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Abstract.

A FORTRAN subroutine is described for finding interpolating natural
splines of odd degree for an arbitrary set of data points. The subroutine
makes use of several of the subroutines in de Boor's package for
calculating with B-splines. An ALGOL W translation of the interpolating
natural spline subroutine and of the required subroutines of the de Boor
package are also given. Timing tests and accuracy tests for the routines

are described.
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We now explain how a piecewise polynomial function can be expressed

i+1

5 be a strictly

as a linear combination of B-splines. Let § = (gi)
increasing real sequence and let k be a positive integer. If Pl""’PZ
is any sequence of [ polynomials, each of order k (or, degree < k)
then we define a corresponding piecewise polynomial f of order k by
the prescription

£(t) = Pi(t) if B <t <EL3 i=L2..00
We arbitrarily make £ continuous from the right at the interior
breakpoints, i.e.,

£(g,) = £(€,)  for i =2,...,!

We denote the collection of all such piecewise polynomial. functions of

+
order k with breakpoint sequence £ = (gi)i_i by

TP, e

. Note that ﬂ’k € is a linear space of dimension k{ since it is isomorphic
D
to the direct product of I copies of TFk , the linear space of all
polynomials of order k (degree < k) . A convenient way to represent

a piecewise polynomial function £ eTFﬁK e is by
2

)r-l

k
£f(t) = 2 Cr,i(t - g, s B St <E, s i=12.0 (2.7)
r=1 ’

-1 + .
where C_ . = D* f(gi)/(r-l)z r T =100k 3 1 = 1,.00,f . Then the
2

j-th derivative of f at a point t is given by

K .
DIE(t) = D c, i(t-gi)r—l-‘](r-l)l/(r-l-j)! : (2.8)
I‘:j+l ’

We often wish to impose upon f the conditions that it have a certain

number of continuous derivatives. We may write such conditions in the form



jumpg DJ_lf = O s for j = l,oo.,\)i 7 i = 2, . ..;I ' (2.9)

for some vector v = (vi)é with nonnegative integer entries. The subset

of all feTPk e satisfying (2.9) for a given v 1is a linear subspace
4
of which we denote Db '
_I_Pk,g y -Pk, £ v.
In order to obtain the B-spline representation of a piecewise

polynomial function £ eTPk 6 v we need the following theorem which
) D

was proved by Curry and Schoenberg [5] and by de Boor [4].

+ .
Theorem. For a given strictly increasing § = (g,i){ 1 , and given
2 . .
nonnegative integer sequence vy = (Vi )2 » with vy <k, all i , set
V. = dimTP

s k) € v

-

(2.10)

1 M=

b4
n = k + Z (k-\)i) = ki -
i =2 ’ 2

i

n+k

1 be any non-decreasing sequence so that

and let t = (t i)
(1)t =St S8 S St L S Y
(ii) for i = 2544454 , the number §i occurs exactly k-vi times in t

Then the sequence Nl k"”’Nn K of B-splines of order k (or degree k-1)
b >

corresponding to the knot sequence t is a basis for TPk 3 considered
- )V

as functions on [t, tn+l] .

From this theorem we see that the B-spline representation for the

piecewise polynomial function fe'ﬂ)k £,V is
2 90

t., <t < t, and k<i<n
i- i+

i 1
£(e) =2 aN L (t), (2.11
r=1-k+l or t. <t<t. . and i = n
i - " = i+l

where a = (ai)ll] are the coefficients of f with respect to the B-spline



. n
basis (Ni,k)l for TPk £y on the knot sequence t . g the j-th

derivative of f at a point t is given by

i
DIf (t) = 2 a N (t) 2.12
r=i-k+j+1’ , It k=] (2.12)
where
r a, ’ J=20
ar, ¥l ° \) a ’ (2.13)
N 5 B oo ¥ .
k-3 ) g 1 ) j>o
\ r+k-j T

provided that either ti <t < ti+l and k < 1 < n

< i =
or ti i_t —-ti+l and 1 n



3. Representation of the Interpolating Spline.

Given a set of data points (xi,yi) , 1 = N1,Nl+l,...,N2 with
XN1<:XN2 < ... <:XN2’ we seek the interpolating natural spline function
S(x) of degree 2m-1 with knots Xy e X - For convenience in the
FORTRAN implementation of the algorithm we shall assume throughout that
N1 =1 . Then N2 is the number of data points. For our interpolating
natural spline S(x) we wish to make use of the B-spline representation
given in equation (2.11) and the theorem on which it is based. We choose
k=2m, £=N2-1 . Since Dj'ls(x) , 3 =1,2,...,2m-1 , are continuous
at all interior knots, we have v; = 2m-1 , all i , and we easily find

that n = N2+2m-2 . We choose

j_ l r i = 1,2’...,2m

2,3, 000y N2=1 (3.1)

,_..
1

tomeiol = X

5

]

— 1
tN2+2m+i-2 =Xp 1'2560052m

The knot distribution is shown in Figure 1.
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From equation (2.11) we have the B-spline representation

. t, <t <1, and 2m <i < N2+2m-2
i i- i+l
> a N (t) {or . (3.2)

t. <t <+, and i = N2+2m-2
i—- "= "i+1

Now S(x) must satisfy the interpolating conditions

S(Xi) = yi ’ i = 1,2,...,N2 (5'3)
and the natural spline end conditions

DJS(xl) = DJs(xNe) =0, j=mml,..,2m2 if m > 1 . (3.4)

Substituting equation (3.2) into equations (3.3) and (3.4) we obtain the

following set of equations for the determination of the a,

2m .

DJS(xl) =r§>l a. DJNr’Qm(xl) =0, 3 =mml,...,2m2 (3.5)
omti-1
S(Xi) = r?; arNr, em(Xl) yl ’ 1 = 1,2,.00,N2 (5‘6)
5 N2+2m-2 :
D8 (x,) =r_%2_1 a.D Nr,2m(xN2) =0 , j=mml,...,2n2 . (3.7)

We now show that these equations lead to a (2m-1)-banded system
of linear equations for the determination of the a_ . In Section 2 it

was pointed out that N (t) is positive for tr <t < tr+2m and zero

r, 2m

otherwise. From equation (2.5) we conclude that at a knot ’34 of

multiplicity d.J , D°N (t) is continuous for s = O,LL,...,Em-l-diJ .

r, 2m
In-particular, if d, = 2m-1 , then N (t) is continuous at t
J r, 2m J
but none of its derivatives is continuous at 5 . If d.J = 2m , then
even Nr 2m(‘c) is discontinuous at t.J . For the coefficients in
>

equations (3.6) we therefore conclude that



Nl,Em(Xl> 0 Nr,Em(Xl) =0, 1r=253...2m

Nomei-1,om(%5) = ©
i = 2,3,-.0)N2-l

(X ) # O I r = i, . u,2]n+i‘2

Nr,2m i

NN2+2m-2, gm(xNe) % o, Nr,Em(xNE) =0, r = N2,...,N2+2m-3

For the coefficients in equation (3.5) we find that

J .
DNr,Em(Xl) £0 | T =1,2,...,3%1
j = m,m*‘l,...,Em-g

= 0 ’ r=j+2,...,2m
and for the coefficients in (3.7)

Ng-l, LN ] N2+2m-5-j

]

J _
DNr,2m(xN2) =0, r

0,

j = m, ...,2m—2
N2+2m-2-,j, o0y N2+2m_2

}i
Il

If we denote the non-zero coefficients of the system of equations

given by (3.5), (3.6), (3.7) by x , then the coefficient matrix has

the form:

10



Iuml X X ° * * X X w )
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We have boxed the coefficients of & and Boiom P to emphasizethe
fact that these two coefficients can be calculated at once and eliminated
from the remaining equations yielding a banded matrix with m-1
subdiagonals and m—-1 superdiagonals. We use the first and last
equations of (3.6) to obtain

8y _ ¥1/Mq pn(xy)

orom-2 = Ine/Mwereme2, on(we)

Then from (3.5) and (3.7) we have

1 . ,
J .o
I‘E:Q A, D Nr,gm(xl) =-a; D Nl, 2m(xl) (3 .8)
j = m)m+l) ooo,2m—2
and
Ne2+2m-3 ; ;
I‘=N2+§;_2_j Ar D Hr Em(XNE) = =8yom-0 D NN2+2m—2(XN2)(5‘9)

j = 21!1-2,...,m

The remaining equations are given by (3.6) with the first and last
equations omitted. Now we have a banded system; the unknowns are

8o 33; (] Fhyall242m-3 which we rename ZysZoy eeerZynion ) - We note that

the diagonal elements of the system matrix are in order

1 2m-2 ( %)

NB,gm(xl) 5eees D N

m,2m* "L

m+
DmNz,zm(Xl) » D

Nm+l, 2m(x2) ? NmE, Em(XB) reee NN2+m-?, 2m(xN2—l) ?

2m-2

D pP~3y

Nyotm-1, N No+m, o) 2 eees DmNN2+2m-3,2m(KN2)-

The subdiagonal and superdiagonal elements are also values and derivatives

of B-splines evaluated at the knots.



All the elements of this matrix are calculated by using the
subroutines of de Boor's B-spline package [4]. The elements of the
matrix are stored in diagonal form for use of the band matrix solver
subroutines BANDET and BANDSL which are essentially FORTRAN implementations
of the corresponding ALGOL 60 procedures given by Martin and Wilkinson [10].
The diagonal elements are stored as Q(i,m) , the subdiagonal elements
as Q(i,j) , J = 1,25.44,m-1 , the superdiagonal elements as Qﬁqj),
j=ml,m2,...,2m-1 , where i = 1,2,...,N2+2m-4

The solution of this system of equations yields the coefficients a,
of the B-spline representation (3.2) for the interpolating natural spline
S(t) . The values of S(t) and its derivatives can be evaluated at any
point by means of subroutines in the de Boor package. 1In particular
we can obtain the piecewise polynomial representation (2.7) (or (1.1))

of S(x) by evaluating the function and the derivatives at the breakpoints.

13



4. The FORTRAN Subroutine.

Before describing the FORTRAN subroutine NATSPP for the interpolating
natural spline we first describe briefly those subroutines of the de Boor
package [4] which are used in the subroutine NATSPP.

We begin with a summary of the FORTRAN variables and their intended

use and a terse summary of the subprograms and their intended use,

The B-spline representation consists of

T(1);+.., T(N+K) , the knot sequence, assumed nondecreasing; if t appears
j times in this sequence, then the (K-j)-th derivative
may jump at t.

A1), ..., A(N) , B-spline coefficients for the function represented on

(T(K), T(W1) ) .

N, the number of B-splines of order K for the given knot
sequence.
X, order (= degree +1) of the B-splines; should be < 20

The piecewise-polynomial representation consists of

XI(1))eee, XI(IXI+1) , the breakpoint sequence, assumed increasing.

C(1,1), ¢es,C(K,IXI) , values of derivatives at breakpoints; precisely
Cc(J,I) is (J-1)-st derivative at XI(I)+ ,
J=ly,...,K . Note that the coefficients in (2.7)
and (1.1) are these derivatives divided by (J-1):

K, order (= degree +1 ) of polynomial pieces; should be < 20

Other variables are defined in the subroutine summary which follows:

14



subroutine BSPLDR(T,A,N,K,ADIF,NDERIV)

Constructs divided difference table for B-spline coefficients
preparatory to derivative calculation and stores it in
ADIF(1,1), ..., ADIF(N,NDERIV) . Expects NDERIV in the interval [2,K] .

Used only in BSPLPP, prior to call of BSPLEV.

subroutine BSPLEV(T, ADIF, N, K, X, SVALUE, NDERTV )

Calculates value of spline and its derivatives at X from B-spline
representation and returns them in SVALUE(1), . ..' SVALUE(NDERIV) . Can
use A for ADIF if NDERIV = 1 . Otherwise must have ADIF filled

beforehand by BSPLDR. Uses INTERV and BSPLVN. Used only in BSPLPP.

subroutine BSPLPP(T, A, N, K, SCRTCH, XI, C, LXI)

Converts B-spline representation to piecewise-polynomial representation.
SCRICH is temporary storage of size (N,K) , Uses BSPLDR and BSPLEV.

Used in NATSPP, the subroutine for natural spline interpolation.

subroutine BSPLVN(T, JHIGH, INDEX, X, JLEFT, VNIKX)

Calculates value of all possibly'nonzero B-splines at X of order
J = max{JHIGH, (J+1)*(INDEX-1)} on T . ILEFT is input, assumed so that
T(ILEFT) < T(ILEFT+1) ; get division by zero otherwise. If
T (ILEFT) < X < T(ILEFT+1) (as would be expected) then VNIKX(I) is
filled with B-spline value N(ILEFT-J+I,J) at X , I = 1,...,J
Get limit from right or left, if X = T(ILEFT) or T(ILEFT+1)
respectively. Can save time by using INDEX = 2 in case this call's
desired order J is greater than the previous call's order (saved in J)
provided T , X , ILEFT and VNIKX are unchanged between the calls.

Otherwise, use INDEX = 1 . Used in BSPLEV, BSPLVD and NATSPP.

15



subroutine BSPLVD(T,K, X, ILEFT, VNIKX, NDERIV)

Calculates value and derivatives of order < NDERIV of all
B-splines which do not vanish at X . TILEFT is input, assumed so that
T(ILEFT) < T(ILEFT+1l) ; get division by zero otherwise. If
T(ILEFT) < X < T(ILEFM1) (as would be expected) then VNIKX(I,J)
is filled with value of (J-1)-st derivative of N(ILEFT-K+I,K)
at X , I =1,...K, J=1,...,NDERIV . Get derivative from right
or left if X = T(ILEFT) or T(ILEF™1) , respectively. Expects

NDERIV in [1,K] . Uses BSPLVN. Used in NATSPP.

subroutine INTERV(XT, IXT, X, ILEFT, MFLAG)

Computes largest ILEFT in [1,IXT] such that XT(ILEFT) < X .
It is assumed that XT is a one-dimensional array of length LXT containing
a nondecreasing sequence of real numbers. The subroutine returns integers

ILEFT and MFLAG as follows:

( ILEFT  wrIAG
X < XT(1) 1 -1
if XT(I) < X < XT(I+l) ) , then < I 0
XT(IXT) < X _ IXT 1

The value of ILEFT is saved in a local variable ILO which under
certain conditions is used to start the search for ILEFT in the next call.

The local variable ILO is initialized to the value one.

Note that only BSPLPP, BSPLVN and BSPLVD are called directly by the
natural spline interpolation subroutine NATSPP. In addition to these
subroutines of the de Boor package, NATSPP also calls subroutines BANDET

and BANDSL for the solution of the linear system CX = B where C is an

16



unsymmetric band matrix. These subroutines were taken from the library
of the Stanford Center for Information Processing. They are translations
of ALGOL 60 procedures given by Martin and Wilkinson [LO]. They are
fully described in the complete listing of the FORTRAN subroutines in
Appendix I.

Turning now to the subroutine NATSPP for the interpolating natural
spline we note that it is a direct implementation of the method described
in Section 3. First we give a summary of the FORTRAN variables and their

intended use. The heading of the subroutine is
SUBROUTINE NATSPP(N2, N3, Nk, M, M2, MM, X, Y, A, C, Ty Q, TRL, INT, VNIKX)
The input parameters are as follows:

N2 , the number of data points.
Nk, = Ne+Me-L o,
M , ©2¥M-1 is the degree of the natural spline
admissible values range from 1 to N2
M2, = 2%¥M, the order of the natural spline.
MM, = 2*M-1, the degree of the natural spline.
X(1), veeyX(N2) , abscissas of the data points which must be strictly
monotone increasing.

Y(1),ess,Y(N2) , ordinates of the data points.
The output parameters are as follows:

N3 , = N2-1+MM , the number of B-splines in the B-spline representation (1.2).

A(l)s..., A(N3) , the coefficients of the B-spline representation (1.2) of the
natural spline.

c(1,1),+..,C(M2,N2-1) , the coefficients of the piecewise polynomial

representation (1.1) of the natural spline.

17



The remainder of the parameters are only for temporary storage.
They are included in the declaration in order to make it possible to

give them variable dimensions. They are:

T(1)y.0., T(N2+L4*M-2) , the knot sequence.

Q(1,1), . ..,Q(W4,M2) , elements of the band matrix of the equations for
the calculation of the A(1)

TRL(1,1), .00, TRL(N4,M-1) , matrix for storing lower triangular matrix

of the LU decomposition of the band matrix.

INT(1), ..., INT(N4) , vector for recording row interchanges during
decomposition of the band matrix.

VNIKX(1,1), ..., INIKX(M2,MM) , matrix for storing values and derivatives

of B-splines as needed.

The subroutine NATSPP begins by computing the knot sequence T (1)
from the abscissas of the data points. 1In order to get the coefficients
of the first M-1 rows of the band matrix which are given by (3.8) we
call

BSPLVD(T, M2, X(1), M2, VNIKX, MM)

to obtain VNIKX(I,J) = DJ—lNI, (X)) 5 I =1, J=1...,M .
We use these to calculate A(l) and the coefficients of the first M-1
rows and their right members. For the coefficients of the last M-1
rows of the band matrix which are given by (3.9) we call

BSPLVD(T, M2, X(N2), N3, VNIKX, MM)

. _ nd- _
to obtain VNIKX(I,J) = D ]’NN2_2+LNE(X(N2)) T = 1,..,M2,
J=lyeeeyMM . We use these to calculate A(N2+2*¥M-2) and the

coefficients of the last M-1 rows and their right members. For the

coefficients of the rest of the rows of the band matrix which are given

18



by (3.6) (omitting first and last equations) we call
BSPLVN(T, M2, 1, X(I), I+MM, VNIKX)
to obtain VNIKX(J,1) = NI_1+J,M2(X(I)) , I =L, M2, T =2,,..,N2-1
The band matrix system is then solved using BANDET and BANDSL to
obtain the coefficients A(l) . Finally we call
BSPLPP(T, A, N3, M2, Q, X, C, LXT)
to calculate the derivatives needed to produce the coefficients of the
piecewise polynomial representation. Note that in BSPLPP, c(J,I) has
the value DJ-lS(X(I)+) whereas in NATSPP, C(J,I) has the value
0 ts(x(1)*)/(5-1):
The complete listing of NATSPP with all embedded subroutines is

given in Appendix I.
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5. The ALGOL W Procedure.

Since we have available ALGOL W versions of the procedure NATSPLINE
of Algorithm U472 of Herriot and Reinsch [8] and of Algorithm 480 of
Lyche and Schumaker [9], it would be much easier to make comparison
tests with the algorithm using the de Boor package [4] to calculate the
interpolating natural spline if it were implemented in ALGOL W. The
FORTRAN subroutine NATSPP was therefore translated into an ALGOL W
procedure DEBNAT.

First the subroutines of the de Boor package used in NATSPP were
translated into ALGOL W procedures with the same names and the same
parameters. Special care was needed to deal with two unusual features
of the FORTRAN package. In order to save the value of the local
variable ILO of INTERV and of the local variable J in BSPLVN from one
call to the next, these variables were made global to all the procedures
of the de Boor package (J was renamed JJ). For the same reason the
arrays DELTAM and DELTAP used in BSPLVN were made global. These global
quantities were initialized prior to any calls of the package procedures.
The other unusual feature of the FORTRAN subroutines was use of VNIKX
as a one-dimensional array in BSPLVN and as a two-dimensional array in
BSPLVD. This was handled by making VNIKX a two-dimensional array in
BSPLVD and introducing a corresponding one-dimensional array NVNIKX
local to BSPLVD,

The ALGOL W procedures BANDET and BANSOL are completely similar
to the corresponding FORTRAN subroutines. They are fully described in
the complete listing of the ALGOL W procedures in Appendix II.

Because of the greater flexibility of ALGOL W in using dynamic array

declarations, it was possible to reduce the number of formal parameters

20



in the procedure DEBNAT compared to those in NATSPP. The heading of
the procedure is
PROCEDURE DEBNAT(INTEGER VALUE N1,N2,M; REAL ARRAY X(*);
REAL ARRAY A(*,*); REAL ARRAY CFF (*));
The input parameters are as follows:
N1,N2 , subscript of first and last data point.
M, 2*M-1 is the degree of the natural spline
admissible values range from 1 to N2-N1+1
X(N1::N2) , contains the given abscissas X(1) which must be strictly
monotone increasing.
A(NLl::N2,0::2%M-1) , contains the given ordinates as zero-th column,
i.e., A(I, 0) represents Y(I) .
The output parameters are as follows:
A(N1::N2,0::2%M-1) , the ciefficients of the piecewise polynomial
representation (1.1) of the natural spline with
Cj,i = A(i,3-1) . ( A(N2,0) is unchanged and no
values are assigned to the last row of A .)
CFF(1l::N2-N1+2*M-1) , the coefficients of the B-spline representation (1.2)
of the natural spline.
The ALGOL W procedure DEBNAT is an exact translation of the FORTRAN
subroutine NATSPP. The complete listing of DEBNAT with all embedded
procedures is given in Appendix II.
Included among the tests described in Section 6 were tests to verify
that NATSPP and DEBNAT produced the same results.
Another advantage of the ALGOL W procedure is that it is much easier to
convert it to double precision arithmetic than it is to convert the FORTRAN
subroutine NATSPP and the de Boor FORTRAN package to double precision

arithmetic.
21



. Tests.

Both the FORTRAN subroutine NATSPP and the ALGOL W procedure DEBNAT
were tested extensively on the IBM 370/168 at the Stanford Center for
Information Processing.

In order to verify that the routines were operating correctly for
the evaluation of the polynomial coefficients of the spline S(x) , the
values of I;S(x)/jl , J = 0y1lyee.,2m=2 were calculated at the right-
hand endpoint of each subinterval [xi’xi+1) and compared with their
values (the coefficients in equation (1.1)) at the left-hand endpoint of
the next subinterval. For the first test we used the five data points
(-3,7) , (-1,11) , (0,26) , (3,56) , (4,29) with nonequidistant
abscissas. Table I shows the results of a typical run using the FORTRAN
subroutine NATSPP with m = 2 for these data points. The first line
of each box gives the tabulated quantities at the given value of x
which is the left-hand endpoint of the subinterval, and the second line
of the box gives the tabulated quantities at the right-hand endpoint of
the same subinterval. Similar results were obtained for m =1,3,4,5
for the same data points. The close agreement of these quantities
DjS(X)/ji , 3 =0,1, . . .,2m-2 to the left and right of each breakpoint
shows that the spline function and its derivatives satisfy the specified
continuity conditions. This is a good indication of the correctness of
the results. Note that in Table I  §"(-3) differs very slightly from
its specified value of 0 and that S(0) and S(3) differ from their
prescribed values in the least significant digit. Exactly the same results
were obtained using the ALGOL W procedure DEBNAT. These results are very
close to those obtained by using NATSPLINE which are given in Table I of

Algorithm L472[8].
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X S(x) S'(x) 8" (x)/2 s" '(x)/3:
-3.000000 7 . 000000 -1.99999 —.h29155h-x10'5 1.000000
10.999999 9.999986 5. i 1.000000
-1.000000 11.000000 9.999997 6.000000 -1.000001
25 . 18.99998 2 . -1.000001
0 25.99995 18,99998 2.999995 -1.999998
55 . ... e -1 -1.999998
3, 000000 55.99998 -16.99998 e L.999987
29, 00000 -32,00000 -.32L42493 10 -k L 999987

11, 000000 29,00000

Table I. Cubic Natural Spline.
Five nonequidistant knots. Coefficients

calculated by NATSPP.
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The same test was run for ten data points (Xi,yi) with equidistant

abscissas x, = i and ordinates given by

1 , i odd
Y. = i=12...,10 . (4.1)
0 ) i even
For m = 1l,...,5 the FORTRAN subroutine NATSPP and the ALGOL W procedure
DEBNAT gave the same results. In all cases the specified continuity
conditions at the breakpoints were satisfied.
The previous tests established that the FORTRAN subroutine NATSPP
and the ALGOL W procedure DEBNAT produced identical results. Further
tests for accuracy and timing were carried out using only the ALGOL W
procedure DEBNAT. Corresponding results for the accuracy of NATSPP
can be inferred from these tests.
As a check on the correctness of the piecewise polynomial coefficients,
Tong precision versions of DEBNAT and NATSPLINE from Algorithm 472[8]
were used to calculate the polynomial coefficients for the data points
(-3,7) , (-L,11) , (0,26) ,(3,56), (4,29) (data for Table I) for
m= 1,2,.40,5 . When rounded to short precision, the corresponding
coefficients calculated by the two procedures were identical, (Except
that for DjS(l)/jl , J = My.es,2m-2 , NATSPLINE gave the specified

-t
values 0 and DEBNAT gave values of order 10, t > 9 .) The

same comparison test was run for the set of N2 data points .~~(xi’ ,‘Yi)
with equidistant abscissas x; =1 and ordinates given by
1 , 1 odd
;Y = is= l)coo,NE . (6.2)

0 » i even
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Values of N2 = 10,20,...,50 and m = 1,2,...,7 were used.' Again
when the long precision coefficients were rounded to short precision,
the corresponding coefficients calculated by the two procedures were
identical (with the same exceptions as above and occasional differences
in the least significant digit for the case m=7 ).

In order to study the effect of round-off error build-up, both long
and short precision versions of DEBNAT were used to calculate the B-spline
coefficients and the piecewise polynomial coefficients. From the previous
comparison tests we see that we can regard the long precision coefficients
to be correct and hence the differences between the long precision and
short precision coefficients are the errors in the latter. This error
test was first run for the data points of Table I for m = 1,2, ,..'5 .

For m = 1 all short precision coefficients calculated by DEBNAT are
exactly correct. For m = 2 , the maximum errors in the B-spline
coefficients and in the piecewise polynomial coefficients were of order
approximately 10-5 . For m =3 and 4 the maximum errors increased

3

to about 10 For m = 5 the errors exceeded one and the results
were unacceptable. This may be due in part to the fact that for five
points, m =5 1s an extreme case. Tests were also run for the example
with equidistant knots and ordinates given by (6.2). Values of
N2 = 10,20, 444550 and m = 1,2,...,7 were used. The results for
m = 1,2,3,4 were similar to those for the data of Table I. For m =5
the maximum errors were of order 10_2 . For m = 6,7 the maximum
errors exceeded one.

-Long precision and short precision versions of NATSPLINE were used

on the same data to find the errors in the piecewise polynomial coefficients

calculated by short precision NATSPLINE. The results appeared to be
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somwwhat better than for DEBNAT. For the data used in Table I, the

maximum errors in the piecewise polynomial coefficients were O for
m = 1 and of order 10-5 for m = 2,...,5 . For the example with
equidistant knots and ordinates given by (6.2), the maximum errors in the
piecewise polynomial coefficients were 0 for m = 1 , of order 10-5
for m = 2,5 , of order 10-h for m = 4 , of order 10_2 for m =5 ,
and of order 10_1 for m =6,7

We conclude that DEBNAT should not be used in short precision for
m > 5 and NATSPLINE should not be used in short precision for mi 7 .

In addition to the tests for accuracy, timing tests were carried
out for long precision and short precision versions of both DEBNAT and
NATSPLINE on the IBM 570/168 computer at the Stanford Center for Information
Processing. The tests were made using the example with equidistant knots
and ordinates given by (6.2). Values of N2 = 10,20,...,100 and
m= 1,2,.0.,7 were used. The time for both procedures was found to be
approximately proportional to the number N2 of knots. For DEBNAT the
time was found to be approximately proportional to ml'7 for m >3
while for NATSPLINE it was approximately proportional to m2 . The
actual times were almost exactly the same for the short precision and
long precision versions.

The time T in seconds for the execution of the procedure DEBNAT
was—-found to be approximately

T = (N/6o)(.0265ml‘7) , m > 3 .

This formula seriously underestimates the time for m = 1 and 2

For NATSPLINE the time was found to be approximately

T = (N/6O)(.015m2)
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For m < 5 the times for NATSPLINE were somewhat less than those for
DEBNAT, but for m >_§ the times were nearly the same.

Since we found that for the IBM 370/168 the times for short precision
and long precision are nearly the same, we recommend the use of long
precision for all calculations using these procedures. Converting the
given ALGOL W procedures to long precision requires only replacement of
all real identifiers by long real identifiers. The same recommendation
would apply to any machine on which long precision is approximately as
fast as short precision.

For reasons of accuracy we would also recommend the use of double
precision for the FORTRAN subroutines. We have not attempted to convert

the FORTRAN de Boor package to double precision.
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APPENDIX I

SUBROUTINE NATSPPIN2 s N3 s NesMoeML oMM KoY pAsC o T Qs TRLpINT,VNIKX)
NATSPPCOMPUTES THECJEFFICIENTSUFBOTHIHEPIECEWISE
POLYNOMIAL REPRESENTATIIONANO THEB=SPLINE REPRESENTATIONUF A
NATURALSPLINES(IX)O FOEGREE{LSM=1) ¢ INTERPOLATINGTHE
ORDINATESY(IVA T POINTS X{Idyl=1TrHrkuJorH N2

PIECEWISE POLYNUMIAL REPRESENTATION:
FOR XX INUX(I)eX{UI#®L))gIl=1lpeeaaNe—iy
SIXX)=CUlleI)4CH2 31 )T, a#((2EM [ )ETH&(2%4=])

WITHT=XX=X{I).

B=SPLINE REPRESENTATIUN:

FOR XXI N {X{(1)}yX({N2)

)e

SIXX)=A(L)ENC(L 92 ¥My XX)+A L2 IENTL 12 ¥M 9 XX )t ™
FA(N242%M=2 )EN{ N2+2EMN=2 2L * My XX)

W HE R EN(Jy2%My XX J IS THE (NIJRMALLILED)B=OPLINE OF DEGREE

(2%M=1)ON THE KNOTSEJJENCET JdsenayTlit2xM).

INPUT:

N2 THE NUMBER UruATA POINTS

N4 =N2+M2~-4&

M 2%M=1 1 S THE JcoREE OF THENATJRAL SPLINE,
ADMISSIBLE VALJES RANGE FKuUM L TJ N2,
RECOMMENDED VALUESARENUT GREATER THAN 5 (SAY)

M2 =2%Me T H EORJER OF THE NATURAL SPLINE

MM =2%#M=1, T H EUVEGREE OF THENATJRALS P L INE

X{1)peoesX{N2) ABSCISSAS UF THE UVATA PUINTS wWHICH
M U S TBE STRICTLY MUNOTUNE INCREASING
Y{ildreeasYIN2) ORUINATES UF THE UATA PUINTS

OUTPUT ¢

N3 =N2=-1#MMy, T H E NUMBER OF B8=SPLINESINT H E
B-SPLINE REPIESENTATIONUFTAE NATURAL SPLINE

AlldeeaeeA(N3) THE COEFFICIENTY> uF THE B-SPLINE
REPRESENTATIUNUF T H E NATJURAL SPLINE

C(IQL)QQQOC("ZQNZ-I,
POLYNOM IAL REPRESENTATIUNUFTHEN AT UR A LSPLINE

TEMPORARY STORAGE:

T‘l’,o.'.'t(NZM‘”-Z’

Q(ltl)om..cQ(N‘HﬂZl
EQUAT IONSFORTHE CALCULATIUNIJFTHE A (l)

TRL(1g¢1lDseees TRLUNG )4 ~1J MAITRLIX FUR STIURINGLUOWER=TRIA VL JLAK
MATRI X OF THe

INT(l) geeas INT(N4)

THE COEFFICIENTSOF THEPIECEWISE

THE KNUT SkQUENGE
ELEMENT> uF THEBANUM A TR I X O F THy

-U DECUMPUSITIUN OF THE BAND MATRIX
VECTIR FUR RECJRUING R O WINTERCHANGE S

DURINGDECOMPUSITIUNOF THEBANUMATRI X
VUNIKX(1lol)oeeog VNIKX(MZyMM) MATKRIAFIKSTORINGVALUESAND
DERIVATIVESUFB=SPLINcY ADNEEUED
DIMENSION X{L) oY (L) oTUL) gQUNGp L) g ACLD gV NIKXIM2ZyMM) y TRLINS, 1),

1 INT(1),C(M2,1)

DO SlI=1,MM
T(I)=X(1)

N2M1=N2~-1 ,

0 0 6I=14N2M1
T(Ie+MM)=X(1J

N3=N2M1l + MM

DO 7I=1,M2
TC(I+N3)=X(N2)

G ETCOEFFICIENTS O F FIRST M-I ROWo
CALLBSPLVD(T M2 9X(1)eM29VNIKXyMM)

Al=Y(L1)/VNIKX{1l,s1)
MM1=M-1
IF(M.EQ.1)G O TOTU
DO 40I=1,MM1

D O 41J=1,MM
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6 1.
62.
63.
64.
65.
66 .
67.
63.

69 o

73.

72
73.
74.
75.
75.

00000000 MO OO

41

42
40

Q(l,J)=0.
HP I=M+1
Li=M=]
DO 42 L=2,MP]
Li=LL+]
QUILLL)=VNIKX{L,¥21)
A{I)==AL*UNIKX(L,MP1)

GET COEFFICIENTS OF NEXTNZ=ZROUWS

70 MM2=M=2

16
30

DO 30 I=2,N2M1
CALLOBSPLYNIT pM251sX(1)9di®MM,V¥NIKX)
IM2=1+MM2
DO 16L=1oMM
QUIM2,L)Y=VNIKX(Lsl
ACIM2)=Y(I)

GET CoEFFICIENTS OF LASJ H-A ROwWd

51

52
50

CALL BSPLVDU{T M2 oX(N2)sN3,YNIKXyMM)
ANP=Y (N2) /VNIKX( M2,1)
I F(M.EQ.1)dG OTOS8 O
DO 5 ol=1 oMM}
[ I=N2+M2=3~ |
D05 1J=]1,MM
QiIleJdi=C.
MPI=M+1]
MPIML=MPI - |
LL=M=-]
DOS52 L=1,MPIM]L
LL=LL+]
QEIIJL)=VNIKXILL,YPI)
A(TE)==ANP*VYNIKX(M2,MPI1)}

80CONTINUE

60

12

CALLBANDET(TRLyINT Qo NG gM=1y92%M~})
CALL BANDSLUITRL,INToAyUs NegM=] y2*M~1)
DO60 I=1¢N4
J=N3~1
A(J)=A(J=1)
A(l)=Al
A(N3) =ANP
CALLBSPLPP(T4AJN3I ¢M2yd9XeCol X1
DO 12I=14N2M1]
FAC=1.0
D O0l2J=2, M2
FJ=FLOAT(J-1)
FAC=F AL *F y
Clde1d=C(Jel)/FAC
RETURN

END
SEREERRE SRR E AR EEREEE STAR T OF DANJIET ¥ & %k €k ok ok & & Kk & ek & 4ok

PRIORT 03/c3/1ice
BANDETAND 5ANDSLARETNU SUBROVI INESWdicHS OLVECkX =8
WHEN C 1 S A NUNSYMMETRIC BAND MATKIX L THAEY WILL WORK WITH
SYMMETRICB A N DMATRICESBUTTAKEN OAUVANIAGEOUF THE IR
STRUCTURE) .

C HAS MISUBDIAGONALS AND M SUPERUIALUNALDS.

THEMATRKIXC T S TRANSFJIIMcD TU A Y MAKINGVE A C HOIAGUNAL UF
CA COLUMN OF A. THUSA | SNX{ML#tMc+L)AAEN C 1T S NXN.

A TYPICAL AT S P ICTUREDBELJWe C ntrRE LS 4X4y WITH

2 SUBDIAGUNALS A N D 1SJP eKUIAGUNAL

0 0 Ll ) Llle )
30



122. C 0 Cl2,1} Ll2e2) Lidy 3

123. c C(3,1) C(3,2) L(3y3) YR’y

124. C Cl4,2) Cl4,3) Cliags) v

125« c

126. c THIS TRANSFORMAT ION IS THE FOLLUNINULY ADSJMING THAY (C (I L4)
127. c I S ABANDELEMENT INC:

128. C ClIyJ) ==> A{IM1l¢1#(J-]})

129. o ALL OTHER ELEMENTS UOF A AREV

133. c

131 . c BANDETF I N D STHEL UDECOMPUSITIUNGUEF A | STUKING

132. I THE LOWERTRIANGULAR MATRIX INMANUNXML MATRIX,
133. c AND OVERWRITINGT H EUPPER TRIANGULAK MATRIXINTO A.
13%. c BANDSL U S E STHIS DECUMPISITiION TuSuLVE A®¥X = B wHERE
135. c THERIGHTHAND SIDEISINPUTINTHE veLiJrR By AND X IS
136. o] OUTPUTI N THE VECTORB.

137. ¢

138. C THESE ROUTINES W E R E TRANSLATEU FRUM THUSE PRESENTED BY
139. C Je WILKINSGON IN NUMERI>.HE MATHCMATIK vIL 99 P 2 8 3
14J. C TRANSLATOR:B A RB A R ARYUZRy.SDOSERRA HuJbSE»X3124

14l . o]

142, SUBROUTINE BANDET(MeINTsAgingMLyM3)

143, DIMENSION M{NysML) o INTINIsA{NsM3)

l44. C

145 . c Memmea= AN NXMIM A TR I XFIRODTURING LUnexk TR1IANGULAK
145. c MATRI XOFLUDESUMPUSL TIGN UF A

147. C INT===A NNXLVECTOR##OJOR RELURVINL RuUn I NTcKCHANGES
148. C DURINC DECOMPUSITI un

149. C A----- ANNX{ML#M2¢]1 ) MATRIX WHOOE COLJUMNS A R ETHEDIAGONALS
15). c OF C, THEBANDMATRIX BEIiNo utCUMPUSED

151. c A{*,1) = A(%,M1) ARE SUBULAGUNALS utr C

152. ¢ A(*yM1+1) A s UL AGUNAL JF .

153. C A(®,M142) = Al* ML #M2¢1) AKE SJUPERODIAGONALS UF C
154 c N----NUMBEROFROWSIN A

155. c Ml====NUMBER O F SUBDIAGUNALS I N C

156. C M3==ee=T O T A LNUMBERUWFJOIAGUNALSINCslete WIDTHUOFBAND
157. o] M3 - M 1 (# SUBDIAGS) + M2 (# SUPERULAGS) +1
158. c

159. REALM

16J. 25 L=M1

161. DO 40I=1.M1

162 . K2=M]1+2-1

163. DO 50J=K2,M3

164. 50 A{lod=L)=A(1,4)

165. L=L-1

165. K2=M3-L

167. DO6 0J=K24M3

168. 60 Al(lsJd)=0.0

169 . 40 CONTINUE

170. 45 L=M]

171. DO 70K=1¢N

172« X=A(Ky1)

173. I=K

174. K2=K+1}

175. I FilL«LTN) L=L*+1

175 72 | FILoLT.K2)G G T 081

177. 79 DO 80J=K2slL

178, | FAABS{A(Jol))=AB3(X)) 80yb0U, 8

179. 82 X=A(Jyl)

180. I=J

18l . 80 CONTINUE

182. 81 INT(K)=1
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183.
18%.
185.
185.
187«
188.
189.
193.
191.
192.
193.
19¢.
196.
197.
198.
197,
200.
201.
202.
203«
204«
205.
206.
208
209.
21).
211«
212
213.
2l4e.
215.
215.
217.
218.
219.
220.
221.
222.
223 .
224.
225
226.
227.
229.
229.
233.
231.
232.
233 .
234,
235.
236.
237.
238.
239.
243.
241.
242.
243.

73
17

90
78
83

110
100
70

OO0 0

75

200

I F{X)T3,75,73

IF (I=K) T7,78,77
D09 0J=1,M3
X=A(KqJ)
A(KeJd)=AL1, JJ
AlI,J)=X
| F{LoLTaK2)G OTJT70
DO 100 J=K2 oL
MIKoeJ=K)=A{ JrLD/A(<, 1)
X=M{KyJ=K)
DO 110 JJ=2,4M3
AlJadd=1)=A0JsJJ)=A(KyJJ)*X
Al(JsM3)=0.0

CONTINUE

RETURN

A SUBROUTINE CALLED ERRIRMJSTBE SUPPLIEUTO HANDLE
THE ZEROPIVIT SITUATION; 4 SAMPLE ROJTINE FOLLUWS

CALL ERROR

RETURN

END

SUBROUTI N E ERRCR
FORMAT(//* ZEROPIvVUT*)
WRITE (69200)

RETURN

END

C XXXk XX KX KRR EE R K EER CND OF BANUET SR RE& &k R ikkk kR ok kk kkkokk Kk

C
C

(s NeNeNeNal

12

14
15

20
10

32
40

EEREEREKRKERER SRR REEEE START OF BANUSL % &k ks kk g ok ok gk & Xk % Kk
PRIOR TO 3/7¢3/712

SUBROUTINE BANDSL (MyINT 4BoAgNeMLoM3)

DIMENSION INT(N) JA(NyM3) s M{NgML)B(N)

A LLPARAMETERS SAME A SINBANDETEXCEPT FJK:?
Brwe=aR IGHTHAND SIDE: UF LINEAR SYSTEM C*¢X = B
SOLUTION ISRETURNEV IN 8

REALM

INTEGER W

L=M]1

DO 10K=1,sN

I=INT(K)

IF (1-K)llsl2,11

X=B{(K)

B(K)=B(I)

B(I)=X

K2=K+1

IF (LoLT.N) L=L+]

| FIL.LTeK2)G O TO1 3
D02 olI=K2,L
X=M{K,yI[=K)
BCI)=B(I)=X*B(K)

CONT | NUE

L=1

DO 300[I=1,N

[=N+1=-11

X=8(1)

W= -1

I FiL=1) 32,33,32
00 C OK=2,L
X=X=A(I,K)*B(K+n)
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244.
245,
246.
247.
248«
249,
253.
251.
252.
253.
254,
255.
256.
257 .
258.
259.
260.
261.
262.
263.
264.
245,
266«
267.
268.
269.
270.
271.
272.
273,
27%.
275.
276.
277.
278.
279.
280.
28l.
282.
283.
28%.
285.
286.
287.
288.
203.
290.
291.
292.
293.
294,
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.

33 BLI)=X/A{I,1)
I F{L-M3)31,30,30

31 L=L+1]

30 CONT I NUE
RETURN
END

C *ekkkbkkkkk bk sk kkrEkee END JF BANUDL ¥ & Rk kKKK kR ok dok Rkl x <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>