CS 72

CHEBYSHEV APPROXI!V\ATION OF CONTINUOUS FUNCTIONS
BY A CHEBYSHEV SYSTEM OF FUNCTIONS

BY

G. H. GOLUB
L B. SMITH

TECHNICAL REPORT NO. CS 72
JULY 28, 1967

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

CHEBYSHEV APPROXIMATION OF CONTINUOUS FUNCTIONS

BY A CHEBYSHEV SYSTEM OF FUNCTIONS

BY

G. H. Golub and L. B. Smith

ABSTRACT

The second algorithm of Remez can be used to
compute the minimax approximation to a function,
f(x), by a linear combination of functions,

{Qi(x) }g s which form a Chebyshev system. The
only restriction on the function to be approximated
is that it be continuous on a finite interval [a,b].
An Algol 60 procedure is given which will accomplish
the approximation. This implementation of the
second algorithm of Remez is quite general in that
the continuity of f(x) 1is all that is required
whereas previous implementations have required
differentiability, that the end points of the
interval be "critical points," and that the number
of "critical points" be exactly N+2 . Discussion
of the method used and its numerical properties 1is
given as well as some computational examples of the
use of the algorithm. The use of orthogonal poly-
nomials (which change at each iteration) as the

Chebyshev system is also discussed.

1. Introduction

Given a Chebyshev system, cpo(x), tpl(x), .. qJN(x), we define the

Chebyshev or minimax approximation to a continuous function f(x) over

an interval [a,b] to be the function
PN(X) = co@o(x) + e + CNcpN(X) (l.l)
such that € 1is minimized, where

¢ = max [f(x) - PN(X)I . (1.2)
a<x<b

If Cpi(x) = Xi we have the minimax polynomial approximation of degree
N to f(x) . If cpi(x) = Ti(x), where Ti(x) denotes the Chebyshev
polynomial of the first kind of order i, we have the minimax approxi-
mation as a sum of Chebyshev polynomials. For the definition of a
Chebyshev system, see Achieser[3, p. 73].

The algorithm presented here computes the coefficients Ci i=20,
I,N in (1.1) for any given Chebyshev system cpi(x), i=0,
I, .. .N. The algorithm is based on the second algorithm of Remez [1],

and also makes use of the exchange method described by Stiefel [2].

The characterization of the error curve, given by

N
e(x) = _ZO c®, (x) - £(x), (1.3)

is the basis for the second algorithm of Remez. It is shown, for example,

N
by Rice [11, p.56] that p;fl(x) =) cicpi(x) is the Chebyshev
i=0

1

approximation to f(x) on [a,b] if and only if there exists a set of

points a < x, <x, <X, ... < Xypp S b such that

0 1 2
(a) ex;,q) = -e(xis,
() Ie(xi)l =€*, and
() max |e(x)] = e* .
a<x<b

Thus, when the computed error curve attains this "equal ripple" character
with at least N+l sign changes in [a,b] we know we have the desired
minimax approximation.
The second algorithm of Remez, based on the characterization, can
be outlined in three steps.
(1) choose an initial set of points, the reference set,
a<_6< <xl< <XNtl <b.
(1i) Compute the discrete Chebyshev approximation to f(x) on the
reference set.
(iii) Adjust the points of the reference set to be the extreme of
the error curve, (1.3).
Steps (ii) and (iii) are repeated until convergence is obtained.
Proof of the existence of the minimax polynomial (given by (1.1)
and (1.2) with {cpi}g, a Chebyshev system) is given by Achieser[3,
p. 741.
Proof that the second algorithm of Remez converges for any starting
values for the critical points is given by Novodvorskii and Pinsker [4].

If f(x) is differentiable, Veidinger [12] proves that the convergence

is quadratic. That is

* (k) * E(k-l)) 2,

€ - ¢ = 0(e as k —»,

*
where € is the maximum error for the Chebyshev approximation and

(k)

. . th | . .
€ is the maximum error at the k iteration. A survey article

concerned with minimax approximations is given by Fraser [8].

2. Applicability

The algorithm presented herein has wide applicability in that it
can be used to approximate any continuous function given on an arbitrary
closed interval. In addition, the approximating function is not restricted
to polynomials or Chebyshev polynomials, but is allowed to be any linear
Chebyshev system to be supplied by the user. The three standard or
simplifying assumptions usually made in an implementation of the second
algorithm of Remez are:

(a) Differentiability of f(x), the function to be approximated.

(b) The end points of the interval are critical points.

(c) The existence of exactly N+2 points of -extreme value on

the error curve.

- None of these three assumptions is made for this algorithm.

3. Formal Parameber List

3.a Input to the Procedure

n integer degree of the Chebyshev system of functions to be

used in the fit {CPO(X), CPl(X), ceoy CPn(X)} .

a lower end point of the interval of approximation, of type

real.

upper end point of the interval of approximation, of type

real.

kstart integer controlling the number of points (kstart X (n+2))

used in the initial approximation. See (i) in Section §

kmax

loops

chebyshev

integer allowing control of the number of times k 1is

increased above kstart

integer allowing control over the number of iterations
taken by Remez's second algorithm if convergence is not

yet attained.

a real procedure to compute the function f(x) to be

approximated; procedure heading required:

real procedure f(x);
value x;

real x;

the argument is the untransformed variable x . f(x)

must be continuous in the interval '[a,b] .

a procedure to evaluate the Chebyshev system of functions
being used at some point, x, in the interval [a,b];

procedure heading required:

procedure chebyshev(n,x,t);
value n,x;

integer n;

real x;

real array t;

n is the degree of the system, x 1is the point in [a,b],

and 't is an array that will contain the values t[i] =

Qi(x), i=0,1,n1n.

eps

exchange

a real procedure to compute the error curve given by

(5.1); procedure heading required:

real procedure eps(x,c,n);
value x,n;

real x;

integer n;

real array c;

x 1is a point in [a,b], - n is the degree of the system,
and c¢ 1s an array containing the coefficients of the

approximation, c¢[i] = c, in (5.1).

a procedure, [10] for example, to locate the n+2 subset
of mtl given points which determine the minimax poly-

nomial on those mtl points* procedure heading required:

procedure exchange (a,d,c,m,n,refset,
emax, singular,r) ;

value m,n; integer m,n; real emax;

real array a,d,c,r;

integer array refset;

label singular;

a 1s a real mtl by ntl array, d is a m+l compon-
ent vector, ¢ is a nt2 component vector, mtl is the

integer number of points (x . xmb n is the degree

o’

of the system, refset is a nt2 component integer

vector, emax 1s a real number and singular is a label.

r 1s a vector containing the mtl values of the residual
at the mtl points under consideration. On entry the com-

ponents of a and d are

ali,j] = cpj(xi) and

ali] = f(xi), i =0(1)m 5 = 0(1)n

Upon exit from exchange, the array c contains the
coefficients of the minimax function found, refset
contains the subscripts identifying the points used to
compute the minimax function, i.e. the reference set,
and emax contains the value of the maximum deviation
of the minimax function from f{(x) on the points X
i=01)m .

from the Procedure

3.b. Output
c

emax

trouble

why

the array of coefficients c. of Equation (5.1).

the maximum modulus of the error curve (5.1) for the

final approximation function, of type real,

a label to which control is transferred if remez does

not converge properly.

an integer whose value on exit will be set to one of the

following:
why = -1 if number of added points is greater than
n. (See step (ii) in Section 5.)
why = 1 if trouble occurs in procedure quadraticmax .

why = 2 if trouble occurs in procedure exchange .

why = 3 if no convergence after iterating "loops"
times.

why = 4 converged according to the maximum and
minimum residual comparison.

why = 5 converged according to why = 4 and the
critical point test.

why = 6 converged according to why =4 and the
coefficient test.

why = 7 converged according to why = 4 and both
the critical point and the coefficient tests.

why = 8 converged according to critical point test
only.

why = 9 converged according to coefficient test
only.

why = 10 converged. according to critical point and

coefficient tests.

4. Algol Program

procedure remez(n, a, b, kstart, kmax, loops, f, chebyshev, eps, exchange,
c, emax, trouble, why);

value n, a, b, kstart, kmax, loops;

real array c;

real a, b, emax;

label trouble;

integer n, kstart, kmax, loops, why;

real procedure f, eps;

procedure chebyshev, exchange;

begin comment Procedure remez finds the best fit (in the minimax

sense) to a function f using a linear combination of functions
which form a Chebyshev system. The exchange algorithm of E. L.
Stiefel is used to obtain starting values for the critical p~ints
and the Remez algorithm is then used to find the best fit;
procedure quadraticmax(n, x, niter, alfa, beta, ok, a, b, ¢, nadded,
eps);

value n, niter, alfa, beta, nadded;

array x, ¢j

integer n, niter, nadded;

real alfa, beta, a, b;

boolean ok;

real procedure eps;

begim m e n t Procedure quadraticmax is called to adjust the values

of the critical points in each iteration of the Remez algorithm.
The points are adjusted by fitting a parabola to the error curve
in a neighborhood, or if that proves unsatisfactory a brute force
determination of the extrema is used;
integer i, countl, count?, nhalf, signepsxstar, signu, signv, signw,
jmax, ncrude, j, nn;
real u, v, w, denom, epsu, epsv, epsw, xstar, epsxstar, xxx, misse,
missx, dx, emax, etmp;

integer array signepsx [0 : n + 1];

array epsx [0 : n + 1];

comment
label L1, L2, I3, troubles&, savexstar, done, L5,L6,L7,LS,L9,
LBL1, LBL2;
nn := n - nadded;
comment on arbitrary parameters,..
ncrude is the number of divisions used in the brute force search
for extrema.
nhalf The parameter (alpha) which determines the size of interval
to be examined for an extremum is reduced by half if a bad
value for xstar is computed, however this reduction may
occur only nhalf 'times.
misse If the value of the error curve at a new critical point
differs from the previous value by a relative difference
of more than misse then the brute force method is
brought in.
missx The brute force method keeps searching until it is within
missx of an extremum.;
comment set wvalues of the constants;
ncrude := 10;
nhalf := 4;
misse := 1.0 @ -2;
missx := 1.0 @ -5;
comment compare missx to absepsx. They should be equal.;

for i := 0 step 1 until n + 1 do

epgxhi] := eps(x[i], c, nn);
signepsx[i] := sign(epsx[il]);
end;

10

I1:

for 1 := 1 step 1 until n + 1 do

begin comment If the starting values for the critical points do not

alternate the sign of eps(x), then we go to the label trouble;
if signepsx[i] X signepsx[i-1] £ -1 then go to trouble;

end;

comment First find all the interior extrema, then we will find the
end extrema, which may occur at the ends of the interval.;

for i := 1 step 1 until n do

begin countl := 0;

count2 := 0;

u :=x[1i];

v :=u + alfa X &[i+l] - u);
w :=u + alfa X (x[i-1] -u);
epsu := epsx[i];

signu := signepsx[i];

epsv := eps(v, c, nn);

signv := sign(epsv);

epsw := eps(w, ¢, nn);

signw := sign(epsw);

if not signu = signv ar not signv = signw then go to L3;
comment If the sign of eps(x) at the three points is not the
same, we go to L3 where alfa is reduced to make the points

closer together.;

epsu := abs(epsu);
epsv := abs(epsv);
epsw := abs(epsw);

11

L2:

denom := 2.0 X ((epsv - epsu) X (w - u) + (epsw - epsu) X (u ~ v));

if denom = 0.0 then xstar := 0.5 X (v + w) else xstar := 0.5 X

(v +w) + (v-uU) X (U-=-w) X (epsv - epsw)/denom;

countl := countl + 1;

comment Test xstar to be sure it is what we want. Is it between
x[i-1] and x[i+l] . 1Is eps(xstar) > eps(u, v, and w) . If
xstar 1is too bad, go to L3 and reduce alfa unless alfa
has been reduced nhalf times, otherwise if ok go savexstar.;

if xstar = u or xstar = v or xstar = w then

begin epsxstar := eps(xstar, c, nn);
signepsxstar := sign(epsxstar);
epsxstar := abs(epsxstar);

go to savexstar
end;

if xstar < x[i-1] or xstar > x[i+l] then go to L3;

epsxstar := eps(xstar, c, nn);
signepsxstar := sign(epsxstar);
epsxstar := abs(epsxstar);

if signepsxstar # signu or epsxstar < epsu or epsxstar < epsv or
epsxstar < epsw then
begin if epsu > epsv and epsu 2 epsw then

begin if abs(epsxstar - epsu) > misse X epsu then go to

LBL2;

xstar := u;

epsxstar := epsu;
signepsxstar := signu;

go to savexstar;

end;
12

if epsv > epsu and epsv > epsw then

begin if abs(epsxstar - epsv) > misse X epsv then go to

LBL2;

xstar := v;

epsxstar := epsv;
signepsxstar := signv;

go to savexstar;
end;

if abs(epsxstar - epsw) > misse X epsw then go to LBL2;

xstar := w;
epsxstar := epsw;
signepsxstar := signw;

80 to savexstar;

LBL2: jmax := 0;
LBL1: dx := (v-w)/ncrude;
emax := 0.0;
XXX = W - dx;
for j := 0 step 1 until ncrude do
begin xxx := xxx + dx;
jmax := jmax + 1;
etmp := eps(xxx, ¢, nn);

if abs(etmp) > emax then

emgxn := epsxstar := abs(etmp);
signepsxstar := sign(etmp);
u := Xstar := XXX;
v = u + dx;

15

if dx > missx then go to LBLl;
comment Make sure v and w are within
if v > x[i+1] then go to 13;
if w < x[i-1] then go to L3;
go to savexstar
end;
if countl > niter then go to savexstar;
if epsu < epsw then
begin if epsv < epsu then

begin comment v is minimum;

if xstar > u then

begin v := xstar;
epsv := epsxstar;
go_to L2;

end;

if xstar > w then

begin epsv := epsu;

vV o= u;
epsu := epsxstar;
u := xstar;
go to I2;

end else

begin v := u;

14

bounds.;

epsv = epsu;
u i=w;
epsu = epsw;
w := xstar;
epsw := epsxstar;
g0 to L2

end;

end else comment u is minimum;

begin if xstar > v then

begin u := v;
epsu = epsv;
v := xstar;
epsv := epsxstar;
go to L2;
end;

if xstar > w then

begin, 1= xstar;
epsu := epsxstar;
go to L2;

end else

begin u := w;
epsu := epsw;
w = xstar;
epsw := epsxstar;
g to L2;

end;

end;

15

end else

begin if epsv < epsw then

begin comment v 1s minimum;

g0 to Th;

end else

begin comment w is minimum;

if xstar > v then

begin w := u;
epsw := epsu;
u = V;
epsu := epsv;
v = xstar;
epsv := epsxstar;
go to L2;
end;

if xstar > u then

begin w := u;
epsw := epsuy;
u := xstar;
epsu := epsxstar;
go to L2;
end else
wegin = xstar;

epsw := epsxstar;

g to L2;

16

L3:

savexstar:

count?2 := count2 + 1;

if count2 > nhalf then go to trouble;

alfa := 0.5 X alfa;

comment The factor 0.5 used in reducing alpha is arbitrarily
chosen.;

go to Ll;

comment Replace x[i] by xstar after checking

alternation of signs.;

if i > 1 _and signepsxstar X signepsx[i-1] # -1 then go to trouble;
signepsx[i] := signepsxstar;

x[i] := xstar;

end;

comment This is the end of the loop on i which finds all interior

extrema. Now we proceed to locate the extrema at or near the two

endpoints (left end, then right end).;

comment We assume beta > alfa;

fori =0, n+ 1 do

begin countl := 0; count2 := 0;

1.8

u = x[i];

if i = 0 then

begin if a < u then w := u + alfa X (a - u) else w := u + beta
X (x[1] - w)

v :=u + alfa X &[1] - u);

end else
beginifb > u then w := u + alfa X (b - u) else wi=u+t beta
X (x[n] - u);

17

L5:

v :=u + alfa X (x[n] - u);
end;

epsu := epsx[il;

signu := signepsx[i];
epsv := eps(v, ¢ nn) 3
signv := sign(epsv);
epsw := eps(w, ¢, nn);
signw := sign(epsw);

if signv 74 signu or signv # signw then go to L7;

epsu := abs(epsu);
epsv := abs(epsv);
epsw := abs(epsw);
denom := 2.0 x (epsu x (v-w) + epsv x (w-u) + epsw X (u-v));
if denom = 0.0 then xstar := 0.5 x (wtv) else xstar := 0.5 x

(vtw) + (v-u) x (u-w) x (epsv - epsw)/denom;
if i = 0 and (xstar < a or xstar > x[1]) then

begin xstar :i= a;

epsxstar := eps(a, ¢, nn);
signepsxstar := sign(epsxstar);
epsxstar := abs(epsxstar);

end else if i = n + 1 and (xstar > b or xstar < x[n]) then

begin xstar := b;

epsxstar := eps(b, c, nn);
signepsxstar := sign(epsxstar);
epsxstar := abs(epsxstar);

end else

18

begin epsxstar := eps(xstar, c, nn);

signepsxstar

sign (epsxstar);

abs (epsxstar) ;

epsxstar

end;

countl

if 1

if i

countl + 1;

0 and xstar > x[1] then go to L7;

n + 1 and xstar < x[n] then go to L7;

w then go to I6;

u or xstar v or xstar

if xstar

if signepsxstar # signu or epsxstar < epsu or epsxstar < epsv or

epsxstar < epsw

epsv and epsu > epsw then

begin if epsu >

begin xstar

signepsxstar :

g0 to'L6;

end;

if epsv > epsu and epsv 2> epsw then

begin xstar :

signepsxstar :

go to I6;

end;

xstar

epsxstar

signepsxstar :

go to 16;

end;

if countl > niter then go to I6;
if epsu < epsw then
begin if epsv < epsu then

begin comment v is minimum;

v := xstar;
epsv := epsxstar;
go to L5;

end else comment u is minimum;
begin u := xstar;
epsu := epsxstar;
g0 o L5;
end;
end else
begin if epsv < epsw then

begin comment v is minimum;

v := xstar;
epsv := epsxstar;
go to Lb5;

end else

begin comment w is- minimum;

w := Xstar;
epsw := epsxstar;
go to L5;

end

end;

20

L7:

16:

trouble:

done:

L9:

count2 := count2 + 1;

if count2 > nhalf then go to trouble;

alfa := 0.5 x alfa;

beta := 0.5 X beta;

go ta 18;

comment Replace x[i] by xstar after checking its sign;

if i = 0 and signepsxstar x signepsx[l] # - 1 then go to

trouble;

if 1 # 0 and signepsxstar X signepsx[n] # - 1 then go to
trouble;

signepsx[i] := signepsxstar;

x[i] := xstar;

end;
go to done;

ok := false;
go to L9;

1= true;

end quadraticmax;

comment Procedure start computes the arrays which are then input to

exchange to find the best approximation on the points

at hand;

procedure start(m, n, a, d, xi, chebyshev, f);

value m, n;

integer m, n;

21

array a, d, xi;
procedure chebyshev;

real procedure f;

begin integer i, j; real array t[0:n];

for i := 0 step 1 until m do

begin chebyshev(n, xi[il, t);

for j := 0 step 1 until n do ali,]] := t[jl;
afi] := f(xi [i]);
‘end
end start;

comment Now the procedure remez;

5222 epsc, alfa, beta, epsx, absepsc, absepsx, rcompare, dx, maxr,
minr, tempr, minsep;

integer m, i, itemp, j, niter, nloop, k, nadded, isub, maxri,
ilast, signnow, jj;

integer signnew;

integer array refset[0 : n + 1 + nl;

comment Assume number of points added < n;
integer array ptsadd[0 : nl;

array clast[0 : n + 1], xq,.quast[O :n+ 1 + nj;

comment

label newk;

boolean firsttime, ok, convx, convc, addit;
why := 0;

k := kstart;

22

newk: comment Come here if k gets changed;
m:=n+1+k-1) x(n + 2);
begin array r, xi, d[0 : m], aal0 : m, 0 : n + 1];
comment

label loop, converged, singular, LBL;

firsttime := true;

convx := false;

conve := false;
“nloop := 0;

comment This makes the initial points spaced according to the extrema
of the Chebychev polynomial of degree m-1;

for i := 0 step 1 until m do

xi[i] := (atb)/2.0 - (b-a) x cos((3.14159265359 x 1i)/m)/2.0;

dx := (b-a)/m;

comment This makes the initial points evenly spaced in the interval
[a,b];

comment Remove this card to use equally spaced points

for i := 0 step 1 until m_gg xi[i] := a + 1 x dx;

start(m, n, aa, d, xi, chebyshev, f);

comment The following constants are used in testing for

convergence
epsc used in relative test on coefficients
absepsc used in absolute test on coefficients
epsx used in relative test on critical points
absepsx used in absolute test on critical points
rcompare used to compare relative magnitudes of max and min

values of residual on the critical points;

25

epsc := 1.0@-7;

absepsc := 1.0@-7;

epsx := 1.0@-5;

absepsx := l0o0@-5;

rcompare := 1.0000005;

comment epsx and absepsx should be the same as missx in procedure
quadraticmax.

epsc and absepsc should be adjusted according to knowledge of
the expected magnitudes of the coefficients (if known). It is
best to depend on the critical points and/or the max and min

of the residuals for convergence criteria.;

comment Now call on exchange to find the first approximation to
the best approximating function;

exchange (sa; d, ¢, m, n , refset, emax, singular, r);
comment The subscripts of the points chosen are in array
refset[0:n+l], the coefficients of the best approximating
function on the m points are in c¢[0O:n], the residuals in r;
comment The reference set, the coefficients at this step, and/or
the residuals may be written at this point;

for i := 0_step 1 _until n _do clast[i] := c[i];

comment Now we are going to look for any extrema not given by
the points chosen by exchange;
comment Make sure critical points are algebraically ordered;

for i := 0 step 1 until n do for j := 1 + 1 step 1 until n + 1 do

begin if refset[j] < refset[i] then
bedine m p := refset[jl;

refset[j] := refset[il;

2L

refset[i] := itemp;

end;
end;
nadded := 0;
maxr := 0;
maxri := 0;
ilast := 0;

signnow := sign(r [0]);

for i := 0 step 1 until m + 1 do

begin if i = m + 1 then go to LBL;

if sign(r [i]) # 0 and sign(r [i]) = signnow then

begin if abs(r [i]) > maxr then

begin maxri := i;
maxr := abs(r [i]);
end;
end else
LBL: begin if i < m + 1_then signnow := sign(r [i]);

addit := true;

for j := 0 step 1 until n + 1 do

begin for jj := ilast step 1 until i - 1 do

begin if jj = refset[j] then addit := false;

end;
end;

if addit then

begin nadded := nadded + 1;

if nadded > n then

25

begin comment We assume "nadded" is always < n.

if nadded is > n, why is set to -1 and we go to the
label "trouble". This can be modified by changing
this test and changing the declarations for "ptsadd",
"refset", "xq", and "xqlast" above.

why := -1;

g0 to trouble

end;
ptsadd[nadded] := maxri;
refset[n + 1 + nadded] := maxri;
end;

if i <m+ 1 then
begin ilast := i;
maxr := abs(r [i]);
maxri := ij
end;
end;
end;
comment We now have n+2+nadded points to send to quadraticmax
for adjustment;
m := n + nadded;
comment Make sure critical points are algebraically ordered;

for i := 0 step 1 until mdo for j :=1i + 1 step 1 until m + 1 do

begin if refset[j] < refset[i] then
begin itemp := refset[jl;

refset[j] := refset[i];

26

refset[i] := itemp;

end;
end;
for 1 := 0 step 1 until m + 1 do
niter := 2;

xqli] := xi[refset [i]];

comment This is the number of times to iterate in quadraticmax;

alfa = 0.15;

beta :

0.2;
" comment alfa and beta are used to

quadraticmax to fit a parabola.

determine the points used in

They are

arbitrary subject to: 0 < alfa < beta <1 . Also beta

should be fairly small to keep the points on one side of

Z€ro.;
loop: comment This is the beginning of
exchange, etc.;
nloop := nloop + 1;
quadraticmax (m, xq, niter, alfa,

if not ok then

begin k := k + 1;
if k > kmax then

begin why := 1;
g0 to trouble;

end;

g0 to newk;

end;

27

the loop that calls on quadraticmax,

beta, ok, a, b, ¢, nadded, eps);

_ii not first-time then

begin comment Compare the largest and smallest of the residuals

at the critical

points (after adjustment);
comment Set minr to a large number;
maxr := 0.0;
minr := 1.0@50;

for i := 0 step 1 until n + 1 do

begin addit := true;

for j := 1 step 1 until nadded do if refset[i] = ptsadd[]]

then addit := false;

E addit then

begin tempr := abs(eps (xq [refset [i]], ¢, n));
E tempr > maxr then maxr := tempr else if tempr < minr
then minr := tempr;
end;
end;

1f maxr < rcompare xminr then why := k4;
end;
comment Compare xg to xglast;

if not firsttime then

———

begin convx := true;

for i := 0 step 1 until m + 1 do

begin if abs(xqg [i] - xqlast[i]) > absepsx then

28

begin if abs (xq [i]- xqlast[i]) > epsx xabs(xqg [i]) an

xq[i] # 0.0 then convx := false;

if xq[i] = 0.0 and abs(xq [i1] - xqlast[i]) > absepsx

then convx := false;
end;
xqlast[i] := xq[i];
end;
end else

begin firsttime false;

for i := 0 step 1 until m + 1 do xqlast[i] := xq[i];

for i 0 step 1 until n_do clast[i] := c[il;

end;

comment Get ready to call exchange again;

start(m + 1, n, aa, d, xq, chebyshev, f);

exchange(aa, d, ¢, m+ 1, n , refset, emax, singular, r);
comment Now compare the new coefficients to the last set of
coefficients;

if not firsttime then

begin convc := true;

for i := 0 step 1 until n do

begin if abs(c [i] - clast[i]) > epscxabs(c [i]) and c[i]
0.0 then convc := false;
if c[i] = 0.0 and abs(c [i] - clast[i]) > absepsc then

convc := false;

clast[i] := c[i];

29

end;
end;
comment Set the parameter why to the proper value according to
the following:

why = 4 if maxr < rcompare X minr.

5if "4" and convx = true.

why

6 if "4" and convc = true.

why
why = 7if "4" and convx = convc = true.
why = 8if convx = true.

why = 9 if convc = true.

why =10if convx = convC = true. Any value of why >k
indicates convergence;

if why = 4 and convx then why := 5;

if why = 4 and convc then why := 6;

if why = 5 and convc then why := 7;

if why = O and convx then why := 8;

if why = O and convc then why := 9;

if why = 8 and convc then why := 10;

if why > L4 then go to converged;
if nloop > loops_then .
begin why := 3;
£0 to trouble;
end;
comment We go to label trouble in calling program if no

convergence after a number of iterations equal to loops;

g0 to loop;

30

singular: why := 2;
go to trouble;
comment We come to "singular" if exchange gets into
converged:
end;
comment End of block using m in array declarations;
comment There are four exits to the label trouble...
(why=1) if k gets > kmax
(why=2) if exchange gets into trouble
(why=3) if no convergence after iterating

"loops" number of times

trouble;

(why=-1) if number of added points is greater than n;

end remez;

31

5. Organization and Notational Details

The algorithm calls for three procedures, in addition to the
function f(x) to be approximated, as indicated by the Formal Para-

meter List.

exchange Based on Stiefel's Exchange algorithm, which
finds the N+2 subset of M+l given points
which determine the minimax polynomial. Use

[10], for example.

eps To be supplied by user: eps computes the

error curve

N
() = ¥ e (x) - £(x) (5-1)
1=0
where the ci, 1 =20,..., N, are parameters

and the @i(xL i=0,1,. .., N, are the
Chebyshev system of functions being used to fit
the function f(x) . For best results e(x)
should be computed in double precision and

then rounded to single precision accuracy. If
f(x) can not be calculated easily or efficiently

in double precision at least the sum,

N
2: ciQi(x), should be accumulated in double
1=0

precision and rounded to single.

32

chebyshev

To be supplied by user: chebyshev evaluates
the Chebyshev system @ibd, i=0, 1,..., N
for a given argument x . chebyshev is called

by eps .

The functions e(x) and ¢i(x) (computed by eps and chebyshev)

can often be computed by simple recursive procedures. For example,

if the Chebyshev system used is the set of Chebyshev polynomials, there

is a well-known recurrence relation (@i+l(x) = 2x¢i(x) - 9, l) that

can be used to efficiently evaluate the required functions.

An outline of the organization of the algorithm is given in the

following steps:

(1)

(i1)

Let M = K x(N+2), take M+l points in the interval

[a,b] and use exchange to determine the "best"

polynomial (i.e., the
N
c. ¥ max | 2: ciwi(x.) - £(x.) | = minimum) on
0<j<M i=0 J J

those points. Exchange will pick N+2 of the original
points as "critical" points. The Mtl points are
chosen equally spaced or as the zeros of

TM_l(x) - TM—5 (x) with K > 1

Use the N+2 points chosen by exchange in step (i)
and vother local extrema (subject to the conditions
discussed under Example 2, Section 7)as input to the

procedure quadraticmax (> 0)

33

Procedure quadraticmax adjusts the N + ¥ + 2 critical
points to be the abscissas of the extrema of the error
curve given by (5-1). Section 6.b gives a discussion

of how the adjustments are computed. After adjustment
the new points are tested for alternation of sign, and
if the property has been lost, we increase K and go

back to step (i).

The adjusted critical points are then input to exchange
which finds the new coefficients c 5 i=20, 1,,.., N
for the "best" polynomial on the adjusted N + v + 2

points.

(v) Now convergence tests can be applied to the coefficients

c» found in step (iv), to the critical points X

i =0, 1,..., N and to the extreme values of (5.1).

If not converged, go back to step (iii) since the
previous "critical" points will not be the exact extreme
points after the approximating polynomial is changed

in step (iv).

34

6. Discussion of Numerical Properties and Methods

6.2 Accuracy and Convergence

The accuracy of the approximations generated by this procedure
is limited by the precision of the arithmetic used and the accuracy
of the subsidiary procedures F, EXCHANGE, EPS, and CHEBYSHEV . The
use of double precision in EPS, for example, can improve the results
of REMEZ since it will then have a "smoother" error curve to work
on. This use of double precision in EPS 1is strongly recommended by
the authors. The maximum absolute error of the approximation is output
from REMEZ and depends, of course, on N, the degree of approximation.
The procedure is deemed to have converged when the coefficients
of the approximating function or the critical points have satisfied

certain relative criterion between successive iterations. We use the

. o h .
gn) to represent the 1th coefficient at the nt itera-

{n)

tion and similarly, x.

notation c
.th L .
represents the 1 critical point at the

nth iteration.

When
maxlcgn) - an-l)l < epsc]c;n)| (6.1)
:)
or
maxlx§n) - xgn-l)| < epsx|x§n)l (6.2)

1

we consider the procedure to have converged. If lcﬁn)[or |x§n)l

is very small the relative test is not appropriate. In that case we

35

test |c§n) - c§n-l)| and ngn) - x§n_l)l against allowed absolute

errors, absepsc and absepsx . Typical values for the constants (for

an ll-decimal place machine) could be

epsc = 10_8
-4
epsx = 10
-8
absepsc = 10 (6.3)
absepsx = 10-4

A third convergence criterion is the comparison of the maximum

and minimum magnitudes of the error curve at the critical points. Let

maxr = max le(xén))l
i
and
minr = min le(xgn))l
i
(n) .y . th .
where {xi } are the critical points chosen at the n iteration,
and then make the following test. If maxr < rcompare ® minr then

claim convergence. A typical value for the constant rcompare could
be 1.0000005

When the maximum absolute error approaches lO-S(fm), where s
is the number of places available in the machine, and fm is

max |f(x) |, we are approaching the limit of obtainable accuracy.
a<x<b

We are working with

36

e(x) = PN(X) - f(x) (6.4)

so when e(x) 1is nearly equal to 10 °f(x), we are losing about s
places in the subtraction in (6.4). This is where judicious use of
double precision can be made to increase accuracy if necessary. PN(x)
can be computed in double precision and a single precision difference
formed, or for even further accuracy f(x), if possible, could be
computed in double precision and the double precision difference
taken.

A comparison of the discrete approximation on a finite number
of points in an interval, and the continuous approximation which this
algorithm finds, is studied by Rivlin and Cheney in [9]. This relates
to the question of how large to choose K in step (i), Section 5.
We have found that for well behaved functions like e* on [-1,1]
a value for K of about 3 gives good starting values. On the other
hand a function like 1/(x-A) on [-1,1] with A > 1 and)\ near

1, requires K to be about 15 to obtain good starting values.

6.b Locating the extrema of ¢(x)

Most of the programming effort is involved in locating the extrema
of the error function e(x) , The programming is similar to that done

by C. L. Lawson in a FORTRAN program to compute the best minimax approxi-

mation [7].E(x) is given by

Z

EX) = cicpi(x) - £ (x) .

-
1]
(@)

37

The procedure EXCHANGE then is used to compute the coefficients of
the minimax function. Thgt is, given N + v + 2 points, wv2> O,

N
EXCHANGE computes the coefficients of the function 2: ciwi(x) such
i=0

that on the discrete set of points e(ij 3 =0, Lee oy N+ vy + 1

has at least N+2 extreme values (at the given points) equal in
magnitude and of alternating signs. The satisfaction of this condition
when the points are indeed the extreme of the continuous e€(x)
guarantees that § cicpi(x) is the unique minimax approximating

=0
function that we seek.

6.b.1 Parabolic Approximation to Locate Extremum

Given the initial guesses X4 i=20, L,..., N+ 4y + 1 (at each
iteration) for the abcissas of the extrema of the error curve, we
must locate these "critical points"™ more precisely. We consider two
cases. First the interior points, and secondly the least and greatest
of the initial guesses which may be equal to the respective end
points of the interval on which the function is to be approximated.

For interior points we do the following:

Take
U= Xy
V=g e, - %) (6.5)
WS Xy ot a(xi 1" xi)

where ¢ 1is a parameter 0 < g < 1 (e.g., ¢ = 0.1) . We then

determine the parabola through the three points Ee(u), e(v), and

38

*

e(w) . The abcissa, x , corresponding to the vertex of this parabola
is then taken as the next guess for the ith "critical point". The
*

point x is given by

* (P-v®) e(w) + (V=) e(u) + (wo-u") e(v)] (6.6)

_ L1
X =7 [u-v e w + v-w € u) + (w-u) e(v]

*
For computational purposes x is not computed directly by (6.6)
since for u, v, and w very close, the denominator will be quite

small. Therefore, the denominator of (6.6) is computed

d = [(u-v) e(w) + (v-w) e(u) + (w-u) e(v)] (6.7)

*
and then by dividing out (6.6) we express x as

% (utv) if d =0
*
X = (6.8)
L1 () + 2omw) (owdle () - € (0] 4 g 4o

Once x is computed, it.is then tested to insure acceptability since
for u, v, and w very close, machine roundoff may introduce spurious
results. Also, the value of o or the nature of the function f(x)
and therefore of e(x) may introduce an unacceptable value for *x in
which case u, v, or w, whichever has highest ordinate value, is
used for x*. If x* 1is acceptable it can replace u, v, or w,

whichever has the lowest (in absolute value) ordinate value on the

39

*
error curve €(x) and a second x is computed. This iteration will

converge to the abcissa of the extremum near Xo if roundoff is
ignored and u, v, and w are sufficiently close to that point.
(Compare convergence to Muller's method for solving algebraic equations
[5].) However, this iteration need not be carried out excessively
(2-4 iterations should be sufficient) since during each iteration of
the over-all process we recompute the approximating function and
thereby obtain a new error curve whose extrema will not necessarily
have the same abcissas.

For the end points (6.5) cannot apply since X, and x, |

do not exit at the right and left ends respectively. Therefore

we take, at the left end for example,

u = x,

1
v ol -xg)

x, + B(xi+l - xi) if x; =a (6.9)
w =

xi+oz(a-x.1) ifa<xi,

with the requirement that w 7‘ B - . The right end is handled similarly.

Again the parabola through the three points e(u), e(v) and e(w) is
*

used to determine x . The tests for acceptability and iterations

are performed as they were for the interior points.

4o

6.b.2 Crude Search to Locate Extremum

In case approximation by parabola does not yield an acceptable
value for the abcissa of an extremum, the following rather crude method
works effectively. We simply divide the interval under consideration
into £ equal intervals (e.g., ¢ = 10) and examine the ordinate
of the error curve at the end points of the intervals. The points
to the left and right of the point with maximum ordinate (in absolute
value) then define a new interval upon which the process is repeated.
This subdivision continues until the subintervals become smaller than
some specified value (e.g., 10-5) . The method causes the function
to be evaluated more often than the parabolic approximation, but
works successfully at a point where the error curve has a sharp cusp-
like extremum.

To decide whether to use this crude search or not we employ a
relative test. Let the parabolic choice be x* and the three points
used to compute x* be u, v and w . Then one would expect (hope)

that

leG) | > e(w), [e()], ana le(w)]

*
in which case x has the desired properties. However, if

*
e = max Je(x)|, and Je(x)] < e, r then we must doubt the
m X=Uy VW

*
acceptability of x and perhaps use the crude method to determine

*
» . We found a successful way to make this decision was to use the
x)
crude method if Je(x H -em|> C.em where C is an arbitrary
-4

constant (e.g., 10 ") .

41

7. Examples

The procedure was tested on the Burroughs B5500 at the Stanford

Computation Center using Burroughs Extended ALGOL.

We have chosen two examples to illustrate the use of the algorithm.

The first is the function

£,(x) = e on [-1,1] (7.1)

and the second 1is

f2(x) =1l+x, -1.0<x <-0.5 (7.-2)

- X, ‘005<X< 0.0

-1.0 -0.5 0 +1.0

FIGURE 1

The first example, fl(x), is an infinitely differentiable function

so that the error curve (5.1) is also differentiable, whereas £, (x)

(see figure 1) is continuous, but its derivative, fé(x), has

42

discontinuities at x = -0.5 and at x = 0.0 which cause the error

curve to have a discontinuous derivative. Of course, in practice, 1if
we were aware in advance of the discontinuities in the derivative of
the function to be approximated, the interval of approximation could
be subdivided so as to avoid the discontinuities. However, we examine

fQ(X) as it provides an interesting example of approximating a function
which is only continuous. In both cases we used Chebyshev polynomials

as the Chebyshev system of functions.

Example 1. [fl(x) =] .

Table 1 and Table 2 show how the "critical" points and the coeffi-
cients of the approximating polynomial converge as we approximate
fl(x) =8 by a LR degree sum of Chebyshev polynomials. Figures

differing from the final result are underlined at each step.

TABLE 1

4
Coefficients ¢, of "best" polynomial Ph(x) = ZciTi(x) (To 6D)
i=0

1
n Start Iteration 1 Iteration 2 ITteration 3
1.266 063 1.266 066 1.266 066 1.266 066
1.130 321 1.130 318 1.130 318 1.130 318
0.271 495 0.271 495 0.271 495 0.271 495
0.0kh 337 0.044 336 0.044 336 0.044 336
0.005 523 0.005 519 0.005 519 00005 519

TABLE 2

"Critical" points of best polynomial (To

6D)

n Start Iteration 1 Iteration 2 Iteration 3
0 -1.000 000 -1.000 000 -1.000 000 -1.000 000
1 -0.771 k29 -0.797 573 -0.797 682 -0.797 682
2 -0.257 143 -0.278 189 -0.279 152 -0.279 152
>, 0.314 286 0.339 805 0.339 061 0.339 061
4 0.828 571- 0.820 978 0.820 536 0.820 536
5 1.000 000 1.000 000 1.000 000 1.000 000

Table 1 shows that the coefficients of the "best" polynomial have

converged to

6D after only one iteration, however, the critical

points don't converge until the second iteration as shown by Table 2.

In other words,

with a small change in the "critical" points.

The starting points

the polynomial does not change coefficients very much

shown in Table 2 are chosen by EXCHANGE from 6x (N+2)=36 (for

N:

4) equally spaced points in the interval [-1,1] .

Various methods for choosing the starting values for the "critical"

points have been proposed.

These include the zeros of T

1 (%)

- TN—l(x)’

which are also the extrema of TN+1(X)’ and what we propose here 1is

to let EXCHANGE choose N+2 points from some original set of K(I+2)

points where K > 1.

spaced,

The original K(N+2) points may be equally

or they may be the zeros of

44

TK(N+2)+1(X) }

TK(N+2)-1(X) .

Table 3 compares various starting values for this example,

fl(x) = =14).D represents the maximum deviation from the

max

"TRUE" wvalues.

TABLE 3
Comparison of starting values for f(x) = eX, N = 4. (To 3D)
T5(X)-T3(x) = 0 |EXCHANGE on EXCHANGE on
6(N+2) points 201 points TRUE
n |or |T5(x) | = 1 pqually spaced [equally spaced |(computed)
0 -1.000 -1.000 -1.000 -1.000
1 -0.809 -0.771 -0.800 -0.798
2 -0.309 -0.257 -0.280 -0.279
3 0.309 0.314 0.340 0.3359
4 0.809 0.829 0.820 0.821
5 1.000 1.000 1.000 1.000
0.030 0.027 0.002 _—
max
Example 2. [fe(x)] .

Approximation of fe(x) by an 8th degree sum of Chebyshev

polynomials (N = 8) poses the problem of having an error curve
with more than N+2 local extrema. This problem also arises when
approximating an even or odd function (see [6]). We resolve the
problem by including all the local extrema of the error function,
e(x),

which have the alternation of sign property, in the search

45

for N+2 "critical" points. That is, if the abcissas of the extrema
are ordered algebraically, the signs of the corresponding ordinates
must alternate. We obtain starting gquesses for local extrema by
having EXCHANGE pick N+2 starting points from some original set
of points, together with the corresponding first approximating
polynomial, and then examining the resultant residuals. If the table
of residuals indicates an extremum not already chosen by EXCHANGE,
which has the correct alternating sign, then the corresponding
ab¢issa is included as a "critical" point for later iterations. K
must be chosen greater than 1 in order for this method to work.
Figure 2 shows the error curve, e€(x), for the first and
third iterations of approximating fe(x) by an gth degree linear

combination of Chebyshev polynomials.

46

E(X) x 10°

5.000

-1.000 1.000 %.000

-3.000

8
Approximating fe(x) by Zn;ochn(x)

fQ(X)’ N =8

ISt iteration 3rd iteration
/\ — - //"\ ~

/ - / N

) PEg / ~

/ \

/
-1.000 -0.600 -0.200 x 0.200 0.600
FIGURE 2

47

1.000

TABLE 4

Critical points chosen at each iteration.

Iteration The N+2 points used (see Figure 3)
1st 3 4 10 11 12
2nd 3 6 10 11 12
Ard 3 6 10 11 12

Table 4 indicates how the choice of critical points can change from
one iteration to the next.

- extrema at points 5

If we had not included the additional

and 6 at the first iteration, we would have

arrived at the approximation whose error curve is illustrated by

Figure 3.

and alternating signs,

but another extremum exists with larger modulus.

48

That is N+2 extrema of the error curve have equal magnitude

EX) x 10°

Error curve with points 5 and 6 not used.

8 fe(x)) N = 8
o)
.
o
o)
o %
&
o
o
o
o
o
S
o
=
1
o
o)
S
",% -
\ Y4
1 2 3 4 5 6 78 9 10 11 12
i i 1 1 1
-1.000 -0.600 -0.200 5 00200 -.600 1.000
FIGURE 3
As an interesting comparison to TABLE 3we give a similar table
for f£(x) = f2(x) . Dmax represents the maximum deviation from the

"TRUE" values in TABLE 5.

k9

TABLE 5

Comparison of starting values for f(x) = fe(x), N=28. (to 4D)
EXCHANGE on EXCHANGE on
3% points 201 points TRUE
n T9(x)-T7(x) = 0 |equally spaced |equally spaced |(computed)
0 -1.0000 -1.0000 -l.OOi -1.0000
1 -0.93%97 -0.8750 -0.86 -0.8565
2 -0.7660 -0.6250 -0.62 -0.6248
3 -0.5000 -0.1250 ~0.1k -0.142k
4 -0.1736 000 0.0 0.0
5 0.1736 0.1250 0.15 0.1456
6 0.5000 0-4375 0.44 0.4413
7 0.7660 0.7500 0.73 0.7290
8 0-9397 0-9375 0.95 0.9289
9 1.0000 1.0000 1.000 1.0000
D 0.3750 0.0210 0.0048 ---
max

50

8. Use of Orthogonal Polynomials

Consider the polynomials pO(xL P, (X),..., p, (x) orthogonal on
the set of points Xy < Xy <. .. X - Such polynomials are described
by Forsythe [13], and they form a Chebyshev system. This is easily

seen since any linear combination,

P(x) =) c;p,(x), (8.1)

is a polynomial of degree n which has exactly n zeros. Hence on
any interval, P(x) has no more than n zeros. This satisfies the
definition of a Chebyshev system.

It is known, see Forsythe [13], that orthogonal polynomials have
advantages over standard polynomials in least squares data-fitting.
In the Remez algorithm, 1f a new set of polynomials, orthogonal on the
critical points, 1is computed each time the critical points are adjusted,
convergence 1is assured. This can be proved by noting that at each
iteration the best orthogonal polynomial fit is equivalent to the best
fit that would be obtained if the Chebyshev system were held constant
as standard polynomials. Perhaps this use of orthogonal polynomials
will have computational advantages over, say, standard polynomials
on the interval [0,1] .

The use of orthogonal polynomials for the Chebyshev system has
been implemented and tried successfully on a Burroughs B5500 computer,
but as yet we have no illustrations of any dramatic advantages over

any other Chebyshev system.

51

[1]

(2]

(3]

[4]

(el

(7]
[8]

[9]

[10]

[11]

[12]

[13]

References

Remez, E. Y.: "General computational methods of Chebyshev
approximation". In The Problems With Linear Real Parameters.
AEC-tr-4491, Books 1 and 2, English translation by US AEC.

Stiefel, E. L.: "Numerical methods of Chebyshev approximation".
In On Numerical Approximation. R. E. Langer, Ed. U. of
Wisconsin Press, Madison, 1959.

Achieser, N. I.: Theory of Approximation. (Translated by
C. J. Hyman), New York. Frederick Ungar Publ. Co., 1956.

NOVOd.VOfI‘Skig, E. N. and Pinsker, I. S.: "On a process of
equalization of maxima". Uspehi Mat. Nauk. 6,174-181,(1951)
(Translation by A. Shenitzer, available from New York University
Library.)

Muller, D. E.: "A method for solving algebraic equations using
an automatic computer". Math Tables Aids Comp., 1956.

Murnaghan, E. D., and Wrench, J. W.: Report No. 1175, David
Taylor Model Basin, Md., 1960.

Lawson, C. L.: Private communication.

Fraser, W.: "A survey of methods of computing minimax and near
minimax polynomial approximations for functions of a single
independent variable". Journal of the A.C.M., Vol. 12, No. 3,
(July, 1965).

Rivlin, T. J. and Cheney, E. W.: "A comparison of uniform
approximations on an interval and a finite subset thereof".
SIAM Journal on Numer. Anal., Vol. 3,No. 2, (June, 1966).

Bartels, R. H. and Golub, G. H.: "Computational considerations
regarding the calculation of Chebyshev solutions for overdeter-
mined linear equation systems by the exchange method". Tech.
Report No. CS67, Computer Science Department, Stanford University,
(June 1967).

Rice, J. R.: The Approximation of Functions, Vol. 1, Reading
Mass.: Addison-Wesley, 1964.

Veidinger, L.: "On the numerical determination of the best
approximations in the Chebyshev sense". Numer. Math., Vol. 2

(1960), pp. 95-105.
Forsythe, G. E.: "Generation and use of orthogonal polynomials

for data-fitting with a digital computer". J. SIAM, Vol 3,
No. 2, (June, 1957), pp.74-88.

52

