
Stanford Artificial Intelligence Laboratory “August 1977
Memo AIM-298 |

Computer Science Department

Report No. STAN-CS-77-611

THE LOGIC OF COMPUTER PROGRAMMING

by

ZOHAR MANNA and RICHARD WALDINGER

Research sponsored by

Office of Naval Research

National Science Foundation

and

Advanced Research Projects Agency

COMPUTER SCIENCE DEPARTMENT

Stanford University

| —
|

Stanford Artificial Intelligence Laboratory August 1977
Memo AIM-298

Computer Science Department

. Report No. STAN-CS-77-611

THE LOGIC OF COMPUTER PROGRAMMING

ZOHAR MANNA RICHARD WALDINGER

Artificial Intelligence Lab Artificial Intelligence Center

Stanford University SRI International

Stanford, California Menlo Park, Calif ornla

Abstract:

Techniques derived from mathematical logic promise to provide an alternative to the

conventional methodology for constructing, debugging, and optimizing computer programs.

Ultimately, these techniques are intended to lead to the automation of many of the facets of the

-programming Process.

This paper provides a unified tutorial exposition of the logical techniques, illustrating each

with examples. The strengths and limitations of each technique as a practical programming

aid are assessed and attempts to implement these methods in experimental systems are discussed.

This research was supported in part by the Advanced Research Projects Agency of the

Department of Defense under Contract MDA%03-76-C-0206, by the National Science

Foundation under Grant DCR'12-03737 AOL, by the Office of Naval Research under Contracts

N00014-76-C-0687 and N00014-75~C-0816, and by a grant from the United States-Israel

Binational Science Foundation (BSF), Jerusalem, Israel.

The views and conclusions contained in this document are those of the authors and should not be

interpreted as necessarily representing the official policies, either expressed or implied, of

Stanford University, Stanford Research Institute, or the VS. Government.

Copyright © 1977 by Zohar Manna and Richard Waldinger.

|
3

|

| Manna & Waldinger The Logic of Computer Programming

Contents:

I. Partial CoOITECINESS «tu mrnnrenn ranean rannrannsannssnnssnnssnnsnnnsnnnnns 6

I, Termination ooretieetsotinannnssssnesoesonsnnenenses 27

IV. Well-Founded INAUCHION «cv. vviiriiiieriiiieerriiiotiesnnesnesesssscensnsnes 32

V. Total COrrECINeSS . . iviiirtriie triers eras esnnsesnnnesnnnernnnsrnnnes 35

VI. Correctness of Recursive Programs...covevrernnnnnreennnnnneennn. 20,

VII. Program Transformationcioiiiiiiiiinr svnnnernnnernansnnnnens 0

VIII. Program Development -......ccuiieiieiiiieiiairiearirairaneasnirnnsannns 61

|

Manna & Waldinger The Logic of Computer Programming

I. Introduction

In June 1962, the first American space probe to Venus (Mariner I) went off course and had to

be destroyed because of an error in one of the guidance programs in its onboard computer.

One statement of the program, though syntactically correct, had a meaning altogether different

from that intended by the programmer. Although few bugs have such spectacular effects,

errors in computer programs are frequent and influential. There has been substantial effort

recently to apply mathematical rigor to the programming process and to enable the accuracy of

the machine to compensate for the error-prone human mind.

In the late nineteenth and early twentieth century, mathematics underwent a process of

formalization and axiomatization, partially in an effort to escape from paradoxes and logical

errors encountered by previous generations of mathematicians. A similar process is underway

in the development of a logical theory of programs.” This theory has already made our

understanding of programs more precise and may soon facilitate our construction of computer

programs as well. Logical techniques are being developed to prove programs correct, to detect

programming errors, to improve the efficiency of program operation, to extend or modify

existing programs, and even to construct new programs satisfying a given specification; many of

these techniques have been implemented in experimental programming systems. In the last

decade, this field of research has been extremely active; it now has the potential to exert a deep

influence on the way computer programs are produced.

The available techniques are already described in the literature, but the relevant papers are

scattered through many technical journals and reports, are written in a variety of incompatible

notations, and are often unreadable without some background in mathematical logic. In this

paper, we attempt to present the principal methods within a unified framework, conveying the

intuition behind the methods by examples, and avoiding the formal apparatus of the logicians.

To facilitate a comparison between the various techniques, we use a number of different

algorithms for performing the same task: to compute the greatest common divisor of two

integers. These algorithms are simple enough to be readily understood, but subtle enough to

demonstrate typical difficulties.

The greatest common divisor of two nonnegative integers ¥ and y , abbreviated as ged(x y), is

the largest integer that divides both x and y. For instance: ged(9 12) = 3, ged(12 25) = 1, and

ged(0 14) = 14. When x and y are both zero there is no greatest common divisor, because

every integer divides zero; on the other hand, when x or § is not zero, a greatest common
divisor must exist.

A naive algorithm to compute the ged of x and 9 might behave as follows: Make lists of all

the divisors ofx and of all the divisors of y; then make a third list of all the numbers that

2

Manna & Waldinger The Logic of Computer Programming

appear in both lists (these are the common divisors of ¥ and ¥) finally, find the largest

number in the third list (this is the greatest common divisor of X and %). The cases in which

x or 7 is zero must be handled separately. This algorithm is straightforward but inefficient

because it requires an expensive operation, computing all the divisors of a given number, and

because it must remember three lists of intermediate numbers to compute a single number.

A more subtle but more efficient algorithm to compute the gcd of two numbers can be devised.

Until the first number is zero, repeat the following process: if the second number is greater

than or equal to the first, replace it by their difference -- otherwise interchange the two

numbers -- and continue. When the first number becomes zero, the answer 1s the second

number. This answer turns out to be the gcd of the two original numbers. The new algorithm

is more efficient than the naive one, because it only needs to remember two numbers at any one

time and to perform the simple minus operation.

The above algorithm can be expressed as a stylized program:

Program A (the subtractive algorithm):

input(xg yo)

(x 3) « (xo Yo)

more: if x = 0 then goto enough

if y2x then 7 « y-x else (x y)« (yx)
goto more

enough: output(y).

The notation (xy) «(xg yo) means that the values of ¥ and § are simultaneously set to the

input values xq and yo. Thus, the statement (x §) « (yx) has the effect of interchanging the

values of x and 9. This program causes the following sequence of values of x and y to be

generated in computing the gcd of the input values Xg=6 and yo=3:

x=06 and y = 3,
x=3 and y = 6,
x=13 and y= 3,
x= 3 and y= 0,
x =0 and 9 =13

Thus, the output of the program is 3.

Although the earlier naive algorithm was obviously correct, because it closely followed the

definition of gcd, it is by no means evident that Program A computes the gcd function. First

of all, it is not clear that when ¥ becomes zero, the value of % will be the géd of the inputs;

that this is so depends on properties of the gcd function. Furthermore, it is not obvious that x

3

| | vw |

Manna & Waldinger The Logic of Computer Programming

will ever become zero; we might repeatedfy execute the If-then-else statement forever. For

instance, consider the program A ’ obtained from A by replacing the conditional

if y2x then y« y-x else (xy) «(y x)

by :
if 92 x then y« y-x else x « x-y.

This program closely resembles Program A, and it actually does compute the gcd of its inputs

when it happens to produce an output. However, it will run forever and never produce an

output for many possible input values; for instance, if Xg#0 and 9o=0, or if xo» O and yo=x.

Thus, if xg=yo=3, the following sequence of successive values of x and § emerges:

x=3 and y= 3,
x=3 and y = 0,
x =3 and 9 = 0,
x=3 and 9=0,....

These programs are as simple as any we are likely to encounter, and yet their correctness is not

immediately clear. It is not surprising, therefore, that bugs occur in large software systems.

Although programs may be subjected to extensive testing, subtle bugs frequently survive the

testing process. An alternative approach is to prove mathematically that bugs cannot possibly

occur in the program. Although more difficult to apply than testing, such mathematical proofs

attempt to impart absolute certainty that the program is, indeed, correct.

Techniques derived from mathematical logic have been applied to many aspects of the

programming process, including:-

® correctness: proving that a given program produces the intended results.

® termination: proving that a given program will eventually stop.

e transformation: changing a given program into an equivalent one, often to improve its

efficiency (optimization).

® development: constructing a program to meet a given specification.

These techniques are intended to be applied by the programmer, usually with some degree of

computer assitance. Some of the techniques are fairly well understood and are already being

incorporated into experimental programming systems. Others are just beginning to be

formulated and are unlikely to be of practical value for some time.

4

Manna & Waldinger The Logic of Computer Programming

Our exposition is divided between a basic text, given in an ordinary type font

and secondary notes interspersed throughout the text in a smaller font. The

basic text presents the principal logical techniques as they would be applied

by hand; the secondary notes discuss subsidiary topics, report on

implementation efforts, and include bibliographical remarks. Only, a few

references are given for each topic, even though we are likely to lose some

good friends in this way. The hasty reader may skip all the secondary notes

without loss of continuity.

In the following pages, we will touch on each of these topics; we begin with correctness, the most

investigated and best understood of them all.

| —

Manna & Waldinger The Logic of Computer Programming

Il. Partial Correctness

To determine whether a program is correct, we must have some way of specifying what it is

intended to do; we cannot speak of the correctness of a program in isolation, but only of its

correctness with respect to some specifications. After all, even an incorrect program performs

some computation correctly, but not the same computation that the programmer had in mind.

For instance, for the gcd program we can specify that when the program halts, the variable y is

intended to equal the greatest integer that divides both inputs Xg and 9g; in symbolic notation

y =max{u : ulxg and ulyo) .

(Here,” the expression {u : p(u)} stands for the set of all elements u such that p(x) holds, and the

expression uj stands for "u divides v .") We call such a statement an output assertion, because

it is expected to be true only when the program halts. Output assertions are generally not

sufficient to state the purpose of a program; for example, in the case of the ged , we do not

expect the program to work for any Xp and yo, but only for a restricted class. We express the

class of “legal inputs” of a program by an input assertion. For the subtractive gcd algorithm

(Program A), the input assertion is

x02 0 and 902 0 and (xg= 0 or yo =0).

We require that at least one of the inputs be nonzero, because otherwise the gcd does not exist.

We do not state explicitly that the inputs are integers, but we will assume throughout this paper

that variables always assume integer values.

We have expressed the specifications for Program A as a pair of input-output assertions. Our

task now is to show that if we execute Program A on any input satisfying the input assertion,

the program will halt with output satisfying the output assertion. If so, we say that Program A

is totally correct. It is sometimes convenient, however, to split the task of proving total

correctness of a program into two separate subtasks: showing partial correctness, that the

output assertion is satisfied for any legal input if the program halts; and showing termination,

that the program does indeed halt for all legal inputs.

The language in which we write the assertions is different from the programming language

itself. Because the statements of this assertion language are never executed, it may contain

much higher level constructs than the programming language. For instance, we have found the

set constructor {u :.. .} useful in describing the purpose of Program A, even though this

notation is not a construct of conventional programming languages. Written in such a high-

level language, the assertions are far more concise and naturally expressed than the program
itself.

6

Manna & Waidinger The Logic of Computer Programming

It will be convenient for us to ignore the problem of termination for a while and deal only with

partial correctness. In proving partial correctness, it helps to know more about the program

than just the input-output assertions. After all, these assertions only tell us what the program

is expected to achieve and give us no information on how it is to reach these goals. For

instance, in understanding Program A, it is helpful to know that whenever control passes

through the label more, the greatest common divisor of ¥ and § is intended to be the same as

the greatest common divisor of the inputs xp and yo , even though x and ¥ themselves may

have changed. Because this relationship is not stated explicitly in either the input-output

assertions or the program itself, we include it in the program as an intermediate arsertion,

expressed in the assertion language:

max{u : ulx and uly} = max{u : ulxg and ulye}

Another intermediate assertion states that whenever we pass through more, the program

variables, x and y , obey the same restrictions as the input values xg and 9g , 1.€.,

x20 and 92 0 and (x= 0 or y= 0).

We rewrite Program A below, annotated with its assertions (within braces, “{...}"). Note that

the assertions are not intended to be executed, but are merely comments expressing relationships

that we expect to hold whenever control passes through the corresponding points.

Program A (annotated):

input(xy vo)

{X02 0 and %92 0 and (xg= 0 or y= 0) }

(x y) « (xo Yo)

more: {x 2 0and 420 and (x=0 or y=0)

and max{u : ulx and uly} = max{ulxg and ulyp}}

if x = 0 then goto enough

if 2x then y« y-x else (x y) «(y x)
got0 more

enough: {y=max{u: uly and uly}}

output(y) .

Our goal is to prove that if the program is executed with input satisfying the input assertion,

and if the program halts, then the output assertion will hold when the program reaches enough.

For this-purpose, we will show that the intermediate assertion is true whenever control passes

through more; in other words, it is invariant at more. The proof is by mathematical induction on

the number of times we reach more. That is, we will start by showing that if the input assertion

is true when we begin execution, the intermediate assertion will be true the first time we reach .

i

Manna & Waidinger The Logic of Computer Programming

more; we wilt then show that if the intermediate assertion holds when we pass through more,

then it wilt be true again if we travel around the loop and return to more; therefore, it must be

true every time we pass through more.

Finally, we will show that if the intermediate assertion holds at more, and if control happens to

pass to enough, then the output assertion will be true. This will establish the partial correctness

of the program with respect to the given input and output assertions.

Let us first assume that the input assertion is true when we begin execution, and show that the

intermediate assertion holds the first time we reach more. In other words, if

x020 and 9920 and (xg e 0 or yo» 0),

and we execute the assignment

(x y) « (xg Yo) ’

then

x20 and y2 0 and (x= 0 or y= 0)

and max{u : ulx-and uly} = max{u : ujxy and uly} ,

f-or the new values of x and y .

Because the assignment statement sets X to Xp and ¥ to yg, we are led to prove the verification

condition

(1) %02 0 and Yo 2 0 and (¥g= 0 or yp = 0)

=>%o2 0 and y92 0 and (xg= 0 or yo = 0)

and max{u : ulxg and uly} = max{u : ulxg and ulyy} .

(Here the notation A => B means that the antecedent A implies the consequent B.) The

consequent was formed from the intermediate assertion by replacing x by xo and % by 9p.

Next, assuming that the intermediate assertion is true at more and control passes around the

loop, we need to show that the assertion will still be true for the new values of x and 9 when we

return to more. In other words; If the intermediate assertion

x2 0 and 920 and (x» O or y= 0)

and max{u : ulx and uly}=max{u : ulxg and uly}

holds, if the exit text x= 0 is false (i.e., ¥ # 0) and if the conditional statement

8

EE

Manna & Waldinger The Logic of Computer Programming

if 2x then y« y-x else (x y) «(y x)

is executed, then the intermediate assertion will again be true. To establish this, we distinguish

between two cases. If 32x, the assignment statement o e osx 1s executed, and we therefore

must prove the verification condition

(2) x20 and 920 and (x= QO or p= 0)
and max{u : ulx and uly} =max{u : uly and ulyy} ,
and x=0

and y2%

=>x2 (0 and y-x2 0 and (x= O or p-x = 0)

and max{u : ule and uly-x}=max{u : ulxg and uly} .

The antecedent is composed of the intermediate assertion and the tests for traversing this path

around the loop. The consequent was formed from the intermediate assertion by replacing y by

p-X .

In the alternate case, in which y <¥, the consequent is formed by interchanging the values of X

and 9. The corresponding verification condition is

(3) x20andy20and (x xO ory » 0)

and max{u : ulx and uly} = max{u : ule and ulyo)
and x=0

and y <x
=>p20 and x2 0 and (y= 0 or x= 0)

and max{u : uly and ux} = max{u : ulxg and uly} .

To complete the proof we must also show that if the intermediate assertion holds at more and

control passes to enough, then the output assertion will hold. For this path, we need to establish
the verification condition

(4) x20andy20and(x »O0ory = 0)

and max{u : uly and uly} = max{u : uly and uly}
and x= 0

=> p =max{u : ulxg and ulyy} .

These verification conditions are lengthy formulas, but it is not difficult to prove that they are

ail true. -Conditions (1) and (3) are logical identities, which can be proved without any

knowledge of the integers. The proofs of Conditions (2) and (4) depend on three properties of

the integers:

Manna & Waidinger The Logic of Computer Programming

(a) wulx and uly <=> ufx and uly-x

(the common divisors of ¥ and p-x are the same as those of x and ¥),

(b) ulo

(any integer divides zero), and

(c) max{u:uly}=9 ify>0

(any positive integer is its own greatest divisor).

To prove Property (a), assume ulx and #ly . Then, we must show that uly-x

as well. We know that x=k.u and y=1{.u, for some integers k and !{ . But

then y-x = ({-k) u, and hence uly-x, as we wanted to show. Similarly, if u}x
and uly-x, then x=m+u and p-x =n-u for some integers m and n . But

then § = x+(y—x)=(m+n). u, and hence uly.

To prove Condition (2), let us consider the consequents one by one. That x20, y—x20, and (x= 0
or y-x = 0) are true follows directly from the antecedents x20, 2x and x= 0, respectively. That

max{u : ulx and uly-x} =max{u : ulxy and ulyo}

follows from the antecedent

max{u : ulx and uly} = maxi{u : ujxy and ulyo}

and Property (a).

To prove Condition (4), first observe that the antecedents imply |

y>0 |

because x=0 and (x= 0 or #0) imply y=0, but y=0 and 920 imply 9>0 . Now, since x=0,
applying Property (b) to

max{u : ulx and uly} = max{u : ux, and ulyo}

yields

max{u : uly} =max{u : ulxg and ulye} .

Because 9>0 , applying Property (c) yields

10

| i

Manna & Waldinger The Logic of Computer Programming

y =max{u :ulxg and ulyo} ,

the consequent of Condition (4).

This concludes the proof of the partial correctness of Program A. Note again that we have not

proved the termination of the program: we have proved merely that if it does terminate then

the output assertion is satisfied. A similar proof can be applied to Program A’ (the program

formed from Program A by replacing the statement (x 9) « (yx) by x « x-p), even though that

program may loop indefinitely for some legal inputs, Program A’ is partially correct, though

not totally correct, because it does compute the ged of those inputs for which it happens to halt.

The proof of the partial correctness of Program A involved reasoning about four loop-free

program paths: one path from the input assertion to the intermediate assertion, two paths from

the intermediate assertion around the loop and back to the intermediate assertion, and one path

from the intermediate assertion to the output assertion. Had we not introduced the

intermediate assertion, we would have had to reason about an infinite number of possible

program paths between the input assertion and the output assertion corresponding to the

indefinite number of times the loop might be executed. Thus, the intermediate assertion is

essential for this proof method to succeed.

Although a program’s assertions may become true or false depending on the location of control

in . the program, the verification conditions are mathematical statements whose truth is

independent of the execution of the program. Given the appropriate assertions, if the program
is partially correct, then ail the verification conditions will be true; inversely, if the program is

not partially correct, at least one of the verification conditions wilt be false. ‘We have thus

transformed the problem of proving the partial correctness of programs to the problem of

proving the truth of several mathematical theorems.

The verification of a program with respect to given input-output assertions consists of three

phases: finding appropriate intermediate assertions, generating the corresponding verification

conditions, and proving that the verification conditions are true. Although generating the

verification conditions is a simple mechanical task, finding the intermediate assertions requires

a deep understanding of the principles behind the programs, and proving the verification

conditions may demand ingenuity and mathematical facility. Also, a knowledge of the subject

domain of the program (e.g., the properties of integers or the laws of physics) is required both

for finding the intermediate assertions and proving the verification conditions.

One way lo apply the above technique is to generate and prove verifiation conditions by hand.

However, in performing such a process we are subject to the same kinds of errors that

programmers commit when they construct a program in the first place. An alternate possibility

is to generate and prove the verification conditions automatically, by means of a verification

I

| — |

Manna & Waldinger The Logic of Computer Programming

system. Typically, such a system consists of a verification condition generator, which produces

the verification conditions, and a theorem prover, which attempts to prove them.

invariant assertions were ‘introduced by Floyd [1967] to prove partial

correctness of programs, although some traces of the idea appear earlier in

the literature. King [1969] implemented the first system that used invariant

assertions to prove the partial correctness of programs. Given a program, its

input-output assertions, and a set of proposed intermediate assertions, King's

system generated the verification conditions and attempted to prove them.

Some later systems (such as those of Deutsch [1973], Elspas, Levitt, and

Waldinger [1973 J, Good, London, and Bledsoe [1975), Igarashi, London, and

Luckham [1975], and Suzuki [1975)) adopted the same basic approach but

employed more powerful theorem provers to prove the verification conditions.

Therefore, they were able to prove the partial correctness of a wider class of

programs.

Although the above systems have advanced somewhat beyond King’s original

effort, they have two principal shortcomings. They require that the user

supply an appropriafe set of intermediate assertions, and their theorem

provers are not powerful enough to prove the verification conditions for most

of the programs that arise in practice. Let us consider each of these

difficulties separately.

® finding invariant assertions. Although the invariant assertions required to

perform , the verification are guaranteed to exist, to find them one must

understand the program thoroughly. Furthermore, even if we can discover

the program’s principal invariants (e.g., max{u: u|x and uly} =max{u: ujxq

and ulyo} above) we are likely to omit some subsidiary invariants (e.g., %20

above) that are still necessary to complete the proof.

Of course, it would be ideal for the programmer to supply only the program

and its input-output assertions and to rely on the verification system to

construct all the required intermediate assertions automatically. Much

research in this direction has already been done (see, for example, German

and Wegbreit [1975] and Katz and Manna [1976].) However, it is more difficult

for a computer system to find the appropriate assertions than for the

programmer to provide them, because the principles behind a program may

not be readily revealed by the program’s instructions. A less ambitious goal

is to require the programmer to supply the principal invariants and expect the

- system to fill in the remaining subsidiary assertions.

® proving verification conditions. Verification conditions may be complex

formulas, but they are rarely subtle mathematical theorems. Current

verification systems can be quite effective if they are given strategies

12

| To

Manna & Waldinger The Logic of Computer Programming

specifically tailored to the subject domain of the program. However, the

programs we use in everyday life rely on a large and varied body of subject

knowledge, and it is unusual that a system can verify a program in a new

subject domain without needing to be extended or adapted in some way (cf.

Waldinger and Levitt [1974]). Of course, some of this difficulty may be

remedied by future theorem proving research and by the development of

interactive verification systems.

The invariant assertions that we attach to intermediate points to prove partial correctness relate

the values of the program variables at the intermediate points to their initial values. For

instance, in Program A we asserted that

x > 0 and 92 0 and (x=0or y=0)
and max{u : ulx and uly} =max{u : ujxy and ujyo}

at the label more. A more recent method, the subgoal-assertion method, employs subgoal

assertions that relate the intermediate values of the program variables with their ultimate

values when the program halts. For Program A the subgoal assertion at more would be

x20and y20 and (x OQ or y= 0) => 9Y=max{u : ux and uly},

where 9¢ denotes the final value of § at termination. This assertion expresses that whenever

control passes through more with acceptable values for ¥ and ¥ , the ged of the current values of

x and y will be the ultimate value of 9%.

We prove this relationship by induction on the number of times we have yet to traverse the

loop before the program terminates. Whereas the induction for the invariant-assertion method

follows the direction of the computation, the induction for the subgoal-assertion method

proceeds in the opposite direction. Thus, we first show thatthe subgoal assertion holds the last

time control passes through more , when we are about to leave the loop. We then show that if

the subgoal assertion holds at more after traversing the loop, then it also holds before traversing

the loop. This implies that the subgoal assertion holds every time control passes through more.

Finally, we show that if the subgoal assertion is true the first time control passes through more,

the desired output assertion holds.

To apply this method to prove the partial correctness of Program A, we need to prove the

following verification conditions:

(1) x = 0

=>[x2>0 and 92 0 and (x #0 or y= 0) =>9 = max{u: ulx and ul}J

(the subgoal assertion holds when we are about to leave the loop).

13

|

|

Manna & Waldinger The Logic of Computer Programming

(2) [x20 and 9-x2 0 and (x 0 or y—x= 0) => y¢=max{ulx and uly-x}]
and x= 0

and y2x

=>[x20andy20and(xwQorym 0) => 9=max{u:ulx and uly}]

(the subgoal assertion after traversing the then path of ‘the loop

implies the subgoal assertion before traversing the path).

(3) [920 and x2 0 and (y = Oorx=0) => y=max{u: uly and ulx}]
and x= 0

and y < x

=>[x2 0 and 2 0 and (x = 0 or y= 0) => 9=max{u : ulx and uly}]

(the subgoal assertion after traversing the else path of the loop

implies the subgoal assertion before traversing the path).

(4) x02 0 and 952 0 and (xg = O or yp = 0)

and [x92 0 and 992 0 and (xg= 0 or yo= 0) => 9 =max{ulxg and uly}.]

=> y¢ = max{u : ulxg and uly}

(the input assertion and the subgoal assertion the first time we enter

the loop imply the output assertion).

Each of these conditions can be easily proved. Conditions (1),(2), and (3) establish that our

intermediate assertion is indeed a subgoal assertion. Thus, whenever control reaches more the

assertion holds for the current values of the program variables x and y and the ultimate value

y¢ of y . Condition (4) then ensures that the truth of the subgoal assertion the first time we

reach more is enough to establish the desired output assertion. Together, these conditions prove

the partial correctness of Program A.

From a theoretical point of view, the invariant-assertion method and the subgoal-assertion

method are equivalent in power, in that a proof of partial correctness by either of the methods

can immediately be rephrased as an equivalent proof by the other method. In practice,

however, for a given program the subgoal assertion may be simpler than the invariant

assertion, or vice versa. It is also quite possible to apply both methods together in verifying a

single program. Thus, the two methods may be regarded as complementary. :

The subgoal-assertion method was suggested by Manna [1971 J and developed
by Morris and Wegbreit [1977].

In demonstrating the partial correctness of Program A, we employed rigorous but informal

14

Manna & Waidinger The Logic of Computer Programming

mathematical arguments. It 1s possible to formalize these arguments in a deductive system,

much in the same way that logicians formalize ordinary mathematical reasoning. To introduce

an invariant Reductive system for the invariant-assertion approach, we use the notation

(P} F {Q}.

where P and Q are logical statements and F is a program segment (a sequence of program

instructions), to mean that if P holds before executing F, and if the execution terminates, then

Q will hold afterwards. We call an expression of this form an invariant statement. For

Instance,

{x <3} (xy) ex) {p<

is ‘a true invariant statement, because if the value of x 1s less than the value of 9 before

interchanging those values, the value of y will be less than the value of x afterwards.

Using this notation, we can express the partial correctness of a program with respect to its input

and output assertions by the invariant statement

(input assertion} program {output assertion) .

This statement means that if the input assertion holds, and if the program terminates, then the

output assertion will hold; therefore, it adequately states the partial correctness of our program.

To prove such invariant statements we have a number of rules of inference, which express that
to infer a given invariant statement it suffices to prove several subgoals. These rules are

usually presented in the form

Ay Ag LA

B

meaning that to infer the consequent B it suffices to prove the antecedents A |,A,, A,.

Here B is an invariant statement, and each of Aj, A, A, 1s either a logical statement or

another invariant statement. We have one rule corresponding to each statement in our

language.

eo assignment rule. Corresponding to the assignment statement

(x, Xo . xn) € (t, ls Coe tn),

which assigns the value of each term {; to its respective variable ¥; simultaneously, is

15

mo

;

Manna & Waidinger The Logic of Computer Programming

P(x xp... Xp) => Qt ty... ty)

{Pe xp...x) (xy xp xp) e(tyty. tp) {Qlxy xp... xp) } |

where P(x;xp, . . . x) and Qfx;x, . .. xp) are arbitrary logical statements, and

Q(t) ta . . . ty) is the result of simultaneously substituting ¢; for ¥; wherever it appears in

Q(x xp . . . x). In other words, to infer the invariant statement

{ P(x; x, co. xp)} (xq x3 coe. Xp) (t 2) soe ty) {Q(x Xo © a Xp) 3

it suffices to prove the logical statement .

P(x x; Co. Xp) => Qft ty Co. tn).

For example, to prove the invariant statement {x <9} (x 9) «(y x) {y <x} it is enough to

prove x<y=>xs59y.

This rule is valid because each ¥; has been assigned the value f; by the assignment statement.

Thus, Qfx;x,... x,) will hold after the assignment if Q{t?;...¢,) held before. Because we

are assuming P(x;x, ... xp) held before the assignment, it is enough to show

Pl xs... xp)=> Qt) 15... 1p).

® conditional rule. The rule for the statement “if R then F, else Fy" is

{P and R}F{Q}, {P and -R}F2{QJ

{P} if R then F, else F,{Q}

That is, to establish the consequent it suffices to prove the two antecedents {P and R}F,;{Q},

corresponding to the case that R is true, and {P and =R}F{QJ}, corresponding to the case that
R is false.

To treat loops in this notation it is convenient to use the while statement instead of the goto.

The statement

while R do F

means that the program segment Fis to be executed repeatedly as long as the logical statement

R is true. In other words, this statement is equivalent to the program segment

16

Manna & Waidinger The Logic of Computer Programming

more: if not R then goto enough

F

got0 more

enough:

The more concise structure of the while statement simplifies the formulation of its rule.

eo while rule. Corresponding to the while statement we have the rule

P=>I, (Iand R} F (I), I and -R=> Q

{P} while R do F {Q} |

for any 1. Here, I plays the same role as the invariant assertion in our informal proof; the

condition "P => I” states that the invariant I is true when we enter the loop; the condition

"fl and R} F {I}" conveys that if I is true before executing the loop body F, and if the execution

of F terminates, I will be true afterwards; then the condition “I and -R=>Q" ensures that if

control ever exits from the loop, then Q will be true.

To apply the while rule to infer the desired consequent, we need to find a logical statement I

satisfying the three antecedents.

® concatenation rule. This rule enables us to make inferences about the concatenation FF, of

two program segments, F, and Fy:

(P}Fy {R}, {RIF{Q

{P} Fy Fp {Q}

for any R. The consequent follows from the antecedents. For suppose that P holds before

executing FF, and that the execution terminates. Then R holds after executing F; (by the

first antecedent), and therefore Qhoids after executing Fa» (by the second antecedent).

These are ail the rules in our deductive system. Additional rules are necessary if we wish to

add new statements to our programming language.

To prove an invariant statement {P} F {Q}, we apply the appropriate inference rule, of the

form

ALA...A,

(PYF{Q

17

| mo

Manna & Waidinger The Logic of Computer Programming

If A; is an invariant statement, then it is of form {P'} F* {Q}, where F"is a subsegment of F.

In this case, we repeat the process for this antecedent. On the other hand, if A; is a logical

statement, we prove it directly without using any of the rules of the invariant deductive system.

Eventually, all the subgoals are reduced to logical statements, which are proved to be true.

To establish the partial correctness of a program with respect to given input-output assertions,

we prove the invariant statement

(input assertion} program (output assertion) .

In this case, the logical statements produced in applying the above procedures are the program’s

verification conditions.

To show how this formalism applies to the partial correctness of the subtractive gcd algorithm

(Program A), we rewrite this program using a while statement instead of a goto:

Program A (with while statement):

input(xp yo)

{xp2 0 and yg2 0 and (xg= 0 or yp = 0) }

(x 9) « (xp yo)
while x= 0 do

{ invariant(x y) }

if y2x then y« y-x else (x y) «(y x)

{y = max{u : ujxg and ulyo}}

output(y),

where invariant(x y) is taken to be the same invariant we used in our informal invariant-
assertion proof, i.e.,

x 20and y2 0 and (x=0or y=0)
and max{u : u|x and uly} = max{u : ujxy and uly} .

This program has the form

input(xg yo)

{x02 0 and yp2 0 and (xg» 0 or y= 0) }

Body A

{y = max{u : ulxg and ulyo}}

output(y),

and the invariant statement to be proved is

18

|

Manna & Waldinger - . The Logic of Computer Programming

Goal 1. {x020 and yo2 0 and (xg= 0 or yo= 0) }

Body A
{ y=maxiu : ulxg and uly} }

Note that Body A is a concatenation of an assignment statement and a while statement; thus,

the concatenation rule tells us. that to establish Goal 1 it suffices to prove

Goal 2. {xp2 0 and yp2 0 and {xg= 0 or yo= 0) } (x Pe(xg yo) { R(x 3) }

and

Goal 3. {R(x y)} while x=0do... {y=max{u:ulxy and ulye}}

for some assertion R(x y). Here, R(x 9) can be taken to be invariant(x y) itself. (If we make an
inappropriate choice for R(x y), we may be unable to complete the proof.)

To infer Goal 2, it suffices by the assignment rule to prove the logical statement

Goat 4. x52 0 and yp 2 0 and (xg= 0 or yg= 0) => invariant(xg yo),

which is easily established, because invariant(xq yo) is simply

xg2 0 and 992 0 and (xg= 0 or y= 0)

and max{u : ulxg and ulye} = max{u : ulxy and ulye}.

The while rule reduces Goal 3 to the trivial logical statement

invariant(x y) => invariant(x y), |

and the two new subgoals

Goal 5. {invariant(xy) and x= 0} if y2x then . .. else... {invariant(x y) }

and

Goal 6. invariani(x y) and x = 0 => y =max{u : ulxg and lye}.

The if-then-else rule reduces Goal 5 to

Goal 7, {invariant(x 9) and x= 0 and y2 x} y « y-x { invariant(x y)}

and

Goal 8. {invariant(xy) and x= 0 and y<x} (x y) « (yx) {invariant(x y) }.

19

Manna & Waidinger The Logic of Computer Programming

Applying the assignment rule to each of these goals yields

Goal 9. invariant(x y) and x= 0 and y2 x =>invariant(x y-x)

and

Goal 7/0. invariant(x 9) and x= 0 and y <x => invariant(y x).

Now the remaining Coals 6, 9, and 10, like Goal 4, are all logical statements; these are the four

verification conditions of Program A. Each of these statements can be shown to be true, and

the partial correctness of Program A is thus established.

The above deduction can be summarized in the following “deduction tree”:

concatenation

| Goal 2 Goal 3

assignment while

if-then-else |

assignment assignment

20

To

Manna & Waldinger The Logic of Computer Programming

The above invariant deductive system is essentially the same as the one

introduced by Hoare [1969).

Whenever a new deductive system is developed, it is natural to ask whether it

possesses certain desirable logical properties. The deductive system we have

presented has been proved (Cook [1976]) to have the following properties:

° soundness. If the verification conditions of a program are true, the

program is indeed partially correct.

® completeness. If the program is partially correct, its verification conditions

are true.

We have presented the inference rules for only a very simple programming

language. Such rules have also been formulated for goto's , procedures, and
other common programming features (e.g., see Clint and Hoare[1972] and

Ashcroft, Clint, and Hoare [1976]). However, when more complex features are

introduced, finding sound and complete rules to describe them becomes a

serious challenge. It has actually been proven impossible to formulate

complete rules of inference for certain programming constructs (Clarke

[1977].

Part of the difficulty in formulating rules of inference for certain constructs

arises because, traditionally, programming languages have been designed

without considering how programs using their constructs are to be verified. It

has been argued that programming languages designed to allow easier

verification will also facilitate the construction of more comprehensible

programs. Some recent programming languages designed with such

considerations in mind are LUCID (Ashcroft and Wadge [1977]), EUCLID

(Lampson et al. [1977]), CLU (Liskov [1976]), and ALPHARD (Wulf, London, and

Shaw [1976).

Qur treatment of partial correctness has been rather idealized: our programming language

Includes only the simplest of features, and the program we considered was quite

straightforward. We have not discussed the more complex problems that occur in verifying the

kinds of programs that actually arise in practice.

Let us briefly mention a few of the trouble spéts in proving the correctness

of practical programs.

® computer ar ithmetic. We have assumed that the arithmetic operations

performed by the computer correspond precisely with the ideal operations of

the mathematician; in fact, the computer is limited in the precision to which a

real number can be represented. Consequently, our notion of correctness

21

Manna & Waldinger The Logic of Computer Programming

should be modified to take into account thata computer program only

computes an approximation of the mathematical function it is intended to

compute (see, e.g., Hull, Enright, and Sedgwick [1972)).

® cleanness. A computer program may be incorrect not only because it fails

to satisfy its output specification, but also because of mishaps that occur

- during the computation: it may generate a number larger or smaller than the

computer system can store (overflow or underflow), for instance, or it may

attempt to divide a number by zero or to find the square-root of a negative

number. It is possible to prove that a program is clean (i.e., that no such

accident can occur) by establishing an appropriate invariant before each

program statement that might cause offense (Sites [1974]). For example,

before a statement Z«X[y we can introduce the assertions that9» 0 and

that € < [x/y| < E, where € and E are the smallest and largest positive real
numbers, respectively, that the computer system can store.

® side-effects. Many programming constructs have indirect side-effects:

their execution can alter the properties of entities not explicitly mentioned by

the instructions themselves. For instance, suppose our programming language

allows assignment to the elements of an array. Then the instruction Ali]« t,

which assigns 4 to the ith element of an array A, can alter the value of Alf] if
it happens that ¥ = j, even though Alf] itself is not explicitly mentioned in
the instruction. To prove the correctness of programs employing such

constructs requires an alteration of the principles outlined here. For example,

one consequence of the assignment rule is the invariant statement

(P} x « t {P},

where the variable x does not occur in P. If array assignments are admitted,

however, one instance of this statement is

{Alj]= 5) Ali] « 4 {A[j] = 5) .

This statement is false if 1 can equal fj . (For a discussion of such problems,

see Oppen and Cook [1975].

® intermediate behavior of programs. We have formulated the correctness of

a program by providing an output assertion that is intended to be satisfied

when the program terminates. However, there are many programs that are

not expected to terminate, such as airline reservation systems, operating

systems, and conversational language processors. The correctness of these

programs cannot be characterized by an output assertion (e.g., see Francez

and Pnueli [1975]). Moreover, certain properties of such programs are more

naturally expressed as a relation between events that occur while the

program is running. For instance, in specifying an operating system, we might

22

Manna & Waldinger The Logic of Computer Programming

want to state that if a job is submitted it will ultimately be executed. Even if

the operating system does terminate, this property cannot be expressed

conveniently as an output assertion. Similarly, in specifying the security

property of a data base system, to ensure that a user cannot access or alter

any file without the proper authorization, we are concerned with the

intermediate behavior of the system during execution, and not with any final

outcome.

® indeterminacy. Some programming languages have introduced control

features that allow the system to choose arbitrarily between several alternate

courses of action during execution. For example, the guarded command

construct (see' Dijkstra {1975)) allows one to express a program that

computes the gcd of two positive integers as follows:

input(xo Yo)
(x §) « (x0 yo)

do x>9=>x¢x-9

O x>9 =>(x9) «(yx

O 9>%x => yey-x
od

output(x).

This denotes that if x>9, we can execute either x « x—y or (x ¥) « (y x),

while if 9>x we must execute y « y-X. The statements within the do . .. od

construct are executed repeatedly until neither condition X>% or> Xx

applies, i.e. until x=9%. (The terminator “od” of the construct is merely “do”
backwards.) Although for a given input there are many ways of executing the

program, the ultimate output is always the ged of the inputs. Extensions of

our proof methodology exist to prove the correctness of such programs.

® parallelism. We have only considered programs that are executed

sequentially by a single computer processor, but some programs are intended

to be executed* by several processors #t the same time. Many different parts

of such a program might be running simultaneously, and the various

processors may cooperate in producing the ultimate output. Because the

various processors may interact with each other during the computation, new

obstacles arise in proving the correctness of a parallel program. For example,

it becomes desirable to show the absence of deadlock, a situation in which

- two processors each halt and wait for the other to conclude some portion of

the task, thus preventing the completion of the program’s execution. To

prove the correctness of parallel programs requires special techniques; this is

currently an active research area (cf. Ashcroft[1975]), Hoare [1975), Owicki

and Gries [1976].

23

Manna & Waidinger The Logic of Computer Programming

® very large programs. For the sake of clarity we have discussed only the

verification of small programs, but in practice it is the large and complex

systems that really require verification. As one would expect, the verification

of such programs is obstructed by the larger number and greater complexity

of the intermediate assertions and verification conditions. Furthermore, the

specifications of a large system are likely to be more difficult even to

formulate: one must detail all the situations a spacecraft guidance system is

expected to handle, for instance, or all the error messages a compiler is

expected to produce. Finally, in a larger system the specifications are likely

to be higher-level and more abstract, the discrepancy between the

specifications and the implementation will be greater, and the verification

conditions will be correspondingly more difficult to prove than we have found
so far.

It has been argued that such large programs cannot be verified unless they

are given a hierarchical structure that reduces their apparent complexity. A

hierarchically structured program will be decomposed into a few top-level

modules, each of which in turn will be decomposed into a few more detailed

modules at a lower level. The verificaton of a module at a given level thus

involves only a few lower-level modules, each of which may be regarded as a

primitive instruction. Therefore, the program becomes understandable, and its

verification manageable. (Examples of hierarchical decomposition are given, |

e.g., in Parnas [1972] and Robinson et al. [1975]})

One might hope that the above methods for proving the correctness of programs, suitably

extended and incorporated into verification systems, would enable us to guarantee that

programs are correct with absolute certainty. In the balance of this section we will discuss

certain theoretical and philosophical limitations that will prevent this goal ‘from ever being

reached. These limitations are inherent in the program verification process, and cannot be

surmounted by any technical innovations.

® We can never be sure that the specifications are correct.

In verifying a program the system assures us that the program satisfies the specifications we

have provided. It cannot determine, however, whether those specifications accurately reflect the

intentions of the programmer. The intentions, after all, exist only in the mind of the

programmer and are inaccessible to a program verification system. If he has made an error in

expressing them, the system has no way of detecting the discrepancy.

For example, in specifying a sort program one is likely to assert that the elements of the array

are to be in order when the program halts, but to neglect to assert that the array’s final contents

are some permutation of its original contents. In this event, a program that merely resets the

first element to I, the second to 2, and so on, may be verified as a correct Sort program.

24

J —

Manna & Waidinger The Logic of Computer Programming

However, no system will ever be able to detect the missing portion of the specification, because

it cannot read the mind of the programmer.

To some extent, these difficulties can be remedied by the use of a well-designed, high-level

assertion language. The programmer can express his intentions in such a language quite

naturally, and with little chance of error, presumably because he thinks about his problem in

the same terms as he expresses it.

® No verification system can verify every correct program.

For a system to verify a program, it must prove the appropriate verification conditions.

Typically, these conditions are logical statements about the numbers or other data structures.

Any system that attempts to prove such statements is subject to certain theoretical limitations,

no matter how powerful it may be. In particular, it is known to be impossible (as a consequence

of Godel’s Incompleteness Theorem) to construct a system capable of proving every true

statement about the numbers. Consequently, for any verification system there will be some

correct program that it cannot verify, even though its specifications are correct and complete.

This theoretical limitation does not preclude the construction of theorem provers useful for

program verification. After all, verification conditions are usually not deep mathematical

theorems, and it is entirely possible that a computer system will be developed that will be able

-to verify all the programs that arise in practice. But no matter how powerful a verification

system may be, when it fails to verify a program we can never rule out the possibility that the

failure is attributable to the weakness of its theorem prover, and not to an error in the

program.

® We can never be certain that a verification system is correct.

When a program has been verified, we must have confidence in the verification system before

we believe that the program is really correct. However, a program verifier, like any large

system, is subject to bugs, which may enable it to verify incorrect programs. One might

suppose that bugs in a verification system could be avoided by allowing the verifier to verify

itself. Do not be fooled: if the system does contain bugs, the bugs themselves may cause the

program to be verified as correct. As an extreme case, a verifier with a bug that allowed it to

verify any program, correct or incorrect, would certainly be able to verify itself.

This philosophical limitation does not imply that there is no use in developing verification

systems. Even if the system has bugs itself, it may be useful in finding other bugs in computer

programs. A large system (which presumably had some bug), written by a graduate student to

check mathematical proofs, was able to discover several errors in the Principia Mathematica of

Whitehead and Russell, a classical source in mathematical logic; a slightly incorrect program

25

|

Manna & Waidinger : The Logic of Computer Programming

verification system could be of comparable value. Moreover, once we have developed a

verification system we make it the focus of all our debugging efforts, instead of spreading our

attention over every program that we construct. In this way, although we can never hope to

achieve utter certainty that the system is correct, we can establish its correctness “beyond

reasonable doubt.”

Gerhart and Yelowitz [1976] have presented a collection of programs whose

verifications were published in the literature but which contained bugs.

DeMillo, Lipton, and Perlis [1977] advance a philosophical and “sociological”

argument against the utility of verifying programs. Dijkstra [1977] expresses

pessimism about constructing a useful automatic verification system.

Critics of logical techniques for ensuring program correctness often

recommend the traditional approach to detecting bugs by program testing. In

this approach, the program is actually executed on various inputs, and the

resulting outputs are examined for some evidence of error. The sample

inputs are chosen with the intention of exercising all the program's

components, so that any bug in the code will be revealed; however, subtle

bugs often escape the most thorough testing process. Some bugs may escape

because they occur only upon some legal input configuration that was not

anticipated, and therefore not tried, by the programmer. Other bugs may

actually occur during a test execution but escape observation because of

human carelessness. These problems are discussed in a special section of the

IEEE Transactions on Software Engineering, September 1976.

Some efforts have been made to apply logical techniques to systematize the

testing process. For instance, the SELECT system (Boyer, Elspas, and Levitt

[1975)) attempts to construct a sample input that will force a given path of

the program to be executed. The EFFIGY system (King [1976]) executes the

program on symbolic inputs rather than concrete numerical quantities, thereby

testing the program for an entire class of concrete inputs at once.

The techniques we have given in this section establish the partial correctness of a computer

program but not its termination. We now turn our attention to techniques for proving the

termination of programs.

26

' —

Manna & Waidinger The Logic of Computer Programming

Hi. Termination

Proving the termination of programs can be as difficult as proving partial correctness. For

instance, consider the following program:

input(x)

| while x=1 do

if even(x) then x «x/2 else x « 3x +1_

output(x) .

This program is known to terminate for every positive integer less than 3. 10%. However, for
over a decade no researcher has succeeded in proving its termination for every positive integer,

nor in producing a positive integer for which it fails to terminate. Resolution of this question
could depend on some deep unknown property of the integers.

Let us examine the subtractive. gcd -algorithm (Program A) again to see informally why we

believe it terminates for every input satisfying the input assertion.

input(xy yo)

{x020 and 992 0 and (xg= 0 or yp = 0) }

(x 3) « (xo yo)

more: {x 20and y20and (x=0 or y= 0)

and max{u : ux and uly} =max{u : ujxg and ulyp}} |

if x = 0 then goto enough

if y2x then y « y-x else (x y) «(y x)
got0 more

enough: {y= max{u : ulxo and ulyo}}

output(y).

Note that in showing the partial correctness of this program we have established as invariant

that x and y will always be nonnegative at more. Now, observe that every time we go around

the loop, either x is reduced, or x is held fixed and % is reduced. First, ¥ is reduced if ¥ and ¥

are interchanged, because ¥ is less than x in this case. On the other hand, if y is set to y-x,

then x is held fixed and ¥ is reduced, because ¥ is positive when this assignment is executed.

The crux of the argument lies in observing that we cannot forever continue reducing ¥, or

holding x fixed and reducing 4, without eventually making one of them negative, contradicting
the invariant.

To make this argument more rigorous, we introduce the notion of the lexicographic ordering »

on pairs of nonnegative integers. We will say that

(xy 31) > (x2 32),

27

Manna & Waidinger : The Logic of Computer Prdgramming

i.e., (x; 9) is greater than (x, y,) under the lexicographic ordering, if

xX) > Xo

or x) = Xz and ¥;> ¥».

(Thus (2 2) >» (1 100) and (14) > (1 3).) The set of pairs of nonnegative integers has the

special property that there exist no infinite decreasing sequences under this ordering; i.e., there

are no sequences such that

(x1 91) > (x2 32) > (x3 93) >...

Proof: Suppose that (x, 9;), (x5 95),(x¥3 93), . . . is an infinite decreasing

sequence of pairs of nonnegative integers. The definition of the

lexicographic ordering then requires that x;2x,2x32 ..., but because

the nonnegative integers themselves admit no infinite decreasing sequences,

there must exist some n such that ¥,=%,,1=%52= (Otherwise we

could extract an infinite decreasing subsequence from x|,%p,%gz,....)

The definition of lexicographic ordering, again, implies that then 9,> pi

> Yne2 >. . ., Which violates the same property of the nonnegative integers.

In general, if a set is ordered in such a way that there exist no infinite decreasing sequences, we

say that the set is a well-founded set, and the ordering a well-founded ordering. Thus, the
lexicographic ordering is a well-founded ordering on the set of pairs of nonnegative integers, as

we showed above.

The nonnegative integers themselves are well-founded under the usual > ordering. However,

there exist other well-founded orderings over the nonnegative integers. For example, the

ordering defined so that x > y if y properly divides x, i.e.,

yix and y= x,

is a well-founded ordering.

The well-founded set concept allows us to formulate a more rigorous proof of the termination

of Program A. To construct such a proof, we must find a set W with a well-founded ordering

>, and a termination expression E(x y), such that .whenever control passes through the label

more, the value of E(x y) belongs to W, and such that every time control passes around the loop,

the value of E(x 9) is reduced under the ordering >. This will establish’the termination of the

program, because if there were an infinite computation, control would pass through more an

infinite number of times; the corresponding sequence of values of E(x y) would constitute an

infinite decreasing sequence of elements of W, contradicting the well-foundedness of the set.

28

Manna & Waidinger The Logic of Computer Programming

To formulate *such a termination proof for Program A, we must prove the following three

termination conditions for some invariant assertion invarient(x y) at more:

(1) invariant(x y) => E(x y) ¢ W |

(the value of the expression belongs to W when control passes through

more) ,

(2) invariant(x y) and x= 0 and 92x => E(x y) > E(x yx)

(the value of the expression is reduced if control passes through the

then branch of the loop), and

(3) invariant(x y) and x= 0 and 9<x => E(x y)> E(y x)

(the value of the expression is reduced if control passes through the

else branch of the loop).

Because the invariant will be true every time control passes through more, the above conditions
suffice to establish termination.

Perhaps the most straightforward way to construct such a termination proof for Program A is

to follow our informal demonstration and to take W to be the set of pairs of nonnegative

integers, > to be the lexicographic ordering, and E(x y) to be the pair (x 9) itself. The invariant

assertion invariant(x y) can simply be taken to be x2 0 and 92 0. The termination conditions
are then

(1)x20and 920 => (xy)e (pairs of nonnegative integers],

(2)x20andy=20and x#0and 92x => (x 9) > (x y—x), and

(3)x20andy20andx»0and y <x => (xy)> (yx).

We have already indicated in our informal argument the justification for these conditions.

A trickier termination proof may be constructed by taking W to be the nonnegative integers, >

to be the usual > ordering, and E(x y) to be the expression 2% t 9. The termination conditions
are then

(1)x20and y20 => 2x + y € (the nonnegative integers] ,

| (2)x20andy20and x»0andy2 x => 2x + y > 2x + (y-x),and

29

Manna & Waldinger The Logic of Computer Programming

(3)x20andy20andx#O0and y<x => 2x +9 > 29 + x.

These conditions can also.be easily established.

The above description illustrates how to prove the termination of a program with only a single

loop. If we want to apply the well-founded ordering method to show the termination of a

program with several loops, we must designate a particular loop label within each of the

program’s loops. We choose a single well-founded set and with each designated loop label we

associate an expression whose value belongs to the well-founded set. These expressions must

be chosen so that each time control passes from one designated loop label to another, the value

of the expression corresponding to the second label is smaller than the value of the expression

corresponding to the first label. Here, “smaller” means with respect to the ordering of the

chosen’ well-founded set. This method establishes the termination of the program, because if

there were an infinite computation of the program, control would pass through an infinite

sequence of designated labels; the corresponding sequence of values of the expressions would

constitute an infinite decreasing sequence of elements of the welt-founded set, contradicting the

well-foundedness of the set, as inthe one-loop case.

The well-founded set approach introduces machinery to prove termination completely different

from that required to prove partial correctness. There is an alternate approach which extends

the invariant-assertion method to prove termination as well as partial correctness. In this

approach we alter the program, associating with each loop a new variable called a counter. The

counter is initialized to 0 before entering the loop and incremented by | within the loop body.

We must also supply a new intermediate assertion at a point inside the loop, expressing that the

corresponding counter does not exceed some fixed bound. In proving that the new assertion is

invariant, we show that the number of times the loop can be executed is bounded. (If for some

reason control never passes through the assertion, the number of times the loop can be executed

is certainly. bounded - by zero.) Once we have proved that each loop of the program can only

be executed a finite number of times, the program’s termination is established.

For instance, to prove that our subtractive gcd algorithm (Program A) terminates, we introduce

a counter i, and establish that the assertion

1'€£2x0 + Yo

is invariant at more. To show this, it is actually necessary to prove the stronger assertion

x20 and y2 0 and 2x + y + i $2Xp + Yo

is invariant at more. (The stronger assertion implies the weaker because if x2 0 and y 2 O then

2X +920.)

30

| | —

Manna & Waldinger The Logic of Computer Programming

Augmented with the counter§ and the new intermediate assertion, Program A appears a s
follows:

Program A (with counter):

input(xgp yo)

{x02 0 and yo2 0 and (xo0 or yo»0) }

(x 9) a (xo 0)
ito

more: {x20 and y2 0 and 2x + § + i $2%9 + Yo }

if x = 0 then goto enough

if 2x then y« y-x else (xy) «(y x)
{ « i+]

got0 more

enough: output(y).

The new assertion is clearly true at more initially; it remains true after each execution of the

loop body, because each execution reduces the quantity 2x + y by at least I, and 1is increased

by only L

The counter method yields more information than the well-founded set method, because it

enables us to establish a bound on the number of times each loop is executed and, hence, on

the running time of the program, while termination is being proved. By the same token,

however, the counter method is more difficult to apply, because it requires that suitable bounds

be known, and we often can prove that a program terminates without knowing such bounds.

Well-founded sets were first used to prove the termination of ‘programs by

Floyd [1967], in the same paper in which he introduced the invariant-

assertion method. The alternate approach, using counters, was suggested by

Knuth [1968] The program verifier ‘of Luckham and Suzuki [1977] proves
termination by this method.

31

:

Manna & Waldinger The Logic of Computer Programming

IV. Well-founded Induction

The well-founded sets that we have used to prove termination actually have a much broader

domain of application; they can serve as the basis for a proof by mathematical induction using

the following principle of well-founded induction:

Let W be a set with well-founded ordering > .
To prove P(w) holds fof every element w of W,

consider an arbitrary element w of W and prove that

P(w) holds under the assumption that

P(w °) holds for every element w " of W such that w > w".

In other words, in attempting to prove that every element of a well-founded set has a certain

property, we can choose an arbitrary element ®w of the set, assume as our induction hypothesis

that every element less than w (in the well-founded ordering) has the property, and prove that

w has the property too. (In the special case that no element of W is less than @w , the inductive

assumption does not tell us anything, and is therefore of no help in proving that w has the

property.)

For example, suppose we want to show that every integer greater than or equal to 2 can be

expressed as a product of prime numbers. We can use the principle of well-founded induction,

taking W to be the set of integers greater than or equal to 2, and » to be the ordinary ‘greater-
than” ordering, which is a well-founded ordering of W. Thus, to prove the desired property,

we let w be any element of W, and show that w can be expressed as a product of prime

numbers using the induction hypothesis that every element of W less than w can be expressed

as a product of prime numbers. The proof distinguishes between two cases: if W is a prime,

the property holds, because the product of the single prime w is ® itself. On the other hand, if

w 1s not a prime, it is the product of two integers w; and wp, each smaller than w and greater

than or equal to 2. Because wy and wy are each members of W less than w under the ordering

> , our induction hypothesis implies that each of them is a product of primes, and hence w is

also a product of primes. We then conclude by well-founded induction that every member of

W can be expressed as a product of primes. (Alternatively, we could prove the same property

taking the well-founded ordering x>% to be the properly-divides relation defined earlier, i.e.,

ylx and y= x. Clearly, if w is the product of wy and wp, then w >» w and w >» wp under this

ordering.)

The validity of the principle of well-founded induction is a direct consequence

of the definition of a well-founded set. For;’ suppose we have used the

induction hypothesis to prove that P(w) holds for an arbitrary w, but that

there actually exists some element Ww; of W such that -P(wy). Then for some

element wy, such that wy > w,, -P(wy) holds as well; otherwise, our proof

32

=

Manna & Waldinger The Logic of Computer Programming

using the induction hypothesis would allow us to conclude P(w,), contrary to

our supposition. The same reasoning applied to Wy implies the existence of

an element wg such thatwy > wg and ~P(wa), and so on. In this way we can

construct an infinite descending sequence of elements Wy,Wy,Ws,...0f

W, such that Ww,” Wy >» Wa >... contradicting the well-foundedness of W.

Many of the proof techniques we have already introduced may be regarded as applications of

the principle of well-founded induction. In the remainder of this section we will look back on

the invariant-assertion method, the subgoal-assertion method, and the well-founded ordering

method, to see how each of them may be viewed as an instance of well-founded induction.

In. introducing the invariant-assertion method to prove the partial correctness of the subtractive

gcd algorithm (Program A), we invoked ordinary mathematical induction on the number of

times control has passed through the loop label more since the beginning of the execution.

Alternatively, we can regard this method as an application of the principle of well-founded

induction, taking W to be the set of positive integers, and » to be the usual “greater-than”

ordering between them. The property we wish to prove is that, for every positive integer n,

the intermediate assertion will hold the nth time control passes through more.

To prove the desired property, we let n be any positive integer, and we show that the

intermediate assertion holds the nth time control reaches more, using the induction hypothesis

that the intermediate assertion holds the n’th time control reaches more, for every positive

integer n’ such that n > n’. The proof distinguishes between two cases: if n = 1, then control

has reached more for the first time, and the induction hypothesis gives us no information; we

prove that the intermediate assertion holds as a direct consequence of the input assertion.

(This corresponds to the verification condition for the initial path from start to more.) On the

other hand, if n >1, control has passed through more previously; our induction hypothesis tells

us (taking n’ to be n-l) that the intermediate assertion held the previous time control passed

through more. We use this induction hypothesis to show that the intermediate assertion still

holds. (This corresponds to the verification conditions for the paths from more around the loop

and back to more.) We can then conclude by the principle of well-founded induction that the

intermediate assertion holds every time control passes through more, i.e., that it ‘is an invariant

assertion. The balance of the proof, that the output assertion holds when the program halts, is

concluded in the usual way (corresponding to the verification condition for the path from more

to enough.) This shows that the invariant-assertion method may be regarded as an application

of the principle of well-founded induction.

In applying the subgoal-assertion method, we remarked that the mathematical induction

employed is precisely the reverse of that used in the invariant-assertion method. In fact, we

could also regard the subgoal-assertion method as an application of the well-founded induction

principle, but instead of basing the induction on the number of time control has passed

33

| LL

Manna & Waldinger The Logic of Computer Programming

through more since the execution began, we would consider the number of times control will

pass through more before the execution terminates. (This is a finite number if we assume that

the program does terminate.)

The invariant-assertion and the subgoal-assertion methods prove partial correctness, but do not

establish termination. It is possible to use the principle of well-founded induction to prove

termination as well as partial correctness. In fact, the well-founded ordering method for

proving termination may be regarded as another application of well-founded induction. For

instance, recall that to apply the well-founded set method to prove the termination of Program

A, we need to find a well-founded set W ordered by the ordering » and a termination

expression E(x y) such that whenever control passes through more, the value of E(x y) belongs

to W, and such that whenever control passes around the loop, the value of E(x y) 1s reduced
under the ordering >» . To phrase this method as a well-founded induction proof, we prove ‘the

property that if during a computation control passes through more, the computation will

terminate. The well-fownded set used as a basis for the induction is the set of pairs of

nonnegative integers, and the ordering 27 is defined by

(wy wy) >> (wy wy’) i f E(w; wy) > E(w,” wy’).

We show that the property holds for arbitrary values (w;w5) of the pair (x y) at more, assuming

the induction hypothesis that the program will terminate if control passes through more with

values (w;" wp’) of (x y) such that (wywp)>> (w," wy’), ie, such that E(w, w;) > E(w," w,").

Following the two well-founded sets in the termination proofs of the previous section, we can

either take E(x 9) to by (x y) itself, and > to be the lexicographic ordering between pairs of
nonnegative integers, or we can take E(x y) to be 2x+9, and > to be the usual greater-than
ordering between nonnegative integers. The details of the proof then correspond closely to the

steps in the well-founded set termination proof.

In proving partial correctness by the invariant-assertion and the subgoal-assertion methods, we

employed well-founded induction based on the number of steps in the computation; for this

reason they are classified as forms of computational induction. On the other hand, our proof
of termination employed an: induction independent of the computation; such proofs are

generally referred to as structural induction proofs. We have seen that both computational

induction and structural induction may be regarded as instances of well-founded induction. In

subsequent sections we will encounter this principle in many other guises.

34

Manna & Waidinger The Logic of Computer Programming

V. Total Correctness

So far we have considered correctness separately from termination; to prove that a program

halts and produces the desired result required two separate proofs. In this section we will

introduce a technique that establishes the total correctness of a program, i.e, its termination and

correctness, with a single proof.

In our previous correctness proofs we attached assertions to points in the program, with the

intended meaning that the assertion is to be invariant, that is to hold every time control passes

through the corresponding point. Conceivably, the assertion could be proved to be invariant

even though control never passes through the point in question. In particular, we can prove

that the output assertion is invariant even though the program never halts; thus, a separate

termination proof is required.

In the method we are about to introduce, we will also attach assertions to points in the program,

but with the intended meaning that sometime control will pass through the point and satisfy the

attached assertion. In other words, control may pass through the point many times without

satisfying the assertion, but control will pass through the point at least once with the assertion

satisfied; therefore, we call these assertions intermittent assertions. If we manage to prove that

the output assertion is an intermittent assertion at the program’s exit, we have simultaneously

shown that the program must halt and satisfy the output assertion. This establishes the

-program’s total correctness.

We will use the phrase

sometime Qat L

to denote that Q is an intermittent assertion at the label L, i.e., that sometime control will pass

through L with assertion Q satisfied. (Similarly, we could have used the phrase “always Q at

L" to indicate that Q is an invariant assertion at L.) If the entrance of a program is labelled

start and its exit is labelied enough, we can express the total correctness of the program with

respect to an input assertion P and output assertion R by

if sometime P at start

then sometime R at enough.

Generally, to prove this statement as a theorem, we must affix intermittent assertions to some of

the préogram’s intermediate points, and supply lemmas to relate these assertions. The proof of
these lemmas typically employs well-founded induction.

To illustrate this method we introduce a new program to compute the greatest:common divisor.

35

l —

Manna & Waidinger The Logic of Computer Programming

Program B (the symmetric algorithm):

input(xg yo)

start: (x 9) « (xg Yo)

more: if x =y then goto enough

reducex: if x>% then x « x-y

goto reducex

reducey: if y >x then y« y-x

goto reducey

got0 more

enough: output(Y).

This program is only intended to be used for positive ¥g and yg, whereas the previous Program

A can also be used when either ¥p=0 or yo =0.

The intuitive basis for this program rests on the following three properties of the integers:

(a) ulx and uly <=> ulx-y and uly |
(the common divisors of ¥-y and § are the same as those of ¥ and ¥),

(b) ulx and uly <=> ux and uly-x

(the common divisors of ¥ and y-x are the same as those of x and ¥), and

(c) max{u:uly}=9ify> 0

(any positive integer is its own greatest divisor).

We would like to use the intermittent-assertion method to prove the total correctness of
Program B. The total correctness can be expressed as follows:

Theorem: if sometime Xo > 0 and yo > O at start

then sometime y=max{u : ulxq and ule} at enough.

This theorem states the termination as well as the partial correctness of Program B, because it

asserts that control must eventually reach enough, the exit of the program, given that it begins

execution with positive xg and Yp.

To prove this theorem we need a lemma that describes the internal behavior of this program:

Lemma: if sometime x = a and y=b and a, b> 0 at more
or sometime x¥=a and y=»b and a, b> 0 at reducex

or sometime x =a and 9 =6 and a, 6 > 0 at reducey

then sometime y =max{u : ula and up} at enough.

36

Manna & Waldinger The Logic of Computer Programming

To show that the lemma implies the theorem, we assume that

sometime Xo > 0 and yo > O at start .

Then control passes to more, with ¥ and ¥ set to Xg and 9g respectively, so we have

sometime X=Xg and y=yo and Xp,yo > 0 at more.

But then the lemma implies that

sometime §y =max{u : ulxo and ulyo} at enough,

whichis the desired conclusion’of the theorem.

It remains to prove the lemma. We assume

sometime x =a and y=»4 and a, b> 0 at more

or sometime x =a and y=b and a, b> 0 at reducex

or sometime x =a and § =band a, b> 0 at reducey

and show that

sometime y =max{u : ule and ub} at enough.

The proof employs well-founded induction on the set of pairs of nonnegative integers, under

the well-founded ordering > defined by

(a b) >» (a° b’) if a+b>a’+b".

in other words, during the proof we will assume that the lemma holds whenever x=a’ and y=b’,
where a+b>a’+b’; i.e., we take as our induction hypothesis that

if sometime x=a’ and y= b’ and a’, "> 0 at more

or sometime X= a’ and y=4" and a’, b"> 0 at reducex

or sometime X=a and y=b’ and a’, b’> 0 at teducey
then sometime y =max{u : ule’ and ulb’} at enough.

The proof distinguishes between three cases.

Case a =b: Regardless of whether control is at mote, reducex, or reducey, control passes to

enough with y=», so that |

sometime y = b at enough.

37

——

Manna & Waldinger The Logic of Computer Programming

But in this case b=max{u : u(b) =max{u : ule and up}, by Property (c) above. Thus,

sometime %y=max{u : ule and up} at enough,

which is the desired conclusion of the lemma.

Case a>b: Regardless of whether control is at more, reducex, or reducey, control reaches

reducex and passes around the top inner loop, resetting x to a-6, so that

sometime x = a-b and y=b at reducex.

For simplicity, let us denote a-6 by a’ and b by 4". Note that

a, b> > 0,

a+b >a’+b’, and

max{u : ule’ and up} =max{u : ula~b and up} = max{u:uja and up}.

This last condition follows from Property (a) above.

Because a’, b’>0 and at b> a’ t b’, the induction hypothesis implies that

sometime § =max{u : ule’ and ulp’} at enough;

i.e., by the third condition above,

sometime y = max{u : ule and ub} at enough.

This is the desired conclusion of the lemma.

Case b> a: This case is disposed of in a manner symmetric to the previous case.

This concludes the proof of the lemma. The total correctness of Program B is thus established.

Let us see how we would prove the correctness and termination of Program B if we were using

the methods of the previous sections instead.

The partial correctness of Program B is straightforward to prove using the invariant-assertion

method introduced in Section II. The invariant-assertions at more, reducex and reducey, can all

be taken to be.

38

a

Manna & Waldinger The Logic of Computer Programming

x>0and y>0

and max{u : ulx and uly} =max{u : ufo and uly) ,

In contrast, it is awkward to prove the termination of this program by the well-founded

ordering approach we discussed in Section III; it is possible to pass from more to reducex, from

reducex to reducey, or from reducey to more without altering the value of any program variables.

Consequently, itis difficult to find expressions whose values are reduced whenever control

passes from one of these labels to the next. One possibility is to take the well-founded set to be

the pairs of nonnegative integers ordered by the lexicographical ordering; the expressions

corresponding to the loop labels are taken to be

(x+y 2) at more,

if x =4 then (xty 1) else (x+y 4) at reducex, and

if x <y then (x+y 0) else (x+y 3) at reducey.

It can be shown that as control passes from one loop label to the next the values of the

cot-responding expressions decrease. Although this approach is effective, it is unduly

complicated.

The above example illustrates that the intermittent-assertion method may be more natural to

apply than one of the earlier methods. It can be shown that the reverse is not the case: a proof

of partial correctness by either of the methods of Section II or of termination by either of the

methods of Section III can be rephrased directly as a proof using intermittent assertions. In this

sense, the intermittent assertion method is more powerful than the others.

The intermittent-assertion method was first formulated by Burstall[1974] and

further developed by Manna and Waldinger [1976]. Different approaches to

its formalization have been attempted, using predicate calculus (Schwarz
[1976]), a deductive system (Wang [1976]), and modal logic (Pratt [1976]).

39

Manna & Waldinger The Logic of Computer Programming |

VI. Correctness of Recursive Programs

Sofar, we have indicated repeated operations by a particular kind of loop, the iterative loop, ,

which is expressed with the goto or while statement. We are about to introduce a new looping

construct that ‘is in some sense more powerful than the iterative loop. This construct, the

- recursive cull, allows a program to use itself as its own subprogram. A recursive call denotes a

repeated operation because the subprogram can then use itself again, and so on.

For instance, consider the following recursive version of our subtractive gcd aigorithm

(Program A):

Program A (a recursive version):

gedminus(x y) <=if x= 0

then y

elseif y2x

then gedminus(x y-x)

else gedminus(y x) .

In other words, to compute the ged of inputs x and 9, test if x = 0; if so, return ¥ as the output;

otherwise test if y2 x; If so, return the value of a recursive call to this same program on inputs

x and y-x; if not, return the value of another recursive call, with inputs % and x. For example,

in computing the ged of 6 a.nd 3 we get the following sequence of recursive calls:

gedminus(6 3) <= gedminus(3 8) <= gedminus(3 3) <= gedminus(3 0) <= gedminus(0 3) <=3.

Thus, the value of gedminus(6- 3) is 3. Although a recursive definition is apparently circular, it

represents a precise description of a computation. Note that gedminus is a “dummy” symbol

and, like a loop label, can be replaced by any other symbol without changing the meaning of

the program.

A recursive computation can be infinite if the execution of one recursive call leads to the

execution of another recursive call, and so on, without ever returning an output. For example,

the program

gednostop(x y) <= if x = 0

then y

else if y2x

then gcdnostop(x yx)

else gednostop(x-y 9),

which is obtained from Program A by altering the arguments of the second recursive call,

40

Manna & Waldinger The Logic of Computer Programming

computes the ged of those inputs for which it halts. However, this program will not terminate

for many inputs, e.g. if x» 0 and y = 0 or if x0 and y = x. Thus, for x= 3 and y = 3 we

obtain the infinite computation

gednostop(3 3) <= gednostop(3 0) <= gednostop(3 0) <= gednostop(3 0) <=. . . ,

Our recursive version of Program A. describes essentially the same computation and produces

the same outputs as the iterative version. In fact, it is straightforward to transform any

iterative program into a recursive program that performs the same computation. The reverse

transformation, however, is not so straightforward; in translating a recursive program into a

corresponding iterative one, it is often necessary to introduce devices to simulate the recursion,

complicating the program considerably. Some computational problems can be solved quite

naturally by a recursive program for which there is no iterative equivalent of comparable

simplicity.

As a new specimen for our study of recursion we will introduce a recursive cousin of the

greatest common divisor algorithm of Euclid, which appeared in his Elements over 2200 years

ago.

Program C (the Euclidean algorithm):

gedrem(x y) <=ifx = 0
theny

eise gcdrem(rem(y x) x).

Here rem(y x) indicates the remainder when y is divided by x. Program C, like Program A,

computes the gcd of any nonnegative integers ¥ and %, where X and y are not both zero. The
correctness of this ‘program will be seen to depend on the following properties of the Integers:

(a) ulx and uly <=> ulx and ufrem(y x) if x=0
(the common divisors of ¥ and y are the same as those of ¥ and

rem(y x), if x= 0),

(b) u|0

(every integer divides 0),

(c) max{u:upj=yify>0

(every positive integer is its OWN greatest divisor), and

(d) x>rem(yx)20 ifx>0.

41

Manna & Waldinger The Logic of Computer Programming

The reader may be interested to see a proof of Property (a). Suppose that

ulx and uly and that x# 0. We need to show that ulrem(y x). We know that

x=k.u and y=1{-u, for some integers kB and 1. But rem(y x) is defined so
that 9 =q- x+rem(y x), where g is the quotient of § and x. Therefore rem(y x)

=y—qx=lu-gqkou=u(l-gqk) so that ulrem(y x), as we intended to
prove. The proof in the opposite direction is similar.

We would like to introduce techniques for proving the correctness and termination of recursive

programs. In proving the properties of iterative programs, we often employed the principle of

well-founded induction. We distinguished between computational induction, which was based

on the number of steps in the computation, and structural induction, which was independent of

the computation. These versions of the induction principle have analogues for proving

properties of recursive programs. We will illustrate these techniques in proving the correctness

and termination of the above recursive Euclidean algorithm (Program C).

To apply computational induction to Program C, we perform induction on the number of

recursive calls in the computation of gedrem(x y). (This number is finite if we assume that the

computation terminates.) Thus, in proving that some property holds for gedrem(x y), we assume

inductively that the property holds for gedrem(x’ 9’), where x” and §’ are any nonnegative
integers such that the computation of gedrem(x’ y’) involves fewer recursive calls than the
computation of gcdrem(x vy).

Now, let us use computational induction to show that Program C is partially correct with

respect to the input specification

x >0and y2 0 and (x=0or y= 0), |

and the output specification

gedrem(x y) =max{u : ulx and uly}

Thus, we must prove the property that

For every input ¥ and y such that

x 2 0 and y 2 0 and (x=0 or y= 0),
if the computation of gedrem(x y) terminates, then

gedrem(x y) =max{u : ulx and uly}.

Therefore, we consider arbitrary nonnegative integers ¥ and y and attempt to prove that the

above property holds for these integers, assuming as our induction hypothesis that the property

holds for any nonnegative integers x’ and y’ such that the computation of gedrem(x’ y’)

involves fewer recursive calls than the computation of gedrem(x y).

42

Manna & Waldinger The Logic of Computer Programming

Thus, we suppose that |

x 20and y20and (x=0 and y= 0),

and that the computation of gedrem(x 9) terminates. We would like to show that

gedrem(x y) =max{u : uly and ul).

Following the definition of gedrem, we distinguish between two cases.

If x= 0, then Program C dictates that

gedrem(x y)= 9. | |

But because we have assumed that x= O or y= 0 and that §2 0, we know that > 0. Therefore,

by Properties (b) and (c),

max{u : ulx and uly} =max{u : uly} =1y .

Thus,

gedrem(x y) = y = max{u : ulx and uly},

‘as we wanted to prove.

On the other hand, if x= 0, Program C dictates that

gedrem(x y) = gedrem(rem(y x) x).

Because a recursive call to gedrem(rem(y x) x) occurs in the computation of gedrem(x y), the

computation of gedrem(rem(y x) x) involves fewer recursive calls than the compuation of

gedrem(x y).

Therefore we would like to apply the induction hypothesis, taking x’ to be rem(yx) and y’ to
be x. For this purpose, we attempt to prove the antecedent of the induction hypothesis, i.e.,

rem(y x) 2 0 and x 2 0 and (rem(y x)= 0 or x= 0)

and that the computation of gcdrem(rem(y x) x) terminates. However, we know that rem(y x) 2 0
by Property (d), that x2 0 by the input specification, and that x= 0 by our case assumption.

Furthermore, we know that the computation of gedrem(rem(y x) x) terminates, because it is part

of the computation of gedrem(x 9), which has been assumed to terminate. Our induction
hypothesis therefore allows us to conclude that

43

Manna & Waldinger The Logic of Computer Programming

gedrem(rem(y x) x) = max{u : ujrem(y x) and ux} .

But, by Property (a),

max{u : ujrem(y x) and ulx} =max{u : ulx and uly},

and therefore

gedrem(x y) = max{u : ux and uly},

as desired. This concludes the proof of the partial correctness of Program C.

In the above computational-induction proof we were forced to assume that the computation

terminates. However, if we choose an appropriate well-founded ordering independent of the

computation, we can employ structural induction to prove termination as well as correctness.

For example, suppose we want to prove the termination of Program C for all inputs satisfying

the input specification; in other words,

For every input x and § such that
x > 0 and 9 2 0 and (x=0 or y= 0),

the computation of gedrem(x y) terminates.

The well-founded set which will serve as the basis for the structural induction is the set W of

all pairs (w,w,) of nonnegative integers, under the ordering > defined by

(wy; wy) >» (w," wy’) i fw >w'.

(Yes, the second component is ignored completely.)

To prove the termination property, we consider arbitrary nonnegative integers x and 9 and
attempt to prove that the property holds for these integers, assuming as our induction

hypothesis that the property holds for any nonnegative integers x’ and y’ such that

xy) > x vy), ie, x>x".

Thus, we suppose that

x 20and y2 0 and (x= 0 or y= 0). |

Following the definition of gcdrem, we again distinguish between two cases. If x= 0, the

computation terminates immediately. On the other hand, if x= 0, the program returns as its

output the value of the recursive call gedrem(rem(y x) x). Because x >rem(y x), by Property (d),
we have

44

|—

Manna & Waldinger The Logic of Computer Programming

(x 9) > (rem(y x) x),

and therefore we would like to apply the induction hypothesis, taking x’ to be rem(y x) and y”
to be x. For this purpose, we prove the antecedent of the induction hypothesis, that

rem(y X) 2 0 and x2 0 and (rem(y x) = 0 or x = 0),

using Property (d), the input specification, and the case assumption, respectively. The

consequent of the induction hypothesis tells us that the computation of gedrem(rem(y x) x), and
therefore of gedrem(x y), terminates. This concludes the proof of the termination of Program C.

Of course, we could have used structural induction, with the same well-founded ordering, to

prove the total correctness of Program C. For this purpose we would prove the property that

For every input x and ¥ such that
x20 and 92 0 and (x=0 or y= 0),

the computation of gcdrem(x y) terminates and
gedrem(x y) = max{u : ux and uly}.

The proof would be similar to the above termination proof.

Euclid, himself, presented a “proof” of the properties of his gcd algorithm. His

termination proof was an informal version of a well-founded ordering proof,

but his correctness. proof considered only two special cases, in which the

recursive call is executed precisely one or three times during the

computation. The principle of mathematical induction, which would have been

necessary to handle the general case, was unknown at the time.

The reader may have noticed that the proofs of correctness and termination for the recursive

program presented here did not require the invention of the intermediate assertions or lemmas

that our proofs for iterative programs demanded. He may have been led to conclude that

proofs of recursive programs are always simpler than proofs of the corresponding iterative

programs; in general, this is not the case. Often, in proving a property by the well-founded

induction principle, it is necessary to establish a more general property in order to have the

advantage of a stronger induction hypothesis. For example, suppose we wanted to prove that

Program C satisfies the property that

_gedrem(x y)lx.

If ‘we tried to apply an inductive proof directly, the induction hypothesis would yield merely
that

gedrem(rem(y x) x)rem(y x);

45

Manna & Waldinger The Logic of Computer Programming

this assumption is not strong enough to imply the desired property. To prove the property we

must instead prove a more general property, such as that

gedrem(x 9)lx a n d gedrem(x y)ly.

The induction hypothesis would then yield that

gedrem(rem(y x) x)rem(y x) and gedrem(rem(y x) x),

which is enough to imply the more general result. It may require considerable ingenuity to find

the appropriate stronger property that will enable the inductive proof to go through.

We have used structural induction to show the termination of a program, and we have

indicated how it can be used to show the total correctness of a program. We will now show

how structural induction can be used to prove an entirely different property: the equivalence

of two programs.

We say that two programs are equivalent with respect to some input specification if they

terminate for precisely the same legal inputs, and if they produce the same outputs when they

do terminate. We will write f{x)= g(x) if, either the computations of flx) and g(x) both
terminate and yield the same output, or if they both fail to terminate. Then we can say that f
is equivalent to g with respect to a given input specification if, for all x satisfying the input

specificaton, fix) = g(x).

Let us see how structural induction can be applied to prove the equivalence of the subtractive

ged algorithm (Program A) and the Euclidean gcd algorithm (Program C) we have introduced

in this section. Recall that the Euclidean algorithm is

gedrem(x y) <= if x= 0 |
then ¥

else gedrem(rem(y x) x),

and the subtractive algorithm is

gedminus(x y) <= if x= 0

then ¥

else if y > x

then gcdminus(x ix)
else gedminus(y x) .

The remainder function rem can be defined by the recursive program

46

—

Manna & Waldinger The Logic of Computer Programming

rem(uv) <= ifuc<v

then u

else rem(u-v v),

where v 1s assumed not to be zero.

To establish the equivalence of the two gcd programs, we need to prove that

if x20and y20and (x»0or y=0)

then gedrem(x y) = gedminus(x y).

The proof of this property is a straightforward application of structural induction, in which the

well-founded set is the set of pairs of nonnegative integers ordered by the lexicographic

ordering >». We consider arbitrary nonnegative integers X and § and attempt to prove that the

equivalence property holds for these integers, assuming as our induction hypothesis that the

property holds for any nonnegative integers Xx’ and 9’ such that (x y) > (x" 9").

Thus, we suppose that

x2 0 and 92 0 and (x=0.0r y= 0)

and attempt to prove that |

gedrem(x y) = gedminus(x y).

The proof distinguishes between several cases. If x= 0, both programs terminate and yield y as

their output. On the other hand, if x»0 and y <x, the Euclidean algorithm executes a
recursive call

gedrem(rem(y x) x),

or (by the definition of rem)

gedrem(y x).

In this case, the subtractive algorithm executes a recursive call

gedminus(y x).

Recall that x >9, and therefore that (x 9) > (y x). Thus, because y and x satisfy the input
specificaton

y2 0and x 2 0 and (y=0 or x= 0),

17

a

|

Manna & Waldinger The Logic of Computer Programming

our induction hypothesis yields that

gedrem(y x) = gedminus(y x),

1.e., (in this case)

gedrem(x y) = gedminus(x 9).

Finally, if x= O but 2 x, the Euclidean algorithm executes a recursive call

gedrem(rem(y x) x), |

or (by the definition of rem)

gedrem(rem(y—x x) x),

or (by the definition of gcdrem)

gedrem(x y-x).

In this case, the subtractive algorithm executes a recursive call

gedminus(x y-x).

Note that x> 0, and therefore that (x §)>(x y-x). Thus, because here x and y-x satisfy the
input specification

x> 0 and y-x2 0 and (x= 0 or y—x= 0),

the induction hypothesis yields that

gedrem(x y-x) & gedminus(x y-x),

1.e., (in this case)

gedrem(x y) = gedminus(x y).

This concludes the proof of the equivalence of the two gcd algorithms,

The two ged programs we have shown to be equivalent both happen to terminate for all legal

inputs. However, the same proof technique could be applied as well to show the equivalence of
two programs that do not always terminate, provided that they each fail to terminate for the

same inputs.

48

|—|

Manna & Waldinger The Logic of Computer Programming

In general, to solve a programming problem can require not one but a system of recursive

programs, each of which may call any of the others. Even our simple recursive Euclidean

algorithm can be regarded as a system of programs, because gcdrem calls the recursive

remainder program rem. Everything we have done in this section can be extended naturally to

treat such systems of programs.

Various forms of computational induction were applied to recursive programs

by deBakker and Scott [1969 }, Manna and Pnueli [1970], and Morris [197 13.

The structural induction method was first presented as a technique for

proving properties of recursive pograms by Burstall[1969]. A verification

system employing this method was implemented by Boyer and Moore [1975].

49

Manna & Waidinger The Logic of Computer Programming

Vii. Program Transformation

Up to now we have been discussing ways of proving the correctness and termination of a given

program. We are about to consider logical techniques to transform and improve the given

program. These transformations may change the computation performed by the program

drastically, but they are guaranteed to produce a program equivalent to the original; we

therefore call them equivalence-preserving transformations. Usually, a sequence of such

transformations is applied to optimize the program, i.e., to make’it more economical in its use of

time or space.

Perhaps the simplest way of expressing a transformation i$ as a rule that slates that a program

segment of a certain form can be replaced by a program segment of another form.

For example, an assignment statement of form

xe flaca... a),

which contains several occurrences of a subexpression a, may be replaced by the program

segment

ye

3 xe fyy...9,

where 9 1s a new variable. This transformation often optimizes the program, because the

subexpression a will only be computed once by the latter segment. For instance, the assignment

x « (a%)3 + 20a)? + 3a")

may be replaced by the segment

ya

x « 93 t 29% t 39.

Such elimination of common subexpressions is performed routinely by optimizing compilers.

Another transformation: in a program segment of form

- if p .
then a

else if p

then 8

else

50

Manna & Waidinger The Logic of Computer Programming

the second test of p, if executed, will always yield false; the expression 8 will never be

evaluated. Therefore, this segment can always be replaced by the equivalent segment of form

if p
then a

else 7.

Another example: a while loop of form

while p(x) and g(x 3) do y« f(y),

where 9 does not occur in p(x), may be replaced by the equivalent statement of form

if p(x) then while g(x y) do y « f(y).

The former segment will test both p(x) and q(x 9) and execute the assignment y« fy)
repeatedly, even though the outcome of the test p(x) cannot be affected by the assignment

statement. The latter segment will test p(x) only once, and execute the while loop only if the

outcome 1s true. Therefore, this transformation optimizes the program to which it is applied.

An important class of program transformations are those that effect the removal of recursive

calls from the given program. Recursion can be an expensive convenience, because its

implementation generally requires much time and space. If we can replace a recursive call by

an equivalent iterative loop, we may have achieved a great savings.

One transformation for recursion removal states that a recursive program ofform a:

Fu) <= if pu)

then glu) - A
else F(h(u)):

can be replaced by an equivalent iterative program of form @:

input(u)

more: if pu) then output(g(u))
u « h(u)

got0 more .

To see that the two progams are equivalent, suppose we apply each program

to an input a. First, if pa) is true, each program produces output g(a).

Otherwise, if pla) is false, the iterative program will replace vu by h(a) and go
to more: thus, its output will be the same as if its input had been Aa). In this

Jl

—

Manna & Waidinger The Logic of Computer Programming

case, the recursive program will return F{A(a)); thus, its output, too, is the

same as if its input had been h(u).

For example, this transformation will enable us to replace our recursive Euclidean algorithm
(Program C)

gedrem(x y) <=if x= 0

then »

else gedrem(rem(y x) x)

by the equivalent iterative program

input(x y)

more: if x= 0 then output(y)

(x 9) « (rem(y x) x)
got0 more .

For some forms of recursive programs, the corresponding iterative equivalent, is more complex.

For instance, a recursive program of form

F(u) <=if p(u)

then g(u)

else k(u) t F(A(u))

can be transformed into the iterative program of form

input(u)
ze 0

more: if p(u)

then output(z+g(u))

else (u 2)« (h(u) z+k(u))

got) more.

However, the iterative program requires the use of an additional variable z to maintain a

running subtotal. A more complex recursive program, such as one of form

F(u) <=if p(u)

then g(u)

else k(F(h (u)) F(hx(u))),

cannot be transformed into an equivalent iterative program at all without introducing

considerable intricacy.

52

| mo

Manna & Waldinger The Logic of Computer Programming

Although not every recursive program can be transformed readily into an equivalent iterative

program, an iterative program can always be transformed into an equivalent system of

recursive programs in a straightforward way. This transformation involves introducing a

recursive program corresponding to each label of the given iterative program. For example, if

the iterative program contains a segment of form

Ll: if p(x)

then output(&))

else x « h(x)

goto L?,

the corresponding recursive program will be

Li(x) <= if p(x)

then g(x)

else L2(A(x)).

The idea behind this transformation is that LI{(@) denotes the ultimate output of the given

iterative program if control passes through label L1 with x = a. By this transformation we can

replace our symmetric ged algorithm (Program B) by an equivalent system of recursive

programs. The original program may be written as

input(x y) |

start:)

more: if x = 9 then output@)

reducex: if x>y then xe Xx-y

goto reducex

reducey: if y>x then ye y-x

goto reducey

got0 more.

The equivalent system of recursive programs is :

start(x y) <= more(x y)

more(x y) <= If x=y then y else reducex(x y)

reducex(x y) <= if x>y then reducex(x-y y) else reducey(x y)

reducey(x y) <= if y>x then reducey(x y-x) else more(x y).

The output of the system for inputs x and y is the value of start(x y). This transformation

does not improve the efficiency of &he program, but the simplicity of transforming an iterative

53

Manna& Waidinger The Logic of Computer Programming

program into an equivalent recursive program, and the complexity of performing the opposite

transformation, substantiates the folklore that recursion is a more powerful programming

feature than iteration.

Paterson and Hewitt [1970] have studied the theoretical basis for the

difficulty of transforming recursive programs into equivalent iterative

programs. The reverse transformation, from iterative to recursive programs,

is due to McCarthy [1962]

Equivalence-preserving transformations have been studied extensively, and

some of these have been incorporated into optimizing compilers. The text of

Aho and Ullman [1973] on compilers contains a chapter on optimization.

Some more ambitious examples of equivalence-preserving program

transformations are discussed by Standish et al. [1976] An experimental
system for performing such transformations was implemented by Darlington

a n d Burstall [1973]. .

The above tansformations are all equivalence preserving: for a given input, the transformed

program will always produce the same output as the original program. However, we may be ,

satisfied to produce a program that computes a different output from the original, so long as it

still terminates and satisfies the same input-output assertions. For example, if we are

optimizing a program to compute the square-root of a given real number within a tolerance, we

will be satisfied if the transformed program produces any output within that range. In the

remainder of this section, we will discuss the correctness-preserving transformations; such a

transformation yields a program that is guaranteed to be correct, but that is not necessarily

equivalent to the original program.

Correctness-preserving transformations are applied to programs that have already been proved

to be correct; they use information gathered in constructing the proof as an aid in the

transformation process: In particular, suppose we have a partial-correctness proof that employs

an invariant assertion i{nverient(x y) at some label L, and a well-founded-ordering termination

proof that employs a well-founded set W and an expression E(x y) at L. Then we can insert

after L any program segment F with the following characteristics:

(1) If invariant(x vy) holds, then the execution of F terminates and invariant(x y) is

still true afterwards. (Thus, the altered program will still satisfy the original

in-put-output assertions.)

(2) Jf invariant(x y) holds, then the value of E(x y) in the well-founded set is

reduced or held constant by the execution of F. (Therefore, the altered

program will still terminate.)

54

E—

Manna & Waldinger The Logic of Computer Programming

For example, suppose that we have proved the partial correctness of a program by means of the
invariant assertion

L: {x20 and 92 0 and x.y= k}

and that we have proved its termination by means of the expression

E(x y) = x

over the nonnegative integers. Then we may insert the statement

if even(x) then (x y) «(x/2 2-9)

after L, without destroying the correctness of the program or its termination.

Note that the above transformation does not dictate what segment F is to be inserted, nor does

it guarantee that the altered program will be more efficient than the original. Furthermore,

even though it.-preserves the correctness of the transformed program, it may cause it to produce

a different output from the original program.

Let us now apply these techniques to transform our subtractive gcd algorithm (Program A) into

the so-called binary gcd algorithm. We reproduce Program A below, introducing a new

invariant assertion in the middle of the loop body:

input(xg yo)

{x02 0 and 992 0 and (xg= 0 or yp» 0) }

(x 9) « (xo Yo)

more: {x2 0and y20and (x«0ory=0)
and ged(x 9) = ged(xg %o)}

if x = 0 then goto enough

{x>0 and y 20 and ged(x y) = ged(xq yp)}

if y 2x then y « y-x else (x y) « (yx)

got0 more

enough:{ y = ged(xo yo)}
output(y) .

The new assertion

x>0 and y 2 0 and ged(x y) = ged(xg yo)

is equivalent to our original loop assertion at more, and is included because we want to insert

new statements at this point. In formulating the invariant assertions for this program, we have

used the abbreviated notation ged(x 9) in place of the expression max{u : ulx and uly }.

55

|

Manna & Waidinger The Logic of Computer Programming

Recall that to prove the termination of this program by the well-founded ordering method, we

used the expression E(x 9)=(x y) over the set of ail pairs of nonnegative integers, with the
lexicographic ordering.

Now, suppose that we know three additional properties of the ged:

(a) ged(x 9) = ged(x/2 y) if ¥ is even and ¥ is odd
(b) ged(x 9) = ged(x 9/2) if x is odd and y is even
(c) ged(x 9) = 2. ged(x/2 y/2) if x and § are both even.

Then we can use these properties and the above correctness-preserving transformation

. technique to introduce three new statements into the body of the program loop.

Property (a) will allow us to divide x by 2 when ¥ is even and 9 is odd, without changing the

value of ged(x y) and, hence, without affecting the truth of the new invariant

x> 0 and y2 0 and ged(x y) = ged(xg yo).

Furthermore, the value of the expression (xy) used to prove termination is reduced in the
lexicographic ordering if ¥ is divided’ by 2. Similarly, Property (b) will allow us to do the same

for yif y is even and x is odd. Consequently, we can apply the , correctness-preserving
-transformation to introduce the two new statements

if even(x) and odd(y) then x « x/2

if odd(x) and even(y) then 9 « y/2

after the new invariant. :

Property (c), on the other hand, cannot be applied so readily, because dividing both x and ¥ by

2 will divide ged(x 9) by 2 and disturb the invariant. To restore the balance, let us generalize

ail the invariant assertions, replacing

ged(x y) = ged(xo yo)

by

2+ ged(x 9) = ged(xg yo),

where z is a new program variable. We can then preserve the truth of the invariant by

multiplying z by 2 when we divide both ¥ and y by 2. Thus, we introduce the new statement

if even(x) and even(y) then (x y 2) « (x/2 9/2 2. 2).

56

Manna & Waidinger The Logic of Computer Programming

The altered program will still terminate, because if x and y are even, the expression (x y) used
to prove termination will then be reduced in the lexicographic ordering.

To introduce the new variable z into the intermediate assertions, we must also adjust the initial

and final paths of our program. To ensure that the generalized assertion will hold when

control first enters the loop, z must be initialized to 1. Furthermore, when control ultimately

leaves the loop with x= 0, the output returned by the program must be zy rather than ¥,

because then z.y=2- gcd(0 y) =z. ged(x y) = ged(xg yo). Therefore, we introduce the

assignment §« z-% into the final path of the program.

Our generalized program is then

input(xog 9)

{xg2 0 and yo 2 0 and (¥g= O or yo» 0) }

(x92) «(xg 901)

more: {x20 and 92 0 and (x=» 0 or y= 0)

and z- ged(x y) = ged(xo yo) }

if x = 0 then goto enough

{x>0 and 92 0 and 2+ ged(x y) = ged(%g yo)}

if even(x) and odd(y) then x « x/2 I 6 9

if odd(x) and even(y) then yt y/2 SRY ¢%9
if even(x) and even(y) then (x y2) «(x/29/22:2)................... (3)

{x>0 and y2 0 and z+ ged(x y) = ged(xg 90)}

if y2x then y « y-x else (x y) « (yx)

got0 more

enough: ye2z2-9

{ 9 = gedlxo yo)}

output(p).

(The enumeration oh the right is added for future reference.) The correctness-preserving

transformation does not ensure that this program will run faster than the original program, but

only that it satisfies the same input-output assertions and that it still terminates.

To improve our program further, we introduce another correctness-preserving transformation.

If x is even and y is odd, the assignment statement Xt ¥/2 preserves the truth of the invariant
assertion

x> 0 and 92 0 and ged(x y) = ged(xp Yo)

and, so long as x> 0, reduces the value of the expression (x 9) used to prove termination.
Therefore, if ‘we replace the conditional statement

57

—

Manna & Waldinger The Logic of Computer Programming

if even(x) and odd(y) then x « x/2 (1)

by the while statement

while eden(x) and odd(y) and x> 0 do x t x/2, (17)

we have maintained the correctness and termination of the program. The assignment statement

will then be applied repeatedly until ¥1s odd.

Similarly, if x is odd, y is even, and y> 0, the assignment % « 9/2 will preserve the invariant

assertion and reduce the termination expression; therefore, the conditional statement

if odd(x) and even(y) then y t 9/2 (2)

can be replaced by the while statement

while odd(x) and even(y) and y> 0 do yt 9/2. (27)

In the same way, the conditional statement

if even(x) and even(y) then (x y 2) t (x/2 y/2 2.2) (3)

can be replaced by the while statement

while even(x) and even(y) and (x> 0 or y > 0) do (x y 2) t (x/2 9/2 2. 2). (3%)

The condition "x > 0 or 9> 0” guarantees that the assignment (x yz) « (x/2 9/2 2. z) reduces

the value of the expression (x §) in the lexicographic ordering.

In the while statement

while even(x) and odd(y) and x> 0 do x t x/2, (17)

the truth of the test "odd(y) and x > 0” cannot be affected by the assignment statement x « x/2;

therefore, using an equivalence-preserving transformation we mentioned earlier, we can replace

the while statement by

if odd(y) and x > 0 then while even(x) do x t x/2. (17)

The same transformation can be used to transform

while odd(x) and even(y) and y > 0 do y « 9/2 2")

into

58

Manna & Waidinger The Logic of Computer Programming

if odd(x) and y > 0 then while even(y) do y « 9/2, (277)

and the statement

while even(x) and even(y) and (x > 0 or y > 0) do (x y 2) « (x/2 y/2 2. 2) (37)

into

if (x>0 or 9>0) then while even(x) and even(y) do (x y 2) « (x/2 y/2 2.2). (3’)

Because all of these statements preserve the truth of the invariant x > 0, the test x> 0 can be
dropped from (1 ’’), and the test (x> 0 or y > 0) can be dropped from (3).

The final resulting program is then

Program D (the binary algorithm)

input(x, Yo)
(x y 2) « (xg 50 1)

more: if x=0 then goto enough

if odd(y) then while even(x) do x « x/2

if odd(x) and y > 0 then while even(y) do y « /2
while éven(x) and even(y) do (x y 2) { (x/2 9/2 2.2)

if y 2 x then y « y—x else (x 9) « (y x)

got0 more

enough: y «zy.

output(y) .

Although the transformations we applied are not afl guaranteed to produce optimizations, this
algorithm turns out to be significantly faster than the given subtractive algorithm If

implemented on a binary machine, where division and multiplication by 2 can be performed

quite quickly by shifting words to the right or left.

The binary ged algorithm is based on one discovered by Silver and Terzian
(see Knuth [1969]). An analysis of the running time of this algorithm has

been performed by Knuth and refined by Brent [1976]

The correctness-preserving transformations we used to produce the binary

- ged algorithm are in the spirit of Gerhart [1975] and Dijkstra [1976]

We have presented program transformations as a means of improving the efficiency of a given

program. In fact, the existence of such transformations may aid in ensuring the correctness of

programs as well. A programmer can safely ignore efficiency considerations for a while, and

59

} —

Manna & Waldinger The Logic of Computer Programming

produce the simplest and clearest program possible for a given task; the program so produced is

more likely to be correct, and can be transformed to a more efficient, if less readable, program

at a later stage.

Program transformation as a method for achieving more reliable programming

has been advocated by Knuth [1974] and Burstall and Darlington [1977]. The

latter authors implemented an interactive system for the transformation of

recursive programs. Wegbreit [1979] illustrates how a transformation system

can be guided by on analysis of the efficiency of the program being

transformed, thus ensuring that the program Is improved and not merely
transformed.

One area for which the application of program transformations has been

particularly well explored is the representation of data structures: programs
written in terms of abstract data structures, such as sets or graphs, are

transformed to employ more concrete representations, such as arrays or bit

strings, instead. By delaying the choice of representation for the abstract

data structure until after the program is written, one can analyze the program

to ensure that an efficient representation is chosen. This process is

examined, for example, in Earley [197 1] and Hoare [1972]. Experimental
implementations have been constructed by Low [1974], Schwartz [1974], and

Guttag et al. [1977] ‘

60

| —_—

Manna & Waldinger The Logic of Computer Programming

Vil. Program Development

In the previous section we discussed logical techniques for transforming one program into

another that satisfies the same specifications. In this section we will go one step further and

introduce techniques for developing a program from the specifications themselves. These

techniques involve generalizing the notion of transformation to apply to specifications as well as

to programs. The programs produced in this way will be guaranteed to satisfy the given

specifications, and thus will require no separate verification phase.

To illustrate this process we will present the systematic development of a recursive and an

iterative program to compute the ged function. From each derivation we will extract some of

the principles frequently used in program development. We will then show how these

principles can be applied to extend a given program to achieve an additional task. In

particular, we will extend one of our gcd programs to compute the “least common, multiple” (lem).

of two integers as well as their ged .

Let us first develop a recursive program for computing the ged. We require that the desired

program gedgoal(x y) satisfy the output specification

gedgoal(x y) = max{u : ulx and uly},

where x and y are integers satisfying the input specification |

x20 and 92 0 and (xw 0 or y= 0).

The set constructor {u :...} 1s admitted to our specification language’ but is not a primitive of

our programming language. We must find a sequence of transformations to produce an

equivalent description of the output that does not use the set constructor or any other

nonprimitive construct. This description will be the desired primitive program. In what

follows we will exhibit a successful sequence of transformations, without indicating how the

next transformation at a given stage iS selected.

The transformations we employ for this example embody no knowledge of the ged function

itself, but some sophisticated knowledge about functions simpler than the gcd, such as the

following:

For any integers u, v, and w,

61

Manna & Waldinger The Logic of Computer Programming

a upe>.ii v = 0
(any integer divides zero),

(b) uly and ujwe> up and ulw-v ’

(the common divisors of v and w are the same as those of » and w-v) ,

(©) max{u : up}=>v if v > 0
(any positive integer is its own greatest divisor).

In applying these transformations, we will produce a sequence of goals; the first will be derived

directly from the output specification, and the last will be the desired program itself. Our

initial goal is

Goal 1. Compute max{u : ulx and uly},

for any x and y satisfying the input specification. The transformation (b) above,

uly and ujw =>' uj and ulw-v

applies directly to a subexpression of Goal 1, yielding

Goal 2. Compute max{u : ux and uly-x}.

Note that Goal 2 is an instance of our output specification, Goal I, but with ¥ and y-x in place

of the arguments x and y. This suggests achieving Goal 2 with a recursive call to gedgoal(x y—

x), because the gedgoal program is intended to satisfy its output specification for any

arguments satisfying its input Specification.

To see that the input specification is indeed satisfied for the arguments x end y—x of the

proposed recursive call, we establish a subgoal to prove the input condition

Goal 3. Prove x2 0 and y-x2 0 and (x= 0 or y-x = 0).

This input condition is formed from the original input specification by substituting the

arguments x and y-x for the given arguments X and J .

Furthermore, we must ensure that the proposed recursive call will terminate. For this purpose,

we will use the well-founded ordering method of Section IV; we establish a subgoal to achieve

the following termination condition

62

| —

Manna & Waidinger The Logic of Computer Programming

Goal 4. Find a well-founded set W with ordering > such that

(x 9) eW and (x y-x) eW

and (x 9) > (x y-1).

Let us consider the input condition (Coal 3) first. Because x has been assumed nonnegative by

our original input specification, Goal 3 can be reduced to the two subgoals,

Goal 6. Prove y2¥,

and

Goal 6. Prove (x= 0 or y= x).

We cannot prove or disprove Coal 5 -- it will be true for some inputs and false for others --

so we will consider separately the case for which this condition is false, i.e, 9 <x. This case

analysis will yield a conditional expression, testing if 9 <x, in the final program.

Case y < x: g

We cannot achieve Goal 5 in this case. In fact, the proposed recursive call does not satisfy its

input condition; therefore, we try to find some other way of achieving one of our higher goals.

Using the logical identity

P and Q <=> Qand P,

we see that Goal 1 1s an instance of itself, with x replaced by ¥ and’ y by x. This suggests

achieving Goal | with the recursive call gedgoal(y x). For this purpose we must establish the

input condition

Goal 7.'y20 and x 2 0 and (y=0 orx = 0)

and the termination condition

Goal.8. Find a well-founded set W with ordering > such that
(x 9 eW and (yx) eW

and (xy) > (y x).

Goal 7 is achieved at once; it is a simple reordering of our original input specification. We can

achieve Goal 8 by taking W to be the set of pairs of nonnegative integers, because x and y are

known to be nonnegative by our input specification. In this case y<¥, so we take our well-

founded ordering > to be the usual > ordering applied to the first components of the pairs. (In

63

Manna & Waidinger : The Logic of Computer Programming

other words, (uu)> (v,v,) if u;>v,.) Having established the input condition and the

termination condition, we are justified in returning the recursive call gedgoal(y x). Thus, the
partial program completed at this stage is

gedgoal(x 9) <= if 9 <x

then gedgoal(y x)
else. . ..

It remains to consider the alternate branch of the case analysis, in which y 2x. This case
corresponds to the else branch of the final program.

Case y2 x:

Here, we have established Goal 5, a subgoal of the input condition for the proposed recursive

call gedgoal(x y-x). It remains to prove the other subgoal of the input condition, Goal 6, that

x= (0 or y=x. Again, we cannot prove or disprove either disjunct of this goal because they

will be true for some inputs and false for others. Thus, we can make either x= 0 or y=x a

basis for a case analysis; we choose the former disjunct and consider the case in which ¥ = 0 is

false.

Case x= 0:

We cannot achieve Goal 6 here, so we are prevented from introducing the recursive call

gedgoal(x y-x). We therefore again attempt to apply alternate transformations to the higher-
level goals. Because in this case x= (0, Transformation (a),

uly => true if ve=0

applies to the subexpression ulx of Goal 1, yielding

Goal 9. Compute max{u : true and uly}.

Applying the logical transformation

true and P => P

produces

Goal 10. Compute max{u : uly}.

Because 92 0 and (x #.or y=... by our original input specification, and ¥= 0, by our case

condition, we know that y> 0 at this point; therefore, we can apply Transformation (c)

64

To

Manna & Waidinger The Logic of Computer Programming

max{u : ufp}e> v if v > 0

yielding :

Goal 11. Compute y .

We have thus reduced the goal in this case to the task of computing 4%, which involves no

nonprimitive constructs. The desired program may simply output y. The partial program we
have constructed so far is

gedgoal(x 9) <= if y<x

then gedgoal(y x)
else if x= 0

then y
else....

Finally, we consider the remaining branch in our case analysis.

Case x» O:

Here, the input condition (Goal 3) for our proposed recursive call gedgoal(x y-x) 1s satisfied; it
remains, therefore, to consider the termination condition (Goal 4):

Find a well-founded set W with ordering > such that
(x y)eW and (x y-x)eW
and (x y) > (x y-x).

For the previous recursive call, gedgoal(y x), we have taken W to be the set of pairs of
nonnegative integers, and > to be the usual > relation on the first components of the pairs. To

ensure the termination of the final program, it is necessary that W and > be the same for both

recursive calls. Unfortunately, the first argument of the proposed recursive call gedgoal(x y-x)

is x itself, and it is not so that (x y) » (x y-x) in the ordering » we have employed. We

therefore attempt to alter » to establish the termination conditions of both recursive calls

gedgoal(y x) and gedgoal(x y-x).

Because in this case It is known that ¥> O (Le., X= 0 and ¥ 2 0), we have that > y-x. We

therefore extend the ordering to examine the second components if it happens that the first

components are equal; in other words, we revise » to be the lexicographic ordering on the pairs

of nonnegative integers. With the new ordering >, both recursive calls can be shown to

terminate. We have thereby established Goal 4, and the program can output gedgoal(x y-x) In
this case.

Our final program is

65

:

Manna & Waldinger The Logic of Computer Programming

gedgoal(x y) <= if y<x

t h en gcdgoal(y x)
else If x=0

then %

else gedgoal(x y-x).

This program is similar to our subtractive ged algorithm (Program A), but its tests are

performed in the reverse order.

Note that in performing the above derivation, we have ensured that the derived program

terminates and satisfies the given specifications; thus, we have proved the total correctness of

the program in the course of its construction.

From the above example, we may extract some of the basic principles that are frequently used

in program development.

® transformation rules. The program is developed by applying successive

transformation rules to the given specifications. The rules preserve the

meaning of the specifications, but try to replace the nonprimitive

contructs of the specification language by primitive constructs of the

programming language.

® conditional introduction. Some transformation rules require that certain

conditions be true before the rules can be applied. When a

transformation requires a condition that we cannot prove or disprove,

we introduce a case analysis based on that condition, yielding a

conditional expression in the ultimate program.

® recursion introduction. When a subgoal is an instance of the top goal

(or any higher-level subgoal), a recursive call can be introduced,

provided that the input specification of the desired program is satisfied

by the new arguments, and the termination of the recursion can be

guaranteed.

The above example illustrated the construction of a recursive program from given

specifications. If we wish to contruct an iterative program instead, alternate techniques are

necessary. In our next example we will illustrate some of these techniques.

In constructing the recursive program we did not allow ourselves to use any of the properties

we know about the ged function itself, but only the properties of subsidiary functions such as

66

| —

Manna & Waldinger The Logic of Computer Programming

division and subtraction. In constructing the iterative program, however, we facilitate the

process by admitting the use of several properties of the gcd function itself:

For any integers u and v

(a) gcd(u v)=v ifu=0andv>0

(b) gcd(u v)=ged(rem(v u) u) ifu>0and vz20,

where rem(v u) is the remainder of dividing v by u. We further simplify the task by assuming

the stronger input assertion

xo> 0 and 99> 0.

We write our goal directly in terms of the gcd function

Goal 1. input(xgy yo)

{xo> 0 and yo > 0 }

achieve z = ged(xg Yo)

{ 2 = ged(xp yo }

output(z) .

Here, to achieve a relation means to construct a program segment assigning values to the

program variables so that the relation holds. Note that we have annotated the goal with the

program’s input and output assertions.

It is understood that "ged" is part of the assertion language but not a primitive construct of our

programming language, so it does not suffice merely to set Z to be ged(xg yo); we are forced to

rephrase our goal in terms of more primitive constructs.

Because xq and 9p are input values, which we will want to refer to later, we introduce new

program variables x and § whose values can be manipulated. Consequently, the above goal is

replaced by the equivalent subgoal

Goal 2. input(xg ¥o)

{x9>0 and 99> 0)

achieve z='ged(x 9) and ged(x y) = ged(xg yo)

{z= ged(xo 30) }

output(z) .

Using Property (a), that '

67

| —

Manna & Waldinger The Logic of Computer Programming

ged(uv)=v ifu=0andv>0,

we can reduce Goal 2 to the following goal,

Goal 3. input(xg Yo)

{x0> 0 and %> 0}

achieve z=9y and ged(x 9) = ged(xg yo) and x= 0 and y> 0
{ 2 = ged(xo Yo) }

output(z).

We can now achieve z =% by setting z to be 9 before exiting from the program. We choose to

achieve the remaining conjunction by introducing a loop whose exit test is x= 0, and whose

invariant assertion is ged(x y) = ged(xg 90) and y> 0. (To be certain that ged(x 9) is defined, we

must add the invariant x 2 0, as well.) On exiting from such a loop, we can be sure that all the

conjuncts are satisfied. The desired program will be of the form

Goal 4. Input(xg yo)

{x0> 0 and %9> 0 }

achieve ged(x 9) = ged(xg yo) and x2 0 and > 0

more: { ged(x 9) = ged(xg 9p) and x2 0 and ¥> 0}

if x = 0 then goto enough

achieve ged(x y) = ged(xp yo) and x2 0 and y> 0

while guaranteeing termination

got0 more

enough: z«9y

{ 2 = gedlxo yo) }

output(z).

The variables x and 9 can be initialized to satisfy the invariant assertion easily enough by

setting x to xo and y to yp. In constructing the loop body, we must ensure not only that the

invariant is maintained, but also that the values of the program variables x and y are altered so

that the program will ultimately terminate, i.e., so that eventually x= 0. For this purpose, we

require that x be strictly reduced with each iteration.

To reduce x» while maintaining the invariant assertion, we use the above Property (b) of the ged
function, that !

ged(u v) = ged(rem(v vu) uv) if u> 0 and v 2 0,

and the additional property of the remainder function, that

0 <rem(pu)<uifu>0andv2O0.

68 .

Manna & Waldinger The Logic of Computer Progrrmming

Because we know that x and § are positive (by the exit test and the invariant assertion), we can

achieve the requirements for the loop body by updating x and y to be rem(y x) and x,
respectively. The final program, complete with its annotations, is

input(xy yo)

{xo>0 and 99> 0}

(x 9) « (xo Yo)

more: { ged(x y) = ged(xg 9p) and x2 0 and 9> 0 }

if x = 0 then goto enough

(x y) « (rem(y x) x)
got0 more

enough: z2e¢9y

{ 2 = ged(xo yo) }

output(z).

This 1s an iterative version of the Euclidean gcd algorithm (Program C).

The above example allows us to extract some additional principles of program development:

® variable introduction. Introduce program variables that can be

manipulated in place of input values, and rewrite the goal in terms of the

program variables.

® iteration introduction. If a goal is expressed as a conjunction of several

conditions, attempt to introduce an iterative loop whose exit test ‘i$ one of

the conditions and whose invariant assertion is the conjunction of the
others.

There are many other program development techniques besides those encountered in the two

examples above. Some of these are listed here:

® generalization. We have observed earlier that in proving a theorem by mathematical

induction, it is sometimes necessary to strengthen the theorem, so that a stronger induction

hypothesis can be used in the proof. By the same token, in deriving a recursive program it is

sometimes necessary to generalize the program’s specifications, so that a recursive call to the

program will satisfy 5 desired subgoal. Thus, in constructing oc program to sort an array with
elements Ag, Ay,.... A,,, we may be led to construct a more general program to sort an arbitrary

segmentAj, Aj 1... .. Aj. Similarly, in constructing an iterative program we may need to
generalize a proposed invariant assertion, much as we were forced to generalize the invariant

69

Manna & Waldinger The Logic of Computer Programming

assertion ged(x y) = ged(xg yo) to be z-ged(x y) = ged(xg 99) in developing the binary’ gcd

algorithm (Program D) in Section VIL |

eo simultaneous goals. Often we need to construct a program whose specifications involve

achieving a conjunction of two or more interdependent conditions at the same time. The

difficulty is that in the course of achieving the second condition we may undo the effects of

achieving the first, and so on. One approach to this problem is to construct a program to

achieve the first condition, and then extend that program to achieve the second condition as

well; in modifying the program we must protect the first condition so that it will still be

achieved by the altered program. For instance, a program to sort the values of three variables

x, y, and z must permute their values to achieve the output specification "x sy and y <2."

To construct such a program, we may first construct a program to achieve XS y and then

extend that program to achieve y £2 as well, while protecting ¥ < vy.

o efficiency. To ensure that the program we contruct will be efficient, we must be able to

decide between alternate means of achieving a given subgoal. We must consider the effects of

the chosen transformations on the time and space requirements of the ultimate program. For

example, in constructing a ged program, if we were given a variety of transformations based on
different properties of the ged function, we might need to decide between achieving the subgoal

“compute max{u : ulx and uly-x}" and the subgoal “compute max{u:ulx and uky/2)}".

A discussion of generalization in program synthesis is found in Sikiossy

[1974]. An approach to the simultaneous goal problem appears in Waldinger

[1977] :

The systematic development of programs has been regarded from two points

of view: as a discipline to be adhered to by human programmers in order to

construct correct and transparent programs, and as a method by which

programs can be generated automatically by computer systems. The first

aspect, referred fo as structured programming (see, for example, Dahl,
Dijkstra, and Hoare [1972], Wirth {1974), and Dijkstra {1976)), has been
advocated as a practical method for achieving reliability in large computer

programs. The second aspect of program development, called program

synthesis, is currently being pursued as a research activity (e.g., see

Buchanan and Luckham [1974], Manna and Waldinger [1975], and Darlington

[1975)).

_ Although the techniques of structured programming are sufficiently well-

specified to serve as a guide to the human programmer, much needs to be

done before his performance can be imitated by an automatic system. For

instance, at each point in the development of a program, a synthesis system

must decide what portion of the specifications will be the next to be

70

| —

Manna & Waldinger The Logic of Computer Programming

transformed andselect an appropriate transformation from many plausible

candidates. In Introducing a loop or recursive call It may need to find a

suitable generalization of the goal or the proposed invariant\ assertion.

Furthermore, a synthesis system must have access to knowledge of the

properties of the operations involved in the program being constructed and

be able to use this knowledge to reason about the program. To some extent’

these problems are shared by verification systems, but the synthesis task is

more difficult than verification, because it receives less help from the human

programmer and demands more from the computer system. Consequently,

automatic program synthesis is still in an experimental stage of development,

and does not seem likely to be applied to practical programming problems in

the near future.

In the examples of program development we have seen so far, we have used the given

specification as a basis for constructing a completely new program. We have introduced no

mechanisms for taking advantage of work we may have done previously in solving some

related problem. This situation conflicts sharply with ordinary programming practice, where

we are often altering or extending old programs to suit new purposes. In our next example we

will assume that we are given a program with its original specifications plus some additional

specifications; we will extend the program to satisfy the new specifications as well as the original

ones. Thus, although we may add new statements or change old ones in the existing program

to achieve the new goal, we will always be careful that the program still achieves the purpose

“for which it was originally intended. .

We suppose we are given a program to compute the ged of two positive integers, and we want

to extend it to compute their least common multiple as well. The least common multiple of x

and y, or lem(x vy), is defined to be the smallest positive integer that is a multiple of both x
and y; for example, lem(12 18) = 36. Now, of course we could construct a completely separate

program to compute lem(x y), but in fact the ged and the lem are closely related by the identity

(a) ged(x g)-lem(x y) = x.y.

(For example, ged (1218): lem(12 18) =6+36= 216 = 12:18.) We would like to take advantage
of the work being done in the gcd program by adding new statements that will enable it to

compute the lem at the same time.

Suppose the given ged program, annotated with its assertions, is as follows:

71

—

Manna & Waldinger The Logic of Computer Programming

input(xy 90) | | |

{x0> 0 and 99> 0}

(x 3) « (xo Yo)

more: { ged(x y) = ged(xg 90) and x2 0 and 9> 0}

if x = 0 then goto enough

if y>x then y « y-x else x + x-y

got0 mote

enough: { y = ged(xg yo) }
output(y).

This is a version of our subtractive algorithm (Program A) for computing the ged of positive
integers only.

The extension task is to achieve the additional output assertion

x’ = lem(xg yo) |

as well as the original output assertion

y =gcd(Xg yo).

In the light of the identity (a) relating the ged and the lem, the most stralghtforward way to

achieve this new assertion is to assign

x’ « (xo 90)y to

at the end of Program A. However, Program A itself computes the gcd without using

multiplication or division; let us see if we can extend the program to compute the lem using

only addition and subtraction.

One approach to program extension reflects a technique we already used in developing a new

program: we try to find an additional intermediate assertion for the program, usually involving

new variables, that will imply the new output assertion when the program halts. We then alter

the program by initializing the new variables so that the additional intermediate assertion will

be satisfied the first time we enter the loop, and by updating these variables in the loop body so

that the assertion will be maintained as an invariant every time we travel around the loop. As

in proving the correctness of a program, the choice of suitable intermediate assertion may

require some ingenuity.

For instance, it would suffice if we could extend the program by introducing the relation

x"ey = Xp* Yo

72

|—

Manna & Waldinger The Logic of Computer Programming

as a new intermediate assertion in addition to our original assertion

ged(x y) = ged(xo 99) and x2 0 and §>0.

This relation implies the new output assertion, because when the program halts, y will be

ged(xg yo), and therefore x’ will be lem(xg 90). If we initialize x’ to be xg, this relation will be
satisfied the first time we enter the loop, because y is initialized to ¥o- However, we still need

to update the value of x’ as we travel around the loop so that the relation is maintained; this

turns out to be a very difficult task.

A successful new intermediate assertion is the much less obvious choice

(b) x"-y t x3" = xo: Jo

where x’ and y’ are both new variables. This relation does imply the output assertion, because
x= 0 and y = gcd(xq 99) when the program halts. Furthermore, because ¥ is initialized to yg,

we can ensure that the relation will be true the first time we enter the loop by initially assigning

(x’ 3") « (xo 0).

Finally, we can maintain the’ relation when control passes around the loop: Considering the

case in which y>x, let us rewrite the relation (b) as

x’ ((y-x)+x) t x.y’ = xg 9.

After y is reset to y-Xx, a new relation holds:

x" (y+x) + X.7 =x9'Y0,

i.e.

x'0y + xe(y'4x") = xg. 9.

Hence, to restore our intended invariant asserton, it is only necessary to assign

in this branch of the loop body.

In considering the other branch, for which y < x, we merely reverse the roles of x and ¥, and
of x’ and y’; thus, we can restore our intended invariant by assigning

x'tx’ +9

in this case.

13

Manna & Waldinger The Logic of Computer Programming

It is clear that the changes we have introduced do not affect the truth of the program’s original

assertions, because we have only altered the values of the new variables x’ and 9’, which do
not appear in those assertions. The complete program, which computes both the gcd and the

lcm at the same time, is

Program E (the extended algorithm):

input(xg v0)

{xo>0 and yo>0}

(xyx" 5") « (x0 yo ¥o 0)

more: {gcd(x 9) = ged(xg yo) and x20 and y>0

and x"ytx9=x y0 } |
if x = 0 then goto enough

if 9 > x then (y 5’) « (y-x tx’) else (X Xx’) t (x-y x"+9")
got0 more

enough: {y= ged(xg 90) and x" = lem(xg yp))

output(y X').

This program computes the lcm as a byproduct of computing the gcd, using only the addition

operation. Given the intermediate assertion (b), it is purely mechanical to extend Program A to

Program i.e., Choosing a.successful intermediate assertion, however, is still a mysterious process.

In the above example, ‘we were careful that, the program being extended still achieved its

original purpose, computing the gcd of its arguments. It sometimes happens that we need to

adapt a program to perform a new but analogous task. For example, a program that computes

the square root of a number by the method of “successive approximations” might be adapted to

compute the quotient of two numbers by the same method. In adapting a program we want to

maintain as much as possible of its original structure, but we change as much as necessary of its
details to ensure that the altered program will satisfy the new specifications. If we have proved

the correctness of the original program, it is possible that we may also be able to adapt the

proof in the same way to show the correctness of the new program. Program debugging may be

considered as a special case of adaptation, in which we alter an incorrect program to conform

with its intended specifications.

Program adaptation has been studied by Moll, Soloway, and Ulrich [1977], and
an experimental program adaptation system has been produced by Dershowitz
and Manna [1977] Automatic debugging has been discussed by von Henke

“and Luckham [1975] and by Katz and Manna [1976].

In this section, we have discussed logical techniques for program development

from given input-output specifications. Other approaches to the construction

of programs, under the general rubric of automatic programming, have used

74

| —

Manna & Waidinger The Logic of Computer programming

more informal methods of program specification and less systematic

techniques for program development; & survey of the entire field of automatic

programming is proyided by Biermann [1976] Alternate approaches to

automatic programming include

® giving typical pairs of inputs andoutputsy; ® 4. my (B C)D)=>(D(BC)A)

suggests a program to reverse alist. A system t h a t accepts s u c h

specifications must be able to generalize from examples (e.g., see Hardy

[1975] and Summers [1976]). Sample input-output pairs are natural and easy

to formulate, but they may yield ambiguities, even if several pairs are given.

® giving typical traces of the execution of the algorithm to be encoded; e.g.,

the trace (12 18)- (6 12) 2 (0 6) -» 6 suggests that the Euclidean ged
algorithm is to be constructed (see Biermann and Krishnaswamy [1976)). To

formulate such a specification, we must have a particular algorithm in mind.

® engaging in a natural-language dialogue with the system. For instance, in

specifying an operating system or airline reservation system, we are unlikely

to formulate a complete and correct description all at once. In the course of

an extended dialogue, we may resolve inconsistencies and clarify details (see

Balzer [1972], Green[1976)). The use of natural language avoids the

necessity to communicate through an artificial formalism, but requires the

existence of a system capable of understanding such dialogue.

® constructing a program that “almost” achieves the specifications, but is not

completely correct, and then debugging it (see Sussman [1975]). This

technique is similar to the way human programmers proceed and is

particularly appropriate in conjunction with the natural-dialogue approach, in

which the specifications themselves are likely to be incorrect at first.

Acknowledgement&

We would like to thank Jan Derksen, Nachum Dershowitz, Clarence Ellis, John Guttag, James

King, Donald Knuth, Derek Oppen, and Amir Pnueli for discussions helpful in preparing this

paper. We are also grateful to the following members of the Theory of Computing Panel of

the NSF Computer Science and Engineering Research Study (COSERS) -- Richard Karp,

Albert Meyer, John Reynolds, Robert Ritchie, Jeffrey Ullman, and Shmuel Winograd -- for

their critical comments on parts of the manuscript.

In our writing we have drawn on the wealth of material about the greatest common divisor and

| 76

Manna & Waldinger The Logic of Computer Programming

the algorithms that compute it included in Knuth [1969]. Information about catastrophic bugs

in spacecraft guidance systems was provided by members of the staff of the Jet Propulsion

Laboratory, Pasadena, California.

References:

Many recent introductory programming texts touch upon the topics we have

discussed here; furthermore, there are several textbooks that are devoted

exclusively to these issues. Manna [1974], Greibach [1975], and Bird [1976]

all give a fairly theoretical treatment of the correctness and termination of

programs. Dijkstra[1976] emphasizes the development and optimization of

programs, in his own inimitable style.

Aho, A. B. and J.D. Ullman [1873], T Ae theory of parsing, translation, and compiling, Vol.

2: Compiling, Prentice-Hall, Englewood Cliffs, N].

Ashcroft, E. A. [Feb. 1978], Proving assertions about parallel programs, JCSS, Vol. 10, No.

I, pp. 110-135.

Ashcroft, E. A., M. Clint, and C., A, R. Hoare [1978], Remarks on ‘Program proving: jumps
and functions by M.Clint and C. A. R. Hoare’, Acta Informatica, Vol. 6, pp. 317-
318. | |

Ashcroft, E. A. and W, Wadge [July 1877], Lucid, @ nonprocedural language with

iteration, CACM, Vol. 20, No. 7, pp. 519-526.

Balzer, R. M. [Sept. 1972], Automatic programming, technical report, Information Science

Institute, University of Southern California, Marina del Rey, CA.

Biermann, A. W, [1876], Approaches to automatic programming, in Advances in computers,

Vol. 15, Academic Press, New York, NY, pp. 1-63. :

Biermann, A, W, and R. Krishnaswamy [Sept. 18768], Constructing programs from example

computations, IEEE Transactions on Software Engineering, Vol. 2, No. 3, pp. 14 I- 153.

Bird, R. [1978], Programs and machines = An introduction to the theory of computation, John

Wiley and Sons, London.

76

LL
F

Manna & Waidinger The Logic of Computer Programming

Boyer, R. S., B. Eilspas, and K. N. Levitt [Apr. 1976}, SELECT - A formal system for

testing and debugging programs by symbolic execution, Proceedings of the International
Conference on Reliable Software, Los Angeles, CA, pp. 234-245.

Boyer, R. S. and J S, Moore [Jan. 1978], Proving theorems about LISP functions, JACM,

Vol. 22, No. I, pp. 129-144.

Brent, R.P.[1976], Analysis of the binary euclidean algorithm, in New dfrcctfons and recent

results in algorithms and complexity (J.F. Traub, ed.), Academic Press, New York, NY.

Buchanan, J. R. and D. C, Luckham [May 1974],0n automating the construction of
programs, technical report, Artificial Intelligence Laboratory, Stanford University,

Stanford, CA. .

Burstall, R. M, [Feb. 1968], Proving properties of programs by structural induction,

Computing J, Vol. 12, No. I, pp. 41-48.

Burstall, R. M. [Aug. 1974], Program proving as hand simulation with a little induction,

Information Processing 1974, North-Holland, Amsterdam, pp. 308-312.

Burstall, R. M. and J. Darlington [Jan. 1977}, A rranformation system for developing

recursive programs, JACM, Vol. 24, No. 1, pp. 44-67.

Chandra, A. K. and Z. Manna [Sept. 1976], On the power of programming features,

Computer ‘Languages, Vol. I, No. 3, pp. 2 19-232.

Clarke, E. M., Jr. [Jan. 1977], Programming language constructs for which it is impossible to

obtain good Hoare-like axiom systems, Proceedings of the Fourth Symposium on

Principles of Programming Languages, Los Angeles, CA, pp. 10-20.

Clint, M. and C. A. ‘R.Hoare [1972], Program proving: jumps and functions, Acta

Informatica, Vol. 1, pp. 214-224.

Cook, 8. A. [June 1978], Soundness and completeness of an axiom system for program
verification, technical report, University of Toronto, Toronto, Canada.

Dahl, 0. J., E. W. Dijkstra, and C. A. R. Hoare[1972], Structured programming, Academic

Press, New York, NY.

Darlington, J. [July 1976], Applications of program transformation to program synthesis,

Colloquet IRIA on Proving and Improving Programs, Arc-et-Senans, France, pp.

133-144.

77

_—

Manna & Waidinger The Logic of Computer Programming

Darlington, J. and R. M. Burstaii [Aug. 19783], A system which automatically improves

programs, Proceedings of the Third International Joint Conference on Artificial

Intelligence, Stanford, CA, pp. 479-485.

DeBakker, J. W. and D. Scott [Aug. 1969],4 theory of programs, IBM Seminar, Vienna,
Austria, unpublished notes.

DeMillo, R. A, R. J. Lipton, and A. J. Periis [Jan. 1977], Social processes and proofs of

theorems and programs, Proceedings of the Fourth Symposium on Principles of

Programming Languages, Los Angeles, CA, pp. 206-2 14.

Dershowitr, N. and Z. Manna [Jan. 1977], The evolution of programs: A system for

automatic program modification, Conference record of the Fourth ACM Symposium

on Principles of Programming Languages, Los Angeles, CA, pp. 144-154.

Deutsch, L. P, [May 1873], An interactive program verifier, Ph.D. thesis, University of

California, Berkeley, CA.

Dijkstra, E. W. [Aug. 1876]}, Guarded commands, nondeterminacy and formal derivation,
CACM, Vol. 18, No. 8, pp. 453-457. +

Dijkstra, E. W. [198786],A discipline ofprogramming, Prentice-Hall, Engiewood Cliffs, NJ.

Dijkstra, EW. [1977], Programming: From craft to Scientific Discipline, International

Computing Symposium (E. Moriet and D. Ribbens, Eds.), North-Holland,

Amsterdam, pp. 23-30.

Eariey J, [Oct. 1971], Toward an understanding. of data structures, CACM, Vol. 14, No. 10,
pp. ‘6 17-627.

Eispas, B., K. N. Levitt, and R. J, Waidinger [Sept. 1973], An interactive system for the

verification of Computer programs, technical report, Stanford Research Institute, Menlo

Park, CA.

Floyd, R. W. [1967], Assigning meanings to programs, Proceedings of Symposium in Applied
Mathematics, Vol. t 9 (J.T. Schwartz, ed.), American Mathematical Society,

Providence, RI, pp. 19-32.

Francez, N. and A, Pnueii [Nov. 1976], A proof method for cyclic programs, technical report,

Computer Science Dept., Tel-Aviv University, Tel-Aviv, Israel.

Gerhart, S. L. [Jan. 1976], *Correctness-preserving program transformations, Proceedings of

78

a

Manna & Waldinger The Logic of Computer Programming

the Second Symposium on Principles of Programming Languages, Palo Alto, CA, pp.
54-66.

Gerhart, S.L. and L. Yelowitz [Sept. 1976], Observations of fallibility in applications of

modern programming methodologies, IEEE Transactions on Software Engineering, Vol.

2, No. 3, pp. 195-207.

German, S, M, and B, Wegbreit [Mar, 1976], Proving loop programs, IEEE Transactions

on Software Engineering, Vol. I, No. 1, pp. 68-75.

Good, D. I, R. L. London dnd’ W. W. Bledsoe [Mar, 1978],An interactive program

verification system, IEEE Transactions on Software Engineering, Vol. I, No. 1, pp.
59-67.

Green, C. [Oct. 1978], The design of PSI program synthesis system, Proceedings of Second

International Conference on Software Engineering, San Francisco, CA, pp. 4-18.

Greibach,S.A. [1975], Theory of program structures: schemes, semantics, verification,

Springer-Verlag, Berlin, Germany.

Guttag, J. V., E, Horowitz, and D.R. Musser [Aug. 1977], Abstract data. types and

software validation, technical report, Information Sciences Institute, Marina del Rey,
CA.

Hardy, S. [Sept. 1975], Synthesis of LISP programs from examples, Proceedings of the

Fourth International Joint Conference on Artificial Intelligence, Tbilisi, Georgia,

USSR, pp. 240-245.

Hoare, C. A. R. [Oct. 1969], An axiomatic busts of computer programming, CACM, Vol. 12,

No. 10, pp. 576-580, 583.

Hoare, C. A. R. [1972], Proof of correctness of data representations, Acta Informatica, Vol. 1,

No. 4, pp. 27 1-28 1.

Hoare, C. A. R. [June 1978], Parallel programming: an axiomatic approach, Computer

Languages, Vol. 1, No. 2, pp. 151-160.

Hull, T. E., W. H. Enright, and A. E. Sedgwick [Jan. 1972], The correctness of numerical

algorithms, Proceedings of the Conference on Proving Assertions about Programs,

Las Cruces, NM, pp. 66-73.

Igarashi, S., R. L. London, and D. C. Luckham{ 1978], Auromatic program verification 1:

A logical basis and its implementation, Acta Informatica, Vol. 4, No. 2, pp. 145- 182.

79

: Manna & Waldinger The Logic of Computer Programming

Katz, S. M. and Z. Manna [Apr. 1976], Logical analysis of programs, CACM, Vol. 19, No. 4,

pp. 188-206.

King, J. C, [1969],A program verifier, Ph.D. thesis, Carnegie-Mellon University, Pittsburgh,
PA.

King, J. C. [July 1976], Symbolic execution and program testfng, CACM, Vol. 19, No. 7, pp.
385-391.

Knuth, D.E,[1968], The Art of Computer Programming, Volumel, Addison-Wesley,

Reading, MA, p. 19. |

Knuth, D.l.e., [1969], The Art of Computer Programming, Volume 2, Addison-Wesley,
Reading, MA, pp. 293-338.

Knuth, D. E. [Dec. 1974], Structured programming with go to statements, Computing

Surveys, Vol. 6, No. 4, pp. 261-301.

Lampson, B. W., J. J. Horning, R. L. London, J. G. Mitchell, and G. J. Popek [Feb.

1976], Report on the programming language EUCLID, SIGPLAN Notices, Vol. 12,

No. 2.

Liskov, B. H.[1976],An introduction to CLV, in New Dfrectfons fn Algorithmic Languages (S.

A. Schuman, ed.), Institut de Recherche D’In formatiq ue et D’Automatique, pp. 139-
156.

Low, J. R. [1874], Auromatic coding: choice ofdata structures, technical report, University of
Rochester, Rochester, NY.

Luckham, D.C. and N. Suzuki [1877], proof of termination within a weak logic of programs,
Acta Informatica, Vol. 8, No. 1, pp. 21-36.

Manna, Z. [June 1971], Mathematical theory of partial correctness, JCSS, Vol. 5, No. 3, pp.
239-253.

Manna, Z.[1974], Mathematical theory of compututfon, McGraw-Hill, New York, NY,

Manna, Z. and A. Pnueli [July 1870], Formalization ofproperties of functional programs,

JACM, Vol. 17, No. 3, pp. 555-569.

Manna, Z. and BR. Waldinger [Summer 1878], Knowledge and reasonfng in program

synthesis, Artificial Intelligence, Vol. 6, No. 2, pp. 175-208.

80

Manna & Waldinger The logic of Computer Programming

Manna, Z. and R. Waldinger [Oct. 1978], Is “sometime” sometimes better than “always”?
Intermittent assertions in proving program correctness, Proceedings of the Second

International Conference on Software Engineering, San Francisco, CA, pp. 32-39.

McCarthy, J. [1962], Towards a mathematical science of computation, in Information
processing, Proceedings of IFIP Congress 1962 (C.M. Poppiewell, ed.), North-

Holland, pp. 21-28.

Moll, R., E. Soloway, and J. Ulrich [Aug. 1977], Analogy in program synthesis, Proceedings

of the SIGART-SIGPLAN Conference on Artificial Intelligence and Programming

Languages, Rochester, NY.

Morris, J. H. [May 197 1], Another recursion induction principle, CACM, Vol. 14, No. 5, pp.
‘351-354.

Morris, J. H, and B, Wegbreit [Apr. 1978], Subgoal induction, CACM, Vol. 20, No. 4, pp.
209-222.

Oppen, D, C, and 8. A. Cook [May 1876], Proving assertions about programs that

manipulate data structures, Proceedings of the Seventh Annual Symposium on

Theory of Computing, Aibuquerque, NM, pp. 107-1 16.

Owicki, S. and D. Gries [May 1978], Verifying properties of parallel programs: an axiomatic

approach, CACM, Vol. 19, No. 5, pp. 279-285.

Parnas,D. L. [May 1872], A technique for software module spetification with examples,

CACM, Vol. 15, No. 5, pp. 330-336.

Paterson, M. S. and C. E, ‘Hewitt /[Dec. 1970], Comparative schematology, in Record of

Project MAC Conference on Concurrent Systems and Parallel Computation, Association

for Computing Machinery, NY, pp. | 19-228.

Pratt, V. [Oct. 1978], Semantical considerations on Floyd-Hoare Logic, Proceedings of the"

17th Annual Symposium on Foundations of Computer Science, Houston, TX, pp.
109-121.

Robinson, L., K. N, Levitt, P, G. Neumann, and A, R., Saxena [Apr. 1876]},0n attaining

“reliable software for a secure operating system, Proceedings of the International
Conference on, Reliable Software, Los Angeles, CA, pp. 267-284.

Schwartz, J. T. [Mar. 1974], Automatic and semiautomatic optimization of SETL,

81

Manna & Waidinger The Logic of Computer Programming

Proceedings of the Symposium on Very High Level Languages, Santa Monica, CA,

pp- 43-49.

Schwarz, J. [July 1976], Event-based reasoning = a system for proving correct termination of

programs, Proceedings of the Third International Colloquium on Automata,

Languages and Programming, Edinburgh, Scotland, pp. 131- 146.

. Siklossy, L. [1974], The synthesis of programs from their properties, and the insane heuristic,

Proceedings of the Third Texas Conference on Computing Systems, Austin, TX.

Sites, R. L. [May 1874], Proving that computer programs terminate cleanly, Ph.D. thesis,

Stanford University, Stanford, CA.

Standish, T. A., 0. C. Harriman, D. F. Kibler, and J. M. Neighbors [Feb. 19786],

Improving and refining programs by program manipulation, technical report,

University of California, Irvine, CA.

Summers, P.D. [Jan. 1878], A methodology for LISP program construction from examples,

Proceedings of the Third ACM Symposium on Principles of Programming

Languages, Atlanta, GA, pp. 68-76.

Sussman, G. J.[1976],A computer model of skill acquisition, American Eisevier, New York,
NY.

Suzuki, N. [Apr. 19768}, Verifying programs by algebraic and logical reduction, Proceedings of
‘the International Conference on Reliable Software, Los Angeles, CA, pp. 473-481.

von Henke, F. W, and D. C. Luckham [Apr. 1976], A methodology for verifying programs,
Proceedings of the International Conference on Reliable Software, Los Angeles, CA,

pp- 156-164.

Waldinger, R. J. [1977], Achieveing several goals simultaneously, in Machine Intelligence §:
Machine Representations of Knowledge, (E. W. Elcock and D. Michie, ed.), Ellis

Horwood, Chinchester, England.

Waldinger, R. J. and K. N. Levitt [Fail 1974), Reasoning about programs, Artificial

Intelligence, Vol. 5, No. 3, pp. 235-316.

Wang,A.[1978], An axiomatic basis for proving total correctness of goto-programs, BIT, Vol.

16, pp. 88-102.

Wegbreit, B. [Sept. 1978], Coal-directed program transformation, research report, Xerox

Research Center, Palo Alto, CA.

52

| ——

Manna & Waldinger The Logic of Computer Programming

Wirth, N, [Dec. 1 874], On the composition of well-structured programs, Computing Surveys,

Vol. 6, No. 4, pp. 247-259.

Wuif, W. A, R. L, London, and M. Shaw [Dec. 1978], An introduction to the construction

and verification of ALPH A RD programs, IEEE Transactions on Software
Engineering, Vol. 2, No. 4, pp. 253-265.

83

