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Extrapolation of Asymptotic Expansions by a

Modified Aitken 82 -Formula

Petter Bjdrstad, Germund Dahlquist, Eric Grosse

Abstract.
A modified Aitken formula permits iterated extrapolations to
efficiently estimate s_ from s/ when an asymptotic expansion

-k -1 -2
- + o [Hah
Sh = Se +n (cO + cln + c2n )

holds for some (unknown) coefficients Coy - We study the truncation and

irregular error and compare the method with other forms of extrapolation.



1. Introduction.

' i o
We consider accelerating the convergence of sequences {sn}r1 1

satisfying

s = s +ca s + O(n_k_l) s, k>0 (1.1)

n @ 0
where ¢, # 0 is unknown.
In order to study this problem, consider for a moment a continuous

case. Let s(t) be a continuous function of t with an asymptotic

expansion

-k -1 -2 -
S(t) =5, + 1t (cy + et + et +0(t7)) ot 05 k>0. (1.2)

We assume that s"(t) # 0 and that termwise differentiation is legal.

-2 -l
+ +.*
Cb -+iu c2u a can be reduced to

this by the change of variables t = u2.) Define a new function s*(t)

(Note that an expansion like

by
2
* 't (t
f(6) - sty - p S (13)
Now
C
st (8)2 = KPcPtPR2 (1 4 o B Ll 5472y
0 k cO
and
C
s"(t) = k(ktl)e 7821 + K2 L4l L o472y |
o] k <,
Therefore
2 c
s' (%) _ . -k k+l -1 -2 kt2 "1 -1 )
P T F Et (epre et TH 0t ) (1 - E =t T 0(8)
-p @ ¥ t'k(co+ clt'l+ O(t'e)) . (1.1)
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* . kt1 |
It follows that s =s_+ o(t ) if we take p = 5 in (1.3).

This result still holds if we replace derivatives by symmetric

differences. Therefore in the discrete case we propose computing
- s W W (1.5)
n n k Asn - vsn

*
(If #s, = vs,  , Just set s =5/ .)

We will show that if the asymptotic expansion

= -k -1 -2 -3
+
sn s *tn (cytgn “+esn on)) » Coiéo: k >0 (1.6)
holds, then the process (1.5) can be iterated, giving the " s-formula":
o -
S = S
n n
i i
A ke, 8% 0 TS o1n .7
: ) = ILyC g0 .
n k+21 Asl - yst
n n
This iteration is illustrated in Figure 1.
i
s i=20 i=1 i=2
n [
n-2
n-1
n
n+l
n+2

Figure 1. Iterated extrapolation process.



Note that the formula (1.3) can be used directly for the practical
computation of S, v if analytic differentiation is simple.

Often a, = S, - Sn—l can be computed directly, with less rounding
error than if S, is first computed and then differenced. This occurs
for example when

ERR N (1.8)

and sometimes when S, is computed using a recursion formula. In this case

one should replace (1.5) by

* k+1 an+lan
Sn= . Tk a - a (1.9)
o nt+l n
If this is to be iterated one also needs a formula for the accurate
computation of
* * *
an = Sn - sn_l (1.10)
Substituting (1.9) into (1.10) gives
A - ga
* k+1 n n k+2
an = a,n[ & an Ae_ - va - X 1 | (l.ll)
n n
This gives the mathematically equivalent "a-formula":
ao = a so =
n “n ’ n = ®n
1 ai ai
i+l 1 k+2i+l  “n+tln .
Sn = Sn o T T s 1 =0,1,2,... (1.12)
e
1° v i
Sl o [ kr2irl - 2% Y% wepive { = 0,1,2
n n - ki . %n 1 1 k21 T Pss.
Aan' Van
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(where again s~ =8 if pa =0, and a T =a if fa -va, =0 )

Note that for greatest accuracy, s; could be accumulated in the

other direction

In practice the error in Asli-vs:'1 and Aa.:rL1 - va.:'l due to rounding

. and a.l will limit the attainable

and other irregular errors in Sh n

accuracy. The irregular error component in sri::L increases with n

and 1, while the truncation error decreases. We analyze this in the
following two sections, then turn to a formula for estimating the exponent
k which provides a check of assumptions and a possible termination

criterion. After briefly discussing alternative techniques, we conclude

with illustrations of the method.



2. Truncation Error.

*
We will now derive the leading term in the error expansion for Sh” Se

assuming that an expansion of the form (1.6) holds for S, - This establishes

that the proposed method gains two orders for every application as indicated

in Section 1.

_ k -1 -2 -3

s, = S,*n (cy+cn  +con + 0(n )),co¥0,k>0. (2.1)
Using

) oo FQ s BED g2 (2.2)

, -1
we can expand,Asn and vsn in powers of n

Vs

n = - Cokn—k-l(l + _15“12'__1 n-l + M@ nm2 + (k+l) (1;::'2)(1{-'-5) n'5)
As - 3" - ™
. “*n
- (B BR ah s (kt2) (t3) -2y
- 3!
- cg(k+2)n-k-5(l + 5%2 n'l)
i - CB(k+5)n'-k—’-L +O(n_k_5) (2.3)
Now
. 2,2 =2k-2 -2k-3
As, * Vs, = cok n + 2¢, clk(k+l)n
2
k 6k 2 2, -2k-k -2k-
+ (Cé k™. +T+5 + 2¢y ¢, k(k+2) + cl(k+l) n + 0(n 5) (2.4)
and
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021:2
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0
This gives
c c2 2c
* 0 1 o | _-k-2 -k-3
S, = 54 4 (15 (1-k) - 5 + k(k+l))n + O(n ) . (2.6)
cUk
By iterated use of (2.6) we obtain
s = s +c¢ nER, O(n-k-El-l) , i=0,1,2,... (2.7)

n ® 0

where cg = ¢y s cé is given by (2.6) etc. The leading term in the

c(i') -2 J
truncation error is multiplied by——— -1 in iteration i , 1if ¢j # 0,
o
j < i 7 i = 1’2,3,5400



By termwise differencing of the egansion whose first term is given

by (2.7) we get

. . . Rpe kD
al = yst = - c-(k+ 2i)n k-2i-1 o(n 21 2) (2.8)
n n 0 N

and therefore
ai+l c:i+l
n 0 k+2i+2 . -2 -3 J R .

— = T 351 n +O(n),co;éO,J§1. (2.9)

an cO



3. The Propagation of Irregular Errors.

0 0] . .
n ' % are subject to rounding errors or other

Usually the data s
errors in the process where they are computed or measured. There may also
be transients in the sequence, which decay more rapidly than n-k for
large n but disturb the acceleration when n is not large enough, see
Example 1. Such errors will be called irregular errors, since we do not
assume that they depend smoothly on n , in contrast to the truncation
error studied in Section 2. We shall study how the irregular errors in
the given data are propagated in the acceleration process and derive
approximate bounds that do depend smoothly on n

Let r(x) , .r(y) be approximate bounds for the absolute value of
the irregular error in the variables x, y . If a variable is defined by
an arithmetic expression involving variables with previously known
approximate error bounds, then the approximate error bound of the new
variable is defined by the repeated application of the following

fundamental rules:

r(xty) =~r(x) ;+ r(y) (3.1)
r(x-y) ~r(x) . r(y) (5.2)
r(xy) ~ |x|-x(y) + |y|or(x) (3.5)
r(x/y) ~ )/ |y| . r@)/¥ (5.1)

The sign of approximate equality means that the following

simplifications are made:



First, when an error bound depends on n , we shall consider only
the first term in its asymptotic expansion. Since usually n > 1,
this 1is reasonable if one also assumes that the problem dependent
coefficients cé do not grow too fast with j and 1i.

Second, the use of the asymptotic estimates derived in Section 2 as
well as the rules (3.3) and (3.4) are based on the assumption that all
quantities are (much) larger than their irregular errors. In particular
we assume that

i+l i
s - s | << |sn - 5 (3.5)

where s; ’ s;+l denote quantities containing irreqular errors. This
assumption limits the number of extrapolations for which the theory can

be applied. Fortunately this limit also indicates where the iterations,
because of the propagated errors, do not any longer give significant
improvements.

Third, we again emphasize that we study the propagation of the initial
irregular errors only. The rounding errors committed in the accelleration
process are assumed to be negligible. This is reasonable since in good
floating point arithmetic, no new rounding errors are introduced when two
éhnost equal numbers are subtracted. The inherited relative error of the
result of such a subtraction will be much larger than the rounding errors
in the later operations. Also the rounding errors in the final additions
of the form si+l = si*-ﬂn where lnn‘ << |si‘ » are negligible.

For convenient reference we collect here same formulas derived from

the expansions in Section 2.

10



R M ) 5-6)

n €0 0
al =Vs:L - - cl(k+2:i.)n'k-21'l+ O(n-k-21-2) (3.7)
n n 0]
i 1 i -k-2i-2
1 = M = % O ) (5.8)
pag = Bs -vsll1 = cio(k+21)(k+2i+l)n-k-21-2 + o(n 5213
= -(k+2i+1)al 0™+ 0BT (3.9)
i 1 ., . 1 -2 -k-2i-h
he, - va, = (k+2:L+l)(k+2:L+2)a.n n° + 0(n ) . (3.10)
In order to simplify the notation a bar over a variable will replace
superscript i+l and the superscript 1 will be omitted.
We first consider the s-formula.
- _ , _ keinl . bsy - V8, 5.11)
v T %q k21 Bs_- Vs . .
Let
r(sy) ¥, n-1< 3 < nhl (3.12)

where we define y to be an upper bound for r(sj) . Using the rules

(3.1) to (3.4) we get



, Asy © VS
Asp = VS,

(s, |-x(as) + |asy|-x(vs)) - |asy sy |+ |as, - vsy| - (w(as,) + x(vs)))

~

2
(Asn - VSn).

2u(los, |+ Tos,]) - Jas, ~vs, |+ - a8 - v, |

~

2
(as, - vs,)
ER
n-'"n
by —2 B (5.13)
(s, - vs))
where in the last step we used relation (3.7) and (3.9) to drop higher
order terms in n ~ ™ Using this; in (3 .11) gives
- ‘ASnVSn|
r(sn) ~ oo+ bu(k+v2i+l)/ (k+2i) . —
(asy -vs))
2
(2n)
¥ ko) (kroi D) M (3.14)

where we used (3.7)5(3.8), and (3.9) to eliminate Asn r VS, and
ASn-VSn

Repeated application of (3.14) gives the final approximate upper bound

on the error propagation.

i > 2i 0
r(sy) ~ k(& 1) ( [.1). k+21-1)
where
p,o = max |I‘(SO)\

n-i<j<n+i J



and r(sg) is the initial error in element j of the original sequence

{a}-

Next consider the a-formula.

_ kepivl . _p 88 -VE) _ .
2y T Tweal & aga -(k+2iv2)/ (k+2i).e, . (3.16)
n n
Let
r(as) ~ v , nl<j<ml. (3.17)

where again y 1is an upper bound for r(aj) . We get

(a) k+2i+1 or(a) |a ha_ - va L 2.y e - va, K+ 0140 o)
The ¥ Tk+rei . e - va, | ‘ X151 -
n k+2i. n n pa, - va, n e, . Ve, T o3 n
ha_~va Aa. - ga, 2 |Aa. va. |
k+2i : n Aan- va, n Aan. va. (26 -va)
n .'’n
k+2i+2
k+ 21 (3.18)
bey, =vey,
using (3.13) and (3.4) to find r TR T
n n
Using (3 . . and (3.10) to eliminate 08, » V&, , and fe -va in
(3.18) we obtain
2
Sy o~ (2n) , .
r(a,) ®FoD) (k+ i+ D) ¥ (3.19)

Fram (1.12) we have

13



. a a
- +0i+
I‘(Sn) ~ r(sn), + k+2i+1 '[1‘ n+l nJ

k+21 Aan
k+2i+1 Ian+ll.r(an) * |a’n|'r(an+l) Ia‘n+lanl'r(Aan)
a I‘(S ) + — 4 +
n k+2i IAan| (a8, )2
n I
2
2n
~*(s)) + ety v
~r(s ) + 212G ) (3.20)
n 2 n ‘
again using (3.7),(3.8), and (3.9).
Repeated application of (3.20) yields finally
. i 2
i oy, 1 = (2n) 0
+ = .
r(s)) ~ r(“f‘_p) 2 351 k(&r1)... (k23-1) Y
21
0y , 1 (2n) 0
~r(s)) ¥ 3 . e e v (3.21)

where

0 0
v = max Ir(am)l
n-i <J< n+i

and r(ag) is the initial error in element j of the original sequence
a3 -

We conclude that the a-formula is never significantly inferior to the
s-formula, and if

0]

v o= max lr(ag)l << max Ir(s?)l = W (3.22)

n-i < j < n+i n-i < j < n+i
the a-formula is indeed superior. We therefore feel that the a-formula

(1.12) might as well be used even when ag has to be computed explicitly

o _ SO 0
n n nl

14



According to the analysis given above the irregular error in the
extrapolated values will grow very fast with n and i . Since the
truncation error decreases we should also consider the case in which
the irreqular error dominates the truncation error.

In Figure 2 and 3 we plot the truncation error, the irregular error
component, the a priori bound on the irregular error given by (3.27), and
the actual computed error using the a-formula in Example 2, Section 5.
These quantities were obtained by doubling the precision of the original
computation. We keep n+i constant and plot the above quantities on a
loglo scale. The actual values for uo and VO (defined in (3.15) and
(3.27)) are use-d. Note that the derivation of the bound given by (3.27)
is valid only until the irreqular error component reaches the level of
the truncation error. The theoretical bound corresponds quite well to the

actual beéhewior of the irregular error in the region where the assumptions

for the analysis are valid.

As can be seen in Figure 2 and 3, and also from the examples in
Section 5, the irregular errors level off in practice when they start
dominating the truncation error. This phenomenon becomes plausible when

we note that if Asn and Vsn were independent random variables € and €,

uniformly distributed on (- 1, 1) then

€4 €
b l 1_ 2
&17 &

1
<§"ﬂ > 0.7 .

15



(This probability is relatively insensitive to the particular distribution
chosen, as long as it is symmetric around 0 .) The above result was

found using 10,000 random trials.

16



Loglo\errorl

10 ~

15 :
'--~.‘

O
20
- 3 ‘ | ‘ 1§ A
1 2 3 L > 6 "’
Figure 2. The a-formula used in Example 2, Section 5.
n+i=15 u°= 9.9 -1o'16 . v=1h.0- 10‘17,

[j Truncation error
0 Irregular error
X Actual error

+ Expression 3.27.

17



Log:L 0 | error

10 +

15 o

L [ ] LJ L | J L] %
1 2 3 b 5 6 i
Figure 3. The a- formula us§gmpﬁﬂ? Section 5,
n+i=30. u =T.6 . %0 . 48
Truncation error IrreQularerror

U

X

Actual error

+ Expression 3.27.
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4. Estimation of k , Termination Criterion.

Sometimes the coefficients CU in the expansion (1.2) are so
inaccessible that even verifying °y # 0 is difficult. In such cases

an estimate of k directly from the data Sy is helpful.

Using the expansions (2.3) and (2.5) we find that for some constant ¢, ,

As
n 1 k(k+1)
Rs_- Vs, = CoK(FD) [— negk | 573 te

2
C
-1 (k-1) -k(k+2) Skl 71 kt2
o (' 0 12 * S T c, E

- +c, n"2 4 O(n-5)1

Differencing this gives

2
As 2c,(kt+2) es (k+2)
n 1 2] (k-1)(k+2) 2 1 -3
A ——————— = - et - Y] - — + ? + O(n ) .
And therefore
-2
k = + 0(n %) (4.1)

-Experiments indicate that symmetrized versions perform no better than this

simple forward difference formula. (They will all have truncation error

-2 .
of order n ® ) Note that & 41 can replace As_ in (4.1).

This estimate may be applied in several ways. First, it provides
a check of the underlying hypothesis; successive estimates kh that
steadily increase indicate an error expansion that may be exponential

in -n , say, not polynomial in }}

19



Next, the estimate suggest/the first nonzero term in the error
expansion; sometimes because of problem symmetries this may not be
obvious a priori.

Finally, it yields an appealing termi~nation criterion. After each
extrapolation, the estimate of k should increase by 2 , and once they
depart from the expected behavior, the sri1 from which they are derived
have been sufficiently contaminated by irreqular error that further
extrapolation is pointless. For a somewhat similar heuristic in adaptive

quadrature, see de Boor (1971).
Another more specific termination criterion which is easy te implement
together with the recommended a-formula, can very naturally be based
on the expected monotonicity of the sequences {s;} . (For each 1i).
Suppose we are computing the sequence {srll} from the previous
i—l} Nmax

column {s (Or in practice, updating the corrections to

n=N .
min

the original sequence {sg} using the a-formula (1.12).) Then:

.
1. ' ' . i
Find the index Nl > len for which the elements an ;D> Nl 5
starts having constant sign. (Say, at least three consecutive

elements, after a possible irregular sign pattern in the beginning.)

Set Nmin = Nl

2. Find the first index N, > N; for which a‘NeaN2+l <o

. . 1 1
A. If N2 = Nmax (that is, no sign change occured) let Sy = SN2
be the estimate of s from {sl} and take
© n

TOL( ) = |:5|,N | to be an estimate (order of magnitude only!) of
2 .

the error |si-sw| .

20



1 i
B. If N2 < Nma.x , let Nmax = N2, take sy, = SN2 and take

ror) - maX{|8~N2|’ |3N2+1|} :

3., If TOL(l) > TOL(l-l) , accept the estimate s_)l(__l with error
estimate TOL(l_l) , otherwise compute a new extrapolated column
{si+l I\%nax

" n=N
T “min

A FORTRAN implementation of this criterion running on an IBM 570/168

(precision approximately 16 decimals) gave

S_ a 0.13533528520 T 1.5 x1071T

2

e - = 0.1353352832k (exact value)
0,20 . .
based on {sn} from Example 1 in Section 5.
n=10

while

+ 11

S ~ 2.61237534869 T 2.0x 107

£(1.5) = 2.61237534869 (exact value)

>

1
based on {sg} from Example 2 in Section 5.
n=1

21



5. Alternative Methods.

From (1.1) we can immediately derive an "elimination formula".

t
* & 0

= t +
n n+l el k .
n

t (5.1)

This formula, too, may be iterated to take full advantage of the asymptotic
expansion (1.2). (See for example, Dahlquist and Bjbrek (1974).) Note
that two iterations of the above formula correspond to one iteration

of the s-formula; both reduce the order of the truncation error by n-2 .
using 3 data points. However, this method has two serious flaws.

First it is not translation invariant with respect to n . As illustrated
in the examples belo&, the proper choice of origin is not always obvious

in practice. Second, the rounding errors do not level off, as they do

for the s -formula. This means that a very careful termination criterion
must be used if this formula were to be applied.

Another alternative is to use some other symmetric difference formula

based on the continuous formula (1.3). For example

1 2
* 1 § (88 49s)
Sn 5 H -1 S_ - s (5.2)
As, -V n
has truncation error
2
* - ° .2 1 e, k-2 k-
s - = s+ (_ 1 (3k~ + Tk+2) - k2 + (& 1) n + O(n 5) (5.3)
c
0

which is comparable to the corresponding error (2.6) for the s-formula.
(Note however that the factor multiplying ¢, is larger in (5.3).) Which

of the two formulas will do better depends on the problem. *

22



One nice feature of the s-formula (1.4) is that it can be interpreted

as a modification of the classical Aitken extrapolation formula

2
(ss )
s:* = s - 2_n (5.4)
A Sn

which assumes an error expansion

S 1= 80 = (A+ €)(s -s.), [|A[<1,e =0,n-w. (5.5)

n+l ©

(See, for example, Henrici (196h4).)

This follows since in the limit k= =,

2 2
P ASnAsn-l'(Asn-l) BSp_1B8p1 _
S =8 = ASs - = As - —— 0.
n n-1 n-1 A2 S n-1 A°s
n-1 n-1
The equivalence also holds of course, for the formula
2
el (8%,)
S = S - —_—m—— . (5.6)
n n k Ags
n
This formula is not symmetric and will therefore only accelerate the
. * -k-1
convergence by one order of magnitude. (Sn =58+ 0(n ) +) The last
formula can, however, be useful in a quite different context when computing
multiple roots of nonlinear equations. (See Overholt (1965).)
It should be noted that we assume the work required to evaluate Sy to
increase substantially with n . If this is not the case, and any S8  can be

accurately computed, better accuracy can be obtained by using a subsequence
of s, in the extrapolation process. For example one can evaluate s
only for n=mk or n = 2k », k=12,3... , m some integer. The

s - or a-formula can still be applied, setting k = » in cases like

25



n= Qk (Aitken extrapolation). 1In this case the elimination method
will be translation invariant and both extrapolation processes tend to be
more stable; the irregular error component will not blow up.

In the special case k = 1 , other extrapolation methods are available;
see Joyce (1971) for a comprehensive catalgg. Like the elimination scheme

above, these other methods depend explicitly on the independent variable n ,

or more accurately on hn = 1/n . Polynomial extrapolation,

o0 -
p, = s()

J wd
J*L 3 Pne1™ Py .
pn ~ Pt Tm 2 0=J

n

=L !

n+j+1

uses Neville's iterative linear interpolation to evaluate at ( the polynomial
passing through the data. For a more complete treatment with applications to

summation of series see Gander (1973). =Rational extrapolation (Burlisch and

Stoer (1964)),

r_l = 0
n
L = s(h )
n K] s
. rY - Y
J+l J n+l n .
( r" -r h
n n+l n
(29, - e -t
Tpe1” Tn+l BorseL

interpolates instead by a rational function. An alternate way to do this,
based on Thiele's iterative reciprocal differences interpolation, is the

p-algorithm proposed by Wynn (1956), (see also Brezinski (1977), Warner (1974)):

2L



Py = 0
0
Pn = s(hn)
1 1
Jj¥1 _ -1 _ h " h
Pr T Pppy T BHIHL o
pJ - pd
nt+l n
Collapsing two steps yields
Jve_ | J N
Ph T Porl” D
where
1 1 J J
N = (—= -=)ap v p
hn+j +2 hn nt+l n+l
J-1 , 3 J 1 1 J 1 1 3
D = Ap Ap \/) + - )Vp - (— . =) Ap
n+l " n+l n+l hn+j +0 hn+l n+l hn+j +1 hn n+l

Wynn notes that as convergence progresses, the first term in the denominator
can be neglected. Substituting hn = % then gives the s-formula.

From this is appears that when both apply, the s-formula and the
p-algorithm (or, equivalently, rational extrapolation) will behave comparably,

though not quite identically. The numerical experiments presented in the

next section bear this out.

On the other hand, the range of applicability of the two methods is
different. The s-formula allows general k but requires hn= % , while
rational extrapolation allows general hn but requires k=1 . Another
difference is that the a-formula is able to take advantage of the accurate

series terms a, -

25



We have been unable to devise a satisfactory scheme generalizing both
methods. Of course, elimination can still be applied; the case of general k

and general hn is handled by

qﬁ =s(_)
i
z d p
i+1 < <1 Bowm
- b
z C'i.m
S l<m<1
B k+i
d-l - (hn— hn+l) / hn-l
k+1
dO - (hn+l_ b, l) / b
) | ki
4 = (hn-i- hn) / b

However, limited numerical experiences suggests that this may not perform

1

particularly well in practice for general hn . (For hn= 7 the first

elimination scheme and this one behave comparably.)

Polynomial extrapolation can be used with general hn and k [Bauer,
Rutishauser and Stiefel (1965) ], but the trick depends on linearity of the
extrapolation process, and therefore does not seem to carry over to rational

extrapolation.

Another possibility, which we have not investigated, would be to fit the
data by a least squares method. Perhaps stepwise regression based on the

asymptotic expansion would be appropriate.

We conclude that there is still room for work on extrapolation methods,
particularly in theoretically explaining empirical behavior such as the

superiority of the s-formula and rational extrapolation to elimination methods.
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6. Examples.

Example 1.

At the most recent Gatlinburg conference on linear algebra, nametags
were scattered about the dining room to encourage people to make new
acquaintances. One evening a participant remarked: "This can't be
random —-— I just sat next to this guy at lunch.” Suppose that n people
are seated randomly around a circular table for two meals. What is the

probability P, that no one can make such a remark'?

From a recurrence formula by Poulet (1919), we may compute that

P, = P =B = 0
i

P5 = 15
I

Ps = 20

P7=§2636

pn = -[ (-n6 + l'?n5 - 116n

b + hlSn3 - 8’+9n2 + 978n - BOh)pn_l

+ (-un“ + L8 - 188n° + 2h0n)pn_2

+ (2nh - 3On5 +15hn2— 300n + lhh)pn_5
+ (-0 + 70 - 9P,y

+ (-n® + 50 - 3)p, ;)

6

/(e - 170° +1Lka" - 3810 + 689n° - 618n + 216)

for n > 8 . (6.1)

2T



(In particular, P100 ~ 0.130 |, In fact, the seating was not completely

random, but the one incident would not be enough to establish this.)
The recurrence may be rewritten as

L

Py-Phq = - L(-2n' + 301 - 160n° + 360n - 288)p

+ (-hnLL + 4800 - 188n° + 2h0n)pn_2

+ (2nh - 50n3 + lShng - 300n + lhh)pn_5

+ (-n2 + Tn - 9)pn_4

+ (-n® +50 -3)p ]

4

S - 1707 + 11 - 38507 + 680n° - 6180 +216). (6.2)

Since 0 < pn <1, and pn; Py 1~ O(n-e), we see that lim |2 exists and an
asymptotic expansion of the form (1.2) holds with k =1 .
We might guess that in the limit the probability of success overall

is just the product of the probability of success at n-1 seats, so that

1 _ 1imf B3 nl o
im p, = lim{ —F = e = 0.135335 . . . . It appears that no

n —co Nn -

one has rigorously proven this yet, but we can easily check the conjecture
numerically using the techniques described above. On the following pages
we present the results of different extrapolation techniques applied to

(0)

Sy =Py o For clarity the predicted limit e_2 has been subtracted off

the extrapolated values, and only every second elimination step is shown.
For more detail see the 'program listings in the appendix. Estimates (4.1)

of k based on the s-formula are included in the numerical results.
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n Py Py P, by Py P,
1 -135.3 (-02) —13562 (-03) 24C35( 001 179G (+00) 43 <94 (+400) 67.84( +t00}
2 -13S.3 (-03) -135.3 (—-031 64116(+00.) T 26477 (+Q0) 46416 (+00) - 66.83 (+00)
2 -135.3 (-C3) S06.3 (-03) Be477(+00) 2221 (+00) 37 89 ( +00) 5423 (+00)
4 —135.3 (-03) 1319(+00) G6e 195(+00) - 1420 (+00) 25423 (+00) — 36422 (+00)
< 5200 (-C3) €7146 (-031 2694 (+00) 7197(+00) 13.73 (+00) 1Ge8G 1 + 001
6 8534 (-03) -118.,2 (-03) -G52.4 {(-03) - 3035(+00) - 6.027(+00) - 9,048(+00)
7 71645 (-03) 54.87 (-03) 3148 (-03) 1«006{+00) 2¢143(+00) 3468(+00)
a €S5S¢ 10 (-03) 44047(-03) 66«26 (=03) -261.2 {-03) —-642.1 (-03) - le 133(+00)
Y 58430 (-03) 3.835(~-03) 13 €2 (=-03) €126 (-03) 165 .5 (=03) 3149 (—-03)
[ §] 52.87 (—~03) 1497 (~03) 2361(-03) - 11«96 (-03) 35458 (-03) - 7501 (-03)
11 4829 (-03) 1237(-03) 3737 (-06) le 861 (~-03) 6677(~-03) 1573 (-03)
12 44642 (—-03) 884 .2 (=06) 3.063(—06) ~311e5 (-06) lel 39(=03) - 2« 894(-03)
12 41le1k (~C2) 667! (-06) 35.76 (-06) 34 <49 (—06) 158 .9 (=06) 4643 (-06)
14 38.29 (—-03) 513.7 (-06) 20. 86 (-06) - S5¢247(-06) 22455 {«06) — 6893 (-06)
15 35476 (—-03) 404.! (-06) 1501 (=06) 3747 (-09) 2.295(-06) 8. 803(-06)
16 3356 (~03) 323. ¢ (-06) 1063 (-06) - 1¢382(~09) -379.9 (=09} - 1.082(-06!
17 31.62 (—-03) 263.2 (-06) 7697(-06) €1 T1Td(=09) 2038 (-09) 1371 (=09}
W 18 - 2989 (—-03) 216 9 (=061} S+.668(-06) 7379 (—-09) - 25460 (=~09) - 2694 (—-09)
¥ 1c - 28434 (-03) 180.9 (-06) 40243(-0606) €l1.66 (~09) - 11 30 (-09) 24 469 (-09 !
20 - 2694 (~-03) 1525 (-06) 3.224(-006) 48465 (-09) - 7177(=09) - 5005 (~C9)
c1 - 2567 (~03) 129.7 (-00) 2484(—-06) 37.59 {-09) - 2.000(-09) 9 8449 (—-09)
22 T 2451 (-03) 111.2 (-06) 1.538(-06) 28475 (~09) - 4503(~09) =179e.1 (=09}
22 - 23445 (-03) Y6e 14 (-06) 1 ¢529(-06) 2207 (-09) 3993(=09) 2S5€«6 (-09)
24 T 2248 (—-03) 8365 (-0¢€) 1219(-006) 16.82 (-09) - 84081 (=09) ' -2964.1 (=091
25 - 2t e59 (-03) 7324 (-006) 9819 (=-09) 13«18 (-09) 7¢928(~-09) 2577 (-09)
26 - 206 76 (—~03) 64¢48 (~06) 797 8 (=09) Ye976(-09) - 7768(~-09) -118¢3 (-09)
27 - 20400 (=03} 57.C7 (-CE) €53.5 (-09) 84030(-09) 3726(-09) T 63402 {(=09)
28 - 1G¢29 (-03) 50475 (=-0€ ) 539 +4 (-09) €e126({~09) le246(-09) 20662 (-09)
29 T 18e€3 (—-C3) 45434 (-06) Hods 0 4 (-09) 4 .883(-09) - 4 ,299(-09) -565.4 (-09)
30 - 1801 (-03) 40 .66 (-06) 3752 (=09} 3975(-09) S«809(-09) 2170(-06)
21 17«4 (-02) 36.61 (=06) 3159 (-09) 3.078(—-09) - 22440 (-09) - 6176(—06)
32 © 1689 (-03) 33.08 (-06) i1 o 5 (—=09) 20 €25(—-09) 85.02 (-09) 1150 (=06 1!
23 - 16638 (~03) 29e9 9(=06) 227 «7 (-09) le417(-09) —1888 (-09) - 14422 (-06)
34 © 1590 (-03) 2727 (-0€) 1938 (-09) 3«570(—-09) 248 .6 (=09 1192 (-06)
1 T 15644 (=-03) 24.87 (-06) . 1675 (=09) - le443{(-09) ~167.9 (-09) - T7417(-06)
3¢ — 15«02 (-=03) 2275 (-06) 144 o5 (-=09) 3e211(~-09) G8.81 (-09) 5¢257(~06)
37 T 14461 (-03) 20.86 (-06) 1254 (-09) 2C2¢5 (-12) — 55473 (-09) - S .881(—-06)
38 - 14423 (-03) 1917 (—-06) 9 o | (=09) 1«041(~09) 7557 (—09) S5¢764(-06)
3¢ - 1386 (—-C3) 1 7.66 (-06) 95« 36 (—-09) 3809 (—-12) - 8575 (=09) - 2768(-06)
49 - 1352 (-03) 163 1 (-06) 83.62 (-09) 12353(-09) 41 66 (—09) =324 .7 (-09'}
41 - 1319 (—-03) 15.09 (-06) THe57(-09) 4946 (-12) 1707 (-09)
42 - 1288 (-03) 13.5S6 (-06) 64¢G4 (—-09) 155.8 (-12) = 1097 (-09)
43 © 1258 (—-03) 12.99 (=06) 5749 (=-09) 6246 (—-12)
44 - 1229 (=-C3) 1208 (=006 S1 «05 (-09) 6955 (-12)
45 - 12402 (=-03) 1127 (-06) 45+ 45 (—-09)
46 © lle76 (—-03) 10.52 (-06) 40 «58 (=09 )
A7 - 1151 (-C3) 9«833(~06)
48 - 11427 (-03) 9.207(-06)
49 - 1104 (=03) polynomial extrapolation
S0 - 10.82 (-03)
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-279.9, (-03)
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- 12457 (-03)
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-322.9  (-06)
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- 1 +098(-09)
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second method
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€415 (+00)
33«74 (+00)
1746 (+0D)
7¢378(+00)
24542(+00)
(-03)
1872 (-03)
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1735 (-06)
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Se613(-09)
9.732(~-09)
64484 (-09)
I 0 122(-09)
1.235(-09)
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44086 (-09)

12349 (-09)
-232, S (-09)
283.2 (-09)
=223.5 (-09)
12546 (=09)

84445 (-09)
8410 (-03)
36.73 (-09)
4042 (-09)
11.57 (-09)
235.1 (-09)
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® X 0 34 ¢ (-07)
52649 (-06)

= 7725 (-05)
9.732(-06)

- 1.186(-06)
10605 (=39)

- 14,01 (-09)
=-57543 (-12)
15. 04 (-09)
60473 (-09)
-160.8 (-09)
$L e} (-09)
=-360.0 (-09)
351e4 (=-09)
-251.9 (-09)
105.2 (=09}
1943 (-09)

- 1.081(=06)

3o 564(-06)

- 8.429(-06)
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- 16.54 (-06)
1 3493(-06)
9¢443(-06)
6e966{(-06)
- 54494 (-06)
1. 825(~06)
7976 (-09)
6.371(-06)




As it happens, the coefficients ¢y in the asymptotic expansion may be

computed for this problem.

= -1 20 - - 2%
Pp = p (1-ln +—5—n5+%8nh+.'@n-5+

5 -6 63
n +

However, the amount of labor required for this computation makes the

extrapolation schemes quite attractive.

Example 2.

To illustrate that k need not be an integer, on the following pages we

give the corresponding results for

g(1.5) = 2.6123753 48685488

n
O Z k-105
k=1

By the Euler ~Maclaurin expansion

(a5) =5, + 002 - 5ot e gnT wy (6.1)

(0f course with the knowledge of the precise expansion (6.4) one can
compute g(l.'i) more efficiently.) A more serious application with
fractional k occurs in contour integration (]'.w'ness and Delves (1967)).
Finally, we note that the s-formula has been used to compute the
asymptotic solution of a system of ordinary differential equations in

quantum chemistry. (Edsberg and Oppelstrup (1975).)
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- 1.612(+400)

- 1,259(400) - 60.14 (-03)

- 1 4066(+00) - 21455 (=03) - 7717 (-0€)

-241.4 (-03) - 10.46 (-03) —- 15403 (-C6) - 1.085(-06)

~£51e6 (=03) - 5679 (-03) - 4.677(-05) -165.9 (=-09) - 16480 (-09)

-783.9 (=023 - 3.787(-03) - 1.878(—CE€) - 41.72 {-09) - 1 4788(-0D9) ~337.5 (-12
-QE¥t 09 (=073) - 24575(=03) -886+1 (-09) - 13.76 (-09) -334.9 (~-12) - 78461 (-12)
-€E5.7 (=-03) - le3843(~03) -467.7 (-09) - 54415(=09) -111.6 (-12) 9 o 056(-12)
a7 (=073) ¥ 143732¢-013) ~268,1 (=CS) - 2.423(-09) - 39.91 (-12) 351.1 (-12)
-€17.0 (-0 - 1.055({~03) -163.7 (=09) @ ¢ 95(-09) 1192 (-12) -~ 1¢970{=09)
~-53949°6 (=03) -821°0 (-CH) 1056 ) 1-€6) FECIEEI ) (-12) -567.1 1-12) 6.175(-09)
~-5365.6 (=03) -HFR1 4,5 (~05) - 70430 (—09) -4432 .6 (-12) 1e347(-09) - 15,13 (-09)
-F4642 (=93) -547.2 (-006) ~- 43463 (-09) -6 1,056(=-12) - 2704(-09) 26.84 (-09)
-525° ¢ (—=073) -45447 (=06) - 34,601 -¢6S) -383.3 (-12) 3.509{-09) - mm 9% (-09)
-507«9 (-03) -382.6 (-06) - 25.24 (=09) 86 .72 (-12) - 1331(-09) - 13.35 (-09)
-492, ¥ (=02) -225, 6 (=05) - 18479 (—-C9) 72.08 (-12) - 54071 (=09) 105.8 (-09)
4780 (=03 -279.8 {(-06) - 14424 (-09) ~-5€E1e8 (=-12) 13.77 (-09) 247« (~-09)
FONb v E  (=-073) ERegll 0o v (=06) - 1101 (-0%) 762.4 (=-12) - 23,02 (-09) 416,9 (-09)
-452.9 (=-03) -211e9 [-€6) - B.579(~-CG) - 1.063(-09) 30662 (-09) -571e4 (=09)
-44147 (-03) —-185+4 (=05) - 6831(-06) 1037(-06) - 33,33 (-09) 632.9 (-09)
-6431e3 (=02) -1€5.9 (=06) - 3.450(-09) -891 42 (=12) 27.56 (-09) -459.6 (-09)
~42 146 (=03) 1469  (=06) - 4.434(-C%) 364.,8 (-12) - 5.637(-09) -137.1 (-09)
-412 {-03) -131e4 (~=06) ~ 3.624(-09) 604s0 (—-12) - 24,19 (-09) 9907 (=-09)
-403,0 (-03) -118.1 (-¢5) T 2¢96€(-09) - 1e627(-09) 58455 (—09) - 14231(-06)
~396840 (=-03) 108 o7 {(=0H) : 2e502(—-09) 94343 [-12) -~ 22,95 1-09) 65+69 {—09)
- 388,55 (-03) -96.11(=-06) - 2.095(-09) $59.9 (=-12) - 53,11 (-09) 2.050(-06)
-38le4 (=03) - 88.00 (-006) -  14,737(-C%) - 1G78(=-09) 103.9 (-09) - A4.502(-06)
-3 .6 (=03) - 80436 (-05) -  14506(-CS) 1¢999(~-C6G) -182¢3 (-07) 9, 667(-06)
~-3n8.2 (-03) - 73.61 (—-05) - 14258(-06) - 4.,507(~-09) 4006 (-09) - 19437 (-06)
-362.7 (-03) - BA762 (=05 - 1.,168{-09) 9.868(-03G) -67%¢e3 (-09) 27. 98 (-06)
—358,3 (-0 - H2430 (—-C5H) -352.3 (-12) - 10eh7 (=09) 639,3 (=-09) - 23,63 (~-06)
~350.8 (-03) - 87,55 (=0n) -843.] (-12) 2.708(-09) ~161.1 (-99) 4.446(~06)
-343.5 (-03) - 53,29 (-06) ~76%4 (—-12) 4.877(-09) -330e7 (=-09) 160 SH(-06)
-240.5 (-03) - 49, 45 (—-06) ~-599,0 (-12) © 54777(=09) 52147 (=-09) - 31422 (-06)
-335,7 (=-03) - 46400 (-08) ~-573.9 (-12) Se301(-09) -68J.4 (~-09) 52.15 (=-06)
~331.C (-0 - 42487 (-05) -453.9 (-12) - 94612(-091) le 295(-06) -108¢3 (-06)
~22646 (=-023) - 40403 (-CH) -516.0 (—12) 20.57 (-09) -~ 2.820(-06) 210.4 (=-06)
-322.,3 (-03) - 37 .45 (=-05) ~232.7 (-12) - 42424 (-095) 4.510{-05) ~272.2 (=06)
-21R.2 (-G3) - 35,09 (-06) —-645,1 (=-12) 42,10 (-09) - 3. 169(=-06) 157.5 (-06)
-314e3 (-03) - 37,94 (—=06) —350.7 (-12) 14427 (—=09) - 1.161({-06) 20449 1-06)
-319,5 (=-03) - 3097 (=CH) 7043 (=12) - 34464 (=09) 954.,4 (=09) 1109 (-06)
-205648 (-032) - 294 16 (=CO) - 554,33 (-12) - 44,59 (-09) 6.497(-06) -609.7 (-06)
~30342 (-9°9) - 2749 (-05%) -701e3 (-12) 100.2 (-09) - 12459 (~-06) 1.077(=03)
-29%.8 (—-03) - 25,06 (-06) - 1119 (-12) - 79,56 (-09) 13.46 (-06) - 14323(-03)
-29645 (=-03) - 24.54 (—CB) -372.8 (=12} £1.05 (-09) - 16,74 (=05) 1.479¢(-03)
-293,3 (-03) - 23,23 (-06) 22643 (=12) -106e8 1-091 1520 (-06)

—-290,2 (-C3) - ?22. 01 (=CH) “41%¢3 (-12) 58412 (~09)

-287.2 (=071) - 2N0.98 (=0%) -336.9 (—-12)

~234¢3 (-03) - 17.83 (-03)

~-281. (-03)

elimination - second method
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Appendix.

These program listings are given only to specify exactly how the
examples were run, 'not necessarily to show how the extrapolation ought
to be coded. In particular, no effort to conserve storage was made.

The procedures are written in the language T , which is described in
Eric Grosse, "Software restyling in graphics and programming languages",

STAN-CS-T78-663, 1978.

45



poul (n,p)
$¢ Poulet recurrence
integer: n

real() : p
real: fn
case
7 <n
fa:=n
p(r) := -(
((((((-En+17)*£n-116) *£n+415) *£fn-849) *£fn+978) *£n-504) *p {n-1) +
((((-4*fn+48)*fn- 188) *f n+240)*fn)*p (n-2) +
((((2*fn~30) *fn+154) *£fn~-300) *fn+144)*p (n-3) +
((-fr+7)*£fn-9) *p (n-4) +
((-fnt5) *£fn-3)*p (n-5)
) / ((((((fn-17)*fn+11u)*fn-385)*fn+689)*fn-618)*fn+216)
7 =n
p(n) = 2 * 23, /(6%5%4%3%2)
6 =n
P(n) := 2 * 3_,/(5%4%3%2)
5 =n
pP(n) = 2 * 1./{4*3%2)
n <9
p(m) =0

dpoul(n,p,dp)
# Poulet recurrence for p(n) -p (n-1)
procedure: poul
integer:
teal() : ¢, dp

real: tn
peul(n,p)
case
7 < n
fn :=n
~dp(n) = - - '
((((-2*fn+30) *£n-160) *fn+360) *£n~-288) *p(n~1) t
((((-4*fn+48)*£fn-188) *fn+240) *fn) *p (n-2) +
((((2*£n-30)*fn+154) *£ n-300) *£n+ 144) *p (n-3) t
((-fn+7) *fn-9) *p (n-4) 1
((-fn+5) *fn-3) *p(n-5)
: )/ (({{(((fn=17) *fn+114) *fn-385) *£n+689) *fn~618) *fn+216)
=N
dp(n) := 2 * (23.-6%3) /(6*5%4%3%2)
€ =n
dp(n) : = 2 * (3.-1%5) /(5%4%3%2)



zeta (in)
# zeta
integer: n
real(): p
real: £n
case
1< n
n
p(r
1 =1
p(n) :

—

o

p(n=1) + fnxx(-1_5)

~ a0

1.

dzeta (l’l, D, JE’,
# zeta
procedure: zeta
integer: n
real(): p , dp
real: En
zeta(n,p)
case

1< n



aform(nmax, pn,dpn,h,imax,k,e)
real(): pn, dpn, h
integer: nmax,imax, i, n, new
real(nmax,0:imax): a, s
real: k, e, af ab

next page
put (*a-formula*)
next. line

s &z -1 (60)
a = -1 (60)
for{1 <= new <= nmax )

a (new, 0) := dpn (nev)
s{new,0) :=pn (new)
for( 0 <=i<=min {imax-1, floor {(new=-1)/2.)-1) )
n :=new-i-l
af 2= a(n+1,i) - a(n,1i)
ab := a{n,i) - a(n-1,1i)
case
af ¥ ab -~= 0
a(n,i+1) := a(n,i) * {
{ (k+2%i+1.)/(k+2%i)) * a(n,i) * (af-ab)/(af*ab)
((k+2%i+¢2.)/(k+2¥i)) )
else
a{(n,1+1):= 0
case
a(n+1,i) == a(n,i)
s(n,i+1) := s(n,1i)
-( 1 #+1,/(k#2%i)) * a(n,i)*a(n+1,i)/(a(n+1,i)~-a(n,1i))
else
s(n,i+1) = s(n,i)
for{ 1 <= n <= nmax )
put(n,s(n,0)-e,s(n,1)-e,s(n,2)-e,s(n,3)-e,s(n,4)-e,
s(n,5)-e)



rich (nmax,pn,dpn,h,imax,k,e)
real{(): pn, dpn, h
integer: nmax, imax,j, n, new
real(nmax,d:2*imax): r
real: k, e

next page R
put ('Richardson extrapolation')
next line
r := =1(60)
for{ 1 <= new <= nmax )
r(new,0) := pn(new)
for (0<=j<= min ( 2*imax-1, new-2 ) )
N =" uCr o oo.
c{n,j+1) : = c(n+1,j) + (c{n+1,j)-cr(n,j)) )
/ ( ((m+e1.)/(n)) **(k+]) - 1. )
for{( 1 <= n <= nmax )
put(n,c(n,0)-e,r(n,2)-e,r(n,4)~-e,r (n,6)-e,c(n,8)-e,
r{n, 10)-e)

rich2 (rmax,pn,dpn,h,imax,k,e)
real(): pn, dpn, h
integer: nmax, imax, i, N, Dhew
real (nmax,0:imax):
real: k,e, dm1, d0,dpl

next page
put ('Richardson extrapolation - mark 2%)
next line
r := -1(60)
for( 1 <= new <= nnax )
r(new,0) :=pn (new)
for{ O =i <=wmin(imax-1, floor((new-1)/2.)-1 ) )
n := newi-1

da1l := (h(n) -h@+1))/h(n-1)** (k+2%])
d0 = (h(n+1)~h(n-1)) / h{n)** (k+2*i)
dp1 := (h (n=1)=h (c) )/ h (n+1) %% (k+2%])
r(n,i+1) := ( dmi*c(n-1,i) + dO*c (n,i) + dp1*r(n+1,i) )

/ (am1+ d0+ dpl )
for(1 <= n <= nmax )
put(n,c(n,0)-e,r(n,1)~e,r(n,2)-e,r(n,3)-e,r(n,4)-e,
r{n,5)-e)



poly (nmax,pn,dpn,h,imax,k,e)
real(): pn, dpn, h
integer: nmax, imax,j,n, new
real (nmax,0:2%imax): T
real: k,e

next page
put {('polynomial extrapolation?}
next line
r := -1{(60)
for{ 1 c= new <= nmax )
r{new,0) := pn{(new)
for( 0<=j <=nin(2*imax-1, new-2 ) )
n := newj-l1
c(n,j+1) :=r(n+1,3) + (c(n+1,3j)-r(n,Jj))
/ (h{n)/k(n+j+1) - 1.
for( 1 <=n <= nmax )
put(n,r (n,0)-e,r(n,2)-e,c(n,4)-e,r(n,6)-e,r(n,8) -,
r(n, 10)-e)



rat (amax,pn,dpn,h,imax,k,e)
real():pn, dpn, h
integer: nmax, imax, j, n, new
real{nmax,-1:2*imax): r
real: k,e,4d

next page
put{'rational extrapolation?)
next line
r := =-1(60)
r(,-1) =0
for( 1 <= neu <= nmax )
r(new,0) := pn{(nevw)
for{ 0 <=j <= min ( 2*imax-1, new-2) |
n 3=new-j-1
case
c(n+1,j)=c(n+1,j-1)
r(n,j+1) := r(n+1,3)
else
d := (r(n,j)-r(n+l,j-1)) / (r(n+1,3)-r(n+1,j-1))
c(n,j+1) := c(n+1,3) + (c{a+1,j)-r(n,3j))
/ (d *h{n)/h(nej+) - 1. )
for{(1<= n <= nmax )
put(a,rc(n,0)-e,r(n,2)-e,c(n,4)-e,c(n,6)~e,c(n,8)-e,
r{n, 10)-¢e)

rho(nmax,pn,dpn,h,imax,k,e)
real(): pn, dpn, h
integer: nmax, imdx, 3Jj, n, new
real (nmax,-1:2%imax):
real: k, e

next. paje
put('rho algorithm¥*)
next line
- r 1= -1(60)
t(,-1):= 0
for{ 1 <= new <=nmax )
r{new,0) :=pn (new)
for(0<= j <= min (2#*imax-1, new-2 ) )
n :=new-j-1
case
r(n+l1,j)=r(n,J)
r(n,j+1) :=c{n+1, j-1)
else
r(n, j¢1) := c(nel, -1 + (1/h(J¢n¢1)-1/h(n)) / (c(n+1,3)~-r (n,3))
for(1<=n <= nmax )
put {(a,c(n,0)-e,c(n,2)-e,r(n,4)-e,r(n,6)-e,r(n,8)-e,
r(n, 10)-e)






