August 1981 Report. No. STAN-CS-81-871

Good Layouts for Pattern Recognizers

by

Howard W. ‘T'rickey

Rescarch sponsored by
National Scicnce Foundation

and
Defense Advanced Research Projects Agency

Department of Computer Science

Stanford University
Stanford, CA 94305

Good Layouts for Pattern Recognizers

by
Howard W. Trickeyt

Computer Science Department

Stanford University

Abstract

A system to lay out custom circuits that recognize regular languages
can be a useful VLSI design autornation tool. This paper describes the
algorithms used in an implementation of a regular expression compiler.’
Layouts that use a network of prograrnmable logic arrays (PLA’s) have
smaller areas than those of some other methods, but therc are the prob-
lems of partitioning the circuit and then placing the individual PLA’s.
Regular expressions have a structure which allows a novel solution to
these problems: dynamic programming can bc used to find layouts which
arc in some sense optimal. Various search pruning heuristics have been
used to increase thespeed of the compiler, and the experience with these
is reported in the conclusions.

Index Terms: vist layout, silicon compilers, string pattern recognition, control logic
design, regular cxprcssions, dynamic programming, programmable
logic arrays, partitioning.

t Work supported by an NSERC scholarship, NSI' grant MCS-80-12907, and DARPA grant MDA 903-80-
c-0107.

2 . Regular Expressions as Patterns 1

§1 Introduction

The design of VIL.SI circuits is currently a very time-consuming operation. Some of the
recent work to help alleviate this problem has taken its lcad from programming language
compiler technology, where great strides have been made by using prograrns to convert
high level descriptions into lower level programs. The idea of a silicon compiler to convert
highlevel descriptions of circuits into layouts has arisen [1,4,5,10,11,12].

A problem with silicon compilers is the definition of a suitable circuit description
language. Some languages arc basically descriptions of the upper levels of a hierarchical
design. These become “high level” descriptions when the lower levels of the hierarchy can
be derived from libraries and/or a farniliarity with the class of circuits being described,
The “Bristle Blocks™ [5]system is an example of this type of system: it can be used to
describe a data path chip (registers, shifters, ALU’s, etc., built around a data bus).

A second approach is to use a notation which gives the external behavior required.
One mcthod of doing this is to give a sort of program which runs on a machine specified
at the register transfer level (10,121. This technique is meant to be used for designing
computer-like chips. Another notation, which can be used for specifying the controlling
logic portion of any chip, is that of regularezpressions. A regular expression can be used
to describe a pattern: a sequence of states in which certain inputs must be scen. One can
require that various outputs be given whenever certain patterns have beenscen. Some
of the many uses of pattern detectors can be found in [7]. This paper discusses a silicon
compiler whose input is a regular expression and whose output is a layout for the pattern
recognition circuit defined by that expression.

In particular, a way of laying out a circuit for a pattern recognizer in a small area
will be described. It is fairly casy to give a programmable logic array (PLA) to implement
a pattern recognizer, but a single PLA can be rather large. At the other extreme, one can
have logic to recognize each basic syrnbol of the pattern, joining them up with other logic.
Such a method can be proved to yicld a layout with an area which is linear in the length of
the cxpression [2], but in practice the resulting layouts have been found to be large. The
regular expression compiler uses a network of PLA’s, and it gives layouts better than either
of the extremes.

The next section will explain how regular expressions represent patterns. Then
the implementation of recognizcrs using networks of PLA’s will be described. Numerous
networks are possible, so a big part of finding a good layout involves searching for a the
best (or at least, near-best) division of the expression. The fourth section will discuss
how dynamic prograrnrning andsome judicious hecuristics can be used to cffect this search.
Finally, the last section will give somec conclusions, based on experience, about what the
various search heuristics can accomplish and how much they cost.

§2 chu]ar Ixpressions as Patterns

A regular cxpression is a notation for representing a sct of strings of symbols. It is
defined recursively as follows:

2 2. Regular Expressions us Palterns

e The symbolis the most basic kind of regular expression. In the application to circuits,
the occurrence of a symbolmeans that the input wires must bc zero or one, according
to the symboldefinition, within the “current state”.

0 If [and F arc rcgular expressions, then the union f2 + F' is a regular expression which
means: either E or I'.

o If I and IV arc regular cxprcssions, then the concatenation E . I (or simply EF)is a
regular espression which means: E followed by F.

..
0 If I is a regular expression, then the closure £ is a regular expression which means:
zero or more occurrences of E.

« If I is a regular cxpression,then the positive closure E -t-t is a regular expression which
means: one or more occurrences of E.

o If I7 is a regular expression, then the optional occurrence E? is a regular expression which
means:” zero or one occurrence of E.

o« If £ is a regular expression, then () is a regular expression (used for grouping). Unless
parcntheses are used, the unary operators have prccecdence over the binary operators,
and concatenation has precederice over union.

The usc of regular cxprcssions to describe pattern recognizers is perhaps best seen
by mecans of an cxarriple. The following is the complete input file required by the regular
expression comnpiler for a .srnall example:

line data [2]
symbol zero(data[1],-data[2]), one(-data[1],data(2]), any()
any (one any®* zero + zero any* one) +

(one any* zero + zero any* one) any

The line declaration gives the wires that are input to the circuit. A line name can be
subscripted (with [..]), as data is, to represent more than one wire. One can declare any
number of lines. The symbol declaration gives thenames of the symbols that will occur in
the regular expression, with the values of the input wires which identify a symbol given in
parcntheses after its name. Iere there arc three symbols: zero, recognized when data[1]
is a logical “1” and data[2] is a logical “0” (indicated by the“-” in front of data[2]);
one, rccognizetl when the data wires arc reversed; and any, which doesn’t specify either
“1” or “0” for the data wires, so it is a “don’t care.” Nole that any will bc recognized
at the same time as zero or one: there is no requirement that Lhe wire combinations for
different symbols be disjoint..

The regular expression itscll follows the declaration. This one gives all strings of
symbols where cither (a) the first symbol differs from the second last symbol, or (b) the
second symbol differs from the last symbol. This expression will be referred to as PR2.

The patternrecognizer is a synchronous machine. Thesuccessive symbols of a string
must appear in suceessive clock cycles (states) for the pattern Lo be recognized. Whenever
the symbolsseen in the preceding states form one of thecomplete strings specified by an

3. Layout o f Regular Expression Recognizers b

O—Q
9
O——O

@ ©

(@ (b)

Figure 1. (a) ISxpression Tree (b) Compressed Expression Tree
expression, an output signal is given.

The notion of an expression tree for a regular expression will be useful later on. The
expression tree has symbols as leaves and regular expression operators as internal nodes. It
is formed in the sarne recursive manner that expressions arc: the tree for I7 + I'.s a node
containing “+4” with the expression trees for £ and F' as children; similarly for the other

*

operators. Figure 1(a) gives the expression tree for ((a +b)T) -c-(d?)".

A unary operator can be combined with the symbol or operator node beneath it. A
cascade of unary operators can be reduced to a single one using obvious rules. This yields

a compressed expression tree, such as the one shown in Figure 1(b) for ((a +b)++) ¢+ (d?)".

An NFA (nondeterministic finite automaton) can easily be given to implement a
regular expressionrecognizer. InFigure 2, an NFA to recognize PR2 is shown. Initially
the start state is made active. At any time there may be a number of active states. In
cach successive clock cycle, any active states with transitions marked by a symbol seen in
that cycle will make the successors of those transitions active. States only remain active
for one cycle unless explicitly reactivated. Whenever the final state is active, an output
signal is given. If desired, the machine can keep operating so that it can detect overlapping
occurrences of patterns.

The derivation of an NFA to recognize a pattern is straightforward. I'or details, sce

2],

§3 Layout of Regular Exprcss;on Recognizers

An easy way to implement a regular expression recognizcer is to use a PLA Lo simulate
theNFA corresponding to it. Bachstate can be represented by a dynamic register whose
value is calculated by the PLA using the inputs and the current state values (which are fed

4 3. Layout of Regular Expression Recognizers

Figure 2. NI'A to recognize PR2

back from the registers). Details of this method are given in [2].

The prohlern‘is that thearca used by such a layout will tend to grow quadratically
with expression size. A method that leads to a linear growth of the required area is to
implement cach symbol as a dynamic register, together with logic which tests whether or
not the symbol is on thc input wires. The “symbol modules” have an enable input and
a recognized output. By using appropriate connecting logic, it can be arranged that the
symbol modules act like the states of theNFA,where a state is activated by asserting its
cnable input. (Actually, the circuit is not exactly like the NFA, because the state memory
is distributed over the transition edges.) It was shown in [2] that as long as the expressions
are compressed by combining cascades of unary operators, this method can yield a linear
layout. A divide and conquer technique is used to decide where to place the symbol modules
and connecting logic. A similar layout would be obtained using the systolic recoenizers of

3],

Using individual logic for each symbol gives reasonable layouts, but experience with
an implementation of this method has shown that for small expressions, the pLA mcthod
is better. This is perhaps to be expected, since the regularity of PLA’s allows one to pack
small numbers of gates more closely than is possible with an ad hoc circuit. Thus, the
idea of using a combination of the two methods arose. The current implementation of
the regular cxpression compiler uses PILA’s for low level subexpressions, connected together
with logic to take care of the operators near the root of the expression tree.

Suppose that one has laid out modules to recognize expressions I and F'. It is assumed
that thescmodules are rectangles, and that they have enable wires coming in at the left and
recognized wires leaving at the right. Any input wires required to recognize the symbols in
themodule’s expression must also enter at the left. Then the expressions E + F and - F
can be laid out as shown in I'igures 3(a) and 3(b), repectively. Operators which have been
combined withunary operators can beimplementedsimilarly, as illustrated in the layout
for (- [)** in IMigure 3(c). This type of layout is called an operator split. Note that no
matter what operator is involved, the two subparts can be laid out either side by side (a

3. Layout of Regular Expression Recognizers 5

enable recognized i
—
.|
(a) (b)
—o— -t

(c)

Figure 8. Qperator splits: (a) ££+ [(b) E-T (¢c) (E-F)*tT

dummy dummy
enabler D — relcognized
enable » 4 f | — recognized
E

Figure 4. Substitution split
horizontal split) or one on top of the other (a vertical split).

The use of operator splits might be cnough to accomplish a layout, but there is the
problem that thelayouts for the two operand expressions might have very different sizes.
This would leadtoa lot of white space whenarcctangle surrounding the whole layout is
defined. The solution to this is to do a substitution split. In a substitution split for an
expression I7, some node D deepinthe expression tree for [is replaced by a dummy node.
Then the expression rooted at D is laid out (the dummy tree), as well as the now smaller
expression [(the father tree). £ will have an enable dummy output wire and a dummy
recognized in put wire. The former is attached to the enable input of D, and the latter is
fed by the recognized wire of D, as shown in I'igure 4.

The method for laying out a regular expression, given A compressed expressiontree is
to cither (i) useasinglePLA, or (ii) do an operator split or substitution split at the root
and recursively lay out thesubparls. This accomplishes the goal of using logic to form a

6 3. Layout of Regular lixpression Recognizers

network of” PLA’s for recognizing the regular expression. What remains is to specify how
Lo choose amongthe various layout strategies. At each stage of the recursion, the following
choices must be made:

Cl. Should a single PLA, an operator split, or a substitution split be used?
C2. If a split is used, should it be a horizontal or a vertical split?

C3. If a substitution split is used, which descendant expression should become the dummy
tree?

Onc option of the regular expression compiler is to make the above choices guided by
the principles thatPLA’s should be neither too small nor too large, and that when splits
are used the subparts should be approximately equal in size. In this method, splits are
performed by looking for a split, which yields subparts closest in size, and the recursion
continues until the expressions are under some prespecificd size. The “size” in terms of
area is approximated by the weight — the number of lcaves in the expression tree.

This heuristic method produces fairly good layouts quite quickly (in approximately 7
seconds on a VAX/780 for a 150-lcaf expression). However, it usually requires some playing
around with the parameters of the method to find the best layout possible with this scheme.
[Sven then, a better layout is usually possible. There arc several reasons why the heuristic
method can be improved upon:

o The idea Lhat two subparts should have the same areca isn’t strictly correct. What really
is wanted is for the heights or widths Lo be about the same. Now, the PLA's generated
from regular expressions all tend to have similar aspect ratios (height/width), so that
if the subparts are simple PLA’sthen the *“equal area” principle should hold. It scems
plausible that if the subparts are thcmnselves split, then there arc some approximately
square layouts for them, and so again thecqualarea principle should yield a reasonable
layout. [lowever, an uncqual-arca layout could be cven better, and in practice there arc
many cascs where one is better. -

« The weight of an expression is only a rough indication of thzarcaneededio lay it cut.
If the layout involves splits then the shape of the expression tree affects the economy of
the layout.

o The area of a layout depends somewhat on the number of input wires needed. Thus,
even if iv.c subparts have equal weights, the layout for one subpart might be taller if it
uscs more inputs.

e Finally,somcoptimizations arc performed when laying out a PLA (having an cffect similar
to factoring thccexpression). This is another reason why the weight of an expression only
roughly predicts thearca of the resulting layout.

To overcome some of these problems, the regular expression compiler has another
" option: search systematically through a specified collection of layout strategies, looking for
the best one.

4. Finding Optimal Layouts 7

§1 Finding Optimal Layouts

An exhaustivescarchcan find the best layout for an cxpression, given that one is
using the generalscheme of operator and substitution splits with PLA’s at the lowest level.
All possible combinations of choices Cl, C2, and C3 can be tried, using all possible layouts
for the subparts in the case of splits.

Clearly, such an cshaustivc search would be very time consuming, even for for quite
small expressions. One way to avoid a lot of the work is to note that the dimensions
of a layout for an cxprcssion remain about the same when the layout is rnade part of a
layout for a containing expression. There is of-ten some hcight increase when a module is
incorporated as a subpart in a split, because the input wires to the othcr subpart may have
to run through the module. This effect can becalculated, however, so the conclusion is
that the strategics for laying out 3 given subcxpression need be calculated only once. The
significance of this is that a sort of dynamic programming can be used to cffect the search.

Dynamic programming can be used to find optimum strategies for problems that can
be Lroken up as follows: starting out at a first “stage”, some choices are made leading
to a collectionof smaller, similar problems — the second stage; this continues until some
final stage is rcached where there are no more choices to be made. If the problem is such
that a knowledge ol all the optimal solutions at stage i is suflicient to find all the optimal
strategies for stagei— 1, then dynamic programming can be used. The layout scheme
satisfies this condition(approximately), where the problems of stage i 31-c finding the best
lavouts for subcxprcssions whose roots arc at depth i in the expression tree.

One problem in applying dynamic programming to layout is that one needs more
than just the minimum area layouts for the subexpressions: a slightly larger layout may be
better to use as a subpart, in a split if its height (or width) is closer to that of the other
subpart. What is really needed is the best area for all possible heights and widths. In
practice this would probably meankeeping 311 layouts tricd, which would eliminate most
of the savings that are cutailed by the use of dynamic programming.

The solution to this problem is to usc an approximation: divide up the continuum
of possible aspect ratios into a small number of intervals, and for each subcxpression keep
only the srnallest-area layout in each aspect ratio interval.

If the only splits allowed were operator splits, then the search for a layout could
follow the standard dynamic programming procedure: start at the last stage (the lowest
leaves) and find layout stratcgics there; thenmove up the expression tree, trying single
PLA’s and operator splits. Trying an operator split is a relatively quick operation, where
the dimensions of the children arcadded to the logic dimensions to give the resulting layout
dimensions. (There is also an adjustment for input wires, as mentioned above.)

It is the substitution split which greatly increases the work required to find an optimal
layout. After a descendant expression is replaced by a dummy node, optimal layouts have
to be found for thefather tree. Only some of the layouts found so far can be used: those
for subcxprcssions not involving the dummy trec. Thus, a somewhat indcpendent layout
problem must be solved for cach possible falher tree, and cach of those will involve still
morc father tree fayout problems. The work requiredincreases dramatically as the root is
approached because there arc many more possible lather trees (one for cach descendant,

8 4.1"inding Optimal Layouts

not including the subproblcm father trees).

In fact., by the time all the subproblems have been solved for an expression, layouts
willhavebeen found for all possible prefiz trees. A prefix trce is what is left attached to
the root after any combination of descendants have been replaced by dummy nodes.

To get some idea of how many prefix trees there can be, consider 7., the complete
binary tree of n levels. Let §, be the set of prefix trces of T, and N, be the number of
trees in S,. Any binary tree with <n levels is a prefix tree of 7\. A binary tree of < n
levels can only be formed by having a root with a member of S, _; or the empty tree as
left, child, and a member of S,_; or the emnpty tree as right child. Therefore,

Np = (Na_y + 1)2<22™7

T, has m = 2” — 1 nodes, so N, < 2™/2 This calculation shows that just enumerating
the possible father trees for a balanced expression of 30 leaves (i.e., about 60 nodcs) is out
of the question.

An obvious partial solution to this is to havesome minimum expression size — say 6
leaves — below which an expression will not be considered as a subpart of a split. This has
the effect of chopping off some number, I, of the most populous levels from consideration
as dummy trce roots. This changes the above calculation so that now N, _; < gm /2"t
With this improvement, onc could perhaps handle expressions of 30-50 leaves, but it might
takc a long time, considering that at the very least a PLLA has to be considered out for each
father trec tried.

To bc able to handle expressions with up to, say, 300 leaves, the search needs further
pruning. The “equal area” principle mentioned above suggests that splits where one subpart
is much bigger than the other arc likely to waste space. The regular expression compiler
has a split-ratio parameter, S. Splits will only be considered when the wcight ratio of one
subpart to the other is in the range [1/S, S]. It has been found that in practice S =~ 2
yicldslayouts as good as S = oo.

When all splits are not considered, there turn out to be a large number of subexpres-
sions whose layouts couldn’t possibly be used in the layout for the whole expression. This
means that the dynamic programming paradigm of working on the expression tree bottom-
up wastes a lot of calculation. It is better to work top-down, looking for subpart layouts
whenever required.

To retain the advantages of dynamic programming, a dictionary of layouts is kept
so that layouts ncedneverbe found twice for the same subcxpression. The dictionary can
contain layouts for each of the possible prefix trees of cach subcxpression. This is allowed
by having the dictionary indexed by (e, [), where e is an expression node and ! is an excision
list: nodes that have been replaced by dummies.

Here is the final algorithm for finding layout strategies. There are three tuning
. parameters, to allow trading off search thoroughness for execution tirne: S, the split-ratio;
L, the lowest weight allowed for a PLA; and II, the highest weight allowed for a PLA.

FindSt rategies(x:ExpressionTree, 1:lixcisionlList):
{ Find strategies for luyout of the expression z,

5.Performance of the Regular Expression Compiler 9

where the expression nodes on | have been replaced by dummies }
if LookupStrategics(x,])2INIT then return
{ already found strategies for (z,l)}
if x.aweight €[L..11] then
TryPLA(x,1)
if x.Ichild.weight/x.rchild.weight ¢ [1/S ... S] then begin
FindStrategies(x.lchild,l)
FindStrategies(x.rchild,l)
TryOperatorSplit(x,l)

end
for all descendants y of x such that
(x.weight—y.weight+1)/x.weight e [I/S . . . S] do begin
ExciseDummy(x,y) { replace y by DUMMY in x }

FindStrategies(x,Append(l,y))
FindStrategies(y,l)
: TrySubstitutionSplit(x,l,y)
end
end FindStrategies

TryPLA, TryOperatorSplit, TrySubstitutionSplit:

{ These procedures calculate the dimensions of the layouts
implied by their arguments. For the splits, all possible layouts
resulting from combinations of strategies for the subparts are tried.
The best strategies in various aspect ratio ranges are entered
into the dictionary. }

LookupStrategy(e,l):

{ This function looks up in the dictionary the layout strategies
for expression e with excisions list 1. Any members of | which are not
descendants of e, or are descendants of other members of |, are ignored.
INIT is returnec if no strategies have yet beer; sought for (e,l).}

85 Perlormance of the Regulnr Exprcss;on Comp‘llcr

The regular expression compiler has beenimplemented in C on a VAX/780. 1t can
produce layouts using cither the heuristic method or the dynamic programming method.
By appropriately setting the parameters for the heuristic method, one can also [ind the
layout as a single PLA or as a network of logic connecting individual symbol recognizers.
This section will report how the compiler performs on somc sample expressions.

The first series of expressions is the PR series. ThePR2 expression was given in
Section 2. Theothers in the series have the same line and symbol declarations, and the
following definitions (any™ is used as shorthand for n occurrences of any):

10 5. Performance of the Regular Expression Compiler
p

Expression Weight Depth Layout L H S Area Time:
Name Mecthod (MX?) (secs)
PR8 72 14 single PLA 97 2.8

all logic .85 6.7

heuristic 4 17 .08 2.8

dyn. prog. 6 60 1.5 .56 14.0

dyn. prog. 6 60 2.0 .55 24.0

dyn. prog. 6 30 3.0 .55 55.7

PR16 160 23 single PLA 4.43 11.5
all logic 2.28 15.3

heuristic 4 17 1.69 6.9

dyn. prog. 6 40 1.5 1.47 34.4

dyn. prog. 6 30 2.0 1.23 159.6

PR32 352 40 single PLA 21.00 130.3
all logic 8.88 359

heuristic 4 17 3.87 17.3

dyn. prog. 6 40 1.7 3.55 267.1

dyn. prog. 7 25 2.0 3.19 1482.5

Table 1. Data for PR expressions

PR4 = any?(PR2) + PR2 any?

PRS = any’(PR4)+ (PR4)any*
PR16 = any®(PR8) + (PR8)any®
PR32 = any'®(PR16) + (PR16)any!®

PRn is recognized whznever the last n inputs fail to match the first n. The results of
running the regular expression compiler on the PR series is given in Table 1. The times
given in the last column are CPU seconds on the VAX. Areas are in A? X108, where \
is the minimum feature size. The “heuristic” results were the best that could be found
by varying the parameters (there is another parameter, not shown, which indicates the
desired shape of the final layout). It can be seen that both the heuristic method and
the dynamic programming method are quite a bit better than thc single-PLA or all-logic
methods. Dynamic programming beats the heuristic method by an amount which increases
with theexpressionsize. Severaldynamic programming results arc shown to give some idea
of the tradeoff betweenscarch thoroughness and execution time that occurs. Sketches of
the layouts found by the compiler for PR16 arc shown in Figures 5(a)(hcuristic) and 5(b)
(dynamic programming). The boxes arc the individual PLA’s.

The next series of expressions to be tried were the SEQ expressions, whereSEQn has
the form:

line 1(n]
symbol a1 (1[11), b1 (-1[1]1), a2(1{2]), b2(-1[2]), ..., an(1[n]), bn(-1{n])
symbol any()

5. Performance of the Regular Expression Cormpiler 11

(a)

{b)
Figure 5. Layout sketches for PR16: (a) heuristic (b) dynamic programming

bl+any* (al b2 + a2 b3 +...+an any++)

These expressions signal if the input wires are not turned on in sequence. The SEQ
expressions are different from the PRones in that they have a large number of input wires,
so that the heuristic strategy (which doesn’t pay attention to how many inputsa module
needs) might be expected to do poorly. Another fact about these expressions is that the
expression trees arc lall and sparse. The PR expressions had rather bushy trees. Table 2
givesthe results of using thercgular expression compiler on the SEQ expressions.

12 5. Performance of the Regular Expression Compiler

Iixpression Weight Depth Layout . L I S Area Time
Name Mecthod (MAZ)| (W c 9)
I .30 1.5
all logic 01 4.0
.28 2.1
SEQIL6 34 19 stk d, beuie pryg LA i 1 1.7 .24 5.0
T SEQ32 66 35 single PLA .97 3.5
all logic 1.23 9.3
heuristic 4 28 .64 34
dyn. prog 6 70 1.7 .61 27.5
SEQ64 130 67 single PLA 3.48 9.2
all logic 3.33 20.7
heuristic 4 35 1.76 79
dyn. prog. 6 30 1.7 1.62 186.0
BSEQLb6 32 5 single PLA .27 1.4
all logic .34 3.2
heuristic 4 20 .23 1.6
dyn. prog. 6 40 1.7 .23 2.7
BSEQ32 64 6 single PLA 92 3.0
all logic 74 6.8
heuristic 4 25 .09 3.6
dyn. prog. 6 65 1.7 .59 8.9
BSEQG4 128 7 single PLA 3.39 9.8
all logic 2.28 18.4
heuristic 4 35 1.91 7.6
dyn. prog. 6 30 1.7 1.53 15.9

Table 2. Data for’ SEQ and BSEQ expressions

The final group of expressions is a slight modification of the SEQ group. To scc what
cffect the depth of the trec has on the execution time, the BSEQ expressions were formed:
they arc just copies of the SEQ expressions without the bi+any++ at the beginning, factored
so that they form completely balanced binary trees. For example, BSEQ4 is:

(Cal b2 + a2 b3) + (a3 b4 + a4 any++))

The results of compiling these expressions arc also given in Table 2. It can be scen that
the compiler works [aster on the bushy BSEQ expressions than it did on the corresponding
SEQ expressions. This is becausc there arc a smaller number of possible dummy nodes
which satisly the split-ratio requirement in the bushy trees.

6. Evaluation and Conclusions 18

§6 Evaluation and Conclusions

It has beenshown that regular expressions have a structure which makes them quite
amenable to a “divide-and-conquer” partitioning and placement procedure which runs fairly
quickly. Clearly, the nctwork-of-PLA’s approach is superior to thesingle PLA or all-logic
methods.

The program could certainly run a lot faster if substitution splits weren’t tried, but it
has been found that these arc definitely required. Perhaps the expressions could be parsed
in such a way that the children would always be about thesame weight: there is some
frcedomallowed because concatenation and union are associative operators. However, the
closure operators form barriers to arbitrary rcparsing, so in general one cannot balance the
children.

The scarchover arange of possible dummy tree roots is another aspect which slows the
compiler. If one tries only that node which yields the best weight ratio between the father
and dummy trees, the resulting areas are somewhere between those found by the heuristic
mcthod and dynamic programming. For example, this modification led to thesame layout
as full dynamic programrning for SEQL16, but for SEQ32 it only did as well as the heuristic
method. It was found that. one had to try the five best dummy tree roots before the full
dynamic programming layout would be found for St£Q32. The execution times using the
best-dummy-only modification were quite close to thosc of the heuristic method, so perhaps
this is the most uscful method of all, for small to medium sized expressions.

The dynamic programming method rcquires keeping a number of “best” layouts for
expressions, in cach of a number of different aspect ratio ranges. Varying the number of
these ranges has some cffcct on the ability of the compiler to find good layouts. Originally,
three ranges were used. This scemed to work, but when the compiler was changed to
keep layouts for six ranges, the results were quite a lot better — at least for the larger
expressions.

To sum up, cach of the capabilities of the regular expression compiler adds incremen-
tally to the quality of the layout, at a cost of extra execution simec. IHowever, even the most,
expensive dynamic programmingsearches are still quite fast compared to other aspects of
VLSl design — such as check plotting — so it is not unreasonable to UsC dynamic program-
ming always.

The work described in this paper has some resemblence to previous work on graph
theoretic approaches to partitioning [9], but the problem is somewhat more tractable when
trees arc involved. Also, theidea of doing the placement by recursively splitling the plane
into halves has been used before [6]. Not much h a s been done on automatically choosing
a network of PLA’s to irnplement a sequential circuit, though there has beensome work
done on optimizing single PLA’s[8]. A circuit realization using a network of PLA’s is given
in [I], but the user must specify the splits with a hierarchical circuit definition.

The regular expression compiler is still undergoing improvements. Currently, the
ability to havenumerous “output signals” cmbcdded in the expression is being incorporated.
Also, more PLLA optimizations arc going to be done. In particular, non-overlapping NFA
states will be detected and a group of such states can be assigned binary-encoded state
identifiers. This should reduce the current tendency for the PLA’s to be fairly sparse.

19 References

Thereare plans to use the compiler to gencrate much of the control logic for a VLSI chip
being designed.

AcL’nowledgcrncnts

The regular expression compiler was originally designed and implemented by Jeff
Uliman at Standford University. The author has added the dynamic programming feature
and made various other improvements.

RC(CI’GDCQS

(1] R. Ayres. “Silicon Compilation — A Hierarchical Use of PLAs.” 16" Design
Automation Conf. Proceedings, pp. 314-326, June 1979.

2] R.W. Floyd, and J.D. Ullman. “The Compilation of Regular Expressions into
Incegrated Circuits.” Tech. Rep. STAN- CS- 80- 798, Stanford Cornputcr Science
Dept., April 1980.

(3 M.J. Foster, and M.T. Kung. “PRA: Programmable Building Blocks for Recognizing
Regular Languages in VLSL.” Unpublished memorandum, Dept. of Cornputer Science,
Carnegic-Mellon, 1981.

4 J.P. Gray. “Introduction to Silicon Compilation.” 16t" Design Automation Conf.
y P
Proceedings, pp. 305-306, June 1979.

[5] D. Johannsen. “Bristle Blocks, A Silicon Compiler.” 16" Design Automation
Conf. Proceedings, pp. 310-313, Junc 1979.

(6] U. Lauther. “A Min-Cut Placement Algorithm for General Cell Assemblies Based
on a Graph Representation.” 16" Design Automation Conf. Proceedings, pp. 1-10,
June 1979

(7] A. Mukhopadhyay. ‘(Hardware Algorithms for Non-numeric Computation.” IEEE
Transactions on Computers, C-28, No. 6, pp. 384-393, June 1979.

(8] J.P. Roth. “Programmed Logic Array Optimization.” IEEE Transactions on
Computers, C-27, No. 2, pp. 174--176, February 1978.

9] D.G. Schweikert, B.W.Kernighan. “A Proper Model for the Partitioning of Electric
Circuits.” 8“1Design Automation Workshop Proceedings, pp. 56-62, June 1972.

(10] D.P. Sicwiorck, M.R. Barbacci. “The CMU W-CAD System — An Innovative
Approach to Computer Aided Design.” AFKPS Fall Joint Computer Conference,
Vol. 45, 1976.

[11] J.D. Williams. “STICKS — A Graphical Compiler for High Level LSI Design.”
National Computer Conf. Proceedings, pp. 289-295, 1978.

(12] G. Zimmerman. “Cost Performance Analysis and Optimization of Ilighly Parallel
Computer Structures: First Results of a Structured Top-Down Design Method.” Ath

International Symposium on Computer Hardware Description Languages, Qctober

1979.

