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ABSTRACT

Initial-boundary value problems for several systems of

partial differential equations from fluid dynamics are discussed.

Both rigid wall and open boundary problems are treated. Boundary

conditions are formulated and shown to yield well-posed problems

for the Eulerian equations for gas dynamics, the shallow-water

equations, and linearized constant coefficient versions of the

incompressible, anelastic equations. The "primitive" hydrostatic

meteorological equations are shown to be i1ll-posed with any

- specification of local, pointwise boundary conditions. Analysis

of simplified versions of this system illustrates the mechanism

responsible for 1ll-posedness.
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0. Introduction

There 1s now considerable interest in initial-boundary value

problems for various systems of partial differential equations arising

in fluid dynamics. This interest stems, primarily, from efforts to

create useful computational models of various processes for the purposes

of prediction (atmospheric processes, ocean circulation, etc.) 'and the

detailed study of various phenomena (convection, flow 1n wind tunnels,

lee waves, eddies, etc.). Such calculations are not new. As these

computational models have become more accurate difficulties with the

boundary conditions have become more evident. This has led first to the

examination of the various discretizations used and then back to the

differential equations whose approximate solutions are sought.

Such a backward sequence of events may seem surprising. Naturally,

the i1initial-boundary value problems for the differential equations should

. have been carefully examined first since we cannot expect our approximations

to be reasonable 1f they approximate a problem which does not have

reasonable solutions. The reason it has gone this way 1s clear.
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It 1s natural to first examine the evidence where it appears and, as usual,

the computations have been ahead of the analysis. The initial-boundary .

value problems for these systems of differential equations are not easy

to analyze; and, in fact, adequate tools for a rather complete analysis

have only recently become available stemming from the work of Kreiss [12,13]

The current interest has resulted in several works based on the

classical energy method (e.g., Elvius and Sundstrtm[9], Davies [5,6],

de Rivas [ 7] and Dutton [8] ), which follow the earlier work of Serrin

[17], Sundstrtm [19] and Campbell [1]. However, this method only works

for a limited class_of equations and boundary conditions. Some authors

have, unfortunately, made unallowable assumptions (over-specification of

boundary conditions, omission of terms, etc.) 1n futile attempts to make

their problems fit into this class. We will discuss some instances of

this in detail. This seems to be a real hazard in the use of the energy

method since the effects of such assumptions are often well-buried in :

intermediate estimates and consequently overlooked.

We begin with a general discussion of well-posedness followed by

a review of properties of the adiabatic, inviscid Fulzrian equations of

fluid dynamics (system A). We then study two approximations of the

Eulerian equations: the hydrostatic "primitive equations" of meteorology

(system Bl) and the incompressible, anelastic equations (system B2).

Finally, we discuss the shallow-water, or barotropic, equations (system C)

which can be considered as a further simplification of system Bl or B2.

It 1s interesting to consider these equations in this order so that the

effect of each successive approximation can be observed. The systems A
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and C are symmetrizable, hyperbolic systems but systemsBl and BZ are

not hyperbolic. These facts have profound influence on the well-posedness

of initial boundary-value problems for these systems.

We consider two types of boundary conditions which arise

naturally in many situations. Most of our analysis will deal with

certain quarter-space problems but we will always have the following

underlying situation. Let 5-2 CF be an open, connected region with

smooth boundary, 39, and § = QUAN. We will consider the system C

on the domain Dy = 0 X [0,T] and the systems A, Bl and B2 on the domain

D, = 0X IX [0,T] where I = [0,0) or I = [0,1]. The two types
of boundary conditions we consider on 00 are: (1) rigid wall boundaries

and (2) open boundaries. The rigid wall case corresponds to a physical

situation which requires the normal velocity to vanish at the boundary

and is the simpler of the two types. This situation 1s often encountered

in oceanography. Open boundaries occur 1n limited area forecasting,

wind tunnel flow, and studies of small scale or local phenomena in

meteorology and oceanography. Open boundaries do not arise from a

natural physical situation and a suitable form for the boundary con-

) ditions is not obvious. Boundary conditions which do not introduce

boundary layer phenomena are usually wanted in this case. That 1s, these

. boundary conditions should determine the interior flow as though, in fact,

the boundaries were not there at all. In each case we give necessary

conditions for the form of the boundary conditions in order that the

problems be well-posed. We will also give particular boundary conditions

which yield well-pgsed problems. We show that systems A, B2, and C can

be treated satisfactorily and that system Bl 1s 1ll-posed for local,

pointwise boundary conditions. For the linearized,constant coefficient
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versions of systems Bl and B2, well-posed boundary conditions are

given. It seems reasonable to conjecture that these boundary

conditions also yield a well-posed problem for system B2. However,

the corresponding boundary conditions for system Bl cannot be easily

implemented for the general problem. |

As already mentioned, many of the presently used boundary con-

ditions specify more data than is allowed. These specifications preclude

the existence of smooth solutions except in very special, unrealistic

situations where the exact solution 1s known on the boundary without error.

Errors must, however, be expected 1n the boundary data arising from errors

in measurement, the use of constant boundary values, or from computations

over larger regionsif some telescoping grid technique is used. We

will discuss the implications of such overspecifications.

Most of our analysis deals with inviscid systems of equations.

Viscous terms are added to these equations in many forecast integrations.

They are often motivated physically as representing "eddy diffusion”

of momentum and potential temperature. The effect of these terms on the

main part of the solution 1s usually small. The real motive for including

them 1s often non-physical. Since the equations are nonlinear,

“initiallongwave phenomena can produce shorter wave phenomena which cannot

be accurately represented by the approximation used. To prevent result-

ing aliasing errors and nonlinear instability the computational method

should be provided with a dissipative filter term, and the most primitive

form of filter 1s just such an "eddy diffusion" term.

In both cases, the viscous coefficients are so small that we

should expect the boundary conditions to be close to those valid for

the corresponding inviscid system. The viscous equations do, however,

require additional boundary conditions, and, as an effect, viscous
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boundary layers may occur at the boundaries. Such boundary layers may

sometimes be appropriate, as in the rigid wall situation. However,

at open boundaries, they are inappropriate. We shall therefore discuss

the formulation of boundary conditions when viscous terms are included

and show how these conditions can be chosen so that no singular boundary

layers result as the cofficients of the viscous terms tend to zero.

1. Well-Posedness

Our main goal 1s to establish the existence or non-existence of

certain a priori estimates, or energy inequalities, valid for the solutions

of the various 1nitial-boundary value problems under consideration here.

In this section we discuss the form of these estimates and some implica-

tions that follow from them.

For the purposes of this discussion let us write our problems

in the general form

Iy =F in OQ X 1 X [0,T] (the differential equation)

(1.1) 3 =x in O XI (the initial conditions)~ ~0
- t=0

I IT : Y CLuy =Su +g in oNX I [0,T] (the boundary conditions)

where L 1s a partial differential operator; 4, £ and uw, are vector
I II\t I

functions of dimension k, u = (u 4 )”; uw and g are of dimension £,

at is of dimensionsion k-£; and S is a real f£ X (k-{) matrix.

For a linear, first order hyperbolic equation in R>, 1 would take

] the form

e , 7 3, Blx,t)N (1.2) L = YS + bey (x,t) Sx + Bix,t).
© "3
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The boundary conditions express the zomponents ul of u in terms

of the components ult of u and the given function g. The matrix S

can be thought of as a generalized reflection operator. Changes of

variable may be necessary to bring certain desired boundary conditions

into the form given here but this does not introduce any essential

restriction. The partitioning yu = (al ght 1s based upon the

characteristic variables, or Riemann invariants, of the problem, that is, the

components of ut can be called "incoming" quantities and those of

ott can be called "outgoing" quantities. This partitioning of uy

will be discussed in detail for the problems we consider.

The estimateswe seek are of the form

(1.3) Ulalgx 1x 10,77 * dMeliyox 1x [0,7 © R(T)

< eR Nlgx 1x [0,77 * lelsax 1x [0,07 * Meolox 1

where the norms are Io norms or weighted 1? norms over the regions indicated

by their subscripts, K >» 0 is a constant independent of T, and & = 0

or 1. We will refer to (1.3) with » = 0 as the weak form of (1.3). The

differences in the properties of solutions y which satisfy only the

weak form (1.3) from those which satisfy (1.3) with © -— 1 are discussed

by Kreiss [13]. We will not belabor the distinction here and be satisfied

with the
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Definition 1.1. We will say that the problem (1.1) is well-posed if

the estimate (1.3) holds for all solutions u of (1.1) with 5 Wy

and g 1n a

Uniqueness and stability with respect to perturbations in the

data follow from the estimate (1.3). We refer to the works of Kreiss [12,

131, Majda and Osher [14] and Strikwerda [18] for detailed discussions

of the particular weighted I? norms and the general theory for systems

of hyperbolic and incompletely parabolic equations.

The equations we are considering are all quasi-linear.

However, we can obtain oura priori estimates a posteriori over intervals

[0,T] whemr-a smooth solution exists, i.e., we can consider coefficients

A (u(x,t),x,t) as functions of x,t if u(x,t) is known. Furthermore,

terations based upon the linearized variational form of the problems
can be used to establish existence for those t-intervals where the

iterations converge. We will not pursue this here, but rather assume

the existence of smooth solutions over the interval of consideration.

We must prescribe boundary conditions that do not preclude the

existence of such smooth solutions. This is the case if too many

conditions are specified. Too few conditions preclude uniqueness, of

course.

The results by Kreiss [12] and Strikwerda[18] also show that

the systems (A) and (¢) are stable to perturbations by lower order terms.

This implies that we need not consider the effects of terms such as

undifferentiated frictional terms and coriolis forces in our analysis.
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It 1s essentially due to this fact that the analysis of variable coefficient

problems can be reduced to that of corresponding constant coefficient

problems via the construction of appropriate pseudo-differential operators

(Kreiss [ 12], Taylor [20], Majda and Osher [14], Strikwerda [18]). This

stability property also allows us to reduce problems on our general

domain { with smooth boundaries to families of quarter-plane problems

by making local changes of coordinates such that, e.g., 30 is mapped

into Xy = 0 and §§ into xy > 0. Such mappings only introduce new

terms which are of lower order. More detail about this process can be

found in Majda and Osher [14 and Strikwerda [13].

Existing theoretical results cover problems with a smooth non-

characteristic boundary for classes of equations which include Aand

C and their modifications resulting from the inclusion of the usual eddy

'viscosity terms (Kreiss [12], Majda and Osher [14], Strikwerda [181]).

Extensions to problems in regions with corners and uniformly characteristic

boundaries have been studied by Majda and Osher [14]. However, the :

important case where the velocities change sign on the boundary and do

not vanish in a neighborhood of such a boundary point 1s not covered by

existing theory. This often occurs in the applications we consider,

e.g., the solid-wall type of boundary conditions;and when the flow direc-

tion reverses to change an inflow or outflow section of the boundary

to an outflow or inflow section, respectively. There must be character-

1stic points on any smooth boundary of a simple connected region with

open boundaries which has both inflow and outflow sections of the boundary.
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We cannot treat the influence of such points on 90 here but conjecture

that no important modifications are usually necessary for problems like

those we treat here.

We will use both the classical energy method and Kreiss' normal

mode analysis to establish the well-posedness of these problems. The

solid-wall boundary problems are all treated using the energy method

which provides us with estimates of the form (1.3) directly. Some

boundary conditions for the open boundary problems can be treated in

this way, but, in general, we must use normal mode analysis for these

problems.

2. The Eulerian Questions (System A).

The basic hydrodynamic and thermodyanmic laws governing the

motion of an adiabatic and inviscid fluid are given by the Eulerian

equations

4. +ovp + F=0
dt ~ Av

d

(2.1) ag& - veg =0

7 p+ prviy = 0

where u 1s the three-dimensional velocity vector, u = (a) 50,05),

& 1s the specific volume, and p the pressure of the fluid; y = o/c,
1s the lapse rate of the fluid, F represents zero-order and forcing

terms, e.g., coriolis and gravity forces, and



a

5
a _ 9 0. ¥ ., SO— == + yu'V= + u. .

t OX.dt = ot ot sy J 9%

In vector notation, the equations are

> Lv 3 _(2.3) sat 2A 5 gr El) =o
J=1 J

/ yt

O © |

9) uy oO OO ©O 0 u, 0 0 «
_ = 0 0 u 0) 0

-O 0 O uy 0 0 -a 0 U, 0

\pr 0 O O u, oO pr 0 u,

u 0 0 0 0
3

0 wu, 0 0 0
3

; = 0
Bs 0 0 uz a

0 0 - 0
a Uy

0 0 Pr 0 Uz

The matrices A, all have real eigenvalues Us 4. us us + ¢, and

u,-C, with distinct eigenvectors, c = (pra) 1/2 1s the sound
speed of the fluid. The matrices are not symmetric but it is easy to

find a symmetric, positive definite matrix
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l1 O00 O 0 0

OC 1 O . 0 0

- #2] -

R =q 1 O O0 1 0 0 =T Lp z

0 0 0 apr/a a®

2 ( 2 a1+a”) ==
O O O a —

where a 1s an arbitrary real, non-zero parameter such that the trans-

formed matrices TTA, are all symmetric. The system A is thus a
quasi-linear system of hyperbolic partial differential equations, see

e.g., Courant and Hilbert [4 ]. Since no closed-form expression for

the solution to this system 1s known, a rigorous evaluation of the

effects of different approximations, inhomogeneous terms,and boundary

conditions 1s, 1n general, impossible. For the problems we are con-

sidering the solutions are usually continuous and smooth. The matrices

A, and R are then also smooth. As long as the deviations g' (x,t)

from the exact solution q(x,t) are small, they should then approximately

satisfy the linearized variational equations

(2.4) SQ 4+ 2 A (aq) SQ gt + Cg + = 0
j=1

where q' = (u), u ; Us a's pt) t
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ou, ou, ou, Jr .
Ox, ox, Ox ox,

du, ou, ou, 3 ;
Ox , Ox, Oxy Ox,

du 30u du |

“7 = ob = 0
x, X, Xz Xz

du,

x x a]
dx dx dx CT. 0

1 2 5 J=1""7

3 du,

“EEE 0 rhe VS
1.9% 3 j=1

and the term F' can represent other low-order terms. This system 1is

a linear hyperbolic system in g', and the well-posedness can be studied

by either the classical energy method or by Kreiss' normal mode analysis.

In the energy method, the basic idea 1s to show that a suitable norm for

q' satisfies a growth equation of the form

; 0
(2.5) splla I< lla [I+ Fe |ot ~ ~

: ag 1/2
where I. |] 1s an 1nner-product norm lq I = (f, qQ' Mg dx, dx, dx, )

equivalent to the Euclidean I°-norm (fq Iq" |° ey xx, ) 1/2. We can
show the well-posedness of the pure initial-value or Cauchy problem

in the 1° -norm for the Eulerian equations by choosing M as the matrix

R given above. From

12
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(2.6) 4 (q' Rq')

b x 3 * *
= - 2 2 (q' RA q') + q' (QR + 2 RA ,-RC-C R) q'-q' RF'-F' Rq'

j=1 “7 J=1

we get

. = Rg' dx(2.7) x J 4 Ra 1 ax, dx,

= qr 2 + 3 1B (RA )-RC-C R) g'q’ RF'-F 'Rq']dx dx, dx= ot OX. J 172773

and since R, RA. etc., are bounded, slowly varying matrices, we can
easily establish a growth equation of type (2.5).

This 1nequality and energy norm 1s essentially equivalent to that

used by Serrin [17] in his uniqueness proof for compressible fluids.

He wanted the estimates to be valid for large deviations ¢', which

complicated the structure of the proof. However, at one step in his

_ calculations, (eq. 25), he had to make an assumption which essentially

meant that the deviations must be small. pyurthermore, in the analysis of the

limited-area case, an over-specified set of boundary conditions was

‘used on the inflow portion of the boundary, thereby invalidating this

part of the proof. The computational effects of such an overspecification

will be discussed later.

For the initial-boundary value problem, we can use the growth

equation (2.6) as before if and only 1f the boundary integral provides a

non-negative contribution, 1.e., 1f

15
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(2.8) J. qt ds > 0
da ~ He

where A = AN Ang, 0 1s the unit vector in the outward normal
direction, and 5 1s the unit vector in the x-direction. Note that if
the boundary conditions are such that this inequality 1s satisfied, then

well-posedness 1s proved, otherwise no conclusions can be made.

The integrand q'"RA_g' 1s a quadratic form in the five variables
uy Us Uz; a's, and p'. However, the number of boundary conditions 1is

only equal to the number of inward characteristics, that 1s, the number

of negative eigenvalues of A > see Kreiss [12]. These boundary conditions
must be such that the related combinations of g' (the Riemann invarlants)

are given 1n terms of known quantities and combinations corresponding to

outward characteristics.

The initial-boundary value problems for the Eulerian equations

arise from two different situations which must be studied separately:

1. A solid-wall boundary. Here, the physical boundary condition is

that the normal velocity v, = =, un” g:2 should vanish at the
_ boundary. This condition 1s consistent with the number of inward

characteristics (one). Since it also gives a RA a = 0 identically,
the well-posedness of the initial-boundary value problem follows

directly.

2. An "open boundary," or a boundary located in the interior of a body

of fluid. In this case the normal velocity is non-zero on the

boundary, except at certain points. For supersonic fluids, all

quantities Uy; uy us xy, and Pp should be specified at inflow

points, giving a" 'RA Q’ = 0. At outflow points, no boundary
1h
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conditions should be prescribed and gq! RA Q 1s always > 0.

For subsonic fluids, A has four negative eigenvalues with distinct

eigenvectors at inflow points so that four quantities have to be

specified. At outflow points, the number of negative eigenvalues

and quantities to be prescribed 1s only one. In both cases no

obvious physical boundary conditions are known. The characteristic

combinations of gq' may be found from the eigenvectors of A but

1t 1s easier to proceed as follows.

The quadratic form

"RA !q nd

-1. 2 2 2 22 2y 2 2 on?
= ua {ul +ujjtuli ta of or/o+ (+a )p'“o/pr+ 2a°a'p' } + 2u'p

(uy and u, are the velocity components 1n two orthogonal tangential
directions) can be rearranged as

=u a tu'l+ u' ° 4 aco! (or fo) 12 + p' (aor) M212n 11 12 }

1 “1. 1/2 > 1 -1, 1/22+ = (ec +u) qa (u + p' (o/pr ) - = (c-u,) a (u*-p! (fpr) )2 n n 2 n

As before, c¢ = (ora) +2 1s the basic sound speed.

At an inflow (ut of 0) 2 bobuhdery characteristic

combinations corresponding to negative eigenvalues of A are thus
1/2 1

ups uj, w= p' (a/er) / , and a’ (pr/q) /2, p' (apr) = c6'/8, where
6 1s the "potentialtemperature" 6 = 027 fz op T The four boundary
conditions should give relations of the form

15



1/2f — rt + !uy a, (a! P (o/pr) ) ’
1/2! — ! + !ul, =a, (u +p" o/pr)™e)

yu' - p' (ofr) M2 = a_(u' + p' (o/pr) /2),
n 3 n.

1/2 1/2 1/2

a’ (pr/a) / + p' (fpr) / = a (u! + p' (a/pr) / )

for deviations from the basic solution.

Before studying specific examples of boundary conditions giving

relations of this type, 1t should be noted that not all such conditions

give well-posed problems. With the classical energy method, we can

actually only prove well-posedness when

2 2 2 2 1 2 1
u {ay ta, + aa) + 5 (c - u Jas <5 (ctu)

since only then is q' RA g' > 0 at these inflow points. In this expres-
sion n 1s the arbitrary, real and positive parameter of the matrix R.

If we want to investigate the well-posedness for other values of

ays 8p) 8 5 a)» we have to use the normal mode analysis of Kreiss,

see Oliger and Sundstrom [15].

The classical energy method certainly works 1f the boundary

conditions are such that a, =a, = a = 8 = 0. We can obtain these
relations by prescribing (at inflow points) the two tangential velocity

components, the potential temperature 6, and the combination

2 1/2
uw, - op (era).

The inequality 1s not satisfied if we have a) = 8, = 8 = 0

and az = + 1, that 1s, if we try to give the tangential velocity

16
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components, the potential temperature, and either the normal velocity

or the pressure at these inflow points. A third possibility for which

the energy method does not work 1is 8) = 8, = 0, 2 = -1, and 8) = 1,
that 1s, 1f we give all three velocity components and the specific

volume a. As shown in Oliger and Sundstrom [15] using the normal

mode analysis technique, this last combination actually gives a well-posed

problem.

At the outflow (ut of t0), boondatyy One quantity

should be prescribed. It should give a relation of the form

1/2

ul - p' (o/pr) /
1/2 1/2 1/2— | + t | s , t{. 1byuj, + boul, + by (ut +p (for) ™e) + by, (a (pr/a) +p! (fpr) 7)

for the linearized variational equations. It is simplest

to prescribe the normal velocity so that by = by = b), = 0, bo = -1.
The well-posedness of this boundary condition follows immediately from

H*

the positivity of q' RA Q'. We may instead prescribe the pressure bp,

corresponding to b, = =p = by, = 0, by = 1, or actually any combination

of u and p such that (uw! -p (for) M2)? leu ) < (u! +p (opr ) 1/2 2 (ctu) .

17
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4. Basic Approximate Forms of the Eulerian Equations (Systems Bl and Bo)

Although the Eulerian equations are the fundamental system of

equations for most fluid flow problems, they are often used in modified

approximate forms. In fact, they have almost never been used in the

complete form given 1n the last section for geophysical calculations.

The reason for this 1s simply a matter of economics and time, which

are not unrelated. To compute an accurate approximate solution of the

Eulerian equations for a relatively small problem requires quite a lot

of computer time. These equations are an extremely "stiff" system of

hyperbolic equations with a wide range of eilgenfrequeneies and character-

1stic phase velocities. The ratios between the largest and smallest

| eigenvalues of the coefficient matrices Ay in (2.3) are often as
large as 10° or 10% The high-frequency eigensolutions (sound-waves)

are often absent in the initial data and the solution,but thelr presence

in the set of elgensolutions imposes a severe upper limit for the time-

step 1n explicit numerical integration procedures. Implicit techniques

that do not suffer from this difficulty lead to data structures which

are difficult to manage and systems of nonlinear equations that are

expensive to solve.

A second special aspect of many geophysical problems 1s the

strong balance between the gravitational and vertical pressure gradient

forces which 1s responsible for the basic stratification of the

atmosphere and oceans. The vertical acceleration terms are usually much

less than 107 times either of these terms. Even if we first subtract

18
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the time-independent part of the pressure field, we must still know

the specific volume and pressure extremely accurately in order to compute

the time derivative of the vertical velocity with even moderate accuracy.

Similar, but less extreme, balances exist in the other equations. In

the two remaining equations of motion there 1s a near balance between

the horizontal pressure gradient and coriolis terms, and in the continuity

equation there 1s a near balance of the components of divergence. These

relations are often summarized in the statement that the atmosphere 1is,

to a large extent, not only quasi-hydrostatic but also quasi-geostrophic

and quasi-nondivergent.

To obtain a reasonable computational problem we must either:

(1) find a more efficient numerical integration procedure, or (2)

modify the equations 1n such a way that the high-frequency solutions

are eliminated. The first alternative leads to integration methods of

implicit type. The nonlinearity of the resulting implicit system and

the difficulty of incorporating the near balance of the equations have

not been successfully dealt with so far. A strict version of the second

. alternative 1s actually even more difficult to construct, 1f we try to

eliminate only the solution of sound-wave type and obtain a system which 1is

still hyperbolic. The main difficulty stems from the fact that the eigen-

vectors corresponding to the large eigenvalues are different for the

different A's. The nonlinearity of the system and the effects of
variable coefficients are further complications.

Various approximate versions of the Eulerian equations have

been derived by intuition, scale analysis, energy conservation

19
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considerations, and experience. The near balance of the equations simplifies

this approach considerably. We shall study two such approximate sets of

equations: the hydrostatic equations and the incompressible anelastic system

of equations. Unfortunately,in both cases,the hyperbolic character of

the system 1s lost. )

The hydrostatic system is derived from the Eulerian equations

by neglecting the vertical acceleration terms in the third equation of

motion. One so obtains the "hydrostatic equation"

(3.1) a » +g =0.

Here, and from now on, we use the notation z for Xz as a distinguished
vertical coordinate and w for Us as the vertical velocity. This
approximation 1s extremely accurate for the large-scale motion of the

atmosphere. The wide-spread use of the hydrostatic approximation

actually led meteorologists to calling the resulting system "the

primitive equations of motion." This was motivated bya comparison

with the still more approximate "quasi-geostrophic" system, but the term

"primitive" is certainly misleading.

The use of the hydrostatic approximation has several important

consequences. First, we no longer have a prognostic equation for the

vertical velocity. Second, to maintain the hydrostatic equilibrium,,

the time-changes of og and p must be coordinated in such a way that

a (Op/dz) is constant. This means that the pressure at any point in

the model atmosphere can be determined from the pressure at gn reference
level and the mass of the separating layer, the integral i a Laz.

20
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With this approximation, we obtain the hydrostatic system,

system Bl,

3
— . F. =(So + Vg + a Vp + Fy= 0

XP, , -
ay; e=0

(3.2)

(LS + uwVa - avVeu = 0dt = | ~

(& + gV)p + prey = 0
dt ~ ~

_ RY _ t B | t t
where WY. (uy u,) , U = (sw) s ge = (F.5F,) » and Va = (8/ ax, 5 3/ax,,) .
This 1s a much more complicated system than it may seem at first glance.

The equations (3.2) are not a hyperbolic system. To show this we form

the variational equations

(+ pV) + ov.p' tg Vg, + a'Vp rE = 03t TRV H Ss HY MM

®p' _ Zz _8 1| 04 Sz. x ” 0

(3.3) |

5 twVp' + prveut + up + prvi = 0

The corresponding constant coefficient problem has periodic eigensolutions

rt _ A, .
uy uy exp {i (vt + dx + DX, + @,2)}, etc., for large Oy and ®,
if and only if
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(3.4) det D ~ 0

where

iv 0 <= 10, + = i* dz “1 a] g 2, 15
~ 3 oF

0 iv - TPE i

D= dz Up HT Px * 3
2 : 2 2 2 2

-oiw, (g + c“1 ~odw_{(g+ c iw xt - iV

aiw, (g +c iw) od - (8 c”1i 5) ge, + col 0) (1+r)i, 1

pra, + op. jo) fos ap. pra, + op a iv(g+ Zim )
1 1 Xo 2 2 & 5

where V = V + HER + WO This determinant 1s a cubic polynomial 1in
the modified eigenfrequency v. It 1s easy to see that the roots Vos
J = 1,2,5, of (3.4) have the asymptotic behavior

Vv, = 6 (1)
and

w w

> 1 2 :

vs (2) + o( 2) y J = 2,5,3 5 |

as ® — ©, Thus, the system admits solutions with arbitrarily

large signal speeds and 1s not hyperbolic. We cannot use the general

methods and results for hyperbolic systems to find a well-posed set of

boundary conditions.

Davies [5] tried to avoid this unfortunate effect of the hydro-

static approximation using a direct energy method approach similar to

the one used in Section 2 for the Eulerian equations. The absence of

the terms coming from dw/dt changes (2.6) to
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D(a ra

Fo (grag) - 2 (ortRg) + a (Ba 2 (me a))g:= ae _— . - ——— —  ecrm— IaE

soy 3x Tt Ta MSU ng Teg Ba

where g\ — (wl ,ul,0,0",v')" and the matrices A, and C are obtained
by deleting the terms arising from w(dw/dz) in the original third

equation from the matrices Bs and C, respectively. Integrating
(3.5) over the region 0 we obtain

1 93 A
G.6) =< gl

2 J * J *
< K t + ! BF! - —— ) 1 + t f

< Kfg" I= + lg" II. IIE" | | 5 (gf RA; >; (9B,3)

+ S (q' "RA g") dx.dx dzdz 3 1727

Davies tried to find a set of boundary conditions such that the contri-

bution from the boundary integral 1s non-positive, proceeding in the same

way as we did with the Eulerian system A. He first conjectured that the

number of boundary conditions could be chosen equal to the number which

are required for the Eulerian equations. However, this conjecture is

false. If this numberofboundary conditions is used the solution cannot

be expected to satisfy the hydrostatic relation at the boundary. The
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problem 1s overspecified and the existence of continuous solutions 1is

precluded. There is a further problem with this approach. The energy

method 1s based upon norm equivalences and the norms of g' ang a;
are not equivalent. To obtain an adequate energy estimate, a bound for

*, 93 ~ nk

the term q' (55 (RA;) - RC - C R)q' of (3.5) in terms of la 4
instead of |[g'|| is necessary, but this is not possible. Consequently,

we cannot draw any conclusions about the well-posedness of these equations

from the reduced energy equation (3.6) for either the initial boundary

value problem or the Cauchy problem.

Since the energy method does not work, we now turn to the normal

mode analysis technique.

Normal mode analysis of the general equations here 1s rather complicated.

If the motion 1s essentially horizontal we may instead consider linear-

ization about an underlying basic state a(z),p(z) which satisfies

ap, + g=0. . Due to this simplification, we cannot establish sufficient

conditions for well-posedness 1n our succeeding analysis. However, we

will at least be able to establish some necessary conditions and we can

also expect the variational equations to reflect the main properties

of the system. We use the notation o = alz)+ a', p + pz)+ p' and

write-the horizontal velocities as Lr TX + JL where V = (v),v,)"
1s constant. If we neglect all of the nonlinear terms in primed quantities,

we obtain the approximate system
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2

J=1 0%

-®' og
* Sz 8 =

a

(3.7) 5
9 TD) v. 2g - oven + aw = 0
ot 51 9 OX 5 ~ z

2 1

- <p + vy - p' + prVeu' - sual = 0 .
J=1 J 0

We can then transform (3.7) to obtain the following equations in

Uy; us and ap!

2

RRA aEAC DIA:
J=1 J

2

d > 3 man! 1 =
(52 , 0 v5 5 Lop ) + Vy u'H= 0

where

Gp) =- 2S (F- 2. 2) --% 2 @ 9 (Gp)& pra, =8 oz g Jz O Oz

and 0 = -g 15? < In 6 is the'static stability'of the basic state.
We will always assume ¢ > 0, i.e., we are only studying perturbations

of a stable stratification. The boundary condition at z = 0 is
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w' = 0 which implies pra’ + ap' = 0. As an upper boundary condition

we have D —-+ 0 as z -» ©. Qur condition at z = 0 can also be

9 (op?) = go t/a : 1written as 32 op = gop’ /a so, for arbitrary q';

6.0] 0.0] -—

fat ng!) dz = - J «a :(& £ Got) oe0 0 g ©

3 Ta dg Sd /- 1 -
= J To Se Sz (op Jaz + (= q'op' ) 0

O g@ ga

which shows that the operator IL is self-adjoint and half-bounded.

Therefore, the system (3.8) is separable. If we expand the variables

u 1 and op’ in the eigenfunctions F(z) of LIL, we then obtain,
for each Vv, )

,
0 oy. ~ |

(& + 2 wv, 5) + V_(op') + Fo = 0ot j=1 J x5 fv) H (v) (v)

(3.9)

+ 5+ + v. »_. A (op!) + vo.ou! .> GY V =at 3=1 J Ox 4 (v) H RH)

where the Ay are the eigenvalues of IL, i.e.,

(3.10) LF, (z) = AF (2) .
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Since 0 > 0, this eigenvalue problem is of Sturm-Liouville type

and the eigenvalues Ay are distinct, positive, real numbers. For

each value of vthe system (3.9) is hyperbolic and has the same

form as the shallow-water equations to be discussed later. The

characteristic velocities are v., wa C and v. - C where
J J Vv J \%

Cy = a2 Under standard atmospheric conditions Cy = 322 m/s.,
c, =~ 3h m/s., c, = 11 m/s. and c, — 0 as Vo»©» , see Wiin-Nielsen
[22). From this it follows that, for small v,two of the character-

istic velocities will be positive 1if vs > 0 and one will be positive

if vs <0. When V 1s so large that e, <lv.l, then all three
characteristic velocities are positive if vy > 0 and negative

if v, < 0.

It follows that the appropriate number of boundary conditions

for our simplified problems must be different for these two classes

of eigensolutions. For those components with Cy < lv I, all variables

should be prescribed if vo < 0 (inflow) and no variables should be prescribed

if Va. 2 0 (outflow). For the other components, the appropriate number of

boundary conditions 1s two if v, < 0 and one 1if Vv, > 0. Possible

J forms for these boundary com itions are examined later for the

equivalent shallow-water equations. The simplest choice of inflow

conditions 1s probably to give both velocity components,

Hy for all vand oP) for those values of vwith
C,, < Iv I. At outflow, vy, > 0, the normal velocity component can be

given for those Vv with Cy > vl. In the special case of asolid-
wall boundary there 1s only one class of eigensolutions, since Cy > |v |

for all v. The condition u (z) = 0 yields ul = 0 for all v
(v)
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which, as shown later, yields a well--posed problem for each Vand,

consequently, for the entire system, We reiterate that these con-

clusions are only valid for our simplified version of the variational

equations and that we have no proof of their validity for the complete

system. However, the conclusion that the boundary conditions must

be separated in terms of the vertical eigenfunctions 1s valid for

the complete system since that system admits particular solutions of

the type that we have discussed. Our inability to provide sufficient

conditions for the complete system 1s essentially due to the fact

that we cannot show that all solutions of the complete equations

can be expressed in terms of the eigenfunctions of(3.12). It follows

from this discussion that local, pointwise boundary conditions cannot

yield a well-posed problem for the open boundary problem for the

hydrostatic equations; well-posed problems can only be obtained

(1) if the boundary conditions are formulated in terms of local

eigenfunction expansions or (2) nonlocal boundary operators are used.

We know of no successful formulation of the second type.

A convenient byproduct of the hydrostatic approximation 1s

. the possibility of using variables other than z as the vertical

coordinate (e.g., pressure, p, potential temperature, ©, etc. ). If

pressure 1s used as the vertical coordinate the equations (3.2) become

i Ry ¥ Vp? rE=0

(3.11)

TB * 5p - °
ap
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where

d J 3

at Cot mp FO

d

w= £, © =gz ,

and Vo denotes the horizontal gradient/divergence operator on
constant pressure surfaces.

The p-system has the advantage that the region of integration

has a limited vertical extent, 0 <p < Py» where P 1s the surface

pressure, instead of 0 < z <® for the original system. The

meteorological data are also collected and analyzed as

functions of pressure which simplifies the construction of initial data

fields on constant pressure surfaces. One disadvantage is that the lower

boundary condition, w = 0 at z = 0, becomes do/dt = 0 at the unknown

surface p = p (x,t) where ¢ = 0. The usual way to overcome this
difficulty 1s to prescribe

dq J o,

) (3.12) dt ( dt | RH Vp 3° 0

at a constant pressure surface p = Pps usually chosen as 1000mb,

instead of at p = Dg The upper boundary condition simply becomes

®»=0 at 7p = 0.

It 1s easy to show that the transformation to the p-system

does not change the nonhyperbolic character of the equations, and

agaln an upper bound cannot be found for the rate of growth of
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disturbances on the solution 1n any conventional energy norm. AS

before, we have to limit the detailed study to an approximate system

of variational equations. These are given by

2

(+ Lv. 9.) t+ vt +p =0
ot jo OX, Rey p

> | £ > Xi, &
(== + bv. <—-)gt FOr (S= + =) = 0

(3.13) ot 521 9 OX dp pr

au!
Vou! + = = 0
p ~ Jp

—- 2 Q' Sh or! - 0

. where q = alp). We are only considering the mean translatory part

of the advection terms. The system (3.13) will retain the essential

features of the complete variational equations 1f the solution 1s close

to steady-state and the motion 1s quasi-horizontal.

If we eliminate ®' and ¢', the system (3.13) can be

written in terms of Ry; and @' as follows:

2
9 := + nt + PB! =(St * z V3 Kx ) Vp? ~ 0

J=1 J

(3.14)

(SQ s Vv Op + 7 ou = 0
dt sop Ox 5 p ~H
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where

d (~~1 39°
Io! = - =< (07+ <x
v op op

with

J = a (2 + Q .
dp pv

To show that (3.14) 1s also a separable system we must show that the

upper and lower boundary conditions are consistent. At p = 0 we

have ®@' = 0 so ot (39 /3p) = 0. At p = Py the condition (3.12)
may be transformed,using the equation (3.13) for a', to obtain

(3.15) Rt Dov rE3.15 <— + v, =) (p' - =) = 0t : ox. of3 j=1 J 9

so that

-1 09! + =-1o ' = =

if this condition is satisfied initially. Then

P p0 0
-1 og' o9' --1

I qQ'Letdp = [ © So = dp + (@ q'o') _0 0 p P=P(

which shows that L is self-adjoint and half-bounded. We can now

expand By and ¢®' in the eigenfunctions of L. The simplified

variational equations then become a family of hyperbolic systems,
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d(S + Lv, ==)u! + Vp! + Fy.y = 0v)ot j=1 J OX 5 Hy) P (v) (

(3.16) }

(S + 5 Vv Ok o! + v ua! = 0
3 Ly J oox. viv) Tp=(v)

J=1 J

where the K, are the eigenvalues of L, 1l.e.,

~ n) = Kk(3.17) 1a, (p) = x G, (p)

with corresponding eigenfunctions G, (p).
Again, the horizontal boundary conditions must be formulated

differently as the normal component of velocity 1s larger or smaller

than cl/2 All of the conclusions made for the z-coordinate system
apply 1n this case.

We now consider the second approximation of the Eulerian

equations of motion, the incompressible, anelastic system (B2).

Approximations of this type have been used in many areas of theoretical

and applied fluid mechanics. In their most simple form, the equations

for an incompressible fluid are

Le Vp = 0
(5.18) dt ~ “0

Vou = 0

where ay is a constant. This system 1s usually derived from basic

physical considerations,but it can also be obtained from the complete
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Eulerian equations by letting o approach a limiting constant value, Oty

The more general anelastic approximation, often used in studies of convective

systems in the atmosphere, 1s based upon the following assumptions:

1) the potential temperature of the fluid 1s nearly constant (we

denote this constant value by 6 in our following discussion);

2) the pressure deviates only slightly froma hydrostatic stratifi-

cation; and 3) the typical horizontal and vertical length scales

are similar. If the characteristic length scale 1s much smaller than

the "scale height," ce, we obtain the system

d
a + 6 =
3% "Ve TO

d ll 8= Bb == _ og = =

RE I

(3.19) ax.
dt

vu = 0

- where 6 is the deviation of the potential temperature from a basic

state 8, Tm = c, (p/p) HT - 6/0) 17), p denotes the isentropic
. pressure profile corresponding to 8, and

d J J
= VV + ——
at ot Mm Vz

We note that, expect for the equation for 9, this system 1s essentially
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the same as (3.18). A third system of the same basic form 1s the

Boussinesqg system which 1s often used in oceanography.

The linearized variational equations corresponding to the system

(3.19) are, deleting the small zero-order terms,

4d vr. T' =
at BT VE 0

d \ am! at. +8 —=— - g — =

(5.20) d-t" oz & 5 0

- 3 5

dt 2 0

veu! = 0 .

The existenceofnontrivial periodic eigensolutions of the form

expl i (vt + Hx ®X+ w,z)] 1s equivalent to the determinant
condition

iy 0 I Bim, 0
} 0 iv I Aiw 0

2

(3.21) det 0 0 iv Bin, -g/8 = 0
8 a 6 ~

= a Lv
1

1 Tw 1.00io, Iw, i 3 0 0

where

~ &
V = V foul. TWh,j=1 J Jd
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Equation (3.21) is third order in vand of fifth order in the ®..

If the lower order terms are neglected, then the resulting equation has

Vv = Zu, - wb as a triple root. Thus, the anelastic equations
are not a hyperbolic system, but their eigensolutions have, to highest

order, time dependent behavior which 1s like that of hyperbolic systems.
We cannot obtain sufficient conditions for well-posedness of

the initial boundary value problem for time-singular systems like

(3.20) using the normal node analysis technique. The theoretical

justification is lacking at present. However, rigorous results on

the necessary form of the boundary conditions can be obtained since

it 1s clear that pathological solutions can be constructed via the

normal node technique following Agmon's construction [12].

Analysis of the eigensolutions of (3.20) shows that four

boundary conditions must be given at inflow parts of the boundary and

that one condition must be given at outflow parts of the boundary.

| Furthermore, pathological behavior like that exhibited by solutions

of the approximate system Bl 1s not present. It can be shown using

the energy method that the physical boundary condition a = 0

for a rigid_wall boundary yields a well-posed problem with an energy

norm of type (uw! + wh wf + ,2012)1/2
For the constant coefficient problems (3.20), 1° estimates

for the well-posedness can be obtained directly using Fourier-Laplace

transform techniques for the initial boundary value problem on a quarter-space;
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t > 0 X32 0 ®<X,, z<% It follows that these problems are

well-posed if y and € are given at inflow and if u is given

at outflow. However, as mentioned above, the reduction of the general

problem to quarter-space problems and the variable coefficient

problems to constant coefficient problems via freezing arguments

1s not covered by existing theory

4. The Barotropic or "Shallow-Water" Equations (System (C).

A third approximation to the Eulerian equations, the shallow-

water equations which are our system C, may be written

Lge Eoat 2m EY TRC

(4.1)

Lote =oat P77 Pp yt

h

where a 3 . oo
dt = ot RAH’

and & and cp are functions of time, t, and the horizontal space

coordinates, xq and X50 F represents any zero order or forcing

terms such as, e.g., the coriolis forces. The variable ¢, the geopotential,

1s always positive. In most geophysical problem, the flow is subsonic

so that ¢ > of + ul, but the opposite relation holds for both
supersonic flow and for some of the subsystems derived from the

hydrostatic equations (B1) by separation of variables.
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At least three different names exist for system C. In

meteorological applications it is usually called "the primitive

barotropic equations." In oceanography the most common name is

"the shallow-water equations." This system accurately describes wave

motion on the surface of a homogeneous fluid when the horizontal

wave length 1s much longer than both the vertical scale of motion

and the depth of the fluid. The vector form of system C is

2
J J

D == q + <- _(2) St 2 3 As(g) x.2 E=0C
J=1 J

; t
where ¢ = (uw, u,,9) ’

uy 0 1 u, 0 0
| | A, = =1 0 uy 0 , and A, 0 u, 1

: 0 uy oO 9 tb,

1/e

The eigenvalues of A. are Ue, MH. + c and u. - Cc with ¢c = OE .
- They are all real and have distinct eigenvectors. The symmetric and

positive definite transformation matrix

/o 0 0
*=1

R=f{ 0 ¢ 0 } =T1T

0 O 1,

simultaneously symmetrizes A, and A. Thus, the system C
has retained (or regained) the basic property of the original Eulerian

equations (system A) of being a quasi-linear system of hyperbolic

equations.
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As before, we are only discussing problems with smooth

solutions. The basic properties of the system may then be found from

the corresponding linearized variational equations

> |, c :
(1.3) = a2 Ale) soar og rE =

where gq 1s a solution of (4.2), and the small disturbance q' (x,%,,t)

may be generated by the inhomogeneous term F' or be caused by an

initial disturbance q' (x,,%,,0), The matrix C has the form

5 - fF + i! 0"1 ox,

1 2

Oxy ox, ox, 3x,

The matrix C, the coefficient matrices A, (g) and 4, (g), and the
. transformation matrix R(g) are slowly varying 1n space and time.

It 1s easy to show the well-posedness of the Cauchy problem in the

I% nom by the classical energy method. This 'was done by Elvius

and Sundstrdm [9] and Davies [5]. They also showed the well-posedness

of the initial-boundary value problem for some possible sets of

boundary conditions using the energy method. However, as pointed out

by de Rivas [7 ], Davies overspecified the boundary conditions in his

paper. For this reason our discussion follows that of Elvius and

Sunds trim.

38



ol

The growth equation for the energy norm of g' is
3  * t .

Bb) 5p le Rq' dx, dx,
2

Cg SR 9 $e

- [2 5; = Sx (RA) - RC - CRJg' dx; ax,

* * *

- q' RE' + I' Rq' dx, dx, - J q" RA 3' ds
Q - af

Since

BR, Sd *
StF L 5 RA.) - RC - CR

j=l 73

OX OX, Ox

OX, Oxy OX,

x, ox,

we can rewrite (b.4) as

) *

4.5) oe ! q' Rq' dx, dx,
du du u du

= [ - iG + 2) (p(t? + wu?) + 7) + (a = 2)?a Oxy OX, 1 2 \Ox, 3x, 1 72
du ou

1 2 |

fe c 22) uu) } dx. dxOL, OX 172 1 2

[ o'RF" + F' Rq' dx, d [a "RA g' 4- q' 1 IN Rq' a X_ = q' q' gs
a 1 2 30 n
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The first integral 1s bounded by

2 2-1/2 |

du, qu, | ou, du, ou, SER Co 2), 02)
xx) \%x Cs Ts) en uy) etan dg

0

if we can neglect the contribution from the inhomogeneous term and

%*

1f the boundary conditions ensure that the integral d:.q'RA q'ds > 0 .
+

The growth rate of [ ¢' Rq' dx, dx, is then bounded by the maximum
§

value of the quantity

2 2N\ 1/2

Jy 2) . uy N =) ) _ ony _ 53,ox, Ox, dx, OX ax, OX,

the difference between the deformation and divergence of the basic flow.

Results of this type may also be found for finite disturbances (which

was not possible for the Eulerian equations) Without any linearization,

the complete variational equations are

d last) greg FooEEE ETE RP So
J=1 J

Using the complete transformation matrix R(q + g'),we get
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J [ oFnf 1 R !

2 2

“5c or) (w® + uw) # orf axjax,

= = ! (6 72) + o') (w” + at?) + 0°]
du ou

1 2 2 2

+ (p + o') (3-52) (ur ur)| oxy Ox, I~
ou du |
1, 2) rg

~ * (5 ’ =) =) dx, dx,
ou! ou!

0" 2) *( 1 A+ 291 wt 22 +f + — +t — |] dx, dxN € OX 2 dx, OX Ox, 12
Eo

- [ g""RF* + F*'Rq’ ax dx, - [ Q' RA g'ds .

Since

f ou! ou

f oo! ( u! 09’ + uw + (52 + =) dx dx0 1 Ox 2 Ox, Ox, ox, 172

= [2 (po?) + 5 (wer?) axax,0 9% 9

= 6 ule? ds ’
of

we agaln obtain a growth estimate
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(4.6) OS q'" Rq' dx dy
REET ~

_—y

NE Ne
< max (== x tx ) ETN1 2 2 1 1 2

X I x Ra!q q dx, dx,
9;

* 2

if F' = 0 and the boundary integral [ g' RA qo - uw/¢' ds > 0.
JQ

Note that we now have_a hound for the growth rate which is valid for

disturbances of arbitrary size _and_only involves the_deformation and

divergence of the undisturbed flow. The solutions g and g + ¢'

may thus be any pair of solutions to the shallow-water equations.
_ * 2 2 2

1 [ t t — + t 4 + t + f

For finite ¢', the integral o q' Rg dx, dx, lo O ) (un u, ) + © dx, dx,
1s no longer the square of an 12 equivalent norm for q', but as long

as © + @' (the thickness of the fluid layer) is strictly positive we

can apply the corresponding Liapunov theorems. Usually, | | 1s

so much smaller than | o] that the difference between
* 1 *

(f q' R(g + q' )q" dx, dx, ) /2 and the energy norm ( f q' R(g)q' ax ax, V2
i 0

1s negligible.

All these estimates are valid 1f and only 1f the contribution

from-the boundary 1s strictly nonpositive. For the linearized

>

variational equations we had to require [ g' RA ¢'ds > 0, 1l.e.,
SI)

2 2 2

[ v, (out + u; ) + 0) + 2pu_¢'ds
A

2 Q 2 0 : 2— ! I ' t I -— ' - ds > 0[ fuoul” + 3 (c + u ) (a) + ¢'/c) : (c uJ (ug ®'/c)"} ds >
of)
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For the complete variational equations, the integral 1s instead

2 2 2

$ (uv + u [ (op + 0") (u) + ult) + oc] + (20 + 0! Jul! ds

= [ ((u +u)e+ ou’
an» +

!

Epo)(p+ 20 )/ctu +u)+o/c))
2 2 n n n

1 t 1 t - - 1! 1 _ t/o)e ds- > (0 + ot) ((p + 5 o')/c a, ut) (uw! ®'/c))

Co (11/2where now c~= (ep +o) . We again study the two different types

of boundary conditions separately.

1,  Solid-wall boundaries. Since the normal velocity vanishes at

>

the wall we have i q' RA q'ds= 0, and the matrix a has only
3% "

one negative eigenvalue at the boundary. The well-posedness

of the problem then follows directly (also without linearization)

for the boundary condition W, = 0.

2. Open boundaries. From the number of negative eigenvalues of A

it follows that at an inflow boundary (w <0), two boundary conditions

should be given in the subsonic region where On I<_cC

(Ju_ + u! | < (op + > 9')/e), and three conditions in the supersonic
region. At an outflow boundary, one boundary condition is required

1f the flow 1s subsonic, and no condition should be given if the

flow 1s supersonic.
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If the flow 1s supersonic, the boundary conditions should be

such that, for the variational equations, the values of all three of

the variables uy; u and @' are prescribed at inflow points.

For subsonic flow, the inflow boundary conditions should

determine the value of two quantities of type u - a, (u! + o/c)
I t - 1 1 : t t _ t

and uw © /c a, (0) + © /c) since wu, and Bly 0) /c are the
characteristic combinations corresponding to the negative eigenvalues

of A. Not all such combinations give well-posed problems, but if
2

c+u. + 2u 3- - (c -u a > 0, the limited growth rate for then n n° 2 —

energy norm of q' gives a direct proof of well-posedness. We may,

e.g., choose aq =a, = 0. This condition can be achieved by pre-

scribing u; and uC ol/2 at these inflow points, see Elvius
and Sundstrom [9], since then uy = 0 and ul - 2(p + ot) 1/2 + ot?

1 1/2

= uw! - oot / (o/2 + (p + o') /2) ~ uy - Pl 0 / = 0. Actually, this
boundary condition ensures that only bounded growth can result for

all finite disturbances, as long as min (or 2, (op + Qo! ) / ) tu + ul
1s positive. Inserting the complete expressions for uy and uy

in the boundary integral, the integrand becomes

. 2 2 2

(uw + ul) (p + ?') (u! uj ) + 071 + (20 + ?' Jule!
1/2 1/2\-2

SE (CHEESE IER CIA ICI 2 1 ot/B)2)
bale ro) ((p + gp) 1/2 4 1/2),

1/ - 1/2 1/2

= 0% (op + of) /2 4 1/2) “(lu +ul) (6p +50 + 2(p + of) / ot )
1/2 1/2+ 220 - ot) ({p + o') / a 3}.
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If 0 < © <0 + ¢@', the value of

ales + 9)((p x 92 + 61%)bo + 50t + 2 (0 + on) 2 HP

1s always larger than ot? while if 0 < 9 + ¢' < 9, this expression

has (¢ + ot) 1/2 as its lower bound. For u + wl + Min (01/2, (+ 0 )H2)s 0,
the inflow part of the boundary then provides a nonnegative contri-

bution to the boundary integral.

Another possible inflow boundary condition 1s to prescribe

both u and u,, so that al = 0, a, = -1. This conditionwas

apparently first suggested by Rousseau [16]. The value of a, is
then so large that we cannot use the classical energy method, but

as first shown by Elvius and Kreiss (private communication), well-

posedness can be proved using Kreiss' normal mode analysis technique.

An alternative boundary condition, discussed 1n the paper by

Elvius and Sundstrom [9] is to give u; and © at inflow points. This

corresponds to the choice a = 0, a = 1. For problems in only

one space dimension this 1s a well-posed condition. The value of a2

1s, however, so large that we cannot use the energy method as above.

For the complete two-dimensional problem, Elvius and Sundstrom did

not analyze the well-posedness properties, but numerical experiments

indicated that it might actually be an 1l11-*posed set of boundary

conditions. This conjecture has been confirmed by a complete analysis

by Elvius and Kreiss (private communication).
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At outflow parts of the boundary (u, > 0), we should, in

the subsonic case, give one boundary condition. For the variational

equations this condition should *prescribe the value of a combination

of the form u! - o/c - buf - b, (uw! + ot /c). As before, well-
posedness follows directly from the positivity of the integrand

qt RA gq in the growth equation if

(¢ + u J(u + o/c )® Fou ure - ec -u mu +p (u + 0! /c))e > 0
nn n 1. n 14 2 n —

for all u' and ul + ©/c. The simplest choices of the parameters

bys by satisfying this condition are: 1) b, =1Db=20 i.e., giving
Co 1/2 _

u’ - ¢'/c, which may be achieved by specifying a - 20 5 2) by = 0,

b, = -1, i.e., giving ws and 3) by = 0, bo, = 1, i.e., specifying ©

also yields a well-posed problem. ]

All of these conditions guarantee bounded growth for finite |

disturbances. In each case, the integrand q' "RA (g + glg' is

strictly positive as long as u + a > 0.

For the open boundary problems we have several possible

sets of boundary conditions which all satisfy the necessary and sufficient

well-posedness conditions. If the problem is part of a telescoping

technique or nested integration, or 1f any arbitrary type of boundary

data can be obtained from measurements, the choice between these

different possibilities may be difficult.
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The experiments reported by Elvius and Stindstrom[9] do

not show any large differences between the results from a numerical

model, using either boundary conditions giving the value of the combination

ul - o/c and uy at inflow and uy - ¢'/c at outflow or u’ and uy
at inflow and ul at outflow. Their results examined a long-wave

solution with small long-wave or short-wave disturbances.

Further experiments by Elvius (private communication) indicate

that for solutions with a less pronounced long-wave character, the

first alternative 1s less susceptible to boundary disturbances which

may arise when the normal velocity 1s small and changes sign.

In one of the first papers on limited-area integration of the

shallow-water equations, Charney[2] suggested a quite different

set of boundary conditions. Since it is both inefficient and

difficult to implement, this set is now primarily of historical

interest. It is still worth analyzing, since it illustrates the

hazards of intuitive deductions. At that time, most experimental

and routine work on numerical weather prediction was done with

"balanced" forecast models. The simplest version, the barotropic

vorticity equation, can be considered as a further simplification of

the shallow-water equations. In the derivation of this approximation,

system C 1s first transformed into a set of three *prognostic

equations for the divergence D = V'u, the vorticity

£ = du, /dx, - du, /3%,, 5 and @, respectively by differentiating the
equations of motion with respect to x and y and combining the

results. This differentiated system 1s then simplified by using a

steady-state approximation in the first and third of these equations

and by keeping only the nondivergent advection terms in the vorticity
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equation. By this approximation, the whole system is condensed into

one prognostic equation 1n one dependent variable, the stream function

¥. For this vorticity equation, Charney, Fjdrtoft, and von Neumann [3]

concluded that two boundary conditions should be given at inflow points

of an open boundary and one condition at outflow points. They suggested
that the stream function (and thus the normal component of the velocity)

should be specified at all boundary points, and in addition, the

vorticity at inflow parts of the boundary. It is, easy to show that

their conclusion on the number of boundary conditions was correct and

that the suggested conditions make the problem well-posed, cf.

Sundstrom [19].

Charney's proposed boundary conditions for the shallow-water

equationswereapparently based on the idea that since the number of

. boundary conditions 1s the same for the vorticity equation and the

shallow water equations, the type of conditions should be similar.

He therefore suggested that u~~ should be prescribed at all boundary

points, and as the second quantity to be given at inflow parts of the

boundary he chose the "potential vorticity"

du, ou,
Sy,

TTT Te

If the differentiated version of the shallow-water equations 1s

formulated in terms of P, D, and¢, one of the three equations 1is

(a/at)p = 0. This differentiated system requires three boundary

conditions at inflow points, one more than the number required for the

single vorticity equation, and one of these conditions may be the

prescription of P. However, this is not a valid argument for the
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usefulness of the potential vorticity as a boundary condition for the

undifferentiated system. We cannot just pick two of the three

necessary 1nflow conditions for the differentiated system and expect |

them to form an appropriate set of boundary conditions for the

shallow-water equations.

The danger of using the boundary conditions that Charney

suggested can be shown directly. For the variational equations, they

: give w = 0 and (3/3n)ul - Po' =0 if u, < O. The last condition
cannot be used directly, but it can be combined with the prognostic

equation for uy to yield an equation for the inflow boundary values of

(3/3t Ju! which involves only boundary quantities. The tangential

velocity 1s then determined by integrating this equation from +t = 0.

This 1s a very complicated way of computing the inflow values of

uj. Additionally, this approach has the liability that a small error

committed 1nitially, or at any later time ty will influence the

boundary values at all later times. These errors will spread into the

region of integration contaminating the solution.

5. Effects of Viscous Terms

As described in the introduction, small viscous terms are

+ often added to the systems of equations we are considering. They

are often introduced to provide a dissipative filter for a numerical

approximation. In other cases there is a physical motivation for

using viscous terms to represent diffusive transport (eddy flux)

: of momentum and heat. Both the viscosity and heat conduction coefficients’
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are usually very small, but since these terms change the character

of the differential equations, we have to reilnvestigate the boundary

conditions. )

For systemA (the Eulerian equations) the general viscous

form of (2.1) is the compressible Navier-Stokes equations, here

written in the special form

a r

FT LTA +E San + (A+ p)v(Vey)]

| d -1/y 1/y1 —q - ‘nu = K(5.1) 3 OC avy = Kop 7 (p=)

4 p + prvVeu = 0
dt =

where yu and A are the Lame/constants, and where the heat exchange

term represents eddy flux of potential temperature. Using the

1-

potential temperature 6 = (p] LY jg) op! 7 as dependent variable
instead of @, the second equation may then be simplified to

d

3 © Ky”

Here, we shall only study the simple viscous form obtained when

= =A = vo T. In vector notation, we have

: ? i) _Sat 2 A. (q) ST 4+ E=BVg
J=1 J

with = (u, ,u_,u,,0 p)*q IR The TA ’
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u, 0 0 0 x u, 0 0 0 0

0 uy oc 0 0 0

A, i} 0 0 uy 0 0 | a - 0 G, JP a 0 |
O o 0 uy 0 0 0 0 u, 0

DY 0 0 0 ou O py O a,

ug 0 0 0 0 oO -f 0 0 |

0 uy 0 0 0 f 0 0 0 |

Bs 7 0 0 uz 0 a ©- o 0 0 o
O oo 0 uy 0 0 0 0 0 I

0 0 py O uy 0 0 0 0 |

LL 0 0 0 O

O uw 0 0 ©

and B=q« O 0 vu O 0 :

O 0 0 PY

0 0) 0 -

This is an incompletely parabolic system, see Strikwerda [18]. As

before, the matrices A,, Ans Ay and B can be simultaneously
symmetrized by multiplication from the left by
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1 0 0 0 0

R =q O O I 0 0

0 0 0 af BQ
02

O 0 0 0 Ey
PY

where 5 1s the same positive parameter which occurred in the

transformation matrix R 1n section 2. If the solution (and then

also R and the coefficient matrices) are slowly varying in space

and time, we can use the general results of Strikwerda [18] from

which 1t follows that, for well-posedness, it is necessary and

sufficient that the family of linearized variational equations

Q gry Fag) t+ F'o= Bg
I A A "TC TE ~

J=1 J

formawell-posed problem.

We first study the rigid wall problem. A normal-mode

_ analysis shows that four boundary conditions are required. Qpe of

these conditions, w = 0, follows immediately from the solid-wall

condition u = 0. The three remaining conditions may be chosen as
1 - a or _ qt _ CT TE

aUyq + (1 a) )u So 40 0, au), + (1 a) 1 Sa Yio 0, and

2a f' + (1-a JK, Sg = 0 for some nonnegative a., a and a.3 p an 1’ Tp’ 3
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If a, = a, = a, = 1, these conditions correspond to a "nonslip",

perfectly conducting wall, while if a) = a, a, = 0, they represent
a "perfect slip", thermally insulated wall. The well-posedness of

the solid-wall *problem with these boundary conditions can be demonstrated

by the energy method.

For small values of u and K,, we can expect boundary layers

of thickness gM?) and ox HP) at the solid wall. If some
ar # 0, the value of the corresponding variable can be expected to

change by a finite amount within the boundary layer. In such cases,

we must use a numerical approximation that resolves the boundary

layer satisfactorily. If all a, = 0, the variables will only change
by an amount proportional to the boundary layer thickness, and the

difference between the solutions to the viscous and inviscid

| equations 1s then always small for small pu and Kye

In problems with open boundaries, there are no obvious

physical boundary conditions. As before, we have some freedom in

choosing the most suitable mathematical boundary conditions. For the

viscous equations, it is not sufficient to 'prescribe a set of con-

ditions that makes the problem well-posed. Since we know that there

should be no boundary layers at the inflow and outflow boundaries,

we have to choose the mathematical boundary conditions accordingly.

This problem has been studied by Gustafsson and Sundstrom [11].

"They showed that for 1 Ky » 0, the conditions must yield a well-

posed set of boundary conditions for the inviscid equations, i.e.,

. singular boundary layers should not occur.
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At an inflow boundary, the normal-mode analysis shows that

five boundary conditions should be prescribed while only four were

appropriate for the inviscid equations. Using the energy method, we can show

that the following set of boundary conditions gives a well-posed problem

with no essential boundary layer:

Au
1/2rt _ — 1 = 3! = Ot

uw p' (a/pr) 0, uy =u, = 0, and , = <2= oO.
on

A similar set of conditions consistent with the other type of inviscid

1+ 1 ! = 1 = N = [Art = 171conditions (u! Uj = Up, 0) is less trivial to find. This

1s because none of these inviscid conditions include the pressure

disturbance p'.

At an outflow boundary, the viscous equations require four

boundary conditions and the inviscid problem only one. If we prefer

to give uy = 0 as the inviscid condition, we can now prescribe

0 d 0
t — etre ! = an f pe = 01 =

Up 0 myth THM Ye TK 0

as CL ; ' 1/2 _The inviscid condition u, - P (o/ pr = 0 can also be extended
to the viscous case by giving

y —— ' (of 1/2, (a 1/2 Pn 9 NVI Sar = 0bho PLP MAC PY dn PM mthH En 1 2 dn

In both these cases, we can use the energy method to prove well-

posedness, and the absence of boundary layers as yu, Ky = 0

follows directly.
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All these boundary conditions may be expressed 1n terms of

a' and p' instead of 6' by using the identity

grt = @ a! , Dp
& Pr

which 1s valid for small perturbations.

For the hydrostatic approximation (Bl) to these Eulerian

equations, the analysis is at least not simplified by including

viscous terms. Even if we could find a set of boundary conditions

that make the linearized variational equations with constant coefficients

well-posed, we would not know 1f this 1s, in some sense, true for

the complete equations.

For the anelastic equations (B2), viscous terms may easily

be included. To find the 'proper number of boundary conditions, we

may as before study only the linearized variational equations with

constant coefficients. The result of the analysis is that at all

boundaries, four boundary conditions should be prescribed. At an

inflow boundary this 1s the same number as required by the inviscid

equations. We may use the same conditions as before, u'=u' = y' = gt = ¢
n 11 12

for the linearized, constant coefficient equations.

At an outflow -boundary, the inviscid equations required one boundary

condition, uy = 0. This may now be supplemented by

0 + = 9 4 x 9 ar. |
A TR PRE
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For the solid-wall case, we may elther choose the inflow or outflow

type of conditions. The choice depends on whether we have nonslip

or perfect slip and a perfectly conducting or a thermally insulated

wall. The well-posedness of these conditions 1s easily demonstrated.

For the shallow-water equations (¢), we have the same type

of behavior as with the Eulerian equations (A). At a solid wall,

the obvious condition u = 0 must now be supplemented by one more
oe : i 9

boundary condition, 2, Uy + (1 au mn 21 0. The effects caused

by choosing al = 1 and ay = 0 are similar to the results for

system (A).

At an inflow boundary, the boundary condition a - 0! /c = 0,

uf = 0 1s easily modified by adding the required third condition

u = ul = 0. If the inviscid conditions are uw = 0, uy = 0, we
cannot find a suitable viscous form by our energy method analysis.

At outflow boundaries, we need two conditions which can be

) ' _ 2
chosen to be us =0 and y So CO or

" ou, 3LI WE & KM — t —
Wy ~ ec fesm “0 ed ugg u =0,

depending on what type of condition 1s preferred for the inviscid

equations. Well-posedness is easily proven by the energy method,

and no artificial boundary layers are generated.
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Implications for numerical methods

The analysis of various 1nitial-boundary value problems contained

in this paper was motivated by difficulties arising in computational

models of the problems we have discussed. It 1s appropriate to comment

on the implications these results have on these numerical models.

'The stability analysis and related error estimates for the

approximate methods are the discrete analogues of our well-posedness

analysis and estimates of the form (1.3). For a given well-posed problem

of the types discussed here, we can always find stable difference

approximations and numerical boundary conditions. Examples are given

in Gustafsson, Kreiss and Sundstrdm [10] and Elvius and Sundstrom [9].

Conversely, an approximation cannot have a norm which behaves reasonably

1f 1t accurately approximates an 1ll-posed problem.

When, for a given problem, the number of boundary conditions 1s

overspecified, the difference approximation may well be stable. However,

the effective boundary conditions which influence the solution are,

in general, difficult to determine, especially for problems 1n several

. space dimensions. They may well be a complicated function of the

conditions given and bear little resemblance to them.

An additional complication induced by overspecification 1s that the

underlying solution being approximated 1s not generally continuous. The

phenomena associated with approximations to discontinuous solutions have

been studied by several authors, a good discussion and summary of these

results can be found in section 10 of Thomee [21]. These results may
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be summarized as follows. If a non-dissipative approximation is used,

then high frequency waves emanate from the region of the discontinuity

and travel across the domain without losing appreciable amplitude.

They will usually travel with the highest fundamental wave speeds and

rapidly cover the domain with error. If scalar equations are being

approximated, then this region of error can be restricted to the vicinity

of the discontinuity by using dissipative approximations. However, these

results do not apply to systems of equations as we have here. The errors can

propagate away from the discontinuity through other components of the

solution. Boundary value overspecification may be regarded as a

stationary source of such discontinuities.

In order to avoid the problems associated with the proper selection

of boundary conditions, the order and type of the differential equations

1s often raised to obtain a problem that 1s easier to analyze and

approximate. The equations are usually modified by adding dissipative

terms so that the number of boundary conditions 1s appropriate. Unfortunately,

this idea seldom works. If a spurious boundary layer of appreciable size

results, the effects are not unlike those discussed above for discon-

tinuities and, unless the dissipative terms are very large, the error

introduced at the boundary will again propagate into the interior.

If the boundary conditions are underspecified there are no

a priori estimates for the differential equations. In order for an

approximation to be computable there must be a sufficient number of
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- boundary conditions specified for the approximation. This cannot be

fewer than the number required for the differential equation.

Additional conditions are usually constructed by means of extrapo-

lations. For an underspecified problem the extrapolation of quantities

that should be prescribed results in an unstable or inconsistent

approximation of the wrong differential equation.
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