STAN-CS-75-527 SU-SEL-75-044

CENTER FOR RELIABLE COMPUTING

CURRENT RESEARCH

by

Edward J. McCluskey
John F. Wakerly
Roy C. Ogus

October 1975

Technical Report No. 100

DIGITAL SYSTEMS LRBORATORY
STRRFCRD ELECTRONILS LREORRTORIEE

STANFORD UNIVERSITY - STANFORD, CRLIFORMNIR







STAN-CS-75-527 SU-SEL~75-0kLkL

CENTER FOR RELIABLE COMPUTING

CURRENT RESEARCH

by

Edward J. McCluskey
John F. Wakerly

Roy C. Ogus

October 1975

Technical Report no. 100

DIGITAL SYSTEMS LABORATORY
Department of Electrical Engineering Department of Computer Science
Stanford University

Stanford, California






CENTER F OR RELIABTLE COMPUTING

CURRENT RESEARCH

by

Edward J. McCluskey
John F. Wakerly

Roy C. Ogus

Technical Report no, 100

October 1975

Digital Systems Laboratory
Department of Electrical Engineering Department of Computer Science
Stanford University
Stanford, California

ABSTRACT

This report summarizes the research work which has been performed,
and is currently active in the Center for Reliable Computing in the

Digital Systems Laboratory, Stanford University,






ii

TABLE OF CONTENTS

INTRODUCTION. =+ =+ = = * » = o o o o o o o o o o v v 0 o o . 1
THEORY OF FAULTS IN LOGIC SYSTEMS - =+ = = = = = = == == = + = 3
2.1 Reliability Modeling. = =« =« « « « « « « « « « « « . . 3
2.1.1 Static Redundancy - -« + + + + + + + « « o o . )
2.1.2 Dynamic Redundancy. =+ = = + + + =+ « - - « - . 10
2.1.3 Hybrid Redundancy - - « « « « « « « « « . . . 14
2.1.4 Comparj_sons e e e e e e e e e e e e e e e e . 18
2.2 Signal Reliability. =+ « « « « « « « « « « « « o . . . 19
2.3 Self-diagnosing Computer Design - - = - - - -« - . . . 21
2.3.1 Error-detecting Codes - - - - - - - - - - . . 23
2.3.2 Self-checking Circuits. - « + « « « « « . . . 23
2.3.3 Fail-safe Circuits. =+ + « « « « « « « « . . . 24
2.4 Multiple Fault Studies. =+ « « « « « « « « « « o . . . 24
2.4.1 Fault Masking - - - - - « « « « « « < . . . . 25
2.4.2 Iterative Networks. - « « « « « « « « « « . . 25
2.5 References. e o o o o o o o o o o o o o o o o o o o o 26
STUDY OF MAINTAINABLE COMPUTERS . . . . . . . . , . . . . . 31

3.1 Applying Triple Modular Redundancy to Small Computers 37

3.1.1 Effects of Transient Failures in
Sequential Modules. . . e e e e e 3
3.1.2 Reliability of TMR Memory Systems e e e oo« . 39
3.1.3 A TMR Microcomputer System. . . . . . . . . . 4l
3.2 Self-Checking-Circuits. . . . . . . . . . . . . . . . 53

3.2.1 Checked Binary Addition Using Checksum

Codes and Check Symbol Prediction . . . 53
3.2.2 A Self-Checking Checker for Periodic Slgnals. 54
3.2.3 Fail-Safe Sequential Machines . . . . . . . . 57

3.3 Self-Diagnosing Computer Design . . . . . . . . . . . 39






Data Path Checking

Control Unit Checking.

Diagnosis. . .
Peripheral and Input/Output Checklng

w w w w
w w w w
=W N

3.4 References Prepared under Previous NSF Grants.
3.5 Additional References.

INVESTIGATION AND EVALUATION OF DUAL COMPUTER CONFIGURATIONS

4.1 Introduction
4.2 Summary of Technical Areas in the Project.
4.2.1 The SIRU Computer System .
4.2.2 Error Recovery Techniques in Computer Systems
4.2.3 System Reliability Modeling.
4.2.4 Signal Reliability of a Circuit. c e e
4,2.5 Software Reliability v v« v v v v @ @ © ¢ « « «
4.3 References

BIOGRAPHICAL SKETCHES OF PRINICPAL RESEARCHERS IN CENTER
FOR RELIABLE COMPUTING

LISTING OF PERSONNEL IN CENTER FOR RELIABLE COMPUTING.

PREVIOUS RESEARCHERS IN CENTER FOR RELIABLE COMPUTING.

CENTER FOR RELIABLE COMPUTING BIBLIOGRAPHY
8.1 Journal Papers
8.2 Conference Papers.

8.3 Technical Papers

0.4 Technical Notes. . . . .

iii

60
65
68
69
71

73

75
76
76

78
79

80
81
82
83
85
87
89
89
91

94

97






1. INTRODUCTION

This report summarizes the research work which has been
performed and is currently active in the Center for Reliable
Computing (CRC) in the Digital Systems Laboratory, Stanford
University. The report covers three projects in the CRC, and
presents recent results obtained by researchers in the group, as
well as an indication of the current status of each project.

The first project concerns the theory of faults in logic
systems. Theoretical studies of the effects of faults on logic
networks have been conducted and techniques for the modelling and
evaluation of the reliability of redundant systems have been
developed. Other areas involve the design of ultra-reliable
systems, self-diagnosing computer systems, and the testing of digital
circuits. Studies of fail-safe and self-checking circuits have also
been carried out. The summary of the research in this project is
presented in Section 2.

The second project involves the study of maintainable computers.
Techniques for implementing fault-detection and diagnosis of small
scale processors at a low cost are being investigated, as well as
the study of improving the reliability of I/O controllers and
peripheral devices. The design of redundant microprocessor systems
and implementation of a low-cost maintainable minicomputer are current
studies being performed. The description of the research in this
project is found in Section 3.

The third project deals with the study of dual computer



configurations. A dual processor system used in a guidance and
navigation application was implemented for NASA-Ames Research
Center and the CRC has been evaluating the performance of the
system.

Section 5 presents a short biography of the principal researchers
on the three projects, and Section 6 describes some previous researchers

in the CRC.



2. THEORY OF FAULTS IN LOGIC SYSTEMS

Summary of Previous Work and Work in Progress

2.1 Reliability Modeling

A large variety of redundancy techniques -- TMR, Standby
Sparing, Coding, Multiprocessing, etc. -- exists for impreving
the reliability of a digital system. When a system is being
designed for a specific mission with given reliability requirements,
it is necessary to:

(L) decide whether use of a redundancy technique
is required,

(2) choose the optimum redundancy technique (if any
is required) for the given application, and

(3) evaluate the resulting system reliability
to determine whether the design requirements
have been met.

The objective of research into reliability modeling is to
develop tools to permit the previous three steps to be carried out
as accurately as possible, Inaccuracy can result in systems which
either (1) are more expensive than necessary, or (2) (unknowingly)
fail to meet the reliability requirements.

Because of its serious practical importance, reliability
modeling has received a great deal of attention [Borgerson, 1975;
Bouricius, 1971; Rennels, 1973; Mathur, 1971] *

However, this earlier work results in only partially

satisfactory results due to the inherent complexity of the problem,

Straightforward combinatorial techniques usually have a computational

*The references for each section are compiled at the end of the particular
section,



complexity too great to be useful so that more sophisticated
approaches are necessary.

Redundancy techniques are usually classified as being either
static, dynamic or hybrid, In static redundancy, also called

masking or magsive redundancy, the effect of a fault is masked

instantaneously by the non-faulty components of the system, No
alteration in the system interconnection pattern is required for
this error correction to take place,. The principal static

redundancy technique is triple modular redundancy (TMR) which was

used in the Saturn V launch vehicle computer [Dickenson, 1964]
and has been proposed for use in other flight control systems
[Masreliez, 1973]. Another important form of static redundancy is

interwoven redundant logic [Pierce, 1965], Finally, the possibility

of achieving static redundancy by replication of circuit components
[Creveling, 1956; Lewis, 1963] should be mentioned. Interwoven
logic is limited in its application since it must be applied at the
gate level which can be an important restriction when the trend is
towards higher levels of integration with consequent implications for
non-independence of gate failures, TMR is more generally applicable
since it can be applied at the gate, subsystem, or entire system
level.

Dynamic redundancy, also called selective, stand-by or sparing

reduhdancy, is characterized by the detection of a fault and the
implementation of a corrective action, Fault detection is either

concurrent or periodic, In concurrent detection, use is made of a



coding technique relying on redundant signals [Kazutz, 1962], An
important special case is the duplication of the system to generate
two copies of the outputs with fault detection caused by a mismatch
between duplicate signals [Wachter, 1975], Periodic detection
involves stopping the normal operation of the system at intervals
to allow diagnostic tests to be carried out, Correction can be
implemented by error-correcting circuitry if an error-correcting
code is being used, Otherwise it is necessary to resort to some
diagnostic routine to determine the proper signal values and fault-
free system components and often to initiate a reconfiguration which
eliminates the faulty subsystem.

In hybrid redundancy [Mathur, 1970; Siewiorek, 1973; Ogus,

1974], use is made of a static redundancy technique =-- probably
TMR -- to provide both error masking and error detection, Hybrid
redundancy differs from static redundancy in that a reconfiguration
action is taken when an error is detected., The major types of
hybrid redundancy are TMR + spares [Ogus, 1974] and self-purging
redundancy [Pierce, 1962; Chandy, 1972; Losq, 1975A].

2,1.1 Static Redundancy, A TMR system which consists

solely of three copies of the desired circuit such as that shown in

Figure 2,1, followed by a rank of voters from which the system output

is derived is called a one-level TMR system, A system in which

an input signal must pass through more than one vote before

reaching the output, as in Figure 2.2, is called a multi-level TMR

system,



Inputs

r—'__:_>,> Circuit

Y/

Figure 2.1

< Copy
1

\\) Circuit

7 Copy
2

One-level TMR System




L 1]

1

[ 1]

11

Figure 2.2 - Multi-level TMR Systems

One-level TMR Modeling, It is customary to model the

reliability of a one~level TMR system by assuming that the system will
perform correctly as long as no more than one of the three copies of the
circuit has failed, In other words, it is assumed that for any
failures affecting two or more copies, the system will fail. This
assumption is much too pessimistic since there are many two-circuit
failure situations which do not result in system failure. For
example, consider the situation where one of the circuits has its
output stuck-at-1, shown in Figure 2.3a, a second circuit has its
output stuck-at-0, and the third circuit is fault-free. The system
output from the voter will be correct. Another drastically over-
simplified situation is shown in Figure 2,3b, Here the circuit being
protected by TMR is a two-input AND gate, The figure shows the

situation which occurs if an input (x) to one of the copies of the



\ \3 f(x])oocx )
| I NG
7
(a) b—e——d
L/ N
w‘; -ﬁ f2 = X A
@ , o
) i, = xy zZ=yx + y (xy) + x (Xy) = Xy

(b)

Figure 2,3- One-level

TMR Circuits with Multiple Faults



gate is stuck-at-1 and the gghgz_input (y) to a second copy is also
stuck-at-1, The system output is z=xy as required for correct
operation,
A technique for calculating one-level TMR reliability

which accurately models the effects of multiple failures which

do not cause system failure was developed under a previous NSF

grant* [Siewiorek, 1975], It was shown that neglect of the multiple
fault phenomenon just described can result in mission time predictions
which are as much as 30% lower than the more accurate value obtained
using Siewiorek's method,

Multiple-level TMR Modeling. A great deal of attention

has been devoted to the problem of calculating the reliability of

a multiple-level TMR network [Brown, 1961; Teoste, 1962; Rhodes,
1964; Longden 6 1966; Rubin, 1967; Lyons, 1962; Gurzi, 1965:

Jensen, 1964], None of these approaches produced a technique for
determing the exact reliability of a multiple-level TMR network;
only bounds were obtained, The difficulty with obtaining an exact
solution stems from the necessity for taking into account the complex
interactions among the various stages of the network. Thus any
straightforward combinatorial apbroach leads to a technique of
computational complexity. In [Abraham, 1974], an algorithm for
calculating the exact reliability of a multiple-level TMR network

is described. The algorithm was developed by Abraham and Siewiorek

* NSF grant GJ 27527



10

under a previous NSF grant*, The success of' the Abraham-Siewiorek
algorithm depends on their technique of associating voters with
circuit inputs and then partitioning the network into subnetworks
which have the property that the overall network reliability can be
calculated as the product of the subnetwork reliabilities,

Interwoven redundant logic modelling, In an interwoven

redundant logic network the tasks of error correction and calculation
of the output function are not separated as they are in TMR networks
so that one-stage interwoven systens are- of no importance, The
problem of modelling interwoven networks was studied in [Jensen,
1963] and [Teoste, 1961] butl only approximate techniques were
discovered. The exact analysis was considered too difficult and
costly [Teoste, 1964; Goldberg, 19667, Our earlier success in
" modelling multiple level TMR networks led to the hope that a similar
approach would be useful for interwoven networks, This turned out
to be true, and a technique for exact modelling of interwoven redundant
#

logic was developed under our present NSF grants and is reported

upon in [Abraham, 1975],

2.1.2 Dynamic Redundancy. The accurate modelling of

dynamic redundant systems is difficult because the system reliability
is very sensitive to the reliability of the mechanisms for fault

detection and reconfiguration, and it is usually quite difficult to

* NSF grant GJ 27527

# NSF grant GJ 40286 and DCR 7307973



11

model the reliability of these mechanisms accurately, In
[Bouricius, 1969] a technique for estimating dynamic system
redundancy is presented in which the problem of deriving detection
and recovery mechanism reliabilities is avoided by introducing

the concept of a coverage factor, The coverage factor is defined

as the probability of system recovery given that a failure has
occurred, The concept of coverage is very important for dynamic
‘redundant systems. It has been used to demonstrate the extreme
sensitivity of these systems to the recovery mechanisms [Arnold, 1973]
and thus to focus attention on these mechanisms as being the critical
aspect of such systems. The major problem with making use of
coverage in modelling is the practical difficulty of determining the
coverage factor for a specific system and evaluating the effect

of the number of spares on the value of the coverage factor, As

the number of spare modules is increased, so also is increased the
number of module failures which the system can withstand and still
continue to function. However, an increase in the number of spares
also causes an increase in the complexity of the detection and
reconfiguration mechanisms and thus a decrease in their reliability,
Of major importance in modelling dynamic redundant systems is the
ability to determine the optimum number of spares, This requires
that the interrelationship between more spares giving better protection
against module failures but worse detection and reconfiguration
reliability be explicitly accounted for. Bouricius et al, attempt

to take this interrelationship into account by letting the module



12

failure rate (M) depend on the number of spares. While this
allows them to show that there exists an optimum number
of spares for any coverage factor less than one, it is a completely
artificial strategem which is hard to relate to the details
of a specific system.

In dynamic redundant systems there are two techniques
possible for replacing a failed unit by one of the standby spares:

logic switching or power switching, In logic switching power is

applied to all the units and reconfiguration consists of substituting
the outputs from a standby unit for those of a failed on-line unit,.

In power switching spares are unpowered until the time at which they

are switched on-line. Power switching has two advantages: (1)

the savings in power consumption by providing power only to on-line
units and (2) the possibility of a reduced failure rate for the
non-powered spares [Nerber, 1965]. The ratio of the powered device
failure rate to the unpowered device failure rate is called the
dormancy factor (usually assumed = 1),

Under the present grant, a very detailed analysis of
stand-by systems [Losq, 1975 B; Losq, 1975 C] has been carried out,.
Rather than relying only on the coverage factor parameter, the
analysis is carried out in terms of the parameters:

V , the vrate of fail-safe failures, those failures

which result in discarding a fault-free module
but successfully replacing it with a spare module;

the rate of unsafe failures, those failures
which result from a failed module not being
successfully replaced (either because the failure
is not detected or because a detected failure does
not result in a successful reconfiguration),

1’




13

This study has produced the following results:

i)

(ii)

(iii)

(iv)

v)

(vi)

A technique for determining the optimum
number of spares for a given system design
and reliability specification,

A proof that for extremely short mission
times systems with one spare are optimum,

A proof that for mission times which are
not extremely short, but which are less
than one-tenth of the mean lifetime of

a single unit, the optimum number of sgpares
is still small -- five or fewer for most
systems.

The demonstration that it is possible to
calculate a parameter, T , which specifies
the useful life of a stZﬁd-by system, The
system reliability is very high for mission
times less than T and drops sharply towards
zero for mission times greater than T .,

The effects of imperfect fault detection
mechanisms -- mechanisms which are designed

to catch only a fraction of all possible

module errors-- have been studied. A simple
technique for determining the optimum number

of spares for such systems and calculating their
reliability is given,

If fail-safe techniques [Usas, 1975B; Mine, 1967]
are used to design the fault-detection and recovery
mechanisms, it is possible to design a stand-

by system whose reliability is always greater

than a system having no spares and whose
reliability increases monotonically with

the number of spares in the system.



14

2.1.3 Hybrid Redundancy. Two general types of hybrid

redundancy have been proposed: standby hybrid redundancy and self-

purging redundancy, see Fig.2;4., In standby hybrid redundancy

(Mathur, 1970; Siewiorek, 1973A; Ogus, 1974A] the system is initially
placed into operation with three modules (for TMR, N for NMR)

active and connected to the Voter from which the system output is
derived, The remaining modules are designated as spares and are
actively connected to the voter only when one of the on-line

modules has failed and been disconnected from the voter. A major
advantage of this form of redundancy is the possibility of keeping
the spare modules unpowered until they are placed on line. It is
thus possible to take advantage of the lower failure rate of

unpowered modules [Nerber, 1965]. Self-purging redundancy EPierce,

1962; Chandy, 1972; Losq, 1975A] has all of the modules initially
connected to the voter, Only when a failure has been discovered
is a module disconnected from the voter. This form of redundancy
suffers from the necessity of keeping power on all non-failed
modules. It has the advantage of not requiring a complex
interconnection network and associated control as for standby
hybrid redundancy. The mechanism for disconnecting a failed
module from the self-purging system voter is a very simple device
which is local to the module,

Standby Hybrid Redundancy. Work was carried out under a

%*
previous NSF grant to arrive at an efficient design for implementing

*GJ-27527



Disagreement
—— Detector
N=2t+1
c
modules N SWITCH
in
MMR core . ‘.
> ]
X
. .
s
spares l :

(a) Standby hybrid redundancy

o] Nodule 1

Module 2

p—»
output

Module P

(b) Self-purging redundancy

Figure 2.4

15



16

standby hybrid redundancy. The resulting design, the iterative

%
cell hybrid redundant system, was presented at the FTC/2 conference

[siewiorek, 1972J and published in [Siewiorek, 1973A]. This design
was compared with the only other "published' implementation of

standby hybrid redundancy, the status register hybrid redundant

system, [Roth, 1967B; Goldberg, 1966] and it was shown that the
iterative cell design requires substantially less equipment than
the status register design, thus making the iterative cell design
both less costly and more reliable, A study was also made of
various strategies for choosing which spare to use to replace a
failed on-line module [Siewiorek, 197SB]. It was shown that a
strategy in which each spare is used for only a subset of all
voter inputs has as good reliability as a scheme in which any
spare can be used to replace any failed on-line module,

Since the reliability of any hybrid redundant system depends
critically on the mechanisms for failure detection and reconfigu-
ration, an investigation was carried out to modify the iterative
cell design so as to incorporate redundancy into these critical
portions of the design. Two designs were arrived at -- one of
which uses TMR and the other which ugses fail-safe techniques
[(Mine, 1967]. These designs were both shown to provide about the
same substantial improvement in reliability over the unprotected
iterative cell design and to require approximately the same amount
of additional hardware. This work was started under a previous

Intl, Symp. on Fault-Tolerant Computing, Newton, Massachusetts, 1972,



17

NSF grant* and finished under the present grant#. It was presented
at FTC/ST [ogus, 1973] and published in [Ogus, 1974A],

Self-purging redundancy., Although self-purging systems have

very good reliability properties, they have previously received

very little attention., Work begun under a previous NSF grant* and
continued under a present grant# has resulted in a detailed

design of the switching and retry mechanisms for self-purging systems
as well as the development of techniques for determining both the exact
reliability or very tight bounds on the reliability [Losq, 1975A].

In analysis of redundant systems it is standard practice to
make the assumption that only single-module failures occur., However
there are two situations in which this assumption is invalid:

(i) Any application in which power is not always applied to
the system as, for example, in a long space mission in which there
are periods of time during which power is conserved by turning off
the computers., Since there is a probability of failure associated
with unpowered equipment, more than one module can fail during the
power-off time without the failure being detected.

(ii) Even when the system is powered, it is possible for a
failure to occur but for the failure not to cause an error until
a later time. This phenomenon is called error latency and is
_discussed in [Shedletsky, 1975A] which reports on work carried out
under a present NSF granﬁ#. In this paper it is shown that there

are situations for which the error latency (time between occurrence

*GJ 27527 a5 40286
Intl. Symp. on Fault-Tolerant Computing, Palo Alto, California, 1973,



18

of a fault and its detection) is comparable to the mean time between
failures, Thus it is possible for a second fault to occur before the
first fault has been discovered. This has the same effect as the
occurrence of a multiple fault,

In work carried out under a present NSF grant* two designs of
self-purging systems which withstand multiple failures have been
developed [Losq, 1974]. These designs resulted from a detailed
theoretical study of the requirements for multiple-fault tolerance
in redundant systems. The reliability analysis of the designs shows
that their reliability is equal to that of a standby hybrid system
with powered spares for single-module failures. While the standby
hybrid systems can easily have a system failure as a result of a
multiple fault, the designs of [Losq, 1974] are shown to have a very
high probability of recovering from a multiple failure,

2.1.4 Comparisons, One general objective of reliability
modeling is the development of techniques for choosing a particular
redundancy scheme and configuring the system to satisfy a particular
design objective, As a result of the research just summarized, it
is possible to provide the following guidelines for choosing a
redundancy technique:

(1) For extremely short mission times masking redundancy is
optimal.

(ii) For mission times whose duration is of the same order of
magnitude as the simplex (non-redundant) system mean life self-
purging redundancy provides the best performance.

*NSF GJ 40286



19

(iii) For very long mission times standby redundancy is best,

unless unpowered modules have the same failure rate as powered

modules -- 1in which case self-purging redundancy should be used.

2.2 Signal Reliability.

Almost all of the literature on reliability modelling of digital

systems has been concerned with functional reliability, the probabi-

lity that the system realizes the desired design function. e have
found that many useful results can be obtained by using a different

reliability measure, the signal reliability, which is defined as the

probability that the given signal is correct. The signal reliability
differs from the functional reliability in that it allows for situa-
tions in which a signal will take on the correct value for a given
input even in the presence of a fault. Signal reliability was dis-
cussed in [Amarel, 1962] in which it was called input-output relia-
bility but has been neglected since.

Fundamental to the study of signal reliabilities is the ability
to calculate the probability that a circuit output will take on a
given value (usually taken to be 1) when the probabilities that the
inputs take on given values are known. Research carried out under
a present grant* has resulted in techniques for calculating these
probabilities for combinational circuits [Parker, 1975A; Parker 1975B;
McCluskey, 1974] and for sequential circuits [Parker, 1975C]. These
techniques were then used to develop a method for calculating the

signal reliability of a combinational circuit [Ogus,1975].

* NSF grant GJ 40286



20

An important application of the signal reliability parameter is
in calculating the error latency of faults in digital circuits. The

error latency of a fault is defined as the amount of time which elapses

between an occurrence of the fault in a circuit and the first appear-
ance of an error. Techniques have been developed for calculating error
latencies and are reported in [Shedletsky, 1974A; Shedletsky, 1975A] for
combinational circuits and in [Shedletsky, 1974B] for sequential cir-
cuits.

The concepts of signal reliability and error latency are applic-
able to situations in which the signals being applied to the circuit
inputs can be modelled as random variables, There are two general types
of situation for which such a model of the inputs is valid. One occurs
when the circuit inputs are being generated by a random (or pseudo-
random) source as in random testing or random test set generation. The
other situation arises when the inputs are, in fact, deterministically
generated but the generation mechanism is sufficiently complex so that
it is not possible to characterize it more simply than as a random
variable. An example of the second situation might be an adder circuit
contained within a computer's arithmetic unit; the inputs to the adder
are deterministic but the generation mechanisms are too complex to
model directly.

In random test set generation a test set for a given circuit is
constructed by simulating the fault-free circuit in parallel with cir-
cuits containing all faults to be tested for [Agrawal, 1972]. Inputs
for the simulated circuits are determined by some random mechanism.

The input sequence is continued until all of the faulty circuits have



21

produced at least one output which differs from the output of the fault-
free circuit or until a sufficiently high percentage of all the faulty
circuits have met this condition. It is usually not possible to achieve
detection of all the faults; in a practical circuit some of the faults
may be untestable because they involve (inadvertently) redundant equip-
ment or it may be uneconomic to insist on 100% testing.

In random testing randomly-generated inputs are applied directly
to the physical circuit to be tested and also to a reference circuit.

If the two circuits' outputs do not differ during the application of
the input sequence, the circuit under test is accepted as good.

Both in random test set generation and in random testing, questions
arise concerning the length of the required input sequence to guarantee
that a fault is detected with a given probability, the best statistics
to use for the input source, etc. Such questions were addressed in
[Agrawal, 1972; Parker, 1973; Rault, 1971; Schnurmann, 1975; David, 1975].
The techniques developed for studying error latency have been found to
be directly applicable to these problems of random testing and random
test set generation. The error latency approach has produced much more
precise results concerning these questions [Shedletsky, 1974A; Shed-
letsky, 1974B; Shedletsky, 19758; Shedletsky, 1975B].

2.3 Self-diagnosing Computer Design,

Decreasing hardware costs and increasing reliability require-
ments have led us to investigate the possibility of designing a low-
cost self-diagnosing computer, Techniques have been demonstrated
for detecting failures in all of the subsystems of a typical computer

processor [Wakerly, 1973A] as well as in a large variety of peripheral



22

and I/0 subsystems [Usas, 1975C]. A simplified design example of

a 16-bit self-diagnosing computer was given in [Wakerly, 1973] and

a proposal to carry out the detailed design and construction of a 32-
bit self~diagnosing computer has been submitted to NSF by John
Wakerly, These computer designs incorporate the results of
theoretical studies in the areas of error-detecting codes, self-
checking circuits and fail-safe circuits.

In designing a self-diagnosing computer it is necessary to
choose the error-detecting codes, to design the checking circuits
which provide error indications, and to design the translation
circuits necessary to convert from one code to another if more than
one type of code is used. The translation and checking circuits
should be self-checking so that failures in these circuits do not over-
ride the fault-detection capability of the computer.

The use of error-detecting codes in computers has received a
great deal of theoretical attention and is actually fairly widespread
in actual systems. However, most of the previous use of error-
detecting codes has been confined to one subsystem of the computer,
In the self~diagnosing computer with which we have been concerned it
is necessary to use error-detecting codes throughout the entire
computer system, Thus a study was conducted of error-detecting codes
from the point of view of their applicability for use for error-
detection in all of the parts of the computer system. This study

has led to some new results on properties of error-correcting codes.



23

2.3.1 Error-detecting Codes, One of the most attractive

error-detecting codes for use in arithmetic units is the low-cost
residue code [Avizienis, 1971],. Study of this code led to the
demonstration that it is also quite effective in detecting uni-
directional multiple errors in mass storage devices and repeated-
use multiple faults in byte-serial data transmision [Wakerly, 1975].
Rules for using residue codes for checking various arithmetic and non-
arithmetic shift operations were also developed [Wakerly, 1973].
Checksum codes were studied and techniques for check
symbol prediction were developed, thus making the checksum codes
competitive with residue codes for checking arithmetic operations
and data transmission and storage in some situations [Wakerly, 1974A].

2,3.2 Self-checking Circuits, In a computer arithmetic

unit it is necessary to check both arithmetic and logical operations.
The logical operations are difficult to check with the same codes
which are effective for arithmetic operations. In studying this problem
a new class of circuit called ''partially self-checking circuits' was
conceived which alleviates this problem [Wakerly, 1974B].

A number of new designs for self-checking circuits and
checkers were developed. They are presented in [Wakerly, 1973]
along with efficient practical MSI and LSI implementations.

It may be desirable to use different error-detecting
codes for main memory and for the processor, For use in such a
situation totally self-checking interfaces between codes were developed

[Wakerly, 1973},



24

A persistent problem in designing error-detection
circuitry for digital systems has been the design of a circuit to
detect failures in the timing signal, A circuit to provide
such a capability was discovered in connection with the studies of
failure detection techniques for peripherals [Usas, 1975A].

2.3.3 Fail-safe Circuits. Our studies of failure-~

detection techniques for input-output systems has led to the con-
clusion that fail-safe circuits (circuits which produce unidirectional
errors) are useful for controlling errors in such systems [Usas,
1975B]. Previous realization techniques for fail-safe circuits

have assumed delay line memory elements [Diaz, 1973; Sawin, 1974]

or have assumed that JK flip-flops which always have complementary
outputs (even in the presence of failures) are used [Tohma, 1974].
Our studies of fail-safe circuits have led to a realization technique
which uses D flip-flops and does not require the assumption that
failures do not destroy the complementarity of their outputs [Usas,

1975C].

2.4 Multiple Fault Studies.

The bulk of the theoretical work on reliable computation has
been concerned with situations in which it is assumed that only
single faults occur, This is justified on the basis of independence
among faults, Two phenomena act to invalidate this single--fault
assumption: the trend towards higher levels of integration and

the error latency property discussed in Section 2.2,



25

2.4.1 Fault Masking. A test set for single faults may

fail to detect all multiple faults because of the property of fault
masking: the presence of one fault may mask the effect of a test

in detecting another fault, This property of fault masking has been
studied and a technique for determining the existence of fault masking
with respect to a given test has been developed [Diaz, 1975A), This
study also results in a method for extending a test set which detects
all single faults but not all multiple faults into a test set for all
multiple faults.

2.,4.2 Iterative Networks, An important special class

of combinational circuit is the (unilateral) iterative network or
iterative logic array. Because of the importance of this class

of circuit, special testing techniques have been developed [Kautz,
1967; Menon, 1971; Landgraff, 1971; Friedman, 1973]. These methods
all make the assumption that at most one cell of the network is
faulty, We have been able to develop a testing method which does
not require this assumption but instead permits any number of cells
to be faulty [Diaz, 1975B]. A test procedure is given whose
length is independent of the number of cells in the network. This
procedure is applicable for any iterative network whose basic cell
is reduced and has strongly connected components. Many practical
networks satisfy these conditions. For those that do not, a simple
modification is developed to make them testable with a constant

number of tests.



26

[Abraham, 1974]

[Abraham, 1975]

[Agrawal, 1972]

[Agrawal, 1975]

[Amarcl, 1962)

[Anderson, 1962]

[Armstrong, 1966]

[Arnold, 1973]'

[Avizienis, 1971]

[Ball, 1969]

2.5 REFERENCES

Abraham, J. A. and Siewiorek D. P., "An Algorithm for
the Accurate Reliability Evaluation of Triple Modular
Redundancy Wetworks," IEEE Transactions on Computers,
Vol. C-23, No. 7, July 1974, pp. 632-693.

Abraham, J. A., "A Combinatorial Solution to the
Reliability of Interwoven Redundant Logic Networks,"
IEEE Transactions on Computers, Vol. C-24, No. 5, May
1975, pp. 578-584.

Agrawal, V. D. and P. Agrawal, "An Automatic Test
Generation System for ILLIAC IV Logic Boards,' IEEE
Transactions on Computers, September 1972, Vol. {--21,
No. 9, pp. 1015-1016.

Agrawal, P. and V. D. Agrawal, "Probabilistic Analysis
of Random Test Generation Methods for Irredundant
Combinational Logic Networks," IEEE Transactions on
Computers, Vol. C-24, No. 7, July 1975, pp. 691-695.

Amarel, S. and J. A. Brzozowski, 'Theoretical Considera-
tions on Reliability Properties of Recursive Triangular
Switch Networks," Redundancy Techniques for Computing
Systems, Wilcox and Mann, Editors, Spartan Books,
Washington, D. C., 1962.

Anderson, J. P., Hoffman, S. A., Shifman, J. and Williams,
R. J., "A Multiple-Computer System for Command and
Control,"™ Chap. 36, Computer Structures, C. G. Bell and
A. Newell, McGraw-Hill, Inc. New York, N. Y., 1971, pp.
447-455,

Armstrong, D. B., "On Finding a Nearly Minimal Set of
Fault Detection Test for Combinational Logic Nets," IEEE
Transactions on Electronic Computers, Vol. EC-15, No. 1,
pp. 66-73, February 1966.

Arnold, T. F., "The Concept of Coverage and its Effect
on the Reliability Model of a Repairable System," IEEE
Transactions on Computers, Vol. C-22, No. 2, March 1973,
pp. 251-254.

Avizienis, A., "Arithmetic Codes: Cost and Effectiveness
Studies for Applications in Digital Systems Design," IEEE
Transactions on Computers, Vol. C-20, pp. 1322-1331,
November 1971.

Ball, M. and F. Hardie, "Effects and Detection of Inter-
mittent Failures in Digital Systems," FJCC, 1969, AFIPS,
pp. 329--335.



[Baum, 1975 ]

[Borgerson, 197ﬂ

Bouricius, 1969]

Bouricius, 1971]

Breuer, 1972]

[Brown, 1961]

[ Carter, 1971]

[Chandy, 1972]

[Clegg, 1972]

[Clegg, 1973]

27

Baum, A. and D. Senzig, "Hardware Considerations in a
Microcomputer Multiprocessing Systems," Digest of Papers,
CompCon - Spring 75, Tenth IEEE Computer-Society Inter-
national Conference, San Francisco, February 26, 27,
1975, pp. 27-30.

Borgerson, B. R. and Freitas, R. F., "A Reliability
Model for Gracefully Degrading and Standby-Sparing
Systems," IEZE Transactions on Compute.rs, Vol. C-24,
No. 5, pp. 517-525, May 1975.

Bouricius, W. G., Carter, W. C. and Schneider, P. R.,
'Reliability Modeling Techniques for Self-Repairing
Computer Systems" in Proc. ACM 1969 Ann. Conf., pp.
295-309, also IBM Report RC-2378, Watson Research
Center, Yorktown Heights, New York.

Bouricius, W. G., Carter, W. G., Jessup, D. C., Schnider,
P. R., Wadia, A. B., "Reliability Modeling for Fault
Tolerant Computers," IEEE Transactions on Computers,

Vol. C-20, No. 11, pp. 1306-1311, November 1971.

Breuer, M. A., "Generation of Fault Detection Tests for
Intermittent Faults in Sequential Circuits,' in Digest,
1972 International Symposium on Fault-Tolerant Computing,
pp. 53-57.

Brown, W. G., J. Tierney, and R. Wasserman, "Improve-
ment of Electronic Computer Reliability Through the Use
of Redundancy," IRE Transactions on Electronic Computers,
Vol. EC-1}, pp. 407-416, October 1961.

Carter, W. C. et al., "Logic Design for Dynamic and
Interactive Recovery," IEEE Transactions on Computers,
Vol. C-20, No. 11, pp. 1300-1305, November 1971.

Chandy, K. N., Ramamoorthy, C. V. and Cowan, A., "A
Framework for Hardware-Software Tradeoffs in the Design
of Fault-Tolerant Computers," EJCC, 1972, AFIPS, pp.
55-63.

Clegg, F. W., 'Use of Spoofs for Faulty Logic Network
Analysis," Digest of 1972 International Symposium on

Fault-Tolerant Computing, Newton, Massachusetts, June
19-21, 1972, pp. 143-148.

Clegg, F. W., "Use of Spoofs for Faulty Logic Network
Analysis," IEEE Transactions on Computers, Vol. C-22,
No. 3, pp. 229-234, March 1973.




28

[Creveling, 1956] Creveling, C. J., "Increasing the Reliability of
Electronic Equipment by the Use of Redundant Circuits,"
Proc. IRE, Vol. 44, No. 4, pp. 409-415, April 1956.

[David, 1975] David, R., G. Blanchet, "Sur la Detection des Pannes
dans les Circuits Combinatoires par des Sequences
d'Entrees Aleatoires," Digest of 1975 International
Symposium on Fault-Tolerant Computing, Paris, France,
June 18-20, 1975, pp. 210-214.

[Dias, 19753] Dias, F. J. 0., "Fault Masking in Combinational Logic
Circuits," IEEE Transactions on Computers, Vol. C-24,
No. 5, May 1975, pp. 476-482.

[Diaz,,1973] Diaz, M., J. C. Geffory and M. Courvoisier, "On-Set
Realization of Fail-Safe Sequential Machines," Digest
of 1973 International Symposium on Fault-Tolerant

Computing, pp. 145-149.

[Dickinson, 1964] Dickinson, M. M., Jackson, J. B. and Randa, G. C.,
"Saturn V Launch Vehicle Digital Computer and Data
Adapter," AFIPS Conf. Procs., Vol. 26, (1964 FJCC,
Washington, D. C., Spartan, 1964) pp. 501-516.

[Downing, 1964 ] Downing, R. W., J. S. Nowack and L. S. Tvomenoksa,
"No. 1 ESS Maintenance Plan," BSTJ, Vol. 43, No. 5,
Part 1, September 1964, pp. 1961-2019.

[Fabry, 1973] Fabry, R. S., "Dynamic Verification of Operating System
Decisions," Communications ACM, Vol. 16, No. 11,
November 1973, pp. 659-668.

[Fregni, 1974A] Fregni, E. and R. C. Ogus, "Error Recovery Techniques
in Computer Systems: A Survey," Technical Note no.
42, Digital Systems Laboratory, Stanford University,
Stanford, California, June 1974.

[Fregni, 1974B] Fregni, E.,. Beaudry, M. D. and Ogus, R. C., "A Markov
Model of a Reconfigurable System," Technical Note no.
43, Digital Systems Laboratory, Stanford University,
Stanford, California, August 1974.

[Friedman, 1973] Friedman, A. D., "Easily Testable Iterative Systems,"
IEEE Transactions on Computers, Vol. C-22, No. 12,
pp. 1061-1064, December 1973.

[Goldberg, 1966] Goldberg,J.,Levitt, K. N. and Short, R. A., "Techniques
for the Realization of Ultra-Reliable Space-Borne
Computers," Final Report - Phase 1, Contract NAS12-33
Stanford Research Institute, Menlo Park, California,
September 1966.



29

[Gurzi, 1965 Gurzi, K. J., "Estimates for the Best Placement of
Voters in a Triplicated Logic Network,"™ IEEE Transactions
on Electronic Computers, Vol. EC-14, pp. 711-717, October
1965.

[Hayes, 1975] Hayes, J. P., "Testing Logic Circuits by Transition
Counting," Digest 1975 Symposium on Fault-Tolerant
Computing, Paris, France, June 1975.

[Hodges, 1972] Hodges, K. J. H., "Fault Resistance and Recovery within
System 250," Proc. International Conference on Computer
Communications, Washington, D. C., October 1972, pp.
290-296.

[Jensen, 1963) Jensen, P. A., "Quadded NOR Logic,"™ IEEE Transactions on
Reliability, Vol. R-12, pp. 22-31, September 1963.

[Jensen, 1964] Jensen, P. A., "The Reliability of Redundant Multiple-
Line Networks," IEEE Transactions on Reliability, Vol.
13, pp. 23-33, 1964.

[Kamel, 1974] Kamel, S. and C. V. Page, "Intermittent Faults: A Model
and a Detection Procedure," IEEE Transactions on Computers

(Special Issue on Fault-Tolerant Computing), Vol. C-23,
pp. 713-719, July 1974.

[Kautz, 1962) Kautz, W. H., "Codes and Coding Circuitry for Automatic
Error Cormessitiion withhinn DRggisd]l Systeens," Redundancy
Techniques for Computing Systems, Spartan Press, Inc.,
Washington, D. C., 1962, pp. 152-195.

[Kautz, 1967] Kautz, W., "Testing for Faults in Cellular Logic Arrays,"
IEEE Symposium on Automata Theory and Logic Design, pp.
161-174, 1967.

[Landgraff, 1971] Landgrafi, R. W. and S. S. Yau, "Design of Diagnosable
Iterative Arrays," IEEE Transactions on Computers, Vol.
C-20, No. 8, pp. 867-877, August 1971.

Mewis, 1963] Lewis, T. B., "Primary Processor and Data Storage
Equipment for the Orbiting Astronomical Observatory,”
IEEE Transactions on Computers, Vol. EC-12, No. 5, pp.
677-686, December 1963.

[Longden, 1966] Longden, M., Page, L. J. and Scantlebury, R. A., "An
Assessment of the Value of Triplicated Redundancy in
Digital Systems," Microelectronics and Reliability, Vol.
5, Pergamon Press, Elmsford, N. Y., 1966.




30

[Losgq, 1974] Losq, J., "Redundancy Scheme for Optimum Multiple
Fault Tolerance," Technical Note no. 33, Digital Systems
Laboratory, Stanford University, Stanford, California,
January 1974.

[Losgq, 1975A] Losq, J., "A Highly Efficient Redundancy Scheme: Self-
Purging Redundancy," Technical Report no. 62, Digital
Systems Laboratory, Stanford, California, July 1975.

[Losqg, 19758] Losq, J., "Influence of Fault-Detection and Switching
Mechanisms on the Reliability of Stand-By Systems,"
Digest of 1975 International Symposium on Fault-Tolerant
Computing, Paris, France, June 18-20, 1975, pp. 81-86.

[Losq, 1975C] Losq, J., "Influence of Fault-Detection and Switching
Mechanisms on the Reliability of Stand-By Systems,"
Technical Report no. 75, Digital Systems Laboratory,
Stanford University, Stanford, California, July 1975.

[Lyons, 1962) Lyons, R. E., Vanderkuck, W., "The Use of Triple-Modular
Redundancy to Improve Computer Reliability," IBM J»
Res. Develop., Vol. 6, pp. 200-209, April, 1962.

[McCluskey, 1971] McCluskey, F. J. and Clegg, F. W., "Fault Equivalence
in Combinational Logic Networks," IEEE Transactions on
Computers, Vol. C-20, No. 11, November 1971, pp. 1286-
1293.

[McCluskey, 1974] McCluskey, E. J., "Probability Models for Logic Networks,"
Proc. of the Fourth Manitoba Conference on Numerical
Mathematics, Winnipeg, Canada, October 2-5, 1974, pp.
21-28.

[McCluskey, 1975A] McCluskey, E. J., "Micros, Minis and Networks," Proceedings
of the Meeting on Twenty Years of Computer Science, Pisa,
Italy, June 16-19, 1975, pp. 23-33.

[Masreliez, 1975] Masreliez, C, J., "Reliability Enhancement Through
-Monitored Redundancy;" Digest of Papers, 1975 Inter-
national Symposium on Fault-Tolerant Computing, Paris,
France, June 18-20, 1975, pp. 227-231.

[Mathur, 1970] Mathur, F. P. and Avizienis, A., "Reliability Analysis
of a Hybrid Redundant Digital System: Generalized Triple
Modular Redundancy with Self-Repair," Proc. SJCC, Vol.
36, pp. 375-383, 1970.

[Mathur, 1971] Mathur, F. P., "On Reliability Modeling and Analysis of
Ultrareliable Fault-Tolerant Digital Systems," IEEE
Transactions on Computers, Vol. C-20, No. 11, pp. 1376-
1381, November 1971.




[Mei, 1970]

[Mei, 1974]

[Menon, 1971)

[Mine, 1967]

[Nerber, 1965]

[ogus, 19733

[Ogus, 1974A]

[ogus, 19751

[Ornstein, 19753

[Parker, 1973]

[Parker, 1975A]

31

Mei, K. C. Y., "Fault Dominance in Combinational Cir-
cuits," Technical Note no. 2, Digital Systems Labora-
tory, Stanford University, Stanford, California,
August 1970.

Mei, K. C. Y., "Bridging and Stuck-At Faults," IEEE
Transactions on Computers, Vol. C-23, No. 7, July
i974, pp. 720-727.

Menon, P. R. and A. D. Friedman, "Fault Detection in
Iterative Logic Arrays," IEEE Transactions on Computers,
Vol. C-20, No. 5, pp. 524-535, May 1971.

Mine, H. and Y. Koga, "Basic Properties and a Construc-
tion Method for Fail-Safe Logical Systems," IEEE
Transactions on Electronic Computers, Vol. EC-16, No.

3, June 1967, pp. 282-289.

Nerber, P. 0., "Power Off Time Impact on Reliability
Estimates," IEEE Int. Convention Rec., Part 10, pp.
1-5, March 22-26, 1965, New York.

Ogus, R. C., "Fault-Tolerance of the Iterative Cell
Array Switch for Hybrid Redundancy," Digest of 1973
International Symposium on Fault-Tolerant Computing,
Palo Alto, California, June 20-22, 1973, pp. 107-113.

Ogus, R. C., "Fault-Tolerance of the Iterative Cell
Array Switch for Hybrid Redundancy," IEEE Transactions
on Computers, Vol. C-23, No. 7, July 1974, pp. 667-682.

Ogus, R. C., "The Probability of a Correct Output from
a Combinational Circuit," IEEE Transactions on Computers,
Vol. C-24, No. 5, May 1975, pp. 534-544.

Ornstein, S. M., Crowther, W. R. Kraley, M. F., Bressler,
R. D., Michel, A. and Heart, F. E., "Pluribus-- A
Reliable Multiprocessor,":EQELAFIPS, 1975 National
Computer Conference, pp. 551-559.

Parker, K. P., "Probabilistic Test Generation," Technical
Note no. 18, Digital Systems Laboratory, Stanford Univ-
ersity, Stanford, California, June 1973.

Parker, K. P. and McCluskey, E. J., "Analysis of Logic
Circuits with Faults Using Input Signal Probabilities,”
IEEE Transactions on Computers, Vol. C-24, No. 5, May
1975, pp. 573-578.




32

[Parker, 1975B]

[Parker, 1975C]

[Pierce, 1962]

[Pierce, 1965]

[Rault, 1971]

[Reese, 1973]

[Rennels, 1973]

[Ressler, 1973]

[Rhodes, 1964]

[Roth, 1967A]

Parker, K. P. and E. J. McCluskey, "Probabilistic
Treatment of General Combinational Networks.' IEEE
Transactions on Computers, Vol. C-24, No. 6, pp. 668-
670, June 1975.

Parker, K. P. and E. J. McCluskey, "Sequential Circuit
Output Probabilities from Regular Expressions,"
Technical Report no. 93, Digital Systems Laboratory,
Stanford University, Stanford, California, June 1975.

Pierce, W. H., "Adaptive Vote-Takers Improve the Use of
Redundancy," in Redundancy Techniques for Computing
Systems, R. II. Wilcox and W. C. Mann, eds., Spartan
Books, Washington, D. C., 1962, pp. 229-250.

Pierce, W. H., Failure-Tolerant Computer Design,
Academic Press, New York, 1965.

Rault, J. C., "A Graph Theoretical and Probabilistic
Approach to Fault Detection of Digital Circuits,' Digest
1971 Symposium on Fault Tolerant Computing, June 1971.

Reese, R. D. and McCluskey, E. J., "A Gate Equivalent
Model for Combinational Logic Network Analysis," Digest
of 1973 International Svmposium on Fault-Tolerant
Computing, Palo Alto, California, June 20-22, 1973,

pp. 79-85.

Rennels, D. A., Avizienis, A., "RMS: A Reliability
Modeling System for Self-Repairing Computers," Proc.
of the Third International Symposium on Fault-Tolerant
Computing, June 21-22, 1973, Palo Alto, California,
pp. 131-135.

Ressler, B. E., 'Design of a Dual Computer Configuration
for Redundant Computation," M.S. Thesis, Dept. of
Electrical Engineering, M.I.T., Cambridge, Massachusetts,
June 1973.

Rhodes, L. J., "Effects of Failure Modes on Redundancy,"
in Proc. 10th National Symposium on Reliability and
Quality Control, Washington, D. C., pp. 360-364.

Roth, J. P., W. G. Bouricius, and P. R. Schneider,
"Programmed Algorithms to Compute Tests to Detect and
Distinguish between Failures in Logic Circuits," IEEE
Transactions on Electronic Computers, Vol. EC-16, pp.
567-579, May 1967.




[Roth, 1967B]

[Rubin, 1967 ]

[Sawin, 1974 ]

[ Schnurmann, 1975

[Shedletsky, 19744]

[ Shedletsky, 1974B]

33

Roth, J. P., W. C. Carter and R. P. Schneider, "Phase
ITI of an Architectural Study for a Self-Repairing
Computer, " SAMSO TR67-106, November 1967.

Rubin, D. K., "The Approximate Reliability of Triply
Redundant Majority-Voted Systems," lst Annual IEEE
Computer Conference Digest, Chicago, Ill., IEEE Publ.
16051, September 1967, pp. 46-49.

Sawin, D. H., "Fail-Safe Synchronous Sequential Machines
Using Modified On-Set Realizations," Digest of 1974
International Symposium on Fault-Tolerant Computing,

pp. 7-12.

Schnurmann, H. D., E. Lindbloom and R. G. Carpenter,
"The Weighted Random Test Pattern Generator," IEEE
Transactions on Computers, July 1975, Vol. C-24, No.
7, pp. 695-700.

Shedletsky, J. J. and E. J. McCluskey, "The Error
Latency of a Fault in a Combinational Digital Circuit,”
Technical Note no. 55, Digital Systems Laboratory,
Stanford University, Stanford, California, November
1974.

Shedletsky, J. J. and E. J. McCluskey, "The Error
Latency of a Fault in a Sequential Digital Circuit,"
Technical Note no. 56, Digital Systems Laboratory,
Stanford University, Stanford, California, December
1974.

[Shedletsky, 1975A] Shedletsky, J. J., and E. J. McCluskey, "The Error

Latency of a Fault in a Combinational Digital Circuit,”
Digest of 1975 International Symposium on Fault-Tolerant
Computing, Paris, France, June 18-20, 1975, pp. 210-214.

[Shedletsky, 1975B] Shedletsky, J. J., "A Rationale For Random Testing

[Siewiorek, 1972)

[Siewiorek, 1973A]

Combinational Digital Circuits,"™ Digest, Eleventh
Annual IEEE Computer Society Conference (COMPCON),
Washington , D. C., September 9-11, 1975.

Siewiorek, D. P. and McCluskey, E. J., "An Iterative
Cell Switch Design for Hybrid Redundancy,' Digest of
1972 International Symposium on Fault-Tolerant Computing,
Newton, Massachusetts, June 19-21, 1972, pp. 182-189.

Siewiorek, D. P. and McCluskey, E. J., "An Iterative
Cell Switch Design for Hybrid Redundancy," IEEE Trans-
actions on Computers, Vol. C-22, No. 3, pp. 290-297,
March 1973.




34

[Siewiorek, 1973B] Siewiorek, D. P. and E. J. McCluskey, "Switch Complexity

[Siewiorek, 1975 ]

[Teoste, 1961]

[Teoste, 1962]

[Teoste, 1964]

[Tohma, 1974]

[Usas, 1975A]

[Usas, 1975B]

[Usas, 1975B]

[Usas, 1975C]

[Wachter, 1975]

in Systems with Hybrid Redundancy," IEEE Transactions on
Computers_, Vol. C-22, No. 3, pp. 276-282, March 1973.

Siewiorek, D. P., "Reliability Modeling of Compensating
Nodule Failures in Majority Voted Redundancy," IEEE
Transactions on Computers, Vol. C-24, No. 5, May 1975,
pp. 525-533.

Teoste, R., "Reliability of Redundant Computers," Lincoln
Laboratory, M.I.T., Cambridge, Massachusetts, Report
21G-0029, ASTIA, Doc. 260494, 1961.

Teoste, R., "Design of a Repairable Redundant Computer,"
IRE Transactions on Electronic Computers, Vol. EC-11,
No. 5, pp. 642-649, October 1962.

Teoste, R., "Digital Circuit Redundancy," IEEE Trans-
actions on Reliability, Vol. R-13, pp. 46-61, June 1964.

Thma, Y., "Design Technique of Fail-Safe Sequential
Circuits Using Flip-Flop for Internal Memeory," IEEE

Transactions on Computers, Vol. C-23, No. 11, pp. 1149-

1154.

Usas, A. M., "A Totally Self-Checking Checker for the
Detection of Errors in Periodic Signals," IEEE Trans-
actions on Computers, Vol. C-24, No. 5, May 1975, pp.

483-489.

Usas, A. M., "Fail-Safe Circuits: A Means to Improve
Reliability and Maintainabilty of I/O Subsystems,"
Technical Note no. 59, Digital Systems Laboratory,

Stanford University, Stanford, California, June 1975.

Usas, A. M., "Fail-Safe Circuits: A Means to Improve
Reliability and Maintainability of I/0 Subsystems,"
Digest of IEEE Computer Society International Conference.

Washington, D. C., September 11-12, 1975.

Usas, A. M., "Fault Detection and Diagnosis in Digital
Computer Input-Output Systems," Ph.D. Thesis, Stanford
University, in preparation.

Wachter, W. J., "System Malfunction Detection and Cor-
rection," Digest of Papers, 1975 _International Symposium
on Fault-Tolerant Computing, Paris, France, June 18-20,
'1975, pp. 196-201.




35

[Wakerly, 1973) Wakerly, J. F., "Low-Cost Error Detection Techniques
for Small Computers,"™ Technical Report no. 51, Digital
Systems Laboratory, Stanford University, Stanford,
California, December 1973.

[Wakerly, 1974] Wakerly, J. F. and E. J. McCluskey, "Design of Low-
Cost General-Purpose Self-Diagnosing Computers,"
Information Processing 1974, IFIP Congress 1974, August
5-10, Stockholm, Sweden, Vol. 1, pp. 108-111.

[Wakerly, 1974A] Wakerly, J. F., "Checked Binary Addition Using Parity
Prediction and Checksum Codes," Technical Report no.
39, Digital Systems Laboratory, Stanford University,
Stanford, California, January 1974.

[Wakerly, 1974B] Wakerly, J. ¥., "Partially Self-Checking Circuits and
Their Use in Performing Logical Operations," IEEE
Transactions on Computers, Vol. C-23, No. 7, July 1974,
pp. 658-667.

[Wakerly, 1975] Wakerly, J. F., "Detection of Unidirectional Multiple
Errors Using Low-Cost Arithmetic Code," IEEE Transactions
on Computers, Vol. C-24, No. 2, February 1975, pp. 210-
212.

[Widdoes, 1975] Widdoes, Lawrence C., Jr., "The Minerva Multi-Micro-
processor," Technical Note no. 62, Digital Systems
Laboratory, Stanford University, Stanford, California,
July 1975.

[Wulf, 1974] Wulf, W. A. et al., "Hydra: The Kernel of a Multiprocessor
Operating System," Communications ACM, Vol. 17, No. 6,
June 1974, pp. 337-347.







37

3. STUDY OF MAINTAINABLE COMPUTERS

Summary of Previous Results and Work in Progress

3.1 Applying Triple Modular Redundancy to Small Computers

The decreasing cost of computer hardware is increasing the feasibility
of triple modular redundancy (TMR) as a means of providing fault tolerance
in small computer systems. In a TMR system, each module is triplicated
and majority voters are used at the interfaces between modules to mask the
effects of single module failures. -

In order to discover any special problems that might occur in applying
TMR to small systems, we began the design of a TMR microcomputer system.
Our first discovery was that applying TMR to arbitrary sequential modules
requires special consideration of the effects of transient failures (section
3.1.1), Next we examined the reliability of triplicated memory systems and
found that triplication is a better choice than coding for small systems
(section 3.1.2). Finally we constructed models of several different TMR
microcomputer system configurations and derived the reliability of each
(section 3.1.3). We have shown that careful use of TMR can improve the

mission time of small microcomputer systems by a factor of 3 to 10.

3.1.1 Effects of Transient Failures in Sequential Modules

" Triple modular redundancy was first proposed by von Neumann [1956] as
a means of masking the effects of transient component failures in a system.
Applying redundancy at the component level was also proposed by Moore and

Shannon [1956] as a means of masking transient failures in relay networks.



38

Subsequent researchers showed that TMR could be used to mask the effects of
permanent failures in a system [Dickinson and Walker, 1958], and that
TMR could be applied at higher levels than the component level [Flehinger,
1958; Lyons and Vanderkulk, 1962; Brown, Tierney and Wasserman, 1961].
Recent investigations into the reliability of TMR systems have con-
centrated on the effects of permanent failures [Gurzi, 1965, Rubin, 1967;
Abraham and Siewiorek, 1974]. It has been assumed that most transients
are masked and leave no permanent effect in TMR systems [Lyons and Vander-
kulk, 1962]. That is, the effect of a transient failure is masked by the
voter during the short period of time that it is present, and the effect
disappears with the transient. Once a transient disappears, another can
be tolerated. The only transients that were recognized to cause system
failures were those that affected more than one member of a replicated
module trio at the same time [Avizienis, 1967].
That multiple transients over a period of time could be tolerated
was in fact shown to be true by von Neumann [1956] and by Moore and Shannon
[1956] for redundancy schemes applied at the component level. In systems
that apply redundancy at a higher level, we have demonstrated that this is
not always true, that the effect of a single transient failure in one module
can be permanent [Wakerly, 19753]. The transient has a permanent effect when
the affected module is a sequential machine that is never re-synchronized.
The need to re-initialize modules after transient failures has been
long recognized for self-repairing systems with selective redundancy
i Avizienis, 1967; Avizienis, 1971]. However, the re-synchronization problem

in TMR systems has been neglected because redundancy has in the past been



39

applied at a level low enough that the problem did not occur [von Neumann,
1956; Moore and Shannon, 1956; Dickinson, 1964]. The increasing complexity
of integrated circuits is continually increasing the minimum level at

which TMR may be applied in systems using standard MSI and LSI components.
For example, in a microcomputer system, voting must be applied at the
processor level. Reliability analysis of such systems may indicate that
TMR should be applied at a level even higher than the minimum

[Gurzi, 1965; Abraham and Siewiorek, 1974; Longden, 1966]. Yet

as redundancy 1is applied at higher levels, transients become more likely to
have permanent effects. Thus the designer must be aware of the effects of
transients in specifying the application of redundancy to a system.

We have proved [Wakerly, 1975a] that multiple transients can be tolerated
by a TMR system if and only if a synchronizing sequence is applied to the
system periodically during normal operation. We have shown system structures
that provide for easy synchronization, and we have suggested ways of modifying

systems that do not normally receive synchronizing sequences.

3.1.2 Reliability of TMR Memory Systems

A TMR system can be partitioned into a number of cells so that the
system reliability is the product of the cell reliabilities [Abraham, 1974].
The simplest type of cell, shown in Fig. 3.1, has one triplicated module
with voters on each input. (There is a separate voter circuit for each input
bit of the module.) The cell tolerates any single module or voter failure',
since errors produced by such a failure will be corrected by the voters at

the inputs of the next cell. Assuming for simplicity perfect voter reliability,



40

n bits
data
input

address
and
control
inputs

modul e

module

7/

module

ol
/

\
AY

—7) /1N
| - ~ -

—

=

b - e - -
Fig, 3.1 A TMR voter-module cell.
< s >
. [ ]
input
[ ]
decoders output
o0 00O n
and drivers
®
drivers
._
1 r

Fig.,

N~ l-bit by w-word
memory chip

3.2 An n-bit by ws-word semiconductor memory module,

n bits
data
output



41

the cell reliability Rcell is a function of the module reliability R |
m

3 2
Rcell = Rm + 3Rm(1-Rm) . (3.1)

The semiconductor memory module of a small computer system can be
modeled as shown in Fig. 3.2. There is some shared address decoding
and driving circuitry, an array of memory chips, and perhaps some shared
output circuitry. The memory array consists of ns 1l-bit by w-word memory
chips arranged in an nXs matrix to form the n-bit by ws-word array. If
the memory chip reliability is RC and the reliability of the common cir-
cuitry is Rd' then module reliability is st‘Rd and it would appear from
(3.1) that the reliability of a TMR memory system is

_ (pNS, 3 ns_ 2 ns
Ryys = (Bo R + 3RI°R)S (1-RI°RY) . (3.2)

The above analysis neglects the organization of the memory array.
Assuming that there is a voter for each bit of the memory output, the
system fails only if there is a simultaneous error in a single bit position
of two of the triplicated memory modules. Consideration of the memory array

structure hence leads to the more accurate reliability formula,

_ p3/ap2 _ op3y0S 2. 2ns
Rsys = Rd(3Rc 2RC) + 3Rd(l Rd)Rc (3.3)

The reliability expression above always produces a reliability wvalue
greater than or equal to (3.2) The improvement obtained by using (3.3)
decreases as the reliability of the memory array (Rc) relative to the common

circuitry (Rd) increases. For example, if RC=1 the formulas are identical.



42

But for typical semi-conductor memory systems, the common circuitry comprises
only about 10-15% of the total, and so the reliability value obtained by
considering the structure of the memory array (3.3) is significantly higher
than that obtained by simple analysis (3.2). A typical example is shown in
Fig. 3.2.

The above discussion is intended only to give an indication of the
nature of our results on memory systems. The actual memory system analysis
is somewhat more complex, taking into account voter reliability, the placement
of voters for the memory system inputs, the-possibility of having different
chip types within the memory array, and a solution to the problem of multiple
pattern-sensitive failures. The effectiveness of the TMR memory system
organization and a system using a single-error-correcting code have been
compared. While both systems are guaranteed to correct all single failures
in the memory array, analysis has shown that the TMR system is more reliable
because it corrects a larger number of multiple failures than the coded
memory. Also the TMR system corrects all single failures in the common
circuitry (Fig.3.2 ) while the coded system does not unless a copy of the
common circuitry is provided for each of the memory bit slices. For an 8-bit
memory system, coding requires 4 redundant memory bits per word while TMR
requires 16. On the other hand, coding-requires a decoder that is more complex
than the simple TMR voters, especially if the decoder itself is to be fault-
tolerant. For small fault-tolerant memory systems that are to be interfaced

to a TMR processor, TMR appears to be a much better choice than coding.



sys

1.0

8K by 8-bit memory

64 1K by 1-bit memory chips

8 decoder and driver chips

Reliability for all chips:
Rc(t) =e ,A= 1078 failures/hour

Eqn. (3.3)

Eqn. (3.2)

=\t

43

1000

2000 3000 4000 5000 6000 7000

t —

Fig. 3.3 TMR memory system reliability.

8000

9000

10000



44

3.1.3 A TMR Microcomputer System

The thought of applying TMR to microcomputer systems raises some
interesting questions. First of all, since a microprocessor is just a
single chip, there is some question whether reliability can really be
increased in a system that must use many voter chips constructed from
the same unreliable technology as the microprocessor itself. Secondly,

a microprocessor is a rather complex sequential machine with only limited
access to its internal state, and so special care must be taken if the
system is to tolerate multiple transient failures.

We will use the simple model of a microcomputer system shown in
Fig. 3.4. The system consists simply of a microprocessor and memory, with
data, address, and control lines going from the microprocessor to memory
and data lines going from the memory to the microprocessor. Connections to
peripherals are ignored; for the TMR system it is assumed that each peri-
pheral interface has voters which monitor the I/O commands given by all three
triplicated processors.

A typical LSI microprocessor is the Intel 8080 [Intel, 1974]. The 8080
is an 8-bit processor in a 40-pin package. It has 16 address lines, an 8-bit
bidirectional data- bus, and 9 control lines entering and leaving the chip.
The data bus must be externally split into two one-way buses for voting to
be applied, and hence there are a total of 41 lines in an 8080 system that
could be voted on. Since three voter circuits can be placed on a single
l4-pin package, it is conceivable that a TMR 8080 system could have 3 8080

packages and 41 voter packages (triplicated voters) or 14 voter packages



T T T

45
data
AN
{
data h
H—>
S . Ny 7
—>| microprocessor T memory
\nl :‘
addresses A |
and control M
RS [
] peripherals |
______ J
Fig. 3.4 Microcomputer system model.
3.0 [
2.8
2.6t
2.41©1
+ 2.2 ¢
L
1.8¢ X
.'96
1.6 F
L
[N
1.4 3 090
1.2 ¢
1.0 -+ + — * + + - — ~———t
0 .2 .4 .6 .8 1.0 \<4 1.6 1.8
008 o

Fig. 3.5

Migssion time improvement factor for a TMR microcomputer system.



46 ]

(nontriplicated voters). Since a large percentage of integrated circuit
failures are related to problems in packaging and I/0 pins rather than
circuit complexity, it 1is quite conceivable that the total voter un-
reliability in a TMR microcomputer system could approach or even exceed
the microprocessor unreliability. In such a system the use of TMR could
actually decrease the overall system reliability.

We can use a very simple model to justify the above thesis. Suppose
that the reliability of a microprocessor module is Rm and the voter
reliability is Rv. If n voters are required for each replicated module in
a TMR system, then the total voter reliability is Rz. The total voter
reliability can be related to the module reliability by a factor k such
that RS = R;. The factor k can be interpreted to mean that the total failure
rate of the voters is k times the failure rate of the microprocessor module.
For a system with several voter packages for every microprocessor package,

k could be in the range .l (very reliable voters) to 2 or more (voter
reliability comparable to microprocessor reliability). The reliability
improvement obtained by using TMR for various values of k is shown in Fig. 3.5.
The figure of merit used is the mission time improvement factor (MTIF), that
is, the ratio of the mission times of the TMR system and the corresponding
nonredundant system. (The mission time is the amount of time it takes for

the system to degrade from its initial reliability of 1 to some terminal
reliability Rt.) For the perfect voter case (k=0), the theoretical maximum
MTIF is-obtained, 2.84 for Rt;95 or 2.08 for Rt=.90; but for imperfect
voters (k>0), the MTIF can be much less. If module and total voter relia-

bilities are equal (k=1), the MTIF is only 1.42 for Rt=.95, and about 1.0



47

for Rt=.90 (the mission times of the TMR and the nonredundant systems are
equal) . If the total voter failure rate is twice the module failure rate
(k=2), the TMR system has a shorter mission time than the nonredundant system
for either value of Rt.

Of course the above model is an oversimplification because it neglects
the reliability of memory and other support circuits that are present in
typical microcomputer systems. Including these components as part of the
module would increase voter reliability relative to module reliability and
hence reduce the value of k. However, the improvement is not dramatic and
we have found that for practical systems it is often still worthwhile to
try to increase total voter reliability by decreasing the number of voters.

Recalling that there are 41 lines that might be voted on in an Intel 8080
system, the most drastic reduction in the number of voters would be obtained
by voting on none of the lines. The system would consist of three identical
microcomputer/memory systems, each initialized to the same starting state
and operating synchronously from a common fault-tolerant clock. Peripherals
would have their own internal voters and they would perform operations as
dictated by the majority of the replicated address, data, and control lines
of the three identical systems. The problem with this scheme is that there
is no mechanism for a microprocessor/memory system to be resynchronized after
a transient failure, since there is no coupling among the replicated systems.
Even if transient failures do not occur, we shall see that this system is
less reliable than the next system we describe.

Suppose that voters are placed at the master reset input and the 8 data
inputs of each microprocessor, as shown in Fig. 3.6. The address, data out,

and control lines of each microprocessor go directly to the corresponding



48

data
: I data
Y
) >
microprocessor memory
f}_ reset I >
el address
. and control
sof tware
reset
request

I el

data
data 1/ Vi
”~
microprocessor memory
>
address

and control

|
N

Fig. 3.6

“sof tware |
reset
request
data
_II - data
= :\_—_—‘
microprocessor memory
reset : |
. I address b— —— )
and control
sof tware
reset A
request

L

Minimum TMR microcomputer configuration for resynchronization,



49

memory module without any voting. We have proved that this configuration
has the minimum number of voters needed to provide re-synchronization after
transient failures. For example, suppose a transient failure causes several
registers of one microprocessor and several words in the corresponding
memory module to contain incorrect data. ©FEach of the incorrect registers

is resynchronized with correct data if it is loaded from memory, since the
voters insure correct memory output regardless of any possible errors in the
state of one of the memories. Once the microprocessor is resynchronized,
the memory is resynchronized by loading the incorrect memory words from

the microprocessor.

Of course, it is possible that a transient failure can affect not only
the register state but also the program state of a microprocessor. In general
the microprocessor can attain any erroneous state and before being resynchronized
it can create arbitrary errors in the corresponding memory module. It is
this possibility that necessitates a voter on the master reset line of the
microprocessors. Associated with each microprocessor is some interface
circuitry that can be instructed by the software to initiate a hardware reset.
Periodically the software would cause such a reset to occur, and since the
reset line is voted on, a completely unsynchronized microprocessor must still obey
the reset command. The reset command causes the microprocessor to begin
executing a routine at some fixed location. The routine in this case is a
synchronizing routine that first initializes all of the processor registers
from memory, and then corrects any possible errors in a single memory module
by sequentially reading and then rewriting every word in the memory.

Resynchronization after transient failures is also possible if voters



50

are placed in the data lines going to the memory rather than coming out

of the memory. However, placing the voters in the output lines results

in better system reliability, since the memory reliability improvement

for semiconductor memories discussed in section 3.1.2is applicable. This
improvement does not occur when voters are placed on the memory input only,
since a single bit error in the memory output can produce several erroneous
bits when the affected data is processed by the microprocessor.

The reliability analysis of the system in Fig. 3.6 is similar to the
analysis of memory systems in section 3.1.2. In fact, equation (3.3) can
be used to find the system reliability neglecting voters by simply considering
the microprocessor to be part of the common circuitry of the memory module

(R,). 1In a similar way the reliability of the scheme with no voters and

d
the scheme with voters on the data inputs only can be derived by use of
equation (3.2). The exact reliability including voters for a nonredundant
system and the three TMR system configurations is shown in Figs. 3.7 and
3.8 for two typical sets of parameters. It can be seen that for these two
cases TMR increases the mission time by a factor of 3 to 4 for a terminal
reliability of .95.

The work in this and the previous section is still in progress and a

technical report is in preparation.



95— =\ — ——

sys

.8 ¢ 8-bit microprocessor

-5
10 = failures/hour

8 1K by 1l-bit memory chips
10--6 failures/hour

9 voters
1077 failures/hour
| |11

"7 | |||

I !

51

TMR CPU-memory-voter —_—
TMR no voters ———
TMR CPU-voter-memory T———

Nonredundant

AN\

AN\

AN\
B\

5000 10000

o

7600| 8600
7900

2700

Fig. 3.7

15000 20000 25000 30000

t ——

TMR microcomputer system reliability.



52

TMR CPU-memory-voter —aA
TMR no voters —_—

TMR CPU=-voter-memory

Nonredundant

sys

8-bit microprocessor

I
I
I
I
I
|
I
|

10-5 failures/hour

o7 64 1K by 1-bit memory chips
and 8 decoder/driver chips
10“6 failures/hour

9 voters

-7
10 = failures/hour

| | :
.6 I II . L \\\

0 ‘ 1000

2000 ‘ 3000 4000 5000 6000 7000 8000 9000 10000

650 1700 2600 t —

Fig. 3.8 TMR microcomputer system reliability.



53

3.2 Self-Checking Circuits*

The theory of self-checking combinational circuits was studied by
the proposed principal investigator under previous NSF grants (GJ-27527
and GJ-40286). Recent work has focused on applications of self-checking
combinational circuits and on the theory and applications of self-
checking sequential circuits. Self-checking adders using checksum codes
have been studied (section3.2.1j; a self-checking checker for periodic
signals such as clocks has been designed (section 3.2.2); and a design
approach for fail-safe sequential machines using realistic fault assump-

tions has been developed (section 3.2.3).

3.2.1 Checked Binary Addition Using Checksum Codes and Check Symbol Prediction

The code words of a checksum code are vectors of b-bit bytes with a
single check byte that is the modulo 2b sum of the data bytes. A checksum
code can detect any error that affects only a single byte of a code word,
and hence these codes are quite effective for detecting failures in data
transmission and storage in byte-sliced systems. In such systems the
circuits that handle the data are partitioned into b-bit byte slices, and
hence a single component failure always results in a detectable single-byte
error.

Checksum codes are not arithmetic codes, so that the check symbol of
the sum of two code words cannot be derived from only the check symbols

of the given code words. Hence, addition of two code words cannot be

*
The work in this section has been supported by both NSF grants
GJ-40286 and GK-43322.



54

checked by simply adding the check symbols, as in arithmetic codes. However,
we have shown that check symbol prediction techniques can be used effectively
in the design of self-checking adders for checksum code words. Such
techniques had been developed earlier for simple parity-check codes

[Sellars, 1968], requiring all of the inter-bit carry circuits of an adder

to be duplicated. We have developed a similar technique for checksum codes
which requires only the inter-byte carries to be duplicated [Wakerly, 1975b].
While duplicating the inter-bit carries requires an overhead of over 50%

in the adder circuitry, duplicating the inter-byte carries requires only
about 12% extra circuitry in a conventional MSI adder chip.

Although a self-checking adder for checksum code words is still slightly
more expensive than a self-checking adder for words in a residue code (an
arithmetic code), the checksum code still enjoys some advantages. As men-
tioned earlier, a checksum code detects all errors in a single b-bit byte.
The residue code detects all single-byte errors except all O's changed to
all 1's or vice versa. Hence the single-byte error-detecting capability
of a checksum code is superior to a residue code. For applications where
single-byte error detection is of primary importance, a checksum code can
be used to provide the required error detection capability; checked addition
can still be performed at a cost only slightly higher than with residue

codes, and much lower than with parity-check codes.

3.2.2 A Self-Checking Checker for Periodic Signals

Periodic signals have a known behavior, and deviations in their wave-

forms may indicate failures in the signal source. Monitoring these signals



55

can be a valuable technique for detecting both hardware and software
failures in a computer. Many circuits have been presented in the literature
to check for errors in these signals (for example, see [Koczela, 1971]

or [Chang, 1973]). These circuits, however, share a common weakness in

that they are all susceptible to undetected internal failures; that 1is,
they are not self-testing.

A totally self-checking periodic signal checker has been designed
[usas, 1975a]. As shown in Fig. 3.9, the checker consists of two mono-
stable multivibrators M1 and M2. M1l is triggered on the leading edge of
the input signal and produces an output pulse of fixed width equal to
t the expected on-time of the input signal. M2 is triggered on the

on'

falling edge of the input and produces a pulse of duration t e

off? P
expected off-time of the input.

The waveforms in Fig. 3.9 show that the output of Ml is a regeneration
of the input while M2 produces the complement of the input. Hence during
correct operation the checker output is always either 10 or O0Ll. If the
input signal becomes stuck on or off, the checker output becomes 00, and
if the on-time or off-time vary more than a few percent from
their expected values the checker output becomes either 00 or 11. It has
been shown [Usas, 1975a] that failures in the monostables themselves produce
either the 00 or the 11 output, and the checker is totally self-checking.

There still remains the issue of monitoring the checker output and
sounding an alarm when the 00 or 11 output appears. This issue has been

thoroughly discussed in [Usas,1975d], and fail-safe solutions have been

presented.



56

input
M1 1 0 | | |
M2 0 1 |
Ml
input - ' l
t
on
M2 error indicator 01,10 = no error
00,11 = error
t
off

Fig. 3.9 Totally self-checking clock checker.



57

3.2.3 Fail-Safe Sequential Machines

Self-checking circuits have two properties, self-testing and fault-
secureness. The self-testing property guarantees that all faults are
tested in normal operation, while fault-secureness guarantees that any
fault produces either the correct output or an error indication. The
fault-secureness property for self-checking circuits is equivalent to
the definition of "fail-safe" given by Tokaoka and Ibaraki [1972]. For
historical reasons the name "fail-safe!' has been applied to fault-secure
sequential machines.

A number of researchers have recently been concerned with the design
of fail-safe (or fault-secure) sequential machines. Most of the contri-
butions to a solution of the problem have assumed a simple delay element
as the realization of the required memory function [Diaz, 1973; Sawin,
1974]. Tohma [1974] has suggested a design approach using more practical
and familiar memory devices such as JK flip-flops. However, he assumes
that the double-rail outputs of a faulty flip-flop are always complementary.
That is, if the fault causes one output line to be an erroneous 1(0), then
the other line is always an erroneous O(l). Unfortunately this is not the
case 1f one considers the circuit implementation of a JK flip-flop and
common integrated circuit failure modes. Usas [1975b] has presented a
design approach that is based on the use of D flip-flops as memory elements
and that assumes a more realistic model of the faulty behavior of the flip-
flop.

Analyzing the circuit implementation of a conventional D flip-flop,

Usas [1975b] shows that there do indeed exist faults such that the flip-



58

flop outputs are identical, but that no fault results in both erroneous

1's and O's on the flip-flop outputs. That is, if a fault f produces an
erroneous 1(0) on a flip-flop output for some input value, then there is

no input that will produce an erroneous O(l) on that output in the presence
of £f. This permits the erroneous value to be held in the flip-flop by a
suitable choice of next-state mapping for illegal states. The design
procedure results in a machine such that any flip-flop failures cause the
machine to go to and remain in a "trap" state. Trap states can easily be
detected in order to produce an error signal.

For the detection of single flip-flop faults, the design technique
requires only one extra flip-flop over the normal design. However, the
combinational excitation circuitry is more complex because the technique
requires each flip-flop to have a separate excitation circuit; sharing
is not allowed. A second design procedure is given that uses more extra
flip-flops, two for machines with up to 126 states and three for up to
about 237. This procedure allows shared logic realizations of ;he flip-flop

excitation functions and usually results in a lower overall cost for the

machine.



3.

59

3 Self-Diagnosing Computer Design

The object of this research has been to develop design principles
for self-diagnosing computer processors, machines with extra hardware
for automatic detection and diagnosis of internal failures. This work
began under NSF grants GJ-27527 and GJ-40286, and since July 1974 has been
supported by GK-43322.

" Our previous efforts were documented by a report [Wakerly, 1973] and
a summary [Wakerly and McCluskey, 1974]. A research monograph based on
this work is also being written. Our current efforts are towards applying
the general results of the previous studies to the design and actual
implementation of a self-diagnosing computer processor. Several aspects
of such a design were not dealt with by the previous studies and remain to
be explored.

The planned processor has 32-bit data paths and a microprogrammed
control unit. The instruction set has a full complement of arithmetic,
logical, and shift operations, with both register-to-register and register-
to-memory operations available. The execution time for a typical register-
to-register instruction will be about 1.2 microseconds. The data paths and
control unit of the processor have been designed and the microcode is
currently being written.

There have been a number of previous efforts of self-checking computer
processor designs like our self-checking design; these designs used error-
detecting codes and some duplication to detect hardware failures. However,

our design is different from previous designs in several respects. First



60

of all, we are designing a general-purpose processor with an instruction

set and execution times comparable to typical minicomputers. OQur processor
can be contrasted with the JPL STAR [Avizienis, 1971] which was a byte-
serial machine, and Bell Labs ESS [Chang, 1973] which had no add instruction
and required two microcycles for every register-to-register transfer.
Secondly, the cost of checking in our design will be less than 25% of the
total hardware cost for a 32-bit processor. Thirdly, our design makes
efficient use of standard MSI integrated circuits, and the data paths and
control unit are designed to allow straightfarward integration as LSI circuits
comparable to those available commercially today. Finally, although previous
machines claimed a high degree of self-checking for single gate faults, in
our design we can guarantee detection of 100% of the failures that affect

a single integrated circuit package.

3.3.1 Data Path Checking

The previous studies [Wakerly, 1973] showed how error—-detecting codes
and self-checking circuits could be used to detect errors in the data paths
of a typical processor. The processor data paths are byte-sliced, so that
each register, adder, multiplexer, etc.,- that handles a b-bit byte of data
is a separate component. The data paths of an nb-bit processor can then be
implemented by n b-bit slices operating in parallel, with appropriate inter-
connections for arithmetic carries, shifts, etc. In such a system, a single
component failure affects only a single byte, and errors can be detected by

the use of a b-bit residue code. The residue code associates with each datum



61

in the processor a b-bit check symbol which is the residue of the datum
modulo 2b—1. An extra b-bit check slice is thus required to store and
process the check symbols of the data residing on the data path slices.
In our previous work we showed that the extra check slice is

sufficient to detect all single byte errors regardless of the actual data
path width, be it 3b bits, 8b bits, or more. However, it was not clear
at that time whether the check slice could be the same as the data path
slices in a practical design or whether the check slice would have to be
different.

Our current work has shown that it is possible to design a standard
byte slice that serves for both data and check symbols, at a cost com-
parable to a byte slice for an unchecked machine. Hence for an nb-bit
machine using b-bit slices, the cost of data path checking is about 1/n,
or 13% for a 32-bit machine using standard 4-bit components.

Our studies have shown that the only essential difference between a
check slice and a data slice is that the check slice must have a provision
for modifying the check symbol for certain arithmetic operations and re-
loading it for non-code-preserving operations. Except for this the check
symbols are processed exactly the same as corresponding data in the data
slices. Hence we have designed a 4-bit slice, a simplified version of which
is shown in Fig. 3.10. The byte slice has a l6-word general register file,
8 scratch pad registers, memory address and data registers, shifting and
byte-swapping logic, and ALU. A processor that uses this slice can

efficiently perform all of the operations of a typical minicomputer: loading



62

CARRY OUT / LEFT IN
4

7 f -
! 1
BYTE 4 A-BUS 4
y A .
SWAP — 16 x 4 ) 7 4 | TiEBt [ para
IN register ALU ,. | shift BUS
paTA 2 file B-BUS 4 7 mux [ ouT
Y N - > -
BUS 7 4-7417 .\ - ] 74181 74257
IN A 1
va \ >
RIGHT OUT / CARRY IN
l—'ﬁ' 8 x 4
scratch
file
2=-74172 p———————p
* - tristate driver, 74125
3 — 2 * r—-—

@—»=| memory 4 4 MEMORY
data | * . »— DATA
register ’ 7 BUS

> 74298
’ m:rcrllory 4 4 MEMORY
Ao ] * L > ADDRESS
register 7 7 BUS
» 74298
Fig. 3.10 Processor data path slice.



63

and storing data, arithmetic and logical operations, shifts and rotates,
microprogrammed multiply and divide.

The only difference between the slice of Fig.3.10 and a conventional
slice is that the data path from the ALU output back to the register inputs
is broken; in a conventional slice this connection is usually already made.
The broken connection allows the system implementation shown in Fig. 3.11.
For the data path slices, the ALU output is connected directly to the register
inputs. For the check slice, the ALU output goes through combinational logic
that modifies the check symbol as required before returning it to the
registers. At the end of each machine cycle, the output of the data and
check slices is loaded into a check register and checked for wvalidity. For
non-code-preserving operations it is possible to reload the check slice
with a new check symbol generated from the non-code result.

The byte slice suggested by Fig. 3.10 has been designed in detail.
Using conventional TTL integrated circuits, the slice can perform one
operation every 200 nanoseconds. In our current design the combinational
logic external to the check slice is implemented with a small, fast read-
only memory and adds 30 nanoseconds to the maximum cycle time. Hence
checking requires a 15% overhead in the cycle time of the machine.

The data path slice of Fig. 3.10 is similar to currently available
LSI data path slices [Monolithic Memories, 1974; Rattner, 1974]. In fact,
the slice has been designed with LSTI in mind; it should be possible to
fabricate the entire slice on a single integrated circuit chip. Our data
path slice design requires no more circuitry and only four more pins than

a comparable slice that cannot be used as a check slice.



64

m data i carry out to
ata in logic
DATA g . 3 to
ata ou o
7 o control
28~
31 unit
—e| SWAap in carry in —I
] data in carry out —I
DATA dat . ‘Il to
ata ou .
7 = control
24-27 unit
—~| swap in carry in -—l
[} [
[ ] ®
(
(| = data in carry out _I
DATA j to
0-3 data out V4 + control
unit
. 3 to
swa -
—— p in carry in logic )
“z
® A totally
self- e error
g 32 4 4 |checking hu_ signal
check s | residue L, ’l o €quality
L reglster 4 generator v * checker
- check
register
. in
data . carry out . 4 check 4
CHECK 4 | mux - symbol |
data out ,’ > fix-up
0-3 _|
*—a- swap in carry in

Fig. 3.11 Configuration

of byte slices for 32-bit processor,



65

3.3.2 Control Unit Checking

In our previous work [Wakerly, 1973] we showed how error-detecting
codes can be used to detect errors in the microprogram storage of a
microprogrammed control unit. If the storage is implemented using b-bit
by n-word ROM chips, then only one extra ROM chip is needed to hold b
check bits for each word and insure detection of all single package
failures. In our present processor design we expect to have 1K of 44-bit
microprogram words implemented with 11 1K by 4-bit chips. One extra chip
is required for checking and hence the overhead for checking the micro-
program storage is 1/11, or about 9%.

In addition to microprogram storage a microprogrammed control unit
requires registers to hold the instruction and the microprogram address
and a fair amount of combinational logic for computing the next micro-
program address. The next address could be computed for example as the
next sequential address, as a subroutine return address, or as a function
of internal flags (carry, overflow, etc.). In [Wakerly, 1973] we indicated
that the only way to detect errors in some of the control unit functions
was by duplication, while errors in other functions could be detected by
clever use of the existing coding and by taking extra microprogram steps
for checking. In our subsequent studies we have found that the "trick”
methods are not sufficiently general for efficiently implementing a typical
processor, and so we have rejected them in our design. Instead we plan to
duplicate the instruction register, the microprogram address register, and

the next address logic.



66

As shown in Fig. 3.12, there will be two identical "microprogram
control" modules. The modules operate in parallel, so that both load
their instruction register from the processor data bus, test processor
flags, and sense microprogram jump conditions and addresses. The output
of a module is a 10-bit microprogram address. The output of one of the
modules is used to address the microprogram memory while the output of
the second is compared with the first for equality.

Of course, the overhead for duplication of the control module is 100%,
far from our overall system goal of 25%. However, the control module is
only a part of the control unit, and the rest of the control unit (i.e.,
the microprogram memory) requires an overhead of only 9%. The fraction of
the total control unit cost attributable to the duplicated control module
depends on how that module is implemented. The present control module is
designed with LSI in mind, so that the entire module could be fabricated
on a single chip comparable to existing commercially available LSI control

units chips [Rattner, 1974]. Only that single LSI package would be duplicated.



processor
data bus

67

control
microprogram microprogram , lines
control address frreroprogram
module memory
check
symbol
microprogram
data register
microprogram microprogran 1 !
control address
module totally
self-checking
checker
i
totally
self-checking
equality
checker

Fig. 3.12 Microprogrammed control unit structure.




68

3.3.3 Diagnosis

After an error is detected in the self-checking computer processor,
diagnosis must be initiated to isolate the failure to one replaceable
module. Diagnosis will be performed by special microprograms called
microdiagnostics. Although these microprograms have not been written,
the hardware features necessary to support diagnosis have been considered
in the present processor design. The goal is to minimize the amount of
hardware that must be working for successful diagnosis to take place.

Assuming single package failures, any failure in the data paths of
the machine can be easily isolated by microdiagnostics to one replaceable
slice. Since there is one extra data path slice for checking, an operator
can manually reconfigure the machine for continued operation by replacing
the failed slice with the check slice and disabling data path checking
until repairs are completed.

A failure in a single microprogram memory ROM package can be detected,
but using the present single-error-detecting code diagnosis is not possible
unless another copy of the ROM contents are available for comparison. This
would mean duplicating the entire microprogram memory or having a copy
available on auxiliary storage. If the ROM failure is not catastrophic,
then it is possible to load a copy of the microprogram from external storage
and perform the check. However, a catastrophic failure of a ROM package
may affect all microinstructions and prevent this diagnosis from taking
place. An alternative currently under study is to use a more sophisticated

code to provide both detection and location of ROM failures. For memory



69

words of up to 60 bits, two 4bit check symbols in a 2-redundant
b-adjacent code [Bossen, 1970] are sufficient to detect and locate (or
even correct) all 4-bit errors.

A failure in one of the two duplicated control modules (Fig. 3.12)
is detected by the equality checker monitoring their microprogram address
outputs. Once a failure is isolated to one of the two modules, the other
can manually be made the primary module (if it isn't already), and system
operation can continue with checking disabled. The problem then is to
determine which of the two modules is the faulty one. There are currently
manual procedures for making this determination, but no automatic procedures
short of triplication and voting have yet been devised.

The work in this and the previous two sections is still in progress

and a technical report is in preparation.

3.3.4 Peripheral and Input/Output Checking*

This work has been directed toward the problems of detecting errors
and performing fault diagnosis in the components associated with the input/
output system of a computer. Such units as CPU interfaces, channels, bus
controllers, device interfaces, device controllers, and devices have been
studied with the goals of guaranteeing an indication of the occurrence of
the error (self-checking) and providing expeditious repair (self-diagnosing).
Checking the validity of data transferred between a CPU and peripherals

is fairly simple -- the same codes used to check memory data or CPU data

*
The work in this section has been supported by both NSF grants GJ-40286
and GK-43322.



70

can be used to check the data transfers over I/0 buses. Problems and
solutions in interfacing between different codes for processors and
peripherals have been given [Wakerly, 1973]. However, there remain
unsolved problems in controlling the transfers of data between processors
and peripherals, problems that do not occur in the design of a synchronous
CPU. Since I/O buses usually have at least some asynchronous signals and
some "hand-shaking", there are many new problems to consider. The
sequential nature of I/0 control led to the more fundamental studies of
self-checking sequential machines described in sections 3+2.2 and 3.2.3.
With these new techniques, self-checking controller designs are possible.
In addition, specifications for signaling in digital buses to insure
error detection have been outlined.

Error detection in peripheral devices is a difficult problem because
of the diversity of devices in common use. However, the problem has been
approached by considering device classes (disks, tapes, card equipment,
etc.), and a list of applicable methods has been compiled. Also, the design
of a CPU-controlled probe for peripheral diagnosis has been completed and
operational guidelines are being assembled.

This first phase in research work on input/output fault detection and
diagnosis is near completion‘and will be documented by a Ph.D. thesis

[usas, 1975c].



T

++

+t

+t

71

3.4 REFERENCES PREPARED UNDER PREVIOUS NSF GRANTS

*  GJ-27527
T GJ-40286
+ GK-43322

Abraham, J. A., and D. P. Siewiorek, 1974. 'An algorithm for the
accurate reliability evaluation of Triple Modular Redundancy
networks," IEEE Trans. Comput. C-23(7): 682-692.

Ogus, R. C., 1974<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>