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ABSTRACT

Lax-Wendroff methods for hyperbolic systems have two characteristics
which are sometimes troublesome. They are sometimes too dissipative—-
they may smooth the solution excessively--and their dissipative behavior
does not affect all modes of the solution equally. Both of these
difficulties can be remedied by adding properly chosen accretive terms.
We develop modifications of the Lax-Wendroff method which equilibrate
the dissipativity over the fundamental modes of the solution and allow
the magnitude of the dissipation to be controlled. We show that these
methods are stable for the mixed initial boundary value problem and
develop analogous formulations for the two-step Lax-Wendroff and

MacCormack methods.
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1. Introduction

We shall consider approximations for hyperbolic systems of partial

differential equations. We begin by considering the Cauchy problem for
(1.1) u, = Ay, -0 < x < o, t>0

with initial data
(1.2) u(x,0) = uo(x) ;) ce <X <o

where u is a vector of length n and A is an nXn matrix

with real eigenvalues. We assume that A has a complete set of
eigenvectors and can therefore be transformed to diagonal form. We
will denote the eigenvalues of A by v o skpe If A is a function
of x,t we assume that this transformation can be done smoothly.

We shall discuss the well-known Lax-Wendroff method, several of
its varients, and modifications thereof. Discussions of these methods
and modifications of them which improve their phase errors and stability
regions have been carried out by Turkel [9], Gottlieb and Turkel [2],
and Eilon, Gottlieb and Zwas [1l]. e are going to discuss the
dissipative properties of these approximations and modifications of
them which improve their dissipative properties. We will also comment
on the combination of our modifications with some of those of the

previously mentioned authors. Recently, Turkel [10] has discussed



a hybrid leap-frog--Lax Wendroff method which is less

dissipative than the Lax-Wendroff method but, like the Lax-Wendroff
method, has dissipation which varies radically for the various modes
of the solution.

To make this more precise we now introduce some notation and
definitions which are discussed in Richtmyer and Morton [8] and
Kreiss and Oliger [6].

In order to approximate (l1.1) we introduce a grid function

=Vh, h>0, v=20, +1, +2,... and

vv(t) = V(Xv;t): Xy -

t =0, k, 2k,...,k > 0. We write our approximations in the form

P
(1.3) vv(t+k) = jgo ijv(t-jk)

where
00

)5
Qj —£;§w AEE and Evv = Vil -

Associated with (1.3) is the characteristic equation

P, ..

(1.4) Gp = 6P -5 3o = 0
= A d
j=0

~ © 14
where Qj = ¥ Aze1 g, ¢ = op. Equation (1.4) is obtained from (1.3)
== .
by letting v(x,t) = nt/kelquﬂw). G, as defined by (lL.1), is often

called the symbol of (1.3).

Definition 1.1. The approximation Ou5) is said to be accurate of order

(q.,q.) for solutions u of (1.1) if there is a function C(t) which
9%
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is bounded on every finite interval [0,T] such that, for all
sufficiently small h and k,
)

p q
(1.5) fute ) - 3 Quux,t-j)], <_kC(t)(n Lk
2

If 4 =49, = g we say the approximation (1.3) is accurate of order

q.

We can now introduce Kreiss' definition of dissipativity [6, 8].

Definition 1.2. If the solutions *s of (1.5) satisfy

|2r

(1.6) mg < 1= 5lel™ for 0 < el < m

for some 8 > 0 and natural number r, then the approximation (1.3)
is said to be dissipative of order 2r.
One important consequence of dissipativity is the theorem of Kreiss

and Parlett [6, 8].

Theorem 1.1. Let Uu5) be accurate of order 2m-2 or 2m-1 and

dissipative of order 2m, then (1.3) is strictly stable.

Recall that strict stability implies that the £ -norm of the approx-

2
imation, as a function of t, does not grow faster than the I?-nonm

of the solution.

The Lax-Wendroff approximation for (1.1) is

2
- k2
(1.7) v, (t+k) = v, (£) + kD v, (t) + = AD. D v (t)



where

(on)"t S

(t)-v, (&)

v-1

Dovv(t)

D,v,(t) = n" vy, (6)-v, (8))

vl

D_v,(t) = h7t (v, (8)-v, _, (&)

1
This method is well known to be accurate of order 2 and dissipative
of order % if N = k/h satisfies 0 < A max hﬁl < 1. The

J

characteristic equation (1.5) can be written as

. 2 .
(1.8) "5 = 1+ ix“j sin & - 2%2p§ sin“(€/2) , 3 = 1,2,...,n

SO

(1.9) l%j|2 =1 - 1&)\2“?(1-7\2;_1?) sinu§/2 =1 - mJ.ah-

22 22 . .
where we let o = sin &/2 and m. = I\ Hjﬂr% “j)' This equality

yields an inequality of the form (1.6) if 0 < A max|uj|< 1 but it is
more convenient to leave it in this form for our pjrposes. Note that the
mj are functions of the i and that the "amount of dissipation”, the
amount Iujl differs from 1, is dependent on the eigenvalues of A. The
dissipation is greatest for intermediate values of hﬁl and least

for the smallest and greatest values of hﬁ L See Fig. 1 where we

plot Iujl as a function of Bf = x“j for several values of €. The

fact that the dissipation vanishes for all a if )Rjz 0 is often

troublesome in nonlinear calculations. The onset of nonlinear




instability is often attributed to these facts, this has been
discussed by Richtmyer and Morton [8 ] beginning on page 334, and by
Turkel [ 9]. It is also often true that the fastest moving waves
associated with the largest values Oflujl are often of minimal interest,
contain the greatest observational error, and are contaminated by the
most computational error. In such situations it would be appropriate
to dissipate these modes most rapidly rather than least rapidly.
Further, there is generally no reason why intermediate modes should be
singled out for most rapid destruction. It is this aspect of Lax-
wendroff methods that we shall discuss. Our subsequent modifications
will be directed to the equilibration of dissipativity over the modes
(values of “j) or, alternatively, to produce decay of Iujl as a
function of I“jl'

Before proceeding we shall introduce the two-step Lax-Wendroff
method and the MacCormack method which are also dissipative and behave

similarly. The two-step Lax-Wendroff method can be written as

. vv+l/2(t) Vo1 (t)

v = 2

(1.10)

v, (t+k) = v, (6) + wap B)v,

h -1
where Do(§)vv(t) =h <vv+1/2(t)‘vv-l/2(t))’
Our introduction of indices of the form V+ 1/2 deviates from our
earlier definition of the grid function but the meaning should be clear.
The characteristic equation for (1.10) is just (1.8) in the linear

case we are considering and the equality (1.9) holds in this case too.

In this situation (1.10) is simply a rearrangement of (1.7). However,

6




our modifications of (1.10) will not be the same as those of (1.7) since

we may want to take advantage of the separate steps and implement them

The MacCormack method can be written

in a two-step manner.

v, = v, (t) + kAD v, (t)

(1.11) —_
v, (t) + v
vy (t+k) i

where the ;V are intermediate values. The characteristic equation

can be written

\
(1.12) nJ. = 1/2 + T + Ei?\uj-Vl-ae T + 2?\ujo:2T

A~
where T = 1/2 + i%ujﬂ/i-ae a - Kuja?

can again be seen to satisfy (1.8) and (1.9). Again, in this

wzn,

",
J
simple situation, this is a rearrangement of (1.7) but our modifications

will again be different since we will implement them in a two-step

manner.




2. The Modified Methods and Their Properties

A nondissipative method like the leap-frog method,

vv(t+k) = vv((t—k) + EKADOVv(t) ,

can be modified to yield a dissipative method by adding dissipative
terms, e.g.,
(t+k) = v, (t-k) + 2KAD v, (t) - € y (0,D v, (t-k)
Ty BRAA o'V 16 U+ v
is accurate gf order 2 and dissipative of order 4 for

0K ex< 1, |A| <1-¢e[6]. The eigenvalues of the symbol of this

method satisfy

H&)

N Juee

|nj|2 =1 - ¢ sin

so the amount of dissipation, the magnitude of 6 in (1.6), can be
controlled by varying e.

We can similarly modify the Lax-Wendroff methods by adding terms--
we can reduce the amount of dissipation by adding accretive terms.
Such terms must be of the order of the truncation error of the method
so that they do not constitute a modification of the differential
equation and do not affect the order of accuracy and the rate of
convergence of the method.

We first consider a modification of the Lax-Wendroff method (1.7).
Let Ml’ Mé and M3 be arbitrary matrices which are diagonalizable

by the same transformation which diagonalizes A. We consider

8




k? 2
v, (t+k) = (I + KAD + =5 A°D,D v, (t) +

(2.1)
L 3 3
h 2 S h” 2
() Tz (0,0 )% + My 5 DD + My 5 D7D v, (¢) .

The symbol of (2.1) is

I
G =1 + 2iMgVi-of - 2328%F + Mo

v Mﬁ,(-i‘\/l—(xg & +at) +M3(-iw/1-o¢2 @ - ah)

(2.2)

where q = sin &/2 and A = k/h. We also have

Re(G) = 1 - NP+ (Ml + M, - M5)o¢h ,
mn(6) =V1i-o" oM - (1, + ¥)of)
and

W 2o+ [’-O\l;ul:

22
; I\ e (-hmEJ. -hm3j )7‘“3'

)y
+ Emlj - 2m2j - 2m3j]a +
22
(2.3) [(-hmlj—hm2j+hm5j)k uy (hmgj+hm33)%uj

0 2.6
oyt oemygmyy ¢ omglo” v

2 8
[my 5 + (emy -2y s Iy 5 - by gmy ;]



where the H%j's are the diagonal entries which result when M  ig
transformed to diagonal form with A.
We now define the phase error'per time step, E, of an approxi-

mation as (see [ 91):
E = (approximations phase speed - solutions 'phase speed) X k

Then it follows that [9 ]

(2.4) E = arctan ((Im G)(Re G)-l) - MNAE.

The components of E = diag (el""’en) for our diagonalized system are

(2.5) e = g (7 W 3my 3ms )8 0(e?)

3J

We now consider two specific modifications. Let Mé = M3 =0

If we take

(2.6) M, = [-eI + 12A2 (1-7%a%)]

* then (2.3) becomes

2 21 . 2,2 2 ho L
(2.7) |uj| 1 -] e+umlja Bj-mlja o

where

- 2 2 -
myy = -€ + hﬁj (1-Bj) and BJ“. = )\LLJ:

10




We have thus cancelled out the ., dependence of the coefficient
of alﬁ We demonstrate the effect of this in Figures 2a-2d where
we plot Inj‘ as a function of Bj for several values of € and e.
For smaller values of ¢ the dissipation is reduced and nearly constant
for a considerably larger neighborhood of B = 0. For larger values of
€ the dissipation does not vanish for all § in the neighborhood of
B =0.

We next consider a modification which introduces a quadratic decay

in I“jl as a function of My We take

(2.8) oM, = L 5382 + LAPAS (T-72A%) ]

Equation (2.3) is now

2 _ 5 2 22 2 Lo
(2.9) lnjl = 1 - [ +km a5 -m o la
where
_ ea2 2(q_a2
m, 5 Saj + haj(l Bj) .

We demonstrate the effect of this modification in Figures 3a-3d
where we plot 'njl as a function of Bj for several values of §
and % as before.

The stability of the modified methods given in (2.6) and (2.9)
follows from our general results in Section 3. We will state the
particular form those results take for these methods here. The
modification (2.6) is strictly stable if

(2.10) 0<e< h(l-|5maxlu)

11




where B is the value of 3j = K“J with largest magnitude. The

modification (2.9) is strictly stable if

h(i-lamaxll‘)
|2

(2.11) 0<d<L
'Bmax

We could have introduced a term -®\A in (2.9) instead of the term
-87\2A2 and this would result in a linear decay of |%j'2 with respect
to Bj in the o} term. However, the stability analysis corresponding
to (2.11) would yield 0 < agj < h(l-‘lsg) for § = 1,2,. . .,n SO
that 6 would have to be chosen to agree in sign with %4, i.e.,
8I would need to be replaced by a matrix which, after transformation
to diagonal form, would yield a matrix with entries + ® in appro-
priate places to match up with the s If all the Ms are of the
same sign this 'poses no problem; however, if they are of both signs
this does not yield a practical procedure in general.

We now note that the first term of our expression (2.5) for the
phase error is not affected by our choice of M1, so Mé and MB
can be chosen as in Gottlieb and Turkel [2 ] to reduce the phase error
to 0(55). However, these modifications do affect our expression for
|%j|2 given in (2.3) and the results (2.10) and (2.11) no longer hold.
(2.3) must be reexamined when nonzero M2 and M3 are used to
establish the stability bounds for €, 8, 'ﬁmaxl’ ete.

We now consider modifications of the two-step Lax-Wendroff method.
We begin by noting that the modifications of the Lax-Wendroff method
which we have already discussed can all be used in the second step of

the two-step method as given in (1.10). Since the symbol is unchanged

12



all our previous results hold for such modifications. We next consider

modifications to the first step of (1.10) as given by

7 - eage D T hae Lk e - & (o)
(2.12)
vv(t+k) = v, (t) + kADO(g);V + % MghuDg(g)v (t)

1%

The symbol for this method is

G=1+ 27\Aia[1/l-a2 + i(MAg + Mlg%—)]’“MEoch s

(2.13) Re (G)

2,2 2
1 -2NA0o - Mﬂ%a 4 + L

o'
2\
Im(G) = 2MaV1i-a~ >
and
2 _ Yk, 22 )iy
|uJ| =1 + [4A uj-)”\ uj-lequj"'szj la
33 2%4 6
(2.14) - [-hmlj% W3 + thJ) “j]a
2 2 2 B
- [—mlj.A s + 2mgjmlj7\uj-m2j Ja
The phase error is now given by
1 .33 3 p)
. = =AL s . 0
(2.15) 5= % (A 0] xua)e (¢7)

§5

We again note that ea is not changed through terms of order

13




and that the *phase error modification schemes of Gottlieb and Turkel
can again be applied with our modifications in a straightforward
manner.

If we choose
(2.16) 2, = WAI-AAR) + oM

and Mé = 0 we have

‘"j 217 - {SB§ - 4mljB§°‘2 - m?_jlsjozh}ozLL

(2.17)

. 2m. . 2
th = « = . P .
wi 1 =8p; - b, (1-3)

Notice that in this case we have a quadratic decay of|nj| with Bj
in the o} term.  Thus this method is similar to our earlier modifi-
cation (2.8). In fact, (2.17) is identical to (2.9). Cur remarks
following (2.9) about linear decay modifications also apply here.

The stability of the modification (2.16) again follows from our
general results in Section 3. This method is stable if the inequality
(2.11) is satisfied.

We now turn to modifications of the MacCormack scheme. For the
same reason as before for the two-step Lax-Wendroff method, we only
consider modifications to the first step of (1.11). Modifications to

the second step will be the same as those for Lax-Wendroff. We consider

14



;v = [1 + kAD, + M1h3D42rD Iv,(t)
(2.18)

vv(t) + v,

The symbel for this method 1is

(2.19) G = % + T + ei)\Aa'\/l—ag T + OMGET
where
A\
T=2+ MVIoF - Mo - b Vi + g’
Re(g) = 1 + ag(-2P\2A2)+a)+(hMl + 87\AM1) ’
Im(G) = oﬂ/ l-a2| [2nA + ocg(-hMl)] ,
and
: bk 22 - b
|KJ.|2 -1+ [k p,j - 4 p,J. + bmlj]a
33 22 2 4,6
(2.20) + [—Banljx hy -lémlJ.?\ 3 *16“’13)‘“3 +l6mlj]cx
o 2

o [GmIin 5 ¢ 6hm2137\pj]d8

The phase error is now given by

(2.21) ey = % (7&? - 7\%4 - 3mlj)§3 + o(g5) )

Notice that the O(§5) term of the phase error is affected by our

choice of Ml this time. Simultaneous modifications to improve the

phase error are not so easy to carry out for this method.

15




If we choose
(2.22) ém, = bACA% (T-3%A%) - EI

we have

|%J-|2 =1 - eah + O(a6)

We illustrate the effect of this modification in Figures b4a-kd where
we again plot |nj| as a function of Bj for selected values of £ and e.

We can also choose

(2.23) 8, = 122 (13242) - 5A°A°

to introduce a quadratic decay so that

|%j|2 =1 - 86?0& + 00 .

We have also plotted this in Figures b5a-5d.

The situation here is unlike that arising from our previous modifi-
cations. Previously the stability limit for lﬁmaxl has increased as ¢
decreased to zero and, in fact, approached 1 as € tended to =zero.
Here the stability limit tends to zero as € tends to zero. From the
plots in Figures la-kd it seems that we should use ¢ somewhere between

0.1 and 2 in order to have a reasonable stability limit for | . The

leax
same comment applies to the MacCormack scheme with quadratic decay.
The case shown in Fig. Ub seems to achieve our goal of equilibration

quite well but increases the dissipation.

In summary we remark that modifications of the second step analogous
to those used with Lax-Wendroff are much more successful for both the two-
step Lax-Wendroff and the MacCormack methods.

16




2. Stability of the Modified Methods

First of all, note that all the unmodified methods we have considered,
namely, the one-step Lax-Wendroff, the two-step Lax-Wendroff and the
MacCormack schemes, have the same "5 and are all dissipative of order
4 (and therefore strictly stable by Theorem 1.1) if|6max|< 1. For
each of our modified schemes, we can write the modified ni in the

following form:

2 L
(5'1) Kj =1-0 F(BJ)mlJ:mQJ)mBJ)O‘E)

By Theorem 1.1, our modified schemes will be strictly stable if, for each j,
: 2
(3.2) F(Bj’mlj’mEJ’mﬁj’a ) > 0 for 026[0,1]

Since max -—lél—— =m, (3.2) will imply (1.6).

Usually, the mzj's are functions of BJ' Hence (3.2) defines a
stability limit for Bj' It is difficult to determine this stability
'limit for general functions mzj(aj)' However, for specific functions

mzj(B ), this stability limit can always be determined numerically as in

J
our -plots of M4I
Consider the modified one-step Lax-Wendroff scheme (2.1) with

Mé = M3 = 0. The following theorem gives the conditions which the mﬂj's

will have to satisfy in order to guarantee stability.

Theorem 3.1. Consider the scheme (2.1) with Nb = MB = 0.

17



2 2 2
. It - - - :
(3.3) 1f | .| <1 and -2(1 B) < m, < 2651 3_.)J for all j ,
then the resulting scheme is dissipative of order 4 and hence strictly
stable by Theorem 1.1.

Proof: Condition (3.2) implies that the following has to be satisfied:

2 2
(3.4) F = —mijah' + mlj (hB?aE-E) + L"ﬁj (l'Bj) >0 for all J .

Since F is a quadratic in mlj with negative leading coefficients,

(3.4) will be satisfied if (see Fig. 6), for every 7,

(i) F has real roots, say mL(OL2) and ms(ozg) for the larger

and the smaller root, respectively (considered as functions of oz2), and

(3.5 ) (i) ms(ag) < myy < mL(ae) for all a°e[0,1].

ST




Now

mL(an) [-1 + 28 oF \/l + h -hhagﬁi ]/O£u , if o # 0

ms(a2)=[-1 +26a '1/1+1+ahb2 -’-1-066 h s if oz2}éo

= undefined if a2 =0
Hence the roots will be real if
1+ hausg - l&oz25§ > 0 for all j and for all ocee[o,l]
or if
32. « 1 for all j and for all ozee[o,l]
J L 2 2 )
o (1~
or if
2 . 1 N .
(3.7) By < pmin —m——p-= 1 for all j ,

i.e., if IBmaxl < 1.
_ Note that (3.7) is just the unmodified stability limit. Now, by

straightforward differentiation, we can show that

. ang (o) an_ (o°) .
(3.8) ——>—>0and ———> 0 for d e[0,1] if |ﬁma,x‘ cl
dof dof

Hence, (3.5) will be satisfied if

Il

2(1-62) = . (1) <

a2 2 .
] 5 my ;< m, (0) = 2B (1-aj) fbr all 7

which is (3.3). O

19



Corollary 3.1: The modification (2.6) is strictly stable if (2.10) is

satisfied.

Proof: By the previous theorem, the following has to be satisfied:

-2(1-5?) < £+ 23?(1-5?) < 25?(1-3?) for all j

which reduces to
b .
(3.9) h(l-Bj) > €>0 for all

| <1. Aalso, (2.10) easily

Note that (3.9) automatically implies IB

follows from-(3.9). []

Corollary 3.2: The modification (2.9) is strictly stable if (2.11) is

satisfied.

Proof: Follows immediately from Theorem 3.1. []

Next, consider the two-step Lax-Wendroff modification (2.12) with
Mé = (. The F we obtain in this case is very similar to that which
we obtained for the Lax-Wendroff method, (3.4). We only need to replace
mlj in (3.4) by thBj to obtain the correct F. Thus, we easily

obtain the following theorem.
Theorem 3.2: Consider the scheme (2.12) with Mé = 0. If

1B <1

(3.10)
2 2 2
and _QBj (1-33) < mlij < 2(l-Bj) for all j,

then the resulting scheme is dissipative of order 4 and hence strictly

20



stable by Theorem 1.1.

Corollary 3.3: The modification (2.16) is strictly stable if (2.11) is

satisfied.

A stability analysis is more difficult for modifications of the
first step of the MacCormack method. No condition analogous to the
condition (3.8 ) holds in this case. We have not been able to obtain
clean conditions like those in Theorems 3.1 and 3.2 for the MacCormack
scheme. However, given a specific Mi one can easily determine the
stability interva} by examining Pﬁl as a function of Bj'

We finally remark that the previous sufficient conditions for
stability are all necessary if we allow equality. This easily follows

from the von Neumann necessary condition [6,8].
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k., The Initial Boundarv Value Problem

We now consider the problem of approximating equation (1.1) on a
bounded x- interval a < x < b. Since the modified methods we have
discussed have larger stencils (involve more neighboring points) than
their unmodified counterparts there are more points at the ends of the
interval [a,b] where these approximations cannot be used than there
are with the original methods. However, this problem is easily avoided.

Stable approximations for the initial boundary-value problem for
the Lax-Wendroff, two-step Lax-Wendroff, and MacCormack methods are
discussed by Gustaffson, et. al. [4 ] and by Gottlieb and Turkel [3 ].

We will base Sﬁr methods on these.

Assumptions

We assume that boundary conditions are given at the points a
and b which yield a well posed problem for (1.1), see Kreiss [5 ].
We further assume that stable approximations for this problem are known
for the underlying method that we are modifying, see [3, 4] for
candidates, and finally that the mesh ratio A and modification
parameters €, 6, etc., are chosen so that both the modified and un-
modified methods are stable for the Cauchy problem.

We now form our approximations for the initial boundary-value
problem by coupling the unmodified method with its stable boundary
conditions to the modified method in the neighborhood of the boundary

points a and b in the manner discussed by Oliger [T ].

The Methods

We will use the desired modified method at all interior net points

22




where it can be used, we then drop the modification (set Ml = N% = M3 = 0)
and use the underlying method at all those points in the neighborhood

of a and b where it can be used (at most one or two points at each
end), the remaining points (only a aﬁd b) are then treated using

the stable boundary approximation.

Theorem 4.1, The methods proposed above are stable in the sense of

Gustaffson, et. al. [4 ] (definition 3.3) if our assumptions hold.

Proof: This result follows immediately from Theorem 2.4 of [7].[]
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