
DESIGN AND ANALYSIS OF A DATA STRUCTURE

FOR REPRESENTING SORTED LISTS

by

Mark R. Brown and Robert E. Tarjan

STAN-CS-78-7d@8

December 19 78

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

Fa

|

Design and Analysis of a Data Structure

for Representing Sorted Lists

on
Mark R. Brown Robert E. Tarjan

Computer Science Department Computer Science Department

Yale University Stanford University
New Haven, Connecticut 06520 Stanford, California 94305

December, 1978

Abstract.

In this paper we explore the use of 2-3 trees to represent sorted

lists. We analyze the worst-case cost of sequences of insertions and

deletions in 2-3 trees under each of the following three assumptions:

(i) only insertions are performed; (11) only deletions are performed;

‘ (111) deletions occur only at the small end of the list and insertions

occur only away from the small end. Cur analysis leads to a data

structure for representing sorted lists when the access pattern

exhibits a (perhaps time-varying) locality of reference. This structure

has many of the properties of the representation proposed by Guibas,

McCreight, Plass, and Roberts [4], but it is substantially simpler and

may be practical for lists of moderate size.

Keywords: analysis of algorithms, deletion, finger, insertion,

sorted list, 2-3 tree.

®

X/ Research partially supported by the National Science Foundation,
Grant MCS-75-22870 A02, the Office of Naval Research, Contract

NOOO1k-76-C-0688, and a Guggenheim Fellowship. Reproduction in
whole or 1n part 1s permitted for any purpose of the United States

government.

1

5 0. Introduction.

The 2-3 tree [1] 1s a data structure which allows both fast accessing

and fast updating of stored information. For example, 2-3 trees may be

used to represent a sorted list of length n so that a search for any

item in the list takes O(log n) steps. Once the position to insert a

new litem or delete an old one has been found (via a search), the insertion

or deletion can be performed in O(log n) additional steps.

If each insertion or deletion 1n a 2-3 tree 1s preceded by a search

requiring Q(log n) time, =/ then there 1s little motivation for improving

the above bounds on the worst-case time for insertions and deletions. But

there are several applications of 2-3 trees in which the regularity of

successive 1nsertions or deletions allows searches to proceed faster than

Q(log n) . One example 1s the use of a sorted list represented as a 2-3

tree to implement a priority queue [6, p. 152].In a priority queue,

insertions are allowed anywhere, but only the smallest item in the list at

any moment can be deleted. Since no searching is ever required to find the

next item to delete, an improved bound on the cost of consecutive deletions

might lead to a better bound on the cost of the method as a whole.

In this paper, we prove several results about the cost of sequences

of operations on 2-3 trees. In Section 1 we derive a bound on the total

* a function g(n) is Q(f(n)) if there exist positive constants c¢ and
n, with g(n) > cf(n) for all n > ny 3 it is e(f(n)) if there exist

positive constants cy + Cy , and ng with cy f(n) < g(n) < cf (n)
for all n > Dy . Hence the '9' can be read 'order exactly' and the
'Q' as 'order at least'; Knuth [7] gives further discussion of the ©

and () notations.

cost of a sequence of insertions (as a function of the positions of the

insertions 1n the tree) which 1s tight to within a constant factor. In

Section 2 we derive a similar bound for a sequence of deletions. If the

sequence of operations 1s allowed to include intermixed insertions and

deletions, there are cases in which the naive bound cannot be improved:

6(log n) steps per operation may be required. However, we show in

Section 3 that for the priority queue application mentioned above, a mild

assumption about the distribution of insertions implies that such bad

cases cannot occur.

In Section 4 we explore some consequences of these results. We propose

a modification of the basic 2-3 tree structure which allows us to save a

finger to an arbitrary position in the tree, with the property that searching

d positions away from the finger costs 0(log d) steps (independent of

the tree size). Fingers are inexpensive to move, create, or abandon,

and several fingers into the same structure can be maintained simultaneously.

We use the bound on sequences of insertions to show that even when fingers

are used to speed up the searches, the cost of a sequence of insertions 1s

dominated by the cost of the searches leading to the insertions. The same

result holds for a sequence of deletions and for a sequence of intermixed

insertions and deletions satisfying the assumptions of Section 3. Our

structure is similar to one proposed earlier by Guibas, McCreight, Plass,

and Roberts [4], but it is much simpler to implement and may be practical

for representing moderate-sized lists. Their structure has the interesting

property that individual insertions and deletions are guaranteed to be

efficient, while operations on our structure are efficient only when averaged

5

over a sequence. Our structure has the compensating advantage that fingers

| are much easier to move. An obvious generalization of our structure to

B-trees [2] makes it suitable for larger lists kept in secondary storage.

In the final section we discuss some practical issues arising 1n an

implementation of the structure, describe some of its applications, and

indicate directions for future work.

1. Insertions into 2-3 Trees.

A 2-3 tree [1,6] is a tree such that 2- or 3-way branching takes place

at every internal node, and all external nodes occur on the same level.

An internal node with 2-way branching 1s called a 2-node, and one with

3-way branching a 3-node. It 1s easy to see that the height of a, 2-3

tree with n external nodes lies between log; nl and | lg n| 2
An example of a 2-3 tree 1s given in Figure 1.

[Figure 1]

There are several schemes for associating data with the nodes of a 2-3

tree; the usefulness of a particular organization depends upon the operations

to be performed on the data. All of these schemes use essentially the same

method for updating the tree structure to accomodate insertions, where

insertion means the addition of a new external node at a given position

in the tree. (Sometimes the operation of insertion 1s considered to

include searching for the position to add the new node, but we shall

consistently treat searches separately in what follows.)

Insertion 1s accomplished by a sequence of node expansions and

splittings, as shown by example in Figure 2. When a new external node 1s

attached to a terminal node Pp (an internal node having only external nodes

as offspring), this node expands to accomodate the extra edge. If p was

a 2-node prior to the expansion, 1t 1s now a 3-node, and the insertion 1s

complete, If p was a 3-node prior to expansion, it is now a "hk-node",

which is not allowed in a 2-3 tree; therefore, Pp 1s split into a pair

of 2-nodes. This split causes an expansion of p's parent, and the process

repeats until either a 2-node expands into a 3-node or the root is split. If

*/ ie use lg n to denote log, n .

p

the root splits, a new 2-node 1s created which has the two parts of the

old root as its children, and this new node becomes the root. An

insertion 1n a 2-3 tree can be accomplished in @(1+s) steps, where

s 1s the number of node splittings which take place during the insertion.

[Figure 2]

One way to represent a sorted list using a 2-3 tree is shown in

Figure 3. The elements of the list are assigned to the external nodes

of the tree, with key values of the list elements increasing from left

to right. Keys from the list elements are also assigned to internal

nodes of the tree in a "symmetric" order analogous to that of binary

search trees. More precisely, each internal node 1s assigned one key

for each of its sub-trees other than the rightmost, this key being the

largest which appears in an external node of the subtree. Therefore each

key except the largest appears 1n an internal node, and by starting from

the root of the tree we can locate any element of the list in 0(log n)

steps, using a generalization of binary tree search. (Several 2-3 search

tree organizations have been proposed which are similar but not identical

to this one [1, p. 147;6, p. 4681.)

[Figure 3]

Any individual insertion into a 2-% tree of size n can cause up to

aboutlg n splittings of internal nodes to take place. On the other

hand, 1f n consecutive insertions are made into a tree initially of

size n , the total number of splits 1s bounded by about 75 n instead
of nlgn, because each split generates a new internal node and the

number of internal nodes is initially at least (n-1)/2 and finally

6

at most 2n-l . The following theorem gives a general bound on the

worst-case splitting which can occur due to consecutive insertions

into a 2-5 tree.

Theorem 1. Let T be a 2-3 tree of size n , and suppose that k insertions

are made into T . If the positions of the newly-inserted nodes in the

resulting tree are py < po <,*x < Py then the number of node splittings

which take place during the insertions 1s bounded by

2 ([lg(ntk)1+ 2 [la(p;-p; +1))1<i<k

The proof divides into two parts. In the first part, we define a rule for

(conceptually) marking nodes during a 2-3 tree insertion. This marking

rule has two important properties when a sequence of insertions 1s made:

the number of marked nodes bounds the number of splits, and the

marked nodes are arranged to form paths from the inserted external nodes

toward the root of the tree.

The effect of marking the tree in this way 1s to shift our

attention from dealing with a dynamic situation (the 2-3 tree as it changes

due to insertions) to focus on a static object (the 2-3 tree which results

from the sequence of insertions). The second part of the proof then

consists of showing that in any 2-3 tree, the number of nodes lying on

the paths from the external nodes in positions Py < Dy < ees < Py to

| the root 1s bounded by the ekpression given in the statement of the

theorem.

| We now define the marking rule described above. On each insertion

into a 2-3 tree, one or more nodes are marked as follows:

(1) The inserted (external) node 1s marked.

(2) When a marked node splits, both resulting nodes are marked. When

an unmarked node splits, a choice 1s made and one of the resulting

nodes 1s marked; if possible, a node is marked which has a marked

child.

We establish the required properties of these rules by a series of lemmas.

Lemma 1. After a sequence of insertions, the number of marked internal

nodes equals the number of splits.

Proof. No nodes are marked initially, and each split causes the number of

marked internal nodes to increase by one. J

Lemma 2. If a 2-node 1s marked, then at least one of its children 1s

marked; 1f a 3-node 1s marked, then at least two of its children are marked.

Proof. We use induction on the number of marked internal nodes. Since both

assertions hold vacuously when there are no marked internal nodes, 1t 1s

sufficient to show that a single application of the marking rules preserves

the assertions. There are two cases to consider when a %-nodeX splits:

Case 1. X 1s marked. Then before the insertion which causes X to

split, X has at least two marked children. When the insertion

expands X to overflow, this adds a thirdmarked child (by rule 1 or

rule 2). Thus the two marked 2-nodes which result from the split of X

each have at least one marked child.

Case 2. X 1s unmarked. Then before the insertion which causes X

to split, X may have no marked children. When the insertion expands

X to overflow, a new marked child is created. Thus the single marked

2-node which results from the split of X can be chosen to have a

marked child.

A marked 3-node 1s created when a marked 2-node expands. This expansion

always increases the number of marked children by one. Since a marked

2-node has at least one marked child, 1t follows that a marked 3-node

has at least two marked children. J

Lemma 3. After a sequence of insertions, there 1s a path of marked nodes

from any marked node to a marked external node.

Proof. Obvious from Lemma 2. [J

Lemma Lk. The number of splits in a sequence of insertions 1s no greater

than the number of internal nodes in the resulting tree which lie on paths

from the inserted external nodes to the root.

Proof. Immediate from Lemmas 1 and 3. OI

This completes the first part of the proof as outlined earlier; to

finish the proof we must bound the quantity in Lemma kL. We shall require

the following two facts about binary arithmetic. For any non-negative

} integer k , let v(k) be the number of one bits in the binary representation

of k .

Lemma. 5 [5, p. 483 (answer to ex.1l.2.6-11)]. Let a and b be

non-negative integers, and let c be the number of carries when the binary

representations of a and b are added. Then v(a)+ v(b)= v(ath)+ c .

| Lemma, 6 . Let a and b be non-negative integers such that a < b and

let 1 be the number of bits to the right of and including the leftmost

bit in which the binary representations of a and b differ. Then

i < vla) - yb) +27 1g(b-atl)] .

Proof. If k 1s any positive integer, the length of the binary representation

ofk is [1lg(k+tl)]. Let c¢ be the number of carries when a and b-a

are added. By Lemma 5, wv(a)+ v(b-a) = y(b)+ec . When a and b-a are

added, at least i- [1g(b-a+l)] carries are required to produce a number

which differs from a in the i-th bit. Thus i- [1lg(b-a+l)] <c .

Combining inequalities, we find that

i < c+ [1g(b-a+tl)] < v(a) -v(b)+ v(b-a)+ [1g(b-a+l)’

< v(a) - vd) . 2T1g(o-a+1)1 .

Lemma 7. Let T be a 2-3 tree with n external nodes numbered

O,1;e.0,n-1 from left to right. The number M of nodes (internal and

external) which lie on the paths from external nodes Pp <P <. <P

to the root of T satisfies

M <2 fgnl+ T [lap +11) .
1<i<k ~ —— J

10

-

Proof. For any two external nodes p and gq , let M(p,q) be the number

of nodes which are on the path from g to the root but not on the path

from p to the root. Since the path from Py to the root contains at

most [lg nl+l nodes, we have

vy < [lg nl+l+ T Mp; 150) -
1<i<k

We define a label I for each external node as follows. If t is an

internal node of T which 1s a 2-node, we label the left edge out of t

with a 0 and the right edge out of t with a 1 . If t is a 3-node,

we labelthe left edge out of t with a 0 and the middle and right edges

out of t with a 1 . Then the label L(p) of an external node p 1s

the integer whose binary representation 1s the sequence of O's and 1's on

the path from the root to p .

Note that 1f p and g are external nodes such that g is the right

neighbor of p , then £(q) < £(p)+1 . It follows by induction that

(ps) = 2(p; 1) $Py-Py ; for 1 <i <k.

Consider any two nodes DP;_7 p;, . Let t be the internal node which

1s farthest from the root and which 1s on the path from the root to P. 4

and on the path from the root to pb, We must consider two cases.

Case 1. The edge out of t leading toward p;_; is labelled 0 and

the edge out of t leading toward JN 1s labelled 1 . Then

2(p;) > £(p; 1) Furthermore M(p; 1021) , which is the number of

nodes on the path from t to bp, (not including t), is equal to

the number of bits to the right of and including the leftmost bit in

which the binary representations of 1(p; 1) and £(p;) differ. By

Lemma 6,

11

- + -i M(p, 150) < vp; _q)) -v(e(py)) +2T1e(e(p,) - £(p;_1)+1)

< v(a(py_p)) -v(e(py))2M lee, -py (+1) 1

| Case 2. The edge out of t leading toward P:_1 is labelled 1 and

the edge out of t leading toward p, is also labelled 1 . Let

(ps7) be the label of P. 1 if the edge out of t leading toward

p;_y is relabelled 0 . Then £(p;) - "(pi-1) < Py-P,; and

£(p;) > (ps 1) . Furthermore M(p; _15P;) is equal to the number

| of bits to the right of and including the leftmost bit in which the

binary representations of £' (p; 1) and ?(p;) differ. By Lemma 6,

M(P; 1005) Sve (py_)) -v(e(p;)) +2l1g(e(p,) - £' (py _)*1)

< vps) -v(e(py))+ 2 1g(py-p, (+1) |

; < vee 10) - veep)+ 2M leap;-p; +1) 1

| since v(£(p;_4)) = v(£'(p;_1))%1.

1 Substituting into the bound on M given above yields

| M < [lgnl+1+ 2 (v(e(p;_1)) -v(e(p,)) +2liglp,-p, +1) 1).. 1-1 1 i “i-1
: L<i<k

| But much of this sum telescopes, giving

M<[lgnl+1+v(t(py))-v(t(@)) . 2 2 [lg(p,-p,_ +1): 1 k : 1 Ti-1
1<i<k

< 21 nl + 2 eer) 1)1<i<k 1

: (since v(2 (py) > 1 and v(£(py)) < [lg nl unless k = 1). This

: completes the proof of Lemma 7 and Theorem 1, .

The bound given in Theorem 1 1s tight to within a constant factor;

that 1s, for any n and k there 1s a 2-3tree with n external nodes

and some sequence of k insertions which causes within a constant factor

of the given number of splits. We omit a proof of this fact.

15

| 2. Deletions from 2-3 Trees. |

| The operation of deletion froma 2-3 tree means the elimination of

a specified external node from the tree. As with insertion, the algorithm

| for deletion 1s essentially independent of the particular scheme used

for associating data with the tree's nodes.

The first step of a deletion 1s to remove the external node being

| deleted. If the parent of this node was a 3-node before the deletion,

| it becomes a 2-node and the operation is complete. If the parent was

| a 2-node, 1t 1s now a "l-node", which is not allowed in a 2-3 tree;

hence some additional changes are required to restore the tree. The

local transformations shown in Figure 4 are sufficient, as we shall now

| explain. If the l-node 1s the root of the tree, it can simply be

| deleted, and its child is the final result (Figure 4(c)). If the

l-node has a j-node as a parent or as a sibling, then a local rearrangement

will eliminate the l-node and complete the deletion (Figures L(d), L(e)) .

| Otherwise we fuse the l-node with its sibling 2-node (Figure L(f));

this creates a 3-node with a l-node as parent. We then must repeat

the transformations until the l-node 1s eliminated. Figure 5 shows an

| example of a complete deletion.

[Figure 4]

[Figure 5]

| A deletion in a 2-3 tree requires O(1l+f)

steps, where f is the number of node fusings required for the deletion.

| Since the propogation of fusings up the path during a deletion 1s similar

to the propogation of splittings during an insertion, 1t 1s not surprising

that a result analogous to Theorem 1 holds for deletions.

1h

Theorem 2. Let T be a 2-3 tree of size n , and suppose that k < n

deletions are made from T . If the positions of the deleted external

nodes 1n the original tree were 19] < Py <. . .< Py , then the number of

node fusings which took place during the deletions 1s bounded by

(Te nl+ 2 1a; mp; y+ D7) .L<i<k

Proof. We shall initially mark all nodes inT which lie on a path

from the rootof T to one of the deleted nodes. By Lemma7, the number

of marked nodes 1s bounded by the given expression; hence the proof 1is

complete 1f we show that during the sequence of deletions 1t 1s possible

to remove one mark from the tree for each fusing.

During the sequence of deletions, we shall maintain the invariant

property that every 2-node on the path from a marked external node to

the root is marked. This 1s clearly true initially. During a deletion,

the marks are handled as indicated in Figure 6. An ' x' on the left side

of a transformation indicates a node which the invariant (or a previous

application of transformation (b) or (f)) guarantees will be marked;

an 'x' on the right side indicates a node to be marked after the

transformation. These rules make only local rearrangements and create

only marked 2-nodes, and hence they maintain the invariant. The fusing

transformation (f) removes at least one mark from the tree. One of the

terminating transformations (e) may create a new mark, but this 1is

compensated by the starting transformation (b) which always destroys a

mark. Hence a deletion always removes at least one mark from the tree

per fusing, which proves the result. O

[Figure 6]

15

The bound of Theorem 2 1s tight to within a constant factor; that is,

for any n and k<n there 1s a 2-3 tree with n external nodes and

a sequence of k deletions which causes within a constant factor of the

given number of fusings. We omit a proof.

16

3. Mixed Sequences of Operations.

When both insertions and deletions are present 1n a sequence of

operations on a 2-3 tree, there are cases in which Q(log n) steps are

required for each operation in the sequence. A simple example of this

behavior 1s shown 1n Figure 7, where an insertion causes splitting to go

to the root of the tree, and deletion of the inserted element causes the

same number of fusings. We expect that when insertions and deletions

take place in separate parts of the tree, it 1s impossible for them to

interact in this way. The following results shows that this intuition 1is

justified, at least for a particular access pattern arising from priority

queues.

[Figure 7]

Theorem 3. Let T be a 2-3 tree of size n , and suppose that a sequence

ofk insertions and f deletions 1s performed on T . If all deletions

are made on the leftmost external node of T , and no insertion 1s made

closer than (1g m)t° positions from the point of the deletions (where

m 1s the tree size when the insertion takes place), then the total cost

of the operations 1s

0106 n+k+ f+ 5 log(p, -D;_)) :1<i<Kk'

where k'< k 1s the number of inserted nodes that have not been deleted

and Py <P, <. .. <P. are the positions of these nodes in the final

tree.

17

Proof. We shall first sketch the argument and then give it 1n more

detail. Insertions are accounted for by marking the tree in a manner

almost identical to that used in proving Theorem 1. Deletions may

destroy some of these marks, so we charge a deletion for the marks it

removes; the remaining marks are then counted using Lemma 7. Because

we assume that insertions are bounded (lg — positions away from the

point of deletions, the left path 1s unaffected by insertions up to a

height of at least lg lgm . Therefore roughly lg m deletions occur

between successive deletions that reference an "unprotected" section of

the left path. These lg m deletions cost 0(log m) altogether, as

does a single deletion that goes above the protected area, so !

deletions cost roughly 0(f) steps to execute. Adding this to the cost

of the insertions gives the bound.

We shall present the full argument as a sequence of lemmas. First

we need some terminology. The left path 1s the path from the root to

the leftmost external node. Note that deletions will involve only

left-path nodes and the children of such nodes. We say that an insertion

changes the left path 1f it splits a 3-node or expands a 2-node on the

left path.

Lemma ©. Under the assumptions of Theorem 3, the cost of the sequence

of insertions 1s

010g n+ k + 2 Log (p, -P; 5) + O(cost of deletions) .1<i<k!

Proof. On each insertion, we mark the nodes of T according to rules

(1) and (2) in the proof of Theorem1, while observing the following

additional rule:

18

| (3) When a marked 2-node on the left path expands, an unmarked
3-node 1s created.

As in the proof of Theorem 1, the cost of all insertions 1s bounded by

the number of marks created using rules (1) and (2). Rule(3), which

| destroys a mark, can be applied at most once per insertion, and hence

the number of marks removed by this rule is O(k) .

This marking scheme preserves the property that on the left path,

no 3-node ever becomes marked. It does not preserve any stronger

properties on the left path; for example, a marked 2-node =ith no marked

offspring may occur. But 1t 1s easy to prove by induction on the number

of insertion steps that the stronger properties used in the proof of

Theorem 1 (a marked 2-node has at least one marked offspring, a marked

3-node has at least two marked offspring) do hold on the rest of the tree.

The intuitive reason why the corruption on the left path cannot spread

1s that 1t could do so only through the splitting of 3-nodes on the

| path; since these nodes aren't marked, they never create "unsupported"

2-nodes off the left path.

The motivation for these marking rules is that deletions will

| necessarily corrupt the left path. During deletions, we treat marks

according to the following rule:

(4) Any node involved in a deletion transformation (i.e., any

node shown explicitly in Figure 4) 1s unmarked during the

transformation.

This rule removes a bounded number of marks per step, and hence over {

) deletions the number of marks removed is O(cost of deletions) . Since

this rule never creates a marked node, 1t preserves the property of no

19

marked 3-nodes on the left path. It also preserves the stronger in-variants

on the rest of the tree, since it will only unmark a node whose parent is

on the left path.

It follows that after the sequence of insertions and deletions, all

marked nodes lie on paths from the inserted external nodes to the root,

except possibly some marked 2-nodes on the left path. The number of nodes

on the left path is O(log(n+ k- £)), and by Lemma 7 the number of marked

nodes 1n the rest of the tree is

0 10g (ntk- £) + 2 1og(p; =p; 1 +1)) .1<i<k!

Adding these bounds to our previous estimates for the number of marks

removed by rules (3) and (4), and noting that 1lg(xt+y)< lg x + y for

x,y > 1 , gives the result. OC

Lemma 9. Suppose that a sequence of J deletions 1s made on the leftmost

external node of a 2-3 tree, such that the deletions do not reference any

left-path nodes changed by an insertion made during the sequence. Then the

cost of the sequence is 0O(j) + O(height of the tree before the deletions) .

Proof. The cost of a deletion is 0(1+f) where f is the number of

fusings required. Each fusing destroys a 2-node on the left path, so the

total cost of the j deletions is 0(j) + O(number of left-path 2-nodes

destroyed) . But each deletion creates at most one left-path 2-node, and

insertions do not create any 2-nodes that are referenced by the deletions,

so the cost is in fact 0(j) + O(number of originally present left-path

2-nodes destroyed) . This 1s bounded by the quantity given above. a

20

Lemma 10. Under the assumptions of Theorem 3%, 1f the tree T has size

| : m then an insertion cannot change any left-path node of height less than

lg lg m .

Proof. A 2-3tree of height h contains at most 3h external nodes.

Hence a sub-tree of height lg lgm contains <3 lg E- (lg m) 8 5

external nodes, which 1s strictly less than the (lg m)=° positions

that are protected from insertions under the conditions of Theorem 3. on

Lemma 11. Suppose that the bottommost k nodes on the left path are

all 3-nodes, and deletions are performed on the leftmost external node.

If insertions do not change any nodes of height < k on the left path,

then at least oF deletions are required to make a deletion reference

above height Kk on the left path.

Proof. Let us view the left path as a binary integer, where a 2-node 1s

represented by a zero and a %-node by a one, and the root corresponds to

the most significant bit. Then deletion of the leftmost external node

corresponds roughly to subtracting one from this binary number. Consideration

of the deletion algorithm shows that the precise effect 1s as follows: if

the left path is xx...x1 then a deletion causes 1t to become xx... x0

1

—
(subtraction of 1), and 1f the path 1s xx... x100 . . . 0 then it becomes

1 i-1

— ah
either xx...x011...1 (subtraction of 1) or xx...x101...1

(addition of pty). Only this final possibility (corresponding to using

the transformation in Figure kL(e)) differs from subtraction by one. Note

that under these rules everything to the left of the rightmost one bit is

unreferenced by a deletion.

21

| Before a deletion reference above height k can take place, the

number represented by the rightmost k bits must be transformed from

Eq into 0 by operations which either subtract one or add a positive

number. Thus oF subtractions are required, corresponding to Ky

deletions. U4

Lemma 12. Under the assumptions of Theorem 3, the cost of the sequence

of deletions is 0{log n+k+ 2) .

Proof. For accounting purposes we shall divide the sequence of |

| deletions into disjoint epochs, with the first epoch starting immediately

before the first deletion. Intuitively, epochs represent intervals during

which insertions do not interact directly with deletions. We define the

current epoch to end immediately before a deletion that references any

node on the left path that has been changed by an insertion since the first

deletion of the epoch. This deletion 1s then the first in the new epoch;

the final epoch ends with the last deletion of the sequence. According to

this definition, each epoch contains at least one deletion.

Let {: denote the number of deletions during the i-th epoch, k. the

number of insertions during this epoch, and m. the tree size at the start

of the epoch. The first deletion of epoch 1 costs 0(log my) . By

Lemma9, the final f;-1 deletions cost o(t, + log m,) since they operate

on a section of the left path that is unaffected by insertions. Hence the

total cost of the deletions in epoch i is 0(2; + log m,) . We shall

prove that except for the first and last epochs, this cost 1is Ot, + kK. 1) ,

so that the total cost of these epochs is O(fZ+k) . Since m, < ntk ,

each of the first and last epochs costs 0(e; + log(ntk)) . Combining

gives the bound in the lemma.

22

Consider an epoch i that 1s not the first or the last.' The first

deletion of an epoch transforms all nodes below height h on the left

path into 3-nodes, where h is the height of some left-path node that

has been changed by an insertion since the start of epoch 1-1 . Let

h. =| 1g 1g m, |-1 . By Lemma 10, the allowable insertions at this point

cannot change the left path below height h, . This remains true even 1if

the tree size grows to ni or shrinks to fm, , since this changes the

value of 1g 1gm by only 1 . Hence if h > hb, (1.e., a left-path
nodes below height h are 3-nodes), Lemma 11 shows that 2 L = O(log m,)
deletions are necessary to reference a node above height ns . Thus

L; = Q(log m,) , which means that O(t; + log m,) , the cost of the epoch,

is (2). If on the other hand h < h, , this implies that at some

point during epoch 1-1 the tree size m was much smaller than m.

in particular m< Vm, But this shows that k, , = Om,) , SO

Je + log m,) = (4; +k, 1) . In summary, we have shown that the cost

of epoch i is of £; +k 1) regardless of the value of h , O

Combining the results of Lemmas 8 and 12 proves Theorem 3. Ul

Theorem 3 1s certainly not the ultimate result of its kind. For

example, 1t 1s possible to allow some number of insertions to fall

close to the point of deletion and still preserve the time bound. (NOte

that Lemma 8 does not depend on any assumption about the distribution

of insertions, so only the proof of the bound on deletions needs to be

23

4, Level-Linked Trees.

The results in Sections 1-3 show that 1n several interesting cases

the 0(logn) bound on individual insertions and deletions in a 2-3 tree

is overly pessimistic. In order to use this information we must examine

the cost of searching for the positions where the insertions and deletions

are to take place. If the pattern of accesses 1s random, there 1s little

hope of reducing the average search time below 0(logn) ; it is impossible

for any algorithm based solely on comparisons to beat Q(log n) . But

in many circumstances there 1s a known regularity in the reference pattern

that we can exploit.

One possible method of using the correlation between accesses 1s to

keep a finger -- a pointer to an item in the list. For a suitable list

representation it should be much more efficient to search for an item

near the finger than one far away. Since the locale of interest may change

with time, the list representation should make it easy to move a finger

while still enjoying fast access near it. There may be more than one

busy area in the list, so it should be possible to efficiently maintain

multiple fingers.

The basic 2-3 tree structure for sorted lists shown 1n Figure 3 1s

not suitable for finger searching, since there are items adjacent in the

list whose only connection through the tree structure 1s a path of length

6(log n) . Figure 8 shows an extension of this structure that does

support efficient access in the neighborhood of a finger. The arrangement

of list elements and-keys is unchanged, but the edges between internal

nodes are made traversible upwards as well as downwards, and horizontal

links are added between external nodes that are neighbors (adjacent on

|

| the same level). We shall call this list representation a level-linked

| 2-3 tree.

[Figure 8]

| A finger into this structure consists of a pointer to a terminal node

| of the tree. It would seem more natural for the finger to point directly

to an external node, but no upward links leading away from the external

nodes are provided 1n a level-linked tree; the reasons for this decision

| will become evident when implementation considerations are discussed 1n

Section 5. Note that the presence of a finger requires no change to the

| structure.

| Roughly speaking, the search for a key k using a finger f proceeds

| by climbing the path from f toward the root of the tree. We stop

| ascending when we discover a node (or a pair of neighboring nodes) which
| subtends a range of the key space in which k lies. We then search

downward for k using the standard search technique.

A more precise description of the entire search procedure 1s given

below in an Algol-like notation. If t is an internal node, then we

define Larges&key(t) and Smallestkey(t) to be the largest and smallest

keys contained in t , and let Leftmostlink(t) and Rightmostlink(t)

denote respectively the leftmost and rightmost downward edges leaving t .

The fields INbr(t) and ribr(t) give the left and right neighbors

of t, and are Nil if no such nodes exist; Parent(t) is the parent

| of t, and 1s Nil if t is the root.

i 26

procedure. FingerSearch (f, k)
comment Here ff 1s a finger (a pointer to a terminal node) and k

1s a key. If there 1s an external node with key k 1n the structure

fingered by f£ , then FingerSearch returns a pointer to the parent

of the rightmost such node. Otherwise the procedure returns a pointer

to a terminal node beneath which an external node with key k may be

inserted. Hence in either case the result may be used as a (new) finger.

if k > Large&Key(f) then return SearchUpRight(f,k)
elseif k < SmallestKey then return SearchUpLeft(f,k)
else return £

endif

end FingerSearch

procedure SearchUpRight(p, k)

loop

TT comment At this point either £ =p , or f lies to the left
of p's right subtree. The key k is larger than the leftmost

(smallest) descendant of p .

if k < LargestKey or rNbr(p) = Nil then return SearchDown(p,k)
else q « ribr(p)

if k < SmallestKey then return SearchDownBetween(p,q,k)
elself k < LargestKey then return SearchDown (gq, k)
else DP « Parent (q)

endif
endif

repeat
end SearchUpRight

procedure SearchUpLeft(p, k)
(similar to the above]

2

procedure SearchDownBetween(p,g,k)

loop until p and g are terminal:

comment Here p 1s the left neighbor of g , and k 1s contained

in the range of key values spanned by the children of p and gq.

1f k < LargestKey then return SearchDown (p,k)

elseifk >SmallestKey(q) then return SearchDown(q,k

else p « RightmostLink(p)

gq « LeftmostLink

endif

repeat

1f k < Key[RightmostLink(p)] then return p

else return gq

endif

end SearchDownBetween

procedure SearchDown (p,k)

{the standard2-% tree search procedure)

This algorithm allows very fast searching in the vicinity of fingers,

In spite of this, we shall show that if a sequence of intermixed searches,

insertions, and deletions is performed on a level-linked2-3 tree, the

cost of the insertions and deletions 1s dominated by the search cost, at

least in the cases studied in Sections 1-3, In order to carry out this

analysis we must first examine the cost of individual operations on a

level-linked tree.

Lemma 13. If the key k 1s d keys away from a finger f£ , then

FingerSearch(f,k) runs in ©(log d) steps.

28

Proof. The running time of FingerSearch is bounded by a constant times

the height of the highest node examined, since the search procedure

examines at most four of the nodes at each level. It 1s not hard to

see from the invariants in SearchUpRight (and SearchUplLeft) that in

order for the search to ascend [levels in the tree, there must exist

a sub-tree of size (-2 all of whose keys lie between k and the keys

of the finger node. The lemma follows.

Lemma 1k, A new external node can be inserted in a given position in

a level-linked 2-3 tree in ©(1l+s) steps, where s is the number of

node splittings caused by the insertion.

Proof. We sketch an insertion method which can be implemented to run

in the claimed time bound. Suppose we wish to insert a new external

node with key k . During the insertion process we must update the links

and the keys in the internal nodes. Let node p be the prospective

parent of node e . If e would not be the rightmost child of p , we

make e a child of p , insert the key k in node p and proceed with

node-splitting as necessary. If e would be the rightmost child of p

but e has a right neighbor, we make e a child of the right neighbor.

Otherwise k is larger than all keys in the tree. In this case we make

e a child of p and place the previously largest key in node p .

(The key k is not used in an internal node until it is no longer the

largest.)

When a L-node gq splits during insertion, it is easy to update the

links in constant time. To maintain the internal key organization, we

place the left and right keys of g 1n the new 2-nodes produced by the

split, and the middle key in the parent of gq. 4

29

Lemma 15. An external node can be deleted from a level-linked 2-3 tree

in ©(1+f) steps, where f is the number of node fusings.

Proof. Similar to the proof of Lemma 1k, Ud

Lemma 16. Creation or removal of a finger in a level-linked2-3 tree

requires © 1) time.

Proof. Obvious. OO

Now we apply the results of Sections 1- 3 to show that even though

the search time in level-linked2-3 trees can be greatly reduced by

maintaining fingers, it still dominates the time for insertions and

deletions in several interesting cases.

Theorem 4. Let L be a sorted list of size n represented as a

level-linked2-3 tree with one finger established. Then in any sequence

of searches, finger creations, and k insertions, the total cost of the

k insertions is O(log n + total cost of searches) .

Proof. Let S be any sequence of searches, finger creations, and

insertions which includes exactly k insertions. Let the external nodes

of L after the insertions have been performed be named 0,1,...,ntk-1l

from leftto right. Assign to each external node p a label {(p) , whose

value 1s the number of external nodes lying strictly to the left of p

which were present before the insertions took place; these labels lie

in the range 0,1, ..n.

30

Consider the searches in S which lead either to the creation of

a new finger (or the movement of an old one) or to the insertion of a

new item. Call an item of L accessed if it 1s either the source or

the destination of such a search. (We regard an inserted item as the

destination of the search which discovers where to insert it.) Let

Pq < Psy <. Lo < Pp, be the accessed items.

We shall consider graphs whose vertex set 1s a subset of {p, |1< iy,

We denote an edge joining Ps < P in such a graph DY P;-P; and we define

the cost of this edge to be max(1g(£(py) - 2(py)+1) | , 1) . For each

item Py (except the initially fingered item) let a be the fingered

item from which the search to p, was made. Each a; 1s also in

{ps | 1 < i <f} since each finger except the first must be established by

a search. Consider the graph G with vertex set fp; |1 <4 < 2} and edge

set {(qsp;) |1< i <1 and p; is not the originally fingered item] .

Some constant times the sum of edge costs in G is a lower bound on

the total search cost, since |£(p;) - £(q;) [+1 can only underestimate

the actual distance between as and Ps when 1 1s accessed. We shall

describe a way to modify t , while never increasing its cost, until it

becomes

1. 7% 7 Ig

where ry < Ly < .. < r, are the k inserted items. Since the cost of

this graph is 2 [1g(r -r, +1) 1 , the theorem then follows from
1<i<k

Theorem 1.

)

The initial graph G 1s connected, since every accessed item must

be reached from the initially fingered item. We first delete all but

{-1 edges from G so as to leave a spanning tree; this only decreases

the cost of G .

Next, we repeat the following step until 1t is no longer applicable:

let P; Py be an edge of G such that there 1s an accessed item Py

satisfying Pp; <P < P., - Removing edge P;-b; now divides G into

exactly two connected components. IT Py 1s 1n the same connected

component as Py , WE replace P; =P; by PP ; otherwise, we replace

P; ~P; by P.-Pp . The new graph 1s still a tree spanning (Pi | 1 <i < £3
and the cost has not increased.

Finally, we eliminate each item p- which 1s not an inserted item by

transforming P; ~P4-Py to I and by removing edges PsP where

there is no other edge incident to P. - This does not increase cost,
and 1t results 1n the tree of inserted items

Sh

as desired. OO

Theorem 5. Let L be a sorted list of size n represented as a level-linked

2-3 tree with one finger established. Then in any sequence of searches,

finger creations, andk deletions, the cost of the deletions 1s

O(log n + total cost of searches) .

Proof. Similar to the proof of Theorem 4 using Theorem 2. C

Theorem 6. Let L be a sorted list of size n represented as a

level-linked 2-3 tree with one finger established. For any sequence of

searches, finger creations, k insertions, and { deletions, the total

| cost of the insertions and deletions 1is O(log n + total cost of searches)

1f the insertions and deletions satisfy the assumptions of Theorem 3,

Proof. Similar to the proof of Theorem 4, using Theorem 3, Hl

53

Do Implementation and Applications.

In Section 4 we described a level-linked2-3 tree in terms of

internal and external nodes. The external nodes contain the items stored

in the list, while the internal nodes are a form of "glue" which binds

the items together. The problem remains of how to represent these objects

in storage.

External nodes present no difficulty; they can be represented by the

items themselves, since we only maintain links going to these nodes (and

none coming from them). Internal nodes may be represented in an obvious

way by a suitable record structure containing space for up to two keys

and three downward links, a tag to distinguish between 2- and T-nodes,

and other fields. One drawback of this approach 1s that because the

number of internal nodes 1s unpredictable, the insertion and deletion

routines must allocate and deallocate nodes. In random 2-3 trees [9]

the ratio of 2-nodes to 3-nodes1s about 2 to 1, so we waste storage

by leaving room for two keys in each node. Having different record

structures for the two node types might save storage at the expense of

making storage management much more complicated.

Figure 9 shows a representation which avoids these problems. A 3-node

is represented in a linked fashion, analogous to the binary tree structure

for 2-3 trees [6, p.469]. The internal node component containing a key k

1s combined as a single record with the representation of the item

(external node) with key k . Hence storage 1s allocated and deallocated

only when items are created and destroyed, and storage 1s saved because

the keys in the internal nodes are not represented explicitly. (The idea

of combining the representations of internal and external nodes 1s also

3h

found in the "loser-oriented" tree for replacement selection [6, p.256].)

[Figure 9]

An example which 1llustrates this representation 1s shown in Figure 10.

Each external node except the largest participates 1n representing an

internal node, so 1t 1s convenient to assume the presence of an external

node with key +o in the list. This node need not be represented

explicitly, but can be given by a null pointer as 1n the figure. Null

rIinks are also used to distinguish a 3-node from a pair of neighboring

2-nodes. There are several ways to identify the {Links and rLinks

that point to external nodes: one 1s to keep track of height in the tree

during FingerSearch , since all external nodes lie on the same level.

Another method is to note that a node p 1s terminal if and only if

{Link(p) = p .

[Figure 10]

We now consider the -potential applications of this list representation.

One application 1s in sorting files which have a bounded number of

inversions. The result proved by Guibas et. al. [4], that insertion sort

using a list representation with one finger gives asymptotically optimal

results, applies equally to our structure since insertion sort does not

require deletions.

A second application is in merging: given sorted lists of lengths

m and n , with m<n, we wish to merge them into a single sorted list.

Any comparison-based algorithm for this problem must use at least

(7) | = o (= log 5) comparisons; we would like an algorithm
whose running time has this magnitude. We solve this problem using our

list structure by inserting the items from the smaller list in 1ncreasing

55

3 order into the larger list, keeping the finger -positioned at the most

| recently inserted item. This -process requires O(m) steps to dismantle

| the smaller list, and o(209 n + 2. log a,) steps for the insertions,1<i<m

where d, 1s the distance from the finger to the 1-th insertion. Since the

| items are inserted in increasing order, the finger moves from left to right

| through the larger list, and thus 2 d. <n . To maximize
1<i<m

2s log d, subject to this constraint we choose the ds to be equal,
1<i<m

| and this gives the desired bound of O(m log(n/m)) steps for the algorithm,

(The usual height-balanced or 2-3 trees can be used to perform fast merging

[3], but the algorithm is not obvious and the time bound requires an

involved proof.)

When an ordered set 1s represented as a sorted list, the merging

algorithm just described can be modified to perform the set union operation:

we simply check for, and discard, duplicates when inserting items from the

smaller list into the larger list. This obviously gives an O(m log(n/m))

algorithm for set intersection as well, if we retain the duplicates rather

than discarding them. Trabb Pardo[8] has developed algorithms based on

| trie structures which also solve the set intersection -problem (and the

union or merging problems) in O(m log(n/m)) time, but only on the average.

Another application for the level-linked2-3 tree

1s 1n implementing a priority queue used as a simulation event list. In

this situation the items being stored 1n the list are -procedures to be

executed at a known instant of simulated "time"; to perform one simulation

step we delete the item from the list having the smallest time and then

| y

execute 1t, which may cause new events to be inserted into the list.

Theorem 3 shows that unless these new events are often very soon to be

deleted, a 2-5 tree can process a long sequence of such simulation steps

with only a constant cost per operation (independent of the queue size).

| Furthermore, searches using fingers will usually be very efficient since

the simulation program produces events according to known patterns. (Some

| simulation languages already give programmers access to crude "fingers",

| by allowing the search to begin from a specified end of the event list.)

An obvious question relating to our structure is whether it can be

generalized so that arbitrary deletions will not change the worst-case

time bound for a sequence of accesses. This seems to be difficult, since

| the requirement for a movable finger conflicts with the need to maintain

path regularity constraints [4]. Thus a compromise between the unconstrained

structure given here and the highly constrained structure of Guibas et. al.

| [4] should be explored.

Even 1f such a more general structure could be found, it might be

| less practical than ours. To put. the problem of deletions in perspective,
| it would be interesting to derive bounds on the average case performance
| of our structure under insertions and deletions, using a suitable model
| of random insertions and deletions. It may be possible, even without
| detailed knowledge of random2-5 trees, to show that operations which

| require ©(log n) time are very unlikely.

| 57

| References

[1] Alfred V. sho, John E. Hopcroft, and Jeffrey D. Ullman. The Design

and Analysis of Computer Algorithms. Addison-Wesley, Reading, Mass.,

(1974).

[2] Rudolf Bayer and Edward M. McCreight., "Organization and maintenance

of large ordered indexes," Acta Informatica 1 (1972), 173-1809.

[3] Mark R. Brown and Robert E. Tarjan. "A fast merging algorithm,"

Stanford Computer Science Department Report STAN-C S-77-625, August 1977;

Journal ACM (to appear).

[4] Leo J. Guibas, Edward M. McCreight, Michael F. Plass, and Janet R. Roberts.

"A new representation for linear lists," Proc. Ninth Annual ACM Symp.

on Theory of Computing (1977), 49-60,

[5] Donald E. Knuth. The Art of Computer Programming, Volume 1, Fundamental

Algorithms. Addison-Wesley, Reading, Mass., (1975 - Second Edition).

[6] Donald E. Knuth. The Art of Computer Programming, Volume 3, Sorting

and Searching. Addison-Wesley, Reading, Mass., (1973).

[7] Donald E. Knuth. "Big omicron and big omega and big theta," SIGACT

News 8, 2 (April 1976), 18-2k.

[8] Luis Trabb Pardo, "Set Representation and Set Intersection," Stanford

| Computer Science Department, Report STAN-CS-78-681, December 1978.

[9] Andrew C.-C. Yao, "On random 2-3 trees," Acta Informatica 9 (1978),

| 159-170.

| 38

|

Od UU OQ UJ UL) CE LL

004d UO) OU 4O0n

EEE EEERE EnpEnEnininEnE

Figure 2. A 2-3 tree insertion. |

LO

7

OSRORCEPRECORCED
G16 OJ GI

Figure 3. A 2-3 tree structure for sorted lists.

41

initial step =

JT . beat neni»

(a)

J !(b)

general step =

a a

(c) a

(d) or

sm

o« B Y & Y a By

(e) . or . .

—)

a B yy © a B vy 6 a By 6

ia | \
(£) a B Y a B Y

Figure 4: Transformations for 2-3 tree deletion. (Mirror—-images of

all transformations are possible.)

42

O

o CJ

QO CO OO ©

Bu Ugggi

}

O

° C2

OD CoO OC

| HEEEEEEENERREREEE

SE

{

C

O) @®

0 C2 OQ

00000 gOgoo

Figure 5: A 2-3 tree deletion.

43

initial step =

C0 or G3
amma

(a) a

m—-

(b)

general. step =

? ———-
(c) a

(d) or

\a B Y a Y a B Y

(e) or , C=

a BY S a B vy 6 ¢ By 0

|£

“© ° Bo = By

Figure 6. Deletion transformations for -proof of Theorem 2.

LL

~ _.-LP

Thy3
insertion here

produces tree below

”

i as / R
. deletion here

produces tree above

Figure 7: An expensive insert/delete pair.

L5

5)MO (o] [1 [io

Figure 8. A level-linked 2-3 tree.

L6

parent

Nbr

node representation:

item-related

infcrmation

| K

| x J]
| Figure 9, Astorage representation for internal and external nodes.

| WT

i

1 2) — L

_—
1

EA1 — neee[TT
—| fe| —
(= (EC

node format: Llbr

key]

Figure 10. A structure and its storage representation

L8

