SU326 P30-21

PRODUCT FORM OF THE CHOLESKY FACTORIZATION
FOR LARGE-SCALE LINEAR PROGRAMMING

BY

MICHAEL A. SAUNDERS

STAN-CS-72-301
AUGUST 1972

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

— r— r

PRODUCT FORM OF THE CHOLESKY FACTORIZATION

FOR LARGE-SCALE LINEAR PROGRAMMING

Michael A. Saunders
Computer Science Department
Stanford University
Stanford, California 94305

Abstract

A variation of Gill and Murray's version of the revised simplex algo-

rithm is proposed, using the Cholesky factorization BBT = LDLT where B

is the usual basis, D is diagonal and L is unit lower triangular. It

is shown that during change of basis I may be updated in product form.

As with standard methods using the product form of inverse, this allows
use of' sequential storage devices for accumulating updates to L . In
addition the favorable numerical properties of Gill and Murray's algorithm
are retained.

Close attention is given to efficient out-of-core implementation. In
the case of large-scale block-angular problems, the updates to L will

remain very sparse for all iterations.

This research was supported by the U. S. Atomic Energy Commission, Project
SU326 P30-21. Reproduction-in whole or in part is permitted for any
purpose of the United States Government.

e

9.
9.1
9.2

10.

Introduction

Contents

@ @D D D D D D

Modification of L during changes of basis

FTRAN and BTRAN

Computation

Summary of algorithm

Numerical considerations

of m

@ @D D D D D D D D D D DD

Buffered Input/Output for A, B and L

@ @D D D D D D D D D D D

@ @D D D D D D D D D

Sparsity considerations during reinversion

Numerical aspects of preassignment

Sparsity of

General sparse problems

updates

Block-angular problems

Conclusion

@ @D D D D D

Acknowledgements

References

@ @D D D D D

@ @D D D

@ @D D D

11
13
16
17
20
26
29
30
32
3k

36
37

r—

r——

1. Introduction

Thi « paper is concerned with numerical solution of the standard linear

programmi ng problem

C e T
minimize cx

subject to Ax =b, x>0

vhere A is m x n and is usually very sparse. Following the work of
Gill and Murray [6], an algorithm has been described in [14] which uses
the orthogonal factorization B = LQ to perform the steps of the revised
simplex method [3]. Here B is the usual m X m basis, L is lower
triangular and. q satisfies QQT = QTQ = 1 . Along with the methods of
Bartels and Golub [1], [2] (which are based on the factorization B = LU
where U is upper triangular), the algorithms in [6], [14] constitute
the only numerically stable versions of the simplex method that have yet
been proposed.

An important feature of' Gill and Murray's approach is that the ortho-

gonal matrix Q need not be stored. This follows from the identity
88 = 1go LT = 1zt

which chows that L is the Cholesky factor of BBT , although we stress

that the product BBT is never computed. We shall often call L the
éholesky factor associated with B.
With Q discarded, our principal concern is with maintaining sparsity
in L. In the Explicit Cholesky algorithm of [14], the emphasis was on 5

the implications of retaining 1, in explicit form at all stages. By using

a linked-list data structure to store only the non-zero elements of L,

it was shown that for in-core systems explicit updating of L can be prac-—

tical in certain applications. When the matrix A is very sparse, and
particularly if A has block-angular or staircase structure, the Cholesky

factors remain sparse for all iterations. However, out-of-core implemen-

tation of the explicit algorithm is more difficult than with standard
large-scale methods, since it 1is necessary to insert elements into the
columns of L during change of basis and this cannot be done efficiently
unless L is wholly contained in main memory.

In this paper, we show that L can be updated in product form. This

means that L is not modified directly during basis changes; ipstead,
certain transformations are accumulated in compact form in an update file,
in the same way that eta-vectors are accumulated as updates to the stan-
dard product form of inverse (e.g. see Orchard-Hays [12]). During itera-
tions, access to the update file is strictly sequential and therefore
the file may extend conveniently onto disk or magnetic tape. It is this
sequential mode of operation that enables product-form systems to deal
with problems of very large size.

In sections 2, 3, and 4 we describe the Product-form Cholesky algorithm
. in mathematical terms. With regard to implementation it is similar to
standard product-form algorithms, except that access is required to the
current basis every iteration, which implies that B should be stored
in a special sequential file of its own. Implementation aspects of this
kind are discussed in sections 5,6, and 7. Methods for maintaining
sparsity during reinversion (i.e. computation af an initial L) are con-
sidered in section 8. Finally, in section 9 we consider the question of
sparsity within the transformations that modify L during changes of

basis.

re—

A 4

r— r— r— r—

3. Moditication of L during changes of basis

In order to minimize the number of square roots and divisions per itera-

tion, we choose to work with the factorization

BeT = 1pLT

where D is a diagonal matrix (D=diag0%),di>0) and L is now unit tri-
angular. An initial orthogonal factorization is computed explicitly

during reinversion. We write this as

where @ is a product of elementary orthogonal transformations and R

is upper triangular. The matrices L and D are obtained by scaling the

rows of R:
T . -1 . 2
L = dlag(rii)R , D = dlag(rii)

It can be readily shown that if column & replaces column a jp
r

B , then the new basis B* satisfies

B*B*T = BBT + a a T - a a T
S s rr

Such a change of basis will be accomplished in two steps, in each of which

the current L and D are modified to produce L and D satisfying

557 = it + avet , (1)

where we take

L. o =+, v = aS to add column ag 1

o = =1, v = a. to delete column ar

4
4
!
i
i

With these applications in mind we now consider the updating in (1)

for

a given vector v

and any positive or negative @, assuming that the
modified factorization exists.

Method Cl

Let p, M and 4o be defined by

Ip = v

, MAMY T

=D + opp (2)
Thus p 1is obtained by forward substitution,

and M and A are the
Cholesky factors of a particularly simple matrix. From (1) we see that

il

L0 + appt)r? = n(uat)rT = (wa)a ()T

and hence the modified factors are

B

L= D=a . (3)

It can easily be verified that M in is a special lower triangular

(2)
matrix defined by two vectors pg 55 follows:

) r
P8, 1
1
mel pmsel mem-l §

-

r——

w here P

B

D

A

and the quantities B, | §
i

Method C2

= (PI pg p 5
T
)
(sl 82 ... m)
diag(di)>
diag(éi):

details are given in [8]

are generated according to the following

i
algorithm:
1. Set @, =
2. For i=1,2, m compute
2
6 =
(a) 8 =a; + o7
. (5)
b N \ =
(b). i O[ipi/éi
(e) oy, =o.a/6
This algorithm was derived independently by Gill and Murray [7].
Further

An alternative method for constructing M and A has been given by

singular.

Gill and Murray [7], using elementary Hermitian matrices. This method

has certain numerical advantages when o < 0 and LDLT + ava is nearly

It may be summarized in slightly revised form as follows:

1. Set o = o 4

o = Tl
1 =0pD D,

oy =a/[1 +V1 +as;]

2. For i=1, 2, ..., m compute

(a) a5 = p3/q,

(b) Gi =1+ clqi

(€) sju1 =55 - q

(a) Y? = ai.+ oiqisi+l
(e) &, = -@di

(£) B; = a;p,/6;

2
o' =
() i+l ozi/Yi

(h) O'i+l = Ui(l + Yi)/[yi(ei + Yi)] .

Again, further discussion is given in [8].

Both of these algorithms take «, pi and di as input, and generate
the appropriate 81 and 65_ which define M and A . When I is dense
we normally use the special structure of M to compute the product IM

. . 2 .
explicitly in m~ + O(m) operations. In the present application we simply
wish to record the vectors p,B in packed form and write them out to an
update file for later re-generation of M . We will call the pair (p B)

2

an update, and a sequence of updates represents the product form of L .

Therc are two updates to be stored each simplex iteration.

Although each update contains two distinct vectors (namely p and B),
observe that 8. =0 whenever P, =0, so the system overhead per update
is essentially the same as for packing just one sparse vector. With
regard to the rate of growth of elements in the update file, our principal
claim for efficiency lies in knowing that with block-angular problems p
is guaranteed to be very sparse for all iterations (see section 9). This

will probably also be true for general sparse problems of sufficiently

loy density.

v

| | A |

3. FTRAN and BTRAN

Let LO and DO be the Cholesky factors obtained from reinversion of
a particular basis. The extension of equations (2), (3) to a sequence of

updates should be clear. After k -iterations we will have

L = LyMy =oe e My, gMy s (6)
Dy =Ry >

where each Mj is of the form shown in (4), and D is available ex-
plicitly.
Suppose at the next iteration that column ag replaces column a

r
in B. First we must find p satisfying

Lp=a (7)

S

and then the corresponding 8 must be computed, for compact represen-
tation of Mypyp - The arithmetic implied by equations (5) is best illus-

trated by the following pseudo-Algol program (Method Cl of section 2):

Algorithm 1. Computation of B from p, D

alpha:= 1;

for i:= 1 until m 92

if p(i)#0 then

begin

Dsave:= D(1i);
temp := alphaxp(i);
D(i) := Dsave + tempxp(i);

beta (i) := temp/D(i);

alpha:=

end;

alphaxDsave/D(1);

A similar algorithm may be given for Method C2. 1In practice the test

"if' p(i)#0" would be replaced by "if abs(p(i))>eps", where eps is some

suitable tolerance. Also

the elements of B would not be stored expli-

citly in an m-dimensional array but would be packed along with the non-

zero elements of p for immediate transfer to the update file.

Once it is determined that column a, should be dropped from the

basis, we must find a new

Given this p we compute B for M

p satisfying

(Lk 2k+l & - (@)

Sk by essentially the same method

as in Algorithm 1. The first statement should be replaced by alpha:= -1 ,

and a test should be included to give an error exit if any of the new

D(i) elements are negative, or smaller than some specified tolerance.

(The new elements of D could never be negative if Method C2 were used.)

From equations (6),(7) and (8) it is clear that we must be able to

solve systems of the form

M,y = z (9)

for as many M.J as are currently stored in the update file. Fortunately

the structure of each Mj

is so special (see equation (4)) that the forward

substitution in (9) can be done very efficiently. This time (p,B) will

already be in packed form,

in m-dimensional arrays:

but for clarity we again assume they are stored

Algorithm 2. Solution of My = z for FTRAN

S:= 03
-
- for i:= 1 until m do
if p(i)#0 then
« begin
y(i):= y(i) - Sxp(i)s -
5:= y(i)xbeta(i) + S;
w end;
Here we assume that y and z occupy the same storage locations, as will
be the case in any implementation. (Qpserve that the elements of (p,B)
¢ are accessed seqﬁentially in a "forward" direction (for i =1, 2, m
and that computation of p from (7) requires MJ. before M'+1 Thus
— J .
repeated use of Algorithm 2 for each M, , J=1,2,2k, corresponds
J
¢ to the FIRAN operation of standard linear programming systems using the
product form of inverse (e.g. see Orchard-Hays [12]).
Similarly, an operation corresponding to BTRAN is used for computa-
g tion of the simplex multipliers = from a system of the form
T T T T T T
. = - ... Iy =Y
L = Mooy 1 MMy Lom = Yy (10)
for an appropriate right-hand-side vector Yk . Here we need to solve
T . .
systems Ma.y = z and again the special structure of each M. 1leads to a
J
o very simple loop:
, Algorithm 3. Solution of M'y = z for BTRAN
!
-
S:= 03
f
L for i:=m step -1 until 1 do

if p(i)£0 then

begin
e y(i):= y(i) - sbeta(i);
S:= y(i)wp(i) + S;
. end;
“
As before we assume y and z share the same storage. Comparison with
Algorithm 2 shows that the roles of p and B are interchanged, while
— their elements are accessed sequentially in reverse order. This is com-
w
pletely convenient for buffered input/output, as we explain in section 5.
\r._
.
-
~
L
&.

10

— — ——

. Computation of =

During reinversion the current basic cost vector Rois regarded as
the last row of the basis and is subjected to the same orthogonal trans-

formation as B:
T, A A
Q [B" | cl =[R]Qqe] .
Factoring out the diagonal of R gives L? and a vector Y , say:

[R | Qé] = diag(rii) ot | v1,

T N .
whereupon the system B'm =7¢C is equivalent to TIqm = ¥ , so that m

can be computed by one back-substitution (i.e. one BIRAN operation). The
general form of this system after y jterations was given in equation (10).
We must store Y explicitly and transform it appropriately each change

of basis. Suppose that column 4, 1is being added or dropped and the

corresponding update (p,8) has been calculated. TIf the cost element
¢, 1is stored in c(k) and if Y is contained in an array gamma(x),
the following pseudo-Algol program illustrates what arithmetic is involved

in updating Y :

Algorithm 4. Updating Y for solution of Lrn =Y

S:= c(k);

for i:=1 until m gg

if p(i)#0 then

begin
si=s - gamma(i)xp(i);
gamma (1) := Sxbeta(i) + gamma(i);

end;

11

|
i

In practice this operation would not be performed separately but would be

merged with computation of 8 . The two statements inside the above loop

should be included as the last two statements of the loop in Algorithm 1.
Notice that all non-zero elements of p and B are required for
modifying Y , whereas close inspection of Algorithms 2 and 3 shows that

the first non-zero element of p and the last non-zero element of B
(say pf BZ respectively) are not required by FTRAN or BTRAN. Once
Y has been modified, P and.ﬁz can be discarded. The corresponding
elements Bf and Py must be written to the update file, but the unused
space for Pp and Bz could provide convenient storage for some of the

flag and pointer information associated with packed vectors.

l

|

5. Buffered Input/Output for A, B and L

In an out-of-core linear programming system, part of' main memory must
be allocated to a number of buffer regions to accommodate input/output
(I/0) operations. Typically two reéions are used for double-buffering the
A-matrix into core during PRICE (when a column is selected for entry
into the basis), while perhaps three-are devoted to the so-called eta-file,
for use during FTRAN and BTRAN and for accumulation of updates to B_l

The particular algorithm proposed here differs from standard simplex
algorithms in requiring access to the basis every iteration. Therefore
certain differences arise in the organization of both main memory and
auxiliary storage. The scheme we shall use is as follows:

1. Three sequential data sets reside on drum, disk or tape:
(a) the A-file (fixed in size) containing A packed column-wise
as usual.
(b) the B-file (extendable) containing an initial basis and a
sequence of columns that have recently entered the basis.
(This is not required with standard methods.)
(c) the L-file (extendable) containing an initial Cholesky factor
L packed column-wise, followed by a sequence of updates to L.
2. (a) Three buffer regions are shared by the A- and B-files.
(b) Three further buffers are allocated to the L-file.
The A- and B-files may share the same I/O channel, but preferably should
be on separate storage devices. The L-file should be accessed through a
second I/O channel. To minimize the number of I/O operations each buffer
region should be as large as possible, namely one sixth of whatever memory

A

is available after allocation of various m-dimensional arrays to %,

m, etc.

13

2N

Usc of three butter regions for the L-file follows what a typical

implementation of the eta-file might be in a system using the product

form of inverse. We describe the mode of operation briefly. At any parti-
cular stage, two regions are used for double-buffering L into core
during FIRAN and BTRAN, while the third is only partially filled and
contains update vectors for the most recent iterations. (see Orchard-Hays
[12, p. 113], Smith [15].) When this third buffer becomes filled it is
written out to auxiliary storage as an extension of the L-file, and at this
point the three L-buffers change roles in cyclic order.

With Algorithms 1, 2 and 3 of section 3 in mind we may ask what happens
if an update (p,B) cannot fit into the unfilled portion of the third
buffer above. It would be wasteful to write out the buffer half empty,
and in any case even a whole buffer may not be large enough to contain
all of a single update. Fortunately the sequential nature in which updates
are used in FIRAN and BIRAN provides a simple answer. We can split
P = [Pl / Pg], B = [Bl / 52] at any convenient point and proceed to
use (pl,Bl), (P2>Bg) as two distinct updates. It remains to associate
with each update a flag which specifies the initial condition of variable
S in Algorithms 2 and 3. (S is used to accumulate the inner-products
YTB and 53Tp respectively.) Normally S will be initialized to zero,
but if the flag is set then S retains its value from the previous
update.

With regard to the basis file, observe that B is required for

computation of a vector y (satisfying By = as) using the equation

y = Bu . (11)

14

——

Since this is just a matrix multiplication, rather than back-substitution

say, the order in which columns of B are accessed is not important.

In particular the order in which they occur in the B-file is quite accep-
table. Hence it is clear that the"three-buffer scheme previously des-
cribed for the L-file is also an ideal design for the B-file. Two memory
areas are used for double-buffering B into core for the computation in
(11), while the third accumulates columns that have recently entered the
basis. Accumulation will be very slow but the same rotation of buffers
can accommodate overflow as before. Columns that are no longer in the
basis need be purged from the B-file only occasionally (e.g. during
reinversion), since only a small percentage of columns are changed
between reinversions.

During PRICE the first two B-buffers provide access to the A-file
in the standard way.

The single I/O-scheduling problem arises when a specific column must
be retrieved from the B-file each iteration. (see step 8 in the next
section.) Often the requisite column will already be in main memory
after computation of BTu , since basis changes frequently involve columns
which entered during recent iterations. Of course it would be ideal if
all of the basis could be contained in the three B-buffers, so in practice
this situation may define a main memory size that is workable for a
particular linear programming problem.

Alternatively, complete re-reading of the B-file for selection of a
specific column would provide an excellent opportunity for performing
one iteration of iterative refinement on the system BQ =Db . This

point is discussed in section 7 with reference to the main steps of the

simplex algorithm.

15

-

r*

6. Summary of algorithm

Suppose that k iterations have been performed following reinversion,
that Bé\c = b is the current basic solution, and that LkaLll; - BBT is the
current Cholesky factorization. The essential steps to be performed at
iteration k+1 are:

1. BTRANL (Backward Transformation I):

T . T T T
SOlVe = . e o o o =
L]TT Yk i.e MQk MEMlLOrr Yk .
2. PRICE: Read A-file to compute reduced costs for non-basic variables.

Select column as for which ¢ =~ nTa. <0
s s

3. FIRAN1 (Forward Transformation 1):

Solve Lkpl =a i.e. LOMJ.M2 s e e M2kpl =a_ .
L. UPDATEl: Compute w = D};lpl .

Use P, to compute 8. and modify Dk . Pack non-zero

1
elements of (pl,Bl) and add to end of L-file.

5. BTRAN2: Solve Liu =W .
6. READB: Read B-file to compute y = BTu . Add column a to B-file.
S
A . .

7. CHUZR: use X, ¥ and the usual ratio test to determine column a

r

to be removed from B . Find 6 = é\{ /y
r'r -

8. SEEKR: Frequently, column a. will already be in main memory.

If not, position B-file at record containing a, s while
updating é\(according to Q - ';\c - 0y .

. FTRANZ : 1 =

4 Solve LM, 1P = &

10. UPDATE2: Compute .82 > D,y from D, and add (pe,Be) to L-file.
It is interesting to note that FTRAN and BTRAN require no divisions

at all, since L, and the Mj have unit diagonals.

16

Lo

7. Numerical considerations

Suppose that B = LQ for some basis B . (For simplicity of notation
we will temporarily use L in place of LD%.) To find the current basic

. A . . .
solution X satlsfylng'BQ = b we solve the equivalent system

T

BBu=Db, T

Bu (12)

>

by the following steps:

Method L: (a) Lp = Db
(b) LTu = p
(c) R =By .

-

An error analysis of this process has recently been given by Paige [1.7
Let #(B) be the usual condition number of B and let ¥ be the compu °
approximation to Q . Paige's surprising result is that the relative
error ;X% - QHQ/WlQHg depends essentially on #(B) and is not dominated
by ng(B) in spite of the occurrence of BB in (12). This is a very
agreeable property indeed.

During some numerical tests to confirm this result we compared
method L with the more obvious one which retains the orthogonal matrix Q:
Method @: (a) Lp =D

(v) %=4q%p.

These tests involved Hilbert matrices of various order and showed that
method Q is likely to give smaller relative errorlﬁ - QHE/HQHE than
method L, and may even give small relative error I%i - §i|/|Qi| in all
components of 4 (which is more than could be asked of'any method). Never-

theless the relative error achieved by method L was as small as could be

expected from the magnitude of u(B)

17

i\-

A further interesting effect was observed in connection with the process

of iterative refinement (see Wilkinson [19, pp. 255-265]). This process
involves correcting X by the following steps:

(a) Compute the residual vector r = b — BX .

(b) Solve the system Béx = r , using the same factorization of B

that was used for computing ? .

(c) Take the new approximate solution to be X + 6x
These steps can be repeated. Wilkinson [19, p. 261] notes the possibility
that single precision may be sufficient for computing the first residual
vector r , if the method used for computing X is somewhat less than
ideal. (For further iterations double precision is essential.) In our
tests r was not computed in double precision, and with method Q no im-
provement to the initial X was obtainable. However when method L was
used to compute X and a single correction §x , very significant improve-
ment was obtained. Similar results have been observed by Gill and Murray
in refining the vector vy of the system By = ag -

This pseudo-refinement has been incorporated in the program discussed
in [14] and tested on a rather ill-conditioned staircase problem of dimen-
sion:; 357 x 385 . An IBM 360/91 computer was used (relative machine
B) ~

.. -15 - . .
precigion 1677 = 2.2X10 ad X was corrected after reinversion and

also every 25 iterations between reinversions. Typically, max|ri|

was reduced from around 10_9 to 10-16 In some cases when the basis
was strongly ill-conditioned, max]ril was reduced from 107° to 107
by the single correction. (If BBT = LDLT , the condition number of B

can be estimated using the lower bound #(B) > {max(di)/min(di)}%.)
In view of the above observations we suggest that a correction to

Q could be made at every iteration of the product-form Cholesky

18

r——-—ﬁr—-»-—»-

r—

algorithm. Here we are accepting the fact that an I/0 hold-up may occur

during the SEEKR operation (step 8 of section 6). Instead of waiting
for the basis file to be positioned at a specific column, we could read
the entire file and compute residuals for the current Q at the same
time.

Several steps of section 6 then need to be modified. Assuming that
r will be computed separately following reinversion, the new steps are

as follows:

3. TFTRANI1: Solve Lkpl = ag and Lkp5 = r in parallel.
(Since the overhead of unpacking Lk consumes most of the
f&me, this does not involve much more work than before.)

1

-1 _
4. UPDATEl: Compute Wy o= I& P, and w, o, Dk p5 .

Use b, to compute Bl and modify D . Pack non-zero

elements of (p;,B;) and add to end of L-file.

T T
5. BIRAN2* Solve Lu, = w, and Liu, =W, in parallel.

k71

6. READB: Read B-file to compute y = BTul and correct Q according
to é\u—é} + BTu2

7. CHUZR: Use Q,y and the usual ratio test to determine column a

r

to be removed from B . Find 8 | Qr/y} . Update Q
according to R« & - ey .

8. SEEKR: Read B-file to select column a, while computing residuals

r =b - BQ for the new B

Vectors r, 93, wy» Uy may all share the same storage.

19

|
L
L

8. Sparsity considerations during reinversion

Let Pl’ Pé be row and column permutations to be applied to some basis
B. The orthogonal factorization I&BPé = (LD%)Q is well known to be
numerically stable for all choices of Pl and p2 , SO we are free to
choose whatever permutations might lead to the most sparse L However,

on eliminating @ to obtain the assdciated Cholesky factorization we

see immediately that L and D are independent of P2

(p,BP,) (FLB'ET) = (1pFq)(qTPLT)

. T_T T
l.e. Pf? P 1DL

Hence our search for sparsity in [is reduced to finding an optimal

ordering for the rows of B

The fact that column-ordering is irrelevant was put to good use in
[14] where L was being updated explicitly. We were led to the seemingly
naive strategy of selecting Pl from an initial inspection of the full
A-matrix, on the grounds that this might provide a permutation that would
be reasonably close to optimal for all subsequent bases. By such means
we hoped to avoid large fluctuations in the density of L during the
simplex iterations. Although it is not clear which single row-ordering
is best, the strategy is most likely to be successful if Pl transforms
A into block-angular form. (See [14].)

When L is updated in product form we favor the conventional approach
of choosing a new Pl each time L is re-computed directly from B (i.e.
each reinversion). This is because the sparsity of such an initial L

strongly affects the efficiency of subsequent iterations up till the next

20

reinversion. (The other important factor is the sparsity of updates, which
we discuss in section 9.)
A first step towards obtaining a good row permutation is to partition

B into the following familiar form:

o= §

where LF , LB are triangular columns with non-zeros on the diagonal.
(These are the forward and backward triangles respectively, and finding
them is a straightforward process; e.g. see Hellerman and Rarick [9].)
Partition B is called the "bump". It is square and in general sparse,
and we have yet to compute its orthogonal factorization. This amounts
to taking linear combinations of the columns of B such that B is
reduced to lower triangular form. We see that fill-in will occur in

partition C , but not in partitions L, or LB

F
To minimize fill-in we need to permute the rows ofB in some
optimal fashion. One promising possibility is to make use of the pre-
assigned pivot procedures due to Hellerman and Rarick (called P5 and
Pu in [9], [10]). These are algorithms for isolating further bumps

within B . Thus after the main bump is located, the next stage of P

is to find a row and column ordering which arranges B into the form

21

g where Bl > B,

and Ll and L2 are triangular columns with non-zeros on the diagonal. T

. strategy ensures that there will be no fill-in for at least some of the
L_ columns of B and C > namely those columns corresponding to Ll and L
Each sub-bump remains to be triangularized, but whatever we do to bump
L_ Bl , for example, will have no effect on B2 or B5 . Thus our final
problem is to find optimal row orderings for all bumps, treating each
- independently.

At this point it is interesting to note the statistics given by
Hellerman and Rarick in [9] for their algorithm,Pj . When applied to
basis matrices of dimension ranging from 589 up to 977, the number of
bumps that were isolated by Pj ranged from 3 up to 22. This is en-
cmn?ging for the following reasons. Suppose a basis B is reduced
to lower triangular form by a sequence of elementary orthogonal trans-
formations Qij (i<j):

BQilleigjg .. Qi . =L.

kJk

22

B, and B3 are new square sub-bumps (there may be any number),

his

2 |

[SN

Each 'Qib represents a linear combination of columns i and j of the

current B (transformed by all previous Qij)’ and the sparsity struc-
ture of both columns after the transformation is the logical OR of
their sparsity structure before %ﬁtis applied. (In contrast, if
Qij were just an elementary elimination operation, column j would
be affected in the same way but column i would not change at all.)
This property of orthogonal transformations implies that fill-in is at
least as much as with simple elimination, and it appears that a single
rather dense column in B is potentially capable of propagating non-
zeros throughout the whole of L . Fortunately Hellerman and Rarick's

results indicate that a typical LP basis can be permuted in a way

which reveals a number of "fire-breaks." Thus propagation of non-zeros
may occur below each bump but certainly can not spread across the
triangular columns between bumps.

Of course the same is true with the product form of inverse (here-
after called PFI). Our point is that with orthogonal factorization the
effect of propagation can be very serious if allowed to continue over a
large number of columns. We may gain some relief in the knowledge that
propagation must stop at the end of each bump.

We return now to the problem of permuting the rows of each bump.
The strategy of P4 is to find a permutation of both rows and columns

which reveals a spike structure of this form:

23

A similar spike-finding algorithm has been given by Kalan [11]. When the

PFI of Bj is computed the only fill-in that occurs is below the spikes.
The columns between the spikes of any bump are like the lower-triangular
columns between the bumps of B, and since their sparsity is not altered,
it appears that the spike-finding strategy is ideal for PFI.

On the other hand, orthogonal factorization of such a structure will
be less successful in terms of fill-in, since if Bj = Lij say, we know
that a particularly dense spike is likely to propagate non-zeros through-

out both Lj and the columns beneath Bj . As an alternative, consider

the Cholesky factor associated with a bump that has block-angular form:

(oe]
t
- -

AN

The preservation of zeros in Lj below the angular blocks leads us to

proposc looking ifor a more general structure which we shall call nested

block-angularity. In its simplest form this amounts to isolating two

angular blocks (plus a set of coupling rows) and then applying the same
operation to each block recursively, until at all levels of recursion
neither of the blocks is further decomposable. The structure thus
obtained depends on whether or not both blocks are decomposable at each
stage. If just the first block has further structure each time we will

get the following nested pattern:

2k

' NN

This is an extreme case and there are many variations. An algorithm for
detecting block-angularity within a general rectangular matrix has been

given by Weil and Kettler [18], and it can be applied directly to the
problem of finding nested block-angularity. Cur motivation is that by

so doing we can guarantee preservation of zeros inside the angular blocks

as well as below them.

To illustrate that this strategy may sometimes be as good as looking

for spikes, here is an 8x8 bump with nested block-angular structure,

along with its associated Cholesky factor:

12545678

1 |xx :

2 X X

3 ""'fi‘x""}
Lo __13__~zq

5 _x_:x___z(_ _X+___
SO AXX
7 X X x x X
8 IX X X X

L
If the last stage of P" is applied to the same matrix we get the

following spike structure and a slightly different Cholesky factor:

25

23645871

1 [x 1 X X
2 X IX X X
vl s -
[: Pty
501k &xx) 1X XX xx
3 X X [Oxxx
8 XXX X | X X Xx X X X
6 X X ST T ixx
7 X X X XX XXX XXX XX

By coincidence both orderings give exactly the same number of zeros in the

lower triangle. Without further experimentation we cannot draw any con-

clusions about the relative efficiency of each approach.

8.1 Numerical aspects of preassignment

Finally we must look at the numerical implications of preassigning

pivots, Suppose that a basis B is to be "inverted" either by PFI or
by orthogonal factorization (LQ for short). The strategy of isolating
square bumps in B is certainly justified in both cases, since neither
PFI nor LQ alters the triangular columns LF’Ll’Lé,-.. LB between
and around the bumps. Any near-singularity in these columns implies near-
singularity of B itself!',

Similarly (since the bumps are square), near-singularity of any bump
implies that the original B is almost singular, and no amount of re-
ordering or merging of bumps can improve the condition of B . This
further justifies our earlier statement that the bumps can be treated
independently.

The only numerical difference between PFI and LQ (during rein-

version) arises in the factorization of each bump. With PFI it is

unlikely that any pivot order assigned to a bump will be completely

26

satisfactory if that order has been chosen without regard to the magni-

tude of non-zeros in the bump. It may be thought (e.g. [9, p. 214]) that
the only possible complication would be with the spike columns, whenever
the updated pivot element of a spike becomes too small. A strategy
currently being used is to interchange an unsuitable spike column with
some other spike column, on the groupds that at least one of the spikes
will have an acceptable pivot element. This will often mean moving a
spike and its pivot row out of one bump into the next. The aim is to
retain as much of the preassigned pivot order as possible.

The following example, however, shows that it is unreasonable to
assume that thg_ggg—spike columns will have acceptable pivots. Suppose

a bump Bj is of the form

. b
w07 1 « spike
B, = 101 =]
J
1 1 1
- -

If the preassigned pivot order is retained here, the first eta-transformation

will be

[13 7T [w07 1] B 10|
BB, = 1 11 = 11
. -103 1‘] 1 1 lJ . 1 -999_J

and hence computation ¢of PFI will introduce utinecessary numerical error
into an otherwise well-conditioned matrix. Clearly an interchange should
be made between the first and third rows, or between the first and third

columns.

(
L

This problem would be overcome by treating small non-spike pivots in

the same way as small spike pivots. 1In the extreme case of choosing
maximal pivot:; (i.e. taking the relative pivot tolerance to be 1), we
assert that PI'T would be numerically stable during reinversion ii' pro-
vicion were made to interchange either all of the rows or all of the
columns within each bump, and under these conditions it would never be
necessary to move columns from one bump into another. 1 practice it may
be feasible to localize interchanges in this way even if the relative
pivot tolerance is somewhat less than 1

In any event, numerical precautions must be taken when PFI is
used, and some-revision of a preassigned pivot order will often be neces-
sary. The anticipated reduction in basis matrix I/O may therefore not
always be achieved.

With orthogonal factorization, as we have said before, all pivot

orders are numerically acceptable, and in such a context the philosophy

of preassigning pivots becomes fully justifiable. we are paying the price

of higher density in the basis factorization, but by this means alone

can the advantages of preassignment be fully realized.

28

9, Sparsity of updates

In any algorithm based upon product-form updating, a principal factor
governing reinversion frequency is.the rate of growth of elements in the
update file. It would be pleasing if the energy expended during reinver-
sion had some optimizing effect on the sparsity of subsequent updates.

To some extent this proves to be the case with the Cholesky algorithm.

Suppose that columnaS replaces column 2 in Bk at some
iteration k . In the case of standard PFI updating, the number of
non-zeros in the updated column vector « = Bglas determines how many
elements are added to the eta-file. (learly this number is uniquely
determined by Bk and ag v and would not be altered by any permutations
to the rows and columns of B . Neglecting numerical error we conclude
that with PFI the rate of growth of the eta-file is independent of
whatever sparsity was achieved last reinversion, or how recently that
reinversion was performed.

For the Cholesky algorithm the relevant update vectors zre P, and

p, » as given in FIRAN1 and FTIRAN2 of section 6:

Loy =a LMoy 1Py = 2y (13)

Now if P is the row permutation chosen during reinversion of an initial
basis By , then ;k is the Cholesky factor associated with PBk (x>0).
A change in P would affect all Lk and therefore would alter P, and
P, above. In other words, the choice of P during reinversion affects
the sparsity of updates for all subsequent iterations. We will discuss

this situation in general terms first, and then specialize to block-

angular problems.

29

9.1 General sparse problems

Given a large sparse linear programming problem, we should bear in
mind the following points:

(a) In a triangular system of the.form Ip =v such as in (13) above,
the first non-zero element of p coincides with the first non-zero
in the right-hand-side vector v= (counting from the top down).

(b) A reinversion algorithm such as Hellerman and Rarick's (section 8)
is usually capable of permuting a basis BO into almost lower tri-
angular form. By this we mean that only a small fraction of columns
(viz. the spikes) have non-zeros above the diagonal.

(c) The number of iterations performed between reinversions is usually
small relative to m (e.g. reinversion every 50 iterations when
m=1000 gives a ratio of 5%). Hence after k iterations, Bk differs
from BO in only a small percentage of its columns.

(d) Since the Cholesky factor associated with Bk does not depend upon
column order, the row permutation P chosen as optimal for BO
should remain close to optimal for all Bk .

To formalize point (a), f'or any m-vector v , define an integer

function 8(v) as follows:

8(v) = k iff v, =0 for all i<k ,

Then Lp = v implies that 6(p) = 6(v) , so the maximum possible number
of non-zeros in p is m - 6(v) . Now points (b) and (c) together show
that all bases Bk are essentially triangular (for the purposes of this

argument), so on the average it is likely that e(ar)z n/2 , where a,.

30

is the column being deleted from B, . Hence in (13),e(p2) > m/2 on

average. In words this means that the vector pe is likely to be less

than 5% dense, even if there is complete fill-in below the first non-zero.

The same may be said about Py in (13), since it seems reasonable to

assume that the incoming columns ag will in the long run have non-zeros

distributed much like the columns they are replacing.

-

A similar argument may be applied to the method of Forrest and Tomlin
(51, [16], [17] for updating LU factors of the basis. If the "partially
C -
updated" form of the incoming column is Y = L las s it islikely that

6(y) > m/2 on the average.

Even with PFI the same could be said about the vector «o = Béla
s

-~

- in the case of transportation problems, since then Bk is always a
b permuted triangle. With more general problems the size of the forward
triangle of each basis would be the critical factor.
L To summarize, at each iteration a strict upper bound on the number of
L non-zeros in the updates (pl’Bl)’(pe’BE) is 4m , and the above dis-
cussion has reduced the bound to a "likely average" of 2m . This is not
L- entirely satisfactory yet, since a strict upper bound for the a-vector
in PFI is Jjust m elements. However, just as we expect a to be
- - sparse in most cases, we also expect that vectors pl, p2 will not be

completely dense below positions e(pl), e(pe) respectively.
Except in the case of block-angular problems (see below), we must
resort to further heuristics by comparing

-1
L "a
S

Py

with

-1

a =B aS = BIL“T

-1
D 'p, -

31

1
(Equivalently, o = Q?D Epl if Q is retained in the orthogonal factor-

ization B = LD%Q .) Since pl is only "partially updated" by comparison
with o it seems that if o is at all sparse in PFI then pl is likely
to be even more sparse. Point (d) above indicates that if pl is sparse
during iterations immediately after reinversion, its density should
increase only slowly during later iterations.
Under the final assumption that D, will be as sparse as pj1 , ye

conclude with the following conjecture:

For a given problem, if the a/-vectors occurring

in PFI are of low density, the growth of elements

in the L-file of the Cholesky algorithm will be

comparable to the growth of elements in the eta-

file of PFI
As always, such a heuristically-derived conjecture must be verified by
practical experimentation. In addition, comparison must at some stage be
made with the method of Forrest and Tomlin [5], [16], [17], since relative
to PFI this method has demonstrated considerably lower growth rate of

the eta-file.

" 9.2 Block-angular problems

The one case where we can guarantee in advance that the update vectors

will be sparse, is when the matrix A has block-angular structure (e.g. [4]):

32

Just a trivial modification to the general algorithm is required to take

advantage of this special structure. Specifically, the reinversion
routine must choose row permutations for each block individually; i.e.
it must not move rows from one block to another. ypnder such circum-

stances we know that the Cholesky factorS‘Lk will be block-triangular

N
for all iterations (Saunders [14]).
For simplicity, suppose there are m, coupling constraints and three
blocks each of dimension m, . Suppose also that a column a_ is enter-
"_ =
ing from block 2. Then the system Lkpl = a looks like this:
- -
my 0 0]
e i X X
1 X X
m
. 11 X N X
L ! X - X
' - e - - -
|
! 0 0
I
|

X X
X X
. X J X

Lk Py s

r— r—
=
o

The zeros that are shown in Py follow directly from the zeros in column

- ag - The same is true for the second update vector when a column is deleted
from some block. The total number of elements added to the L-file each
iteration can be at most u(mo + ml), and should be considerably fewer if
the problem is sparse within the blocks. This upper bound is independent

of the number of angular blocks.

35

10. Conclusion

Among the many implementations of Dantzig's original simplex method,
those which have become established because of their sparseness properties
are unfortunately numerically unstable. The foremost examples are algo-
rithms based on the product form of inverse. A more recent example is
the LU implementation of Forrest afid Tomlin [5], [16], [17]; this has
demonstrated extremely good sparseness characteristics on large practical
problems, but the method used for updating the LU factors cannot be
classed as numerically stable. Conversely, the LU algorithm of Bartels
and Golub [1], [2] has excellent numerical properties, but because of the
difficulty of ihserting new non-zero elements into U during changes of
basis (see Tomlin [17]), this method cannot yet be applied to large-scale
problems.

At present, the algorithm described in this paper represents the only
general linear programming method which is both numerically stable and
capable of efficient out-of-core implementation. e have shown that
product-form updating of the Cholesky factorization is feasible, and we

have retained the numerical advantages inherent in Gill and Murray's

- version of the simplex method [6].

The aim in writing has essentially been two-fold:

1: To present a mathematical description of the product-form Cholesky
algorithm, along with sufficient practical detail to indicate how
implementation might proceed.

2. To discuss qualitatively some aspects of orthogonal factorization
in the context of general sparse matrices, in order to gain some

assurance that the expense of a non-trivial implementation might

34

be justified.

We anticipate that the class of problems

e}

{forwhich the method will prove

to be efficient will include those which are extremely sparse and those

which have block-angular structure.

35

Acknowledgements

I wish to thank John Tomlin for many discussions of the implementation
aspects of large-scale systems, including the buffering scheme described
in section 5. I am also very grateful to Walter Murray and Chris Paige
for discussions of the numerical aspects; to Phil Gill, Gene Golub and

Richard Underwood for their valuable criticisms of the first draft; and

to Mary Bodley for her speed and care in typing the manuscript.

34

[1]

(2]

[5]
[4]
K
1 [5]
-

L [6]

(7]

[8]
9]

- [10]
[11]

[12]

References

R. H. Bartels, "A stabilization of the simplex method," Numerische
Mathematik 16 (1971), pp. 41bk-k3k, -

R. H. Bartels and G. H. Golub, 'The simplex method of linear pro-
gramming using LU decomposition," Comm. acu 12(1969) pp. 266-268,
275-278. :

G. B. Dantzig, Linear programming and extensions, Princeton University
Press, Princeton, New Jersey (1963).

G. B. Dantzig, "Large-scale linear programming," Operations Research
Department Report No. 67-8, Stanford University, Stanford, California

(1967).

J. J. H. Forrest and J. A. Tomlin, "Updated triangular factors of the
basis to maintain sparsity in the product form simplex method, '

Mathematical Programming 2 (1972) pp. 263-278.

P. E. Gill and W. Murray, "A numerically stable form of the simplex
algorithm," J. of Linear Algebra and its Applications 6(1973).

P. E. Gill and W. Murray, '"Quasi-Newton methods for unconstrained
optimization," J. Inst. Maths Applications 9(1972) pp.91-108.

P. E. Gill, G. H. Golub, W. Murray and M. A. Saunders, “Methods for
modifying matrix factorizations," Computer Science Department Report
(to appear) , Stanford University, Stanford, California (1972).

E. Hellerman and D. Rarick, "Reinversion with the preassigned pivot
procedurc," Mathematical Programming 1 (1971) pp.195-216.

Iv. llellerman and D. Rarick, "The partitioned preassigned pivot pro-
codure (P*)," pp. 07-70 in OUparse matrices and their application::
D. J. Rose and R. A. Willoughby (Editors), Plenum Press, New York'
(1972).

J. E. Kalan, "Aspects of large-scale in-core linear programming,"
proceedings of ACM Annual Conference, Chicago, Illinois (August 3-5,

1971).

W. Orchard-Hays, Advanced linear-programming computing techniques,
McGraw-Hill. New York (19687.

[13] C. C. Paige, "An error analysis of a method for solving matrix
equations," Computer Science Department Report No. CS 297, Stanford
University, Stanford, California (1772).

[14] M. A. Saunders, "Large-scale linear programming using the Cholesky
factorization," Computer Jcience Department Report No. CS 252,
Stanford University, Stanford, California (1972).

[15] D. M. Smith, "Data logistics for matrix inversiom.," in Sparse matrix
proceedings, Ed. R. A. Willoughby, IBM Research Center, YOTKCTOWR
Heights, New York (1968) pp. 127-132.

[16] J. A. Tomlin, "'"Maintaining a sparse inverse in the simplex method,"
IBM Journal of Research and Development 16 No. 4 (1972) pp. L15-Lo3,

[17] J. A. Tomlin, "Modifying triangular factors of the basis in the
simplex method," pp. 77-85 in Sparse matrices and their applications,
D. J. Rose and R. A. Willoughby (Editors), Plenum Press, New YOrk

(1972) .

[18] R. L. Weiland P. C. Kettler, "Rearranging matrices to block-angular
form for decomposition (and other) algorithms," Management Science 18’

No. 1 (1971) pp. 98408.

[19] J. H. Wilkinson, The algebraic eigenvalue problem, Oxford University
Press, London (196D).

38

