PB-237 360
FAST PATTERN MATCHING IN STRINGS

Donald E. Knuth, et al

Stanford University

Prepared for:

National Science Foundation

August 1974

BIBLIOGRAPNIC DATA |)- Report No.
SHEET STAN=-CS-TU4=440Q

PB 237 360

4. Title and Subtatl

FAST PATTERN MATCHING IN STRINGS

5. Report Date

August 1974

7. Author(s)

Donald E. Knuth, James H. Morris, Jr. and Vaughan R. Pratt

8. Performing Organization Repe.

No. STPAN-CS=T7h-440

9. Petforming Orgamization Name and Address
Stanf'ord University
Computer Science Department
stanford, California 94305

10, Project/Task/Work Urit No.

1. Contract /Grant No.

GJ 36L73X

12. Sponsoring Organization Name and Address
National Science Foundation
1800 G Street, N.W.
viashington, D. C. 20550

13, Typc of Report & Period
Covered

technical, Aug. 1974
14.

15. Supplementary Notes

16, Abstraces

An algorithm is presented which finds all occurrences of one given string
withir. another, in running time proportionsl to the sum of the lengths of the
strings. The constant of proportionality is low enough to make this algorithm
ot practical use, and the procedure can also be extended to deal with some
more general pattern-matching problems.
algorithm shows tﬁa; the set of concatenations of even palindromes, i.e.,
the language f } , can be recognized in linear time,

A theoretical application ol the

expression,

17b. ldentificrs ‘Open-Ended Terms

17c. COSATI Field/Group

17. Key Words and Document Analysis. 17a. Descriptors

pattern, string, text-editing, pattern-matching, trie memory, searching,
period of a string, palindrome, optimum algorithm, Fibonacci string, regular

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Departeert of Commerce
Springheld VA 22151

18. Availability Statement

19, Sccurity Class (This 2% No. of Pages
. . ton wrlinit | pssie 35
Approved for public release; distz:ibutmn unlim Wﬁg Securky Class (TS TP 4
age -~
I UNcLAsSIFIED 375 "IAS
FORM M T!5-38 (REV. 3-72}

THIS FORM MAY BE REPRODUCED

USCOMM-DC 14982-P72

Fast Pattern Matching in Strings

*
by Donald E. Knuth (Stanford University),—/
James H. Morris, Jr. (Xerox Palo Alto Research Center),ﬁ-/
and Vaughan R. Pratt (Massachusetts Inst. of Technology).::t/
Abstract

An algorithm is presented which finds all occurrences of one given
string within another, in running time proporticnal to the sum of the
lengths of the strings. The constant of proportionality is low enough
to make this algorithm of practical use, and the procedure can also be
extended to deal with some more general pattern-matching problems.

A theoretical application of the algorithm shows that the set of
concatenations of even palindromes, i.e., the language {odR}* s can
be recognized in linear time.

Keywords: rattern, string, text-editing, pattern-matching, trie memory,
searching, period of a string, palindrome, optimum algorithm,
Fibonacci string, regular expression.

CR Categories: L.ko, 5.25, 5.23, 3.89

ﬂ The resesrch reported here was done at Stanford University, supported
in part oy National Science Foundation grant GJ 36L473X and by the
Office of Naval Research contract NR ObL-LO2. Reproduction in whole
or in part is permitted for any purpose of the United States Government.

*
:—/ The research reported here was done at the University of California,
Berkeley, supported in part by National Science Foundation grant
number GP 7635.

w The research reported here was done at the University of California,
Berkeley, supported in part by National Science Foundation grant
GP-6945; and at Stanford University, supported in part by National
Science Foundation grant GJ-992.

io

Fast Pattern Matching in Strings

Text-editing programs are often required to search through a string
of characters looking for instances of a given 'pattern’ string; wve
wish to find all positions, or perhaps only the leftmost position,
in which the pattern occurs a& & contiguous substring of the text.
For example, ggg enary contains the pattern Egr_x , but we do not
regard canary as one of its substrings.

The obvious way to search for a matching pattern is to try searching
at every starting position of the text, abandoning the search as soon
as we find cheracters that don't match. But this approach can be very
inefficient, for example when we are looking for an occurrence of
sasasasab in asasasszsasasab . When the pattern o o™
and the text is g.ent_a , we will find ourselves making (ml)2 comparlsons
of characters. Furthermore, the traditional approach involves 'backing up'
the input text as we go through it, and this can add annoying complications
when we consider the buffering operations that are frequently involved.

In this paper we describe a pattern-matching algorithm which finds
all occurrences of a pattern of length m within a text of length n
in O(m*n) units of time, and without 'backing up’' the input text.
The algorithm needs only O(m) locations of internal memory if the
text is read from ar ealecrmel file, and only O(log m) units of time
elapse between consecutive single-character inm:cs. All of the constants of
proportionality implied by these " ¢ ~ 1ormulas are independent of the
alphabet size.

We shall first consider the algoritim in a conceptually simple but

somewhat inefficient form. Sections 3 and 4 of this paper discuss some

1

ways to improve the efficiency and to adapt the algorithm to other
problems. Section 5 develops the underlying theory, and Section 6

uses the algorithm to disprove the conjecture that a certain context-free
language cannot be recognized in linear time. Finally, Section 7
discusses the origin of the algorithm and its relation to other recent

work.

1. Informal develomment

The idea behind this approach to pattern matching is perhaps
easiest to grasp if we imagine placing the pattern over the text and
sliding it to the right in a certain way. Consider for example a
search for the pattern abcabcacabd in the text

babcbabgabcaabecabcabcacabe ; initlally we place the
pattern at the extreme left and prepare to scan the leftmost character
of the input text:

abcabcacab

babcbabcabcaabcabcabecacabe
t

The arrow here indicates the current text character; since it points
to b, which doesn't match the a , we shift the pattern one space
right and move to the next input character:

abcabcacab

babcbabcabcaabcabcabecacabe
]

liow we have a match, so the pattern stays put while the next several
characters are scamned. Soon we come to another mismatch:

abcabcacabd

babcbabcabcaabcabcabcecacabe
t

At this point, from the fact that we have matched the first three
pattern characters but not the fourth, we know that the last four
characters of the input have been abcx where X # a ; we don't
have to remember the previously scanned characters, since our position

in the pattern yields enough information to recreate them. In this

case, no matter what x is (as long as it's not a), we deduce that
the pattern can immediately be shifted four more places to the right;
one, two, or three shifts can't possibly lead to a match.

Soon we et to another partial match, this time with a failure on
the eishth pattern character:

abcabcacab

babcbabecabcaabcabecabeacabe
t

x # ¢ . The pattern should therefore be shifted three places to the
right:

abcabcacab

habtctabcabcaabcabcabecacabece
t

We try to ma*ch the new pattern character, but this fails too, so we
shift the pattern four (not 1ive) more places. That produces a matc's,
and we continue scanning unti.. reaching another mismatch on the eighth
paettern character:

abcatbtcacab

babcbabcabcaabcabcabecacabe
t

Again we shift the pattern three places to the right; this time a match

is produced, and we eventually discover the full pattern:

abcabcacab

babcbabcabcaabcabcabcacabe
'

The play-by-play description for this example indicates that
+he pattern-matching process will run efficiently if we have an
auxiliary table that tells us exactly hcw far to slide the pattern,
when we detect a mismatch at its j-th character pattern{j] . Let
gggg[j] be the character position to check next after such a mismatch,
go that we are sliding the pattern j-next[j] places relative to the

text. The following table lists the appropriate values:

j =12 % %5 678 910
patternij] = a b c a b c a ¢
next(j] = ¢ 1 1 0 1 1 0 5 1

We shall discuss how to precompute this table later; fortunately, the
calculations are quite simple, and we will see that they require only
O(m) steps.

At each step of the scanning process, we move either the text
pointer or the pattern, and each of these can mcve at most n times;
so at most 2n steps need to be performed, after the next table has
been set up. Of course the pattern itself doern't really move, we can

do the necessary operations simply by maintaining the pointer variable

3.

2. Programming the algorithm

The pattern-match process has the general form

place pattern at left;
while pattern not fully matched

and text not exhausted 22

begin
while pattern character differs from

current text character
do shift pattern appropriately;
advance to next character of text;
end;
For convenience, let uc assume that the input text is present in an array
text(l:n] , and that the pattern appears in pattern(l:m] . Let
and k be integer variables such that text k] denotes the current
text character and Egttern[j] denotes the corresponding pattern
character; thus, the pattern is essentially aligned with positions
ptl through ptm of the text, where k = p+j . Then the above program
takes the following simple form:
J =K =03
while j <m and k <n 22

besin
while j > O and text|[k] # pattern[j]

do § := next{j];
kK := kt1l; j := j*l;
end;
If j >m at the conclusion of the program, the leftmost match has
been found in positions k-m through k-1 ; but if j <m, the text

has been exhausted.

The above program is easily proved correct using the following
invariant relation: "Let p = k-j (the position in the text just
preceding the first character of the pattern, in our assumed alignment).
Then we have text{p+i] = pattern[i] for 1< i <J ; but for
1<t<p ve have text[t+i] # pattern[i] for some i , where
1<i<m."”

The program will of course be correct only if we can compute the
next table so that the above relation remains invariant when we perform
the operation Jj := next[j] . Let us lock at that computation now.
when the program sets j := next{j] , we know that j >0 , and that
the last J characters of the input were

pattern{1] ... pattern{j-1] x
where x # pattern[j] . What we want is to find the leas amount of
shift for which these characters carn possibly match the shifted pattern;
in other words, we want next{j] to be the largest i less than]
such that the last 41 characters of the input were

pattern(1} ... pattern{i-1j x
and pgttern[ij # pattern{J) . (If no such i exists, we let
next{j] = ¢ .) With this definition of next[j] it is easy to verify

that text[t+l] ... text[k] # pattern([l] ... pattern(k-t] for

k-j <t < k-next[j] ; hence the stated relation is indeed invariant,
and our program is correct.
Now we must face up to the problem we have been postponing, the
task of calculating next{j] in the first place. This problem would
be easier if we didn't require pattern[i] # pattern[j] in the definition

of next[j] , so we shall consider the easier problem first. Let £(J)

be the largest i 1less than j such that p;attern[l] Ettern[i-l] =
pattern{j-i+1] ... pattern{j-1] ; since this condition holds vacuously
for 1 =1, we always have f(j) >1 when j >1 . By convention we
let (1) =0 . The pattern used in the example of Section 1 has the

following f table:

j =12 3% 45 617 8 910
pattern{j] = a b ¢ a b ¢ a ¢ a b
f(j) =0 1112 3 L4 5 1 2

If pattern(j] = pattern(f(j)] then f£(j+1) = £(j)+1 ; but if
not, we can use essentially the same pattern-matching algorithm as

above to compute f(j+l) , with text = pattern ! (Note the similarity

of the f£(j) problem to the invariant condition of the matching algorithm.
Our program calculates the largest j less than or equal to k such

that pattern{1l] ... pattern[j-1] = text{k-j+1] ... text[k-1] , so we

can transfer the previous technology to the present problem.) The
following program will compute f£(j+1) , assuming that
next{1l] ... next[j-1] and f(j) have already been calculated:

t = £(J);

while t > 0 and pattern[j] £ pattern[t]

dot := next(t];
£(J+1) 1= t+1;

The correctness of this program is demonstrated as before; we can
imagine two copies of the pattern, one sliding to the right with
respect to the other. For example, suppose we have established that
£(8) = 5 in the above case; let us consider the camputation of £(9)

The appropriate picture is

abcabcacabd
abcabcacab
L)
Since pattern{8] # b , we shift the upper copy right, knowing that the
most recently scanned characters of the lower copy were abcax for

X #b . The next table tells us to shift right four places, obtaining

abcabcacab

abcabcacab
t

and again there is no match. The next shift makes t =0 , so f(9) =1 .
Once we understand how to compute f , it is only a short step to
the computation of next{j] . A comparison of the definitions shows

that, for j>1,

£(3) if pattern[j] # pattern[£(J)] ;
next(j] =

next[£(j)] , 4if pattern[i] = pattern[£(J)] .
Therefore we can compute the next table as follouws.

J t=1; t :=0; next{1l] := 0;
Matle 5 <m do
begin comment t = £(3);
while t > O and pattern(j] F pattern{t]

do t := next(t];
t = t+ly § = 413
if pattern(j] = pattern[t]
then next[j] := next(t]
else next[j] := t;

end.

A

This program takes O(m) units of time, fcr the same reason as

the matching program takes O(n) : the operation t := next[t] in

the innermost loop always shifts the upper copy of the pattern to the
right, so it is performed a total of m times at most. (A slightly
different way to prove that the running time is bounded by a constant
times m 1is to observe that the variable t starts at O and is
jncreased., m-1 times, by 1 ; furthermore its value remains nonnegative.
Therefore the operation t := EEEE[t] , which always decreases v , can
be verformed at most m-1 times.)

To summarize what we have said so far: Strings of text can be
ccanned efficiently by making use of twn ideac. (1) A +able of
"chifte”, specifiing how to move the given patiern when a mismatch
sceurs at its j-th character, can be precomputed. {2) This computation
~f "chiftc" can be performed efficiently by using the same principie,

shifting the pattern against itself.

Gaining efficiency

We have presented the pattern-matching algorithm in a form that is
rather easily proved correct; but as so often happens, this form is not

very efficient. In fact, the algorithm as presented above would probably

not be competitive with the naive algorithm on realistic datc, even
though the naive algorithm has a worst-case time of order m times n
instead of m plus n , because the chance of this worst case is rather
slim. On the other hand, a well-implemented form of the new algorithm
should go noticeably faster because there is no backing up after a
partial match.

It i8 not difficult to see the source of inefficiency in the new
algorithm as presented above: When the alphabet of characters is large,
we will rarely have a partial match, and the program will waste a lot
of time discovering rather awkwardly that text[k] # pattern(1l] for

k=1,2,5,... . Wher. j =1 and text(k] # pattern{[1] , the algorithm

sets j := rext{l] = 0 , then discovers that j =0, then increases k

by 1, then sets j to 1 again, then tests whether or not 1 is <m,
and later it tests whether or not 1 is greater than O . C(Clearly ve
would be much better off making j = 1 into a special case.

The algorithm also spends unnecessary time terting whether J >m
or kK >n . A fully-matched pattern can be accounted for by setting
Egttern[m+l] = ‘™' for some impossible character @ that will never
be matched, and by letting next[m+l] = -1 ; then a test for j <0 can
be inserted into & less-frequently executed part of the code. Similarly
we can set text{n+l] = 'i' (another impossible charecter) and
text(n+2] = pattern(1] , so that the test for k >n needn't be made
very often.

The following form of the algorithm incorporates these refinements.

10

k :=0; a := Ettem[l];
pattern(mtl] := '@'; next[m+l] := -1
text[n+l] := '1°; text[n+2] := a;
advance: comment Jj = O in previous program;
repeat k := ktl %Lex_ﬁ[k] = 83
Hk >n Mﬁgminput exhausted;
J =1
char matched: J := j+1; k := ktl;
loop: comment J > 0;
£ text[k] = pattern[Jj] then go to char matched;

~~

J :=next[J];
ifj =0 then &Lga.dvance;
if j = 1 then begin

if text[k] £ a then go to advance
else go to char matched end ;

Af J >0 then go to loop;
comment text[k-m] through text([k-1] matched;

Except that we are now assuming a non-null pattern (m >0) , this
program preserves the robustness of the original. It will usually run
faster than the najve algorithm; the worst case occurs when trying to
£ind the pattern abd in a long string of a's . Similar ideas can be
used to speed up the program which prepares the next table.

In a text-editor the patterns are usually short, so that it is most
efficient to translate the pattern directly into machine-language code
which implicitly contains the next table (cf. [2, Hack 179}.) For
example, the pattern in Section 1 could be compiled into the machine-

language equivalent of

k := ktl;

L2: if textlk] £ D
k := k+tl;

L3: if text(k] fc
k := k+l;

Lh: if text[k] #a
k ;= k+l;

L5: if text(k] £ b
k := k+l;

L6: 1if text(k] #Fc
:= ktl;

L7: if text(k] / a
;= ktl;

18: 1if text(k]) ¢
k t= ktlj

L9: gge_xt_[k] fea
k := ktl;

L10: g&xt_[k] [
kK := ktl;

This will be slightly faster,

for all values of J .

then g2 %o
then g0 to
then g9 to
then g0 to
then g9 %2
then g2 to
then g0 to
then g9 to
then g0 t2
then, g0 to

Ll;

Ll;

since it essentially makes & special case

It is a curious fact that people often think the new algorithm

will be slower than the naive one, even though it does less work.

the new algorithm is conceptually hard to understand at first, by

Since

comparison with other algorithms of the same length, we feel somehow

that a computer will have conceptual difficulties too!

L. Extensions

So far our programs have only been concerned with finding the
leftmost match. However, it is easy to see how to modify the routine
so that all matches are found in turn: We can calculate the next table
for the extended pattern of length m+l using pattern(m+l] = '@’ ,

and then we set resume := next{m+l] before setting next(m+l] to -1 .

After finding a match and doing whatever action is desired to process
that match, the segquence

J := resume; go to loop;
will restart things properly. (We assume that text has not changed
in the meantime. Note that resume cannot be zero.)

Ancther approach would be to leave next{m+l] untouched, not
changing it to -1 , and to define integer arrays head(l:m] and
link(1:n] initially zero, and to insert the code

Link(k] :- head[J]; hesd(J] := k;
at label 'char matched' . This formas linked lists for 1< Jj <m of
all places where the first J characters of the pattern are matched
in the input.

Still another straightforward modification will find the longest
initial match of the pattern, i.e., the maximum Jj such that
pattern(l] ... pattern[j] occurs in text .

In practice, the text characters are often packed into words,
with say b characters per word, and the machine architecture often
makes it inconvenient to access individual characters. When efficiency
for large n is important on such machines, one alternative is to

carry out b independent searches, one for each possible alignment

13

of the pattern's first character in the word. These searches can treat
entire words as 'supercharacters', with appropriate masking, instead

of working with individual characters and unpacking them. Since the
algorithm we have described does not depend on tne size of the alphabct,
it is well suited to this and similar alternatives.

Sometimes we want to match two or more patterns in sequence,
finding an occurrence of the first followed by the second, etc.; this
is easily handled by consecutive searches, and the total running time
will be of order n plus the sum of the individual pattern lengths.

We might also want to match two or more patterns in parallel,
stopping as soon as any one of them is fully matched. A search of this
kind could be done with multiple next and pattern tables, with one j
pointer for each; but this would make the running time kn plus the sum
of the pattern lengths, when there are k gpatterns. Hoperoft and Karp
have observed (unpublished) that our pattern-matching algorithm can be
extended so that the running time for simultaneous searches is propor-
tional simply to n , plus the alphabet size times the sum of the pattern
lengths. The patterns are combined into a "trie" whose nodes represent
all of the initial substrings of one or more patterns, and whose branches
specify the appropriate successor node as & function of the next

character in the input text. For example, if there are four patterns

1k

node substring H a H b if c
0 1 T 0
1 a 1 2 0
) ab 5 10)
3 abe 4 7 0
b abca 1 abcab | becac
5 aba 1 6 0
6 abab 5 10 ababe
7 b 1 10 8
8 be 9 7 0
9 bea * 2 becac
10 bb 1 10 bbe

Such a trie can be constructed efficiently by generalizing the idea we
used to calculate M[,j] ; details are left to the reader. (Note that
this algorithm depends on the alphabet size; such dependence is inherent,
if we wish to keep the coefficient of n independent of k , since for

example the k patterns might each consist of a single unique character.)

5. Theoretical considerations

If the input file is being read in "real time", we might object to
long delays between consecutive inputs. In this section we shall prove
that the number of times Jj := next(j] is performed, before k is

advanced, is bounied by a function of the approximate form log¢ m,

15

where @ = (1+/5)/2 ~ 1.618 ... 1is the golden ratio, and that this
b ound is best possible. We shall use lower case Latin letters to
represent characters, and lower case Greek letters a,B,... to represent
strings, with ¢ the empty string and |a| the length of a . Thus
[a] =1 for all characters a ; |w| = |aj+|p| ; and jc| =0 .
We also write alk] for the k-th character of «a .

As a warmup for our theoretical discussion, let us consider the

Fibonacci strings [9, exercise 1.2.8-36], which turn out o be especially

pathological patterns for the above algorithm. The definition of

Fibonacci strings is

¢l =b, ¢2 =4a; ¢n = ¢n-l¢n-2 for n > 3 . (l)

For example, ¢: =ab , ¢k =aba, ¢5 -abaab . It follows that

the length | | 1is the n-th Fibonacci number F, , and that §

consists o7 the first F characters of an infinite string ¢w .
Consider the pattern ¢8 » which has the following Ifunctions

£’j) and next(j] :

J=1 2 4 5 6 7 8 9 1011 121314 151617 1819 20 21
pattern[j] =a b a b ab aa b aab a b aabdb ab a
£(j) =0 1 1 2 2 * L 2 4 5 675 67T 8 9 101112 2
next[j] =0 1 0O 2 Oo0o210710%40 2101120

If we extend this pattern to ¢=° , We obtain infinite sequences f£(j)
and next[j) having the same gzeneral character. It is possible to

prove by induction that

for F, <J <Fpq (2)

16

because of the following remarkable near-commutative property of

Fivonacei strings:
¢n-2¢n-l = c<¢n-1 ¢n-2) » for mn>3 , (3)

where c¢(a) denotes changing the two rightmost characters of a .
Fcr example, ¢6 - abaab.aba and c(¢6) =alu-abaab .,

Equation (3) is obvious when n =3 ; and for n >3 we have
c(¢n-2 ’Dn-l) = ¢n-ec(¢n-l) - ¢n-2¢n-}¢n-2 = ¢n-l”n-2 by induction,
hence c(¢n-2¢n-l) = c(e(p,_ ¢n-2)) - ¢n-1¢n-2)

Equation (3) implies that

next[Fk-l] = Fk-l-l , for k>3 . (¥)

Therefore if we have a mismatch when j = F8-l = 20 , our algorithm
might set J := next[j] for successive values 20, 12,7, 4,2, 1,0
of §j . Simce F, 1is (¢k/f5) rounded to the nearest integer, it
is possible to have up to ~ log¢ m consecutive iterations of the
J := next[j] loop.

We will now show that Fibonacci strings actually are the worst
case, i.e., that log¢ m 1is also an upper hound. First let us
consider the concept of perjodicity in strings. We say that p is a
period of 1 if

afi} = afi+p] for 1 <1< lel-p - (5)

It is easy to see that p is a period of a 1if and only ir
k 6
a = (alag) ay (6)

for scme k >0 , where |ala2| =p and a, ¢ ¢ . Equivalently,

p is a period of a if and only if

7

a®, = e (7

for some 3, and @, with |6, = |6,] = p . Condition (6) implies

ayx, and 9, = @,@, . Condition (7) implies (6), for

Llal/p) and observe that if k >0 then a = 6,8

{7) with .

we define k

implies B6, = 6,8 and | '8]/pJ = k-1 ; hence, reasoning inductively,
k . P _
a = 6,2, for some a, witk |Jl| <p,and 20, =6, . Writing

The relevance of periodicity to our algorithm is clear once we
consider what it means to shift a pattern. If
pattern[l] ... pattern(j-1] = @ ends with pattern[l]... pattern[i-1] =
we have

a = B8, = 6. (8)

where |Ol| = j=i , so the amount of shift j-i is a period of « .
The construction of i = &[J] in our algorithm implies further

that the first character of 6, is unequal to pattern[j] . Let us
assume that B itself is subsequently shifted leaving a residue 7 ,
so that

B =7y = ¥y (9)
where the first character of ¥, differs from that of ®, + We shall
now prove that

la] > |gl+1y] . (10)

For if ||+ |7] > |a| , there is an overlap of 4 = |g|+ |7] - ||
characters between the occurrences of B and ¥ in eel =Q = 62'27 ’

hence the first character of 6, is 7y[{d+1l] . Similarly there is an

1l
overlap of d characters between the occurrences of g and 7 in

18

Ges = a = 7*191 , hence the first charactcr of 'l is pla+rl)
Since these characters are distinct, we obilain y[a+l] £ gld+1] ,
contradicting (9). This establishes (10), and leads directly to the

announced result:

Theorem. The number of consecutive times that J := next[j] is

performed, while one text character is being s¢anned, is less than

log¢ m+ K for some constant K .

Proof: Let L v be the length of the shortest string @ as in the
above discussion such that a sequence of r consecutive shifts is
possible. Then I.1 =0,
|| >1._, in (10), hence

L, = 1, and we have lel 2L,
L,

> Fr+l'l by induction on r . -

The subject of periods in strings has several interesting algebraic
properties, but a reader who is not mathematically inclined may skip
tc Section 6 since the following material is primarily an elaboration

of some additional structure related to the above theorem.

Lemme 1. If p and q are periods of a, and ptq < la| + ged(p,q) »

then ged(p,q) is a period of « .

Proof: Let d = ged(p,q) , and assume without loss ol generality that
d<p<q=pr . Wehave a[i] = afi+p] for 1 <4 < |a|-p end
ali] = ali+q] for 1 <1 < |a|-g ; hence afi+r] = afi+q] = afi]
for 1+r < i+r < jaj-p, i.e.,

afi) = afi+r] for 1<1i < |a|-q
Furthermore Q@ = B8, = 6,8 wheve |Ol| = p, and it follows that p

and r are periods of B , vwhere p+r < |p|+d = || +ged(pyr) . By

19

induction, d is a period of B . Since |B| = |a|-p > g-d > g-r
=p = Ioll s the stringu e, and 9, (which have the raspective forms
.8, and BB, by (6) and (7)) are substrings of B ; so they also
have d as a period. The string a = (Blﬁg)k+lﬂl must now have d
as a period, since any characters d positions apart are contained

within E132 or 5251 . =

The result of Lemma 1 but with the strcager hypothesis p*q < |af
was proved by Lyndon and Schiitzenberger in connection with a problem
about free groups (11, Lemma L4]. The weaker hypothescis in Lemma 1
turns out to give the best possible bound: If ged(p,q) <p <g we
can find a string of length ptq-gecd(p,q)-1 for which ged(p,q) 1is
not a period. In order to see why this is so, congider first the
following example showing the most general strings of lengths 15
through 25 having both 11 and 15 as periods. (The strings are
'most general' in the sense that any two character positions that car

be different are different.)

abcdefghijkabecd
abcdafghijkabecda
abcdabghijkabcdab
abcdabchijkabcdabe
abcdabcdijkabcdabed
abcdabcdajkabcdabcda
abcdabcdabkabcdabcdabd
abcdabcdabcabcdabcdabde
abcaabcaabcabcaabcaabca
aacaaacaaacaacasaacaaacaa
aaasaasasaaasaanaaaaanaaasaaaaanas

20

Note that the number of degrees of freedom, i.e., the number of distinct
symbols, decreases by 1 at each step. It is not difficult to prove
that the nurcer cannot decrease by more than 1 as we go from
[2] =n-1 1o |a] =n, since the only new relations are
aln] = aln~-q] = a[n-p] ; we decrease the number of distinct symbols
by one if and only if positions n-q and n-p contain distinct symbols
in the most general string of length n-1 . The lemma tells us that
we are left with at most ged(p,q) symbols when the length reaches
prq - g2d{p,q) ; on the olher hand we always have exactly p symbols
when the length is q . Therefore each of the p-gcd(p,3) steps must
decrease the number of symbuls by 1 , and the most general string of
length ptg -gcd(p,q)-1 must have exactly gecd(p,q)+1 distinct
symbols. In other words, the lemma gives the best possible bound.

When p and q are relatively prime, the strings of length
ptq=2 on two symbols, having both p and q as periods, satisfy a
number of remarkable properties, generalizing what we have observed
earlier about Fibonaceci strings. Since the properties of these
pathological patterns may prove useful in other investigations, we

shall summarize them in the following lemma.

Lemma 2. Let the strings o(myn) of length n be defined for all

relatively prime pairs of integers n >m >0 as follows:

0(0,1) =a , o(1,1) =b , o(1,2) - ab ;

o(m,mtn) = o(n mod m, m)a(m,n)

if 0<m<n . (11)

o(n,m*n) = o(m,n)o(n mod m, m)

21

These strings satisfy the following properties:

i) o(m,ymtr)o{m-r,m) = o(r,m)o(m,qmtr) , for m >2 ;

ii) o(myn) has jeriod m , for m>1;

iii) c¢(o(myn)) = o(n-myn) , for n>2 .

[The function c(a) was defined in connection with Equation (3) above.’

Mroor: We have, for O <m<n and g >2,

o{m+n, g{mmn)+m) =

g{m+n, q(mrn)+n)

o(mymn) o(retn, (3-1) (mrn)+m)

o(n,rmn) o(mtn, (3-1) (mn)+n)

7(m+n, 2m+n) = o(mym+tn) o(n mod m,m)
o{m+n,m+2n) = o{n,mn)o(m,n) ;
nence, if &, = 3(nmodm, m) and 5, = o(m,n) and q>1,

9
s

o(m+n,g(mrn)+n) = (olee)qel » o(mn,q(mtn)+n) = (eeel)qe

It follows that

2

o(mtn,g(mn)+m) o(n,m*n) = o(m,m+n) o(m+tn,q(m+n)+m)

s(m+n,g{min)+n) o(m,mn)

wiich combine to prove (i).

from (12), except for the case m =2 , n = 2q+1 , 0o(2,2q+1) = (a.b)qa. s

a(1_1,m+n) o(m+n, q(m+n)+n)

Property (ii) also follows immediately

which may be verified directly. Finally, it suffices to verify

propert;, (iii) for 2 <m < %n » since c(c(a)) = a ; we must show that

c(a(mym+n)) = o(m,n)o(nmod my m) , for 0 <m<n

When m <2 this property is easily checked, and when m >2 it is

equivalent by induction to

o(mymtn) = o(myn)o(m~(nmod m),m) , for 0<m<n, m>2 .

Set nmodm=r, |n/m] =

q , and apply property (i).

L

22

5

(12)

y

By properties (ii) and (iii) of this lemma, o(p,ptq) minus its
last two characters is the string of length ptq-2 having pericds p
and q . Note that Fibonaccl strings are just a very special casc,
since ¢n = o(Fn-l’Fn) . Another property of the o strings appears
in [10]. A completely different proof of Lemma 1 and its optimality, and
a completely different definition of o(m,n) , were given by Fine and
Wilf in 1965 [4].

If a 1is any string, let P(Q) be its shortest period. Lemma 1
imrlies that all periods q which are not multiplies of P(@) must be
greater than |a| - P(@) + ged(q,P(2)) . This is a rather strong
cordition in terms of the pattern matching algoritlm, because of the

following vesult.

\

Le.‘:na 3. Let o - pattern(l]...pattern[j-1] and let a = patiern(j] .

i) the pattern matching algorithm, f£(Jj) = j-P(a) , and next[j] = j-q ,
: —

,"}here q 1is the smallest period of « which is nct a period of wa .

(If no such period exists, next[j] =0 .) If P(a) divides P(ca)

and P(aa) < j , then P(a) = P(aa) . If P(x) does mot divide P(om)

or if P(am) = 3 , then q = P(a) .

Proof: The characterizations of f(j) and next(j] follow immediately
from the definitions.n\'s‘hlqg every period of aa 1is a period of a , the
only nonocbvious statement is tha’t\\P(tz) = P(aa) whenever P(x) divides
P(aa) and P(am) £ J . et P(a) =p and) = mp , then the

(mp)=th character from the right of a@ 1s a , &as is the (m-1)p-th, ...,

as is the p-th, hence p 1is a period of aa . 0
Lemma 3 shows that the j := nuat[j] loop will almost always
terminate quickly. If P(a) = P(ca) , then q must not be a multiple

23

of P(a) ; hence by Lemma 1, P(a)+q > j+1 . On the other hand q > P) ,
hence q >%J and next(j) < -;-j . In the other case q = P(a) , we had
better not have q too small, since q will be a period in the residual
pattern after shifting, and next[nexi[j]] will be <q . To keep the
loop running it is necessary for new small periods to keep popping up,
relatively prime to the previous pericds.

It appears to be extremely difficult to analyze the 'average'
behavior of this algorithm instead of the worst case behavior. However,
average behavior on random strings is surely unrealistic because there

would only rarely be a match in a random string.

6. Palindrames

One of the most outstanding unsolved questions in the theory of
canputational complexity is the problem of how long it takes to
determine whether or not a given string of length n belongs to a
given context-free language. For many years the best upper bound for
this problem was O(nj) in a general context-free language as n — o ;

logo 7)

L. G. Valiant has recently lowered this to O(n . On the other

hand, the problem isn't known to require more than order n units of time
for any particular language. This big gap between 0(n) and o(n2.81)
deserves to be closed, and hardly anyone believes that the final answer
will be O(n) .

Let T be a finite alphabet, let T dencte the strings over I,
and let

P= {mxlaez*}

2L

R
) =8 ...858 .

Each string = in P is a palindrome of even length, and conversely

Here of denotes the reversal of a , i.e., (al a,...a,

every even palindrome over L is in P . At one time it was popularly
*

believed that the langrage P of "even palindromes starred", namely

the set of all palstars MW where each xn, is in P , would be

i
impossivle to recognize in O(n) steps on a random-access computer.

It isn't especially easy to spot members of this language. For
example, aabbabba ig a palstar, but its decomposition into even

palindromes might not be immediately apparent; and the reader might

need several minutes to decide whetner or not

is in P* . We shall prove, however, that palstars can be recognized in

0o(n) wunits of time, by using their algebraic properties.

Let us say that a nonempty palstar is prime if it cannot be written
a3 the product of two nonempty palstars. A prime palstar must be an even
palindrome a?‘ tut the converse does not hold. By repeated decomposition,
it 18 easy to see that every palstar B is expressible as a product
Bl at of prime palstars, for same t >0 ; what is less obvious is
that such a decomposition with prime factors is unique. This "fundamental
theorem of palstars" is an immediate consequence of the following basic

property.

Lemma 1. A prime palstar cannot begin with another prime palstar.

Proof: Let wR be a prime palstar such that odR = 55R7 for come

nonempty even palindrame 553 and some 7 § € ; furthermore, let BﬂR

25

have minimum length among all such counterexamples. If |ss®] > |2
then oot = sty = aBy for same & £ ¢ ; hence .czR-_-by , and

BBR = (saR)R = (cxts)R = SR(ZR = 6“57 , contradicting the minimality

of |BBR| . Therefore |BBR| < |a| y hence « =sBRb for some & ,
and g%y = oof = paTeslea® . But this implies that 7 1is the palstar

SERBBR , contradicting the primality of o .

a
Corollary. (Left cancellation property.) If o8 and Q are palstars,

sois P .

Proof: Let @x=0Q, ...% and o8B = Bl ... B_ Dbe prime factorizations

1 b o
of @ and ap . If al...arsal...ar then ﬁ=Br+l"'as is a

-]

tzlstar. Otherwise let J be minimal with ay FB 3 ; then a, begins

with Bj or vice versa, contradicting Lemma 1. 3

Lemma 2. If a is a string of length n , we can determine the length

of the longest even palindrame BeP such that a =8y , in 0(n) steps.

Proof: Apply the pa.ttern-ma.pching algorithm with pattern = a and
text =a® . When k = n+l the slgorithm will stop with j maximal
such that pattern(l]...pattem(j-1] = text[n+t2-j]... text[n] . Now
perform the following iteration:

while j >3 and J even do j := £(J)

By the theory developed in Section 3, this iteration terminates
with j >3 if and only if Q begins with a nonempty even palindrome,

and j-1 will be the length of the largest such palindrome. (Note

26

that f£(j) must be used here instead of next(j] ; e.g. consider

the case @ =aabaab . But the pattern matching process takes O(n)

time even when f£(Jj) 1is used.)
.

Theorem. Let L be any language such that L* has the left

cancellation property and such that, given any string a of length n,

we can find a nonempty peL such that a beging with B or we can

prove that no such B exists, in 0O(n) steps. Then we can determine

in 0(n) time whether or not a given string is in L.

Proof: Let a be any string, and suppose that the time required to
test for nonempty prefixes in I is < Kn for all large n . We begin
by testing a's initial subsequences of lengths 1,2,U,...,2%... ,
and finaliy Qa itself, until finding a prefix in L or until
establishing that a has no such prefix. In the latter case, < is
not in L* ; and we have consumed at most i

(K#K,) 4+ (2K+K)) + (BKeK)) + ...+ (ia|x+xl) < 2Kkn+K, log, n units or
time for same constant Kl . But if we find a nonempty prefix BRelL
where a = By , we have used at most 4|8{K+K (log,|8|) units of time
80 far. By the left cancellation property, ae'j.* if and only if 7eL* »
and since |7| = n-|8| we can prove by induction that at most
(M(+K))n units of time are needed to decide membership in L ,

when n >0 .

Corollary. P* can be recognized in 0(n) time.

]

Ncte that the related language

Pl = [neE |n= o and x| >2)"

cannot be handled by the above techniques, since it contains both
aaabbb and aaabbba ; the fundamental theorem of palstars fails
with a vengeance. It is an open problem whether or not P; can be
recognized in 0(n) time, elthough we suspect that it can be. Once

the reader has disposed of this problem, he or she is urged to tackle
another language which has recently been introduced 'by S. A. Greibach [6],
since the latter language is known to be as hard as possible; no context-

free language can be harder to recognize except by a constant factor.

7. Historical remarks

The pattern-matching algorithm of this paper was discovered in a
rather interesting way. One of the authors (J. H. Morris) was
implementing a text-editor for the CDC 6LOC commuter during the summer
of 1969, and since the necessary buffering was rather camplicated he
sought a method “hat would avoid backing up the text file. Using
concepts of firi‘.e automata theory as a model, he devised an algorithm
equivalent to the methcd presented above, although his original form
of presentation made it unclear that the running time was O(m+n) .
Indeed, it turmed out that Morris's routine was too complicated for
other implementors of the system to understand, and he discovered
ceveval months later that gratuitous "fixes" had turned his routine

into a shambles.

28

In & totally independent development, another author (D. E. Knuth)
learned early in 1970 of S. A. Cook's surprising theorem about two-way
deterministic pushdown automata [3]. According to Cook's theorenm,
any language recognizab.e by a two-way deterministic pushdown automaton,
in any amount of time, can be recognized on a random access machine in
0(n) units of time. Since D. Chester had recently shown that the set
of strings beginning with an even palindrome could be recognized by
such an automaton, and since Knuth couldn’'t imagine how to recognize
such a language in less than about n2 steps on a conventional computer,
Knuth laboriously went through all the steps of Cook's construction as
applied to Chester's automaton. His plan was to "distill off" what was
happening, in order to discover why the algorithm worked so efficiently.
After pondering the mass of details I'or several hours, he finally
suzceeded in abstracting the mechanism which seemed to be underlying
the construction, and he generalized it slightly to a program capable
of finding the longest prefix of one given string that occurs in
another.

This was the first time in Knuth's experience that automata theory
had taught him how to solve & real programming problem better than he
could solve it before. He showed his results to the third author
(V. R. Pratt), and Pratt modified Knuth's data structure so that the
running time was independent of the alphabet size. When Pratt described
the resuiting algorithm to Morris, the latter recognized it as his own,
and was pleasantly surpriced to learn of the O(m+n) time bound, which
he and Pratt described in a memorandum [12]. Knuth was chagrined to

learn that Morris had already discovered the algorithm, without knowing

29

Cook's theorem; but the theory of finite-state machinee had been of use
to Morris tou, in his initial conceptualization of the algorithm, so
it was still legitimate to conclude that automata theory had actually
been helpful in this practical problem.

A conjecture by K. L. Risest led Frutt to discover the log¢ mn
upper bound c<n pattern novemsnts between cuccessive input characters, and
¥Fnuth showed that this was best possible. Cook had proved that P*
was recognizable in O(n log n) steps on a random-access machine, and
Pratt improved this to 0(n)

It seemed at first that there might be a way to find the longest

common substring of two given strings, in time C(m+n) ; but the

algorithi: of this paper does not readily cuppcrt any such extension,

znd Knuth conjectured in 197 . that such etficiency would be impossible
to achieve. An algorithm due to Karp, Miller, and Rosenberg [8!

colved the problem in C({m+n) log(m+n)) steps, and this tended to
support the conjecture (at least in the mind of its originator).
However, Feter Weiner has recently developed a technique for solving

the longest common substring problem in Cimtn) units of time with a
Tixed alphabet, by ucing tree structures in a remarkable new way [13].
Fuirthermore, Weiner's algcorithr has the following interesting consequence,
pointed out by E. McCreight: a text file can be processed (in linear
time) so that it is possible to determine exactly how much of a pattern
is necessary to identify a position in the text uniquely; as the pattern
is being typed in, the system can interrupt as soon as it "knows" what
the rest of the pattern must be! Unfortunately the time and space

requirements for Weiner's algorithm grow with increasing alphabet size.

30

If we consider the problem of scanning finite-state langiag.s in
general, it is known (1] that the language defined by any regular
expression of length m 1s recognizable in O(mn) units of time.

when the regular expression has the form
* + + * + +)Z* * + +Q *
T (al,l al’s(l))z (a2,l ae,s(e) X ('Jr,l r’s(r))z

the algorithm we have discussed shows that only O(mtn) units of time
are needed (considering Z* as a character of length 1 in the
expression). Recent work by M. J. Flscher and M. S. Paterson [5] shows

that regular expressions of the form
e, fa,...Tx T
ayfa,Z... 1r ,

i.e., patterns with "don't care" symbols, can be identified in

O(n log m log log m log t) units of time, where t is the alphabet
size and m = | @, .. ar!+ r . The constant of proportionality in
their algorithm is extremely large, but the existence of their
construction indicates that efficient new algorithms for general
pattern matching problems probably remain to be discovered.

A completely different approach to pattern matching, based on
hashing, has been proposed by Malcolm . Harrison [7]. 1In certain
applications, especially with very large text files and short patterns,
Harrison's method may be significantly faster than the character-
comparing method of the present paper, cn the average, although the

redundancy of English makes the performance of his method unclear.

31

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman,
The Design and Analysis of Camputer Algorithms (Reading, Mass.:
Addison-Wesley, 197L), Section 9.2.

[2] M. Beeler, R. W. Gosper, R. Schroeppel, "HAKMEM," M.I.T. Artificial
Intelligence Laboratory Memo No. 239 (February 29, 1972), 95 pp.

{3] §S. A. Cook, "Linear time simulation of deterministic two-way
pushdown automata,” Proc. IFIP Congress (1971), 75-80.

(4] N. J. Fine and H. S. Wilf, "Uniqueness theorems for periocdic
functions,” Proc. Amer. Math. Soc. 16 (1965), 109-11h.

{5] Michael J. Fischer and Michael S. Paterson, "String matching
and other products,” memorandum, M.I.T. Project MAC
(January, 1974); 21 pp.

[€é] ©Sheila A. Greibach, "The hirdest context-free language,"
SIAM J. Computing 2 (1273, 30L-310.

(7] Malcolm C. Harrison, "Implementation of the substring test by
hashing,” Comm. ACM 14 (1971), 777-779.

(8] Richard M. Karp, Raymond E. Miller, and Arncld L. Rosenberg,
"Rapid identification of repeated patterns in strings, trees,
and arruys," ACM Symposium on Theory of Computing 4 (May, 1972),
125-136.

(9] Donald E. Knuth, Fundamental Algorithms, The Art of Computer
Programming 1 (Reading, Mass.: Adaison-Wesley, 1968, 2nd edition

[{10] D. E. Knuth, "Sequences with precisely k+1 k-blocks,” Solution
to problem E2307, Amer. Math. Monthly 79 (1972), T73-TTk.

[{11] R. C. Lyndon and M. P. Schiitzenberger, "The equation aM = oNeF

in a free group,"” Michigan Math. J. 9 (1962), 289-298.

[12) J. H. Morris, Jr., and Vaughan R. Pratt, "A linear pattern-matching
algorithm," Technical report 40, University of California, Berkeley.
California (June, 1970): € pp.

[13] Peter Weiner, "Linear pattern matching algorithme,” IKEE Symposium
on Switching and Automata Theory 14 (1973), 1-11.

32

