
STABLE SORTING AND MERGING

WITH OPTIMAL SPACE AND TIME BOUNDS

| by

Luis Trabb Pardo

STAN-CS-74-4710

DECEMBER 1974

|

COMPUTER SCIENCE DEPARTMENT

| School of Humanities and Sciences

STANFORD UNIVERSITY

6)

-

-

CC

Stable Sorting and Merging

NC

_ With Optimal Space and Time Bounds

Luis Trabb Pardo

\

; _ Abstract
-

This work introduces two algorithms for stable merging and stable

= sorting of files.

The algorithms have optimal worst case time bounds, the merge is

C— ~

linear and the sort is of order n log n . Extra storage requirements

_ are also optimal, since both algorithms make use of a fixed number of

| pointers. Files are handled only by means of the primitives exchange
.

= and comparison of records and basic pointer transformations.

\

\

=

This research was supported by the National Science Foundation grant
GI -36473X. Reproduction in whole or in part is permitted for any

~ purpose of the United States Government. ’

i
“

-

-

-

| |

1. Introduction

) An algorithm which rearranges a file is said to be stable if it

keeps records with equal keys in their initial relative order. This

= work presents an algorithm for merging two contiguous files in a stable

manner (the PARTITION MERGE). As an immediate application of this,

R a stable algorithm to sort a file (the PARTITION MERGE SORT) is given.

: B The algorithms attain optimal worst case bounds with respect to
N time, the merge is of order n and the sort is of order n log n .

— Both algorithms require only a fixed number of pointers for auxiliary

storage. Furthermore, the algorithms are completely general, in the

ST | sense that they treat files as sequences of unmodifiable records, with

the keys evaluated from the record contents and not necessarily stored

within them.

a. While D. E. Knuth was preparing his book about sorting techniques,

he noted that the known algorithms for stable sorting either were of

order n° or they used approximately n pointers for additional memory

) space. Therefore he asked ([Knuth], Section 5.5, exercise 3) whether it

was possible to do stable sorting in less time than order o£ , using at

_ most O(log n) pointers for additional storage. The first progress on

- | this problem was made by R. B. K. Dewar ([Dewar]), who developed a
- stable sorting algorithm of order nt? , using O(log n) pointers.

Further improvements in the running time were made by V. Pratt ([Pratt]),

N F. Preparata ([Preparata]), R. Rivest ([Rivest]), and A. Nijenhuis

_ ([Nijenhuis]). E. C. Horvath ([Horvath]) constructed stable merging

and sorting algorithms with optimal time and space bounds; however, his

a algorithms involve the operation of key modification, thus they apply

B 1
\

only to files in which the key is explicitly stored within the record.

The algorithms in the present paper make use of a minimum set of

primitive operations on files (exchange and comparison) and in this sense

appear to offer the final solution to Knuth's problem, except of course

for questions dealing with the optimum constants of proportionality in

the time and space bounds.

This paper is self-contained; Section 2 introduces the notation and

a set of transformations of files upon which the main algorithms are

built. In Section ? the merging strategy is presented, while Section 4 | |

deals with means to keep storage requirements low enough. With all the

background of the previous sections, Sections 5 and 6 finally describe

the PARTITION MERGE and PARTITION MERGE SORT in full detail, together |

| with their respective analyses. oo

2

CC EE———————————————————————————
- = —

2. Basic Concepts |

This section presents the notation used throughout the paper and

| describes a set of elementary operations on files that will be used for

Co _ further definitions of more complex transformations.

| 2.1 Notation “

A A record R is a unit of information; its contents cannot be
altered.

we The key k of a given record R results from the evaluation of a

| certain function K applied to R

h— k = K(R) .
i A file & is a sequence of records

| | F = (Ry5Rys ee esRis oe, R) .
L

Each position in a file has associated with it a pointer value, an integer
| in the range [1,n] . -
: If 1 and J are pointers, two primitive operations (and only
~ these) may be used to access the file:

oo - ~- an exchange primitive, denoted by exchange(i,j) . An
} application of exchange(i,j) or of exchange(j, i)

transforms % into

F = Boo oRy RyRy gos sR RGR eR) ;

== a comparison primitive, denoted by F(i) < F(j) , whose value

1s true if and only if K(R,) < K(R,) . Since the other
relations < , = , £ , > , > can be easily expressed

in terms of one or two < 's they will be used in the definition

5

|

of algorithms, as a shorthand for the corresponding relation

expressed in terms of the < primitive.

A block U (of length p) is a subsequence of p consecutive

elements of % }

U = BooRe17 ++ Rippon? .

The length of U will be denoted by |u| ; thus in the above case

| |U| = p . The block U will be also identified by the pointers to its

first and last elements and denoted by F[m: mtp-1l] . The first and

last records of U will be first(U) = Rand last (U) = Rirrp-1 :
The term prefix (suffix) of U will refer to an initial (final)

sequence of contiguous records of the block U .

The number of distinct keys in a block U will be A(U) . Obviously

AU) < |u| , with the case A(U) = |u| corresponding to a block composed |
of records with distinct keys.

A segment X is a sequence of contiguous blocks Xs

X = Kp Kp ee Kye Xy .

A segment will be also regarded as a block with the notations |X| , |

first(X) , last(X) and AN(X) having the previous meaning.

Normally only nondecreasing order will be considered. The predicate

ordered(U) is true if and only if the block U is ordered in nondecreasing

order.

A stable transformation is a permutation of a file, that preserves

the relative order of those records with equal keys. In particular, this

work is concerned with two stable transformations:

-- the stable merge of two contiguous ordered blocks U and V

denoted by merge(U,V)

L

_ and

. -- the stable sort of a block U (denoted by sort(U)).
- In the examples a file will be represented by the actual sequence

BN of records, with the keys explicitly written down.

-

Example 2.1: Let us assume that the file F is

32312564

Co ABCDEFGH
\

Then F(4) =D and X(F(4)) = K(D) = 1 . The pointer values range

- from 1 to 8 . Let U be the block F[2:5] , then

“— lu| = 4 , first(U) =F) =B ,

last(U) = F(5) =E , ANU) = 3 and ordered U is false.

BN | Applying exchange(1l,3) or exchange(3,1l) yields

pe 5231256.
CBADEVFGH

- In this file exchange(l,3) is not a stable transformation, but

vo exchange(4,5) is.

Algorithms will be presented as ALGOL-like procedures. The language |

\ used will be ALGOL W with the addition of a new type pointer. Pointer

— | values will be operated upon in a similar way as in the case of integers.

| The inclusion of the type pointer pretends to emphasize that its range

ow depends only on the length of the common file. Thus if the latter consists

of n records, only [log nl Dits will be needed to store a pointer

- value.

NL For convenience in exposition the algorithms will be written in terms

of the operations ' p+q ' , '"p-q ', 'pxg ' , ' floor(p/a) ' ,

| p
-

t ceiling(sqrt(p)) ' and arbitrary comparisons between pointers, but oo

it will be clear that the optimal time and space bounds can also be |

achieved using only the primitive pointer operations

p+1 , p-1 , p+tq , p=q and Pp :=q , |

by straightforward modifications. :

| 2.2 Some Basic Transformations Using Minimal Extra Storage

This subsection defines in a precise manner a set of straightforward

transformations of blocks and presents time bounds for each of them, so

they can be used in the description of more complex algorithms within the

rest of this work. None of the algorithms will be recursive, SO no

'hidden' pointers are implied. |

| The reader is referred to Appendix A for a formal description of the

algorithm and derivation of time bounds for each transformation. |

In the following paragraphs U and V will denote the blocks

U = Flu, su, and V = Flv vy] .

2.2.1 Reversal of a block: REVERSE (u,,u,)

An application of REVERSE (u,,u,) transforms U into

U=(R_. ,R 1525R_) . .
| Us Us, 1 uy

The time bounds are:

Topy(U) = o(lu}) . (2.1)

2.2.2 Exchange of blocks of equal length: BLOCK_EXCHANGE (u,u5 V5 Vy)

Let U and V be non-overlapping blocks of equal length (lu] = |v) .

Then an application of BLOCK _EXCHANGE (u,, Uys Vy5 Vy) or

BLOCK_EXCHANGE(V,,V,5u,51,) “exchanges the contents of U and V,

without changing the values of Up > Us os Vy Vy

¢)

The running time is bounded by

Too (UsV) = o(|u]) = o(|v]) : (2.2)

2.2.% Permutation of two contiguous blocks: PERMUTE(uq,U,5V45V,)

Let U and V be two contiguous blocks, with U preceding V .

| That is, the common file is of the form

= AUVB (where .A , B are blocks) .

« Applying PERMUTE (ul 5Uy5 45 V,) yields

and the corresponding redefinition of Uy 5 Uy vy and vy

“ The permuting process is done by application of three successive reversals:

-- first reverse UV yielding VU ,

-- then reverse a yielding vu ’

Nv — -- and finally reverse ut , thus obtaining the permuted pair VU .

Since the reversals are linear so is the permute process:

| Toon(Us V) = o(|lu| + |v]) : (2.3)
. |

2.2.4 gtable insertion of two contiguous ordered blocks:

- INSERT (U5 Uys V5 Vis Ty £5)
\

_ Let U and V be two contiguous ordered blocks, that is F = AUVB.

Then INSERT (Uq5Uys Ves Vas T1515) yields

« F = AV'UV'B where V'V' = V

and

| last(V') < first(U) < first(Vv")

and sets the pointers in such a way that

— . t — » 1" — Po.

U = Flu, :u,] , V' = Flvy:v,] and VV" = Ff :f,] .

Intuitively it can be said that the insertion of U into V moves

h U as forward as possible, but keeping the transformation stable.

f

Two basic facts, direct consequences of the above definition, can |

be stated as claims.

Claim 2.1: Let U, V, V!' and V' be as above, then the insertion of

U into V reduces the merge of U and V to the merge of U and V" , |

that is ,

merge(U,V) = V' merge(U,V") . | -

Claim 2.2: Let U and V be as above, and U = U'U" . After inserting

U" into V , thus yielding V'U" V' , the merge of U and V is

reduced to

merge(U,V) = merge(U',V') merge(U",V'") . O

The insertion process consists of

-~ a linear search over V in order to find the place where to

insert U ,

followed by

-- the permutation of U and V' .

Since both steps can be accomplished in linear time, the time bounds

result: |

: Ta(UsV) = o(fu] + |v}) , (2.4)

or if desired, since |v | < |v]

Tg(UsV) = o({ul + |v|) : (2.5)

2.2.5 Direct merge of two contiguous ordered blocks:

BLOCK_MERGE_FORWARD (u,,u,,V,5V,) and |

BLOCK_MERGE_BACKWARD (uy ,Uy5Vy5V,) .

Let U and V be two contiguous ordered blocks, so F = AUVDB.)

Applying either BLOCK MERGE FORWARD (uj,u,,Vy,V,) OF

8

|

" BLOCK_MERGE_BACKWARD (uu, Vy, 7) yields the merge of U and V , thus

\ transforming % into

. F = A merge(U,V)B .

| The forward merge is accomplished by an iterative process of

N insertions of successively smaller suffixes of U into successively

smaller suffixes of V . Thus, after a stable insertion of U into V

: as in Section 2.2.4 yielding V,UV, , U dis partitioned UU, (where

Co U, is the largest subblock with first (U,) > first (V,)), and the
problem reduces to merge (Uy, V,) . The backward merge is similar, but
the insertions are done in a backwards direction.

\ The time bounds result

— forward merge

| rl fom) (1, v) = o(|uln()) +o(|v'{) (2.6)
*

where V' is that prefix of V (V = V'V") such that

last (V') < last(U) < first(v'") ;

N -— backward merge

B r{Pack:) (y,v) = o(|v|n(v))+ o(fur]) (2.7)
where TU" is that suffix of U (U = U'U") such that

) last (U') < first(v) < first(u") .

| Instead of introducing the definitions of V' and U" the block

: merge processes could have been bounded by the overall lengths |v]
and |u| » but these bounds pretend to emphasize the fact that the running

time is only a function of the elements that are actually exchanged by the

process. That is, no matter how long the suffix V"' (forward merge) or

the prefix U' (backward merge) are, the running time for the merge

processes doesn't change.

\ 9

Jo

2.2.6 Direct stable sort of a block: STRAIGHT INSERTION SORT(u,,u,) -
This process sorts the block U in a stable manner. Since it must |

be done with minimal extra storage, the straight insertion sort

([Knuth], Section 5.2.1) is chosen. The only extra storage needed is

a fixed amount of pointers. |

Time bounds result

To mn(U) = O(|U]%) (2.8)
| SORT

10

gp The Partition Merge Strategy

This section outlines the basic strategy on which the partition

. merge algorithm is based, without considering either storage requirements

B or time bounds. y

N The first subsection introduces the segment insertion process,

— a stable transformation that is basic to the stable merge, while the

: second subsection analyzes the strategy itself.

CT

B 5.1 The Segment Insertion Process

This stable transformation deals with two contiguous ordered

\ — blocks U and V , of length equal to a multiple of a given value f .

This last condition on the length allows treating U and V as

N | segments of blocks of length ff , and thus
IN

» U = Up «+e U, «oUy

a and V = Vy oe Vy cee V,

L for some k >0 and ££ >0 , (3.1)
with the block length

CARERITAREE.

\ for 1 <i<k and 1<j<1t .

B Informally the segment insertion can be described as a permutation of

= the sequence of blocks Ug c+ Uy vy eV, yielding the minimum number
of inversions, but, of course, being stable.

In order to characterize such a permutation it can be argued that

. any block Us in U cannot go after any block in V that could contain

a record with key equal to any key of the records in Us . Thus a block

11

:

”

Ch should be positioned between the contiguous blocks vs and Viel oo
such that :

last (V) < first (U,) < last(V,, 1) : (3.2)

(In order to make the above equation hold in every case, the -
fictitious blocks Vs and Vis1 must be assumed, with :

last (V,) = =o and last (Vv, ,) = +o 2)

Since equation (3.2) might yield the same value of j for various oo

consecutive blocks TU. , U. ys «es 5 UL , it must also be stated that
1 itl i+p |

the permutation must retain the original relative ordering of blocks

in U and V . So in this case the final layout will contain the |

segment ViUiUsgg = Vip Via .

Example 5.1: As an example, let us consider U and V as below, for Co

a block size TT = 2 :

U Vv

122223 thks5168]111123133155

abfjfcdjefljghl|ili JgJ]ABICDI|EF|GH

Uq Us Us Uy, Us Vy Vs Vs Vy, |

Applying equation (3.2) to U, we see that oo

last (V,) = =o < first (U,) =1 < last (V,) = 1 .

Thus Uq will go before Vy For the blocks Us and Us ’

last (V,) = 1 < first (U,) = 2 < last (V,) = 3 |

and last (V,) < first (U,) =2 < last (V,) ;

SO U, and Ug will be positioned between vy and Vs , with Us |

preceding Us . After considering U), and. Us it can be seen that the

12

5

final permutation will be

: 1211222323334 5155]|638

a bjABlcd|ef|CDIEF}jgh{GHI}1]

Uy Vy Us Us Vs Vs Uy, v), Us ~
‘ The final result of the segment insertion can be characterized as

N the sequence of segments

| LARA A SEES FF EES AEN (5.3)
\

where Y,v,... LAA 4 = U and Zo Dpy wee Dig vo Ly = V and all the

| segments Yq and Za containing at least one block, with the

possible exception of Y and 7, -
Co 1 t

Renaming Yq and 23 as

— ! 1 —

Yo = YL, with |Z, = f
| (% Lb)

\ = ! i =and Z3 Fe 24 with 7] iif

(that is, Ly is the last block in Yq and Fy is the first one in

Zy4), the followins restrictions apply to the layout in equation (3.3)\

(1) last (Z, ;) < first(Y,) , l<ac<t (3.5)

and (ii) first(Ly) < last(F;) , 1<d<t (3.6)
\

| The characterization given by equations (3.3) to (3.6) is no more

- than a formal statement of the initial considerations. Thus in the

example considered above,

{

I =U 2 = VN

Y, = UnoUs iy = Vos

Yy = Us 2), : empty

C 15 |

Equations (3.5) and (3.6) state boundary relations between contiguous Co

segments. Somehow they give us the hint that a merge of U and V could |

be reduced after segment inserting U and V , to a sequence of"local"

merges of the pairs of segments Yq and 23 . That is the idea underneath

the partition merge strategy and so it is the topic of the next subsection. |

5.2 Description of the Partition Merge Strategy

Let U and V be two contiguous ordered blocks of length greater

than a given value f

|u| > ff and |v] > f (3.7)

For the sake of simplicity, and only for the time being, it will be

assumed that U is of length equal to a multiple of f

ul = x.f for k >1 : (3.8) |

| The partition merge will proceed in the following way:

° Segment insert U and the longest prefix of V of length equal

to a multiple of f .

® "Finish up" the merge, by means of local merges.

So, let

U = Up» 0, een Uy
(3.9)

with |v.| = |v, = £ and |T | <£ .
i J v

The segment insertion of U and V,...V, yields |

Yo 2) ooo ¥g2g eee ¥y 124 YZ, T |

with the segments Y, and Z; as described in equations (3.3) to (3.6)

of the previous subsection.

1h

1

1

| In order to analyze the finish up process we shall first consider

the rightmost portion of the file, in particular the situation at the

boundary of Y, and Zy . It is assumed that Zy is not empty. The

case Z, empty will be quite similar.

By comparing last (Y¥,) with first(z,) two cases may arise:
\.

(i) If last(Y,) < first(z,) then the segment Y 27 T is already

: in order and, what is more important, in its final position within

(the merged file. This last statement is a direct consequence of

the segment insertion definition, since by equation (3.5)

last (Zz, _;) < first (Y,) (3.10)

\ and so all records of Z4 cee ly 4 must precede first (Y,) . But

also last (Y, 4) < first (Y,) because U was originally in order.

| Thus, all the elements to the left of first (Y,) must precede it,

h so the above statement is true. Then nothing needs to be done

about this segment, and the finish up proceeds by replacing tT |

by t-1 .

\

(ii) If 1last(y,) > first(z,) it is going to be necessary to proceed

with the finish-up of the segment Y, 2, T , as described below.

\ The finish up of Yo 2, T will consist of three steps. In order

| to describe them, let us adopt the notation of the previous subsection,

and for reasons that will be immediately clear, let us rename I, as

N Coin . By doing so, the rightmost portion of the file can be written as

Hf t. Zp 1 Tg By Fy 2g Coan (3.11)

? _ | J 1 = = .. where Y!L, =7Y, and FZ! =2_ With IL, | |F| =f

| 1s

\

This initial disposition is depicted in Figure 3.1(a). Notice

that Figure 5.1 shows the values of the keys along the vertical axis,

thus displaying the relative ordering of records.

The first step in the finish up process is to stable insert Ly

into Fe , thus transforming LF, into Fo Lg FY » such that

last (F}) < first(L,) < first (Fy) : (3.12)

Figure 5.1(b) shows the situation after this first step. It can be seen

that all the elements in L, and FL ZiCyL 4 are greater or equal to

those towards the left of Ly . This last assertion can be formally

stated as the following claim.

Claim 5.1: After step 1, first(L,) is already in its final position
within the merged file, and the overall merge has been reduced to the

+ respective merge of the records to the left and to the right of first (L,) :

Proof: All the elements to the right of first(L,) are greater than

or equal to it since

-- those originally in U are greater than or equal to first(L,) ’

by the initial order of U ;

: -- those originally in V are greater than or equal to first (Fy) ,

and, by (3.12), it is first(L,) < first (Fy) . (The block Fi

is never empty, since first(L,) < last(F) » by equation (3.6),

and then by equation (3.12) at least last (F,) must belong

in FY! .)

Similarly the elements to the left of first(L,) are less than or equal
to it:

~-- those originally in U by the initial ordering; |

16

I

? t —

Te L Fy Z, Tv =C,4

| | | | | (a)
value | —| Initialof — 1" |] Lay-out

scever i ye o

1 t 1]) C

| Ye L& Fe F£ Ly t+] (5)Value | | BE
L of | ~ - © 1]. | AfterKeys | | ! A | ~~ 1] inserting

! | ")

Tg Fel Le 1% Ly CoanValue | | | (ec)
> “X After

| “TX X, W\ merging
; - \ y! HK forwards

UN iAT A merging
—_ Ny A \ backwards

-- | Ci | merge (Yy,Cl) ——) &—— merge(L, ,F} Zy Cie) tates

|e neraeuy,p BR
Figure 5.1: "Finish up" merges for the rightmost section of the file.

y 17

-- those originally in V are less than or equal to last (F{)

and by (3.12) |

last (F!) < first(L,) :t t

(In the case that Fe resulted empty the first element |

originally in V to the left of L, is last(Z,_,) , and
by equation (3.5) and the initial order of U

| last(Z, 4) < first (Y,) < first (L,) .)

Hence, the stability of the merge imposes that first (Ly) remain in its

current place, since it was originally in U . And clearly the overall |

merge is reduced as stated in our claim. =

So, the second step in the finish up is the merge of L, with |

14])

| FYZlCLq .

Now let us consider YL and Ff , if Yi is nonempty. Assume that

Fe is of the form
nl SE ! > t 3 t . .Fl c.Ci where last (Cy) < first (Y}) < first (C}) (3.13)

(This partition of TF; is identical to the one that would have been |

_ obtained by stable inserting Y/ into Fl .))

The third and last step in the finish up process of Y,.2,C iq is

the merge of Y! and Fl . But by Claim 2.1 the merge of Yi and Fi

yields

merge(Y},F}) = C, merge(¥},C}) . (3.14) | |

If Y! is empty, the third step does not take place, and Cy is

simply taken to be Fe . Co
It is possible now to issue the following claim. :

18 |

|

- | Claim 5.2: After step 5 all the elements to the right of Cy are

already in their final position.

oe

4 Proof: Only the case Y{ nonempty needs to be considered. When Yi |
is empty the claim follows trivially from Claim 3.1.

) Consider first (Y}) . By equation (3.13) and the stability of
| the merge it must occupy the first position in merge (Y{,C}) . Also by

| a similar reasoning as in Claim 3.1 (but applying equation (3.13) instead
- of (3.12)) it can be seen that it is in its final position within the

| merge. Clearly the rest of the elements in Yy and those in Ci must |

be placed to the right of first (Y}) , and by Claim 5.1 to the left

) of First (L,) . Then, all the elements in
| merge (Y{,C}) merge(L,,Fy Z{ C,, .)

. | must be in their final positions. = |

The final result of the finish up of Yo 2, Cy is shown in

Figure 3.1(c).

E It is left to the reader to verify that the above process is valid

also in the case of empty Zy . The only difference is that Cit1 plays

) the role of Fy, , and Fy can therefore be empty.

The overall finish up will consist of the application of the above

process successively to Y, Z, Ciri1 y Y. 4 Zy 1 Cy y eee Yq Z1 Cp . The proof

that this process yields the merge of U and V is a straightforward

“oo induction on t , using Claim 3.2.

A remark must be made about the initial restriction on the length

| of U , given by equation (3.8)

- |u| = k.f :

.

The general case

|U| mod £ £ ©

can be reduced to the one considered here by partitioning

U = Ug (3.1k)

(with |U'| mod £ = 0 and |U"| < f) and stable inserting TU" |
into V , thus yielding U'V'U"V" . By Claim 2.2 the overall merge

| is reduced to |

merge(U,V) = merge(U',V') merge(U",V")

and now the partition merge strategy can be applied to merge U' and V' .

So, in the general case the partition merge strategy will be:

(a) Insert the suffix U" into V yielding U'V'U"V" . -

(b) Segment insert U' into V' .

| (¢) Finish up the merge of U' and V' : for d = t,t-1,...,1 : |

(c-1) Stable insert Lg into Fy .

(c-2) Merge Ly and FuZiC..i -

(c-3) Merge Y, and Fj

(d) Merge U" and V" .

) To conclude it must be noticed that in all the merge processes, at

least one of the blocks to be merged is of length f or less. As it |

will be seen later this is a key fact in order to achieve linear time

bounds . |

20 |

i

Ly, Keeping Storage Requirements Minimal

Any algorithm dealing with files will, at least, need to store some

pointer values in order to identify records to be compared and/or

a exchanged. :

N That is why an algorithm using only a fixed amount of pointers (and,

of course, the space needed to store the file) will be said to have

absolute minimum extra storage requirements. Since each pointer requires

A log, nl bits, the minimum requirements are O(log n) bits.
So far, no analysis has been made about extra storage needs for the

actual implementation of the partition merge, and it 1s not obvious how

\ to implement-it using only absolute minimum extra storage.

This section introduces the concept of internal buffer, and presents

the implementation of another merging technique (the BUFFER MERGE), later

\ used as a local merge for the finish up phase, and an implementation

of the segment insertion process.

\ L.1 The Concept of Internal Buffer

Let B be an ordered block consisting of records with distinct keys,

) that is

: ordered(B) and A(B) = |B] : (4.1)

Then B will be called an internal buffer.

Two useful characteristics of internal buffers may be singled out

~ in advance:

| -- Permutations of an internal buffer do not affect the stability

of a sorting or merging process (since the internal buffer might

“ always be sorted back in a stable manner). This property is the

basis of the BUFFER MERGE technique presented in the next subsection.

| 21

-- A given permutation of |B] or less elements can be "stored" |

in a buffer B by simply permuting its elements correspondingly.

This will be the key to the implementation of the segment insertion ro

process, appearing in Subsection L.3.

Both properties could be used provided an internal buffer is present

in the file being processed. Nevertheless, whenever a buffer is needed

| to process a block U it is possible to rearrange U in order to produce

the desired buffer. Such a process will be called buffer extraction.

Definition 4.1: Given an ordered block U , the extraction of a buffer

B of at most £ records transforms U into U'B , with U' and B

also ordered blocks, such that |

merge(U',B) = U (k.2) oo

and B is an internal buffer |

|IBl = MB) and ordered(B)
(4.3)

and |B] = min(£,7(U)) :

L]

That is, the buffer extraction collects at most { distinct keyed oo

. records (or if the block U has only NU) <£ records with distinct

keys, only MU) are collected) placing them at the end of the original -

block; the rest of the records are compressed in U' .

| Tn order to satisfy condition (4.2), for any sequence of records with
equal keys in U , the last one is picked, so when merging U' and B , :
the original block U 1s obtained.

A similar definition could have been given for an unordered block,

but it is not needed for the purposes of the present work. E

|

The buffer extraction technique will be illustrated by means of an

| example. The reader interested in the actual algorithm and a more

| detailed analysis is referred to Appendix B.
|

| .
Example 4.1: A buffer of length at most 5 is needed to process the

a following block U :
|
|

1111333300 hhs56667709
|

E ABCDEFGHIJKLMNOPQRST

E In order to extract the buffer we start scanning from left to right

until finding the last record with key 1 (that is 1D). This record

will be the first in the buffer. We repeat the search, now for the last

: record in the sequence of those with key 3 :

rr

111433 31%h
tod cos

ABCIDIE F G'H'T
LJ

| At this point we know that 3H is also going to be in the buffer. So we

exchange the previously collected record with the sequence of records with

key 5 , except 3H .

Proceeding in a similar manner:

r

1113331345454L40s
ABCEFGDHTIJKLMN

rr

| 1113334414413L456
ce

ABCEFGIJKL|DHMNO

OC (Notice that in this case the exchange is null, since 5N is the only

record with key 5)

. -
1113334444134 5]66617

| ¢ oe

ABCEFGIJIXKIL{DHMDNIO P\Q R

111333h4hh66[103456{7TT709

ABCEFGIJKLOPDHMNAGQIRS 7

25

At this point the collection is finished (we already have an internal

buffer of length 5), so the collected buffer is exchanged with the

rest of the file to its right, thus obtaining the final configuration

1113334406677 013456

ABCEFGIJKLOPRHN
U' | B

|

To conclude the present discussion, the following facts (analyzed |
in Appendix B) must be pointed out:

(i) The buffer extraction technique can be applied to a fixed number

of contigious ordered blocks (in our case we shall be interested

in the extraction of a buffer out of the two blocks to be merged);

| (ii) The extraction process needs only a fixed amount of pointers as :

extra storage; oo

(iii) The time bounds result proportional to

-- the length of the block(s) from which the buffer is

extracted;

-- the square of the length of the extracted buffer. oo

0, in the case of the extraction of a buffer B out of two

contiguous ordered blocks U and V the time bounds are |

Ton(UsVU, VB, 8) = o(lu| + |v]) + o(|B]) oo (4.14)

L.2 Merging Using an Internal Buffer: The BUFFER MERGE

The BUFFER MERGE of two contiguous ordered blocks U and V requires |

an internal buffer B of length |

1B] > min({u], |v]) (k.5) :

2L

i

that is, the buffer length must be greater than or equal to the length of |

the shortest block to be merged.

Let us assume first that |V| < |B| . Then the buffer merge can

be described as follows: }

-- Exchange the contents of V with the first |v] records of B ;

-- "Merge exchange" U and the first |v| records in B ; the result

goes in the place previously occupied by UV .

The term "merge exchange" in the above description will be clarified

by the following example:

Example 4.2: The figure below shows the contiguous blocks U and V

to be merged, and the buffer B :

U \Y% B

| 14 kL 8l2k 135

abecdlaAB| lay

After exchanging V and B we obtain:

U

144813 2 45

] abcdadp CC laBY

i mm J

: where the pointers 1 and Jj point to the last non-merged element in U

and V 3 the pointer m points to the first "free" place in UV .

LT Comparing F(i) and F(j) we decide that F(i) must be the last

element of merge(U,V) , so we exchange it with F(m) ,

1443118 2 4 5

- abcpaldl |[ABY

1 m - J

25

1D]

and update the pointers i and m . (The area to the right of m is the

portion of the file already merged.) Now, F(j) is equal to F(i) and oo

so it is the next element to be exchanged: |

14438 215 .

abcpBiBd Ady

im N

| Similarly we obtain:

143k L48 215

ab Ble Bd Ay

im J |

134 448 215

a Blb ¢ Bd Avy

| 1m J

12 4 4 4 8 315

alA bcBd B Oy

1,m y |

At this point all the records originally in V are in their final

.positions. Thus the remaining prefix of U is also in its proper

place and the merge is complete. In the case that U is exhausted

before V, the remaining elements of V should be exchanged with

the initial position of UV . a

It is important to realize that at any point in the process,

the "buffer zone" in UV (that is, the zone filled with elements

originally in B) has the same length as the non-merged portion of V . |

In other words, if the internal buffer B was Flo, :b,] , the following

relation

26

0

m-=i = j-by+1

\ is an invariant throughout the merge.

It is possible now to formalize the previous description by means

of the following procedure:)

C

| procedure BUFFERMERGE BACKWARD (pointer Ug 5Uns Ves Vs D505) 5

| if (uy < uy) A (vy < u,) then
| begin comment: both files are nonempty, U is F(ug:u,)

V is F(vy:vy) s and u, = vy-1 .

B is F(bq:Db,) and b,-by > v,-Vy

| pointer m, 1, Jj;
2

comment: exchange contents of V and Bj

BLOCK EXCHANGE (Vy, 5b 5b+v,-v,) 3

| | comment: merge backwards;

i o= Us; J = b +v, =v, m := vss

while (i >u,) A (J >b,) do

| begin

if 7(3) > (3)

] then begin exchange(j,m);

. Jj = 3-1

| end

| else begin exchange(i,m);

end

m := m-1l;

end;

comment: copy remaining portion (if any) of V;

27

while j >b, do
begin exchange(j,m); | |

J i= j=l; m := m-1 no

end

end buffer-merge-backward;

In order to bound the running time the following facts must be

considered:

(i) The exchange of V and B takes time proportional to the

length of V , that is

T,.v = O(|V : I. 6 |

(ii) The merge backwards loop keeps exchanging elements originally

in U or V until either one is exhausted. So two cases arise: .

(a) V 1s exhausted first, hence U must be of the form |

U = Urry" (4.7)

where last(U')< first(V) <first(U") , and the excharge

takes time

—_ 1"

) (b) U is exhausted first, and then V must be

vos viv (4.9)

| with last(V') < first(U)< first(V') , with time bounds |

| = + ! . .

(iii) The copy of the remaining portion of V takes place only if U

has been exhausted before V , and that portion happens to be V! |

as defined in equation (4.9). Thus, with the same cases as above | |

(a) V is exhausted first: -

- 0 h.11 |Tiss) = © (4.11)

28 :

i

(b) U is exhausted first:

—_ t

N T (iii) ~ o(|vt]) (L.12)

The time bounds result

— (a) If V is exhausted first |

“ T = T + T + T
a (i) (iia) (iiia) |

= o(|v]) + o(Ju"| + |v]) + 0

. = o(u"]) + o(|v]) (4.13)
(b) If U is exhausted first

- + +

= Ty T Yam) T Trai)

- “= o(|v]) + o(ul + jv) + o(lv])

= o({ul) + o(]v]) : (4. 1h)

| Comparing (4.13) and (L4.1k) it is possible to write a unique

B expression for the time bounds as

(back) "
. Tom (Uo VB) = o(fur]) + o(|v]) (4.15)

IN

where U = U'U" and last(U') <first(V)< first(U")

- since in the case that U is exhausted first according to (4.9)

\ first(V) < first(U) , and then U" =U (with U' empty), so I,

reduces to T .
| a

Equation (4.15) reiterates a point already considered when discussing

\ the block merge (Subsection 2.2.5): The running time is bounded by the

number of elements that are actually exchanged, and hence it is not

dependent on the length of the prefix U' (that is, the elements that

« were already placed in their proper positions before the merge was

carried on).

29

All the previous considerations and a symmetrical algorithm |

(BUFFER_MERGE FORWARD) apply to the case in which |U| < |B] and

U is merged forward into V .

The time bounds result:

lFOT-) 5,v,8) = o([u]) + o(|v']) (4.16)BUFM

where V = V'V" and last(V') < last(U) < first(v") .

4.3 Implementation of the Segment Insertion Process

This subsection describes how the segment insertion can be implemented

with the aid of an internal buffer, using as extra storage only a fixed

number of pointers.

Recalling the definition stated in Subsection 5.1, the two contiguous

ordered segments U and Vv |

Uu =U,...0....0
1 1 k

(4.17) |

where |U.| = |v.| =f oo
1 J

are transformed into

VY Zq oer Yg Zoe YZ,

where the segments Yq and Z, are defined by equations (3.3) to (3.6). oo

By considering the segments 24-114 23 ¥4 as |

(4.18) |
Z, = V, «.. V,

d J J+q

Tar1 = Vieprl © Yieprs

50 |

equations (3.5) and (3.6) yield

last(V, 1)

< first (U,) < ie < first(Us,)
| < last(V.) < ... < last(V.
8 < (V,) < < (Viig)
_ < First (Us, vq) . (4.19)

a Equation (4.19) indicates an easy method to determine the final order
L

| of the blocks. Consider sequentially Uy» Us » ete. until reaching the
~ smallest p with

last(Vv,) < first(U) :
L- CoH P

Then Up-ee Ung are the first blocks in the final permutation. Now

- consider Vis Vy , ete. until reaching the smallest q with
, first < lasta ir (U,) < las (Vy) ,

| thus establishing that the sequence vy ee Vo will come after Usa .
The process is now repeated until U and V are exhausted.

| The above process gives us a method to compute the permutation that
| must be applied to the blocks in UV . But somehow that permutation must

- be stored before permuting the blocks, since its definition is based on

| ~ the original ordering of the blocks. Thus the algorithm will have two

' phases:

| -- Compute and "store" the permutation.
-~ Permute the blocks.

In order to "store" the permutation, an internal buffer will be used.

The key point is that the permutation as defined in (4.19) can be computed

by inspecting the blocks in the exact order in which they are going to be

51

permuted. Then it is possible to "remember" the final position of each

block by exchanging one of its elements (say the first one) with the

element in the buffer that corresponds to its final position (recall

that a buffer is an ordered block). After that, the permuting phase

becomes simply a sorting process in which each block has as its key

the key of its first element. Let us.eonsider the following example.

| Example 4.5: Let U and V be as depicted below, with f = 2 , and

let B be a buffer:

Uq Us Us Vy Vs B

el 23468
a bjc de fla Ble p| | BY 8 ¢
D q m

In order to compute the permutation the pointer p will point to the

first element of the block Us currently being considered, while q :

will point to the last record in vs . The pointer m points to the
element of B that will be exchanged.

We start by comparing first(U,) (i.e., F(p)) with last (V,) (i.e., F(q)). -

. Since F(p) <F(q) we decide that U;, will be the first block in the |

permutation. So we mark Uy by exchanging its first element with the
first element of B , obtaining

2lefe 313 3|1 1|2 3 13468 |

HAS is hal , oo Loe
D q m

Now since last (V,) < first(U,) (that is, F(q) < F(p)) V, must go

before Uy , and so it will be the second block in the permutation. So |

after marking it and updating the pointers, there results:

52

21212 3]3 33] 1{2 3 11468

| abledle fils} Blc D]laay 5

p q m

After three more marking steps, all the blocks are marked, yielding:
\

Uy Us, Uz vy Vs B

[2] 2[[4]3[[6] 5] [8] 11232

| xl bity] d fiIB31 Bile] D oo a Ac eC
\

Notice that by inspection of the marking elements we can tell that the

permutation is UV UUs, .

We proceed now to permute the blocks. As said above,

this permutation is simply a sort. But we must choose a sorting method

that minimizes the number of exchanges, since they are block exchanges,

involving f elements at a time. The "straight selection sort"
\

([Knuth], Section 5.2.3) is well suited for our purposes. This

method looks for the minimal element and exchanges it with the one in

the first position, then it does the same but only considering the
\

remaining elements and putting this new minimal in the second position

and so on.

After sorting we obtain:
\

| 21 211311) 3}6{ 3||8] 3 11232

: al vlig| Blly| alls] tlle pl la ac ec

(Finally, we exchange the first element of each block with the corresponding

element in B , thus completing the permutation and restoring the original

contents of the buffer:

\ 1211233323 23468

abABcdefCDl |agyse
J

55
C

|

The following procedure formalizes the above description:

procedure SKGMENT INSERT (pointer Uy sUns Ves Vs T5050,) 3
begin

pointer m, p, q, Tr; oo

comment: compute the permutation marking the blocks;

| Pp = EE q := vot I-1; m := b. 3

markU and V:

while (p < 1,, A (q <v,) do To

ifF(p) < F(a)

then begin exchange(p,m); |

p :=p+f

else begin exchange(q- f+ 1, m); |
q :=q+1f | -

m :=m+1

comment: mark the blocks of either U or V that haven't been BR

marked already; oo

nark remaining U's: E

while (p < u,) do

begin exchange(p,m); = |
|

p :=p+fy;m :=m+1 a

| |

3l)

|

|

X markremaining V's:

while (q <v,) do

begin exchange(q -f+1,m);

Lo q :=q+fiym:=m+1
| - end;

| comment: permute the blocks;

X — permute blocks:
for r := wu, step f until v, -2x +1 do

| begin

y _ _ comment: find the block with minimal key;

= for s :=r+f step f until v, -f+1 do

. | if F(s) < F(m) thenm := s;

comment: exchange blocks;

_ BLOCK EXCHANGE(r , r+ f-1,m,m+f-1);

“ end;

= comment: restore the initial key of each block:

- restore keys: |

C for s i= 1 step 1 until (v,-u;+1)/f do

_ | exchange (uy + (s=1) xf, by -1+ $s); |

| end segment insert;

.
The following analysis establishes time bounds for the segment :

— insertion: | |

Let N be the number of blocks, namely (|u| + (v])/f . oo

BN 35

\ |

(i) In order to compute the permutation (and mark the blocks), each

block in U and V is compared and marked once (while loops

labeled "markU and V'", "markremainingU's" and "mark remaining V's").

Thus this process is linear in the number of blocks, that is

T,.\ = O(N . 4.20(1) (W) (4.20)

(ii) The permutation process (loop labeled "permute blocks") can :

| be viewed as follows:

for p := 1 until N-1 do

begin

Search through the first keys in the p+tl, pt2, ..., N-th

blocks for the minimal one;

Exchange the p-th block with the one with minimal first key;

end

Since for each value of p the search for the minimal first key

| takes time O(N-p) and the exchange O(f) , the time bounds are

= - +

= o(XNLy 4 o(w-1)-n) (4.21)

(iii) Restoring keys ("restore keys" loop) is linear on the number of

blocks, so

= . .2| Ti11) O(N) (4.22)

The overall time bounds result:

= + +

Topam(Vr Vo TD = Tray + Teggy + Traag)

= om) + of=) + o((w-1)+2) + ow)
2

= 0(N") + Oo(N.T)

= o((|u]+ |v])=/ ££) +o(|u|+ |v]) (4.23)

56

i

Tt is interesting to note that if f is of order (|u] + 1v])

- or larger, the overall time bounds are linear on the length of UV .

\

.

.

\

\

| 37
\

I

5. The Partition Merge Algorithm

Section 3 presented the partition merge strategy. In Section 4 the

necessary tools to keep storage requirements minimal were considered.

With that background it is now possible to introduce the partition merge

algorithm and bound its running time.

5.1 Description |

The algorithm here presented closely follows the process introduced

in Section 3, except for the addition of an initial buffer extraction

step and, of course, a final merging step to merge back the internal

buffer previously obtained. Figures 5.1, 5.2, ... illustrate the

process on & particular example.

Let U and V be two contiguous ordered blocks to be merged.

| The following procedure defines the partition merge algorithm:

procedure partition merge (pointer value u ,u ,V ,V)s

begin comment: U is Flu, us] and V is Flvy:v, ls

pointer n, f, b, ts ths Va) vy,» t 2 LAE LOY, Ws w), PS

n := Vy mug td;

Step 1: Extract an internal buffer of length at most

| EEE

buffer extraction:

BUFFER_EXTRACT2(uq,Uy, V,5V,,ceiling(sqrt(n)),b,b,) 3

b :=b,-b +1; f := floor(n/b) ;

58

1

.“

U Vv

\ Yq Uy Vi Vo

12224k555679111333244L0055667T79

B abcdefghijkl[ABCDEFGHIJKLMNOPQRS

L lu] = 11 lv] = 19

n |u| + |v] = 30

- ere=

Figure 5.1: Initial layout.

N— .

U? A B

\

hat Yo Vy Vo (Py by

. 1222455567913 334404hs5679j13LL56T7

Bn abcdefghijk[ABDEFHIJKMOQS|ICGLNTPR

u'] = 11 | [vt] = 13 IB| = 6

|B]=b = 6

f= |In/b] = | 30/6] =5

yg Figure 5.2: After step 1.

59

\

This step transforms UV into U'V'B , where B is an internal

buffer of length b = b, -b + 1.

Let f = | n/b] .

Step 2: If either jut | or |v | has length less than or

equal to f , then merge them directly and proceed with the final

step (merging back B).

check lengths:

if (u,-u; +1) <f

then begin

if (uy -u +1) >b

then BLOCK MERGE_FORWARD (u,,Us,Vy; vs)

| else BUFFER MERGE_FORWARD (u,,U,;Vy5VpDq 505) 3

go to merge back B;

end

else if (v, -vyt 1) < f then

begin

if (v,-v +1) >b

then BLOCK MERGE BACKWARD (u;,U,,Vy,V,)

| else BUFFER MERGE_BACKWARD (uq,UnsVy5Vyssbisby)s
go to merge back Bj;

end;

Notice that depending on the length of the buffer, the algorithm chooses

either block merge or buffer merge . This choice allows linear

running time as will be analyzed below.

LO

| - Step 5: Prepare things for segment insertion by getting rid of that
oo suffix T, of U' of length

IT | = |U'] moa £u

“

insert suffix:

tb, = Ups Uy f=, = (u, ~uy + 1) mod f; 6 =u, +1;
CL comment: U" is Flu, iu,] and T, is Flt 8,1;\

INSERT (58,5v1,v,5v5,v),)3
— . nn 3 . LAIR | 3 . .

comment: V" is now Flv, :v,] and V'"' is Plvg ivy I;

| After the insertion U'V' becomes gr vt IT, V't* , where U"T, =U’
= and V'V"' = V' . By the characteristics of stable insertion the

. merge of U' and V' is now reduced to the merge of U" and V"-

and that of I, and V'"*

| Now iu" | mod ff = 0 , by the choice of TI, s So U" and
| V'" can be viewed as segments such that:

ARES A) pee Vs cee V, T

- where ul = Ivy = « for 1 <i<k and 1<j<12
and |T | < £ .. v |

hl

-— UU"———y|—VV" ————>iT VT" B
u

EEE REE

t, Vs

ug u, vy Vs t, vy, b,

| l1222hks555671113%33344448567 9191134567 oo
abcdefghiJJABDEFHIJKMOQl kK{SI|CGLNZPR |

Uy | Us Vi | Vo | Tol Ty | |
|u| = 10 vv" 7 yr B
_ Abi]

Figure 5.5: After step J.

Lip

i

8 - 3 3

Step 4: Segment insert Uy --. Us U, into Vy. v ee V,

segment insertion: .

| _ SEGMENT INSERT (usu, vy, v, - (v, -v; +1) mod f, £30,505);
w

The next step will be the finish up process (see Section 3), but
; some discussion is needed first.
Co

Assume that the layout after the segment insertion is

— . os I . * 8 "te * » » 2 & =Wy wo Wits T, TV B , where wy wo Ws corresponds to

Y. Z, «...Y. 2. ...Y 7 as presented in Section 3. Unfortunately thereCo 171 dd tt

i 1s no explicit information about the way the blocks wo are grouped to
form the segments Y424° But fortunately the local merges must be

1 performed only on those pairs Yg%q Such that last(y3) > first(z3) p
hence the finish up can be done by repeating the following sequence

. until the whole segment Wy “er wo ce Wits IT, has been processed;
' ° In order to locate the next pair YqZy to be merged, scan to the
- left until a block W_ , such that
| : last (W_) > first(W ,,)

is found.

Co Perform the local merge:

1st step: Insert wo in Wit » thus transforming WWry
into W'wW_ Ww" .

m

2nd step: Merge wo forward.
ord step: Merge W' backward.

uz

A

T vm B
u

ty Vs

uy u,, t, vy, by bo

122241133355 567444485679(9113L456T7

abcdeABDEFfghi jHIJKMOQ}|k|S|CGLNZPR

A

wy Ws | Wy | Wy, B I, Vv n

In the notation of Section kL,

W WWW), = Y,2.Y,2, (t = 2)

with the following grouping:

Ip = Wp = 0, 4p = Wy = Vy

I, = Wy = Uj Zp = Wy, = V, .

Figure 5.4: After step Uk.

Lh

CE ——————————————————

Both definitions result in equivalent operation if the merging

method stops once the merge is complete. In this case the bounds are

preserved simply by the existing order in the file, thus making

| unnecessary to keep track of them. In other words, the grouping of
- Wy cee Wo ee Wo into Y,2, SER ETH cee XZ 1s useful to prove that

or the algorithm works (and, as will be seen later, to compute its time

bounds) but it is not needed to take it into account for implementation
y purposes. |

. R

he

|

h5

i

Step 5: Finish up the merge of Wy ‘eo Wo ‘co Work Ty .

finish up:

p =v, - (vs -vyt 1) mod f; if p = v, then p := p-f;

while p > u, do
begin

comment: find next pair YZ to be merged;

| while (p >u,) A (F(p) <F(ptl)) do p := p-T;

if p > uy then

begin comment: local merge;

comment : Wis Fle :t,] 3 Woiq is Flw, sw, 1s

fy = p-f+1; t, = PP;

Wy c= ptl; Ws t= min (ptf P NE

INSERT (£15 4,5Wy5WpsWasW),)3
. t 1 - Li J . .

comment: now W' is Flw, vw,] and W" is Flv sw, Js

comment: in order to do the merges

forward (of Wo) means Flws:v, ls

"backward (of W')" means Flu, wy -1];

comment: depending on the size b of the buffer the

algorithm chooses: |

BUFFER MERGE if b > f

BLOCK MERGE if b < fj

if b > °F

then begin

BUFFER MERGE FORWARD (£5 £5 Wz5V,550, 50) 3
BUFFER MERGE BACKWARD (uy, wo-1PW Ws» b1 b5)

end

else begin

BLOCK MERGE FORWARD (£ALYv5) ;

BLOCK_MERGE_BACKWARD (up, wy -1,W,,W,)

end;

p := p-f

end ifp
end whilePp;

L6

. N Layout after segment insertion:
|

| E173

a 1 By Ps Po Py| Vol T2|Vi [PL bo

“ 122241133 3155567|b44L567 991134567

abcdelABDEF|IfghijHIJKMOQ kISI|ICGLNTPR

oC When p =p, , F(p) > F(ptl) , and the first local merge is done:

jul a ol Wy ol Yo

oo 122241133355567|44L4L45]6T7]9
h abcdeABDEF|feghiijlHIJTkMoaqlx

| Ww
5

W wll L |W Vv

. 1 2171 21 bh} "2 After

LLhus55675]6709 inserting

- HIJX|fghiJj{MI|OQKk Wo into Wot

| w' Ww w"
. m

1222411333444 0L4555566779 After

abcdeABDEFHIJK|IfghMiOo jQk hn merging

merge backward or it! merge (BUFFER MERGEh stops here forward of | is used)
_ W_ stops here

m

— When p =p , again F(p) > F(ptl) , so

1 222411333 After inserting Wo (in this case
| k bedelpaBDEFR| yielding W' empty and W" =W 1

| W Wr

After merging: tq Vy

. 111222232404 040445555667719(911653L47

a ABbcdDETF eHIJKfghM10 JQ k|S|CPNGLR

Lo merge (u,v) T., vad B?

. Figure 5.5: The finish up process applied to the example.

| WT

‘

It must be noticed that the algorithm chooses either BLOCK MERGE

or BUFFER MERGE depending on the relative sizes of the blocks and the

buffer.

Step 5 transforms the layout into .

merge (U",V") T, V'! RB! }

where B' is a permutation of B (and B' =B if block merge was

used in step 5).

Step 6: Merge T, and V"' .

merge T _V :

fb >t, -% +1

then BUFFER MERGE FORWARD (£15857 Vi Vy5 D505)

else BLOCK MERGE_FORWARD (t,,%,,V5,V)) 3 -

This step completes the merge of U' and V' , thus yielding merge(U',V')B' .

Step 7: Sort B' and merge it backward.

merge back B:

: STRAIGHT INSERTION SORT CIVINE

BLOCK_MERGE_BACKWARD (u,, URLIEL |

end partition merge; _

And step 7 finally yields the desired merge of U and V . |

L8 |

LL

|

Figure 5.6: The general case after step 5 was

A merge(U'", VV") I, vie B'

oo

B and after step 6 there results: |

| — merge(U',V') B'

. I
hai] lt

111222333440 4k5555667799|1L653LkT7

a ABbcdDEFeHIJKfghMiOjQksS|CPNGLR

\ Figure 5.7: Final result.

merge(U,V)

a 11112223333 4k4hhhh555556667T799
| a ABCbbcdDEFGeHIJKLfghMNiIiOPJQREKS®S

- |

NL

The storage requirements for the partition merge are the fixed

number of pointers declared at the beginning (1b in total, though a |

more careful usage could have saved some) plus those needed by the |

different procedures called. Since those procedures (BUFFER EXTRACT2 ,

BLOCK MERGE's, BUFFER _MERGE's, INSERT, SEGMENT INSERT, and

STRAIGHT INSERTION SORT) require also a fixed amount of pointers (and |

| clearly there is no recursive call involved) the overall storage

requirements are absolute minimum, that is O(log n) .

5.2 Time Bounds for the Partition Merge Algorithm

The partition merge is executed as a fixed sequence of steps. The |

‘algorithm chooses the sequence in step 2, among the following two

possibilities: Lo

(1) 1f |u| <f£ or |V'| <f:

steps 1, 2, 7; |

(ii) If |Uu'| >f and |V'| >:

steps 1, 3, 4, 5, 6, 7.

Hence, calling T. the time bounds for the i-th step, it results

that time bounds for the overall partition merge are either

© (1) T+ T+ To

. +

or (ii) Ty +T+T)+T+To+T, |

The analysis of time bounds for each step follows.

50

=

_ 0.2.1. Time Bounds for Step 1—o =POUnGsS1or step L

| The buffer extraction is given by equation (4. k)
oo 2
: Tar(UsVU Vv,B02) = o(ful + [v]) + o(]Bl?)

| _ Since the buffer B is restricted to
sl < [RI]

the time bounds are

s rt, = oflol + iv) + o [VT + T01|
= o(jul + |v]) (5.1)

- 5.2.2. Time Bounds for Step 2

| In the case that lu | <f or |v! | < f , this step yields a mergeLo

of U' and V' . Assume Ut] < fT ; here two cases must be considered.1 |
b

L (a) |u|] >b : this results in BLOCK MERGEFORWARD(U',V') , with

| bounds given by (2.6)
T, = o(|v]) + our] aur) (5.2)

But f > |u| >b , and by definition f = | loledol | s SO
[U| + |v] >b° and then

| o < [Voll| (5.3
| | Recalling that the buffer extraction in step 1 asked for a buffer

of length EK |u| + |v]] » and applying equation (4.3), implies
b = AMUV) (5.14)

Now since A(U') <A(UV) , it is possible to bound

51

ed
:

AUT) < Db : (5-5) |

Hence _

o(lut|n(ur)) = o(f-b)

. ul + |v

co [hdd Jo) = odor + vn (5.6)
Equations (5.2) and (5.6) and the fact that |V'| < |v] give |

| the final bounds

r, = o(|vt]) + o(u| + [v]) = o(lu| + |v]) (5-7)

(b) |u| < b : then it is BUFFER MERGEFORWARD(U',V',B) , that

yields, by equation (L.16)

Clearly, the case lv] < f is similar, so by equations (5.7) and

(5.8), it is possible to conclude that

tr, = o(|u| + [v]) : (5.9)

5.2.5. Time Bounds for Step 5. |

] The insertion of I, into V takes time proportional to the sum

of both lengths, as stated by equation (2.5), oo

| r, = o(lz,| + vl) = o(lu] + |v) : (5.10)

5.2.4. Time Bounds for Step Lk.

The segment insertion process bounds were established in equation (4.23)

in Section L4.3. In the case of step 4, U" was inserted in vy cee V, s SO To

Ty, = Tepamy(U"sVy---V,o1) B
2; 2

= o((fur| + vy ...v, D729) + o(fur| + fvy.v, oo (5.10)

02 |

| i

\

| Clearly

. url < |u| ana |vy...v,| < |] (5.12)
Also

3 [ur] + {vy -ev,lb < urls vr] < url fv] = Jul|v] =e. (5.13)

~ By definition of f

oo With (5.12), (5.13) and (5.1k), (5.11) becomes
L

(|u| + |v] -p)°
_ T), = 0 5 |) + o(]ul+ |v])

((lul + |v] -b)/v)

= 0?) + oul+ |v). (5-15)

. And since b < ul |
2

. o(p%) = o(|u| + |v]) (5.16)

thus

r, = o([u] + |v]) (5.17)
N

5.2.5. Time Bounds for Step 5.

_ In order to compute these bounds, it is convenient to resort to

\ the notation in Section 3.

| The segment insertion in step 4 transforms U"V'" into

Y,2 co YoZy en YL 2,000 , where
\

U" = LEIEERR FIER

V' = Zy eeZg or ZCL 1 (5.18)

Co Also, let Lg be the last block of Yq , and Fs the first one of 24 ”

thus renaming ‘

| 53
L

|

:

— t —_ |

Y, = Y5 Ls and Za = Fs23

with |L,| = [Fl = £ (5.19)

The finish up process of step 5 can be viewed as:

for d :=t step -1 until 1 do

begin 3

: : s : ? rn.

insert Ls into Fa transforming LsFg into Fi Ls Fa 5

| merge Lj forward;

merge Fy backward;
end

On the basis of the above description, the time bounds for step 5 result

the sum of the time needed for insertions (T) plus time to merge

forward (T5) plus time needed to merge backward (Ty) . So

= + + .

2; I; To Ty

Time bounds for insertion: Time bounds for insertion of two blocks

are given by equation (2.1L)

then

d d

=of Zl, Y+of Z |r.) (5.20)d d
d d

But |L,| < [v4] and [Fl < |z4] ; and since

2 [Yq] = |u|
and

Tlzg < lvl
d

Sk

|

equation (5.20) becomes

: 7. = of zy. Y+of Zz, } = o(Ju"|+ |v]) . (5.21)I d d
d d

Time bounds for merges: The time bounds for block and buffer merge

are functions of those records that are actually exchanged (see remarks

at the end of Subsections 2.2.5 and 4.2).

Claim 5.2 shows that during the finish up of Yi24 , all the elements

. to the right of Car are already in their final position. Hence when
- s : "rr

merging Ly forward, it merges into F3125C4+1 2 regardless of how far

to the right of Cart the merge limits point. So in order to bound

« the running time the process "merge Ls forward" will be regarded as
"n : Tn t "

merge Ls forward into F323C501 .

A quite similar reasoning shows that "merge TF} backward" is

\ equivalent to ''merge FY backward into Yi ".

There are two cases depending on whether block or buffer merge is

used, and they will be analyzed separately:

h (a) Case b > Tf : BUFFER MERGE.

By equations (4.15) and (L.16) the time to buffer merge two blocks

B) X and Y (either forward or backward) can be bounded by

) o(|x|) +o(]¥]) , so:

. — " t

T= 2 o(|ngl) + Zo(|Fyzica,|) (5.22)
d d

\

7. = 2 o(|Ft|) + 20 o(|¥:]) . (5.23)B d d
d d

Combining (5.22) and (5.23) and manipulating the lengths properly:

\

pp

N

|
{

N° ! s
T+Tp = 2 Oo(|y Ll) + Z o(|ryFyzl])+ 2 o(|Cqq])

d d ad

= o(fur]) +o(vr) +o(lvi]) = o(fur|+ |v) . (5.24)

(b) Case of b <f : BLOCK MERGE.

Since

(forw) ~

| it is

Ty = Z o(|rg| Meg) +Z 07g 24 Cy, |)
= £ of Z ML) }+ o(|v]) (5.25)

d

and also ~

(back)
Torocr (XY) = ollx]) +o(ly|ny))

yielding

Ty = 2 o(|yg)+ Z (|Fy-MFY))
d d

= o(U") +f of 2 ry)) . (5.26)d

In order to bound the sums in equations (5.25) and (5.26), the

following result is needed:

Claim 5.1: Let U be an ordered block. Consider U as a segment of

k blocks U =U, 0, cee Uy ee Uy , then

MU +k > 2 Muy) (5.27)
1<i<k

56

| |

Proof’: Let |

1 if last (U,) = first (U,, ,)
g(i) = :

L 0 otherwise

for 1 <1i<k .

| Then clearly

2 MU) = MU) + og(L) + oeee + g(k-1)
1<i<k

yielding the claim.

— Applying (5.27) to the sums in (5.25) and (5.26) yields:

he Lo ML) <0 ZL MY) < Mum) +t (5.28)
1<d<t 1<d<t

N

OaEY TM) < Mitt (5-29)
— 1<d<t 1<d<t

Combining (5.25) and (5.26) and using (5.28) and (5.29), the time
\

) bounds result:

THT = O(n] + |v) + £.0(MU)+4) + £ O(MU") +t) (5.30)
=

«

57 |

By the same analysis as in 5.2.2, the fact that ff >b implies

AMUV) = b , and then E

NUM) < b and NV) <b . (5.31) |

Also t is bounded by the number of blocks (of length f) in U" —

and V" Co.

mart 1 t _

SRS LUAIAF RN LALA WE ul+lvl-2 | 4 | (5.39))| (lof + |v) /p (Ju]+ |v] -o)/p |

Equations (5.31) and (5.32) and the fact that fb < |U|+ |v] , applied 2

to (5.20) give IE

T+Ty = o(|u"| + |v']) + £.0(b+Db) + £-0(b+D) -

= o(|u| + |v]) (5.33)

In summary: BE

Time for insertion: equation (5.21) shows that | K

I. = of lum]+ |v'])

Time for merges: .

}

Case b >f : by equation (5.24) E

r+, = o(furl+ [vr])

Case b < f : by equation (5.33) wt

| To+Ty = o(jul+ |v)
Clearly the time bounds for step 5 result

I; = o(|u| + |v]) : (5.34) -

58

| |

=

oo 5.2.6. Time Bounds for Step 6.

. By an analysis completely similar to the one for step 2, the time

- bounds for the merge of T, into V"' result

oo T, = o(|ul+ |v]) 8 (5.35)

oo 5.2.7. Time Bounds for Step 7.

: By equation (2.8), the time bounds to sort the buffer B are

Ts = Toopr® = 0(IB[%) = o(lul + |v]) (5-36)S SORT

Also the block merge of B into the rest of the file

(back) orge(u v') , B)
~ BLOCKM ? ’

= 0(|merge(u',Vv') |) + o(|B|N(B)) . (5.37)

| But since B is a buffer |B] = N(B) and thus (5.37) becomes

2

T, = o(fur| + Jv)+ o(B|%) = o(lul+|v]) . (5.28)

Finally

N I, = Tg+T, = o(|ul+|v]) (5.39)

— 5.2.8. Overall Time Bounds

| Equations (5.1), (5.9), (5.10), (5.17), (5.34), (5.25) and (5.39)

| show that each single step has time bounds o(lul + |v]) . The conclusion

is that the overall process must have also linear bounds, since it

consists of a fixed sequence of those steps.

09

6. The Partition Merge Sort |

The availability of a linear time merge algorithm gives rise to the

possibility of an (n . log n) time bounded sort. A few slightly different

variations of the same basic strategy arepossible, and this section

presents one of them in detail. i

The sorting strategy consists of successive merging passes Over

the entire block to be sorted, each pass merging pairs of blocks of

length 1,2, 4, ..., oK ... until the entire file is sorted.

6.1 Description

The following procedure sorts a block U , whose first and last a

elements are pointed to by ug and Us respectively.

procedure partition merge sort (pointer value Uys) 5 ~

begin pointer p, I;

comment: { is the length of the blocks to be merged ; oo

£2 := 1; :

: Ca +
hile 2 <u, ug 1 do _ |

) begin comment: merging of contiguous pairs of blocks of

length £2. The pointer p points at the _
first element of the second block of each pair; co

| P i= u, + £3 | |
while p <u, do

begin

partition merge(p-£ , p-1, p, min(p+e-1, u,)); |
D = p+ 2%} |

end Co

£ = 2%}

end |

end partitionmerge sort;

60

:

6.2 Time Bounds

\ Since partition merge is linear on the length of the blocks to be

merged, each merging pass results also linear on the length of the

blcck U Dbelng sorted, regardless of the value of ££ . That is,

< | denoting by M, the time bounds for the merging pass of blocks of

| length [f it is

M, = o(|u|) : (6.1)

h But the merging passes are repeated for lengths

| ¢ = 1,2, ...,2%..., oF

«— such that ok does not exceed the length of U :
4

of < |u| < 21. (6.2)

S50 the time bounds for the sorting process are:

A

- T (U) = 2 M .(U)
P M SORT 0<i<k ol

| = 2 oul) = (e1)o(|u]) . (6.3) |
\ 0<i<k

From equation (6.2) it results

_ k+l = [log, |u| : (6.4)

Finally yielding

| _ 6.Tp isogr(V) = OU] log [U]) (6.5)
-

61

\

| |

: |
7. Conclusions oo

The most interesting of the results presented here is the -

PARTITION MERGE algorithm, since as the reader was able to see, the

PARTITION MERGE SORT resulted as a straightforward consequence of it. |

By analyzing the previously published results, especiallythe :

work by Horvath ([Horvath]), it can be concluded that there were two

| considerations that led to the general result presented here. |

First, the utilization of an internal buffer, without any modification |

of the keys, to "mark" a permutation of a segment, allowed the segment

insertion process to be implemented within extra storage bounds of | |
O(log n) bits. - Co

Secondly, the adaptivity of the algorithm to the characteristics |

of the file being processed (by proper choice of either BUFFER or | |
BLOCK MERGE) resulted in a linear time "finish up". -

Tt is interesting to note that the operation ' ptq ' on pointers is

strictly needed only for the permutation of blocks in the |

SEGMENT INSERT process (Section 4.3). All the other sums of pointer

values could have been realized by successive ' ptl ' operations within | |

the same time and space bounds. It remains an open question whether } |
these minimum time and space bounds are obtainable only with the |

primitives ' exchange(p,q) ', ' F(p) <F(q) 's 'prxl', "pP=2a’, co

and ' p :=q '.

Acknowledgments

The author is greatly indebted to Professor Donald E. Knuth, not

only for his help and encouragement in the present work, but for the

many things the author learned from him.

62 |

|

| APPENDIX A

\ Analysis of Basic Transformations

This Appendix presents a detailed analysis of the basic transformations

BN defined in Section 2.2.

Each transformation is defined by means of an ALGOL procedure and

the corresponding analysis of the running time bounds is presented.

| The blocks U and V are used as parameters, and they correspond

to Flu, tu,] and Flv, :v,] respectively.

In order to allow dealing with empty blocks, an empty block U

is represented by (uyruy) with u, = u,-1 . The pointers used to\, ——

represent the segment UV have Ut =v in all cases, even when

~ one of the blocks is empty.

Co

N A.1 Reversal of a block: REVERSE (u,u,)
N

| Algorithm:

- procedure REVERSE (pointer usu) 3

. for j :=u, step 1 until (uy, +uy)/2 do exchange(J , uy = J+ uy);

Time bounds: Clearly

. = A.lTopy(0) = o(|u}]) (A-1)

63

|

i]

A.2 Exchange of blocks of equal length: BLOCK _EXCHANGE(u, uns V5 Vy)

Algorithm:

procedure BLOCK EXCHANGE (pointer Uy 5Uns Ves Vi) 3 |

for j :=u, step 1 until u, do exchange(J , vit] -u,);

Restrictions: |u| = |v] .

Time bounds: The for loop is executed |u| times, thus

Tom (U,V) = o([u]) = o(]v]) : (4.2)

A.% Permutation of two contiguous blocks: PERMUTE(u ,u ,v ,V)

Algorithm:

] procedure PERMUTE (pointer Wy sUss Vo Vs) 5

begin

pointer ©;

REVERSE (u,v) ; comment: yields viol,
comment: exchange pointers;

t r= Vos vy i= Uy 5 Vy i= Vo mu, tug = 1s

ug i= votls u, = 1b; :

REVERSE (u,5u,) 5 comment : vis

REVERSE(v,,V,) 5 comment: VU;

end PERMUTE;

64

u

| Restrictions: U and V must be contiguous with U preceding V ; i.e.,

C _

vy = uytl .

Time bounds: Three reverses areexecuted, all of them linear on the

. length of the blocks, so

Tegy(UV) = o(|ul + |v]) : (A.3)

\

A.4 Stable insertion of two contiguous ordered blocks:

- INSERT (uy, Up, Vy 5 Vs £5 £5)

Algorithm:

\ procedure INSERT (pointer Uy 5s Vy Vis £555) 5

if (uy < u,) A (vy < v,) then

begin

\ comment: search for insertion place;

fy P= V4 fs I= Vos

while (f; <v,) A (F(£) < F(uy)) do fy := f+1;
\ . t 3 ef "nog . .

| comment: now V' is Flvy:fy 1] andV" is Ff :f,]3

Vp i= f,-13 PERMUTE (15 Uys V5 Vy) 3
end INSERT;

\

Restrictions: (vy = u,t1) and ordered(U) and ordered(V) .

(S

65
\

| Time bounds: The search compares the elements of V' until reaching :

the first element of V" (V' and V" as defined in Section 2.2.4) oo

and PERMUTE permutes U and V' , thus the bounds are :

To (Us 7) = o(ju] + |v!) (A.4)

with V = V'V" and 1last(V') < first(U) < first(V") .

A.5 Direct merge of two contiguous ordered blocks: BLOCK MERGE

Only BLOCK MERGE FORWARD will be considered here. oo

Algorithm: |

procedure BLOCK MERGE FORWARD (pointer value Up sUss Vas Vy) 3

if (uy <u)A (vy <v,) then

begin pointer X15X53Y15Y55C15Co5 |

| Xp i= Ups Xy 15 Und Yq iF V3 Vy FE Vos |

while (x; <x,) A (yy <v,) do |

begin

comment: any element to the left and including Yo

is in its final position. The merge is

: reduced to the merge of Fix, :x,] with Fley:e, ls

if (yy <vo) A (F(x,) > F(y,)) then

begin comment: discard the prefix of Flx,:%,]

already in its final position;

: * +1:

while (x; <x) A (F(xy) < F(y1)) do x, i= x +1; .
end |

end.

end BLOCK MERGEFORWARD:

u

<

Restrictions: v, =u,tl and ordered(U) and ordered(V) .

. Time bounds: Let

U =U; ..-Ug aU 1u | >0 for 1<i<t
and | (A.5)

« Vom Vy Vy eee Vy een Vi [v,|>0 for 0<i<t

where

| last(U,) < first(V,)
\ and (A.6)

last(V,) < first (U4) .

With this notation the merge of U and V can be expressed as

. ~

merge(U,V) = Vo Uy Vy CULVee UT (A.7)

Furthermore, the block merge process may now be defined as follows:

iN

for i := 1 until © do

begin

. insert Us ee Uy into Vi 1 Vy cee Vis
if 1 <t

then search through Us until reaching the first element

of U,,
i+l1’

| end

The insertion of Us ee Uy into Vig Vs ooo Vy yields, according
\ ‘ee “os ‘ it takes tito (A.6), Vi 1 Us Ue Vs V, » hence by equation (A.4) it takes time

TI, = o(|v, 41 + {ug aU) : (A.8)

.

67

\

ie

The search to find the first element of Us takes time proportional |

to the length of Us ’

TS, = o(luy|) : (A.9) oo

Thus the overall time bounds result -

rior) (gv) - I TI, + LTS, |
1<i<t 1<i<t

= 2 o(lv. J|+u. ..cu D+ 2 ou.)
1<i<t 1-1 + UT 1ci<t +

= o(|vuy.-.v, D+ 2 o(luy elu)
~ OS t-1 1<i<t 1 |

1<i<t |

= o(|v.v,...v, D+ Zz o(Ju,...u.]). (A.10) |
0 1 t-1 1<i<t 1 t

Clearly us. Ug < |u|] . Since equation (A.6) implies

last (U,) < first (U,,,) , the keys in U, are distinct from the keys in

U,,, - Thus t is bounded by A(U) , and the sum in (4.10) is

20 o(juy...u.l) = o(|u])-t= o(|u|n(u)) : (A.11)
| 1<i<t |

Renaming Vy...V,, =V' and V, =V", equation (A.6) yields

last(Vv') < last(U) < first(v") . (A.12)

And finally the time bounds can be expressed as

(forw.) 3 x N : 2.132(ET) (0) = oun) + oC) (2.13)

63

i

APPENDIX B

Analysis of the Buffer Extraction Process

The concept of buffer extraction was introduced in Section h.1.

This Appendix presents a slightly more general extraction mechanism

} and its application in order to produce a buffer from two contiguous
ordered blocks.

-
B.1l The EXTRACT transformation

Let U = Flug :u,] be an ordered block and M = Flm, sm,] a. buffer

(U and M do not overlap). Then an application of

) EXTRACT (uw, Uys £015 Drm 1) transforms U into U'B such that
B is a buffer, B =Fl[by:b,] , |B] <1

| (B.1)
. U = merge(U',B) ,

no record in B has a key equal to the key of any record in M (that

= is, V¥irm, <i<m,, ¥j:by <J <b, F(i) £ FJ)), and |B| is
\ as large as possible subject to these conditions.

The extraction is similar to the mechanism presented in the example

) in Section 4.1, with the addition of a check to avoid collecting any

~ record whose key is already in M .

The following procedure describes the EXTRACT process:

procedure EXTRACT (pointer Uys Uss £500 5,00,my 515) 5 |

) begin pointer p,q,s;

logical procedure is in M (pointer q);

) while (s <m,) A F(s) <F(q)) do s := stl;
if s > m, then false

else (F(q) = F(s))
\

69

end isinM; Co

S t= my; comment: s will point to successive elements in M; |
by P= Ug b, i= uq-1; comment: B 1s initially empty; Co

comment: collect the buffer; |

while (b, <u) A (b, -b,+ 1<¢) do oo

begin
comment: set q to point to the next element to be |

included in B, |

or set q = util 1f no such element exists; oo

PP :=q = b +l; |
while (q <u,) A is_in M(q) do q := g+l; |
while (q <u) A F(q) = F(q+l)) do gq := g+1; a.

if q < Un then

begin comment: permuteB and the elements preceding record q;

| q := q-1; PERMUTE (b,,b,50549) 5
b, :=b +l; comment: include the record q in Bj; | |

end;

comment: permute B with the elements (if any) to its right; |

p i= byl; PERMUTE(b,0,,P,,) 3

end EXTRACT;

~ In the above program the procedure is in M checks whether a given .

key is or is not in M . In the following analysis the execution time for

a call to is in M will be considered fixed, with tie proviso that an

o(|m|) time is added to the total time bounds. The reason for the above

statement is that is in M 1s called upon to check successive keys in U , | |
and thus it needs to run through M only once during the entire execution

of EXTRACT.

70

|

|
| The buffer B is collected from left to right. Assume that after

s collecting the first 1 elements of B the block U has been transformed

: 4 1

| Ui B, UY y (B-2)

os where us is a prefix of U' ,

B, is a prefix of B, |B] =1

K and uy has not yet been considered.
The execution of EXTRACT now proceeds as follows:

-= search through us until reaching the first record gq , such
that

Viz my <J <my: F(q) # F(3)) and (a =u, or F(q) <F(a+tl)) ;
|

-- permute B, with the elements to its right that precede the

. record gq , and append gq to B. thus yielding

| Uirr Bian Ving)

The time needed to search is proportional to the difference of lengths

) ! H
between Usiq and Us ’

?

; | IS, = (|u| - jus |) : (B.3)

h The permute time is of the order of the length of B, and the
distance between gq and the rightmost element of B ,

= - lu! . ATP, = d([B;| + [ul| - Jui) (B.4)

Hence the overall bounds result

Tom (Us £,B,M) = 2 (Ts, + TP.) + o(|M|) (B.5)
| EXTR 1<i<|B| 1 1

71

wd|

where the O(|M|) term is the "extra" contribution of is in M . ~

After some manipulation (B.3), (B.4) and (B.5) yield 1
3 |

Torr(Us £584) = o([B]7) + o(ful) + o(|m]) (B.6) 1

B.2 Extraction of a buffer from two contiguous ordered blocks: i

| BUFFER_EXTRACT2(u,U,, Vy, Vis £,0,50,) |] .
— p

An application of BUFFER EXTRACT? produces a buffer B , of length J

|B| = min(£, AN(UV)) , out of two contiguous ordered blocks U and V , 5

yielding U'V'B where] |
merge (merge(U',V'),B) = merge(U,V) . (B.7) —2

This transformation is implemented by means of two successive applications |
of EXTRACT. The following procedure defines the algorithm: B

procedure BUFFER EXTRACT2 (pointer Uy 5 Uns Vs Vos 25b5b,) 3

begin pointer c,,c,; 3

comment: EXTRACT(V,Z,B,M) with M empty (thus no restriction 5
is imposed on the elements to be collected); _ |

) Cy i= 1s Cc, i= Os; 1.
b,,b -

EXTRACT (V5 Vos £5 17 53€75C5) >
if (b.-b, +1)< { then |
— 2 1 — —

begin comment: previous extraction was not enough; .

PERMUTE(c- Cos Vs 2, ; |

BLOCK MERGE _FORWARD(c, Cps01505) : |
b, T= Cq5 2

end

end BUFFER_EXTRACTZ; |

72

i

To analyze the time bounds, two cases must be considered:

(i) The first extraction suffices: then by (B.6)

2

Teyy = OBIT) + o(]v]) : (B.8)

(ii) Two extractions are needed: let By ’ |B, | = by » be the
\

buffer collected in the first extraction and B, |B, | = b, ’

the second one; |B| = by +b, . The bounds result

| T = 0o(®%) +o(|v]) |N (ii) 1

+ 0(bg) +0([u])+ 0(b,)

+ 0(b,) +0(|v])
- —.

+ 0(b, M(B) +0(b,) (B.9)

but since B, 1s a buffer AMB,) = b, , thus (B.9) becomes

- | 0 2
T(i1) ~ 0(b]) + 0(b,) + o(lul + |v])

2 .

= o(|B|%) + o(Ju| + |v]) : (8.10)

\

Finally (B.8) and (B.10) yield

2

7. (U,V, Uv, 2,8) = o(|ul + |v]) + o(|B|7) (B.11)

.

\

| [P,

References » oC

’ Ny

[Dewar] Robert B. K. Dewar, "A Stable Minimum Storage Algorithm," ’ oO]

Information Processing Letters 2 (April, 1974), 162-164.

[Horvath] Edward C. Horvath, "Efficient Minimum Extra Space Stable Co

Sorting," Ph.D. Thesis, Dept. of Electrical Engineering, Princeton N

University, (August, 197k).

| [Knuth] Donald E. Knuth, The Art of Computer Programming, Vol. 1:

Fundamental Algorithms, (Addison-Wesley, December 1973). —
w

[Knuth] Donald E. Knuth, The Art of Computer Programming, Vol. 5:)

Sorting and Searching, (Addison-Wesley, 1973). _

[Kronrod] M. A. Kronrod, "An Optimal Ordering Algorithm without a)
Field of Operation," Dokladi Adad. Nauk SSSR 186 (1969), 1256-1258. —

[Nijenhuis] Albert Nijenhuis, private communication (197k). | |
[Pratt] Vaughan Pratt, private communication (197h).

| Preparata] F. P. Preparata, "A Fast Stable Sorting Algorithm with

Absolutely Minimum Storage," Istituto di Science dell'Informazione, |
Universita di Pisa, Italy (March, 1974). |

[Rivest] Ronald Rivest, "A Fast Stable Minimum Storage Sorting ;

Algorithm," IRIA Report No. 43 (December, 1973).

IN .

7h

