
August 1981 Report. No. STAN-CS-81-871

Good Layouts for Pattern Recognizers

by

Howard W. ‘T’rickey

Rcscarch sponsored by

National Scicnce Foundation

and

Defense Advanced Research Projects Agency

Department of Computer Science

Stanford University
Stanford, CA 94305

Good Layouts for Pattern Recognizers

by

Howard W. Trickeyt

Computer Science Department

Stanford University

Abstract

A system to lay out custom circuits that recognize regular languages

can be a useful VLSI design autornation tool. This paper describes the

algorithms used in an implementation of a regular expression compiler.’
Layouts that use a network of prograrnmable logic arrays (PLA’s) have
smaller areas than those of some other methods, but there are the prob-

lems of partitioning the circuit and then placing the individual PLA'’s.

Regular expressions have a structure which allows a novel solution to

these problems: dynamic programming can bc used to find layouts which

arc in some sense optimal. Various search pruning heuristics have been

uscd to increase thespeed of the compiler, and the experience with these

is reported in the conclusions.

Index Terms: visi layout, silicon compilers, string pattern recognition, control logic

design, regular cxprcssions, dynamic programming, programmable

logic arrays, partitioning.

t Work supported by an NSERC scholarship, NSE grant MCS-80-12907, and DARPA grant MDA 903-80-
c-0107.

2 . Regular Expressions as Patterns 1

51 Introduction

The design of VI.SI circuits is currently a very time-consuming operation. Some of the

recent work to help alleviate this problem has taken its icad from programming language

compiler technology, where great strides have been made by using prograrns to convert

high level descriptions into lower level programs. The idea of a silicon compiler to convert

high level descriptions of circuits into layouts has arisen [1,4,5,10,11,12].

A problem with silicon compilers is the definition of a suitable circuit description

language. Some languages arc basically descriptions of the upper levels of a hierarchical

design. These become “high level” descriptions when the lower levels of the hierarchy can

be derived from libraries and/or a farniliarity with the class of circuits being described,

The “Bristle Blocks” [5]system is an example of this type of system: it can be used to
describe a data path chip (registers, shifters, ALU’s, etc., built around a data bus).

A second approach is to use a notation which gives the external behavior required.
One method of doing this is to give a sort of program which runs on a machine specified

at the register transfer level (10,121. This technique is meant to be used for designing

computer-like chips. Another notation, which can be used for specifying the controlling

logic portion of any chip, is that of regular expressions. A regular expression can be used

to describe a pattern: a sequence of states in which certain inputs must be scen. One can

require that various outputs be given whenever certain patterns have bcenscen. Some

of the many uses of pattern detectors can be found in [7]. This paper discusses a silicon
compiler whose input is a regular expression and whose output is a layout for the pattern

recognition circuit defined by that expression.

In particular, a way of laying out a circuit for a pattern recognizer in a small area

will be described. It is fairly casy to give a programmable logic array (PLA) to implement
a pattern recognizer, but a single PLA can bc rather large. At the other extreme, one can

have logic to recognize each basic syrnbol of the pattern, joining them up with other logic.

Such a method can be proved to yicld a layout with an area which is linear in the length of

the cxpression [2], but in practice the resulting layouts have been found to be large. The
regular expression compiler uses a network of PLA’s, and it gives layouts better than either
of the extremes.

The next section will explain how regular expressions represent patterns. Then

the implementation of recognizers using networks of PLA’s will be described. Numerous

networks are possible, so a big part of finding a good layout involves searching for a the

best (or at least, near-best) division of the expression. The fourth section will discuss

how dynamic prograrnrning andsome judicious heuristics can be used to effect this search.

Finally, the last section will give some conclusions, based on experience, about what the

various search heuristics can accomplish and how much they cost.

§2 Regular [xpressions as Patterns

A regular cxpression is a notation for representing a sct of strings of symbols. It is

defined recursively as follows:

2 2. Regular Expressions as Palterns

e The symbolis the most basic kind of regular expression. In the application to circuits,

the occurrence of a symbol means that the input wires must bc zero or one, according

to the symbol definition, within the “current state”.

O If I and F arc regular expressions, then the union f2 + F is a regular expression which
means: either E or I.

o If 2 and I" arc regular cxprcssions, then the concatenation E . I (or simply EI) is a
regular esprcssion which means: E followed by F.

0 If £ is a regular expression, then the closure E~ is a regular expression which means:
zero or more occurrences of FE.

« If I/ is a regular cxpression, then the positive closure E -t-t is a regular expression which
means: one or more occurrences of E.

o If I is a regular expression, then the optional occurrence E? is a regular expression which
means:” zero or one occurrence of E.

« If I is a regular expression, then (F) is a regular expression (used for grouping). Unless
parcniheses are uscd, the unary operators have prcccdence over the binary operators,

and concatenation has precederice over union.

The usc of regular cxprcssions to describe pattern recognizers is perhaps best seen

by mcans of an cxarriple. The following is the complete input file required by the regular
expression compiler for a .srnall example:

line data [2]

symbol zero(data[1],-data(2]),one(-data[1],data(2]),any()

any (one any* zero + zero any®* one) + |

(one any®* zero + zero any* one) any

The line declaration gives the wires that are input to the circuit. A line name can be

subscripted (with [..]), as data is, to represent more than one wire. One can declare any
number of lines. The symbol declaration gives thenames of the symbols that will occur in

the regular expression, with the values of the input wires which identify a symbol given in

parcntheses after its name. Here there arc three symbols: zero, recognized when datal[1]

is a logical “1” and data[2] is a logical “0” (indicated by thc “~” in front of data[2]);
one, rccognizetl when the data wires arc reversed; and any, which doesn’t specify either
“1” or “0” for the data wires, so it is a “don’t care.” Nolc that any will bc recognized

al the same time as zero or one: there is no requirementthat Lhe wire combinations for

different symbols be disjoint.

The regular expression itscll follows the declaration. This one gives all strings of

symbols where cither (a) the first symbol differs from the second last symbol, or (b) the

second symbol differs from the last symbol. This expression will be referred to as PR2.

The patternrecognizer is a synchronous machine. The successive symbols of a string

must appear in successive clock cycles (states) for the pattern Lo be recognized. Whenever
the symbolsseen in the preceding states form one of the complete strings specified by an

3. Layout o f Regular Expression Recognizers 8

(a) i (b)

Figure I. (a) Expression Tree (b) Compressed Expression Tree

expression, an output signal is given.

The notion of an expression tree for a regular expression will be useful later on. The

expression tree has symbols as leaves and regular expression operators as internal nodes. It

is formed in the sarne recursive manner that expressions arc: the tree for [£ + [”.s a node

containing “+” with the expression trees for £ and F as children; similarly for the other

operators. Figure 1(a) gives the expression tree for ((a +&)T+) c-(d?)".

A unary operator can bc combined with the symbol or operator node beneath it. A

cascade of unary operators can be reduced to a single one using obvious rules. This yields

a compressed expression tree, such as the one shown in Figure I(b) for ((a + b)* +) .c-(d?)".

An NFA (nondeterministic finite automaton) can easily be given to implement a

regular expressionrecognizer. Inliigure 2, an NFA to recognize PR2 is shown. Initially
the start state is made active. At any time there may be a number of active states. In

cach successive clock cycle, any active states with transitions marked by a symbol seen in

that cycle will make the successors of those transitions active. States only remain active

for one cycle unless explicitly reactivated. Whenever the final state is active, an output

signal is given. If desired, the machine can keep operating so that it can detect overlapping

occurrences of patterns.

The derivation of an NFA to recognize a pattern is straightforward. I'or details, sce

12].

§3 Layout of Regular Expression Recognizers

An easy way to implement a regular expression recognizer is to use a PLA Lo simulate

the NFA corresponding to it. ISachstale can be represented by a dynamic register whose
value is calculated by the PLA using the inputs and the current state values (which are fed

4 3. Layout of Regular Expression Recognizers

oy
onc

zero

START Zero FINAL
any any

any

4
one

one ero

Zero any any

SI
Figure 2. NFA to recognize PR2

back from the registers). Details of this method are given in [2].

The prohlern‘is that thearca used by such a layout will tend to grow quadratically

with expression size. A method that leads to a linear growth of the required area is to

implement cach symbol as a dynamic register, together with logic which tests whether or

not the symbol is on the input wires. The “symbol modules” have an enable input and
a recognized output. By using appropriate connecting logic, it can be arranged that the

symbol modules act like the states of theNFA, where a state is activated by asserting its

cnable input. (Actually, the circuit is not exactly like the NFA, because the state memory

is distributed over the transition edges.) It was shown in [2] that as long as the expressions
are compressed by combining cascades of unary operators, this method can yield a linear

layout. A divide and conquer technique is used to decide where to place the symbol modules

and connecting logic. A similar layout would be obtained using the systolic recoenizers of

3]

Using individual logic for each symbol gives reasonable layouts, but experience with

an implementation of this method has shown that for small expressions, the pLA mecthod

is better. This is perhaps to be expected, since the regularity of PLA’s allows one to pack

small numbers of gates more closely than is possible with an ad hoc circuit. Thus, the

idea of using a combination of the two methods arose. The current implementation of

the regular expression compiler uses PI.A’s for low level subexpressions, connected together

with logic to take care of the operators near the root of the expression tree.

Suppose that one has laid out modules to recognize expressions FE and I. It is assumed

that these modules are rectangles, and that they have enable wires coming in at the left and

recognized wires leaving at the right. Any input wires required to recognize the symbols in

the module’s expression must also enter at the left. Then the expressions I + I and EF

can be laid out as shown in Iigures 3(a) and 3(b), repcctively. Operators which have been

combined withunary operators can beimplementedsimilarly, as illustrated in the layout

for (/2- 7)" in I'igure 3(c). This type of layout is called an operator split. Note that no
matler what operator is involved, the two subparts can be laid out either side by side (a

3. Lavout of Regular Expression Recognizers 5

enable recognized

(a) (b)

{c)

Figure 8.Qperator splits: (a) ££ + F (b) E-I (c) (E-F)**

dummy dummy

enable 1°] rgcognized
enable | » recognized

Figure 4. Substitution split

horizontal split) or one on top of the other (a vertical split).

The use of operator splits might be cnough to accomplish a layout, but there is the

problem that thelavouts for the two operand expressions might have very different sizes.

This would leadtoa lot of while space whenarcetangle surrounding the whole layout is
defined. The solution to this is to do a substitution split. In a substitution split for an

expression 17, some node D deep inthe expression tree for Iv is replaced by a dummy node.
Then the expression rooted at D is laid out (the dummy tree), as well as the now smaller

expression F (the father tree). [L will have an enable dummy output wire and a dummy
recognized in put wire. The former is attached to the enable input of [), and the latter is

fed by the recognized wire of D, as shown in [Figure 4.

The method for laying out a regular expression, givenA compressed expression free is

to cither (i) usc asinglelPLA, or (ii) do an operator split or substitution split at the root

and recursively lay out thesubparls. This accomplishes the goal of using logic to form a

6 3. Layout of Regular Isxpression Recognizers

nctwork of” PLA’s for recognizing the regular expression. What remains is to specify how
Lo choose among the various layout strategies. At each stage of the recursion, the following
choices must be made:

Cl. Should a single PLA, an operator split, or a substitution split be used?

C2. If a split is used, should it be a horizontal or a vertical split?

C3. If a substitution split is used, which descendant expression should become the dummy
tree?

Onc option of the regular expression compiler is to make the above choices guided by

the principles (hatPLA’s should be neither too small nor too large, and that when splits

are used the subparts should be approximately equal in size. In this method, splits are

performed by looking for a split, which yields subparts closest in size, and the recursion

continues until the expressions are under some prespecificd size. The “size” in terms of

area 1s approximated by the weight — the number of Icaves in the expression tree.

: This heuristic method produces fairly good layouts quite quickly (in approximately 7

seconds on a VAX /780 for a 150-lcaf expression). However, it usually requires some playing

around with the parameters of the method to find the best layout possible with this scheme.

[Sven then, a better layout is usually possible. There arc several reasons why the heuristic

method can be improved upon:

Theidea Lhat two subparts should have the same area isn’t strictly correct. What really
is wanted is for the heights or widths Lo be about the same. Now, the PLA’s generated

from regular expressions all tend to have similar aspect ratios (height/width), so that

if the subparts are simple PLA’sthen the “equal area” principle should hold. It seems

plausible that if the subparts are thcrnselves split, then there arc some approximately

square layouts for them, and so again the cqualareca principle should yield a reasonable

layout. llowever, an uncqual-arca layout could be cven better, and in practice there arc

many cases where one is better. -

« The weight of an expression is only a rough indication of the arcaneededio lay it cut.

If the layout involves splits then the shape of the expression tree affects the economy of

the layout.

« The area of a layout depends somewhat on the number of input wires needed. Thus,

even if tv. subparts have equal weights, the layout for one subpart might be taller if it

uses more inputs.

e I'inally,somcoptimizations are performed when laying out a PILA (having an cffecct similar

to factoring the expression). This is another reason why the weight of an expression only
roughly predicts the arca of the resulting layout.

To overcome some of these problems, the regular expression compiler has another

~ option: search systematically through a specified collection of layout strategies, looking for
the best one.

4. Finding Optimal Layouts 7

§ 1 Finding Optimal Layouts

An exhaustive search can find the best layout for an cxprecssion, given that one is

using the general scheme of operator and substitution splits with PLA’s at the lowest level.

All possible combinations of choices Cl, C2, and C3 can be tried, using all possible layouts

for the subparts in the case of splits.

Clearly, such an cshaustive search would be very time consuming, even for for quite

small expressions. One way to avoid a lot of the work is to note that the dimensions

of a layout for an cxprcssion remain about the same when the layout is rnade part of a

layout for a containing expression. There is of-ten some hcight increase when a module is

incorporated as a subpart in a split, because the input wires to the other subpart may have

to run through the module. This effect can be calculated, however, so the conclusion is
that the strategies for laying out 3 given subcxprcssion necd be calculated only once. The

significance of this is that a sort of dynamic programming can be used to cffect the search.

Dynamic programming can be used to find optimum strategies for problems that can

be broken up as follows: starting out at a first “stage”, some choices are made leading

to a collectionof smaller, similar problems — the second stage; this continues until some

final stage is rcached where there are no more choices to be made. If the problem is such

that a knowledge of all the optimal solutions at stage i is sufficient to find all the optimal

strategies for stage1— 1, then dynamic programming can be used. The layout scheme

satisfies this condition (approximately), where the problems of stage i 31-c¢ finding the best
lavouts for subcxprcssions whose roots arc at depth i in the expression tree.

One problem in applying dynamic programming to layout is that one needs more

than just the minimum area layouts for the subexpressions: a slightly larger layout may be

better to use as a subpart, in a split if its height (or width) is closer to that of the other

subpart. What is really needed is the best area for all possible heights and widths. In

practice this would probably meankeeping 311 layouts tricd, which would eliminate most
of the savings that are cntailed by the use of dynamic programming.

The solution to this problem is to use an approximation: divide up the continuum

of possible aspect ratios into a small number of intervals, and for each subcxpression keep

only the srnallest-area layout in each aspect ratio interval.

If the only splits allowed were operator splits, then the search for a layout could

follow the standard dynamic programming procedure: start at the last stage (the lowest

leaves) and find layout strategies there; thenmove up the expression tree, trying single

PLA’s and operator splits. Trying an opcrator split is a relatively quick operation, where
the dimensions of the children arc added to the logic dimensions to give the resulting layout

dimensions. (There is also an adjustment for input wires, as mentioned above.)

It is the substitution split which greatly increases the work required to find an optimal

layout. After a descendant expression is replaced by a dummy node, optimal layouts have

to be found for thefather tree. Only some of the layouts found so far can be used: those

for subcxprcssions not involving the dummy tree. Thus, a somewhat indcpendent layout
problem must be solved for cach possible falhertree, and cach of those will involve still
more {ather tree lavout problems. The work required increases dramatically as the root is

approached because there arc many more possible father trees (one for cach descendant,

8 4. 1"inding Optimal Layouts

not including the subproblcm father trees).

In fact., by the time all the subproblems have been solved for an expression, layouts

willhave been found for all possible prefiz trees. A prefix tree is what is left attached to

the root alter any combination of descendants have been replaced by dummy nodes.

To get some idea of how many prefix trees there can be, consider 7, the complete

binary tree of n levels. Let S, be the set of prefix trees of T,,, and /N,, be the number of

trees in S,. Any binary tree with <n levels is a prefix tree of 7. A binary tree of < n

levels can only be formed by having a root with a member of §,_; or theempty tree as

left. child, and a member of §,,_; or the emply tree as right child. Therefore,

Np = (Nap + 1)2<2%77

T, has m = 2” — 1 nodes, so N, <2™/2, This calculation shows that just enumerating
the possible father trees for a balanced expression of 30 leaves (i.e., about 60 nodes) is out
of the question.

An obvious partial solution to this is to havesome minimum expression size — say 6

leaves — below which an expression will not be considered as a subpart of a split. This has

the effect of chopping off some number, I, of the most populous levels from consideration

as dummy tree roots. This changes the above calculation so that now N, _;< gm/2'7"
With this improvement, one could perhaps handle expressions of 30-50 leaves, but it might

take a long time, considering that at the very least a PLLA has to be considered out for each
father tree tried.

To bc able to handle expressions with up to, say, 300 leaves, the search needs further

pruning. The “equal area” principle mentioned above suggests that splits where one subpart

is much bigger than the other arc likely to waste space. The regular expression compiler

has a split-ratio parameter, S. Splits will only be considered when the wcight ratio of one

subpart to the other is in the range [1/S, S]. It has been found that in practice S = 2

yields layouts as good as S = oo.

When all splits are not considered, there turn out to be a large number of subexpres-

sions whose layouts couldn’t possibly be used in the layout for the whole expression. This

means that the dynamic programming paradigm of working on the expression tree bottom-

up wastes a lot of calculation. It is better to work top-down, looking for subpart layouts

whenever required.

To retain the advantages of dynamic programming, a dictionary of layouts is kept

so that layouts necedneverbe found twice for the same subcxprcssion. The dictionary can

contain layouts for each of the possible prefix trees of each subexpression. This is allowed

by having the dictionary indexed by (e, [), where e is an expression node and[1S an excision
list: nodes that have been replaced by dummies.

Here 1s the final algorithm for finding layout strategies. There are three tuning

. parameters, to allow trading off search thoroughness for execution tirne: S, the split-ratio;

L, the lowest weight allowed for a PLA; and II, the highest weight allowed for a PLA.

FindSt rategies(x:ExpressionTree, 1:lixcisionlist):
{ Find strategies for luyout of the expression z,

5. Performance of the Regular Expression Compiler 9

where the expression nodes on | have been replaced by dummies }
if LookupStrategics(x,])2INIT then return

{ already found strategies for (z,1) }
if x.weight e[L..11] then

TryPLA(x,1)
if x.lchild.weight/x.rchild.weight¢ [1/S ... S] then begin

FindStrategies(x.lchild,l)
FindStrategies(x.rchild,l)
TryOperatorSplit(x,l)
end

for all descendants y of x such that

(x.weight—y.weight+1)/x.weighte [I/S . . . S] do begin
ExciseDummy(x,y) { replace y by DUMMY in x }
FindStrategics(x,Append(l,y))
FindStrategies(y,l)

: TrySubstitutionSplit(x,l,y)
end

end IYindStrategies

TrvPLA, TryOperatorSplit, TrySubstitutionSplit:

{ These procedures calculate the dimensions of the layouts
implied by their arguments. For the splits, all possible layouts

resulting from combinations of strategies for the subparts are tried.

The best strategies in various aspect ratio ranges are entered

into the dictionary. }

LookupStrategy(e,l):
{ This function looks up in the dictionary the layout strategies

for expression e with excisions list 1. Any members of| which are not
descendants of e, or are descendants of other members of |, are ignored.

INIT is returned if no strategies have yet beer; sought for (e,l).}

BO Performance of the Regular ['xpression Compiler

The regular expression compiler has been implemented in C on a VAX/780. 1t can
produce layouts using cither the heuristic method or the dynamic programming method.

By appropriately setting the parameters for the heuristic method, one can also find the

layout as a single PLA or as a network of logic connecting individual symbol recognizers.

This section will report how the compiler performs on somc sample expressions.

The first series of expressions is the PR series. The PR2 expression was given in
Section 2. Theothers in the series have the same line and symbol declarations, and the

following definitions (any™ is used as shorthand for m occurrences of any):

10 5. Performance of the Regular ixpression Compiler

Expression Weight Depth Layout L H S Area Time:

PR 72 14 single PLA 97 2.8

all logic 85 6.7

heuristic 4 17 08 2.8

dyn. prog. 6 60 1.5 06 14.0

dyn. prog. 6 60 2.0 09 24.0

dyn. prog. 6 30 3.0 99 535.7

PR16 160 23 single PLA 4.43 11.5

all logic 2.28 15.3

heuristic 4 17 1.69 6.9

dyn. prog. 6 40 1.5 1.47 34.4

dyn. prog. 6 30 2.0 1.23 159.6

PR32 352 40 single PLA 21.00 130.3

all logic 8.88 35.9

heuristic 4 17 3.87 17.3

dyn. prog. 6 40 1.7 3.55 267.1

dyn. prog. 7 25 2.0 3.19 14825

Table 1. Data for PR expressions

PR4 = any’(PR2) + PR2 any?

PRS = any’ (PR4)+ (PR4)any*

PR16 = any®(PR8) + (PR8)any®

PR32 = any'®(PR16) + (PR16)any'®

PRn 1s recognized wh~never the last n inputs fail to match the first n. The results of

running the regular expression compiler on the PR series is given in Table 1. The times

given in the last column are CPU seconds on the VAX. Areas are in A%X 10%, where \
is the minimum feature size. The “heuristic” results were the best that could be found

by varying the parameters (there is another parameter, not shown, which indicates the

desired shape of the final layout). It can be seen that both the heuristic method and

the dynamic programming method are quite a bit better than the single-PLA or all-logic

methods. Dynamic programming beats the heuristic method by an amount which increases

with the expressionsize. Severaldynamic programming results arc shown to give some idea

of the tradeoff bctweenscarch thoroughness and execution time that occurs. Sketches of

the layouts found by the compiler for PR16 arc shown in Figures 5(a)(hecuristic) and 5(b)
(dynamic programming). The boxes arc the individual PLA’s.

The next series of expressions to be tried were the SEQ expressions, whereSEQn has
the form:

line 1[(n]

symbol a1 (1[1]), v1 (-1[1]), a2(1{2}), v2(-1[21), ..., an(1[n])), bn(-1{nl)

symbol any ()

5. Performance of the Regular Bxpression Compiler 11

(a)

(b)

Figure 5. layout sketches for PR16: (a) heuristic (b) dynamic programming

bl+any*(al b2 + a2 b3 +... +an any++)

These expressions signal if the input wires are not turned on in sequence. The SEQ

expressions are different from the PR ones in that they have a large number of input wires,

so that the heuristic strategy (which doesn’t pay attention to how many inputsa module

needs) might be expected to do poorly. Another fact about these expressions is that the
expression trees arc tall and sparse. The PR expressions had rather bushy trees. Table 2
oives the results of using theregular expression compiler on the SEQ expressions.

12 5. Performance of the Regular Expression Compiler

[oxpression Weight Depth Layout : L II S Area Time

Name Method (W C 9S)

30 1.5

all logic 01 4.0

28 2.1

SEQIL6 34 19 dige dn. bene poy, PLA If 17 1.7 24 5.0

= SEQJ32 66 35 single PLA 97 3.5
all logic 1.23 9.3

heuristic 4 28 64 3.4

dyn. prog 6 70 1.7 61 27.5

SEQ64 130 67 single PLA 3.48 9.2

all logic 3.33 20.7

) heuristic 4 35 1.76 7.9
dyn. prog. 6 30 1.7 1.62 186.0

[Bseqls 30 5 single PLA 27 1.4
all logic 34 3.2

heuristic 4 20 23 1.6

dyn. prog. 6 40 1.7 23 2.7

BSEQJ32 64 6 single PLA 92 3.0

all logic 74 6.8
heuristic 4 25 09 3.6

dyn. prog. 6 635 1.7 09 8.9

BSEQG4 128 T single PLA 3.39 9.8

all logic 2.28 18.4

heuristic 4 35 1.91 7.6

dyn. prog. 6 30 1.7 1.53 15.9

Table 2. Data for’ SEQ and BSIEQ expressions

The final group of expressions is a slight modification of the SEQ group. To scc what

effect the depth of the trec has on the execution time, the BSEQ expressions were formed:

they arc just copies of the SEQ expressions without the bi+any++ at the beginning, factored

so that they form completely balanced binary trees. For example, BSEQA4 is:

(Cal b2 + a2 b3) + (a3 b4 + a4 any++))

The results of compiling these expressions arc also given in Table 2. It can be scen that

| the compiler works faster on the bushy BSEQ expressions than it did on the corresponding

| SEQ expressions. This is because there arc a smaller number of possible dummy nodes
which satisly the split-ratio requirement in the bushy trees.

6. Evaluation and Conclusions 18

56 Evaluation and Conclusions

It has beenshown that regular expressions have a structure which makes them quite

amenableto a “divide-and-conquer” partitioning and placement procedure which runs fairly

quickly. Clearly, the network-of-PLA’s approach is superior to thesingle PLA or all-logic
methods.

The program could certainly run a lot faster if substitution splits weren’t tried, but it

has been found that these arc definitely required. Perhaps the expressions could be parsed

in such a way that the children would always be about the same weight: there is some

freedom allowed because concatenation and union are associative operators. However, the

closure operators form barriers to arbitrary rcparsing, so in general one cannot balance the
children.

The scarch over arange of possible dummy tree roots is another aspect which slows the

compiler. If one tries only that node which yields the best weight ratio between the father

and duminy trees, the resulting areas are somewhere between those found by the heuristic
method and dynamic programming. For example, this modification led to the same layout

as full dynamic programrning for SEQL6, but for SEQ32 it only did as well as the heuristic

method. It was found that. one had to try the five best dummy tree roots before the full

dynamic programming layout would be found for S£Q32. The execution times using the

best-dummy-only modification were quite close to those of the heuristic method, so perhaps

this is the most uscful method of all, for small to medium sized expressions.

The dynamic programming method rcquires keeping a number of “best” layouts for

expressions, in cach of a number of different aspect ratio ranges. Varying the number of

these ranges has some cifcct on the ability of the compiler to find good layouts. Originally,

three ranges were used. This scemed to work, but when the compiler was changed to

keep layouts for six ranges, the results were quite a lot better— at least for the larger

expressions.

To sum up, cach of the capabilities of the regular expression compiler adds incremen-

tally to the quality of the layout, at a cost of extra execution time. ITowever, even the most,
expensive dynamic programming searches are still quite fast compared to other aspects of

VLSI design — such as check plotting — so it is not unreasonable to USC dynamic program-

ming always.

The work described in this paper has some resemblence to previous work on graph

theoretic approaches to partitioning [9], but the problem is somewhat more tractable when
trees arc involved. Also, theidea of doing the placement by recursively splitting the plane

into halves has been used before [6]. Not much h a s been done on automatically choosing
a network of PLA’s to irnplemcent a sequential circuit, though there has beensome work
done on optimizing single PLA’s [8]. A circuit realization using a network of PLA’s is given
in [I], but the user must specify the splits with a hierarchical circuit definition.

The regular expression compiler is still undergoing improvements. Currently, the

ability to have numerous “output signals” cmbcdded in the expression is being incorporated.

Also, more ’LLA optimizations arc going to bc done. In particular, non-overlapping NIFA
states will be detected and a group of such states can bc assigned binary-encoded state

identifiers. This should reduce the current tendency for the PLA’s to be fairly sparse.

14 References

There are plans to use the compiler to generate much of the control logic for a VLSI chip
being designed.

Acknowled gernents

The regular expression compiler was originally designed and implemented by Jeff

Uliman at Standford University. The author has added the dynamic programming feature

and made various other improvements.

References

[1] R. Ayres. “Silicon Compilation — A Hierarchical Use of PLAs.” 16!" Design
Automation Conf. Proceedings, pp. 314-326, June 1979.

[2] R.W. Floyd, and J.D. Ullman. “The Compilation of Regular Expressions into
Incegrated Circuits.” Tech. Rep. STAN- CS- 80- 798, Stanford Cornputcr Science

Dept., April 1980.

3] M.J. Foster, and M.T. Kung. “PRA: Programmable Building Blocks for Recognizing
Regular languages in VLSI.” Unpublished memorandum, Dept. of Cornputer Science,

Carnegic-Mellon, 1981. /

| 4] J.P. Gray. “Introduction to Silicon Compilation.” 16!® Design Automation Conf
Proceedings, pp. 305-306, June 1979.

[5] D. Johannsen. “Bristle Blocks, A Silicon Compiler.” 16" Design Automation
Conf. Proceedings, pp. 310-313, June 1979.

6] U. Lauther. “A Min-Cut Placement Algorithm for General Cell Assemblies Based
on a Graph Representation.” 16th Design Automation Conf. Proceedings, pp. 1-10,
June 1979.

[7] A. Mukhopadhyay. ‘(Hardware Algorithms for Non-numeric Computation.” IEEE
Transactions on Computers, C-28, No. 6, pp. 384-393, June 1979.

8] J.P. Roth. “Programmed Logic Array Optimization.” IEEE Transactions on
Computers, C-27, No. 2, pp. 174--176, February 1978.

[9] D.G. Schweikert,3.W. Kernighan. “A Proper Model for the Partitioning of Electric
| Circuits.” 8" Design Automation Workshop Proceedings, pp. 56-62, June 1972.

[10] D.P. Sicwiorck, M.R. Barbacci. “The CMU W-CAD System — An Innovative
Approach to Computer Aided Design.” AFKPS Fall Joint Computer Conference,

Vol. 45, 1976.

(11] J.D. Williams. “STICKS — A Graphical Compiler for High Level LSI Design.”
National Computer Conf. Proceedings, pp. 289-295, 1978.

[12] G. Zimmerman. “Cost Performance Analysis and Optimization of Ilighly Parallel
Computer Structures: First Results of a Structured Top-Down Design Method.” 4th

International Symposium on Computer Hardware Description Languages, Qctober
1979.

