
| SU326 P30-21 |

PRODUCT FORM OF THE CHOLESKY FACTORIZATION

FOR LARGE-SCALE LINEAR PROGRAMMING

BY

|) MICHAEL A. SAUNDERS

STAN-CS-72-301

AUGUST 1972

| -

COMPUTER SCIENCE DEPARTMENT

| | School of Humanities and Sciences
STANFORD UNIVERSITY

S50 JUNIOR,
ENO)

« PRODUCT FORM OF THE CHOLESKY FACTORIZATION

. FOR LARGE-SCALE LINEAR PROGRAMMING

-

“ Michael A. Saunders
Computer Science Department

Stanford University
Stanford, California 94305

Oi
Abstract

A variation of Gill and Murray's version of the revised simplex algo-

L_ rithm 1s proposed, using the Cholesky factorization np! = 1pLY where B

| is the usual basis, D is diagonal and IL is unit lower triangular. It

L- 1s shown that during change of basis L may be updated in product form.

, As with standard methods using the product form of inverse, this allows
-

use of' sequential storage devices for accumulating updates to L . In

L addition the favorable numerical properties of Gill and Murray's algorithm

are retained.

L Close attention 1s given to efficient out-of-core implementation. In

| - the case of large-scale block-angular problems, the updates to L will
remain very sparse for all iterations.

This research was supported by the U. S. Atomic Energy Commission, Project

SU326 P30-21. Reproduction-in whole or in part is permitted for any
purpose of the United States Government.

i
| Contents

1. Introduction =» oo 1

— 2. Modification of L during changes of basis 3
“

3 L] FTRAN and BTRAN ° [} [} [} 7

L. Computation of m 11

5. Buffered Input/Output for A, B andIL 13

L 6 . Summary of algorithm 16

- 7. Numerical considerations PN If

{ 8. Sparsity considerations during reinversion 20
.

8.1 Numerical aspects of preassignment 56

| 9. Sparsity of updates 2g
9.1 General sparse problems 30

— 9.2 Block-angular problems 30

10. Conclusion pi
[=

| Acknowledgements 36

References 37

l. Introduction

_ Thi« paper 1s concerned with numerical gplution of the standard linear

programming problem

Ce T
minimize cx

L
subject to Ax = b, x>0

vhere A 1s m x n and 1s usually very sparse. Following the work of

C Gill and Murray [0], an algorithm has been described in [14] which uses

the orthogonal factorization B = LQ to perform the steps of the revised

simplex method [3]. Here B is the usual mx m basis, L is lower

en T T

LC triangular and .q satisfies QQ = QQ = I . Along with the methods of

Bartels and Golub [1], [2] (which are based on the factorization B = LU

b where U is upper triangular), the algorithms in [6], [14] constitute

. the only numerically stable versions of the simplex method that have yet
i

been proposed.

1 An important feature of' Gill and Murray's approach is that the ortho-

) gonal matrix Q need not be stored. This follows from the identity

BB" = LQQ Lt = nt

which chows that L is the Cholesky factor of BB. , although we stress
Tr

| that the product BB 1s never computed. We shall often call L the
Cholesky factor associated with B.

: |
— With Q discarded, our principal concern is with maintaining sparsity

in L. In the Explicit Cholesky algorithm of [14], the emphasis was on |

the implications of retaining I, in explicit form at all stages. By using

a linked-list data structure to store only the non-zero elements of I,

1 |

1t was shown that for in-core systems explicit updating of L can be prac-

tical in certain applications. When the matrix A 1s very sparse, and

particularly 1f A has block-angular or staircase structure, the Cholesky

factors remain sparse for all iterations. However, out-of-core implemen-
tation of the explicit algorithm is more difficult than with standard

“

large-scale methods, since it is necessary to insert elements into the

columns of L during change of basis and this cannot be done efficiently

% unless L 1s wholly contalned in malin memory.
In this paper, we show that L can be updated in product form. This

means that L 1s not modified directly during basis changes; instead,

certain transformations are accumulated in compact form in an update file,

in the same way that eta-vectors are accumulated as updates to the stan-

I dard product form of inverse (e.g. see Orchard-Hays [12]). During itera-
tions, access to the update file 1s strictly sequential and therefore

~ the file may extend conveniently onto disk or magnetic tape. Tt is this

sequential mode of operation that enables product-form systems to deal

with problems of very large size.

In sections 2, 3, and 4% we describe the Product-form Cholesky algorithm

. 1n mathematical terms. With regard to implementation it is similar to

standard product-form algorithms, except that access is required to the

current basis every iteration, which implies that B should be stored

in a special sequential file of its own. Implementation aspects of this

kind are discussed in sections 5,6, and 7. Methods for maintaining

sparsity during reinversion (i.e. computation af an initial L) are con-

sidered in section 8. Finally, in section 9 we consider the question of

sparsity within the transformations that modify IL during changes of

basis.

| J. Modification of L during changes of basis

“ In order to minimize the number of square roots and divisions per itera-

tion, we choose to work with the factorization

pp’ = pL’
-

where D is a diagonal matrix (D=diag(d,),d,>0) and L is now unit tri-
angular. An initial orthogonal factorization is computed explicitly

. during reinversion. We write this as

T
QB" =R

Lo where (1s aproduct of elementary orthogonal transformations and R

1s upper triangular. The matrices IL and D are obtained by scaling the
|

rows of R:

g T 1 2- _ . - _ .

L = diag(r,})R , D = diag(r,.)
|

“. It can be readily shown that 1f column a, replaces column a inr

| B , then the new basis B satisfies
B*B*Y = BB + aa | - aa!

| SS rr.
Such a change of basis will be accomplished in two steps, in each of which

i the current IL and D are modified to produce L and D satisfying
| co oT T Tq IDL" = IDL + aqvv (1)

where we take

- lL. oo = +1, v = a to add column a ,

2. o =-=1,v = a. to delete column ar .

p,

| With these applications in mind we now consider the updating in (1) for

a glven vector v and any positive or negative ¢, assuming that the

Lo modified factorization exists.
|

Method Cl

“.

Let p,M and A be defined by .

T

Lp = v MAM™ = D + gppe . (2)

Thus p is obtained by forward substitution, and M and A are the

“ Cholesky factors of a particularly simple matrix. From (1) we see that

== oT T
— IDL" = (dp + app)Lt = Lar)Lt = (mm)a (mn)?

| and hence the modified factors are

| L=1, D=4a. (3)
-

It can easily be verified that M in (2) 1s a special lower triangular

- matrix defined by two vectors yg a5 follows:

1

PB,

M =

. 1

PnB1 PrPo PBL

I

8
Ww liere Pp = (Pp, Py...p) ,

T
= BRB B®, 8, ...8) ;

u D = diag(d,) 3

A = diag(s.) 5

| CL

and the quantities B, » 8, are generated according to the following
algorithm:

l. Set ov, =a.
LC

2. For i=1,2, m compute

5. = c(a) 8; =a; + of

. (5)b). =, = o,p,- (b)- 1 230;/8;

This algorithm was derived independently by Gill and Murray [7].

1 Further
details are given in [8],

i Method C2

_ An alternative method for constructing M and A has been given by

_ Gill and Murray[7], using elementary Hermitian matrices. This method

~ has certain numerical advantages when o < 0 and IDLY + avy’ 1s nearly

singular. It may be summarized in slightly revised form as follows:

| 1. Set 9, = 7
T.~1

Sq =pPD pp,
_ NTT

04 =a/[1 +V1 tds,] .

I

| 2. For i1=1, 2, . .., m compute

| (a) q; = p,/d,

- (b) 6. = 1 + 0.q,

| (e) 554 = Sj = a4 |2

(4) Yi = 5% 0539; 4
(e) 6; = ya,

(£) 8; = .P;/8;

. (8) 41 = a/v
(0) 044 = 05(2 4 vy)ly (0; + vl.

| Again, further discussion is given in [8].

~ Both of these algorithms take *, py and d, as input, and generate
| the appropriate 8, and 6. which define M and A . When L is dense

we normally use the special structure of M to compute the product IM

> explicitly in ne + O(m) operations. In the present application we simply

| wish to record the vectors p,B in packed form and write them out to an
update file for later re-generation of M . We will call the pair (p 8)

an update, and a sequence of updates represents the product form of L .

There are two updates to be stored each simplex iteration.

Although each update contains two distinct vectors (namely p and B),

observe that B. = 0 whenever Pp, = 0 so the system overhead per update

1s essentially the same as for packing just one sparse vector. With

regard to the rate of growth of elements in the update file, our principal

claim for efficiency lies 1n knowing that with block-angular problems p

is guaranteed to be very sparse for all iterations (see section 9). This

will probably also be true for general sparse problems of sufficiently

low density.

6

3 3. FTRAN and BTRAN

N Let Ly and Dg be the Cholesky factors obtained from reinversion of

| a particular basis. The extension of equations (2), (3) to a sequence of

updates should be clear. After k -iterations we will have

~ LeT Rote co My gM (6)

Dy = Ay

v where each M, is of the form shown in (4), and Dy 1s available ex-
plicitly.

Suppose at the next iteration that column a replaces column ar

L. in B. Firstwe must find p satisfying

Lp = a (7)

> and then the corresponding B must be computed, for compact represen-

tation of Moyi1 . The arithmetic implied by equations (5) is best illus-

- trated by the following pseudo-Algol program (Method Cl of section 2):

g Algorithm 1. Computation of B from p, D

. alpha:= 1;

for 1:= 1 until m do

i if p(i)#0 then
begin

| Dsave:= D(1);

I temp := alphaxp(i);
D(i) := Dsave + tempxp(i);

beta (i) := temp/D(i);

7

alpha:= alphaxDsave/D(i);

— end,
.~

— A similar algorithm may be given for Method C2. In practice the test

"if" p(i)#0" would be replaced by "if abs(p(i))>eps", where eps is some

« sultable tolerance. Also the elements of B would not be stored expli-

_ citly in an m-dimensional array but would be packed along with the non-

zero elements of p for immediate transfer to the update file.

- Once 1t 1s determined that column a should be dropped from the

basis, we must find a new p satisfying

(Ty MoysyJP = ap (8)
I —— -

Given this p we compute B for Myo DY essentially the same method

— as 1n Algorithm 1. The first statement should be replaced by alpha:= -1 ,

« and a test should be included to give an error exit 1f any of the new

Bl D(1) elements are negative, or smaller than some specified tolerance.

_ (The new elements of D could never be negative 1f Method (C2 were used.)

. From equations (6),(7) and (8) it is clear that we must be able to

— solve systems of the form

B) My = z (9)

for as many M. as are currently stored in the update file. Fortunately

RB "the structure of each M, 1s so special (see equation (4)) that the forward
C- substitution in (9) can be done very efficiently. This time (p,B) will

already be 1n packed form, but for clarity we again assume they are stored

— in m-dimensional arrays:

.

8

«

Algorithm 2. Solution of My = z for FTRAN

| S:= 0;
Va

oT for 1:= 1 until m do

if p(i)#£0 then |

« begin

y(i):= y(i) - Sxp(di)s

5:= y(i)xbeta(i) + S;

“ end;

Here we assume that y and z occupy the same storage locations, as will

be the case in any implementation. (Opserve that the elements of (p,B)

‘ are accessed sequentially in a "forward" direction (for 1 =1, 2, m)

and that computation of p from (7) requires M before M.. Thus— J .

repeated use of Algorithm 2 for each M . , J = 1, 2, Co... 2k , corresponds
J

L to the FTRAN operation of standard linear programming systems using the

product form of inverse (e.g. see Orchard-Hays [12]).

Similarly, an operation corresponding to BTRAN is used for computa-

- tion of the simplex multipliers rn from a system of the form

I Tr T TT
- = Mo, M~ ce Im =Ybr = Moo Moth bom = Yk (10)

for an appropriate right-hand-side vector Yi . Here we need to solve
T

systems My = z and again the special structure of each M. Jleads to aJ

N very simple loop:

Algorithm 3. Solution of Ml = z for BTRAN
L

S:= 0;

|. for i:=m step -1 until 1 do

9

if p(i)#0 then

oo begin

~ y(i):= y(i) - &beta(i);

S:= y(i)xp(i) + S;

end;

As before we assume y and z share the same storage. Comparison with

Algorithm 2 shows that the roles of p and B are interchanged, while

— their elements are accessed sequentially 1n reverse order. This 1s com-
“

pletely convenient for buffered input/output, as we explain in section 5.

ow. —

«

-

~

|.

~

10

|

%. Computation of m

o During reinversion the current basic cost vector is regarded as

the last row of the basis and 1s subjected to the same orthogonal trans-

formation as B: |

\
TT, A A

Q [B” | cl =[R] qc] .

Factoring out the diagonal of R gives I and a vector Y , say:

\ A T
[R | qe] = aiag(r,,) [TD | v1,

T A

whereupon the system Bm =C is equivalent to a = Y , so that m

L. can be computed by one back-substitution (1.e. one BIRAN operation). The

general form of this system after yx iterations was given in equation (10).

We must store Y explicitly and transform it appropriately each change

L of basis. Suppose that column 4, is being added or dropped and the

corresponding update (p,8) has been calculated. Tf the cost element

¢, 1s stored in c¢(k) and if Y is containedin an array gamma{x),

N the following pseudo-Algol program illustrates what arithmetic 1s involved

h in updating Y :

: Algorithm 4. Updating Y for solution of th oy
L

| S:= c(k);

for i:=l until m do
¢

| if p(i)#0 then
begin

i s:=s - gamma(i)xp(i);
gamma(i) := Sxbeta(i) + gamma(i);

-

end;

11

| In practice this operation would not be performed separately but would be
- merged with computation of 8 . The two statements inside the above loop

oT B should be included as the last two statements of the loop in Algorithm 1.

| Notice that all non-zero elements of p and B are required for

modifying Y , whereas close inspection of Algorithms 2 and 3 shows that

~ the first non-zero element of p and the last non-zero element of B

(say pf , By respectively) are not required by FTRAN or BTRAN. Once

Y has been modified, p, and PB, can be discarded. The corresponding

. elements Pe and Py must be written to the update file, but the unused
~ space for jo and By could provide convenient storage for some of the

flag and pointer information associated with packed vectors.

\

i

12

-| >. Buffered Input/Output for A, B and L

_ In an out-of-core linear programming system, part of' main memory must

TT be allocated to a numberof buft'er regions to accommodate input/output

(I/0) operations. Typically two regions are used for double-buffering the

Co A-matrix into core during PRICE (when a column is selected for entry
into the basis), while perhaps three-are devoted to the so-called eta-file,

for use during FTRAN and BTRAN and for accumulation of updates to nl |

C The particular algorithm proposed here differs from standard simplex

algorithms in requiring access to the basis every iteration. Therefore

certain differences arise 1n the organization of both main memory and

o auxiliary storage. The scheme we shall use is as follows:

1. Three sequential data sets reside on drum, disk or tape:

= (a) the A-file (fixed in size) containing A packed column-wise

| as usual.
L

(b) the B-file (extendable) containing an initial basis and a

| sequence of columns that have recently entered the basis.
(This 1s not required with standard methods.)

> (c) the L-file (extendable) containing an initial Cholesky factor

- L packed column-wise, followed by a sequence of updates to L.

" 2. (a) Three buffer regions are shared by the A- and B-files.

| . (b) Three further buffers are allocated to the L-file.
The A- and B-files may share the same I/O channel, but preferably should

be on separate storage devices. The L-file should be accessed through a

second I/O channel. To minimize the number of I/O operations each buffer

region should be as large as possible, namely one sixth of whatever memory

1s avallable after allocation of various m-dimensional arrays to R,

mT, etc.

15

CE ———————————————————————————————————

Use of three bufter regions for the L-file follows what a typical

OT implementation of the eta-file might be in a system using the product

~ form of inverse. We describe the mode of operation briefly. At any parti-

cular stage, two regions are used for double-buffering L into core

— during FIRAN and BITRAN, while the third is only partially filled and

‘ contains update vectors for the most recent iterations. (See Orchard-Hays
- [12, p. 113], Smith [15].) When this third buffer becomes filled it is

. written out to auxiliary storage as an extension of the L-file, and at this

point the three L-buffers change roles in cyclic order.

- With Algorithms 1, 2 and 3 of section 3 in mind we may ask what happens

if an update (p,B) cannot fit into the unfilled portion of the third

a buffer above. It would be wasteful to write out the buffer half empty,

| and 1n any case even a whole buffer may not be large enough to contain
all of a single update. Fortunately the sequential nature in which updates

L are used in FIRAN and BTRAN provides a simple answer. We can split
P = [p, / P,] , B= (8, / B,] at any convenient point and proceed to

- use (p158,)> (p58,) as two distinct updates. It remains to associate

| with each update a flag which specifies the initial condition of variable

S in Algorithms 2 and 3. (S is used to accumulate the inner-products
.

8 and gio respectively.) Normally S will be initialized to zero,

but 1f the flag is set then S retains its value from the previous

update.

With regard to the basis file, observe thatB is required for

computation of a vector y (satisfying By = a) using the equation

y = Bu . (12)

14

[Since this 1s Just a matrix multiplication, rather than back-substitution
say, the order in which columns of B are accessed 1s not important.

j

~ B In particular the order in which they occur in the B-file 1s quite accep-

table. Hence it 1s clear that thethree-buffer scheme previously des-

cribed for the L-file is also an ideal design for the B-file. Two memory

~ areas are used for double-buffering B into core for the computation in

(11), while the third accumulates columns that have recently entered the

basis. Accumulation will be very slow but the same rotation of buffers

- can accommodate overflow as before. Columns that are no longer in the

basis need be purged from the B-file only occasionally (e.g. during

reinversion), since only a small percentage ofcolumnsare changed

> between reinversions.

| During PRICE the first two B-buffers provide access to the A-file
in the standard way.

L The single I/0O-scheduling problem arises when a specific column must

be retrieved from the B-file each iteration. (see step 8 in the next

N section.) Often the requisite column will already be in main memory

after computation of Blu , since basis changes frequently involve columns

which entered during recent iterations. Of course it would be ideal if

all of the basis could be contained in the three B-buffers, so in practice

this situation may define a main memory size that 1s workable for a

particular linear programming problem.

Alternatively, complete re-reading of the B-file for selection of a

specific column would provide an excellent opportunity for performing

one iteration of iterative refinement on the system BR = b . This

point 1s discussed 1n section 7 with reference to the main steps of the

simplex algorithm.

15

©. Summary of algorithm

Suppose that k iterations have been performed following reinversion,

that Bx = b 1s the current basic solution, and that I, D, Io — pRY is the
current Cholesky factorization. The essential steps to be performed at

C iteration k+1 are:

l. BTRANl1 (Backward Transformation 1):

T . T db NY |
Solve L m= L] . bd * . ' =A MoM) Lom = Ye

L 2. PRICE: Read A-file to compute reduced costs for non-basic variables.

. Select column a for which c¢ = ma < 0 .S S

5. PFIRAN1 (Forward Transformation 1):

_ -

Solve = i.e. co eo =LP =a i.e. LLM, oxPy = 3 -
! -

. Lh. UPDATEl: Compute w = Dp, .

i Use Py to compute 81 and modify Dy . Pack non-zero
C

elements of (py,8,) and add to end of L-file.

[5. BTRAN2: Solve Lou = Ww .

i 6. READB: Read B-file to compute y = Blu . Add column a to B-file.S

AN :
(. CHUZR: use X, VY and the usual ratio test to determine column a

; r

- to be removed from B . Find 0 = A Jy
rr °

8. SEEKR: Frequently, column a. will already be in main memory.

If not, position B-file at record containing a_ , while

updating 2 according to a + A - 8y .

| ve LMP Toa
10. UPDATE2: Compute 8, >» D,, from p, and add (p,,8,) to L-file.

It 1s interesting to note that FIRAN and BTRAN require no divisions

at all, since L, and the M, have unit diagonals.

16

-| 7. Numerical considerations
LT

- Suppose that B = LQ for some basis B . (For simplicity of notation

FT we will temporarily use IL in place of 1%.) To find the current basic

solution 2 satisfying BX = b we solve the equivalent system

~ BBu=b, A Blu (12)

by the following steps:

C Method L: (a) Ip = Db

(b) Lu = p

(c) 2 = Bly : 0

Lo An error analysis of this process has recently been given by Paige [17

Let #(B) be the usual condition number of B and let X be the compu

L approximation to 3 . Paige's surprising result 1s that the relative

L error;x - L121, depends essentially on #(B) and is not dominated
by x (B) in spite of the occurrence of spt in (12). This is a very

| agreeable property indeed.
During some numerical tests to confirm this result we compared

~ method L with the more obvious one which retains the orthogonal matrix Q:

- Method g: (a) Lp =D

(b) %=4qp.

| These tests involved Hilbert matrices of various order and showed that

method Q 1s likely to give smaller relative error |x - Rl] than

method L, and may even give small relative error ES - 21/12, in all
components of 4 (which 1s more than could be asked of'any method). Never-

theless the relative error achieved by method L was as small as could be

expected from the magnitude of u(B) .

17

: A further interesting effect was observed in connection with the process

| of iterative refinement (see Wilkinson [19, pp. 255-263]). This process
To involves correcting X by the following steps:

(a) Compute the residual vector r = b - BX .

| - (b) Solve the system Bdx = r , using the same factorization of B

~ that was used for computing X :
(c) Take the new approximate solution to be X + 6x .

_ These steps can be repeated. Wilkinson [19, p. 261] notes the possibility

L that single precision may be sufficient for computing the first residual

vector r , 1f the method used for computing X is somewhat less than

ideal. (For further iterations double precision is essential.) In our

b~ tests r was not computed in double precision, and with method Q no im-

| provement to the initial X was obtainable. However when method L was
used to compute X and a single correction $x , very significant improve-

L ment was obtained. Similar results have been observed by Gill and Murray
in refining the vector vy of the system By = a

i This pseudo-refinement has been incorporated in the program discussed

in [14] and tested on a rather ill-conditioned staircase problem of dimen-

sion:; 357 x 385. An IBM 360/91 computer was used (relative machine

precision 167 = >.2x10™0) ad Xx was corrected after reinversion and

also every 25 iterations between reinversions. Typically, max|r. |
was reduced from around 1077 to 10736 . In some cases when the basis

was strongly ill-conditioned, max] r,| was reduced from 107° to 10”
by the single correction. (If BR’ = ort , the condition number of B

can be estimated using the lower bound #(B) > fmax(d,)/min(a,)}2.)
In view of the above observations we suggest that a correction to

A could be made at every iteration of the product-form Cholesky

18 |

algorithm. Here we are accepting the fact that an I/O hold-up may occur

during the SEEKR operation (step 8 of section 6). Instead of waiting

- for the basis file to be positioned at a specific column, we could read
the entire file and compute residuals for the current A at the same

time.

\]]]]
Several steps of section 6 then need to be modified. Assuming that

r will be computed separately following reinversion, the new steps are

_ as follows:
L

_ 5. FTRANI: Solve Lp, = ag and Ly Ps =r 1n parallel.

(Since the overhead of unpacking L consumes most of the
bo time, this does not involve much more work than before.)

4. UPDATEl: Compute w, = pt d p 1| : p 1 xk Ppoanda vw,. Dpopy.
Use Pp, to compute 8. and modify D, . Pack non-zero

L elements of (p58) and add to end of L-file.
| 5. BTRAN2- Solve Lu = Ww and Lu = W, 1n parallel
. kl 1 k2 2 bp

6. READB: Read B-file to compute y = Blu, and correct R according

to Rel + Bu, .

f. CHUZR: Use Ry and the usual ratio test to determine column a
r

| to be removed from B . Find6 _ 8 Jy . Update A
| r’ “r

according to Redo By .

8. SEEKR: Read B-file to select column a, while computing residuals
r = b - BX for the new B .

Vectors Ts P=» Wy» Uy may all share the same storage.

19

8. Sparsity considerations during reinversion

. Let Py P, be row and column permutations to be applied to some basis

B. The orthogonal factorization P BP, = (10%)q is well known to be

} numerically stable for all choices of Py and P, , so we are free to
“ choose whatever permutations might lead to the most sparse L . poyever,

on eliminating @ to obtain the assOciated Cholesky factorization we

see immediately that L and D are independent of P, :

¢ TTT + T= T
(p,BP,) (BZB'EY) = (10%) (q'PLT)

ie. PHB P: _ mit.
Lo h

Hence our search for sparsity in 1 is reduced to finding an optimal

“ ordering for the rows of B .

The fact that column-ordering 1s irrelevant was put to good use in

1 [14] where 1 was being updated explicitly. We were led to the seemingly

| naive strategy of selecting Py from an initial inspection of the full
A-matrix, on the grounds that this might provide a permutation that would)

| be reasonably close to optimal for all subsequent bases. By such means

I) we hoped to avoid large fluctuations in the density of L during the
simplex iterations. Although it is not clear which single row-ordering

1s best, the strategy is most likely to be successful if P, transforms
~

A into block-angular form. (See [14].)

_ When L 1s updated 1n product form we favor the conventional approach

of choosing a new Py each time L is re-computed directly from B (i.e.

each reinversion). This is because the sparsity of such an initial L

| strongly affects the efficiency of subsequent iterations up till the next

20

o

reinversion. (The other important factor 1s the sparsity of updates, which

we discuss in section 9.)

\

A first step towards obtaining a good row permutation 1s to partition

B into the following familiar form:

.

~~

B

|

C Ip

where Lp) Le, are triangular columns with non-zeros on the diagonal.

(These are the forward and backward triangles respectively, and finding

— them is a straightforward process; e.g. see Hellerman and Rarick [9].)

\ Partition B is called the "bump". It 1s square and in general sparse,

and we have yet to compute its orthogonal factorization. This amounts

— to taking linear combinations of the columns of B such that B is

(reduced to lower triangular form. We see that fill-in will occur in

partition C , but not in partitions Lo or Lg .

- To minimize fill-in we need to permute the rows ofB in some

. optimal fashion. One promising possibility is to make use of the pre-

_ assigned pivot procedures due to Hellerman and Rarick (called P° and

ph in [9], [10]). These are algorithms for isolating further bumps
Ce 7 L

- within B . Thus after the main bump 1s located, the next stage of P

1s to find a row and column ordering which arranges B into the form

.

B 21

.

| By
I

| B = B

| Cy 2

- Ly

2 BBE
CC

where By ’ B, and B, are new square sub-bumps (there may be any number),

and Ly and L, are triangular columns with non-zeros on the diagonal. This

-. strategy ensures that there will be no fill-in for at least some of the

| columnsof B and C » namely those columns corresponding to Ly and L, ,
Each sub-bump remains to be triangularized, but whatever we do to bump

L By s for example, will have no effect on B, or Bs Thus our final
: problem 1s to find optimal row orderings for all bumps, treating each

- independently.

At this point 1t 1s interesting to note the statistics given by

- Hellerman and Rarick in [9] for their algorithm p . When applied to

"basis matrices of dimension ranging from 589 up to 977, the number of

| bumps that were isolated by p ranged from 3 up to 22. This is en-

couraging for the following reasons. Suppose a basis B 1s reduced

to lower triangular form by a sequence of elementary orthogonal trans-

formations . i<j):65 (i<9)

BQ. .QQ . =1L.

“10, %,0, “Lex

22

3 Each Q represents a linear combination of columns 1 and J of the

| current B (transformed by all previous Q 5)» and the sparsity struc-
= ture of both columns after the transformation 1s the logical OR of

their sparsity structure before Gy 18 applied. (In contrast, if
Q were just an elementary elimination operation, column Jj would

- be affected in the same way but column 1 would not change at all.)

This property of orthogonal transformations implies that fill-in 1s at

least as much as with simple elimination, and it appears that a single

¢ rather dense column in B 1s potentially capable of propagating non-

- zeros throughout the whole of L . Fortunately Hellerman and Rarick's

results indicate that a typical LP basis can be permuted in a way

~~ which reveals a number of "fire-breaks." Thus propagation of non-zeros

| may occur below each bump but certainly can not spread across the
triangular columns between bumps.

| Of course the same 1s true with the product form of inverse (here-
after called PFI). Our point is that with orthogonal factorization the

- effect of propagation can be very serious 1f allowed to continue over a

large number of columns. We may gain some relief in the knowledge that

propagation must stop at the end of each bump.

We return now to the problem of permuting the rows of each bump.

The strategy of p 1s to find a permutation of both rows and columns

which reveals a spike structure of this form:

B. = | .J Lx
x x

Xx x

23

A similar spike-finding algorithm has been given by Kalan [11]. hen the

| PFI of B, 1s computed the only fill-in that occurs 1s below the spikes.

| ” The columns between the spikes of any bump are like the lower-triangular
columns between the bumps of B , and since their sparsity 1s not altered,

it appears that the spike-finding strategy 1s ideal for PFI.

«
On the other hand, orthogonal factorization of such a structure will

be less successful in terms of fill-in, since 1f B. = L.Q. say, we know
J J J

that a particularly dense spike 1s likely to propagate non-zeros through-

&

out both L and the columns beneath B, . As an alternative, consider
- the Cholesky factor associated with a bump that has block-angular form:

“

RR

| |

i |= = L. =| .
By Jo

J I
5]

The preservation of zeros in L, below the angular blocks leads us to
propose looking for a more general structure which we shall call nested

block-angularity. In its simplest form this amounts to isolating two

angular blocks (plus a set of coupling rows) and then applying the same

operation to each block recursively, until at all levels of recursion

neither of the blocks 1s further decomposable. The structure thus

obtained depends on whether or not both blocks are decomposable at each

stage. If just the first block has further structure each time we will

get the following nested pattern:

2h

| NNN oO| !

| HE N\N\
TIT:

B., = /

| h NNN voLCT]
| \
¢

” IGA
This is an extreme case and there are many variations. An algorithm for

CC
detecting block-angularity within a general rectangular matrix has been

. given by Weil and Kettler [18], and it can be applied directly to the

problem of finding nested block-angularity. Cur motivation 1s that by

so doing we can guarantee preservation of zeros inside the angular blocks

| as well as below them.
To 1llustrate that this strategy may sometimes be as good as looking

- for spikes, here 1s an 8x8 bump with nested block-angular structure,

" along with its associated Cholesky factor:

12345678

I |XX x TT
2 X X XX

3 -Hx TTX
4 - aX__X 4X X
: EE Tee XK3 xx

mm eee AXX cree aX
I X X X x X (Xx X X X X X X
8 |X X X X XX XXXXXX

If the last sta f bo ;ge oL Pp 1s applied to the same matrix we get the

following spike structure and a slightly different Cholesky factor:

25

- 23645871

: X 1 X XX IX X X

~ 4 XX] Tx
d £ XLX 1 X X X Xx

| 3 XX LL 1. Jxxx
8 XXX |X XX XX XX

N | X X X XX XXX x-X Xx XX

By coincidence both orderings give exactly the same number of zeros in the

' lower triangle. Without further experimentation we cannot draw any con-

clusions about the relative efficiency of each approach.

8.1 Numerical aspects of preassignment

C —

| Finally we must look at the numerical implications of preassigning

pivots, Suppose that a basis B is to be "inverted" either by PFI or

by orthogonal factorization (LQ for short). The strategy of isolating

square bumps in B is certainly justified in both cases, since neither

| PFI nor LQ alters the triangular columns pet Lp between
and around the bumps. Any near-eingularity in these columns implies near-

singularity of B itself’,

- Similarly (since the bumps are square) near-singularity of any bump
-

implies that the original 1B ig almost singular, and no amount of re-

ordering or merging of bumps can improve the condition of B . This

further justifies our earlier statement that the bumps can be treated

independently.

The only numerical difference between PFI and LQ (during rein-

version) arises 1n the factorization of each bump. With PFI it is

unlikely that any pivot order assigned to a bump will be completely

26

CE ———————————————————————————S—————

| satisfactory 1f that order has been chosen without regard to the magni-
| tude of non-zeros in the bump. It may be thought (e.g. [9, p. 214]) that

the only possible complication wouldbe with the spike columns, whenever

the updated pivot element of a spike becomes too small. A strategy

currently being used 1s to interchange an unsuitable spike column with

- some other spike column, on the grounds that at least one of the spikes
will have an acceptable pivot element. This will often mean moving a

spike and its pivot row out of one bump into the next. The aim is to

‘ retain as much of the preassigned pivot order as possible.

The following example, however, shows that it is unreasonable to

assume that the non-spike columns will have acceptable pivots. Suppose

-- a bump Bs is of the form
L

10™7 1 « spike

L B, = 1 1 = |]
1 1 1

If the preassigned pivot order 1s retained here, the first eta-transformation

_ will be |

100 107 1 1 10°

EB, = 1 11 = 1 1

10° 1 EE L -999

and hence computation ¢f PFI will introduce ulinecessary numerical error

into an otherwise well-conditioned matrix. Clearly an interchange should

be made between the first and third rows, or between the first and third

columns.

21

SC ————————————————————————

| This problem would be overcome by treating small non-spike pivots 1n
| the same way as small spike pivots. In the extreme case of choosing
oo maximal pivot:; (i.e. taking the relative pivot tolerance to be 1), we

nssert that PFI wouldbe numerically stable during reinversion ii' pro-

| vicion were made to interchange either all of the rows or all of the
columns within each bump, and under these conditions it would never be

necessary to move columns from one bump into another. 1p practice it may

be feasible to localize interchanges in this way even 1f the relative

- pivot tolerance 1s somewhat less than 1 .
In any event, numerical precautions must be taken when PFI is

used, and some-revision of a preassigned pivot order will often be neces-

" sary. The anticipated reduction in basis matrix I/O may therefore not

i always be achieved.
With orthogonal factorization, as we have said before, all pivot

| orders are numerically acceptable, and in such a context the philosophy
of preassigning pivots becomes fully justifiable. ye are paying the price

} of higher density in the basis factorization, but by this means alone

can the advantages of preassignment be fully realized.

|

28

[-
| 9, Sparsity of updatesy —_—

~ In any algorithm based upon product-form updating, a principal factor

| | governing reinversion frequency is.the rate of growth of elements in the
update file. It would be pleasing if the energy expended during reinver-

“ sion had some optimizing effect on the sparsity of subsequent updates.

To some extent this proves to be the case with the Cholesky algorithm.

Suppose that columna replaces column a in B, at some

L iteration k . In the case of standard PFI updating, the number of

non-zeros 1n the updated column vector «o = Ba determines how many
elements are added to the eta-file. (Clearly this number is uniquely

be determined by B and a_ » and would not be altered by any permutations

. to the rows and columns of B . Neglecting numerical error we conclude
that with PFI the rate of growth of the eta-file 1s independent of

| whatever sparsity was achieved last reinversion, or how recently that
reinversion was performed.

~ For the Cholesky algorithm the relevant update vectors gre 1 and

P, > as givenin FTRAN1 and FTRAN? of section 6:

Lp =a boys 1Pe = 2p (13)

Now if P 1s the row permutation chosen during reilnversion of an initial

basis By , then Lis the Cholesky factor associated with PB, (0).

A change in P would affect all Ly and therefore would alter P, and

Ps, above. In other words, the choice of P during reinversion affects

the sparsity of updates for all subsequent iterations. We will discuss

this situation in general terms first, and then specialize to block-

angular problems. .

29

| 9.1 General sparse problems
Given a large sparse linear programming problem, we should bear in

LC mind the following points:

(a) In a triangular system of the form Ip =v such as in (13) above,

o the first non-zero element of p coincides with the first non-zero

in the right-hand-side vector v- (counting from the top down).

(b) A reinversion algorithm such as Hellerman and Rarick's (section 8)

C 1s usually capable of permuting a basis B, into almost lower tri-

angular form. By this we mean that only a small fraction of columns

(viz. the spikes) have non-zeros above the diagonal.

o (c) The numberof iterations performed between reinversions is usually

small relative tom (e.g. reinversion every 50 iterations when

L m=1000 gives a ratio of 5%). Hence afterk iterations, B differs
. from By in only a small percentage of its columns.

(d) Since the Cholesky factor associated with B, does not depend upon

_ column order, the row permutation P chosen as optimal for B,

should remain close to optimal for all B,

To formalize point (a), f'or any m-vector v , define an integer

- function 8(v) as follows:

0(v) = k iff v, =0 for all i<k ,

Vy #0 .

Then Lp= v implies that 6(p) = 6(v) , so the maximum possible number

of non-zeros 1np 1s m - o(v) . Now points (b) and (c) together show

that all bases B, are essentially triangular (for the purposes of this

argument), so on the average it is likely that 8(a,) > m/2 , where a_

30

: is the column being deleted from B, . Hence in (13), 6(p,) > w2 on
average. In words this means that the vector P, 1s likely to be less

= than 5% dense, even if there is complete fill-in below the first non-zero.

The same may be said about P, in (13), since it seems reasonable to

assume that the incoming columns 3 will in the long run have non-zeros

~ distributed much like the columns they are replacing.

A similar argument may be applied to the method of Forrest and Tomlin

[5], [16], [17] for updating LU factors of the basis. If the "partially

- updated" form of the 1ncoming column is ¥ = 17a r 1tislikely that
6(y)> m/2 on the average.

Even with PFI the same could be said about the vector ao = Ba
- in the case of transportation problems, since then B, is always a
3 permuted triangle. With more general problems the size of the forward

triangle of each basis would be the critical factor.

1. To summarize, at each iteration a strict upper bound on the number of

| non-zeros 1n the updates (p58), (2,585) is 4m , and the above dis-
cussion has reduced the bound to a "likely average" of 2m . This 1s not

| entirely satisfactory yet, since a strict upper bound for the a-vector
in PFI is justm elements. However, just as we expect a to be

- sparse 1n most cases, we also expect that vectors Ps P, will not be

completely dense below positions 8(p,) > 8(p,) respectively.

} Except 1n the case of block-angular problems (see below), we must

resort to further heuristics by comparing

py = L "a,
with

o@ = Ba = 3'L7D 'p, .

31

| (Equivalently, «o = QD =p, 1f Q 1s retained in the orthogonal factor-
| ization B = IDF 0 .) Since pl is only "partially updated" by comparison

| ’ with ¢ 1t seems that if o 1s at all sparse in PFI then P, is likely

| to be even more sparse. Point (d) above indicates that if pl is sparse- during iterations immediately after reinversion, its density should

~ increase only slowly during later iterations.

Under the final assumption that p, will be as sparse as p1 , we

C conclude with the following conjecture:
For a given problem, if the a/-vectors occurring

= in PFI are of low density, the growth of elements

k in the L-file of the Cholesky algorithm will be
—

comparable to the growth of elements in the eta-

| file of PFI .
r As always, such a heuristically-derived conjecture must be verified by

L practical experimentation. In addition, comparison must at some stage be
made with the method of Forrest and Tomlin[5], [16], [17], since relative

] to PFI this method has demonstrated considerably lower growth rate of

] the eta-file.

© 9.2 Block-angular problems

The one case where we can guarantee in advance that the update vectors

will be sparse, is when the matrix A has block-angular structure(e.g. [4]);

a

| he |
CL

A = ! | .

LC |
| |
HE

32

| Just a trivial modification to the general algorithm is required to take

advantage of this special structure. Specifically, the reinversion

= routine must choose row permutations for each block individually; 1.e.

it must not move rows from one block to another. yupder such circum-

stances we know that the Cholesky factors IL will be block-triangular
\

for all iterations (Saunders [14]).

For simplicity, suppose there are m, coupling constraints and three

blocks each of dimension m, . Suppose also that a column a_ is enter-
C

ing from block 2. Then the system Lp, = a looks like this:

- wo

omy 0 0

— i X X
) X X

m

, 1 X _ X
C | X = X

} : - ae en CE

|

| ! 0 0
}

| |

| | X Xm

0 X X

i X X
Lye Py %s

The zeros that are shown in P; follow directly from the zeros in column

- a. . The same 1s true for the second update vector when a column 1s deleted

from some block. The total number of elements added to the L-file each

iteration can be at most 4 (m,, + m,), and should be considerably fewer if

the problem 1s sparse within the blocks. This upper bound is independent

of the number of angular blocks.

33

| 10. Conclusion
|

| _ Among the many implementations of Dantzig's original simplex method,
those which have become established because of their sparseness properties

| are unfortunately numerically unstable. The foremost examples are algo-rithms based on the product form of inverse. A more recent example is

the LU implementation of Forrest afid Tomlin [5], [16], [17]; this has

demonstrated extremely good sparseness characteristics on large practical

a problems, but the method used for updating the LU factors cannot be

classed as numerically stable. Conversely, the LU algorithm of Bartels

and Golub [1], [2] has excellent numerical properties, but because of the

L difficulty of inserting new non-zero elements into U during changes of

basis (see Tomlin [17]), this method cannot yet be applied to large-scale

L problems.

| At present, the algorithm described in this paper represents the only
general linear programming method which 1s both numerically stable and

_ capable of efficient out-of-core implementation. We have shown that

product-form updating of the Cholesky factorization is feasible, and we

. have retained the numerical advantages inherent in Gill and Murray's

| - version of the simplex method [6].

The aim in writing has essentially been two-fold:

1: To present a mathematical description of the product-form Cholesky

algorithm, along with sufficient practical detail to indicate how

implementation might proceed.

2. To discuss qualitatively some aspects of orthogonal factorization

in the context of general sparse matrices, 1n order to gain some

assurance that the expense of a non-trivial implementation might

34

be justified.

We anticipate that the class of problems .
oiorwhich the method will prove

| to be efficient will include those which are extremely sparse and those

which have block-angular structure.

I

|

3

—_

f

ty

.

35

Acknowledgements

\ I wish to thank John Tomlin for many discussions of the implementation

aspects of large-scale systems, including the buffering scheme described

in section5. I am also very grateful to Walter Murray and Chris Paige

- for discussions of the numerical aspects; to Phil Gill, Gene Golub and

Richard Underwood for their valuable criticisms of the first draft; and

to Mary Bodley for her speed and care in typing the manuscript.

C

“

~

“

o

~

34

I.
References

| [1] R. H. Bartels, "A stabilization of the simplex method," NumerischeMathematik 16 (1971), pp. L1lk-ksk,

w [2] R. H. Bartels and G. H. Golub, 'The simplex method of linear pro-
gramming using LU decomposition," Comm. acu 12 (1969) pp. 266-268,
275-278. ;

[3] G. B. Dantzig, Linear programming and extensions, Princeton University
Press, Princeton, New Jersey (1963).

Cc”
[4] G. B. Dantzig, "Large-scale linear programming," Operations Research

Department Report No. 67-8, Stanford University, Stanford, California
\ (1967).

| [5] J. J. H, Forrest and J. A. Tomlin, "Updated triangular factors of the
~ basis to maintain sparsity in the product form simplex method,’

Mathematical Programming 2 (1972) pp. 263-278.

[[6] P. E. Gill and W. Murray, "A numerically stable form of the simplex
algorithm," J. of Linear Algebra and its Applications 6(1973).

[7] P. E., Gill and W. Murray, "Quasi~Newton methods for unconstrained
- optimization," J. Inst. Maths Applications 9(1972) pp.91-108,

[8] P. E. Gill, G. i. Golub, W. Murray and M. A. Saunders, vmMethods for
i modifying matrix factorizations," Computer Science Department Report

(to appear) , Stanford University, Stanford, California (1972).

[9] E. lellerman and D. Rarick, "Reinversion with the preassigned pivot
procedure," Mathematical Programming 1 (1971) pp.195-216.

- [10] BB. Hellerman and D. Rarick, "The partitioned preassigned pivot pro-
cedure (P4)," pp. 67-76 in {parse matrices and their application::
D. J. Rose and R. A. Willoughby (Editors), Plenum Press, New York'

(1972).

[11} J. E. Kalan, "Aspects of large-scale in-core linear programming,"
proceedings of ACM Annual Conference, Chicago, Illinois (August 3-5,
1971).

[12] Ww. Orchard-Hays, Advanced linear-programming computing techniques,
McGraw-Hill. New York (1968).

57

-
| [13] C. C. Paige, "An error analysis of a method for solving matrix
| equations," Computer Science Department Report No. CS 297, Stanford

University, Stanford, California (1772).
|
CC [14] M. A. Saunders, "Large-scale linear programming using the Cholesky

factorization," Computer Science Department Report No. CS 252,
Stanford University, Stanford, California (1972).

. [15] D. M. Smith, "Data logistics for matrix inversion.,” in Sparse matrix
proceedings, Ed. R. A. Willoughby, IBM Research Center, Yorktown
Heights, New York (1968) pp. 127-132.

[16) J. A. Tomlin, ''Maintaining a sparse inverse in the simplex method,"
IBM Journal of Research and Development 16 No. 4 (1972) pp. 415-423,

[17] J. A. Tomlin, "Modifying triangular factors of the basis in the
simplex method," pp. 77-85 in Sparse matrices and their applications,

- D. J. Rose and R. A. Willoughby (Editors), Plenum Press, New YOrk
(1972).

| [18] R. L. Weiland P. C. Kettler, "Rearranging matrices to block-angular
form for decomposition (and other) algorithms," Management Science 18
no. 1 (1971) pp. 98408.

i [19] J. H. Wilkinson, The algebraic eigenvalue problem, Oxford University
Press, London (1965).

[

38

