
CHEBYSHEV APPROXIMATION OF CONTINUOUS FUNCTIONS
| BY A CHEBYSHEV SYSTEM OF FUNCTIONS

| BY

| G. H. GOLUB

| L B. SMITH

TECHNICAL REPORT NO. CS 72

JULY 28, 1967

COMPUTER SC IENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

wa RE
EET,-

CHEBYSHEV APPROXIMATION OF CONTINUOUS FUNCTIONS

BY A CHEBYSHEV SYSTEM OF FUNCTIONS

BY

G. H. Golub and L. B. Smith

ABSTRACT

The second algorithm of Remez can be used to

compute the minimax approximation to a function,

f(x), by a linear combination of functions,

tq; (x) Jy , which forma Chebyshev system. The
only restriction on the function to be approximated

is that it be continuous on a finite interval [a,b].

An Algol 60 procedure is given which will accomplish

the approximation. This implementation of the

second algorithm of Remez 1s quite general in that

the continuity of f(x) 1s all that 1s required

whereas previous implementations have required

differentiability, that the end points of the

interval be "critical points," and that the number

of "critical points" be exactly N+2. Discussion

of the method used and its numerical properties 1s

given as well as some computational examples of the

use of the algorithm. The use of orthogonal poly-

nomials (which change at each iteration) as the

Chebyshev system 1s also discussed.

PTR ET

| 1. Introduction

Given a Chebyshev system, 94x), 9, (x), Coe. P(x), we define the
Chebyshev or minimax approximation to a continuous function f(x) over

an interval [a,b] to be the function

such that € 1s minimized, where

¢ = max |f(x) - Py (x) | . (1.2)
a<x<b

i

If P, (x) = X we have the minimax polynomial approximation of degree

N to f(x) . If Pp. (x) = T, (x), where T, (x) denotes the Chebyshev

polynomial of the first kind of order i, we have the minimax approxi-

mation as a sum of Chebyshev polynomials. For the definition of a

Chebyshev system, see Achieser[3, p. 73].

The algorithm presented here computes the coefficients Css i= 0,

l,N in (1.1) for any given Chebyshev system 9, (x), i = 0,

l,N. The algorithm is based on the second algorithm of Remez [1],

and also makes use of the exchange method described by Stiefel [2].

The characterization of the error curve, given by

N

cx) = ¥ ec,(0) - £00), (1.3)
1=0

1s the basis for the second algorithm of Remez. It is shown, for example,
N

by Rice [1l, p.56] that p¥ (x) =). cP, (x) is the Chebyshev
1=0

1

approximation to f(x) on [a,b] if and only if there exists a set of

points a < Xs <x <x, ees < Xe S b such that

*

(v) | e(x,) | =¢, and

*

(c) max le (x) | = €
a<x<b

Thus, when the computed error curve attains this "equal ripple" character

with at least N+l1 sign changes in [a,b] we know we have the desired

minimax approximation.

The second algorithm of Remez, based on the characterization, can

be outlined in three steps.

(1) choose an initial set of points, the reference set,

a<g <x <...<xyq <b.

(11) Compute the discrete Chebyshev approximation to f(x) on the

reference set.

(111) Adjust the points of the reference set to be the extreme of

the error curve, (1.3).

Steps (11) and (111) are repeated until convergence 1s obtained.

Proof of the existence of the minimax polynomial (given by (1.1)

N Co

and (1.2) with {9}, a Chebyshev system) is given by Achieser[3,

p. 741.

Proof that the second algorithm of Remez converges for any starting

values for the critical points is given by Novodvorskii and Pinsker [4].

If f(x) 1s differentiable, Veidinger [12] proves that the convergence

2

| 1s quadratic. That 1is

* * - 0ec - (K) = 0(e - (k Ly j as k —®,

* 1 1 1
where € 1s the maximum error for the Chebyshev approximation and

(x) | th |
€ is the maximum error at the Kk iteration. A survey article

concerned with minimax approximations is given by Fraser [8].

3

ed

2. Applicability

The algorithm presented herein has wide applicability in that it

can be used to approximate any continuous function given on an arbitrary

closed interval. In addition, the approximating function 1s not restricted

to polynomials or Chebyshev polynomials, but 1s allowed to be any linear

Chebyshev system to be supplied by the user. The three standard or

simplifying assumptions usually made in an implementation of the second

algorithm of Remez are:

(a) Differentiability of f(x), the function to be approximated.

(b) The end points of the interval are critical points.

(c) The existence of exactly N+2 points of extreme value on

the error curve. |

- None of these three assumptions 1s made for this algorithm.

3. Formal Parameber List

3.a Input to the Procedure

n integer degree of the Chebyshev system of functions to be

used 1n the fit 1p (x), © (x), «ous 0 (x).

3 lower end point of the interval of approximation, of type

real.

upper end point of the interval of approximation, of type

real.

kstart integer controlling the number of points (kstart X (n+2))

used in the initial approximation. See (i) in Section d.

4

: kmax integer allowing control of the number of times k is

| increased above kstart .

loops integer allowing control over the number of iterations

taken by Remez's second algorithm 1f convergence 1s not

yet attained.

a real procedure to compute the function f(x) to be

approximated; procedure heading required:

real procedure f(x);

value x;

real x;

the argument is the untransformed variable x . f(x)

” must be continuous in the interval [a,b] .

chebyshev a procedure to evaluate the Chebyshev system of functions

being used at some point, x, in the interval [a,b];

procedure heading required:

procedure chebyshev(n,x,t);

value n, Xx;

integer n;

real Xx;

real array t;

n is the degree of the system, x is the point in [a,b],

and 't is an array that will contain the values t[i]=

P(x), i=0,1,n1n.

5

eps a real procedure to compute the error curve given by

(5.1); procedure heading required:

real procedure eps(x,c,n);

value x,n;

real x;

integer n;

real array c;

X 1s a point in [a,b],- n is the degree of the system,

andc¢ 1s an array containing the coefficients of the

approximation, c[i] = c, in (5.1).

exchange a procedure, [10] for example, to locate the n+2 subset

of mtl given points which determine the minimax poly-

nomial on those mtl points* procedure heading required:

procedure exchange (a,d,c,m,n, refset,

emax, singular, r) ;

value m,n; integer m,n; real emax;

real array a,d,c,r;

integer array refset;

label singular;

a 1s a real mtl by ntl array, d is a m+tl compon-

ent vector, Cc 1s a nt+t2 component vector, ml is the

integer number of points (gs + + CX), n is the degree

of the system, refset is a n+2 component integer

vector, emax 1s a real number and singular is a label.

6

r 1s a vector containing the mtl values of the residual

at the mtl points under consideration. On entry the com-

ponents of a and d are

ali,j] = P(x) and
ali] = £(x;), 1 = 0(L)m, J = 0(L)n .

Upon exit from exchange, the array c¢ contains the

coefficients of the minimax function found, refset

contains the subscripts identifying the points used to

compute the minimax function, 1.e. the reference set,

and emax contains the value of the maximum deviation

of the minimax function from f(x) on the points Xr

i =0(1)m .

3.b. Output from the Procedure

c the array of coefficients c¢, of Equation (5.1).

emax the maximum modulus of the error curve (5.1) for the

final approximation function, of type real,

trouble a label to which control is transferred if remez does

not converge properly.

why an integer whose value on exit will be set to one of the

following:

why = -1 1f number of added points 1s greater than

n. (See step (ii) in Section 5.)

why= 1 if trouble occurs in procedure quadraticmax .

]

why= 2 1f trouble occurs in procedure exchange .

why= 3 1f no convergence after iterating "loops"

times.

why= 4 converged according to the maximum and

minimum residual comparison.

why = 5 converged according to why= 4 and the

critical point test.

why= 6 converged according to why = 4 and the

coefficient test.

why= 7 converged according to why = 4 and both

the critical point and the coefficient tests.

why = 8 converged according to critical point test

only.

why = 9 converged according to coefficient test

only.

why = 10 converged. according to critical point and

coefficient tests.

4. Algol Program

procedure remez(n, a, b, kstart, kmax, loops, f, chebyshev, eps, exchange,

c, emax, trouble, why);

valuen, a, Db, kstart, kmax, loops;

real array c;

real a, b, emax;

label trouble;

integer n, kstart, kmax, loops, why;

8

real procedure f, eps;

procedure chebyshev, exchange;

begin comment Procedure remez finds the best fit (in the minimax

sense) to a function f using a linear combination of functions

which form a Chebyshev system. The exchange algorithm of E. L.

Stiefel is used to obtain starting values for the critical prints

and the Remez algorithm 1s then used to find the best fit;

procedure quadraticmax(n, x, niter, alfa, beta, ok, a, b, c¢, nadded,

eps);

value n, niter, alfa, beta, nadded;

arrayXx, Cy

integer n, niter, nadded;

real alfa, beta, a, b;

boolean ok;

real procedure eps;

begimme n t Procedure quadraticmax 1s called to adjust the values

of the critical points in each iteration of the Remez algorithm.

The points are adjusted by fitting a parabola to the error curve

in a neighborhood, or if that proves unsatisfactory a brute force

determination of the extrema is used;

integer i, countl, count2, nhalf, signepsxstar, signu, signv, Signw,

jmax, ncrude, J, nn;

real u, v, w, denom, epsu, epsv, epsw, xstar, epsxstar, xxx, misse,

missx, dx, emax, etmp;

integer array signepsx [0 : n + 1];

array epsx [0 : n + 1];

comment

label L1, L2, L3, troubles, savexstar, done, L5,L6,L7,LS,L9,

LBL1l, LBLZ;

nn := n - nadded;

comment on arbitrary parameters,..

ncrude 1s the number of divisions used in the brute force search

for extrema.

nhalf The parameter (alpha) which determines the size of interval

to be examined for an extremum 1s reduced by half 1f a bad

value for xstar 1s computed, however this reduction may

occur only nhalf 'times.

misse If the value of the error curve at a new critical point

differs from the previous value by a relative difference

of more than misse then the brute force method is

brought in.

missx The brute force method keeps searching until 1t 1s within

missx of an extremum.;

comment set values of the constants;

ncrude := 10;

nhalf := 4;

misse := 1.0 @ -2;

missx := 1.0 @&-5:

comment compare missx to absepsx. They should be equal.;

for1 i= 0 step1 untiln + 1 do

epgxhi] c= eps(x[i], c, nn);

signepsx[i] := sign(epsx[i]);

end;

10

=

for 1 := 1 step 1 until n + 1 do

begin comment If the starting values for the critical points do not

alternate the sign of eps (x), then we go to the label trouble;

if signepsx[i] X signepsx[i-1]# -1 then go totrouble;

end;

comment First find all the interior extrema, then we will find the

end extrema, which may occur at the ends of the interval.;

for i :=1 step 1 until n do

begin countl := 0;

count2 := 0;

Ll: u = x[1i];

v :=u + alfa X &[i+l]- u);

w :=u + alfa X (x[i-1] -u);

epsu := epsx[il;

signu := signepsx[i];

epsv := eps(v, Cc, nn);

signv := sign {(epsv);

epsw := eps(w,c, nn);

signw := sign (epsw);

if not signu = signv or not signv = signw then go to L3;

comment If the sign of eps(x) at the three points is not the

same, we go to L3 where alfa 1s reduced to make the points

closer together.;

epsu := abs (epsu);

epsv := abs(epsv);

epsw := abs (epsw);

11

L2: denom := 2.0 X ((epsv- epsu) X (w= u) + (epsw - epsu) X (u =~ v));

if denom = 0.0 then xstar := 0.5 X (v + w) else xstar := 0.5 X

(v + w) + (v-U) X (U-w)X (epsv - epsw)/denom;

countl := countl + 1;

comment Test xstar to be sure it is what we want. Is 1t between

x[i-1] and x[i+l] . Is eps(xstar) > eps(u, v, and w) . If

xstar 1s too bad, go to L3 and reduce alfa unless alfa

has been reduced nhalf times, otherwise 1f ok go savexstar.;

. 1f xstar = u or xstar = v or xstar = w then

begin epsxstar := eps(xstar, c, nn);

signepsxstar := sign (epsxstar);

epsxstar := abs (epsxstar);

go to savexstar

end;

if xstar < x[i-1] or xstar > x[i+l] then go to L3;

epsxstar := eps(xstar, c, nn);

signepsxstar := sign (epsxstar);

epsxstar := abs(epsxstar);

1f signepsxstar 4 signu or epsxstar < epsu or epsxstar < epsv or

epsxstar < epsw then

begin if epsu > epsv and epsu > epsw then

beginif abs(epsxstar - epsu) > misse X epsu then go to

LBL2;

xstar := uj

epsxstar := epsu;

signepsxstar := signu;

go tosavexstar;

end;

12

-

1f epsv> epsu and epsv >epsw then

beginif abs(epsxstar - epsv) > misse X epsv then go to

LBL2;

xstar := vy;

epsxstar := epsvy;

signepsxstar := signv;

go to savexstar;

end;

1f abs (epsxstar - epsw) > misse X epsw thengo to LBL2;

xstar := w;

epsxstar := epsw;

signepsxstar := signw;

go tosavexstar;

LBL2: max := 0;

LBL1: dx := (v-w)/ncrude;

emax := 0.0;

XXX = WwW - dx;

forj := 0 step 1 until ncrude do

begin xxx := xxx + dx;

max := jmax + 1;

etmp := eps(xxx, c, nn);

if abs(etmp) > emax then

Emgxn := epsxstar := abs (etmp);

signepsxstar := sign (etmp);

u := Xstar := XXX;

Vv =u + dx;

15

Ww =u - dx;

end

end;

if dx > missx then go to LBL1;

comment Make sure v and w are within bounds.;

if v > x[i+1] thengo to I3;

if w < x[i-1] thengo to L3;

go to savexstar

end;

1f countl > niter then go to savexstar;

1f epsu < epsw then

begin 1f epsv < epsu then

Ih: begin comment v is minimum;

1f xstar > u then

begin v := xstar;

epsv := epsxstar;

go to Lz;

end;

1f xstar > w then

begin epsv := epsu;

Vv i= u;

epsu := epsxstar;

u := xstar;

go to 12;

end else

begin v := u;

14

epsv = epsu;

u i= WwW;

epsu = epsw;

W := Xstar;

epsw := epsxstar;

go to L2;

end;

end else comment u 1s minimum;

begin 1f xstar > v then

begin u := vj

epsu = epsv;

V = Xstar;

_ epsv := epsxstar;

go to Le;

end;

1f xstar > w then

begin, := xstar;

epsu := epsxstar;

go to LZ;

end else

begin u := w;

epsu = epsw;

W = Xstar;

epsw := epsxstar;

go to LZ;

end;

end;

15

end else

begin 1f epsv < epsw then

begin comment Vv 1s minimum;

go to Lh;

end else

begin comment w 1s minimum;

1f xstar > v then

beginw := u;

epsSw := epsu;

u = Vv;

epsu := epsv;

Vv = Xxstar;

epsv = epsxstar;

go to L2;

end;

1f xstar > u then

beginw := uj;

epsw = epsu;

u := xstar;

epsu := epsxstar;

go to La;

end else

wegin i= Xstar;

epsw = epsxstar;

go to LZ;

end;

end;

end;
16

L3: count? := count? + 1;

1f count2 > nhalf then go totrouble;

alfa := 0.5 X alfa;

comment The factor 0.5 used in reducing alpha is arbitrarily

chosen.;

go to Ll;

savexstar: comment Replace x[i] by xstar after checking

alternation of signs.;

if i > 1 and signepsxstar X signepsx[i-1]# -1 then go to trouble;

signepsx[i] := signepsxstar;

x[i] := xstar;

end;

comment This 1s the end of the loop on 1 which finds all interior

extrema. Now we proceed to locate the extrema at or near the two

endpoints (left end, then right end).;

comment We assume beta > alfa;

for 1 :=0, n+ 1 do

begin countl := 0; count? := 0;

18: u i= x[il;

if 1 = 0 then

begin 1f a < u then w := u + alfa X (a - u) elsew := u + beta

X (x[1] - uv) ;

v :=u + alfa X &[1]- vu);

end else

beginifb > u thenw := u + alfa X (b - u) else wi=ut beta

X (x[n] - u);

Ly

v i= u + alfa X (x[n] - u);

end;

epsu := epsx[il;

signu := signepsx[i];

epsv := eps(v, ¢, nn) 3

signv := sign (epsv);

epsw := eps(w, ¢, nn);

signw := sign (epsw);

| if signv 4 signu or signv # signw then go to LV;

epsu := abs (epsu);

epsv := abs(epsv);

epsw := abs(epsw);

15: denom := 2.0 X (epsu x (v-w) + epsv x (w-u) + epsw X (u-v));

if denom = 0.0 then xstar := 0.5 x (wv) else xstar := 0.5 x

(vtw)+ (v-u) x (u-w) x (epsv- epsw)/denom;

if i = 0 and (xstar < a or xstar > x(1]) then

begin xstar := a;

epsxstar := eps(a,c, nn);

signepsxstar := sign (epsxstar);

epsxstar:= abs (epsxstar);

end else if i = n+ 1 and (xstar > b or xstar< x[n]) then

begin xstar := Db;

epsxstar := eps(b, c, nn);

signepsxstar := sign (epsxstar);

epsxstar := abs (epsxstar);

end else

18

begin epsxstar := eps(xstar, c, nn);

signepsxstar := sign (epsxstar);

epsxstar := abs(epsxstar);

end;

countl := countl + 1;

if 1 = 0 and xstar > x[1] then go to L7;

if i =n + 1 and xstar < x[n] then go to L7;

| if xstar = u or xstar = v or xstar = w then go to Lb;

1f signepsxstar 4 signu or epsxstar < epsu or epsxstar < epsv or

epsxstar < epsw then

begin if epsu 2 epsv and epsu > epsw then

begin xstar := uj;

epsxstar := epsu;

signepsxstar := signu;

go to 16;

end;

1f epsv > epsu and epsv > epsw then

begin xstari= v;

epsxstar := epsv;

signepsxstar:= signv;

go to 16;

end;

xstar := wy;

epsxstar := epsw;

signepsxstar := signw;

go to Lb;

end;

19

Fe.

if countl > niter thengo to Ib;

1f epsu < epsw then

begin if epsv < epsu then

begin comment v 1s minimum;

Vv := Xxstar;

epsv := epsxstar;

go to LS;

end else comment u 1s minimum;

beginu := xstar;

epsu := epsxstar;

go to L5;

end;

end else

) begin if epsv < epsw then
begin comment v 1s minimum;

Vv := Xstar;

epsv := epsxstar;

£0 to Lo;

end else

begin comment w 1s- minimum;

w := Xstar;

epsw := epsxstar;

80 to Lo;

end

end;

20

sai

LT: count? := count? + 1;

if count2 > nhalf then go totrouble;

alfa := 0.5 x alfa;

beta := 0.5 X beta;

go to I8;

L6: comment Replace x[i] by xstar after checking its sign;

if i = 0 and signepsxstar X signepsx[l] # - 1 thengo to

trouble;

if 1 # 0 and signepsxstar X signepsx[n] # - 1 thengo to

trouble;

signepsx[i] := signepsxstar;

x[i] := xstar;

end;

go to done;

trouble: ok := false;

go to LI;

done: ok := true;

LO:

end quadraticmax;

comment Procedure start computes the arrays which are then input to

exchange to find the best approximation on the points

at hand;

procedure start(m,n, a, d, xi, chebyshev, f);

integer m, nj;

21

arraya, d, xi;

procedure chebyshev;

real procedure fj;

begin integer i, j; real array t[0:n];

begin chebyshev(n, xi[il, t);

forj := 0 step 1 until n do ali,J] := t[jl;

afi] := f£(xi [1]);

"end

end start;

comment Now the procedure remez;

real epsc, alfa, beta, epsx, absepsc, absepsx, rcompare, dx, maxr,

minr, tempr, minsep;

integer m, i, itemp, Jj, niter, nloop, k, nadded, isub, maxri,

ilast, signnow, jj;

integer signnew;

integer array refset{O : n + 1 + nl;

comment Assume number of points added < nj;

integer array ptsadd[0 : n];

array clast[0 : n + 1], xq, xqlast[C¢ : n + 1 + n];

comment

label newk;

boolean firsttime, ok, convx, conve, addit;

why := 0;

k := kstart;

22

newk : comment Come here 1f k gets changed;

m :=n+1+(k-1) x(n + 2);

begin array r, xi, d4[0 : ml], aal0 : my, 0 : n + 1];

comment

label loop, converged, singular, LBL;

firsttime := true;

convx := false;

conve := false;

"nloop := 0;

comment This makes the initial points spaced according to the extrema

of the Chebychev polynomial of degree m-1;

xi[i] := (atb)/2.0 - (b-a) x cos((3.14159265359 x i)/m)/2.0;

dx := (b-a)/m;

comment This makes the initial points evenly spaced in the interval

[a,b];

comment Remove this card to use equally spaced points

for i := 0 step 1 until m do xi[i] := a + 1 x dx;

start (m, n, aa, d, xi, chebyshev, f);

comment The following constants are used 1n testing for

convergence

epsc used 1n relative test on coefficients

absepsc used 1n absolute test on coefficients

epsx used in relative test on critical points

absepsx used 1n absolute test on critical points

rcompare used to compare relative magnitudes of max and min

values of residual on the critical points;

25

epsc := 1.0@-7;

absepsc := 1.0@-7;

epsx := 1.0@-5;

absepsx := l00@-5;

rcompare := 1.0000005;

comment epsx and absepsx should be the same as missx 1n procedure

quadraticmax.

epsc and absepsc should be adjusted according to knowledge of

the expected magnitudes of the coefficients (1f known). Tt is

best to depend on the critical points and/or the max and min

of the residuals for convergence criteria.;

comment Now call on exchange to find the first approximation to

the best approximating function;

exchange (aa, d, c, m , n , refset, emax, singular, r);

comment The subscripts of the points chosen are in array

refset[0:n+l],the coefficients of the best approximating

function on the m points are in c¢[0:n], the residuals in r;

comment The reference set, the coefficients at this step, and/or

the residuals may be written at this point;

for i := 0 _step 1_until ndo clast[i] := c[il;

comment Now we are going to look for any extrema not given by

the points chosen by exchange;

comment Make sure critical points are algebraically ordered;

for 1 := 0 step1 untiln doforj := 1 + 1 step 1 until n + 1 do

beginif refset[j] < refset[i] then

bedine m p := refset[jl;

refset[j] := refset[i];

2b

-

refset{i] := itemp;

end;

end;

nadded := 0;

maxr := 0;

maxri := 0;

ilast := 0;

signnow := sign(r [0]);

for 1 := 0 step1 untilm + 1 do

begin if 1 = m + 1 then go to LBL;

if sign(r [i]) # 0 and sign(r [i]) = signnow then

begin if abs(r [i]) > maxr then

begin maxri := 1;

i maxr := abs(r [1]);

end;

end else

LBL: beginif i <m + 1_then signnow := sign(r [i]);

addit := true;

for 3 := 0 step 1 untiln + 1 do

begin for jj i= ilast step 1 until i-1 do

begin if jj = refset[j] then addit := false;

end;

end;

if addit then

begin nadded := nadded + 1;

1f nadded > n then

25

begin comment We assume "nadded" 1s always < n.

1f nadded 1s > n, why 1s set to -1 and we go to the

label "trouble". This can be modified by changing

this test and changing the declarations for "ptsadd",

"refset", "xq", and "xqlast" above.

why := -1;

go to trouble

end;

ptsadd[nadded] := maxri;

refset[n + 1 + nadded] := maxri;

end;

1f 1 <m + 1 then

begin ilast := 1;

maxr := abs (r [i]);

maxri := i;

end;

end;

end;

comment We now have nt2+nadded points to send to quadraticmax

for adjustment;

m := n + nadded;

comment Make sure critical points are algebraically ordered;

for1 := 0 step 1 until m do for Jj :=1 + 1 step 1 until m + 1 do

begin if refset[j] < refset[i] then

begin itemp := refset[j];

refset[j] := refset[i];

26

refset[i] := itemp;

end;

end;

for i := 0 step 1 until m + 1 do xq[i] := xi[refset [i]];

niter := 2;

comment This 1s the number of times to iterate in quadraticmax;

alfa = 0.15;

beta := 0.2;

comment alfa and beta are used to determine the points used in

quadraticmax to fit a parabola. They are

arbitrary subject to: 0 < alfa < beta <1 . Also beta

should be fairly small to keep the points on one side of

Zero.;

loop: comment This 1s the beginning of the loop that calls on quadraticmax,

exchange, etc.;

nloop := nloop + 1;

quadraticmax(m, xq, niter, alfa, beta, ok, a, b, c¢, nadded, eps);

1f not ok then

begink := k + 1;

if k > kmax then

begin why := 1;

go to trouble;

end;

go to newk;

end;

27

if not first-time then

begin comment Compare the largest and smallest of the residuals

at the critical

points (after adjustment);

comment Set minr to a large number;

maxr := 0.0;

minr := 1.0@50;

for i := 0 step 1 until n + 1 do

begin addit := true;

forj :=1 step 1until naddeddo if refset[i] = ptsadd[]]

then addit := false;

if addit then

begin tempr := abs(eps (xq [refset [i]], ¢, n));

if tempr > maxr then maxr := tempr else 1f tempr < minr

then minr := tempr;

end;

end;

if maxr < rcompare xminr then why := Lj

end;

comment Compare xq to xqglast;

if not firsttime then

begin convx i= true;

for 1 i= 0 step 1 until m + 1 do

begin if abs (xq [i] - xqlast[i]) > absepsx then

28

begin if abs (xq [i]- xqlast[i]) > epsx xabs(xq [i]) and

xq[i]# 0.0 then convx := false;

if xq[i] = 0.0 and abs (xq [i] - xqlast[i]) > absepsx

then convx := false;

end;

xqlast[i] := xq[i]l;

end;

end else

begin firsttime := false;

for i := 0 step 1 until m + 1do xqlast[i] := xq[il;

for i := 0 step 1 until ndo clast[i] := c[i];

end;

comment Get ready to call exchange again;

start(m + 1, n, aa, d, xq, chebyshev, f);

exchange(aa, d, ¢, m + 1, n , refset, emax, singular, r);

comment Now compare the new coefficients to the last set of

coefficients;

1f not firsttime then

begin conve = true;

begin if abs(c [i] - clast[i]) > epscxabs(c [i]) and cli]

0.0 then convc := false;

if efi] = 0.0 and abs(c [i] - clast[i]) > absepsc then

convc := false;

clast[i] := c[i];

29

end;

end;

comment Set the parameter why to the proper value according to

the following:

why = 4 if maxr < rcompare X minr.

why = 51if "4" and convx = true.

why = 6 if "4" and conve = true.

why = 7 if "4" and convx = convc = true.

why = 81if convx = true.

why = 9 1f convc = true.

why =101f convx = convC = true. Any value of why > 4

indicates convergence;

if why = 4 and convx then why := 5;

if why = 4 and conve then why := 6;

if why = 5 and convc then why := 7;

if why = O and convx then why := 8;

if why= 0 and convc then why := 9;

if why = 8 and conve then why := 10;

if why > 4 then go to converged;

if nloop > loops then .

begin why := 3;

80 to trouble;

end;

comment We go to label trouble in calling program if no

convergence after a number of iterations equal to loops;

go to loop;

50

singular: why := 2;

go to trouble;

comment We come to "singular" if exchange gets into trouble;

converged:

end;

comment End of block using m in array declarations;

comment There are four exits to the label trouble...

(why=1)if k gets > kmax

(why=2) if exchange gets into trouble

(why=3) if no convergence after iterating

"loops" number of times

(why=-1) 1f number of added points 1s greater than n;

end remez;

51

5. Organization and Notational Details

The algorithm calls for three procedures, 1n addition to the

function f(x) to be approximated, as indicated by the Formal Para-

meter List.

exchange Based on Stiefel's Exchange algorithm, which

finds the N+2 subset of M+l given points

which determine the minimax polynomial. Use

[10], for example.

eps To be supplied by user: eps computes the

error curve

N

(x) = ¥ cy0; (x) - 2(x) (5-1)
1=0

where the Cy» 1 = 0,..., N, are parameters

and the P, (x), i=20,1,..., N, are the

Chebyshev system of functions being used to fit

the function f(x) . For best results e(x)

should be computed in double precision and

then rounded to single precision accuracy. If

f(x) can not be calculated easily or efficiently

in double precision at least the sum,

N

)) cP, (x), should be accumulated in double
1=0

precision and rounded to single.

32

chebyshev To be supplied by user: chebyshev evaluates

the Chebyshev system 9. (x), i=0, 1,..., N
for a given argument x . chebyshev is called

by eps .

The functions e€(x) and P, (x) (computed by eps and chebyshev)

can often be computed by simple recursive procedures. For example,

1f the Chebyshev system used 1s the set of Chebyshev polynomials, there

is a well-known recurrence relation (@; 11 (x) = 2x, (x) - P; 4) that
can be used to efficiently evaluate the required functions.

An outline of the organization of the algorithm 1s given in the

following steps:

(1) Let M= K x(N+2), take M+l points in the interval

[a,b] and use exchange to determine the "best"

polynomial (i1.e., the

N

c.¥ max | Y co. (x.) - f(x.) | = minimum) on
i iit] J

o<jSM i=0

those points. Exchange will pick N+t2 of the original

points as "critical" points. The Mtl points are

chosen equally spaced or as the zeros of

Typ (¥) - Tre (x) with K > 1.

(11) Use the N+2 points chosen by exchange in step (i)

and vother local extrema (subject to the conditions

discussed under Example 2, Section 7)as input to the

procedure quadraticmax >0) .

33

(111) Procedure quadraticmax adjusts the N + ¥ + 2 critical

points to be the abscissas of the extrema of the error

curve givenby (5.1). Section 6.b gives a discussion

of how the adjustments are computed. After adjustment

the new points are tested for alternation of sign, and

1f the property has been lost, we increase K and go

back to step (1).

(1v) The adjusted critical points are then input to exchange

which finds the new coefficients Cs 5 i =0, 1,..., N

for the "best" polynomial on the adjusted N + v + 2

points.

(v) Now convergence tests can be applied to the coefficients

C. 5 found in step (iv), to the critical points Xs

i=0, 1,..., N and to the extreme values of (5.1).

If not converged, go back to step (111) since the

previous "critical" points will not be the exact extreme

points after the approximating polynomial 1s changed

in step (iv).

34

0. Discussion of Numerical Properties and Methods

6.a Accuracy and Convergence

The accuracy of the approximations generated by this procedure

1s limited by the precision of the arithmetic used and the accuracy

of the subsidiary procedures F, EXCHANGE, EPS, and CHEBYSHEV . The

use of double precision in EPS, for example, can improve the results

of REMEZ since it will then have a "smoother" error curve to work

on. This use of double precision in EPS 1s strongly recommended by

the authors. The maximum absolute error of the approximation 1s output

from REMEZ and depends, of course, on N, the degree of approximation.

The procedure 1s deemed to have converged when the coefficients

of the approximating function or the critical points have satisfied

certain relative criterion between successive iterations. We use the

notation cm to represent the Eh coefficient at the nt itera-
tion and similarly, xn) represents the jth critical point at the
nh lteration.

When

I'4

max] c{) - Sed < epsc|e\™ | (6.1)
: :

or

1 {

max {1 - x7)| < epsx|x\M| (6.2)
1

we consider the procedure to have converged. If oP) or x)
1s very small the relative test 1s not appropriate. In that case we

35

test o{n) Se and x2) - x21) against allowed absolute
errors, absepsc and absepsx . Typical values for the constants (for

an ll-decimal place machine) could be

epsc = 1078
4

epsx = 10

-8
absepsc = 10 (6.3)

4
absepsx = 10

A third convergence criterion 1s the comparison of the maximum

and minimum magnitudes of the error curve at the critical points. Let

4

maxr = max |e(x\™))
1

and

minr = min le (x{™) |
1

. (n) _ th
where {x } are the critical points chosen at the n lteration,

and then make the following test. If maxr < rcompare ® minr then

claim convergence. A typical value for the constant rcompare could

be 1.0000005 .

When the maximum absolute error approaches 107%(r), where s

1s the number of places available in the machine, and = is

max f(x) |, we are approaching the limit of obtainable accuracy.
asx<b

We are working with

36

e(x) = P(x) - f(x) (6.4)

so when e(x) is nearly equal to 10“f(x), we are losing about s

places in the subtraction in (6.4). This is where judicious use of

double precision can be made to increase accuracy if necessary. P(x)
can be computed in double precision and a single precision difference

formed, or for even further accuracy f(x), if possible, could be

computed 1n double precision and the double precision difference

taken.

A comparison of the discrete approximation on a finite number

of points in an interval, and the continuous approximation which this

algorithm finds, is studied by Rivlin and Cheney in [9]. This relates

to the question of how large to choose K in step (i), Section 5.

le have found that for well behaved functions like e” on [-1,1]

a value for K of about 3 gives good starting values. On the other

hand a function like 1/(x-)) on [-1,1] with Xx > 1 and) near

l, requires K to be about 15 to obtain good starting values.

6.b Locating the extrema of e(x)

Most of the programming effort is involved 1n locating the extrema

of the error function e(x) . The programming is similar to that done

by C. L. Lawson 1n a FORTRAN program to compute the best minimax approxi-

mation [7]. E(x) 1s given by

N

EX) = PN cp. (x) - £ (x).

37

The procedure EXCHANGE then 1s used to compute the coefficients of

the minimax function. Thgt is, given N + v + 2 points, wv> O,
N

EXCHANGE computes the coefficients of the function y cP, (x) such
i=0

that on the discrete set of points e(x,), i= 0, lyeewy, N+ v + 1
has at least N+2 extreme values (at the given points) equal in

magnitude and of alternating signs. The satisfaction of this condition

when the points are indeed the extreme of the continuous e(x)
N

guarantees that) c, 9, (x) is the unique minimax approximating
i=0

function that we seek.

6.b.1 Parabolic Approximation to Locate Extremum

Given the initial guesses Xs) i=20, l,..., N+ vy + 1 (at each

iteration) for the abcissas of the extrema of the error curve, we

must locate these "critical points" more precisely. We consider two

cases. First the interior points, and secondly the least and greatest

of the initial guesses which may be equal to the respective end

points of the interval on which the function 1s to be approximated.

For interior points we do the following:

Take

vExg + oalx oC x.) (6.5)

WS xg + a(x, L- x.)

where o 1s a parameter 0 < gg < 1 (e.g., « = 0.1) . We then

determine the parabola through the three points E(u), e(v), and

38

*

e(w) . The abcissa, x , corresponding to the vertex of this parabola

1s then taken as the next guess for the jth "critical point". The
¥*

point x 1s given by

2 2 2 2 2 2
* Ll(u-vi)ew+ (-w) ew) + (w-u) ev)]

Xx = = : (6.6)2 [u-v e w + v—w € u) + (w-u) e(v |

] *]]
For computational purposes x is not computed directly by (6.6)

since for u, v, and w very close, the denominator will be quite

small. Therefore, the denominator of (6.6) is computed

d = [(u-v) ew) + (v-w) eu) + (w-u) e(v)] (6.7)

and then by dividing out (6.6) we express x as

1

5 (utv) if d=20
*

X = (6.8)

| & (utv) + 1 (v-u) (u-w)l[e (v) - € (w)] ifd #0 -2 2 d

* 1]]]]
Once Xx 1s computed, it.ls then tested to insure acceptability since

for u, v, and w very close, machine roundoff may introduce spurious

results. Also, the value of o¢ or the nature of the function f(x)
*

and therefore of e¢(x) may introduce an unacceptable value for x in

which case u, Vv, or w, whichever has highest ordinate value, is

*

used for x . If x* is acceptable it can replace u, v, or w,

whichever has the lowest (in absolute value) ordinate value on the

39

error curve €(x) and a second x 1s computed. This iteration will

converge to the abcissa of the extremum near Xo 1f roundoff 1s

ignored and uy, v;, and w are sufficiently close to that point.

(Compare convergence to Muller's method for solving algebraic equations

[5].) However, this iteration need not be carried out excessively

(2-4 1terations should be sufficient) since during each iteration of

the over-all process we recompute the approximating function and

thereby obtain a new error curve whose extrema will not necessarily

have the same abcissas.

For the end points (6.5) cannot apply since x, ,, and x, ,
do not exit at the right and left ends respectively. Therefore

we take, at the left end for example,

u =X.

voExg tala ox)

x, + B(x, 4p - x.) if x, =a (6.9)
Ww =

x, + ala - x.) if a <x. ,

with the requirement that gu # B - . The right end 1s handled similarly.

Again the parabola through the three points e(u), e(v) and e(w) is

used to determine x . The tests for acceptability and iterations

are performed as they were for the interior points.

LO

6.b.2 Crude Search to Locate Extremum

In case approximation by parabola does not yield an acceptable

value for the abcissa of an extremum, the following rather crude method

works effectively. We simply divide the interval under consideration

into f equal intervals (e.g., I = 10) and examine the ordinate

of the error curve at the end points of the intervals. The points

to the left and right of the point with maximum ordinate (in absolute

value) then define a new interval upon which the process 1s repeated.

This subdivision continues until the subintervals become smaller than

some specified value (e.g., 1072) . The method causes the function

to be evaluated more often than the parabolic approximation, but

works successfully at a point where the error curve has a sharp cusp-

like extremum.

To decide whether to use this crude search or not we employ a

relative test. Let the parabolic choice be x and the three points

used to compute x be u, v andw . Then one would expect (hope)

that

lex) > leu), le(v)], ana le)

in which case x has the desired properties. However, if
*

€ = max le(x)], and |e(x J <e , then we must doubt the
X=UyV,yW

acceptability of . and perhaps use the crude method to determine

J . We found a successful way to make this decision was to use the

crude method if Je] - ey] > © we where C is an arbitrary
constant (e.qg., 1074 :

41

fT. Examples

The procedure was tested on the Burroughs B5500at the Stanford

Computation Center using Burroughs Extended ALGOL.

We have chosen two examples to illustrate the use of the algorithm.

The first 1s the function

X

f(x) =e" on [-1,1] (7-1)

and the second 1s

f(x) =1+x, -1.0<x <-0.5 (7.2)

- Xx, -0.5<x< 0.0

x, 0.0<x<1.0.

£, (x)

-1.0 -0.5 0) +1.0 |

FIGURE 1

The first example, f(x), is an infinitely differentiable function

so that the error curve (5.1) is also differentiable, whereas f(x)

(see figure 1) 1s continuous, but its derivative, f(x), has
L2

nN...

discontinuities at x = -0.5 and at x = 0.0 which cause the error

curve to have a discontinuous derivative. Of course, 1n practice, if

we were aware 1n advance of the discontinuities in the derivative of

the function to be approximated, the interval of approximation could

be subdivided so as to avoid the discontinuities. However, we examine

f(x) as 1t provides an interesting example of approximating a function

which is only continuous. In both cases we used Chebyshev polynomials

as the Chebyshev system of functions.

X

Example 1. [£, (x) =e] .

Table 1 and Table 2 show how the "critical" points and the coeffi-

cients of the approximating polynomial converge as we approximate

f(x) = e” by a th degree sum of Chebyshev polynomials. Figures
differing from the final result are underlined at each step.

TABLE 1

4

Coefficients c, of "best" polynomial P), (x) = 2 c.T. (x) (To 6D)
1=0

0 1.266 063 1.266 066 1.266 066 1.266 066

1 1.130 321 1.130 318 1.130 318 1.130 318

2 0.271 495 0.271 495 0.271 495 0.271 495

3 0.0kk 337 0.044 336 0.044 336 0.044 336

4 0.005 523 0.005 519 0.005 519 00005 519

43

-

TABLE 2

"Critical" points of best polynomial (To 6D)

0 -1.000 000 -1.000 000 -1.000 000 -1.000 000

1 -0.771 Leg -0.797 575 -0.797 682 -0.797 682

2 -0.257 143 -0.278 189 -0.279 152 -0.279 152

> 0.314 286 0.339 805 0.339 061 0.339 061

4 0.828 571- 0.820 978] 0.820 536 0.820 536

d 1.000 000 1.000 000 1.000 000 1.000 000

Table 1 shows that the coefficients of the "best" polynomial have

converged to 6D after only one iteration, however, the critical

points don't converge until the second iteration as shown by Table 2.

In other words, the polynomial does not change coefficients very much

with a small change 1n the "critical" points. The starting points

shown in Table 2 are chosen by EXCHANGE from 6x (N+2)=36 (for

N= 4) equally spaced points in the interval [-1,1] .

Various methods for choosing the starting values for the "critical"

points have been proposed. These include the zeros of Taq (X) - Ty_1 (x);

which are also the extrema of Tyeq (X) and what we propose here 1s

to let EXCHANGE choose N+2 points from some original set of K(N+2)

points where K > 1 . The original X(N+2) points may be equally

spaced, or they may be the zeros of Ty (we2)+1 *) - Ty (+2) -1(%) .

44

Table 3 compares various starting values for this example,

f(x) = "(N= 4) . D represents the maximum deviation from the
"TRUE" values.

TABLE 3

Comparison of starting values for f(x) = e®, N =L4., (To 3D)

Tg (x)-T5 (x) = 0 |EXCHANGE on EXCHANGE on
6(N+2) points 201 points TRUE

n |or | 75 (x) | = 1 equally spaced |equally spaced (computed)

0 -1.000 -1.000 -1.000 -1.000

1 -0.809 -0.771 -0.800 -0.798

2 -0.309 -0.257 -0.280 -0.279

- 3 0.509 0.314 0.340 0.359

4 0.809 0.829 0.820 0.821

5 1.000 1.000 1.000 1.000

0.030 0.027 0.002 o-
max

Example 2. [£,(x)] .

Approximation of f(x) by an gth degree sum of Chebyshev
polynomials (N = 8) poses the problem of having an error curve

with more than N+2 local extrema. This problem also arises when

approximating an even or odd function (see [6]). We resolve the

problem by including all the local extrema of the error function,

e(x), which have the alternation of sign property, in the search

45

for N+2 "critical" points. That 1s, if the abcissas of the extrema

are ordered algebraically, the signs of the corresponding ordinates

must alternate. We obtain starting guesses for local extrema by

having EXCHANGE pick N+2 starting points from some original set

of points, together with the corresponding first approximating

polynomial, and then examining the resultant residuals. If the table

of residuals indicates an extremum not already chosen by EXCHANGE,

which has the correct alternating sign, then the corresponding

abcissa 1s included as a "critical" point for later iterations. K

must be chosen greater than 1 in order for this method to work.

Figure 2 shows the error curve, e(x), for the first and

third iterations of approximating f (x) by an 8th degree linear
combination of Chebyshev polynomials.

46

8

Approximating f(x) by L. c T (x)

o £,(x), N = 8
®)
S

LN

1 St iteration 37d iteration
I~ — _ _TS

_ / ~
®) / } _- ~
Q - 4

/

| |
!

QJ !
Oo

x O
~a |

\

@) |
S : |

-1.000 -0.600 -0.200 0.200 0.600 1.000

FIGURE 2

47

TABLE 4

Critical points chosen at each iteration.

| |

| Iteration | The N+2 points used (see Figure 3) |

| 1st 1 23 sj 71819 {10]11 |12 |

| 2nd L j2 3167189 |1w0|11 [12 |

| 3ra [1236718910 |11 |

Table 4 indicates how the choice of critical points can change from

one 1lteration to the next. If we had not included the additional

- extrema at points 5 and 6at the first iteration, we would have

arrived at the approximation whose error curve 1s 1llustrated by

Figure 3. That 1s N+2 extrema of the error curve have equal magnitude

and alternating signs, but another extremum exists with larger modulus.

48

Error curve with points 5 and 6 not used.

S

LA

oO
oS
3

KA :

Ql |
o
— O

S
x O

~
>

®)
8

S

|

|

| Oo
3.
S

wv

1 2 3 4 5 6 78 9 10 11 12

I I

-1.000 -0.600 -0.200 00200 0.600 1.000

FIGURE 3

As an interesting comparison to TABLE 3we give a similar table

for f(x) = f(x) . D__. represents the maximum deviation from the

"TRUE" values in TABLE J.

49

_—

TABLE 5

Comparison of starting values for f(x) = £,(x), N=28. (to 4D)

| | | EXCHANGE on | EXCHANGE on |
| 3% points { 201 points TRUE

| n To(x)-T, (x) = 0 |equally spaced [equally spaced | (computed)

| 0 ~1.0000 1.0000 | 21.00 | -1.0000

| I! 0.9397 0.8750 -0.86 0.8565
| 2 | -0.7660 -0.6250 - -0.62 | -0.6248

| 3 ~0. 5000 ~0.1250 0.1% | -0.1k2k |

| 4 -0.1736 000 0.0 0.0 |

| ; 0.1736 0.1250 0.15 0.1456 Bu
i 6 0.5000 0-4375 0.44 0.4413 |

7 0.7660 0.7500 0.75 0.7290 |

| 8 0-9397 0-9375 0.95 0.9289

| 9 1.0000 1.0000 1.000 1.0000

max |

50

8. Use of Orthogonal Polynomials

Consider the polynomials pox); p, (x),..., p, (x) orthogonal on

the set of points Xo < % < Coes Xo Such polynomials are described

by Forsythe [13], and they form a Chebyshev system. This is easily

seen since any linear combination,

n

P (x) -L cp. (x), (8.1)

is a polynomial of degree n which has exactly n zeros. Hence on

any interval, P(x) has no more than n zeros. This satisfies the

definition of a Chebyshev system.

It is known, see Forsythe [13], that orthogonal polynomials have

advantages over standard polynomials in least squares data-fitting.

In the Remez algorithm, 1f a new set of polynomials, orthogonal on the

critical points, 1s computed each time the critical points are adjusted,

convergence 1s assured. This can be proved by noting that at each

iteration the best orthogonal polynomial fit 1s equivalent to the best

fit that would be obtained if the Chebyshev system were held constant

as standard polynomials. Perhaps this use of orthogonal polynomials

will have computational advantages over, say, standard polynomials

on the interval [0,1] .

The use of orthogonal polynomials for the Chebyshev system has

been implemented and tried successfully on a Burroughs B5500 computer,

but as yet we have no illustrations of any dramatic advantages over

any other Chebyshev system.

51

BTAE
EA AA

BEERS

ae

References

[1] Remez, E. Y.: "General computational methods of Chebyshev
approximation". In The Problems With Linear Real Parameters.

AEC-tr-4491, Books 1 and 2, English translation by US AEC.

[2] Stiefel, E. L.: "Numerical methods of Chebyshev approximation”.
In On Numerical Approximation. R. E. Langer, Ed. U. of
Wisconsin Press, Madison, 1959.

[3] Achieser, N. I.: Theory of Approximation. (Translated by
C. J. Hyman), New York. Frederick Ungar Publ. Co., 1956.

v

[4] Novodvorskii, E. N. and Pinsker, I. S.: "On a process of
equalization of maxima". Uspehi Mat. Nauk. 6,174-181,(1951)
(Translation by A. Shenitzer, available from New York University
Library.)

[5] Muller, D. E.: "A method for solving algebraic equations using
an automatic computer". Math Tables Aids Comp., 1956.

[6] Murnaghan, E.D., and Wrench, J. W.: Report No. 1175, David
Taylor Model Basin, Md., 1960.

[7] Lawson, C. L.: Private communication.

[8] Fraser, W.: "A survey of methods of computing minimax and near
minimax polynomial approximations for functions of a single

independent variable". Journal of the A.C.M., Vol. 12, No. 3,
(July, 1965).

[9] Rivlin, T. J. and Cheney, E. W.: "A comparison of uniform
approximations on an interval and a finite subset thereof".
SIAM Journal on Numer. Anal., Vol. 3,No. 2, (June, 19606).

[10] Bartels, R. H. and Golub, G. H.: "Computational considerations
regarding the calculation of Chebyshev solutions for overdeter-

mined linear equation systems by the exchange method". Tech.

Report No. CS67, Computer Science Department, Stanford University,
(June 1967).

[11] Rice, J. R.: The Approximation of Functions, Vol. 1, Reading
Mass.: Addison-Wesley, 1964.

[12] vVeidinger, L.: "On the numerical determination of the best
approximations 1n the Chebyshev sense". Numer. Math., Vol. 2
(1960), pp. 95-105.

[13] Forsythe, G. E.: "Generation and use of orthogonal polynomials
for data-fitting with a digital computer". J. SIAM, Vol 5,
No. 2, (June, 1957), pp.74-88.

52

