
Stanford Artificial Intelligence Laboratory July 1978
Memo AIM-3 14

Computer Science Department
Report No. STAN-(X-78-678

Program Verification Group

REASONING ABOUT RECURSIVELY DEFINED DATA STRUCTURES

by

Derek C. Oppen

Research sponsored by

National Science Foundation

COMPUTER SCIENCE DEPARTMENT

Stanford University

| o—

REASONING ABOUT RECURSIVELY DEFINED DATA STRUCTURES

by

Derek C. Oppen

Artificial Intelligence Laboratory

Computer Science Department

o Stanford University

Stanford, California

Abstract

A decision algorithm 1s given for the quantifier-free theory of recursively defined data

structures which, for a conjunction of length n, decides its satisfiability in time linear in n. The

first-order theory of recursively defined data structures, in particular the first-order theory of LISP

list structure {the theory of CONS, CAR and CDR), is shown to be decidable but not elementary

recursive.

A preliminary version of this paper appeared in the Proceedings of the Fifth ACM Symposium

on Principles of Programming Languages, 1978. This research was supported by the National Science

Foundation under contract MCS 76-000327.

Ee

1. Introduction

We are interested in the problem of reasoning about data structures and the operations

associated with them. Fast techniques (if they exist) for reasoning about data structures are useful in

program verification, program manipulation, program optimization; and in proving that

implementations of data structures satisfy their abstract definition. More generally, knowledge of the

complexity of reasoning about particular classes of data structures gives us some intuition as to their

in herent complexity.

We will explore in detail the question of reasoning about a particular class of data structures,

the recursively defined data structures. These are essentially the recursive data structures proposed by

[Hoare1975] as a structured alternative to pointers. Most programming languages support such data

structures either explicitly or implicitly (they can be mimicked by arrays), but the best known

example of them 1s LISP list structure, with constructor CONS and selectors CAR and CDR.

More precisely, recursively defined data structures are data structures which have associated

with them one constructor function c¢, and k selector functions 5 r8, With the following abstract
structural properties:

I. (Construction)

cs; (x), $,(x), . 5, (X)) = x

II. (Selection)

s(c(x xD) =X
5,{c(x { a) =X,

5, (c(x rex) =X,

II. (Acyclicity)

$,(x) ® X
55(X) * X

5, (x) * X
5,(s;(x)) = X
5, (s(x) * X

We consider first order theories (with equality) axiomatized by schemata of the above form.

2

oo WE

We give a decision procedure for the quantifier-free theory of recursively defined data

structures, which, for a conjunction of equalities and disequalities, determines its satisfiability in

linear time. The procedure has possible applications mn any theorem prover which handles such data

structures, for instance, Boyer and Moore’s prover for recursively defined functions [Boyer and

Moore 1977], Guttag and Musser’s prover for abstract data types [Guttag, Horowitz and Musser

1976], or the simplifier we are developing [Nelson and Oppen 1978b].

It follows that the quantifier-free DNF theory of recursively defined data structures (that 1s,

the quantifier-free theory in which every formula 1s in disjunctive normal form) 1s decidable in

linear time and therefore that the (full) quantifier-free theory of recursively defined data structures

1s in NP (and hence NP-complete).

We next consider theories in which quantification 1s allowed, in particular the first order

theory of LISP list structure. Our basic decision procedure can be modified to form the basis for a

quantifier-elimination method for this theory However, the decidability of this theory and its

complexity can be derived from existing results in logic. In particular, the constructor ¢ (CONS) may

be treated as the structural-analogue of what 1s called in logic a “pairing function”. There are results

in the literature on theories of pairing functions and part of the purpose of this paper is to point

out their applicability, We will use these results to show that the first order theory of list structure

(recursively defined data structures) 1s decidable but not elementary recursive. That 1s, although {he
theory 1s decidable, there cannot exist a decision procedure for it which always halts in time 22"
for any fixed number of 2’s (n 1s the length of the formula).

The question of the decidability of the first order theory of list structure has recently been

raised by John McCarthy [McCarthy 1978}; by the above it is decidable. McCarthy shows that if

one includes the predicate SUBEXPR(X,Y), which asserts that x is a subexpression (subtree) of vy,

then the theory 1s undecidable.

If one drops the acyclicity axiom schema III, different results obtain. [Nelson and Oppen

1978al give a decision procedure for the quantifier-free theory of possibly-cyclic list structure which,

for a conjunction of equalities and disequalities of length n, decides its satisfiability in time O(n).
A variant of this procedure has been implemented in our simplifier [Nelson and Oppen 1978b].

[Johnson and Tarjan1977] have improved the underlying graph algorithm to run in time

O(n log°n).

|

2. Decision Procedure for the Quantifier-Free Theory

2.1 Int roduction

The language of the theory consists of variables, function symbols c, s,,.. .. Sie and the
predicate =. The decision procedure described in this section determines the satistiability of a

con junction of atomic literals in time linear in the length of the conjunction.

Assume we are given a conjunction. The basic strategy of the procedure 1s to construct a

directed graph whose vertices represent the terms of the conjunction and an equivalence relation on

the vertices of the graph representing all the equalities that are entailed by the conjunction. The

procedure then checks if any asserted disequality conflicts with any of these equalities or if any of

the acyclicity axioms are violated. If so, the conjunction 1s unsatisfiable; otherwise, it 1s satisfiable.

The algorithm represents terms in the conjunction by (the equivalence classes of) vertices in a

directed, acyclic graph possibly with multiple edges. A vertex in the graph may have outdegree zero

or outdegree k (corresponding to the k selector functions). The edges leaving a vertex are ordered. If

u is a vertex, then, for 1 <i < outdegree(let uli] denote the ith successor of u, that is, the vertex to

which the ith edge of u points. Since multiple edges are allowed, possibly uli] =ulj] for 1 =.

Every term in the conjunction 1s either an atomic symbol or an expression of one of the forms

s,(t) or c(t plore. 4) where t, t),t,,.... tare terms. An atomic term x will be represented by a vertex
labelled x. A term of the form s(t) will be represented by a vertex v such that v = uli] for some

vertex u representing t. (If necessary, “dummy” successors of u are added to represent the s(t), jl,
if these do not appear in the formula.) A term of the form clt,, tore e t) will be represented by a
node with k successors representing respectively t,,t,,.... t,. To represent the fact that two terms are
equal, we will merge, that 1s, make equivalent the vertices that represent them.

) The first step taken by the decision procedure is to construct the graph representing the terms

in the conjunction. Vertices representing terms asserted equal in the conjunction are then merged.

Vertices representing the same atomic symbol (that 1s, vertices having the same label) are also

merged.

The main work of the algorithm 1s to close the graph under all entailed equivalences of

vertices, checking as it does so that no cycles are being introduced into the graph (since such cycles

would violate the acyclicity condition). First, if two vertices u and v are equivalent and both have

non-zero outdegree, then the equivalence classes of their corresponding successors must be merged

(since X =y D> $ (x) = S (y) A... A 5, (x) = s,(y)). Secondly, if all the corresponding successors of two
vertices u and v with non-zero outdegree are equivalent, then the equivalence classes of u and v

must be merged (since s(x) =S,(y)A... As (x) =5,(y)2x=Yy).

J

The following fragment of an procedure carries out the above step, but does not check for

cycles.

1. For all pairs of vertices u, v with nonzero outdegree

if u and v are equivalent

then (if any corresponding successors of u and v are not equivalent

then merge the corresponding successors

also restart step 1)

else 1f all the corresponding successors of u and v are equivalent

then merge u and v

also restart step 1.

2. Return.

This algorithm is‘ non-linear. In the next section we will describe a linear algorithm for

computing what will be called the bidirectional closure of a graph and in the following section show

how this graph algorithm gives a linear decision procedure.

2.2 Bidirectional Closure

Let G=(V, E) be a directed graph possibly with multiple edges such that the edges leaving

each vertex are ordered. If R 1s an equivalence relation on the vertices of G, then G 1s acyclic under

R if there 1s no sequence of vertices Ug» Uy uj, u, cup =Ug of G, p> 0, such that <u, u’> e R
and <u, u, > E for 0 c1< p.

) Let R be an equivalence relation on the vertices. of G. Define the congruence closure RT of R

on G to be the unique minimal extension of R such that 1. RT is an equivalence relation and 2. any

two vertices u and v with equal, nonzero outdegree are equivalent under RT if all their

corresponding successors are equivalent under RT. If G under RT is acyclic, there are linear

algorithms for constructing RT ([Downey and Sethil977), [Johnson and Tarjan1977]); these

algorithms abort 1f G under RT is not acyclic.

Let R be an equivalence relation on the vertices of G. Define the unification closure Rl of R

on G to be the unique minimal. extension of R such that 1. Rl is an equivalence relation and 2. if

any two vertices u and v with equal, nonzero outdegree are equivalent under Ri, then all their

corresponding successors are equivalent under Ri. If G under Ri is acyclic, there are linear

algorithms for constructing R{ (for instance, the linear unification algorithm of [Paterson and

Wegman 1977]); this algorithm aborts if G under R{ is not acyclic.

5

EE

We use the notation RT and R! to suggest the directional duality of the two notions of closure.

Let R be an equivalence relation on the vertices of G. Define the bidirectional closure RT of R

on G to be the unique minimal extension of R such that 1. RT is an equivalence relation and 2. for

any two vertices u and v with equal, nonzero outdegree, u and v are equivalent under R? if and

only if all their corresponding successors are equivalent under RY.

Consider now the problem of constructing the bidirectional closure. First, it 1s apparent that if

a congruence closure algorithm and a unification closure algorithm are run alternately enough times

over G that eventually G will be bidirectionally closed. That is, RiTiT..= RT. However, if G is such

that the outdegree of each vertex 1s either O or k, for some fixed k, then one pass of each algorithm

1s sufficient, by the following lemma.

Lemma: Let G =(V,E) be a directed graph with multiple edges such that the edges leaving

each vertex are ordered. Assume that the outdegree of each vertex in G is either O or k for some

fixed k. Let R be an equivalence relation on the vertices of G. Then RI=RIT.

Proof:

It suffices to prove that Rit is unification closed.

We first need a property of unification closed relations. Let R be a unification closed relation

on G. Let u and v be a pair of vertices in G with outdegree k such that <ulil,v[i]>¢R (forall 1 <i
< k. Then we claim that the minimal equivalence relation R, containing R, and <u,v> 1s also
unification closed. Note first that R, 1s R | except that the equivalence classes of u and v have been

merged. Consider any pair of vertices x and y with outdegree k such that <x,y>eR,. If <x,y>¢R |
then certainly <x[ilyli)>eR, for all 1 <1<k. So suppose <x,y> 1s not in R,. Then <x,u>€R, and
<y,V> € R, (or <x,v> and <y,u> are in R)) It follows that, for all 115k, <x[ilulil>e R, and
<ylilvlil>e R, (since R | is unification closed and the outdegree of all the vertices x, y, u, v is k),
and thus that <xlilylil>€R, since <uliJvli)> € R by assumption. Thus, merging u and v did not
affect the unification closure property.

Therefore, starting out with R{ and making equivalent any two vertices with outdegree k, all

of whose corresponding sons are equivalent, leaves the resulting minimal equivalence relation

unification closed. By induction, it follows that RIT is unification closed.

It 1s important for this proof that the vertices have the same outdegree if they have nonzero

outdegree. Otherwise, in the above proof it is not necessarily the case that if <x,u>eR then all
their corresponding successors are equivalent.

The order of the passes is also important; RT! is not necessarily equal to R$.

If G under Reis acyclic, there 1s therefore a linear algorithm for constructing RZ. One first

constructs R{ using a linear unification closure algorithm and then closes R{ under congruences

(that is, constructs RIT) using a linear congruence closure algorithm. If G under RY is not acyclic,

one of these algorithms will abort.

2.3 The Decision Procedure

We will now state more precisely the decision procedure described informally in Section 2.1.

We start by describing the data structures manipulated by the procedure.

First, corresponding to every term tin a formula, there 1s a directed, acyclic graph G(t). G(t)

will contain a vertex Vat “representing” t.

1. If t 1s an atomic symbol, G(t) has a single vertex with zero outdegree labelled with t. Va)
will be this vertex.

2. If tis of the form s(a), then G(t) will be G(a) and Va)B) will be Vg(8) for all
subexpressions B of a. However, if Vio)@ has outdegree 0, we will add k successors to Va)
(each successor will be a new unlabelled vertex with outdegree zero). In either case, Vian) will be
the ith successor of V g(a).

3. If t is of the form c(«Pee a,), then G(t) is the disjoint union of Gla), Gla) together

with a new vertex u with k successors. For all 1 <i <k, uli) is V Got) Viyt) is u. (In taking
the disjoint union, we will always assume that the label of any vertex in the union is its old label in

the graphs whose union we are taking. Similarly, for any term 8, if V5ot) P) exists in G(a), then
Vand will be the same vertex.)

Notice that the only labelled vertices are those representing atomic terms, and that all vertices

either have outdegree 0 or outdegree k.

In what follows, we may refer to V(t) mstead of Vat)

Decision Procedure

This algorithm determines the satisfiability of a conjunction F of the form:

XK #Y A... AX ®Y

/

1. Construct G, the disjoint union of Gv) a. G(v,), G(w,), C. G(w), G(x), a. G(x),
Gly), oo Gly). Let R be {(V(v), Vw) | 1<isr}U{ (a, B)| a and B are vertices in G with the
same label}. That 1s, the mitial equivalence relation R makes equivalent vertices representing terms

asserted equal in F and vertices representing the same atomic term in F.

2. Construct R?, the bidirectional closure of R on G. Let [[u]] denote the equivalence class of

vertex u mn G under R?. If G under R? 1s not acyclic, return UNSATISFIABLE.

3. For i from 1 to s, if [V(x)] = LV(y)D return UNSATISFIABLE. Otherwise, return
SATISFIABLE.

2.4 Correctness of the Decision Procedure

It 1s straightforward to verify that the algorithm 1s correct if it returns UNSATISFIABLE.

Suppose that it returns SATISFIABLE; we will construct an interpretation satisfying F.

LetR, be the partition of the vertices of G corresponding to the final equivalence relation

RZ. We define k functions S10 + S40 from a subset of Ryto Ry, and a function from a subset of
R," to Ry. For 1 <1<k, an equivalence class Q is in the domain of 5, if Q contains a vertex u
with outdegree k; in this case, 5:0(Q) = [uli}]} (Since every vertex in G has outdegree either O or k,
Q 1s in the domain of a particular Si if and only 1f it 1s in the domain of Si0 forall 1 c1<k.) A
k-tuple (Q,. Q) of equivalence classes 1s in the domain of < if there exists a vertex u with
outdegree k such that uli) e Q, for 1 <1<k; in this case, CoQ CL .Q)=[ul Note that CorS100
5,0 are well-defined, since G is bidirectionally closed. and every vertex in G has outdegree either 0
or k. However, these functions are not necessarily defined over the whole of R," and R,. To
construct an interpretation, we must extend these functions; in the process we will construct an

infinite domain for the interpretation. We now describe this construction.

Let G, = G. Construct as above the tuple (Gy, RyCySig- 5,0 Suppose we have
constructed the firstj t I tuples (Gy, RoC 810° SEE ko - (G,, Ry Cys i Sg ih Construct
(Gi, Rip Cup Spj+1 vy Skj+1) to be the following extension of (GR; cosy. .. Syl

1. For each equivalence class Qof R, which 1s not in the domain of any Sj choose any vertex
u in Q (u therefore has outdegree 0 in Gi) InG+1’ add k new vertices as successors to u, each in
an equivalence class of its own in Rit Let ay [ul1]], ..., [ulk]]) = Q and Sj41(Q) = [[ulil]}, for I
<1< k. By this construction, the domain of s,+1 18 R;

2. For each tuple (Q; Ca Q) of equivalence classes of R, not in the domain of Jt add a new
vertex u to G;4 in an equivalence class of its own in R+1 Let u have outdegree k and, for 1 <1 <

8

J

. k, let uli] = v for some v in Q.. (Since (Q) Ce. Q,) 1s not in the domain of C, there 1s no other vertex
Ww In Gi with outdegree k such that wlileQ, for 1 <i<k.) Let €jn1{ wr Q) = [ul], and, for 1
s12Kk, let 4;+ ul) =Q.. By this construction, the domain of Ci ‘1 is R,:

G +1 1s thus G, except for the new vertices Up oo Uy added m steps 1 and 2 above. Ri is R,
together with the additional singleton equivalence classes uJ. .. JIL Cia S1jalr Sja1 TE C,
5) ry Sy; extended as described mn steps 1 and 2 above. The extensions are well-defined, Notice in
particular that if any S; +1(Q) is defined, then all the s, +1(Q) are defined.

Lemma: Suppose Q,Q,,.... Q, are equivalence classes of R.. Then the following hold:

1. If Q 1s in the domain of Sj for 1 £15k, then (s,Q) Ce 5; (Q) is in the domain of c, and

2. 1F(Qy,....Q) is in the domain of at then ¢(Q,,Q) is in the domain of 5, and
5, (e(Qy co Q=Q for 1sick

3. G, under R, 1s acyclic.

Proof:

Base step: j = 0. If Q 1s in the domain of the 5,» then there exists a vertex u in G, with
outdegree k. Therefore (s 10{Q): Ca 5,.0{Q) is in the domain of ¢ and Cols I olQ) Ca 5,0(Q) =Q. So
the first clause of the lemma holds. If (Q,,....Q,) 1s in the domain of c,, then there is a vertex u
with outdegree k such that o{Q; Ca Q) =[[u]}, and, for 1 s1sk, ulile Q. Therefore, for 1 <i <
K, ¢5(Qys - Q) is in the domain of s,,, and SiolcolQy- -- Q) =[uli]] = Q.. So the second clause
of the lemma holds. Since Gy under Ry 1s acyclic, the third clause holds.

* Suppose the lemma holds for J; we show it also holds for j t 1.

Proof of clause 1. If Q 1s in the domain of one (and hence all) of Spire Sky then the result
follows from the induction hypothesis and the fact that (G, NT R, RIRTLITNTERE Sj+1) extends
(G,, Rj, ; S15 vy vy If Q 1s not in the domain of the Sj then, in constructing (Guy Roy Cup
Spje1r Sj” we added k vertices as successors to some vertex u in Q and defined <i (s 1j+ 1(Q),

Proof of clause 2. If (Q,, Ce. Q,) 1s in the domain of C5 then the result follows from the
induction hypothesis and the fact that Gia Rist Garr Stjure Ce Sj+1) extends (Gj, Rupes roe
Sj" Otherwise, in constructing Gap Rise Gute Starr Ca Sj+1) we added a vertex u such that [u]]
=¢,1(Qy, co. Q) and uli] eQ, for 1 <isk. ¢e1(Qy:Q)) is thus in the domain of 5,41 20d

9

Si; N 16;+R vy 3) = Q. for 1s 1< k. The second clause therefore holds.

The third clause holds from the construction.

Let R’ be the union of the R.. Let 5,(Q) be 5,(Q for the first j such that 5,(Q) is defined. Let
¢’ be defiried similarly. It follows that cs’... 5, satisfy the axioms and are defined on all of R,”

We will now define an interpretation ¥ which satisfies F. interprets c, Spee 08, as c’, 5), a.
5, - It follows that this interpretation satisfies the axioms. It remains to show that satisfies F. It is
straightforward to show that for every term t in the formula, W(t) =[[V(t)]. But v(t) and Vw)
have been merged, for 1 <i sr, so ¥ satisfies the equalities in F. V(x.) and Vy) are in different
equivalence classes since Step 3 returned SATISFIABLE, so satisfies the disequalities in F.

2.5 Linearity of the Decision Procedure

G can be constructed in several ways, but some care must be taken if it 1s to be constructed in

linear time, that 1s, in time O(n) where n 1s the length of the formula F. We describe one way of

doing so.

Step 1. For each term t in the formula, we construct G(t). We do not bother to identify

common subexpressions; distinct occurrences of similar subterms of t will be represented by distinct

vertices in G(t). However, we keep a list of pairs <t,V(t)> for each term Vo WX, and yi in the
formula. We also keep a list of pairs <a, V(a)> for each occurrence of each atomic symbol a in the

formula. We then form G, the disjoint union of these graphs. The number of vertices and edges in

G 1s O(n) and the time required to construct G is also O(n).

Step 2. We next add to the graph the equalities asserted in the formula by merging vertices

Vv) and Vw.) for each equality v. =w, in the formula. Since in Step 1 we kept track of each Vv)
and V(w.), we can do Step 2 in time O(n).

Step 3. We now make equivalent all vertices with the same label. Each such vertex represents

an atomic symbol in the original formula and so appears in the list of pairs <a, V(a)> constructed in

Step 1. Under a reasonable model, we can sort this list on the first argument of each pair <a,V(a)>

in time O(n) using lexicographic sorting. We then scan through this list; for each pair of adjacent

elements <ay, V(a,)> and <a,, V(a,)> in this list, if a =a, then we make equivalent Va) and
V(a,). This step again takes time O(n).

(In practice, this elaborate method would not be used. Instead, we would use a hash table to

store V(a) for each a, and would never create two vertices with the same label. Languages such as

LISP support this very efficiently.)

10

Step 4. Finally we construct G, the bidirectional closure of the relation on G0 constructed In
the previous steps. Again we can do this in linear time, as shown in Section 2.2. Notice that in

constructing the bidirectional closure, we will automatically identify (make equivalent) all common

subexpressions.

3. The First-order Theory

For concreteness, we will consider the first order theory of list structure (with function symbols

CONS, CAR and CDR and predicate symbols = and ATOM).

First, the decision procedure given in the previous section for quantifier-free conjunctions can

be modified to be the basis for a quantifier-elimination method for this theory, However, it is more

interesting to derive the decidability and complexity of this theory from existing results in logic on

theories of pairing functions.

A pairing functiom on a set S is a one-one map J : S x S =» 8S. An example of a pairing

function over the natural numbers is the function J(x,y)= 2*gY,

Associated with each pairing function J are its projection functions K and L. These are

partial functions S » S satisfying K(J(x,y)) = x and L(J(x,y)) = y. Since K and L are partial, we will

formally consider all functions as relations but will continue to write, for instance, K(z)= x instead

of K(z,x). (An alternative would be to make all functions total by introducing Jl, the undefined

element, in to the logic.)

K and L satisfy the axioms

J 1. vx vy 32[K(z)= x A L(z) = y)

2. Vz [3x (K(z) = x v L(z) =x) 23x 3y (K(z) = x AL(z) = y)]

. The pairing function J is defined in terms of K and L by J(x,y)=z = K(z) =x AL(z) =.

The first order theory of pairing functions (the first order theory with these axioms) is

undecidable (unpublished results by Hanf, Scott, and Morley). However, with appropriate additional

axioms, the theory is decidable. These additional restrictions on K and L correspond to the acyclicity

condition we put on our recursively defined data structures together with the decidability of the

theory of atoms.

First, we partition the set S into two disjoint parts, the set A of atom and the set S - A of

11

EE

non-atoms. ATOM(x) holds if and only if Xx 1s an atom.

The following infinite axiom schema requires that the pairing function be acyclic on all

non-atoms.

3. (A cyclicity)

Vz[- ATOM(z) A3x (K(z2) =x)2 K(z) #2]

Vz[- ATOM(z) a3x (L(z)=x)2L(z) =z]

Vz[- ATOM(z) asx (K(L{(z))= x) 2 K(L(z)) » z]

Next, if z 1s not an atom, it must have projections.

4. Vz [~ ATOM(z) = 3x (K(z) =x)]

vz[- ATOM(z) 2 3x (L(z) =x)]

Finally, once an element 2 lies in A, all iterations of projection functions from z (as long as

they are defined) must lie in A.

5.vz[ATOM(z) A3x (K(z) =x) > ATOM(K(2)) AATOM(L(z))]

A pairing function satisfying these axioms is defined to be acyclic except for A.

If A 1s empty, the first order theory with the above as axioms is decidable ([Mal’cev 1961,

1962). If A is non-empty, the theory may or may not be decidable: [Tenney 1972, 1977] reduced the

question of decidability to the decidability of the theory restricted to the atoms; if the latter 1s

decidable then so is the former. It 1s the latter result that we now use.

- Consider the first-order theory of list structure. CONS 1s the pairing function J, CAR is the

left projection K, CDR is the right projection L, S is the set of s-expressions, and A 1s the set of

atoms. By the above, the first order theory of list structure 1s decidable if the theory of atoms under

CAR, CDR and = 1s decidable.

There are many possible choices for A and its associated theory. First, A might be infinite (as

in LISP) or consist of the single atom NIL (as in Boyer and Moore’s original prover). Secondly,

CAR and CDR may or may not be defined on all or some of the atoms. If defined, CAR and CDR

may be cyclic or acyclic (for instance, we might choose CAR(NIL) and CDR(NIL) to be NIL as in

MACLISP). Regardless of the choice, as long as the theory of atoms is decidable, so 1s the overlying

theory of list structure. For a reasonable choice of the theory of atoms, its decidability 1s apparent.

12

Therefore, for any “reasonable” axiomatization of the theory of LISP list structure, its first

order theory 1s decidable. Unfortunately, an efficient decision procedure for the theory cannot exist.

[Rackoff 1975] has shown that no theory of pairing functions admits an elementary recursive
decision procedure, that 1s, one which always halts in time 22" for any fixed number of 2’s (n is
the length of the formula). It follows that any decision procedure for the theory of list structure must

be very inefficient in the worst case.

Although Tenney proved his result for pairing functions S x S = S, his argument holds as

well for k-ary pairing functions, that 1s pairing functions s*5 S which satisfy the obvious
generalization of the above axioms. Similarly, Rackoff proves that his lower bound also applies to

any k-ary pairing function. It follows that, given a recursive data structure with constructor ¢ and

selectors s [oe Sy satisfying the obvious generalization of the above axioms, the associated first order
theory 1s decidable but not elementary recursive.

Acknowledgments

I am indebted to Greg Nelson, Dave Stevenson and Bob Tarjan for numerous helpful

discussions.

References

[Boyer and Moore 1977] R. Boyer and J Moore, “A Lemma Driven Automatic Theorem Prover for

Recursive Function Theory”, Proceedings of the Fifth IJCAI, 1977.

[Downey and Sethil977] P. Downey and R. Sethi, “Finding Common Subexpressions”, submitted

for publication,

[Guttag, Horowitz, Musser 19761 J. Guttag, E. Horowitz and D. Musser, “Abstract Data Types and

Software Validation”, Technical Report ISI/RR-76-48, Information Sciences Institute, University of

Southern California, August 1976, to appear CACM.

[Hoare1975] C. A. R. Hoare, “Recursive Data Structures”, International Journal of Computer and

Information Sciences, June 1975.

[Johnson and Tarjan1977] D. S. Johnson and R. E. Tarjan, “Finding Equivalent Expressions”,

manuscript.

[Mal’cev 1961] A. Mal’cev, “On the Elementary Theories of Locally Free Universal Algebras”,

Soviet Mathematics - Doklady, 1961.

13

[Mal’cev 1962] A. Mal’cev, “Axiomatizable Classes of Certain Types of Locally Free Algebras”,
Sibirskii Matematicheskii Zhurrial, 1962. ’

[McCarthy 1978] J. McCarthy, “Representation of Recursive Programs in First Order Logic”, to be

presented at International Conference on Mathematical Studies of Information Processing, Kyoto,

Japan.

[Nelson and Oppen 1978a] C. G. Nelson and D. C. Oppen, “Fast Decision Procedures based on

Congruence Closure”, AI Memo AIM309, CS Report No. STAN-CS-77-646, Stanford University,

[Nelson and Oppen 1978b] C. G. Nelson and D. C. Oppen, “*Simplification by Cooperating Decision

Procedures”, Proceedings of the Fifth ACM Symposium on Principles of Programming Languages,

1978 (also Stanford CS report AIM 311).

[Paterson and Wegman 1977] M. Paterson and M. Wegman, “Linear Unification”, to appear JCSS.

[Rackoff 19751 C. Rackoff, “The Computational Complexity of some Logical Theories”, Ph. D.

thesis, M. I. T., 1975.

[Tenney 1972] R. Tenney, “Decidable Pairing Functions”, Ph. D. thesis, Cornell University, 1972.

[Tenney 1977] R. Tenney, “Decidable Pairing Functions”, submitted for publication.

14

