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Abstract.

A FORTRAN subroutine 1s described for finding interpolating natural

splines of odd degree for an arbitrary set of data points. The subroutine

makes use of several of the subroutines in de Boor's package for

calculating with B-splines. An ALGOL W translation of the interpolating

natural spline subroutine and of the required subroutines of the de Boor

package are also given. Timing tests and accuracy tests for the routines

are described.
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We now explain how a piecewise polynomial function can be expressed

+1

as a linear combination of B-splines. Let § = (8,)} be a strictly

increasing real sequence and let k be a positive integer. If Piy..er Fy

1s any sequence of [f polynomials, each of order k (or, degree < k)

then we define a corresponding pilecewise polynomial f of order k by

the prescription

We arbitrarily make f continuous from the right at the interior

breakpoints, 1.e.,

+

1 i

We denote the collection of all such piecewise polynomial. functions of

+1

order k with breakpoint sequence E = (8.0.7 by

TP, ¢ :
. Note that TP ¢ 1s a linear space of dimension kf since it is isomorphicJ

to the direct product of I copies of TP , the linear space of all

polynomials of order k (degree < k) . A convenient way to represent

a pilecewise polynomial function f e TP ¢ is by2

k r-1
f(t) = 25 _— -E.) y Bi St <EL,, i=L2...,1 (2.7)

r=1

r-l_. .t Cos
where C_, =D £(g;)/(r-1): » * = Leek 3 1 = 1,..0,0 . Then the2

j-th derivative of f at a point t is gilven by

k reed
Dif(t) = 2 C. .(t-g) ~I(r-1)1/(r-1-3) . (2.8)

.., T ,1 1
r=jtl

We often wish to impose upon f the conditions that it have a certain

number of continuous derivatives. We may write such conditions in the form



J-1 : :

for some vector v = (v;); with nonnegative integer entries. The subset

of all feTPy c satisfying (2.9) for a given v 1s a linear subspaceJ

of which we denote b |Pk, y Tx, Ev.
In order to obtain the B-spline representation of a piecewise

polynomial function f Tx we need the following theorem which) Es \Y

was proved by Curry and Schoenberg [5] and by de Boor [4].

+1

Theorem. For a given strictly increasing £ = (€:)1 , and given

nonnegative integer sequence vy = (vs )o » with Vi <k , all i , set

{ 4

n= k + TD (k-vy) = k= Boy = dnp (2.10)
i= i=2 “5

n+k

and let tT = (t i be any non-decreasing sequence so that

(1) ty < ty cee S ty = 81 ? So+1 2 Ctl _ ntk

(11) for 1 = 2,...,f , the number €; occurs exactly k-v, times in t .

Then the sequence Ny ee No K of B-splines of order k (or degree k-1)p b

corresponding to the knot sequence t 1s a basis for Te ¢ considered- 3 SV

as functions on [5 tq) ]

From this theorem we see that the B-spline representation for the

iecewise polynomial function fe 1s
p poly i= 6 v

t. < :N s St <ty and k<i<n

fe) = > al (8) (2.11
= or t, <t<+t, . andi = n

i —-—  — itl

where a = (a); are the coefficients of f with respect to the B-spline
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basis (N. ,)° for TP on the knot sequence ti,k’1 k Ey . Then the j-th

derivative of f at a point t 1s given by

1

Df (t) = 2, a AN A(t) 2.12
r=i-ktj+1" ’ Jrl r,k-J

where

d.. ’ J=0

°r, j+l = » (2.13)
a_. =~ a :

rg rel, :

r+k-j Tr

provided that either tv. <1 < tig and k < i <n

or t, < t < ti and 1 = n .

i
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5 Representation of the Interpolating Spline.

Given a set of data points (x55) , 1 = Nl,Nl+1,...,N2 with

Xn < Xo < . J. < Xo we seek the interpolating natural spline function

S(x) of degree 2m-1 with knots X12 000 Kyo . For convenience 1n the

FORTRAN implementation of the algorithm we shall assume throughout that

Nl = 1. Then N2 is the number of data points. For our interpolating

natural spline S(x) we wish to make use of the B-spline representation

given 1n equation (2.11) and the theorem on which it 1s based. We choose

k = 2m , f = N2-1 . Since pd s(x) ;, J = Li2y.002m=1 , are continuous

at all interior knots, we have vi = 2m-l, all i , and we easily find

that n = N2+2m-2 . We choose

— ro 1

The knot distribution is shown in Figure 1.

X X 3 Xr x X X1 2 X), CL 2-3 2-2 N2-1 N2
} _—
t t t t ton ’

+ + +2m- -

1 om+ 1 m+ 2 Comets a. N2+2m-4  “Ne+2m-3 t Noromen boone

Sytem

Com CNothim-2

Figurel



From equation (2.11) we have the B-spline representation

: t. <t <t, and 2m <i < N2+2m-2
1 i —- i+l

— «2

S(1) = Ia p(t) (or . (3.2)r= 1s t, <t <t, and i = Ne+2m-2
i —- = "itl

Now S(x) must satisfy the interpolating conditions

and the natural spline end conditions

DIs(x,) = DS(x,) = 0 , J = mmtl,...,2m2 if m > 1 . (3.4)

Substituting equation (3.2) into equations (3.3) and (3.4) we obtain the

following set of equations for the determination of the a, *

2m .
DVs(x,) - 2 aD No. on(%y) = 0, 3 = mml,...,2m-2 (3.5)r=1

emti~-1

- ' -_ . — 6s(x, ) 2 al. op (%5) Vs oo 1 1,2, 000, N2 (3.6)
r=1

5 N2+2m-2 5
D 8(xy0) = 2, aD Np ome) =0 , j=mml,...,2m-2 (3.7)

r=N2-1

We now show that these equations lead to a (2m-1)-banded system

of linear equations for the determination of the a. In Section 2 it

was pointed out that N. ont) is positive for t <t <t_,, and zero

. otherwise. From equation (2.5) we conclude that at a knot t, of

multiplicity d._, D°N (t) is continuous for s = 0,1,...,2m-1-d, .
J r, 2m J

In-particular, if d, = 2m-1 , then N (t) is continuous at t
J r, 2m J

but none of its derivatives 1s continuous at ge . If d. = 2m , then

even N. om (T) 1s discontinuous at te . For the coefficients inJ

equations (3.6) we therefore conclude that

9



Nomii-1,0m (5) = ©
1 = 2535 000yN2=-1

For the coefficients in equation (3.5) we find that |

J :

J Ed mym+l, ,..,2m=-2

= 0 7 TY = Jt2y eeey2m

and for the coefficients in (3.7)

J _ _ _ _Z_
D Nom (yp) = 0, r = N2-1,...,N2+2m-3-j

J == My eoeoylM=2 .

If we denote the non-zero coefficients of the system of equations

given by (3.5), (3.6), (3.7) by x , then the coefficient matrix has

the form:

10
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We have boxed the coefficients of ay and otom © to emphasizethe

fact that these two coefficients can be calculated at once and eliminated

from the remaining equations yielding a banded matrix with m-1

subdiagonals and m—-1 superdiagonals. We use the first and last

equations of (3.6) to obtain

ay = V/Vp(x)

“No+om-2 © Ye!Nyotom-2, om (Kye) ‘

Then from (3.5) and (3.7) we have

el. J
Ra D Np om (%) =a, D Ny om(%) (3 +8)

J = mymt+l, ...,2m=-2

and

Ne+2m-3 ; 3
Z AL DN, (x.,) = - D° WN (205) (3.9)reNetom-2-j I rom Ne No+om-2 N2+2m-2 \N2

J = 2M=2,5 6 ees .

The remaining equations are given by (3.6) with the first and last

equations omitted. Now we have a banded system; the unknowns are

8p 8 [ Fryal242m-3 which we rename 213 2Zp9 eer Zyninn) We note that
the diagonal elements of the system matrix are in order

mt+1 2m=2
DN, or (3) ; DN (x7) seals D Nom X)

Nip 1, om(¥p) No, om %s) reer Ngoymo2 CR

2m=-2 b-3N |

D No+m-1, 2m Ne) » D7 TN, omFp) ees D Myint om, om (Fp)

The subdiagonal and superdiagonal elements are also values and derivatives

of B-splines evaluated at the knots.

12



All the elements of this matrix are calculated by using the

subroutines of de Boor's B-spline package [4]. The elements of the

matrix are stored in diagonal form for use of the band matrix solver

subroutines BANDET and BANDSL which are essentially FORTRAN implementations

of the corresponding ALGOL 60 procedures given by Martin and Wilkinson [10].

The diagonal elements are stored as Q(i,m) , the subdiagonal elements

as Q(i,j) , J = L,2,...,m-1 , the superdiagonal elements as Q(i,J) ,

j= ml,m2,...,2m~1 , where 1 = 1,2,...,N2+2m-k4 .

The solution of this system of equations yields the coefficients a,

of the B-spline representation (3.2) for the interpolating natural spline

S(t) . The values of S(t) and its derivatives can be evaluated at any

point by means of subroutines in the de Boor package. In particular

we can obtain the piecewise polynomial representation (2.7) (or (1.1))

of S(x) by evaluating the function and the derivatives at the breakpoints.

13



4, The FORTRAN Subroutine.

Before describing the FORTRAN subroutine NATSPP for the interpolating

natural spline we first describe briefly those subroutines of the de Boor

package [4] which are used in the subroutine NATSPP.

We begin with a summary of the FORTRAN variables and their intended

use and a terse summary of the subprograms and their intended use,

The B-spline representation consists of

T(1)y...,T(N+K) , the knot sequence, assumed nondecreasing; 1ft appears

J times in this sequence, then the (K-j)-th derivative

may Jump at tt.

A(l), ...,A(N) , B-spline coefficients for the function represented on

(T(x), T(W1) )

N , the number of B-splines of order K for the given knot

sequence.

K, order (= degree +1) of the B-splines; should be < 20 .

The piecewise-polynomial representation consists of

XI(1)yeee, XI(IXI+1) , the breakpoint sequence, assumed increasing.

C(1l,1),eee, C(K,IXI) , values of derivatives at breakpoints; precisely

c(J,I) is (J-1)-st derivative at XI(I)+ ,

J=l,.0eyK . Note that the coefficients in (2.7)

and (1.1) are these derivatives divided by (J-1): .

K, order (= degree +1) of polynomial pieces; should be < 20 .

Other variables are defined in the subroutine summary which follows:

14



subroutine BSPLDR(T,A,N,K,ADIF,NDERIV)

Constructs divided difference table for B-spline coefficients

preparatory to derivative calculation and stores 1t in

ADIF(1,1),+.., ADIF(N,NDERIV) . Expects NDERIV in the interval [2,K] .

Used only 1n BSPLPP, prior to call of BSPLEV.

subroutine BSPLEV(T,ADIF, N, X, X, SVALUE, NDERIV)

Calculates value of spline and its derivatives at X from B-spline

representation and returns them in SVALUE(1l), . ..' SVALUE(NDERIV) . Can

use A for ADIF if NDERIV = 1 . Otherwise must have ADIF filled

beforehand by BSPLDR. Uses INTERV and BSPLVN. Used only in BSPLPP.

subroutine BSPLPP(T,A, N, XK, SCRTCH, XI, C, IXI)

Converts B-spline representation to piecewise-polynomial representation.

SCRTCH is temporary storage of size (N,K) . Uses BSPLDR and BSPLEV.

Used in NATSPP, the subroutine for natural spline interpolation.

subroutine BSPLVN(T, JHIGH, INDEX, X, ILEFT, VNIKX)

Calculates value of all possibly'nonzero B-splines at X of order

J = max{JHIGH, (J+1)*(INDEX-1)} on T . ILEFT is input, assumed so that

T(ILEFT) < T(ILEFT+1) ; get division by zero otherwise. If

T(ILEFT) < X < T(ILEFT+1l) (as would be expected) then VNIKX(I) is

filled with B-spline value N(ILEFT-J+I,J) at X , I =1,.,..,J .

Get limit from right or left, if X = T(ILEFT) or T(ILEFT+1)

respectively. Can save time by using INDEX = 2 in case this call's

desired order J is greater than the previous call's order (saved in J)

provided T , X , ILEFT and VNIKX are unchanged between the calls.

Otherwise, use INDEX = 1 . Used in BSPLEV, BSPLVD and NATSPP.

15



subroutine BSPLVD (T,K,X, ILEFT,VNIKX,NDERIV)

Calculates value and derivatives of order < NDERIV of all

B-splines which do not vanish at X . ILEFT is input, assumed so that

T(ILEFT) < T(ILEFT+l) ; get division by zero otherwise. If

T(ILEFT) < X < T(ILEF+1) (as would be expected) then VNIKX(I,J)

is filled with value of (J-1)=st derivative of N(ILEFT-K+I,K)

at X , I = ly;eeey3K, J = 1,...,NDERIV . Get derivative from right

or left if X = T(ILEFT) or T(ILEF+1l) , respectively. Expects

NDERIV in [1,K] . Uses BSPLVN. Used in NATSPP.

subroutine INTERV(XT, LXT, X, ILEFT, MFLAG)

Computes largest ILEFT in [1,IXT] such that XT (ILEFT) < X .

It 1s assumed that XT 1s a one-dimensional array of length LXT containing

a nondecreasing sequence of real numbers. The subroutine returns integers

ILEFT and MFLAG as follows:

ILEFT MFLAG

X < XT(1) 1 1

if XT(I) < X < wi) , then { I 0| XT(IXT) < X LXT 1

The value of ILEFT1s saved 1n a local variable ILO which under

certain conditions 1s used to start the search for ILEFT 1n the next call.

The local variable ILO 1s initialized to the value one.

Note that only BSPLPP, BSPLVN and BSPLVD are called directly by the

natural spline interpolation subroutine NATSPP. In addition to these

subroutines of the de Boor package, NATSPP also calls subroutines BANDET |

and BANDSL for the solution of the linear system CX = B where C 1s an |

16
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unsymmetric band matrix. These subroutines were taken from the library

of the Stanford Center for Information Processing. They are translations

of ALGOL 60 procedures given by Martin and Wilkinson [LO]. They are

fully described in the complete listing of the FORTRAN subroutines in

Appendix I.

Turning now to the subroutine NATSPP for the interpolating natural

spline we note that it 1s a direct implementation of the method described

in Section 3. First we give a summary of the FORTRAN variables and their

intended use. The heading of the subroutine 1s

SUBROUTINE NATSPP(N2,N3,Ni, M, M2, MM, X, Y, A, C, T, Q, TRL, INT, VNIKX) .

The 1nput parameters are as follows:

N2 , the number of data points.

NG, = Ne+Me-h

M , 2*¥M-1 1s the degree of the natural spline

admissible values range from 1 to N2 .

M2, = 2*¥M, the order of the natural spline.

MM, = 2¥M-1 , the degree of the natural spline.

X(1), eeeyX(N2) , abscissas of the data points which must be strictly

monotone increasing.

Y(1); ees, Y(N2) , ordinates of the data points.

The output parameters are as follows:

N5 , = N2-1+MM , the number of B-splines in the B-spline representation (1.2).

A(1)ye.., A(N3) , the coefficients of the B-spline representation (1.2) of the

| natural spline.

: C(1,1)yeee,C(M2,N2-1) , the coefficients of the piecewise polynomial

representation (1.1) of the natural spline.

17
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The remainder of the parameters are only for temporary storage.

They are included in the declaration in order to make 1t possible to

give them variable dimensions. They are:

T(1)s eee, T(N2+L4*M-2) , the knot sequence.

(1,1), . ..,Q(N4,M2) , elements of the band matrix of the equations for

the calculation of the A(1) .

TRL(1,1),..., TRL(N4,M-1) , matrix for storing lower triangular matrix

of the LU decomposition of the band matrix.

INT(1)yeee, INT(N4) , vector for recording row interchanges during

decomposition of the band matrix.

VNIKX(1,1),..., VNIKX(M2,MM) , matrix for storing values and derivatives

of B-splines as needed.

The subroutine NATSPP begins by computing the knot sequence T (1)

from the abscissas of the data points. In order to get the coefficients

of the first M-1 rows of the band matrix which are given by (3.8) we

call

BSPLVD(T,M2, X(1), M2, VNIKX, MM)

to obtain VNIKX(I,J) = , (X(L1)) 9» I = yeaa), J =1,000,MM .

We use these to calculate A(l) and the coefficients of the first M-1

rows and their right members. For the coefficients of the last M-1

| rows of the band matrix which are given by (3.9)we call

BSPLVD(T, M2, X(N2), N3, VNIKX, MM)

| to obtain VNIKX(I,J) = Din (X(2)) , I = L,...,M2,
| N2-2+1,M2

J=l,eeeyMM . We use these to calculate A(N2+2¥M-2) and the

coefficients of the last M-1 rows and their right members. For the

| coefficients of the rest of the rows of the band matrix which are given

18
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by (3.6) (omitting first and last equations) we call

BSPLVN(T, M2, 1,X(I), IT+MM, VNIKX)

to obtain VNIKX(J,1) = Np ge, up(XCD) , J = Lies, TIT =2,...,N2-1
The band matrix system 1s then solved using BANDET and BANDSL to

obtain the coefficients A(l) . Finally we call

BSPLPP(T, A, N3,M2, Q, X, C, ILXT)

to calculate the derivatives needed to produce the coefficients of the

piecewise polynomial representation. Note that in BSPLPP, c(J,I) has

the value pd Ls (1)h) whereas in NATSPP, C(J,I) has the value

pY sx(n))/ (3-1):

The complete listing of NATSPP with all embedded subroutines is

given 1n Appendix I.

19



5. The ALGOL W Procedure.

Since we have available ALGOL W versions of the procedure NATSPLINE

of Algorithm 472 of Herriot and Reinsch [8] and of Algorithm 480 of

Lyche and Schumaker[9], it would be much easier to make comparison

| tests with the algorithm using the de Boor package [4] to calculate the

interpolating natural spline 1f 1t were implemented in ALGOL W. The

FORTRAN subroutine NATSPP was therefore translated into an ALGOL W

procedure DEBNAT.

First the subroutines of the de Boor package used in NATSPP were

translated into ALGOL W procedures with the same names and the same

parameters. Special care was needed to deal with two unusual features

of the FORTRAN package. In order to save the value of the local

variable ILO of INTERV and of the local variable J in BSPLVN from one

call to the next, these variables were made global to all the procedures

of the de Boor package (J was renamed JJ). For the same reason the

arrays DELTAM and DELTAP used in BSPLVN were made global. These global

quantities were initialized prior to any calls of the package procedures.

The other unusual feature of the FORTRAN subroutines was use of VNIKX

as a one-dimensional array in BSPLVN and as a two-dimensional array in

BSPLVD. This was handled by making VNIKX a two-dimensional array in

BSPLVD and introducing a corresponding one-dimensional array NVNIKX

local to BSPLVD,

The ALGOL W procedures BANDET and BANSOL are completely similar

| to the corresponding FORTRAN subroutines. They are fully described in

the complete listing of the ALGOL W procedures in Appendix II.

Because of the greater flexibility of ALGOL W in using dynamic array

declarations, it was possible to reduce the number of formal parameters

2



in the procedure DEBNAT compared to those in NATSPP. The heading of

the procedure 1s

PROCEDURE DEBNAT(INTEGER VALUE N1,N2,M; REAL ARRAY X(*);

REAL ARRAY A(*,*); REAL ARRAY CFF (*));

The input parameters are as follows:

N1, Ne , subscript of first and last data point.

M, ©2*M-1 1s the degree of the natural spline

admissible values range from 1 to N2-N1+1 .

X(N1::N2) , contains the given abscissas X(1) which must be strictly

monotone 1ncreasing.

A(NL1::N2,0::2%M-1) , contains the given ordinates as zero-th column,

i.e., A(I,0) represents Y(I) .

The output parameters are as follows:

A(N1::N2,0::2%¥M-1), the ciefficients of the piecewise polynomial

representation (1.1) of the natural spline with

C34 = A(i, j-1) . ( A(N2,0) is unchanged and no
values are assigned to the last row of A .)

CFF(1::N2-N1+2*M-1) , the coefficients of the B-spline representation (1.2)

of the natural spline.

The ALGOL W procedure DEBNATis an exact translation of the FORTRAN

subroutine NATSPP. The complete listing of DEBNAT with all embedded

procedures 1s given 1n Appendix II.

Included among the tests described in Section 6 were tests to verify

that NATSPP and DEBNAT produced the same results.

Another advantage of the ALGOL W procedure 1s that it 1s much easier to

convert 1t to double precision arithmetic than it 1s to convert the FORTRAN

subroutine NATSPP and the de Boor FORTRAN package to double precision

arithmetic.

21



Both the FORTRAN subroutine NATSPP and the ALGOL W procedure DEBNAT

| were tested extensively on the IBM 370/168 at the Stanford Center for
| Information Processing.

| In order to verify that the routines were operating correctly for

| the evaluation of the polynomial coefficients of the spline S(x) , the

values of ¥s(x)/j! , J = 0ylyeee,2m=-2 were calculated at the right-

| hand endpoint of each subinterval [x.,X;,) and compared with their

values (the coefficients in equation (1.1)) at the left-hand endpoint of

| the next subinterval. For the first test we used the five data points

| (-3,7), (1,11), (0,26), (3,56) , (4,29) with nonequidistant
abscissas. Table I shows the results of a typical run using the FORTRAN

| subroutine NATSPP with m= 2 for these data points. The first line

| of each box gives the tabulated quantities at the given value of x
| which 1s the left-hand endpoint of the subinterval, and the second line

of the box gives the tabulated quantities at the right-hand endpoint of

| the same subinterval. Similar results were obtained for m =1,3,4,5

for the same data points. The close agreement of these quantities

pJs(x)/5! , J =0,1,. . .,2m-2 to the left and right of each breakpoint

| shows that the spline function and 1ts derivatives satisfy the specified

continuity conditions. This 1s a good indication of the correctness of

the results. Note that in Table I  S"(-3) differs very slightly from

its specified value of 0 and that S(0) and S(3) differ from their

prescribed values in the least significant digit. Exactly the same results

were obtained using the ALGOL W procedure DEBNAT. These results are very

close to those obtained by using NATSPLINE which are given in Table I of

Algorithm L72[8].
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-3.000000 7 . 000000 -1.99999 -. 429153) x 107 1.000000

10.999999 9.999986 5 iirnn 1.000000

-1.000000 11.000000 9.999997 6.000000 -1.000001

25. nn. 18.99998 2. ann ~1.000001

25.9999 18,99998 2.999995 -1.999998

50 nin tw wees 1h -1.999998

3, 000000 55.99998 -16.,99998 he 1.999987

29, 00000 -32,00000 -.3242403 «10 -k 4.999987

El Rca I I

Table I. Cubic Natural Spline.

Five nonequidistant knots. Coefficients

calculated by NATSPP,
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The same test was run for ten data points (x57) with equidistant

abscissas X4 =1 and ordinates given by

i , i odd

y; = | i= 1,2,...,10 . (4.1)0) ; i even

Form = 1,...y3> the FORTRAN subroutine NATSPP and the ALGOL W procedure

DEBNAT gave the same results. In all cases the specified continuity

conditions at the breakpoints were satisfied.

The previous tests established that the FORTRAN subroutine NATSPP

and the ALGOL W procedure DEBNAT produced identical results. Further

tests for accuracy and timing were carried out using only the ALGOL W

procedure DEBNAT, Corresponding results for the accuracy of NATSPP

can be inferred from these tests.

As a check on the correctness of the piecewise polynomial coefficients,

Tong precision versions of DEBNAT and NATSPLINE from Algorithm 472[8]

were used to calculate the polynomial coefficients for the data points

(-3,7) , (-1,11) , (0,26) , (3,56) , (4,29) (data for Table [) for

m= 1,2y.0055 . When rounded to short precision, the corresponding

coefficients calculated by the two procedures were identical, (Except

that for pIs(1)/jt ; J = Myesey2m=-2 , NATSPLINE gave the specified

values 0 and DEBNAT gave values of order 107" , t >9.) The

same comparison test was run for the set of N2data points _(%X;, y; )

with equidistant abscissas x; = i and ordinates given by

i , i odd

bA = i=121...,N2 (6.2)
9) ’ i even
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Values of N2 = 10,20,4..,50 and m = 1,2,...,7 were used.' Again

when the long precision coefficients were rounded to short precision,

the corresponding coefficients calculated by the two procedures were

identical (with the same exceptions as above and occasional differences

in the least significant digit for the case m= 7 ).

In order to study the effect of round-off error build-up, both long

and short precision versions of DEBNAT were used to calculate the B-spline

coefficients and the piecewise polynomial coefficients. From the previous

comparison tests we see that we can regard the long precision coefficients

to be correct and hence the differences between the long precision and

short precision coefficients are the errors in the latter. This error

test was first run for the data points of Table I for m = 1,2,. ..'H .

For m= 1 all short precision coefficients calculated by DEBNAT are

exactly correct. For m = 2 , the maximum errors in the B-spline

coefficients and in the piecewise polynomial coefficients were of order

approximately 107 . For m =3 and 4% the maximum errors increased

to about 1072 . Form = 5 the errors exceeded one and the results

were unacceptable. This may be due in part to the fact that for five

points, m = 5 1s an extreme case. Tests were also run for the example

with equidistant knots and ordinates given by (6.2). Values of

N2 = 10,20, 444,50 and m = 1,2,...,7 were used. The results for

m = 1,2,3,4 were similar to those for the data of Table I. For m =5

the maximum errors were of order 107° . Form = 6,7 the maximum

errors exceeded one.

-Long precision and short precision versions of NATSPLINE were used

on the same data to find the errors in the piecewise polynomial coefficients

calculated by short precision NATSPLINE. The results appeared to be

25



somewhat better than for DERNAT. For the data used in Table I, the

maximum errors in the piecewise polynomial coefficients were 0 for

m = 1 and of order 10” for m= 25¢6059 For the example with

equidistant knots and ordinates given by (6.2), the maximum errors in the

piecewise polynomial coefficients were 0 for m = 1 , of order 1077

for m = 2,3 , of order 107" for m= 4 , of order 1074 for m =5 ,

and of order 1071 for m =6,7 .

We conclude that DEBNAT should not be used in short precision for

m > 5 and NATSPLINE should not be used in short precision for mai 7 .

In addition to the tests for accuracy, timing tests were carried

out for long precision and short precision versions of both DEBNAT and

NATSPLINE on the IBM 370/168 computer at the Stanford Center for Information

Processing. The tests were made using the example with equidistant knots

and ordinates given by (6.2), Values of N2 = 10,20,...,100 and

m= 1,2,s00,7] were used. The time for both procedures was found to be

approximately proportional to the number N2 of knots. For DEBNAT the

time was found to be approximately proportional to — for m >73

while for NATSPLINE 1t was approximately proportional to n° . The

actual times were almost exactly the same for the short precision and

long precision versions.

The time T in seconds for the execution of the procedure DEBNAT

was—found to be approximately

T = (8/60) (.0265m* 1) , m > 3 .

| This formula seriously underestimates the time for m = 1 and 2 .
For NATSPLINE the time was found to be approximately

T = (N/60)(.015m°) :
|
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For m < 5 the times for NATSPLINE were somewhat less than those for

DEBNAT, but for m > 6 the times were nearly the same.

Since we found that for the IBM 370/168 the times for short precision

and long precision are nearly the same, we recommend the use of long

precision for all calculations using these procedures. Converting the

given ALGOL W procedures to long precision requires only replacement of

all real identifiers by long real identifiers. The same recommendation

would apply to any machine on which long precision 1s approximately as

fast as short precision.

For reasons of accuracy we would also recommend the use of double

precision for the FORTRAN subroutines. We have not attempted to convert

the FORTRAN de Boor package to double precision.
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APPENDIX I

le C NATSPPCOMPUTES THE CIEFFICIENTOUFBITAIHEPIECEWISE

3. C POLYNOMIALREPRESENTATIIONANUTHE B=SPLINE REPRESENTATION UF A

4 . C NATURALSPLINESIX)O FUOEGREELZ®EM=1)4 INTERPOLATING THE

5. C ORDINATESY(I)A T POINTS Xtldyi=LTHruJoHN2a

5. C PIECEWISE POLYNUMIAL KEPRESENTATIUN:

7. C FOR XX INUX(I}eX{1l®L))ygl=lpaeaoNi—ly

Je C WITHT=XX=X{I).

iD. C B=SPLINE REPRESENTATIuUN:

ll. C FOR XXI N {(X{13eX{N2}),

12. C SIXX)=ALL)EN(L 92 F Mo XX) +A (2IEN{ L292 ¥ Mg X XK) tou

13. C FA(NZH2%5M=2JEN N2H+2EN=L gE My XX)

1%. C W HE R EN(Je2%MpyXX J ISTHE (NIRMALIZED)B=DPLINE OF DEGREE

15. C (2%M=1)ON THE KNOTSSEJJIJENCETUd paws Tl it2EM),

16. C INPUT:

17. C NZ THE NUMBER UFrJUATA POINTS

18. C N4 =N2+M2=4

19. C M 2%M=11 S THE JzoRktE OF THENATJURAL SPLINE,
23. C ADMISSIBLE VALJES RANGE FKRUM 1 TJ N2y

21 « C RECOMMENDED VALUESARENUT GREATER THAN 5 (SAY)
22. C M2 =2%MeT H EORJVER OF THE NATURAL SPLINE

23. C MM =2%M=1,T H EVESREE QF THENATJRALS PL INE

2% C X{1)poeoesX{N2) AdSCISSAS UF THE DATA PUINTS WHICH

25. C M US TBE STRICTLY MUNOTUNE INCREASING

26. C Y{l)oeawsYIN2Z) ORUINATES UF THE uvATA PUINTS

27. C OUTPUT¢*

28. C N3 =N2=1#MMy, T H E NUMBER OF B8=5PLINES INT H E

23 C B-SPLINE REPRESENTATIONUFTAENATURALSPLINE

_ 30. C All)reeaeA(N3) THE COEFFICIENT UF THE B-SPLINE
31. C REPRESENTATIUNUFT H E NATURAL SPLINE

32. C Cllel)owesC{M2yNZ=1) THE COEFFICIENTS OF THEPIECEWISL

33. C POLYNOMIAL REPRESENTATION UFTHEN AT URALSPLINE

34. C TEMPORARY STORAGE:

35. C Tel) seeep TUINZ#o%MN~2) THE KNUT StdJUENLE

36. C Qllel)eceesQINL M2) ELEMENTD UF THEBANUMATRI X OF THe

37. C EQUATIONS FORTHE CALCOULATIUNIFTHE A (1)
33. C TRL(1 old seeer TRLINGyM=1J MAIRIX FUR SIURINGLUWER=-TRIANG JILAK

39. C MATRIX OF THe .U DeECUMPUSITIuUN OF THE BAND MATRIX

4). C INTl) peees INT{(N4) VECLTIR FUR KELJRUINGR O WINTERCHANGES

4l « C DURINGOECOMPUSITIUNOF THEBANUMATRIX

4 2 . C VNIKX{1lol)oeeo eg YNIKK( MzyMM) MATKIAFIKS TORI NGVALUESAN
43. C DERIVATIVES UFB=SPLINCY AdNtcIEU

4%. DIMENSION XUL) oY (LY TUL) gQUNGgLioA(LD) pv NIKXIM2oMM) ,TRLINS,1 1},
45. 1 INT(1),C(M2,1)

47 . 5 T(I)=X(1)

43. NZ2M1=N2-1 |
49. 0 0 6I=1y4N2M]

50. 6 T(IeMM)=X(1J

51. N3=N2M1l + MM

52. DO 7I=1,M2

53. 7 TC(I+N3)=X(N2)

5% C GET COEFFICIENTSO F FIRST M-I ROWo

55. CALLBSPLVD(TM2 9X (1)9M2oVNIKX MM)
55. Al=Y(1)/VNIKX{1ls1)

57 « MM1=M=]

58 « IF(MEQ.L1)G O T OTW

59, DO 401=1,MM1

63. D O 41Jd=1,MM
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6 1. 41 Q(lsJ)=0.

62. HP I=M+{

63. LL=M=-1[

64. DO 42 L=2,MP]

65. LL=LL+]

66. 472 QUI LL)=VYNIKX{L,¥N21)
67. 40 A{I)==AL*YNIKX{1, MPI}

63. Cc GET COEFFICIENTS OF NEXTNZ=Z2RUWD
69 « 70 MM2=M=2

73. DO 30 I=2,N2M1

71. CALLOBSPLYN(T pM21oX(1)od*MM,V¥NLKX)

73. DO 16L=1,MM

74. 16 QUIM2,L)=YNIKX{(Ls1lJ

75%. 30 AlIM2i=Y(1])
75. Cc GET CoEFFICIENTS OF LASJ H-A ROWS
I ff CALL BSPLVDI{TM2 X(N2)sgN3oUYNIKXgMM)
718. ANP=Y (N2)}/VNIKX(M2,1)
719. I F(MeEQ.1dG OTO08 OO

8le. | I=N2+M2=3~|
82 DO5 1J=]1,MNM

83. 51 QiIleJ)=0.

84. MP I=M+]

85. MPIMLI=MPI- 1

85. LL=M=]

87. DOS5S2 L=1,MPIM]

88. LL=LL+]

89. 52 QEITL)I=VNIKXILL,4PI)

90. 50 A(TLI==ANPERYNIKX(M2, MP1)
91 « 80 CONTINUE

92 « CALLBANDET(TRLsINTUdo NG gM=]1y92%M~})

93. CALL BANDSLITRL)INTsAUsNegM=]2%M~1}1])

94. DO60 I=1yN4

95 . J=N3~]

96 . 60 A(J)=A(J=1)

97. A{l)=Al

98. A(N3) =ANP

99. CALLBSPLPP(TANI M2929 XeCol x1

100. DO 121=1yN2ZM1

101. FAC=1l.0

102. D Ol2J=2,M2

103. FJ=FLOAT(J-1)

10%. FAC=F AL *F J

105. 12 Cll I)=C(J,el)/FAC

105. RETURN

107 END

103. C EXE ESE EEE RR RE AK KEEEREEE STAR J OF DANJIET *F ¥ kkk kK kk kkk kk Kk ic kk x kx

109. C PRIORT 03/c¢c3/ic

110. C BANDET AND 5ANDSLARETwO SudrOviinESwWAloHSOLVEC®X= 8

lil. C WHEN C I S A NUNSYMMETRIC BAND MAT KIA { THY WILL WORK WITH

112. C SYMMETRIC B A N DMATRICESBUTTAKEN OAUVANIAGEOF THE IR

113. C STRUCTURE) .

ll1%e. C
115. C C HAS MI SUBDIAGONALS AND MM. SUPERUIALGUNALDS.

li16« C THEMATKIX C I S TRANSFJIIMEDTO A BbYMAKINUVUE A C HOIAGUNAL UF
117. C CA COLUMN OF A. THUSA | SNX(MLtMcrL)AAEN CI S NXNe

118. C A TYPICAL AI S P ICTUKEDBELJW. C nee 1S 4X49 WITH

115. C 2 SUBDIAGUNALSA N D1SJUP EKUIAGUNAL

120. C

121. C 0 0 Cll, i) willed)
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122. C Q Cl2+1) Llide2d Liderdl

124. C Cl4,2) Cl(4,3) Leg 4) Vv
125« C

126. C THIS TRANSFORMATION IS THE rdLLUNINLY ADDSJMING THAY ( (I LJ)

127. C I S A BANDELEMENT INKL

128 Cc ClIsd) ==> A(Il Mletl+(J-11})
129. C ALL OTHER ELEMENTS Ut A ARED

133. C

131. C BANDET FI ND STHEL UDECOMPUSITIUNGUEA | STUKING

132. C THELUOWER TRIANGULAR MATRIX INMANUNXML MATRIX,

133. C AND OVERWRITINGT H EUPPER TRIANGJLAK MATRIXINTO A.

13%. C BANDSLU S E STHISDECUMPUSITiuUN TuSuULVEA®X = B wHERE
135. C THERIGHTHAND SIDEASINPUTINTHEveLT UR Bo AND X IS

136. C OUTPUTI N THE VECTORB.

137. C

138. C THESE ROUTINESW E R E TRANSLATED #RUMIHUSE PRESENTED BY

139. C Je WILKINSON IN NUMERLI>.HE YATHcMATIK vIL 9, P 2 8 3
14). C TRANSLATOR: B A RB AR ARYUZRy LSD SERRA HuJSEe X3124

141. C

142. SUBROUTINE BANDET{(MeiNToA ine MlLoM3)

143. DIMENSION MIN M1) ,INTI(NIJA{NsM3)

144. C

145 . c MeeeANNXMIM A TRI XFIUDTURING LUnek TRIANGULAK

las. C MATRI XOFLJOECIUMPUSLITIUN UF A

147. C INT===A NNXLVECTOR#OR RELURUINLV RUN INTcKCHANGES

148. C DURI NC DECOMPUSITI un

149. C A-----ANNXI{ML#M24]1)MATRIX wHOOE COLUMNSA R ETHE DIAGONALS

15). C OF C, THEBANDMATRIX BEINOUELUMPUSED

151. C A{%,]1) = A(*,M1) ARE SUBULAGUNALS utr C

- 192. C A(%,M1+]1) A s UILAGUNAL uF
153. C A(®, M142) = Al,ML +#M2¢1) AKE SJUPcRUILI AGUNALS UF C

154. C N----NUMBEROFROWSINA

155. C Ml====NUMBERO F SUBDIAGUNALSI N (

156. C M3==maweTO T A LNUMBERUWUFJIOIAGUNALSINClete WIDTHUGFBAND

157. C M3 - M | (# SUBDIAGS) + M2 (# SUPERDIAGS) +1

158. C

159. REALM

16d. 25 L=M]

161. DO 40I=1.81

162 . K2=M]1+2~-1

163. DO 50J=K2M3

164. 50 All sJd=L)=A(1,4)

165. L=L~-1

165. K2=M3=L

167. DO6 0J=K2 M3

168. 60 All»J)=0.0

169 . 40 CONTINUE

170. 45 L=M1

171. DO 70K=1¢N

172. X=A{(K,yl)

173. I=K

174. K2=K+1

175%. 72 | FILLT.K2)G G T O81
177. 19 DO 8 0J=K2slL

178, | FLABS{A(Je1)D=-A35(X)) BUsb8U,82

179. 82 X=A(Jyl)

18l. 80 CONTINUE

182. 8 1 INT(K)=1
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183. | FAUX) T3975,73

18%. 73 IF ([=K) T7,78,77

185. 17 DO9 0J=1M3

185. X=A(KoJ)

187. AlKed)=ALlI,6JJ

188. 90 All J3d=X

189. 78 | F{LebLTaK2)G O0TJ370

193. 83 DO 100 J=K2 ,L

191. MIKeJ=K)=A{Jr 1d/A(<, 1)

192. X=M(KoJ=K)
193. DO 110 JJ=24M3

196. 110 Aldo dd=1)3A0JeJdJi=A(KyJJ)*X

195. 100 AlJsM3)=0.0

196. 70 CONTINUE

197. RETURN

198. C

197. C A SUBROUTINE CALLED ERRIRMJISTBE SUPPLIEUTO HANDLE

200. C THE ZERO PIVIVT SITUATION; 4 SAMPLE RUJTINE FOLLUWS
201. C

202. 75 CALL ERROR

203. RETURN

20% END

205. SUBROUTIN E ERRCR

206. 200 FORMATU(//?® ZEROPIVUT?)
2017 « WRITE (64200)
208 RETURN

209. END |
21). C Xk XxX EEE Ek k EEF E22 ER END OF BANULET SRE KEE & kkk kk kok kok kok ok kokok kok

211 C EEREEREKEEEEER SR XE KEEFE E START OF BANUSL S%* Ex Rk EERE kX RkRx k kkk Kx xk

212 C PRIOR TO 3723/7712

213. SUBROUTINE BANDSL (MINT ¢BoAgNeMioM3)

2l%e. DIMENSION INT(N) JA(NM3) sMiNgML) DIN)
215. C

215. C A LLPARAMETERS SAME A SINBANDETEXCEPT FJUK:

217. Cc Berme==R IGHTHAND SIDE: UF LINEAR SYSTEM C¢X = 8
218. C SOLUTION ISRETURNEVDIN 8

219. C

220. REALM

221. INTEGERW

222. L=M]

223 DO 10K=]1l,sN

224. [=INT(K)

225. IF (1-K)L1llel2yll
226. 11 X=B8(K)

227. B{(K)=B(I)

229. B(I)=X

229. 12 K2=K+1

233. IF (LolLToN) L=L+]

231. 14 | FAL «LT«K2)GO TO1 3

232. 15 B02 o0I=K2,L

234, 20 BI )=B(I)=X*B(K)
235. 10 CONT| NUE

236. L=]

237. DO 30(I=1¢N

238. [=N+1=]1]

239. X=8(1)

243. W= [-1

241. | Fi{L=1) 32933,32

242. 32 DO C OK=2,L

243. 40 X=X=A(I K)*B{(K+tn)

32



24%. 33 BlI)=X/A{1,1)

245, | F{(L-M3)31,30,30

246. 3 1 L=L+]

247. 30 CONTI NUE

248. RETURN

249. END

2513. C kkbkkdkkkkkk kkk hk kkkErkEE ND OF SBANUDL R¥EE Ek EEK kkk fok 3k kok kok x kkok x xx

251. SUBROUTINEBSPIDRITyA, N Ke ADIFyNIERIV)
252. CONSTRUCTS DIVDIFF.TABLEFOU'B=SPLINECJEFFs PIEPARATORY TU DERIV.CALC.

253. DIMENSION T(1) JA(1) oADIF{NsNDERIV)

254. D 010I=1,N

255. LO ADIF(I.1) = All)

256. KMID= K

257. DO 20ID=2+NDERIYV

258. KMI1 O=KMID- 1

259. FKHIO= FLOAT{(KMID)

260. DO 20I=I0¢N

261. IPKMID=1 + KMID

262. OlFF = TU(IPKM4AD) ~- T(1)

263. | F(DIFF .EQ. UV.) 60 Tu 29

264. ADIF(I,ID) = (ADIFLislD=1) ~- ADIFL 1-1, ID=1)})/01IFF*FKMID
245. 20 CONTINUE

266. RETURN

267 « END

268. SUBROUTINE BSPLEVIToADIFNg Keg XedVALJUEJNDERLV)

269. CALCULATES VALUEOF SPLINE ANJITSOERIVATIVESAT*X®* FROM B=REPR.

270. DIMENSION TU(1)ADIF(NyNIERIVIoSVALUELL]

271. DIMENSION YNIKX{( 20)

272. DO 5 [OUMMA=]1,NDERIY

273, S SVALUE( IDUMMY ) = |

275. CALL INTERVIT(K)eN+1=<lo XolsMFLAG)

276. I = [+KM]

277 IF (MFLAG) 99 920,

278. 9 I F(X «GT-T(I)) GOTU9 9

279%. 10 IF (I «EQe K) GO TU 39

281. I F(X «EQe T(1)) GO T0iv

282. C
283. C *]J* HAS BEENF OUND INIKeVIOSUTHATTI) alEe X «aL Ta T{I+1)

2864. C ( O R eLE«T{I#+1)ys] FT(L1)LTaTULI¢*i) = T(N+L)).
285. 2 O0KPIMN = K#1=-NDER1V

286. CALL BSPLVN(TKP IMNyloeXoloVNIKX])

287. IO = NDERIV

288. 2 1 LEFT=1 -=KPI1MN

203. DO22 L=1l,KP1MN
290. LEFTPL = LEFT+L

291. 22 SVALUE CID) = VNIKX(LI®ADIFLLEFTPL,1U) + SVALUE( ID)

292. ID = 10 =-1

293. I FAUID «EQ. 0) eu Tu 99

294. KP1IMN = KPLIMN+ 1

295. CALLBSPLYN(T3092¢Xe | 2aVNIKX)

296. } Gu Tu ¢l1
297. C

298. 99 RETURN

299. END

300. SUBROUTI NTEBSPLPP(TsA  NeKeSCRTCHyX13 Cy LXI)
301. CONVERTS B=SPLINEREPRESENTATIONTO PIELENWLISEPULYNOMIAL REPRESENTATION

302. DIMENSION TUL) dA (1)SCRTCH(NsK)oXil 1) sCtKyl)

303. CALL BSPLDRITAy NyKeSCRTCHyK)

304. LXI = 0
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305. XI(1) = V(K)

306. D0 5 0 [LEFT=K,N

307. | F(TCILEFT#1) Ede THLELEFT)) 1i3TJ 50

308. LXI = LXI + 1

309. XI(LXI+1l) = TLILEFT+])

310. CALL BSPLEVIT 4SCRICHAsNo Ky XI(LX1)oC UlLlolXi)oK)
311. S 0 CONTINUE

312. C

313. At TURN

314. END

315. SUBRUUTINE BSPLVD ( Ty Cy Xp ILcrTy VNIKXy NDERIYV J
315. CALCULATES VALUE AND DERIVeI IF ALL B=SPLINESWHICHDU NOT VANISH AT x

317. DIMENSION T(1) VNIKX{Ky,NDcRIV)

318. DIMENSIUN A(20,20)
319. C

323. CF | L LVNIKX{JeIDERIVDy J=1JERIV) eee oh wliHNONZEROVALUES OF

321. C B=SPLINESO FCRUERK+#+1=JucKIiv,y IUERIV=NUEKEIYy « mM evdls BY REPEATED

322 . C CALLST O BSPLVYN

323. CALLBSPLVN(TK+ 1=-NUERIVoLoapdlchHTyvNIKKINUERIVINDERIV))

325. IDERIV = NCERIV

326 « 00 151=24NDERI]V
327. IDERVM = IDERIV-A

328. DU 11 J=IDERIV,K

329 « 11 VhifKXEJ-1, IDERVM) = VnNIKX(JeluLRIV)
333. IDERIV=IDERVM

331. CALLBSPLYNIY90929 XolbcrToVNIRXLIVERIVyIDERIV))
332. 15 CONTI NUE

333 « C

334. DO 20[=1,K

335. h DO 1 9 Jd3l¢K

336 « 19 All,Jd)=0 .

337. 20 Allo) = 1.
338. KMD = «

339 « DO 40M=2yNDER|V

340 « KMD = K#D-1

341. FKND= FLOAT{KMD)

342 . | = [LEFT

343 « J = K

344 . 2 1 JML =J - |

346 « DIFF = T{(IPKMU) = T(1i)

347 « IF (JM] EQ. 0) GulduL b

348. | F(ODIFF «EQ. Vel od Tu Zo
349 « 00 24 L=1,J

350. 2% AlLyJ) = (A(LoJ) = A(Lyu=LI)N/IOIFF*FKMD

351. 2s J = JM]

352. [ = 1-1

355. - Allel) = Ally 1)/UIFF*FKMD

3%. C

357 « 30 DO4 0 I=1.K

358. \% = Q.
359. JLOW = MAXO(I| ,M)

360. DO 35J=JLOW,K

361. 35 v = All oJ) ®YNIKX{JeM) + V

362 « 40 VNIKX(I,M)= Vv

363. 99 Ke TURN

364. END

365. SUBROUTINEB S P L V N(FTegJdHloty iwUEXy Xo ILEFT, VNIKX)

34



365. CALCULATES THE VALUE OF ALL POSSIBLYNUNLERUB=SPLINES AT * X%0F

367. CORDERMAX{JHIGHs(J+ 1) {INIEX=1)) 0 N*T%,

368. DIMENSION T(1) VNIKX(1)

369. DIMENSION DELTAM{203 ,D€L TAP{ 20)
373. DATA J/71/DELTAM,DELTAP/40%0./

311. 60 TO 140,20) INDEX
372. 10 J=1

373. VNIKX(1) = 1 .

374. I F(JeGEe JHIGH) 60 TU 29
375. C

376. 20 IP] = ILEFT+J

377. DELTAP(J) = TUIPJY - X

3738. IMJP1l = 1LEFT=J+1]
379% DELTAM(J) = X=T(IMJPL)
380. VMPREV=DJ(0.

38]. JP1l = J+l
382. DO 26L=1yJ

383. JPIML=JP| - C

384. VM= VNIKX(UL)ZCDELTAPI(L) t OELTAM(JPIML))

385. VNIKX{L) = VMEDELTAP(L) ¢ VMPREV

386. 26 VMPREV= VMDELTAM(JPLML)

387. VNIKX{JPLl) = VMPREV

388. J = JP1

389. Il F{JeblTea JHIGHJ GU TU <0

390. C

301. 99 Rt TURN
392. END

393. SUBROUTINE INTERV (XT gbLXTg Xe ILEFT,4FLAGJ

3990, COMPUTES LARGESTILEFT IN(LoLXT)ISUCHTHAT XTUILEFT).LE. X
395. DIMENSION XT(LXT J

394, DATAILOZ1/

397. IHL = ILO+ 1

308. IFC(IHI LT LXTJ eu TO 20
399, I F(X «GEe XTILXT)) GO TOllo

403. I F (LXT oLEe 1) GODT9 0

401. ILO =LXT=1

402. ou Tu 21

403. 20 I F{XeGEe XT(IHI)) Gu TO 40

404. 2 11 F(XeGEeXTLILOJJ Gu Tu LIV

405. Cxexk NOW X <LTe XT{ IHI) . FIND LUWEK BuuinD

406. 3 0 ISTEP=1

408. ILO = IHI - ISTEP

410. I F(X GEe XT(ILO)) Gu Tu 50

411. ISTEP = | STEP®2

4-12. UT 3 1

413. 35 ILO = 1

41%. IF (X «LT. XTi1)) GuTu 3 3
415. OTL 5 3

415. C¥%%% N OW X oeGEeXT{I L O J « FINDUPPEK BOUNU

417. 4 0ISTEP= 1

418. 411L 0 =IHI

419. IHI = ILO # ISTEP

4273. I f{IH] «GE. LXT) 60 Tu +o
421. I FAX oLTe XT(IHI)) Go Tu Sv

422. ISTEP = | STEP%®2
423. GU TO 41

424. 45] f(X «GEe XTELXT)) 60 Tu «10

425. IHI = LXT

426 Cox NOW XTCILO) eLEe X @bTo XT(IHI). NAKRUNTHEINTERV AL
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427 o 5 0 MIDDLE= (ILC + IHIN/¢

429 o C NOTE. | TLS ASSUMED THAT MIDDLE = Led In JASE IHL - 1LO+1
433. | F(X «LTe XT{MIDDLE)) ulus 3
431. ILO = MIDDLE

432 o GU Tu 50
433. 53 IHI = MIDDLE

434%. ou TU 29
435 Cx%%% SET OUTPUT AND RETURN
436. 90 HFLAG = -1

437. ILEFT = 1]

438 e Ri TURN
439. 100 MFLAG= 0

440. ILEFY = [LU

44]. RE Turin

L472. 110 HFLAG =1
%43. ILEFT = LXT

444 o RE TURN
445. | END
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: APPENDIX II

l. PROCEDURE DEBNAT({ INTEGER VALUE NLyN2sM3REALA RR A Y X(*);

2 REAL ARRAY A{*,%); REAL ARRAY CFF(%*));

J COMMENT DEBNAT COMPUTESTHE COEFFICIENTSO FBOTHTHEPIECEWISE

4 o POLYNOMIAL REPRESENTATION AND THEB=SPLINE REPRESENTATION OF A

5 e NATURAL SPLINE S(X)UFDEGREE(2*¥M~1) INTERPOLATING THE

5. ORDINATESVY(I}YA TPOINTS X{I),i=N1LTHRIUGH N2.

Te PIECEWISE POLYNOMIAL RePRESENTATION:

3. FOR XX INIXUI)e XUQI#1d)sl=N1lgeeeaNe=1,

9 . SIXX)I=A(Is0)+A(]31 )%T tee o+tA{ Ly 2€M=] J T*%k(%M~])
13. WITH T=XX=-X(I)«

lle. B8=SPLINE REPRESENTATION:
12. FOR XXINIXINL)XIN2}},

13. SIXX)=CFFUL)EN(] y2%M XX) +CFF (2) Nl 9c*¥Me XX) teow

14. +CFF(N2=N1#2%M=1) kN(NZ=N1+2%M~L 2 %M XX)

| 15. WHEREN(Jy2%¥My XX)ISTHZ (NIRMALI(EDIB=-SPLINEOFDEGREE
15. (2%¥M=1)ON ‘THE KNOT SEJUENCET(J) sees T{Jt2%M),

| 17. INPUT:

18. N1,N2 SUBSCRIPT OF FIRST AND LASTOATA POINT

| 19. M 2*%*M=11S THE DEGREE O FTHENATJRAL SPLINE,

| 23. ADMISSIBLEVALJESRANGE FRUML TU N2=-NL+1,
21. RECOMMENDED VALUESARENUT GREATER THAN 7 (SAY)

22 X{N1::N2) CONTAINS THE GIVEN ABSCISSAS X{I) WHICH

23. MLST B ESTRICTLY MUNOTUNE INCREASING

2% A(NL2:N2,02 2: 2M=]1 )CINTAINSTHEGIVENORDINATESA SZERO-TH

| 25. COLUMN ,lebEeaAl{I¢Q)REPRESENTSY(I),
| 25. OUTPUT

27. A{NL2:N2,0:22%M=1 }THECOEFFICIENTS>IFTHEPIECEWISE POLYNOMIAL

| 28 REPRESENTATIONGUFTHE NATURAL SPLINE,{A(N2,0}T1S

i 29. UNCHANGED ANUNOVALUESAREASSIGNED TO THE LAST

| 1. RCW OFA)
31. CFF(1::N2-N1+2%M=1)T H E COEFFICIENTSOF THEB=SPLIN E

32a REPRESENTATION OF THENATURALSPLINES

33, | F(M> OJAND{(M<C=N2=NLI+1)THEN
3%. BEGIN

35. PROCEDUREBSPLDR(REAL ARRAY ToA(*¥);INTEOGERVALUEN,K3
35. REAL ARRAY ADIF{*,%); [INTEGER VALUE NDERIV);
37. CCMMENT CONSTRUCTS DIVeODIFFe TABLE FORB=SPLINECOEFF.

38. PREPARATORY TO DERIV.CALC «ARRAY DIMENSIONS ARE AS

39. FOLLOWS: T(1::N#K), AlLl33sN)y ADLF(1: :Ns1::NDERIVI).
40, NDERIV SHOULD BE IN(2sKJ3

41. BEGIN

42. INTEGER KMID;

| 43. REAL DIFF;
44, FOR 1:=1 UNTIL N DOADIF(lsdr)c=AL1);

45. KMID:=K3;

45. FORID:=2 UNTIL NDERIVIO

| 47 . BEGIN48. KMID:=KMKID-1:;

49. FOR I:=1 D UNTILNDO

53. BEGIN

51. - DIFF :=T( I+KMID) - T(1is

52. . IFODIFF~=0 THEN

53. ADIF(1, ID) :=(ADIF(14ID=4) = AVIF (I=1+sID-1}))/0IFF*KMID
54. END

55 END
56. END BSPLDR:

57 PROCEDURE BSPLEV(REALARRAY T(*)}; REAL ARRAY ADIF(%,%);

| 58. INTEGER VALUE NoK; RcAL VALJE Xi
| 59. REALARRAYSVALUE(*); INTEGER VALUE NDERIV);

60. COMMENT CALCULATES VALUE OF SPLINEANDITSOcRIVATIVESAT X FROM

:

|



61. B-REPRESENTATION. A&RAY DIMENSIONS ARE AS FOLLOWS:

62 « TAlssN+#K)y ADIF(L::Ngl:sNDERLIVIy SVALUE(LS:NDERILIV)

63. BEGIN

64. REAL ARRAY VNIKX(1::K);

65. REAL ARRAY TTU(1l3:N+1);

66. INJEGER KM] yMFLAG I oLEFT oI De KPLMN;
67 « FORI DUMMY ¢=1 UNTIL NJZRIV DU SVALJUE(IDJMMY) :=0;

68. KML :=K-13

63. FOR 1 DUMMY ::=1l UNTIL N+LDUTTC(IOJMMY) s=T(IDUMMY+K=1):

73. INTERVITT N+1=-KM1lyXelsMFLAG)

71. [e=]+KM1;

72. I FMFLAGKOTHEN GOTU S99

73. ELSE IF MFLAG=0 THEN GO JO 520;

74. I FX>T(I)THEN GO TO S99;

75. S10: IFI=sK THEN GO TO S99;

76. [e=]=13

77. I FX=T{I)THENGO JO S103

78. COMMENTIHASBEENFOUNDOA N(KgNIS O THATT(I)I<=X=T(I+1)

79 (OR <S=T( I+1), I FT(LIIKT(I+L)I=T{(N+1));
80. S20: KPI1MN:=K+1-NDERIV;

81. BSPLVN(T4g KP1MN ol o X91 ,VNLKX)

82. [D:=NDERIV

83. S21: LEFT:=1-KP 1MN;

84. FOR L$=1 UNTIL KPLMNODG

85. SVALUE( ID) s=VNIKX(L)I®*ADIF(LEFT+L10) + SVALUE(ID);
85. ID:=10D-1;

87. If ID=0 THEN GC TO 393;

83. KPIMN:=KP1MN+];

bo. BSPLVN(T3092¢Xelos VNIKX)

90. GO TO S213

91 s99

92. END BSPLEV:

93. PROCEDURE BSPLPP(REAL ARRAY To A(*) ; INTEGER VALUE NyK 3;

94. REALARRAYSCRTCH(*¢%¥) ;REALARRAYXI(%);

95. REAL ARRAY C(*,%), INTEGER RESULTLXI):
95 « CCMMENT CONVERTS B=SPLANE REPRESENTATLUNTIPIECEWI SE POLYNOMI AL

97. REPRESENTAT ION. ARRAYOIMENSIUNS AREASFOLLOWS:

93. T(lssN+K), AC1:2N)y SCRTICHEL::tNglosKdy XI(lz2LXI+1),

99. C(l2:Kyle:LXI) LXI=N=K=11FN OREPAEATEDKNOTS;
103. BEGIN

101. BSPLOR(T3A ¢yNoK SCRTCH,K);

102. LXI:=0;

103. XI(l):=T(K);

10% FOR ILEFJ: = KUNTIL N uO

105. I FTCILEFT+1)~=T{(ILEFT) THEN

105. BEGIN

107. LXIs=LX]+1;

108. XI(LXI+1).=TUILEFT+1Js

109 BSPLEV(T ySCRTCH Ng Ky XICLXL) sC(*y0 XI) oK)

110. END

1il. END BSPLPP;

112 « PROCEDUREBSPLYN(REAL ARRAYT(®) 3 ANTELERVALUE JHIGH, INDEX;

113. Rt AL VALU:z X3 INTeGERVALJE IL EFI;

114. REAL ARRAY VNIKX(#*) 7] .

115. COMMENT CALCULAJESTH E VALJE OF ALLPUSSIBLYNONZERDO B-SPLINES AT X

116. O fORDERMAX{JHIGH (JJ+L)( INVEX=L J J UNT . INDEX=10OR 2.

117. J J ,DELVYAM, DELTAP ARE GLUBAL VARIABLES.
113. BEFORETHEFIRST CALLONEMUSTO>cTJJ=1 AND ALL ELEMENT’SOF

119. DELTAM ANODELTAP= 40. ARRAYDIMENDIONSARE ASFOLLOWS:

123. T(l: :N+K), VNIKX(L13:K), DELTAM(L1:2:K), DELTAP(1::K);
121. BEGIN
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|

122 a INTELER JP 1,JdP IML;

123. KEAL VMPKRE V yVM3

124. IFINCEX=1THEN
| a BEGIN
13a JJda=1,

1217 VNIKX(1):=]3;
128. | f -JJd>=JdHIGH THEN GU Tu 599

123 END:

130. 520: DELTAP (JJ) :=TLILEFT#JU)~-X ;

131. veElLTAMIJJ): = X=T{lLcrT=JJd+l);

132. VMPKEVI=0,

133. JPl:i=JJ+1l;

134. FOR Ls=}] UNTILJ J Du

135. BEGIN

135 JP IML: -JPl~-L;

137. VM:=VNIKX(L)/ (DELTAP(L) ¢ OELTAM(JPLMLI);

133. VNIKX{L):=VM=DELTAPIL) + VMPREVS

13). VMPREV:=VMxDELTAM{JPLML)

143." END
141. VNEIKX(JPLl) :=VMPREV;

142. Jdi=JPl;

las. [FJIUSKIUHIGHTHEN GOTJ>Z20;

l4%, $99:

145. ENDBSFL VN;

145. PRULELULDUKE BSPLVCU(REAL ARKAY T(x); INTcouer VALJE Kg

147. REAL vaLJUz X :; INTFcoex VALJE LLEFT;

143. HEALAKKAYVNIKX(*,%);INIcoERVAL UENDERIVY);

147 COMMENT CALCULATES VALUE ANDUERIVY>eur ALL o=SPLINESWHICH DO

15). NUT VANISHATX. ARRAY DIMENDSIUNOAKEAS FOLLOWS:

151. TllssineK)9 UNITKALLS ¢KolssNucklivi,

-152. BEGIN

153. INTLUER [TOERIVIDERVMgKMMUgle JdodMLyJdLlum;
154. ReAlL VL,DIFF;

155. REAL ARRAYNVYNIKX(1::K):

156. REALARRAYA(]l3:Kyls2K);

157. CUMMENT FILL VNIKXUJslIozRIV) J=lUERIVyeeeasK WIT H NONZERO

153. VALUES O F B=SPLINESUF URVUER K¢l=]UERIV,

157. FOERKIV=NDERdV/se.e9l BY KePEATEJUCALLS TOBSPLVN;

1 6 3 . BSPLVN(T yK+1<-NDERIVylyayLEFT yNVNIKA);

161. FUR 1 DUMMY :=NDER IV UNTIL XK Ju

162. VNIKX{TCUMMY,NDEKIV) : =nNUYNIKAGTIUUMMY=NDERT VEL)

163. I FNDERIVK=1ITHENG OTJ>99;

loa. IDERIVI=NDERIV;

16>. FOR 1:=2 UNTIL NDERIV Ju

166. BeGIN

167. IDERVM:=]DERIV=1];
163. FOR J:=IDERT V UNTILJU

163. VNIKX(J=1lsIDERKVM): =VNIKA (Uy lULEKIV)

17). IDERIV : =IDERVM;

i171. BSPLVN(T409 ce XoelbetT, NvNIKX]);
172. _ FORIDUMMY:=IDERdYV UNTIL K Vu

173. VNIKX{IDUMMYdUERLI VI S=NVNIRXLIDJIMMY = {DERIV +1)

174. = END;
175. FORI:=} UNTIL K DO

175. BEGIN

177. FORJ:=1 UNTIL K LU

173. All,J):=0C;

177. A{ls,1):=1

180. END;

181. KMO:=K 3

182. FORM:=2UNT | LNDERIVDJ
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3656. CALCULATES THE VALUE OF ALLPOSSIBLY WNUNLERJ B=SPLINESAT*X* QF
367. CORDE RMAX{JHIGHs(J+1) {ANIEX=1)) ON *T*,

368. DIMENSION TC 1) oVNIKX(L)

369. DIMENSION DELTAM{203,D0cLTAP{20)
373. DATA J/17sDELTAM ,DELTAP/ 40%0e/

371. od TO 140,20), INDEX

372. 10 J =1

373. VNIKX(1)=1

374. | FJ «GEe JHIGH) 0 TU 29
375. C

376. 20 IPJ = [LEFT+J

3717. DELTAPLJ) = T(IPJ) - X
378. IMJPLl = ILEFT=J+]

3791 DELTAM(J) = X=T(IMJP1l)}
380. VMPREV=0.

381. JP1 = Jel
382. DO 2 6 L=1,yJ

383 JPIML =JP 1 - L

384. VM= VNIKXIL)ZCDELTAPIL) +0ELTAM( JPILIML) )

385. VNIKX{L} = VMEDELTAP(L) ¢ VMPREY

386. 26 VMPREV= VMEDELTAM(JPL ML)
387. VNIKX{JPLl) = VMPREYV

388. J = JP1

389 a | FS ebkTe JHIGH Gu Tu <0
390. C

391. 99 Ki TURN
392. END

393, SUBROUTINE INTERV(XTgbLXToXgILEFTo4FLAG J

399. COMPUTES LARGESTILEFT I N (1yLXT)ISUCHTHAT XTUILILEFT).LE. X
395. DIMENSION XT{LXTJ

394, DATA ILO /1/

397. IHL = IL0+ 1

398. I FOIHILT aL XT ou TU 20

390, | FAX «GEe XTILXT)) G ofiUllu
400. I F (LXT «LE 1) GOTO9 0

401. ILO= LXT = 1

402. ou Tu 21

403. 20 I F{XeGEe XT(IHI)) GU TO 40

404. 21 IF (XeGEeXTL IL OT] + Gu Tu LIV

405. Ce%x%k NOW X oLTe XT{ THI) . FIND LUWEK BuuiND

406. 3 0 ISTEP= |

408. ILO = IHI = ISTEP
409. I FILO «LE. 1) bu Tu 35

410. I F(X GEe XTU{ILO)) Gu Tu 50

4ll. ISTEP = [ STEP*2

412. LU TU 31

413. 35 ILO = 1

41%. IF (X «LT. XT{ 1)) Gu TU Jv
415. GOTuL5 3

415. CE¥%%EN O W X eGEeXT{I L O Je FINDUPPEK BOUNU

417. 4 ISTEP= |

418. 4 1 ILO= IHI

419. IHI = ILO # ISTEP

4273, IF (IH] .GE. LXT) GO Tu 49
421. I F(X LT XT(IHI)}) ou TU SU

422. ISTEP = | STEP*2
4273, GU TO 41
424, 45 1 fUX «GEe XTLLXT)) GO Tu 119

425. IHI =L XT

426 < Coxnd NOW XT(ILO) oL Ee X «bTo XT(IHI) . NAKRUNTHE INTER V AL
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427. 50 MIDDLE= (ILC + IHIM/<

429. C NOTE. | TISA S S UME DITHAT MIVUDLe =1euln ASEIHI = TLO+]
433, I F(X «LTa XFTUMIDDLE)) ulus 3
431. ILO = MIDDLE

432. GU Tu 50
433. 53 IHI = MIDDLE

“34. bd TU 29
435 « Cx%%x% SET OUTPUTAND RETURN
436. 9 OMFLAG=- 1

437. ILEFT = 1

438. RE TURN
439. 10 OMFLAG= 0

44). ILEFT = [LO

4él. RE TURN
£42. 110 HFLAG=1

443." ILEFT - LXT

444. KE TURN

445. | END
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APPENDIX II

le PROCEDURE DEBNAT( INTEGERVALUE N1lyNZsM; RcAL ARRAY X(*)3

2. REAL ARRAY A{*,%); REAL ARRAYCFF(%*));

3. COMMENT DEBNAT COMPUTES THE COEFFICIENTS OF BOTH THEPIECEWISE

4, POLYNOMIALREPRESENTATIONAND THEB=SPLINE REPRESENTATION OF A

5 e NATURAL SPLINE S{X)UF DEGREE (2*%¥M=1) os INTERPOLATING THE

5. ORDINATESY(IVYA TPOINTS X(I J i=NLTHRIUGHNN 2.

Te PIECEWISE POLYNOMIAL RePRESENTATION:

3. FOR XX INUX(I)e XQI#1d)sl=NlgaeasNZ=1,

9. SIXX)=A(I,0)+A(] 41 )%T tee c +A 2¥M=] J T*%(&M=-])

13. WITHT=XX=-X(I).

] lle. B8=SPLINE REPRESENTATION:
12. FOR XX INC(X{N1)yX(N2}},

13. SIXX)=CFFUL)EN(] y2%M XX) +CFF (2) Nl 9c*¥Me XX) teow

j 14. +CFF(N2=N1#2%M=1 ) KN(NZ=NL1+2%M=1 2 %M XX)
| 15. WHEREN(Jy2%¥My XX)ISTHZ (NIRMALI(EDIB=-SPLINEOFDEGREE

| 15. (2%¥M=1)ON THE KNOT SEJUENCET(J)sees ll Jt2%M),

| 17. INPUT:

18. N1,N2 SUBSCRIPT OF FIRST ANDLAST DATA POINT
| 19. M 2*M=1 IS THE DEGREE OF THE NAT JRAL SPLINE,

: 23. ADMISSIBLE VALUESRANGEFRUMLTUGNZ2=-NL+1,
21. RECOMMENDED VALUESARENUT GREATER THAN 7 (SAY)

22 X{N1::N2) CONTAINS THE GIVEN ABSCISSAS X{I) WHICH

23. MLSTB ESTRICTLYMUNOTUNE INCREASING

2% A(CNL2:N2,02 2:2M=]1 )CINTAINSTHEGIVENORDINATES AS ZERO-TH

| 25. COLUMN, I.E. Al L+QIREPRESENTSY(I),
| 25. OUTPUT

27. A{N12:N2,0::2%M=1)THECJEFFICIENT>JIF THE PIECEWISE POLYNOMIAL

28. REPRESENTATIONUF THEN A TuR Ar SPLINE.(AIN2,0}1S

29. UNCHANGED ANDNOVALUESARCASSIGNED TO THE LAST

| 33. RCW OF A)
31. CFF(1: :N2-N1+2%M=1) THE (COEFFICIENTSOF THEB=SPLIN E

32a REPRESENTATION OF THE NATURAL SPLINE:

33, | F(M> 0)JA N D{M<=N2=N1+1)TH E N
34, BEGIN

35. PROCEDUREBSPLDR(REAL ARRAY T,A(%¥);INTEGERVALUEN,K;
36. REAL ARRAY ADIF(*,%); [INTEGER VALUENDERIV);

37. CCMMENT CONSTRUCTS DIVeOIFFe TABLEFORB=5PLINECOEFF.

38. PREPARATORY TO DERIV.CALLC<-ARRAY DIMENSIONS ARE AS

3 9 . FOLLOWS: T 11: eN#K)y A(133NJ)sy ADIF(1l::Ns1::NDERIV).

40. NDERIV SHOULD BE IN(2:K);

41. BEGIN

42. INTEGER KM ID ;

| 43. REAL DIFF;
44 FORI $=1 UNTIL NDOADIF(lsi)c=Al1);

45 KMID:=K;

45 F O RID:=2UNTILNDERIVIO

| 47. BEGIN48. KMID:=KMKID-1:;

49. FOR I:=1D UNTILN DO

53. BEGIN

Sle - DIFF: = T1I+KMID)-T(11};

52. } | FDIFF~=0 THEN

53. CADIF( I, ID) :=(ADIF(11ID=1) = AVIF ( I=1+sID~1))/0IFF*KMID
54, END

55 » END

56. END BSPLOR:

57. PROCEOURE BSPLEV(REAL AKRAYT(*};REAL AKRAY ADIF(*,%);

| 59. INTEGER VALUE NeK; RcAL VALJE X:
| 59. REALARRAYSVALUE(*): INTEGER VALUENDERIV)S

60. COMMENT CALCULATESVALUEO FSPLINEANDITSOERIVATIVESAT X FROM

:

|



61. B-REPRESENTATION. ARRAY DIMENSIONSARE ASFOLLOWS:
62 « TALSsN#K)yg ADIF(L::Ngsl:ssNDERLAIV)y SVALUE(L2:NDERIV)

63. BEGIN

64 REAL ARRAY VNIKX(1::K);

65. REAL ARRAYTTL 1: sN+1);

66. INTEGER KM] yMFLAG I oLEFT IDs KPLMN;
67 « FOR | DUMMY:=1 UNTIL NJDzZRIV DU SVALUE(ILIDJMMY):=0;

68. KML :=K-13

63. FOR 1 DUMMY ::=1U N TI LN+L DU TTCIOJMMY) s=T(IDUMMY+K=1):

73. INTERVITT N+1=-KM1lyXeleMFLAG)

71. [e=]+KML13

72. I FMFLAGKOTHEN GOTUS99

73. ELSEIF MFLAG=OTHENGOTO 520;

71% « IF X>T(I) THEN GO TO $99;
75. S10: IFI=K THEN GO TO S99;

76. [e=]=13%

77. I FX=T(I)THRENGO T OS10s

78 COMMENTI HAS BEENFOUND AN (KgN} SO THAT T(I)<=X<=T(1I+1)

79 (OR <=T({I+1), IF THLIIKT(I+1)=T(N+1));
80. S20: KPI1MN:=K+1-NDERIV;

81. BSPLVN(Tys KP1IMN ol o X91 oVNILKX);

82. [D:=NDERIV

83. S21: LEFT:=I-KP 1MN;

84. FORLS=LUNTILKPLMN 00

85. SVALUE( ID) s=VNIKX(L)I®*ADIF(LEFT+L10) + SVALUE(ID);
85. ID:=10D-1;

87. If ID=0THEN GC TO 393;

83. KPIMN:=KP1MN+];

89 a BSPLVN(T3092¢Xelos VNIKX)

90. GO TO S21;

91 s99

92. END BSPLEV;

93. PROCEDUREBSPLPP(REALAKRAYToA(*); INTEGER VAL U ENyK;

94. REALARRAYSCRTCH(*,%); REALARRAYXI(%*);

95. REAL ARRAY C(*,%),; INTeuot® RESULT LXIJ:
95. COMMENT CONVERTS B=SPLANE REPRESENTATLUN T) P LECEWI SE POLYNOMIAL

97. REPRESENJAT ION. ARRAYOIMENSIUNSARE AS FOLLOWS:

93. T(13:N+K), ACl1::N)y SCRTCHUL:NglsesK) gp XI(L22sLXI*+1),

99. C(l::KyletXI) LXI=N=-K=11FN OREPAEATEDKNOTS;
103. BEGIN

101. BSPLOR(T3A¢yNoK SCRTCH,K) ;

102. LXI:=0;

103. XI(1):=T(K);

104. FOR ILEFT: = KUNTIL N uO

105. I FYCILEFT+1)~=T{(ILEFT) THEN

105. BEGIN

107. LXIs=LX]+1;

108. XICLXI+1)s=TUILEFT+1);

109 BSPLEV(T ySCRTCH Ng Ky XICLXL) sC(*y0 XI) oK)

110. END

111. END BSPLPP;

112. PROCEDUREBSPLYN(REAL ARRAYT(®) 3 ANTELERVALUEJHIGH,, INDEX;

113. Rt ALVALU: Xs; INTceGER VALJE ILEFT;

114. REAL ARRAY VNIKX(#*)),; -

115. COMMENT CALCULATES THEVALJE O f ALLPUSSIBLYNONZEROB=-SPLINESAT X

116. OF ORDERMAX{JHIGHs(JJ+1lJ (INVEX=LI)IUNT. INDEX=10OR 2.

117. JJ,DELTAM,D ELJ AP AREGLUBAL VvARIAGLES.
113. BEFORETHE FIRSTCALLONEHJS JocTJJ=1A NDALLELEMENTSOF

119. DELTAM AND DELJAP= 40s ARRAYDIMcENDIONSARE AS FOLLOWS:

123. T(l: :N+K)y VNIKX(L123:K), DELTAM(L::K), DELTAP(1::K);
121. BEGIN
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12 « INTELER JP 1,JdP IML;

123. KEAL VMPKRE V yVM3

124. IFINCEX=1 THEN

| a BEGIN
1d5 JJda=1,

1217 VNIKX(1):=]3;
128. I f JJd>=JdHIGH THEN GU Tu 599

129 « END:

130. 520: DELTAP (JJ) :=TLILEFT#JU)~-X ;

131. veElLTAMIJJ): = X=T{lLcrT=JJd+l);

132. VMPKEVI=0,

133. JP1li:=JJd+1l;

134. FOR L:=] UNTIL J J DU

135. BEGIN

13s. JP IML: -JPl~-L;

137. VM:I=YNIKX(L)/(DELTAP(L) + OELTAM{JPLMLI);

133. VNIKX{L):=VMEDELTAPIL) + VMPKEV,

13). VMPREV:=VMxDELTAM{JPLML)

143.’ END:

141, VNEIKX(JPL) :=VMPREV;

142, JJiz=JP1l;

las. [FJIUSKIUHIGHTHEN GOTJ>Z20;

14%, $99:

14>. ENDBSPL VN;

145. PRULELDUNE BSPLVC(REAL ARRAY T(x); INTcvocr VALJE Kg

147. REAL vaLJzX ; INTcoen VALJE ILLEFT;

143, HEALAKKAYVNIKX(*,%);INIcoERVAL UENDERIVY);

147 COMMENT CALCULATES VALUEANDUERIVS«dr ALL O=SPLINES WHICH DO

15). NUT VANISH AT Xe. ARRAYDIMENSIUNSAKEAS FOLLOWS:

151. TCLs sineK)yg WNIKALL: SKolsiNucklivi,

-152. BEGIN

153. INTLUER IDERIVJIDERVMeKMUsly JoedMLlygJdLlung

154, HEALVsDIFF;

155. REAL ARRAYNVYNIKX(1::K):

156. KEAL ARRAVYA({(l::Kyel2:2K);

157. COMMENTF | L LVNIKXUJsdOoKIVIgJ=lUERIVyeaasKW| T HNONZERO

153. VALUES O FB=SPLINESUF URVUER K¢l=1UERILV,

157. FOEKIV=NDERdVs.e.esl BY KecPEATEJUCALLS TOBSPLVN:

1 6 3 . BSPLVN(T yK+1=NDERIVylyay LLEFTyNVNIKA),;

161. FCRI DUMMY :=NDER IV UNTIL XK Ju

162 « VNIKX{ICUMMY, NOEKIVI):=nNUYNIKA(IUUMMY=NDERTI VEL);

163. I FNDERIVK=1THENG O0OTJ5>99;

loa. IDERI VI=NDERIV;

16>. FOR 1:=2 UNTIL NDERIV Ju

165. BeGIN

167. IDERVM:=10ERIV=-1]}
163. FOR J: =I0DERI| VUNTIL<C Ju

163. VNIKX(J=1sIDEKVM): =VNIKA (Uy lUEKIV)

17). IDERIV: =IDERVM;

i171. BOSPLVYN(T309 ce XeIbietrT, NvNIKX);
172. _ FORIDUMMY:=IDERdYV UNTIL K Vu

173. VNIKX{IDUMMY,dUERKL VI S=NVNIR XL I0DJUMMY = {DERI V +1)

174. = END,
175. FOR [:=}1 UNTILK DO

175. BEGIN

177. FOR J:=1 UNTILK UU

173. All,J):=0C;

177. A{lsl)=1

183. eND3

181. KMD:=K ;

182. FORM:=2 UNTIL NDERIVDJ
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183. BEGIN

184. KMD2$=KMD=13

185. | s=ILEF T;

185. Je=K3

187. S21: JMlt=Jd=-1:

188. DIFF:=T(I+KMD} - T(Il);

183. |FJMI=0 THEN GO TOSco;

190. IFDIFF=C THEN GO TO $¢53

191. FOR L:=1 UNTIL J Du

192. AlLy J): =I AlLgd)= AlLeJ=1))/UIFF*®KM)D;
193. S25: Ji=JdMl;

194. [¢=]=-1;

195. GC TO S21,

196 « S26: IFDIFF=CTHEN GOVJ3S530;

197. A(ls1):=A(141)/DIFF*(MD;
193. S30: FORI : = 1 UNTILK DO

193. BEGIN

203. Vi=0;

201 . JLOW ¢=1F I>=M THEN[ cLSE M ;
207. FORJI=JLOWUNTIL KDO

203. Vi=A(1| J)*VYNIKX(JeM) + V;

204. VNIKX(IM):=V

205 , END;
205 END;
207. s99+

208. END BSPLVO:;

203. PROCEDURE INTERV{REALARRAY XT(*) iNTESER VALUELXT; REAL VALUEX3

213 INTEGER Re SULT ILEF Te MFLAG)

211. COMMENT COMPUTES LARGESTILEFTIN(L LXTISULHTHATXTH(ILEFT)<=X.

212. XT IS OFSIZEXKT(1l::0LXT)e ILOISA SLOBAL VARIABLE.

213 . ILOMUSTBESE TEQJALT O1 BeFORETHEFIRST CALLO FINTERV;

214. 8EG IN

215. INTEGERIHI ISTEP, MIDDLE ;

216. IH .=ILO+1;

217. IlFIHIKLXTTHENG OT 0S20;

218. I FX>=XT(LXTITHENGOTOS1103

213. IFLXTS=1TFENGO T 0S90;

223. ILO:=LXT-1;

221 « GO Tad S21

222. $20: IFX>=XT(IHI)T H E NGUTID >40;

223. S21: | FX>=XT{ILC)THEN GOTJ51u0;

224. COMMENTNOWXSKXT{IHd. FIN23LOWERBUJND;

225. S30: [STEP:=1;

£26 s3 1: IHI:=[LO:

227. ILO:=IHI-1STEP ;

228. | FILOK=1TYHENG OT 0OS3>5;

223. IF X>=XT{ILC)T H E NGO TJIS50;

230. ISTEP:=ISTEP*2;

231. G OTuS3i;

232. s35: I1LO:=1;

233. I FXKXT(1)THENG OTOS?0;

234. Gu TO S50;

235. COMMENT NOWX>=XT(ILO). FINU UPPerk BUJIND

236. S40: ISTEP:=]}

237. S41]: [LO:=1IHI;
238. IHI:=[LO+1 STEP ;

23%. | FIHI>=LXTT H E NGUT3 S45,

24). I FfXXXT{IHI)THENG UTUJS50;

241 I STEP:=ISTEP*%2

242. GLUT OS4l;

243. s45: | FX>=XT(LXT)THEN GOTVF3S110;

LO



u

244, IHI :=LXT;

245, COMMENTNOWXT{ILO)<=XKXT(IAL). NAKRuw THE INTERVAL.

246. S5C: MIDDLE :=(ILC+IHKI ) DIV ¢3

247. IFMIDDLE=ILOTHEN GOTUS100;

248. COMMENTI TISASSUMEVD THAT MIDDLE=JLUINCASEINRI=IL0+];

247. I F XX<XT(MIDDLE)YTHEN GO TOS53;

250 [ILO:=M]IDDLES;

251. ou Ta S5V%

252. $53: IHI:=MIDDLE;
253. Gu TJ S50;

25%. CCMMENTS E TCUTPUT ANU EXiT,;

255. S90: MFLAG:==-1;

255. ILEFT:=1;

257. GO TJoSFIN;

258. S100: MFLAG:=0;

259. ILEFT:=IL0;

263. Gu TJ SFIN;

26] S110: MFLAG:=1;

262 « ILEFT:=L XT

263. SFIN:

264. ENDINTERV;

265. PROCEDURE BANDET(REAL ARRAYM{*,%) INTEGER ARRA YINT{(*);

265. REAL AR941 A(*,%) 3; [NTeuoe VALUE NM ,M2);

267. CCMMENT BANOET ANDITS COMPANIONPRIUCEUJREBANSOL SOLVETHE SYSTEM

268. O FEQUATIONSA®X=B WHER AISA NUNSYMMETRICBAND MATRIX.

263. (THEY WILLWORKWITHSYMMETRIC BANUMATRICESBUT TAKE NO
273. ADVANTAGE OF THEIR STRJULTURE.)

271. THEBANDMATRIX 43F0ORDERNwlTHMLSUB-DIAGONALELEMENTS

212 « ANO M2 SUPER=DIAGINAL ELEMeNTSINA TYPICAL ROW IS STOREO AS

273. A NN BY(ML+M2+1)ARRAYy A(LS:Ngls:Ml M241), WITHT H E

-274. SUB-DIAGONAL ELEMENTSINA(X®,Ub)9d=lsacesMly THE DIAGONAL

275. ELEMENTSIT N A{¥,M1+1)y ANDTHE SUPcR=DIAGONAL ELEMENTS IN

275 Al*yJ)y J=M14+29ceesMitM2¢]1., THEMATRIXAIS FACTORIZED BY

277. BANDET INTOTHEPRODUCTOF A LuntceR=-TRIANGULAR MATRIX ANO AN

218. UPPER-TRIANGULAR MATRIXUSINGPARTIALPIVOT INGe THELQWER

279. TRIANGLE ISSTOREDA SA NN BYMLARRAYM(L12:N,1:MI)ANO THE

283. UPPER TRIANGLE ISJVERWRITTENGUNA. DETAILSOF THE

281 « INTERCHANGES ARE STURED A NTHEARRAY INT(1::N} 3

2 8 2 . BEGIN

283. INTEGER | oLoM33

284. REAL X:

285. M3:=M1+M2+1];

286. Le=M13

287. FOR 1:=1UNTILM 100

289 BEGIN

289 o FOR Js=M1+2~-I UN T IL M3 DU

290. Alls J~=L) s=Al1,J);

291. Le=L=1;

292 « FOR J:=M3=-L UNTILM3D O

293. All,J):=C

294. ENDI

295. L:=M1;

L290 - FOR K2=1 UNTIL N 00
297. BEGIN

298. X:=A(K,1)3

299. I1s=

303. IFL<NTHENLz=L+1;

301. FOR J:=K+1l UNTILL3 3

302. | FABS(A(J,1)I>A3S(X)THEN

303. BEGIN

30%. Xi=A(Jds 1}
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300 . l1:=J

| 305. END J:

307. INT(K) :=1;

303. I FI~-=K THEN

309. FORJ:=1 UNTIL M3 uU

313. BEGIN

311. X=A(KyJ)

312. Al(KyJi):=A(1l,4);

313. A(l,J):=X

314. END J:

315. FOR |: =K +I UNTILLDJ

316. BEGIN

317. Xe=M(Kel=K)e=AlLl,1)/A(Ke1):

318. FOR J:=2 UNTIL M 30U

31%. AllsJ=1)=A(lsud = X¥A(KsJ);

323. A{T M3): =0

321. ENDI

322. END K

323. END BANDET;

32% PROCEDUREBANSOL(REAL AKRAY M(*,%) ; INTEGER ARRAY INT *) ;

325. REALARIAYB(¥); KcAL ARRAY A( *,%);

325. INTEGER VALUE NeMigMc)s

327. CCMMENTTHE PARAMETERSMgINTsAsNyML  McAREC THESAME ASINBANDET.

323. BANSOL SOL VE STHeESYSTEMUCCUMPUSEDBY BANDET W 1 TH

329. RIGHT-HANC SIDE 8(133N)s THeSULJTIINIS RETURNEDI N B83

333. BEGIN

331. INTEGER IsLyM3 4;

332. REAL X:

333. M3:=M1+M2+1;

33%. L:=M]l,

335 FOR K:=1UNTILN D O

335. BEGIN

337. | e=INT(K);

338. I FI==K THEN

339. BEGIN

343. X:=B(K); .

341. BK) :=B( I);

342. BllI):i=X

343. END:

344. | FLKNTHENL:=L#L;

345. FOR | s=K+} UNTIL LJ

345 B(I):=8(1I) = M(K,[=-K)*o(K])

347. END K:

343. L:=13

349. FOR |:=N STEP - 1 UNTILL Dg

353. BEGIN

351. X:=8(1);

352. Wi=I-1;

353, FOR K:=2UNTILLDJ

35%. Xi— x- A] JK)ZE3(KtWw);

355. B{Il):=X/A(I,+1);

355, } |  FL<CM3 THEN L:=L+1
357. ENDI

353. -END BANSOL ; }

359. INTEGER TNZ2sTN3y ING TM2 os TMM MPL sie MM pid odIM2,LX1eJdJd,y [LOS

363. REAL Al,ANP,FAC;

36]. REAL ARRAY DELTAM,DELTAP(L:s:2%M);

362 REAL ARRAY T(12sN2~NL1+4*M=1);
| 363. REAL ARRAY TA( 1: :N2=Nl+c*¥M=-}};

36%. REAL ARRAY TX, TY(123NZ2=N1+1);

365. REAL ARRAY Q{1l2sN2=N1+2%«M=},13:/%M);



365. REAL ARRAY TRL {1 S:tNZ=NL+2&M=3,]::M=-1),;

367. REAL ARRAY VNIKX(1lsa/2%M,J: 2%M=-0) ;

368. REAL ARRAY C(1 ::2%M,1: :N2=Ni+1);

369. INTEGER ARRAY INT(lssN2-Nl+2%¥H=3),;

373. TN2 :=N2=N1+1;

371. TM2: = 2%M 3

372. TN4:=TN2+TM2=-4;

373. TMM:=TM2=1;

37% FOR I¢=N1UN TIL N2DQ

375. BEGIN

376, TX(I=-N1+1):=X{(1),

377. TY(I-N1+1):=A(1,0}

373. END I;

379. JJe=1LO:=13;

38). FORI:=1UNTILT M 2000cLTAM(L):=DELTAP(1):=40;

381. FOR Ie=1UNTILTMMDOT(Id::=TX(1);

382. FOR I:2=1 UNTIL TN2=1 vu T(I¢TMM):=TX(1]1),

383. TN3:=TN2-1+TMM;

384. FORI ¢=1UNTIL TM 2D OT(I+TN3):=TX(TIN2]);
385. COMMENT GET COEFFICIENTS OF FIRSTM=-iRUNS

386. BSPLVD (To TM2,TX( 1) sTMLeVNIKX,TMM) ;

387. Als=TY{1)/VYNIKX(1,14;
383. FOR I:=1 UNTILM - |D0

389, BEGIN

390 « FOR J:=1 UNTIL TMMDOQ(L ¢J) 2=0;
391. MPI:=M+];

392. LL :=M=]3

393. FORL:=2UNTILMPIDI

394 . BEGIN

395. LL:=LL+1;

395. QIILLIC=VNIKX(Ls4P1I)

397. END Ls

398. TA(I) :==AlXVYNIKX{1,MPi)

399. ENDTI;

400. COMMENT G ET COEFFICIENTSOF NEXTINZRUAS

401. MM2:=M=2;

402. FOR I1:=2UNVILTNZ2=-1D O

403. BEGIN

404%. BSPLVN(T,TM2, 1a TX(I)y I+TMMa VNIKX(*,1))3
405, IM2:=1+MM2;

405 o FORUL2=1 UNTIL TMMDJUQ(IMZ2,,L):=VNIKX(L,1);

407. TA{(IM2):=TY(1)

408. END I:

409. COMMENT GET COEFFICIENTS OF LAST M=iRuUWS3

410. BSPLVD(T 4sTM2,TXOTN2)oTN3 gUNIKX yo TMM) 5

411 « ANP: =TY{TN2)/VNIKX{TM2,1);
412 « FORI :=1 UNTIL M-I DO

413. BEGIN

414, I1s=TN2+TM2-3~1];

415. FOR J:=1 UNTIL TMM DO Q(lIl,Jd)2=0,

416. MPI s=M+13;

4x7. LL:=M~-1;

418. FORL:=1 UNTIL MPI~-10U

419. BEGIN

423. c c¢ :=LL+13

421. Q{IlL):=VNIKX(LLyMPI)

422. ENDL

423. TACII) :==ANPRVUNIKX{(TMZ,MPI)

42 4 END I;

425, BANODET(TRLgy INT yQ 9 TN4gM~14M=-1);

426. BANSOL{TRLINT 4TA, Qe INGyM=]1,M=-1);
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427. FOR 1:=1 UNTIL TN& Uu TA(TNs-L) c=T1A(INS=~i~1);
428. TA(l) :=Al;

429, TA(TN3)} :=ANP;

430. FOR I$=1UNTILTN 3DCCEF(I):=TA(L);

431. BSPLPP(T TAZ TIN3,TM2 Ge TX Col XI);
432. FOR [: = AUNTIL TN2=10U

433, BEGIN

43%, FAC:=1;

435, FORJ:=¢ UNTIL Tae UJ

435, BEGIN

437. FAC:=FAC®(J-1J ;

438. ClJI)s=ClUy 1D/FAC

433, ENDJ

440. END I;

44]. FORI:=1 UNTIL TN2=-i DU
4472, FORJ:=1 UNTILTMZ UU
4473, A(NLtI=19Jd=1)2=C(usi)
44% . END DEBNAT;

Li


