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Problems of structural isomerirm in chemictry have received much attention.
But only occasional inroads have been made toward a systematic solutior of
the urderlying graph theoretical problems of structural isomerism. Solutions
in the past have been partial, with acyclic and cyclic suructures being

3 of

treated independently. Recently the "boundaries, score and limiiz"
the subject of structural isomerism of acyclic molecules have been defined
by the DENDRAL algorithm3 . This algorithm permits an enumeration and

representation of all possible acyclic molecular structures with a given

empirical formula.

Acyclic molecules represent only a subset of molecular structures, however,
and it may be argued that cyclic structures (including those possessing
acyciic chains) are of more general intevest and importance to modern
nhemistry from both a practical and theoretical standpoint. An approach to
cyclic structure generation has appeared in a previous paper in this seriesh .
That approach, which operates on a set of previously generated acyclic forms
by labelling hydrogen atoms pairwise and connecting the atoms to which they
are attached with a new bond, has one serious drawback. The approach cannot
make efficient use of the symmstry properties of cyclic graphs; hence an

irordinate amount of computer time must be

(3) J. Lederberg, G.L. Sutherland, B.G. Buchanan, E.A. Feigenbaum,
A.V. Robertson, A.M. Duffield, and C. Djerassi, J. Amer. Chem. Soc., 2&,
2973 (1969).

(k) Y.M. Sheikh, A. Buchs, A.B. Delfino, G. Schroll, A.M. Duffield,

C. Dijerassi, B.G. Buchanan, G.L. Sutherland, E.A. Feigenbaum, and
J. Lederberg, Org. Mass Spectrom., 4, k93 (1970).
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spant in retrospective checking of each candidate structure with
existing structures to ramove duplicates. For this rsason, an
alternative approach to construction of cyclic moiecules has been
developed. This approach is designed to take advantage of the
under lying graph theoretic considerations, prissrily symsmetry, to
arrive at a method for more efficient construction of a compiete and
irredundant list of isomers for a given empirical formula. Central
to the successful solution of this problem is the generation of all
positional isomers obtained by substitutions on a given ring system.
This topic has received attention for nearly 188 years, with limited
SUCCGSSS . Its more general ramifications go far beyond organic
chemistry. Graph theoreticians have cc-sidered various aspects of
‘thi-.'. topic, freguently, but not necessarily, in the contex: of

6

organic molecules. Poiya has presented a theorem uhich permits

calculation of the number of structural isomers for a given ring

system., Hill 7“"’ has applied this theorem to enumeration of

Te 8

isomers of simple ring compounds and Hill and Taylor have

- ————————————— - -

(S) Sece, for exampie, A.C. Lunn and J.K. Senior, .J. Phys. Chen.,
33, 1627 (1929) and referencas cited therein.

(6) &) G. Polya, Compf. rend., 281, 1167 (1835);
b) G. Polya, Mely. Chiam. Acta. 13, 22 (1936);
¢) G. Polya, Z. Kryst. 92, 415 {1936);
@) G. Polya, Acta Math., B8, 145 (1837).

(7' a) T.L. Hill, J, Phys. Chem., &7, 253 (1343);
o) T.L. Hill, ibid., p. 413.
¢) T.L. Hill, J. Chem. Phys., 11, 23 (1%43).

(8) W.J. Taylor J. Chew. Phys., 11, 532 {1343).
2



pointed out that Polya's theorem permits enumeration of geometrical and
optical isomers in addition to structural isomers. More recently, formulae
for enumeration of isomers of monocyclic aromatic compounds based on graph
theory, permutation groups and Polya's theorem have been presentedga . This
history of interest and results provides only marginal benefit to the organic
chemist. Although the number of isomers may be interesting, these methodss-ga
do not display the structure of each isomer. Also, these methods do not
provide information on the more general case where the ring system is
embedded in a more complex structure. Even for simple cases the task of
specifying each structure by hand, without duplication, is an ouerous one.

9

Balaban has published a series of papers addressed, in part, to the problem

of specification of isomeric structures. Although his method, which differs
substantially from our own, involves significant manual effort and does not
apvear to encompass a mechanism for prospective avoidance of duplicate

9b,9¢

structures, his compilations of isomers of annulenes . represent an

important contribution as extensions to the compilations of Lederberglo .

METHOD
OVERVIEW
Framework. The framework for this method is that chemical structures consist
10,11

of some combinaticn of acyclic chains and rings or ring systems™ ° « The

problem of construction of acyclic isomers

9a) A.T. Balaban and F. Harary, Rev. Roum. Chim., 32, 1511 (1967); b) ibid.,
11, 1097 (1966); Erratum, ibid., 12, No. 1, 103 (19 ), c) ibid., 1T, 865
(1972); 4) ibid., 18, 635 11973), and additional references cited herein.

10) J. Lederberg, DENDRAL-64, Part I. Notational Algorithm for Tree Structures,

NASA Star No. N65-11158 NASA CR-57029; Part II. Topology of Cyelic Graphs, NASA

Star No. N66-140T4, NASA CR-68898; Part III. Complete Chemical Graphs: Embedding
Rings in Trees, NASA Star No. N71-76061 NASA CR-123176.

11) It is assumed that structures are completely connected by chemical bonds;
thus catenates and threaded structures are viewed as coneisting of separate molecules.
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(and radicals) h2s been solved proviou.ly3 . 1t all possible ring
systems can be constructed from all or part of the atoms in the
empirical formula, and all possible acyclic parts are available from
the acyclic generator, the combination of ring systems with acyclic
parts in all unique ways would yield the complete list of isomers.
The method for construction of ring systems ie described below. This
description employs some terms which require definition. The
definitions aiso serve to illustrate the taxonomic principles which
underiie the operation of the structure generator. The
generator’s view of molecular structure differs in some respects from
the chemist's., A chemist, for exampie, =8y vieu structures
possessing the same functional group or ring 8s related. The
generator works at the more furndamental level of the vortu-guph'o,

as described belou.

Chemical Graph. A molecular structure may be vieusd as & graph,

termed the chemical graph, or skeleton. A chemical graph consists
of nodes, with associated atom names, and edges, which correspond

to chemical bonds. Consider as an example the substituted piperazine,
], uhose chemical graph is illustrated in Chart | as 2. Note
that hydrogen atoms are ignored by convention, while the symbol “U®
is used to specify the unsaturation. The degree (primary, secondary,

...) of a node in the chemical graph has its usual meening, i.e., the



number of (non-hydrogen) edges connscted to it. The valence of sach
atom determines its maximum degree in tha graph. As wusally displayed
by chemists in planar representation, the chemical graph describes
the connectivity rather than the geometric configuration of a

molecular structure.

Superatom. In general, 2 chemicadl graph can be separates into

cyclic and acyclic parts. Each cyclic structural sub-unit may be

deemed a superatos possessing any number of free valmcn'z o
The chemical graph g arises from 2 combingtion of two carbon atoms
Witn ring-superatom 3. Ring-superatom 3 possesses the indicated
free valences to which the remsining hydrogen and tuo methyl radicals

uill be attached (Chart 1),

Ciliated Skeleton . A ciliated skeleton ia a skeleton with free
MAAAAANAAAAAAA A

valences but without atom names. Ring-superatom 3 arises from the
ciliated skeleton 4 by associating the atom names of eight corbon and two

nitrogen atoms with the skeleton (Chart 1).

Cyclic Skeleton. A chemical graph whose nodes are not associated

with atom names and which contains no acyclic ports ond no free

12) A free volence is o bond with an unspecified terminus. Any substructure,

cyclic or not, may be treated as a superatom; however, the term, in this
poper, is generally restricted to cyclic (termed ring~) superatoms.

5



valences is termed a cyc/ic skaleton. Ciliated skeleton .’.’. srises
trom one uay of associating sixtesn free valences nith the nodes on

the cyciic skeleton g (Chart 1).

Ver;gx-craph. Vortex-grapm'o are cyclic skeletons from which
nodes of degres less than thres have been deleted. The vertex-graph
of the cyclic ckelctoné is the regular trivalent grlph'o of two
nodes, § Note that the remaining nodes of the cyclic skol.toni
are of degree tuo. Removal of these secondary nodes from $ while
retaining the interconnections of the two tertisry nodes yields &

(Chart 1}.

As an illustration of the variety of structures uwhich may be
constructed from 3 given vertex-graph and empirical forauls, for

example, C H N, consider that graph B is the vertex-graph -for
16 28 2 . R

all bicyclic ring systems (excluding spiro formsl. Cyclic skeletons
Z and 8 (Chart 1), for example, may be constructed from eight
secondary nodes and § There are many ways of associating sixteen
tree valences with each cyclic skeleton, resulting in a larger nuaber
of ciliated skeietons. For example, §_ and }.?, ariss from
differant allocations of sixteen free valences to § (Chart 1),
There is only one wWay to associate eight carbon atoms and two

nitrogen atoms with each ciliated skeleton to yield superatoms (e.g.



Chart [

Conventionol Reprsseniatiom
Composition = C, 49N,

Chemical Groph:
Composition = anz Uz

Superatoms
Ring - superatom Composition= c.N,u,

Acyclic Supergtom Compositions Ce

Ciliated Skeleton:

Cyclic Skeleton:

Vertex Groph



2} and %2: Chart 1). Howeve., several structures are obtained by
associating the remaining two carbon atoms {in this example) with each
superatom, as an ethyl or two methyl groups. Chemical graphs l} and 23,
for example, arise from two alternative ways of associating two methyl

groups with superatom 2

Multiple Bonds. For the purposes of this program we adopt the formalism
that all multiple bonds (double, trinle, ...) are considered to be small
rings by the program. Previous versions3 (acyclic generator) differ from
this program in that double and triple bonds are regarded as specially

labelled edges.

AIMS

The structure generator must pLroduce a complete list of structures without
duplication. By duplicate structures we mean structures which are
equivalent in some well-defined sense. The class of isomers generated by
the program includes only connectivity isomers. Transformations (utilized
to determine equivalence) allowed under connectivity symmetry preserve the
valence and bond distribution of every atom. Connectivity symmetry does

not consider bond lengths or bond angles. Tnis choice of symmetry results
in comstruction of a set of topologically vnique isomers. A more detailed
discussion of equivalence is discussed in Appendix A and in the accompanying

paperl3 ; a discussion of isomerism and symmetry is presented in Appendix B.

13) L. Masinter, N.S. Sridharan, J. Amer, Chem. Soc., 00, 0000 (1973).




STRATEGY
The strategy behind the cyclic structure generator is strongly tied fo the
framework described above. The strategy is summarized in greatly simplified
form in Figure 1. The vertex-graphs from which structures are constructed con
be specified for a given problem by a series of calculations. Thus Part A of
the program (Figure 1) partitions the pot of atoms in all possible ways; each
partition consists of those atoms assigned fo one or more *syperatompohs” and
a "remaining pot." Each superatompot is a collection of atoms from which all
possible, unique ring-superatoms ? can be constructed based on the
oppropriate vertex-graphs (Part B, Fig. 1). Each ring=superatom will be a ring
system in completed structures. The atoms in the remaining pot will form
acyclic parts of the final structures when combined in all possible, unique ways
with the ring-superatoms from the corresponding initial partition (Part C, Fig. 1).
DESCRIPTION
We are faced with the difficulty of describing a complex computer
program in the traditional mode of presentation in 2 scientific
journal. The narrative form is not the ideal mediua for this
description; simple examples do not aluays indicate all essentiai
aspects of a program. A deeper understanding of a progras could pe
engendered through the use of 3 large nusber of well chosen examples,
but the length of such a presentation wuould be excessive and would

tax the patience of sven the most interested reader.



We are thus aware of the insufficiency of considering only one example in the
following written description. We have adopted the strategy of presenting
essential aspects of the procedure for structure generation in the main

body of the text. Details of the description which might obscure the
principal concepts are placed in Appendices C and D. Mathematical

detoils are available elsewhere.“’ 15

We hope this serves the purpose of
providing the casual reader with o deeper understanding of the method
without having to contend with details which, on the other hand, are

important to others who wish to make use of our approach.

The example chosen to illustrate each step of the method is céHB (or C6U3 as

there are three degrees of unsaturation).

This example does not contain bivalent or trivalent atoms (e.g., oxygen and
nitrogen, respectively) or atoms of valence greater than four, nor any

univalent atoms other than hydrogen (e.g., chlorine, fluorine).

Partitioning ond Lgbelling. The mechanism for structure generation

involves a series of "partitioning" steps followed by a series of

(M)@) H. Brown, L. Masinter and L. Hjelmelend, Discrete Mathematics, in
press;
(b) Stonford Computer Science Memo STAN-CS-72-0318.

(15) (@) H. Brown and L. Masinter, Discrete Mathematics, submitted;
(p) Stanford Computer Science Memo STAN-CS-73-0361.
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"labelling" steps. Partitions are made of items which must be
assigned to objects (usually graph etructures or parts thereof) as
the molecular structures are built up from the vertex-graphs. The
process by which items are assigned to the graphs is termed labnlling!a’
Examination of Chart | reveals the different types of items
involved. For exampie, nodes are partitioned among and label led upon
the edges of the vertex-graphs to yield the cyclic skeletons. Free
valences are partitioned amsong and laballed upon the nodes of cyclic

skeletons to yield ciliated skyietons, and o forth,

Partitioning steps in the subsequent discussion are carried out
assuming that objects among which items are partitionsd are indiet-
inguishable. Distinguishability of objects (edges, nodes, ...) is
specified during labelling and will be discussed in a subsequent
section. The partitioning steps performed by the program. are

outlined in Taole 1. Each step is described in more detai! below.

11



Table 1. Partitioning Steps Performed by the Structure Generator

Step # Partition Among
! Atoms and Unsaturations Superatompots and
. in Empirical Formula Remaining Pot
2 Free Valence Atoms in Superatompot
3 Secondary Nodes Loops / Non-loops
4 Non-loop Secondary Edges of Graoph
Nodes
5 Loop Secondary Nodes Loops
é Ring=superatoms and Efferent Links
Remaining Pot (see Appendix D)

BABLLA: Supcratom szi tions.

Ring-superatons are tuo-connected” structures, i.e., the ring-
superatom cannot be split into twuo parts by scission of a single

bond. The atoms in an empirical formula may be distributed among

from one to several such tuo-connected ring-superatoms. A
distribution which allots atoms to tuo or more superatompots will
yield (respectively) structures containing two or more ring-

16
superatoms |inked together by singie bonds (or acyclic chains) .

16) Chemists are more familiar with terms such as rings or ring
systems, The term tuwo-connected is used here in conjunction with
ring-superatoms for a3 more precise description. For example,
biphenyl may be vieued 38 a single ring system or tuo rings depending
on the chemical context. In this work, however, bipheny! consists of
teo ring-superatons (two phenyl rings) linked by 3 single bond.

12



In the generation process, one must find all possible ways of partitioning the
given formula into superatompots and o remaining pot, such that molecules can
be constructed. The considerations in forming superatom partitions deal
primarily with valence and unsaturation. This procedure is summarized in
Appendix C, Superatom Partitions. The partitions which result are summarized

in Table II.

PR L ettt btttk a ettt - mow

Taole I]. Allowued Partitions of C U Into Superatompots and Remaining
& ¢

3
Pot.
Partition Number of Superatompot Number Remaining
Nuwmber Superatompots 1 2 3 Pot
1 1 cCu - - -
63
2 1 cu - - c
53 1
3 1 cu - - c
43 2
4 1 cu - - C
33 3
S 2 Cu ,CuU - -
62 21 .
6 2 Cu cu - c
32 21 1
7 2 Cu cu - o
22 21 2
8 2 cu cu - -
b1 22
9 2 cyu Cu - C
31 22 1
10 2 cv cu - -
32 31
11 3 cv cu cv -

21 21 21

P et

13



PART B. Ring-supcratoa Construction.

Each partition (Table 11) must now be treated in turn. The couplete
set of ring-superatoms for each superatompot in 8 given partitioﬁ
must be constructed. The major steps in the procedure are outlined

in Figure 2.

Valence List. The first step in part B is fo strip the superatompot of

atom names, while retaining the valence of each atom. The numbers of each
type of atom are saved for later labelling of the ciliated skeletons (Chart |).
A valence list may then be specified, giving in order the number of bi-, tri-,
tetra- and n-valent nodes which will be incorporated in the superatom. Thus
the superatompot C 6U3 is transformed into the valence list 0 bivalents, 0

trivalents, 6 tetravalents (0, 0, 6), and C 4U2 becomes (0, 0, 4) (Figure 2).

Calculation of Free Valence. From the valence list ond the associated

unsaturation count the number of free valences of each superotompot is
determined uniquely. (see Calculation of Free Valence, Appendix C). For
CéU3 the free valence is eight (Fig. 2). The free valence of o superatom
represents the number of bonding sites which can connect to hydrogen

atoms, other superatoms or atoms in the remaining pot.

Partitioning of Free Valence. The free valences are then partitioned

among the nodes in the valence list in all possible, unique ways. (see
Appendix C, Partitioning of Free Valence).

14



Dcegree List. Each partition of free valences alters the affective
valence of the nodes in the original valence list with respect to the
ring-superatom. In the example, assignment of one or two free
valences to a tetravalent node transforms this node into a tri- or
bivalent node respectively., As the ring-superatom is constructed,
those tetravalent nodes which have been assigned, B8ay, two free
valences, have then only two valences reuaiﬁinq for attachment to the
ring-superatom. These nodes are then of dcgrlon to and may be
termed secondary nodes., Thus the partition of free vaiences
2,2,2,2,0,00n six tetravalent nodes yields the degree list (4,0,2)
(Fig. 2) as four of the tetravalent nodes receive two free valences
each,yielding four nodes of degres tuo (secondary) and leaving tuo
nodes of degree four (gquaternaryl. The program keeps track of the
nunber of free valences assigned to all nodes for use in 8 subsequent
step.

la,?'?-&’.‘ As will be clarified in the subsequent discussion, there are
several general types of ring-superatoms which cannot be constructed

from the vertex-graphs available in the CATALOG (described below).

17)  Use of the term degree with reference to the degree list refers to the

number of bonds other than free valences, with double bonds being counted
twice. A free valence may or may not eventually be attached to a hydrogen
atom in the final structure.

15



These are all cases of multiple extended unsaturations either in the
form of double bonds or rings. Examples are the following:

1} bi-, tri-, ... n-cyclics with exocyclic double bonds:

2)  some types of gpiro ring systems;

3) allenes extended by additional doubie bonds, e.g.,
CeCsCaC

The concept of a loop, each loop consisting of a sinéle unsaturation and at least
one bivalent node, must be utilized for these cases. Examples of loops
containing one, two and three bivalent nodes are shown in Chart [I. Note that
the two remaining "ends" of the unsaturation will yield a "looped structure*
when ottached to a single node in a graph (shown as X, Chart I1).

B e e T Y

Chart 11
bivalents = 1 2 3

Trhe method for specification of loops is discussed in Calculation of

Loops, Appendix C.

Partitioning of Secondary Nodes amaeng Loops and Non-loops. The secondary
nodes in the degree list are partitioned between the loops (if any) calculated

in the previous step and the remaining non=loop portion of the eventual graph.

16



Aspects of this partitioning step are presented in Partitioning of Secondary Nodes

Among Loops and Non-Loops, Appendix C. Results for the example are

indicated in Figure 2.

Reduced Degreu List. This procedure yieids the reduced degree list

which contains none of the secondary nodes originally present in the
cegree list, Any secondary nodes appearing in thes reduced degree |ist
are termed "speciai® secondary nodes as these nodes will have loops

attached in subseguent steps.

Ver tex-Graphs. The reduced degree 1lists are used to specify a set
of vertex-graphs for the eventual ring-superatoms. All tuo-connected
structures can be described by their vertex-graphs, which are, for
most structures, regular trivalent yraphs. This concept has been
described in detail by Lederbcrg'o . who has also presented 3
generation and classification scﬁene for such graphs. Given a set of
aii vertex-graphs, the set of all ring-supera.oms may be specified's .
ine vertex-graphs are maintained by the program in the CATALOG.
Catalog entries for regular trivalent graphs possessing two and four
nours ore presented in Table [11. This list must be supplemented by
additional vertex-graphs to cover several special cases regquirea for
generation of all structures for the exampie. These are also

presented in Tabie [ll. Hith the reduced degree list of a

7



TABLE 111, Vertex-Graphs Necessary for Construction of Isomers

of C6H8' This is a Partial Listing of the Ccmalog.‘:I
Number of Nodes
Planar b of Degree
Representation  Nome Three Four Remarks
(D 2A Regular trivalent graph
(hosahedron) 2 0 of two nodes
o= o«
Regular trivalent graphs
488 of four nodes
(tetrahedron) 4 0
A single ring composed
"Singlering k" 0 0 of k secondary nodes
Tetravalent Two nodes of degree
Dihedron 0 2 four
A single quaternary
(:)(:) “Daisy” 0 I node
@ $38C8 2 -

(a) ™e lictinz of reference 10 has been expanded to incigge vertex-graphs of
other combinations of nodes of degree three and four . The completeness
ot tne Catulog has be$8 verified where possible by independent graph 9b,9¢
consiruction methods * and by comparison with Baleban's compilations !

where appropriate.

{v) Names, except those in quotation marks, taken from Lederberg.10

18a) N.S. Sridharan, unpublished results; b) L. Masinter, unpublished
results.

17a



superatompot, the program reguests the appropriate CATALOG entries.
ln the example (Fig. 2), the reduced degree tist (0,0,2) specifies
ver tex-graphs containing two quaternary nodes (tetravalent dihedron) .
The reduced degree |ist (0.4,0) specifies regular trivalent graphs of
four nodes, of which there are two: 4AA and 488 (Tanie 111). Hhen
onli; secondary nodes are present in the reduced degres list, the

grapn "Singlering" (Tabie [1]) is utilizead.

Interlude. Up to this point the program has effectively decomposed
VAP A A A

the problem into a series of subprobiems, working down from the total
pot of atoms through a series of partitions and subpartitions to the
set of possible vertex-graphs. [n subsequent steps the vertex-graphs
are expanded to the final structures by a series of constructive

graph labellings (Tavle 1Y).

i8
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Table IV. The Six Groph Labelling Steps Performed by the Labelling
Algorithm

Labelling Step Function

1 Label Edges of Vertex-Grophs with
Special Secondary Nodes

2 Label Edges of Resulting Graphs with
Ncn=-Loop Secondary Nodes

3 Label Loops of Resulting Graphs with
Loop Secondary Nodes

4 label Nodes of Cyclic Skeletons with Free
Valences

S Label Nodes of Ciliated Skeletons with Atom Names

6 Label Free Valences of Superatoms with

Radicals (see Appendix D)

- o G . = — R O S e on o e

Labeliing Edges of Yertex-Graphs wWith Sgecial Secondary Nodes.
VAN AL\ WA~ W AT e e, ~——
Special seconaary nodes are those that will have ioops attached. The

specification of the possible attachments of the nodes to the graph
ia a "lavelling" procedure. This is the first of six such graph
labelling steps performed by the program. (Table I¥). All of these
labeliing steps involve the same combinatorial problem, that of
associating a set of n labeis, not necessarily distinct, with a set

of opjects Wwith arbitrary symmetrg'a . The game labelling aigorithm
is utilized for each of the six labeiiing steps. A description of the
under lying mathematics and proof of cospieteness and irredundancy

appears separately 4 .

18



Some aspects of the first labelling step indicate how equivalent labellings (which

would eventually yield duplicate structures) may be avoided prospectively,
by recognition of the symmetry properties of the graph; in the first labelling,
the vertex-graph. These symmetry properties are expressed in terms of the
permutation group (see Appendix A and refs. 13 and 14) on the edges of the
vertex-graph. This permutation group, which defines the equivalence of the
edges, may be specified in the CATALOG or, altematively, calculated as
needed by o separate part of the structure generator. As subsequent steps are
executed, o new permutation group (e.g., on the nodes for labelling step four,
Table 1V) is derived as necessary 3 . Thus, only labellings which

result in unique expansions of the structure are permitted. The reader
examining Fig. 2 may note that for this simple example the symmetries of the
vertex-graphs and subsequent skeletons can be discerned easily by eye. For
example, all edges of the tetravalent dihedron are equivolent, as are all the
edges of the regular trivalent graphs 2A and also 4BB. The $3BCH graph
(Table 1, Fig. 2) has four equivalent edges and one other edge, ond so forth.
in the general case, however, the symmetries of the vertex-graphs and

subsequent expansions thereof are not always obvious.

With the group on the edges specified, the labelling of the vertex-
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graphs with special secondary nodes is carried vut. The results of
this procedure for partitions containing loops are indicated in

Figure 2.

Mﬁg with Non-Loop Secondary Nodes. The graphs which resulted from

the previous lcbeliing are now labelled with the partitions of non-loop

secondary nodes (see Partitioning of Non=Loop Secondary Nodes Among

Edges, Appendix C). Each of the five partitions for the tetravalent dihedron

in Fig. 2 results in a single labelling, as all four

edges of the graph are equivalent. When edges are distinguishable there may

be several ways to label a groph with a single partition. There are, for

example, for the $38CB graph, two ways to label with the partition 3,0,0,0,0,
four ways with the partition 2,1,0,0,0 and three ways with the partition 1,1,1,0,0

(Fig. 2).

Labelling with Loop Secondary Nodes. There remain unassigned to the graphs
at this point only secondary nodes which were assigned to loops. These

nodes are first partitioned among the loops. (see Partitioning of Loop
Secondary Nodes Among Loops, Appendix C). For example,

following the path from the degree list (4,0,2) through labelling

with non=loop secondary nodes (Fig. 2), there are two ways of

labelling the two equivalent loops with four secondary nodes. There

is one way to label the two loops of the adjacent graph with three
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secondary nodes and one uay of labelling the tuo loops of sach of the
tuo remaining graphs in this eection of Figure 2 with tuo secondary

nodas. in this exanple (C U ) the loops in every case are squivalent
63

or there is only ona loop to be labelled, In the general case loops
may not be equivaient, resulting in 3 greater number of ways to labe!

loops with a given partition of secondary nodes.

w: Skeletons. The previous f(abeiling steps specified the number

of secondary nodes on each edge of and loop attached to the vertex-
¢raphs., All atoms in the original superatompot are thus accounted
for. A representation of the resuit is the cyclic skeleton, where
nodes and their connections to ons another are specifisd. (These

skeletons begin to resemble conventiona! chemical structures.]

Lavelling uith 5'31 Yalences. The nodes in a cyclic skeleton are
then labelled uwith free valences, yielding ciliated skeletons. This
labelling is trivial in the example, as all atoms are of the same
valence (four) (Figure 2). Free valence labelling is performed with
knouledge .of how many atoms of esch valence were present in the
original superatompot, but independent of the identities of the
atoms. The combinatorial cosplexity of this labelling problem followus
from the possible occurence of atoms with differing volences. In the

general case there may be several ways to perform this labelling on
22



single cyclic skeleton, whersas in the C U exampie thare is only one
3

Way.

Lavelling With Mvge yggz; The nodes of a ciliated skeleton are

then labelled with atom names to yisld the ring-superatoa(s). Again
this labelling is trivial in the example, as onl{) one type of atom is
present (carbon), yielding in sach case only a single superatom (Fig.
2). If there is more than one type of atom with the same valience
{e.g., silicon and carbon), the labelling probiem is more corplex.
Each node aof appropriate valence may be l3belled with either type of
atom. Duplicate structures are avoided by calculations involiving the

group pertaining to the set of nodas of equal valence.

liART C. Aczclic Generator.
The superatom partition expanded in the examgle had no atoms assigned to

acyclic chains (remaining pot). The set of ring-superatoms on completion of
Part B, above, thus yields the set of 36 structures on placement of o
hydrogen atom on each free valence (Fig. 2). If the superatom partition
(partitions 2-11, Table.l) contained more than one superatompot or

any atoms in the remaining pot, the acyclic generator must be used to
connect the segments of the structure in all ways. This proce<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>