permit the selection of one of a sequence of state-
ments according to the current value of the integer register (other than
register 0) specified in the case clause. The statement whose ordinal
number is equal to the register value is selected for execution, and the
other statements in the sequence are ignored. The value of that register

is thereby multiplied by 4.

Example:

case Rl of begin

R1 := R2;
R2 := R3;
R3 := R4;
R4 := R5;
end
3.3. While statements
(while clause) ::= while (condition) do
(while statement) ::= (while clause) (statement)

The while statement specifies the repeated execution of a statement
as long as the condition code is in one of the states specified by the

- condition in the while clause.

Examples:
while FO < prize(Rl) do Rl := Rl + 4

while >= do
begin RO := RO + 1; RL := RL - R2;

end

Note that in the second example the condition code is set by the subtrac-

tion operation and then tested for being in states 0 or 2

2k

3.4. For statements

(for clause heading) ::= _for (integer register assignment)
(increment) ::= step (integer number)

(limit) ::= until (integer register)| until (¥ value)

(for clause) ::= (for heading)<increment>(limit) do

(for statement) ::= (for clause}(statement)

T must be replaced by either of the types

integer

short integer

The for statement specifies the repeated execution of a statement,
while the content of the integer register specified by the for heading
takes on the value; of an arithmetic progression. That register is
called the control register. The execution of a for statement occurs in

the following steps:

1. the register assignment in the for heading is executed;

2. if the number specifying the increment is not negative/negative,
then if the value of the control register is not greateyhot less
than the value specified as the limit, then the process continues
with step 3, otherwise the execution of the for statement is termin-
ated;

3. the statement following the for clause is executed;

"4, the increment is added to the control register, and the process

resumes with step 2.

Examples:
| for Rl := 0 step 1 until n do STC(".")(line(R1))
for R2 := Rl step _U4 until RO do
F23in := quant (R2) * price(R2);
FOL := FOL + F23;

end

25

3.5. Blocks

(declaration) ::= (¥ register declaration)| (T cell declaration)l
(function declaration)|{procedure declaration)|
(synonym declaration)I(segmentfbase declaration)

(simple statement) ::= (K register assignment)l(T cell assignment)
<function)|(procedure statement>|(case statement)|(block)|
(goto statement)| null

(statement) ::= (simple statement>| (if statement>|

(while statement>| (for statement)

(label definition) ::= (identifier)

(block head) ::= ggglg|
(block head>(declaration>;

(block body) ::= (block head)| (block body){statement);|
(block body){label definition)

(block) ::= (block body) end

(program) ::= (block) @

A block has the form
begin D; D; . . . ; D; S S . . . ; S; end

where the D's stand for declarations and the S's for statements.

The two main purposes of a block are:

1. To embrace a sequence of statements into a structural unit which
as a whole is classified as a simple statement. The constituent

statements are executed in sequence from left to right.

2. To introduce new quantities and associate identifiers with them.
These identifiers may bé used to refer to these quantities in any of
the declarations and statements within the block, but are not known

outside the block.

Label definitions serve to label certain points in a block. The
identifier of the label definition is said to designate the point in the
block where the label definition occurs. Go to statements may refer to
such points. The identifier can be chosen freely, with the restriction
that no two points in the-same block must be designated by the same iden-

tifier.
26

The symbol null denotes a simple statement which implies no action
at all.

Example:
begin integer bucket;

TEST (flag); if = then

begin bucket := RO; RO := Rl; Rl := R2;
R2 := bucket;

end else

begin bucket := R2; R2 := Rl; Rl := RO;
RO := bucket;

end;

RESET (flag);

end

-

3.6. Go to statements

(go to statement) ::= goto (identifier)

The interpretation of a goto statement proceeds in the following

steps:

1. Consider the smallest block containing the goto statement.

2. If the identifier designates a program point within the considered
block, then program execution resumes at that point. Otherwise,
execution of the block is regarded as terminated and the smallest

block surrounding it is considered, Step 2 is then repeated.

3.7. Procedure declarations

(procedure name) ::= procedure {identifier)|

segment procedure (identifier)

(procedure heading) ::= (procedure name) ({integer register identifier))
(procedure head) ::= (procedure heading);

(procedure declaration) ::= (procedure head)(statement)

A procedure declaration serves to associate an identifier, which
thereby becomes a procedure identifier, with a statement (cf. 3.5.) which

is called procedure body. This identifier can then be used as an

27

abbreviation for the procedure body anywhere within the scope of the
declaration. The integer register specified in the procedure heading
is assigned the return address of control when the statement is invoked

by such an abbreviation (procedure statement). It must not be register 0.

If the symbol procedure is preceded by the symbol segment, the pro-
cedure body is compiled as a separate program segment (cf. chapter V.l).

It has no influence on the meaning of the program.

Examples

procedure P(R1); RO := RO + 1

procedure SWAP(RA);
begin long real t;
- t := FOl; FOL := F23; FOl := t;

end

Note: The code corresponding to a procedure body is followed by a branch
instruction taking the program address from the register specified
in the procedure heading, where the invoking procedure statement
had deposited the return address. Thus, the programmer must either
not use that register within the procedure, or explicitly store

and reload its value in the beginning and end of the procedure body.

3.8. Procedure statements

(procedure statement) ::= (procedure identifier)

The procedure statement invokes the execution of the procedure body
- designated by the procedure identifier. A return control address is
assigned to the register specified in the heading of the designated pro-

cedure declaration.

28

ITI. Examples

procedure magicsquare (R6);

comment This procedure establishes a magic square of order n, if n
is odd, and 1 < n <16. X is the matrix in linearized form.
Registers 0...6 are used, and register 0 initially contains

the parameter n . Algorithm 118(Comm. ACM, Aug. 1962);

begin short integer nsqr;

integer, register n(0), i(l), J(2), k(5);

nsqr := n; Rl := n*nsqr; nsqr := Rl;

i :=n+ 1shrl 1; j :=n;

for i= 1 step 1 until nsqr do

Begin 3 := i_shff6;R4 := j shil 2 + R3; R3 := X(R4);
if RS =0 then

begin i =1 -« 1; j = j = 2;
if 1 <1 then i :=k + n;
if j <1 then j:= j + n;

R3 := i shif 6; Rk j shil 2 + R3;

[

end;

X(R4) := k;

i =k +1; if i > n then i := 1 = n;
Ji=3+1; if > n then j :=j - n;

. end

procedure inreal (R4);

comment This procedure reads characters forming a real number according
to the PL360 syntax. A procedure '"nextchar" is used to obtain,
the next character in sequence in register 0 . The result is
left in the_long real register FOl . Registers 0 ... 4 and

all real registers are used;

29

byte sign, exposign; short integer ten (10);

long real fconl(#E00000000000000), fcon2 (#4+700000000000000);

integer fconllfow syn fconl (4);

function SRDL(9)(#8C00), LTR(1)(#1200);

while RO < "0" do

begin £ RO = "-" then SET(sign) else RESET(sign); nextchar;
end;

comment Accumulate the integral part in R1;

Rl := RO and #F; nextchar;

while RO >="0" do

Begin O := RO and #F; RL := RL * ten + RO; nextchar;
end;

R2 := 0; comment R2 is the decimal scale factor;
fconliow- :Q%Rl; FOl := fconl + ODO; comment FOlL := RI;
if RO = "." then

begimm e n t Process fraction. Accumulate number in FOl;

nextchar;
while RO >= "0" do
begin RO := RO_shff 4; STC(RO)(fcon2(4));
FO1 := FOl ¥ 10DO + fcon2; R2 := R2 - 1; nextchar;
end;
end;
if RO = "E" then

begin comment Add the scale factor to R2;

"o
-

nextchar; if RO = then
begin SET (exposign); nextchar;
end else RESET (exposign);
Rl := RO and #F; nextchar;
while RO >= "0" do
begin RO := RO and #F; Rl := Rl * ten + RO; nextchar;
end;
TEST (exposign);
if = then R2 := R2 - Rl else R2 := R2 + Rl;
end;

if R2 == 0 then

30

begin comment Compute F45 := 10 ' R2;
if R2 < 0 then

begin R2 := abs R2; SET(exposign);

end else RESET(exposign);

F23 := 10D0; F45 := 1D0; F67 := F45;

while R2 -1= 0 do

begin SRDL(R2)(1); F23 := F23 * FA7; FE7 := F23;

LTR(R3)(R3); if < then F45 := F45 % F23;

end;

TEST (exposign);

if = then FOL := FOL/F45 else FOL := FOL * F45;
end;

TEST (sign); if = then FOl := neg FOl;

procedure Binary Search (B8);
comment A binary search is performed for an identifier in a table via an

alphabetically ordered directory containing for each entry the
length (no. of characters) of the identifier, the address of the

actual identifier, and a code number. The global declarations

array integer directory

array short integer length syn directory (2)

()

array () short integer tag syn directory (0)
()
()

array integer address. syn directory (4)

integer n
are assumed. Upon entry, Rl contains the length of the given
identifier, R2 contains its address. Upon exit, R3 contains
the code number, if a match is found in the table, 0 otherwise.
Registers 1-8 are used;
begin integer register £(1), fow(3), i(4), high(5), x(6), m(7);
array (3)short integer compare (#D500)(#2000)(#6000);

high := n; fow :=8;comment index step in directory is 8;

31

while fow <= high do

begin i := Row + high_shri 4 shil 3; x := address(i);
if £ = length(i) then
EX(#)(compare); if = then goto found;
if < then high := i-Belse tow :=i+8;
end else
if 1 < length(i) then
EX(4)(compare);
if <=then high := i-8else low :=i+8;
end else
begin := length(i); EX(m) (compare);
if < then high := i-8else Low := it+8;
end;
end; -
i := 03

found: R3 := tag(i);

Assembly Language Code corresponding to the procedure'MBgic square' (first

example) :

MAGICSQR STH O, NSQR

LR 1,0
MH 1, NSQR
STH 1, NSQR
LR 1,0
A 1, NE
SRL 1,1
LR 2,0
L 5, ONE
B 7

Ll IR 3,PNE
SLL 3,6
LR L,2
SLL 4,2
AR 4,3
L 5,X(h~)
C 3,ZERD
BC 8,14
S 1, NE
S 2, TWP
C 1, ONE
BC 11,12

%2

L2

L3

L5

L6
L7

AR

BC
AR
LR

SIL

LR
SLL
AR
ST

CR
BC
SR

CR
BC
SR
LA
CH
BC
BR

DC
DC
DC
DC

33

396

-

IV. The object code

Two principal postulates were used as guidelines in the design of

the language.

1. Statements which express operations on data must in an obvious
way correspond to machine instructions. Their structure must be
such that they decompose into structural elements, each corres-

ponding directly to a single instruction.

2. The control of sequencing should be expressible implicitly by
the structure of certain statements. (e.g., through prefixing
them with clauses indicating their conditional or iterative execu-

tion).

Register assignments, cell assignments, and function statements
strictly comply to postulate 1, as illustrated by the following example
(cf. also II.2.4, II.2.6.):

RA := I + AGE - R3 + SIZE(R1)

Code: LH 10,I
A 10, AGE
SR 10,3
A 10,SIZE(1)

The following sections serve to exhibit the target code corresponding to
constructions classified as "control facilities" in the definition of

the language. The code is described in terms of 360 symbolic assembly

language.
1. Construct: if (condition) then (statement)
Code: code for condition

BC ¢,L
code for statement

¢ 1is determined by the form of the condition, whose corresponding code

may be empty or consisting of a C or CR instruction.

34

Example:

2. Construct:

Code :

5. Construct:

Code:

L

BC c,Ll
code for simple statement
B L2

Ll code for statement

if R1 < R2 then RO := R3

CR 1,2
BC
IR 0,3

10, L

if (condition) then (simple statement) else (statement)

code for condition

L2 . ..

L1 code for statement-1

L2 code for statement-2

Ln code for statement-n

L

case Rm of begin

(statement-1);

(statement-2);

(statement-n);

end

SLL m,2

B

B

B

L(m)
LX

LX

B
B
B

B

X . ..

LX
L1
L2

In

DD D DD DD

35

4.

Construct: while (condition) do (statement)
Code: L1 code for condition
BC c,L2
code for statement
B Ll
L2 ...

¢ 1s determined by the form of the condition, whose code may either
be empty or a C or CR instruction. Note that the condition is es-

tablished before the statement is ever executed.

Construct: for (integer register assignment)
step (integer number) until (integer value) do

(statement)

The corresponding code depends on the sign of the number following
the symbol step. That number will be denoted by i below, and the
assumption is made that the assignment after the symbol for spe-

cifies register m

Code: (1 >0)
code for assignment
I1 C m,Vv
BC 2,12
code for statement
LA m,1i(m)
B L1
L2 ...
Code: (i< 0)
code for assignment
I1 ¢ m,V
BC L4,I2
code for statement
S m,I
B L1
L2 ...
Note : The instruction labeled Ll is a CR instruction, if a

register is specified as limiting value; V denotes the cell con-
taining the limit value, I denotes the cell containing the decre-

ment 1

36

The BXH and BXLE instructions were not used in the construction.
The intricate rules about register assignment for control-, increment-,
and limit values were considered to be too restrictive, and furthermore
these instructions do not permit the testing of the initial value with
the limit without altering the initial control value. They are entirely

inappropriate for the case 1< 0.

6. Construct: procedure (identifier)(Rn); (statement)

Code: P code for statement

BR n
7. Construct: (procedure identifier)
Code: B BAL n,P or

L 15, newsegmentbase
BAL n,P
L 15, oldsegmentbase

where n and P are specified by the procedure declaration.

37

V. Addressing and segmentation

The addressing mechanism of the 360 computers is such that instruc-
tions can indicate addresses only relative to a base address contained
in a register. The programmer must -<dnsure that

1. every address in his program specifies a "base"-register;

2. the specified register contains the appropriate base address

whenever an instruction is executed which contains an address;

5. the difference d between the desired absolute address and the

available base address satisfies
0<d< 4og6

This places a heavy burden upon the programmer, and it was consid-
ered to be unquestionably the duty of a compiler to ease the difficult

task, and to provide certain checking facilities against errors.

The solution adopted here was that of program segmentation. The
program is subdivided into individual parts, so-called segments. Every
quantity defined within the program is known by the number of the segment
in which it occurs and by its address relative to the origin of that
segment, which serves as its base address. The problem then consists
of subdividing the program and choosing base registers in such a way that
a. the compiler can reference the appropriate register automatically when
it compiles addresses, Db. the compiler can assure that each base regis-
ter contains the desired base address during execution, and c. the num-
ber of times base addresses are reloaded into registers is reasonably

small.

First, it must be decided whether the process of subdividing the
program should be performed by the programmer or by the compiler. 1In the
latter case, a fixed number of registers must be set aside to serve as
base registers which the compiler has freely at its disposal. This was
considered undesirable. Furthermore, a program using a number of segments
much larger than that of available base registers would be subject to
considerable inefficiencies due to the necessity of loading base addres-

ses very frequently. It was therefore decided that the programmer should

38

designate the parts of his program which were to constitute segments.
He has then the possibility of organizing the program in a way which

minimizes the number of crossreferences between segments.

It should be noted that the programmer's knowledge about segment
sizes and occurrences of crossreferences is quite different in the cases
of program and data. In the latter case he is exactly aware of the
amount of storage needed for the declared quantities, and he knows pre-
cisely in what places of the program references to a specific data seg-
ment occur. In the former case, his knowledge about the eventual size
of a compiled program section is only vaque, and he is in general unaware
of the occurrence of branch instructions implicit in certain constructs
of the language. It was therefore decided to treat programs and data
differently, and this decision was also in conformity with the desira-

bility of keeping program and data apart as separate entities.

1. Program segmentation

Due to the fact that the language does not allow programs to modify
themselves, branches are the only instructions referring to locations
within program segments. Since control lies by its very nature in exactly
one segment at any instant, it seemed appropriate to designate one fixed
register to hold the base address of the program segment currently under
execution. A branch leading into another segment must then always be
preceded by an instruction loading that register with the base address

'of the destination segment. Register 15 was chosen for this purpose.

An obvious approach to the problem of segmentation requires the
compiler to automatically generate a new segment, when the currently
generated segment's length exceeds 4096 bytes. This solution was re-
jected because of two reasons:

1. The programmer is not aware of the position of segment boundaries,

and therefore has no way to minimize branches from one to another

segment.

2. In most cases, the destination of an implicit branch (in if-,

case-, while-, for statements) is not known to the compiler at the

time of its generation. Therefore it is not known whether it will

consist of one or two machine instructions.

39

The approach taken consists in connecting segment structure with the
obvious program structure. The natural unit for a program segment is
the procedure. The only way to enter a procedure is via a procedure
statement, and the only way to leave-it is at its end or by an explicit
go to statement. The fact that no implicitly generated instruction can
ever lead control outside of a procedure minimizes the number of cross-
references in a natural way. Since only relatively large procedure
bodies should constitute segments, a facility was provided to designate
such procedures explicitly: a procedure to be compiled as a program
segment must contain the symbol _segment in its heading. In practice,
the requirement that such procedures be explicitly designated has proven
to be no handicap. It is relatively easy for a programmer to guess which
procedure exceeds the prescribed size, or otherwise to insert the symbol
segment after the compiler has provided an appropriate comment in the
first compilation attempt, Obviously, the outermost block is always

compiled as a segment.

2. Data segmentation

In the case of data, the programmer is precisely aware of the amount
of allocated memory as well as of the instances where reference is made

to these quantities. A base declaration was therefore introduced which

implies that all quantities declared thereafter, but still within the
same block and preceding another base declaration, refer to the speci-

fied register as their base. These quantities form a data segment. At

the place of the base declaration code is compiled which ensures that
the register is loaded with the appropriate segment address. However
.+ its previous contents are neither saved nor restored upon exit from the

block.

A base declaration is implicit in the heading of the outermost block.

It always designates register 1k.

Obviously, data segments declared in parallel (i.e., not nested)
blocks, can safely refer to the same base register. Data segments de-

clared within nested blocks should refer to different base registers.

Lo

If they do not, it is the programmer's responsiblity to ensure that the
register is appropriately loaded when data in either of the segments 1is

accessed.

There is no limit to the size of data segments. All cell designa-
tors must, however, refer to cells whose addresses differ from the seg-
ment base address by less than 4096. If they don't, the compiler can

provide an appropriate indication.

3. Program loading

A scheme using program and data segments as described above results
in an extremely simple relocating loader program, since the segments can
be loaded without modification. It was felt that this benefit provided
by a computer incorporating a base register scheme should be put to full
advantage. Although the 360 computer still makes use of absolute addresses
in a few instances (program status words, data channel commands), it
was decided, not to allow for absolute addresses in a program. They
can, however, be generated at execution time. Consequently, the func-

tions of the loader are reduced to:

a. reading program and data segments into memory,

b. assigning the origin address of each segment to an entry in
the segment address table, and

c. transfering control to the program segment representing the

. outermost block.

The base address table must be available from any point in the pro-
gram. It was therefore placed in the low end of the first data segment,

whose origin address is contained in register 1k.

L. Problems connected with Input-output programming

The direct programming of input-output operations in PL360 is im-

practical in the scheme described so far for the following reasons:

1. Input-output operations on the 360 are designed to use the
interrupt mechanism to signal termination of processes performed

by data channels and devices in parallel with CPU operations,

41

In order to use the interrupt feature, it is necessary to create
program status words (PSW) and store them in certain fixed locations
of memory. A PSW contains the absolute address of a point in the
program, which is a quantity that cannot be generated by a PL360

program.

2. Particularly in routines servicing interrupts, but also in some
other cases, 1t is desirable to be able to dispense of a program
base register. This could be done by locating these routines with-
in the first 4096 bytes of core memory. The loader described above,

however, chooses the absolute location of a segment on its own.

These two shortcomings can be overcome in many ways. The following is

suggested:

1. A facility is introduced to designate a segment as an interrupt
service routine, with the effect that the compiler supplies infor-
mation to the loader, causing the loader to assign the segment's
base address to the appropriate PSW cell instead of the segment
address table. The compiler itself terminates this segment with
an LPSW instead of a BR instruction (cf. V.6.). This approach
forces a programmer to make explicit the fact that an interrupt
routine is conceptually a closed segment, and it circumvents the
undesirable introduction of a facility to generate labels as manipu-

latable objects.

2. A provision is introduced to cause the compiler not to refer to a
base register in the branch instructions contained in the interrupt
service segment. The loader is at the same time instructed to al-

locate this segment within the first 4096 bytes of core memory.

Usually, however, these facilities are not needed, because the
program is executed in the environment of an operating system (whose
choice is normally not up to the individual programmer) which executes
programs in the program-mode where input-output instructions are not
executable. The form which statements communicating with such an en-
vironment assume is determined by that particular environment and can-

not be defined as part of the language proper.

L2

VI. Compiler methodology

1. General organization

The compiler is a strictly syntax directed one-pass translator.
Its design served as a major test for the applicability of the techniques
described in [3] to practical programming languages. The language was
designed to conform to the rules of simple precedence grammars as postu-
lated in [3]. The development of a precedence syntax to whose individual
rules the meaning of the language could be properly attached was no easy
task. Interestingly enough, however, this design process provided many
insights into the nature of various conceptual elements, led to their
clarification and often simplification, and contributed a great deal to

the systematic structure of the resulting language.

The algorithm for syntactic analysis constitutes the core of the
compiler. It operates on the basis of a table containing the rules of
syntax and a table containing the precedence relations among input tokens,
and evokes the execution of an interpretation rule whenever a parsing

step is taken. The input tokens are obtained by calling a procedure

¢ Analyser
Syntax Precedence Interpretation
Rules . Rules
Relations

called "insymbol", which scans the sequence of input characters in the
manner of a finite state machine, and yields as a result either a basic
symbol of the language, an identifier, a number, or a string. It auto-
matically suppresses comments. It should be noted, that in the imple-

mented language no equivalent for the underlining of basic symbols is

43

provided, and that therefore a sequence of letters and digits, starting
with a letter and not containing blanks, may constitute a basic symbol.
Any such sequence must be matched by the insymbol routine against a table
containing the representations of all "letter-symbols". If a match is
found, the result is a basic symbol, otherwise an identifier. As a con-
sequence, identifiers could not be constructed by the syntax analyser
itself upon receiving merely a sequence of letters and digits. The con-
sideration of numbers as tokens, on the other hand, was not a necessity

but rather a convenience.

The syntax analyser makes use of a stack (called "symbol stack")
to store not yet reduced symbols. Whenever a reduction takes place, the
interpretation rule corresponding to the applied syntactic rule is acti-
vated. These integpretation rules make use of a second stack (called
"value stack") to store information about each syntactic entity occurring
in the reduction process. To each entry in the symbol stack corresponds
an entry in the value stack, and vice-versa. Ideally, an interpretation
rule should exclusively reference data in those entries of the wvalue
stack which correspond to symbols in the symbol stack being reduced by
the applying syntactic rule. This principle has been followed in the
simple example presented in [3]. Here, however, a deviation from it
was made by the introduction of conventional identifier tables, one con-
taining identifiers denoting program points (labels), one for all de-

clared identifiers.

2. Identifier tables

The presence of identifer tables simplifies the search for identifiers
and eliminates the need for the specific right recursive definition of
the declaration structure used in [3]. The separation of the table into
one containing declared identifiers and one containing labels has its
reason in the fact that labels are the only identifiers which can occur
in a statement before being defined in the program, and must therefore

be treated differently as discussed below.

It should first be noted that the presence of the syntax rules
(1) (T cell identifier) ::= (identifier)

bl

(2) (function identifier) ::= (identifier)
(3) (procedure identifier) ::= (identifier)

etc.

constitutes a violation of the requirement that in an unambiguous prece-
dence grammar no two rules should have identical right parts. This
violation required a slight complication of the analysis algorithm with
the effect that an interpretation rule may cause an otherwise applicable
syntactic rule to be rejected. 1In the given example, the interpretation
rules specify that the considered identifier be located in the identifier
table. If location is successful, ten rule 1 is rejected unless the

table indicates that the identifier indeed designates a T cell, rule 2

is rejected unless it designates a function, etc. This decision of the
applicability of a syntactic rule on grounds of essentially semantic
information reflects the argument that "Algol-like languages" are strictly
speaking not context free, i.e., cannot be described by a phrase structure

grammar alone.

The above identifier search implies that the entire block-structured
identifier table be searched. The following program demonstrates that

labels cannot be subjected to the same process, and that therefore
(4) (label) ::= (identifier)

must not be a rule of the language.

A: begin.
B: begin goto L;
L:
end;
end

In this example, rule 4 applying to L after the symbol goto would
detect L as present in the identifier table, because L was defined
as a label in the outer block (A). This would, however, be an erroneous
assumption, since a local L 1is defined later in the inner block (B),

to which goto L should refer. Consequently, searches for labels must

45

be confined to the innermost block, and such a restricted search must
be represented by an interpretation rule connected with a distinct syn-

tactic rule with a different right part. In the language, that rule is
(go to statement) ::= goto (identifier)

Identifiers in the label table are marked as either defined or not
yet defined. Upon exit of a block, all undefined . #ntries: are. col-
lected and considered as entries in the outer block, where some of them
may be found as already defined. This process made the use of a separate
label table desirable.

The compiler is designed to read the source program from cards or
tape; it produces (optionally) a listing, each line containing a corres-
ponding target program address. The code is compiled into core memory,
and as soon as a segment is closed, it is written onto secondary storage.
The segment is preceded by a record indicating the kind of the segment
(program or data), its number, and its length. The program loader later
collects the segments from the secondary storage, lists theé base
address which it assigns to each segment, and assigns it to the corres-

ponding entry in the segment address table.

3. Handling of usyntacticcerrors

The syntax analysis algorithm described in [3] makes the assump-
tion that analysed programs are syntactically valid. This assumption
is not tenable in the practical world of computer programming. Syntactic
errors are detected by the fact that for some string recognized as re-
ducible there is no matching entry in the table of productions. After
an error has been encountered, it is in most cases desirable to continue
compilation in order that subsequent errors may be located and indicated.
A method has to be devised to let the analysis algorithm proceed after

having made some assumption about the nature of the error.

This is in general a rather hopeless task. An investigation of a
large number of programs containing syntactic errors reveals, however,
that most of the committed errors exhibit strong similarities and can be

diagnosed by a relatively simple algorithm. In most cases, syntactic

46

errors are due to omission or wrong use of symbols merely conveying
information about structural properties of the program, such as inter-
punctuation symbols and the various kinds of brackets. Omission of ele-
ments explicitly stating program act}vities, such as operators and oper-

ands, are rare.

A second important consideration is that an incorrect construction
should be detected as early as possible, i.e., before further steps are
taken on the basis of the incorrect text. The precedence grammar tech-
nique is an excellent scheme in this respect, because it is based upon
relations existing among symbol pairs. That none of the relations de-
noted by <, =, 3 exists between two symbols implies the impossibility
of these two symbols being adjacent in any sentence of the language.

The empty relation (denoted by ©) shall be defined as holding whenever
none of the otﬂérs hold. On a left-to-right scan, its encounter consti-

tutes the earliest possible detection of an erroneous construction.

It should be noted that the use of two precedence functions instead
of the precedence relations implies that the analysis algorithm is based
on a condensation of the information contained in the matrix of relations.
This condensation relies on the assumption that empty relations can sim-
ply be ignored. The above considerations lead to the conclusion that
for practical reasons it is advantageous to have the relation matrix at

the disposal of the analyser rather than the functions.

The algorithm for diagnosing of and recovery from errors described
subsequently is a heuristic solution rather than one based on rigorous
theoretical principles. It is contended here that any such scheme must

make a very drastic selection from all the possible forms which errors
may assume. The important aspect is that those situations are mastered
intelligently which are likely to occur often,, Since a frequency sta-
tistic of errors reflects the behavior of the human users, such a selec-

tion must by definition be based on heuristics.

There exist two places in the analysis process, where illegal con-

structions may be detected (cf. [3], p. 18):

47

1. The empty relation holds between the symbol on top of the stack
and the incoming symbol:
o
Si Pk)
In this case a list I of insertion symbols is scanned. If for
some m, Si ¢ Im and.]%n ® P, then Im is inserted into the scanned
string in front of Pk . Since this insertion may lead to a correct

program (in about 90% of the tested cases it did), an according comment'

must be delivered to the programmer.

If for nom, S, @ I and T ® P, then the symbol P is

stacked.

2. The value of the function

Leftpart(Sj Si) .

. e

is undefined (Q), 1i.e., there exists no syntactic rule whose rightpart

is Sj Si . This situation may occur even if for all k (j < k < i)

0

S P 8y -

In this case a table of erroneous productions is scanned for a right-

part identical to Sj Co Si . If a match is found, an error message
corresponding to that rule can be printed, and the analysis can proceed
with the statement

S . := Leftpart (S. S. .
J P J . l)

48

The augmented algorithm for syntactic analysis is then described
as follows:

procedure Invalid pair;

begin integer m; m := 1;
i OI VIO . .
while m < n A (%_ % I Pk) do m := m+l;
if m < n then (Pk ... Pé+l) =1 ca (Pk .o PZ)

end;

wnile P A" do
begin 1 := J := j+l; S.
while % (] X)% do !
begin if SJ.@Pk then Invalid pair;
while sj_l =0 S:j doi:= JWh
Sj 1= Leftpart(Sj c. L8)i =

1= Pk; k = kt+ij

end

end

In the specific case of the PL360 language, the selected insertion sym-—

bols I are
m

; ()

49

The following are the selected erroneous productions:

0

o N o & W

10
11

12

13
14

(¥ register assignment) ::
(T value)

(T cell designator)

(¥ register assignment)

(monadic operator){T value)

(T cell designator)

1

(register assignment) ::

(T cell designator := (monadic operator><I register)
(blockbody) ::= (blockbody)(statement); else
(case sequence) ::= (case sequence)(statement)i else
(function statement) ::= (function statement))
(T cell designator) 1= (T cell designator))
(procedure head) ::= (procedure name);
(condition) ::=

(T cell identifier)(relational operator){T value)
(condition) ::= (T cell identifier)(relational operator){¥ register)
(block head) := (block body)({declaration);
(T cell designator) ::=
(T cell designator)({T number))
(simple T type) ::=
(simple T type) array ((integer number))
(procedure identifier) := (procedure identifier)@ register))

(statement) ::= (blockbody)(statement)

50

The following table of messages accompanies the erroneous produc-
tions. If some erroneous production is found to be applicable, the

corresponding message is transmitted to the programmer.

0,1,2 Assignment must occur either to or from a register.

3,4 else must not be preceded by a semicolon.

5,6) without matching (

7 A register specification is missing in the procedure heading.
8,9 The first comparand must be a register.

10 A statement cannot be followed by a declaration.

11 Write " (cell designator)((integer number))((integer register))"

instead of

"(cell designator)({integer register))({integer number))"

12 array should be the first symbol in the declaration.
13 Procedure statement must not have a parameter.
14 The symbol end is missing.

With these limited facilities, the syntax analyser was able to parse
and correctly diagnose the texts in which the following erroneous con-
structions were contained. The produced diagnostic messages are indi-
cated by their number enclosed in parentheses at the right margin, while
arrows indicate the position where the analyser detected and diagnosed

the error:

51

begin real x; RO := a end
1

begin real x RO := a; end
1
if Rl = a then Rl := b; else Rl := ¢
- - - t
P; P(R1);,

LA(RO(TRl); LA(Ro)(Rl));1
array (5) integer m (12)(23) 5#1)(1»51(56);

RO := Rl; real x, vy;

a :=Db; a = abs b; a := abs RO; b := neg Rl;
t t

t 1

x(R1)) := b;
t 1t

begin if a = b _then goto L;

missing ;

missing ;

(3)

(13)

missing)

(5)

missing (
missing)
(10)
(0)(1)(2)(2)
(6)(0)

(8)
(9)(3)

i
if a<Rl thenT goto L; else goto TK Tend

missing;

As can be seen from the later examples, the analyser is able to correctly
- diagnose even nested errors and relate them to their context. The diag-
nostic messages are meaningful, because the analyser has found applicable
an erroneous production which was anticipated by the compiler designer,
who in turn was able to associate an appropriate comment, knowing the
reasons why human programmers inadvertantly use such a construction. It
was found to be helpful to let the compiler list,in addition to the mes-
sage, the symbols currently in the parsing stack. They represent all

the unfinished syntactical entities in the parse, and give the programmer

valuable guidance toward understanding of his misuse of the syntax.

The choice of the appropriate insertion symbols and erroneous pro-

ductions requires a thorough-understanding of the analysis algorithm on

o2

on the part of the compiler designer, as well as a subtle feeling to
anticipate frequent misuses of the syntax. Of course, further insertion
symbols and productions can easily be added to the tables in order to
increase the diagnostic capabilities. of the analyser. If a compiler is
capable of gathering statistical information about encountered erroneous
situations, this information could be evaluated from time to time in
order to expand the tables. As a result the compiler would truly seem
to adapt itself to its imperfect human environment in order to gradually

become a better and better teacher.

23

VII. The development of the compiler

At the time when the project to develop a compiler for PI360 was
started, no 360 computer was available to the author, nor did the facili-
ties promised with the forthcoming machine look too enticing to use.

It was therefore decided to use the available Burroughs B5500 computer
for the design and testing of the compiler, which was completed by the
author within two months of part time work. It accepted a preliminary
version of PL360 as described in [5] which contained the basic fea-

tures of the presently described language.

The compiler was then reprogrammed in its own language. Through
a loader and supervisor program (written in assembly code), the program,

recompiled on the B5500, became immediately available on the 360 computer.

The experiment of describing the compiling algorithm in PL360 itself
proved to be the most effective test on the usefulness and appropriate-
ness of the language, and it influenced the subsequent development of
the language considerably. During this process, several features which
seemed desirable were added to the language, and many were dropped again
after having proved to be either dubious in value,, inconsistent with the
design criteria, or too involved and leading to misconceptions. The
leading principle and guideline was to produce a conceptually simple
language and to keep the number of features and facilities minimal. The
"bootstrapping" method in combination with the described compiling tech-
nique proved to be very successful for experimentation with and altera-
tion of the language. The process of incorporation of a new feature
consists of representing the new feature in the syntax of the language,
and of defining the compiler actions corresponding to the new constructs
in the form of additional interpretation rules. These rules must of

'course be denoted in terms of previously available facilities.

In general, a significant drawback of the bootstrapping technique
is the fact that programming errors are easily proliferated. However,
the combination of the bootstrapping method with the rigorous approach
to systematic compiler organization by means of strict syntax analysis
proved to be very successful, since the latter constitutes an enormous
step towards reliability, which can never be achieved by common heuristic

methods of compiler design.

54

Algol .
Co

mpiler

PI360
Compiler

(Algol)

PL360
Compiler

(P1360)

Programs

(P1360)

Process of bootstrapping initial version of PI360 Compiler

v
PL360
Compiler
B5500 (binary)
PL360
Compiler
B5500 (binary cards)
output
360

from B5500 to 360 computer.

55

Syntax

Processor
Syntax
of v \\\\\
n Precedence
Syntax PI360 » B5500 —p| Tables
of
or n+l
PI360" L 260 PL360
New
Rules
. Si—
replace
P =
n
Tables PL360
Compiler
PI360 Syntax
Compiler < Analyser
PI360
(5) Semantic v 0+l
Rulesn > | > PL36Q
P1360 ‘ Céobmpllef
inar
New 360 y
Rules J
-

Process of bootstrapping compiler version
n into version nt+l .

56

VIII. Performance

The development of a Jjob control and supervisor program was under-—
taken in parallel with the construction of the compiler. The following
performance figures reflect the operation of the compiler under that
supervisor. It should be noted that the supervisor considers the com-

iler in the same way as a regular user's program.
y

Size (in bytes)

Supervisor 3 500
Job control 3 700
7 200
Compiler program 12 700
Various compiler data _ 5 400 18 100
Identifier tables 14 400
Output area 2k 600
30 000 39 000
64 300

The processing of a job consists of the following steps, described

in terms of the present implementation on a 360/50 computer:

1. Loading of the compiler from tape

2. Compilation, with input from cards or tape, and output to
tape (and optionally to cards)

3. Loading of the compiled program from tape (or cards)

L. Execution of the program.

Steps 1 and 3, constituting what is usually called "overhead", take
4.7 secs. execution time. Compilation proceeds at the speed of
the card reader (1000 cpm). If the source program is read from tape
and the program listing is suppressed, the compiler (about 1500 card
records) recompiles itself in 39 secs (with listing in 109 secs). The

time required to load the system initially is 2 secs.

57

IX. Reflections on the 360 architecture

Based on the experiences drawn from the compiler development, it
can be concluded that the objective to make direct machine programming
more convenient by providing a tool which is superior to common assembly
codes with respect to readability and writability, is commendable and
important. It can also be concluded that PI360 is fairly successful in
meeting this objective. The decisive factor, in the author's opinion,
is the simplicity, frugality, and coherence of the language. A limiting
factor to this is the architecture of the underlying machine. In this
respect, the question "how well is the computer suited for this kind of
language?" Dbecomes more significant than the opposite question "how
well is the language suited for the machine?". The author feels indeed
strongly about this point, and recommends future hardware designers to
confront themselves seriously with the first question, before yielding
to the well-known policy of answering every problem with the common and

omnipotent reply: "There is a bit somewhere".

As a matter of fact, the relatively systematic architecture of the
360 computer series provided a strong encouragement to devise a tool in
the sense of PI360. It seems nevertheless worth while to locate some

of its less fortunate features:

1. The idea of a "two-dimensional instruction set" with one coordinate
specifying the operation, the other the type of operand, is:very com-
mendable, and is properly reflected in PI360. But, the better a
principle 1is, the worse are its violations. There exist operands
of type full word integer, half word integer, full word logical,
short and long floating point, and byte in the 360 system. (perations
on them are more or less grouped into columns in the matrix of instruc-
tions. However, instructions on logical and full word integer oper-
ands occur in the same column, certain operations are missing in the
half word format, and operations on bytes differ radically from all
others. A striking example is the inconsistency of the LH and STH
instructions, the first of which performs the function of assigning
an integer to a register, the second one that of assigning a half-
word logical quantity to a memory cell. This is not merely an unfor-

tunate feature, but a conceptual flaw.

58

The fact that many instructions are indexable only through misuse
of the base register field is very unfortunate. It is one reason
why none of those instructions fits into the scheme of the PL360

assignment statement.

The more complex a single instruction,the more debatable becomes
the choice of its detailed form. The BCT, BXLE, BXH are good

examples, none of which fitted into the scheme of PL360 structures.

The 360 instructions exhibit a remarkable consistency in the scheme
of condition code setting, with the very peculiar exception of the

TM instruction.

This short list of architectural misfits is by no means complete.

It omits,e.g., mentioning some dismal properties of the floating point

arithmetic and of the input-output mechanism. However, these have no

immediate effect on the structure of the PL360 language.

59

X. How to use PL360

This chapter is intended to serve as a reference manual for the
user of the PI360 language as implemented on the GSG/SRD 560/50 computer
at SLAC. It describes the facilities and the usage of the compiler and

operating system, version Nov. 1966.

The operating system consists of a batch processing jobcontrol
program, and a set of elementary input output service routines with
associated interrupt programs. The jobcontrol program incorporates a
loader, reading binary programs from either tape or cards, and it treats
programs to be executed, including the PL360 compiler itself, as sub-

routines.

JOBCONTROL

service
routines

The jobcontrol program and the service routines are executed in the
supervisor mode and are storage protected. Together they occupy the

first 8000 bytes of core memory.

1. The language

The implemented language is that described in Chapter II,Iwith

the following symbol representations, restrictions, and extension:

a) Symbol representation

Only capital letters are available. Basic symbols which are de-
noted by underlined letter sequence in Chapter II are denoted by the
same sequence of capital letters. Such sequences may not be used as

identifiers. They are tabulated in X.8.

60

b) Restrictions

No go-to statement may refer to a label in a segment different from

the one where the goto statement occurs.
Oniy the first 10 characters of identifiers are significant.
c) Extension

To facilitate program debugging, a dump statement has been intro-

duced.
Syntax:
(simple statement) :i= (dump statement)
(dump statement) ::= (dump heading)((length part))
(dump heading) ::= dump ({J cell designator))
(length part) ::= (integer register”(iﬁteger cell designator)\

(short integer cell designator)l(integer number)

The dump statement causes the listing in hexadecimal form of the
values of the n consecutive memory cells (-bytes), the first of which
is designated by the J cell designator. n is the value of the length
part.

d) Additional standard functions

A set of standard functions is defined as supervisor calls for
elementary input and output operations. The referenced supervisor rou-
tines make use of parameter registers as specified below. They set the
condition code to 0, unless otherwise specified. Input-output devices

are designated by logical unit numbers (cf. X.8.).

READ Read a card, assign the 80 character record to the
memory area designated by the address in register 0 ,
Set the condition code to 1, if the end of the card

file is encountered.

READO26 Same as READ, with the addition of a character code
translation as specified in section X.8. The transla-
tion maps 026 punched characters into their 029

equivalents.*

61

WRITE

PUNCH

READTAFE

WRITETAPE

PAGE

Write the record of 132 characters designated by the
address in register 0 on the line printer. Set the
condition code to 1, if the next line to be printed

appears on the top of a new page.

Punch the record of 80 characters designated by the

address in register 0 on the card punch.

Read a record from the tape unit specified by the logi-
cal unit number is register 2 . The length of the
record in bytes in specified by register 1, and it is
assigned to the memory area designated by the address
in register 0 . Set the condition code to 1, if a
tape mark is encountered, Register 1 is assigned

the number of bytes actually read.

Write a record on the tape unit specified by the logical
unit number in register 2 . The length of the written
record in bytes is specified by register 1; the record

is designated by the address in register 0

Skip to the next page on the line printer.

The following are tape handling functions. They affect the tape unit

specified by the logical unit number in register 2

MARKTAPE:
REWIND:
BSPREC:
FSPREC:
BSPTM:
FSPTM:

Write a tape mark.

Rewind the tape.

Backspace one record.

Forwardspace one record.

Backspace to the previous tape mark,

Forwardspace to the next tape mark.

A program interruption (cf. X.5.) due to arithmetic operations records

the interruption code in the byte cell FPI. This cell, being part of

the supervisor,

is memory protected, and cannot be reset by the user's

program directly.

FPIRESET:

Reset the value of the cell FPI to O

62

2. Compiler instructions

The compiler accepts instructions occurring anywhere in the sequence
of input records. A compiler instruction card is marked by a $ charac-
ter in column 1, and an instruction in golumns 2-4. Columns 5-80 of such

a record are ignored.

$026 The compiler assumes subsequent source cards to be

punched on 026 keypunches.

$029 The compiler assumes subsequent source cards to be

punched on 029 keypunches.

$LIST Subsequent source records are listed on the printer.
$NOLIST Subsequent source records are not listed.

$PUNCH abmputed program and data segments are punched on cards.
$PAGE A page is skipped in the listing.

$0 No trace output is listed.

$1 The relative address of all variables and procedures

are listed when they are declared.

$2 Addresses are listed as after $1, and the produced

machine code is listed in hexadecimal notation.

$TAPEN The subsequent source records are read from the tape

unit with logical number n

3. Compiler error messages

Errors are indicated by the compiler with a message and a bar below

the character which was read last.

Error No. Message Meaning
00 SYNTAX The source program violates the PL360
syntax. Analysis continues with the next
statement,
01 VAR ASS TYPES The type of operands in a variable assign-

ment are incompatible.

63

Error No.

Message

02

03

04

05

06

08

10

11

12

13

14

15

16
17

FOR PARAMETER

REG ASS TYPES

BIN OP TYPES

SHIFT OP

COMPARE TYPES
REG TYPE OR #
UNBEFINED ID

MULT LAB DEF

EXC IN1 VALUE

NOT INDEXABLE

DATA OVERFLOW

NO OF ARGS

ILLEGAL CHAR

MULTIPLE 1ID

PROGRAM OFLOW

INITIAL OFLOW

Meaning
A real register instead of an integer reg-

ister 1s specified in a for clause.

The types of operands in a register assign-

ment are incompatible.

The types of operands of an arithmetic or
logical operator, are incompatible.

A real instead of an integer register is

specified in a shift operation.

The types of comparands are incompatible.
Incorrect register specification.

An undeclared identifier is encountered.

The same identifier is defined as a label

more than once in.the same block.

The number of initializing values exceeds

the number of elements in the array.

The function argument does not allow for

an index register.

The address of the declared variable in
the data segment exceeds 4095.
An incorrect number of arguments is used

for a function.

An illegal character was encountered; it

is skipped.

The same identifier is declared more than

once in the same block.
The current program segment is too large.

The area of initialized data in the compiler
is full. This can be circumvented by suit-

able segmentation.’®

64

Error No. Message Meaning

18 ADDRESS OFLOW The number used as index is such that the

resulting address cannot be accommodated.

19 INTEGER OFLOW The integer number is too large in magni-
tude.
20 MISSING @ An end of file has been read before a

program terminating @ was encountered.

21 STRING LENGTH The length of a string is either 0 or
> 256 .

22 DUMP TYFE The length part does not specify an inte-
ger.

23 FUNC DEF NO. The format number in a function declaration
is illegal.

At the end of each program segment, undefined labels are listed with

an indication where they occurred.

4. Jobcontrol instructions, the form of input card decks

Cards containing a 0-2-8punch in column 1 are recognized by the
"READ" and "READO26" supervisor routines as Jjobcontrol cards, and give
rise to an end of file indication. Information contained in columns
-2-9 (left adjusted) of such cards is interpreted by the job control rou-

tine as follows:

PL360 Control is given to the compiler to process the subsequent

source program.

DATA Control is given to the previously compiled and/or loaded
program. If the preceding compilation detected any errors,

the subsequent data cards are skipped.

LOAD Control is given to the loader routine, which loads subse-
quent "binary" program cards.

PAUSE The operator is notified, and the system waits for the opera-
tor's instructions given via the operator console typewriter

(cf. x.6.).
65

Other control cards are recognized and may be used to activate library

programs, which are not described in this Report.

Typical card deck compositions are:

data

source program—} ||l>M‘AI \

l : AN

1PL36O __l/

o L |

2

8 ‘ may contain

"compiler
instructions"
Compilation and execution
data}/
"binary" cards _B/ E’lT AN
. >

fLoAD \

o | Y

2 L

¢ .

Loading and execution

66

5. Program execution errors

The following error conditions can occur:
a. A "program-check" interruption occurred. This is indicated by the

message
PRG PSW XXX000OCOOOXXXX

If interruption occurred due to an arithmetic operation, the inter-
ruption code is stored in the byte cell FPI (floating point interrup-
tion), and control is returned to the interrupted program? Otherwise,

control is given to the job control routine.
b. An attempt is made to read beyond a control card. The message
EOF PSW XXXXXoooaxxx
is printed, and control is returned to the job control routine.

c. An illegal logical unit number has been used for an input-output

operation. The message
DEV PSW XXXXX00OOXXX
is printed, and control is returned to the job control routine.
d. The operator intervenes by causing an external interrupt. The message
EXT PSW XCOOOOOOOOOXXXXX

appears on the line printer and the operator console. (cf. X.6.).

6.Minimal configuration reauirements

Core memory: 65K bytes, protection feature
- 1 card reader/punch (2540)

1 line printer (1403)

2 tape units (2401-3)

1 console typewriter (1052) (dev. addr. 009)

*
Such interrupts are counted, and the counts are listed (if £ 0) after

the end of program execution.

67

T. Loading and operating the system

The process of initial loading consists of the following steps:

a. Reset system

b. Mount system tape on any 9-track unit (usually device 282)

c. Stack jobs on the card reader

d. Make card reader, line printer, and tape 5 (used by the compiler)
ready.

e. Select the unit carrying the system tape on the Load Unit Switches®

f. Press the Load Key

Execution of the job sequence stacked on the card reader is imme-

diately started. Control is returned to the operator when either

a. a PAUSE control card is encountered, or

b. the operator presses the external interrupt key.

The computer then accepts instructions from the operator via type-
writer. Each message must be terminated with an EOB (end of block)

character. The following free-field instructions are accepted:

a. dump XXXXXX, NNNNNN' EOB
dump NNNNNN' EOB
dump EOB

The values of the registers and of the NNNNNN byteicells istarting at
the ‘initialiaddress XXXXXX' are ligted in hexadecimal form. ~If the.
initial address is omitted, '1t:is taken as the begihning -of the user's
data'segment area,and~if She count is omitted, it 1s taken as the length

of' the user's data, segment area . % S
b. device XX EOB

Devices are designated by logical numbers, The correspondence be-
tween logical numbers and actual device addresses is established by the

device table (cf. X.8). The above command causes the address AAA of

the device with logical unit number XX to be typed out. Subsequent
typing of the device address BBB causes that device to be assigned the
logical unit number XX, and the device with address AAA to be given

the logical unit number -YY, which previously designated device BBB

68

(if any). As a result, every device in the system will always be

designated by at most one logical unit number.

before after
XX ¢ AAA XX : BBB
YY : BBB YY : AAA

c. EOB

Processing resumes with the next job in sequence.

The operator is informed about abnormal conditions encountered
by the error analysis routines of the elementary input - output
programs contained in the supervisor. The following messages are

typed:

a. XX YYY NOT RDY

b. XX YYY'NOT OP

c. XX YYY I/O ERROR CCCC DDDD
d. XX YYY DEV END CCCC DDDD

XX represents the logical number of the afflicted device, YYY its
physical address, CCCC the encountered channel status, and DDDD

the device status.

Message a. 1s given when a device is not ready. Execution
resumes when the device is put into the ready state. Messages b.,
c., and d., are respectively given when a device is not operating,
when a malfunction is encountered, or when an error is discovered
upon device end interrupt caused by the reader, punch, or printer.

The operator must reply with one of the following messages:

a. 1ignore EOB

b. exit EOB (resume processing with next job)

c. EOB (retry the operation after I/O ERROR; ignore the DEV
END condition)

Note that if a storage dump is desired before processing the
next job, then the interrupt key must be pressed first. If the
operator response 1is not recognized by the system, then "RETRY" is
typed out. In order to cancel a response, the CANCEL character must
be typed before typing'jgg} In either case a correct response should

then be typed by the operator.
69

8. Tables

Character code translation table (used in READO26)

holes 026 --- 029 hex
12-3-8 . . 4B
12-6-8 < < 4c
0-4-8 ((4D
12-5-8 [(LD
12 + + LE
0-6-8 < | LF
12-0 & 50
11-3-8 $ $ 5B
11-4-8 * * 5C
12-4-8)) 5D
11-5-8 |) 5D
u-6-8 5 3 5E
- 6-8 X I 5F
11 60
0-1 / / 61
0-3-8 s R 6B
11-7-8 % 6C
0-5-8 - _ 6D
11-0 > 6E
5-8 TA
12-7-8 ¥ 7B
0-7-8 @ 7C
7-8 ! 7D
3-8 = = TE
L|-"8 1 1" 7F

Letters and digits are represented by the same hole combinations
on cards punched on either the 026 or the 029 keypunches, and do there-
fore not undergo any translation. The column designated "026" lists the

characters printed by the Stanford extended 026 keypunches.

70

BASK SYMBOLS

NOTE:

Dba

IF

OF

OR

AB S
AND
END
FOR
NEG
SYN

THESELETTERSEQUENCESMUST NOTBEUSED ASIDENTIFIFERS.

STANDARD | DENT IF | ERS,

I VAN | 4+

XOR

BASE
BYTE
CASE
DUMP
ELSE
6G0T0
LONG
NULL
REAL

ARRAY{)INTEGER

BYTE

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

0 Dlw e N ¥ o~

SHLA
SELL
ShRA
SHRL
STEP
THEN
ARRAY
BECIN
SHORT
UNTIL

MEN SYN O
FPI SYN 43 |
B1 SYN MEM(R1)
B2S Y NMEM{R2)
3 SYN MEM(R3)
S Y N MEM{R4)
S Y N MEM(R5)
S Y N MEM{R6)
S Y N MEM(RT)
SYN MEM(RS8)
9S Y NMEM(R9)
B ASYNMEM(RA)
B8S Y NMEM(RB)
BC SYNMEM(RC)
BDS Y NMEMIRD)

71

WHILE
COMMAND
INTEGER
LOGICAL
SEGMENT
FUNCTION
OVERFLGW
REGISTER
CHARACTER
FROCEDURE

INTEGER REGISTER RO (0)
INTEGER REGISTER i b (1)
INTEGER REGISTER R2 (2}
INTEGER RLEGISTER K3 (2)
INTEGER REGISTEK R3 (3}
INTEGER REGISTER R4 (4)
INTEGER REGISTER RS (5)
INTEGER REGISTER R&6 (6}
INTEGER REGISTER R7 (7)
INTEGER REGISTER R8 (8)
INTEGER REGISTER R9 (9)
INTEGER REGISTER RA (A)
INTEGER REGISTER RB (8)
INTEGER REGISTER RC (C)
INTEGER REGISTEK RD {D)
REAL REGISTER Fo (0)
REAL REGISTER r-2 (0)
REAL REGISTER F2 (2)
REAL REGISTER Fa (4)
REAL REGISTER F6 (6)

LCNGH E A LREGISTERFO1(0)
LCNGREAL REGISTER F23(2)
LONG REAL REGISTERF45(4)

LCNG REAL REGISTER F&7 [(6)
FUNCTION LA (2)(#4100)
FUNCTION MVI (4)(49200)
FUNCTIUN MVC {5)(#D200)
FUNCTION CLI (4) (#9500)
FUhCT ION CLC {5)(#D500)
FUNCTION LM {3)1#9800)
FUNCTION sTM™ (3)(49000)
FUNCTIGN SLOL (9)(#8D00)
FUNCTION SROL (9){#8C00)
FUNCTION IC {2)(#4300)
FURCT ION STC (2)(#4200)
FUNCT ION CVD (2)(#4E00)
FUhCT ION UNPK (10)Y(4F300)
FUNCTIUN to (5){4DEOO)
FUNCTION EX {2)({ #4400)
FUNCTION SET (8)#92FF)
FUNCTION RESET {8)(#9200)
FURCT ION TESTY (8) (#95FF)
FUNCTION READ (C){#0A00)
FUNCTION RfA0026 {C)U#0AO01)
FUhCT IUN WRITE (0){40A02)
FUNCT ION PUNCH (0){#0A03)
FUNCTION READTAPE (0)(#0A06)
FUNCTION WRITETAPE (0)(#0A07)
FUNCT ION REWIND {(0){#0A08}

FUNCTIUNMARKTAPE
FUNCTIONFSPTM

(0)(H#0A09)
(C) (#0A0A)

FUNCT TON FSPREC (C)(#0A0B)
FUNCTION BSPTM (C)(#0A0C)
FUNCTION HBSPREC {C){#0A0D)
FUNCTION PAGE {CY{#0AOE)
FUNCTION FPIRESET (C){H#OAOF?

72

SYNTAX

<K REG*> 3= <ID>
<T CELL 10> =::= <ID>
<FRCC ID> s:= <ID>
<FUNC ID> s3= <10
<K REG> s22 <K REG*D
<T CELL*> 22=<TCELL ID> (<7 NUMBER>)
<TCELL> 33=<TCELL IO> |
<TCELL 10> (<K REG*>)]
< TCELL%*> |
<T CELL¥> { <K REG*>)
<TVALUE> s:= <T NUMBER> I
<TCELL> |
<STRING>
<KSIASS> 33= <K REG*#> 3= T VALUE> l
<K REG*> := <K REG> 1
< KREG*> := <UNARY CP> <KTVALUE>
<K REG*> 3= <UNARY CP> <K REG>
<UNARY CP> 2= ABS |
NEG |
NEGA B S
ARITH GP> 3= 4+ |
}
* |
/ }
+ o+ |
<LCG CP> s:= AND |
CR |
X0R
<SHIFTOP> $3=SHLA |
SHRA |
SHLL |
SHRL

C<KREG ASS*>38=<KSIASS> |
<K REG ASS*> CARITHOP>XT VALUE> |
<K HEG ASS*:> CA RITHOP><KREG> |
<KREGASS*> < L O GOP><TVALUED> |
<KKREG ASS*><KLOGGOP> <K REG> |
<K RE GASS*> <KSHIFTOP>XT NUMBER >
CKREG ASS*><SHIFTCP> <K REG*>

<K REG ASS> 33= <K REG ASS*>

<FUNCTIOND> 3:= <FUNC 1ID> |
KFUNCTIGNY> (LT NUMBER>) |
CFUNCTICN> 1 <K REG¥>)
KFUNCTION> KT CELL>) |
<FUNCTION> (<STRING>)

<CUMP HEAL> =:::=pDuUMP (LT CELL>)

<CASE SEC> 2=2C A S EXKREG*> O f BEGIN
<CASESEQ> <STATEMENT> 3
<SIMPLEST> 23= <TCELL>t= <K REG> 1
<K REG ASS> [
NULL |
GoTo <ID> l
CPRGC D>
<DUMP HEAD> (<T NUMBERY>) [
<OUMP HEAD> (<K REG¥*>) |
<DUMP HEAL> { <T CELL>) }
<FUNCTION>
< CA SESEQ>END |
<BLOCK>

73

<REL CP> 112 < :
> |
< = |
> = [
- =
KCOND ITIGN> 2= <K REG*> CRELOP>XTVALUE> |
<K REG¥> <REL 0OP> <K REG> |
CVERFLOW |
<REL OP>
<IF CL> s3= | FSCONDITION>T H E N
<1RUE PART> $3= <SIMPLEST>ELSE
<WHILED> 23= WHILE
<CCND DO 23= <CCNDITICAN> D O
<FOR HEAD> 3:=FCR<KREG ASS>
<INCREM> 22= S T E PLTNUMBER>
<LIMIT> 3= UNTIL <KREG*> l
UNTILKTCELL > |
UNTIL <T NUMBERD
<CO> 2:= CC
CSTATEMENT®> :3=<SIMPLES T > |
<IF CL> <STATEMENT*> |
KIFCL> <TRUE PART> <STATEMENT*> I
<WHILE><COND DO> <STATEMENT*> |
<FOR HEAD> <INCREM> <LIMIT> <DO> <STATEMENT*>
<STATEMENT> $3= <STATEMENT*>
<SITTYPE> ::= SHORT [INTEGER
INTEGER }
LGGICAL |
REAL |
LCNG REAL |
BYTE |
CHARACTER |
COMMAND
<TTYPE> 3:=<SITTYPE> |
ARRAY(<TNUMBER3)<SI T TYPE>
KT CECL*> ¢s *=<TTYPE><ID>
<T DECL> 4 <ID>
KT DECL> { <T NUMBER>) |
CT UECL> <STRING>)
<T CECL> 2:= KT DECL#*>
<K REG CC*> 32:= <SITTYPE> REGISTER <ID> 1
<K REG DC> » <ID>
<KREGC C > 23= <K REG DC> (<T NUMBER>)
CFUNC DECL®*> z:= FUNCTICON <ID>
<FUNC DECL> , KID>
KFUNCCECL-> :3= <FUNC DECL¥*> (<KTNUMBER>)
<FUNC DECL> 3:= <FUNC DECL-> { <T NUMBERD>)
<SYN DECL> 3:=<TTYPE> <IO> SYN <TCELL> |
<T TYPE> <ID> S Y N<TNUMBER>]
<SYN DECL> 4 <ID> SYN KT CELL>]
<KSYN DECL> + <ID> SYN <T NUMBERD>
<CECL> 1:= <T ODECL> |
<KRE GLCC> |
<FUNC DECL> |
<SYN DECL> |
SEGMENT BASE <K REG>
<FRCC NAME> ::= PKCCEDURE <ID> |
SEGMENT PROCEDURE <ID>

<PRCCHEAD*>

::=<PRCCNAME> (

T4

<K REG*>)

<FRGC hEACD
<LABEL CEF>
<BLOCKHEAD>

<BLCCKBCLCY>

<BLCCK>
<PRCGRAM>

DEVICE TABLE

s oo
oo

e 0 O

(1]

LCG.NO,.

u—
COVO~NOOVEWNNKO

-
-

——
W

<KPRCC HEAL*> 3

<ID> :
BEGIN I
<BLCCKHEAC>

<BLOCKHEAD> <PROC HEAD> <STATEMENTS>

<CECL> 3

<BLOCKHEAD> 1

<BLCCKBCDY>
<BLCCKBODY> <LABEL DEF>
<BLCCKBGDY> END
a <BLOCK> a
DEVICE
TYPEWRITER (1052)
PRINTER {1403)
CARCREADER (2540)
CARDPUNCH {2540)
SYS TAPE {2401)
TAPE {2401)
TAPE (2401)
TAPE {2401)
TAPE (2401)
TAPE (2401)
DISK {2311)
DISK (2311)
DISK (2311)
DISPLAY (2250)

<STATEMENT>

75

: |

ADDRESS

009
00E
00C
00D
282
181
182
183
184
283
190
191
192
2E0

(7 TRACK)

’

PRCCED
BEG

END

URE INREAL (R9);
IN COMMENT READ CHARACTERS VIA "NEXTCHAR", RESULT IN FO1l;
LCNG REAL FCON1 (#4ECCCOCCO0000000), FCON2 (#47000000000000070) 3
INTEGER FCONLLOW SYN FCCN1(4)3
SHGORT INTEGER TEN (10)3 BYTE SIGN, EXPCSIGN;
WHILE RQ. < mQw [CC
BEGIN IF RO = “—=¢ THEN SET(SIGN) FLSE RESET(SIGN); NEXTCHAR;
ENC 3
BEGIN COMMENT =EAC THE INTEGRAL PART;
Rl := RO ANo #F3 NEXTCHAR;
wHILE RO > won [pC
EEGIN RO 3= RO AND #F3; Rl := R} * TEN + ROs NEXTCHAR;
END
COMMENT INT:=GER IN Rly, NEXT CHARACTER IN RO;
R2 = 03 C:MMENT R2 IS THE DECIMAL SCALE FACTOR; .
FCCNLILCW 3= Rl FCl == FCONL+0ODC; COMMENT FO1 := R1;
IF RO = ".n THEN
BEGIN CCMMANT PROCESS FRACTION.. BUILD NUMBER IN FO1;

~NEXTCHAZ:
WHILE RO >= %0" CO
BEGIN RY := RO SHLL 4° STC(RO)(FCON2(4));
FOl o= FOLl * 10D. - FCON23 R2 1= R2-13 NEXTCHAR;
ENC 3
END 3

IF RO = ™E" THEN
BEGIN COMMENT ACD THE SCALEFACTOR TO R2;
NEXTCHAR; IF RO = "=" THEN
BEGIN SET(EXPCSIGN); NEXTCHAR;
END ELSE RESET(EXPGSIGN);
Rl 2= RO AND #F; NEXTCHAR;
WHILE RO >= "Qo" CO
BEGIN RO := RO AND #F; R1 := Rl * TEN + RO; NEXTCHAR;
END 3
TEST(EXPOSIGN)
IF = THEN R2 :
ENo 3 v
IF R2 ~= 0 THEN
BEGIN COMMENT CGMPUTE F45 = 10 ** R2;
IF R2 < O THEN)
BEGIN R2 := ABS R23 SET{EXPOSIGN);
ENC ELSE RESET(EXPOSIGN); e
F23 1= 10D0; F45 3= 1D0; F6T := F45;
WHILE R2 == 0 DO
BEGIN SRDL(RZ)(1); F23 := F23%F67; F6T = F2=:
LTR(R3)(R3); If < THEN F45 := F45%F23;
END 3 .
TESTULEXPOSIGN); -
I+ = THEN FOl 3= FOl/F45 ELSE FOl = FO1*F45;
END 3
TEST(SIGN); IF = THEN FOl := NEG FOl;
END ;

-
A

H we

R2-R1 ELSE R2 3= R2+R13

76

FRCCEL
BEG

" END

URE CUTREAL (RSG5

GIN CCYMENT NUMBER IN FOl. ADDRESS OF OUTPUT IN R13

LCNG REAL X, FCCN1 {#4ECQC0OOCCRC0O0001)3

INTECER XKHIGH SYN X3 IRTEGER XLOW SYN X(4);3

SHCRY INTEGER Q (3C7)5 BYTE _SIGNS

ARRAY (4) LCGICAL PAYTERN
a&&o¢ompbm~Aumowomomovnuwow0¢mmwu~%NONooooov

ARRAY {14) CHARACTER ZERO (" O "

IF FOL = OO THEN MYC(13)(B1)(ZERD) ELSE
SEGIN IF FOL < CCO THERN SET(SIGN) ELSE RESET(SIGN)G
FOL = AES FCl; X := FOL;
RC XHIGH ShRL 24 — 64 * Q3 ir < THEN RO := RO +
RC RO SHRA 8 — 13 R2 := ABS RO;
CCMMENT CCMPUTE F45 := 10%%R2;
F23 1= 10D0; F45 := 1D0; F6T = F45;
WHILE R2 ~= C UC
BEGIN SROL(R2)(1); F23 := F23%F67; F6T = F23;
LTR{R2)(R3); IF < THEN F45 := F45%F23;
END 3
IF RO < O THEN
BEGIN FOl := FCl*F45;
WHILE FO1l < 1CO CO

e oo
L]
[5EN
(8]
[
-

it

BEGIN FO1 := FO1%1000; RO := RO-1;
R7 2= R7+1;
END 3
tNC ELSE

BECIN FOl t= FCL/F45;

WHILE FO1 >= 1000 DO

BEGIN FOl := FO1%*0.1DC; RO 3= RO+1;

R8 := RB8+1;

END ;
END 5 _
FOLl := FOL * 2Dé& ++ FCONL; X 3= FOl; R3 := XLOW SHRL 1;
IF R3 >= 100C0000 THEN
BEGIN R2 3= R2 / 1C5; RO = RO+1;
END 3
CVDIR3) (X1 3 MVC(13)(BLI(PATTERN); ED(9)(B1)(X{4));
qmmq.mmmzxu IF = THEN MVI("=")(B1{1));
CVBIRO) (X135 ECI(3)(BL{10)I(X(6))
IF RC € 0 THEN MVI(®"=#){B1(11)) ELSE MVI{"+")(R1(11))3

END ;

7

BEGIN COMMENT BINARY 1L SEARCK;
INTEGER M3 LONG REAL CECS
BkiAY (3) SFUKT INTEGER NMOVE [#D2C0)(#4000) (#6009);
ARRAY {6) BYTE PATTLRN (#40) (#20)(#20) (4203 1#20)(4#20)3
CCMMENT EACH ENTRY IN THE DIRECTCRY CONSISTS OF A TAGsy LENGTH,
ANLC ABSOLUTE ACCRESS OF THE IDENTIFIERS
AKRAY (1CC) INTEGER DIRECTORY;
ARRAY {100) SHFCRT INTEGER TAG SYN DIRECTORY(O)3
ARFAY (100) SHORT INTEGER £N SYN DIRECTORY(2);
AKRRAY (1CC) INTECER ADR SYN DIRECTCRY(4);
AKKAY (132) CHARACTER BUF (")
ARRAY (1000) CHARACTER ID 3

PrRCCECURESEAMROF (RF)
BEGIN COMMENT PAKANMETERS:RLI =L E N G T HOFIDENTIFIER, R2 = ADDRESS
CF IDENTIFIERS RESULTSR3 =T A GO FNOTLOCATED) .
REGISTERS USEL: 0 -8 ;
INTEGERR E G I STERLI1I)yLOW{3)yI1{4) 3 HIGH(5)y X(6)yM(T)3
ARRAY (3) SFORT INTEGER CUMP (#D500)(#2000) (#6000}
COPMENT COMPOARE CRARACTER INSTRUCTIONS
F1G 14 s =8 LChks= 8 ;
wHiLE LOW <= BICFH DO
BEGIN [2= LCw t RIGH SHHC 4 SHLL 3 X :=ADR{I);
IF L = LN(1) THEN
BEGINEX(L)Y(CCMP)SIF
IF < THEN HIGH :
END ELSC
I f -L <LK{T) THEN
BEGIN EX(LI(CCNMP);
IFf <= THEN RIGH :=1-8ELSE LOW:=1+8;

THEN GOTO OUT:
I-R ELSE LOW :=1+383

n o

ENC ELSE
BEGIN VM = LN(T)5 EX(MY(COMP)3S
IF < TRENFIGH:=1I-RELSE LQW:=[+8;

ENG

END;

I := 0

LUT:R 3 := TAG(I);
END

EL(131) (BUFY(EUR) S LA(RO)(BUF)Y; R6 2= RO COMMENT BFLANKBUFFFERS
Rl 2= 0 ;LA(R4)(ID};

CUMMENTREACICENTIFIERSAND ENTER THEMINTABLES;
Ll KEADGC2¢; CLI(“E")I{BUF)S T F == THEN
BECIN R1 3= R1+8;5 TAC(R]L) : =R13
R2 s= (3 R3 = R2Z;
LZ2: IC(R3Y{BUFIR2))3IF R3 a=w"THEN
BEGINR2:=R2+1;GCTCOL2;

END3;
EX (R2) (MCVE)3 ACRIRL) 3= R4;
R4 = R+ R2: = R2-1% LN{R]1) t= R23;
GeTo 1.1,
ENC
h @ =r1;

COMMENTREACANICENTIFIERAND SEARCH ITIN THETABLES
L3: READU26; I1f- = THEN
GEGIN R1: = 0 ;R3 := R1; LA{R2)(BUF); "

78

L4: IC(R3){BUF(RL))3IFR 3-=""T HE N
BEGIN RL: =R1+l; GCTO L4;
ENC ;
R1 := R1-1; SEARCk; .
CVC(R3){CEC); MVCU5) (BUF(36)) (PATTERN);
ED(5) (BUF(36)) (CEC(S))3 WRITE;
GOTO L3;

ENG ;
ENC &

BECGINCOMMENT M A G | CSQUARE GENERATOR;
ARRAY (132) CHARACTER LINE (" ")

COMMENT WRITE IDENTIFIER ANDTAG3;

ARRAY (8) BYTE PATTERN {#40) (#20) {#20)(#20) (#21)(#21);

LCNG KEAL DEC;
ARRAY (256) INTEGERX ;

PRCCECURE MACICSCUARE (R6) 3
BECIN SHOGRT INTEGER NSQR3
INTEGER REGISTERN{O) ¢y I(1)9J(2)4K(5);
NSCR = NjRL 2= N:ASQRj; NSQR 3= R13;
I 2= N+1 SHRL l; 2= N;
FOR K 2= 1 STEP 1 UNTILNSQRO O
SEGIN R3 :=ISKLL 6, R4 = J SHL 2 + R3 RS
IF R3 =~=(THEN
BEGIN I 2= I1; J == J-7;
IF 1< 1 THEN I 2=
IF J <1 T-EN J =
R3 = 1 SHLL 6, R4
END3
X{R4) =
[+13 IF I > N THENI =
J 1 =Jd+ly IF J > N THEN J 3=
END
ENC

-
-

J SHLL 2 + RS

I-N3
J-h;

-
¢ =

PRGCECURE GETANCPR I N T(R8)5
BEGINR 22:=0; FGRRL z=

0 s
MAGICSQUARESR6: = R O ; LALRO)(LINED;

FORRLI:= 1 STEP 1 UNTL Ré60DO
BEGIN R4 =R1 SHLL 6 +4; LA(RS)(LINE(4));
FUR R2:= 1STFP 1 UNTILR6 00

t=X{R4)Y

TEP 4 UNTILL1020D0OX(RI):=R23

BEGIN MVC(S)(US)(PATTERNY R3 3= X(R4)$ CVDIR3)YIDEC);3

ED(S)Y(BS)(IEC(B)): Ra:
END
WRITES
END
FOCL3IM(LINE)(LINE)S WRITE:
ENC 3

EDL131)CLINEY(LINE); CCOMMENTBLANK LINE;

RO := 3 ; CETANDPRINT;

AC := 5 ; GETANDPRINT;

KC :=7 ;CGETANDPRINT;
ENE @

79

=R4+43 RS 3= R5+73

't

11
14
25

Z2
31

4C
45

11
2¢

10
12
1S
21

21
23
32
41
43

12

13
2C
22

13
15
24
33
42
44

23

14
lé

14
16
25
34
36
45

17 --

80

38
47

18
27
29

30
39
48

10
19
28

Acknowledgments

The author wishes to express his sincere thanks to Mr. J. W. Wells
for his indispensable assistance. Mr. Wells recoded the compiler in its
own language, and developed the supporting monitor system. Thanks are
also due to the GSG group at the Stanford Linear Accelerator Center for
their generous providing of computer time under favourable conditions.
And finally, the support of the National Science Foundation under grant

GP 4053 is gratefully acknowledged.

References

1. G. M. Amdahl, G. A. Blaauw, F. P. Brook, Jr. : "Architecture of
the IBM System/360", IBM J. of Res. and Dev. 8, No. 2, 87-101
(April 1964), and

G. A. Blaauw, et al.: "The structure of System/560“. IBM Sys. J.
3, No. 2 119-164 (1964).

2. N. Wirth and C. A. R. Hoare, "A contribution to the development of
Algol", Comm. acm 9/6, 413-432 (June 1966).

3. N. Wirth and H. Weber, "Euler: A generalization of Algol, and its
formal definition: Part I", Comm. ACM 9/1, 13-23 (Jan. 1966).

4. "IBM System/560 principles of operation", IBM Sys. Ref. Lib.
A22-6821-2,

5. N. Wirth: "A programming language for the 360 computers", Tech.
Report CS 33,Stanford U., Dec. 1965.

81

