DESIGN AND ANALYSIS OF A DATA STRUCTURE
FOR REPRESENTING SORTED LISTS

by

Mark R. Brown and Robert E. Tarjan

STAN-CS-78-7@9
December 1978

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

\\jﬁllSda

N

;\ B _."’

N
A

Design and Analysis of a Data Structure

for Representing Sorted Lists

on
Mark R. Brown Robert E. Tarjan
Computer Science Department Computer Science Department
Yale University Stanford University
New Haven, Connecticut 06520 Stanford, California 94305

December, 1978

Abstract.

In this paper we explore the use of 2-3 trees to represent sorted
lists. We analyze the worst-case cost of sequences of insertions and
deletions in 2-3 trees under each of the following three assumptions:
(i) only insertions are performed; (ii) only deletions are performed;
(iii) deletions occur only at the small end of the list and insertions
occur only away from the small end. Cur analysis leads to a data
structure for representing sorted lists when the access pattern
exhibits a (perhaps time-varying) locality of reference. This structure
has many of the properties of the representation proposed by Guibas,
McCreight, Plass, and Roberts [L], but it is substantially simpler and

may be practical for lists of moderate size.

Keywords: analysis of algorithms, deletion, finger, insertion,

sorted list, 2-3% tree.

f/ Research partially supported by the National Science Foundation,
Grant MCS-75-22870 A02, the Office of Naval Research, Contract
NOO01k-76-C-0688, and a Guggenheim Fellowship. Reproduction in
whole or in part is permitted for any purpose of the United States
government.

0. Introduction.

The 2-3 tree [1] is a data structure which allows both fast accessing
and fast updating of stored information. For example, 2-3 trees may be
used to represent a sorted list of length n so that a search for any
item in the list takes 0(log n) steps. Once the position to insert a
new item or delete an old one has been found (via a search), the incertion
or deletion can be performed in 0(log n) additional steps.

If each insertion or deletion in a 2-3 tree is preceded by a search
requiring Q(log n) time,f/ then there is little motivation for improving
the above bounds on the worst-case time for insertions and deletions. But
there are several applications of 2-3 trees in which the regularity of
successive insertions or deletions allows searches to proceed faster than
Q(log n) . One example is the use of a sorted list represented as a 2-3
tree to implement a priority queue [6, p. 152]. In a priority queue,
insertions are allowed anywhere, but only the smallest item in the list at
any moment can be deleted. Since no searching is ever required to find the
next item to delete, an improved bound on the cost of consecutive deletions
might lead to a better bound on the cost of the method as a whole.

In this paper, we prove several results about the cost of sequences

of operations on 2-3 trees. In Section 1 we derive a bound on the total

*
¥/ A function g(n) is Q(f(n)) if there exist positive constants c and

ny with g(n) > cf(n) for all n >n,; it is o(f(n)) if there exist

0
positive constants s Choy and n, with clfhn < g(n) < cgfﬁw
for all n > n, . Hence the '@ ' can be read 'order exactly' and the

0
"Q' as 'order at least'; Knuth [7] gives further discussion of the ©

and () notations.

cost of a sequence of insertions (as a function of the positions of the
insertions in the tree) which is tight to within a constant factor. 1In
Section 2 we derive a similar bound for a sequence of deletions. If the
sequence of operations is allowed to include intermixed insertions and
deletions, there are cases in which the naive bound cannot be improved:
6(log n) steps per operation may be required. However, we show in
Section 3 that for the priority queue application mentioned above, a mild
assumption about the distribution of insertions implies that such bad
cases cannot occur.

In Section 4 we explore some consequences of these results. We propose
a modification of the basic 2-3 tree structure which allows us to save a
finger to an arbitrary position in the tree, with the property that searching
d positions away from the finger costs 0(log d) steps (independent of
the tree size). Fingers are inexpensive to move, create, or abandon,
and several fingers into the same structure can be maintained simultaneously.
We use the bound on sequences of insertions to show that even when fingers
are used to speed up the searches, the cost of a sequence of insertions is
dominated by the cost of the searches leading to the insertions. The same
result holds for a sequence of deletions and for a sequence of intermixed
insertions and deletions satisfying the assumptions of Section 3. Our
structure is similar to one proposed earlier by Guibas, McCreight, Plass,
and Roberts [4], but it is much simpler to implement and may be practical
for representing moderate-sized lists. Their structure has the interesting
property that individual insertions and deletions are guaranteed to be

efficient, while operations on our structure are efficient only when averaged

over a sequence. Our structure has the compensating advantage thaf fingers
are much easier to move. An obvious generalization of our structure to
B-trees [2] makes it suitable for larger lists kept in secondary storage.
In the final section we discuss some practical issues arising in an
implementation of the structure, describe some of its applications, and

indicate directions for future work.

1. Insertions into 2-3 Trees.

A 2-3 tree [1,6] is a tree such that 2- or 3-way branching takes place
at every internal node, and all external nodes occur on the same level.
An internal node with 2-way branching is called a 2-node, and one with
3-way branching a 3-node. It is easy to see that the height of a, 2-3
tree with n external nodes lies between r10g5 nl and |lg n| -f/
An example of a 2-3 tree is given in Figure 1.

[Figure 1]

There are several schemes for associating data with the nodes of a 2-3
tree; the usefulness of a particular organization depends upon the operations
to be performed on the data. All of these schemes use essentially the same
method for updating the tree structure to accomodate insertions, where
insertion means the addition of a new external node at a given position
in the tree. (Sometimes the operation of insertion is considered to
include searching for the position to add the new node, but we shall
consistently treat searches separately in what follows.)

Insertion is accomplished by a sequence of node expansions and
splittings, as shown by example in Figure 2. When a new external node is
attached to a terminal node ©p (an internal node having only external nodes
as offspring), this node expands to accomodate the extra edge. If p was
a 2-node prior to the expansion, it is now a 3-node, and the insertion is
complete, If p was a 3-node prior to expansion, it is now a "k-node",
which is not allowed in a 2-3 tree; therefore, p is split into a pair
of 2-nodes. This split causes an expansion of p's parent, and the process

repeats until either a 2-node expands into a 3-node or the root is gplit. If

t/Wé=mse lg n to denote log2 n

the root splits, a new 2-node is created which has the two parts of the
old root as its children, and this new node becomes the root. An
insertion in a 2-3 tree can be accomplished in ©(1+s) steps, where

s 1s the number of node splittings which take place during the insertion.
[Figure 2]

One way to represent a sorted list using a 2-3 tree is shown in
Figure 3. The elements of the list are assigned to the external ncdes
of the tree, with key values of the list elements increasing from left
to right. [Keys from the list elements are also assigned to internal
nodes of the tree in a "symmetric" order analogous to that of binary
search trees. More precisely, each internal node is assigned one key
for each of its sub-trees other than the rightmost, this key being the
largest which appears in an external node of the subtree. Therefore each
key except the largest appears in an internal node, and by starting from
the root of the tree we can locate any element of the list in 0(log n)
steps, using a generalization of binary tree search. (Several 2-3 search
tree organizations have been proposed which are similar but not identical
to this one [1, p. 147; 6, p. L68].)

[Figure 3]

Any individual insertion into a 2-3 tree of size n can cause up to
about lg n splittings of internal nodes to take place. On the other
hand, if n consecutive insertions are made into a tree initially of
size n , the total number of splits is bounded by about5§ n instead

of nlgn, because each split generates a new internal node and the

number of internal nodes is initially at least (n-1)/2 and finally

at most 2n-1 . The following theorem gives a general bound on the
worst-case splitting which can occur due to consecutive insertions

into a 2-3 tree.

Theorem 1. Let T be a 2-3 tree of size n , and suppose that k insertions
are made into T . If the positions of the newly-inserted nodes in the
resulting tree are 12 < p2 <,*x < Py s then the number of node splittings
which take place during the insertions is bounded by

1<i<k

The proof divides into two parts. In the first part, we define a rule for
(conceptually) marking nodes during a 2-3 tree insertion. This marking
rule has two important properties when a sequence of insertions is made:
the number of marked nodes bounds the number of splits, and the
marked nodes are arranged to form paths from the inserted external nodes
toward the root of the tree.

The effect of marking the tree in this way is to shift our
attention from dealing with a dynamic situation (the 2-3 tree as it changes
due to insertions) to focus on a static object (the 2-3 tree which results
from the sequence of insertions). The second part of the proof then
consists of showing that in any 2-3 tree, the number of nodes lying on

the paths from the external nodes in positions 12 < Py < ves < Py to

the root is bounded by the ekpression given in the statement of the
theorem.
We now define the marking rule described above. On each insertion

into a 2-3 tree, one or more nodes are marked as follows:

(1) The inserted (external) node is marked.

(2) When a marked node splits, both resulting nodes are marked. When
an unmarked node splits, a choice is made and one of the resulting
nodes is marked; if possible, a node is marked which has a marked

child.

We establish the required properties of these rules by a series of lemmas.

Lemma 1. After a sequence of insertions, the number of marked internal

nodes equals the number of splits.

Proof. No nodes are marked initially, and each split causes the number of
marked internal nodes to increase by one. O
Lemma 2. If a 2-node is marked, then at least one of its children is

marked; if a 3-node is marked, then at least two of its children are marked.

Proof. We use induction on the number of marked internal nodes. Since both
assertions hold vacuously when there are no marked internal nodes, it is
sufficient to show that a single application of the marking rules preserves

the assertions. There are two cases to consider when a 3-node X splits:

Case 1. X is marked. Then before the insertion which causes X to
split, X has at least two marked children. When the insertion
expands X to overflow, this adds a thirdmarked child (by rule 1 or

rule 2). Thus the two marked 2-nodes which result from the split of X

each have at least one marked child.

Case 2. X is unmarked. Then before the insertion which causes X
to split, X may have no marked children. When the insertion expands
X to overflow, a new marked child is created. Thus the single marked
2-node which results from the split of X can be chosen to have a

marked child.

A marked 3-node is created when a marked 2-node expands. This expansion

always increases the number of marked children by one. Since a marked

2-node has at least one marked child, it follows that a marked 3-node

has at least two marked children. Q

Lemma 3. After a sequence of insertions, there is a path of marked nodes

from any marked node to a marked external node.

Proof. Obvious from Lemma 2. O

Lemma k. The number of splits in a sequence of insertions is no greater

than the number of internal nodes in the resulting tree which lie on paths

from the inserted external nodes to the root.
Proof. Immediate from Lemmas 1 and 3. O

This completes the first part of the proof as outlined earlier; to
finish the proof we must bound the quantity in Lemma L. We shallrequire
the following two facts about binary arithmetic. FOr any non-negative
integer k , let v(k) be the number of one bits in the binary representation

of k

Lemtma 5 {5, p. 483 (answer to ex,1.2.6-11)]. Let a and b be
non-negative integers, and let c¢ be the number of carries when the binary

representations of a and b are added. Then v(a)+ v(b) = v(atb)+ ¢

Lemma, 6 . Let a and b be non-negative integers such that a < b and
let i be the number of bits to the right of and including the leftmost
bit in which the binary representations of a and b differ. Then

i < v(a) - v(b) +21g(b-a+l)

Proof. If k is any positive integer, the length of the binary representation
of k is [1lg(k+tl)1 . Let c be the number of carries when a and b-a

are added. By Lemma 5, wvw(a)+ v(b-a) = y(b)+c . When a and b-a are
added, at least i- [1lg(b-a+l)7 carries are required to produce a number
which differs from a in the i-th bit. Thus i- [1lg(b-a+tl)] <c

Combining inequalities, we find that

i < e+ Mlg(b-atl)] < v(a) -v(®)+ y(b-a) + [1g(b-a+l)]

< y(a) - v(b) - 27 lg(b-a+l)] .

Lemma 7. Let T be a 2-3 tree with n external nodes numbered
0y,1;...,n-1 from left to right. The number M of nodes (internal and
external) which lie on the paths from external nodes py < Py < ee <Py

to the root of T satisfies

M_<_2(Mgnl+ X Flg(pi-p,-_ﬁlﬂ\ .
<i<k -~ -= J

10

Proof. For any two external nodes p and g , let M(p,q) be the number
of nodes which are on the path from g to the root but not on the path
from p to the root. Since the path from 12 to the root contains at

most [1lg n1+l nodes, we have

M S rlg n-|+l + Z M(pi—l,pl) .
1<i<k

We define a_label { for each external node as follows. If t is an
internal node of T which is a 2-node, we label the left edge out of t
with a 0 and the right edge out of t with a 1 . If t is a 3-node,
we label the left edge out of t with a 0 and the middle and right edges
out of t with a 1 . Then the label L(p) of an external node p is
the integer whose binary representation is the sequence of O's and 1's on
the path from the root to p

Note that if p and g are external nodes such that g is the right
neighbor of p , then £(q) < 1(p)+1 . It follows by induction that
£(p;) - 2(p;) S Py-py | for 1< i <k.

Consider any two nodes Pj_j p; - Let t be the internal node which
is farthest from the root and which is on the path from the root to p,.

i-1

and on the path from the root to p; - We must consider two cases.
Case 1. The edge out of t leading toward Pi_1 is labelled 0 and
the edge out of t leading toward p; is labelled 1 . Then
z(pi) > f(pi_l) . Furthermore M(pi_l,pﬁ , which is the number of
nodes on the path from t to P (not including t), is equal to
the number of bits to the right of and including the leftmost bit in

which the binary representations of E(pi_l) and B(pi) differ. By

Lemma 6,

11

M(p; _10P;) v(e(e; 1)) - v(e(py)) +2T2g(elp,) - £(p;_{)+1) 1

I

IN

\)(f (pi-l)) - \)(1 (pl>) +2 rlg(pi-pi-l+l) —l

Case 2. The edge out of t leading toward pi-l is labelled 1 and

the edge out of t leading toward s is also labelled 1 . Let

/Z'(Pi_l) be the label of P; 4 if the edge out of t leading toward
p;_7 1is relabelled 0 . Then l(pi) - "(pi-1) < P;-P; ; and

l(pi) > Z'(pi_l) . Furthermore M(pi_l,pi) is equal to the number
of bits to the right of and including the leftmost bit in which the

binary representations of £’ (pi_l) and }Z(pi) differ. By Lemma 6,
M(P;_10P;) < {8 (py 1)) - v(a(py)) +2l1e(e(py) - 2" (p; _1)+1) 1]

< vl (e 1)) - v(e(py)) + 2l le(py-p, ;1)1

IN

v((p; 1)) - v(e(py)) + 2T 1e(p;-p;_4*1) |
since v(2(p; 1)) = v(£'(py_5))*2.

Substituting into the bound on M given above yields

ns Te Rl T Geg) sviley) ¢2Msen)

But much of this sum telescopes, giving

M<[lgnl+1+ v(z -v(2(p)) . 2 X Tig(p,-p; *1)]
3 v(£(p))) - v(2(2y) L e (py-p; 7

< 210l + 2 rlgp.-‘+11)
= (gn 1<i<k B3Py gt

(since vw(t(p,)) > 1 and \)(l’(Pl)) < [lg nl unless k = 1). This

completes the proof of Lemma 7 and Theorem 1. O

12

The bound given in Theorem 1 is tight to within a constant factor;
that is, for any n and k there is a 2-3tree with n external nodes
and some sequence of k insertions which causes within a constant factor

of the given number of splits. We omit a proof of this fact.

13

2. Deletions from 2-3 Trees.

The operation of deletion from a 2-3 tree means the elimination of
a specified external node from the tree. As with insertion, the algorithm
for deletion is essentially independent of the particular scheme used
for associating data with the tree's nodes.

The first step of a deletion is to remove the external node being
deleted. If the parent of this node was a 3-node before the deletion,
it becomes a 2-node and the operation is complete. If the parent was
a 2-node, it is now a "l-node", which is not allowed in a 2-3 tree;
hence some additional changes are required to restore the tree. The
local transformations shown in Figure 4 are sufficient, as we shall now
explain. If the l-node is the root of the tree, it can simply be
deleted, and its child is the final result (Figure k4(c)). If the
1-node has a 5-node as a parent or as a sibling, then a local rearrangement
will eliminate the l-node and complete the deletion (Figures L(d), L(e)) .
Otherwise we fuse the l-node with its sibling 2-node (Figure L(f));
this creates a 3-node with a l-node as parent. We then must repeat
the transformations until the l-node is eliminated. Figure 5 shows an
example of a complete deletion.

[Figure 4]
[Figure 5]

A deletion in a 2-3 tree requires O(1l+f)
steps, where f is the number of node fusings required for the deletion.
Since the propogation of fusings up the path during a deletion is similar
to the propogation of splittings during an insertion, it is not surprising

that a result analogous to Theorem 1 holds for deletions.

1k

Theorem 2. Let T be a 2-3 tree of size n , and suppose that k < n
deletions are made from T . If the positions of the deleted external
nodes in the original tree were 12 < pe <. . .< Pk , then the number of

node fusings which took place during the deletions is bounded by

z(rlgrﬂ+ z Flg(Pi-Pi_l*‘l)"l) :
1<i<k

Proof. We shall initially mark all nodes in T which lie on a path
from the root of T to one of the deleted nodes. By Lemma 7, the number
of marked nodes is bounded by the given expression; hence the proof is
complete if we show that during the sequence of deletions it is possible
to remove one mark from the tree for each fusing.

During the sequence of deletions, we shall maintain the invariant
property that every 2-node on the path from a marked external node to
the root is marked. This is clearly true initially. During a deletion,
the marks are handled as indicated in Figure 6. An ' x' on the left side
of a transformation indicates a node which the invariant (or a previous
application of transformation (b) or (f)) guarantees will be marked;
an 'x' on the right side indicates a node to be marked after the
transformation. These rules make only local rearrangements and create
only marked 2-nodes, and hence they maintain the invariant. The fusing
transformation (f) removes at least one mark from the tree. One of the
terminating transformations (e) may create a new mark, but this is
compensated by the starting transformation (b) which always destroys a
mark. Hence a deletion always removes at least one mark from the tree
per fusing, which proves the result. O

[Figure 6]

15

The bound of Theorem 2 is tight to within a constant factor; that is,
for any n and k<n there is a 2-3 tree with n external nodes and
a sequence of k deletions which causes within a constant factor of the

given number of fusings. We omit a proof.

16

3. Mixed Sequences of Operations.

When both insertions and deletions are present in a sequence of
operations on a 2-3 tree, there are cases in which Q(log n) steps are
required for each operation in the sequence. A simple example of this
behavior is shown in Figure 7, where an insertion causes splitting to go
to the root of the tree, and deletion of the inserted element causes the
same number of fusings. We expect that when insertions and deletions
take place in separate parts of the tree, it is impossible for them to
interact in this way. The following results shows that this intuition is

justified, at least for a particular access pattern arising from priority

queues.
[Figure 7]

Theorem 3. Let T be a 2-3 tree of size n , and suppose that a sequence

of k insertions and ¢ deletions is performed on T . If all deletions

are made on the leftmost external node of T , and no insertion is made

closer than (lg m) positions from the point of the deletions (where
m is the tree size when the insertion takes place), then the total cost

of the operations is

O(log n+k+ g+ 2 log(pi -pi_l)) 5
1<i<k'

where k' < k is the number of inserted nodes that have not been deleted
and pl <:p2 < L. < Py, are the positions of these nodes in the final

tree.

17

Proof. We shall first sketch the argument and then give it in more
detail. Insertions are accounted for by marking the tree in a manner
almost identical to that used in proving Theorem 1. Deletions may
destroy some of these marks, so we charge a deletion for the marks it
removes; the remaining marks are then counted using Lemma 7. Because
we assume that insertions are bounded (lg m)l'6 positions away from the
point of deletions, the left path is unaffected by insertions up to a
height of at least 1lg lg m . Therefore roughly lg m deletions occur
between successive deletions that reference an "unprotected" section of
the left path. These lg m deletions cost 0(log m) altogether, as
does a single deletion that goes above the protected area, so {
deletions cost roughly O(4) steps to execute. Adding this to the cost
of the insertions gives the bound.

We shall present the full argument as a sequence of lemmas. First
we need some terminology. The left path is the path from the root to
the leftmost external node. Note that deletions will involve only
left-path nodes and the children of such nodes. We say that an insertion
changes the left path if it splits a 3-node or expands a 2-node on the

left path.

Lemma 8. Under the assumptions of Theorem 3, the cost of the sequence

of insertions is

O(log n+k+ 2 log(pi -D;) + O(cost of deletions)
1<i<k!

Proof. On each insertion, we mark the nodes of T according to rules
(1) and (2) in the proof of Theorem 1, while observing the following

additional rule:

18

(3) When a marked 2-node on the left path expands, an unmarked

3-node is created.

As in the proof of Theorem 1, the cost of all insertions is bounded by
the number of marks created using rules (1) and (2). Rule(3), which
destroys a mark, can be applied at most once per insertion, and hence
the number of marks removed by this rule is O(k)

This marking scheme preserves the property that on the left path,
no 3-node ever becomes marked. It does not preserve any stronger
properties on the left path; for example, a marked 2-node ~with® no marked
offspring may occur. But it is easy to prove by induction on the number
of insertion steps that the stronger properties used in the proof of
Theorem 1 (a marked 2-node has at least one marked offspring, a marked
3-node has at least two marked offspring) do hold on the rest of the tree.
The intuitive reason why the corruption on the left path cannot spread
is that it could do so only through the splitting of 3-nodes on the
path; since these nodes aren't marked, they never create "unsupported"
2-nodes off the left path.

The motivation for these marking rules is that deletions will
necessarily corrupt the left path. During deletions, we treat marks

according to the following rule:

(4) Any node involved in a deletion transformation (i.e., any

node shown explicitly in Figure 4) is unmarked during the

transformation.

This rule removes a bounded number of marks per step, and hence over ¢
deletions the number of marks removed is O(cost of deletions) . Since

this rule never creates a marked node, it preserves the property of no

19

marked 3-nodes on the left path. It also preserves the stronger in-variants
on the rest of the tree, since it will only unmark a node whose parent is
on the left path.

It follows that after the sequence of insertions and deletions, all
marked nodes lie on paths from the inserted external nodes to the root,
except possibly some marked 2-nodes on the left path. The number of nodes
on the left path is O(log(n+ k- £)) , and by Lemma 7 the number of marked

nodes in the rest of the tree is

O(log(n+k— L) + 2 log(pi—rﬁ_l+-l))
1<i<k!'

Adding these bounds to our previous estimates for the number of marks
removed by rules (3) and (4), and noting that 1lg(x+y) < lg x + y for

x,y > 1 , gives the result. O

Lemma 9. Suppose that a sequence of j deletions is made on the leftmost
external node of a 2-% tree, such that the deletions do not reference any
left-path nodes changed by an insertion made during the sequence. Then the

cost of the sequence is 0(j) + O(height of the tree before the deletions)

Proof. The cost of a deletion is 0(1+f) where f is the number of

fusings required. Each fusing destroys a 2-node on the left path, so the
total cost of the j deletions is 0(j) + O(number of left-path 2-nodes
destroyed) . But each deletion creates at most one left-path 2-node, and
insertions do not create any 2-nodes that are referenced by the deletions,
so the cost is in fact 0(j) + O(number of originally present left-path

2-nodes destroyed) . This is bounded by the quantity given above. a

20

Lemma 10. Under the assumptions of Theorem 3, if the tree T has size
m then an insertion cannot change any left-path node of height less than

lg l1g m .

Proof. A 2-3tree of height h contains at most 3h external nodes.
1g 1 1

Hence a sub-tree of height 1lg lg m contains < 3 &8 n (1g m) g3

external nodes, which is strictly less than the (lg m)l'6 positions

that are protected from insertions under the conditions of Theorem 3. (O

Lemma 11. Suppose that the bottommost k nodes on the left path are
all %-nodes, and deletions are performed on the leftmost external node.
If insertions do not change any nodes of height < k on the left path,
then at least 2k deletions are required to make a deletion reference

above height k on the left path.

Proof. Let us view the left path as a binary integer, where a 2-node is

represented by a zero and a 3-node by a one, and the root corresponds to
the most significant bit. Then deletion of the leftmost external node
corresponds roughly to subtracting one from this binary number. Consideration

of the deletion algorithm shows that the precise effect is as follows: if

the left path is xx...x1l then a deletion causes it to become xx... x0
i
—
(subtraction of 1), and if the path is xx... x100 . . . 0 then it becomes
i i-1

f"ﬁ

either xx...x011...1 (subtraction of 1) or xx...x101...1
- i-1

(addition of 2 -1). Only this final possibility (corresponding to using
the transformation in Figure 4(e)) differs from subtraction by one. Note
that under these rules everything to the left of the rightmost one bit is

unreferenced by a deletion.

21

Before a deletion reference above height k can take place, the
number represented by the rightmost %k bits must be transformed from
2k-l into 0 by operations which either subtract one or add a positive
number. Thus 2k-l subtractions are required, corresponding to 2k-l

deletions. 4

Lemma 12. Under the assumptions of Theorem 3, the cost of the sequence

of deletions is 0(log n+k+ 1)

Proof. For accounting purposes we shall divide the sequence of ¢

deletions into disjoint epochs, with the first epoch starting immediately
before the first deletion. Intuitively, epochs represent intervals during
which insertions do not interact directly with deletions. We define the
current epoch to end immediately before a deletion that references any
node on the left path that has been changed by an insertion since the first
deletion of the epoch. This deletion is then the first in the new epoch;
the final epoch ends with the last deletion of the sequence. According to
this definition, each epoch contains at least one deletion.

Let L5 denote the number of deletions during the i-th epoch, ki the
number of insertions during this epoch, and ms the tree size at the start
of the epoch. The first deletion of epoch i costs 0(log mi) . By
Lemma 9, the final li-l deletions cost O(/Zi + log mi) since they operate
on a section of the left path that is unaffected by insertions. Hence the
total cost of the deletions in epoch i is O(/Zi + log mi) . We shall
prove that except for the first and last epochs, this cost is O(£i+ ki_l),
so that the total cost of these epochs is O(fZ+k) . Since mi < ntk ,
each of the first and last epochs costs O(lzi + log(n+k)) . Combining

gives the bound in the lemma.

22

Consider an epoch i that is not the first or the last.' The first
deletion of an epoch transforms all nodes below height h on the left
path into 3-nodes, where h is the height of some left-path node that
has been changed by an insertion since the start of epoch i-1 . Let
hi =|1lg 1g miJ—l . By Lemma 10, the allowable insertions at this point
cannot change the left path below height hi . This remains true even if
the tree size grows to mi or shrinks to J;; ;, since this changes the
value of 1lg 1g m by only 1 . Hence if h z_hi (i.e., aﬁi left-path
nodes below height h are 3-nodes), Lemma 11 shows that 2 1 = Q(log mi)
deletions are necessary to reference a node above height hi . Thus
Zi = Q(log mi) » which means that O(/zi + log mi) , the cost of the epoch,
is O(fi). If on the other hand h < hi , this implies that at some
point during epoch i-1 the tree size m was much smaller than m

in particular m< V;g . But this shows that ki 1= Q(mi) , SO

o(1.

5 In summary, we have shown that the cost

+ log mi) = O(!Z.l+ki l)

of epoch i is 01,

i +1%_l) regardless of the value of h , O

Combining the results of Lemmas 8 and 12 proves Theorem 3. [

Theorem 3 is certainly not the ultimate result of its kind. For
example, it is possible to allow some number of insertions to fall
close to the point of deletion and still preserve the time bound. (Note
that Lemma 8 does not depend on any assumption about the distribution

of 1insertions, so only the proof of the bound on deletions needs to be

25

4, Level-Linked Trees.

The results in Sections 1-3 show that in several interesting cases
the 0(log n) bound on individual insertions and deletions in a 2-3 tree
is overly pessimistic. In order to use this information we must examine
the cost of searching for the positions where the insertions and deletions
are to take place. If the pattern of accesses is random, there is little
hope of reducing the average search time below 0(log n) ; it is impossible
for any algorithm based solely on comparisons to beat Q(log n) . But
in many circumstances there is a known regularity in the reference pattern
that we can exploit.

One possible method of using the correlation between accesses is to
keep a finger -- a pointer to an item in the list. For a suitable list
representation it should be much more efficient to search for an item
near the finger than one far away. Since the locale of interest may change
with time, the list representation should make it easy to move a finger
while still enjoying fast access near it. There may be more than one
busy area in the list, so it should be possible to efficiently maintain
multiple fingers.

The basic 2-3 tree structure for sorted lists shown in Figure 3 is
not suitable for finger searching, since there are items adjacent in the
list whose only connection through the tree structure is a path of length
6(log n) . Figure 8 shows an extension of this structure that does
support efficient access in the neighborhood of a finger. The arrangement
of list elements and-keys is unchanged, but the edges between internal
nodes are made traversible upwards as well as downwards, and horizontal

links are added between external nodes that are neighbors (adjacent on

25

the same level). We shall call this list representation a level-linked

2-3 tree.
[Figure 8]

A finger into this structure consists of a pointer to a terminal node
of the tree. It would seem more natural for the finger to point directly
to an external node, but no upward links leading away from the external
nodes are provided in a level-linked tree; the reasons for this decision
will become evident when implementation considerations are discussed in
Section 5. Note that the presence of a finger requires no change to the

structure.

Roughly speaking, the search for a key k using a finger f proceeds
by climbing the path from f toward the root of the tree. We stop
ascending when we discover a node (or a pair of neighboring nodes) which
subtends a range of the key space in which k lies. We then search

downward for k using the standard search technique.

A more precise description of the entire search procedure is given
below in an Algol-like notation. If t is an internal node, then we
define Larges&key(t) and Smallestkey(t) to be the largest and smallest
keys contained in t , and let Leftmostlink(t) and Rightmostlink(t)
denote respectively the leftmost and rightmost downward edges leaving t
The fields fNbr(t) and ribr(t) give the left and right neighbors
of t, and are Nil if no such nodes exist; Parent(t) is the parent

of t, and is Nil if t is the root.

26

procedure FingerSearch(f,k)

o~~~ e~~~

comment Here f is a finger (a pointer to a terminal node) and k

is a key. If there is an external node with key k in the structure
fingered by £ , then FingerSearch returns a pointer to the parent

of the rightmost such node. Otherwise the procedure returns a pointer

to a terminal node beneath which an external node with key k may be
inserted. Hence in either case the result may be used as a (new) finger.
if k > Large&Key (f) then return SearchUpRight(f,k)

e e ol

elseif k < SmallestKey then return SearchUpLeft(f,k)

else return £

A~~~

endif

end FingerSearch

~r

procedure SearchUpRight (p, k)

loop
comment At this point either f = p , or £ jlies to the left

of p's right subtree. The key k is larger than the leftmost
(smallest) descendant of p
if k< LargestKey or rNbr(p) = Nil then return SearchDown(p,k)

else q « rNbr(p)
if k < SmallestKey then return SearchDownBetween(p, q,k)

elseif k < LargestKey then return SearchDown (g, k)

else D « Parent(q)

~AAS

endif

endif

repeat

end SearchUpRight

procedure SearchUpLeft(p, k)

(similar to the above]

27

procedure SearchDownBetween(p, g,k)
loop until p and g are terminal:

comment Here p 1is the left neighbor of g , and k is contained

in the range of key values spanned by the children of p and q.

if k < LargestKey then return SearchDown (p,k)

elseif k E_SmallestKey(q) then return SearchDown(q,k

e e e e e ol

else p +« RightmostLink(p)

A

g « LeftmostLink

endif

repeat

if k < Key[RightmostLink(p)] then return p
else return g

la o e e e a eV VoV V]

endif

end SearchDownBetween

A~~~

procedure SearchDown (p,k)
{the standard 2-3 tree search procedure)

This algorithm allows very fast searching in the vicinity of fingers,
In spite of this, we shall show that if a sequence of intermixed searches,
insertions, and deletions is performed on a level-linked 2-3 tree, the
cost of the insertions and deletions is dominated by the search cost, at
least in the cases studied in Sections 1-3%. 1In order to carry out this

analysis we must first examine the cost of individual operations on a

level-linked tree.

Lemma 13. If the key k is d keys away from a finger £ , then

FingerSearch(f, k) runs in 6(log d) steps.

28

Proof. The running time of FingerSearch is bounded by a constant times

the height of the highest node examined, since the search procedure
examines at most four of the nodes at each level. It is not hard to

see from the invariants in SearchUpRight (and SearchUpLeft) that in

order for the search to ascend [levels in the tree, there must exist
a sub-tree of size (-2 all of whose keys lie between k and the keys

of the finger node. The lemma follows. [J

Lemma 1k, A new external node can be inserted in a given position in
a level-linked 2-3 tree in ©(1l+s) steps, where s is the number of

node splittings caused by the insertion.

Proof. We sketch an insertion method which can be implemented to run
in the claimed time bound. Suppose we wish to insert a new external
node with key k . During the insertion process we must update the links
and the keys in the internal nodes. Let node p be the prospective
parent of node e . If e would not be the rightmost child of p , we
make e a child of p , insert the key k in node p and proceed with
node-splitting as necessary. If e would be the rightmost child of p
but e has a right neighbor, we make e a child of the right neighbor.
Otherwise k 1is larger than all keys in the tree. In this case we make
e a child of p and place the previously largest key in node p .
(The key k is not used in an internal node until it is no longer the
largest.)

When a L4-node g splits during insertion, it is easy to update the
links in constant time. To maintain the internal key organization, we
place the left and right keys of g in the new 2-nodes produced by the

split, and the middle key in the parent of q.]

29

Lemma 15. An external node can be deleted from a level-linked 2-3 tree

in ©(1+f) steps, where f is the number of node fusings.
Proof. Similar to the proof of Lemma 1k, O

Lemma 16. Creation or removal of a finger in a level-linked 2-% tree

requires 0 1) time.
Proof. Obvious. O

Now we apply the results of Sections 1- 3 to show that even though
the search time in level-linked 2-3 trees can be greatly reduced by
maintaining fingers, 1t still dominates the time for insertions and

deletions in several interesting cases.

Theorem 4. Let L be a sorted list of size n represented as a
level-linked 2-3 tree with one finger established. Then in any sequence
of searches, finger creations, and k insertions, the total cost of the

k insertions is ©0(log n + total cost of searches)

Proof. Let S be any sequence of searches, finger creations, and
insertions which includes exactly k insertions. Let the external nodes
of L after the insertions have been performed be named 0,1,...,ntk-1
from left to right. Assign to each external node p a label 1(p) , whose
value is the number of external nodes lying strictly to the left of p
which were present before the insertions took place; these labels lie

in the range 0,1, ...,n.

30

Consider the searches in S which lead either to the creation of
a new finger (or the movement of an old one) or to the insertion of a
new item. Call an item of L accessed if it is either the source or
the destination of such a search. (We regard an inserted item as the
destination of the search which discovers where to insert it.) Let
Py < Py <., .. < P, be the accessed items.
We shall consider graphs whose vertex set is a subset of {pi |l <i<iyy,

We denote an edge joining p; < pj in such a graph by pi-pj and we define

the cost of this edge to be max(rlg(l(pj)— l(pi)+l)1 5 1) . For each
item Py (except the initially fingered item) let a4 be the fingered
item from which the search to p; was made. Each q; is also in
{pi |l <1 <1} since each finger except the first must be established by
a search. Consider the graph G with vertex set {pi [l <1<t} and edge
set {(qi,pi) |1 < i<t and s is not the originally fingered item]

Some constant times the sum of edge costs in G is a lower bound on
the total search cost, since lﬂ(pi)- Z(qi)|+l can only underestimate
the actual distance between a4 and P; when P; is accessed. We shall

describe a way to modify t , while never increasing its cost, until it

becomes
e T S
where rl < r2 <.. . < rk are the k inserted items. Since the cost of
this graph is 2, Tlg(r,-r, ,+1) 1 , the theorem then follows from
. i "i-1
1<i<k
Theorem 1.

31

The initial graph G is connected, since every accessed item must
be reached from the initially fingered item. We first delete all but
-1 edges from G so as to leave a spanning tree; this only decreases
the cost of G .

Next, we repeat the following step until it is no longer applicable:
let pi-pj be an edge of G such that there is an accessed item Py
satisfying pi<pk < p.J . Removing edge pi_%j now divides G into
exactly two connected components. If Dy is in the same connected
component as Py » we replace pi--p:j by pk-pj ; otherwise, we replace
pi-pj by P;-P. . The new graph is still a tree spanning (Pi ll < i <1}
and the cost has not increased.

Finally, we eliminate each item p.J which is not an inserted item by
transforming pi-pj-pk to PPy v and by removing edges pj-pk where
there is no other edge incident to P - This does not increase cost,

and it results in the tree of inserted items

as desired. O

Theorem 5. Let L be a sorted list of size n represented as a level-linked
2-3 tree with one finger established. Then in any sequence of searches,
finger creations, and k deletions, the cost of the deletions is

0(log n + total cost of searches)

Proof. Similar to the proof of Theorem L, using Theorem 2. O

32

Theorem 6. Let L be a sorted list of size n represented as a
level-linked 2-3 tree with one finger established. For any sequence of
searches, finger creations, k insertions, and { deletions, the total
cost of the insertions and deletions is 0(log n + total cost of searches)

if the insertions and deletions satisfy the assumptions of Theorem 3,

Proof. Similar to the proof of Theorem 4, using Theorem 3, O

53

5. Implementation and Applications.

In Section 4 we described a level-linked 2-3 tree in terms of
internal and external nodes. The external nodes contain the items stored
in the list, while the internal nodes are a form of "glue" which binds
the items together. The problem remains of how to represent these objects
in storage.

External nodes present no difficulty; they can be represented by the
items themselves, since we only maintain links going to these nodes (and
none coming from them). Internal nodes may be represented in an obvious
way by a suitable record structure containing space for up to two keys
and three downward links, a tag to distinguish between 2- and T-nodes,
and other fields. One drawback of this approach is that because the
number of internal nodes is unpredictable, the insertion and deletion
routines must allocate and deallocate nodes. In random 2-3 trees [9]
the ratio of 2-nodes to 3-nodes is about 2 to 1, so we waste storage
by leaving room for two keys in each node. Having different record
structures for the two node types might save storage at the expense of
making storage management much more complicated.

Figure 9 shows a representation which avoids these problems. A 3-node
is represented in a linked fashion, analogous to the binary tree structure
for 2-3 trees [6, p.469]. The internal node component containing a key k
is combined as a single record with the representation of the item
(external node) with key k . Hence storage is allocated and deallocated
only when items are created and destroyed, and storage is saved because
the keys in the internal nodes are not represented explicitly. (The idea

of combining the representations of internal and external nodes is also

3L

found in the "loser-oriented" tree for replacement selection [6, p.256].)
[Figure 9]

An example which illustrates this representation is shown in Figure 10.
Each external node except the largest participates in representing an
internal node, so it is convenient to assume the presence of an external
node with key +« 1in the list. This node need not be represented
explicitly, but can be given by a null pointer as in the figure. Null
rLinks are also used to distinguish a 3-node from a pair of neighboring
2-nodes. There are several ways to identify the fLinks and rLinks
that point to external nodes: one is to keep track of height in the tree
during FingerSearch , since all external nodes lie on the same level.
Another method is to note that a node p 1s terminal if and only if
fLink(p) = » .

[Figure 10]

We now consider the -potential applications of this list representation.
One application is in sorting files which have a bounded number of
inversions. The result proved by Guibas et. al. [4], that insertion sort
using a list representation with one finger gives asymptotically optimal
results, applies equally to our structure since insertion sort does not
require deletions.

A second application is in merging: given sorted lists of lengths
m and n, with m<n, we wish to merge them into a single sorted list.

Any comparison-based algorithm for this problem must use at least

mt
[—lg(mn)']= G(m log %) comparisons; we would like an algorithm

whose running time has this magnitude. We solve this problem using our

list structure by inserting the items from the smaller list in increasing

35

order into the larger list, keeping the finger -positioned at the most

recently inserted item. This -process requires O(m) steps to dismantle

the smaller list, and O(log n + 2. log di) steps for the insertions,
1<i<m

where (ji is the distance from the finger to the i-th insertion. Since the
items are inserted in increasing order, the finger moves from left to right

through the larger list, and thus 2 d. < n . To maximize
1<i<m

2 log di subject to this constraint we choose the di to be equal,
1<i<m

and this gives the desired bound of O(m log(n/m)) steps for the algorithm,
(The usual height-balanced or 2-3 trees can be used to perform fast merging
[3], but the algorithm is not obvious and the time bound requires an
involved proof.)

When an ordered set is represented as a sorted list, the merging
algorithm just described can be modified to perform the set union operation:
we simply check for, and discard, duplicates when inserting items from the
smaller list into the larger list. This obviously gives an O(m log(n/m))
algorithm for set intersection as well, if we retain the duplicates rather
than discarding them. Trabb Pardo[8] has developed algorithms based on
trie structures which also solve the set intersection -problem (and the
union or merging problems) in O(m log(n/m)) time, but only on the average.

Another application for the level-linked 2-3 tree
is in implementing a priority queue used as a simulation event list. In
this situation the items being stored in the list are -procedures to be
executed at a known instant of simulated "time"; to perform one simulation

step we delete the item from the list having the smallest time and then

36

execute it, which may cause new events to be inserted into the list.

Theorem 3 shows that unless these new events are often very soon to be

deleted, a 2-3 tree can process a long sequence of such simulation steps

with only a constant cost per operation (independent of the queue size).

Furthermore, searches using fingers will usually be very efficient since

the simulation program produces events according to known patterns. (Some

simulation languages already give programmers access to crude "fingers",

by allowing the search to begin from a specified end of the event list.)
An obvious question relating to our structure is whether it can be

generalized so that arbitrary deletions will not change the worst-case

time bound for a sequence of accesses. This seems to be difficult, since
the requirement for a movable finger conflicts with the need to maintain
path regularity constraints [4]. Thus a compromise between the unconstrained
structure given here and the highly constrained structure of Guibas et. al.
[4] should be explored.

Even if such a more general structure could be found, it might be
less practical than ours. To put. the problem of deletions in perspective,
it would be interesting to derive bounds on the average case performance
of our structure under insertions and deletions, using a suitable model
of random insertions and deletions. It may be possible, even without
detailed knowledge of random 2-3 trees, to show that operations which

require ©(log n) time are very unlikely.

37

[1]

(2]

(3]

[4]

[6]

[7]

[8]

References

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman., The Design

and Analysis of Computer Algorithms. Addison-Wesley, Reading, Mass.,
(197k).

Rudolf Bayer and Edward M. McCreight. "Organization and maintenance

of large ordered indexes," Acta Informatica 1 (1972), 173-189.

Mark R. Brown and Robert E. Tarjan. "A fast merging algorithm,"
Stanford Computer Science Department Report STAN-C S-77-625, August 1977;

Journal ACM (to appear).
Leo J. Guibas, Edward M. McCreight, Michael F. Plass, and Janet R. Roberts.

"A new representation for linear lists," Proc. Ninth Annual ACM Symp.

on Theory of Computing (1977), 49-60.

Donald E. Knuth. The Art of Computer Programming, Volume 1, Fundamental
Algorithms. Addison-Wesley, Reading, Mass., (1975 - Second Edition).
Donald E. Knuth. The Art of Computer Programming, Volume 3, Sorting

and Searching. Addison-Wesley, Reading, Mass., (1973).

Donald E. Knuth. "Big omicron and big omega and big theta," SIGACT
News 8, 2 (April 1976), 18-2k,

Luis Trabb Pardo, "Set Representation and Set Intersection," Stanford
Computer Science Department, Report STAN-CS-78-681, December 1978.
Andrew C.-C. Yao, "On random 2-3 trees," Acta Informatica 9 (1978),
159-170.

38

Figure 2. A 2-3 tree insertion.

4O

2 4 9
5 6 8 10 11
B
2 3 4 5 6 7] [s 9 10] [i1
Figure 3. A 2-3 tree structure for sorted lists.

41

12

initial step =

or

>
(a)
——
(b)
general step =
L a
(c) a
(d) or
: —
a B Y a Y a B Y
(e) \ or . .
)
a B Yy 6 o B Yy 6 a By ¢
‘r‘//}::{i:§:{\ : \
(£) o B v o B Y

Figure 4: Transformations for 2-3 tree deletion. (Mirror-images of
all transformations are possible.)

e

4t

Figure 5: A 2-3 tree deletion.

L3

initial step =

C Y o O

(a) [¥] []

5 —
(b)

general. step =

(c) a
(d)
/N
i o B Y
[0 By)
f% - g
(£)

Figure 6. Deletion transformations for -proof of Theorem 2.

Ly

f

insertion here
produces tree below

L4

deletion here
produces tree above

Figure 7: An expensive insert/delete pair.

L5

Figure 8.

(7] e8]

A level-linked 2-3 tree.

46

10

10

11

11

12

parent
INbr rNbr
1Link rLink

node representation:
key

item-related
infcrmation

o1

!

K
K
o
-t T "1 o —f>
. / Xy) \
Kl sae Kz

Figure 9. A storage representation for internal and external nodes

L

3
4
—
J—
) ' el .\‘/
| 4 S | —e
I
parent
node format: 1lbr rivbr
1Link rlLink
key

Figure 10. A structure and its storage representation

L8

