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Problems of structural isomeri:rm in chemictry have received much attention.

But only occasional inroads have been made toward a systematic solutior of

the urderlying graph theoretical problems of structural isomerism. Solutions

in the past have been partial, with acyclic and cyclic siructures being

treated independently. Recently the "boundaries, score and limita" of

the subject of structural isomerism of acyclic molecules have been defined

by the DENDRAL algorithms . This algorithm permits an enumeration and

representation of all possible acyclic molecular structures with a given

empirical formula.

Acyclic molecules represent only a subset of molecular structures, however,

and it may be argued that cyclic structures (including those possessing

acyciic chains) are of more general interest and importance to modern

~hemistry from both a practical and theoretical standpoint. An approach to

cyclic structure generation has appeared in a previous paper in this series” .
That approach, which cperates on a set of previously generated acyclic forms

by labelling hydrogen atoms pairwise and connecting the atoms to which they

are attached with a new bond, has one serious drawback. The approach cannot

make efficient use of the symmatry properties of cyclic graphs; hence an

inordinate amount of computer time must be

(3) J. Lederberg, G.L. Sutherland, B.G. Buchanan, E.A. Feigenbaum,
A.V. Robertson, A.M. Duffield, and C. Djerassi, J. Amer. Chem, Soc., 91,
2973 (1969). - =

(4) Y.M. Sheikh, A. Buchs, A.B. Delfino, G. Schroll, A.M. Duffield,
C. Dierassi, B.G. Buchanan, G.L. Sutherland, E.A. Feigenbaum, and

J. Lederberg, Org. Mass Spectrom., 3, 493 (1970).
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spent in retrospective checking of each candidate structure with

existing structures to ramove duplicates. For this reason, an

alternative approach to construction of cyclic moiecules has been

developed. This approach is designed to take advantage of the

under lying graph theoretic considerations, prissrily sysmetry, to

arrive at a method for more efficient construction of a complete and

irredundant list of isomers for a given empirical formula. Central

to the successful solution of this problem is the generation of all

positional isomers obtained by substitutions on a given ring system.

This topic has received attention for nearly 180 years, with limited

success ‘ Its more general ramifications go far beyond organic

chemistry. Graph theoreticians have cc~sidered various aspects of

this topic, frequently, but not necessarily, in the contex: of

organic molecules. Polya has presented a theorem 6 “hich permits
calculation of the number of structural isomers for a given ring

system. Hill fab has applied this theorem to enumeration of
isomers of simple ring compounds and Hit) T€ and Taylor 8 have

(S) Sce, for exampie, A.C. Lunn and J.K. Senior, .J. Phys. Chen.,

33, 1027 (1929) and references cited therein.

(6) 2) OG. Polya, Comps. rend., 281, 1167 (1335);
b) G. Polya, Helv. Chim. Acta. 13, 22 (1336);
¢) G. Polya, Z. Krust. 92, 415 (13936);
da) G. Polya, Acta Math., B68, 145 (1937).

(7v a) T.L. Hill, J, Phys. Chem., 47, 253 (1943);
b) T.L. Hit!l, ibid., p. 413.

¢) T.L. Hill, J. Chea. Phys., 11, 2946 (1943).

(8) W.J. Taylor J. Chem. Phys., 11, 632 (13943).
2



pointed out that Polya's theorem permits enumeration of geometrical and

optical isomers in addition to structural isomers. More recently, formulae

for enumeration of isomers of monocyclic aromatic compounds based on graph

theory, permutation groups and Polya's theorem have been presented’ . This

history of interest and results provides only marginal benefit to the organic

chemist. Although the number of isomers may be interesting, these methods’ 0%

do not display the structure of each isomer. Also, these methods do not

provide information on the more general case where the ring system is

embedded in a more complex structure. Even for simple cases the task of

specifying each structure by hand, without duplication, is an ouerous one.

Balaban has published a series of papers’ addressed, in part, to the problem

of specification of isomeric structures. Although his method, which differs

substantially from our own, involves significant manual effort and does not

apvear to encompass a mechanism for prospective avoidance of duplicate

structures, his compilations of isomers of annulenes 0° C, represent an

important contribution as extensions to the compilations of Lederberg’ .

METHOD

OVERVIEW

Framework. The framework for this method is that chemical structures consist

of some combination of acyclic chains and rings or ring systems®O tt « The

problem of construction of acyclic isomers

0a) A.T. Balaban and F. Harary, Rev. Roum. Chim., 32> 1511 (1967); b) ibid.,
11, 1097 (1966); Erratum, ibid., 12, No. 1, 103 (1967); c) ivid., os 865(1972); 4) ibid., 18, 635 (1973), and additional references cited therein.
10) J. Lederberg, DENDRAL-6L4, Part I. Notational Algorithm for Tree Structures,
NASA Star No. N65-13158, NASA CR-57029; Part II. Topology of Cyclic Graphs, NASA
Star No. N66-140Th, NASA CR-68898; Part III. Complete Chemical Graphs: Embedding
Rings in Trees, NASA Star No. NT1-T6061, NASA CR-123176.

11) It is assumed that structures are completely connectedby chemical bonds;
thus catenates and threaded structures are viewed as coneisting of separate molecules.
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(and radicals) h2s been solved previously . If all possible ring
systems can be constructed from all or part of the atoms in the

empirical formula, and ali possible acyclic parts are available from

the acyclic generator, the combination of ring systems with acyclic

parts in all unique ways would yield the complete list of isomers.

The method for construction of ring systems ie described below. This

description employs some terms which require definition. The

definitionsalso serve to illustrate the taxonomic principles which

. under | ie the operation of the structure generator. The

generator’'s view of molecular structure differs in some respects from

the chemist’'s. A chemist, for example, m8y view structures

possessing the same functional group or ring 8s related. The

generator works at the more fundamental level of the ver tex-graph'",
as described below.

Chemical Graph. A molecular structure may be viewed as 3 graph,

termed the chemical graph, or skeleton. A chemical graph consists

of nodes, with associated atom names, and edges, which correspond

to chemical bonds. Consider as an example the substituted piperazine,

1, whose chemical graph is illustrated in Chart | as 2. Note

that hydrogen atoms are ignored by convention, while the symbol “U*

is used to specify the unsaturation. The degree (primary, secondary,

...) of a node in the chemical graph has its usual meaning, i.e., the

IA



number of (non-hydrogen) edges connected to it. The valence of each

aton determines its maximud degree in tha graph. As usally displayed

by chemists in planar representation, the chemical graph describes

the connectivity rather than the geometric configuration of a

molecular structure.

Superatoa. In general, 2 chemical graph can be separated into

cyclic and acyclic parts, Each cyclic structural sub-unit may be

deemed a supera toa possessing any number of free valences' .

The chemical graph 2 arises from 2 combination of two carbon atoms

Wwitn ring-superatom 3. Ring-superatom 3 possesses the indicated

free valiences to which the remaining hydrogen and tno methyl radicals

will be attached (Chart 1),

Ciliated Skeleton . A ciliated skeleton is a skeleton with free

valences but without atom nomes. Ring~superatom 3 arises from the

ciliated skeleton 4 by associating the atom names of eight carbon and two

nitrogen atoms with the skeleton (Chart 1).

Cyclic Skeleton. A chemical graph whose nodes are not associated

with atom names and which contains no acyclic ports ond no free

12) A free valence is a bond with an unspecified terminus. Any substructure,
cyclic or not, may be treated as a superatom; however, the term, in this
paper, is generally restricted to cyclic (termed ring~) superatoms.
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valences is termed a cyc/ic skeleton. Ciliated skeleton 4 arises

trom one way of associating sixtesn free valences with the nodes on

the cyclic skeleton2 (Chart 1).

Ver tex-Graph. Ver tex-graphs © are cyclic skeletons from which
nodes of degres less than three have been deleted. The vertex-graph

of the cyclic skeleton S is the regular trivalent oraph of tuo
nodes, 6. Note that the remaining nodes of the cyclic skeleton§

are of degree two. Removal of these secondary nodes from 5 while

retaining the interconnections of the two tertiary nodes yields&

(Chart 1}.

As an illustration of the variety of structures which nay be

constructed from 3 gQiven vertex-graph and empirical formulas, for

example, C H N , consider that graph 1] is the vertex-graph -for
10 28 2 . .

all bicyclic ring systems (excluding spiro formsl. Cyclic skeletons

7 and 8 (Chart 1), for example, may be constructed from eight

secondary nodes and 5. There are many ways of associating sixteen

tree valences With each cyclic skeleton, resulting in a larger number

of ciliated skeletons. For example, 3 and 18 ariss from

differant allocations of sixteen free valences to 3 (Chart 1).

There is only one way to associate eight carbon atoms and two

nitrogen atoms with each ciliated skeleton to yield superatoms (e.g.

6
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11 and 12, Chart 1). Howeve.', several structures are obtained by

associating the remaining two carbon atoms (in this example) with each

superatom, as an ethyl or two methyl groups. Chemical graphs 13 and 1b,

for example, arise from two alternative ways of associating two methyl

groups with superatom So

Multiple Bonds. For the purposes of this program we adopt the formalism

that all multiple bonds (double, trinle, ...) are considered to be small

rings by the program. Previous versions (acyclic generator) differ from

this program in that double and triple bonds are regarded as specially

labelled edges.

ALMD

The structure generator must produce a complete list of structures without

duplication. By duplicate structures we mean structures which are

equivalent in some well-defined sense. The class of isomers generated by

the program includes only connectivity isomers. Transformations (utilized

to determine equivalence) allowed under connectivity symmetry preserve the

valence and bond distribution of every atom. Connectivity symmetry does

not consider bond lengths or bond angles. Tnis choice of symmetry results

in construction of a set of topologically unique isomers. A more detailed

discussion of equivalence is discussed in Appendix A and in the accompanying

paper > . a discussion of isomerism and symmetry is presented in Appendix B.

13) L. Masinter, N.S. Sridharan, J. Amer. Chem. Soc., 00, 0000 (1973).
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STRATEGY

The strategy behind the cyclic structure generator is strongly tied to the

framework described above. The strategy is summarized in greatly simplified

form in Figure 1. The vertex-graphs from which structures are constructed con

be specified for a given problem by a series of calculations. Thus Part A of

the program (Figure 1) partitions the pot of atoms in all possible ways; each

partition consists of those atoms assigned to one or more “syperatompols” and |

a "remaining pot." Each superatompot is a collection of atoms from which all

possible, unique ring-superatoms R can be constructed based on the

appropriate vertex-grophs (Part B, Fig. 1). Each ring=superotom will be a ring

system in completed structures. The atoms in the remaining pot will form

acyclic parts of the final structures when combined in all possible, unique ways

with the ring-superatoms from the corresponding initial partition (Part C, Fig. 1).

CESCRIPTION

We are faced with the difficulty of describing a complex computer

program in the traditional mode of presentation in a scientific

journal. The narrative form is not the ideal medium for this

description; simple examples do not aluays indicate all essential

aspects of a program. A deeper understanding of a program could be

engendered through the use of 3 large nusber of well chosen examples,

but the length of such a presentation would be excessive and would

tax the patience of sven the most interested reader.

9



We are thus aware of the insufficiency of considering only one example in the

following written description. We have adopted the strategy of presenting

essential aspects of the procedure for structure generation in the main

body of the text. Details of the description which might obscure the

principal concepts are placed in Appendices C and D. Mathematical

details are available elsewhere. 14, 15 We hope this serves the purpose of

providing the casual reader with a deeper understanding of the method

without having to contend with details which, on the other hand, are

important to others who wish to make use of our approach.

The example chosen to illustrate each step of the method is CHg (or CsUs as

there are three degrees of unsaturation).

This example does not contuin bivalent or trivalent atoms (e.g., oxygen and

nitrogen, respectively) or atoms of valence greater than four, nor any

univalent atoms other than hydrogen (e.g., chlorine, fluorine).

Partitioningand Lgbelling. The mechanism for structure generation

involves a series of "partitioning" steps followed by a series of

(196) H. Brown, L. Masinter and L. Hjelmelend, Discrete Mathematics, in
(b) Stanford Computer Science Memo STAN-CS-72-0318.

(15) (@) H. Brown and L. Masinter, Discrete Mathematics, submitted;
(b) Stanford Computer Science MemoSTAN-CS-73-0361.
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"labelling" steps. Partitions are made of items which must be

assigned to objects (usually graph structures or parts thereof} as

the molecular structures are built up from the vertex-graphs. The

process by which items are assigned to the graphs is termed Laval 1ing

Examination of Chart | reveals the different types of items

involved. For example, nodes are partitioned among and label led upon

the edges of the vertex-graphs to yield the cyclic skelstons. Free

valences ares partitioned among and labelled upon the nodes of cyclic

skeletons to yield ciliated skiietons, and so forth,

Partitioning steps in the subsequent discussion are carried out

assuming that objects among which items are partitionsd are indiet-

inguishable. Distinguishability of objects (edges, nodes, ...) is

specified during labelling and will be discussed in a subsequent

section. The partitioning steps performed by the program, are

outlined in Table 1. Each step is described in more detai! below.

| 11



Table 1. Partitioning Steps Performed by the Structure Generator

Step # Partition Among

] Atoms and Unsaturations Superatompots and
: in Empirical Formula Remaining Pot

2 Free Valence Atoms in Superatompot

3 Secondary Nodes Loops/ Non-loops

4 Non-loop Secondary Edges of Graph
Nodes

S Loop Secondary Nodes Loops

6 Ring=superatoms and Efferent Links

Remaining Pot (see Appendix D)

BABA. Supcratom Pactitions.
Ring-superatoms are ~tuo-connected” structures, i.e., the ring-

superatom cannot be split into tuo parts by ecission of a single

bond. The atoms in an empirical formula may be distributed among

from one to several such "tuo-connec ted ring-superatonms. A

distribution which allots atoms to two or more superatompots will

yield (respectively) structures containing two or more ring-
6

superatoms | inked together by singie bonds (or acyclic chains) ‘

lb) Chemists are more familiar with terms such ase rings or ring
systems, The term two-connected is used here in conjunction with
ring-superatoms for a more precise description. For example,
biphenyl may be vieded 38 a singles ring system or tuo rings depending
on the chemical context. In this work, however, bipheny! consists of
to ring-superatoas (two phenyl rings) (inked by 3 single bond.

12 |



In the generation process, one must find all possible ways of partitioning the

given formula into superatompots and a remaining pot, such that molecules can

be constructed. The considerations in forming superatom partitions deal

primarily with valence and unsaturation. This procedure is summarized in

Appendix C, Superatom Partitions. The partitions which result are summarized

in Table II. |

Table Il. Allowed Partitions of ty Into Superatompots and Remaining3

Pot.

Partition Number of Superatompot Number Remaining
Number Superatompots 1 2 3 Pot

1 1 Cu - - -
63

2 1 Cu - - c
3 l

3 1 Cu - - C
4 3 2

& 1 Cu - - C
33 3

5 2 Cu , CU - -
6 2 21 :

3 2 Cu Cu - C

| 3 2 21 1
7 2 Cu Cu - C

22 21 2

8 2 cu CU - -
&1 22

9 2 cu Cu - C
31 22 1

10 2 Cu Cu - -
32 31

11 3 Cu cu Cu -

| 21 21 21

13



PART B. Ring-superatoa Construction.
Each partition (Table 11) must now be treated in turn. The couplete

set of ring-superatoms for each superatompot in 8 given parti tion

must be constructed. The major steps in the procedure are outlined

in Figure 2.

Valence List. The first step in part B is to strip the superatompot of

atom names, while retaining the valence of each atom. The numbers of each

type of atom are saved for later labelling of the ciliated skeletons (Chart 1).

A valence list may then be specified, giving in order the number of bi-, tri-,

tetra- and n-valent nodes which will be incorporated in the superatom. Thus

the superatompot CYs is transformed into the valence list 0 bivalents, 0

trivalents, 6 tetravalents (0, 0, 6), and C4Ys becomes (0, 0, 4) (Figure 2).

Calculation of Free Valence. From the valence list and the associated

unsaturation count the number of free valences of each superotompot is

determined uniquely. (see Calculation of Free Valence, Appendix C). For

CU, the free valence is eight (Fig. 2). The free valence of a superatom
represents the number of bonding sites which can connect to hydrogen

atoms, other superatoms or atoms in the remaining pot.

Partitioning of Free Valence. The free valences are then partitioned

among the nodes in the valence list in all possible, unique ways. (soe

Appendix C, Partitioning of Free Valence).

14



Ocgree List. Each partition of free valences alters the affective

valence of the nodes in the original valence list with respect to the

ring-superatonm, In the example, assignment of one or two free

vaiences to a tetravalent node transforms this node into a tri- or

bivalent node respectively. As the ring-superatom is constructed,

those tetravalent nodes which have been assigned, say, two free

valences, have then only two valences remaining for attachment to the

ring-superatom. These nodes are then of degree | tuo and may be

termed secondary nodes. Thus the partition of free vaiences

2,.2,2.2,.0,00n six tetravalent nodes yields the degree list (4,0,2)

(Fig. 2) as four of the tetravalent nodes receive two free valences

each, yielding four nodes of degrees tuo (secondary) and leaving tuo

nodes of degree four (quaternary). The program keeps track of the

number of free vaiences assigned to all nodes for vse in 8 subsequent

step.

Loops. As will be clarified in the subsequent discussion, there are

several general types of ring-superatoms which cannot be constructed

from the vertex-graphs available in the CATALOG (described below).

17) Use of the term degree with reference to the degree list refers to the
number of bonds other than free valences, with double bonds being counted
twice. A free valence may or may not eventually be attached to a hydrogen
atom in the final structure.

15



These are all cases of multiple extended unsaturations gither in the

form of double bonds or rings. Examples are the following:

1} bi-, tri-, ... n-cyclics with exocyclic double bonds:
2) some types of gpira ring systems;
3) allenes extended by additional double bonds, e.g.,

CeC=CaC

The concept of a loop, each loop consisting of a single unsaturation and at least

one bivalent node, must be utilized for these cases. Examples of loops

containing one, two and three bivalent nodes are shown in Chart [1. Note that

the two remaining "ends" of the unsaturation will yield a "looped structure®

when attached to a single node in a graph (shown as X, Chart Il).

bivalents e 1 2 3

Cex

Tre method for specification of loops is discussed in (Calculation of

Loops, Appendix C.

Partitioning of Secondary Nodes among Loops and Non=loops. The secondary

nodes in the degree list are partitioned between the loops (if any) calculated

in the previous step and the remaining non=loop portion of the eventual graph.

16



Aspects of this partitioning step are presented in Partitioning of Secondary Nodes

Among Loops and Non-Loops, Appendix C. Results for the example are

indicated in Figure 2.

Reduced Oegree List. This procedure yields the reduced degree list

which contains none of the secondary nodes originally present in the

cegree list, Any secondary nodes appearing in the reduced degree |ist

are termed "special" secondary nodes as these nodes will have loops

attached in subsequent steps.

Ver tex-Graphs. The reduced degree lists are used to specify a set

of vertex-yraphs for the eventual ring-superatoms. All tuo-connected

structures can be described by their vertex-graphs, which are, for

most structures, regular trivalent yraphs. This concept has been

described in detail by Lederberg Ic , who has also presented 3

generation and classification scheme for such graphs. Given 3 set of

aii vertex-graphs, the set of all ring-supera.oms may be specified IS .
ihe vertex-graphs are maintained by the program in the CATALOG.

Cotalog entries for regular trivalent graphs possessing two and four

nours ore presented in Table lll. This list must be supplemented by

additional vertex-graphs to cover several special cases requirea for

generation of all structures for the example. These are also

presented in Table lll. Hith the reduced degree [ist of a

17 |



TABLE 111. Vertex-Graphs Necessary for Construction of Isomers
of CHa This is a Partial Listing of the Catalog.

Number of Nodes

Planar b of Degree
Representation Nome Three Four Remarks

OD 2A Regular trivalent graph(hosahedron) 2 0 of two nodes

11 4AA 4 0 Regular trivalent graphs

488 of four nodes
(tetrahedron) 4 0

A single ring composed

"Singlering k" 0 0 of k secondary nodes

Tetravclent Two nodes of degree

Dihedron 0 2 four

A single quaternary

0 "Daisy" 0 I node

N $38CH 2 1 -

(a' "he licting of reference 10 has been expanded to inc}yde vertex-graphs of
other combinations of nodes of degree three and four 8, The completeness

ot tne Catalog has beey verified where possible by independent graph 9b ,9¢consiruction methods 1 and by comparison with Baleban's compilations ’
where appropriate.

(bv) Names, except those in quotation marks, taken from Lederberg. 0

18a) N.S. Sridharan, unpublished results; b) L. Masinter, unpublished
results.

17a



superatonpot, the program requests the appropriate CATALOG entries.

ln the example (Fig. 2), the reduced degree list (0,0,2) specifies

ver tex-graphs containing two quaternary nodes (tetravaient dihedron).

The reduced degree |ist (0 4,0) specifies regular trivalent graphs of

four nodes, of which there are two: 4AA and 488 (Taple 111). When

onli; secondary nodes are present in the reduced degrees list, the

graph "Singlering” (Table 111) is utilized.

Interlude. Up to this point the program has sffectively decomposed

the problem into a series of subprobiems, working down from the total

pot of atoms through a series of partitions and subpartitions to the

set of possible vertex-graphs. [n subsequent steps the ver tex-graphs

are expanded to the final structures by a series Of constructive

graph labellings (Table [Y).

18



Table IV. The Six Graph Labelling Steps Performed by the Labelling
Algorithm

Labelling Step Function

| Label Edges of Vertex-Grophs with
Special Secondary Nodes

2 Label Edges of Resulting Craphs with
Non=Loop Secondary Nodes

3 Label Loops of Resulting Graphs with
Loop Secondary Nodes

4 lobe! Nodes of Cyclic Skeletons with Free
Valences

5 Label Nodes of Ciliated Skeletons with Atom Names

) Label Free Vaiences of Superatoms with
Radicals (see Appendix D)

Labeliing Edges of Yertex-Graphs with Special Secondary Nodes.NAF mo re WAS Wr Are ra, am V4

Special seconcary nodes are those that will have loops attached. The

specification of the possible attachments of the nodes to the graph

ia a "labelling" procedure. This is the first of six such graph

labelling steps performed by the program. (Table IY). All of these

labelling steps involve the same combinatorial problem, that of

associating a set of n labels, not necessarily distinct, with a set

of ob. ects with arbitrary symmetry’ . The same labelling algorithm
‘5s utilized for each of the six labeiling steps. A description of the

under lying mathematics and proof of completeness and irredundancy

appears separately! .

18



Some aspects of the first labelling step indicate how equivalent labellings (which

would eventually yield duplicate structures) may be avoided prospectively,

by recognition of the symmetry properties of the graph; in the first labelling,

the vertex-graph. These symmetry properties are expressed in terms of the

permutation group (see Appendix A and refs. 13 and 14) on the edges of the

vertex-graph. This permutation group, which defines the equivalence of the

edges, may be specified in the CATALOG or, alternatively, calculated as

needed by o separate part of the structure generator. As subsequent steps are

executed, a new permutation group (e.g., on the nodes for labelling step four,

Table IV) is derived as necessary 3 . Thus, only labellings which

result in unique expansions of the structure are permitted. The reader

examining Fig. 2 may note that for this simple example the symmetries of the

vertex-graphs and subsequent skeletons can be discerned easily by eye. For

example, all edges of the tetravalent dihedron are equivalent, as are all the

edges of the regular trivalent graphs 2A and also 4BB. The $3BCB graph

(Table Il, Fig. 2) has four equivalent edges and one other edge, and so forth.

in the general case, however, the symmetries of the vertex-graphs and

subsequent expansions thereof are not always obvious.

With the group on the edges specified, the labelling of the vertex-
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graphs with special secondary nodes is carried out. The results of

this procedure for partitions containing loops are indicated in

Figure 2.

Labelling with Non=Loop Secondary Nodes. The graphs which resulted from

the previous labeliing are now labelled with the partitions of non-loop

secondary nodes (see Partitioning of Non=-Loop Secondary Nodes Among

Edges, Appendix C). Each of the five partitions for the tetravalent dihedron

in Fig. 2 results in a single labelling, os all four

edges of the graph are equivalent. When edges are distinguishable there may

be several ways to label a groph with a single partition. There are, for

example, for the $38CB graph, two ways to label with the partition 3,0,0,0,0,

four ways with the partition 2,1,0,0,0 and three ways with the partition 1,1,1,0,0

(Fig. 2).

Labelling with Loop Secondary Nodes. There remain unassigned to the graphs

at this point only secondary nodes which were assigned to loops. These

nodes are first partitioned omong the loops. (see Partitioning of Loop

Secondary Nodes Among Loops, Appendix C). For example,

following the path from the degree list (4, 0,2) through labelling

with non=loop secondary nodes (Fig. 2), there are two ways of

labelling the two equivalent loops with four secondary nodes. There

is one way to label the two loops of the adjacent graph with three
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secondary nodes and one «3y of labelling the tuo loops of each of the

tuo remaining graphs in this section of Figure 2 with tuo secondary

nodes. In this example icv) the loops in every case are equivalent
or there is only ona loop to be labelled. In the general case loops

may not be equivalent, resulting in 3 greater number of ways to (abe!

loops with 3 given partition of secondary nodes.

Cyclic Skeletons. The previous l(abeiling steps specified the number
of secondary nodes on each edge of and loop attached to the vertex-

graphs. All atoms in the original superatompot are thus accounted

for. A representation of the resuit is the cyclic skeleton, where

nodes and their connections to ones another are specified. (These

skeletons begin to resemble conventional chemical structures.)

Labelling with Free Yalences. The nodes in a cyclic skeleton are
then labelled with free valences, yielding ciliated skeletons. This

labelling is trivial in the example, as ail atoms are of the sane

valence (four) (Figure 2). Free valence labelling is performed with

knouledge .0f hou many atoms of e3ch valence were present in the

original superatompot, but independent of the identities of the

atoms. The combinatorial complexity of this labelling problem follows

from the possible occurence of atoms with differing valences. In the

general case there may be several ways to perform this labelling on
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single cyclic skeleton, whereas in the C U example there is only one

Way. °3

Label ling With Atos Names. The nodes of a ciliated skeleton are

then labelled with atom names to yield the ring-superatoa(sl. Again

this labelling is trivial in the example, as onl) one type of atom is

present (carbon), yielding in each case only a single superatom (Fig.

2). lf there is more than one type of atom with the same vaience

(e.g., silicon and carbon), the labelling problem is more cor.lex.

Each node af appropriate valence m3y be (3beiled with either type of

atom. Duplicate structures are avoided by calculations involving the

group pertaining to the set of nodes of equal valence.

PART C. Acyclic Generator.

The superatom partition expanded in the example had no atoms assigned fo

acyclic chains (remaining pot). The set of ring-superatoms on completion of

Part B, above, thus yields the set of 36 structures on placement of a

hydrogen atom on each free valence (Fig. 2). If the superatom partition

(partitions 2-11, Table.) contained more than one superatompot or

any atoms in the remaining pot, the acyclic generator must be used to

connect the segments of the structure in all ways. This procedure is

described in detail in Appendix D.
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BISCUSSION

Completion of Leta The example (Fig. 2) has considered only

expansion of a single superatom partition. It might be instructive

for the reader to attempt to generate aii, or at least the remaining,

structures for Cre The number of solutions is presented in 3
subsequent section, If the algorithm as outlined in Figure 2 is

followed, it is suggested that the initial supsratom partitions in

Table Il be examined carefully. These partitions yisid sons

indication of the types of structures which will result from each

partition. For example, partition 4, As in a single superatompot,

plus three carbons in the remaining pot, should yield all! structures

containing a three-membersd ring possessing two double bonds o¢~ a

triple bond. As there are only two free vaisnces, the remaining

atoms can be in a single chain (3s a propyl or iso-propy! radical) or

as a methy! and an ethyl! group, but not as three methy! groups.

Completeness and |rredundancy. Although 3 sathamatical proof of the
completeness and irredundancy of the method exists , there is nO
guarantee tnat the implementation of the algorithm in a computer

program maintains these desired characteristics. Confidence in the

conpleteness and irredundancy of a program of thie complexity can be

engendered in the following Ways:
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1) Verification of the program's performance by another, completely

independent approach. An independent method has been developed which

enumerates, but does not construct, all isomers of compositions containing

c,H,N, and ot6® . It is interesting that the program for simple counting

of the solutions is significantly slower than construction of all of the

solutions, despite some effort to improve the efficiency of the former

program. Thus, due to limitations of computer time, we have been limited

to compositions containing only 5 or fewer non-hydrogen atoms. For these

cases, however, the numbers of isomers obtained by both programs agree.

Balaban has presented lists of isomers of C,H,, C.H,, C_H, end C,H 02,
Lu “676° “58 Rt

These lists were derived from his tables”? of graphs of degrees 2-4 and

orders (numbers of nodes) 1-5. Although we agree with his lists of

hydrocarbon isomers, the list of isomers of Cy,H,0 is incomplete. The

structure generator provides 62 structures (as opposed to 59). The three

missing structures are: RK) 0> & &
These structures should have been produced following Balaban's method C.

The fact that they were not points out the difficulties inherent in any

procedure for isomer generation in which manual steps are involved (see below).

2) Testing by manual generation of structures. Several chemists, all

without knowledge of the algorithm described above, have been given several

test cases, Including CeUszs from which structures were generated by hand.
Familiarity with chemistry is no guarantee of success, as evidenced by the

performance of three chemists for the superficially simple case of

Cels (Chg, Table V).
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Table V. Performance of Three Chemists in Manual Generation
of Isomers of C«Hs (C¢Ua)- There are 159 Isomers.

Number Generated Type of Error

Chemist 1 161 4 duplicates; 4 omissions
2 with 7 carbon atoms.

Chemist 2 168 16 duplicates; 7 omissions

Chemist 3 160 2 duplicates; 1 omission

* One PhD and two graduate students.

This example indicates that for more than very trivial cases, |

it is extremely difficult to avoid duplicates (tricyclics, for

exomple, are difficult to visualize when testing for duplicates) and

omissions. Omissions appear to result from both carelessness and

neglect of ring systems that are implausible or unfamiliar. The

program seems better at testing the chemist than vice versa. in

every instance of manual structure generation, no one has been able

to construct a legal structure that the program failed to construct.

No one has been able to detect an instance of duplication by the

program. This performance builds some confidence, but manual

verification of more complicated cases is extremely tedious ond

difficult. Isomers for many empirical formulae have been generated,

and some results are tabulated in Table VI. The choice of examples
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has been motivated by a desire to test all parts of the program where

errors may exist while keeping the number of isomers small enough to

allow verification. In this manner oll obvious sources of error have been checked,

for example, construction of loops on loops, multiple types of atoms of the same

valence (e.g., Cl, Br, |) and examples containing atoms of several

different valences including penta- and hexavalent atoms.

3) Varying the order of generation. The structure of the

program permits additional tests by doing somes operations in a

different order. For example, one variation glliowed is to leave

hydrogens associated with the atoms in each partition rather than to

strip them away initially and place them on the remaining free

valences in the last step. Each such test has resulted in the same

set of isomers. .

4) Using Polya enumeration © at the various labelling steps
of the procedure to verify the correctness of sub-parts of the

program. Using various combinatorial formulae, one can insure that

the results of at least parts of the program are consistent with

independent calculations. This approach was used extensively in the

development of the labelling algoritha,
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In summary, the verification procedures utiiized have all indicated

absence of errors in the computer implementation of the algoritha.

Also, there is no clear reason why generation of larger sets of

isomers should not aleo proceed correctly. The final verdict

however, must await development of new mathematical tools for

verification by enumeration (see above) or an alternative algorithm.
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Table VI. The Number of [somers for Several Empirical Formulae

Empirical Example Number of [somers flanualiy Verified?
Formula Compound

CH benzene 217 yes
3)

CH 1,3-cycliohexadiene 159 yes
6 8

CH Cyc iohexene 77 yes
Cc 18

CH Cyc | ohexane 25 yes
6 .2

CH hexane S yes
6 16

CHO pheno! 2237 no
6 6

CH O cyclohexanone 747 nN
© 10

CH 0D 2-hexanone 211 yes
o 12 .

CHN pyrazoie 165 no
342

CHN 2-pyrazol ine 156 yes
362

CHN tetrahydropyrazaole 62 no
382

Ch N propylerediamine 14 yes
318 2

CHP (pentavalent P) 118 no
4 91

29



Constraints. The structure generator is designed to produce a list of all

possible graph isomers (Appendix B). This list contains many structures whose

existence seems unlikely based on present chemical knowledge. In addition,

the program may be called on to generate possible structures for an unknown

in the presence of a body of data on the unknown which specify various

features, e.g., functional groups) of the molecule. In such instances

mechanisms are required for constraining the generator to produce only

structures conforming to specified rules. The implementation of the

acyclic generator possessed such a mechanism in the form of GOODLIST

(desired features) and BADLIST (unwanted features)" which could be

utilized during the course of structure generation.

The complete structure generator is less tractable. As in prospective

avoidance of duplicate structures, it is important that unwonted structures, or

portions thereof, be filtered out as early in the generation process as

possible. It is relatively easy to speciry certain general types of constraints

in chemical terms, for example, the number of each of various types of rings

or ring systems in the final structure, ring fusions, functional groups, sub-

structures and so forth. It is not always so easy to devise on efficient scheme

for utilizing a constraint in the algorithm, however. As seen in the

above example (Fig. 2) the expanded superatom partition results in what would

be viewed by the chemist as several very different ring systems.
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The design of the program facilitates some types of constraints. For

example, the program may be entered at the level of combining superatoms to

generate structures from a set of known sub=structures. If additional

atoms are present in an unknown configuration, they can be treated as a

separate generation problem, the results of which are finally combined in all

ways with the known superatoms. This approach will not form additional two-

connected structures, however. Constraints which disallow an entire

partition may be easily included. For example, it is possible to generate

only pure ring isomers by "tuming off" the appropriate initial superatom

partitions.

Much additional work remains, however, before a reasonably complete set of

constraints can be included. The implementation of each type of constraint

must be examined and tested in detail to ensure that the generator remains

thorough and irredundant.

CONCLUSIONS

The algorithm summarized in this paper permits the substantial realization of

the graphical structures that constitute the domain of organic chemistry. The

version of the algorithm presented here ignores the tetrahedral symmetry

of the valences of the carbon atom. However, the topological framework

readily admits of systematic tests for asymmetric centers which can then be

assigned fo the dichotomous categories of the altemating group A. This
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framework also provides a simple, systematic weighting of radicals for

assignment of precedence that proves to be, if anything, even more

straightforward, comprehensive and free from ambiguity than the Cahn-

Ingold-Prelog conventionsi®.

The mathetmatical framework of our analysis is a mapping of chem-

ical bonds onto the edges of topological graphs. This simplification

can lead to disparities, for example in the description of coordination

complexes, the bonds of which are non-equivalent. The symmetries of

such complexes are similar to those of certain superatoms, suggesting an

obvious and easy way to extend the system. Likewise, the system does

not now accommodate isomerism based on steric hindrance, or the associa-

tion of molecules by secondary forces, or by non-covalent constrants.

For example, from 2 topological standpoint, threaded molecules, or

catenanes, are disjoint graphs. Nor do we attempt to display the geo-

metric conformations of molecules: indeed, some topologically plausibie

structures may be chemically unrealizable.

Conversely, implausible constructs, such as carbon atoms possessing

"inverted" tetrahedral geometry’ may become reality by empirical dis-

covery. The constraints on chemically plausible structures depend on

(19) R. S. Cahn, C. K. Ingold, and V. Prelog, Angew. Chem. Internat. Ed.,
5, 385 (1966).

(20) (a) K. B. Wiberg and G. J. Burgmaier, J. Amer. Chem. Soc., 4,
7396 (1972);

(b) K. B. Wiberg, G. J. Burgmaier, K. Shen, S. J. LaPlaca, W. C.
Hamilton, and M. D. Newton, J. Amer. Chem. Soc., 34, 7402 (1972).

the domain specified by the chemist. A DENDRAL® system for molecular
structure elucidation’ (based on the structure generator described in

this work) of molecules in frozen hydrogen matrices would have differ-

ent constrants from a version useful to biochemists.
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Chemists hitherto have been able to explore the defac’o boundaries of their

domain without explicit maps. The exhaustive and efficient study of all

noesible structures con now be facilitated with the assiztance of computer

programs that can help assure that no possible construction has been
al

overlooked .
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M-pendix A.EquivalenceClasses and Finite Pernutation Groups.
ho moebers of a set of possible isomers may be dafined to be
equivalent + ¢ 3 specified transformation of one member causes it to

te supcr waatiie upon another member of the set. For example, there
ore fifteen possible ways of attaching tuo chiorine and four hydrogen
atoms to a benzene ring (Chart 11]).

ChartI

Cl y  Equwolence Class
~ | Cl

AN , N Ne X | CF XY Cc NS
of Ci

ol Cl! 0 Cr| | 2XA J c ¢ I$ ciCl

Cl

y £1 Cl

If rotations hy multiples of 60 degrees are specified os allowed
transformations, the fifteen structures fall logically into three
classes, termed “equivalence classes” (Chart lil). Within each
equivalence class structures may be made superimposable by the
rotational transformation. If one element (in this cose a molecular
structure) is chosen from each equivalence class, the complete set of

34



possibile structures is determined, without duplication. It 3;

task of the labelling algorithm to produce one and only one graph
lavel ling corresponding to one member of each squivaience class.

The set of transformations which define an equivalence class is termed a
“finite permutation group." This permutation group may be calculated based
on the symmetry properties of a graph (or chemical structure in the example
of Chart Hl). This calculation provides the mechanism for prospective

avoidance of duplication. These procedures are described more fully in the
accompanying paper .
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Appendix B. Isomerism and Symmetry.

Appendix A introduced the concept of equivalence classes and finite permutation
groups. The selection of transformation (Appendix A) directs the calculation of
the permutation group and thus defines the equivalence classes. Different types
of transformation may be allowed depending on the symmetry properties of the class
of isomers considered. This Appendix discusses several of the possible types of
isomerism, most of which are familiar to chemists. The reader seeking oc more

thorough discussion of some types of isomerism discussed below is referred to any,
exposition of molecular symmetry in the context of chemistry and mathematics.

Isomers are most often defined as chemical structures possessing the same
empirical formula. Different concepts of symmetry give rise to different
classes of isomers, some of which are described below.

Permutational Isomers. Permutational isomers are isomers which have in

common the same skeleton and set of ligands, ,They differ in the distribution of
ligands about the skeleton. Gillespie et al.”” ond Klemperer” have used the
concept of permutational isomers to probe into unimolecular rearrangement or
isomerization reactions.

Sterecisomers. Ugi et al. 22 have defined the "chemical constitution” of an
atom to be its bonds and bonded neighbors. Those permutational isomers which
differ only by permutations of ligonds at constitutionally equivalent positions form
the class of stereoisomers.

Isomers Under Rigid Molecular Symmetry. If one perceivesmolecular structures as having rigid skeletons, the physical
rotational (three dimensional) symmetries and transformations may be
readily defined. Each transformation causes eoch atom (and bond) to -

(22) 1. Ugi, D. Marquarding, H. Kiusacek, G. Gokel, and P. Gillespie,
Angew. Lhem. internat. Edit., 9, 783 (1978).

(23) P. Gillespie, P. Hoffman, H. Kiusacek, 0. HMarquarding, S.
Pfoh!, F. Ramirez, E. A. Tsolis, and |. Ugi, Angew. Chea.

internat. Edit., 18, 687 (1971).

(24) (2) W. G. Klemperer, JJ. Aner. Chen. Soc, 3, 69540 (1972);
(b) MW. G. Klemperer, ibid, p. 8368;
(c) W. G. Klemperer, ibid, 95, 380 (1973);
(d W. G. Klemperer, ibid, p. 2105.
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occupy the position of another or same atom (and bond) so that the
rotated structure can physically occupy its former position and at
the same time be indistinguishable from it in any way. This is the
most familiar form of symmetry. Under this types of symmetry
conformers are distinguishable and belong in distinct equivalence
classes. Every transformation is orthogonal and preserves bond
angles and bond lengths as well as maintaining true chirality.

lf one ailous other orthogonal transformations that alter chiral
properties of structures, equivalence classes result that treat both
the left-handed and right-handed forms of chiral molecules to be the
"same". Thus 3a “mirror image* transformation when suitably defined
permits the left-handed form to exactly superimpose the right-handed
form and vice versa.

|soners Under Total folecular Symmstry. [f in addition to the above
mentioned rigid molecular transformations one recognizes the
flexional movements of a nonrigid skeleton, a dynamic symmetry group
may be defined. Under this definition, different conformers now are
grouped together. Thus the “chair” and "boat" conformations of
cyclohexane belong to the same equivalence class under dynamic
symmetry. The permutation group of skeletal flexibility is
computable separately and independently of rigid molecular symsetry.
One can then view total molecular sysmetry as the product ~f the two
finite permutation groups.

|somers Under Connectivity Symmetry. The concept of connectivity
symmetry was introduced previously (METHOD section). Every
permutation of atoms and bonds onto themssives is a symmetry
transformation for connectivity symmetry if,

a) each atom is mapped into another of like species, &.Q., N to
N, C toC, O to 0, and

b) for every pair of atoms, the connectivity (none, single,
double , triple, ...) is preserved in the mapping, i.e. the the
connectivity of the tuo atoms is identical to the connectivity
of the atoms they are mapped into.

Une can readily recognize that transformations as defined
automatically preserve the valence and bond distribution of every
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aton. It is very probable that readers accustomed to three
dimensioral rotational and reflectional symmetries will tend to
equate them with the symmetries of connectivity. It ies emphasized
again that connectivity symmetry does not consider bond lengths or
bond angles, and it includes certain transformations that are
conceivaole but have no physical interpretation save that of
perauting the atoms and bonds.
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Appendix C

Superatom Partitions. The first step is to replace the hydrogen count with the
degree of unsaturation. The number of unsaturations (rings plus double bonds) is
determined from the empirical formula in the normal way, as given in equation 1.

n

U =1/2 (2+E (i-2)a.) (1)
i=1

U = unsaturation

i =valence

n = maximum valence in composition

a. = number of atoms with valence i

If the unsaturation count is zero, the formula is passed immediately to the

ocyclic generator. Specifying the unsaturations as U's, the example Cols
becomes CYs (hydrogen atoms are omitted by convention).

There are several rules which are used during the partitioning scheme, as
follows:

I The resulting formula is stripped of other univalent atoms (e.g. ,
chlorine) as such atoms cannot be part of two-connected ring-
superatoms. These univalent atoms are relegated to the pot of
remaining atoms.

I. The remaining pot in a given partition (those atoms not allocated to
superatompots) can contain no unsaturations. Thus all rings and/or
multiple bonds will be generated from the superatompots.

In. It follows that every superatompot in the partition must
contain at least two atoms of valence two or higher plus at least
one unsaturation. If there are no unsaturations then no rings could

be built. In addition, an unsaturation cannot be placed on ¢
single atom. This rule defines the minimum number of atoms and
unsaturations in a superatompot.
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Iv. The maximum number of unsaturations in a superatompot is given by
Equation 2. Superatoms must possess at least one free valence 2, 5
that superatompots with no free valences, e.g., o,U, or C Ua, are not
allowed, unless the superatompot contains all atoms in the ehpirical
formula (since no univalents, and thus no hydrogens, are allowed in a
superctompot, this is indeed a rare occurance.)

n

Une = 1/2 @ (2:2) 2)
VU ox = maximum unsaturation of a superatompot
n = maximum valence in composition
i = valence

a. = number of atoms with valence i

V. The maximum number of superatompots for a given formula is defined by
equation 3.

n

S =1/2¢ ao
max ip | (3)

n = maximum valence in composition

Smax = maximum number of superatompots in a superatom partition

a. = number of atoms with valence i
note: the summation is over all atoms of valence } 2; univalents are

not considered.

Rules [-V define the allowed partitions of a group of atoms into superatompots.
These rules do not, however, prevent generation of equivalent partitions, which
would eventually result in duplicate structures. By defining o canonical
ordering scheme to govern partitioning, we prevent equivalent partitions. One
such canonical ordering is as follows:

Canonical Ordering for Partitioning.

a. Partition in order of increasing number of superatompots.
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b. For each entry in each part of (3a), partition in order of
decreasing size of superatompot by allocation of atoms one at a
time to the remaining pot.

c. Each individual partition containing two or more
superatompots must be in order of equal or decreasing size of
the superatompot. In other words, the nuaber of atoms and

unsaturations in superatompotn+] must be equal! to or less than
the number in superatompart pn. The program notes the equality
of superatompots in a partition to avoid repetition.

The application of rules [-V is best illustrated through reference to
the example of CU. The maximum number of superatompots for this

6 3

example is three (Equation 3). There is one Way to partition C U
6 3

into one superatompot with no remaining pot, partition l, Table ll.
Subsequent assignment of carbon atoms one at a time to the remaining
pot resuits in partitions 2-4, Table Il. The next partition
following the sequence 1-4 would be CU uith C assigned to the

23 4

remaining pot. This partition is forbidden as CU has no free
23

valences. The three ways to partition C U into two superatompots
E 3

are indicated along with the corresponding partitions following
assignment of atoms to the remaining pot, as partitions S-18, Table
11. There is only one unique way of partitioning CU into three

63

superatompots, partition 11, Table Il.

Calculation of Free Valence. The expression for the free vaience of
a superatompot is given by equation 4.

n

FV « (2 +2 (1-2)a )-2V (4)

TX) }

U = uncaturation of superatompot
i = valence

n = maximum valence in composition
a = number of atoms with valence i

i

FV « free valence
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Partitioning of Free Valence. Because ring-superatoms are two-
connected structures two valences of each atom of 3 superatompot must
be used to connect the atom to the ring-superatos. Thus no free
valences can be assigned to bivalent nodes in the valence list, a
maxitum of one to each trivalent, a maximum of tuo to each

tetravalent, and so forth. The example (Fig. 2) is further
simplified in that there are only tetravalent nodes in the valence
list, Inclusion of trivalent nodes (e.g., nitrogen atoms) merely
extends the number of possible partitions, The free valences are
partitioned among tha tetravalent nodes in ali ways, as illustrated
in Figure 2. Jt is important to note that removal of atom names
makes all n-valent (ns2 or 3 or ...) nodes in the valence list
equivalent at this stage. Thus the partitions (of eight free
valences among six tetravalent nodes) 222200, 222020, 2220, «cece.
002222 are all equivalent. Only one of these partitions is
considered to avoid eventual duplication of structures.

Calculation of Loops. There are several rules which must be
fol lcaed in consideration of loop assignment to ring-superatoms. The
minimum (MINLOOPS) and maximum (MAXLOOPS) numbers of loops for a

given valence list are designated by equations 5 and B.

; (8)
MINLOOPS =max {0, a, + 1/2@2n- 2 jo.)}

2 i= 4J

(6)
MAXLOOPS =min [o,, 1/2% (j-2) a}

J

MINLOOPS = minimum number of loops
MAXLOOPS = maximum number of loops

q. = number of nodes with degreej
oJ ——
J = degree oo

Cn = highest degree in list (a # 0)

The form of the equations results from the following considerations:

1) Only secondary nodes may be assigned to loops. Nodes of
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higher degree will aluays be in the non=-ioop portion of the
ring-supsratonm.

2) A loop, by definition, must be attached by two bonds to a
single node in the resulting ring-superatom. The loop cannot
be attached through the free valences. Thus tha degree list
must possess 3 sufficient number of quaternary or higher degree
nodes to support the loop(s).

3] Each loop must have at least one secondary node, which is
the reason MAXLOOPS is restricted to be at most the number of

secondary nodes in the degree list (Equation 6).

/

4) “here must be available one unsaturation for each loop
(this is implicit in the calculation of MINLOOPS and MAXLOOPS)
as each loop effectively forms a neu ring.

Partitioning of Secondary Nodes between Loops and Non-Loops. For euch of
the possible numbers of loops (0, 1, ...) the secondary nodes are removed from
the degree list and partitioned among the loops, remembering that the loops are
at present indistinguishable and each loop must receive at least one secondary
node. In the example (Fig. 2), starting with the degree list (4, 0, 2), there are
three ways of partitioning the four secondary nodes among two loops and the
remaining non-loop portion. Removal of the four secondary nodes from the
degree list and assignment of two, three or four of them to two loops results in
the list specified in Figure 2 as the "reduced degree list". Specification of two
loops transforms the two quaternary nodes in the degree list into two secondary
nodes. This results from the fact that two vaiences of a quatemory or higher
degree node must be used to support each loop. These are "special" secondary
(or higher, for atoms with valence } 4) nodes, however, as these particular nodes
will have loops attached as the structure is built up. Thus, in the exomple,
ony secondary nodes which are found in the reduced degree list will have a loop
attached in o subsequent step. The degree list (4, 0, 2) thus becomes the
reduced degree list (2, 0, 0) in the partition specifying two loops (Fig. 2).
Similarly, the partition of one loop for the degree list (3, 2, 1) results in a
reduced degree list of (1, 2, 0) with the three original secondary nodes
partitioned among loop and ron~loop portions (Figure 2).

If, ofter the first, second, ... nth loop partition, there remain one
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or more quaternary or higher degree nodes in the reduced degree !ist,
the list must be tested again for the possibility of additional
loops. Each loop partition will result in an additions! set of
structures. The second pass will yield those structures possessing
loops on loops, and eo forth. One such superatom which would be

generated in this manner from a compcsition of (at least) CU is 15.
65

CaCuCeCulaC
15
"AR [1

Partitioningof Non-Loop Secondary Nodes among Edges. The secondary nodes
which were not assigned to loops ("non-loop secondary nodes") are partitioned
among the edges of the graphs after labelling with special secondary nodes, or
loops. Loops are not counted as edges. There are, for example, five ways to
partition four non-loop secondary nodes among the edges of tha vertex-groph
possessing two quaternary nodes (Fig. 2).

Partitioningof Loop Secondary Nodes among Loops. This partitioning step is
carried out assuming indistinguishability of the loops. Each loop must receive
at least one secondary node, which limits the number of possible partitions.
Results are presented in Figure 2.
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Appendix D = Acyclic generator

A method of construction of structures similar to the method for acyclic

isomers is utilized to join multiple ring=superatoms and remojni ajpms.The DENDRAL algorithm for construction of acyclic isomers’ 18,
relied on the existence of a unique central atom (or bond) to every molecule.
The present acyclic generator uses the same idea. The present algorithm, though
simpler in not having to treat interconnection of atoms or ring-superatoms through
multiple bonds, is more complex because of the necessity to deal with the
symmetries of the ring-superatoms. -

Di. flethod for the case with even number of total atoms.

The superatom partition CU /C U /-/C (partition 7, Table II and
22 21 2

Figure 2) will bse used hers to illustrate this procedure. The

superatompots C ., and C U have exactly one possible ring-superaton2 21

for each (see Table Vil).

Table VII.

Super atompot Superatoa

Cu -C=C-
2 2
Cu »C =C¢
21

Thus acyclic structures are to be built with <C=L- , >0=L< and tuo
C's.

There are an even number of atoms and ring-superatoms. The

structures to be generated fall into two categories (a) those with
bond cantroid; (pb) those sith an atom centroid.

(25) 8. G. Buchanan, A. NM. Duffield, and A. V. Robertson, in “Mass
spectrometry, Techniques and Applications,” G. H. A. Milne, ed., John
Wiley and Sons, Inc., 1971, p. 121.
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Category A. BOND CENTROID (see Fig. 3)

Step 1. Partition into Two Parts.

The atoms and ring-superatoms in the list of superatoms are
partitioned into two parts, with each part having exactly half the
total number of items. Each atom or ring-superatom is a single ites.
Each part has to satisfy equation 7, called the Restriction on
Univalents.

Restriction on Univalents:

n

i=2

i = valence.

a. = number of atoms or superatoms of valence i.
n' = maximum valence in composition.

There are two ways of partitioning the four items into two parts (Fig. 3). The
restriction on univalents is satisfied in each case. The restriction will disallow

certain partitions that have "too many” 26  univalents other than hydrogens and
therefore is essential only in partitioning compositions that confain any number
of non-hydrogen univalents.

Step 2. Generate Radicals from Each Part.

Using a procedure described in Section D3, radicals are generated from each port
in each partition. The result of application of this procedure to the example is
shown in Table VIII.

(26) The form of equation 7 results from the fact that the number of univalents (a.)
cannot exceed the number of free valences necessary to connect the
superatoms, leaving one valence free for the radical valence.
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Table Viil. Radicals Generated from Given Parts

Port | Radicals

(lg) -C=C-, )C=C( . - -C=C-CH=CH,
~CH=CH-C=CH

He
CH,

- aah aba ay ED ap SR an Sb Spat 4 dE Ob 5 SHES aD a GF GO ER EE as € ER + oh ES ar GN OF a GED ab A Che ab gE SHED GND aE a dD ar SD GED aE ED Ge ab

(1b) C, - -CH,-CH,
- ES a Gh a EE ED SEES Ul ES UE ON EEE Gh 0 Eh G5 Eh aS Shan Gn anEa ———

(29 -C=C-~-, C + -C=C-CH,

-CH,-C=CH

- an-— a ED ap Teen Sb Gn G5 4 A) Gb 4 aD JD ahah SEE ED GPE) Era SRE a + ab wn HUD uP G0 BS U5 GD SF Gab Ob Ub 43a ab $0 SEED ap ER bab GREED SEED ay

(2b) )C=C( , C -+ -CH=CH-CH,

~C-CH,
[

CH,

| =CH,-CH=CH,

Step 3. Fora Molecules From Radicals.

The radicals are combined in unique pairs, uithin each initial
partition. Each pair gives rise to a unique aolecule, for each of
which the centroid is a bond. Theres are nine such molecules for the
example chosen (Fig. 3).
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Category B. ATOM CENTROID (see Fig. 4).

Step 1.Selectionof Centroid.

One must consider every unique atom or ring-superatom that has a freevalence of three or higher as an atom centroid 2%. In the example,
of three candidates available: -C=C- , ) C=C{ and C, the first is not
chosen for it has a free valence of only two.

Step 2, Partition the Rest of the Atoms.
The atom or ring-superatom chosen for the centroid is removed from the set
and the rest are partitioned into a number of parts less than or equal to the
valence of the central atom. Each port must have less than half the
total number of items being partitioned (again a ring-superatom is o
single item). Each part must satisfy the restriction on univalents (equation 7).

Thus, for the case where a carbon is the centroid, four partitions are
attempted. The condition that each part has less than or equal to one-half
the number of superatoms remaining after selection of the central chom must
be satisfied, or at most one for this example. There is exactly one
partition for three parts, i.e., one in each. The partitions are shown in
Figure 4.

Step 3. Generate Radicals.
Once again, using the procedure described in Section D3, radicals are
constructed for each part in each partition. For example, the partition
-CamC- gives rise to exactly one possible radical -CamCH (Fig. 4).

Step 4. Combine Radicals.
Although in the example shown every part generates only one radical, in the
general case there will be mony radicals for each part. If so, the radicals
must be combined to give all unique combinations of radicals within each part.
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Step 3. Form Molecules from Central Atom and Radicals.
If the centroid is not a ring-superatom but is a simple atom, then each
combination of radicals derived in Step 4 defines a single molecule that is
unique. Thus for example when C is chosen as the centroid, step 4 gives one
combination of radicals which determines a single molecule when connected
to the central C (see Figure 4).

If the centroid is a ring-superatom and the valences of the ring-superatom
are not identical then different ways of distributing the radicals around the
center may yield different molecules. Labelling of the free valences of the
central ring-superatom with radicals treated as labels (supplemented with
adequate number of hydrogens to make up the total free valence of the ring-
superatom) generates a complete and irredundant list of molecules. Thus
> C=C( is labelled with the label set:

one of ~-C==CH, two of =CH,, and one of =H.

There are two unique labellings as shown in Figure 4.

D2. Method for odd number of total atoms.

With an odd number of total atoms, no structures can be generated with a bond
centroid. Only atom centroids are possible 1025 | However, it is
possible for structures to be built with a bivalent atom at the centroid. Thus
the procedure outlined in Category B above is followed, in this case also
allowing a bivalent atom as the centroid.

D3. Generation of Radicals.

The goal of this procedure is to generate all radicals from a list of
atoms and ring=superatoms. A radical is defined to be an atom or
superatom with a single free valence. When a composition of atoms and
ring-superatoms is presented, from which radicals are to be constructed, two
special cases are recognized.

Speciol Case 1. Only One Atom in List of Atoms.
When only one atom which is not a ring=superatom is in the list, only one
radical is possible. For example, with one C, the radical ~CHj, is the
only possibility.
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Special Case 2. Only One RiAg-superatom in List of Ring=superatoms.

In this case, depending upon the symmetry of the ring-superatom, several
radicals may be possible. This is determined by iabelling the free valences
of the ring-superatom with one label of a special type, a “radical-valence".

Example: A list of ring-superatoms consists of one ring-superatom, ]4.

1

C-

16

Two radicals result from labelling with one radical valence.

CH | o—
vd bd

CH CH

Y 18

General Case

Radicals have uniquely defined centroids as well . The centroid is
always an atom of valence two or higher. The steps for construction of
radicals are as follows.

Step 1. Selection of Atom Centroid.

Any bivalent or higher valent atom or ring-superatom is a valid condidate to
be the centroid of a radical. Thus, for example, for the composition
-CaC-, »C=C{ (see part 1a in Figure 3) both are valid centroids (Figure 5).
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Step 2. Partition the Rest of the Atoms. |
The atom chosen for the centroid is removed from the list of superatoms. One
of the valences of the centroid is to remain free (the radical valence).
Therefore, the rest of the atoms in the list are partitioned into less than or
equal to (valence of centroid = 1) parts. Of course, each part should
satisfy the restriction on univalents (equation 7) but for constructing
radicals there is no restriction on the size of the ports.

Step 3. Form Radicals from Each Port. .
The procedure to construct radicals is freshly invoked on each part thus
generating radicals. Each part in Figure 5 gives rise fo only one radical, each
arising from specic! case 2.

Step 4. Combine Radicals in Each Port.
For the example in Figure 5, sach part yields only one radical. In a more
general situation, where the rest of the list of superatoms after selection of a
centroid is partitioned into several parts, and where each port yields
several radicals, the radicals are combined to determine all unique combinations
of radicals.

Step 5. Label Central Atom with Radicals.
If the center is an atom (not a ring=superatom) then each unique combination
defines a single unique molecule.

If the center is a ring-superatom, the radicals are determined by lobelling the
center with o set of lcbels which includes: i) the radicals; ii) a leading
radical-valence; iii) an adequate number of hydrogens to make up the
remaining free valences of the ring=superatom. One selection of center gives
one radical and the other gives two more, to complete a list of three
radicals for the example chosen (Fig. 5).

Summary

For the example chosen to illustrate the operation of the acyclic generator,
twelve isomers are generated, nine shown in Figure 3 ond three shown in
Figure 4.
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FIGURE CAPTIONS

Figure 1. Outline of the strategy for structure generation.

Figure 2. Major steps in the generation of isomers as illustrated for

C Hg: This example outlines the method for one
superatom partition, that which allocates all atoms to
a single superatompot with no atoms in the remaining pot.

Figure 3. Operation of the acyclic generator for the case of a bond
as a centroid for the structures.

Figure 4. Operation of the acyclic generator for the case of an
atom or superatom as a centroid for the structures.

Figure 5. Outline of the method for generation of radicals which |
are eventually c=mbined by the acyclic generator to yield
final structures.
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Empirical Formula
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Figure 3

Category A. BOND CENTROID

List of Superotoms [ -CeC-, )C =c{ , C,C |

Partition into ST
2 parts -C2C-, Yc=c( /e, -CaC-,C / yee ,C

Part Number lo Ib 20 2b

Generate Radicals

for each port 3 radicals | radical 2 radicals 3 radicals

[ see Table viii ]

Combine Radicois

in pairs to form (3x1=) 3 molecules (2%3=) 6 molecules

Molecules

CH, - CH, - CaC-CH *CH, CH,-CH=*CH-CuC-CH,
CHy - CH -CH=CH-CaCH CHy- CH = CH- CHC2CH

CHy - CH, i ~-CuCH aN CaC-CH,H, H;
CHy- C -CH,-C=CH

tn,
CH,* CH-CH;CuC — CHy

CHs> CH- CH,-CH,-CaCH
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Figure 4

Category B ATOM CENTROID

Listof Superatoms [ -C=C—, >SC=C< , C, C 1

Select Atom Centroid >CTTC

Partition Rest into a)WN NN
upto (free valence) parts VOID VOID VOID VOID

Part -CzC-/C/C X=C¢/-CaC-/C

\ 2 3 | 2 3
Generale Radicols from -C=CH/ ~CHy /- CH, — CH=CH,/-CaCH/CH;

each part | |
Combine Radicals in only | way only | way

eoch port (-C=2CH, ~CHy.-CH,) (-CH=CH,, ,-CsCH,-CH,)

Label Atom Centroid CHC —CH= C ~CH, CH,=CH-CH-CzCH

with radicals hy Ha

CH=C-C = CH=CH,
|

CHy

ST



Figure S

GENERATION OF RADICALS

List of Superatoms [ -~C=C~- , >C=C_C <]
(from Port Number la,

Figure 3) VaSa

Select Atom Centroid -C=C- >C=C<L

.. aparts=2,3
Partition Rest into # parts

=]

upto (valence -|) parts VOID

only | partition only | partition
into | part info | part

Port >1 cL -CsC-
Generate Rodicals — CH = CH, —C =CH

Combine Radicals in | only | | onlyl
each part —-CH=CH, -C= CH

Label Atom Centroid |
with radicals + one -C2C~-CH=CH, —~CH=CH-C = CH

leading radical valence -c — C= CH
+ hydrogens CH,
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