
PBE-237 360

FAST PATTERN MATCHING IN STRINGS

Donald E. Knuth, et al

Stanford University

Prepared for:

National Science Foundation

August 1974

BIBLIOGRAPHIC DATA |}: Report No. 2.SHEET STAN=CS=T4=440 PB 237 360
4. Tide and Subtle 5. Report Date

August 1974
FAST PATTERN MATCHING IN STRINGS 8.

7. Author(s) 8. Performing Organization Rept.

Donald E. Knuth, James H. Morris, Jr. and Vaughan R. Pratt No. STAN-CS=T4-440
9. Performing Orgamzation Name and Address 10. Project/Task/Work Urit No.

Stanford University

Computer Science Department 11. Contract ‘Grant No.

Stanford, California 94305 GJ 36473X

12. Sponsoring Organization Name and Address 13. Type of Report & Period
National Science Foundation Covered
1800 G Street, N.W. technical, Aug. 1974
Washington, D. C. 20550 14.

15. Supplementary Notes

18. Abstracts

An algorithm is presented which finds all occurrences of one given string
withir. another, in running time proportionel to the sum of the lengths of the
strings. The constant of proportionality is low enough to make this algorithm
ot practical use, and the procedure can also be extended to deal with some
more general pattern-matching problems. A theoretical application ol the

algorithm shows thay the set of concatenations of even palindromes, i.e.,
the language fx } , can be recognized in linear time.

17. Key Words and Document Analysis. 17a. Descriptors

pattern, string, text-editing, pattern-matching, trie memory, searching,
period of a string, palindrome, optimum algorithm, Fibonacci string, regular
expression,

176. ldentificrs ‘Open-Ended Terms

E TURTRNUE PETRY,I o\V

NATIONA! TECHNICAL
INFORMATION SERVICE
US Departeeent nf Commerce

Springfield VA 22151

17c. COSATI Field/Group

18. Availability Statement 19. Sccurity Class (This 21. No. of Pages
. Report) Ce 35

Approved for public release; distribution unlimit qe, Tecurity Class(31e 4% Price J. 575 %75
FORM MT!S-3%5 (REV. 3-72) THIS FORM NAY BE REPRODUCED USCOMM-DC 14982-P72

Fast Pattern Matching in Strings

*/
by Donald E. Knuth (Stanford University),

James H. Morris, Jr. (Xerox Palo Alto Research Center),
Ean

and Vaughan R. Pratt (Massachusetts Inst. of Technology) Jef

Abstract

An algorithm is presented which finds all occurrences of one given

string within another, in running time proportional to the sum of the

lengths of the strings. The constant of proportionality is low enough

to make this algorithm of practical use, and the procedure can also be

extended to deal with some more general pattern-matching problems.

A theoretical application of the algorithm shows that the set of

concatenat ions of even palindromes, i.e., the language eal sy Can
be recognized in linear time.

Keywords: Tattern, string, text-editing, pattern-matching, trie memory,

searching, period of a string, palindrome, optimum algorithm,

Fibonacci string, regular expression.

CR Categories: L.Lko, 5.25, 5.23, 3.89

*

7 The resesrch reported here was done at Stanford University, supported
in part ty National Science Foundation grant GJ 36L4T3X and by the
Office of Naval Research contract NR Ohkk-LO2. Reproduction in whole
or in part is permitted for any purpose of the United States Government.

»* 3%

xf The researcn reported here was done at the University of California,
Berkeley, supported in part by National Science Foundation grant
number GP 7635.

satel The research reported here was done at the University of California,
Berkeley, supported in part by National Science Foundation grant
GP-694¢; and at Stanford University, supported in part by National
Science Foundation grant GJ-992.

J

io

Fast Pattern Matching in Strings

Text-editing programs are often required to search through a string

of characters looking for instances of a given 'pattern’ string; we

wish to rind all positions, or perhaps only the leftmost position,

in which the pattern occurs at a contiguous substring of the text.

For example, catenary contains the pattern ten , but we do not

regard canary as one of its substrings.

The obvious way to search for a matching pattern is to try searching

at every starting position of the text, abandoning the search as soon

as we find characters that don't match. But this approach can be very

inefficient, for example when we are looking for an occurrence of

assasaab in asasasazaasaaab - When the pattem to a"
and the text is a" , we will find ourselves making (m1) ° comparisons
of characters. Furthermore, the traditional approach involves 'backing up’

the input text as we go through it, and this can add annoying complications

when we consider the buffering operations that are frequently involved.

In this paper we describe a pattern-matching algorithm which finds

all occurrences of a pattern of length m within a text of length n

in O(m*n) units of time, and without 'backing up’ the input text.

The algorithm needs only O(m) locations of internal memory if the

text is read from ar ealcrnel file, and only O(log m) units of time

elapse between consecutive single-character inm:cs. All of the constants of
proportionality implied by these " ¢v = 1ormulas are independent of the

alphabet size.

We shall first consider the algoritim in a conceptually simple but

somewhat inefficient form. Sections 3 and 4 of this paper discuss some

1

ways to improve the efficiency and to adapt the algorithm to other

problems. Section 5 developsthe underlying theory, and Section 6

uses the algorithm to disprove the conjecture that a certain context-free

language cannot be recognized in linear time. Finally, Section 7

discusses the origin of the algorithm and its relation to other recent

work.

1. Informal development

The idea behind this approach to pattern matching is perhaps

easiest to grasp if we imagine placing the pattern over the text and

sliding it to the right in a certain way. Consider for example a

search for the pattern abcabcacab in the text

pabcbabcabcaabcabcabcoacabe ; initially we place the

pattern at the extreme left and prepare to scan the leftmost character

of the input text:

| asbcabcacab

babcbabcabcaabcabcabcacabece

|

The arrow here indicates the current text character; since it points

to b , which doesn't match the a , we shift the pattern one space

right and move to the next input character:

abcabcacab

babcbabcabcaabcabcabecacabdbece

|

iow we have amatch, so the pattern stays put while the next several

characters are scanned. Soon we come to another mismatch:

abcabcacab

babcbabcabcaabcabcabcecacabec
t

2

At this point, from the fact that we have matched the first three

pattern characters but not the fourth, we know that the last four

characters of the input have been abcx where x £ a ; we don't

have to remember the previously scanned characters, since our position

in the pattern yields enough information to recreate them. In this

case, no matter what x is (as long as it's not a), we deduce that

the pattern can immediately be shifted four more places to the right;

one, two, or three shifts can't possibly lead to a match.

Soon we jet to another partial match, this time with a failure on

the ei;hth pattern character:

abcabcacab

babcbabcabcaabecabcabracabe

t

Now we know that the last eight characters were abcaocax , where

x # ¢ . The pattern should therefore te shifted three places to the

right:

abcabcacab

habctabcabcaabcabcabcacabdc

1 |

We try to match the new pattern character, but this fails too, so we

shift the pattern four (not 1ive) more places. That produces a matc's,

and we continue scanning unti.. reaching another mismatch on the eighth

pattern character:

abcatcacab

| babcbabcabcaabcabcabecacabe

t

Again we shift the pattern three places to the right; this time a match

is produced, and we eventually discover the full pattern:

bo)

abcabcacab

babcbabcabcaabcabcabcacabe
t

The play-by-play description for this example indicates that

+he pattern-matching process will run efficiently if we have an

auxiliary table that tells us exactly hcw far to slide the pattern,

when we detect a mismatch at its j-th character pattern{j] . Let

next(Jj! be the character position to check next after such a mismatch,

so that we are sliding the pattern Jj -next(j] places relative to the

text. The following table lists the appropriate values:

j = 1 2 2 LL 5 ¢ 7 8 910

patternij] = a b ¢ a b c a c & b

next([j] = 0 1 1 01105 01

We shall discuss how to precompute this table later; fortunately, the

calculations are quite simple, and we will see that they require only

O(m) steps.

At each step of the scanning process, we move either the text

pointer or the pattern, and each of these can mcve at most n times;

so at most 2n steps need to be performed, after the next table has

been set up. Of course the pattern itself doesn't really move, we can

do the necessary operations simply by maintaining the pointer variable J .

4

2 Programming the algorithm

The pattern-match process has the general form

place pattern at left;

while pattern not fully matched

and text not exhausted do

begin

while pattern character differs from

current text character

do shift pattern appropriately;
advance 10 next character of text;

end;

For convenience, let us assume that the input text is present in an array

text{l:n]) , and that the pattern appears in pattern(l:m] . Let

and k be integer variables such that textk] denotes the current

text character an@d pattern[j] denotes the corresponding pattern

character; thus, the pattern is essentially aligned with positions

ptl through ptm of the text, where k = p+j . Then the above program

takes the following simple form:

J =k = 03

while j <m and k <n do

begin

while j > 0 and text|k] # pattern{J]

do§ := next{jl;
kK i= ktl;j = J*l;

end;

If j >m at the conclusion of the program, the leftmost match has

been found in positions k-m through k-1 ; but if j <m, the text

has been exhausted.

2

The above program is easily proved correct using the following

invariant relation: "Let p = k-j (the position in the text just

preceding the first character of the pattern, in our assumed alignment).

Then we have text{p+ti] = pattern[i] for 1 <i <j ; but for

1<t<p ve have text{t+i] ¢ pattern[i] for some 1 , where

l1<i<m.”

The program will of course be correct only if we can compute the

next table so that the above relation remains invariant when we perform

the operation J := next[j] . Let us lock at that computation now.

when the program sets Jj := next{j] , we know that j > 0 , and that

the last J characters of the input were

pattern{1] ... pattern(j-l] x

where x # pattern[j] . What we want is to find the leas: amount of

shift for which these characters car possibly match the shifted pattern;

in other words, we want next(j] to be the largest 1 less than

such that the last {1 characters of the input were

pattern{1} ... pattern{[i-1j x

and pattern(i] # pattern{j] . (If no such 1 exists, we let |
next{j] = C .) With this definition of next{j] it is easy to verify |

that text{t+l] ... text{k] # pattern(l] ... pattern[k-t] for

k-j <t < k -next[Jj] ; hence the stated relation is indeed invariant,

and our program is correct.

Now we must face up to the problem we have been postponing, the

task of calculating next[j] in the first place. This problem would

be easier if we didn't require pattern(i] £ pattern[j] in the definition

of next[j] , so we shall consider the easier problem first. Let £(J)

p

be the largest i less than j such that pattern(1l] ... pattern[i-1] =

pattern{ j-i+1] ... pattern{j-1] ; since this condition holds vacuously

for 1 = 1, we always have f(j) >1 when j >1 . By convention we

let f(1) = 0 . The pattern used in the example of Section 1 has the

following f table:

jj =1 2 3 4 5 6 7 8 9 10

pattern{j] = a b ¢ a b ¢ a ¢ a b

fj) =0 1112 3 LL 5 1 2 .

If pattern[j] = pattern[f(j)] then f(j+l1) = £(j)+1 ; but if

not, we can use essentially the same pattern-matching algorithm as

above to compute f£(j+1) , with text = pattern ! (Note the similarity

of the f£(j) problem to the invariant condition of the matching algorithm.

Our program calculates the largest j less than or equal to k such

that pattern{1l] ... pattern[j-1] = text{k-j+1] ... text[k-1] , so we

can transfer the previous technology to the present problem.) The

following program will compute f£(j+1) , assuming that

next{1l] ... next[j-1] and f(j) have already been calculated:

t i= £(J);

while t >0 and pattern(j] # pattern(t]
dot := next(t];

£(J+1) := t+l;

The correctness of this program is demonstrated as before; we can

imagine two copies of the pattern, one sliding to the right with

respect to the other. For example, suppose we have established that

f(8) = 5 in the above case; let us consider the computation of f£(9) .

The appropriate picture is

7

abcabcacsab

abcabcacab
'y

Since pattern{8] # b , we shift the upper copy right, knowing that the

most recently scanned characters of the lower copy were abcax for

Xx #b . The next table tells us to shift right four places, obtaining

abcabcacahb

abcabcacab

t

and again there is no match. The next shift makes t =0 , so f(9) =1.

Once we understand how to compute f , it is only a short step to

the computation of next[j] . A comparison of the definitions shows

that, for j >1,

” £(3) if pattern(Jj] # pattern(£(J)] ;next j] =

next[£(j)] , if pattern[i] = pattern(£(J)] .

Therefore we can compute the next table as follows.

J e=13 t ¢=0; next[1l] += 0;

while j <m do |

begin comment t = f(j);
while t > C and pattern(j] £ pattern[t]

dot := next[t];
t = t+l; J := j+1;

if pattern[j] = pattern[t]
then next{j] := next(t]

else next[j] := t;

end.

This program takes O(m) units of time, fcr the same reason as

the matching program takes O(n) : tue operation t := next{t] in

8

the innermost loop always shifts the upper copy of the pattern to the

right, so it is performed a total of m times at most. (A slightly

different way to prove that the running time is bounded by a constant

times m is to observe that the variable t starts at O and is

increased. m-1 times, by 1 ; furthermore its value remains nonnegative.

Therefore the operation t := next{t] , which always decreases v , can

ve performed at most m-1 times.)

To summarize what we have said so far: Strings of text can be

ccanned efficiently by making use of tw» ideac. (1) A *able of

"chifte", specifiring how to move the given pattern when a mismatch

recurs at its j-th character, can be precomputed. (2) This computation

~f "chiftc" can be performed efficiently by using the same principaie,

shifting the pattern against itself.

?. Gaining efficiency

We have presented the pattern-matching algorithm in a form that is

rather easily proved correct; but as so often happens, this form is not

very efficient. In fact, the algorithm as presented above would probably

9

not be competitive with the naive algorithm on realistic date, even

though the naive algorithm has a worst-case time of order m times n

instead of m plus n , because the chance of this worst case is rather

slim. On the other hand, a well-implemented form of the new algorithm

should go noticeably faster because there is no backing up after a

partial match.

It is not difficult to see the source of inefficiency in the new

algorithm as presented above: When the alphabet of characters is large,

we will rarely have a partial match, and the program will waste a lot

of time discovering rather awkwardly that text([k] # pavtern{1] for

k = 1,2,%5... . Wher. j =1 and text(k] # pattern(1l] , the algorithm

sets J := rext{l] = 0 , then discovers that j = 0 , then increases k

by 1, then sets j to 1 again, then tests whether or not 1 is <m,

and later it tests whether or not 1 is greater than O . Clearly we

would be much better off making J = 1 into a special case.

The algorithm also spends unnecessary time testing whether Jj >m

or k >n . A fully-matched pattern can be accounted for by setting

pattern(m+l] = 'A' for some impossible character a that will never

be matched, and by letting next[m+l] = -1 ; then a test for j <0 can |

be inserted into a less-frequently executed part of the code. Similarly

we can set text{n+l] = 'i' (another impossible character) and

text(n+2] = pattern(1l] , so that the test for k >n needn't be made

very often.

The following form of the algorithm incorporates these refinements.

10

k := 0; & := pattern[1];

pattern(m+l] := '@'; next[m+l] := ~1}
text[n+l] := 's'; text[n+t2] := a;

advance: comment J = 0 in previous program,

repeat k := k+l until text(k] = a;
if k > n then go to input exhausted;

J = 1;

char matched: J := j+l; k := k+l;

loop: comment J > Oj

if text[k] = pattern(Jj] then go to char matched;
J := next(J];

ifj = 0 then go to advance;
if J = 1 then begin

if text(k] # a then go to advance
else go to char matched end;

ifJ > 0 then go to loop;
comment text[k-m] through text([k-1] matched;

Except that we are now assuming a non-null pattern (m > 0) , this

program preserves the robustness of the original. It will usually run

faster than the naive algorithm; the worst case occurs when trying to

find the pattern ab in a long string of a's . Similar ideas can be

used to speed up the program which prepares the next table.

In a text-editor the patterns are usually short, so that it is most

efficient to translate the pattern directly into machine-language code

which implicitly contains the next table (cf. [2, Hack 179].) For

| example, the pattern in Section 1 could be compiled into the machine-
language equivalent of

11

10: k := k+l;

Ll: if text[k] # a then go to LO;
k := k+l;

L2: if text[k] # b then go to Ll;
k := k+l;

L3: if text{k] ¢ c then go to Ll;
k := k+l;

Lh: if text{k] # a then go to 10;
k ;= ktl;

L5: if text[k] # b then go to Ll;
k := k+l;

L6: if text[k] f# c then go to Ll;
k := k+l;

L7: if text(k] # a then go to 10;
k := k+l;

18: 1f text[k) # c then go to LS;
k t= ktl;

LI: if text[k] # a then go to 10;
k := ktl;

L10: if text[k] # b then go to Ll;
k := ktl;

This will be slightly faster, since it essentially makes a special case |

for all values of J .

1t is a curious fact that people often think the new algorithm

will be slower than the naive one, even though it does less work. Since

the new algorithm is conceptually hard to understand at first, by

comparison with other algorithms of the same length, we feel somehow

that a computer will have conceptual difficulties too!

12

L. Extensions

So far our programs have only been concerned with finding the

leftmost match. However, it is easy to see how to modify the routine

so that all matches are found in turn: We can calculate the next table

for the extended pattern of length m+l using pattern[m+l] = '@' ,

and then we set resume := next(mtl] before setting next(m+l] to -I .

After finding a match and doing whatever action is desired to process

that match, the sequence

J := resume; go to loop;

will restart things properly. (We assume that text has not changed

in the meantime. Note that resume cannot be zero.)

Another approach would be to leave next[m+l] untouched, not

changing it to -1 , and to define integer arrays head[l:m] and

link(1l:n] initially zero, and to insert the code

link(k] := head[Jj]; head[]] := kj

at label 'char matched’ . This forms linked lists for 1 <j <m of

all places where the first J characters of the pattern are matched

in the input.

Still another straightforward modification will find the longest

initial match of the pattern, i.e., the maximum J such that

pattern(1l] ... pattern[j] occurs in text .

In practice, the text characters are often packed into words,

with say Db characters per word, and the machine architecture often

makes it inconvenient to access individual characters. When efficiency

for large n is important on such machines, one alternative is to

carry out b independent searches, one for each possible alignment

15

of the pattern's first character in the word. These searches can treat

entire words as 'supercharacters', with appropriate masking, instead

of working with individual characters and unpacking them. Since the

algorithm we have described does not depend on tne size of the alphabct,

it is well suited to this and similar alternatives.

Sometimes we want to match two or more patterns in sequence,

finding an occurrence of the first followed by the second, etc.; this

is easily handled by consecutive searches, and the total running time

will be of order n plus the sum of the individual pattern lengths.

We might also want to match two or more patterns inparallel,

stopping as soon as any one of them is fully matched. A search of this

kind could be done with multiple next and pattern tables, with one j

pointer for each; but this would make the running time kn plus the sum

of the pattern lengths, when there are k patterns. Hopcroft and Karp

have observed (unpublished) that our pattern-matching algorithm can be

extended so that the running time for simultaneous searches is propor-

tional simply to n , plus the alphabet size times the sum of the pattern

lengths. The patterns are combined into a "trie" whose nodes represent

all of the initial substrings of one or more patterns, and whose branches

specify the appropriate successor node as a function of the next

character in the input text. For example, if there are four patterns

labcab, ababc, beac, bbe} , the trie is

1k

node substring if a if b if c

0 1 7 0

1 a 1 2 0

2 ab 5 10 by

> abe h 7 0

4 abca 1 abcab | beac

5 aba + 6 0

6 abab 5 10 ababe

7 b 1 10 8

8 be 9 7 0

9 bca 1 k beac

10 bb 1 10 bbe

Such a trie can be constructed efficiently by generalizing the idea we

used to calculate next{ J] ; details are left to the reader. (Note that

this algorithm depends on the alphabet size; such dependence is inherent,

if we wish to keep the coefficient of n independent of Kk , since for

example the k patterns might each consist of a single unique character.)

5. Theoretical considerations

If the input file is being read in "real time', we might object to

long delays between consecutive inputs. In this section we shall prove

that the number of times J := next([j] is performed, before k is

advanced, is bouniaed by a function of the approximate form logy m,

15

where ¢ = (1+/5)/2 ~ 1.618 ... 1s the golden ratio, and that this

b ound is best possible. We shall use lower case Latin letters to

represent characters, and lower case Greek letters q,B8,... to represent

strings, with ¢ the empty string and laf the length of a . Thus

la] = 1 for all characters a ; |og| = |x|+|g| ; and j<| =0 .

We also write alk] for the k-th character of «a .

As a warmup for our theoretical discussion, let us consider the

Fibonacci strings [9, exercise 1.2.8-36], which turn out to be especially

pathological patterns for the above algorithm. The definition of

Fibonacci strings 1s

py =b, Pf, =a; 8 = Pn 1Pn0 for n >3 . (1)

For example, ff, = ab , Py, =aba , Bs - abaab . It follows thatx = 22 od 22&22

the length |f | 1s the n-th Fibonacci number F_, and that §

consists of the first F characters of an infinite string p_ .

Consider the pattern pg , which has the following functions

£'j) and nextij] :

j=12 3 4 5 6 7 8 9 1011 1213 1k 151617 18 219 20 21

pattern(j] =a b a a b a b a a b a 2a » a b a a b a Db a

£f(j)=0 1 1 2 2 = LL 2 4 5 6 7 5 6 7 8 9101 12 3

next{[j]=0 1 0 2 1 0 kh 02107 105Lo02 10120

If we extend this pattern to ¢_, we obtain infinite sequences £3)

and next[j) having the same general character. It is possible to

prove by induction that

£(j) = §-F_, for F, <J<F5 (2)

16

because of the following remarkable near-commutative property of

Fibonacci strings:

Pr-2Pn-1 ” (Py-1 Poo) » for m 23, (3)
where c(a) denotes changing the two rightmost characters of a .

Fcr example, Bc - abaab.aba and (Pg) -alau-abaab

Equation (3) is obvious when n = 3 ; and for n > 3 we have

(Ppp Pn) - NPL NEY } PnoPn-Pn-z - Pr-1Pn-2 by induction,

hence (Py ofp) B c(e(Py 1Pno)) i} Pr-1Pn-2
Equation (3) implies that

next[F, -1] = F132 , for k>3 . (4)

Therefore if we have a mismatch when J = Fg=1 = 20 , our algorithm

might set Jj := next[j] for successive values 20, 12,7, Yh, 2,1, 0

of J . Since Fr is (6%//5) rounded to the nearest integer, it

is possible to have up to ~ logy m consecutive iterations of the
j :=next[j] loop.

We will now show that Fibonacci strings actually are the worst

case, i.e., that logy m is also an upper hound. First let us
consider the concept of periodicity in strings. We say that p is a

period of 1 1f

afi} = afi+p] for 1 <1 < |aj-p . (5)

It is easy to see that p is a period of a if and only ir

a = (aa) a (6)
12 1

for some k >O , where [XN =p and Q, # € . Equivalently,

p is a period of a if and only ir

17

®, = 6 (7)

for some 9, and 6, with lo, 1 = 6,1 = p . Condition (6) implies

(7) with 6, = x and 9, = aya, . Condition (7) implies (6), for
we define k = | |a|/p] and observe that if k >0 then «a = 6,8

implies £6, = 6,8 and L'8|l/pJ = k=1 ; hence, reasoning inductively,

Q = os, for some a, witk |x, | <p, and 0,6, =6,0 . Writing
8, = a, a, yields (6).

The relevance of periodicity to our algorithm is clear once we

consider what it means to shift a pattern. If

pattern[l] ... pattern[j-1] = @ ends with pattern[l]...pattern[i-1] =8 ,

we have

a = Be, = 6.8 (8)

where [6| = j-i , so the amount of shift j-i is a period of « .

The construction of i = next[j] in our algorithm implies further

that the first character of 6, is unequal to pattern[j] . Let us

assume that ff itself is subsequently shifted leaving a residue 7 ,

so that |

B =v; = vy (9)

where the first character of yy differs from that of ©, + We shall
now prove that

lal > lsl+ |r] (10)

For if |B] + |r] > |a] , there is an overlap of a = |g| + |r| - |]

characters between the occurrences of Bp and 7» in Be, =Q = NPY ’

hence the first character of 6, is 7y{a+1l] . Similarly there is an

overlap of d characters between the occurrences of Bg and 7 in

18

6,8 = a = 7¥1°, , hence the first character of Vy is pla+l] .

Since these characters are distinct, we ohiain y[d+l] # gld+l] ,

contradicting (9). This establishes (10), and leads directly to the

announced result:

Theorem. The number of consecutive times that J := next[j] is

performed, while one text character is being s¢anned, is less than

1ogy m+ K for some constant XK .

Proof: Let L» be the length of the shortest string Qa as in the
above discussion such that a sequence of r consecutive shifts is

possible. Then L, =0, L,=1, and we have le] > L.,°

|7| > L.o in (10), hence L. > Fed by induction oan r . -

The subject of periods in strings has several interesting algebraic

properties, but a reader who is not mathematically inclined may skip

tc Section 6 since the following material is primarily an elaboration

of some additional structure related to the above theorem.

Lenme 1. If p and q are periods of a, and pq < |a| + ged(r,q)

then ged(p,q) is a period of a .

Proof: Let d = ged(p,q) , and assume without loss ol generality that

d<p<q=rpr . Wehave ali] = a(i+p] for 1<1i < |x|-p end

afi] = afi+q] for 1 <i < aj-q ; hence afi+r] = al[i+q] = afi]

for +r < i+r < |jal-p, i.e.

ali] = afi+r] for 1 <i < |a|-9 .

Furthermore « = pa, = 6,8 where |6,| = p, and it follows that p
and r are periods of PB , where ptr < |g] +d = |B| +eged(p,r) . By

19

induction, d is a period of 8 . Since |p| = |a|-p > q-d > g-r

=p = |e, | » the stringu S, and ©, (which have the raspective forms

8,8, and B18, by (6) and (7)) are substrings of B ; so they also

have d as a period. The string «a = (8,8) p, must now have d
as a period, since any characters d positions apart are contained

within B85 or 8,8, . =

The result of Lemma 1 but with the strcager hypothesis pq < |u|

was proved by Lyndon and Schitzenberger in connection with a problem

about free groups (11, Lemma 4]. The weaker hypothecis in Lemma 1

turns out to give the best possible bound: If ged(p,q) <p <q we

can find a string of length ptq -gecd(p,q)-1 for which ged(p,q) is

nota period. In order to see why this is so, consider first the

) following example showing the most general strings of lengths 15

through 25 having both 11 and 15 as periods. (The strings are

‘most general' in the sense that any two character positions that car

be differentare different.)

abcdefghijkabececd |

abcdafghijkabcda

abcdabghijkabcecdab

abcdabchijkabcdabece

abcdabcdijkabcdabecd

abcdabcdajkabcdabcda

abcdabcdabkabcdabcecdabd

abcdabcdabcabcdabcdabde

abcaabcaabcabcaabcaabca

aacaaacaaacaacaaacaaacaas

aaaasasaanasanaaaaanaaaaaaaanas

20

Note that the number of degrees of freedom, i.e., the number of distinct

symbols, decreases by 1 at each step. It is not difficult to prove

that the numrer cannot decrease by more than 1 as we go from

la] = n-1 wo la] = n , since the only new relations are

a(n] = aln-q] = a[n-p] ; we decrease the number of distinct symbols

by one if and only if positions n-q and n-p contain distinct symbols

in the most general string of length n=-=1 . The lemma tells us that

we are left with at most ged(p,q) symbols when the length reaches

prq -ged(p,q) ; on the olher hand we always have exactly p symbols

when the length is q . Therefore each of the p-gcd(p,3) steps must

decrease the number of symbuls by 1 , and the most general string of

length prqg -gcd(p,q)-1 must have exactly gcd(p,q)+1l distinct

symbols. In other words, the lemma gives the best possible bound.

When p and q are relatively prime, the strings of length

Ptq=-2 on two symbols, having both p and q as periods, satisfy a

number of remarkable properties, generalizing what we have observed

earlier about Fibonacci strings. Since the properties of these |

pathological patterns may prove useful in other investigations, we

shall summarize them in the following lemma.

Lemma 2. Let the strings o(m,n) of length n be defined for all

relatively prime pairs of integers n >m > 0 as follows:

(0,1) =a , o(1,1) =b , o(1,2) = ab 3;

o(m,mtn) = o(n mod m, ve) if 0<m<n . (11)
o(n,m+n) = o(m,n)o(n mod m, m)

21

These strings satisfy the folluwing properties:

i) o(m,gmtr)oi{m-r,m) = o(r,m)o(m,qmtr) , for m >2 ;

ii) o(m,n) has jeriod m, for m > 1 ;

iii) c¢(o(myn)) = o(n-m,n) , for n>2.

[The function c(a) was defined in connection with Equation (3) above.

MroCr Wie have, for Oo <m <n and q >2,

(m+n, q{mn)+n) = o(m,mn) o(rmn,(q-1) (mrn)+m)

a/mtn, g(mn)+n) = o(n,rmn) o(mtn, (3-1) (mn)+n)

(m+n, 2m+n) = o(m,mn) o(n mod m,m)

(m+n, m+n) = o{n,mtn)o(m,n) ;

hence, if =o, = 7(n mod m, m) and 5, = o(myn) and q >1,

o(m+n,g(mrn)+n) = (6,8,)%, » o(m+n,q(mrn)+n) = (6,9,)%, . (12)

It follows that

o(mtn,q(m+n)+m) o(n,m+n) = o(m,m+tn) o(m+n,q(m+n)+m)

s(m+n,g(mtn)+n) o(m,mtn) = o(n, mn) o(m+tn,q(mtn)+n)

we.ich combine to prove (i). Property (ii) also follows immediately

from. (12), except for the case m=2 , n = 2q+1 , 0(2,2q+1) = (ab)%a ,

which may be verified directly. Finally, it suffices to verify

propert, (iii) for 7 <m < Zn » since c(c(a)) = a ; we must show that
c(og(mymtn)) = olmyn)o(nmod my m) , for 0<m<n .

When m <2 this property is easily checked, and when m > 2 it is

equivalent by induction to

o(mymtn) = o(myn)o(m=-(n mod m),m) , for 0<m<n, m>2.

Set nmodm =r, |n/mj =q , and apply property (i). ~
aad

22

| By properties (ii) and (iii) of this lemma, o(p,ptq) minus its
last two characters 1s the string of length ptq-2 having periods p

and q . Note that Fibonaccl strings are just a very special casc,

since P = ofFoF) . Another property of the o strings appears

in [10]. A completely different proof of Lemma 1 and its optimality, and

a completely different definition of o(m,n) , were given by Fine and

Wilf in 1965 [4].

If a is any string, let P(x) be its shortest period. Lemma 1

inrlies that all periods q which are not multiplies of P(Q@) must be

greater than |af - P(a) + ged(q,P(x)) . This is a rather strong

cordition in terms of the pattern matching algorithm, because of the

following result.

Ledme 3. Let a = pattern(1l] cos pattern[j-1] and let a = pattern{ j] .
ih the pattern matching algorithm, f(Jj) = j-P(a) , and next[j] = j-q ,
fore q is the smallest period of a which is nct a period of oa .

| | (If no such period exists, next{j] =0 .) If P(x) divides P(ca)
» -_

“ and P(om) <j, then P(x) = P(am) . If P(a) does mot divide P(0a)

orif P(am) = J , then gq = P(a) .

Proof: The characterizations of f(j) and next([j] follow immediately

from the definitions. Stace every period of aa is a period of «a , the
only noncbvious statement is that ~~p(c) = P(xa) whenever P(a) divides
P(aa) and P(aa) £#j . Let Pa) = p and “Ram) =< mp, then the
(mp)=th character from the right of a 1s a , as is the (m-1)p thy ren

as is the p-th, hence p is a period of oa . A

Lemma > shows that the Jj :=n.at[Jj] loop will almost always

terminate quickly. If P(x) = P(ca) , then gq must not be a multiple

23

of P(x) ; hence by Lemma 1, P(a)+q > j+1 . On the other hand q > Pa) ,

hence q >33 and next(j] < 23 . In the other case q = P(a) , we had
better not have q too small, since q will be a period in the residual

pattern after shifting, and next[nexi[jl] will be <q . To keep the

loop running it is necessary for new small periods to keep popping up,

relatively prime to the previous periods.

It appears to be extremely difficult to analyze the 'average'

behavior of this algorithm instead of the worst case behavior. However,

average behavior on random strings is surely unrealistic because there

would only rarely be a match in a random string.

6. Palindromes |

One of the most outstanding unsolved questions in the theory of

computational complexity is the problem of how long it takes to

determine whether or not a given string of length n belongs to a

given context-free language. For many years the best upper bound for

this problem was o(n’) in a general context-free language as n — « ;

L. G. Valiant has recently lowered this to o(n E2 ’ . On the other |
hand, the problem isn't known to require more than order n units of time

for any particular language. This big gap between 0(n) and o(n2-8Y)
deserves to be closed, and hardly anyone believes that the final answer

will be O(n) .

Let T be a finite alphabet, let I denote the strings over ¢,

and let oo

P-{oflaz}

2k

R

Here a denotes the reversal of & , i.e., (a, 8, ..e a) =a ...858

Each ‘string n in P is a palindrome of even length, and conversely

every even palindrome over I is in P . At one time it was popularly
*

believed that the langage P of "even palindromes starred", namely

the set of all palstars My eee where each nt is in P , would be

impossible to recognize in O(n) steps on a random-access computer.

It isn't especially easy to spot members of this language. For

example, aabbabba is a palstar, but its decomposition into even

palindromes might not be immediately apparent; and the reader might

need several minutes to decide whetner or not

baabbabbaababbaabbabbabaabbabbabbabbaabababbabbaabd

+*

jg in P . We shall prove, however, that palstars can be recognized in

O(n) units of time, by using their algebraic properties.

Let us say that a nonempty palstar is prime if it cannot be written

as the product of two nonempty palstars. A prime palstar must be an even

palindrome xf but the converse does not hold. By repeated decomposition,

it is easy to see that every palstar B is expressible as a product

-N cee B, of prime palstars, for same t > 0 ; what is less obvious is
that such a decomposition with prime factors is unique. This "fundamental

theorem of palstars" is an immediate consequence of the following basic

property.

Lemma 1. A prime palstar cannot begin with another prime palstar.

Proof: Let af be a prime palstar such that ao = gaty for come

noriempty even palindrome get ani some 7 # ¢ ; furthermore, let gal

25

have minimum length among all such counterexamples. If | sat | > jai

| then af = pally = aby for some & #£ € ; hence & =8y, and
4

Th = (ee) R = (a8) } = sR = 57% , contradicting the minimality

of laa” . Therefore |e} < | y hence Qa = apfe for some b ,

and pply = oof = ppRestep® . But this implies that 7 is the palstar

tole)Rap , contradicting the primality of ar . a

Corollary. (Left cancellation property.) If 0p and CO are pelstars,

so is PB .

Proof: Let Q = ay cee A and OB = By cee Bg be prime factorizations

of a and ag . If a a = By 8B, then £8 = Bary * Bg is a

czlstar. Otherwise let J be minimal with a FBjy then a, begins

with By or vice versa, contradicting Lemma 1. 3

Lemma 2. If a is a string of length n , we can determine the length

of the longest even palindrome Be¢P such that a = 87 , in O(n) steps.

Proof: Apply the pattern-matching algorithm with pattern =a and i

text = @® . When k = n+l the algorithm will stop with j maximal

such that pattern(l]...pettem(j-1] = textim2-J]... text[n] . Now

perform the following iteration:

while j > 3 and J even doj := £(j) .

By the theory developed in Section >, this iteration terminates

with j > 3 if and only if Qa begins with a nonempty even palindrome,

and Jj-1 will be the length of the largest such palindrame. (Note

26

that f£(j) must be used here instead of next[Jj] ; e.g. consider

the case a =aabaab . But the pattern matching process takes O(n)

time even when f(j) is used.)
J

Theorem. Let LL be any language such that Lr” has the left

cancellation property and such that, given any string a of length n ,

we can find a nonempty p¢L such that a begins with B or we can

prove that no such pf exists, in 0(n) steps. Then we can determine

in 0(n) time whether or not a given string is in L.

Proof: Let «a be any string, and suppose that the time required to

test for nonempty prefixes in IL is < Kn for all large n . We begin

by testing a's initial subsequences of lengths 1,2,k4,.. 2%, ves
and finally a itself, until finding a prefix in IL or until

establishing that a has no such prefix. In the latter case, C is

not in L ; and we have consumed at most

(K+Ky) + (2K+K)) + (BHR) +... 4 (jalk+x,) < 2kn+K, log, n units of

time for some constant LY . But if we find a nonempty prefix pBelL

where a = gy , we have used at most k|g{K+K (log,|g|) units of time

80 far. By the left cancellation property, el if and only if yeL ’

and since |y| = n-|8| we can prove by induction that at most

(LK + X,)n units of time are needed to decide membership in Lt ’
when n >0 .

a

7

'orollary. pr can be recognized in O(n) time. =

Note that the related language

P, = (neg | re and | n| > 2}

cannot be handled by the above techniques, since it contains both

aaabbb and aaabbba ; the fundamental theorem of palstars fails

with a vengeance. It is an open problem whether or not P, can be
recognized in O(n) time, although we suspect that it can be. Once

the reader has disposed of this problem, he or she is urged to tackle

another language which has recently been introduced by S. A. Greibach [(],

since the latter language is known to be as hard as possible; no context-

free language can be harder to recognize except by a constant factor.

7. Historical remarks

The pattern-matching algorithm of this paper was discovered in a

rather interesting way. One of the authors (J. H. Morris) was

implementing a text-editor for the CDC 640C commuter during the summer

of 1969, and since the necessary buffering was rather camplicated he

sought a method “hat would avoid backing up the text file. Using

concepts of fini‘e automata theory as a model, he devised an algorithm

equivalent to the methcd presented above, although his original form

of presentation made it unclear that the running time was O(m+n) .

Indeed, it turned out that Morris's routine was too complicated for

other implementore of the system to understand, and he discovered

ceveval months later that gratuitous "fixes" had turned his routine

into a shambles.

28

In a totally independent development, another author (D. E. Knuth)

learned early in 1970 of S. A. Cook's surprising theorem about two-way

deterministic pushdown automata [3]. According to Cook's theorem,

any language recognizable by a two-way deterministic pushdown automaton,

in any amount of time, can be recognized on a random access machine in

O(n) units of time. Since D. Checter had recently shown that the set

of’ strings beginning with an even palindrome could be recognized by

such an automaton, and since Xnuth couldn't imagine how to recognize

such a language in less than about n° steps on a conventional computer,

Knuth laboriously went through all the steps ofCook's construction as

applied to Chester's automaton. His plan was to "distill off" what was

happening, in order to discover why the algorithm worked so efficiently.

After pondering the mass of details for several hours, he finally

succeeded in abstracting the mechanism which seemed to be underlying

the construction, and he generalized it slightly to a program capable

of finding the longest prefix of one given string that occurs in

another.

This was the first time in Knuth's experience that automata theory

had taught him how to solve a real programming problem better than he

could solve it before. He showed his results to the third author

(Vv. R. Pratt), and Pratt modified Knuth's data structure so that the

running time was independent of the alphabet size. When Pratt described

the resuiting algorithm to Morris, the latter recognized it as his own,

and was pleasantly surprised to learn of the O(mtn) time bound, which

he and Pratt described in a memorandum [12]. Knuth was chagrined to

learn that Morris had already discovered the algorithm, without knowing

| 29

Cook's theorem; but the theory of finite-state machines had been of use

to Morris tou, in his initial conceptualization of the algorithm, so

it was ctill legitimate to conclude that automata theory had actually

been helpful in this practical problem.

A conjecture by RK. L. Rirest led Frutt to discover Lhe logy In
upper bound <n pattern noveaments between cuccessive input characters, ana

¥nuth showed that this was best possible. Cook had proved that Pr

was recognizable in O(n log n) steps on a random-access machine, and

Pratt improved this to O(n) .

It seemed at first that there might be a way to find the longest

common substring of two given strings, in time O(m+n) ; but the

algorithi: of this paper does not readily curpcrt any such extension,

«nd Knuth conjectured in 197. that such etficiency would be impossible

to achieve. An algorithm due to Karp, Miller, and Rosenberg [8!

colved the problem in C({mtn) log(m+n)) steps, and this tended to

support the conjecture (at least in the mind of its originator).

However, Feter Weiner hac recently developed a technique for solving

the longest common substring problem in Cim+n) units of time with a

fixed alphabet, by ucing tree structures in a remarkable new way [13].

Fui'thermore, Weiner's algorithn has the following interesting consequence,

pointed out by E. McCreight: a text file can be processed (in linear

time) so that it is possible to determine exactly how much of a pattern

is necessary to identify a position in the text uniquely; as the pattern

is being typed in, the system can interrupt as soon as it "knows" what

the rest of the pattern must be! Unfortunately the time and space

requirements for Weiner's algorithm grow with increasing alphabet size.

50

If we consider the problem of scanning finite-state langiag.s in

general, it is known [1] that the language defined by any regular

expression of length m is recognizable in O(mn) units of time.

When the regular expression has the form

* %* * »* *

T (ay + cee Ay gq))E (a, 1+ cee Oy c2y)E ceo I (2 1 cet (r))E

the algorithm we have discussed shows that only O(m+n) units of time

are needed (considering al as a character of length 1 in the

expression). Recent work by M. J. Fischer and M. S. Paterson [5] shows

that regular expressions of the form

fara,z...z2LT ,

i.e., patterns with "don't care" symbols, can be identified in

O(n log m log log m log t) units of time, where t is the alphabet

size and m = |o a, -.. a | +r . The constant of proportionality in
their algorithm is extremely large, but the existence of thelr

construction indicates that efficient new algorithms for general

pattern matching problems probably remain to be discovered.

A completely different approach to pattern matching, based on

hashing, has been proposed by MalcolmZ. Harrison [7]. Tn certain

applications, especially with very large text files and short patterns,

Harrison's method may be significantly faster than the character-

comparing method of the present paper, cn the average, although the

redundancy of English makes the performance of his method unclear.

31

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman,

The Design and Analysis of Computer Algorithms (Reading, Mass.:

Addison-Wesley, 197k), Section 9.2.

{2] M. Beeler, R. W. Gosper, R. Schroeppel, "HAKMEM," M.I.T. Artificial

Intelligence Laboratory Memo No. 239 (February 29, 1972), 95 pp.

{(3] S. A. Cook, "Linear time simulation of deterministic two-way

pushdown automata,” Proc. IFIP Congress (1971), 75-80.

[4] N. J. Fine and H. S. Wilf, "Uniqueness theorems for periodic

functions,” Proc. Amer. Math. Soc. 16 (1965), 109-11k. |

{5] Michael J. Fischer and Michael S. Paterson, "String matching

and other products,” memorandum, M.I.T. Project MAC

(January, 1974); 21 pp.

[6] Sheila A. Greibach, "The hirdest context-free language,"

SIAM J. Computing 2 (1273;, 30k-310.

(7] Malcolm C. Harrison, "Implementation of the substring test by

hashing," Comm. ACM 1b (1971), 777-779.

(8) Richard M. Karp, Raymond E. Miller, and Arncld L. Rosenberg,

"Rapid identification of repeated patterns in strings, trees,

and arrays," ACM Symposium on Theory of Computing 4 (May, 1972),
125-136.

[3] Donald E. Knuth, Fundamental Algorithms, The Art of Computer

Programming 1 (Reading, Mass.: Adaison-Wesley, 1968, 2nd edition

[10] D. E. Knuth, "Sequences with precisely k+l k-blocks,"” Solution

to problem E2307, Amer. Math. Monthly 79 (1972), T73-TTk.

[11] R. C. Lyndon and M. P. Schiitzenberger, "The equation at = pet

in a free group," Michigan Math. J. 9 (1962), 289-298.

[12] J. RH. Morris, Jr., and Vaughan R. Pratt, "A linear pattern-matching

algorithm," Technical report LO, University of California, Berkeley.

California (June, 1970): € pp.

[13] Peter Weiner, "Linear pattern matching algorithme,"” IEEE Symposium

on Switching and Automata Theory 14 (1973), 1-11.
32

