
STAN-CS-75-527 SU-SEL-75-044

CENTER FOR RELIABLE COMPUTING

| CURRENT RESEARCH

Edward J. McCluskey

| John F. Wakerly

| Roy C. Ogus

October 1975

Technical Report No. 100

DIGITAL SYSTEMS LREORRTORY

STANFORD ELECTRONICS LREORRTORIES

STANFORD UNIVERSITY . STANFORD, CRLIFCRIIR

STAN-CS-75-527 SU-SEL~75-0LL

CENTER F OR RELIABILE COMPUTING

CURRENT RESEARCH

by

Edward J. McCluskey

| John F. Wakerly

Roy C. Ogus

| Oc tober 1975

| Technical Report no, 100

DIGITAL SYSTEMS LABORATORY

| Department of Electrical Engineering Department of Computer Science

Stanford University

Stanford, California

i

CENTER F OR RELIABTULE COMPUTING

CURRENT RESEARCH

by

Edward J. McCluskey

John F. Wakerly

Roy C., Ogus

Technical Report no, 100

October 1975

Digital Systems Laboratory

Department of Electrical Engineering Department of Computer Science
Stanford University

Stanford, California

ABSTRACT

This report summarizes the research work which has been performed,

and is currently active in the Center for Reliable Computing in the

Digital Systems Laboratory, Stanford University,

ii

TABLE OF CONTENTS

2. THEORY OF FAULTS IN LOGIC SYSTEMS «= = == = == = = = = = «o « = 3

| 2.1 Reliability Modeling. «+ = = = = = = = = « « « « « « « 3

: 2.1.1 Static Redundancy «+ « + « «+ « « « « « « «oo
2.1.2 Dynamic Redundancy. + «= = + + « « « « « « . . 10
2.1.3 Hybrid Redundancy = « « + « « « « « « « « . . 14
2.1.4 Comparisons ec oe eo eo eo eo eo eo eo oe eo eo eo eo eo eo 18

2.2 Signal Reliability. «+ + « « « « « « « « « « « « « « . 19

2.3 Self-diagnosing Computer Design + + + « « « « « « « . 21

| 2.3.1 Error-detecting Codes = + + « « « « « « « . . 23
2.3.2 Self-checking Circuits. «+ + + « « « « « « «. . 23
2.3.3 Fail-safe Circuits. = + « « « « « « « « « . . 24

2.4 Multiple Fault Studies. = « + + « « « « « « « « . . . 24

2.4.1 Fault Masking e © © oe © eo oo eo eo eo eo eo eo eo eo » 25
2.4.2 Iterative Networks. = « « « « « « « « « « « « 23

2.5 References. ce eo eo eo eo eo eo eo eo eo eo eo eo eo eo eo eo eo eo eo 20

3. STUDY OF MAINTAINABLE COMPUTERS +. . + , « « « « . 37

3.1 Applying Triple Modular Redundancy to Small Computers 37

3.1.1 Effects of Transient Failures in

Sequential Modules. + « oo oo 3

3.1.2 Reliability of TMR Memory Systems 39

3.1.3 A TMR Microcomputer System. 41

3.2 Self-Checking-Circuits. + «+ « « « . . . 53

3.2.1 Checked Binary Addition Using Checksum

Codes and Check Symbol Prediction 53

3.2.2 A Self-Checking Checker for Periodic Signals. 54

3.2.3 Fail-Safe Sequential Machines 57

3.3 Self-Diagnosing Computer Design 39

|

iid

3.3.1 Data Path Checking 60

3.3.2 Control Unit Checking. 65

| 3.3.3 Diagnosis. +. + « vv +e vv « . . . 08

3.3.4 Peripheral and Input/Output Checking 69

3.4 References Prepared under Previous NSF Grants. 71

| 3.5 Additional References. + + + « « « « «13

4. INVESTIGATION AND EVALUATION OF DUAL COMPUTER CONFIGURATIONS

| 4.1 Introduction +. +. +. + + +. +. «+ «ee «15

4.2 Summary of Technical Areas in the Project. 76

4.2.1 The SIRU Computer System 716

4.2.2 Error Recovery Techniques in Computer Systems. 78

| 4.2.3 System Reliability Modeling. 19

4.2.4 Signal Reliability of a Circuit. 80
4.2.5 Software Reliability © @ @ ow ow ow wo wo wo = « o Ol

4.3 References « v v vv vv 4 ve ee ee ee ee eee. 82

5. BIOGRAPHICAL SKETCHES OF PRINICPAL RESEARCHERS IN CENTER

FOR RELIABLE COMPUTING . . . + +v « «v « « « « « « « « « « « . 83

6. LISTING OF PERSONNEL IN CENTER FOR RELIABLE COMPUTING. . . . 85

7. PREVIOUS RESEARCHERS IN CENTER FOR RELIABLE COMPUTING. . . . 87

8. CENTER FOR RELIABLE COMPUTING BIBLIOGRAPHY 89

8.1 Journal Papers + «vv 4 4 ee ee eee ee oo 89

8.2 Conference Papers. . . . + +v « « « vv « « « « « «9

8.3 Technical Papers « vv « « « « « « « « « « «94

0.4 Technical NoteS. . « ov ov vv eee ee ee eee. 97

! . _

LJ

| 1. INTRODUCTION

This report summarizes the research work which has been

| performed and is currently active in the Center for Reliable

Computing (CRC) in the Digital Systems Laboratory, Stanford

University. The report covers three projects in the CRC, and

presents recent results obtained by researchers in the group, as

well as an indication of the current status of each project.

The first project concerns the theory of faults in logic

systems. Theoretical studies of the effects of faults on logic

networks have been conducted and techniques for the modelling and

evaluation of the reliability of redundant systems have been

developed. Other areas involve the design of ultra-reliable

| systems, self-diagnosing computer systems, and the testing of digital

| circuits. Studies of fail-safe and self-checking circuits have also

been carried out. The summary of the research in this project 1is

presented in Section 2.

The second project involves the study of maintainable computers.

Techniques for implementing fault-detection and diagnosis of small

scale processors at a low cost are being investigated, as well as

the study of improving the reliability of I/O controllers and

peripheral devices. The design of redundant microprocessor systems

and implementation of a low-cost maintainable minicomputer are current

studies being performed. The description of the research in this

project 1s found in Section 3.

| . The third project deals with the study of dual computer

2

configurations. A dual processor system used in a guidance and

navigation application was implemented for NASA-Ames Research

Center and the CRC has been evaluating the performance of the

system.

Section 5 presents a short biography of the principal researchers

on the three projects, and Section 6 describes some previous researchers

in the CRC.

3

2. THEORY OF FAULTS IN LOGIC SYSTEMS

Summary of Previous Work and Work in Progress

2.1 Reliability Modeling

A large variety of redundancy techniques -- TMR, Standby

Sparing, Coding, Multiprocessing, etc. -- exists for improving

the reliability of a digital systen, When a system is being

designed for a specific mission with given reliability requirements,

it is necessary to:

(1) decide whether use of a redundancy technique

is required,

(2) choose the optimum redundancy technique (if any

is required) for the given application, and

(3) evaluate the resulting system reliability
to determine whether the design requirements

have been met.

The objective of research into reliability modeling is to

develop tools to permit the previous three steps to be carried out

as accurately as possible, Inaccuracy can result in systems which

either (1) are more expensive than necessary, or (2) (unknowingly)

fail to meet the reliability requirements.

Because of its serious practical importance, reliability

modeling has received a great deal of attention [Borgerson, 1975;

Bouricius, 1971; Rennels, 1973; Mathur, 1971]X*

However, this earlier work results in only partially

satisfactory results due to the inherent complexity of the problem.

Straightforward combinatorial techniques usually have a computational

*The references for each section are compiled at the end of the particular
section,

4

complexity too great to be useful so that more sophisticated

approaches are necessary.

Redundancy techniques are usually classified as being either

static, dynamic or hybrid, In static redundancy, also called

masking or massive redundancy, the effect of a fault is masked

instantaneously by the non-faulty components of the system, No

alteration in the system interconnection pattern is required for

this error correction to take place, The principal static

redundancy technique is triple modular redundancy (TMR) which was

used in the Saturn V launch vehicle computer [Dickenson, 1964]

and has been proposed for use in other flight control systems

[Masreliez, 1975]. Another important form of static redundancy is .

interwoven redundant logic [Pierce, 1965]. Finally, the possibility

of achieving static redundancy by replication of circuit components |

|Creveling, 1956; Lewis, 1963] should be mentioned. Interwoven

logic is limited in its application since it must be applied at the

gate level which can be an important restriction when the trend is

towards higher levels of integration with consequent implications for

non-independence of gate failures, TMR is more generally applicable

since it can be applied at the gate, subsystem, or entire system

level.

Dynamic redundancy, also called selective, stand-by or sparing

redundancy, is characterized by the detection of a fault and the

| implementation of a corrective action. Fault detection is either

concurrent or periodic, In concurrent detection, use is made of a

| coding technique relying on redundant signals [Kautz, 1962], An

| important special case is the duplication of the system to generate

| two copies of the outputs with fault detection caused by a mismatch

between duplicate signals [Wachter, 1975], Periodic detection

involves stopping the normal operation of the system at intervals

| to allow diagnostic tests to be carried out, Correction can be

| implemented by error-correcting circuitry if an error-correcting

code is being used. Otherwise it is necessary to resort to some

diagnostic routine to determine the proper signal values and fault-

free system components and often to initiate a reconfiguration which

eliminates the faulty subsystem.

In hybrid redundancy [Mathur, 1970; Siewiorek, 1973; Ogus,

1974], use is made of a static redundancy technique —-- probably

TMR -- to provide both error masking and error detection. Hybrid

redundancy differs from static redundancy in that a reconfiguration

| action is taken when an error is detected, The major types of
hybrid redundancy are TMR + spares [Ogus, 1974] and self-purging

redundancy [Pierce, 1962; Chandy, 1972; Losq, 1975A].

2,1.1 Static Redundancy, A TMR system which consists

solely of three copies of the desired circuit such as that shown in

Figure 2,1, followed by a rank of voters from which the system output

is derived is called a one-level TMR system, A system in which

an input signal must pass through more than one vote before

reaching the output, as in Figure 2.2, is called a multi-level TMR

system,

6

Circuit —_ (ea) _— — =
dd Copy \

\ s/s

\ /
/

,/ \ J
Input | | output
EE 1 Circuit |/ \/ Voter | .

Copy /

2 \ / \
| \ \

N
/ /\

| YEAR
|)

CL4ICULLU — vuLTl oe —

== “copy [— =) =>

| 3 NN“

Figure 2.1 One-level TMR System

Hye || Y
'®

HOR
XC

ne
=)J

Hie\ ONO
== =

; | YX \ v@®
ASA

MOL FO ROng
'®
AKL MoTON'®

//

FC

| Figure 2,2 — Multi-level TMR Systems

One-level TMR Modeling, It is customary to model the

reliability of a one~level TMR system by assuming that the system will

perform correctly as long as no more than one of the three copies of the

circuit has failed, In other words, it is assumed that for any
i

failures affecting two or more copies, the system will fail, This

assumption is much too pessimistic since there are many two-circuit

failure situations which do not result in system failure. For

example, consider the situation where one of the circuits has its

output stuck-at-1, shown in Figure 2.3a, a second circuit has its

output stuck-at-0, and the third circuit is fault-free. The system

output from the voter will be correct. Another drastically over-

simplified situation is shown in Figure 2,3b, Here the circuit being

protected by TMR is a two-input AND gate. The figure shows the

situation which occurs if an input (x) to one of the copies of the

8

|

XO

| ~~ \\
|

* — ~N ; | f(x geeeX)T= —1 nS,Se —
n fl —

rm meroe

| i Fy een) |

gd(a)

= Z

y 2 SU,-

fy = Xy z=yx + y (xy) + x (Xy) = xy
(b)

Figure 2.3- One-level TMR Circuits with Multiple Faults

9

| gate is stuck-at-1 and the other input (y) to a second copy is also
stuck-at-1, The system output is z=xy as required for correct

operation,

A technique for calculating one-level TMR reliability

: which accurately models the effects of multiple failures which

| do not cause system failure was developed under a previous NSF

| grant* [Siewiorek, 1975], It was shown that neglect of the multiple

fault phenomenon just described can result in mission time predictions

| which are as much as 30% lower than the more accurate value obtained

: using Siewiorek's method,

; Multiple~-level TMR Modeling. A great deal of attention

| has been devoted to the problem of calculating the reliability of

a multiple-level TMR network [Brown, 1961; Teoste, 1962; Rhodes,

1964; Longden 1966; Rubin, 1967; Lyons, 1962; Gurzi, 1965:

Jensen, 1964], None of these approaches produced a technique for

determing the exact reliability of a multiple-~level TMR network;

only bounds were obtained, The difficulty with obtaining an exact

solution stems from the necessity for taking into account the complex

interactions among the various stages of the network, Thus any

straightforward combinatorial approach leads to a technique of

computational complexity. In [Abraham, 1974], an algorithm for

calculating the exact reliability of a multiple-level TMR network

is described, The algorithm was developed by Abraham and Siewiorek

" NSF grant GJ 27527

10

*

under a previous NSF grant , The success of' the Abraham-Siewiorek

algorithm depends on their technique of associating voters with

circuit inputs and then partitioning the network into subnetworks

which have the property that the overall network reliability can be

calculated as the product of the subnetwork reliabilities,

Interwoven redundant logic modelling, In an interwoven

redundant logic network the tasks of error correction and calculation

of the output function are not separated as they are in TMR networks

so that one-stage interwoven systems are-of no importance, The

problem of modelling interwoven networks was studied in [Jensen,

1963] and [Teoste, 1961] but only approximate techniques were

discovered, The exact analysis was considered too difficult and

costly [Teoste, 1964; Goldberg, 1966]. Our earlier success in

modelling multiple level TMR networks led to the hope that a similar

approach would be useful for interwoven networks, This turned out

to be true, and a technique for exact modelling of interwoven redundant

logic was developed under our present NSF erants’ and is reported

upon in [Abraham, 1975].

2.1.2 Dynamic Redundancy. The accurate modelling of

dvnamic redundant systems is difficult because the system reliability

is very sensitive to the reliability of the mechanisms for fault

detection and reconfiguration, and it is usually quite difficult to

* NSF grant GJ 27527

* NSF grant GJ 40286 and DCR 7307973

11

model the reliability of these mechanisms accurately, In

[Bouricius, 1969] a technique for estimating dynamic system

redundancy is presented in which the problem of deriving detection

| and recovery mechanism reliabilities is avoided by introducing

the concept of a coverage factor, The coverage factor is defined

as the probability of system recovery given thata failure has

occurred. The concept of coverage is very important for dynamic

‘redundant systems. It has been used to demonstrate the extreme

sensitivity of these systems to the recovery mechanisms [Arnold, 1973]

and thus to focus attention on these mechanisms as being the critical

aspect of such systems. The major problem with making use of

coverage in modelling is the practical difficulty of determining the

coverage factor for a specific system and evaluating the effect

of the number of spares on the value of the coverage factor, As

the number of spare modules is increased, so also is increased the

number of module failures which the system can withstand and still

continue to function, However, an increase in the number of spares

also causes an increase in the complexity of the detection and

reconfiguration mechanisms and thus a decrease in their reliability,

Of major importance in modelling dynamic redundant systems is the

ability to determine the optimum number of spares, This requires

that the interrelationship between more spares giving better protection

against module failures but worse detection and reconfiguration

reliability be explicitly accounted for. Bouricius et al. attempt

to take this interrelationship into account by letting the module

12

failure rate (A) depend on the number of spares. While this

allows them to show that there exists an optimum number

of spares for any coverage factor less than one, it is a completely

artificial strategem which is hard to relate to the details

of a specific system,

In dynamic redundant systems there are two techniques

possible for replacing a failed unit by one of the standby spares:

logic switching or power switching. In logic switching power is

applied to all the units and reconfiguration consists of substituting

the outputs from a standby unit for those of a failed on-line unit,

In power switching spares are unpowered until the time at which they

are switched on-line, Power switching has two advantages: (1)

the savings in power consumption by providing power only to on-line

units and (2) the possibility of a reduced failure rate for the

non-powered spares [Nerber, 1965], The ratio of the powered device

failure rate to the unpowered device failure rate is called the

dormancy factor (usually assumed 2 1),

Under the present grant, a very detailed analysis of

stand-by systems [Losq, 1975 B; Losq, 1975 C] has been carried out,

Rather than relying only on the coverage factor parameter, the

analysis is carried out in terms of the parameters:

Vo the rate of fail-safe failures, those failures
which result in discarding a fault-free module

but successfully replacing it with a spare module;

Vis the rate of unsafe failures, those failures
which result from a failed module not being

successfully replaced (either because the failure
is not detected or because a detected failure does

not result in a successful reconfiguration),

13

| This study has produced the following results:

| (i) A technique for determining the optimum
number of spares for a given system design

and reliability spscification,

| (ii) A proof that for extremely short mission

| times systems with one spare are optimum,

| (iii) A proof that for mission times which are

| not extremely short, but which are less
than one-tenth of the mean lifetime of

a single unit, the optimum number of spares
is still small -- five or fewer for most

systems.

(iv) The demonstration that it is possible to

calculate a parameter,T , which specifies
the useful life of a stand-by systen, The
system reliability is very high for mission

times less than T and drops sharply towards

| zero for mission times greater than T ,

(v) The effects of imperfect fault detection

mechanisms —-- mechanisms which are designed

to catch only a fraction of all possible

| module errors~- have been studied. A simple
; technique for determining the optimum number

of spares for such systems and calculating their

| reliability is given,

| (vi) If fail-safe techniques [Usas, 1975B; Mine, 1967]
are used to design the fault-detection and recovery

mechanisms, it is possible to design a stand-
| by system whose reliability is always greater

than a system having no spares and whose
| reliability increases monotonically with

| the number of spares in the system.

|

|

14

2.1.3 Hybrid Redundancy. Two general types of hybrid

redundancy have been proposed: standby hybrid redundancy and self-

purging redundancy, see Fig. 2;4., In standby hybrid redundancy

[Mathur, 1970; Siewiorek, 1973A; Ogus, 1974A] the system is initially

placed into operation with three modules (for TMR, N for NMR)

active and connected to the Voter from which the system output is

derived, The remaining modules are designated as spares and are

actively connected to the voter only when one of the on-line

modules has failed and been disconnected from the voter. A major

advantage of this form of redundancy is the possibility of keeping

the spare modules unpowered until they are placed on line. It is

thus possible to take advantage of the lower failure rate of

. unpowered modules [Nerber, 1965]. Self-purging redundancy (Pierce,)

1962; Chandy, 1972; Losq, 1975A)] has all of the modules initially

connected to the voter, Only when a failure has been discovered

is a module disconnected from the voter. This form of redundancy

suffers from the necessity of keeping power on all non-failed

modules. It has the advantage of not requiring a complex

interconnection network and associated control as for standby

hybrid redundancy. The mechanism for disconnecting a failed

module from the self-purging system voter is a very simple device

which is local to the module,

Standby Hybrid Redundancy. Work was carried out under a i

previous NSF grant’ to arrive at an efficient design for implementing

*G-27527 |

| } -

15

| Disagreement

I Detector
N=2t +1 |Cc

modules BN /in

spares .

(a) Standby hybrid redundancy

Module 2 a \
Voter

® Threshold —
oN output

LJ

®

rm
(b) Self-purging redundancy

Figure 2.4

| 16

| standby hybrid redundancy. The resulting design, the iterative

| cell hybrid redundant system, was presented at the FTC/2 conference
| [siewiorek, 1972] and published in [Siewiorek, 1973A]. This design

was compared with the only other "published implementation of

| standby hybrid redundancy, the status register hybrid redundant

| system, [Roth, 1967B; Goldberg, 1966] and it was shown that the
jterative cell design requires substantially less equipment than

the status register design, thus making the iterative cell design

both less costly and more reliable. A study was also made of

various strategies for choosing which spare to use to replace a

failed on-line module [Siewiorek, 1973B]. It was shown that a

strategy in which each spare is used for only a subset of all

voter inputs has as good reliability as a scheme in which any

spare can be used to replace any failed on-line module,

| Since the reliability of any hybrid redundant system depends

critically on the mechanisms for failure detection and reconfigu-

ration, an investigation was carried out to modify the iterative

| cell design so as to incorporate redundancy into these critical
portions of the design. Two designs were arrived at -- one of

which uses TMR and the other which uses fail-safe techniques

(Mine, 1967]. These designs were both shown to provide about the

| same substantial improvement in reliability over the unprotected
i iterative cell design and to require approximately the same amount

| of additional hardware, This work was started under a previous

| "Intl. Symp. on Fault-Tolerant Computing, Newton, Massachusetts, 1972,

17

| NSF grant’ and finished under the present grant? It was presented

at Frc/3’ Logus, 1973] and published in Logus, 1974A1.,

Self-purging redundancy, Although self-purging systems have

very good reliability properties, they have previously received

| very little attention. Work begun under a previous NSF grant’ and

continued under a present grant” has resulted in a detailed

design of the switching and retry mechanisms for self-purging systems

as well as the development of techniques for determining both the exact

reliability or very tight bounds on the reliability [Losq, 1975A].

In analysis of redundant systems it is standard practice to

make the assumption that only single-module failures occur, However

there are two situations in which this assumption is invalid:

(i) Any application in which power is not always applied to

the system as, for example, in a long space mission in which there

are periods of time during which power is conserved by turning off

the computers. Since there is a probability of failure associated

with unpowered equipment, more than one module can fail during the

power-off time without the failure being detected.

(ii) Even when the system is powered, it is possible for a

failure to occur but for the failure not to cause an error until

a later time, This phenomenon is called error latency and is

discussed in [Shedletsky, 1975A] which reports on work carried out

under a present NSF grant’ | In this paper it is shown that there

are situations for which the error latency (time between occurrence

Ta GJ 40286
Intl, Symp. on Fault-Tolerant Computing, Palo Alto, California, 1973.

18

of a fault and its detection) is comparable to the mean time between

failures, Thus it is possible for a second fault to occur before the

first fault has been discovered. This has the same effect as the

occurrence of a multiple fault,

In work carried out under a present NSF grant” two designs of

self-purging systems which withstand multiple failures have been

developed [Losq, 1974]. These designs resulted from a detailed

theoretical study of the requirements for multiple-fault tolerance

in redundant systems. The reliability analysis of the designs shows

that their reliability is equal to that of a standby hybrid system

with powered spares for single-module failures, While the standby

hybrid systems can easily have a system failure as a result of a

multiple fault, the designs of [Losq, 1974] are shown to have a very

high probability of recovering from a multiple failure,

2.1.4 Comparisons, One general objective of reliability

modeling is the development of techniques for choosing a particular

redundancy scheme and configuring the system to satisfy a particular

design objective, As a result of the research just summarized, it

is possible to provide the following guidelines for choosing a

redundancy technique:

(1) For extremely short mission times masking redundancy is

optimal.

(ii) For mission times whose duration is of the same order of

magnitude as the simplex (non-redundant) system mean life self-

purging redundancy provides the best performance.

19

i (111) For very long mission times standby redundancy 1s best,

unless unpowered modules have the same failure rate as powered

modules —-- 1n which case self-purging redundancy should be used.

2.2 Signal Reliability.

Almost all of the literature on reliability modelling of digital

systems has been concerned with functional reliability, the probabi-

lity that the system realizes the desired design function. (We have

found that many useful results can be obtained by using a different

reliability measure, the signal reliability, which is defined as the

probability that the given signal 1s correct. The signal reliability

differs from the functional reliability in that it allows for situa-

tions in which a signal will take on the correct value for a given

| input even in the presence of a fault. Signal reliability was dis-

| cussed in [Amarel, 1962] in which it was called input-output relia-

bility but has been neglected since.

Fundamental to the study of signal reliabilities 1s the ability

to calculate the probability that a circuit output will take on a

given value (usually taken to be 1) when the probabilities that the

inputs take on given values are known. Research carried out under

a present grant* has resulted in techniques for calculating these

probabilities for combinational circuits [Parker, 1975A; Parker 1975B;

McCluskey, 1974] and for sequential circuits [Parker, 1975C]. These

techniques were then used to develop a method for calculating the

| signal reliability of a combinational circuit [Ogus, 1975].

| * NSF grant GJ 40286

20

An important application of the signal reliability parameter is

in calculating the error latency of faults in digital circuits. The

error latency of a fault is defined as the amount of time which elapses

between an occurrence of the fault in a circuit and the first appear-

ance of an error. Techniques have been developed for calculating error

latencies and are reported in [Shedletsky, 1974A; Shedletsky, 1975A] for

combinational circuits and in [Shedletsky, 1974B] for sequential cir-

cuits.

The concepts of signal reliability and error latency are applic-

able to situations in which the signals being applied to the circuit

inputs can be modelled as random variables, There are two general types

of situation for which such a model of the inputs is valid. One occurs

when the circuit inputs are being generated by a random (or pseudo-

random) source as in random testing or random test set generation. The

other situation arises when the inputs are, in fact, deterministically

generated but the generation mechanism is sufficiently complex so that

it is not possible to characterize it more simply than as a random

variable. An example of the second situation might be an adder circuit

contained within a computer's arithmetic unit; the inputs to the adder

are deterministic but the generation mechanisms are too complex to

model directly.

In random test set generation a test set for a given circuit is

constructed by simulating the fault-free circuit in parallel with cir-

cuits containing all faults to be tested for [Agrawal, 1972]. Inputs

for the simulated circuits are determined by some random mechanism.

The input sequence is continued until all of the faulty circuits have

21

produced at least one output which differs from the output of the fault-

free circuit or until a sufficiently high percentage of all the faulty

circuits have met this condition. It is usually not possible to achieve

detection of all the faults; in a practical circuit some of the faults

may be untestable because they involve (inadvertently) redundant equip-

ment or it may be uneconomic to insist on 100% testing.

In random testing randomly-generated inputs are applied directly

to the physical circuit to be tested and also to a reference circuit.

If the two circuits' outputs do not differ during the application of

the input sequence, the circuit under test is accepted as good.

Both in random test set generation and in random testing, questions

arise concerning the length of the required input sequence to guarantee

that a fault is detected with a given probability, the best statistics

to use for the input source, etc. Such questions were addressed in

(Agrawal, 1972: Parker, 1973; Rault, 1971; Schnurmann, 1975; David, 1975].

The techniques developed for studying error latency have been found to

be directly applicable to these problems of random testing and random

test set generation. The error latency approach has produced much more

precise results concerning these questions [Shedletsky, 1974A: Shed-

letsky, 1974B; Shedletsky, 19758; Shedletsky, 1975B].

2,3 Self-diagnosing Computer Design,

Decreasing hardware costs and increasing reliability require-

ments have led us to investigate the possibility of designing a low-

cost self-diagnosing computer. Techniques have been demonstrated

for detecting failures in all of the subsystems of a typical computer

processor [Wakerly, 1973A] as well as in a large variety of peripheral

22

and I/0 subsystems [Usas, 1975C]. A simplified design example of

a 16-bit self-diagnosing computer was given in [Wakerly, 1973] and

a proposal to carry out the detailed design and construction of a 32-

bit self~-diagnosing computer has been submitted to NSF by John

Wakerly. These computer designs incorporate the results of

theoretical studies in the areas of error-detecting codes, self-

checking circuits and fail-safe circuits.

In designing a self-diagnosing computer it is necessary to

choose the error-detecting codes, to design the checking circuits

which provide error indications, and to design the translation

circuits necessary to convert from one code to another if more than

one type of code is used. The translation and checking circuits

should be self-checking so that failures in these circuits do not over-

ride the fault-detection capability of the computer,

The use of error-detecting codes in computers has received a

great deal of theoretical attention and is actually fairly widespread

in actual systems. However, most of the previous use of error-

detecting codes has been confined to one subsystem of the computer,

In the self~-diagnosing computer with which we have been concerned it

is necessary to use error-detecting codes throughout the entire

computer system, Thus a study was conducted of error-detecting codes

from the point of view of their applicability for use for error-

detection in all of the parts of the computer system, This study

has led to some new results on properties of error-correcting codes,

23

2.3.1 Error-detecting Codes, One of the most attractive

erro detecting codes for use in arithmetic units is the low-cost

residue code [Avizienis, 1971], Study of this code led to the

demonstration that it is also quite effective in detecting uni-

directional multiple errors in mass storage devices and repeated-

use multiple faults in byte-serial data transmision [Wakerly, 1975],

Rules for using residue codes for checking various arithmetic and non-

arithmetic shift operations were also developed [Wakerly, 1973].

Checksum codes were studied and techniques for check

symbol prediction were developed, thus making the checksum codes

competitive with residue codes for checking arithmetic operations

and data transmission and storage in some situations [Wakerly, 1974A]}.

2.3.2 Self-checking Circuits, In a computer arithmetic

unit it is necessary to check both arithmetic and logical operations.

The logical operations are difficult to check with the same codes

which are effective for arithmetic operations. In studying this problem

a new class of circuit called "partially self-checking circuits’ was

conceived which alleviates this problem [Wakerly, 1974B].

A number of new designs for self-checking circuits and

checkers were developed. They are presented in [Wakerly, 1973]

along with efficient practical MSI and LSI implementations,

It may be desirable to use different error-detecting

codes for main memory and for the processor, For use in such a

situation totally self-checking interfaces between codes were developed

[Wakerly, 1973].

24

A persistent problem in designing error-detection

circuitry for digital systems has been the design of a circuit to

detect failures in the timing signal, A circuit to provide

such a capability was discovered in connection with the studies of

failure detection techniques for peripherals [Usas, 19754].

2.3.3 Fail-safe Circuits, Qur studies of failure-

detection techniques for input-output systems has led to the con-

clusion that fail-safe circuits (circuits which produce unidirectional

errors) are useful for controlling errors in such systems [Usas,

19758]. Previous realization techniques for fail-safe circuits

have assumed delay line memory elements [Diaz, 1973; Sawin, 1974]

or have assumed that JK flip-flops which always have complementary

outputs (even in the presence of failures) are used [Tohma, 1974].

Our studies of fail-safe circuits have led to a realization technique

which uses D flip-flops and does not require the assumption that

failures do not destroy the complementarity of their outputs [Usas,

1975C].

2.4 Multiple Fault Studies.

The bulk of the theoretical work on reliable computation has

been concerned with situations in which it is assumed that only

single faults occur. This is justified on the basis of independence

among faults, Two phenomena act to invalidate this single--fault

assumption: the trend towards higher levels of integration and

the error latency property discussed in Section 2.2,

| 25

2.4.1 Fault Masking, A test set for single faults may

fail to detect all multiple faults because of the property of fault

masking: the presence of one fault may mask the effect of a test

in detecting another fault, This property of fault masking has been

studied and a technique for determining the existence of fault masking

| with respect to a given test has been developed [Diaz, 1975A), This

study also results in a method for extending a test set which detects

| all single faults but not all multiple faults into a test set for all

multiple faults.

2.4.2 Iterative Networks, An important special class

of combinational circuit is the (unilateral) iterative network or

iterative logic array, Because of the importance of this class

of circuit, special testing techniques have been developed [Kautz,

1967; Menon, 1971; Landgraff, 1971; Friedman, 1973]. These methods

| all make the assumption that at most one cell of the network is

faulty, We have been able to develop a testing method which does

not require this assumption but instead permits any number of cells

to be faulty [Diaz, 1975B]. A test procedure is given whose

| length is independent of the number of cells in the network, This

| procedure is applicable for any iterative network whose basic cell

is reduced and has strongly connected components. Many practical

networks satisfy these conditions, For those that do not, a simple

modification is developed to make them testable with a constant

number of tests.

26

2.5 REFERENCES

[Abraham, 1974] Abraham, J. A. and Siewiorek D. P., "An Algorithm for
the Accurate Reliability Evaluation of Triple Modular

Redundancy Wetworks,'" IEEE Transactions on Computers,
Vol. C-23, No. 7, July 1974, pp. 632-693.

[Abraham, 1975] Abraham, J. A., "A Combinatorial Solution to the
Reliability of Interwoven Redundant Logic Networks,"

IEEE Transactions on Computers, Vol. C-24, No. 5, May
1975, pp. 578-584.

[Agrawal, 1972] Agrawal, V. D. and P. Agrawal, "An Automatic Test
Generation System for ILLIAC IV Logic Boards,' IEEE

Transactions on Computers, September 1972, Vol. (-21,
No. 9, pp. 1015-1016.

[Agrawal, 1975] Agrawal, P. and V. D. Agrawal, "Probabilistic Analysis
of Random Test Generation Methods for Irredundant

Combinational Logic Networks," IEEE Transactions on

Computers, Vol. C-24, No. 7, July 1975, pp. 691-695.

[Amarcl, 1962) Amarel, S. and J. A. Brzozowski, 'Theoretical Considera-

tions on Reliability Properties of Recursive Triangular

Switch Networks," Redundancy Techniques for Computing

Systems, Wilcox and Mann, Editors, Spartan Books,
Washington, D. C., 1962.

[Anderson, 19627 Anderson, J. P., Hoffman, S. A., Shifman, J. and Williams,
R. J., "A Multiple-Computer System for Command and

Control," Chap. 36,Computer Structures, C. G. Bell and
A. Newell, McGraw-Hill, Inc. New York, N. Y., 1971, pp.
447-455,

[Armstrong, 1966] Armstrong, D. B., "On Finding a Nearly Minimal Set of
Fault Detection Test for Combinational Logic Nets," IEEE

Transactions on Electronic Computers, Vol. EC-15, No. 1,

pp. 66-73, February 1966.

[Arnold, 1973] Arnold, T. F., "The Concept of Coverage and its Effect
on the Reliability Model of a Repairable System," IEEE

Transactions on Computers, Vol. C-22, No. 2, March 1973,
pp. 251-254.

[Avizienis, 1971] Avizienis, A., "Arithmetic Codes: Cost and Effectiveness
Studies for Applications 1n Digital Systems Design," IEEE

Transactions on Computers, Vol. C-20, pp. 1322-1331,
November 1971.

[Ball, 1969 | Ball, M. and F. Hardie, "Effects and Detection of Inter-
mittent Failures in Digital Systems," FJCC, 1969, AFIPS,

pp. 329--335.

27

F (Baum, 1975 } Baum, A. and D. Senzig, "Hardware Considerations in a
: Microcomputer Multiprocessing Systems," Digest of Papers,

= CompCon - Spring 75, Tenth IEEE Computer-Socilety Inter-
national Conference, San Francisco, February 26, 27,

1975, pp. 27-30.

: [Borgerson, 1975] Borgerson, B. R. and Freitas, R. F., "A Reliability
Model for Gracefully Degrading and Standby-Sparing

Systems," IEZE Transactions on Compute.rs, Vol. C-24,
| No. 5, pp. 517-525, May 1975.

[Bouricius, 1969] Bouricius, W. G., Carter, W. C. and Schneider, P. R.,
'Reliability Modeling Techniques for Self-Repairing

Computer Systems" in Proc. ACM 1969 Ann. Conf., pp.
: 295-309, also IBM Report RC-2378, Watson Research

1 Center, Yorktown Heights, New York.

| Bouricius, 1971] Bouricius, W. G., Carter, W. G., Jessup, D. C., Schnider,
P. R., Wadia, A. B., "Reliability Modeling for Fault

: Tolerant Computers," IEEE Transactions on Computers,

Vol. C-20, No. 11, pp. 1306-1311, November 1971.

» Breuer, 1972] Breuer, M. A., "Generation of Fault Detection Tests for
J Intermittent Faults in Sequential Circuits,' in Digest,
| 1972 International Symposium on Fault-Tolerant Computing,

pp. 53-57.

[Brown, 1961] Brown, W. G., J. Tierney, and R. Wasserman, "Improve-
ment of Electronic Computer Reliability Through the Use

| of Redundancy," IRE Transactions on Electronic Computers,
Vol. EC-1), pp. 407-416, October 1961.

[Carter, 1971] Carter, W. C. et al., "Logic Design for Dynamic and
| Interactive Recovery," IEEE Transactions on Computers,

| Vol. C-20, No. 11, pp. 1300-1305, November 1971.
] [Chandy, 1972] Chandy, K. N., Ramamoorthy, C. V. and Cowan, A., "A

Framework for Hardware-Software Tradeoffs in the Design

of Fault-Tolerant Computers," EJCC, 1972, AFIPS, pp.
55-63.

[Clegg, 1972] Clegg, F. W., 'Use of Spoofs for Faulty Logic Network
Analysis," Digest of 1972 International Symposium on

Fault-Tolerant Computing, Newton, Massachusetts, June

| 19-21, 1972, pp. 143-148.

(Clegg, 1973] Clegg, F. W., "Use of Spoofs for Faulty Logic Network
Analysis," IEEE Transactions on Computers, Vol. C-22,

No. 3, pp. 229-234, March 1973.

‘

|

28

[Creveling, 1956] Creveling, C. J., "Increasing the Reliability of
Electronic Equipment by the Use of Redundant Circuits,"

Proc. IRE, Vol. 44, No. 4, pp. 409-415, April 1956.

[David, 1975] David, R., G. Blanchet, "Sur la Detection des Pannes
dans les Circuits Combinatoires par des Sequences

d'Entrees Aleatoires," Digest of 1975 International
Symposium on Fault-Tolerant Computing, Paris, France,

June 18-20, 1975, pp. 210-214.

[Dias, 1975a] Dias, F. J. 0O., "Fault Masking in Combinational Logic
Circuits," IEEE Transactions on Computers, Vol. C-24,

No. 5, May 1975, pp. 476-482.

[Diaz, 1973] Diaz, M., J. C. Geffory and M. Courvoisier, "On-Set
Realization of Fail-Safe Sequential Machines," Digest

of 1973 International Symposium on Fault-Tolerant

Computing, pp. 145-149.

[Dickinson, 1964] Dickinson, M. M., Jackson, J. B. and Randa, G. C.,
"Saturn V Launch Vehicle Digital Computer and Data

Adapter," AFIPS Conf. Procs., Vol. 26, (1964 FJCC,
Washington, D. C., Spartan, 1964) pp. 501-516.

[Downing, 196%] Downing, R. W., J. S. Nowack and L. S. Tvomenoksa,
"No. 1 ESS Maintenance Plan," BSTJ, Vol. 43, No. 5,

Part 1, September 1964, pp. 1961-2019.

[Fabry, 1973] Fabry, R. S., "Dynamic Verification of Operating System
Decisions," Communications ACM, Vol. 16, No. 11,

November 1973, pp. 659-668.

[Fregni, 1974A] Fregni, E. and R. C. Ogus, "Error Recovery Techniques
in Computer Systems: A Survey," Technical Note no.

42, Digital Systems Laboratory, Stanford University,

Stanford, California, June 1974.

[Fregni, 1974B] Fregni, E.,Beaudry,M. D. and Ogus, R. C., "A Markov
Model of a Reconfigurable System," Technical Note no.

43, Digital Systems Laboratory, Stanford University,

Stanford, California, August 1974.

[Friedman, 1973] Friedman, A. D., "Easily Testable Iterative Systems,"
IEEE Transactions on Computers, Vol. C-22, No. 12,

pp. 1061-1064, December 1973.

[Goldberg, 1966] Goldberg,J., Levitt, K. N. and Short, R. A., "Techniques
for the Realization of Ultra-Reliable Space-Borne

Computers," Final Report - Phase 1, Contract NAS12-33
Stanford Research Institute, Menlo Park, California,

September 1966.

29

[Gurzi, 1965] Gurzi, K. J., "Estimates for the Best Placement of
= Voters in a Triplicated Logic Network," IEEE Transactions

on Electronic Computers, Vol. EC-14, pp. 711-717, October
1965.

[Hayes, 1975) Hayes, J. P., "Testing Logic Circuits by Transition
Counting," Digest 1975 Symposium on Fault-Tolerant

Computing, Paris, France, June 1975.

[Hodges, 1972] Hodges, K. J. H., "Fault Resistance and Recovery within
System 250," Proc. International Conference on Computer

: Communications, Washington, D. C., October 1972, pp.
290-296.

[Jensen, 1963) Jensen, P. A., "Quadded NOR Logic," IEEE Transactions on

: Reliability, Vol. R-12, pp. 22-31, September 1963.

[Jensen, 1964] Jensen, P. A., "The Reliability of Redundant Multiple-
t Line Networks," IEEE Transactions on Reliability, Vol.

13, pp. 23-33, 1964.

= [Kamel, 1974] Kamel, S. and C. V. Page, "Intermittent Faults: A Model
| and a Detection Procedure," IEEE Transactions on Computers

(Special Issue on Fault-Tolerant Computing), Vol. C-23,

| pp. 713-719, July 1974.

| [Kautz, 1962) Kautz, W. H., "Codes and Coding Circuitry for Automatic
Error Correctionwithhinn DRggindl Systems," Redundancy
Techniques for Computing Systems, Spartan Press, Inc.,

Washington, D. C., 1962, pp. 152-195.

[Kautz, 1967] Kautz, W., "Testing for Faults in Cellular Logic Arrays,"
IEEE Symposium on Automata Theory and Logic Design, pp.

: 161-174, 1967.
3

[Landgraff, 1971] Landgrafi, R. W. and S. S. Yau, "Design of Diagnosable
Iterative Arrays," IEEE Transactions on Computers, Vol.

c-20, No. 8, pp. 867-877, August 1971.

| Mewis, 1963] Lewis, T. B., "Primary Processor and Data Storage
Equipment for the Orbiting Astronomical Observatory,"

IEEE Transactions on Computers, Vol. EC-12, No. 5, pp.

677-686, December 1963.
I

[Longden, 1966] Longden, M., Page, L. J. and Scantlebury, R. A., "An
- Assessment of the Value of Triplicated Redundancy in

Digital Systems," Microelectronics and Reliability, Vol.
5, Pergamon Press, Elmsford, N. Y., 1966.

|
|

30

[Losq, 1974] Losq, J., "Redundancy Scheme for Optimum Multiple
Fault Tolerance," Technical Note no. 33, Digital Systems
Laboratory, Stanford University, Stanford, California,

January 1974.

[Losq, 1975A] Losq, J., "A Highly Efficient Redundancy Scheme: Self-
Purging Redundancy," Technical Report no. 62, Digital
Systems Laboratory, Stanford, California, July 1975.

| [Losq, 19758] Losqg, J., "Influence of Fault-Detection and Switching
Mechanisms on the Reliability of Stand-By Systems,”

Digest of 1975 International Symposium on Fault-Tolerant

Computing, Paris, France, June 18-20, 1975, pp. 81-86.

[Losq, 1975C] Losq, J., "Influence of Fault-Detection and Switching
Mechanisms on the Reliability of Stand-By Systems,"

Technical Report no. 75, Digital Systems Laboratory,
Stanford University, Stanford, California, July 1975.

| [Lyons, 1962) Lyons, R. E., Vanderkuck, W., "The Use of Triple-Modular
Redundancy to Improve Computer Reliability," IBM J»

Res. Develop., Vol. 6, pp. 200-209, April, 1962.

[McCluskey, 1971] McCluskey, F. J. and Clegg, F. W., "Fault Equivalence
in Combinational Logic Networks," IEEE Transactions on

Computers, Vol. C-20, No. 11, November 1971, pp. 1286-)
1293.

[McCluskey, 1974] McCluskey, E. J., "Probability Models for Logic Networks,"
Proc. of the Fourth Manitoba Conference on Numerical
Mathematics, Winnipeg, Canada, October 2-5, 1974, pp.
21-28.

[McCluskey, 1975A] McCluskey, E. J., "Micros, Minis and Networks," Proceedings
of the Meeting on Twenty Years of Computer Science, Pisa,
Italy, June 16-19, 1975, pp. 23-33.

[Masreliez, 1975] Masreliez, C, J., "Reliability Enhancement Through
—Monitored Redundancy;" Digest of Papers, 1975 Inter-

national Symposium on Fault-Tolerant Computing, Paris,

France, June 18-20, 1975, pp. 227-231.

[Mathur, 1970] Mathur, F. P. and Avizienis, A., "Reliability Analysis
of a Hybrid Redundant Digital System: Generalized Triple

Modular Redundancy with Self-Repair," Proc. SJCC, Vol.

36, pp. 375-383, 1970.

[Mathur, 1971] Mathur, F. P., "On Reliability Modeling and Analysis of
Ultrareliable Fault-Tolerant Digital Systems," IEEE i

Transactions on Computers, Vol. C-20, No. 11, pp. 1376-

1381, November 1971.

31

[Mei, 1970] Mei, K. C. Y., "Fault Dominance in Combinational Cir-
cuits," Technical Note no. 2, Digital Systems Labora-
tory, Stanford University, Stanford, California,

August 1970.

[Mei, 1974] Mei, K. C. Y., "Bridging and Stuck-At Faults," IEEE
Transactions on Computers, Vol. C-23, No. 7, July
i974, pp. 720-727.

[Menon, 1971) Menon,P. R. and A. D. Friedman, "Fault Detection in
Iterative Logic Arrays," IEEE Transactions on Computers,

Vol. C-20, No. 5, pp. 524-535, May 1971.

(Mine, 1967] Mine, H. and Y. Koga, "Basic Properties and a Construc-
tion Method for Fail-Safe Logical Systems," IEEE

Transactions on Electronic Computers, Vol. EC-16, No.

3, June 1967, pp. 282-289.

[Nerber, 1965] Nerber, P. O., "Power Off Time Impact on Reliability
Estimates," IEEE Int. Convention Rec., Part 10, pp.
1-5, March 22-26, 1965, New York.

[ogus, 19733 Ogus, R. C., "Fault-Tolerance of the Iterative Cell
Array Switch for Hybrid Redundancy," Digest of 1973

International Symposium on Fault-Tolerant Computing,
Palo Alto, California, June 20-22, 1973, pp. 107-113.

[Ogus, 1974A] Ogus, R. C., "Fault-Tolerance of the Iterative Cell
Array Switch for Hybrid Redundancy," IEEE Transactions
on Computers, Vol. C-23, No. 7, July 1974, pp. 667-682.

[ogus, 19751 Ogus, R. C., "The Probability of a Correct Output from
a Combinational Circuit," IEEE Transactions on Computers,

Vol. C-24, No. 5, May 1975, pp. 534-544.

[Ornstein, 19753 Ornstein, S. M., Crowther, W. R. Kraley, M. F., Bressler,

R. D., Michel,A. and Heart, F. E., "Pluribus-—- A

Reliable Multiprocessor,".Exar, AFIPS, 1975 National
Computer Conference, pp. 551-559.

[Parker, 1973] Parker, K. P., "Probabilistic Test Generation," Technical
Note no. 18, Digital Systems Laboratory, Stanford Univ-
ersity, Stanford, California, June 1973.

[Parker, 1975A] Parker, K. P. and McCluskey, E. J., "Analysis of Logic
Circuits with Faults Using Input Signal Probabilities,"

| IEEE Transactions on Computers, Vol. C-24, No. 5, May
1975, pp. 573-578.

32

[Parker, 1975B] Parker, K. P. and E. J. McCluskey, "Probabilistic
Treatment of General Combinational Networks.' IEEE

Transactions on Computers, Vol. C-24, No. 6, pp. 668-

670, June 1975.

[Parker, 1975C] Parker, K. P. and E. J. McCluskey, "Sequential Circuit
Output Probabilities from Regular Expressions,"

Technical Report no. 93, Digital Systems Laboratory,
Stanford University, Stanford, California, June 1975.

[Pierce, 1962] Pierce, W. H., "Adaptive Vote-Takers Improve the Use of
Redundancy," 1n Redundancy Techniques for Computing

Systems, R. II. Wilcox and W. C. Mann, eds., Spartan

Books, Washington, D. C., 1962, pp. 229-250.

[Pierce, 1965] Pierce, W. H., Failure-Tolerant Computer Design,
Academic Press, New York, 1965.

[Rault, 1971] Rault, J. C., "A Graph Theoretical and Probabilistic
Approach to fault Detection of Digital Circuits,' Digest

1971 Symposium on Fault Tolerant Computing, June 1971.

[Reese, 1973] Reese, R. D. and McCluskey, E. J., "A Gate Equivalent
Model for Combinational Logic Network Analysis," Digest
of 1973 International Symposiumon Fault-Tolerant

Computing, Palo Alto, California, June 20-22, 1973,

pp. 79-85.

[Rennels, 1973] Rennels, D. A., Avizienis, A., "RMS:A Reliability
Modeling System for Self-Repairing Computers," Proc.

of the Third International Symposium on Fault-Tolerant
Computing, June 21-22, 1973, Palo Alto, California,

pp. 131-135.

[Ressler, 1973] Ressler, B. E., 'Design of a Dual Computer Configuration
for Redundant Computation," M.S. Thesis, Dept. of

Electrical Engineering, M.I.T., Cambridge, Massachusetts,
June 1973. .

[Rhodes, 1964] Rhodes, L. J., "Effects of Failure Modes on Redundancy,"
in Proc. 10th National Symposium on Reliability and
Quality Control, Washington, D. C., pp. 360-364.

[Roth, 1967A] Roth, J. P., W. G. Bouricius, and P. R. Schneider,
"Programmed Algorithms to Compute Tests to Detect and

Distinguish between Failures in Logic Circuits," IEEE

Transactions on Electronic Computers, Vol. EC-16, pp.
567-579, May 1967.

33

: [Roth, 1967B] Roth, J. P., W. C. Carter and R. P. Schneider, "Phase
| II of an Architectural Study for a Self-Repairing

Computer," SAMSO TR6/-106, November 1967.

: [Rub in, 1967] Rubin, D. K., "The Approximate Reliability of Triply
Redundant Majority-Voted Systems," 1st Annual IEEE

Computer Conference Digest, Chicago, I1ll., IEEE Publ.

16051, September 1967, pp. 46-49.

[Sawin, 1974] Sawin,D. H., "Fail-Safe Synchronous Sequential Machines
Using Modified On-Set Realizations," Digest of 1974

International Symposium on Fault-Tolerant Computing,
pp. 7-12.

:

: [Schnurmann, 1975] Schnurmann, H. D., E. Lindbloom and R. G. Carpenter,
"The Weighted Random Test Pattern Generator," IEEE

: Transactions on Computers, July 1975, Vol. C-24, No.

| 7, pp. 695-700.
| [Shedletsky, 1974A] Shedletsky, J. J. and E. J. McCluskey, "The Error

Latency of a Fault in a Combinational Digital Circuit,"

Technical Note no. 55, Digital Systems Laboratory,

| Stanford University, Stanford, California, November
1974.

2 Shedletsky, 1974B] Shedletsky, J. J. and E. J. McCluskey, "The Error
Latency of a Fault in a Sequential Digital Circuit,"

Technical Note no. 56, Digital Systems Laboratory,

Stanford University, Stanford, California, December
1974.

[Shedletsky, 1975A] Shedletsky, J. J., and E. J. McCluskey, "The Error
Latency of a Fault in a Combinational Digital Circuit,"

Digest of 1975 International Symposium on Fault-Tolerant

Computing, Paris, France, June 18-20, 1975, pp. 210-214.

[Shedletsky, 1975B] Shedletsky, J. J., "A Rationale For Random Testing
Combinational Digital Circuits," Digest, Eleventh

Annual IEEE Computer Society Conference (COMPCON),
Washington , D. C., September 9-11, 1975.

[Siewliorek, 1972) Siewiorek, D. P. and McCluskey, E. J., "An Iterative

Cell Switch Design for Hybrid Redundancy,' Digest of

1972 International Symposium on Fault-Tolerant Computing,

Newton, Massachusetts, June 19-21, 1972, pp. 182-189.

:

| [Siewiorek, 1973A] Siewiorek, D. P. and McCluskey, E. J., "An Iterative
; Cell Switch Design for Hybrid Redundancy," IEEE Trans-
| actions on Computers, Vol. C-22, No. 3, pp. 290-297,
| March 1973.

34

[Siewiorek, 1973B] Siewiorek, D. P. and E. J. McCluskey, "Switch Complexity
: in Systems with Hybrid Redundancy," IEEE Transactions on

Computers_, Vol. C-22, No. 3, pp. 276-282, March 1973.

[Siewiorek, 1975 |] Siewiorek, D. P., "Reliability Modeling of Compensating

1 Nodule Failures in Majority Voted Redundancy," IEEE
Transactions on Computers, Vol. C-24, No. 5, May 1975,

1 pp. 525-533.

[Teoste, 1961] Teoste, R., "Reliability of Redundant Computers," Lincoln
Laboratory, M.I.T., Cambridge, Massachusetts, Report

21G-0029, ASTIA, Doc. 260494, 1961.

[Teoste, 1962] Teoste, R., "Design of a Repairable Redundant Computer,"
: IRE Transactions on Electronic Computers, Vol. EC-11,

No. 5, pp. 642-649, October 1962.

[Teoste, 1964] Teoste, R., "Digital Circuit Redundancy," IEEE Trans-
: actions on Reliability,Vol. R-13, pp. 46-61, June 1964.

: [Tohma, 1974] Tohma, Y., "Design Technique of Fail-Safe Sequential
: Circuits Using Flip-Flop for Internal Memeory," IEEE

Transactions on Computers, Vol. C-23, No. 11, pp. 1149-
1154.

| [Usas, 1975A] Usas, A. M., "A Totally Self-Checking Checker for the
Detection of Errors in Periodic Signals," IEEE Trans-

| actions on Computers, Vol. C-24, No. 5, May 1975, pp.
| 483-489.

[Usas, 19758] Usas,A. M., "Fail-Safe Circuits:A Means to Improve
Reliability and Maintainabilty of I/O Subsystems,"

Technical Note no. 59, Digital Systems Laboratory,

Stanford University, Stanford, California, June 1975.

| [Usas, 19758] Usas,A. M., "Fail-Safe Circuits: A Means to Improve
Reliability and Maintainability of 1/0 Subsystems,"
Digest of IEEE Computer Society International Conference.

Washington, D. C., September 11-12, 1975.

[Usas, 1975C] Usas,A. M., "Fault Detection and Diagnosis in Digital
Computer Input-Output Systems," Ph.D. Thesis, Stanford

University, 1n preparation.

[Wachter, 1975] Wachter, W. J., "System Malfunction Detection and Cor-
rection," Digest of Papers, 1975International Symposium

on Fault-Tolerant Computing, Paris, France, June 18-20,
"1975, pp. 196-201.

+ 35

[Wakerly, 1973) Wakerly, J. F., "Low-Cost Error Detection Techniques
for Small Computers," Technical Report no. 51, Digital

Systems Laboratory, Stanford University, Stanford,

California, December 1973.

[Wakerly, 1974] Wakerly, J. F. and E. J. McCluskey, "Design of Low-
Cost General-Purpose Self-Diagnosing Computers,”

Information Processing 1974, IFIP Congress 1974, August
5-10, Stockholm, Sweden, Vol. 1, pp. 108-111.

[Wakerly, 1974A] Wakerly, J. F., "Checked Binary Addition Using Parity
Prediction and Checksum Codes," Technical Report no.

39, Digital Systems Laboratory, Stanford University,
Stanford, California, January 1974.

[Wakerly, 1974B] Wakerly, J. t'., "Partially Self-Checking Circuits and
Their Use in Performing Logical Operations," IEEE

Transactions on Computers, Vol. C-23, No. 7, July 1974,
Pp. 658-667.

[Wakerly, 1975] Wakerly, J. F., "Detection of Unidirectional Multiple
Errors Using Low-Cost Arithmetic Code," IEEE Transactions

on Computers, Vol. C-24, No. 2, February 1975, pp. 210-
212.

" [Widdoes, 1975] Widdoes, Lawrence C., Jr., "The Minerva Multi-Micro-
processor," Technical Note no. 62, Digital Systems

Laboratory, Stanford University, Stanford, California,

July 1975.

[Wulf, 1974] Wulf, W. A. et al., "Hydra: The Kernel of a Multiprocessor
Operating System," Communications ACM, Vol. 17, No. 6,

June 1974, pp. 337-347.

37

3. STUDY OF MAINTAINABLE COMPUTERS

Summary of Previous Results and Work in Progress

3.1 Applying Triple Modular Redundancy to Small Computers

The decreasing cost of computer hardware 1s increasing the feasibility

of triple modular redundancy (TMR) as a means of providing fault tolerance

in small computer systems. In a TMR system, each module 1s triplicated

and majority voters are used at the interfaces between modules to mask the

effects of single module failures. -

In order to discover any specilal problems that might occur in applying

TMR to small systems, we began the design of a TMR microcomputer system.

Our first discovery was that applying TMR to arbitrary sequential modules

requires special consideration of the effects of transient failures (section

3.1.1), Next we examined the reliability of triplicated memory systems and

found that triplication 1s a better choice than coding for small systems

(section 3.1.2). Finally we constructed models of several different TMR

microcomputer system configurations and derived the reliability of each

(section 3.1.3). We have shown that careful use of TMR can improve the

mission time of small microcomputer systems by a factor of 3 to 10.

3.1.1 Effects of Transient Failures 1n Sequential Modules

" Triple modular redundancy was first proposed by von Neumann [1956] as

a means of masking the effects of transient component failures in a system.

Applying redundancy at the component level was also proposed by Moore and

Shannon [1956] as a means of masking transient failures in relay networks.

38

Subsequent researchers showed that TMR could be used to mask the effects of

permanent failures in a system [Dickinson and Walker, 1958], and that

TMR could be applied at higher levels than the component level [Flehinger,

1958; Lyons and Vanderkulk, 1962; Brown, Tierney and Wasserman, 1961].

Recent investigations into the reliability of TMR systems have con-

centrated on the effects of permanent failures [Gurzi, 1965, Rubin, 1967;

Abraham and Siewiorek, 1974]. It has been assumed that most transients

are masked and leave no permanent effect in TMR systems [Lyons and Vander-

kulk, 1962]. That is, the effect of a transient failure is masked by the

voter during the short period of time that it 1s present, and the effect

disappears with the transient. Once a transient disappears, another can

be tolerated. The only transients that were recognized to cause system

failures were those that affected more than one member of a replicated

module trio at the same time [Avizienis, 1967].

That multiple transients over a period of time could be tolerated

was 1n fact shown to be true by von Neumann [1956] and by Moore and Shannon

[1956] for redundancy schemes applied at the component level. In systems

that apply redundancy at a higher level, we have demonstrated that this 1s

not always true, that the effect of a single transient failure 1n one module

can be permanent [Wakerly, 1975a]. The transient has a permanent effect when

the affected module 1s a sequential machine that 1s never re-synchronized.

The need to re-—-initialize modules after transient failures has been

long recognized for self-repairing systems with selective redundancy

1 Avizienis, 1967; Avizienis, 1971]. However, the re-synchronization problem

in TMR systems has been neglected because redundancy has in the past been

39

applied at a level low enough that the problem did not occur [von Neumann,

1956; Moore and Shannon, 1956; Dickinson, 1964]. The increasing complexity

of integrated circuits 1s continually increasing the minimum level at

which TMR may be applied in systems using standard MSI and LSI components.

For example, 1n a microcomputer system, voting must be applied at the

processor level. Reliability analysis of such systems may indicate that

TMR should be applied at a level even higher than the minimum

[Gurzi, 1965; Abraham and Siewiorek, 1974; Longden, 1966]. Yet

as redundancy 1s applied at higher levels, transients become more likely to

have permanent effects. Thus the designer must be aware of the effects of

transients in specifying the application of redundancy to a system.

| - We have proved [Wakerly, 1975a] that multiple transients can be tolerated
by a TMR system 1f and only 1f a synchronizing sequence 1s applied to the

system periodically during normal operation. We have shown system structures

that provide for easy synchronization, and we have suggested ways of modifying

systems that do not normally receive synchronizing sequences.

3.1.2 Reliability of TMR Memory Systems

A TMR system can be partitioned into a number of cells so that the

system reliability is the product of the cell reliabilities [Abraham, 1974].

The simplest type of cell, shown in Fig. 3.1, has one triplicated module

with voters on each input. (There 1s a separate voter circuit for each input

bit of the module.) The cell tolerates any single module or voter failure’,

since errors produced by such a failure will be corrected by the voters at

the inputs of the next cell. Assuming for simplicity perfect voter reliability,

40

FF - — -— — == 7

a
| 7 N\ | |
| module fe —

|

AN 1| r= —1

=O yimodul e -
r-

\/ —~ |
| BN
— 1 | rT]

! \

' | N \ | |module ——

| LJ

Fig, 3.1 A TMR voter-module cell.

data ——
input input

decoders output n bits
| —> data

and drivers output
address drivers

and ——
control

inputs

NN l-bit by w=word
memory chip

| Fig. 3.2 An n-bit by ws-word semiconductor memory module.

41

the cell reliability R e11 is a function of the module reliability R |m

3 2
R = R° + 3R (1-R .cell m 3 nl m (3.1)

The semiconductor memory module of a small computer system can be

modeled as shown in Fig. 3.2. There 1s some shared address decoding

and driving circuitry, an array of memory chips, and perhaps some shared

output circuitry. The memory array consists of ns 1l-bit by w-word memory

chips arranged in an nXs matrix to form the n-bit by ws-word array. If

the memory chip reliability 1s R. and the reliability of the common cir-

cultry 1s Ry then module reliability is RR, and 1t would appear from
(3.1) that the reliability of a TMR memory system 1s

R= (R"R,)> + 3(R"SR,)? (1-R"SR)) . (3.2)
Sys c d c d c d

The above analysis neglects the organization of the memory array.

Assuming that there is a voter for each bit of the memory output, the

system fails only 1f there 1s a simultaneous error in a single bit position

of two of the triplicated memory modules. Consideration of the memory array

structure hence leads to the more accurate reliability formula,

3,,,2 .3,ns 2 2ns
R = R7(3R™ - 2R + 3R,(1-R_)R .sys a3 c 2) 3R, (Re (3.3)

The reliability expression above always produces a reliability value

greater than or equal to (3.2) The improvement obtained by using (3.3)

decreases as the reliability of the memory array (R)) relative to the common

circultry (R,) increases. For example, if R.=1 the formulas are i1dentical.

42

But for typical semi-conductor memory systems, the common cilrcultry comprises

only about 10-15% of the total, and so the reliability value obtained by

considering the structure of the memory array (3.3) 1s significantly higher

than that obtained by simple analysis (3.2). A typical example 1s shown in

Fig. 3.2.

The above discussion 1s intended only to give an indication of the

nature of our results on memory systems. The actual memory system analysis

1s somewhat more complex, taking into account voter reliability, the placement

of voters for the memory system inputs, the-possibility of having different

chip types within the memory array, and a solution to the problem of multiple

pattern-sensitive failures. The effectiveness of the TMR memory system

organization and a system using a single-error-correcting code have been -

compared. While both systems are guaranteed to correct all single failures

in the memory array, analysis has shown that the TMR system 1s more reliable

because 1t corrects a larger number of multiple failures than the coded

memory. Also the TMR system corrects all single failures in the common

circuitry (Fig.3.2) while the coded system does not unless a copy of the

common circuitry is provided for each of the memory bit slices. For an 8-bit

memory system, coding requires 4 redundant memory bits per word while TMR

requires 16. On the other hand, coding-requires a decoder that 1s more complex

than the simple TMR voters, especially if the decoder itself is to be fault-

tolerant. For small fault-tolerant memory systems that are to be interfaced

to a TMR processor, TMR appears to be a much better choice than coding.

1.0
; a CT——

| Eqn. (3.3)

]

|
\

| 3
mn 0.)

| 8K by 8-bit memory

: 4 7 64 1K by 1-bit memory chips
| R 8 decoder and driver chips
| Sys Reliability for all chips:

| .6 R(t) =e , AN =10 failures/hour

I)

.4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 3.3 TMR memory system reliability.

.

b

|

44

3.1.3 A TMR Microcomputer System

The thought of applying TMR to microcomputer systems raises some

interesting questions. First of all, since a microprocessor is just a

single chip, there 1s some question whether reliability can really be

increased 1n a system that must use many voter chips constructed from

the same unreliable technology as the microprocessor itself. Secondly,

a microprocessor 1s a rather complex sequential machine with only limited

access to 1ts internal state, and so special care must be taken 1f the

system 1s to tolerate multiple transient failures.

We will use the simple model of a microcomputer system shown in

Fig. 3.4. The system consists simply of a microprocessor and memory, with

data, address, and control lines going from the microprocessor to memory

and data lines going from the memory to the microprocessor. Connections to

peripherals are ignored; for the TMR system 1t 1s assumed that each peri-

pheral interface has voters which monitor the I/0 commands given by all three

triplicated processors.

A typical LSI microprocessor is the Intel 8080 [Intel, 1974]. The 8080

is an 8-bit processor in a 40-pin package. It has 16 address lines, an 8-bit

bidirectional data- bus, and 9 control lines entering and leaving the chip.

The data bus must be externally split into two one-way buses for voting to

be applied, and hence there are a total of 41 linesin an 8080 system that

could be voted on. Since three voter circuits can be placed on a single

l4~-pin package, it is conceivable that a TMR 8080 system could have 3 8080

packages and 41 voter packages (triplicated voters) or 14 voter packages

45

3 data

2 data h
i Er ———— «TY TN

I = microprocessor y memory p—
: IEE &SE

; I addresses wv
and control MH

| peripherals |

Fig. 3.4 Microcomputer system model.

3.0

2.8 |

2.6

2.4 - ,

| |

MTIF 2.0

Af

| 5
1.6

&
ARN

1.2

1

0.8

K tp

Fig. 3.5 Mission time improvement factor for a TMR microcomputer system.

46)

(nontriplicated voters). Since a large percentage of integrated circuit

failures are related to problems in packaging and I/0 pins rather than

circult complexity, 1t 1s quite conceivable that the total voter un-

reliability in a TMR microcomputer system could approach or even exceed

the microprocessor unreliability. In such a system the use of TMR could

actually decrease the overall system reliability.

We can use a very simple model to justify the above thesis. Suppose

that the reliability of a microprocessor module 1s R and the voter

reliability is Ryo If n voters are required for each replicated module in

a TMR system, then the total voter reliability is R_. The total voter
reliability can be related to the module reliability by a factor k such

that R = RE. The factor k can be interpreted to mean that the total failure
rate of the voters 1s k times the failure rate of the microprocessor module.

For a system with several voter packages for every microprocessor package,

k could be in the range .l1 (very reliable voters) to 2 or more (voter

reliability comparable to microprocessor reliability). The reliability

improvement obtained by using TMR for various values of k 1s shown 1n Fig. 3.5.

The figure of merit used 1s the mission time improvement factor (MTIF), that

is, the ratio of the mission times of the TMR system and the corresponding

nonredundant system. (The mission time is the amount of time it takes for

the system to degrade from its initial reliability of 1 to some terminal

reliability R..) For the perfect voter case (k=0), the theoretical maximum

MTIF is-obtained, 2.84 for R= or 2.08 for R =.90; but for imperfect

voters (k>0), the MTIF can be much less. If module and total voter relia-

bilities are equal (k=1), the MTIF is only 1.42 for R =.95, and about 1.0

47

for R =.90 (the mission times of the TMR and the nonredundant systems are

equal) . If the total voter failure rate 1s twice the module failure rate

| (k=2), the TMR system has a shorter mission time than the nonredundant system

for either value of R.

Of course the above model 1s an oversimplification because 1t neglects

the reliability of memory and other support circuits that are present in

typical microcomputer systems. Including these components as part of the

module would increase voter reliability relative to module reliability and

hence reduce the value of k. However, the improvement is not dramatic and

we have found that for practical systems it 1s often still worthwhile to

| try to increase total voter reliability by decreasing the number of voters.
| Recalling that there are 41 lines that might be voted on in an Intel 8080

system, the most drastic reduction in the number of voters would be obtained

| by voting on none of the lines. The system would consist of three identical

| microcomputer/memory systems, each initialized to the same starting state

| and operating synchronously from a common fault-tolerant clock. Peripherals

| would have their own internal voters and they would perform operations as

| dictated by the majority of the replicated address, data, and control lines

| of the three identical systems. The problem with this scheme is that there

is no mechanism for a microprocessor/memory system to be resynchronized after

a transient failure, since there is no coupling among the replicated systems.

Even 1f transient failures do not occur, we shall see that this system is

less reliable than the next system we describe.

Suppose that voters are placed at the master reset input and the 8 data

inputs of each microprocessor, as shown in Fig. 3.6. The address, data out,

and control lines of each microprocessor go directly to the corresponding

48

data

reset ~T] . y
at +I || address °*

and control
sof tware

reset

request

‘

= I
| microprocessor CC memory =

address

and control
sof tware

reset)

request

da ta :

| | data

microprocessor memoryJ
| | [) reset |

] address

and control
sof tware

reset

request

Fig. 3.6 Minimum TMR microcomputer configuration for resynchronization,

49

memory module without any voting. We have proved that this configuration

has the minimum number of voters needed to provide re-synchronization after

transient failures. For example, suppose a transient failure causes several

registers of one microprocessor and several words in the corresponding

memory module to contain incorrect data. Each of the incorrect registers

1s resynchronized with correct data 1f it 1s loaded from memory, since the

voters insure correct memory output regardless of any possible errors in the

state of one of the memories. Once the microprocessor is resynchronized,

the memory 1s resynchronized by loading the incorrect memory words from

the microprocessor.

Of course, 1t 1s possible that a transient failure can affect not only

the register state but also the program state of a microprocessor. In general

the microprocessor can attaln any erroneous state and before being resynchronized

it can create arbitrary errors in the corresponding memory module. It is

this possibility that necessitates a voter on the master reset line of the

microprocessors. Associated with each microprocessor is some interface

circuitry that can be instructed by the software to initiate a hardware reset.

Periodically the software would cause such a reset to occur, and since the

reset line 1s voted on, a completely unsynchronized microprocessor must still obey

the reset command. The reset command causes the microprocessor to begin

executing a routine at some fixed location. The routine in this case is a

synchronizing routine that first initializes all of the processor registers

from memory, and then corrects any possible errors 1n a single memory module

by sequentially reading and then rewriting every word in the memory.

Resynchronization after transient failures 1s also possible if voters

50

are placed in the data lines going to the memory rather than coming out

of the memory. However, placing the voters in the output lines results

in better system reliability, since the memory reliability improvement

for semiconductor memories discussed in section 3.1.21is applicable. This

improvement does not occur when voters are placed on the memory input only,

since a single bit error in the memory output can produce several erroneous

bits when the affected data is processed by the microprocessor.

The reliability analysis of the system in Fig. 3.6 1s similar to the

analysis of memory systems in section 3.1.2. In fact, equation (3.3) can

be used to find the system reliability neglecting voters by simply considering

the microprocessor to be part of the common circuitry of the memory module

(R,). In a similar way the reliability of the scheme with no voters and

the scheme with voters on the data inputs only can be derived by use of

equation (3.2). The exact reliability including voters for a nonredundant

system and the three TMR system configurations is shown in Figs. 3.7 and

3.8 for two typical sets of parameters. It can be seen that for these two

cases TMR increases the mission time by a factor of 3 to 4 for a terminal

reliability of .95.

The work in this and the previous section 1s still in progress and a

technical report 1s in preparation.

| 51

1.0

TMR CPU-memory-voter ——

| \NN TMR no voters — feTMR CPU=-voter-memory ——=
«95 — mm = —

| | |] Nonredundant —
| Ix

| .9 | | |
| |

| I

} | N
Rsys | IF

| | IN

| | IK

| _8 8-bit microprocessor AN A\\ \
: -5

10 =~ failures/hour | |

8 1K by 1-bit memory chips
-6

| | 10 failures/hour . \
9 voters

10 © failures/hour

| IK

' | IR |
| Ih

| |
Ly

| I
NU

| | 1X | :
.6 | | I.

| 0 5000 10000 15000 20000 25000 30000

2700 7600| 8600 t —

7900

Fig. 3.7 TMR microcomputer system reliability.

52

1.0

TMR CPU-memory-voter —_—

TMR no voters —

I |= NNT TMR CPU=-voter=-memory —_—

|

| Nonredundant —_—
| ON

.9 | | |

R | IN |
sys

| | |

I \J

| |

| | |
|

|

|
8=bit microprocessor

107° failures/hour

7 64 1K by 1-bit memory chips’ |

and 8 decoder/driver chips

107° failures/hour

9 voters

-7
10 failures/hour

lo | \L

0 | 2000 | 2000 | 3000 4000 5000 6000 7000 8000 9000 10000
650 1700 2600 t =n

Fig. 3.8 TMR microcomputer system reliability.

| 53

3.2 Self-Checking Circuits*

The theory of self-checking combinational circuits was studied by

the proposed principal investigator under previous NSF grants (GJ-27527

and GJ-40286). Recent work has focused on applications of self-checking

combinational circuits and on the theory and applications of self-

checking sequential circuits. Self-checking adders using checksum codes

have been studied (section 3.2.1); a self-checking checker for periodic

signals such as clocks has been designed (section 3.2.2); and a design

approach for fail-safe sequential machines using realistic fault assump-

tions has been developed (section 3.2.3).

3.2.1 Checked Binary Addition Using Checksum Codes and Check Symbol Prediction

| The code words of a checksum code are vectors of b-bit bytes with a

single check byte that is the modulo 2P sum of the data bytes. A checksum

code can detect any error that affects only a single byte of a code word,

and hence these codes are quite effective for detecting failures in data

transmission and storage in byte-sliced systems. In such systems the

| circuits that handle the data are partitioned into b-bit byte slices, and

hence a single component failure always results in a detectable single-byte

error.

Checksum codes are not arithmetic codes, so that the check symbol of

the sum of two code words cannot be derived from only the check symbols

of the given code words. Hence, addition of two code words cannot be

———————————

The work 1n this section has been supported by both NSF grants
GJ-40286 and GK-43322.

54

checked by simply adding the check symbols, as in arithmetic codes. However,

we have shown that check symbol prediction techniques can be used effectively

in the design of self-checking adders for checksum code words. Such

techniques had been developed earlier for simple parity-check codes

[Sellars, 1968], requiring all of the inter-bit carry circuits of an adder

to be duplicated. We have developed a similar technique for checksum codes

which requires only the inter-byte carries to be duplicated [Wakerly, 1975b].

While duplicating the inter-bit carries requires an overhead of over 50%

in the adder circuitry, duplicating the inter-byte carries requires only

about 12% extra circuitry in a conventional MSI adder chip.

Although a self-checking adder for checksum code words 1s still slightly

more expensive than a self-checking adder for words in a residue code (an

arithmetic code), the checksum code still enjoys some advantages. As men-

tioned earlier, a checksum code detects all errors in a single b-bit byte.

The residue code detects all single-byte errors except all 0's changed to

all 1's or vice versa. Hence the single-byte error-detecting capability

of a checksum code 1s superior to a residue code. For applications where

single-byte error detection 1s of primary importance, a checksum code can

be used to provide the required error detection capability; checked addition

can still be performed at a cost only slightly higher than with residue

codes, and much lower than with parity-check codes.

3.2.2 A Self-Checking Checker for Periodic Signals

Periodic signals have a known behavior, and deviations in their wave-

forms may indicate failures in the signal source. Monitoring these signals

: -

can be a valuable technique for detecting both hardware and software

failures in a computer. Many circuits have been presented in the literature

] to check for errors in these signals (for example, see [Koczela, 1971]

or [Chang, 1973]). These circuits, however, share a common weakness in

| that they are all susceptible to undetected internal failures; that 1is,

they are not self-testing.

| A totally self-checking periodic signal checker has been designed
| [Usas, 1975a]. As shown in Fig. 3.9, the checker consists of two mono-

| stable multivibrators Ml and M2. Ml 1s triggered on the leading edge of

| the input signal and produces an output pulse of fixed width equal to

] ton the expected on-time of the input signal. M2 1s triggered on the
| falling edge of the input and produces a pulse of duration tgge the
| expected off-time of the input.

The waveforms in Fig. 3.9 show that the output of Ml is a regeneration

of the input while M2 produces the complement of the input. Hence during
:

| correct operation the checker output is always either 10 or O01. If the
: input signal becomes stuck on or off, the checker output becomes 00, and

| 1f the on-time or off-time vary more than a few percent from
their expected values the checker output becomes either 00 or 11. It has

been shown [Usas, 1975a] that failures in the monostables themselves produce

either the 00 or the 11 output, and the checker is totally self-checking.

There still remains the issue of monitoring the checker output and

| sounding an alarm when the 00 or 11 output appears. This issue has been

| thoroughly discussed in [Usas, 19754], and fail-safe solutions have been

| presented.

| 56

t

—> ton | off —

M2 | 0 | 1 | | | | | |

M1

input | |
t :

| on

M2 error indicator 01,10 = no error |
00,11 = error

2

| Fig. 3.9 Totally self-checking clock checker.

57

| 3.2.3 Fail-Safe Sequential Machines

Self-checking circuits have two properties, self-testing and fault-

secureness. The self-testing property guarantees that all faults are

tested in normal operation, while fault-secureness guarantees that any

fault produces either the correct output or an error indication. The

fault-secureness property for self-checking circuits 1s equivalent to

the definition of "fail-safe" given by Tokaoka and Ibaraki [1972]. For

historical reasons the name "fail-safe!' has been applied to fault-secure

sequential machines.

A number of researchers have recently been concerned with the design

of fail-safe (or fault-secure) sequential machines. Most of the contri-

butions to a solution of the problem have assumed a simple delay element

as the realization of the required memory function [Diaz, 1973; Sawin,

1974]. Tohma [1974] nas suggested a design approach using more practical

and familiar memory devices such as JK flip-flops. However, he assumes

that the double-rail outputs of a faulty flip-flop are always complementary.

That 1s, 1f the fault causes one output line to be an erroneous 1(0), then

the other line is always an erroneous O(l). Unfortunately this is not the

case 1f one considers the circuit implementation of a JK flip-flop and

common integrated circuit failure modes. Usas [1975b] has presented a

design approach that is based on the use of D flip-flops as memory elements

and that assumes a more realistic model of the faulty behavior of the flip-

flop.

Analyzing the circult implementation of a conventional D flip-flop,

Usas [1975b] shows that there do indeed exist faults such that the flip-

58

flop outputs are identical, but that no fault results in both erroneous

1's and O's on the flip-flop outputs. That is, 1f a fault f produces an

erroneous 1(0) on a flip-flop output for some input value, then there 1is

no input that will produce an erroneous O(l) on that output 1n the presence

of £f. This permits the erroneous value to be held in the flip-flop by a

suitable choice of next-state mapping for illegal states. The design

procedure results in a machine such that any flip-flop failures cause the

machine to go to and remain in a "trap" state. Trap states can easily be

detected 1n order to produce an error signal.

For the detection of single flip-flop faults, the design technique

requires only one extra flip-flop over the normal design. However, the

combinational excitation circultry 1s more complex because the technique

requires each flip-flop to have a separate excitation circuit; sharing

is not allowed. A second design procedure 1s given that uses more extra

flip-flops, two for machines with up to 126 states and three for up to

about 237, This procedure allows shared logic realizations of the flip-flop

excitation functions and usually results in a lower overall cost for the

machine.

59

3.3 Self-Diagnosing Computer Design

The object of this research has been to develop design principles

for self-diagnosing computer processors, machines with extra hardware

for automatic detection and diagnosis of internal failures. This work

began under NSF grants GJ-27527 and GJ-40286, and since July 1974 has been

supported by GK-43322.

~ OQur previous efforts were documented by a report [Wakerly, 1973] and

a summary [Wakerly and McCluskey, 1974]. A research monograph based on

this work 1s also being written. Our current efforts are towards applying

the general results of the previous studies to the design and actual

implementation of a self-diagnosing computer processor. Several aspects

of such a design were not dealt with by the previous studies and remain to

be explored.

The planned processor has 32-bit data paths and a microprogrammed

control unit. The instruction set has a full complement of arithmetic,

logical, and shift operations, with both register-to-register and register-

to-memory operations available. The execution time for a typical register-

to-register instruction will be about 1.2 microseconds. The data paths and

control unit of the processor have been designed and the microcode 1s

currently being written.

There have been a number of previous efforts of self-checking computer

processor designs like our self-checking design; these designs used error-

detecting codes and some duplication to detect hardware failures. However,

our design 1s different from previous designs 1n several respects. First

|

60

of all, we are designing a general-purpose processor with an instruction

set and execution times comparable to typical minicomputers. Our processor

can be contrasted with the JPL STAR [Avizienis, 1971] which was a byte-

serial machine, and Bell Labs ESS [Chang, 1973] which had no add instruction

and required two microcycles for every register-to-register transfer.

Secondly, the cost of checking in our design will be less than 25% of the

total hardware cost for a 32-bit processor. Thirdly, our design makes

efficient use of standard MSI integrated circuits, and the data paths and

control unit are designed to allow straightfarward integration as LSI circuits

comparable to those available commercially today. Finally, although previous

machines claimed a high degree of self-checking for single gate faults, in

our design we can guarantee detection of 100% of the failures that affect

a single integrated circuit package.

3.3.1 Data Path Checking

The previous studies [Wakerly, 1973] showed how error-detecting codes

and self-checking circuits could be used to detect errors in the data paths

of a typical processor. The processor data paths are byte-sliced, so that

each register, adder, multiplexer, etc.,—- that handles a b-bit byte of data

1s a separate component. The data paths of an nb-bit processor can then be

implemented by n b-bit slices operating in parallel, with appropriate inter-

connections for arithmetic carries, shifts, etc. In such a system, a single

component failure affects only a single byte, and errors can be detected by

the use of a b-bit residue code. The residue code associates with each datum

il

| in the processor a b-bit check symbol which is the residue of the datum

modulo 201, An extra b-bit check slice is thus required to store and

| process the check symbols of the data residing on the data path slices.

In our previous work we showed that the extra check slice 1s

sufficient to detect all single byte errors regardless of the actual data

! path width, be it 3b bits, 8b bits, or more. However, it was not clear

| at that time whether the check slice could be the same as the data path

] slices 1n a practical design or whether the check slice would have to be

; different.

| Our current work has shown that 1t 1s possible to design a standard
byte slice that serves for both data and check symbols, at a cost com-

parable to a byte slice for an unchecked machine. Hence for an nb-bit

| machine using b-bit slices, the cost of data path checking is about 1/n,

| or 13% for a 32-bit machine using standard 4-bit components.

Our studies have shown that the only essential difference between a

| check slice and a data slice 1s that the check slice must have a provision

for modifying the check symbol for certain arithmetic operations and re-

loading 1t for non-code-preserving operations. Except for this the check

| symbols are processed exactly the same as corresponding data in the data

| slices. Hence we have designed a 4-bit slice, a simplified version of which

| is shown in Fig. 3.10. The byte slice has a l6-word general register file,

| 8 scratch pad registers, memory address and data registers, shifting and

byte-swapping logic, and ALU. A processor that uses this slice can

| efficiently perform all of the operations of a typical minicomputer: loading

62

CARRY OUT / LEFT IN

1

BYTE 4 A-BUS 4 | 1
IN | a | T2821 4 pararegister ALU shift

4 fil 4 BUS
DATA lie B-BUS mux OUT

Bus 7" 4-74173 > 74181 74257

IN | 1 |
RIGHT OUT / CARRY IN

8 x 4

scratch

file

2=-74172

* - tristate driver, 74125

B B

memory 4 1 4data | 1 x , MEMORY
register DATA

BN 74298 BUS
memory

address 4 4 MEMORY
register = 7 ADDRESS

— oT :
Fig. 3.10 Processor data path slice.

: 63

| : and storing data, arithmetic and logical operations, shifts and rotates,

| microprogrammed multiply and divide.

| The only difference between the slice of Fig. 3.10 and a conventional°

| | slice 1s that the data path from the ALU output back to the register inputs
| is broken; in a conventional slice this connection 1s usually already made.

| The broken connection allows the system implementation shown in Fig. 3.11.

For the data path slices, the ALU output is connected directly to the register

| inputs. For the check slice, the ALU output goes through combinational logic
| that modifies the check symbol as required before returning it to the

registers. At the end of each machine cycle, the output of the data and

check slices is loaded into a check register and checked for validity. For

non-code-preserving operations 1t 1s possible to reload the check slice

| with a new check symbol generated from the non-code result.

| The byte slice suggested by Fig. 3.10 has been designed in detail.

Using conventional TTL integrated circuits, the slice can perform one

operation every 200 nanoseconds. In our current design the combinational

logic external to the check slice is implemented with a small, fast read-

| only memory and adds 30 nanoseconds to the maximum cycle time. Hence

checking requires a 15% overhead in the cycle time of the machine.

| The data path slice of Fig. 3.10 is similar to currently available

LSI data path slices [Monolithic Memories, 1974; Rattner, 1974]. In fact,

| the slice has been designed with LSI in mind; it should be possible to

| : fabricate the entire slice on a single integrated circuit chip. Our data

path slice design requires no more circultry and only four more pins than

a comparable slice that cannot be used as a check slice.

64

: to
data in carry out

logic

DATA 4 to

28-31 data out control
unit

—| SWap in carry in

N data in carry out
DATA 4 to

data out

24-27 control
unit

-— bua] SWAP in carry in

J ®

® ®

— data in carry out

DATA 4 to

0-3 data out control
unit

.) to
—=| SWap in carry in :

logic p
“x

totally

self- error

39 4 4 |checking hL. signal
check residue equality
register genera tor neCcKe

check

register

rr.

data in carry out
y 4 check 4

CHECK 4 mux symbol
data out fix-up

0-3

swap in carry in

Fig. 3.11 Configuration of byte slices for 32-bit processor,

65

3.3.2 Control Unit Checking

In our previous work [Wakerly, 1973] we showed how error-detecting

codes can be used to detect errors in the microprogram storage of a

microprogrammed control unit. If the storage is implemented using b-bit

by n-word ROM chips, then only one extra ROM chip 1s needed to hold b

check bits for each word and insure detection of all single package

failures. In our present processor design we expect to have 1K of 44-bit

microprogram words implemented with 11 1K by 4-bit chips. One extra chip

1s required for checking and hence the overhead for checking the micro-

program storage is 1/11, or about 9%.

In addition to microprogram storage a microprogrammed control unit

requires registers to hold the instruction and the microprogram address

and a fair amount of combinational logic for computing the next micro-

program address. The next address could be computed for example as the

next sequential address, as a subroutine return address, or as a function

of internal flags (carry, overflow, etc.). In [Wakerly, 1973] we indicated

that the only way to detect errors in some of the control unit functions

was by duplication, while errors in other functions could be detected by

clever use of the existing coding and by taking extra microprogram steps

for checking. In our subsequent studies we have found that the "trick"

methods are not sufficiently general for efficiently implementing a typical

processor, and so we have rejected them in our design. Instead we plan to

duplicate the instruction register, the microprogram address register, and

the next address logic.

66

As shown in Fig. 3.12, there will be two identical "microprogram

control" modules. The modules operate in parallel, so that both load

their instruction register from the processor data bus, test processor

flags, and sense microprogram jump conditions and addresses. The output

of a module is a 10-bit microprogram address. The output of one of the

modules 1s used to address the microprogram memory while the output of

the second 1s compared with the first for equality.

Of course, the overhead for duplication of the control module is 100%,

far from our overall system goal of 25%. However, the control module is

only a part of the control unit, and the rest of the control unit (i.e.,

the microprogram memory) requires an overhead of only 9%. The fraction of

the total control unit cost attributable to the duplicated control module

depends on how that module is implemented. The present control module is

designed with LSI in mind, so that the entire module could be fabricated

on a single chip comparable to existing commercially available LSI control

units chips [Rattner, 1974]. only that single LSI package would be duplicated.

processor 07

| data bus

control

| microprogram microprogram lines |

| control address mLetoprogtan
module memory

microprogram oN”
| data register

microprogram microprogran
control address

| module totally
self-checking

checker

I totally
| self-checking

equality
: checker

Fig. 3.12 Microprogrammed control unit structure.

68

2 3.3.3 Diagnosis

After an error 1s detected in the self-checking computer processor,

| diagnosis must be initiated to 1solate the failure to one replaceable

module. Diagnosis will be performed by special microprograms called

| microdiagnostics. Although these microprograms have not been written,
the hardware features necessary to support diagnosis have been considered

in the present processor design. The goal is to minimize the amount of

| hardware that must be working for successful diagnosis to take place.
| Assuming single package failures, any faillure in the data paths of

the machine can be easily isolated by microdiagnostics to one replaceable

| slice. Since there 1s one extra data path slice for checking, an operator _
can manually reconfigure the machine for continued operation by replacing

| the failed slice with the check slice and disabling data path checking

| until repairs are completed.

| A failure 1n a single microprogram memory ROM package can be detected,

| but using the present single-error-detecting code diagnosis 1s not possible

| unless another copy of the ROM contents are available for comparison. This

| would mean duplicating the entire microprogram memory Or having a copy
avallable on auxiliary storage. If the ROM failure is not catastrophic,

| then it 1s possible to load a copy of the microprogram from external storage

| and perform the check. However, a catastrophic failure of a ROM package

: may affect all microinstructions and prevent this diagnosis from taking

: place. An alternative currently under study 1s to use a more sophisticated :

| code to provide both detection and location of ROM failures. For memory

| 69

words of up to 60 bits, two 4bit check symbols in a 2-redundant

b-adjacent code [Bossen, 1970] are sufficient to detect and locate (or

even correct) all 4-bit errors.

A failure in one of the two duplicated control modules (Fig. 3.12)

| 1s detected by the equality checker monitoring their microprogram address

outputs. Once a failure 1s 1solated to one of the two modules, the other

| can manually be made the primary module (if it isn't already), and system

| operation can continue with checking disabled. The problem then is to

determine which of the two modules 1s the faulty one. There are currently

manual procedures for making this determination, but no automatic procedures

; short of triplication and voting have yet been devised.
- The work in this and the previous two sections 1s still in progress

and a technical report 1s in preparation.

| 3.3.4 Peripheral and Input/Output Checking*

This work has been directed toward the problems of detecting errors

| and performing fault diagnosis in the components associated with the input/
output system of a computer. Such units as CPU interfaces, channels, bus

controllers, device interfaces, device controllers, and devices have been

studied with the goals of guaranteeing an indication of the occurrence of

the error (self-checking) and providing expeditious repair (self-diagnosing).

Checking the validity of data transferred between a CPU and peripherals

is fairly simple —-- the same codes used to check memory data or CPU data

iii

The work in this section has been supported by both NSF grants GJ-40286

B and GK-43322.

70

can be used to check the data transfers over I/O buses. Problems and

solutions in interfacing between different codes for processors and

peripherals have been given [Wakerly, 1973]. However, there remain

unsolved problems in controlling the transfers of data between processors

and peripherals, problems that do not occur in the design of a synchronous

CPU. Since I/0 buses usually have at least some asynchronous signals and

some "hand-shaking", there are many new problems to consider. The

sequential nature of I/O control led to the more fundamental studies of

self-checking sequential machines described in sections 342.2 and 3.2.3.

With these new techniques, self-checking controller designs are possible.

In addition, specifications for signaling in digital buses to insure

error detection have been outlined.

Error detection in peripheral devices 1s a difficult problem because

. of the diversity of devices in common use. However, the problem has been

approached by considering device classes (disks, tapes, card equipment,

etc.), and a list of applicable methods has been compiled. Also, the design

of a CPU-controlled probe for peripheral diagnosis has been completed and

operational guidelines are being assembled.

This first phase in research work on input/output fault detection and

diagnosis 1s near completion‘and will be documented by a Ph.D. thesis

[Usas, 1975c].

71

3.4 REFERENCES PREPARED UNDER PREVIOUS NSF GRANTS

| * GJ-27527

| t GJ-40286

| + GK-43322

| * Abraham, J. A., and D. P. Siewiorek, 1974. An algorithm for the
accurate reliability evaluation of Triple Modular Redundancy

| networks," IEEE Trans. Comput. C-23(7): 682-692.

* Ogus, R. C., 1974. '"Fault-Tolerance of the iterative cell array
switch for hybrid redundancy," IEEE Trans. Comput. C-23(7):
667-681.

+ Ogus, R. C., 1975. '"Reliability analysis of hybrid redundancy
systems with nonperfect switches,’ Technical Report 65, Digital
Systems Laboratory, Stanford University, Stanford, California.

+ Shedletsky, J. J., and E. J. McCluskey, 1974a. "The error latency
of a fault in a combinational digital circuit,” Technical Note 55,
Digital Systems Laboratory, Stanford University, Stanford, Ca.;

| submitted to 1975 Int'l. Symp. on Fault-Tolerant Computing.
t Shedletsky, J. J., and E. J. McCluskey, 1974b. "The error latency

| of a fault in a sequential digital circuit," Technical Note 56,
] Digital Systems Laboratory, Stanford University, Stanford, Ca.;

submitted to 1975 Int'l. Symp. on Fault-Tolerant Computing.

+t Usas, A. M., 1975a. "A totally self-checking checker for the detection
of errors in periodic signals,' IEEE Trans. Comput. C-24(5).

+t Usas, A. M., 1975b. "Design of fail-safe synchronous sequential circuits
by explicit state trapping,' Technical Note 52, Digital Systems
Laboratory, Stanford University, Stanford, Ca.; submitted to
1975 Int'l. Symp. on Fault-Tolerant Computing.

| +t Usas, A. M., 1975c. 'Fault detection and diagnosis in digital computer
[input/output systems,' Ph.D. thesis, Stanford University, Stanford,

| Ca. (in preparation).
b

:

72

+ Usas, A. M., 1975d. "The detection of errors in periodic signals,"
Technical Note 45, Digital Systems Laboratory, Stanford

University, Stanford, Ca.

*t Wakerly, J. F., 1973. "Low-cost error detection techniques for
small computers,' Ph.D. Dissertation, Department of Electrical
Engineering, Digital Systems Laboratory, Stanford University,
Stanford, Ca.

+ Wakerly, J. F., and E. J. McCluskey, 1974. 'Design of low-cost

general-purpose self-diagnosing computers,’ Proc. IFIPS-74,
Intl. Fed. Information Processing Societies, Stockholm, Sweden;

Technical Note No. 38, Digital Systems Laboratory, Stanford
University, Stanford, Ca.

+ Wakerly, J. F., 1975a. "Transient failures in triple modular
redundant systems with sequential modules," IEEE Trans. Comput.
C-24(5).

+t Wakerly, J. F., 1975b. 'Checked binary addition using check symbol

prediction and checksum codes,' Technical Note 39, Digital Systems
Laboratory, Stanford University, Stanford, Ca.; submitted to
IEEE Trans. Comput.

73

3.5 ADDITIONAL REFERENCES

Avizienis, A., 1967. 'Design of fault-tolerant computers,’ AFIPS Conf.
| Proc., 1967 FJCC 31: 733-743, Washington, D.C.: Thompson Books.

Avizienis, A., 1971. "The STAR computer: An investigation of the
theory and practice of fault-tolerant computer design,' IEEE Trans.
Comput. C-20: 1312-1321.

Bossen, D. C., 1970. '"b-Adjacent error correction," IBM J. Res.
Develop. 14(7): 402-408.

Brown, W. G., J. Tierney, and R. Wasserman, 1961. ''Improvement-of
electronic computer reliability through the use of redundancy,"

| IRE Trans. Electron. Comput. EC-10: 407-416.

Chang, H. Y., et. al., 1973. '"The design of a microprogrammed self~
checking processor of an electronic switching system," IEEE Trans.
Comput. C-22: 489-500.

Daly, W. M., A. L. Hopkins, and J. F. McKenna, 1973. "A fault-tolerant
digital clocking system,’ Dig. 1973 Int'l. Symp. Fault-Tolerant
Computing, IEEE pub. no. 73CH0772-4C: 17-21.

Diaz, M., J. C. Geffroy, and M. Courvoisier, 1973. ''On-set realization
of fail-safe sequential machines," Dig. 1973 Int'l. Symp. Fault-
Tolerant Computing, 145-149.

: Dickinson, W. E., and R. M. Walker, 1958. ''Reliability improvement by
the use of multiple-element switching circuits," IBM J. Res. Develop.
2: 142-147.

| Dickinson, M. M., J. B. Jackson, and G. C. Randa, 1964. "Saturn V launch
vehicle digital computer and data adapter,’ AFIPS Conf. Proc., 1964
FJCC 26: 501-516, Baltimore, Md., Spartan Books.

| Flehinger, B. J., 1958. '"Reliability improvement through redundancy at
| various system levels,'" IBM J. Res. Develop., 2: 148-158.

Gurzi, K. J., 1965. "Estimates for the best placement of voters in a
: triplicated network," IEEE Trans. Electron. Comput. EC-14: 711-717.

| Intel Corporation, 1974. 8080 Users Manual, Santa Clara, California.

Johnson, A. M., 1971. "The microdiagnostics for the IBM 360/30," IEEE
Trans. Comput. C-20: 798-803.

74

Koczela, L. J., 1971. "A three failure tolerant computer system,’
Dig. 1971 Int. Symp. Fault-Tolerant Computing: 101-104, Pasadena,
California.

Longden, M., L. J. Page, and R. A. Scantlebury, 1966. "An assessment of
the value of triplicated redundancy in digital systems,' Micro-
electronics and Reliability 5: 39-55, Elmsford, N.Y.: Pergamon Press.

Lyons, R. E., and W. Vanderkulk, 1962. "The use of triple-modular redundancy

to improve computer reliability," IBM J. Res. Develop. 6: 200-209.

Monolithic Memories, 1974. '"5701/6701 4-bit expandable microcontroller,”
Sunnyvale, California.

Moore, E. F., and C. E. Shannon, 1956. ''Reliable circuits using less
reliable relays," Jour. Franklin Inst. 262: 191-208, 281-297.

Peterson, W. W., and E. J. Weldon, 1972. Error-Correcting Codes,

Cambridge: MIT Press.

Plummer, W. W., 1972. '"Asynchronous aribters,'" IEEE Trans. Comput. C-21(1):
37-42.

Ramamoorthy, C. V., and L. C. Chang, 1972. "System modeling and testing
procedures for microdiagnostics,' IEEE Trans. Comput. C-21: 1169-1183.

Rattner, J., J.-C. Cornet, and M. E. Hoff, 1974. 'Bipolar LSI computing
elements usher in new era of digital design,' Electronics 47(18): 89-96.

Rubin, D. K., 1967. "The approximate reliability of triply redundant
majority-voted systems,' Dig. lst Annu. IEEE Computer Conf. IEEE publ.
16051: 46-49.

Sawin, D. H., 1974. 'Fail-safe synchronous sequential machines using
modified on-set realizations," Dig. 1974 Intl. Symp. Fault-Tolerant

Computing session 3: 7-12.

Sellars, F. F., M.-Y. Hsaio, and.L. W. Bearnson, 1968. Error Detecting

Logic for Digital Computers, New York: McGraw-Hill.

Tohma, Y., 1974. "Design technique of fail-safe sequential circuits using
flip-flop for internal memory,'" IEEE Trans. Comput. C-23(11): 1149-1154.

Tokaoka,T., and T. Ibaraki, 1972. 'N-fail-safe sequential machines,"
IEEE Trans. Comput. C-~21(11): 1189-1196.

von Neumann, J., 1956. "Probabilistic logics and the synthesis of reliable

organisms from unreliable components,' Automata Studies 43-98,
Princeton, N. J.: Princeton University Press.

Wensley, J. H., 1972. "SIFT-Software implemented fault tolerance," AFIPS
Conference Proceedings, Fall Joint Computer Conference, 41(1): 243-253.

|

4. INVESTIGATION AND EVALUATION OF DUAL COMPUTER CONFIGURATIONS

4.1 Introduction

This report summarizes the current status of the project which is

concerned with the investigation and evaluation of dual computer configura-

: tions.

| For the past two years, work has been underway under the sponsor-

| ship of NASA Ames Research Center to study reliable computer systems for

use in Short Takeoff and Landing (STOL) aircraft. A prototype system has

| been developed by the Charles Stark Draper Laboratories (CSDL) in Cambridge,
| Mass., for this purpose, and was delivered to the NASA Ames Research Center

in mid-1975 for a series of flight tests under the direction of personnel

| from NASA. This system, known as the SIRU system [1], consists of a set

of navigational instruments [the Strapdown Inertial Reference Unit (SIRU)],

| and a digital computer complex to process information from the SIRU and

| display this information to the pilot of the aircraft. The SIRU

| navigation package is fault-tolerant and it was desirable to develop a

reliable computer system that would match the high reliability of the SIRU

| instrument system. The computer complex used is a dual processor, real-

time system using two Honeywell H316 central processing units, with a

special purpose arbiter component to evaluate the operation of the two

Honeywell processors. Both processors execute the same algorithms, and

| the arbiter designates one processor as master and one as backup for each

basic operational cycle.

The initial work on the project involved the study of the actual

SIRU system itself. Research work is ongoing in this area, and we hope to

76

use the SIRU system as a basis for a more general study of dual computer

configurations. Theoretical studies have been carried out of both the

hardware and software aspects of the dual computer system, and these

investigations are continuing. A second thrust of the present research is

to thoroughly evaluate the prototype system both using the theoretical

results as guidelines, as well as through experimentation on the actual

system. Based on these studies we hope to make recommendations which could

improve the prototype system performance.

4,2 Summary of Technical Areas in the Project

4.2.1 The Siru computer system

CSDL carried out the initial design of the computer system [1], and

the design was studied by the Digital Systems Laboratory (DSL). It was

decided that closer collaboration between DSL and CSDL would prove fruitful

and, as a result, meetings were held at CSDL in November 1973, May 1974 and

December 1974 during which the progress of the design was discussed and

reviewed. Thereafter, the final system design was decided upon, and CSDL

carried out the actual construction of the system.

A very important component of the SIRU dual computer system is the

arbiter unit. In the prototype system, the arbiter forms an opinion as to

the functional status of the system and communicates this information to

the pilot; in later versions of the system, however, the arbiter might be

responsible for the control of actuators in the aircraft and thus would

become a very critical unit. In the latter case, the arbiter would have to

be a highly reliable module.

| 77

| A reliability model has been developed to study the effect of the

actual arbiter reliability on the overall system reliability. In the

prototype system the arbiter is the only component which is not redundant

and the model assumes that an arbiter failure will result in system failure.

Results have been obtained which indicate the minimum reliability value

| the arbiter could have before the redundant system becomes less reliable

| than the nonredundant (simplex) system. Other aspects, such as the effect

of the arbiter on the system mission times, have been studied, and we hope

| to generalize these studies to enable more general systems to be modeled.

| We are also studying the possiblity of improving the arbiter for

2 future systems. The first aspect is the improvement of the arbiter's

reliability. Since the arbiter has an important role in the system and

| will become even more crucial in later versions of the system, it will

become necessary to realize the unit using some type of redundant structure. :

| Redundant implementations of the arbiter are being studied to determine

which redundancy structure would be the most suitable for the arbiter from

| cost, reliability and speed viewpoints.
A second aspect is the increasing of the arbiter capabilities.

A more powerful arbiter would be able to form a more accurate evaluation

| of the two processors, and make a better decision as to their possible

| malfunctioning. The idea of using a programmed microprocessor seems to be

an attractive way of achieving this goal. The microprocessor would not

| only be more powerful than the present hardwired arbiter, but would also

| have an increased amount of flexiblity. In addition, improving the relia-

| bility of microprocessor systems through redundancy is at present being

studied elsewhere in DSL, and promising results have been forthcoming [6].

|

78

An important aspect of the use of microcomputers in aviation systems is

the necessity of obtaining microprocessors having military specifications.

At present only one such device seems to be commercially available [7].

A final area of consideration is the possibility of replacing

the H316 processors themselves with microprocessors. This would greatly

reduce the size and weight of the system, factors which are important in

aviation systems. The speed and capabilities of current microprocessors

and semiconductor memory systems are presently being studied to determine

the feasibility of their replacing the H316 processors.

4,2.2 Error recovery techniques in computer systems

A survey was carried out of the various types of error recovery

techniques employed in current computer systems [2]. Some of the principal

systems which use these techniques were described [2], and a bibliography

containing some of the principal papers in the area of recovery techniques

was also included in [2].

A significant aspect of highly reliable computer systems is their

recovery capabilities. It is very important that some type of automatic

recovery procedure must be implemented in these systems.

Failures in digital systems are generally classified as being solid

or transient. The effects of solid faults remain in the system until

removed by the repair facility, which is very often a manual operation;

the effects of transient failures may disappear from the system. Recovery

procedures tend to differ for transient and solid faults, and several

techniques have been characterized. Generally, transient failures can be

79

|

resolved by retry or refresh methods; solid faults usually involve some

type of reconfiguration to nullify their effects, and this causes some

degree of system-performance degradation.A more comprehensive description

of these points can be found in [2].

4.2.3 System reliability modeling

The SIRU system is one example where duplication is used to achieve

| higher computer system reliabilities. Such dual redundant systems depend

upon a scheme for detecting a faulty module and giving control to the

; properly functioning unit. Various techniques exist to allow system

recovery from transient errors. In order to determine the effectiveness

| of these error detection and recovery schemes, mathematical models of the

computer systems are used.

These mathematical techniques are particularly applicable to the

analysis of dual redundant computer systems such as SIRU. Such systems

have a small number of states, making the mathematical manipulations

| feasible. The error detection and recovery methods can be modeled to

| first order by a simple Bernoulli process with probability of success, p.

Such a model incorporates a state for the error detection or recovery

technique which has probability p of returning to non-degraded system

performance and probability 1-p of entering some degraded (or failure)

state. A refinement of such a model incorporates:

(1) the probability of successful recovery without further system

degradation, i.e., the recovery effectiveness; and

(2) the probability that the system does not immediately enter a

80

failure state given that a fault occurs, i.e., coverage.

As an example of such an analysis, consider the four-state Markov chain

with states:

1 —- 2 computers functioning (full performance)

2 —-- error recovery / one computer failed

3 =— 1 computer functioning / 1 computer failed (degraded performance)

4 —- both computers failed (system failure).

Analysis of this Markov model can determine values of recovery effectiveness

and coverage necessary to achieve desired reliabilities for the computer

system [3].

It is also possible to extend the model of the error detection or

recovery process to include several states, thus realizing a more accurate

analysis of the merits of such a process. This is especially useful when

these processes are implemented with arbiters and/or microprocessors.

4.2.4 Signal reliability of a circuit

The fact that faults present ina circuit will not always cause the

output of a circuit to be incorrect leads to interest in the probability

that the output of a circuit is correct. This measure is called the signal

reliability of the circuit output.Two methods for evaluating signal

reliability have been devised [4]; the first uses the concept of fault-

equivalence classes, and the second employs the probabilistic model for

combinational circuits.

The measure has application in fault-latency studies [5]. It is

known that faults occurring in a circuit may not immediately manifest them-

selves as errors on the output of the circuit but that, generally, some

time elapses before this manifestation takes place. This interval between

81

| the occurrence of a fault and its manifestation as an error on the output

is called the "latency" of a fault, and this latency is an important

| parameter because it provides an indication as to how far to roll back a

program when an error occurs. In addition, if the latency of a fault is

large, a second fault may occur before the first is detected as an error,

and this would violate the often-used single-fault assumption.

The signal-reliability measure is also useful in modeling

intermittent faults in a circuit because it measures the instantaneous

probability of a correct output of the circuit.

4.2.5 Software reliability

This research has been concerned with methodologies for testing

and proving correct parallel software systems. Abstract modeling formalisms

| such as Petri nets, vector addition systems, Presburger logic and first

order logic have been studied as possible representations of component

interactions in parallel systems, and their ability to express correctness

criteria has been investigated. A simple 3-process single operating system

has been modeled as a Petri net, and by means of a reduction procedure

several correctness questions concerning activity and history sequences in

that system have been answered. In relation to the testing of parallel

systems, formalisms for error description, detection and injection of faults

into these systems are being investigated.

As a case study for applying the results of this research, the SIRU

inertial navigation computer, a dual redundant real time system, has been

chosen. A low level description of the system software in a PL360-like

82

language has been obtained, and is presently being used in studying the

robustness of the current software, as well as techniques for fault injection

and detection in real time operating systems. A high level representation

in PASCAL of an operating system for the SIRU dual redundant computer that

incorporates the recommendations from the above study will be obtained.

Hopefully the techniques obtained in dealing with real time systems might

be extended to more complex operating systems.

4.3 References

[1] B. E. Ressler, "Design of a Dual Computer Configuration for Redundant
Computation', M.S. Thesis, MIT, Cambridge, Mass., June 1973.

[2] E. Fregni and R. C. Ogus, "Error Recovery Techniques in Computer Systems-
A Survey", Tech. Note no. 42, Digital Systems Laboratory, Stanford
University, Stanford, California, June 1974.

[3] E. Fregni, D. Beaudry and R. C. Ogus, "A Markov Model for Reconfigurable
Computer Systems', Tech. Note no. 43, Digital Systems Laboratory,
Stanford University, Stanford, California, August 1974.

[4] R. C. Ogus, "The Probability of a Correct Output from a Combinational
Circuit", IEEE Trans. on Computers, Vol. C-24, pp. 534-544, May 1975.

[5] J. J. Shedletsky and E. J. McCluskey, "The Error Latency of a Fault in
a Combinational Digital Circuit", Digest of 5th Int'l. Symposium on
Fault-Tolerant Computing, Paris, June 1975.

[6] J. F. Wakerly, "Reliability of Microcomputer Systems Using Triple Modular
Redundancy," Tech. Note no. 61, Digital Systems Laboratory, Stanford
University, Stanford, California, April 1975.

| 7] Monolithic Memories, Inc. Data Sheet, "4-Bit Expandable Bipolar
- Microcontroller - 5701/6701," August 1974.

83

| 5. BIOGRAPHICAL SKETCHES OF PRINCIPAL RESEARCHERS IN CENTER FOR
| RELIABLE COMPUTING (CRC)

| Thomas H. Bredt, Assistant Professor of Electrical Engineering

| (on leave), Ph.D. (CS), Stanford University, 1970, is

| currently performing research on parallel computer systems

including operating systems and asynchronous logic networks.

Studies of operating systems include resource allocation

| design methodologies, system structure, logical correctness,
and error detection and recovery. Hazards in asynchronous

systems and mathematical models of parallel systems are

| also being investigated.

Jacques Losq, Research Associate in Electrical Engineering, Ph.D.

(EE), Stanford University, 1975, has been working on modelling

and analyzing redundant digital systems. His general interest

| is focused on the determination of the degree and type of

| redundancy that provide the best trade-off between cost and

performance for specific missions. This includes the study

| of massive, stand-by and mixed redundancy along with careful

| analysis of the more general survivable systems, in particular

multi-micro (or mini) computers.

84

Edward J. McCluskey, Professor of Computer Science and Electrical

Engineering, Sc.D. (EE), Massachusetts Institute of Technology,

1956, is Director of the Digital Systems Laboratory. He is

widely known for his contributions to switching theory, and

is tHe author of a standard text on the subject. His current

research efforts are directed toward the area of fault-tolerant

computing, including testing and diagnosis of digital circuits,

redundancy schemes, and reliability modeling and evaluation.

He is also involved in investigating multiprocessor systems,

particularly those using microprocessors.

Roy C. Ogus, Research Associate in Electrical Engineering, Ph.D.

(EE), Stanford University, 1975, has been project leader of the

dual computer systems project, which is involved with the

evaluation of a dual computer system used in a guidance and

navigation application. His current research interests

include the areas of computer reliability, fault-tolerant

computing, computer architecture and microprocessor systems.

John F. Wakerly, Assistant Professor of Electrical Engineering,

Ph.D. (EE), Stanford University, 1974, has been active in the

development of the Digital Systems Laboratory's hardware laboratory.

His research interests are in the areas of computer hardware

reliability and maintainability, computer architecture, and

microcomputer systems. His current projects include the

design and construction of an ultra-reliable triplicated

microcomputer system, a multi-microprocessor network, and

a self-diagnosing minicomputer system.

’ 85

| 6. LISTING OF PERSONNEL IN CENTER FOR RELIABLE COMPUTING

| DIRECTOR: Edward J. McCluskey
ASSTSTANT DIRECTORS: Thomas H. Bredt

John F. Wakerly

Roy C. Ogus
:

SENIOR RESEARCH STAFF: Jacques Losq
Andre Verdillon

STUDENT RESEARCHERS: R. Betancourt

D. M. Beaudry
M. L. Blount

D. Davies

M. Hadidi

A. F. Hunter

S. G. Kolupaev
P. J. LeVine

D. J. Lu

J. R. McClure

K. P. Parker

J. V. Phillips
J. Savir

J. J. Shedletsky

P. A. Thompson
W. A. Wallach

87

7. PREVIOUS RESEARCHERS IN CRC

| Previous researchers in the Center for Reliable Computing

together with their current locations and Ph.D. dissertation titles

| are listed below.

Thomas H. Bredt - Hewlett-Packard Computer Division, Cupertino, CA.

Ph.D. 1970, "Control of Parallel Processes."

| Frederick W. Clegg - Hewlett-Packard Computer Division, Cupertino,CA.
Ph.D. 1970, "Algebraic Properties of Faults in Logic Networks."

Donald J. Chesarek - IBM Systems Development Division, Los Gatos, CA.
Ph.D. 1972, "Fault Detecting Experiments for Sequential Machines."

Donald P. Siewiorek - Carnegie-Mellon University, Departments of
Computer Science and Electrical Engineering, Pittsburgh, Pa.

Ph.D. 1972, "Fault-Tolerant Computers Using Self-Diagnosis and

Hybrid Redundancy."

Raymond T. Boute - Bell Telephone Manufacturing Co., Antwerp, Belgium.
Ph.D. 1973, "Faults in Sequential Machines: Algebraic Properties
and Defection Methods."

| Jacob A. Abraham - University of Illinois, Department of Electrical

| Engineering, Champaign, IL.

Ph.D. 1974, "Reliability Analysis of Digital Systems Protected

| by Massive Redundancy."

Hajime Mitarai - Canon Industries, Tokyo, Japan.

Ph.D. 1974, "The Use of Semiconductor Read-Only Memory for Logic."

John F. Wakerly - Digital Systems Laboratory, Stanford University,
Stanford, CA.

Ph.D. 1974, "Low-Cost Error Detection Techniques for Small Computers."

David T. Wang - IBM Systems Products Division, Endicott, NY.
Ph.D. 1974, "An Algorithm for the Generation of Test Sets for
Combinational Logic Networks."

Jacques Losq - Digital Systems Laboratory, Stanford University, Stanford, CA.
~ Ph.D. 1975, "Modelling and Reliability of Redundant Digital Systems."

Kenyon C. Y. Mei - Hewlett-Packard Computer Division, Cupertino, CA.

Ph.D. 1975, "Dominance Relations of Stuck-~at and Bridging

Faults in Logic Networks."

| 88

x Roy C. Ogus —- Digital Systems Laboratory, Stanford University, Stanford, CA.
Ph.D. 1975, "Design and Evaluation of Ultra-Reliable Hybrid

| Redundant Digital Systems."

Francisco J. 0. Dias - University of Sao Paulo, Sao Paulo, Brazil.

Ph.D. 1975, "Multiple Fault Analysis in Combinational Logic
| Circuits."

| In addition, the following scholars have visited the CRC and performed
research in the listed areas.

Pawel N. Kentopf - Polish Academy of Sciences, Warsaw, Poland.
Design of universal logic modules.

Yoshihiro Tohma - Tokyo Institute of Technology, Tokyo, Japan.

Redundancy techniques for constructing ultra-reliable systems.

S4ndor Vdrszegi - Computer and Automation Institute, Hungarian
Academy of Sciences, Budapest, Hungary.

| Testing of digital networks.

Andre Verdillon - University of Grenoble, Grenoble, France.

Fault properties.

)

f

89

F 8. CENTER FOR RELIABLE COMPUTING BIBLIOGRAPHY

| 8.1 JOURNAL PAPERS

Prepared Under Previous NSF Grants

| +Abraham, J. A. and Siewiorek, D. P., "An Algorithm for the Accurate
| Reliability Evaluation of Triple Modular Redundancy Networks,"

IEEE Transactions on Computers, Vol. C-23, No. 7, July, 1974,
5 pp. 682-693.

] *Abraham, J. A., "A Combinatorial Solution to the Reliability of Inter-
woven Redundant Logic Networks," IEEE Transactions on Computers,

Vol. C-24, No. 5, May, 1975, pp.578-584.

*Betancourt, R., "Derivation of Minimum Test Sets for Unate Logical

Circuits," IEEE Transactions on Computers, Vol. C-20, No. 11,

i November, 1973, pp. 1264-1269.

+Boute, R. T., "Distinguishing Sets for Optimal State Identification in

| Checking Experiments," IEEE Transactions on Computers, Vol. C-23,

3 No. 8, August, 1974, pp. 874-878.

+Boute, R. T., "Optimal and Near-Optimal Checking Experiments for Output

Faults in Sequential Machines," IEEE Transactions on Computers,

Vol. C-23, No. 11, November 1974, pp. 1207-1213.

Clegg, F. W., "Use of SPOOF's in the Analysis of Faulty Logic Networks,"
IEEE Trans. on Computers, Vol. C-22, No. 3, March, 1973,

pp. 229-234

| ¥Dias,FF. J. 0O., "Fault Masking in Combinational Logic Circuits," IEEE
Transactions on Computers, Vol. C-24, No. 5, May, 1975, pp. 476-

: 482.

| *McCluskey, E. J., "Test and Diagnosis Procedures for Digital Networks,"
Computer, Vol. 4, No. 1, January/February, 1971, pp. 17-20.

*McCluskey, E. J. and F. W. Clegg, "Fault Equivalence in Combinational

| Logic Networks," IEEE Transactions on Computers, Vol. C-20, No. 11,

November 1971, pp. 1286-1293.

+Mei,K. C. Y., "Bridging and Stuck-At Faults," IEEE Transactions on Com-

| puters, Vol. C-23, No. 7, July, 1974, pp. 720-727.
+Ogus, R. C., "Fault-tolerance of the Iterative Cell Array Switch for

. Hybrid Redundancy," IEEE Transactions on Computers, Vol. C-23, No. 7,

July, 1974, pp. 667-682.

| ee —
n

* NSF grant GJ 165

| + NSF grant GJ 27527

: ¥ NSF grant GJ 40286

90

YOgus,R. C., "The Probability of a Correct Output from a Combinational
Circuit, IEEE Transact-ions on Computers, Vol. C-24, No. 5 May, 1975.

pp. 534-544.

yParker,K. P. and E. J. McCluskey, "Analysis or Logic Circuits with
Faults Using Input Signal Probabilities," IEEE Transactions on Com-

puters, Vol. C-24, No. 5, May, 1975, pp. 573-578.

¥Parker,K. P. and E. J. McCluskey, "Probabilistic Treatment of General
Combinational Networks," IEEE Transactions on Computers, Vol. C-24,

No. 6, June, 1975, pp. 668-670.

t+Siewiorek, D. P. and E. J. McCluskey, 'An Iterative Cell Switch Design

for Hybrid Redundancy," IEEE Transactions on Computers, Vol. C-22,

No. 3, March, 1973, pp. 290-298.

+Siewiorek, D. P. and E. J. McCluskey, "Switch Complexity in Systems

with Hybrid Redundancy,' IEEE Trans. on Computers, Vol. C-22, No. 3,
March, 1973, pp. 276-282.

+Siewiorek, D. P., "Reliability Modeling of Compensating Module Failures

in Majority Voted Redundancy," IEEE Transactions on Computers,

Vol. C-24, No. 5, May 1975, pp. 525-533.

¥Usas,A. M., "A Totally Self-Checking Checker Design for the Detection

of Errors in Periodic Signals," IEEE Transactions on Computers,

Vol. C-24, No. 5, May, 1975, pp. 483-489.

t+Wakerly, J. F., "Partially Self-Checking Circuits and Their Use in Per-

forming Logical Operations,' IEEE Transactions on Computers, Vol. C-23,

No. 7, July, 1974, pp. 658-667.

tWakerly, J. F., "Detection of Unidirectional Multiple Errors Using Low-

Cost Arithmetic Code," IEEE Transactions on Computers, Vol. C-24,

No. 2, February, 1975, pp. 210-212.

®Wakerly, J. F., "Transient Failures in Triple Modular Redundancy Systems

with Sequential Modules," IEEE Transactions on Computers, Vol. C-24,

No. 5, May, 1975, pp. 570-573.

tWang, D. T., "An Algorithm for the Generation of Test Sets for Combina-

tional Networks," IEEE Transactions on Computers, Vol. C-24, No. 7,

July, 1975, pp. 742-746.

tWang,D. T., "Properties of Faults and Criticalities of Values under

Tests for Combinational Networks," IEEE Transactions on Computers,

Vol. C-24, No. 7, July, 1975, pp. 746-750.

- + NSF grant GJ 27527

¥ NSE grant GJ 40286

® NSF grant GJ 43322

91

8.2 CONFERENCE PAPERS

Prepared Under Previous NSF Grants

+Abraham, J. A., "An Algorithm for the Accurate Reliability Evaluation

of TMR Networks," Digest of 1973 International Symposium on Fault-

Tolerant Computing, Palo Alto, California, June 20-22, 1973,

pp. 119-125.

+tBoute, R. and E. J. McCluskey, "Fault Equivalence in Sequential Machines,"

Symposium on Computers and Automata, Polytechnic Institute of Brooklyn,
April 13-15, 1971, pp. 483-507.

+Boute, R. T., "Algebraic Properties of Testing and Diagnosing Sequences,"

Digest of 1975 International Symposium on Fault-Tolerant Computing,

Paris, France, June 18-20, 1975, p. 242.

*Clegg, FF. W., "Use of SPOOFs for Faulty Logic Network Analysis," Digest

of 1972 International Symposium on Fault-Tolerant Computing, Newton

Massachusetts, June 19-21, 1972, pp. 143-148.

*Clegg,FF. W. and E. J. McCluskey, "The Algebraic Approach to Faulty

Logic Networks," Digest of 1971 International Symposium on Fault-

Tolerant Computing, Pasadena, California, March 1-3, 1971, pp. 44-46.

¥Dias, FF. J. O0., "Fault Masking in Combinational Logic Circuits," Digest

of 1974 International Symposium on Fault-Tolerant Computing, Urbana,

Illinois, June 19-21, 1974, pp. 1.23-1.30.

¥Losq, J., "Influence of Fault-Detection and Switching Mechanisms on the

Reliability of Stand-By Systems," Digest of 1975 International Sym-

posium on Fault-Tolerant Computing, Paris, France, June 18-20, 1975,

pp. 81-86.

j-McCluskey, E. J., "Probability Models for Logic Networks," Proc. of the

Fourth Manitoba Conference on Numerical Mathematics, Winnipeg, Canada,

October 2-5, 1974, pp. 21-28..

@McCluskey, E. J., "Micros, Minis and Networks," Proceedings of the Meet-
ing on Twenty Years of Computer Science, Pisa, Italy, June 16-19, 1975,

pp. 23-33.

+Mei, K. C. Y., "Bridging and Stuck-At Faults," Digest of 1973 Interna-

tional Symposium on Fault-Tolerant Computing, Palo Alto, California,

June 20-22, 1973, pp. 91-95.

* NSF grant GJ 165

+ NSF grant GJ 27527

¥ NSF grant GJ 40286

92

+Mitarai, H., "Design of a Parallel Encoder /Decoder for the Hamming Code,
Using ROM," First USA-Japan Computer Conference, Tokyo, Japan,

October, 1972.

+Mitarai, H., "ROM Micro-Reduction Techniques," Second USA-Japan Computer
Conference, Tokyo, Japan, August 1975.

¥Ogus, R. C., "The Probability of a Correct Output from a Combinational

Circuit," Digest of 1974 International Symposium on Fault-Tolerant

Computing, Urbana, Illinois, June 19-21, 1974, pp. 1.13-1.20.

+Ogus, R. C., "Fault-Tolerance of the Iterative Cell Array Switch for

Hybrid Redundancy," Digest of 1973 International Symposium on Fault-
Tolerant Computing, Palo Alto, California, June 20-22, 1973, pp. 107-
113.

tOgus, Roy c., and J. F. Wakerly, "Fault-Tolerant Designof Minicomputers,"
Proc, Symp. on Minicomputers, South African Council for Automation
and Computation, Pretoria, South Africa (September 1973).

¥Parker,K. P. and E. J. McCluskey, "Analysis of Logic Circuits with

Faults Using Input Signal Probabilities," Digest of 1974 Interna-
tional Symposium on Fault-Tolerant Computing, Urbana, Illinois,

June 19-21, 1974, pp. 1.8-1.13.

+Reese, R. D. and E. J. McCluskey, "A Gate Equivalent Model for Combina-

tional Logic Network Analysis," Digest of 1973 International Sym-

posium on Fault-Tolerant Computing, Palo Alto, California, June 20-22,

1973, pp. 79-85.

¥Shedletsky, J. J. and E. J. McCluskey, "The Error Latency of a Fault in
a Combinational Digital Circuit," Digest of 1975 International Sym-

posium on Fault-Tolerant Computing, Paris, France, June 18-20, 1975,

pp. 210-214.

tSiewiorek, D. P. and E. J. McCluskey, "An Iterative Cell Switch Design

for Hybrid Redundancy," Digest of 1972 International Symposium on

Fault-Tolerant Computing, Newton, Massachusetts, June 19-21, 1972,

pp. 182-189.

+Siewiorek, D. P., "Reliability Modeling of Compensating Module Failures

in Majority Voted Redundancy," Digest of 1974 International Sym-

posium on Fault-Tolerant Computing, Urbana, Illiois, June 19-21,

1974, pp. 2.14-2.20.

®Usas,A. M., "Fail-Safe Circuits: A Means to Improve Reliability and

Maintainability of I/O Subsystems," Digest of Fall, 1975 CompCon

Conference, Washington, D.C., September 9-11, 1975,

t+ NSF grant GJ 27527

¥ NSF grant GJ 40286

® NSF grant GJ 43322

93

: ¥Usas,A. M. and E. J, McCluskey, "Design and Application of a Self-
Checking Periodic Signal Checker," Digest of Fall, 1974 CompCon

Conference, Washington, D.C., September 10-12, 1974, pp. 83-91.

¥Wakerly, J. F. and E. J. McCluskey', "Design of Low-Cost General-Purpose

| Self-Diagnosing Computers," Proceedings of the IFIP Congress 1974,
Stockholm, Sweden, 1974, pp. 108-111.

t+Wakerly, J. F., "Partially Self-Checking Circuits and Their Use in Per-

forming Logical Operations," Digest of 1973 International Symposium

on Fault-Tolerant Computing, Palo Alto, California, June 20-22, 1973,

A pp. 65-73.

¥ NSF grant GJ 40286

+ NSF grant GJ 27527

94

8.3 TECHNICAL PAPERS

Prepared under Previous NSF Grants

[TR 4] *Clegg,FF. W. and E. J. McCluskey, "Algebraic Properties of
Faults in Logic Networks," Tech. Rpt. no. 4, SU-SEl~

69-078, March 1970. 140 pages.

[TR 11] *Clegg, F. W., "The SPOOF: A New Technique for Analyzing the
Effects of Faults on Logic Networks," Tech. Rpt. no. 11,

SU-SEL-70-073, August 1970. 40 pages.

[TR 15] +Boute, R. and E. J. McCluskey, "Fault Equivalence in Sequen-
tial Machines," Tech. Rpt. no. 15, SU-SEL-71-038, June

1971. 48 pages.

[TR 20] +Siewiorek, D. P. and E. J. McCluskey, "An Iterative Cell
Switch Design for Hybrid Redundancy," Tech. Rpt. no. 20,

SU-SEL-71-064, December 1971. 60 pages.

[TR 21] +4Siewiorek, D. P. and E. J. McCluskey, "A Measure of Switch
Complexity in Systems with Standby Spares," Tech. Rpt.

no. 21, SU-SEL-71-065, December 1971. 51 pages.

[TR 22] +Siewiorek, D. P., "Models of Self-Diagnosable Systems,"
Tech. Rpt. no. 22, SU-SEL-71-066, December 1971. 38 pages.

[TR 23] +Siewiorek, D. P., "An Improved Algorithm for Selecting a Set
of Diagnostic Tests," Tech. Rpt. no. 23, SU-SEL-71-067,

December 1971. 17 pages.

[TR 24] +Siewiorek, D. P., "An Improved Reliability Model for NMR,"
Tech. Rpt. no. 24, SU-SEL-72-004, December 1971. 35 pages.

[TR 30] +Boute, R. T., "Adaptive Design Methods for Checking Sequences,"
Tech. Rpt. no. 30, SU-SEL-72-034, July 1972. 31 pages.

[TR 35] +Kolupaev, S. G., "Separate Non-Homomorphic Checking Codes
for Binary Addition," Tech. Rpt. no. 35, SU-SEL-72-033,

July 1972. 24 pages.

[TR 36] 4Mitarai, H. and E. J. McCluskey, "Design of a Parallel Encoder/
Decoder for the Hamming Code Using ROM," Tech. Rpt. no. 36,

SU-SEL-72-030, June 1972. 25 pages.

* NSF grant GJ 165

+ NSF grant GJ 27527

95

[TR 37] tBoute, R. T., "Algebraic Properties of Test Sequences and Fault
Relations," Tech. Rpt. no. 37, SU-SEL-72-051, November 1972.

| 45 pages.

| [TR 38] +Boute, R. T., "Equivalence and Dominance Relations between
Output Faults 1n Sequential Machines," Tech. Rpt. no. 38,

SU-SEL-72-052, November 1972. 43 pages.

| [TR 39] +Boute, R. T., "Properties of Memory Faults in Sequential Machines,"
Tech. Rpt. no. 39, SU-SEL-72-053, November 1972. 42 pages.

[TR 403 +Boute, R. T., "Checking Experiments for Output Faults,"

Tech. Rpt. no. 40, SU-SEL-72-054, November 1972. 45 pages.

[TR 41] +Boute, R. T., "Fault Detection in Fundamental-Mode Circuits,"
Tech. Rpt. no. 41, SU-SEL-72-055, November 1972. 76 pages.

[TR 49] tKolupaev, S. G., "Self-Testing Residue Trees," Tech. Rpt. no. 49,
SU-SEL-73-030, August 1973. 47 pages.

[TR 50] *+Wakerly, J. F., "Partially Self-Checking Circuits and Their Use
in Performing Logical Operations," Tech. Rpt. no. 50,

SU-SEL-73-039, August 1973. 41 pages.

[TR 51] +Wakerly, J. F., "Low-Cost Error Detection for Small Computers,”
1 Tech. Rpt. no. 51, SU-SEL-74-007, December 1973. 221 pages.

| [TR 55]40gus, r. c., "Fault-Tolerance of the Iterative Cell Array Switch
| for Hybrid Redundancy through the Use of Failsafe Logic,"
A Tech. Rpt. no. 55, SU-SEL-73-031, August 1973. 66 pages.

[TR 56] +Abraham, J. A. and D. P. Siewiorek, "Reliability Modeling of
: NMR Networks," Tech. Rpt. no. 56, June 1974. 71 pages.

[TR 58]¥Losq, J., "Modeling and Reliability of Redundant Digital Systems,"
Tech. Rpt. no. 58, February 1975. 130 pages.

[TR 62]¥Losq, J., "A Highly Efficient Redundancy Scheme: Self-Purging
Redundancy," Tech. Rpt. no. 62, July 1975. 34 pages.

| [TR 65] +0gus, rR. C., "Reliability Analysis of Hybrid Redundant Systems
with Nonperfect Switches," Tech. Rpt. no. 65, SU-SEL-74-052,

November 1974. 101 pages.

[TR 75] ¥Losq, J., "Influence of Fault-Detection and Switching Mechanisms
| on the Reliability of Stand-by Systems," Tech. Rpt. no. 75,

July 1975. 35 pages.

+ NSF grant GJ 27527

¥ NSF grant GJ 40286

96

[TR 93] yParker, K. and E. J. McCluskey, "Sequential Circuit Output
Probabilities from Regular Expressions," Tech. Rpt. no. 93,

SU-SEL-75-023, June 1975. 31 pages.

[TR 94] yDias, F. O., "Truth-Table Verification of an Iterative Logic
Array," Tech. Rpt. no. 94, SU-SEL-75-024, June 1975.

31 pages.

¥ NSF grant GJ 40286

97

8.4 TECHNICAL NOTES

Prepared under Previous NSF Grants

[TN 2] *Mei, XK. C. Y., "Fault Dominance in Combinational Circuits,"
: Tech. Note no. 2, August 1970. 24 pages.

| [TN 31 *Betancourt, R., 'Derivation of Minimum Test Sets for Unate
| Logical Circuits," Tech. Note no. 3, August 1970.

24 pages.

[TN 571 *Siewiorek, D. P., "On Rapid Calculating Techniques for the
Reliability of Serial Triple-Modular Redundancy," Tech.

Note no. 5, October 1970. 14 pages.

[TN 8] *Siewiorek, D. P., "A Re-evaluation of the Classical Model for
NMR Reliability, Tech. Note no. 8, March 1971. 13 pages.

[TN 9] +Boute, R., "Algorithms for Combinational Fault Equivalence
Using LISP," Tech. Note no.9, September 1971. 26 pages.

| [TN 10] *McCluskey, E. J. and F. W. Clegg, "Fault Equivalence in Com-
binational Logic Networks," Tech. Note no. 10, March 1971.

34 pages.

[TN 13] tSiewiorek, D. P. and E. J. McCluskey, 'Switch Designs for
Hybrid Redundancy," Tech. Note no. 13, December 1971.

22 pages.

[TN 14] +Siewiorek, D. P., "A Unifying Perspective of Fault Tolerant
Computer Techniques," Tech. Note no. 14, December 1971.

26 pages.

[TN 18] tParker, K., "Probabilistic Test Generation," Tech. Note no. 18,
January 1973. 13 pages.

[TN 19] +Kolupaev, S. G.,. "Self-Testing Modulo 3 Residue Tree," Tech.
Note no. 19, July 1972. 12 pages.

[TN 20] ¥Parker, K. P. and E. J. McCluskey, "Probabilistic Treatment
of General Combinational Networks," Tech. Note no. 20,

November 1973. 7 pages.

[TN 21] ¥Parker, K. P. and E. J. McCluskey, "Analysis of Logic Circuits
with Faults Using Input Signal Probabilities," Tech. Note

no. 21, January 1974. 19 pages.

* NSF grant GJ 165

+ NSE grant GJ 27527

¥ NSE grant GJ 40286

98

[TN 26] +Wakerly,J. F., "Detection of Unidirectional Multiple Errors
Using Low-Cost Arithmetic Codes," Tech. Note no. 26,

May 1973. 10 pages.

[TN 28] $Reese, R. D. and E. J. McCluskey, "A Gate Equivalent Model
for Combinational Logic Network Analysis," Tech. Note

no. 28, January 1973. 21 pages.

[TN 31] ¥Dias, F. J. O0., "Fault Masking in Combinational Logic
Circuits," Tech. Note no. 31, January 1974. 17 pages.

[TN 32] *Abraham, J. A., "A Combinatorial Solution to the Reliability
of Interwoven Redundant Logic Networks," Tech. Note

no. 32, January 1974. 22 pages.

[Tn 33]¥Losq, J., "Redundancy Scheme for Optimum Multiple Fault
Tolerance," Tech. Note no. 33, January 1974. 21 pages.

[Tn 34]¥Losq, J., "Computer Networks with Constant Maximum Delay Under
Communication Line Failures," Tech. Note no. 34, January

1974. 33 pages.

[Tn 35] ¥Ogus, R. C., "The Probability of a Correct Output from a
Combinational Circuit," Tech. Note no. 35, January 1974.

34 pages.

[TN 38] ¥Wakerly, J. F. and E. J. McCluskey, "Design of Low-Cost
General-Purpose Self-Diagnosing Computers," Tech. Note

no. 38, January 1974. 18 pages.

[TN 39] yWakerly, J. F., "Checked Binary Addition Using Parity Predic-
tion and Checksum Codes," Tech. Note no. 39, January

1974. 16 pages.

[TN 45] ¥Usas,A. M., "The Detection of Errors in Periodic Signals,"
Tech. Note no. 45, April 1974. 33 pages.

[TN 55] ¥Shedletsky, J. J. and E. J. McCluskey, "The Error Latency
of a Fault in a Combinational Digital Circuit,"

Tech. Note no. '55, November 1974. 21 pages.

[TN 56] ¥Shedletsky, J. J. and E. J. McCluskey, "The Error Latency
of a Fault in a Sequential Digital Circuit," Tech. Note

no. 56, December 1974. 23 pages.

[TN 58] *McCluskey, E. J., "Micros, Minis and Networks," Tech. Note
no. 58, June 1975. 10 pages.

+ NSF grant GJ 27527

¥ NSF grant GJ 40286

1 99

[Tn 59] Usas, A. M., "Fail-Safe Circuits: A Means to Improve the
Reliability and Maintainability of I/O Subsystems,’
Tech. Note no. 59, June, 1975. 4 pages.

[TN 60] *McCluskey, E. J., K. P. Parker and J. J. Shedletsky, "Boolean
4 Network Probabilities and Network Design," Tech. Note no. 60,

July 1975. 5 pages.

.

| ¥ NSF grant GJ 40286

