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1. Introduction

An algorithm which rearranges a file is said to be stable if it
keeps records with equal keys in their initial relative order. This
work presents an algorithm for méfging two contiguous files in a stable
manner (the PARTITION MERGE). As an immediate application of this,

a stable algorithm to sort a file (the PARTITION MERGE SORT) is given.

The algorithms attain optimal worst case bounds with respect to
time, the merge is of order n and the sort is of order n logn .

Both algorithms require only a fixed number of pointers for auxiliary
storage. Furthermore, the algorithms are completely general, in the
sense that %hey treat files as sequences of unmodifiable records, with
the keys evaluated from the record contents and not necessarily stored
within them.

While D. E. Knuth was preparing his book about sorting techniques,
he noted that the known algorithms for stable sorting either were of
order n2 or they used approximately n pointers for additional memory
space. Therefore he asked ([Knuth], Section 5.5, exercise 3) whether it
was possible to do stable sorting in less time than order n2 » using at
most 0O(log n) pointers for additional storage. The first progress on
this problem was made by R. B. K. Dewar ([Dewar]), who developed a
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stable sorting algorithm of order n , using 0(log n) pointers.
Further improvements in the running time were made by V. Pratt ([Pratt]),
F. Preparata ([Preparata]), R. Rivest ([Rivest]), and A. Nijenhuis
([Nijenhuis]). E. C. Horvath ([Horvath]) constructed stable merging

and sorting algorithms with optimal time and space bounds; however, his

algorithms involve the operation of key modification, thus they apply



only to files in which the key is explicitly stored within the record.

The algorithms in the present paper make use of a minimum set of
primitive operations on files (exchange and comparison) and in this sense
appear to offer the final solution to Knuth's problem, except of course
for questions dealing with the optimum constants of proportionality in
the time and space bounds.

This paper is self-contained; Section 2 introduces the notation and
a set of transformations of files upon which the main algorithms are
built. In Section 3 the merging strategy is presented, while Section L
deals with means to keep storage requirements low enough. With all the
background of the previous sections, Sections 5 and 6 finally describe
the PARTITION MERGE and PARTITION MERGE SORT in full detail, together

with their respective analyses.



2. Basic Concepts

This section presents the notation used throughout the paper and
describes a set of elementary operations on files that will be used for

further definitions of more complex transformations.

2.1 Notation
A record R is a unit of information; its contents cannot be
altered.
The key k of a given record R results from the evaluation of a
certain funcﬁion K applied to R
k = K(R)

A file F is a sequence of records

F = <R1’R2’”"Ri"“’Rn> .

Each position in a file has associated with it a pointer value, an integer

in the range [1,n]
If 1 and j are pointers, two primitive operations (and only
these) may be used to access the file:

-- an exchange primitive, denoted by exchange(i,j) . An

application of exchange(i,j) or of exchange(j, i)

transforms % into
9: = <Rl, .. ',Ri-l,Rj’Ri"'l’ .o .,Rj—l,Ri,Rj+l, .. -’Rn> ;

-- a comparison primitive, denoted by F(i) < F(3) , whose value

is true if and only if K(Ri) < K(RJ.) . Since the other

relations < , = , £ , > |, > can be easily expressed

in terms of one or two < 's they will be used in the definition



of algorithms, as a shorthand for the corresponding relation

expressed in terms of the < primitive.

A block U (of length p ) is a subsequence of p consecutive
elements of &

U = (R,R

e R LR

m+p--l>
The length of U will be denoted by |U| 5 thus in the above case

|U| = p . The block U will be also identified by the pointers to its
first and last elements and denoted by F[m: mtp-1l] . The first and
last records of U will be first(U) = R~ and last(U) = Rm+p—l .

The term prefix (suffix) of U will refer to an initial (final)

sequence of contigﬁous records of the block U .

The number of distinct keys in a block U will be A(U) . Obviously

MU) < |u] , with the case A(U) = |U] corresponding to a block composed
of records with distinct keys.

A segment X 1s a sequence of contiguous blocks Xi

A segment will be also regarded as a block with the notations |Xl B
_ first(X) , last(X) and N(X) having the previous meaning.

Normally only nondecreasing order will be considered. The predicate
ordered(U) is true if and only if the block U is ordered in nondecreasing
order.

A stable transformation is a permutation of a file, that preserves

the relative order of those records with equal keys. In particular, this
work is concerned with two stable transformations:

-- the stable merge of two contiguous ordered blocks U and V

denoted by merge(U,V)



and

--  the stable sort of a block U (denoted by sort(U) ).

In the examples a file will be represented by the actual sequence
of records, with the keys explicitly written down.
Example 2.1: Let us assume that the file % is

3231256L4
ABCDETFGH

Then F(4) =D and K(F(4)) = K(D) =1 . The pointer values range

from 1 to 8 . Let U be the block F[2:5] , then

lu| =% , first(U) =F(2) =B ,

il

last(U) = F(5) = E , XNU) =3 and ordered U is false.

Applying exchange(l,3) or exchange(3,1l) yields

32312564
CBADEFGH
In this file exchange(l,3) is not a stable transformation, but

exchange(4,5) is.
3

Algorithms will be presented as ALGOL-like procedures. The language
used will be ALGOL W with the addition of a new type pointer. Pointer
values will be operated upon in a similar way as in the case of integers.
The inclusion of the type pointer pretends to emphasize that its range
depends only on the length of the common file. Thus if the latter consists
of n records, only [log nl bits will be needed to store a pointer
value.

For convenience in exposition the algorithms will be written in terms

of the operations ' p+q ', "p~-q ', '"'pPXQq "', ' floor(p/q) ',



' ceiling(sqrt(p)) ' and arbitrary comparisons between pointers, but
it will be clear that the optimal time and space bounds can also be

achieved using only the primitive pointer operations
p+l , p-1 , p+q , p=q and p:i=qg ,

by straightforward modifications.

2.2 Some Basic Transformations Using Minimal Extra Storage

This subsection defines in a precise manner a set of straightforward
transformations of blocks and presents time bounds for each of them, so
they can be used in the description of more complex algorithms within the
rest of this work.n None of the algorithms will be recursive, so no
'hidden' pointers are implied.

The reader is referred to Appendix A for a formal description of the
algorithm and derivation of time bounds for each transformation.

In the following paragraphs U and V will denote the blocks

U = F[ul:ug] and V = F[vl:vg]

2,2.1 Reversal of a block: REVERSE(ul,uQ)

An application of REVERSE(ul,uE) transforms U into

U:<Ru,Ru_l,-oo,Ru>

2 2 1

The time bounds are:

TREV(U) = o(lu]) . (2.1)

2.2.2 Exchange of blocks of equal length: BLOCK;EXCHANGE(ul,ue,Vl;VE)

Let U and V be non-overlapping blocks of equal length (|U| = |v|) .
Then an application of BLOCK;EXCHANGE(ul,ue,vl,vz) or
BLOCK;EXCHANGE(vl,vg,ul,ug) “exchanges the contents of U and V,

without changing the values of U s Uy Vi Vo oo

6



The running time is bounded by

T (U> V) = o(JU]) = o(]v]) : (2.2)

2.2.% Permutation of two contiguous blocks: PERNIUTE(ul,uE,vl,VE)

Let U and V Dbe two contiguous blocks, with U preceding V .
That is, the common file is of the form
% = AUVB (where .A , B are blocks) .
Applying PERMUTE (u:L »Us Vs v2) yields
% = AVUB , :
and the corresponding redefinition of Uy s Uy, Vg and v, -
The permuting process is done by application of three successive reversals:
-- first reverse UV yielding VRUR )
-- then reverse VR yvielding VUR s

-- and finally reverse UR , thus obtaining the permuted pair VU .
Since the reversals are linear so is the permute process:

Top(U V) = o(lu] + |v]) . (2.3)

2.2.4 Stable insertion of two contiguous ordered blocks:

INSERT(ul,ug,vl,vz,fl,fE)
et U and V Dbe twe contiguous ordered blocks, that is % = AUVB.
Then INSERT(ul,uE,Vl,ve,fl,fg) yields

F = AV'UV"B where V'V" =V
and
last (V') < first(U) < first(Vv")
and sets the pointers in such a way that
— . t — - 1 — *
U = F[ul.ue] , V' o= F[vl.v2] and V' = F[f.:f

1:%5]

Intuitively it can be said that the insertion of U into V moves

U as forward as possible, but keeping the transformation stable.



Two basic facts, direct consequences of the above definition, can

be stated as claims.

Claim 2.1: Let U, V, V' and V' be as above, then the insertion of
U idinto V reduces the merge of U and V to the merge of U and V",
that is

merge(U,V) = V' merge(U,V") . Qg

Claim 2.2: Let U and V be as above, and U = U'U" . After inserting
U" into V , thus yielding V'U" V" , the merge of U and V is
reduced to
merge(U,V) = merge(U',V') merge(U",V") . a
The insertion proc;ss consists of
-- a linear search over V in order to find the place where to
insert U ,
followed by

-- the permutation of U and V'

Since both steps can be accomplished in linear time, the time bounds
result:
Ts(Us V) = o(lu] + |vr}) , (2.4)

or if desired, since \V'I < \Vl

TINS(U,V) = o(lu] + |v|) . (2.5)

2.2.5 Direct merge of two contiguous ordered blocks:

BLOCK MERGE_FORWARD (11l sUns V15V, and

5)
BLOCK_MERGE_BACKWARD ( U ,Us55Vy s v2) .
Let U and V be two contiguous ordered blocks, so & = AUVB.

Applying either BLOCK MERGE_FORWARD(uj,u,,V or

1’ Vg)

8
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BLOCK;MERGE_BACKWARD(ul,ue,V yields the merge of U and V , thus

1V2)
transforming % into
% = A merge(U,V) B

The forward merge is accomplished by an iterative process of
insertions of successively smaller suffixes of U into successively
smaller suffixes of V . Thus,Aafter a stable insertion of U into V
as in Section 2.2.4 yielding v,Uv, , U is partitioned U,U, (where
U, is the largest subblock with firs‘t‘.(UE) > first(V,) ), and the
problem reduces to merge(Ue,VQ) . The backward merge is similar, but
the insertions are done in a backwards direction.

The time bounds result

-- forward merge

(forw.)

TarockM

U, V) = o(julrn)) +o(|v') (2.6)

where V' is that prefix of V (V = V'V") such that

last(V') < last(U) < first(v") ;

-- backward merge

(back.)

TBLOCKM

U, v) = o({v|rn(v))+o(|u]) (2.7)

where U" dis that suffix of U (U = U'U") such that

last(U') < first(V) < first(U") .

Instead of introducing the definitions of V' and U" the block
merge processes could have been bounded by the overall lengths IVl
and \U\ » but these bounds pretend to emphasize the fact that the running
time is only a function of the elements that are actually exchanged by the
process. That is, no matter how long the suffix V"' (forward merge) or
the prefix U' (backward merge) are, the running time for the merge

processes doesn't change.



2.2.6 Direct stable sort of a block: STRAIGHT_INSERTION_SORT(ul,ue)

This process sorts the block U in a stable manner. Since it must
be done with minimal extra storage, the straight insertion sort
([Knuth], Section 5.2.1) is chosen. The only extra storage needed is
a fixed amount of pointers.

Time bounds result

Toope® = O([U[%) . (2.8)

10



. The Partition Merge Strategy

This section outlines the basic strategy on which the partition
merge algorithm is based, without considering either storage requirements
or time bounds.

The first subsection introduces the segment insertion process,

a stable transformation that is basic to the stable merge, while the

second subsection analyzes the strategy itself.

5.1 The Segment Insertion Process

This stable transformation deals with two contiguous ordered
blocks U and V , of length equal to a multiple of a given value f
This last condition on the length allows treating U and V as

segments of blocks of length f , and thus

and Vv =V, ...V, ...V

for some k >0 and £ >0 , (3.1)
with the block length

CARER VAR

for 1 <i<k and 1<j<t .

Informally the segment insertion can be described as a permutation of
the sequence of blocks Ul ...Uk Vl ...Vk yielding the minimum number
of inversions, but, of course, being stable.

In order to characterize such a permutation it can be argued that
any block Ui in U cannot go after any block in V that could contain

a vecord with key equal to any key of the records in Ui . Thus a block

11



Ui should be positioned between the contiguous blocks Vj and Vj+l

such that

1ast(VJ.) < first(Ui) < last(Vj+l) . (3.2)

(In order to make the above equation hold in every case, the

fictitious blocks VO and V£+l must be assumed, with

la.st(Vo) = =0 and last(V = 4o )

£+l)
Since equation (3.2) might yield the same value of j for various

consecutive blocks Ui » U .5 U , it must also be stated that

i+l i+p
the permutation must retain the original relative ordering of blocks
in U and V . 8o in this case the final layout will contain the

segment Vj U:.L Ui+l ce Ui+p Vj+l

Example 5.1: As an example, let us consider U and V as below, for

a block size f =2 :

U \

12223 lhks]e8l11123)133155
ablcdjeflgh|ij|AB|(CDI}JEF|GH

Ul U2 U5 Ult U5 Vl V2 V5 Vh_
Applying equation (3.2) to U, we see that
la,st(VO) = = < first(Ul) =1 < la,st(Vl) = 1
Thllls Ul will go before Vl . For the blocks U2 and U5 s
last(Vl) =1 < first(UE) =2 < 1ast(v2) =3
and la.st(Vl) < first(UB) =2 < last(Ve) s

so U and U will be positioned between V and V. , with U

2 3 1 2 2

preceding U5 . After considering U), and U_. it can be seen that the

p)

12
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final permutation will be

12j11l22|23|23|33|ks5155]68
ablABlcdlef|cD|EF|lgh|{cH|i ]

-
The final result of the segment insertion can be characterized as

the sequence of segments

Y 2y Y Ty oo Y 2 e X2y (2.2)
where ‘YlYE... %i"'Yt = U and Z122 "'Zd"'Zt = V and all the

segments Yd and. Zd containing at least one block, with the

possible exc§ption of Yl and Zt
Renaminé‘ Yd and Zd as
Y, = YiLg with |L,| = £ -
and Zy = Fy2} with lel = f

(that is, Ld is the last block in Yd and Fd is the first one in

Zd ), the followins rectrictions apply to the layout in equation (3.3)
(1) last(Zd_l) < first(Yd) , l<adc<t (3.5)

and (ii) first(Ld) Sla.s‘t(Fd) , l<d<t . (3.6)

The characterization given by equations (3.3) to (3.6) is no more
than a formal statement of the initial considerations. Thus in the
example considered above,

Y, =T Z, =V

1 1 1 1
Y2 = UQUB 22 = Vévz
Yﬁ_ = U5 ’ Zu :  empty

13



Equations (3.5) and (3.6) state boundary relations between contiguous o
segments. Somehow they give us the hint that a merge of U and V could
be reduced after segment inserting U and V , to a sequence of "local"

merges of the pairs of segments Y and Z. . That is the idea underneath

d d

the partition merge strategy and so it is the topic of the next subsection.

5.2 Description of the Partition Merge Strategy

Let U and V be two contiguous ordered blocks of length greater
than a given value £
lul] >f anda |v|] > £ . (3.7)
For the sake of simplicity, and only for the time being, it will be
assumed that U is of length equal to a multiple of f
|lul = k.f for k >1 . (3.8)

The partition merge will proceed in the following way:

° Segment insert U and the longest prefix of V of length equal

to a multiple of f .

. "Finish up" the merge, by means of local merges.
So, let
U = Ul Ui' Uk
(3.9)
vV = Vl .VJ.. ‘VIZTV
with |v.| = |v.] = £ and |T | < f
i J v

The segment insertion of U and Vl "'VE yields

Y. %2, ...Y¥Y. 2, ...Y VA YtZtTv

171 d~d t-17t-1

with the segments Y, and Z; as described in equations (3.3) to (3.6)

of the previous subsection.

14



In order to analyze the finish up process we shall first consider

the rightmost portion of the file, in particular the situation at the

boundary of Yt and Zt . It is assumed that Zt is not empty. The
case Zt empty will be quite similar.

By comparing last(Yt) with first(Zt) two cases may arise:

(i) 1f last(Yt) < first(Zt) then the segment Y, Z T  is already

in order and, what is more important, in its final position within

the merged file. This last statement is a direct consequence of

the segment insertion definition, since by equation (3.5)

last(Zt_l) < first(Y (3.10)

)
and so all records of Zl "'Zt—l
also last(Yt_l) < first(Yt) because U was originally in order.

must precede first(Yt) . But

Thus, all the elements to the left of first(Yf) must precede it,
so the above statement is true. Then nothing needs to be done
about this segment, and the finish up proceeds by replacing t

by t-1 .

(ii) 1If last(Yt) > first(Zt) it is going to be necessary to proceed

with the finish-up of the segment YE;ZtTV" as described below.

The finish up of Yf thDv will consist of three steps. In order
to describe them, let us adopt the notation of the previous subsection,
and for reasons that will be immediately clear, let us rename Tv as

Ct+1 . By doing so, the rightmost portion of the file can be written as

1 ?
Zpog Yy T Py 2 Cpan (3.11)

where Y%Lt = Yt and FtZ‘E = Z‘t with ‘Lt‘ = lFtl =f.

15



This initial disposition is depicted in Figure 3.1(a). Notice
that Figure 5.1 shows the values of the keys along the vertical axis,
thus displaying the relative ordering of records.

The first step in the finish up process is to stable insert Lt
3 3 3 ' "
into Ft s thus transforming LtFt into EtLt Lo such that

last(Fy) < first(L)) < first(F) . (3.12)

Figure 2.1(b) shows the situation after this first step. It can be seen

* 1" ]
that all the elements in Lt and EtZtCt—l

those towards the left of L

are greater or equal to
" This last assertion can be formally
stated as the following claim.
Claim %.1: After step 1, first(Lt) is already in its final position

within the merged file, and the overall merge has been reduced to the

respective merge of the records to the left and to the right of first(Lt)

Proof': All the elements to the right of first(Lt) are greater than
or equal to it since

-- those originally in U are greater than or equal to first(Lt) B

by the initial order of U ;

-- those originally in V are greater than or equal to first(F%) »
"
t
is never empty, since first(Lt) < last(Ft) » by equation (%.6),

and, by (3.12), it is first(Lt)lf first(F%) . (The block F

and then by equation (3.12) at least last(Ft) must belong

in FY .)
Similarly the elements to the left of first(L,) are less than or equal
to it:

-- those originally in U by the initial ordering;

16
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Y L F, z; TV = Cy g

t-1
N ' (a)

Value - Initial
: | ] Lay-out

(b)
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inserting

Lt into

Fy

(e)

After
merging
forwards

Lt into

P2 Conn
and
merging
backwards
Fé into
t
pe
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w\l S e l\ \\\ \\\\;\\ X LEQX&

t 1 (N
I(—- merge(Y ,C! )—--) (—merge(L Fé Ztct+l) >

€— merge(Y],F}) —

Figure 3.1: "Finish up" merges for the rightmost section of the file.
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those originally in

V are less than or equal to last(F%)
and by (3.12)

' .
last(F%) < flrst(Lt)

(In the case that F!

H resulted empty the first element
originally in V to the left of I, is last(Zt_l) , and

by equation (3.5) and the initial order of U

1ast(Zt_l) < first(Yt) < first(Lt) .)
Hence, the stability of the merge imposes that first(Lt) remain in its

current place, since it was originally in U

And clearly the overall
merge is reduced as stated in our claim.

d
So, the second step in the finish up is the merge of Lt with
" 1
Y 2 Cgan -
Now let us consider Y% and F% , if Y% is nonempty. Assume that
F% is of the form
nl S 1 s v 3 v . .
P CiCt where last(Ct) < flrst(Yt) < flrst(Ct) (3.13)
(This partition of  F!

i is identical to the one that would have been
obtained by stable inserting Y; into F} .)
The third and last step in the finish up pr

ocess of ItZtCt+l is
the merge of Y% and F!

M But by Claim 2.1 the merge of Y% and F%
yields
merge(Y%,F%) = Cy merge(Y%,C%) (3.1h)
If Y% is empty, the third step does not take place, and Ct is
simply taken to be F% .

Tt is possible now to issue the following claim.

18

Lors
J



Claim 3.2: After step 3 all the elements to the right of C are

t
already in their final position.

Proof: Only the case Yé nonempty needs to be considered. When Yé
is empty the claim follows trivially from Claim 3.1.

Consider first(Y%) . By equation (3.13) and the stability of
the merge it must occupy the first position in merge(Y! ey t) Also by
a similar reasoning as in Claim 3.1 (but applying equation (3.13) instead
of (5.12)) it can be seen that it is in its final position within the
merge. Clearly the rest of the elements in Y% and those in C% must

be placed to the right of first(Y%) > and by Claim 5.1 to the left

of first(Lt) . Then, all the elements in

merge(Y +C1 ) merge(L STy 24 t+l)
must be in their final positions. .
The final result of the finish up of Y' Z C is shown in

t+1
Figure 3.1(c).
It is left to the reader to verify that the above process is valid

also in the case of empty Zt . The only difference is that Ct+l plays

the role of Ft ,» and F% can therefore be empty.

The overall finish up will consist of the application of the above

process successively to Yt Zt Ct+l’ Yt-l Zt-lct s eew Yl ZlC2 . The proof
that this process yields the merge of U and V is a straightforward
induction on t , using Claim 3.2.

A remark must be made about the initial restriction on the length
of U, given by equation (3.8)

lul = x.f

19



The general case
|U| mod £ £ ©

can be reduced to the one considered here by partitioning

U - UIU" B (B.lh')

(with |U'| mod £ = 0 and |U"| < £ ) and stable inserting U"
into V , thus yielding U'V'U"V" . By Claim 2.2 the overall merge
is reduced to

merge(U,V) = merge(U',V') merge(U",V")
and now the partition merge strategy can be applied to merge U' and

So, in the general case the partition merge strategy will be:

(a) TInsert the suffix U" into V yielding U'V'U" V"
(b) Segment insert U' into V'
(¢) Finish up the merge of U' and V' : for 4 =t,t-1,...,1 :

(c-1) Stable insert Ly into F4 -
- " ]
(c-2) Merge Ly and FyZiCe. . -

- ] 1
(c-3) Merge Y, and Fj

(d) Merge U" and V"

To conclude it must be noticed that in all the merge processes, at

least one of the blocks to be merged is of length f or less. As it
will be seen later this is a key fact in order to achieve linear time

béunds .

20
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4.  Keeping Storage Requirements Minimal

Any algorithm dealing with files will, at least, need to store some
pointer values in order to identify records to be compared and/or
exchanged.

That is why an algorithm using only a fixed amount of pointers (and,
of course, the space needed to store the file) will be said to have

absolute minimum extra storage requirements. Since each pointer requires

FloggnW bits, the minimum requirements are 0(log n) bits.

So far, no analysis has been made about extra storage needs for the
actual implementation of the partition merge, and it is not obvious how
to implement-it using only absolute minimum extra storage.

This section introduces the concept of internal buffer, and presents
the implementation of another merging technique (the BUFFER MERGE), later
used as a local merge for the finish up phase, and an implementation

of the segment insertion process.

4.1 The Concept of Internal Buffer

Let B be an ordered block consisting of records with distinet keys,
that is
ordered(B) and A(B) = |B| . (4.1)

Then B will be called an internal buffer.

Two useful characteristics of internal buffers may be singled out
in advance:
-- Permutations of an internal buffer do not affect the stability
of a sorting or merging process (since the internal buffer might
always be sorted back in a stable manner). This property is the

basis of the BUFFER MERGE technique presented in the next subsection.

21



-- A given permutation of lBl or less elements can be "stored"
in a buffer B by simply permuting its elements correspondingly.
This will be the key to the implementation of the segment insertion

process, appearing in Subsection &.5.

Both properties could be used provided an internal buffer is present
in the file being processed. Nevertheless, whenever a buffer is needed
to process a block U it is possible to rearrange U 1in order to produce

the desired buffer. Such a process will be called buffer extraction.

Definition k.1: Given an ordered block U , the extraction of a buffer

B of at most £ records transforms U into U'B , with U' and B
also ordered blocks, such that
merge(U',B) = U (k.2)

and B is an internal buffer

|B| N(B) and ordered(B)

(k.3)

and |B| min(£,MU))

g

That is, the buffer extraction collects at most £ distinct keyed
records (or if the block U has only A(U) < £ records with distinct
keys, only MN(U) are collected) placing them at the end of the original
block; the rest of the records are compressed in U’

Tn order to satisfy condition (L4.2), for any sequence of records with
equal keys in U , the last one is picked, so when merging U' and B,
the original block U 1is obtained.

A similar definition could have been given for an unordered block,

but it is not needed for the purposes of the present work.
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The buffer extraction technique will be illustrated by means of an
example. The reader interested in the actual algorithm and a more

detailed analysis is referred to Appendix B.

Example L4.1: A buffer of length“at most 5 is needed to process the
following block U :

11113333444405666779
ABCDEFGHIJKLMNOPQRST

In order to extract the buffer we start scanning from left to right
until finding the last record with key 1 (that is 1D ). This record
will be the first in the buffer. We repeat the search, now for the last
record in the sequence of those with key 3 :
r
1111433 313tk
t
ABC EFGHI
Ll
At this point we know that 3H is also going to be in the buffer. So we
exchange the previously collected record with the sequence of records with
key 5 , except Z3H .

Proceeding in a similar manner:

11135 35[13)k 45 4Hs
ABCEFGDHIJKLMN

111333444 4[13456
t
ABCEFGIJKLDHMMO

(Notice that in this case the exchange is null, since 5N is the only

record with key 5 )

1113334444134 s]660617
[ 2 ]
ABCEFGIJIXKIL|DHMNIO PE%}R

1113334844 466(L3456{TT709
ABCEFGIJKLOPDHMNG QIRS 7
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At this point the collection is finished (we already have an internal
buffer of length 5 ), so the collected buffer is exchanged with the

rest of the file to its right, thus obtaining the final configuration

111333LbLhLhh667TT7923456
ABCEFGIJXKLOPRSTIDHMNAGQ

g’ B

d
To conclude the present discussion, the following facts (analyzed

in Appendix B) must be pointed oub:

(i) The buffer extraction technique can be applied to a fixed number
of contigious ordered blocks (in our case we shall be interested
in the extraction of a buffer out of the two blocks to be merged);

(ii) The extraction process needs only a fixed amount of pointers as
extra storage;

(iii) The time bounds result proportional to

-- +the length of the block(s) from which the buffer is
extracted;
-- the square of the length of the extracted buffer.
S0, in the case of the extraction of a buffer B out of two
contiguous ordered blocks U and V the time bounds are

£ (U, 0,0, V,8,0) = o(ful + v +o(Bl®) . (k.4)

4.2 Merging Using an Internal Buffer: The BUFFER MERGE

The BUFFER_MERGE of two contiguous ordered blocks U and V requires
an internal buffer B of length

|8| > min(|u|, |v]) (4.5)
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that is, the buffer length must be greater than or equal to the length of

the shortest block to be merged.

Let us assume first that |V] < |B| . Then the buffer merge can

be described as follows:

-- Exchange the contents of V with the first |V| records of B ;

-- "Merge exchange" U and the first |V| records in B ; the result

goes in the place previously occupied by UV .

The term "merge exchange" in the above description will be clarified

by the following example:

Example 4.2: The figure below shows the contiguous blocks U and V

to be merged, and the buffer B :

U \ B
14k 8lok 135
abc diA B T o B8y

After exchanging V and B we obtain:

U

14hLh813 2 k5
abcdap|  |ABY

where the pointers i and j point to the last non-merged element in U

and V 3 the pointer m points to the first '"free" place in UV .
Comparing F(i) and F(j) we decide that F(i) must be the last

element of merge(U,V) , so we exchange it with F(m) ,

1443118 2 45
abecpaldl  |ABy
i m : J
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and update the pointers i and m . (The area to the right of m is the
portion of the file already merged.) Now, F(j) is equal to F(i) and

so it is the next element to be exchanged:

144 3ih8 215
achBd”“Aozy
im J

Similarly we obtain:

143048 215
abBch““Aozy
im J
134448 215
aBchd”“Aocy
im J
12 4 4 4 8 315
aAchd”“Bozy

i,m J

At this point all the records originally in V are in their final

.positions. Thus the remaining prefix of U is also in its proper
place and the merge is complete. 1In the case that U is exhausted
before V, the remaining elements of V should be exchanged with

the initial position of UV . O

It is important to realize that at any point in the process,
the "buffer zone" in UV (that is, the zone filled with elements
originally in B ) has the same length as the non-merged portion of V .
In other words, if the internal buffer B was F[bl:bg] , the following

relation
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m-i = J -bl+l

is an invariant throughout the merge.
It is possible now to formalize the previous description by means

of the following procedure:

procedure BUFFER MERGE_BACKWARD (pointer UqsUns VsV, ’bl’be);

if (ul < u2) A (vl < u2) then

begin comment: both files are nonempty, U is F(ul:ug) s

V is F(vl:vg) > and u, = vy=1 .

B is F(bl:bg) and b,-b; > v

12V2™Vy
pointer m, i, Jj;

comment: exchange contents of V and B;
BLOCK EXCHANGE ( Vs Vs bsbtv, —vl) 3

comment: merge backwards;

ii=uy5 J t=by+vy=Vys mo:= Vo3

while (i zul) A (J zbl) do
begin
if 7(J) > F(1)
then begin exchange(j,m);
J o= 3J-1
end
else begin exchange(i,m);
i:=1i-1
end
m := m-1;
end;

comment: copy remaining portion (if any) of V;
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while j > b, do

1
begin exchange(j,m);

end

end buffer-merge-backward;

In order to bound the running time the following facts must be

considered:

(iii)

The exchange of V and B takes time proportional to the
length of V , that is
T(5) fo(lvl) . (4.6)
The merge backwards loop keeps exchanging elements originally
in U or V wuntil either one is exhausted. So two cases arise:
(a) V 1is exhausted first, hence U must be of the form
U =u'g" (L.7)
where last(U') < first(V) < first(U") , and the excharge
takes time
T(iia) = O(|U"| * |V|) . (H.B)
(b) U is exhausted first, and then V must be
v o= vy (4.9)
with last(V') < first(U) < first(V") , with time bounds
T(iip) " o(lu| + |v']) . (4.10)

The copy of the remaining portion of V takes place only if U
has been exhausted before V , and that portion happens to be V!

as defined in equation (4.9). Thus, with the same cases as above

(a) V is exhausted first:

T(iiia) (h-11)
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(b) U is exhausted first:

T(i14p) = o(|vt])y . (L.12)

The time bounds result
(a) If V is exhausted first
T = T,. + T
(1) (

a i1a) © T(iiia)

o(|v]) + o(lu"| + |v]) + 0

o(fu ) + o(fv]) . (4.13)
(b) If U is exhausted first
To = Ta) * Traaw) T Trasam)
o(fvl) + o(lul + {v'{) + o(jv])
o(lul) + o(lv]) : (4.1k)

i

Comparing (4.13) and (4.14k) it is possible to write a unique
expression for the time bounds as

(back)

TBUFM

(U,v,B) = o(fu"]) + o(]v]) (Lk.15)
where U = U'U" and last(U') < first(V) < first(U")

since in the case that U is exhausted first according to (L.9)
first(V) < first(U) , and then U" =U (with U' empty), so T,
reduces to T .
a

Equation (4.15) reiterates a point already considered when discussing
the block merge (Subsection 2.2.5): The running time is bounded by the
number of elements that are actually exchanged, and hence it is not
dependent on the length of the prefix U' (that is, the elements that

were already placed in their proper positions before the merge was

carried on).
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All the previous considerations and a symmetrical algorithm
(BUFFER_MERGE_FORWARD) apply to the case in which |U| < |B| and
U is merged forward into V .

The time bounds result:
r{EOTV) (4 v,B) = o(u]) + o([v]) (4.16)
BUFM ’ '

where V = V'V" and last(V') < last(U) < first(Vv")

4.3 Implementation of the Segment Insertion Process

This subsection describes how the segment insertion can be implemented
with the aid of an internal buffer, using as extra storage only a fixed
number of pointers.

Recalling the definition stated in Subsection 3.1, the two contiguous

ordered segments U and v

u=1U,...0;,...0
ootk (4.17)
Vo=V Vj eV,
vhere |U | = ]V’l =T

are transformed into

YlZl"'YdZd'”YtZt

where the segments Y, and 2, are defined by equations (3.3) to (3.6).

By considering the segments Zd-leZde as
Zg-1 = Vyor Via1
Tg = Ui o Uinp
(4.18)
Zz, =V .
d J J+aq
Yar1 = Useprl " Uteprs
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equations (3.5) and (3.6) yield

last(Vj_l)

< flrst(Ui) < il < :E‘lrst(Ui+p)
< last(V.) < ... < last(V.
< last(vy) < < (Vitg)

< first(U ) . (k.19)

i+pt+l

Equation (4.19) indicates an easy method to determine the final order

of the blocks. Consider sequentially Ul’ U2 > ete. until reaching the

smallest p with
la§t(vl) < flrst(Up)

Then U, ...U are the first blocks in the final permutation. Now

1 p-1

consider Vl’ Vé » ete. until reaching the smallest q with
first (U < last(V
() < last(v)

thus establishing that the sequence Vi..

The process is now repeated until U and V are exhausted.

.\ i .
]d-l will come after Up-l
The above process gives us a method to compute the permutation that

must be applied to the blocks in UV . But somehow that permutation must

be stored before permuting the blocks, since its definition is based on

- the original ordering of the blocks. Thus the algorithm will have two

: Phases:

-- Compute and "store" the permutation.

-- Permute the blocks.

In order to "store" the permutation, an internal buffer will be used.
The key point is that the permutation as defined in (4.19) can be computed

by inspecting the blocks in the exact order in which they are going to be



permuted. Then it is possible to "remember" the final position of each
block by exchanging one of its elements (say.the first one) with the
element in the buffer that corresponds to its final position (recall
that a buffer is an ordered block). After that, the permuting phase
becomes simply a sorting process in which each block has as its key

the key of its first element. Let us.eonsider the following example.

Example 4.3: Let U and V be as depicted below, with f =2 , and

let B be a buffer:

Ul U2 U5 Vl V2 B
122 33 3{1 1j2 3 23468
a blc ale flaBlcd| Tlapys e
p q m

In order to compute the permutation the pointer p will point to the
first element of the block Ui currently being considered, while ¢
will point to the last record in Vj . The pointer m points to the
element of B that will be exchanged.

We start by comparing first(U (i.e., F(p) ) with last(Vl) (i.e., F(q) ).

1)
Since F(p) < F(q) we decide that U; will be the first block in the
permutation. 8o we mark Ul by exchanging its first element with the

first element of B , obtaining

21212 313 3{1 1]l2 3 13468
x|lbjc dle £|A BIC D apyYod e
P q m

Now since last(Vl) < first(Ug) (that is, F(q) < F(p)) v, must go
before Ul , and so it will be the second block in the permutation. So

after marking it and updating the pointers, there results:
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2122 3|3 3|3 1]2 3 11468
afblc ale fflalBlc D] T |a Ay s e
P q m

After three more marking steps, éil the blocks are marked, yielding:

Ul U2 U5 Vl V2 B

21214 3/16] 2| 3{ 11i8] 3 1123%2
ajvly] alls] £lel Blle|p| T |aacec

Notice that by inspection of the marking elements we can tell that the
permutation is U1V1U2U5Vé .

We proceed now to permute the blocks. As said above,
this permutétion is simply a sort. But we must choose a sorting method
that minimizes the number of exchanges, since they are block exchanges,
involving f elements at a time. The '"straight selection sort"
([Knuth], Section 5.2.3) is well suited for our purposes. This
method looks for the minimal element and exchanges it with the one in
the first position, then it does the same but only considering the
remaining elements and putting this new minimal in the second position

and so on.

After sorting we obtain:

2l 2|13 1]t 3}16] 3||8| 3 11232
al gl Bllri dajid| £ilel D e AceC

Finally, we exchange the first element of each block with the corresponding
element in B , thus completing the permutation and restoring the original

contents of the buffer:

12112%%3%23 2%L68
abABcdefCcD| |lagysce
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The following procedure formalizes the above description:

procedure SKGMENT INSFERT (pointe? ul,ue,vi,ve,f,bl,bg);
begin
pointer m, p, g, r; - -
comment: compute the permutation marking the blocks;
pzzul;q:=vl+f-l;m:=bf
mark U and V:
while (p < 1, A (9 <v,) do
begin
if ¥(p) < Pa)

then begin exchange(p,m) ;
pi=pt+f
end
else begin exchange(q -f+1,m);
q :=q+f
end
m:=m+1l
end;
comment: mark the blocks of either U or V that haven't been
marked already;
nark;remaining_U's:
while (p < u,) do
begin exchange(p,m);
p:=p+fym:=m+l

end;
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mark remaining V's:

while (q <v,) do

5)
begin exchange(q - £+ 1,m);
q :=q+fym:=m+1
end;
comment: permute the blocks;

permute blocks:

for r =0y step f until v, -2xf+1 do

begin
comment: find the block with minimal key;

m :=1r;

for s :=r+f step £ until Vs -f+1 do
if F(s) < F(m) then m := s;
comment: exchange blocks;
BLOCK EXCHANGE(r ,r+f-1,m,m+f-1);
end;
comment: restore the initial key of each block;
restore_keys: |

for s := 1 step 1 until (ve—ul+ 1)/f do

excha.nge(ul+ (s=1) xf, by -1+ s);

end segment insert;

The following analysis establishes time bounds for the segment

insertion:

Let N be the number of blocks, namely (|u| + |v|)/f
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(i) In order to compute the permutation (and mark the blocks), each
block in U and V is compared and marked once (while loops
labeled "mark U and V", "mark remaining U's" and "mark remaining V's "
Thus this process is linear in the number of blocks, that is

T(i) = o(N) . (L4.20)

(i1)  The permutation process (loop labeled "permute blocks") can
be viewed as follows:

for p := 1 until N-1 do
begin
Search through the first keys in the p+l, pt2, ..., N-th
blocks for the minimal one;
Exchange the p-th block with the one with minimal first key;

end

Since for each value of p the search for the minimal first key

takes time O(N-p) and the exchange O(f) , the time bounds are

T(43) = Z1<pep-1 (OW-D) +0(£))
O(Hiéglll) + o((N-1)-f) . (4.21)

(iii) Restoring keys ("restore keys" loop) is linear on the number of
blocks, so
= o(N) . (L.22)

Te111)

The overall time bounds resuvlt:
= + +
Topem (U VT = Tay * Tragy ¥ Trags)

o) + o LU=L)y 4 o((w-1)-£) + o)

O(NE) + O(N.T)

I

o((Jul + [vDZ/ £2) +o(ful + |v]) . (k.23)
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Tt is interesting to note that if f is of order (|U] + lV|)l/2

or larger, the overall time bounds are linear on the length of UV .
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5. The Partition Merge Algorithm

Section 3 presented the partition merge strategy. In Section 4 the
necessary tools to keep storage requirements minimal were considered.
With that background it is now possible to introduce the partition merge

algorithm and bound its running time.

5.1 Description

The algorithm here presented closely follows the process introduced
in Section 3, except for the additian of an initial buffer extraction
step and, of course, a final merging step to merge back the internal
buffer previously obtained. Figures 5.1, 5.2, ... illustrate the

process on a particular example.

Let U and V be two contiguous ordered blocks to be merged.

The following procedure defines the partition merge algorithm:

procedure partition merge (pointer value u ,u ,v ,V )3

begin comment: U is F[ul:ug] and V is F[vl:v2]5
pointer n, f, b, tl, t2, V5’ vy, ll’ 12, Wl, LY w5, W), iH

n o= v, —ul+ 1;

Step 1: Extract an internal buffer of length at most

[V |

buffer_extraction:

BUFFER_EXTRACT?2 (ul, Uy sceiling(sqrt(n)) ,bl,bg) 5

MRS

b :=b,-b;+1; f := floor(n/b);
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1222k4k555
abcdefgh

2V1 Vo

6791113333444 05566779
i jk[ABCDEFGHIJKLMNOPQRS

lu| =11 lv] = 19
n|ul + [v] =30
[T+ | -
Figure 5.1: Initial layout.
Ul V’ B
it Yo [V Vo [P1 Py

1L222k4k555
abcdefgh

lur| = 11
iy
Figure 5.2:

679113334k Lhkhkhk5679[13456T7
i jk[ABDEFHIJKMOQS|ICGLNZPR

|vt| =13 |B| =6
|IB| =b =6
= Ln/b) = |30/6] =5

After step 1.
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This step transforms UV into U'V'B , where B is an internal
buffer of length b = b2 —bl+ 1.

Let f = Ln/bj

Step 2:  If either |[ut| or |v'| has length less than or
equal to f , then merge them directly and proceed with the final

step (merging back B ).

check lengths:
if (u2 -ug+ 1) <f
then begin
it (u,
then BLOCK MERGE_FORWARD (u;Uy,Vy,V,)

—ul+l) >b

else BUFFER MERGE_FORWARD (U;Un,Vy>V,sbq5b,) 5

go to merge back B;

end

else if (v2-v +1) < f then

1

begin

if (v —vl+l) > b

2
then BLOCK MERGE BACKWARD (ul,ue,vl,vg)
else BUFFER MERGE_BACKWARD (ul,ug,vl, vg,bl,bz) ;

go to merge back Bj;

end;

Notice that depending on the length of the buffer, the algorithm chooses
either block merge or buffer merge . This choice allows linear

running time as will be analyzed below.
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~v -

r— r— r

Step >: Prepare things for segment insertion by getting rid of that

suffix 'I‘u of U' of length

]Tul = |u'| moa £

ins ert_suffix:
t, i= Ups Uy 1= U, - (u2 -ug+ 1) mod f; tl = u,+1;
- " - - S - .
comment: U" is F[ul.uE] and Tu is F[tl‘te]’
INSERT (tl’t2’vl’v2’v3’v)+);

- "2 - 119 3 . .
comment: V" is now F[vl.vg] and V"' is F[V‘5.V’)+],

After the insertion U'V' becomes v Tu V't , where U"Tu = U
and V'V'' = V' . By the characteristics of stable insertion the
merge of U' and V' is now reduced to the merge of U" and V"
and that of Tu and V'"!

Now |U"| mod £ = 0 , by the choice of T, > S0 U" and

V" can be viewed as segments such that:

" —_
U _Ul...Ui...Uk and
" —
V= Ve VY, T
where |U,| = |vj| =f for 1<i<k and 1<) <

and [T | < f
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€ u" >| € A > T, V" B
U Uy U v VJ. VT,
tlv5
U1 Y V1 Vol To| i by
l222k4k555671113334h4hhs567919|1L3456T7
abcdefghij/ABDEFHIJKMOQ| k{S|CGLNPR
Uy U, v, A T, | Ty
lu"| = 10 V" T |V B
- u
Figure 5.5: After step 3.
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Step L:  Segment insert Uy e Uy e U 1 FRERNS

segment insertion:

SEGMENT _INSERT (ul,uQ,vi,vE -(v2 -vy+1) mod f, f’bl’b2)5

The next step will be the finish up process (see Section 3), but
some discussion is needed first.
Assume that the layout after the segment insertion is

y "t
Wl ...Wh ...Wk+£IQj21V B , where Wl ...Wh ...Wk*! corresponds to

Yo Z, e Y. Z ...Y, 7

11 a“q 4 %4 @8 presented in Section 3. Unfortunately there

is no explicit information about the way the blocks Wh are grouped to
form the segments YdZd - But fortunately the local merges must be
performed only on those pairs Y4Zy such that last(Yd) > first(zd) s
hence the finish up can be done by repeating the following sequence
until the whole segment wl ...Wh "'wkﬁz Tv has been processed:

° In order to locate the next pair YdZd to be merged, scan to the

left until a block Wm » Such that
last (wm) > first(wm+l)

is found.

- ¢ Perform the local merge:

1st steE: Insert wm in W

1 2 thus transforming meﬁ+

1
3 1 1"
into W n@nw

2nd_step: Merge Wﬁ forward.

3rd step: Merge W' backward.
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T V‘"l

u
Wy Yy ey T
V3
Uy u2 vy, bl b7
1222L411335355567L444567 9{13Lks567
abcdeABDEFfghijHIJKMORQ SICGLNPR
"
Wl W2 W5 W1|- TV A B
In the notation of Section L,
W W, = Y 2 Y,Z, (t = 2)
with the following grouping:
Yl=wl=Ul Z1=W2=V1
Y2=W5=U2 Z2=Wl‘_—V2
Figure 5.4: After step k.
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Both definitions result in equivalent operation if the merging
method stops once the merge is complete. 1In this case the bounds are
preserved simply by the existing order in the file, thus making
unnecessary to keep track of them. In other words, the grouping of
wl ...wm "'wk+£ into lel "'YdZd "'Ytzt is useful to prove that

the algorithm works (and, as will be seen later, to compute its time

bounds) but it is not needed to take it into account for implementation

purposes.
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Step 5: Finish up the merge of W

l...Wm...WH_kTv

finish up:
P =7V, -(v2-vl+-l) mod f; if p = Vs then p := p-f;
while p > Uy do )

begin
comment: find next pair ded to be merged;

while (p >u;) A (F(p) < F(p+l)) do p := p-T;

if p >u, then

1

begin comment: local merge;

comment : Wm is F[llzlg], W

b1 1S F[Wl:W2]5

1

3 - p-f+1; 22 1= D3

Wy i= Pl vy im min(pE, V)

INSERT (£,58,5Wy5WpsWssW)) 5

comment: now W' is F[Wl:WE] and W" is F[WB:wh]s
comment: in order to do the merges

"forward (of Wm)" means F[W5:V2],

"backward (of W')" means F[ul:wl-l];

comment: depending on the size b of the buffer the
algorithm chooses:
BUFFER MERGE if b > f
BLOCK_MERGE if b < f3

ifb >f
then begin
BUFFER_MERGE_FORWARD (ll’ze’wi’vz’bl’b2);
BUFFER_MERGE_BAC KWARD (ul,wl-l,wl,we,bl,be)
end

else begin
BLOCK_MERGE_FORWARD (£.,2,,W5,V,) 3

BLOCK_MERGE_BACKWARD (ul,wl-l,wl,wg)

end;

p = p-f
end if p

end while p;
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Layout after segment insertion:

g Py Pz by Pp| Vol TolVy |1 b,
l2224k113335556 784445167 99134567
abcdelABDEF|fghijlHTtdgxMoq xls|cerLnPRr

When p = Py > F(p) > F(p+l) , and the first local merge is done:

Uy 5H Lol vy Vol Vo

1222411333555 6 74444506709
abcdeABDEF|fghij|lHIJTKMoOQKk

w
3

W w. ll g (v v,

1 2171 21k 2 After

LLhhl55567|5|6709 inserting

HIJK|Ifghij{M]|]OQKk Wmlntowm_,_l

W! W w"
m
122241133344 0h45555667709 After
abcdeABDEFHIJK|fghMioO jQk merging
merge backward of WJ merge (BUFFER—MRGE
stops here forward of is used)
W_ stops here
m
When p =p), , again F(p) > F(p+l) , so
,1 222kl11333 After inserting W (in this case
iabcdeABDEF yielding W' empty and W"=Wml
' w W"
m
After merging: tl V5

uy Vs t2 v), bl b2

11122233244 04L455556677{9|9(1653L7
aABbcdDEFeHIJKfghMiO jQ| k|S|CPNGLR

merge (U",V") U Aval B!

I'igure 5.5: The finish up process applied to the example.
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It must be noticed that the algorithm chooses either BLOCK MERGE

or BUFFER_MERGE depending on the relative sizes of the blocks and the

buffer.
Step 5 transforms the layout into
merge(U",V")Tu\r“ B!
where B' 1is a permutation of B (and = B' =B if block merge was

used in step 5).

- 11
Step 6:  Merge T, and v

merge_iu_V”':
i_sztg—tl+l
then BUFFER_MERGE_FORWARD (t,%,,v,v),b,,b,)

else BLOCK MERGE_FORWARD (t,t,,V5,v));

This step completes the merge of U' and V' , thus yielding merge(U',V')B!

Step T: Sort B' and merge it backward.

merge back B:
] STRAIGHT INSERTION_SORT (bl’bz);

BLOCK_MERGE_BACKWARD (ul,vh,bl,b2)

end partition merge;

And step 7 finally yields the desired merge of U and V .

)



Figure 5.6: The general case after step 5 was

merge(U", V") T, ' B’
and after step 6 there results:
merge(U', V") B!

merge(U',V') B’

111222333444 L445555667799l1653%47
aABbcdDEFeHIJKfghMioOjQksSlcPNGLR

Figure 5.7: Final result.
merge(U, V)

1111222333344 bhhs555556667T799
aABCbcdDEFGeHIJKLfghMNiOPJQRKkS
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The storage requirements for the partition merge are the fixed
number of pointers declared at the beginning (lh in total, though a
more careful usage could have saved some) plus those needed by the
different procedures called. Since those procedures (BUFFER_EXTRACT2 ,
BLOCK MERGE's, BUFFER_MERGE's, INSERT, SEGMENT INSERT, and
STRAIGHT INSERTION SORT) require also a fixed amount of pointers (and
clearly there is no recursive call involved) the overall storage

requirements are absolute minimum, that is 0(log n) .

5.2 Time Bounds for the Partition Merge Algorithm

The partition merge is executed as a fixed sequence of steps. The
algorithm chooses the sequence in step 2, among the following two
possibilities:

(1) 1f |u'| <f or |v'| <f:

steps 1, 2, T3
(1) 1If |U'| >f and |V'| >f :

steps 1, 3, 4, 5, 6, 7.

Hence, calling Ti the time bounds for the i-th step, it results
that time bounds for the overall partition merge are either

(1) Tl+T2+T7

or  (ii) Tl+T5+Th+T +Te+T

p) 7

The analysis of time bounds for each step follows.
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5.2.1. Time Bounds for Step 1

The buffer extraction is given by equation (4.4)

Tpg (U VU5 V',3,2) = o(ful + [v]) + o(|B]%)

Since the buffer B is restricted to

sl < [T |

the time bounds are
2
ottt + 1) + o[ [VRT o1 |)

o(ful + |v]) . (5.1)

T

1

I

5.2.2. ’Jf‘.ime Bounds for Step 2

In the case that |U'| < f or V'] < £, this step yields a merge

of U' and V' . Assume |U'| < T ; here two cases must be considered.

(a) |U'| >b : this results in BLOCK_MERGE_FORWARD(U',V') , with

bounds given by (2.6)

T, = o(lv]) + o(Jur|-a(ur)) . (5.2)
But £ > |U'| >b , and by definition f = LJH]—EMJ , 80

U] +|v] >b° and then
b o< (VIUI + |v] ‘1 . (5.3)

Recalling that the buffer extraction in step 1 asked for a buffer
of length (V lu| + |V ‘] » and applying equation (4.3), implies

b o= AUV . (5.4)

Now since A(U') < N(UV) , it is possible to bound
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AU') <D (5.5)

Hence

o({ur|n(ur)) = o(£-b)

i} O(LM%IILJ .b) _o(fu] + V) (5.6)

Equations (5.2) and (5.6) and the fact that |V'| < |v| give

the final bounds

T, = o(|v']) + o(lul + [v]) = o(lu| + |v])

(5-71)

(b) |u'| < b : then it is BUFFER MERGE_FORWARD(U',V',B) , that

yields, by equation (L.16)
= o(fur| + [v']) = o(fu] + |v]) (5.8)

Ty

Clearly, the case IV'l < f is similar, so by equations (5.7) and

(5.8), it is possible to conclude that

(5-9)

7, = o(lu| + [v])

5.2.5. Time Bounds for Step 3.

The insertion of Tu into V takes time proportional to the sum

of both lengths, as stated by equation (2.5),

T, = o(lr | + [v]) = o(Ju] + [v])

3

(5.10)

5.2.4. Time Bounds for Step k.

The segment insertion process bounds were established in equation (L.23)

in Section 4.3. In the case of step 4, U" was inserted in Vi -V, 5 80

—_ "
T), = TSEGIN(U ,Vl...Vl,f)

o((|u] + |Vl...Vl\.)2/f2) + o(jur| + |V1"'V1l) (5.11)
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Clearly

jur] < |lul anda v ...V

vl < vl (5.12)

Also

o+ vy vyl < o)+ vl < Jur )+ v | = Jul+ vl -o . (5.15)

1

By definition of £

£ o= L(ul+ [v)/pd > (Jul +|v])/p -1 = (Jul+|v] -B)/b . (5.14)

With (5.12), (5.13) and (5.14), (5.11) becomes

(Jul + [v] -b)°
_ T, = 0 + o(|u| + |v])
* (((IUI +v] -v)/0)° )

= o®) + o(ul + vy - (5.15)
And since b < [-V(|U|+ |v]) 1 )
o(%) = o(lu| + |v|) (5.16)
thus
T, = o(ful + |v]) . (5.17)

5.2.5. Time Bounds for Step 5.

In order to compute these bounds, it is convenient to resort to
the notation in Section 3.

The segment insertion in step 4 transforms U"V" into

YlZl "'YdZd "'YtZtCt+l , Where
U =Y1"°Yd"'Yt
V' o= Zy i Zg - 2.0y (5.18)

Also, let Ld be the last block of Yd , and Fd the first one of Zd s

thus renaming
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Yd = Yde and Zd = FdZ('1

with |1,] = [Fg| = £

al

The finish up process of step 5 can be viewed as:

for 4 :=t step -1 until 1 do

begin

into F! L. F ;

insert L., into Fd’ transforming LdFd aLq ¥

d

merge Ld forward;

' backward;

merge Fd

end

(5.

19)

On the basis of the above description, the time bounds for step 5 result

the sum of the time needed for insertions (TI) plus time to merge

forward (TF) plus time needed to merge backward (TB) So
= + +
T5 TI TF TB
Time bounds for insertion: Time bounds for insertion of two blocks

are given by equation (2.L)

Te(%oY) = o(lx] + |¥])
-then
T, = %TINS(Ld’Fd) = O(§ (ILdI+|FdI)>
_ 0 Z|L|)+O > |F|>
(d d a ¢
But lLd| < |Yd| and IFdl < Izdl , and since
Z v = |
gl = ]
and

Zlz.| < |v]
a 4 -
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equation (5.20) becomes
r. - o(glydl)m@z@ = o(lurl + 7)) (5.21)

Time bounds for merges: The time bounds for block and buffer merge

are functions of those records that are actually exchanged (see remarks
at the end of Subsections 2.2.5 and 4.2).
Claim 3.2 shows that during the finish up of YdZd , all the elements

to the right of C are already in their final position. Hence when

d+1

3 3 " 1
forward, it merges into Fd chd+l , regardless of how far

the merge limits point. So in order to bound

merging Ld

to the right of Cd+l

the running time the process "merge L. forward" will be regarded as

d

" > " t "
merge Ld forward into FdZdCdﬂ_ .

A quite similar reasoning shows that "merge Fé backward" is

equivalent to "merge Fé backward into Yé ",
There are two cases depending on whether block or buffer merge is

used, and they will be analyzed separately:

(a) Case b >Tf : BUFFER MERGE.
By equations (4.15) and (L4.16) the time to buffer merge two blocks
X and Y (either forward or backward) can be bounded by

o(|x|) +o(|y]|) , so:

Ty = ?O(iLdl) +§o(|1=*&z&cd+l|) (5.22)
T, = %o(lF&l) +§Jo<|¥al) - (5.23)

Combining (5.22) and (5.23) and manipulating the lengths properly:
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=3

+

H
|

Z ollryrgh+ 2oty gz + T olleg, D

o(fur]) +o(jv |y +o(|v']) = o(lu"|+ |v']) . (5.24)

(b) Case of b < f : BLOCK MERGE.

Since
5T (4,1) = o(JxXaX) +0(¥)
it is
T, - Z o(|zy] MLd))+ZO(Ingg1 a1l
= £ o[ ZNMzy) Y+ o(|v]) (5-25)
d
and also
T&SSE(XJ) = o(|x[) +o(}¥|rx))
yielding
T, = % o(]y,|)+ %‘(IF&I-MF(;))

o(u") + f O(Z MFY) ) . (5.26)

In order to bound the sums in equations (5.25) and (5.26), the

following result is needed:

Claim 5.1: Let U be an ordered block. Consider U as a segment of

k blpcks U=U,0 ---Ui ---Uk , then

ANU)+k > > AU . (5.27)
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Proof: Let

1 if last(Ui) = flrst(Ui+l)

g(i)
0 otherwise
for 1 <1<k

Then clearly

2 K(Ui) = MNU) + g(1) + ... + g(k-1)
1<i<k

yielding the claim.

Applying (5.27) to the sums in (5.25) and (5.26) yields:

2 MLy < 2 MYg) < MU+t
1<d<t 1<d<t

< NMV')+t

Combining (5.25) and (5.26) and using (5.28) and (5.29), the time

bounds result:

T 4T = o(|ur]+ |v"]) + £.0(A(U") +t) + £ O(M(U") +1t)

o1

(5.28)

(5.29)

(5.30)



By the same analysis as in 5.2.2, the fact that f > b implies

ANUV) = b , and then

MU' < b and AV') < b . (5.31)

Also t is bounded by the number of blocks (of length f ) in U"

and Vll
v o< m_L < LU'V'J < lUl+lVl -b - b . 552 i
S N O LD (5:58)
Equations (5.31) and (5.32) and the fact that f£-b < |U|+ |V| , applied 2
to (5.30) give _,
T+ Ty = o(|ur|+[v"]) + £:0(b+D) +£-0(b+D) ;
- ~
= o(Jul+ |vD) . (5.33) |
|
In summary: _J :
Time for insertion: equation (5.21) shows that »
T, = o(|u]+ |v])
Time for merges:
Case b >f : by equation (5.2k) )
2 ovny = o(|ur]+ |w))
Case b < f : by equation (5.33)
)
T+ Ty = o(|ul+ |v])
Cleé.rly the time bounds for step 5 result
v, = o(ful+ vl - (5.5 -

>
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5.2.6. Time Bounds for Step 6.

BN By an analysis completely similar to the one for step 2, the time

bounds for the merge of Tu into V"' result

1 - o(ful+ vy - (5.35)

5.2.7. Time Bounds for Step 7.

By equation (2.8), the time bounds to sort the buffer B are

Tg = Toop(®) = O([B[%) = o(lul + [v]) . (5.36)

Also the block merge of B into the rest of the file

(back)

TBLOCKM

(merge(U',V') , B)
= O(|merge(u*,v')|) +o(|B|A(B)) - (5.37)
But since B is a buffer |B| = A(B) and thus (5.37) becomes

of(fur] + [w )+ o(]8|%) = o(Jul+ |v]) - (5.28)

=
1l

Finally

,
H
I

T+ T, = o(jul+[v]) . (5.29)

- 5.2.8. Overall Time Bounds

Bquations (5.1), (5.9), (5.10), (5.17), (5.34), (5.35) and (5.39)
show that each single step has time bounds O(|U|+ |V|) . The conclusion
is that the overall process must have also linear bounds, since it

consists of a fixed sequence of those steps.

Toapme(U> V) = o(ul+|v]) . (5.10)
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6. The Partition Merge Sort

The availability of a linear time merge algorithm gives rise to the
possibility of an (n . log n) time bounded sort. A few slightly different
variations of the same basic strategy are possible, and this section
presents one of them in detail.

The sorting strategy consists of successive merging passes over
the entire block to be sorted, each pass merging pairs of blocks of

length 1,2, %, ..., 25 ... until the entire file is sorted.

6.1 Description
The following procedure sorts a block U , whose first and last

elements are pointed to by uy and Uy respectively.

procedure partition merge sort (pointer value ul,ug);
begin pointer p,Z1;
comment: £ is the length of the blocks to be merged ;
£ =15

while £ <u,-u,+1 do

2 1

begin comment: merging of contiguous pairs of blocks of

length 2. The pointer p points at the

first element of the second block of each pair;

p:=ul+l;
while p S‘u2 do
begin

partition merge(p-£ , p-1, p, min(p+L-1, ug));
D := p+2¥%L
end
£ = 2%}
end

end partition merge sort;
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6.2 Time Bounds

Since partition merge is linear on the length of the blocks to be
merged, each merging pass results also linear on the length of the
blcck U being sorted, regardless of the value of £ . That is,

denoting by M, the time bounds for the merging pass of blocks of

L
length (£ it is

M, = o(lu]) . (6.1)

But the merging passes are repeated for lengths

o= 1,2, ...,2% ..., 08

such that Ek does not exceed the length of U :

k k+1

2° < |u] <2 (6.2)
So the time bounds for the sorting process are:
T v) = Z M (0)
P M SORT 0<i<k o1
- = o(u]) = )o(ful) - (6.3)
0<i<k

From equation (6.2) it results

ktl = [ log, lu| 7 . (6.4)
Finally yielding

TP_M_SORT(U) = o(|u| 10g |U]) . (6.5)
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7. Conclusions

The most interesting of the results presented here is the
PARTITION MERGE algorithm, since as the reader was able to see, the
PARTITION MERGE SORT resulted as a straightforward consequence of it.

By analyzing the previously published results, especially the
work by Horvath ([Horvath]), it can be concluded that there were two
considerations that led to the general result presented here.

First, the utilization of an internal buffer, without any modification
of the keys, to "mark" a permutation of a segment, allowed the segment
insertion process to be implemented within extra storage bounds of
0(log n) Dits.

Secondly, the adaptivity of the algorithm to the characteristics
of the file being processed (by proper choice of either BUFFER or
BLOCK MERGE) resulted in a linear time "finish up".

It is interesting to note that the operation ' p+tq ' on pointers is
strictly needed only for the permutation of blocks in the
SEGMENT INSERT process (Section 4.3). All the other sums of pointer
values could have been realized by successive ' p+tl ' operations within
%he same time and space bounds. It remains an open question whether
these minimum time and space bounds are obtainable only with the
primitives ' exchange(p,q) ', ' F(p) <F(q) ', '"p+xl ', "P=qa'’,

and ' p :=q ".
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APPENDIX A

s Analysis of Basic Transformations

This Appendix presents a deﬁgiled analysis of the basic transformations
defined in Section 2.2.

EBach transformation is defined by means of an ALGOL procedure and
the corresponding analysis of the running time bounds is presented.

The blocks U and V are used as parameters, and they correspond

to F[ul'

U, respectively.

and F[vl:v2

In order to allow dealing with empty blocks, an empty block U

is represented by (ul,u2> with u, = ul-l . The pointers used to
\ -
represent the segment UV have u2+l =V in all cases, even when
one of the blocks is empty.
\
B A.1 Reversal of a block: REVERSE(ul,uE)
N
Algorithm:
procedure REVERSE (pointer ul,ue);
for j :=u, step 1 until (ugi-ul)/Q do exchange (] > Uy -j—Ful);
Time bounds: Clearly
: Tepy(W) = o(|u]) - (A.1)
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A.2 Exchange of blocks of equal length: BLOCK;EXCHANGE(ul,ug,vl,VQ)

Algorithm:

procedure BLOCK_EXCHANGE (pointer ul,uE,Vl:Vé)S

for j :=wu; step 1 until u, do exchange(j , vl4-j-ul);

1

Restrictions: |u| = ||

Time bounds: The for loop is executed |U| +times, thus

Ty (00 = o(Ju]) = o(lv) . (4.2)

A.3 Permutation of two contiguous blocks: PERMUTE(u ,u ,v ,Vv )

Algorithm:

; procedure PERMUTE (pointer ul,uz,vl,v2);
begin
pointer t;
REVERSE(ul,VQ); comment: yields VRUR;

comment: exchange pointers;

t := Vo3 Vq = Uy Vg, ois v2-u24-ul-l;
uq = v2+l; u, := ts
REVERSE(ul,ug); comment : ;

REVERSE(vl,VE); comment: VU;
end PERMUTE;
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Restrictions: U and V must be contiguous with U preceding V ; i.e.,

vl = u2+l .

Time bounds: Three reverses are executed, all of them linear on the

length of the blocks, so

Tepy(Us V) = o(jul +{v)) . (A.3)

A.4 gstable insertion of two contiguous ordered blocks:

INSERT(ul,uE,vl,vg,fl,f2)

Algorithm:
procedure INSERT (pointer ul’ue’vl’VQ’fl’f2)5

if (ul S‘ue) A (v, < VE) then

1
begin
comment: search for insertion place;

fl =y f2 1= Vo

while (fl Svg) A (F(fl) <F(ul)) do £ := £ +1;

comment: now V' is F[vl:fl-l] and V" is F[f1:f2]5

Ty i= £,-1; PERMUTE(ul,ug,vl,vz);
end INSERT;
Restrictions: (vl = u2+l) and ordered(U) and ordered(V) .

65



Time bounds: The search compares the elements of V' wuntil reaching
the first element of V" (V' and V" as defined in Section 2.2.4)

and PERMUTE permutes U and V' , thus the bounds are
Ts(U V) = o(ul + |v']) (A1)

with V = V'V" and last(V') < first(U) < first(v")

A.5 Direct merge of two contiguous ordered blocks: BLOCK MERGE

Only BLOCK MERGE _FORWARD will be considered here.

Algorithm:

procedure BLOCK MERGE_FORWARD (pointer value ul,ug,vl,ve);

if (ul S'ue} A (vl < v2) then
begin pointer X15%53¥15Y5rC5C55
X = Ugs X5 1= Up3 Y 1= V3 Y, i Vo
while (x; <x,) A (y; <v,) do
begin
INSERT(xl,Xg,yl,ye,cl,c2);
comment: any element to the left and including Vo
is in its final position. The merge is
. reduced to the merge of F[xl:xg] with F[cl:cg]
Vi 1= Cq3 Vp 1= Cps
if (y; <v,) A (F(x,) > F(y,)) then

begin comment: discard the prefix of F[xl:xg]

already in its final position;
while (xl < xe) A (F(xl) < F(yl)) do x; = %13

end

end

end BLOCK_MERGE_FORWARD;

(i( b
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Restrictions: v, = uy+l and ordered(U) and ordered(V) .

Time bounds: Let

1 i t
and (A.5)

Vo=V Uy eeeVyeee Vg 5 |7l >0 for 0<i<t

U=Up.eU;eenUy 5 fUg] >0 for 1<4 <t

where

last(Ui) < first(Vi)
and (A.6)
last(Vi) < f1rst(Ui+l)

With this notation the merge of U and V can be expressed as

merge(U,V) = VOUlVl...UiVi...UtVt . (A.T7)

Furthermore, the block merge process may now be defined as follows:

for i := 1 until t do
begin

insert Ui "'Ut into Vi—lvﬁ ...V£;

if i<t
then search through Ui until reaching the first element

of Ui+l;

end

The insertion of Ui "'Ut into Vi-l;vi"' Vt yields, according

to (A.6), Viq Uy eer U Voo Vs hence by equation (A.4) it takes time

-171 t

TI, = o(lvi_ll + |Ui ...Utl) . (A.8)
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The search to find the first element of Ui+ takes time proportional

1
to the length of Ui B

TS, = O(|Ui|) . (A.9)

Thus the overall time bounds result

&
<
p—
1
™
3
H
+
™
H
o)

I
™
o

<

o(fv.v,...v, - N+ 2 o(lu, -..U.])
0’1 t-1 1<i<t i t
+ Zo(lug])
1<i<t
= o(|vv,...v, D+ 2 o(ju,...u.]) - (A.10)
(ORE t-1 1<i<t i t
Clearly IUi...Utl < |u| . Since equation (A.6) implies

last(Ui) < first(Ui+l) » the keys in U, are distinct from the keys in
‘Ui+l . Thus t is bounded by A(U) , and the sum in (A.10) is
2 O(IUi...Utl) = o(|u]).t = o(|u|r(u)) . (A.11)
1<i<t

Renaming Vy...V, ; = V' and V, = V" , equation (A.6) yields
last(V') < last(U) < first(Vv") . (A.12)
And finally the time bounds can be expressed as

piiome )W) = o(lu) + o(lv]) (8.12)



APPENDIX B

Analysis of the Buffer Extraction Process

The concept of buffer extraction was introduced in Section h.1.
This Appendix presents a slightly more general extraction mechanism
and its application in order to produce a buffer from two contiguous

ordered blocks.

B.l The EXTRACT transformation

Let U = Flu.:u.] Dbe an ordered block and M = F[m a buffer

172

(U and M do not overlap). Then an application of

1M

EXTRACT(ul,ug,Z,bl,bg,ml,mg) transforms U into U'B such that

B is a buffer, B =F[b;:b] , [B] <
(B.1)
U = merge(U',B) ,

no record in B has a key equal to the key of any record in M (that

is, Virm, <i<m,, ¥j: by <J<b,: FE) £F() ), and |B| is

as large as possible subject to these conditions.

1

The extraction is similar to the mechanism presented in the example
in Section 4.1, with the addition of a check to avoid collecting any
record whose key is already in M .

The following procedure describes the EXTRACT process:

procedure EXTRACT (pointer ul,ue,l,bl,bg,ml,mg);

begin pointer p,q,s;

logical procedure is_in M (pointer q);

begin
while (s S'mg) A F(s) <F(q)) do s := s+l;

if s § M, then false

else (7(q) = F(s))
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end is_in M;

s := ml; comment: s will point to successive elements in M;

b, :=u

1

comment :

while (b2 < u2) A (b2 -b

15 Py =

begin

while

while

C

omment :

or

u,-1l; comment: B is initially empty;

1

collect the buffer;

1t1<1) do

set q to point to the next element to be
included in B,

set q = u2+l if no such element exists;

P :=q := b2+l;

(a <wy) A is_in M(a) do q := g+l;

(a <u,) AF(a) = F(atl)) do g := g+l

if 9 <u, then

begin comment: permute B and the elements preceding record q;

qQ :=49

2

end;

end;

comment :

p:=Db

2

-1; PERMUTE(b,,b,,P,q);

b, := b2+l; comment: include the record q in B;

permute B with the elements (if any) to its right;

+1; PERMUTE(b,b,,DP,u5) 3

end EXTRACT;

In the above program the procedure is_in M checks whether a given

key is or is not in M .

In the following analysis the execution time for

a call to is_in M will be considered fixed, with the proviso that an

o(|M|) time is added to the total time bounds. The reason for the above

statement is that

is_in M

is called upon to check successive keys in U ,

and thus it needs to run through M only once during the entire execution

of EXTRACT.
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The buffer B is collected from left to right. Assume that after

collecting the first i elements of B the block U has been transformed

int~
1 "
Ui Bi Ui . (B.2)
where Ui is a prefix of U' ,
Bi is a prefix of B, IBiI =1
and Ug has not yet been considered.

The execution of EXTRACT now proceeds as follows:
-- search through Ug until reaching the first record ¢ , such
that
Vi:my <J <m,y: F(a) £ F(3)) and (a4 = u, or F(q) <F(g+l)) ;
--  permute Bi with the elements to its right that precede the

record q , and append q to Bi thus yielding
T "
Uitr Bivg Uien
The time needed to search is proportional to the difference of lengths

and U! )
1

between U£+l

1
IS, = c(‘Ui+l| - IUil) . (B.3)
The permute time is of the order of the length of Bi and the
distance between q and the rightmost element of B,
— ] - H -
™ = d(|B| + |ul, | - luih) - (B.4)
Hence the overall bounds result

T (U,2,B,M) = 2 (Ts. + TP.) + o(|M|) (B.5)
EXTR' "’ 1SiS|B‘ i i ’
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where the O(|M|) term is the "extra" contribution of is in M .

After some manipulation (B.3), (B.4) and (B.5) yield

Topg(Us B4 = 0([B]%) + o(Jul) + o(|u]) . (B.6)

B.2 Extraction of a buffer from two contiguous ordered blocks:

BUFFER_EXTRACTQ(ul,uz,vl,VQ,l,bl,b2)

An application of BUFFER_EXTRACT2 produces a buffer B , of length
|B| = min(£, NM(UV)) , out of two contiguous ordered blocks U and V ,
yielding U' V'B where

merge(merge(U',V'),B) = merge(U,V) . (B.7)

This transformation is implemented by means of two successive applications

of EXTRACT. The following procedure defines the algorithm:

procedure BUFFER EXTRACT2 (pointer ul,ue,vl,vg,l,bl,be);
begin pointer C1,Cp5
comment: EXTRACT(V,f,B,M) with M empty (thus no restriction
is imposed on the elements to be collected);
¢, = 1; c,
EXTRACT(Vl’Vé’Z’bl’bgﬁcl’cg)

= 03

if (b2 -b,+1) < { then

1

begin comment: previous extraction was not enough;

EXTRACT(ul,ug,1-(b2-bl+l),cl,ce,bl,b2)
PERMUTE(cl,CE,vl,VQ);
BLOCK;MERGE_FORWARD(cl,cg,bl,bg);

bl HE cl;

end

end BUFFER_EXTRACT2;
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To analyze the time bounds, two cases must be considered:

(i) The first extraction suffices: then by (B.6)

2
gy = oUBI%) + o(lv]) - (8.8)
(ii) Two extractions are needed: let Bl s lBll = bl , be the
buffer collected in the first extraction and B, , |[B,| =1, ,
the second one; |B| = b, +b, . The bounds result
T = o(b2)+o(|v|)
(ii) 1
2
+ 0(by) +O(|U|)+O(bl)
+ 0(by) +0(|v])
but since B, 1is a buffer K(Bg) = b, , thus (B.9) becomes
Ty = 0067) + 0(b2) + o(lu] + |v])
(ii) 1 2
2
=o([B|%) +o(ul + |v]) . (8.10)
Finally (B.8) and (B.10) yield
2
Tpr(Us VUV, 2,B) = o(fu] + |v]) + o(|B]7) . (B.11)
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