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ABSTRACT

Initial-boundary value problems for several systems of
partial differential equations from fluid dynamics are discussed.
Both rigid wall and open boundary problems are treated. Boundary
conditions are formulated and shown to yield well-posed problems
for the Eulerian equations for gas dynamics, the shallow-water
equations, and linearized constant coefficient versions of the
incompressible, anelastic equations. The "primitive" hydrostatic
meteorological equations are shown to be ill-posed with any
specification of local, pointwise boundary conditions. Analysis
of simplified versions of this system illustrates the mechanism

responsible for ill-posedness.
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0. Introduction

There is now considerable interest in initial-boundary value
problems for various systems of partial differential equations arising
in fluid dynamics. This interest stems, primarily, from efforts to
create useful computational models of various processes for the purposes
of prediction (atmospheric processes, ocean circulation, etc.) 'and the
detailed study of various phenomena (convection, flow in wind tunnels,
lee waves, eddies, etc.). Such calculations are not new. As these
computational models have become more accurate difficulties with the
boundary conditions have become more evident. This has led first to the
examination of the various discretizations used and then back to the
differential equations whose approximate solutions are sought.

Such a backward sequence of events may seem surprising. Naturally,
the initial-boundary value problems for the differential equations should
have been carefully examined first since we cannot expect our approximations
to be reasonable if they approximate a problem which does not have

reasonable solutions. The reason it has gone this way is clear.
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It is natural to first examine the evidence where it appears and, as usual,
the computations have been ahead of the analysis. The initial-boundary
value problems for these systems of differential equations are not easy
to analyze; and, in fact, adequate tools for a rather complete analysis
have only recently become available stemming from the work of Kreiss [12,13]

The current interest has resulted in several works based on the
classical energy method (e.g., Elvius and Sundstrm{9], Davies [5,6],
de Rivas [ 7] and Dutton [8]), which follow the earlier work of Serrin
[17], Sundstrtm [19] and Campbell [1]. However, this method only works
for a limited class_of equa“ions and boundary conditions. Some authors
have, unfortunately, made unallowable assumptions (over-specification of
boundary conditions, omission of terms, etc.) in futile attempis to make
their problems fit into this class. We will discuss some instances of
this in detail. This seems to be a real hazard in the use of the energy
method since the effects of such assumptions are often well-buried in
intermediate estimates and consequently overlooked.

We begin with a general discussion of well-posedness followed by
a review of properties of the adiabatic, inviscid Fulsrian equations of
fluid dynamics (system A). We then study two approximations of the
Eulerian equations: the hydrostatic "primitive equations" of meteorology
(system Bl) and the incompressible, anelastic equations (system B2).
Finally, we discuss the shallow-water, or barotropic, equations (system c)
which can be considered as a further simplification of system Bl or B2.
It is interesting to consider these equations in this order so that the

effect of each successive approximation can be observed. The systems A



and C are symmetrizable, hyperbolic systems but systems Bl and B2 are
not hyperbolic. These facts have profound influence on the well-posedness

of initial boundary-value problems for these systems.

We consider two types of boundary conditions which arise
naturally in many situations. Most of our analysis will deal with
certain quarter-space problems but we will always have the following
underlying situation. Let S-2 CR2 be an open, connected region with
smooth boundary, 39, and { = QU3dQ. We will consider the system C
on the domain D, = i X [0,T] and the systems A, Bl and B2 on the domain

1
D. =X 1IX [0,T] where I = [O,0) or I = [0,1]. The two types

2

of boundary conditions we consider on 0 are: (1) rigid wall boundaries
and (2) open boundaries. The rigid wall case corresponds to a physical
situation which requires the normal velocity to vanish at the boundary
and is the simpler of the two types. This situation is often encountered
in oceanography. Open boundaries occur in limited area forecasting,
wind tunnel flow, and studies of small scale or local phenomena in
meteorology and oceanography. Open boundaries do not arise from a

natural physical situation and a suitable form for the boundary con-

ditions 1is not obvious. Boundary conditions which do not introduce

boundary layer phenomena are usually wanted in this case. That is, these

. boundary conditions should determine the interior flow as though, in fact,

the boundaries were not there at all. In each case we give necessary

conditions for the form of the boundary conditions in order that the

problems be well-posed. We will also give particular boundary conditions
which yield well-pgsed problems. We show that systems A, B2, and C can
be treated satisfactorily and that system Bl is ill-posed for local,

pointwise boundary conditions. For the linearized,constant coefficient
3




versions of systems Bl and B2, well-posed boundary conditions are
given. It seems reasonable to conjecture that these boundary
conditions also yield a well-posed problem for system B2. However,
the corresponding boundary conditions for system Bl cannot be easily

implemented for the general problem.

As already mentioned, many of the presently used boundary con-
ditions specify more data than is allowed. These specifications preclude
the existence of smooth solutions except in very special, unrealistic
situations where the exact solution is known on the boundary without error.
Errors must, however, be expected in the boundary data arising from errors
in measurement, the use of constant boundary values, or from computations
over larger regions if some telescoping grid technique is used. We
will discuss the implications of such overspecifications.

Most of our analysis deals with inviscid systems of equations.
Viscous terms are added to these equations in many forecast integrations.
They are often motivated physically as representing "eddy diffusion"
of momentum and potential temperature. The effect of these terms on the
main part of the solution is usually small. The real motive for including
them is often non-physical. Since the equations are nonlinear,
‘initiallongwave phenomena can produce shorter wave phenomena which cannot
be accurately represented by the approximation used. To prevent result-
ing aliasing errors and nonlinear instability the computational method
should be provided with a dissipative filter term, and the most primitive
form of filter is just such an "eddy diffusion" term.

In both cases, the viscous coefficients are so small that we
should expect the boundary conditions to be close to those valid for
the corresponding inviscid system. The viscous equations do, however,

require additional boundary conditions, and, as an effect, viscous
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boundary layers may occur at the boundaries. Such boundary layers may
sometimes be appropriate, as in the rigid wall situation. However,

at open boundaries, they are inappropriate. We shall therefore discuss
the formulation of boundary conditions when viscous terms are included
and show how these conditions can be chosen so that no singular boundary

layers result as the cofficients of the viscous terms tend to zero.

1. Well-Posedness

Our main goal is to establish the existence or non-existence of
certain a priori estimates, or energy inequalities, wvalid for the solutions
of the various initial-boundary value problems under consideration here.

In this section we discuss the form of these estimates and some implica-
tions that follow from them.

For the purposes of this discussion let us write our problems

in the general form

Iy = F in @ X I X [0,T] (the differential equation)
(1.1) 1| = 4, in 8 X 1I (the initial conditions)

t=0

EI = SE;I + g in 0 X I X [0,T] (the boundary conditions)

where L is a partial differential operator; u, f and u.  are vector

~0
. , , I II\t I . .
functions of dimension k, y = (g e )7 u and g are of dimension ¢,

1T

u is of dimensionsion k-{; and S is a real £ X (k-{) matrix.
For a linear, first order hyperbolic equation in RB, L would take
the form

(1.2) = ai % g% + Blx,t).



The boundary conditions express the components EI of u in terms

of the components EII of u and the given function g. The matrix S
can be thought of as a generalized reflection operator. Changes of
variable may be necessary to bring certain desired boundary conditions
into the form given here but this does not introduce any essential

o Ces I
restriction. The partitioning y = (}3., s ﬁl)t

is based upon the
characteristic variables,or Riemann invariants,of the problem, that is, the
components of gI can be called "incoming" quantities and those of

uII can be called "outgoing" quantities. This partitioning of y

will be discussed in detail for the problems we consider.

The estimates ~we seek are of the form

@.3) (glox 1x 10,77 * M8llaax 1x [o,m3 + IR(T)g)

KT
(”.E “QX X [O,T] * ”%”aﬂx X [O,T] + ”u,\ong)( I)

where the norms are Le norms or weighted LE norms over the regions indicated
by thoir subscripts, K » 0 is a constant independent of T, and & = 0

or 1. We will refer to (1.3) with ® = 0 as the weak form of (1.3). The
differences in the properties of solutions u which satisfy only the

weak form (1.3) from those which satisfy (1.3) with & —- 1 are discussed
by Kreiss [13]. We will not belabor the distinction here and be satisfied

with the



Definition 1.1. We will say that the problem (1.1) is well-posed if

the estimate (1.3) holds for all solutions y of (1.1) with Eru,

and g in 2,

Uniqueness and stability with respect to perturbations in the
data follow from the estimate (1.3). We refer to the works of Kreiss [12,
13], Majda and Osher [14] and Strikwerda [18] for detailed discussions
of the particular weighted L2 norms and the general theory for systems
of hyperbolic and incompletely parabolic equations.

The equations we are considering are all quasi-linear.
However, we can obtain our a priori estimates a posteriori over intervals
[0,T] wher-a smooth solution exists, i.e., we can consider coefficients
A_(g()i,t),}ag,t) as functions of x,t if 1&1'(;5,’0) is known. Furthermore,
iierations based upon the linearized variational form of the problems
can be used to establish existence for those t-intervals where the
iterations converge. We will not pursue this here, but rather assume
the existence of smooth solutions over the interval of consideration.
We must prescribe boundary conditions that do not preclude the
existence of such smooth solutions. This is the case if too many
conditions are specified. Too few conditions preclude uniqueness, of
course.

The results by Kreiss [12] and Strikwerda [18] also show that
the systems (A) and (C) are stable to perturbations by lower order terms.
This implies that we need not consider the effects of terms such as

undifferentiated frictional terms and coriolis forces in our analysis.



It is essentially due to this fact that the analysis of variable coefficient
problems can be reduced to that of corresponding constant coefficient
problems via the construction of appropriate pseudo-differential operators
(Kreiss [ 12], Taylor [20], Majda and Osher [l14],Strikwerda [18]). This
stability property also allows us to reduce problems on our general
domain @ with smooth boundaries to families of quarter-plane problems
by making local changes of coordinates such that, e.g., of is mapped
into X, = 0 and  into Xy > 0. Such mappings only introduce new
terms which are of lower order. More detail about this process can be
found in Majda and Osher [14] and Strikwerda [13].

Existing theoretical results cover problems with a smooth non-
characteristic boundary for classes of equations which include A and
C and their modifications resulting from the inclusion of the usual eddy
'viscosity terms (Kreiss [12], Majda and Osher [14], Strikwerda [18]).
Extensions to problems in regions with corners and uniformly characteristic
boundaries have been studied by Majda and Osher [l4]. However, the
important case where the velocities change sign on the boundary and do
not vanish in a neighborhood of such a boundary point is not covered by
existing theory. This often occurs in the applications we consider,
e.g., the solid-wall type of boundary conditions,and when the flow direc-
tion reverses to change an inflow or outflow section of the boundary
to an outflow or inflow section, respectively. There must be character-
istic points on any smooth boundary of a simple connected region with

open boundaries which has both inflow and outflow sections of the boundary.



We cannot treat the influence of such points on 30 here but conjecture
that no important modifications are usually necessary for problems like
those we treat here.

We will use both the classical energy method and Kreiss' normal
mode analysis to establish the well-posedness of these problems. The
solid-wall boundary problems are all treated using the energy method
which provides us with estimates of the form (L.3) directly. some
boundary conditions for the open boundary problems can be treated in
this way, but, in general, we must use normal mode analysis for these

problems.

2. The EBulerian Questions (System A).

The basic hydrodynamic and thermodyanmic laws governing the

motion of an adiabatic and inviscid fluid are given by the Eulerian

equations

(2.1) at

|
o]
:
3
o
|
(@]

where u 1is the three-dimensicnal velocity vector, y = (ul’uQ’uB)t’
o 1is the specific volume, and p the pressure of the fluid; y =<%/cv
is the lapse rate of the fluid, F represents zero-order and forcing

terms, e.g., coriolis and gravity forces, and



3
d ) _ o) 9 )
—_— ==+ u'VvV=g-*t u,
X .
at — ot ot -1 3 3
In vector notation, the equations are
d 9 _
e.5) et SA (.5, 2 E =0
Jj=1 J
( )t d
where q = \ul’uE’uB’a’p » an
0
Uy Om 0 0 o 5 0 0 0
0 uy 0 O O 0 Uy 0 0 «
Al= 0 0 Uy 0 0 , A2 = 0 0 U, 0O O
-o 0 0 uy 0 0O -a 0 u, 0
Y 0 o O uy O pr O 0 u,

The matrices A.J all have real eigenvalues wu., %f’ %j’ u. + ¢, and
uj-c, with distinct eigenvectors, c = (pra)l/e is the sound
speed of the fluid. The matrices are not symmetric but it is easy to

find a symmetric, positive definite matrix

10



0o 1 o0 0 0
- * -
R =gt 0 0 1 0 0 = il
0 0 0 a’pr/a a2
}
2 2
0 0 o0 a (1+a“) ;Tr

where a2 is an arbitrary real, non-zero parameter such that the trans-
formed matrices T-lAjT are all symmetric. The system A is thus a
quasi-linear system of hyperbolic partial differential equations, see
e.g., Courant and Hilbert [4 ]. Since no closed-form expression for

the solution to this system is known, a rigorous evaluation of the

effects of different approximations, inhomogeneous terms,and boundary
conditions is, in general, impossible. For the problems we are con-
sidering the solutions are usually continuous and smooth. The matrices

Aj and R are then also smooth. As long as the deviations g'(ﬁ,t)

from the exact solution g(g,t) are small, they should then approximately

satisfy the linearized variational equations

11



a\ll Bul aul §P_ o
axl axz BXB Bxl
Buz auz buz 3 .
3x1 axz Bx3 axz
C= _a_ué 3 au 3au éR 0
axl ax2 5x5 Bx5
2 X a2 .
axl sz 8x5 3= laxj.
3 du,
N2 & & 0 g
Bxl sz BXB j=1 O

and the term F' can represent other low-order terms. This system is
a linear hyperbolic system in q', and the well-posedness can be studied
by either the classical energy method or by Kreiss' normal mode analysis.

In the energy method, the basic idea is to show that a suitable norm for

g' satisfies a growth equation of the form

. d

2.5) Sl < Kllg |+ iz |

where [|.|| is an inner-product norm |[lg'| = (f ¥ Mg! dx, dx_dx )1/2
: b = Upd P X X0

equivalent to the Euclidean L?-nonn (fQ Iq'l2 dxldxgdx5)1/2 We can

show the well-posedness of the pure initial-value or Cauchy problem

in the L2-nonm for the Eulerian equations by choosing M as the matrix

R given above. From



; 3 * *
= - N (q'*RA_.qu) +q {%% + 4 RAJ.-RC-C*R} Q'-q' RF'-F' Rq'

j=1 X, & ~ -1
we get
o) *
(2.7) a_tf%' Rg' dx; dx, dx,
b}
= o -a—B- —a—— -RC-~ * ot N Ryt

and since R, RAj, etc., are bounded, slowly varying matrices, we can
easily establish a growth equation of type (2.5).

This inequality and energy norm is essentially equivalent to that
used by Serrin [17] in his uniqueness proof for compressible fluids.
He wanted the estimates to be valid for large deviations ¢', which
complicated the structure of the proof. However, at one step in his
calculations, (eq. 25), he had to make an assumption which essentially
meant that the deviations must be small. pyrthermore, in the analysis of the

limited-area case, an over-specified set of boundary conditions was

‘used on the inflow portion of the boundary, thereby invalidating this
part of the proof. The computational effects of such an overspecification

will be discussed later.

For the initial-boundary value problem, we can use the growth

equation (2.6) as before if and only if the boundary integral provides a

non-negative contribution, i.e., 1if

13




(2.8) q" RA g' ds > 0
on ~ ~
_ 23 t . . .
where A= 5=1 Ajg -gj, N is the unit vector in the outward normal

direction, and =5 is the unit vector in the xj—direction. Note that if

the boundary conditions are such that this inequality is satisfied, then
well-posedness 1s proved, otherwise no conclusions can be made.
*
The integrand q' RAnq' is a quadratic form in the five variables

~ ~

ui,ué,u', a'y; and p'. However, the number of boundary conditions is
only equal to the number of inward characteristics, that is, the number

of negative eigenvalues of A, see Kreiss [12]. These boundary conditions

must be such that the related combinations of g' (the Riemann invariants)
are given in terms of known quantities and combinations corresponding to
outward characteristics.

The initial-boundary value problems for the Eulerian equations
arise from two different situations which must be studied separately:

1. A solid-wall boundary. Here, the physical boundary condition is

that the normal velocity v, = Z§=1.quF'§j should vanish at the
boundary. This condition is consistent with the number of inward
characteristics (one). Since it also gives'g'*RAng' = 0 identically,
the well-posedness of the initial-boundary value problem follows
directly.

2. An "open boundary," or a boundary located in the interior of a body

of fluid. In this case the normal velocity is non-zero on the

boundary, except at certain points. For supersonic fluids, all

quantities Ups Uy Uzs Qo and p should be specified at inflow
*
points, giving q' RAnq' = 0. At outflow points, no boundary

14



*
conditions should be prescribed and q' RAnq' is always > 0.

For subsonic fluids, A.n has four negative eigenvalues with distinct

eigenvectors at inflow points so that four quantities have to be
specified. At outflow points, the number of negative eigenvalues
and quantities to be prescribed is only one. In both cases no
obvious physical boundary conditions are known. The characteristic
combinations of q' may be found from the eigenvectors of An, but

~

it is easier to proceed as follows.

The quadratic form

I*RA 1
g ng“:
-1, .2 2 2 22 2\ ,2 2 1
= wo T{u"ru fuSta o pr/a+ (1+a")p'“a/pr +2a°a'p' } + 2u’p
(qu and u, are the velocity components in two orthogonal tangential

directions) can be rearranged as

= unoz_}uﬁ+ u' i?+ afla (pr/oc)l/g + ' (oz/pr)l/zle }

1/2)2

1 - -
+ 5 (¢ + un) o 1(ur'1 + p* (o/pr) - % (c-u,) a l(u'n-'p'(oc/pr)

As before, c = (pYa)l/2 is the basic sound speed.
At an inflow ﬁﬂégggf O)2 bbuhdery characteristic

combinations corresponding to negative eigenvalues of An are thus

/2 1/2 1/2

1
Ul Ui, wo- p' (@/pr) ", and a’ (pr/a) + p' (a/pr) = ¢0'/8, where

6 is the "potentialtemperature" 6 = (pé‘l/Y/R)oml/Y, The four boundary

conditions should give relations of the form

15
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LI al(ur'1 + p' (on/pY)l/g) s

/2

u' = ae(ur'1 + p' (a/pr)?) s

a2 )2 < o, G v vt afer) ),

2 /2 o ot oM = a4 ot o))

for deviations from the basic solution.

Before studying specific examples of boundary conditions giving
relations of this type, it should be noted that not all such conditions
give well-posed problems. With the classical energy method, we can
actually only prove well-posedness when

22

u(a§+a2+a.au)+—(c-u) 1

n n § s5let un)
since only then is g'*RAnq' > 0 at these inflow points. In this expres-
sion aE is the arbitrary, real and positive parameter of the matrix R.
If we want to investigate the well-posedness for other values of
a1y 8y, 83’ a), we have to use the normal mode analysis of Kreiss,
see Oliger and Sundstrom [15].

The classical energy method certainly works if the boundary
conditions are such that a, =a

1 2 3

relations by prescribing (at inflow points) the two tangential velocity

=a; =8 = 0. We can obtain these
components, the potential temperature 6, and the combination

2 1/2
un - .Y._l (pYO!) .

The inequality is not satisfied if we have a) = a, = g = 0

and a3 =+ 1, that is, 1if we try to give the tangential velocity

16



components, the potential temperature, and either the normal velocity

or the pressure at these inflow points. A third possibility for which

the energy method does not work is al = a2 =0, g = -1, and au =1,

that is, if we give all three velocity components and the specific
volume a. As shown in Oliger and Sundstrom [15] using the normal

mode analysis technique, this last combination actually gives a well-posed

problem.

At the outflow (unl of t0), boandatyy one quantity

should be prescribed. It should give a relation of the form

u! - p' (afpr ) M2

= p.u' bu' 4+ b (ul:1 +p' (Ot/‘PY)l/Q) + bh(a'(pr/o:)l/2+p' (oc/pY)l/e)

147 TPty + Py

for the linearized variational equations. It is simplest

to prescribe the normal velocity so that bl = b2 = bh = 0, b5 = -1.

The well-posedness of this boundary condition follows immediately from

*
the positivity of q' RAnq'. We may instead prescribe the pressure p,

or actually any combination

corresponding to bl = b2 = bh =0, b5 =1,
of u and p such that (ur'l—p' (a/p‘r)l/g)e (c-un ) < (ur'1+p' (OL/PY )1/2 )2 (c+un ).

n
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3. Basic Approximate Forms of the Eulerianr Equations (Systems Bl and B2)

Although the Eulerian equations are the fundamental system of
equations for most fluid flow problems, they are often used in modified
approximate forms. In fact, they have almost never been used in the
complete form given in the last section for geophysical calculations.
The reason for this is simply a matter of economics and time, which
are not unrelated. To compute an accurate approximate solution of the
Eulerian equations for a relatively small problem requires quite a lot
of computer time. These equations are an extremely "stiff" system of
hyperbolic equations with a wide range of eigenfrequeneies and character-
istic phase velocities. The ratios between the largest and smallest
eigenvalues of the coefficient matrices Aj in (2.3) are often as
large as lO2 or 10u. The high-frequency eigensolutions (sound-waves)
are often absent in the initial data and the solution,but their presence
in the set of eigensolutions imposes a severe upper limit for the time-
step in explicit numerical integration procedures. Implicit techniques
that do not suffer from this difficulty lead to data structures which
are difficult to manage and systems of nonlinear equations that are
expensive to solve.

A second special aspect of many geophysical problems is the
strong balance between the gravitational and vertical pressure gradient
forces which is responsible for the basic stratification of the
atmosphere and oceans. The vertical acceleration terms are usually much

less than 10-h times either of these terms. Even if we first subtract

18



the time-independent part of the pressure field, we must still know
the specific volume and pressure extremely accurately in order to compute
the time derivative of the vertical velocity with even moderate accuracy.
Similar, but less extreme, balances exist in the other equations. In
the two remaining equations of motion there is a near balance between
the horizontal pressure gradient and coriolis terms, and in the continuity
equation there is a near balance of the components of divergence. These
relations are often summarized in the statement that the atmosphere is,
to a large extent, not only quasi-hydrostatic but also quasi-geostrophic
and quasi-nondivergent.

To obtain a reasonable computational problem we must either:
(1) find a more efficient numerical integration procedure, or (2)
modify the equations in such a way that the high-frequency solutions
are eliminated. The first alternative leads to integration methods of
implicit type. The nonlinearity of the resulting implicit system and
the difficulty of incorporating the near balance of the equations have
not been successfully dealt with so far. A strict version of the second
alternative is actually even more difficult to construct, if we try to
eliminate only the solution of sound-wave type and obtain a system which is
still hyperbolic. The main difficulty stems from the fact that the eigen-
vectors corresponding to the large eigenvalues are different for the
different Aj's. The nonlinearity of the system and the effects of
variable coefficients are further complications.

Various approximate versions of the Eulerian equations have

been derived by intuition, scale analysis, energy conservation

19



considerations, and experience. The near balance of the equations simplifies
this approach considerably. We shall study two such approximate sets of
equations: the hydrostatic equations and the incompressible anelastic system
of equations. Unfortunately,in both cases,the hyperbolic character of

the system is lost.

The hydrostatic system is derived from the Eulerian equations

by neglecting the vertical acceleration terms in the third equation of

motion. One so obtains the "hydrostatic equation"

(3.1) a%ﬁ-+g=o.

Here, and from now on, we use the notation z for X3 as a distinguished
vertical coordinate and w for u5 as the vertical velocity. This
approximation 1is extremely accurate for the large-scale motion of the
atmosphere.  The wide-spread use of the hydrostatic approximation
actually led meteorologists to calling the resulting system "the
primitive equations of motion." This was motivated by a comparison

with the still more approximate "quasi-geostrophic" system, but the term
"primitive" is certainly misleading.

The use of the hydrostatic approximation has several important
consequences. First, we no longer have a prognostic equation for the
vertical velocity. Second, to maintain the hydrostatic equilibrium,,
the time-changes of o and p must be coordinated in such a way that
a (Op/dz ) is constant. This means that the pressure at any point in
the model atmosphere can be determined from the pressure at any reference

level and the mass of the separating layer, the integral [ a_ldz.

Z0
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With this approximation, we obtain the hydrostatic system,

system Bl,
(a%JfE'V)E’HJ’O‘VHp hEy= 0
ag:s+g=0
(3.2)
(& + w9 - o7y = 0
3t T RTV/a - over =

(-a% + 4-V)p + proey = 0

. Tt B t m wE t
where H,H—(ul,ug) , U = (EH,W) s EH = (Fl’FE) s> and VH = (a/axl, a/axg) .
This is a much more complicated system than it may seem at first glance.
The equations (3.2) are not a hyperbolic system. To show this we form

the variational equations
(a + e vut + aV.p' + u' + p+F' =0
3t TR YRy H R Vigy P~

&' _ . - '
@3 T @ gg—ia

4

(3.3)
(-éa—t + E'v)a' - ocV-g' + E!.va - atv.g =

1
(@]

(g% + uVip' + prVeu' + u' Vo + p'rVeu = 0.

The corresponding constant coefficient problem has periodic eigensolutions
1 =h1 .
uy Uy exp{l(vt + wlxl + dbx2 + w5z)L etc., for large wl and db

if and only if

21



(3.4) det D~ 0

where
S d 2
iV 0 S_Z- ul al(l)l+g Xlle\
~ a 062
0 v — sTOJE a i
D= + 2 % ) g Pxple
N 2. . 2, 2 2 2 N
-Qiiwy (g+c 1035) -0, (g+c le) g, *c 051)3 - (1 +y)1a>3v u
.~ 2
pra, + op. pra_ + op pra_+ap 2 iv(g+ cTiw,)
xl xl Xg x2 Z Z g 3

where v =V + 7% 4., + wo_
J=17373J 3

~ ~
the modified eigenfrequency v. It is easy to see that the roots Vj’

This determinant is a cubic polynomial in

j = 1,2,3, of (3.4) have the asymptotic behavior

and

V. = o t6 e y J =2,3,
. 3 3

as % — %, Thus, the system admits solutions with arbitrarily
large signal speeds and is not hyperbolic. We cannot use the general
methods and results for hyperbolic systems to find a well-posed set of
boundary conditions.

Davies [5] tried to avoid this unfortunate effect of the hydro-
static approximation using a direct energy method approach similar to
the one used in Section 2 for the Eulerian equations. The absence of

the terms coming from dw/dt changes (2.6) to
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2
= - A ' ¥ [ __é_ P XN ' ¥ @_ d _i
j=1 %%; % RAJ%H) % 4 5% )+ & Xy (RA1)+BX'2
+ g,'*(ga; (RA;) - &G - TR)g' - g RE' - PRy

where ngI = (u]'_,ué,o,oc',\)')t and the matrices K3 and C are obtained

by deleting the terms arising from w(dw/dz) in the original third

equation from the matrices A5 and C, respectively. Integrating

(3.5) over the region { we obtain

(5.6) 2 ligyl?

ot

|+

17+ e e - £ 5 (o Ry g) + 52 (arfmagy)

IN

(g "R g")
q 34 d.xld.xedz .

+
&l

Davies tried to find a set of boundary conditions such that the contri-
bution from the boundary integral is non-positive,proceeding in the same
way as we did with the Eulerian system A. He first conjectured that the
number of boundary conditions could be chosen equal to the number which
are required for the Eulerian equations. However, this conjecture is

false. If this numberofboundary conditions is used the solution cannot

be expected to satisfy the hydrostatic relation at the boundary. The
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problem is overspecified and the existence of continuous solutions is
precluded. There is a further problem with this approach. The energy
method is based upon norm equivalences and the norms of g' gng Qﬁ
are not equivalent. To obtain an adequate energy estimate, a bound for
the term q'*(i (RA,) - RC - c"*R)q' of (3.5) in terms of |
R\3z 3 - . Syl

instead of ||g'[l is necessary, but this is not possible. Consequently,
we cannot draw any conclusions about the well-posedness of these equations
from the reduced energy equation (3.6) for either the initial boundary
value problem or the Cauchy problem.

Since the enefgy method does not work, we now turn to the normal

mode analysis technique.

Normal mode analysis of the general equations here is rather complicated.
If the motion is essentially horizontal we may instead consider linear-
ization about an underlying basic state q(z), p(z) which satisfies

ap, +g=0. . Due to this simplification, we cannot establish sufficient
conditions for well-posedness in our succeeding analysis. However, we
will at least be able to establish some necessary conditions and we can
also expect the variational equations to reflect the main properties

of the system. We use the notation a = alz) + a', p + p(z) + p' and
write-the horizontal velocities as Y =X + Eﬁ where Vv = (Vl,Vé)

is constant. If we neglect all of the nonlinear terms in primed quantities,

we obtain the approximate system
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__ng- LT
ot *<H =1 3 BXJ
a
(3.7)
3 2 3
g—o"+j§1v§;‘; -0V t W =0
2

a, 3 ) - 1 '

) < p' + v, so-p' +prVeu'- =— =0 .
ot jo1 ij 5

We can then transform (3.7) to obtain the following equations in

u!, ué, and op',

1
&%’LZV ax &y + vylt) + B =0
2
a a ! 17—
(-5—3 - Jzol V:j %) L(O!p ) + VHE.H— 0
where
- % D S - a O @ d -
Lpt) = - ¢ & (——_Pl-— - (cxp') =-5 = G = ("))
g oz pY&z-g oz g2 dz 0 dz

~1g2 In & is the'static stability'of the basic state.

and 0= -g «o 8
We will always assume o > 0, i.e., we are only studying perturbations

of a stable stratification. The boundary condition at z = 0 is

25



w' = 0 which implies pra' + ap' = 0. As an upper boundary condition

we have p -0 as z - . Our condition at z = 0 can also be

written as 382 (ap') = gUp'/& so, for arbitrary q',

o]

r --lIL(-l)d _fooq' QC_&_ _a.(' t) d
oOé 4 op z 0 oz g20 3z \OP &

[o]

S ] )
- é ;%; 5%2 é% (Gp* Jaz + (& a'ap'),_q

ga

which shows that the operator L is self-adjoint and half-bounded.

Therefore, the system (3.8) is separable. If we expand the variables

u i‘:d and &p' in the eigenfunctions FV(Z) of L, we then obtain,

for each v,

2
o) o) 1 ! -
Gt LV s Wy T @) T Ew) = 0

(3.9)

(.ﬁ» > (Gp' )
¥ R\ ' + V.o
3=1 VJ BXJ v op (V) H E:H(V)

where the 7\v are the eigenvalues of L, i.e.,

(3.10) LFv(z) = vav(z).
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Since 0 > 0, this eigenvalue problem is of Sturm-Liouville type
and the eigenvalues 7\V are distinct, positive, real numbers. For
each value of vthe system (3.9) is hyperbolic and has the same
form as the shallow-water equations to be discussed later. The
characteristic velocities are v., .v.+ c and v.J- CV where

J j v
/2

= 7\:)1 . Under standard atmospheric conditions cO ~ 322 m/s.,

v
¢y ~34 m/s., c) ~ 17 m/s. and c, 0 as Vo » , see Wiin-Nielsen
[22). From this it follows that, for small v,two of the character-
istic velocities will be positive if Vj > 0 and one will be positive
if VJ. < 0. When V is so large that ¢, < |v,|J, then all three
characteristic velocities are positive 1if vj > 0 and negative
if vJ. < 0.

It follows that the appropriate number of boundary conditions
for our simplified problems must be different for these two classes
of eigensolutions. For those components with <, < |vn|, all variables

should be prescribed if v < 0 (inflow) and no variables should be prescribed
if V,,“> 0 (outflow). For the other components, the appropriate number of
boundary conditions is two if Vo < 0 and one if v, > 0. Possible

forms for these boundary comitions are examined later for the

equivalent shallow-water equations. The simplest choice of inflow

conditions 1is probably to give both velocity components,

%(v)’ for all vand &p'(v) for those values of vwith

¢, < |an. At outflow, v, > 0, the normal velocity component can be

given for those vwith ¢, > |vj . In the special case of a solid-

v

wall boundary there is only one class of eigensolutions, since Cy > |vn|

for all v. The condition un(z) = 0 yields u!‘l( ) = 0 for all v
v
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which, as shown later, yields a well--posed problem for each Vand,
consequently, for the entire system, We reiterate that these con-
clusions are only valid for our simplified version of the variational
equations and that we have no proof of their validity for the complete
system. However, the conclusion that the boundary conditions must

be separated in terms of the vertical eigenfunctions is wvalid for

the complete system since that system admits particular solutions of
the type that we have discussed. Our inability to provide sufficient
conditions for the complete system is essentially due to the fact

that we cannot show that all solutions of the complete equations

can be expressed in terms of the eigenfunctions of (3.12). It follows

from this discussion that local, pointwise boundary conditions cannot

yield a well-posed problem for the open_boundary problem for the

hydrostatic equations; well-posed problems can only be obtained

(1) if the boundary conditions are formulated in terms of local
eigenfunction expansions or (2) nonlocal boundary operators are used.
We know of no successful formulation of the second type.

A convenient byproduct of the hydrostatic approximation is
the possibility of using variables other than z as the vertical
coordinate (e.g., pressure, p, potential temperature, @, etc. ). 1f

pressure is used as the vertical coordinate the equations (3.2) become

d —
at S " V§¢ *E£=0
d Lo _
&ty =0
(3.11)
W
V' - =
D HH + 5 0
g(E"'CX:C)
ap
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where

_ 9 : 3
at "ot " M V% e dp ’

and V_  denotes the horizontal gradient/divergence operator on
constant pressure surfaces.

The p-system has the advantage that the region of integration
has a limited vertical extent, 0 < p < Py> where P, is the surface

pressure, instead of 0 < z < o for the original system. The

meteorological data are also collected and analyzed as

functions of pressure which simplifies the construction of initial data
fields on constant pressure surfaces. One disadvantage is that the lower
boundary condition, w = 0 at z = 0, becomes d@/dt = 0 at the unknown
surface p = ps(g,t) where ¢ = 0. The usual way to overcome this

difficulty is to prescribe
do _ . O =
(3.12) & - (sgty v o 55/ = O

at a constant pressure surface p = Py usually chosen as 1000mb,
instead of at p = P, The upper boundary condition simply becomes
w=0 at p = 0.

It is easy to show that the transformation to the p-system

does not change the nonhyperbolic character of the equations, and

again an upper bound cannot be found for the rate of growth of
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disturbances on the solution in any conventional energy norm. As

before, we have to limit the detailed study to an approximate system

of variational equations. These are given by

(3.13) j=1 4 9%

where q = &(p). We are only considering the mean translatory part

of the advection terms. The system (3.13) will retain the essential

features of the complete variational equations if the solution is close
to steady-state and the motion is quasi-horizontal.

If we eliminate ®' and @', the system (3.13) can be

written in terms of u,;I and @' as follows:

2, §
— 1 ot ™o

(3.14)

2
9 9O )1 ! =
(E + ng VJ, axj)L(p + Vp u 0
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where
v .9 !
LCP_'GP( op

with

To show that (3.14) is also a separable system we must show that the

upper and lower boundary conditions are consistent. At p = 0 we
have ®' = 0 so U-l(Bm'/ap) = 0. At p = Py the condition (3.12)

may be transformed,using the equation (3.13) for a', to obtain
e by 9 ' éul -
(3.15) (at vy 5 (0 - =) =0

so that
-1 39" 4 ==l _ _
o] 3D a @' =0 at P po

if this condition is satisfied initially. Then

Po Po 19dq' 1
17 ent _ o™+ 94 _9: =Lyt
é q'Le'dp é % 3 ®*laa'e N

which shows that L is self-adjoint and half-bounded. We can now

expand gﬁ and @' in the eigenfunctions of L. The simplified

variational equations then become a family of hyperbolic systems,
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=1 0%

(3.16)
2
> 3 b or - w g
AR RO T

where the Kv are the eigenvalues of L, i.e.,
(3.17) LG, (p) = KVGV(’p)

with correspondigg eigenfunctions GV(P)-

Again, the horizontal boundary conditions must be formulated
differently as the normal component of velocity is larger or smaller
than Es/g All of the conclusions made for the z-coordinate system
apply in this case.

We now consider the second approximation of the Eulerian
equations of motion, the incompressible, anelastic system (B2).
Approximations of this type have been used in many areas of theoretical

and applied fluid mechanics. In their most simple form, the equations

for an incompressible fluid are

]
O

(5.18) at B apWp

where Ay is a constant. This system is usually derived from basic

physical considerations,but it can also be obtained from the complete



Eulerian equations by letting o approach a limiting constant value, Oy

The more general anelastic approximation, often used in studies of convective
systems in the atmosphere, 1is based upon the following assumptions:

1) the potential temperature of the fluid is nearly constant (we

denote this constant value by & in our following discussion);

2) the pressure deviates only slightly from a hydrostatic stratifi-

cation; and 3) the typical horizontal and vertical length scales

are similar. If the characteristic length scale is much smaller than

the "scale height," CPG/g, we obtain the system

d _
d 5 JT g
EEW"'e'é;—g:—O
e
(3.19) 4y,
dt
V‘E=O

where © is the deviation of the potential temperature from a basic

state 8, T = cP((p/pO)l-l/Y - (ﬁ/po)l-l/Y), p denotes the isentropic

. pressure profile corresponding to 8, and

d _ 93 i
% O3 " VetY

We note that, expect for the equation for 5, this system is essentially
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the same as (3.18). A third system of the same basic form is the

Boussinesq system which is often used in oceanography.

The linearized variational equations corresponding to the system

(3.19) are, deleting the small zero-order terms,

4 vy Byt =
at & "V 0

(3.20)

The existenceofnontrivial periodic eigensolutions of the form

exp[i(vt + @x+ cn£%+ sz)] is equivalent to the determinant

11 >
condition
s Biw
iv 0 0 i 1 0
0 iv 0 A1, 0
(3.21) det 0 0 iv érwjv -g/8 =0
g ] g ~
%z‘ ax %z— 0 v
1 a%s
nnl ﬁbz yb3 0 0
where
o 2
V = vV +vé—‘ u .w . + wb
=1 J T D
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Equation (3.21) is third order in vand of fifth order in the ..
If the lower order terms are neglected, then the resulting equation has

Vv = -Z?zlujmj - W as a triple root. Thus, the anelastic equations

3

are not a hyperbolic system, but their eigensolutions have, to highest

order, time dependent behavior which is like that of hyperbolic systems.

We cannot obtain sufficient conditions for well-posedness of
the initial boundary value problem for time-singular systems like
(3.20) using the normal node analysis technique. The theoretical
justification is lacking at present. However, rigorous results on
the necessary form of the boundary conditions can be obtained since
it is clear Ehat pathological solutions can be constructed via the

normal node technique following Agmon's construction [12].

Analysis of the eigensolutions of (3.20) shows that four
boundary conditions must be given at inflow parts of the boundary and
that one condition must be given at outflow parts of the boundary.
Furthermore, pathological behavior like that exhibited by solutions
of the approximate system Bl is not present. It can be shown using
the energy method that the physical boundary condition u, = 0
for a rigid-wall boundary yields a well-posed problem with an energy

2 2

norm of type (u,'l2 + ui + w' 2)1/2.

+ 3,2@'
2 .
For the constant coefficient problems (3.20), I estimates

for the well-posedness can be obtained directly using Fourier-Laplace

transform techniques for the initial boundary value problem on a quarter-space;
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t > 0 X 2 0 ©<X5,z < It follows that these problems are
well-posed if y and 6 are given at inflow and if u  is given

at outflow. However, as mentioned above, the reduction of the general
problem to quarter-space problems and the variable coefficient
problems to constant coefficient problems via freezing arguments

is not covered by existing theory

4. The Barotropic or "Shallow-Water" Equations (System_C)

A third approximation to the Eulerian equations, the shallow-

water equations which are our system C, may be written

I
(@]

d
gt P tE

1
o

d .
Pt WYy T

where

%= %+E%Ivi~1’
and Ly and cp are functions of time, t, and the horizontal space
coordinates, X, and X,, E represents any zero order or forcing
terms such as, e.g., the coriolis forces. The variable ¢, the geopotential,
is always positive. In most geophysical problem, the flow is subsonic
so that ¢ > ui + ué, but the opposite relation holds for both
supersonic flow and for some of the subsystems derived from the

hydrostatic equations (Bl) by separation of variables.
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At least three different names exist for system C. In
meteorological applications it is usually called "the primitive
barotropic equations." In oceanography the most common name is
"the shallow-water equations." This system accurately describes wave
motion on the surface of a homogeneous fluid when the horizontal
wave length is much longer than both the vertical scale of motion

and the depth of the fluid. The vector form of system C is

2
4.2) =g+t L A(g) s=-g+F=0
ot . o
j=1
X t
where ¢ = (ul:up;CP) ’
u1 0] 1 u2 0] 0
Al = 0 Uy 0 ) and A2 =t O U, 1
P 0 u, - 0
N > 4
1 /0
The eigenvalues ofJA. are u., u. + ¢ and u. - c with ¢ = ¢/“.

They are all real and have distinct eigenvectors. The symmetric and

positive definite transformation matrix

)
Il
o O o
o 8 O
H O O
Il
=]

simultaneously symmetrizes A1 and AE' Thus, the system C

has retained (or regained) the basic property of the original Eulerian

equations (system A) of being a quasi-linear system of hyperbolic

equations.
37



As before, we are only discussing problems with smooth
solutions. The basic properties of the system may then be found from
the corresponding linearized variational equations
2
3 3
. = g'+2 A.(g) == g'*+Cqg'+F =
(x.3) S R N
where g 1is a solution of (4.2), and the small disturbance q' (xl,xp,t)

may be generated by the inhomogeneous term F' or be caused by an

initial disturbance g'(xl,XE:O)- The matrix C has the form
% 3%,
du, du
1 %)
3 3 oy, %
Bxl 6x2 axl oK,

The matrix C, the coefficient matrices Al(g)and AE(QL and the
transformation matrix R(g) are slowly varying in space and time.

It is easy to show the well-posedness of the Cauchy problem in the
I?fnorm by the classical energy method. This 'was done by Elvius

and Sundstrtm [9] and Davies [5]. They also showed the well-posedness
of the initial-boundary value problem for some possible sets of
boundary conditions using the energy method. However, as pointed out
by de Rivas [ 7 ], Davies overspecified the boundary conditions in his
paper. For this reason our discussion follows that of Elvius and

Sundstrsm.

~
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The growth equation for the energy norm of %'is

3

{' ¥ t
Fg® & 5 2 (m)) - Re C"R)g' ax, dx
= Q <- — A, - -
0 A Loe
S gt RE ¢ EURQ dxgdx, - [ gl RA g ds
R Y n
Since
2
§%+ 2 5.~ (RA.) - RC - C'R
j=1 %5 Y
du du du,
1 1 2
S &“*3{) 0
du du Jou
= - + __g. Eq) _._.2_ 0
AX, axl 8X2
ou au
0 0 -'—1"4‘ S}E—
we can rewrite (4.4) as
*
h.5) % grz g' Rg' dx; dx,
du du u au
- 1, _2 2 2 e
sr)- {<BX ax)(“)(u +u2)+CP )+CPG %

Bu

Bug)
a< Sx_l Uy )} dx, dx,

-[gq RF'+F'Rg'dx dx, - [ q' RAq ds .

Q 2 >0
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The first integral is bounded by

2al/2 _ .
d du 54
f((tl‘"ﬁ (BEesE) | S aR) e et

if we can neglect the contribution from the inhomogeneous term and

*
if the boundary conditions ensure that the integral {f‘;g'RAn%'ds > 0.

*
The growth rate of f q' Rq' dxl dx, 1s then bounded by the maximum
Q

value of the quantity

1/2
] ‘__ )2> o L )
) Oxy - OX,

the difference between the deformation and divergence of the basic flow.
Results of this type may also be found for finite disturbances (which

was not possible for the Eulerian equations) Without any linearization,

the complete variational equations are

'§'Q,'+>2‘A((l+g,')_a"'9,'+cg,'+F':O-
L+ j:l g axj

Using the complete transformation matrix R(g + g'),we get
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du oy,
' 1 2 .2 .2
”“”’“P)[(a—;c;'gg) (" ™)

au'
+fQ29' ui ( + —— dxldx

- [ g RF‘+F'Rq ax,dx, - [ ¢ RAq'ds
Q a0

Since

t ] au' Bu'
[ ogt 99" eloM 2f 1, T2 -
q 29 Gi Bxl * ué 8x2> e (axl * 8x2> dxldfcg

gé— (u m' + -a-)a;; (uécp'g) dx, dx,,

D™

2
]
u o ds ,

"
o O

we again obtain a growth estimate
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(4.6) o f g'* Rq' dx dy
' 3t ~
N2 T A Ve du,
smaxillax, ", ) "\ & T T3 T X,
1 2 2 ~1 1 2
x [ g"* Rq' dx,dx
0 172

. * 2
if F' = 0 and the boundary integral [ g' RAnCL' - ur'ICp' ds > 0.
R}

Note that we now have_a hound for the growth rate which is valid for

disturbances of arbitrary size _and_only involves the_deformation and

divergence of the undisturbed flow. The solutions ¢ and g + g'

may thus be any paif of solutions to the shallow-water equations.

For finite ¢', the integral [ g'*Rg'dx ax. = [ (p+ cp’)(u'2+u'2)+ o' 2d.x dx
Q 172 Q 1 2 172

is no longer the square of an Le-equivalent norm for g', but as long
as @ *+ @' (the thickness of the fluid layer) is strictly positive we
can apply the corresponding Liapunov theorems. Usually, I(p' | is

so much smaller than 'q3| that the difference between

( iﬂ g"* R(g + g')g" dxldx2)1/2 and the energy norm (Qf g'*R(g)g' dxldxz)

1/2

is negligible.
All these estimates are valid if and only if the contribution
from-the boundary is strictly nonpositive. For the linearized

*
variational equations we had to require [ g' RAng'ds > 0, i.e.,
Q

| 2 > 2
ggvn(Cp(ur'm + ouy )+ 9rT) + 2(pu_f'1cp'ds
~ 2 9 2 9 . 2 -
= [ (u,oul” + 2 (c + un)(ur'1 + p'/c) - 5 (e un)(uJ£1 ®'/c)“} ds > O

1)
Lo



For the complete variational equations, the integral is instead

é (v + u [ (p + ¢')(u£2 + ui2)+-®'2] + (20 + @')ulg' ds

= aﬁ' {(un+ur'1)(Cp+cP')uf
rFloro) o+ Fo)/etu +u )@ +o/e))
Lo o) ((or X0 )/e-u -u)a - o'/c)?) ds
5 @ e e FF @ n ~ Yn’ ‘Y

where now c-= (@ + cp')l/e. We again study the two different types

of boundary conditions separately.

1. Solid-wall boundaries. Since the normal velocity vanishes at

*
the wall we have [ q' RA_ g'ds = 0, and the matrix A  has only
39 .
one negative eigenvalue at the boundary. The well-posedness

of the problem then follows directly (also without linearization)

for the boundary condition u, = 0.

2.  Open boundaries. From the number of negative eigenvalues of An

it follows that at an inflow boundary (un < 0), two boundary conditions
should be given in the subsonic region where ni<_c

(|un + ur'1| < (p + % ®')/c), and three conditions in the supersonic
region. At an outflow boundary, one boundary condition is required

if the flow is subsonic, and no coadition should be given if the

flow is supersonic.
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If the flow is supersonic, the boundary conditions should be
such that, for the variational equations, the values of all three of

the variables wu!, u!l and @' are prescribed at inflow points.

1" 2

For subsonic flow, the inflow boundary conditions should

determine the value of two quantities of type ui - al(ur’x + o'/c)

t t - 1 t : t t _ [
and u ¢ /c ae(un + o /c) since u) and un ) /c are the

characteristic combinations corresponding to the negative eigenvalues
of A - Not all such combinations give well-posed problems, but if

2
ctu + 2ua- - (c - un)a2 > 0, the limited growth rate for the

2

energy norm of q' gives a direct proof of well-posedness. We may,

e.g., choose ay =‘é2 = 0. This condition can be achieved by pre-

1 , . .
/2 at these inflow points, see Elvius

)1/2

scribing u; and u, - 20

1/2

and Sundstrom [9], since then ui = 0 and ulfl -2(p + o + 20

/2, 1/2y /2

= ur; - 20"/ (¢ P+ ') ur'l - cpljl/cpl = 0. Actually, this

boundary condition ensures that only bounded growth can result for

1/2 )1/2

all finite disturbances, as long as min{@ , (@ + ON )y +u_ + ur'1

n

is positive. Inserting the complete expressions for uJ'_ and ur'1

in the boundary integral, the integrand becomes

(o, + w0+ 0 (w? + u?) + 91 + (2o + ot)uter

= o {(un + ur'l)[l + 4(p + 0)((p + 0

+ 2(2p + 9')((p + CP')I/E + cpl/g)'l]

= 9% ((p + @) ME + @1/2)'2{(% +ul) (6o +5¢' + 2(p + 91)1/2 gH2)

v 200 . o) (o + )24 M2y
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If 0 <9 <0+ 0, the value of

or plY/2 + gM2)

220 + ') (( o)
1/2 @172

6p + 50"+ 2 (9 + @)

is always larger than cpl/2 while if 0 < ¢ + @' < 9, this expression

)1/2 1/2’ (o+ cp‘)l/g]> 0,

has (¢ + o' as its lower bound. For u  + u' *+ Min{9
the inflow part of the boundary then provides a nonnegative contri-
bution to the boundary integral.

Another possible inflow boundary condition is to prescribe
both v and w;, so that al = 0, a, = -1.  This conditionwas
apparently first suggested by Rousseau [16]). The value of |aL,| is
then so large that we cannot use the classical energy method, but
as first shown by Elvius and Kreiss (private communication), well-
posedness can be proved using Kreiss' normal mode analysis technique.

An alternative boundary condition, discussed in the paper by
Elvius and Sundstrom [9] is to give u), and ¢ at inflow points. This
corresponds to the choice a = 0, a = 1. For problems in only
one space dimension this is a well-posed condition. The value of a2
is, however, so large that we cannot use the energy method as above.
For the complete two-dimensional problem, Elvius and Sundstrom did
not analyze the well-posedness properties, but numerical experiments
indicated that it might actually be an ill-*posed set of boundary

conditions. This conjecture has been confirmed by a complete analysis

by Elvius and Kreiss (private communication).
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At outflow parts of the boundary hﬂ1> 0), we should, in
the subsonic case, give one boundary condition. For the variational
equations this condition should *prescribe the value of a combination
t _ ot _ ' 1 [ -
of the form % ® /c blgL b2(un + 0 /c). As before, well
posedness follows directly from the positivity of the integrand
*
1 1 : : :
9" RA Q" in the growth equation if
+b. (' +0'/c))? > 0
2 n -

(c + un)(ué + CP'/c)2 + 2unu'2

17 -« - un)(b

t
1%L

for all u' and uﬁ + o' /c. The simplest choices of the parameters

b,> b, satisfying this condition are: 1) b, = %2= 0, i.e., giving
. . . 1/2 ) _
ul - 9'/c, which may be achieved by specifying u =29 3 2) by = 0,
b2 = -1, i.e., giving uﬁ; and 3) bl = 0, b2 =1, i.e., specifying o

also yields a well-posed problem.
All of these conditions guarantee bounded growth for finite
*
disturbances. In each case, the integrand g' RAn(g + g?g' is

strictly positive as long as u, t ué > 0.

For the open boundary problems we have several possible
sets of boundary conditions which all satisfy the necessary and sufficient
well-posedness conditions. If the problem is part of a telescoping
technique or nested integration, or if any arbitrary type of boundary
data can be obtained from measurements, the choice between these

different possibilities may be difficult.
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The experiments reported by Elvius and Stindstrom [9] do
not show any large differences between the results from a numerical
model, using either boundary conditions giving the value of the combination
uﬁ - ¢'/e and uj at inflow and'uﬁ - @'/c at outflow or uh and ui
at inflow and ué at outflow. Their results examined a long-wave
solution with small long-wave or short-wave disturbances.

Further experiments by Elvius (private communication) indicate
that for solutions with a less pronounced long-wave character, the

first alternative is less susceptible to boundary disturbances which

may arise when the normal velocity is small and changes sign.

In one of the first papers on limited-area integration of the
shallow-water equations, Charney [2] suggested a quite different
set of boundary conditions. Since it is both inefficient and
difficult to implement, this set is now primarily of historical
interest. It is still worth analyzing, since it illustrates the
hazards of intuitive deductions. At that time, most experimental
and routine work on numerical weather prediction was done with
"balanced" forecast models. The simplest version, the barotropic
vorticity equation, can be considered as a further simplification of
the shallow-water equations. In the derivation of this approximation,
system C is first transformed into a set of three *prognostic
equations for the divergence D = V'u, the vorticity
C==3u2/5x1 - aul/axg, and @, respectively by differentiating the
equations of motion with respect to x and y and combining the
results. This differentiated system is then simplified by using a
steady-state approximation in the first and third of these equations

and by keeping only the nondivergent advection terms in the vorticity
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equation. By this approximation, the whole system is condensed into

one prognostic equation in one dependent variable, the stream function
V. For this vorticity equation, Charney, Fjgrtoft, and von Neumann [3]
concluded that two boundary conditions should be given at inflow points
of an open boundary and one condition atﬁoutflow points.  They suggested
that the stream function (and thus the normal component of the velocity)
should be specified at all boundary points, and in addition, the
vorticity at inflow parts of the boundary. 1t is, easy to show that
their conclusion on the number of boundary conditions was correct and

that the suggested conditions make the problem well-posed, cf.

Sundstrdm [19].

Charney's proposed boundary conditions for the shallow-water
equationswereapparently based on the idea that since the number of
. boundary conditions is the same for the vorticity equation and the
shallow water equations, the type of conditions should be similar.
He therefore suggested that u = should be prescribed at all boundary
points, and as the second quantity to be given at inflow parts of the

boundary he chose the "potential vorticity"

e R
bxl BXE
P:
®

If the differentiated version of the shallow-water equations is
formulated in terms of P, D, and ¢, one of the three equations is
(d/at)P = 0. This differentiated system requires three boundary
conditions at inflow points, one more than the number required for the
single vorticity equation, and one of these conditions may be the
prescription of P. However, this is not a valid argument for the
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usefulness of the potential vorticity as a boundary condition for the
undifferentiated system. We cannot just pick two of the three
necessary inflow conditions for the differentiated system and expect
them to form an appropriate set of boundary conditions for the
shallow-water equations.

The danger of using the boundary conditions that Charney
suggested can be shown directly. For the variational equations, they
give uﬁ = 0 and (B/Bn)ui - Pp' =0 if u < O. The last condition
cannot be used directly, but it can be combined with the prognostic
equation for ui to yield an equation for the inflow boundary values of
(B/Gt)ui which involves only boundary quantities. The tangential
velocity 1is ghen determined by integrating this equation from +t = 0.

This is a very complicated way of computing the inflow values of
uj. Additionally, this approach has the liability that a small error
committed initially, or at any later time tO’ will influence the

boundary values at all later times. These errors will spread into the

region of integration contaminating the solution.

5. Effects of Viscous Terms

As described in the introduction, small viscous terms are

" often added to the systems of equations we are considering. They
are often introduced to provide a dissipative filter for a numerical
approximation. In other cases there is a physical motivation for
using viscous terms to represent diffusive transport (eddy flux)

of momentum and heat. Both the viscosity and heat conduction coefficients'
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are usually very small, but since these terms change the character
of the differential equations, we have to reinvestigate the boundary
conditions.

For system A (the Eulerian equations) the general viscous
form of (2.1) is the compressible Navier-Stokes equations, here

written in the special form

% u+tovp+FE = oc[pvgg O+ (V)]
(5.1) 4 - oy = '-l/YVE( /7
' at 8= e op
d
a P + pyVeu = 0

where y and )\ are the Lame/constants, and where the heat exchange
term represents eddy flux of potential temperature. Using the

1-1/y /R) o.'pl/Y

potential temperature 6 =:(pl as dependent variable

instead of @, the second equation may then be simplified to

a
at ¢ = KHVQG

Here, we shall only study the simple viscous form obtained when

L= =N = Va_l. In vector notation, we have

3
j% q * 2. A, (q) sf% g+ F-= BV2Q

with q =(ul:u2:u :e}p)tJ
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1
0 ul c 0 0 0
0 o 0 Y
= ul ° A = © Q? 02 &
b 2 ’
0 0 0 uy 0 0 0 0 u2 0
P o o 0o u 0 pr O 0 Uy
0 0 0 0 0 -f 0 0

o

o
O
V]

Q
i

O
o
o
o

and B = 0O 0 0O o0

This is an incompletely parabolic system, see Strikwerda [18]. As
before, the matrices Al’AQ’ng and B can be simultaneously

symmetrized by multiplication from the left by
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0O 1 o0 0 0
R=oqo 0O © 1 0 0
o o o0 2R
o2
O 0 o0 0 a
pY

where a2 is the same positive parameter which occurred in the

transformation matrix R in section 2. If the solution (and then

also R and the coefficient matrices) are slowly varying in space

and time, we can use the general results of Strikwerda [18] from

which it follows that, forwell-posedness, it is necessary and

sufficient that the family of linearized variational equations
a%ﬂ"* iA(.‘l) o g+ g - 3Py

A dx. .
J=l‘j J

formawell-posed problem.

We first study the rigid wall problem. A normal-mode
analysis shows that four boundary conditions are required. Qnpe of
these conditions, ué = 0, follows immediately from the solid-wall
condition u = 0. The three remaining conditions may be chosen as

1! - L out, = - 2 _
a,uj, + (1 al)u o R N P (1 ae)LL 55 4lp = 0 and

6t - __a_gt = 3
a + (L-a )KH S 0 for some nonnegative ays 2y, and a5.

3 3 2
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If a; = ag = a3 = 1, these conditions correspond to a "nonslip",
perfectly conducting wall, while if 8y = 8, = a3 = 0, they represent
a "perfect slip", thermally insulated wall. The well-posedness of
the solid-wall *problem with these boundary conditions can be demonstrated
by the energy method.

For small values of u and KH’ we can expect boundary layers

1/2) at the solid wall. If some

of thickness C7(u1/2) and 5WKH
aq # 0, the value of the corresponding variable can be expected to
change by a finite amount within the boundary layer. In such cases,
we must use a numerical approximation that resolves the boundary
layer satisf;ctorily. If all a; = 0, the variables will only change
by an amount proportional to the boundary layer thickness, and the
difference between the solutions to the viscous and inviscid
equations is then always small for small u and KH'

pnysical boundary conditions. As before, we have some freedom in
choosing the most suitable mathematical boundary conditions. For the
viscous equations, it is not sufficient to 'prescribe a set of con-
ditions that makes the problem well-posed. Since we know that there

should be no boundary layers at the inflow and outflow boundaries,
we have to choose the mathematical boundary conditions accordingly.
This problem has been studied by Gustafsson and Sundstrom [11].

'They showed that for u,Kﬁ » 0, the conditions must yield a well-
posed set of boundary conditions for the inviscid equations, i.e.,

singular boundary layers should not occur.
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At an inflow boundary, the normal-mode analysis shows that

five boundary conditions should be prescribed while only four were
appropriate for the inviseid equations. Using the energy method, we can show
that the following set of boundary conditions gives a well-posed problem

with no essential boundary layer:

du'
1
ul'l-P'(a/pY) /2=0, u'. =u'_ = 6 = 0,

A similar set of conditions consistent with the other type of inviscid
1t 1 ! = 1 = M = At = i 1 v1 | 1
conditions (un Uiy = 4, 0) is less trivial to find. This

is because none of these inviscid conditions include the pressure

disturbance p'.

At an outflow boundary, the viscous equations require four

boundary conditions and the inviscid problem only one. If we prefer

to give uﬁ = 0 as the inviscid condition, we can now prescribe

) 9 o)
t = _ ' = = 4! = o =
U =0 p U TRy U Ty on o1 =0
. s . ' ' ( )1/2 _

The inviscid condition u.n - P a/pY = 0 can also be extended
to the viscous case by giving

t —— |( / )1/2 + ( / )1/2 _a_ilé —_ O _a_ | R— iu' = -—a—e' = O.

v, Py lo/pr wla/or) ™" 57 = 0w el 3 M S

In both these cases, we can use the energy method to prove well-
posedness, and the absence of boundary layers as |, KH-e 0

follows directly.
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All these boundary conditions may be expressed in terms of

a' and p' instead of ' by using the identity

pr = @ (g'_.*._R'_)
o pr

which is valid for small perturbations.

equations, the analysis is at least not simplified by including

viscous terms. Even if we could find a set of boundary conditions

that make the linearized variational equations with constant coefficients
well-posed, we would not know if this is, in some sense, true for

the complete equations.

For the anelastic equations (B2), viscous terms may easily

be included. To find the 'proper number of boundary conditions, we
may as before study only the linearized variational equations with
constant coefficients. The result of the analysis is that at all
boundaries, four boundary conditions should be prescribed. At an

inflow boundary this is the same number as required by the inviscid

equations. We may use the same conditions as before, u' =1u' = 4yt
n 11 12

for the linearized, constant coefficient equations.

At an outflow -boundary, the inviscid equations required one boundary

condition, uh = 0. This may now be supplemented by

O v - 9O 4 _x 9 a4
A T PR =0,
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For the solid-wall case, we may either choose the inflow or outflow
type of conditions. The choice depends on whether we have nonslip

or perfect slip and a perfectly conducting or a thermally insulated
wall. The well-posedness of these conditions is easily demonstrated.

For the shallow-water eguations (C), we have the same type

of behavior as with the Eulerian equations (A). At a solid wall,

the obvious condition ur'1 = 0 must now be supplemented by one more
t 3 an . ! - _Q_ 1t =

boundary condition, aquy + (1 al)u Sm 1 0. The effects caused

by choosing al = 1 and a, = 0 are similar to the results for

system (A).

At an inflow boundary, the boundary condition ul'1 - (p'/c =0,

uf = 0 is easily modified by adding the required third condition
M —a—% ur'1 = 0. If the inviscid conditions are uI'1 = 0, uJ'_ =0, we
cannot find a suitable viscous form by our energy method analysis.

At outflow boundaries, we need two conditions which can be

" chosen to be uw =0 and y B‘% u' = 0 or
o 8ur'1
urvl-_é_+}é.5_n=o and ué%u'=0,

depending on what type of condition is preferred for the inviscid
equations. Well-posedness is easily proven by the energy method,

and no artificial boundary layers are generated.
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Implications for numerical methods

The analysis of various initial-boundary value problems contained
in this paper was motivated by difficulties arising in computational
models of the problems we have discussed. It is appropriate to comment
on the implications these results have on these numerical models.

'The stability analysis and related error estimates for the
approximate methods are the discrete analogues of our well-posedness
analysis and estimates of the form (1.3). For a given well-posed problem
of the types discussed here, we can always find stable difference
approximationqhand numerical boundary conditions. Examples are given
in Gustafsson, Kreiss and Sundstrdm [10] and Elvius and Sundstrom [9].
Conversely, an approximation cannot have a norm which behaves reasonably
if it accurately approximates an ill-posed problem.

When, for a given problem, the number of boundary conditions 1is
overspecified, the difference approximation may well be stable. However,
the effective boundary conditions which influence the solution are,
in general, difficult to determine, especially for problems in several
space dimensions. They may well be a complicated function of the
conditions given and bear little resemblance to them.

An additional complication induced by overspecification is that the
underlying solution being approximated is not generally continuous. The
phenomena associated with approximations to discontinuous solutions have
been studied by several authors, a good discussion and summary of these

results can be found in section 10 of Thoméé[?l]. These results may
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be summarized as follows. If a non-dissipative approximation is used,
then high frequency waves emanate from the region of the discontinuity
and travel across the domain without losing appreciable amplitude.
They will usually travel with the highest fundamental wave speeds and
rapidly cover the domain with error. If scalar equations are being
approximated, then this region of error can be restricted to the vicinity
of the discontinuity by using dissipative approximations. However, these
results do not apply to systems of equations as we have here. The errors can
propagate away  from the discontinuity through other components of the
solution. Boundary value overspecification may be regarded as a
stationary source of such discontinuities.

In order to avoid the problems associated with the proper selection
of boundary conditions, the order and type of the differential equations
is often raised to obtain a problem that is easier to analyze and
approximate. The equations are usually modified by adding dissipative
terms so that the number of boundary conditions is appropriate. ynfortunately,
this idea seldom works. If a spurious boundary layer of appreciable size
results, the effects are not unlike those discussed above for discon-
tinuities and, unless the dissipative terms are very large, the error
introduced at the boundary will again propagate into the interior.

If the boundary conditions are underspecified there are no
a priori estimates for the differential equations. 1In order for an

approximation to be computable there must be a sufficient number of

’58



boundary conditions specified for the approximation. This cannot be
fewer than the number required for the differential equation.
Additional conditions are usually constructed by means of extrapo-
lations. For an underspecified problem the extrapolation of quantities
that should be prescribed results in an unstable or inconsistent

approximation of the wrong differential equation.
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