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Abstract

A decision algorithm is given for the quantifier-free theory of recursively defined data
structures which, for a conjunction of length n, decides its satisfiability in time linear in n. The
first-order theory of recursively defined data structures, in particular the first-order theory of LISP
list structure {the theory of CONS, CAR and CDR), is shown to be decidable but not elementary

recursive.
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1. Introduction

We are interested in the problem of reasoning about data structures and the operations
associated with them. Fast techniques (if they exist) for reasoning about data structures are useful in
program verification, program manipulation, program optimization; and in proving that
implementations of data structures satisfy their abstract definition. More generally, knowledge of the
complexity of reasoning about particular classes of data structures gives us some intuition as to their

in herent complexity.

We will explore in detail the question of reasoning about a particular class of data structures,
the recursively defined data structures. These are essentially the recursive data structures proposed by
[(Hoarei975] as a structured alternative to pointers. Most programming languages support such data
structures either explicitly or implicitly (they can be mimicked by arrays), but the best known
example of them is LISP list structure, with constructor CONS and selectors CAR and CDR.

More precisely, recursively defined data structures are data structures which have associated
with them one constructor function ¢, and k selector functions $ 18y With the following abstract

structural properties:

I. (Construction)
c(s l(x), sz(x), — sk(x)) =X

IL. (Selection)
) 1(c(x 1,...,xk)) =X,
sz(c(x 1 ,...,xk)) =X,

sk(c(x 1,...,xk)) =X, .
IIL. (Acyclicity)

s 1(x) ® X

s2(x) * X

sk(x) * X

sl(sl(x)) * X
sl(sz(x)) * X

We consider first order theories (with equality) axiomatized by schemata of the above form.



We give a decision procedure for the quantifier-free theory of recursively defined data
structures, which, for a conjunction of equalities and disequalities, determines its satisfiability in
linear time. The procedure has possible applications in any theorem prover which handles such data
structures, for instance, Boyer and Moore’s prover for recursively defined functions [Boyer and
Moore 1977, Guttag and Musser’s prover for abstract data types [Guttag, Horowitz and Musser
1976), or the simplifier we are developing [Nelson and Oppen 1978bJ.

It follows that the quantifier-free DNF theory of recursively defined data structures (that is,
the quantifier-free theory in which every formula is in disjunctive normal form) is decidable in
linear time and therefore that the (full) quantifier-free theory of recursively defined data structures

is in NP (and hence NP-complete).

We next consider theories in which quantification is allowed, in particular the first order
theory of LISP list structure. Our basic decision procedure can be modified to form the basis for a
quantifier-elimination method for this theory However, the decidability of this theory and its
complexity can be derived from existing results in logic. In particular, the constructor ¢ (CONS) may
be treated as the structural-analogue of what is called in logic a “pairing function”. There are results
in the literature on theories of pairing functions and part of the purpose of this paper is to point
out their applicability, We will use these results to show that the first order theory of list structure

(recursively defined data structures) is decidable but not elementary recursive. That is, although tlrl,e
2

theory is decidable, there cannot exist a decision procedure for it which always halts in time 22"
for any fixed number of 2’s (n is the length of the formula).

The question of the decidability of the first order theory of list structure has recently been
raised by John McCarthy [McCarthy 1978]; by the above it is decidable. McCarthy shows that if
one includes the predicate SUBEXPR(X,Y), which asserts that x is a subexpression (subtree) of y,
then the theory is undecidable.

If one drops the acyclicity axiom schema III, different results obtain. [Nelson and Oppen
1978al give a decision procedure for the quantifier-free theory of possibly-cyclic list structure which,
for a conjunction of equalities and disequalities of length n, decides its satisfiability in time O(nz).
A variant of this procedure has been implemented in our simplifier [Nelson and Oppen 1978b].
[Johnson and Tarjan1977] have improved the underlying graph algorithm to run in time
O(n logzn).



2. Decision Procedure for the Quantifier-Free Theory
2.1 Int roduction

The language of the theory consists of variables, function symbols c, s TRRERE and the
predicate =. The decision procedure described in this section determines the satisfiability of a
con junction of atomic literals in time linear in the length of the conjunction.

Assume we are given a conjunction. The basic strategy of the procedure is to construct a
directed graph whose vertices represent the terms of the conjunction and an equivalence relation on
the vertices of the graph representing all the equalities that are entailed by the conjunction. The
procedure then checks if any asserted disequality conflicts with any of these equalities or if any of
the acyclicity axioms are violated. If so, the conjunction is unsatisfiable; otherwise, it is satisfiable.

The algorithm represents terms in the conjunction by (the equivalence classes of) vertices in a
directed, acyclic graph possibly with multiple edges. A vertex in the graph may have outdegree zero
or outdegree k (corresponding to the k selector functions). The edges leaving a vertex are ordered. If
u is a vertex, then, for 1 <i < outdegree( let uli} denote the ith successor of u, that is, the vertex to
which the ith edge of u points. Since multiple edges are allowed, possibly uli]=ulj] fori=].

Every term in the conjunction is either an atomic symbol or an expression of one of the forms
si(t) or c(tl,tz,. . .tk) where t, t},t,,. ... t, are terms. An atomic term x will be represented by a vertex
labelled x. A term of the form s,(t) will be represented by a vertex v such that v = u[i] for some
vertex u representing t. (If necessary, “dummy” successors of u are added to represent the sj(t), jei,
if these do not appear in the formula.) A term of the form c(tl, tore .o tk) will be represented by a
node with k successors representing respectively t;,t,, . ... t . To represent the fact that two terms are
equal, we will merge, that is, make equivalent the vertices that represent them.

. The first step taken by the decision procedure is to construct the graph representing the terms
in the conjunction. Vertices representing terms asserted equal in the conjunction are then merged.
Vertices representing the same atomic symbol (that is, vertices having the same label) are also

merged.

The main work of the algorithm is to close the graph under all entailed equivalences of
vertices, checking as it does so that no cycles are being introduced into the graph (since such cycles
would violate the acyclicity condition). First, if two vertices u and v are equivalent and both have
non-zero outdegree, then the equivalence classes of their corresponding successors must be merged
(since x =y> sl(x) =S 1(y) A.. A sk(x)= s,(y)). Secondly, if all the corresponding successors of two
vertices u and v with non-zero outdegree are equivalent, then the equivalence classes of u and v
must be merged (since sl(x) =S,(Yy)A... Ask(x) =s,(y)2x=Yy).



The following fragment of an procedure carries out the above step, but does not check for
cycles.

1. For all pairs of vertices u, v with nonzero outdegree

if u and v are equivalent
then (if any corresponding successors of u and v are not equivalent
then merge the corresponding successors
also restart step 1)
else if all the corresponding successors of u and v are equivalent
then merge u and v
also restart step 1.

2. Return.

This algorithm is‘ non-linear. In the next section we will describe a linear algorithm for
computing what will be called the bidirectional closure of a graph and in the following section show
how this graph algorithm gives a linear decision procedure.

2.2 Bidirectional Closure

Let G = (V, E) be a directed graph possibly with multiple edges such that the edges leaving
each vertex are ordered. If R is an equivalence relation on the vertices of G, then G is acyclic under
R if there is no sequence of vertices Ugs uo’, uy, ul’. N of G, p > 0, such that <u, ui’> eR
and <u:]’, Ui, € EforO<i<p.

. Let R be an equivalence relation on the vertices. of G. Define the congruence closure Rt of R
on G to be the unique minimal extension of R such that 1. RT is an equivalence relation and 2. any
two vertices u and v with equal, nonzero outdegree are equivalent under RT if all their
corresponding successors are equivalent under RT.If G under RT is acyclic, there are linear
algorithms for constructing Rt ([Downey and Sethi1977), [Johnson and Tarjan1977)); these
algorithms abort if G under R7 is not acyclic.

Let R be an equivalence relation on the vertices of G. Define the unification closure R of R
on G to be the unique minimal. extension of R such that 1. Rl is an equivalence relation and 2. if
any two vertices u and v with equal, nonzero outdegree are equivalent under Ri, then all their
corresponding successors are equivalent under R{. If G under Rl is acyclic, there are linear
algorithms for constructing R{ (for instance, the linear unification algorithm of [Paterson and
Wegman 1977]); this algorithm aborts if G under R{ is not acyclic.



We use the notation RT and R{ to suggest the directional duality of the two notions of closure.

Let R be an equivalence relation on the vertices of G. Define the bidirectional closure R of R
on G to be the unique minimal extension of R such that 1. RT is an equivalence relation and 2. for
any two vertices u and v with equal, nonzere outdegree, u and v are equivalent under R? if and
only if all their corresponding successors are equivalent under RY.

Consider now the problem of constructing the bidirectional closure. First, it is apparent that if
a congruence closure algorithm and a unification closure algorithm are run alternately enough times
over G that eventually G will be bidirectionally closed. That is, R{TT... = RT. However, if G is such
that the outdegree of each vertex is either O or k, for some fixed k, then one pass of each algorithm
is sufficient, by the following lemma.

Lemma: Let G =(V,E) be a directed graph with multiple edges such that the edges leaving
each vertex are ordered. Assume that the outdegree of each vertex in G is either O or k for some
fixed k. Let R be an equivalence relation on the vertices of G. Then RI=RIT.

Proof:
It suffices to prove that RiT is unification closed.

We first need a property of unification closed relations. Let R, be a unification closed relation
on G. Let u and v be a pair of vertices in G with outdegree k such that <uli}v[il> R for all 1 <i
< k. Then we claim that the minimal equivalence relation R, containing R, and <u,v> is also
unification closed. Note first that R, is R, except that the equivalence classes of u and v have been
merged. Consider any pair of vertices x and y with outdegree k such that <x,y>e¢R,. If <x,y>eR |
then certainly <x[i]yli]>€R, for all 1 <i< k. So suppose <x,y> is not in R,. Then <x,u>¢R and
<y,v> € R1 (or <x,v> and <y,u> are in Rl)' It follows that, for all <1<k, <x[i]ulil>e R1 and
<yli)vli}>«R | (since R | is unification closed and the outdegree of all the vertices x, y, u, v is k),
and thus that <x[ilylil>€R, since <uli}v[i]> ¢ R by assumption. Thus, merging u and v did not
affect the unification closure property.

Therefore, starting out with R{ and making equivalent any two vertices with outdegree k, all
of whose corresponding sons are equivalent, leaves the resulting minimal equivalence relation
unification closed. By induction, it follows that RiT is unification closed.

It is important for this proof that the vertices have the same outdegree if they have nonzero
outdegree. Otherwise, in the above proof it is not necessarily the case that if <x,u>¢R, then all
their corresponding successors are equivalent.



The order of the passes is also important; RTd is not necessarily equal to R3.

If G under R%is acyclic, there is therefore a linear algorithm for constructing R?. One first
constructs R{ using a linear unification closure algorithm and then closes R under congruences
(that is, constructs R{T) using a linear congruence closure algorithm. If G under R% is not acyclic,
one of these algorithms will abort. )

2.3 The Decision Procedure

We will now state more precisely the decision procedure described informally in Section 2.1.
We start by describing the data structures manipulated by the procedure.

First, corresponding to every term tin aformula, there is a directed, acyclic graph G(t). G(t)
will contain a vertex VG(t)(t) “representing” t.

1. If t is an atomic symbol, G(t) has a single vertex with zero outdegree labelled with t. VG(t)(t)
will be this vertex.

2. If tis of the form s(«), then G(t) will be G(a) and Vgy(B) will be Vg \(B) for all
subexpressions B of a. However, if Vg «)(@) has outdegree 0, we will add k successors to VG(t)(“)
(each successor will be a new unlabelled vertex with outdegree zero). In either case, vG(t)(t) will be
the ith successor of V gy)a).

3. If t is of the form c{« R a,), then G(t) is the disjoint union of G(« 1), o .G(ak) together
with a new vertex u with k successors. For all 1 <1<k, uli) is vG(oa,)(“i)‘ VG(t)(t) is u. (In taking
the disjoint union, we will always assume that the label of any vertex in the union is its old label in
the graphs whose union we are taking. Similarly, for any term 8, if Vg °4i)({3») exists in G(,), then
A% O, will be the same vertex.)

Notice that the only labelled vertices are those representing atomic terms, and that all vertices
either have outdegree 0 or outdegree k.

In what follows, we may refer to V(t) instead of VG(t)(t)'
Decision Procedure

This algorithm determines the satisfiability of aconjunction F of the form:

V,=W.,A..,AV =W_ A
r r

171
X Y A - AX =Y



1. Construct G, the disjoint union of G(Vl). - G(Vr)' G(wl), ... Gw,), G(xl), - G(xs),
G(yl), . G(ys)‘ Let R be {(V(vi), V(wi))l 1<isr}U{(a, B)] aand P are vertices in G with the
same label}. That is, the initial equivalence relation R makes equivalent vertices representing terms
asserted equal in F and vertices representing the same atomic term in F.

2. Construct R?, the bidirectional closure of R on G. Let [u]l denote the equivalence class of
vertex u in G under R?. If G under R is not acyclic, return UNSATISFIABLE.

3. For i from 1 to s, if l[V(xi)]] = [[V(yi)]], return UNSATISFIABLE. Otherwise, return
SATISFIABLE.

2.4 Correctness of the Decision Procedure

It is straightforward to verify that the algorithm is correct if it returns UNSATISFIABLE.
Suppose that it returns SATISFIABLE; we will construct an interpretation satisfying F.

LetR, be the partition of the vertices of G corresponding to the final equivalence relation
R?. We define k functions S1007 - -
ROk to RO. For 1 <i <k, an equivalence class Q is in the domain of Si0 if Q contains a vertex u
with outdegree k; in this case, siO(Q) = [ulil]} (Since every vertex in G has outdegree either O or k,

Q is in the domain of a particular Sio if and only if it is in the domain of Sio forall 1 si<k.) A

5k0 from a subset of R0 to Ro, and a function % from a subset of

k-tuple (Q_l,, L Qk) of equivalence classes is in the domain of % if there exists a vertex u with
outdegree k such that uli]e Q for 1 <1< k; in this case, CO(QI' . .Qk)=[[U]]' Note that o1
S0 are well-defined, since G is- bidirectionally closed. and every vertex in G has outdegree either 0
or k. However, these functions are not necessarily defined over the whole of RO"‘ and RO. To
construct an interpretation, we must extend these functions; in the process we will construct an

infinite domain for the interpretation. We now describe this construction.

Let G, = G. Construct as above the tuple (GO, RyCoSigr-- - sko). Suppose we have
constructed the first j t I tuples (GO.RO. o'S10r s sko),: e (Gj’ Iﬁ.,}czls i ""Skj)' .... Construct
(Gj+1‘ Rj+l’ cj+1, Slj+1’ - Skj+1) to be the following extension of (Gj’Rj'Cj‘slj" .. .skj):

1. For each equivalence class Qof Rj which is not in the domain of any S choose any vertex
u in Q (u therefore has outdegree 0 in G j)‘ InG 1 add k new vertices as successors to u, each in
an equivalence class of its own in Rj+1' Let cj”( [ul1]], .., [ulk]]) = Q and sij+1(Q) = [ulil]}, for 1
<1< k. By this construction, the domain of s.ij ol is Rj'

2. For each tuple (Ql’ ce Qk) of equivalence classes of Rj not in the domain of c¢,, add a new
vertex u to G i+l in an equivalence class of its own in R j+1° Let u have outdegree k and, for 1 sig



k, let ulil= v for some v in Q| (Since (Q-l" . Qk) is not in the domain of c., there is no other vertex
w in G. , with outdegree k such that wlileQ, for 1 sisk.) Let cj+1(Q_1. - Q) = [ul} and, for 1
sisk, lets.. 1([[u:[] )=Q,. By this construction, the domain of Cial is R].

ij+
G, is thus Gj except for the new vertices Up....u added in steps 1 and 2 above. Rj 1 is Rj
together with the additional singleton equivalence classes |Iul]l . [[u ]] Ciatr S1jal = Skjap ATE c,,

Spj e Sk extended as described in steps 1 and 2 above. The extens10ns are well-defined, Notice in
partlcular that if any Sje1 (Q) is defined, then all the S +1(Q) are defined.

Lemma: Suppose QQy.... Q are equivalence classes of Rj‘ Then the following hold:

1. If Q is in the domain of 5 for 1 si<k, then (slj(Q). e skj<Q)) is in the domain of ¢, and
CJ-(SI J-(C)_). - Skj(Q)) =Q,

2.1f(Q,,.... Q) is in the domain of € then cj(Ql' ... Q) is in the domain of S and
5, Q.. .. QN=Q for I sick.

i

3. GJ. under R‘. is acyclic.
Proof:

Base step: j = 0. If Q is in the domain of the S;or then there exists a vertex u in G, with
outdegree k. Therefore (s,(Q)... . .s,,(Q)) is in the domain of ¢, and c4(s; ,(Q).. . . . S0l =Q; So
the first clause of the lemma holds. If (Q,,. ... Q,) is in the domain of ¢, then there is a vertex u
with outdegree k such that CO<Q-1’ e Qk) =[[u]} and, for 1 i<k, uli]e Q. Therefore, for 1 <i<
k, CO(QI’ Qk) is in the domain of s,,, and SiO(c0<Q'l' e Qk)) = [ulil] = Q- So the second clause
of the lemma holds. Since Co under Ro is acyclic, the third clause holds.

Suppose the lemma holds for j; we show it also holds for j t 1.

Proof of clause 1. If Q is in the domain of one (and hence all) of S j R Skj’ then the result
follows from the induction hypothesis and the fact that (Gj +R 1 Cjap S e 1) extends
(G. R. ’ J %‘) If Q is not in the domain of the s , then, in constructing (G +1,. j+1° J o1

lj o ) we added k vertices as successors to some vertex u in Q and deﬁned c 1(s 1j+ 1(Q)

J
Kj+l(Q>) 1([[“[]]]], .Eu[k]]]) Q

Proof of clause 2. If ( Q_l, e Qk) is in the domain of cj then the result follows from the
induction hypothesis and the fact that (G)+1' J+1'c1+1’511+1' R skj+l) extends (Gj,lji,,jc.,ls o
J) Otherwise, in constructing (G, +1'R;+1'c1+1’ TISLRRRRE +1), we added a vertex u such that [u]]

=Ciu Q... Qk)),andu[l]eQ‘f0r1<1Skc I(Ql"" Qk)lsthusmthe domain of s, j+13nd



sij . 1(cj . I(Ql’ vy Qk» = Q for 1< i< k. The second clause therefore holds.
The third clause holds from the construction.

Let R” be the union of the R,. Let 5,(Q) be sij(Q) for the first j such that sij(Q) is defined. Let
¢’ be defiried similarly. It follows that ¢, s 1', e sk' satisfy the axioms and are defined on all of Rk"

We will now define an interpretation ¥ which satisfies F. y interprets c, s TERREEN
sk’. It follows that this interpretation satisfies the axioms. It remains to show that ) satisfies F. It is
straightforward to show that for every term t in the formula, y(t) = [V(t)]. But V(ti) and V(wi)
have been merged, for 1 <i s, so ¢ satisfies the equalities in F. V(xi) and V(yi) are in different
equivalence classes since Step 3 returned SATISFIABLE, so ¥ satisfies the disequalities in F.

asc’,sl’,....

2.5 Linearity of the Decision Procedure

G can be constructed in several ways, but some care must be taken if it is to be constructed in
linear time, that is, in time O(n) where n is the length of the formula F. We describe one way of

doing so.

Step 1. For each term t in the formula, we construct G(t). We do not bother to identify
common subexpressions; distinct occurrences of similar subterms of t will be represented by distinct
vertices in G(t). However, we keep a list of pairs <t,V(t)> for each term Vi WL X, and Y; in the
formula. We also keep a list of pairs <a, V(a)> for each occurrence of each atomic symbol a in the
formula. We then form G, the disjoint union of these graphs. The number of vertices and edges in
G is O(n) and the time required to construct G is also O(n).

Step 2. We next add to the graph the equalities asserted in the formula by merging vertices
V(vi) and V(wi) for each equality v, =W, in the formula. Since in Step 1 we kept track of each V(Vi)
and V(w,), we can do Step 2 in time O(n).

Step 3. We now make equivalent all vertices with the same label. Each such vertex represents
an atomic symbol in the original formula and so appears in the list of pairs <a, V(a)> constructed in
Step 1. Under a reasonable model, we can sort this list on the first argument of each pair <a,V(a)>
in time O(n) using lexicographic sorting. We then scan through this list; for each pair of adjacent
elements <ay, V(a1)> and <a,, V(32)> in this list, if a =a, then we make equivalent V(al) and
V(a,). This step again takes time O(n).

(In practice, this elaborate method would not be used. Instead, we would use a hash table to
store V(a) for each a, and would never create two vertices with the same label. Languages such as
LISP support this very efficiently.)

10



Step 4. Finally we construct G, the bidirectional closure of the relation on Go constructed in
the previous steps. Again we can do this in linear time, as shown in Section 2.2. Notice that in
constructing the bidirectional closure, we will automatically identify (make equivalent) all common
subexpressions.

3. The First-order Theory

For concreteness, we will consider the first order theory of list structure (with function symbols
CONS, CAR and CDR and predicate symbols = and ATOM).

First, the decision procedure given in the previous section for quantifier-free conjunctions can
be modified to be the basis for a quantifier-elimination method for this theory, However, it is more
interesting to derive the decidability and complexity of this theory from existing results in logic on
theories of pairing functions.

A pairing function on a set S is a one-one map J : S x S »S. An example of a pairing
function over the natural numbers is the function J(x,y)=2"3".

Associated with each pairing function J are its projection functions K and L. These are
partial functions S - S satisfying K(J(x,y)) = x and L(J(x,y)) = y. Since K and L are partial, we will
formally consider all functions as relations but will continue to write, for instance, K(z)= x instead

of K(z,x). (An alternative would be to make all functions total by introducing 1, the undefined
element, in to the logic.)

K and L satisfy the axioms

1. vx vy 3'2[K(z) = x A L(z) = y]

2.Vz[3x (K(z) = x v L(z) =x) 23 3y (K(z) = x AL(z) =y)]

. The pairing function J is defined in terms of K and L by J(x,y)=z=K(z) =x AL(z) =y.

The first order theory of pairing functions (the first order theory with these axioms) is
undecidable (unpublished results by Hanf, Scott, and Morley). However, with appropriate additional
axioms, the theory is decidable. These additional restrictions on K and L correspond to the acyclicity
condition we put on our recursively defined data structures together with the decidability of the

theory of atoms.

First, we partition the set S into two disjoint parts, the set A of atom and the set S - A of

11



non-atoms. ATOM(x) holds if and only if x is an atom.

The following infinite axiom schema requires that the pairing function be acyclic on all
non-atoms.

3. (A cyclicity)

Vz[~ ATOM(z) A3x (K(z)=x )2 K(z) ¥ 2]
vz[- ATOM(z) a3x (L(z)=x )2L(z)»z]

Vz[- ATOM(z) a3x (K(L{(z))=x ) > K(L(z)) » z ]

Next, if z is not an atom, it must have projections.

4 Vi [~ ATOM(z) > 3x (K(z) =x )]
vz[~ ATOM(z) > 3x (L(z) =x )]

Finally, once an element z lies in A, all iterations of projection functions from z (as long as
they are defined) must lie in A.

5.vz[ ATOM(z) A3x ( K(z) =x ) > ATOM(K(z)) AATOM(L(z2)) ]
A pairing function satisfying these axioms is defined to be acyclic except for A.

If A is empty, the first order theory with the above as axioms is decidable ([Mal’cev 1961,
1962]). If A is non-empty, the theory may or may not be decidable: [Tenney 1972, 1977] reduced the
question of decidability to the decidability of the theory restricted to the atoms; if the latter is
decidable then so is the former. It is the latter result that we now use.

Consider the first-order theory of list structure. CONS is the pairing function J, CAR is the
left projection K, CDR is the right projection L, S is the set of s-expressions, and A is the set of
atoms. By the above, the first order theory of list structure is decidable if the theory of atoms under
CAR, CDR and = is decidable.

There are many possible choices for A and its associated theory. First, A might be infinite (as
in LISP) or consist of the single atom NIL (as in Boyer and Moore’s original prover). Secondly,
CAR and CDR may or may not be defined on all or some of the atoms. If defined, CAR and CDR
may be cyclic or acyclic (for instance, we might choose CAR(NIL) and CDR(NIL) to be NIL as in
MACLISP). Regardless of the choice, as long as the theory of atoms is decidable, so is the overlying
theory of list structure. For a reasonable choice of the theory of atoms, its decidability is apparent.

12



Therefore, for any “reasonable” axiomatization of the theory of LISP list structure, its first
order theory is decidable. Unfortunately, an efficient decision procedure for the theory cannot exist.

[Rackoff 1975] has shown that no theory of pairing funcztri)ons admits an elementary recursive

decision procedure, that is, one which always halts in time 22 for any fixed number of 2's (n is
the length of the formula). It follows that any decision procedure for the theory of list structure must
be very inefficient in the worst case.

Although Tenney proved his result for pairing functions S x S = S, his argument holds as
well for k-ary pairing functions, that is pairing functions s+ S which satisfy the obvious
generalization of the above axioms. Similarly, Rackoff proves that his lower bound also applies to
any k-ary pairing function. It follows that, given a recursive data structure with constructor ¢ and
selectors s P Sy satisfying the obvious generalization of the above axioms, the associated first order
theory is decidable but not elementary recursive.
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