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Abstract.

Four steplength algorithms are presented for minimizing a class
of nondifferentiable functions which includes functions arising from
zl and Ew approximation problems and penalty functions arising
from constrained optimization problems. Two algorithms are given
for the case when derivatives are available wherever they exist
and two for the case when they are not available. We take the view
that although a simple steplength algorithm may be all that is required
to meet convergence criteria for the overall algorithm, from the point
of view of efficiency it is important that the step achieve as large
a reduction in the function value as possible, given a certain limit
on the effort to be expanded. The algorithms include the facility
for varying this limit, producing anything from an algorithm requiring
a single function evaluation to one doing an exact linear search.
They are based on univariate minimization algorithms which we present
first. These are normally at least quadratically convergent when
derivatives are used and superlinearly convergent otherwise, regardless

of whether or not the function is differentiable at the minimum.
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1. Introduction.

Descent methods for minimizing a function F(x), x ¢ o , hormally

construct a sequence of estimates {x(k)} to the minimum such that

) (k) o+ a(k)p(k)

with

(k+l)) (k))

F(x < F(x

(k)

The vector p is known as the direction of search and a(k) as

the steplength. Gill and Murray [1l] describe a reliable and efficient
(k)

algorithm for-determining the steplength g in the case that F(x)
is continuously differentiable. In this report we show how to construct
a steplength algorithm that is equally efficient when minimizing certain

classes of nondifferentiable functions.

We will at first restrict ourselves to the czse that F(x) is

either
m
Fs(x) = 214 max (O,fi(X))
i=1
or (1.1)
F (x) = max f. (x)
M l<ci<m +

where the functions {fi3 are of the form

and are continuously differentiable. we assume that every time the



function F(x) is evaluated the values fl(x),...,fm(x) are also

made available. In Section 5 we will indicate how the algorithms
developed for FS(X) and FM(X) could be modified to make them
applicable to a wider class of functions. Basically, the ideas to

be described here could be modified to construct a steplength algorithm
for any nondifferentiable function F(x) with the following properties:

WVrF :r Q_En - El is continuous on T.

(2) The directional derivative F'(x) (n) =

lim
h-0

(F(x + hn) - F)

S

exists for all n ¥ 0 everywhere on T .
(3) Any point z where the derivative F'(z) does not exist

satisfies an equation

qo(‘j) (z) - o
@)

for some j , 1< j < J , where the functions 1 3oy

rc EY 5 E1 are known and are continuously differentiable.

In order to prove convergence for descent methods for multivariate
minimization the steplength must satisfy certain criteria. Such criteria
do not in general define a unique point, but a spectrum of values.
Although all points in a particular range may satisfy the criteria equally
well, they are not necessarily all of equal merit with regard to the
efficiency of the method. Usually if two steps both meet the convergence
criteria, the one that achieves the greatest reduction in F(x) is to be
preferred. The better the step, in this sense, the fewer iterations
usually required to obtain a satisfactory approximation to the minimum.

The question we face, therefore, in designing a steplength algorithm is

not merely how to choose a step which satisfies the required criteria for




convergence, but of the many that do how do we choose a "good" step.
At the same time, however, how good a step we can choose depends on
how much effort we are willing to expend, and hence all the algorithms
we present contain the facility for varying this limit on the expense,
producing anything from an algorithm requiring a single function

evaluation to one doing an exact linear search.

2. Notation.

As explained in the last section, we shall initially be concerned

with minimizing functions of the form

m
FS(X) = Z max (O,fi(x))

i=1

or

where the functions fi(x) are continuously differentiable on g%

We denote the gradient vectors of fi (x) by v fi(X) and define

g(x) =z Vfi(x) , in the case that F = Fs s
i £, (x) >0
or
glx) = v f‘j (X)(x) , where j(x) is the smallest index
such that F(x) = fj () (x) , in the case that F = FM

Note that g(x) is the gradient of F(x) yherever the latter is defined,

and is one of the directional derivatives of F(x) at the points where



the gradient is not defined.
Let x be the current iterate and p be the direction of search
along which the ste-p is to be taken. We are now omitting the super-

script k for simplicity. Then it is convenient to write

£, (o) = fi(x*-o['p), i =1,...,m

and

F(a) = F(X+ap).

It should always be clear form the context whether we are thinking of

f.l or F as a function of a vector or of a steplength value ¢ . Then
m
F(Q/) = E max (O, fi((y)) in the case that F = FS
i=1
or (2.1)
Flo) = max fi (o) if F=FM
l1<i<m

We denote the derivative of fi(a) , which is the projected gradient

of fi(x + o D) along p , by

T
1 (g) =v £. x + ap) P
1 1

1
and-denote the left and right derivatives of Fla) by F (o) and

|

F+ (oz) where

F'(C!) - 1lim F(Q/+h)h- F(a’)

h =+ 0O-

1
and F+(a) is analagously defined.



We also define

1 T
F(a) = g(x+ap)'p.
Thus
' '
F () = fi (o) , in the case that F = FS
i: fi(oz)> 0 (2.2)
or

F (o) = £ (o (o)

where j(a) is the smallest index such that

Flg) = fj (o) (oz), if F= FM

Furthermore, F'(a) is the derivative of F(g) wherever the latter is

defined and otherwise is either the left or the right derivative of F(y) .

e also define F"(¢) to be the second derivative of F(g) where
it exists.
A point where the derivative of F(g) does not exist will be
referred to as a point of derivative discontinuity, or just a discontinuity

for short. Note that in the case F = FS the discontinuities occur at

the zeros of the fi(a) . In the case F = F the discontinuities z

M )
satisfy F(z) = fi(z) = fk(z) for some i # k
The term "convergence rate" will be used to mean the R-order of
convergence in the sense of Ortega and Rheinboldt [2,p.290] . In each of

our theorems, the corresponding stronger Q-order result also follows
except in pathological cases, but as pointed out by Brent [3,p.35], it is
often necessary to introduce rather artificial conditions to ensure this.

Thus, for simplicity, we use only the R-order.



3. Univariate Minimization Methods.

In this section we present a number of algorithms to find a local
minimum of the univariate function F(a) , where F(a) is defined by
(2.1) . There is no loss of generality if we assume F'(0) < 0 and
that there exists a local minimum ; > 0 . This is a valid problem in
its own right, but in developing our algorithms we shall bear in mind
their use for constructing steplength algorithms for minimizing functions
of several variables. This aspect of their use will be discussed in

Section 4

The inappropriateness of using an algorithm which assumes F(q)
is continuously difﬁgrentiable can be seen by examining Figure 1
Efficient methods for functions with continuous derivatives usually
determine Z iteratively by successively approximating F(o) by a

cubic or quadratic polynomial and taking as the next approximation to

*
@ the minimum of this approximating polynomial. The approximating

*
polynomial is matched to F(x) at the best known estimates to ¢ .

It is quite clear in case (iii) that the minimum of an approximating
polynomial may bear no relationship to ;-. In case (ii) the approach
is valid only if the approximating points all lie on the central portion
of the curve. Such a situation is unlikely to be true initially when
only a poor approximation to 3 is known. Consequently, the initial
performance of such algorithms is poor even when the solution is not

a discontinuity. It will be seen that from the point of view of step-

length algorithms it is the initial performance which is crucial.

The two types of minima possible for functions of the type (2.1)

illustrated in Figure 1 are emphasized in the statement of the necessary




(i)

o

A continuously differentiable function.

(ii)

(0%

*
A function of the type (2.1) but with ¢ not a discontinuity.

F(o)

(iii)

o
* ) 1 0
A function of the type (2.1) with ¢ @& discontinuity.

FIGURE 1
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and sufficient conditions for 4 to be a minimum of Fla) :
Necessary condition: Either 7 (3) = 0 with F”(&S non-negative
if it exists , or ; is a derivative discontinuity of
Flo) with F'(&) < 0 and F'(a) > 0
Sufficient condition: Either F'(;) = 0 and F"(;) exists and

*
is positive, or ¢ 1is a derivative discontinuity of F{y) with

* *
F'(@) < 0 and F! (o) > 0

Two algorithms are described (one with low overhead and one with
higher overhead) with two variants (one which utilizes derivatives and
one which does not). The essential feature of all the algorithms is that

at each iteration the option of converging to either type of minimum is
kept open. The step taken may be an estimate of either type, depending
on which is considered more likely and/or prudent. When ; is not a
discontinuity the higher overhead algorithms are comparable in efficiency
(in terms of the number of function evaluations) to the algorithms of

[1] applied to just the continuously differentiable function which coincides
with F(y) near ; .  When ; is a discontinuity the algorithms are
comparable in efficiency to efficient rootfinding algorithms applied
directly to the function of which § is a root.

" Before describing the new algorithm in detail we shall review the

algorithms of [1]. It is worth noting that because of the safeguards
built into them they will work even if F(y) 1is not differentiable

although for the reasons mentioned earlier their performance will usually

be poor.



3.1 The Differentiable Case.

Here we present the basic ideas of the algorithms of Gill and Murray
[1] for the univariate minimization problem when Flo) is differentiable.
These ideas will be needed in Section 3.2. We do not make any attempt to
present all the details of the algorithms and refer the reader to [1] for
these.

We assume that at each iteration of the minimization we know an
interval [a,b] in which the minimum ; is known to lie. The interval

[a,b] is called the interval of uncertainty and the points a and b

are said to bracket the minimum. (Initially a is zero, but b is un-
known. This situation is handled later).

Two cases—are treated, the case where both the function values Flo)
and the derivatives F'(y) are used, and the case where the function

values only are used. The latter case may occur either because the
derivatives are not available, or because they are relatvelyexpensive

to compute. In the first case we assume that two points x and w gare
also known. The point x 1is the lowest point obtained so far, (i.e.

F(x) < Flo) for any value of o at which the function has been evaluated),
and W is either the second lowest or the last evaluation point. There

are four possible configurations for x, w, a and b

(i)

X =a and w<a
(i1) x=a and w=b
(iii) x=b and w = a (3.1)
(iv) x=b and w > b .

In the case that the derivatives are not used, we assume that three points
X, W and v are known, where X is the lowest point obtained so far,

W is the second lowest, and v is either the third lowest or else is the



most recent point. Then a < x < b and the possible values for w

and v are

(i) w=a and v<a
(ii) w=a and v=Db (3.2)
(ii1) w =D and v =a

(iv w=Db and v>D

The basic strategy of the algorithm is to use successive polynomial
interpolation with safeguards. (We use interpolation to mean actually
either extrapolation or interpolation). Thus at each iteration, a new
point é is chosen-as the minimum of a polynomial approximating F(a)
at some of the points already evaluated. Provided i satisfies certain
conditions, u 1is set to i , but otherwise the point is rejected and
U 1s set to something different. The function is then evaluated at u
In the case that derivatives are used, the polynomial is a cubic chosen
to agree in both function value and derivative with Flo) and F' (o) at
the points x and w , and in the case that derivatives are not used,

a quadratic is chosen to agree in function value with F(y) at the

'points x, w and v . Then u is set to G except in the following
situations:
(i) G lies outside the interval of uncertainty [a,b]. This

normally only occurs in cases (i) or (iv) of (3.1) or (3.2)
when the step from x to G is an extrapolation step.
However, because of round-off error, it could occur even in

an interpolation step. Whenever G does not lie in [a,b]

10



(i1)

(ii1)

(iv)

it is rejected and u is instead set to a point u
obtained by a function comparison method which is guaranteed
to lie in [a,b] . The function comparison method used is

somewhat complicated and will not be described here.

f is obtained by extrapolation and although 4 lies in [a,b],
u lies between ﬁ and x . In this case too the point is
rejected and u 1is set to u instead. By extrapolation we
mean that case (i) or (iv) applies in (3.1). Justifying this
would require going into details about the function comparison
method, but basically if é is not close to the best two points

but close to a known poor point some change would seem warranted.

The step from x to G is greater in magnitude than half of
the step taken at the iteration before last. Here too u is
instead set to u . The purpose of this restriction is to
ensure that the algorithm does not produce a sequence of points
oscillating back and forth at each iteration and reducing the

interval of uncertainty by very little.

The point A lies too near one of the points already evaluated.
In this case u 1is instead set to another point which is
separated from those already evaluated by at least a certain

tolerance tol(x) defined by

tol (¢) = €lal + 7 (3.3)

11



The function is then evaluated at u @and the various points are

updated as follows:

Case with derivatives:

1f F(u) < F(x) then

if F'(u) < 0 then a « u otherwise b « u

wex and x ¢« u

otherwise

if u<x then a « u otherwise Db ¢« u

weu.

Case without derivatives:

If F(u) < F(x) then

otherwise b« x

if u>x then a + x

Vew, Wex and x ¢« u

otherwise
if u<x then a « u otherwise b ¢ u

if F(u) < Flw) then v« w and w e+« u

otherwise Vv « u .

This. completes the description of one iteration of the algorithm.

12



3.1.1. The initial strategy.

The initial case is normally handled by specifying in advance

a step length «

0 to try first. This then gives two initial wvalues

0 and ¥, for x and w . In the case without derivatives, the
second step must also be handled specially, using only the two points
for the polynomial approximation, but we do not consider the details
here. The point a 1is initially set to zero, but it may be several
iterations before we determine an upper bound on the interval of un-
certainty. The strategy in this case is to use polynomial extrapolation,
just as in the case where b is known and situation (i) in (3.1) or
(3.2) applies, but with u being set to G except in the following
cases : h
(i) the step from x to G goes across u , Where u is
obtained by taking a step from x which is four times the
step taken in the previous iteration. Here u is set to E
(ii) The point G lies too close to or beyond a fixed upper bound

on « beyond which we are not permitted to evaluate the

function. Here u is set to a permissable point instead.

The function is then evaluated at the new point u and the other points

are updated as in the case that b is known.

3.1.2. Convergence Criteria.

We complete the basic description of the algorithms by specifying

that they terminate when the minimum is bracketed and

b - a < 2 tol(x) (case with derivatives)
or max (x-a,b-x) < 2 tol(x) (case without derivatives)

where tol(x) is defined by (3.3).

15



3.1.3. Convergence Results.

Here we state the convergence results for what we may call the
theoretical procedures associated with the algorithms described above.
By this we mean the algorithms with exact arithmetic applied to the
exact function F(w) , with the tolerances ¢ and t set to zero.
Since this might produce a zero step from x to G , we also specify
that if this happens u is instead set to U as defined by the function
comparison method. We assume that an upper bound b has been found
on the interval of uncertainty.
We also assume that Fly) is continuous on [0,b]. (We can obtain

convergence results even if F(y) 1is not differentiable, althought not

the same rate of convergence). Let us define a stationary-inflection

point as a point ¢ , where F'(y) exists and equals zero, and which
is neither a local maximum nor a local minimum of F(o). We also define

a‘' generalized stationary-inflection point as a point o where either

Fl(a) = 0 or F'(y) = 0 and which is neither a local maximum nor a

local minimum of F(y) . Note that by a local minimum we mean either a

*
weak or a strong local minimum, i.e. a point ¢ such that 3 & > 0 s.t.

* * 7
F(a)_}> Flo) for lo - @l < 8. We then have the following result:

Theorem 1.
Let j{uk} be the sequence of points u generated by the

theoretical procedures. Then in both the cases with and without derivatives

*
the sequence {uk} converges to a point o which is either a local

minimum or a generalized stationary-inflection point of Fla) on [0,b]

* *
Furthermore, suppose that F'(y) is positive, uk¥ o for all k , and

F*''(¢) is Lipschitz continuous on [a,b] as defined by [2,p.63].

Then the asymptotic convergence rate is quadratic, in the case with

derivatives, and is superlinear with order 1.32k..., in the case without

14



derivatives.

We note that it is possible to modify the theoretical algorithm in
order to ensure convergence to a local minimum. In practice this additional
complication is not warranted since numerically one cannot distinguish
between a stationary point and a minimum.

In order to prove the theorem, we need several lemmas. In the
following, we use U Xk , wk ’ ak ’ bk ’ etc. to denote the

various points at iteration k

Lemma 1.

Suppose that the sequence of points {uk} contains a subsequence
{ujg with the property that u.J.k _ Iﬁk for all k , i.e. all the points
in the subsequence are generated by the function comparison method. Then
the sequence {uk} converges to a point n , and S.is a local minimum
or generalized stationary inflection point (LM or GSIP).

Proof.

The proof that the sequence converges follows from a property of the
function comparison method that at each such step the length of the inter-
val of uncertainty is multiplied by § where 0< @8< 1 . The rules for
updating the end points of the interval of uncertainty ensure that it

, *
always contains a LM or GSIP, so we have &y bk’ wtu , and 3 is a IM

or GSIP.

Lemma 2.
Suppose 3 K such that Uy is set to the point Qk for all
k > K, i.e. ultimately no function comparison steps are needed. Then the

*

L. * *
sequence {uk} converges to a limit u . Also X -+ u anci'wk 2+ u

15



Proof.

We must have that for all k > K

1
5

oy - ml <5 hyp - x
as otherwise the point Gb would be rejected. Assume without loss of

generality that K is even. Then

1 k - K
oy = %l < G 2 | uy - xl
and
k-K
l, 2
o1 = o | < @) Ugrr = %
For simplicity we write
k

o, - x| < (%)2 c

1
MOl =

where C 2 max {IuK = XK' b IuK+l - XK_+_1| } *
Since X, is the lowest point so far and w is the new point, we always
have either X, =w , s Or T Thus either there exists J

such that xk =xJ for k > J , i.e. no subsequent point uk is lower than

x. , or there is a subsequence (x. } such that x. = u., for all k
J I Ix I~
- .
In the former case Uy Xy s SO assume the latter. Consider uk+l’ uk.
Let j]Z be the largest element of the subsequence such that jL.< k, i.e.
Xk':x'K_l:'*- =Xj=uj£_JZIf Jl+l = k k- 1 7 l.e.
Xk+l = uk , then
k+1

LR W (%) ¢

16



Otherwise xk+l = X. and we have

A
o
N
|
|~

Using this result, we have that for any i >k

e LI L P B

k1
1, 2 1 1
5) c(l+g+p+ >
k
L
1\ 2
S(-é) C

Therefore for all 6§ there exists M such that for i,k >V, |u.i - Ukl <8,
and hence {uk} is a Cauchy sequence and converges. Clearly {xk} and
{Wk} also converge to the same point.

The following lemma is presented without proof.

Lemma 3.

If 1'); is not a LM or GSIP of F(y) , then there exists & > 0 such
that the interval (E - 6, 1-);. + 6) contains no IM or GSIP and such that
cubic interpolation with at least one of the two points in the interval,
or quadratic interpolation with at least two of the three points in the
interval, is good enough that the minimum of the approximating polynomial

lies outside the interval.

17



The following lemma is presented in a more general form than
needed here so that it can be used in the next section.
Lemma 4.

Assume that there is a subsequence (ujk} such that each point
in the subsequence is generated by polynomial approximation to F(q)
with, in the cubic case, Xj as one of the two points where the fit

k
is made, or, in the quadratic case, Xjk and wjk as two of the three

. - * * .
points. Then, if {uk} s {Xk} and.{wk} all converge to u , u is
a LM or GSIP of F(a)

Proof.
Let 6 be that of Lemma 3. Since the sequences all converge to

, there exists K- such that qk,xk and w, are all separated from

k

*
u
*
u by at most 8 , for all k > K. Therefore the points used for the

*
fit ultimately lie within 6 of u . Thus the result follows, since

otherwise we can apply Lemma 3 to show that the new point U satisfies

*
W - ul > 6 , which is a contradiction.

Proof of Theorem 1.

Either there is a subsequence {ujk} all generated from function
comparison steps, or there exists K such that o = Gk for k> K.
‘In the former case the first part of the result follows from Lemma 1.
In the second case we can apply Lemmas 2 and 4 to conclude that U -+ é ’
and. 3 is a LM or GSIP. This completes the proof of the first part of
the theorem, and we write.E = 3 .

If the hypotheses of the second part of the theorem hold, we can
conclude that ultimately the points will be generated by successive

polynomial approximation alone. The superlinear convergence of order

1.324.., for successive quadratic interpolation was shown by Jarratt [4]

18



in 1967, and by Kowalik and Osborne [5, p.20] in 1968. In 1973,
Brent [ 3,p.35] showed that their results for the Q-order (see Section 2)
were not true in certain pathological cases and showed how to introduce
extra assumptions to avoid these. He also showed that the R-order is
at least 1.32h4... in all cases. The rate of convergence for successive
cubic interpolation was shown to be quadratic (again except in patho-
logical cases) by Overten [6], using the symbolic manipulation system
MACSYMA [T7]. This was independently rediscovered (also using MACSYMA)
and a considerably simplified proof for the R-order was presented by
Bjorstad and Nocedal [8].

Clearly the safeguards (i) to (iii) will no longer be involved
once the quadratic or superlinear convergence sets in. This completes the

proof of the theorem.

Note that it does not make sense to talk about just any local
minimum of the function 9(@) which approximates F(y) by calculating
it on a finite machine, since such a function is really just a step.-function
and may have a lot of local minima very close together (see Brent [3,p.63]).
Instead, we can say that the algorithm produces an approximate local

minimum in the following sense:

Theorem 2.
The algorithm applied to the computed function @(Q) using the
A
(computed) derivatives F'(w) , terminates with points a and b such

that a < b , and

(1) P (a) < 0 and Pr®) > 0 or £1(a) < 0 and F) > #a)
or @) > o and ) > f@)

19



and

(ii) tol (x) < b -ax<?2 tol(x)

(where x = a if fa) < ﬁﬂﬂ and otherwise x = b) ,

Theorem 3.
The algorithm applied to the computed function ﬁ(a) without
derivatives terminates with points a, x and b such that a < x < b

and

(i) #a) > ) and fx) < @)
(ii) tol (x) < max (x-a, b-x) < 2 tollx) .

As long as the tolerances ¢ and 71 are chosen so that tol &) is

a reasonable minimum distance to require between two points before
comparing their function values, then the above is as near as we can get
to giving conditions for a "reasonable" local minimum to satisfy. The

results are easily verified by examining the algorithm.

3.2. The Nor-differentiable Case.

In this section we describe the changes that must be made to the
algorithm described in Section 3.1 to create our new algorithm for uni-
variate minimization when F(y) is given by (2.1). It is necessary to
modify only one part of the algorithm, namely the method used for
selecting the point Q . The safeguards which when necessary reject G
and set u to another point, and the method for updating the points
a,b,x,w and v, are all left unchanged. As mentioned earlier, the key

*
strategy of the new algorithm is to try to recognize whether « is a

discontinuity or not, and to then select G accordingly as either a

20



direct estimate of the discontinuity, or as an estimate of the minimum
of a polynomial approximating Flo)
Several different cases are treated. We have already noted that
we are concerned with the two possibilities Fla) = Fs(a ) and
Fla) = FM(oz) as defined by (2.1) . These will both be described
together as far as possible. We also consider both the case where
the function values fi(a) and the derivatives f{(a) are used and
the case where function values only are used. Recall that we have
extended the definition of a derivative by defining F'(q) in (2.2)
For simplicity we initially confine our attention to the case with
derivatives. Finally we describe two versions of the algorithm, a low
overhead version and a higher overhead version. The latter makes much
more use of all the information known but requires more operations to
choose the new point %1 .  The two versions have similar asymptotic
convergence properties but the higher overhead version should be more
efficient in terms of the number of function evaluations required to
obtain some specified accuracy (especially for low accuracy requirements).
The difference between the two methods is likely to be more significant
the higher the number of discontinuities is. In most applications the
computer time is dominated by the time spent evaluating the function,
so the higher overhead version is expected to be much the more useful in
practice. However, for simplicity we describe the low overhead version
first.

3.2.1 The Low Overhead Version.

As in Section 3.1, we assume that at each iteration we have an
interval of uncertainty [a,b] and points x and w satisfying (3.1).

The process for determining G may be divided into a number of parts:
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(1) The minimum and maximum discontinuities contained in the interval

[a,b] are estimated. 1In the case that F = F this is done as follows.

S
The function wvalues fi(a) and fi(b) are compared, for each i from
ltom . If for some i , fi(a) and fi(b) have opposite signs then
there is a discontinuity between a and b given by the zero of fi(a).
This is estimated by the Newton step from x . If zy lies outside

@)/

(fi(b) - fi(a)) which is guaranteed to lie in [a,b] . After this has

[a,b] it is replaced by the secant estimate (a fi(b) -b f.

been done for all i , zy, is set to the minimum of the z.l and zp

is set to the maximum (it is not necessary to store the 23 5 2 and

zR can be updated as each z.l is computed). If there were no dis-
continuities located between a and b , i.e. fi(a) and fi(b) had
the same sign in every case, Zr is set to b and zR is set to a

Note that comparing fi(a) and fi(b) for all i will identify all the
discontinuities between a and b if the functions f,l are sufficiently

near linear, although it may not identify them all in general, since a

function may have a zero in [a,b] and still have the same sign at a

and b

In the case that F = FM the discontinuities z are no longer
given by fi(z) =0, but by fi(z) = fk(z) = F(z) for some i £ k
The estimate z of the minimum discontinuity is then made as follows.

L
Let -j(a) be as defined in (2.2), i.e. normally j(a) is the index of the

only function which has the largest value at a . Then for each i # j(a)
the zero of f
J

i.e. y.l(a) is set to a - [fj(a)(a) - fi(a)]/ [f;'](a) (a) - fll(a)]

(Q\(a/) - T, (@) is estimated by the Newton step from a ,

3
\ /7

Note that there is no reason to suppose that yia lies in [a,bl. Then

kL and zL are defined by

22



(a) .(a) (a)
(a) I 1 L

; ~ are greater than a then z is set to b and k.

z, = min {y
If none of the ¥y
is undefined. The estimate Zp of the maximum discontinuity and the index
kR are similarly defined by looking at the Newton step from b to the zero
of fj (b) (@) - fi(oz) for each i1 . Note that it is not necessary to store
all the y.I.a) or y:ib) . Figure 2 illustrates the process.

However, 1f F = FM , and kL = j(b) and kR = j(a), indicating that

there is only one discontinuity in [a,b], then in all subsequent computations

ﬂpart (i) is omitted and Zq and zp are set to z as defined below.
The reason for this is simply to avoid estimating the zeros of all the other
fj (a)(af) - fi(a) and fj'(b)(a) - f (o) when it is unlikely that any of them
will have any relevance. Note that this is the only place in the algorithm
where any information need be retained from previous iterations other than
a,b,x,w and the function and derivative values.

(ii) A point z is defined as follows. In the case F = FS’ z is
defined to be the average of all the estimates Zy of the discontinuities
located in [a,b]. In the case F = FM, z is set to an estimate of the zero
of fj (a)" fj (p) Which must lie in [a,b]. The same technique used in (i)

for estimating the zero of fi(o/) is used, i.e. first the Newton estimate

from x 1is tried, and if this lies outside [a,b] it is replaced by the

secant estimate using a and b . This is illustrated in Figure 3.

If there do not appear to be any discontinuities in [a,b], i.e. F = FS
and none of the fi(a/) differ in sign at a and b , or F=FM and
j@) = j(b) , then z is undefined. 1If F = F, and z is defined then
we insist that z; <z < Zp by setting z2; = min(zL, z) and
Zp _ max(zR, z) . This may be necessary because of the different methods

for making the three estimates.
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Estimating the leftmost discontinuity in [a,b] for F = F

FIGURE 2
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a Z b
X
Determining z for F = FM . The zero of fl - f3 is estimated. First

the Newton step from x is tried, but since this lies outside [a,b] it

is replaced by the secant step using a and b

FIGURE 3
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(iii) If w is not equal to a or b , i.e. situation (i) or
(iv) in (3.1) applies, then we wish to estimate whether there are
any discontinuities between w and x . (If w equals a or b

this has already been done in (i) ). In the case that F = F this

g
is done by comparing fi(W) with fi(x) for each i and seeing
whether they have opposite sign for any i . This can be done at the
same time as the z, are estimated in (i) . In the case that F = FM
it is done simply by seeing whether j(w) and j(x) are equal. No

attempt is made to estimate any discontinuities.

(iv) Let us introduce some new notation. For a given point vy

we define

P (o) Z £ (@) ifF =
i S

i;fi(y) > 0

(3.4)
or ) - £ @)
i) ’

where j(o) is defined by (2.2) if F=F

M

Then F(y)(a) is a continuously differentiable function coinciding

with F(o) in the interval containing y over which F(a) is

(y) (y)

differentiable. We denote the derivative of F y (o) by F (cd

1
In this part then we compute the values F(a)(b), F(a) (),

(b)(a) (b)'(

F and F a) . Again for F = F_, this can be done at the

S
same time as the computation of the Zs in (1)
(v) We are now ready to make our first polynomial approximation.

The idea here is to fit a polynomial to a differentiable function coinciding

with F (o) in a certain interval and to take the minimum of the

polynomial as the new point u only if the step to it does not cross
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any of the estimates of the discontinuities. The ultimate quadratic
convergence rate for successive cubic approximation quoted in Section
3.1.1 holds only if the approximation is made at the lowest points
available, which do not necessarily bracket the minimum, Thus ultimately
we would like each point ﬁ to be obtained by approximating F(g) at

X and w in the case that ; is not a discontinuity. Therefore 1if

there were no discontinuities located between w and x in (iv), or

in (i) if w=a or w =1b , the point Sy is computed as the minimum

of the cubic fitted to F(¢) at x and w , i.e. agreeing in function
value and derivative with F(¢) and F'(g) at x and w . However,

if there was at least one discontinuity located between x and w ,

X)(

is computed as the minimum of the cubic fitted to F( o)

then Sl

at a and b using the values in (iv) (recall x=a or x=b). The
reason that a and b are used rather than x and w is that this
choice of fit cannot impede the ultimate rate of convergence in the case
that gz is not a discontinuity since then eventually there can be no
discontinuities located between x and w . It is our view that this
strategy ,using an interpolation fit instead of an extrapolation fit while

still not near the solution, is slightly more reliable than if the fit

(X) (CY)

was made to F at x and w regardless of whether there were

discontinuities between the two points.

If Sy lies in [a,b] and the step from x to Sy does not cross

any discontinuities, i.e. a < sy <z, if x = a or zp, <8 < b if

x=Db , then G is set to s Otherwise the step is rejected. This is

1

illustrated in Figure 4 .
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Determining G for F = F,,- The step to s the minimum predicted by the fit

M
and the step to s

l 4

to f the minimum predicted by the fit to f5 , are both

1’ o/

rejected. L is set to z
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(ii)
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The step to s,, the minimum predicted by the fit to f,, is accepted. u 1s set to 8.,

l)
FIGURE 4
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(vi) If the step is rejected in (v), a second cubic fit is tried,

b .
this time fitting the cubic to F( ?(oz) at a and b if x=a, or to

F(a)(oz) at a and b if x=b . Thus for example in Figure 4 (i) ,
after the step to sl is rejected, the point S, 1s set to the minimum
of the cubic interpolating fe(a) at a and b . This second cubic

fit may be of crucial importance to the algorithm's performanceaswill

be described later. Then as in (v), if s, lies in [a,b] and the step

2
A
from x to S, does not cross any discontinuities, W 1s set to S,
Otherwise this step is rejected too.
(vii) If the steps in (v) and (vi) have both been rejected, this

implies that the step from a to the estimate of the minimum of the
differentiable function coinciding with F(u)ata crossesthe
estimate of a discontinuity. The same is true of the step from b
estimating the minimum of the differentiable function coinciding with
F(o) at b . Hence the conclusion is drawn that 2 may be a dis-
continuity. Therefore 1111\ is set to z as defined in (ii).

This completes the description of the choice of u when an interval
of uncertainty is known. We now describe the changes that must be made
to the above when minimum has not yet been bracketed. We have x=a and
w < x. Then G is defined as follows.

(1) Here the minimum discontinuity is estimated. If F = Fq the
zero of each of the fi(a) is estimated by the Newton step from a , and
Zp is set to the smallest estimate greater than a . If F = Fy o then
Zy is defined as in the case where b 1s known.

(ii) and (iii) are omitted.

(%)

(iv) Here we compute F (w) and F

<X),(w) as defined by (3.4).
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(v) The point Sy is computed as the minimum of the cubic

fitted to E(’ }x,‘ at x and w . If x < sy < 2p then {\1 is set

to Sy i otherwise the step is rejected.

(vi) If the step in (v) was rejected, a second cubic fit is made,
this time fitting to the differentiable function which is thought to

coincide with F(g) beyond the discontinuity which is estimated by z; -

This is done by noting in (i) which function it is whose zero is estimated

by z, - For example, if F = FS , and zL estimates the zero of

fl(a') , and fl(x) > 0 , then the differentiable function thought to

coincide with F(¢) beyond this zero would be F(a)(a/) - fl(a) .

Consequently the value of this function and its derivative would be
computed at x and. w in order to make the cubic fit. An example in

the case F = F, would be that 1 estimates the zero of fl(oz) -

fz(oz) and F(x) = fl(x) . Then the differentiable function in question

would be 1“2 and the value of f2 and its derivative at x and w

would be used for the cubic fit. Let s2 be the minimum of the cubic

A
thus defined. If S5 > z, we set u to 52 ; otherwise the step is

rejected. The situation when F = FM is illustrated in Figure 5
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n

Deterxnining-%; for F = FM when the minimum is not bracketed. The step to
g A

the minimum predicted by the fit to f is rejected, and so u is set

S, ,
1 1
to S, the minimum predicted by the fit to f2 .

FIGURE 5
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(vii) If the steps in (v) and (vi) were both rejected, this implies
that the steps to the estimates of the minima of each of the differentiable
functions coinciding with F(g) on either side of the discontinuity
estimated by Zr both go across the dicontinuity. Hence we conclude that

*
o 1s likely to be at the discontinuity and set & to Zy -

3.2.2 Comments on the Algorithm.

In the algorithm described the asymptotic rate of convergence will
usually be quadratic, irrespective of whether or not 3 is a point of
discontinuity. This is because ultimately the points generated will either
be those resulting from successive cubic interpolation estimating the
minimum of a differentiable function or from Newton's method estimating
the zero of a different differentiable function, and both processes normally
have a quadratic rate of convergence. Note that since z is an estimate
‘of the average of the discontinuities we might expect the number of dis-
continuities between a and b to be halved at each step. Consequently
even on problems for which there is a large number of discontinuities in
the region of interest the number within the interval of uncertainly will

soon become small.

To our knowledge the only other univariate minimization or line search
algorithm which has been proposed for special nondifferentiable functions

is that of Charalambous and Conn [9] for F = F Their algorithm does

Mo
not include the safequards that we have described. Also, a basic iteration

of their algorithm is quite different from ours in a number of ways.

Suppose a 1is the lowest point x . Their algorithm estimates the zeros

(a)

of fj(a) - fi for each i by Yy as ours does. It then similarly

estimates the values of fk at yéa) for each i and k and hence
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(a)

estimates the value of F at each yia. The point yéa? with the
lowest estimated value of F is then chosen for the new point and a
function evaluation is made. Then a cubic interpolation step is taken
only if the new function value is higher than F(x). This approach is
quite different from ours where ﬁx is set to a discontinuity estimate

only if the step to the cubic interpolation estimate crosses a dis-

continuity estimate. Also we make cubic fits only to differentiable

(a)(a) (b)(

or F o) rather than Fla) . Since

functions, i.e. to F
the points estimated by y£a) may not even be discontinuities, our
higher overhead version (to be described in the next section) presents

a better way to estimate the minimum supposing that is is at a dis-

continuity.

In some situations the algorithm of [9] may converge to a point of
discontinuity which is not a minimum. This would also happen in our
algorithm if step (vi) were omitted, i.e. if G were set to z without
making a second cubic fit when the step to the estimate of the minimum of
the first interpolating polynomial used in (v) crosses a discontinuity
estimate. This is illustrated in Figure 6 for F = FM .  Here 215 2p= z
as there is only one discontinuity between a and b and z < ; <sq
where Z' is the exact zero of fI'fE' If no second fit is made in step
(vi) but & is set to Z the points generated will converge to 'z if
the points z converge to z*from the left. This will happen in this
example if (f;(g) - fg(;)) ’ (fi(;) - fé(;)) < 0 since Newton's method
to find the zero 2 of ¢(z) converges from the left if ¢W(§)qﬂ(;) <0
Clearly what is needed is to generate a point between*ﬁ and b , and this

is done by stepping to the minimum of the cubic fitted to f2 at a and

b in step (vi).
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A -
An example for F = F,, where successively settlng u to z

B *
because s, is rejected causes convergence to z instead of « .

5

FIGURE 6
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An alternative strategy for avoiding this difficulty is to estimate
whether the gradient of F(g) changes sign at the discontinuity estimated
by z , and to set G to z only if this happens. However, the second
cubic fit is recommended since it can give a good estimate of the minimum
at the same time as rejecting the estimate of the discontinuity. 1In any

event if the gradient is thought not to change sign at the discontinuity

some alternative step must be computed.

Another point worth noting is that it might seem that an almost as
efficient algorithm could be designed saving some storage by not requiring
the fi(w) to be available as well as fi(a) and fi(b) (and perhaps
the corresponding derivatives). In fact saving fi(w) requires no
extra storage as a third vector in addition to those for the function
values at a and b 1is required anyway for the evaluation of the function
values at the new point u , and since the new w is always either the
old a or the old b , the function values at w can be retained by
interchanging the new vector with the old vector that would otherwise be
overwritten. Of course this is really only of academic interest since we

do not expect storage of a vector of length m to be significant.

3.2.3 The Higher Overhead Version.

We now describe a second version of the algorithm which requires
more housekeeping operations and/or storage , but makes fuller use of
the information available. The basic difference between the two versions
is that in the higher overhead version we do not restrict the number of
cubic fits to one or two, but allow up to m cubic fits. Consequently
é is always set to either the estimate of a minimum between two adjacent

discontinuity estimates or to a specific discontinuity estimate. The other
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difference between the two versions is that we now estimate the dis-
continuities by inverse cubic interpolation at two points. Thus the
estimate of the discontinuity is chosen as the zero of the inverse
cubic which agrees with the inverse of w(a) in both function and
derivative values, where ¢(a) is the function whose zero is desired.
Inverse interpolation is preferable to direct interpolation for this
purpose because the zero of the inverse cubic must be unique whereas
the direct interpolating cubic may have several zeros. For further

details on inverse interpolation see Traub [10] .

As before we begin by assuming that the minimum is bracketed by
a and b . It becomes necessary to consider the two possible forms
of F(x) separately. For simplicity we assume that F(a) < F(b)
The computation of ﬁ is then done as follows:

(a) F=F.

(1) All discontinuities located in [a,b] are estimated by inverse
interpolation and the estimates z. are ordered and stored. If there is
at least one discontinuity located between x and w (i.e. there is

at least one fi(a) with different sign at x and w ) then the inverse
interpolation is done at a and b since this is the most reliable
choice, but otherwise each estimate is first made by inverse interpolation
at the points x and w , and this is then replaced by the estimate
using a and b only if the first estimate lies outside [a,b]. This is
done because the good rates of convergence properties of successive inverse
interpolation apply only if the best points are used for each fit. Note
that although x and w are usually the two points with lowest values of

*
F(o) it is clear that if ¢ lies at a discontinuity with fk(§)= 0 , then
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ultimately x and w will also be the two points with lowest value of
Ifk(a)l. If a and b are not equal to x and w , then ultimately
there cannot be any discontinuity between x and w even if the minimum
; is a discontinuity, and hence this strategy cannot impede the rate of
convergence. It is possible that the inverse interpolation estimate
using a and b lies outside [a,b]; if this happens, it is replaced

by the secant estimate.

(ii) For convenience we set vy to the value a and Y5 to the smallest
of the values {zi} .  The points Yy and Y5 represent the current
discontinuities as we examine them from left to right. We initially

(&) (¢) as defined by (3.4). The function

define the function hla) by F
h(y) 1is the differentiable function thought to coincide with F(o) between

the discontinuities estimated by vy and Vo

(iii) The point s 1is set to the estimate of the minimum of h(w) using
(direct) cubic interpolation. As in the low overhead version, the cubic
interpolation is done at the points a and b if there is at least one
discontinuity located between x and w , and otherwise is done at the
points x and w . If yl_< s < Vo then 1/} is set to s

If s is undefined, which will be the case if h(o) is linear, then s
is defined as either + ® or - «» by assuming h(o) 1is linear and
comparing its values at x and w or a and b . For example, if

h(a) < h(b) , then s is set to - o

A, . .
(iv) If s < vy then u is set to vy as then the differentiable
functions coinciding with F(w) on either side of ¥y each appear to

have their minimum on the opposite side of vy -

(v) If s > Yo then vy is set to y2 A is set to the next smallest
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of the values of the {zi} , or to b 1if there are none greater than
Y, h(w) 1is set to the function thought to coincide with F(y) in
the new interval [yl, ye] , and steps (iii), (iv) and (v) are repeated.

The new function h(y) is obtained by adding to the old h(w) the

function + fk(oz) , Where z

. 1s the old value of ¥, and the sign

is the sign of fk(b) . However, if the old value of Y, is b , the
process is terminated withAu set to b . This is illustrated in

Figure 7 .

(1) In this case in order to recognize the discontinuities it is necessary
to estimate them in stages. We therefore begin by setting vy to a and

k, to j(a) as defined by (2.2).

(ii) The point s is set to the estimate of the minimum of fk (@) using
1

(direct) cubic interpolation. As before, the interpolation is done at a
and b 1if at least one discontinuity is located between x and w , i.e.
if j(x) # j(w), and otherwise it is done at x and w. Also if this
makes s undefined it is set to + @ as before.

(1ii) If s < yl then Q@ is set to yl and the process is terminated.

(iv) The zeros of the functions fy () - fi(oz) for all i # k, are
1

estimated by inverse interpolation. As in (ii> the points a and b are
used if J(x) # j(w) and otherwise x and w are used. Then Vs is
set to the minimum of those estimates which are greater than vy If
there are none greater than vy and less than b , then y2 is set to b
Also k is defined such that Y, is the estimate of the zero of

2

fk (o) - fk (@) , unless Y, = b when k

is undefined. If s < y. ,
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Determining Au for F = F in the higher overhead version. The zeros

S
CL (of f5>’ QQ (of fl) and C5 (of fh) are estimated first. Then the
polynomial fits to each function are successively made. Provided that

the minimum predicted by the fit to f2+f5 lies between the estimates of
¢, and ¢7, % is set to this point. The low overhead version would

J
have set Gto the average of estimates of gl’ €2 and §5

FIGURE T



then G is set to s and the process is terminated.

(v) If s > y, then k is set to k, , y; is set to y, , and

steps (ii) to (v) are repeated, unless ¥y = b when the process is
terminated with G set to b . See Figure 8 for an illustration.

However if during the execution of the above k2 is initially set
to j(b) in part (iv) , i.e. we have kl = j(a) and k2 = j(b) indicating

only one discontinuity between a and b , then in all subsequent

computations of G part (iv) is replaced by

(iv-2) If v, = a then Y, is set to the estimate of the zero of

f ) using inverse interpolation either at a and b or at

i) " T
X and w , depending-on whether j(x) = j(w) as before. Since we know
there is a zero of this function in [a,b] , we replace the estimate using
X and w ,if it lies outside [a,b] , by the estimate using a and b ,
and replace the estimate using a and b if necessary by the secant
estimate. If ¥y # a , then Vo is set to b . Note that estimating only

the zero of fj(a) - f is a safe strategy even though there may still

i)
be more than one discontinuity in [a,b] . An example of an unsafe strategy
would be to estimate only the zero of, say, f2- f3 , if G had been set
to.the estimate of the zero of this function several times already. Also
note that the strategy may never be invoked since if the estimates con-
verge to z from one side the interval of uncertainty may always contain
more than one discontinuity. As in the low overhead version this is the
only place where the definition of G depends on retaining any information
from the previous iteration other than a,b,x,w and the function and

derivative values.

Notice that for F = F, in part (iv) it would be *possible to exclude
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Determining G for F = F in the higher overhead version. The zeros

Cl,gg, 63 are successiJily estimated and the polynomial fits successively

- made to each function. Provided that the polynomial fit to f2 is de-
creasing to the right of the estimate of gg and that to f3 is decreasing
to the left of it, % is set to the estimate of g? The low overhead

version would have set £ to an estimate of [

FIGURE 8
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from consideration those i such that kl = 1 for an old value of

k) or such that the estimate of the zero of fkl(a) - fi(a) lies
outside [a,b] for an old value of kl )
It is worth noting that the choice of % in the higher overhead
version requires of the order of m.m operations in the case that F = FM
(in part (iv)), where m 1s the number of discontinuities in the interval
of uncertainty, but only of the order of m operations for F = FS
If we were not permitted to store the {zi} in the case F = Fg, there
would also be order m-m operations required for this case. However, it
does not appear possible to utilize storage in a similar way to reduce
the operation count for F = FM since there are too many possible dis-
continuities to be stored in advance.
In both the above descriptions for F = FS and F = FM we have
assumed that F(a) < F(b) but clearly when this is not true the roles
of a and b are simply interchanged and the discontinuities are examined
from right to left instead of left to right.
As in the low overhead version we end the section by considering the
case where ; is not yet bracketed. The choice of G is made in much
the same way as in the case that F(a) < F(b) , except that x and w
are used for both the direct and inverse interpolations, and in the case
F = FS the zeros of fi(a) for all i must be estimated instead of
just those thought to lie in [a,b]. Clearly instead of terminating if

vy becomes b , the computation of G must terminate if N becomes

undefined and the safeguards will then choose a reasonable new u

3.2.4 The case without derivatives.

We do not describe this in any detail but outline the changes to be
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made to the low and higher overhead version for computing G .  We now
have the extra point v defined in Section 3.1. In the low overhead
version the Newton steps to the discontinuities are replaced by secant
steps. We use the points a and b when there are discontinuities
located between w and v (and Z is bracketed) and switch to using

X and w when this is no longer true. 1In the higher overhead version
the inverse cubic interpolation is replaced by inverse quadratic inter-
polation at the points a, x and b initially (if ; is bracketed)

and the points x, w and v ultimately. In both versions the (direct)
cubic interpolation estimate of a minimum is replaced by quadratic inter-

polation, again at a,x, and b, or at x,w and v

3.2.5 Convergence Results.

We now give the convergence results for the theoretical procedures
associated with the algorithms described above. By theoretical procedures
we mean exactly what was explained in Section 3.1.3.We assume that
F(o) has one of the forms (2.1) and that an upper bound b on the interval
of uncertainty is known. .
Theorem 4. The theoretical procedures corresponding to both the low and -
higher overhead versions described above for both F = FS and F = FM '
in the cases with and without derivatives, all produce a sequence of points
{uk} converging to a point ; which is either a local minimum or generalized

- 11
stationary inflection point of F(y) on [0,6] . Furthermore if fi(a)

*
is Lipschitz continuous on [a,b] for 1 <i<m, and W % o for all k ,
then we have the following. If either
" * ' ' ' ' *
(a) F" (o) exists and is positive, and it is not true that fi(a) =0

. * * *
for some i if F = FS , or that f&(a) = ﬁkQﬂ = F(@) for some
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ifk if F==FM , or
* * * . .
() Fr (@) # 0, FL(a)% 0, and fiQﬁ = 0 for exactly one i , with
¥ * *
fi(a) # 0, if F = FQu , Or fi(a) = f (o) = Fla) for exactly one

" . . * * . .
pair i # k , with fi(a) # fé(a) ,1if F o= Fy » then the asymptotic

convergence rate is given by the following table.

Algorithm Convergence rate
Case (a) above Case (b) above
Low overhead with derivatives 2 2
Low overhead without derivatives 1.324. .. 1.618...
Higher overhead with derivatives 2 2.7%2...
Higher overhead without derivatives 1.32k4... 1.83%.

In order to prove this theorem we need several more lemmas in addition
to those of Section 3.1.3. The first two are similar to Lemmas 3 and k4 ,
and, as before, we present the first without proof.
Lemma 5.
If 3 is not a zero of a differentiable function ¢(¢) then T § > 0 s.t.
the interval(é -6, é + 8) contains no zero of $(a) and such that a
secant or Newton step to the zero of (o) using a point inside the interval

is good enough that the estimate of the zero lies outside the interval.

Lemma 6.

Assume each point in the subsequence &ﬁ } is generated by either

k
a Newton or secant step to the zero of o(a) using the point x.. If
* * * Jk
X, 9 U and u. ®* u , then u is a zero of ola) .
Ik Jy

Proof.

Identical to that for Lemma 4 using Lemma 5 instead of Lemma 3.
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Lemma 7.
Assume the hypotheses of Lemma 4 except that the approximating
polynomials are fitted to a continuously differentiable function ()

instead of F(a). Then if there is a sub-sequence of (ub } , namely

k
{ui }, s.t. F(u:.L ) = Q(ui ) ¥ k, the same result holds as for Lemma 4.
k k k
Proof.

*
By Lemma 4 u must be a IM or GSIP of &(¢). Without loss of

generality assume that a subsequence of {uj }5 namely {ui }» converges
k k

* .
to u from the left. Since &(w) is continuously differentiable we
can write *
x 8(u, ) - a(a) M
§'(u) = lim Tk = F' (@ = o.
k % o *
u.  -u
k

*
The fact that u must be a LM or GSIP of F(o) follows from this and

*
the fact that Fﬁ% ) F(u) from above.
k

Proof of Theorem 4.

We restrict our attention to the low overhead version. Either there
is a subsequence &Gk] with ubkf ﬁjk for all k , or there exists K
s.t. w = Gk for k > K . In the former case as before we obtain the
first part of the result from Lemma 1. Therefore assume the latter case.
There must be a subsequence (ubk} either (i) consisting entirely of points
generated by polynomial approximation fitting to a certain differentiable
function 8(¢) , or else (ii) consisting entirely of points generated by
Newton or secant steps to the zero of a differentiable function @(a).
Case (i).

By Lemmas 2 and 4 , uj - 3 with 3 a LM or GSIP of &(¢) . (Note

k

that the quadratic approximation always uses the two best points for two

of its three points and similarly the cubic approximation always uses the
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best point). Suppose there is a subsequence (ul. } of {uj } such that
k k

*
F(ui ) = @(ui ) for all k . Then by Lemma 7 u is a LM or GSIP of
k- k-
F(y). Otherwise & K s.t.
Flu. ) # 8 (u. ) for k > K . (3.5)
Ik ¥ -

* * * *
Since x. +u and w, *u we know either a “*u or b. = u.
Ik Ik Ik Ik

¥
Without loss of generality assume the former, 1i.e. a.J-b u . Because of
k

the way the fit is chosen in the low overhead version, we have for each k
either F(a, ) =% (a.) or Flb.) =38(. ). By taking subsequences (but

J I J J

k k k
not writing them explicitly), we can assume that either Fla, ) = @(aj )

k k
for all k > K , or F(bJ. ) = @(’3. ) for all k > K . The former con-
k k
tradicts (3.5) as we could write (a:] } as a subsequence of {uJ.}
h k k

14
*
converging to u , so we assume the latter. Since é(¢) and F(g) agree
at b:] but not at uJ. ;, there must exist a discontinuity { such that
k k
*
uj < < bj for all k > K, and hence u < { . Now consider the
k k
estimate of { at each step, namely Ej , which results from a Newton
k
or secant step using the best point x. . We have a. < z. < b. .
J J - J - J
_ k k k k
On the other hand, z. must lie outside [u., , b. ] or the step to
Ik ek
u,j would not be accepted as it crosses a discontinuity estimate. Thus
k *
z, <u, and z, » u . By Lemma 5 this is not possible unless
Jk - Jk Jk
We therefore have that §(¢) agrees with F(y) on an interval to the

a. <
Iy N
C=u
. . ) * * *
right of and including u , and hence that F!(u) = 0 as 3'(u) = 0
* *
Since af] 4+ u , we know Fla) is non-decreasing on the left of u , so

k
*
u is a LM or GSIP of F(a) (see Figure 9).

Case (ii).
We have {uj } where each point is generated by a Newton or secant
k

step to the zero of a differentiable function ¢(¢). By Lemmas 2 and 5,
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(a) Equation (3.5) does not hold.

®
Q *x
o

Ik
(v) Equation (3.5 ) holds.

Two possibilities in case (i) of the proof of Theorem b .

FIGURE 9



* * *
uj +u and u must be a zero of m(a)- Suppose u 1is not a IM or
k *
GSIP, and without loss of generality assume Fi(u) <0 . Let 3(a) be

*
the differentiable function coinciding with F(g) on the right side of u
The algorithm will not permit u:_J to be set to the estimate z of the
k
zero of ¢(¢) if a point to the right of" z is produced by polynomial

approximation to the function thought to coincide with F(w) to the

right of z . In the low overhead version the function in question is
Fib)(a) , and since u. is then always set to éj ultimately we
k k
must have z, equal to a specific discontinuity estimate and F(b)(a) = 5(y).
k

(In the higher overhead case the function in question is clearly ultimately

equal to &(x).) Thus by Lemma 3 this fit is ultimately good enough that
a. cannot be set to the estimate of the zero of ¢(y) , which is a con-
trgdiction. Hence ; must be a LM or GSIP.

This completes the first part of the proof for the low overhead
version. We omit the proof for the higher overhead version since it is
similar. The main difference is the replacement of the Newton and secant
results by analogous ones for successive inverse interpolation.

The hypotheses of the second part of the theorem ensure that ultimately

the points u are generated entirely by successive estimates of a minimum

k
hsing (direct) cubic or quadratic interpolation or entirely by successive
estimates of a zero using the secant method, Newton's method, or inverse
cubic or quadratic interpolation. They also ensure that ultimately the
best points are used for the interpolation and hence that the rate of con-
vergence is not impeded. The convergence rates for successive cubic or
quadratic interpolation were quoted in Section 3.1.3, those for the secant

method and Newton's method are well known, and those for inverse inter-

polation may be found in Traub [10,p.66]. This completes the proof of the
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theorem.

Finally we note that as in the differentiable case it does not make
sense to talk about just any local minimum of the computed function @(a)
It is easy to verify that Theorems 2 and 3 hold for the nondifferentiable
algorithms as well, where @'(a) is the quantity resulting from computing

7' (y) as defined in (2.2).

4, Steplength Algorithms.

In this section we discuss how to choose a(k) (see Section 1), when
minimizing an n dimensional function of the type given by (1.1). In order
to prove convergence for descent methods the steplength has to meet certain
criteria. The function must be "sufficiently decreased" with respect to
the steplength, and the steplength must not be too small (see Ortega and
Rheinboldt [2,p.4%]). For differentiable functions a typical criterion to

ensure that the first condition is satisfied is

k) (k
P g e, u(k)p) - o )g( ) o h.1)
where p, 1s a preassigned scalar, 0 <y <1 . (We have now omitted
the superscript from p(k) , and have denoted F(x(k)) and g(x(k)) by
F(k) and g(k)- ) As was mentioned in the introduction, such criteria do

not in general define a unique point. Many elementary algorithms have
been proposed which satisfy them. However it is important to realize that
for a practical algorithm mere convergence in the limit is only of academic
interest. We are interested in the finite sequence {x(k)}, k=1,...N,
where N is preferably small, and where x(N) is "close" to ; . The
greater the reduction in F(x) per iteration usually the lower the value

of N . It is necessary however to limit the effort expended on determining
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(k)

o since this in itself could be an infinite process.

For algorithms which are designed to minimize differentiable
functions Gill and Murray [1] proposed choosing the steplength by
(X(k)

proceeding to compute a local minimum of F + o p) using the
algorithm described in Section 3.1 and terminating this prematurely
(possibly after a single function evaluation). When derivatives are

available the termination condition is

X(k) (k)

F( +Q/p)<F

and

T
lg(x(k)+ o p)rp|<1- n g(k) D (k.2)

where n is a preassigned scalar, 0 < h <1 . A check is then made

as to whether this step satisfies (4.1) with | set to a small value

such as 10_4. The experience with such a procedure in the many cases
that were checked is that the resulting step always satisfied (4.1).

If (4.1) is not satisfied, the step is successively contracted by a factor
of one half until it satisfies (4.1). It is proved in [1] that this

strategy is sufficient to ensure the overall convergence.

. Clearly the smaller the parameter nh is, the greater the reduction
obtained in F(x) but the more evaluations of F(x) required. The
optimal choice of nh will vary both with the algorithm within which the
procedure is incorporated and the problem being solved. Fortunately for
a particular algorithm a near optimal value of n can be predetermined
That different algorithms will require different choices of h arises
from the relative effort of computing the search direction p and per-

forming additional iterations of the univariate search (recall that the
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more accurate the univariate search, the fewer iterations of the multi-
dimensional algorithm required). If for example in a Newton-type method
it was expensive to evaluate the Hessian matrix (required to compute p
only) compared to evaluating F(x) and g(x) then a small value of h
would be warranted. Similarly if n was large making the housekeeping
operations of obtaining p significant, then again a small value of n
would be warranted. For most algorithms, however, the optimal h under

most circumstances is in the range 0.5 - 0.9 .

The termination criterion (4.2) is clearly inappropriate for
nondifferentiable functions since if ; is a discontinuity there may
be no value of ¢ which satisfies it. To achieve a similar objective
for nondifferentiable functions we propose the following. Let o be
the first point in the sequence generated by one of the minimization

algorithms with derivativesdescribed in Section 3.2 such that

Fx %'+ gp! < F
and either

g (s & o) bl < -n gQK)TP (k. 3a)
or

|cp(x(k)+ & )l < nlol (4.3Db)

The test (4.%b) is done only if the generation of the next point

after @ in the univariate search entails setting the new point u to
an estimate of a specific discontinuity, namely the zero of the function
cp(xk + o p). The scalar ¢, is the value of o(o) at the first point
at which we assume 2 to be the zero of ¢(y) . The required steplength

(k)
o

is set to ¢ provided this satisfies any criteria such as (4.1)
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required for guaranteed convergence of the algorithm. 1In the unlikely

event ¢ 1is not satisfactory a(k) is set to the first satisfactory
1\i - .

member of the sequence {(z)” ol i = 1,2....}

2
(k)

_ 1
In the case without derivatives, g(x + o p) p in (4.%a) is

replaced by

e o ) o r T 5 p)

Cc - o
where ¢ 1is the last point in the sequence obtained in the univariate
search which is less than ¢ . We assume that an estimate of g(k) is

available as a result of determining p

5. Extensions to a Wider Class of Functions.

Although we have confined our attention so far to functions of the
type(l.l% the algorithms presented here can be extended to handle a
wider class of functions. Two common types of nondifferentiable functions

are those arising from the Bl and Ew approximation problems, namely

hie lfi(X)I

© .
1 <m

m
Fl(x) :E: lff(x)| and F (x)
i=1

In 2

1
A third is the class of nondifferentiable penalty functions arising from

general minimization problems subject to inequality or equality constraints

(see Conn and Pietrzykowski [11] and Han [12]):

m
QFP(X) = fo(x)4-pl.§f max(O,fi(x)) o, E: Ifi(x)l
i=1 i=m.+1
1
The functions Flbd and Enﬁd could be transformed to the type (1.1) ,
as could FP(X) if a suitable positive term were added to fo(x) . However,

to do so 1is both artificial and unnecessary, and although the performance

of the steplength algorithms would be satisfactory, the transformation would
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be likely to introduce degeneracy into the n dimensional algorithm.
It is therefore much more satisfactory to consider the following two
types of functions:

m
FGS(X) = Z o (Gi, fi(x))
i=1

where c(ei, fi(x) is one of lfi(x)l, max(o,fi(x)), fi(x),

(5.1)
min(O,fi(x)), - Ifi(x)l, according to the value of ei , and
FGM(X) = max (max Ifi(x)|, max £, (x)).
1<i<m m+tl<i<m
>+ 1 = >
Note that there are functions of the type FGSBG which cannot be
transformed to the type (1.1). These two types of functions clearly have

their discontinuities defined in a similar way to that described for the
functions FS and E$4, and it is easy to modify the algorithms to cope
with these more general cases. Since the modifications introduce little
additional overhead, our implementations of the algorithms cope with these
wider classes of functions.

As indicated in Section 1, the ideas of these algorithms could be
extended to handle virtually any continuous function whose directional
derivatives exist everywhere and whose discontinuities are given by the
roots of known differentiable functions. We believe however that most
such functions arising in practice are either of the type (5.1) or else
could easily be transformed to this type.

Finally we note that it would be possible to extend the algorithms
described above for use in minimizing certain differentiable functions
with discontinuities in the second derivative. If the minimum is at a

point of discontinuity in the second derivative, the convergence rate

will normally be only linear for the differentiable case algorithm
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described in [1], but if the minimum is also a root of a differentiable
function, the good rates of convergence for the nondifferentiable

algorithms could be achieved if the algorithms were extended properly.

An example of such a function would be F(x) = x2 on [0,o) and
F(x) = % ¥ on (= ®,0].
6. Implementation and Numerical Results.

The algorithms described in this paper have been implemented in
Fortran. They make use of the computer programs for the algorithms
described in [1], which are documented in [13] and form part of the
Numerical Optimization Software Library at the National Physical Laboratory.
Hence the safequards are attended to by the existing programs and the new
programs essentially compute G at each iteration and include the extra

steplength termination criterion.

We present the results of some test runs of the higher overhead step-
length algorithm for F = FS using derivatives, and compare them with
running the algorithm of [1], intended for differentiable functions, on

the same function. Although we have not yet had extensive numerical ex-

perience with the new algorithms, the results illustrate their potential

advantages. The univariate function is
F(x) = fl(x) + max(fg(x),o) + max(fj(x),o)
where
fl(x) = - COS X
fz(x) = 4(x-1) and either
(a) fB(x) = - 10 sin(0.5(x-0.1)) or
() fB(x) = - 10 sin(0.5(x+0.1))
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The initial point is Xy = - 1.2 , the direction of search is p =1 ,

and the initial step is oy = 1. 1In case (a) the points of derivative
discontinuity are x = 0.1 and x = 1.0 , and the minimum is at the
first of these. In case (b) the points of discontinuity are x = - 0.1
and x = 1.0 and the minimum is at x = 0.0 , where the function is
differentiable. Results are given for several values of n: nh = 10_6
for an "exact"™ line search, and h = 0.1 and 0.5 for "slack" searches.
The tolerances ¢ and t are set to 10_6 . The results were obtained
on an IBM 370/168 wusing double precision, i.e. approximately 14 decimal
digits of accuracy. They appear in Table 1. The number of function
evaluations includes the evaluation F(xo + % p).

The results illustrate that as well as being far more efficient than
the algorithm of [1] for an exact line search where the minimum is at a
discontinuity, the new algorithm can also be significantly more efficient

for slack line searches where the minimum may or may not be at a discontin-

uity. In all cases for large N the new algorithm required less function

evaluations and in all but one also produced a lower point. In case (a),
for h = 0.5, the algorithm terminated with x = xO+~ao , Since it
determined that the best step to take next was to the zero of fi(X)

but that the step from X, to xo+-a

in |f5(x)| sufficiently large enough to allow it to stop. ©Note that in

0 had already achieved a reduction
case (a) if the left and right derivatives at the solution had been
sufficiently higher, the algorithm of [1] would have been unable to terminate
until the length of the interval of uncertainty was reduced to 2 tol (x)
even for large h , since it would be unable to reduce the gradient to

n-F'(xO)
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7. Concluding Remarks.

A fundamental part of algorithms and software for minimizing
differentiable functions of several variables is an efficient steplength
algorithm. The basic algorithms described by Gill and Murray [1] have
been incorporated in the implementation of more than 50 different routines
for unconstrained and constrained optimization. We believe that the same
potential exists for developing software for nondifferentiable functions.
Although there is not as yet the same variety of routines for this class
of problems, the existence of a powerful steplength algorithm will in
itself provide a stimulus. The routines should also prove useful when
nondifferentiable functions are used as merit functions for solving con-

strained optimization problems.

Acknowledgements.

The authors would like to thank Dr. Philip E. Gill for help with
numerous points in preparing both the manuscript and the computer programs.
The second author would also like to thank the staff of the Division of
Numerical Analysis and Computer Science at the National Physical Laboratory
for their hospitality during his stay there and also to thank Professor
Gene H. Golub for the opportunity to visit there while being supported at

Stanford University.

57






References.

[1] Gill, P.E. and Murray, W., Safeqguarded steplength algorithms for
optimization using descent methods, National Physical Laboratory
Report NAC 37 (197h4).

[2] Ortega, J.M. and Rheinboldt, W.C., Iterative solution of nonlinear
equations in several variables, Academic Press, New York and London

(1970).

[3] Brent, R.P., Algorithms for minimization without derivatives,
Prentice-Hall, Englewood Cliffs, N.J. (1973).

[4] Jarratt, P., An iterative method for locating turning points,
Comp. J. 1a_(1967) 82-84.

[5] Kowalik, J. and Osborne, M.R., Methods for unconstrained
optimization problems, Elsevier, New York (1968).

[6] Overton, M.L., Rate of convergence of Davidon's algorithm for
finding-the minimum of a function of one variable using successive
cubic Hermite interpolation, manuscript, Computer Science Dept.,
Stanford University (1977).

[7] MACSYMA Reference Manual, The Mathlab Group, Laboratory for
Computer Science, Massachusetts Institute of Technology.

[8] Bjorstad, P. and Nocedal, J., Analysis of a new algorithm for
one-dimensional minimization, Computer Science Dept. Report
STAN-CS-(6-664, Stanford University (1978).

[9] Charalambous, C. and Conn, A.R., An efficient method to solve the
minimax problem directly, SIAM J. Numer. Anal. 15 (1978) 162-187.

[10] Traub, J.F., Iterative methods for the solution of equations,
Prentice-Hall, Englewood Cliffs, N.J. (1964).

[11] Conn, A.R. and Pietrzykowski, T., A penalty function method
converging directly to a constrained optimum, SIAM J. Numer. Anal.
14 (1977) 3k48-375.

[12] Han, S.P., A globally convergent method for nonlinear programming,
JOTA 220 (1977) 297-309.

[13] Gill, P.E. et al., Documents for Subroutines LINDER and LINDIF,

NPL Algorithms Library Reference Nos. Ei/15/0 and EL/16/0,
National Physical Laboratory (1976).

58






