@
I ____

vV

N4

,\\

Programming the
User Interface

symbolics™

Cambridge, Massachusetts

Programming the User Interface, Volume A
#999025

September 1986

This document corresponds to Genera 7.0 and later releases.

The software, data, and information contained herein are proprietary to, and comprise
valuable trade secrets of, Symbolics, Inc. They are given in confidence by Symbolics
pursuant to a written license agreement, and may be used, copied, transmitted, and
stored only in accordance with the terms of such license. This document may not be
reproduced in whole or in part without the prior written consent of Symbolics, Inc.

Copyright © 1986 Symbolics, Inc. All Rights Reserved.
Portions of font library Copyright © 1984 Bitstream Inc. All Rights Reserved.
Portions Copyright © 1980 Massachusetts Institute of Technology. All Rights Reserved.

Symbolics, Symbolics 3600, Symbolics 3670, Symbolics 3675, Symbolics 3640,
Symbolics 3645, Symbolics 3610, Symbolics 3620, Symbolics 3650, Genera,
Symbolics-Lisp®, Wheels, Symbolics Common Lisp, Zetalisp®, Dynamic Windows,
Document Examiner, Showcase, SmartStore, SemantiCue, Frame-Up, Firewall,
S-DYNAMICS®, S-GEOMETRY, S-PAINT, S-RENDER®, MACSYMA, COMMON LISP
MACSYMA, CL-MACSYMA, LISP MACHINE MACSYMA, MACSYMA Newsletter and
Your Next Step in Computing are trademarks of Symbolics, Inc.

Restricted Rights Legend

Use, duplication, and disclosure by the Government are subject to restrictions as set
forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software
Clause at FAR 52.227-7013.

Symbolics, Inc.

4 New England Tech Center
555 Virginia Road

Concord, MA 01742

Text written and produced on Symbolics 3600-family computers by the Documentation
Group of Symboilics, Inc.

Text masters produced on Symbolics 3600-family computers and printed on Symbolics
LGP2 Laser Graphics Printers.

Cover design: Schafer|LaCasse

Printer: CSA Press

Printed in the United States of America.

Printing year and number: 88 8786987654321

iii

August 1986 Programming the User Interface, Volume A

Table of Contents

I. User Interface Management System: an Overview

1. Guide to User Interface Documentation

1.1 New and Old Facilities
1.2 Levels of Detail

2. Introduction to the User Interface Management System

3. Overview of Top-Level Facilities for User Interface Programming

3.1 User Interaction Paradigm

3.2 Frame-Up Layout Designer

3.3 Program Framework Definition Facilities
3.4 Program Command Facilities

4. Overview of Command Processor Facilities

4.1 Basic Command Facilities

4.2 Advanced Command Facilities
4.21 Command Loop Management Facilities
42,2 Command Table Management Facilities
4.2.3 Command Accelerator Facilities

5. Overview of User Input Facilities

5.1 Basic User Input Facilities
5.1.1 Facilities for Accepting Single Objects
5.1.2 Facilities for Accepting Multiple Objects
5.2 Advanced User Input Facilities
5.2.1 Mouse Handler Facilities
5.2.2 Mouse Gesture Interface Facilities
5.2.3 Advanced Mouse Handler Concepts

6. Overview of Program Output Facilities

6.1 Basic Program Output Facilities
6.1.1 Basic Presentation Output Facilities
6.1.2 Character Environment Facilities
6.1.3 Textual List Formatting Facilities

Page

21

21
23
25
28

31

31
32
33
33
34

35

35
35
38
39
39
41
42

47

47
47
49
51

iv

Programming the User Interface, Volume A August 1986

6.1.4 Table Formatting Facilities

6.1.5 Graph Formatting Facilities

6.1.6 Graphic Output Facilities

6.1.7 Progress Indicator Facilities

6.1.8 Other Facilities for Program Output
6.2 Advanced Program Output Facilities

6.2.1 Advanced Presentation Output Facilities

6.2.2 Redisplay Facilities

6.2.3 Facilities for Writing Formatted Output Macros
6.3 Output Streams for Program Output Facilities
6.4 Naming Conventions for Program Output Macros

7. Presentation Substrate Facilities

7.1 Basic Presentation System Concepts

7.2 Predefined Presentation Types

7.3 Presentation-Type Definition Facilities

7.4 Presentation Input Context Facilities

7.5 Presentation Input Blip Facilities

7.6 Other Presentation Facilities

7.7 Writing a Presentation Type Parser

7.8 User-Defined Data Types as Presentation Types
8. Window Substrate Facilities

8.1 Mouse-Blinker Characters
9. User Interface Application Example

II. Dictionary of Top-level Facilities for User Interface Programming
10. Dictionary Notes

11. The Facilities

III. Dictionary of Command Processor Facilities

12. Dictionary Notes
13. The Facilities

52
56
57
59
60
63
63
65
66
66
66

69

70
71
76
78
78
79
80
82
87

89

91

929

101

103
135

137
139

v

August 1986

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

IV. Dictionary of User Input Facilities
Dictionary Notes
The Facilities
V. Dictionary of Program Output Facilities

Dictionary Notes
The Facilities

VI. Dictionary of Predefined Presentation Types
Dictionary Notes
The Facilities

VII. Dictionary of Presentation Substrate Facilities

Dictionary Notes
The Facilities

VIII. Dictionary of Window Substrate Facilities
Dictionary Notes

The Facilities

Index

Programming the User Interface, Volume A

163

165

167

201

203

207

281

283

285

347

349

351

395

397

399

413

1

August 1986 User Interface Management System: an Overview

PART I.

User Interface Management System: an Overview

2

Programming the User Interface, Volume A August 1986

3

August 1986 User Interface Management System: an Overview

1. Guide to User Interface Documentation

1.1 New and Old Facilities

Genera 7.0 user interface facilities represent a major departure from tools offered
for user interface programming in previous releases. Although the new facilities
render many of the old ones obsolete, Genera still supports most of the old tools
for the sake of compatibility with earlier releases. (For information on
unsupported tools and incompatible changes: See the document Converting to
Genera 7.0.) Consequently, the user interface documentation (Book 7) is divided
into two major areas.

The first area, Programming the User Interface, Volume A, focuses on the new
facilities for user interface programming. Thus, Part I of this book, the Overview,
is an overview of the new facilities and does not generally refer to the old tools;
Parts II through VIII, the Dictionaries, include, with one or two exceptions, only
the new definitions.

The second area, Programming the User Interface, Volume B, corresponds to the
pre-Genera 7.0 Book 7. This material is similar to the earlier book. The only
changes are a series of minor corrections and improvements. Exceptions to this
are changes to reflect the use of character styles instead of fonts, the
implementation of mouse characters as structures, and a considerably expanded
section on text scroll windows. (For more details: See the section "Changes to
User Interface Programming Facilities in Genera 7.0" in Genera 7.0 Release Notes.

Much of the basic conceptual documentation on the window system in the old Book
7 (Programming the User Interface, Volume B) remains relevant, as does the
reference documentation for most window init options and methods. We wish to
emphasize, however, that many of the higher-level facilities in the old user
interface management system — various menu facilities, the mouse-sensitive items
facility, scroll windows, and text scroll windows — are maintained primarily for
compatibility with pre-Genera 7.0 user programs.

The new system includes tools that are generally more powerful and easier to use
than their old counterparts; in many cases, there are no counterparts in the old
system. We encourage you, therefore, to concentrate your user interface
programming efforts on facilities available in the new system. This will improve
your productivity and better ensure the compatibility of your programs with future
releases.

4

Programming the User Interface, Volume A ‘ August 1986

1.2 Levels of Detail

Just as the user interface facilities themselves are arranged in a functional
hierarchy — from the high-level and general-purpose to the low-level and special-
purpose — so too is the documentation hierarchical, from the general to the
detailed.

At the highest level of abstraction is the introductory chapter to the overview,
which outlines the major categories of user interface programming tools and
describes the organizational hierarchy. See the section "Introduction to the User
Interface Management System", page 7.

The subsequent chapters in the overview provide the next level of documentation
detail. They discuss the major and minor groups of facilities, present tables
listing the facilities included in each group, and include a variety of examples:

¢ See the section "Overview of Top-Level Facilities for User Interface
Programming”, page 21.

* See the section "Overview of Command Processor Facilities", page 31.

e See the section "Overview of User Input Facilities", page 35.

¢ See the section "Overview of Program Output Facilities", page 47.

e See the section "Overview of Presentation Substrate Facilities”, page 69.
e See the section "Overview of Window Substrate Facilities", page 87.

The overview concludes with a chapter outlining a sample application that
illustrates the use of some of the key user interface programming facilities
discussed in the preceding chapters: See the section "User Interface Application
Example", page 91.

Parts II through VIII provide the greatest amount of detail. These are the
dictionaries, containing reference documentation for each of the many Lisp objects
discussed in the conceptual chapters. Each object is an entry in a dictionary of
related objects. There are eight dictionaries, corresponding to the major
functional categories among which the objects (facilities) are divided:

¢ See the section "Dictionary of Top-level Facilities for User Interface
Programming", page 99.

e See the section "Dictionary of Command Processor Facilities”, page 135.

¢ See the section "Dictionary User Input Facilities".

5
August 1986 User Interface Management System: an Overview

» See the section "Dictionary Program Output Facilities".

¢ See the section "Dictionary of Predefined Presentation Types", page 281.

e See the section "Dictionary of Presentation Substrate Facilities", pagé 347,
» See the section "Dictionary of Window Substrate Facilities", page 395.

Within each dictionary, the arrangement of facilities is alphabetical (package
prefixes are ignored).

6

Programming the User Interface, Volume A August 1986

7

August 1986 User Interface Management System: an Overview

2. Introduction to the User Interface NManagement
System

Genera’s user interface management system provides a wide variety of tools for
constructing user interfaces to application programs. This toolkit includes both
high-level facilities for rapidly building a user interface framework and low-level
facilities for changing the subtler details of user interface appearance and
behavior. A number of additional tools lie in between; they provide varying
degrees of power and flexibility in the several areas of user interface
programming.

The system is largely hierarchical, with each layer of facilities built on the one
below until, at the lowest level, the enabling substrate is reached. The position of
any given tool in the hierarchy generally reflects its power and ease of use: the
more powerful, easy-to-use tools are at the top; those providing less power but
more flexibility, and also demanding a more advanced understanding of user
interface programming, are further down.

The following outline shows the major categories and subcategories of facilities
contributing to the user interface management system:

OUTLINE OF USER INTERFACE PROGRAMMING FACILITIES

Top-Level Facilities for User Interface Programming
Frame-Up Layout Designer
Program Framework Definition Facilities

Program Command Facilities

Command Processor Facilities
Basic Command Facilities

Command Definition Facilities
Command Processor Interface Facilities

Advanced Command Facilities

Command Loop Management Facilities

8

Programming the User Interface, Volume A

Command Table Management Facilities
Command Accelerator Facilities
User Input Facilities
Basic User Input Facilities

Facilities for Accepting Single Objects
Facilities for Accepting Multiple Objects

Advanced User Input Facilities

Mouse Handler Facilities
Mouse Gesture Interface Facilities

Program Output Facilities
Basic Program Output Facilities
Presentation Output Facilities
Character Environment Facilities
List Formatting Facilities
Table Formatting Facilities
Graph Formatting Facilities
Graphic Output Facilities
Progress Indicator Facilities
Other Program Output Facilities
Advanced Program Output Facilities
Advanced Presentation Output Facilities
Redisplay Facilities
Facilities for Writing Formatted Output Macros
Presentation Substrate Facilities
Predefined Presentation Types

Presentation-Type Definition Facilities

Presentation Input Context Facilities

August 1986

9

August 1986 User Interface Management System: an Overview

Presentation Input Blip Facilities

Other Presentation Facilities

Window Substrate Facilities
Dynamic Window Facilities

Dynamic Frame Facilities

This outline does not reflect two additional sources of facilities for building user
interfaces. The first includes a variety of standard and special functions for
program I/O documented elsewhere: See the section "Streams" in Reference Guide
to Streams, Files, and I/O.

The second includes facilities for user interface programming provided by
Symbolics prior to Genera 7.0. For more information on new versus old facilities
and their respective documentation: See the section "Guide to User Interface
Documentation”, page 3.

What follows is a series of introductory sections to the major groups of user
interface facilities. Because the presentation and Dynamic Window substrates are
basic to understanding facilities occupying higher levels in the hierarchy, we start
with them.

o Presentation Substrate

The presentation system is central to most of the facilities provided for
building user interfaces. This system provides a mechanism for specifying
types, referred to as presentation types, for doing program I/O. The
presentation-type mechanism is an extension of the Common Lisp type
system and centralizes responsibility for parsing and printing data.

In the presentation system, the printed (displayed) representation of a data
object is distinct from its stored representation; that is, its appearance on
the screen is specified independently of its internal structure. Consider, for
example, the integer presentation type. It has a :base presentation
argument. If it is appropriate for integer I/O to be in terms of binary
integers, say, or octal integers, then specifying the appropriate base produces
the desired result.

The following two examples illustrate this point. Both use the Symbolics

10

Programming the User Interface, Volume A August 1986

Common Lisp function accept to read and inter an integer object. In the
examples, the range of the integer sought is restricted to one between 0 and
100. In the first example, no base is specified, so the default base of 10 is
used; a 10 is entered and returned. In the second, we specify an octal
integer with the same range (note that accept adjusts the prompt
accordingly). Again a 10 is entered and returned but, because of the base
specification, the printed representation is in octal, that is, 12.

(accept ’((integer 8 108))) ==>

Enter an integer greater than or equal to 8
and less than or equal to 188: 18

10

((INTEGER 8 188))

(accept ’((integer 8 188) :base 8)) ==

Enter an octal integer greater than or equal to @
and less than or equal to 144: 12

18

((INTEGER) :BASE 8)

The above is a simple example. The degree of control you have over the
printed representation of data types goes considerably beyond merely
specifying predefined presentation arguments. You can write your own
printer function controlling the user-visible appearance of any object. For
example, you could make integers appear as graphic presentations. Such
control over the printed representation of Lisp objects allows programs to
present output and accept input in forms most meaningful to the application
at hand.

The presentation system predefines a large number of presentation types,
including all Common Lisp types. These predefined presentation types are
included for documentation purposes with the presentation substrate
facilities. This might suggest that they are low-level and specialized, which
they are in some respects, but they are also used throughout the user
interface programming hierarchy. Most program output and user input is in
terms of presentation types.

Other presentation substrate facilities provide functions for creating new
presentation types, including parsers, help facilities, and completion facilities.
Through these tools you can extend and customize the presentation system
to suit your application needs.

Together with Dynamic Windows and the window substrate, the presentation

11

August 1986 User Interface Management System: an Overview

substrate forms the basis of SemantiCue, Genera’s smart input system.
What makes this system "smart" is discussed in the following section on the
window substrate. '

¢ Window Substrate

The window system is the second major source of user interface substrate
facilities. A window can be static or dynamic. Output to static windows is
relative to an unchanging set of window coordinates; once a static window is
full, it must be cleared entirely or partially before new output can be done
without overwriting previous output. Dynamic Windows, on the other hand,
are scrollable in both the vertical and horizontal dimensions; they have a
definite origin (0, 0), but an indefinite length and width. Scrollability is a
basic feature of Dynamic Windows and does not require the explicit use of
special procedures as in the case of static windows.

Associated with the scrollability of Dynamic Windows are the concepts of
output history and viewport. You do not have to clear a Dynamic Window to
avoid overwriting previous output. New output, unless specifically directed
otherwise, is appended to the bottom of the window’s history, that is, at the
end of all previous output to the window. The window is automatically
scrolled so that the current viewport — the visible portion of the window —
shows the new output. Previous output remains viewable by scrolling
backwards through the history.

With the use of presentation types for doing output to a Dynamic Window,
not only is the previous output retained and viewable, but its semantic
content is also remembered. That is, links to the objects represented by
displayed presentations are maintained so that the objects themselves remain
accessible and usable as current program input. This capability is central to
the SemantiCue input system. In the appropriate input context (established
by your program), the displayed presentations are automatically mouse-
sensitive. Automatic mouse-sensitivity is another point where Dynamic
Windows depart from static windows; with a static window, mouse sensitivity
must be provided through explicit procedures associated with output
operations.

e Advanced Command Facilities

At the next level up from substrate facilities are advanced facilities for
command management, user input, and program output. These facilities and
the substrate facilities are available for when you need low-level tools for
user interface programming. With the exception of the predefined
presentation types, they are not intended for general use in most

12

Programming the User Interface, Volume A August 1986

applications; the general-use tools are in the "basic" and "top-level"
categories.

The advanced command facilities allow you to write your own command loop.
Three kinds of facilities are provided:

1. Tools for reading and parsing command input.

2. Tools for managing command tables.

3. Tools for defining and installing single-key command accelerators.
¢ Advanced User Input Facilities

The presentation and Dynamic Window substrates provide for the display of
mouse-sensitive items in your programs’ windows. Being able to use these
items as program input or in other useful ways by clicking on them with the
mouse depends on the availability of mouse handlers. Handlers, in addition
to the presentation system and Dynamic Windows, form the third key
ingredient of the SemantiCue input system.

Many mouse handlers are predefined in Genera, and it is possible that you
will never have to define your own. However, with the Advanced User Input
Facilities you can create your own handlers if the need arises. They come in
two varieties: translating mouse handlers and side-effecting mouse handlers.

A translating mouse handler translates a displayed presentation of one type
to an input object of another type. For example, you could define a
translating mouse handler to extract a host object from a pathname
presentation. Such a handler would return the "Host" object if a user
clicked on the following displayed pathname: "Host:>dierdre>new-t-m-
s.lisp".

By the way, the standard handler for inputting objects of a specified
presentation type is a translating mouse handler. This predefined facility is
known as the identity handler, because it "translates” a presentation object
to itself, that is, the same object with the same presentation type. In the
above example, if a pathname was sought rather than a host, the identity
handler would automatically be available for clicking on the displayed
presentation to return the pathname object.

A specialized type of translating handler translates presentation objects into
Command Processor commands invoked on the objects. The facility for
creating such handlers is considered top-level, and is introduced elsewhere:
See the section "Introduction to Top-Level Facilities for User Interface
Programming”, page 17.

13

August 1986 User Interface Management System: an Overview

A side-effecting mouse handler accomplishes some task independently of your
main program, like showing information about a presentation object. For
example, invoking a side-effecting mouse handler on a pathname presentation
might display file attributes; nothing gets returned to your program, but the
user has some additional information about the presentation object.

Also included in the Advanced User Input category are several ancillary
facilities providing the interface between mouse characters and mouse
gestures. A mouse gesture is the symbolic name, conventionally a keyword,
corresponding to a mouse character. For example, :select is a gesture
corresponding to #\mouse-l, that is, click-left. More than one gesture can
correspond to the same mouse character. For example, another name for
#mouse-! is :left.

Mouse handlers are defined on a particular gesture. We say that a handler
is "available on" the gesture. The interface facilities provide translation
between mouse characters and gesture keywords. (For more information on
mouse characters and related functions: See the section "Mouse Characters"”
in Programming the User Interface, Volume B.)

e Advanced Program Output Facilities
Advanced Program Output Facilities include macrés and functions for
1. Creating replayable presentations.
2. Doing incremental redisplay.
3. Writing your own formatted output macros.

Replayable presentations are ones that can be rerun, in place, and displayed
in a new format. You, the programmer, specify the redisplay options, called
"viewspec choices"”. At runtime, a user of your program can click on the
replayable presentation and call up a menu listing the viewspec choices.
After exiting the menu the presentation is erased and redisplayed according
to choices made by the user.

To see an example of a replayable presentation, invoke the Show Processes
command in a Lisp Listener or break window. Now, with the mouse cursor
anywhere in the displayed listing, click s-sh-Middle. This brings up a menu
entitled "Output parameters"” listing the viewspec choices. Try changing the
selected choice from None to any of the others, click on Done, and watch
what happens.

A set of inter-related facilities is provided for doing incremental redisplay of

14

Programming the User Interface, Volume A August 1986

program output. Output intended for redisplay is saved in an output cache.
With the redisplay facilities, you can cache formatted or presented output
and compare it against re-output of the same objects to check for changes.
If changed, the cache is updated and the objects are redisplayed; if not, both
the cache and the original display remain unaltered.

A large number of formatted output macros are already available among the
Basic Program Output Facilities. Most programmers will not need to write
their own, but if you do, we provide two facilities to help. The first is a
macro for "snapshotting” the current values of lexical variables used within
its body. The second is a function for determining the space needs of a
specified continuation on a specified stream.

¢ Basic Command Facilities ‘

Above the advanced facilities in the user interface hierarchy are basic
facilities for defining commands, getting user input, and doing program
output. It is at this level and the one above (top-level facilities) that
application programmers find tools meeting most of their user interface
needs.

The basic command facilities include two kinds of functions. The first lets
you define Command Processor commands. As part of the definition process,
you install you commands in a command table, for example, the "global"
table that includes all the predefined Command Processor commands
available in a Lisp Listener. Once defined, these may be invoked identically
to the predefined commands. For example, if you define a new kind of Show
File command, which you name Show Lisp File, and install it in the "global"
table, the next time you select a Lisp Listener or enter a break loop, Show
Lisp File will be one of the available commands.

The second kind of basic command facilities provides the interface between
your programs and predefined or newly defined Command Processor
commands. That is, these functions let you assemble Command Processor
commands in your application code; when the code is run the commands are
executed.

¢ Basic User Input Facilities

The basic function underlying most facilities for user input from Dynamic
Windows is accept. Using this function and presentation types enables you
to do typed input. ("Typed input" refers to object types, not typing at the
keyboard.)

15

August 1986 User Interface Management System: an Overview

The output function that corresponds to accept is present. The accept
functions within your programs determine the mouse-sensitivity of previously
presented output. Consider the following series:

(present "A:>ptolemy>solar-data.data") ==>
A:>ptolemy>solar-data.data
#<DISPLAYED-PRESENTATION 454412134>

(present #p"A:>copernicus>solar-data.data”) ==>
A:>copernicus>solar-data.data
#<DISPLAYED-PRESENTATION 454412456>

(accept ’((string))) ==>

Enter a string: A:>ptolemy>solar-data.data
“A:>ptolemy>solar-data.data"”

STRING

(accept ’((pathname))) ==

Enter the pathname of a file: A:>copernicus>solar-data.data
#P“A:>copernicus>solar-data.data”

FS:LMFS-PATHNAME

In the first case, a string is presented, in the second a pathname. With the
first accept function, an input context for string objects is established.
Passing the mouse cursor over the string presentation, A:>ptolemy>solar-
data.data, causes the presentation to be highlighted, thereby telling the user
"We are looking for a string; this is a string; you can click on it and return
it as a string object”. This is what was done in the example, indicated by
the italicized echo on the "Enter a string" prompt line.

In the string input context, passing the mouse cursor over the presented
pathname, even though it looks the same as the string presentation, does not
result in its highlighting. Despite its appearance, it represents a pathname
object, acceptable only in contexts where pathname objects are sought. Such
a context is established by the second call to accept. In that context, the
pathname presentation is highlighted and the user can click on it to return
the presentation object, that is, the pathname object #P"A:>copernicus>solar-
data.data".

The interaction described above illustrates the kind of intelligence
incorporated into SemantiCue, that is, what makes it a "smart" user input
system. The Genera user interface relies extensively on this system. Using
accept, present, and related functions lets you create similar interfaces to
your programs.

16

Programming the User Interface, Volume A August 1986

In addition to accept, other facilities in the basic user input category
provide the ability to prompt for and accept multiple objects. The accepted
objects are returned when the function returns, or used to change the values
of specified variables directly, before the function returns.

When a multiple-accept function is executed, either a series of in-line
prompts or a separate window containing the prompts appears. The in-line
prompts are so called because they appear in the same window that the
function was called from, and remain in that window’s output history. To
see an example of in-line prompts, invoke the Set Window Options command
in a Lisp Listener or break loop.

To see an example of a multiple-accept function generating a separate
window for the prompts, evaluate the following:

(dw:accept-values ’((integer :prompt "Half-1ife"
:default 24090)
(pathname :prompt "Log file")
(integer :prompt "Session number"))
:prompt “Atomic experiment”
:own-window t)

The window generated is equipped with its own scroll bar (for long prompt
lists), as well as Abort and Done boxes on the bottom margin.

Basic Program Output Facilities

The primary output facilities are those for presenting objects, the present
function in particular. This function, and those based on it, output objects
as presentations. A presentation includes not only the display itself, but also
the object presented and its presentation type. When presentations are
output to Dynamic Windows, the object type and presentation type are
"remembered"”; that is, the object and type of the display at a particular set
of window coordinates are recorded in the window’s output history. Because
this information remains available, previously presented objects are
themselves available for mouse input to functions for accepting objects.
(For an example of a present-accept interaction: See the section
"Introduction to Basic User Input Facilities", page 14.

In general, the display of a presented object depends on its presentation type.
However, the display of any presented object can be modified independently
of its type, and of what that type would normally dictate. If appropriate in
your application, you could present a string as a graphic display, for
example, and still have the string object be available for program input via
the mouse.

17

August 1986 User Interface Management System: an Overview

Other basic output facilities include macros for controlling character output
and a large number of formatting macros. The character output facilities
provide control over character style or style components (family, face, and
size). (For more information on character styles: See the section "Character
Styles" in Symbolics Common Lisp: Language Concepts.) Other facilities let
you specify underlining, filling, abbreviation, and truncation of character
output.

The formatting macros are high-level facilities for creating textual lists,
tables, and graphs. You provide the textual list facilities with a sequence of
objects; they provide item delimiters, like commas, and a conjunction between
the final two items. The table facilities let you create two-dimensional
displays of simple or compound objects; they give you detailed control over
layout. Two graph formatting facilities are available; both are for
constructing hierarchical graphs showing the connections among object
nodes.

Additional output facilities include a series of functions for graphic output —
points, lines, arrows, strings, circles, polygons, and so on. The basic
facilities also provide a set of methods and functions helpful for doing
graphic displays on Dynamic Windows, including one to track the mouse.

Genera’s display facilities in general, and the high-level formatting macros
in particular, are collectively known as Showcase. The Showcase facilities
are intended to make generating useful and attractive displays an easier-
going task than if you had to do all the formatting yourself. You get to
spend more time on application-specific needs for program output, and less
on the requirements that most applications have in common.

e Top-Level Facilities for User Interface Programming

The top-level facilities include a utility for prototyping/designing the window
and command interface to your program, the macro on which that utility is
based, and additional facilities for enhancing the command interface.

The prototyping utility is called the Frame-Up Layout Designer. It offers
you a choice of several standard configurations for the program frame that
will form the basis of the window interface with your users. Alternatively,
you can interactively construct the program frame, by modifying the initial
configuration (displayed on entering the utility) or one of the standard
configurations that Frame-Up provides.

Frame-Up offers options affecting the appearance and behavior of your
program that correspond directly to options for

18

Programming the User Interface, Volume A August 1986

dw:define-program-framework, the macro on which Frame-Up is based.
These options can be grouped into three areas:

1. Options affecting panes (subwindows) within the program frame.
These options control the size and placement of program panes as well
as their function, for example, whether a pane is a command-menu
pane or one for displaying program output.

2. Options affecting your program’s command loop. These options specify
how program commands are defined, aspects of command table
management, and the command loop function.

3. Miscellaneous options. Options in this area affect such things as the
user-visible name of your application, the key it can be selected on,
whether it is listed in the system menu, and so on. An important
option in this group lets you specify your program’s state variables.
Doing so makes the variables accessible to methods you write for your
program.

After you have designed a prototype program frame and specified whatever
options are appropriate, Frame-Up writes out the
dw:define-program-framework code corresponding to your specifications.
The code is written to an editing buffer, where you can add the additional
user interface features you desire, and the necessary links to your
application.

Of the top-level facilities for enhancing the command interface to your
program, one of the key capabilities provided is that of
Dpresentation-to-command translation., This capability lets your users click
with the mouse on a displayed presentation, and have that gesture cause the
execution of a command, using the presentation object as one of its
arguments. The command executed can be a standard Command Processor
command or, more likely, one you have specially created for your program.
To see how this works, evaluate the following present function, or a similar
one presenting a real pathname, in a Lisp Listener:

(present #p"y:>exampie>pathname.test")

Now, hold down the META key and place the mouse cursor over the presented
pathname. Look at the top mouse documentation line and should see
something like m-Mouse-L: Edit File (file) Y:example>pathname.test. This is
the result of having a presentation-to-command translator available on the
m-Mouse-L gesture. Clicking n-Mouse-L at this point executes the Edit File
Command Processor command on the pathname object represented by the
presented pathname.

19

August 1986 User Interface Management System: an Overview

Presentation-to-command translators are a special kind of mouse handler.
For an introduction to mouse handlers generally: See the section
"Introduction to Advanced User Input Facilities", page 12.

20

Programming the User Interface, Volume A August 1986

21

August 1986 User Interface Management System: an Overview

3. Overview of Top-Level Facilities for User Interface
Programming

The following table lists the top-level facilities available for programming the user
interface.

Table of Top-Level Facilities for User Interface Programming

Frame-Up Layout Designer

Program Framework Definition
dw:define-program-framework
dw:*program-frame*
dw::find-program-window
dw:get-program-pane

Program Command Definition
dw:define-program-command
define-presentation-to-command-translator

The implementation of these facilities is based on a model, or paradigm, for user
interaction with application programs that, because of the unique nature of the
enabling substrate, may be unfamiliar to you. (For more information on the
substrate facilities: See the section "Overview of Presentation Substrate
Facilities", page 69. See the section "Overview of Window Substrate Facilities",
page 87.) We discuss this paradigm in the first section below, before considering
the facilities themselves.

Reference documentation for the top-level facilities considered in the sections that
follow is provided in a user interface dictionary: See the section "Dictionary of
Top-level Facilities for User Interface Programming”, page 99.

3.1 User Interaction Paradigm

User interfaces built on the presentation and Dynamic Window substrates provide
a style of program interaction unlike that of conventional user interfaces. Central
to the interaction paradigm is a Command Processor that is entirely based on
these substrates and manages the user interface aspects of all commands, whether
system commands or ones you create for your program. (For more on the

22

Programming the User Interface, Volume A August 1986

Command Processor: See the section "Overview of Basic Command Facilities",
page 31.)

Top-level control for the program is provided by its command loop. The command
loop for most programs is similar:

1. Read a command.

2. Execute the command.
3. Redisplay any modified data structures (that are already displayed).

The command reader part of the loop builds and then parses a complete
"sentence", the command. Command sentences generally include "verbs",
specifying the action to be performed (for example, Show File); "nouns", the
objects on which the specified action is to be performed (for example, a pathname
argument to the Show File command); and "modifiers", specializations introduced
via optional, typically keyword, arguments. In our Show File example, the only
possible modifier is the :0utput Destination keyword. The complete sentence,
then, is

Show File (file [default Q:>1inda>library.text]) [verb]
Q:>1inda>1ibrary. text [noun]
(keywords) :0utput Destination (a destination) Printer [modifier]
(a printer [default Asahi Shimbun]) ASAHI SHIMBUN

Users can construct command sentences from keyboard input, mouse input, or a
mixture of the two. Mouse handling with respect to the Command Processor is
synchronous, meaning that mouse and keyboard input can be interleaved in the
construction of a command sentence (they use the same input buffer). Thus, for
example, if the user types in the Show File command, the pathname argument can
be supplied by clicking on a pathname presented earlier in the output.

Only presentations of a type appropriate to the command at hand are mouse-
sensitive. Appropriate presentations are ones whose type matches that of the noun
object needed to complete the command sentence. Also appropriate are
presentations that can be translated into objects of the type needed. In the above
example using Show File, presentations of the pathname type will be sensitive, as
well as presentations for which translating mouse handlers are available that, if
invoked (by clicking), will generate pathname objects. Sensitivity is indicated by
highlighting — enclosure within a box — when the mouse cursor moves over a
presentation of the right type. (For more information on mouse handlers: See the
section "Overview of Mouse Handler Facilities", page 39.

Another kind of mouse handler is available for translating directly from a
displayed presentation into a command executed using the object represented by
the presentation, that is, the presentation object, as one of its arguments. For an

23

August 1986 User Interface Management System: an Overview

example, do a Show Directory listing in a Lisp Listener. Highlight one of the
displayed pathnames by moving the mouse cursor over it and look at the top
mouse documentation line: it informs you that by clicking left you can execute
Show File on the highlighted pathname. This and other file-related commands —
click right on a pathname to pop up the menu listing them — are available on
various mouse gestures because presentation-to-command translators have been
defined for them.

Translating mouse handlers provide one kind of command acceleration, and menus
provide another. Command menus are especially useful, and used widely in
Genera. A command menu contains a set of verbs or verb phrases that
approximate, or are the same as, the names of the commands to which they
correspond. Clicking on one of the verbs supplies, or solicits from the user, the
noun(s) and modifiers for the rest of the sentence. Typically, a command menu is
displayed when a program is selected and remains displayed until it is deselected.
For examples, look at the Peek program (menu at top) or Zmail (menu in the
middle).

Even though some commands cannot be entered with the mouse and others would
be difficult or impossible to enter without some mouse-sensitive items to accelerate
them (for example, graphic presentations), all are managed by a common command
processing mechanism. This mechanism provides the same help, mouse
documentation, and completion facilities to your commands that it supplies to
system commands.

3.2 Frame-Up Layout Designer

The Frame-Up Layout Designer is an interactive code-building utility that helps
you write the user interface to an application program. The code produced is
written as a single definition using dw:define-program-framework (described in
another section of this overview: See the section "Overview of Program
Framework Definition Facilities", page 25.) What you are defining, precisely, is a
program flavor having as its name the name of your program.

Frame-Up, then, is the interactive version of dw:define-program-framework.
Using the latter facility, you can control, via keyword options, the specifics of the
program frame — the window interface to your application — and various aspects of
the command loop. (For an explanation of the command loop: See the section
"User Interaction Paradigm", page 21.) In Frame-Up, the same options are offered
as menu items.

During a session with Frame-Up, you configure the program frame by selecting
one of several standard configurations or by editing a default or selected
configuration. Editing operations include the splitting, swapping, sizing, and
deletion of panes (subwindows) within the program frame.

24

Programming the User Interface, Volume A ' August 1986

Program panes, all based on a dynamic pane flavor, come in six varieties:
e Title panes
¢ Command-menu panes
¢ Display panes
¢ Interactor panes
¢ Lisp Listener panes

¢ Accept-values panes (another kind of menu pane for accepting variable, user-
specified values)

For panes of each type, an appropriate set of options is available, controlling such
factors as the pane name, height, whether a typeout window can appear, and the
name of the function controlling redisplay of output to the pane.

In addition to pane options, Frame-Up provides program options for specifying the
program name, key to be used for selecting the program, and factors related to
Command Processor operations. Again, both these and the pane options are
implemented as menu items that map to keyword options to
dw:define-program-framework.

When you are done laying out your program frame and specifying interface
options, you can preview the result and, if acceptable, exit to the editor buffer
where you wish the interface code to be written. Using an editing command, you
can then have Frame-Up write the dw:define-program-framework code
corresponding to your interface into the buffer (it is appended to anything that
was already in the buffer).

At this point you have the foundation and a good part of the superstructure of the
user interface to your application. Of course, you have to write your program’s
commands and all of the application-specific code not already in place. Much of
that code will manipulate your program’s state variables. Note that Frame-Up,
through dw:define-program-framework, has created a program flavor for your
application. This means that your state variables can be set up as instance
variables to the program flavor, and that you can access them directly in methods
written for the program flavor.

Because of the close connection between the Frame-Up Layout Designer and
dw:define-program-framework, you may find the overview of the latter facility
helpful in understanding the former: See the section "Overview of Program
Framework Definition Facilities", page 25. For complete documentation of Frame-
Up: See the section "Frame-Up Layout Designer", page 103.

25

August 1986 User Interface Management System: an Overview

3.3 Program Framework Definition Facilities

All top-level user interface facilities are based on a model for application
programs. Typically, a set of commands is made available to the user which,
when invoked, implements the program-specific functions forming the core of the
application. As each command is executed, displayed information affected by the
invoked function(s) is updated and redisplayed. This sequence of events, from
waiting for command input through execution and redisplay, is referred to as the
command loop.

Soliciting user input and displaying or redisplaying program output are user
interface functions separable to a large extent from the implementation details of
particular applications. If those details form the core of the application, then the
user interface functions can be thought of as the framework. The framework
definition facilities let you abstract the user interface functions from your program
and implement them at a high level. Central to this capability is the macro
dw:define-program-framework.

A major function performed for you by dw:define-program-framework is that of
establishing and managing the command loop for your program. As part of the
services provided in this area, it sets up a command-definition macro specifically
for your program. This macro is essentially the same as
dw:define-program-command, which is considered in another section of this
overview. (See the section "Overview of Program Command Facilities", page 28.)
For example, say you have a game program named "nickel-dime"; the first part of
the dw:define-program-framework definition for this application might look
something like:

(dw:define-program-framework nickel-dime
:pretty-name "Nickel & Dime Game"
:command-definer define-n-d-command

)

The value provided to the :command-definer keyword becomes the symbol for the
command-definition macro that dw:define-program-framework creates for you. In
other words, you could now write program commands using

(define-n-d-command (<command-name> <program-name> [keywords])
<arglist>
<body>)

In addition to establishing and managing the command loop,
dw:define-program-framework provides control in two other key areas:
management of screen real estate via a program frame (window); and management
of your program’s state variables. The former capability lets you specify the
frame configuration(s) your program presents to the user. Specification details

26

Programming the User Interface, Volume A August 1986

include the types and sizes of various panes (subwindows) within the frame
created by dw:define-program-framework for your program. (For a discussion of
frames and panes: See the section "Frames" in Programming the User Interface,
Volume B.)

State variables are program variables whose states (bindings) are preserved
between activations of a program. They are managed through a keyword option to
dw:define-program-framework. By using this option, program data, which you
might otherwise store as special variables, are stored instead as instance variables.
(For a discussion of variables: See the section "Kinds of Variables" in Symbolics
Common Lisp: Language Concepts.)

The flavor to which the instance variables belong is your program itself; that is,
dw:define-program-framework creates a program flavor unique to your program
and having as its name the name of your program. An important and useful
consequence of this is that program functions may be written as methods to the
program flavor, and thereby have direct access to its instance variables, including
your state variables. (For information on flavors and methods: See the section
"Flavors" in Symbolics Common Lisp: Language Concepts.)

To illustrate these points, let’s extend the nickel-dime game example begun above:

(dw:define-program-framework nickel-dime
:pretty-name “Nickel & Dime Game"
:command-definer define-n-d-command
:panes ((title-pane :title)
(command~pane :command-menu)
(graphics-window :display)
(message-window :interactor))
:configurations *((first
(:layout
(first :column title-pane command-pane
graphics-window message-window))
(:sizes
(first (title-pane 8.65)
(command-pane :ask-window self
:size-for-pane command-pane)
:then
(graphics-window 8.8)
(message-window 8.2)))))
:state-variables ((game-flag)
(user-input)
(game-array)
(history-list)
<)

27

August 1986 User Interface Management System: an Overview

The program frame is specified first by the :panes option, which indicates the
names and types of panes included; and second by the :configurations option,
which controls details of pane layout and size.

The :state-variables option identifies program variables. Having been thus
identified, these variables are lexically available in methods written for the
program flavor nickel-dime. The following is a simple method to keep track of
moves made in the game so far:

(defmethod (game-history nickel-dime) ()
(setq history-list (append history-list
(cons game-array NIL))))

Three other facilities are provided for use in conjunction with
dw:define-program-framework. These are dw:*program-frame*,
dw::find-program-window, and dw:get-program-pane.

The first, dw:*program-frame*, is a variable bound to the currently exposed
program frame. The following example was generated by selecting the Frame-Up
Layout Designer — a example of a program created with
dw:define-program-framework (the Flavor Examiner is another) — and pressing
SUSPEND to enter a break loop:

Command: ,dw:xprogram-framex ==>
#<PROGRAM-FRAME Frame-Up 1 3186337 exposed>

dw::find-program-window returns the program frame of a specified program
flavor, whether it’s exposed or not. Optionally, it creates and initializes an
instance of the program if one does not already exist. Using
dw:get-program-pane is how you access a particular pane of a program frame,
rather than the frame as a whole.

Reference documentation for dw:define-program-framework and ancillary
facilities is included in a user interface dictionary: See the section "Dictionary of
Top-level Facilities for User Interface Programming"”, page 99. For an example
and additional information on the use of certain options to
dw:define-program-framework, particularly those implementing the command
interface: See the section "User Interface Application Example", page 91. An
advanced example is included in the file sys:examples;define-program-
framework.lisp.

The Frame-Up Layout Designer is an interactive version of
dw:define-program-framework. For an overview of this facility: See the section
"Overview of the Frame-Up Layout Designer", page 23. For more detailed
documentation: See the section "Frame-Up Layout Designer”, page 103.

28

Programming the User Interface, Volume A August 1986

3.4 Program Command Facilities

Two key facilities are included in this category of top-level user interface tools.
The first is dw:define-program-command; the second is
define-presentation-to-command-translator.

The command-definition macro dw:define-program-command is intended for use
only in conjunction with dw:define-program-framework (reviewed in another
section: See the section "Overview of Program Framework Definition Facilities",
page 25.) The macro not only lets you define commands for your program, but
also specifies whether they are shown on a command-menu pane created by
dw:define-program-framework for your program frame. Moreover, use of the two
macros ensures that your commands are properly installed in the command table
created for your program (by dw:define-program-framework). In other respects,
dw:define-program-command is similar to the basic command-definition facility,
cp:define-command. (For more information on cp:define-command: See the
section "Overview of Basic Command Facilities", page 31.)

define-presentation-to-command-translator creates a mouse handler that lets
your program’s users click on a presentation and, through that action, cause a
specified program command to be executed on the presentation object. To use the
terminology presented in another section, it sets up the noun-verb order of the
command sentence. Clicking on the noun initiates the completion and execution of
the command sentence. The verb part of the sentence, that is, which command
gets invoked on the noun, depends on the particular mouse gesture used.

The following example is taken from the system source. It defines the Delete File
presentation-to-command translator:

(define-presentation-to-command-translator si:com-delete-file
(fs:pathname
:gesture nil)
(path)
(cp:build-command ’si:com-delete-file (ncons path)))

Note the use of cp:build-command in the body of this translator. This is the
recommended way of interfacing to Command Processor commands from
presentation-to-command-translators. Note also that the :gesture option to the
translator is nil. This means that the translator is not available on any gesture,
but only in the click-right menu available for all presentations.

For more on the role of presentation-to-command translators in the user interface:
See the section "User.Interaction Paradigm”, page 21. For an overview of mouse
handlers generally: See the section "Overview of Mouse Handler Facilities", page
39.

Reference documentation for these facilities is included in a user interface

29

August 1986 User Interface Management System: an Overview

dictionary: See the section "Dictionary of Top-level Facilities for User Interface
Programming”, page 99. For examples in the context of an application program:
See the section "User Interface Application Example", page 91.

30

Programming the User Interface, Volume A August 1986

31

August 1986 User Interface Management System: an Overview

4. Overview of Command Processor Facilities

The facilities described here are divided into basic and advanced categories. The
distinction is between functions that most application programmers are likely to
use regularly, and those that they are not. The boundary is not a hard one, and
we recommend that you look over both sections, especially if you are unfamiliar
with Command Processor programming.

Reference documentation for the facilities discussed here is included in a user
interface dictionary: See the section "Dictionary of Command Processor
Facilities", page 135.

4.1 Basic Command Facilities

Table of Basic Command Facilities

Command Definition Facilities
cp:define-command

Command Processor Interface Facilities
cp:execute-command
cp:build-command
cp:*last-command-values*

As the above table shows, the basic command facilities are for
o Defining new Command Processor commands

e Providing an interface between your program and pre-existing Command
Processor commands or those you newly define.

Only one basic facility is needed for defining Command Processor commands,
cp:define-command. This macro lets you both create a command and install it
into the command table of your choosing. For example, all predefined commands,
those listed when you type "help" to the Command Processor prompt in a Lisp
Listener, are in the "Global" command table. You may specify that your
commands also be available in the "Global" command table, or in an application-
specific command table. (For more information on command tables: See the
section "Command Processor Command Tables" in Programming the User Interface,
Volume B.)

32

Programming the User Interface, Volume A August 1986

If you are writing Command Processor commands intended specifically for use
with a program you have created using dw:define-program-framework, you can
do so with cp:define-command, but dw:define-program-command would be the
better choice. The latter facility is intended for use with program definitions; it
provides lexical access to a program’s state variables, and other services as well:
See the section "Overview of Program Command Facilities", page 28.

The objects listed in the table under Command Processor Interface Facilities allow
you to use predefined Command Processor commands in your own code. The first,
cp:execute-command, is used by programs to invoke Command Processor
commands on a specified set of arguments. The second, ep:build-command, is
used similarly by command translators (defined with
define-presentation-to-command-translator). (For an example of a command
translator showing the use of ¢p:build-command, and of cp:define-command:

See the section "User Interface Application Example", page 91.)

The special variable cp:*last-command-values* provides access to the values
returned by the most recently executed Command Processor command.

4.2 Advanced Command Facilities

One of the major advantages of using the top-level facilities for building the user
interface to an application program is that they provide the command loop. (See
the section "Overview of Top-Level Facilities for User Interface Programming”,
page 21.) This relieves you of explicit responsibility for creating command
prompts, reading and parsing commands, and so on. You can concentrate instead
on the application-specific details of the commands themselves.

However, if you need some subtlety of command loop behavior not available in the
default command loop functions used by dw:define-program-framework, then you
can write your own functions with the aid of the facilities reviewed in this section.
Note that this does not mean that you cannot or should not use
dw:define-program-framework to build your user interface; it means only that
you should make use of the :top-level and :command-evaluator keywords to that
macro and supply your own command loop functions. For examples: See the
section "User Interface Application Example", page 91.

The Advanced Command Facilities are divided into three subcategories:
e Command Loop Management Facilities
¢ Command Table Management Facilities

e Command Accelerator Facilities

33

August 1986 User Interface Management System: an Overview

4.21 Command Loop Management Facilities

The first subcategory of Advanced Command Facilities includes facilities for
building command loops. A primary requirement is for reading and parsing
commands, the function of the first six facilities listed below, from
cp:read-command to cp:read-accelerated-command. They include command
readers for regular commands, extended commands, accelerated commands, and so
on.

Command Loop Management Facilities
cp:read-command
cp:read-command-or-form
cp:read-command-arguments
cp:yank-and-read-full-argument-command
cp:read-full-command
cp:read-accelerated-command
cp:echo-command
cp:unparse-command
cp:define-command-and-parser
cp:turn-command-into-form
cp::*default-blank-line-mode*
cp::*default-dispatch-mode*
cp::*default-prompt*

The other facilities listed in this subcategory provide a variety of useful services.
For example, cp:unparse-command takes a command symbol and any arguments
and returns the characters that would have been typed in to produce that
command; you can use it, as the system does, to construct mouse documentation.
cp:define-command-and-parser is a low-level, command-defining macro that lets
you control how the command line is parsed. cp:turn-command-into-form takes a
command name and a list of arguments, and constructs an evaluable form.

Finally, the three special variables — cp::*default-blank-line-mode¥*,
cp::*default-dispatch-mode*, and cp::*default-prompt* — provide defaults for use
by cp:read-command and cp:read-command-or-form.

4.2.2 Command Table Management Facilities

Command Table Management Facilities
cp:*command-table*
cp:make-command-table
cp:find-command-table
cp:install-commands
cp:delete-command-table
cp:command-in-command-table-p

34

Programming the User Interface, Volume A August 1986

The Command Table Management Facilities are mostly self-explanatory. The
current binding of the variable, cp:*command-table*, is the command table used
by the Command Processor to read commands. The next three facilities are
functions for making and retrieving command table objects, and for installing
commands into command tables. cp:delete-command-table removes a command
table from the command table registry, and the predicate
cp:command-in-command-table-p lets you test for the inclusion of a command in
a command table.

For more information on command tables: See the section "Command Processor
Command Tables" in Programming the User Interface, Volume B.

4.2.3 Command Accelerator Facilities

Command accelerators form the focus of the final subcategory of Advanced
Command Facilities. Only one facility is provided, used for defining command
accelerators:

Command Accelerator Facilities
cp:define-command-accelerator

Command accelerators are so called because they allow you to invoke, with a
single key, a Command Processor command normally invoked by one or more
words. For example, suppose in your application you define an Exit command to
bury the program frame. You could put this command on the key E or X. A user
would merely have to press the E or ¥ key to exit the program.

When deciding whether to create new command accelerators, be aware that your
program can inherit any command accelerators already existing in other command
tables. If your program inherits these tables via the :command-table option to
dw:define-program-framework, installed accelerators come along with the
commands they accelerate. (See the function "dw:define-program-framework",
page 124.)

If you wish to define and install your own accelerators, you can do so with
cp:define-command-accelerator.

35

August 1986 User Interface Management System: an Overview

5. Overview of User Input Facilities

This section divides the user input programming facilities of SemantiCue into
basic and advanced categories. As with similar distinctions made for Command
Processor and program output facilities, we expect most programmers to make
relatively heavy use of the basic facilities, and lighter use of the advanced
facilities. Programming styles and needs differ, however, so the distinction is a
somewhat arbitrary one, not to be taken too seriously.

If these facilities are new to you, you might find the introductory sections to this
volume helpful in understanding the following discussion: See the section
"Introduction to the User Interface Management System", page 7.

Reference documentation for all the user input facilities can be found in a user
interface dictionary: See the section "Dictionary of User Input Facilities", page
163.

5.1 Basic User Input Facilities

The user input and program output facilities provided in Genera rely on the
presentation-type system. This system is an extension of the Common Lisp type
system and was created especially to facilitate user interface programming. The
Basic User Input Facilities described in the following subsections are based on the
presentation-type system and designed for use with Dynamic Windows. For more
information on presentation types: See the section "Overview of Predefined
Presentation Types", page 71. For more on Dynamic Windows: See the section
"Overview of Window Substrate Facilities", page 87.

5.1.1 Facilities for Accepting Single Objects

Basic User Input Facilities can be categorized into those for accepting single
objects and those for accepting multiple objects. Facilities in the first category
are listed below.

Facilities for Accepting Single Objects
accept
prompt-and-accept
accept-from-string
dw:menu-choose
dw:menu-choose-from-set

The primary facility for accepting input of presentation objects is the Symbolics

36

Programming the User Interface, Volume A August 1986

Common Lisp function accept. Objects can be accepted via keyboard or mouse
input. Characters typed in at the keyboard in response to an accept prompt are
parsed, and the object they represent is returned to the calling function.
Alternatively, if the object has previously been output as a presentation and is in
the current viewport of a Dynamic Window, the user can click on the object with
the mouse and cause it to be returned directly (that is, no parsing is required).

Examples:

(accept ’((string))) ==>
Enter a string: a string
“a string”
((STRING))

(accept ’((string))) ==

Enter a string [default a stringl: a string
"a string”

((STRING))

In the first accept function, "a string" was typed at the keyboard. In the second
accept, the user clicked on the keyboard-entered string of the first function. In
both cases, the string object was returned.

Typically, not any kind of object is acceptable as input. Only an object of the
presentation type specified in the current accept function can be input. The
accept function establishes the current input context. For example, if the call to
accept specified an integer presentation type, only a typed in or displayed integer
would be acceptable. Numbers displayed as integer presentations would, in this
input context, be mouse-sensitive, but those displayed as part of some other kind
of presentation, for example, a file pathname, would not. Thus, accept controls
the input context and thereby the mouse sensitivity of displayed presentations.

We say above that the range of acceptable input is, typically, restricted. How
restricted is strictly up to you, the programmer. Using compound presentation
types like and and or, and other predefined or specially devised presentation types
gives you a high degree of flexibility and control over the input context. Consider
the following example:

(accept ’((or ((integer 1 4))
((dw:member—séquence
("one" “two" "three" "four")))))) ==
Enter an integer greater than or equal to 1 and
less than or equal to 4 or one, two, three, or four: three
"three"
((DW:MEMBER-SEQUENCE ("one" "two" "three" "four")))

37

August 1986 User Interface Management System: an Overview

(accept ’((or ((integer 1 4))
((dw:member-sequence
("one" "two" "three" "four")))))) ==>
Enter an integer greater than or equal to 1 and
less than or equal to 4 or one, two, three, or four: 4
4
((INTEGER 1 4))

The particular combination of types used above might not have any practical use,
but it does begin to illustrate what the possibilities are. Notice that accept took
care of devising a prompt. You could override this if you wanted to, but in most
cases it comes up with something reasonable.

The parser used by accept for parsing strings into presentation objects is not part
of the accept function itself. Rather, each presentation type has its own, type-
specific parser that accept calls to parse objects of that type. The parser function
is included in the form that defines a presentation type. You may write your own
presentation types, including the parsers (and printers) that go with them, but a
sizeable set of types has already been defined for you: See the section "Overview
of Predefined Presentation Types", page 71. Each is documented in a user
interface dictionary: See the section "Dictionary of Predefined Presentation
Types", page 281.

Ancillary functions for accepting single objects include prompt-and-accept and
accept-from-string. The first is the presentation-system equivalent of
prompt-and-read. It is similar to accept, taking the same keyword options, but
differs in its letting you use the format function to generate the input prompt.
accept-from-string is the presentation-system equivalent of read-from-string.

Two accept-based menu facilities are included among .the facilities for accepting
single objects. The dw:menu-choose function is a menu-generating facility for
use with Dynamic Windows. It displays a list of choices in a conventional menu
format and returns the value associated (in your code) with the selected choice.

dw:menu-choose differs from the second listed menu facility,
dw:menu-choose-from-set, in its ability to create menus of items in the "general
list" form. (See the section "The Form of a Menu Item" in Programming the User
Interface, Volume B.) dw:menu-choose-from-set is intended primarily for creating
menus from a simple list of objects.

When considering menus for your applications, bear in mind that Dynamic
Windows with displayed presentations can be regarded as menus of input
possibilities. You may not need to construct a menu in the strict sense of
dw:menu-choose to provide your users with the convenience that mouse
acceleration of data entry provides.

38

Programming the User Interface, Volume A August 1986

5.1.2 Facilities for Accepting Multiple Objects

A second category of basic facilities for user input includes functions that return
multiple objects to your program, rather than single objects. These are listed
below:

Facilities for Accepting Multiple Objects
dw:accept-values
dw:accept-variable-values
dw:accepting-values

The function dw:accept-values is similar to aceept. It differs in that it accepts a
series of objects from the input stream, not just one object. The presentation type
of each input object is specified independently. In the following example, an
integer and a pathname object are sought:

(dw:accept-values ' ((integer :prompt "Half-life"
:default 24600)
(pathname :prompt "Log file"))
:prompt “Atomic experiment") ==>
Atomic experiment
Half-1ife: 24000
Log file: Y:>curie>atom-data.log
ABORT aborts, END uses these values ==>
24600
#P"Y:>CURIE>atom-data. 10g"

The dw:accept-variable-values function is like dw:accept-values, but instead of
returning a series of the user-entered values, it assigns these values to a set of
special variables. It does this as the values are entered, not after the function
returns. You have the option of constraining user choices for certain variables to
a predefined set.

dw:accepting-values is a macro that takes all calls to accept within its body and
puts the prompts into a single, multiple-prompt display like the one shown in the
example above. It is the most versatile of the three and the one recommended for
general use. One of its big advantages over the previous functions is that the
multiple-prompt display can be modified at runtime, in response to values entered
by your user to earlier prompts in the display. In other words, the values you
solicit from your users can change "on the fly", at runtime, depending on the
values already received. The following is a simple example:

39

August 1986 User Interface Management System: an Overview

(defun return-host-or-printer ()
(fresh-1ine)
(1et (choice
(stream xquery-iox))
(dw:accepting-values (stream :own-window t)
(setq choice (accept ’((member host printer))
:default ’printer
:stream stream
:praompt “Send file to host or printer?"))
(case choice
(host (accept ’neti:host :stream stream))
(printer (accept ’sys:printer :stream stream))))))

For other examples, see the file sys:examples;accepting-values.lisp.

5.2 Advanced User Input Facilities

Facilities in this category are directed towards mouse manipulation of presentation
objects, a key feature of the SemantiCue input system. The primary facilities in
this category are those for defining mouse handlers. An ancillary set of facilities
is provided for managing the interface between the symbolic mouse gestures used
to invoke the handlers and the mouse characters to which the gestures correspond.

In the subsections that follow, we first present an overview of the mouse-handler
definers and closely allied facilities. Then we look at the mouse gesture interface
facilities. Following these two is an advanced concepts section. This section
considers the important subject of handler lookup, that is, how SemantiCue finds
the handlers applicable in any given input context, and some performance issues.
The discussion is at a fairly advanced level, and is probably best put off until after
you have a good working knowledge of handlers, presentation types, and the
Dynamic Window system.

5.2.1 Mouse Handler Faclilities

Facilities that let you or your users manipulate presentation objects with the
mouse are referred to as mouse handlers. A large number of predefined mouse
handlers are already included in SemantiCue. Clicking right on a displayed
presentation in a Dynamic Lisp Listener throws up a menu of handlers applicable
to the presentation object.

You define your own, application-specific handlers using the definition macros
listed in the following table:

40

Programming the User Interface, Volume A August 1986

Mouse Handler Facilities
define-presentation-translator
define-presentation-action
dw:handler-applies-in-limited-context-p
dw:presentation-subtypep-cached
dw:delete-presentation-mouse-handler
dw:invalidate-type-handler-tables

Translating handlers, the kind generated with define-presentation-translator, are
typically run when your program is waiting for input (of presentation objects).
Given that some presentations are visible to your user, translators let the user
click on a presentation of one type and use it as input of a different type, the type
your program is seeking.

For example, say your program wants to input the version number of a file. You
could define a translating handler that extracts the version number, an integer
object, from a pathname presentation. Your program’s users would then have the
option of typing in a version number to the input prompt, or clicking on a
pathname presentation that included a version number. Such a translator could
be defined as follows: '

(define-presentation-translator pathname-to-integer
(pathname integer
:gesture :middle
:documentation "Return file version number")
(pathname)
(when (numberp (send pathname :version))
(send pathname :version)))

After compiling this translator, try doing a Show Directory listing, then evaluate
(accept ’((integer))). In this input context, move the mouse cursor over one of
the pathnames and notice that the top mouse documentation line now says Mouse-
M: Return file version number; Mouse-R: Menu. Clicking middle enters the file
version number as an integer object.

define-presentation-to-command-translator is another translating-handler
definition facility. It creates handlers for performing a single kind of translation,
from presentations to Command Processor commands. This is considered a high-
level facility and is discussed in another section: See the section "Overview of
Program Command Facilities", page 28.

Side-effecting mouse handlers, the kind you create with
define-presentation-action, are also typically run while your program is waiting
for input, but do not themselves supply input. Rather, they run code outside the
main control loop of your program to accomplish some action that is useful
relative to the presentation which activates them.

41

August 1986 User Interface Management System: an Overview

A common use for side-effecting handlers is to display additional information about
some presentation object. For example, if your program is providing graphic
presentations of several key variables, it may be the case that to select of one of
the variables to use as input, your user will require more information about the
variables than can be included in the graphic representations. A side-effecting
mouse handler could be used at this point to provide a display of all pertinent
information about each of the available objects.

A major use made of side-effecting handlers by SemantiCue is to display menus of
other handlers. The standard click-right menu for presentations, which shows
handlers available in the current input context for the presentation at hand, is
implemented in this fashion. Such handlers are created by specifying the
:defines-menu option to define-presentation-action.

For some example mouse handler definitions: See the section "User Interface
Application Example", page 91.

dw:handler-applies-in-limited-context-p and dw:presentation-subtypep-cached
are related facilities used in :tester functions defined for translators. They
restrict handler applicability to a specified input context. For more information:
See the section "User-Defined Data Types as Presentation Types", page 82.

Other facilities concerned with mouse handlers include
dw:delete-presentation-mouse-handler and dw:invalidate-type-handler-tables.
The former eliminates a handler from your world. The latter is used when the
presentation-type inheritance hierarchy has changed and the look-up tables
controlling handler applicability need to be recomputed to reflect the change. For
example, if you have defined a type that, depending on a flag, expands one way or
another, then every time the flag changes you need to update the handler tables;
dw:invalidate-type-handler-tables does this for you automatically the next time
the tables are accessed.

5.2.2 Mouse Gesture Interface Facllities

Mouse Gesture Interface Facilities
dw:mouse-char-gesture
dw:mouse-char-gestures
dw:mouse-char-for-gesture

The Mouse Gesture Interface Facilities are ancillary to the mouse handlers. They
provide the interface between mouse gestures, the symbolic names for mouse
clicks — for example, :left, :middle, :right — and the mouse characters to which
they correspond — #\mouse-l, #mouse-m, #\mouse-r.

With these facilities, you can use predefined mouse gestures in your code where
the symbolic names are required, or define and use new ones. Gestures are

42

Programming the User Interface, Volume A August 1986

required, in particular, for defining mouse handlers. Handlers are always defined
on some gesture.

For more information about mouse characters and mouse character functions: See
the section "Mouse Characters" in Programming the User Interface, Volume B.

5.2.3 Advanced Mouse Handler Concepts
5.2.3.1 How Mouse Handlers Are Found

You do not generally need to worry about the specifics of how SemantiCue decides
what presentations to highlight or precisely which mouse handlers are available in
a given input context. Still, it is helpful to understand the process conceptually,
as it provides insight into some of the key aspects of SemantiCue’s behavior. Also,
this understanding is necessary when deciding how to correct some unexpected
behaviors of the handlers you define.

When you move the mouse over a presentation, SemantiCue performs a multi-
faceted search to find the right combination of 1) a presentation to highlight; 2)
mouse handlers on that presentation; and 3) contexts to satisfy with the values
returned by those handlers, were they invoked. The search includes the following
activities:

e The presentation under the mouse is found. Presentations are arranged in a
hierarchy; it is the innermost (smallest) presentation that is found at this
stage. This presentation is found in the window’s output history from the
(%, y) position of the mouse.

e When the innermost sensitive presentation is found, the hierarchy of
presentations is searched, from innermost to outermost, to find a
presentation that has applicable handlers.

e What handlers apply to a presentation is determined by matching the
to-presentation-type of the handler with the input context(s), and the
from-presentation-type of the handler with the presentation-type of the
presentation or the type of the object (the two are not necessarily the same).

Type matching is based on the dw:presentation-subtypep function. That is,
the presentation or object type must be a subtype of the type the handler
accepts, and the type returned by the handler must be a subtype of the type
wanted by the program.

¢ Different levels of the software may be looking for different presentation
types. For example, when accepting a command, the parser for the
cp:command presentation type accepts a cp:command-name, which in turn
looks for some text. A handler defined with

43

August 1986 User Interface Management System: an Overview

define-presentation-to-command-translator may satisfy the accept of the
cp:command presentation-type; clicking on an item output in a Help display
may satisfy the accept of cp:command-name; while the translator on c-
Mouse-M may provide some of the text that is being read by
cp:command-name’s parser. The search proceeds so as to favor satisfying
the outermost context.

e Mouse handlers whose gestures are assigned to mouse characters with the
current set of shift keys down are considered. (However, other handlers may
may also be examined to determine which other shifts have commands. This
is so SemantiCue can generate the lower mouse documentation line.)

e The handlers for a particular gesture are sorted according to a precedence
ordering. This ordering follows these rules:

1. All handlers on :gesture t (that is, all handlers professing to handle
all gestures) are handled before handlers on specific gestures.

2. If the first :gesture t handler found has been defined with the
:exclude-other-handlers t option, then no other handlers are
considered, even if the handler with :exclude-other-handlers t does
not pass the tests described below.

3. The handlers are then sorted by priority, and considered in priority
order. The first one for a particular gesture that passes the tests is
the one that is used. See the macro "define-presentation-action",
page 179.

e Finally, a mouse handler must pass a series of tests before it is considered
applicable to a presentation. The tests include:

1. If there is a predicate associated with the mouse handler’s
from-presentation-type, it is applied to the presentation’s object. This
predicate can come either from a satisfies clause in the type or its
expansion, or from a :typep argument in the define-presentation-type.

2. If there is a :tester for the mouse handler, it is called on the
presentation, the context, the window, the handler, and the gesture.

3. The handler must either have :do-not-compose t, or its value must not
be the single value nil. (A single value of nil means the body decided
not to handle the presentation). This returned value may then be
tested by a predicate derived from the context presentation-type, in a
manner similar to the predicate derived from the from-presentation-type,
in number 1 above.

44

Programming the User Interface, Volume A August 1986

4. If the handler declares that it defines a menu (via the :defines-menu
option), a check is made that there is at least one handler which is
declared to be in that menu that applies in the current combination of
context and presentation.

If any of these tests returns nil, the handler does not apply.

With respect to performance, it is important to realize that not all of this search
is performed each time the mouse cursor crosses a presentation. Although several
general principles related to handler efficiency exist, SemantiCue uses many
performance techniques that complicate any straightforward analysis in this area.
Most things happen considerably more quickly than the preceding description
might suggest. Because of various forms of caching, this is especially true after a
handler search has already occurred in a given context.

See the section "Some Efficiency Caveats for Mouse Handlers", page 44.

5.2.3.2 Some Efficiency Caveats for Mouse Handlers

Following are some caveats for making your mouse handlers efficient:
e Make handlers as specific as possible.

Use the most specific types appropriate as your handler’s
from-presentation-type and to-presentation-type. Doing so will respectively
restrict the number of presentations to which the handler potentially applies
and the variety of input contexts in which it is potentially available.

In particular, avoid handlers for t and sys:expression contexts. These apply
in a wide variety of contexts, and the effect is cumulative; the more there
are, the slower everything becomes. If you do define such handlers, pay
particular attention to their efficiency. This also applies to translators from
and to subtypes of sys:expression. See the section "Use of User-defined
Data Types as Presentation Types".

¢ Keep presentation-type :expander and :abbreviation-for forms simple.

These forms are evaluated a large number of times. They should avoid both
consing and excessive computation. It is best if they are simple backquoted
forms, as the system knows how to turn such consing into stack-consing,
resulting in more speed and less work for the garbage collector.

Also, avoid large type expansions. An :expander or :abbreviation-for clause
with a large expansion, especially inside an or, results in much extra
searching and possibly increased memory requirements for the handler
lookup tables. Carried to an extreme, this could make all handler lookups

45

August 1986 User Interface Management System: an Overview

slow owing to excessive paging. If needed, use a more general type and a
satisfies clause.

¢ Keep :tester forms fast.

Bodies of translators can be slow so long as the :tester form returns nil in
the cases where the body would be slow.

o Keep translators fast.

Expensive computations are best done as commands, rather than as
translators. Translators run when you move the mouse; commands do not
run until you ask for them.

o If a slow translation is necessary, use :do-not-compose t.

If you feel a slow operation must be done as a translator, use :do-not-
compose t. This suppresses SemantiCue’s evaluation of the result. Because
it also suppresses any contextual checking of the result, use it sparingly.

¢ Avoid interpreted satisfies clauses.

Write an auxiliary function and use that instead. satisfies clauses are run
during mouse handling; running them interpreted creates a needless
slowdown,

For some related information and examples: See the section "User-Defined Data
Types as Presentation Types", page 82.

46

Programming the User Interface, Volume A August 1986

47

August 1986 User Interface Management System: an Overview

6. Overview of Program Output Facilities

Genera’s program output facilities are collectively known as Showcase. Here we
divide them into basic and advanced categories, as we have the Command
Processor and user input facilities. The larger category is the first, the basic
facilities, which includes a variety of functions for formatted output. The
advanced facilities provide incremental redisplay capabilities and functions helpful
when writing you own formatted output macros.

In the following sections we consider first the basic output facilities, then the
advanced facilities. This is followed by two brief notes on output streams and
naming conventions for program output macros.

Reference documentation for all Showcase facilities is included in a user interface
dictionary: See the section "Dictionary of Program Output Facilities", page 201.

6.1 Basic Program Output Facilities

The basic program output facilities are distributed among the following categories:
o Basic Presentation Output Facilities
e Character Environment Facilities
e Textual List Formatting Facilities
e Table Formatting Facilities
o Graph Formatting Facilities
e Graphic Output Facilities
e Progress Indicator Facilities

e Other Facilities for Program Output

6.1.1 Basic Presentation Output Facilities

Program output and input facilities are necessarily tightly coupled. In Genera, the
coupling is provided by presentation types and Dynamic Windows. All output of
presentation objects is potentially available as user input, mouse-sensitive in the
right input context.

48

Programming the User Interface, Volume A August 1986

Basic facilities for doing output of presentations are shown below:

Basic Presentation Output Facilities
present
present-to-string
dw:with-output-as-presentation

The primary facilities provided for presentation output are present and
dw:with-output-as-presentation. present is the basic function for outputting
presentation objects. The exact form that the output takes, that is, its printed
representation, is not determined by present, however, but rather by the
presentation type of the object being presented. The definition of the presentation
type includes a printer function specifying the details of the output display. The
following examples show presentation of inverted-boolean and character-style
objects:

(present t ’((inverted-boolean))) ==>No
#<DISPLAYED-PRESENTATION 444312267>

(present (si:parse-character-style ’(:swiss :bold :large))) ==
SWISS.BOLD.LARGE
#<DISPLAYED-PRESENTATION 425221252>

You have the option of defining your own presentation type, with its own printer
function, but many, like the two example types above, have already been defined
for you. (For a list of predefined types: See the section "Overview of Predefined
Presentation Types", page 71. Reference documentation for each listed type is
included in a user interface dictionary: See the section "Dictionary of Predefined
Presentation Types", page 281.)

If you wish to output an object as a presentation of a predefined type, but want to
modify the printed representation of the object, the
dw:with-output-as-presentation macro provides such a capability. It uses your
code to print an object rather than the printer of the presentation type. The
following function of two arguments presents the first, this, as an object of
presentation type that:

49

August 1986 User Interface Management System: an Overview

(defun present-this-as-that (this that
&optional (stream xstandard-outputx))
(send stream :clear-history)
(dw:with-output-as-presentation (:single-box t
:stream stream :type that :object this)
(send stream :draw-circle 258 288 25)
(send stream :draw-circle 278 288 25)))

Try calling this function with "ABC" as the first argument and ’ ((string)) as the
second. Then, do (accept ’((string))) and click on the graphic. You will see
that a perfectly normal string object is returned, despite its unorthodox
presentation.

The third function listed in the above table, present-to-string, is the presentation-
system equivalent of write-to-string. The output is done in such a way as to
ensure that the output object can subsequently be input as a presentation object
(via accept-from-string).

6.1.2 Character Environment Faclilities

Facilities providing control over the appearance of characters and lines of
characters are listed in the following table:

Character Environment Facilities
with-character-style
with-character-family
with-character-face
with-character-size
with-underlining
abbreviating-output
filling-output
indenting-output

The first four facilities are macros affecting character style. A character style
specification includes a character family, face, and size. Macros are provided to
control each of these attributes individually or all together. The final character
style of the output characters is the result of merging the macro-specified style
against the default style set for the output stream. (For more information on
character styles: See the section "Character Styles" in Symbolics Common Lisp:
Language Concepts.)

50

Programming the User Interface, Volume A

August 1986

The following example shows the use of with-character-style to italicize the

column headings in a table:

(defun table-with-italicized-heads ()

(fresh-1ine)
(formatting-table ()
(formatting-column-headings (())
(with-character-face (:italic)
(formatting-cell ()
“Number")
(formatting-cell ()
“Square")))
(Toop for i from 1 to 18
as square = (x i i)
do
(formatting-row ()
(formatting-cell (nil
(princ 1))
(formatting-cell (nil
(princ square))))))

(table-with-italicized-heads)
Number Square

1
2
3
4
5
6
7
8
9
1

NIL

1
4
9
16
25
36
49
64
81

100

:align :center)

:align :right)

The remaining facilities are also macros. with-underlining adds underlines to
character output. abbreviating-output terminates a line of characters and
supplies ellipses near the right edge of the output window. filling-output
prevents the breaking of lines in the middle of words; it inserts newlines at
appropriate points. indenting-output lets you insert space or a string at the
beginning of each new line of character output.

51

August 1986 User Interface Management System: an Overview

Here’s an example using abbreviating-output:

(defun abbrev-test (width height)
(abbreviating-output (() :width width :height height
:show-abbreviation t)
(toop for row from 1 to 28 do
(terpri)
(loop for col from 1 to 188 do
(format T " ~d:~d" row col)))))

(abbrev-test 42 10) ==>

1:11:21:31:41:51:6 1:7 1:8 1:9 1:18 ...
2:1 2:2 2:3 2:4 2:5 2:6 2:7 2:8 2:9 2:10 ...
3:1 3:2 3:3 3:4 3:5 3:6 3:7 3:8 3:9 3:190 ...
4:1 4:2 4:3 4:4 4:5 4:6 4:7 4:8 4:9 4:19 ...
5:1 5:2 5:3 5:4 5:5 5:6 5:7 5:8 5:9 5:18 ...
6:1 6:2 6:3 6:4 6:56:6 6:76:86:96:18 ...
7:17:2 7:3 7:47:57:67:77:87:97:18 ...
8:1 8:2 8:3 8:4 8:5 8:6 8:7 8:8 8:9 8:10 ...
9:1 9:2 9:3 9:4 9:5 9:6 9:7 9:8 9:9 9:18 ...
NIL

6.1.3 Textual List Formatting Facilities

Textual List Formatting Facilities
format-textual-list
formatting-textual-list
formatting-textual-list-element

Among the many high-level formatting facilities provided by Showcase, those listed
above are for formatting "textual" lists. A textual list is simply a list of comma-
separated items, for example "1, 2, 3, and 4". You provide the items for the list,

and the facilities take care of inserting the commas and the "and" before the final
item.

format-textual-list is the function for creating textual lists.
formatting-textual-list is the environment-binding macro for doing the same
thing. What this and similar formatting macros provide that the functions do not
is flexibility. In this case, the format-textual-list function requires that an
explicit sequence object provide the items for formatting, for example:

52

Programming the User Interface, Volume A August 1986

(defun simple-list-formatter ()
(fresh-11ine)
(format-textual-1ist (1 2 3 4) #’princ :conjunction "and"))

(simple-list-formatter) ==
1, 2, 3, and 4
NIL

formatting-textual-list, on the other hand, lets you write code to sequence
through the items using whatever data structure you choose, for example:

(defun simple-Tist-formatting ()
(fresh-11ine)
(formatting-textual-list (t :conjunction "and")
(loop for i from 1 to 4
do
(formatting-textual-list-element ()
(princ "Number “)

(princ 1)))))

(simple-list-formatting) ==>
Number 1, Number 2, Number 3, and Number 4
NIL

As shown in the above example, formatting-textual-list-element controls the
printing of items for display by formatting-textual-list.

6.1.4 Table Formatting Facilities

Table Formatting Facilities
formatting-multiple-columns
format-sequence-as-table-rows
format-item-list
formatting-item-list
formatting-table
formatting-column
formatting-column-headings
formatting-row
formatting-cell
format-cell

The table formatting facilities shown above allow you to output tables of arbitrary
complexity. The first four listed provide relatively fast and easy tools for
generating tables. formatting-multiple-columns, for example, displays what would
otherwise be a single column of output in a multiple-column format:

53

August 1986 User Interface Management System: an Overview

(defun quick-table ()
(fresh-1ine)
(formatting-multiple-columns ()

(loop for i from B8 to 79
do
(present i ’integer)

(terpri)))))

(quick-table) ==>

@ 4 8 12 16 28 24 28 32 36 408 44 48 52 56 60 64 68 72 76
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77
2 6 10 14 18 22 26 38 34 38 42 46 50 54 58 62 66 79 74 78
3 7 111519 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79
NIL

(If you try this function, be aware that your display might not look like the one
above; the width of the output window affects the number of columns.)

format-sequence-as-table-rows takes a sequence of elements and outputs each
element on its own row. format-item-list and formatting-item-list are also used
for generating tables of simple items but, through a variety of keyword options,
provide much finer control over the appearance of the table than do the first two
facilities.

The remaining facilities, which are used together with formatting-table at the top
level, provide the greatest flexibility for constructing tables. The following
example creates a table of network servers:

54

Programming the User Interface, Volume A August 1986

(defun server-table ()
(fresh-1ine)
(formatting-table ()
(formatting-column-headings ()
(with-character-face (:italic)
(with-underlining ()
(formatting-cell ()
(write-string “Protocol"))
(formatting-cell ()
(write-string "Medium"))
(formatting-cell ()
(write-string "No. of Arguments”)))))
(loop for server in neti:xserversx do
(formatting-row ()
(formatting-cell ()
(format t "~a"
(neti:server-protocol-name server)))
(formatting-cell ()
(format t "~a"
(neti:server-medium-type server)))
(formatting-cell (xstandard-outputx :align :right)
(format t “~a"
(neti:server-number-of-arguments server)))))))

55

August 1986

(server-table) ==
Protocol

MANDELBROT
UNIX-RWHO

IEN-116

TCP-FTP

TFTP
CHAOS-FOREIGN-INDEX
RTAPE

CONVERSE

SEND

SMTP

CHAOS-MAIL
CONFIGURATION

NFILE

QFILE
CHAOS-SCREEN-SPY
NOTIFY
CHAOS-ROUTING-TABLE
CHADS-STATUS
ECHO-XCN-TOKEN-LIST
3688-LOGIN

SUPDUP

TELNET

TTY-LOGIN
NAMESPACE-TIMESTAMP
NAMESPACE
BAND-TRANSFER
WHO-AM-1
PRINT-DISK-LABEL
EVAL

NAME

ASCII-NAME
LISPM-FINGER
UPTIME-SIMPLE
TIME-SIMPLE-MSB
TIME-SIMPLE
RESET-TIME~SERVER
NIL

Medium

BYTE-STREAM
uop

uppP
BYTE-STREAM
ubpP

CHAOS
BYTE-STREAM
BYTE-STREAM
BYTE-STREAM
BYTE-STREAM
BYTE-STREAM
BYTE-STREAM

BYTE-STREAM-WITH-MARK

CHAOS
CHAOQS
CHAOS
CHAQS
CHAOS

TRANSACTION-TOKEN-LIST

BYTE-STREAM
BYTE-STREAM
BYTE-STREAM
BYTE-STREAM
DATAGRAM
BYTE-STREAM
BYTE-STREAM
DATAGRAM
BYTE-STREAM
BYTE-STREAM
BYTE-STREAM
BYTE-STREAM
DATAGRAM
DATAGRAM
DATAGRAM
DATAGRAM
DATAGRAM

User Interface Management System: an Overview

No. of Arguments
1

O NNV N =2 N = 2N O WWWWW= = a2 a2 a = =2Ww=2N=2 2= b=

56

Programming the User Interface, Volume A August 1986

6.1.5 Graph Formatting Facilitles

Graph Formatting Facilities
format-graph-from-root
formatting-graph
formatting-graph-node
dw:find-graph-node

Two graph formatters are provided, format-graph-from-root and
formatting-graph. Both are used for creating graphs showing the connections
between nodes. The format-graph-from-root function generates a graph from
your specification of a root node and its descendants. Here, for example, is a
flavor-component grapher built on format-graph-from-root:

(defun graph-flavor-components (flavor-name)
(1abels ((component-flavors (flavor-name)
(letx ((f1 (flavor:find-flavor flavor-name)))
(remove flavor-name
(cond ((flavor::flavor-components-composed f1)
(flavor:flavor-all-components f1))
(t (flavor::compose-flavor-components
flavor-name)))))))
(fresh-1ine)
(format-graph-from-root flavor-name
#’ (lambda (thing stream)
(present thing ’flavor:flavor
:stream stream))
#’component-flavors
:dont-draw-duplicates t)))

If you run this function on complex flavors, by the way, you will get a chance to
exercise the horizontal scrolling capability of Dynamic Windows. This also
illustrates the point that the graph formatters (and formatting-table as well) have
built-in the functionality provided by dw::with-output-truncation to other kinds of
output. That is, output generated using these macros that exceeds the width of
the output window does not wrap around as character output ordinarily would.
Rather, the user’s view of the output is truncated by the right margin of the
window, but can be obtained by horizontal scrolling.

formatting-graph works similarly to format-graph-from-root, but lets you specify
a number of nodes and their connections, not just one node and its descendants.
This allows the creation of more complex graphs than possible to create with
format-graph-from-root. (For an example: See the macro
formatting-graph-node, page 242.) Creating node objects within
formatting-graph is the job of formatting-graph-node.

57

August 1986 User Interface Management System: an Overview

Note that neither of the graph formatting facilities can be used for generating
circular graphs.

6.1.6 Graphic Output Facilities

More than a dozen facilities are included in the graphic output category, shown in
the table below:

Graphic Output Facilities
graphics:draw-string
graphics:draw-point
graphics:draw-arrow
graphics:draw-line
graphics:draw-lines
graphics:draw-cubic-spline
graphics:draw-circle
graphics:draw-ellipse
graphics:draw-triangle
graphics:draw-rectangle
graphics:draw-glyph
graphics:draw-polygon
graphics:draw-regular-polygon
graphics:draw-convex-polygon
graphics:draw-pattern

These facilities are straightforward functions for drawing strings, points, arrows,
lines, and a variety of closed plane figures. The following example draws a couple
of arrows, one with a solid shaft, the other dashed, into the point (x and y
coordinates) you call it with:

(defun draw-arrow (x y)
(dw:with-own-coordinates ()
(graphics:draw-arrow 568 580 x y)
(graphics:draw-arrow 708 580 x y
:arrow-head-length 20
:arrow-base-width 15
:dashed t)))

Here’s one that uses two graphics functions, graphics:draw-circle and
graphics:draw-rectangle, inside a dw:tracking-mouse macro:

58

Programming the User Interface, Volume A August 1986

(defun follow-the-mouse ()
(dw:tracking-mouse (*standard-outputx)
(:who-11ine-documentation-string ()
(if (zerop (tv:mouse-buttons))
"Hold any button down to draw squares”
"Release all buttons to draw circles"))
(:mouse-motion (x y)
(graphics:draw-circle x y 5))
(:mouse-motion-hold (x y)
(graphics:draw-rectangle x y (+ x 18) (+ y 18)))))

If you try the above function, you must press down one of the mouse buttons and
hold it down to draw squares.

The other graphics functions are used in a manner similarly direct. If you have a
need for such functions in your programs, try experimenting with the various
options these functions take to get a feel for the range of possibilities.

The graphics:draw-pattern function lets you use a bit-array of some arbitrary
pattern and have it displayed once or, optionally, as a (spatially) repeated pattern
within a specified area of a window. The function tvimake-binary-gray can be
used to create the pattern, as shown by the following example:

(defun ones-pattern ()
(let ((raster (tv:make-binary-gray 8 8

’ (#b00000B00D ; The picture of what you
#b00001000 ; want the bit pattern
#b001110080 ; displayed to look 1ike, 1in
#b00001060 ; this case the number 1.
#bBooo16608 ; Notice the #b in front of
#h00001000 ; each number to force the
#boooe1609 ; reader into binary.

#b0881111108))))
(dw:with-own-coordinates ()
(graphics:draw-pattern 380 300 raster :right 508
:bottom 588))))

Keep in mind that any graphic display can be made the printed representation of a
presentation object with the help of dw:with-output-as-presentation.
Consequently, graphic displays can serve as sources of mouse-sensitive input to
your program. (For an example: See the section "Overview of Basic Presentation
Output Facilities", page 47.)

59

August 1986 User Interface Management System: an Overview

6.1.7 Progress Indicator Facilities

Facilities in this category of basic output facilities provide a way of
communicating the progress of some operation to your users:

Noting Progress Facilities
tv:noting-progress
tv:note-progress
tv:dolist-noting-progress
tv:dotimes-noting-progress

Progress is indicated by the advance of a progress bar in the lower, right corner
of the screen or, alternatively, by a wide bar across the entire width of the screen.
(Which is determined by the setting of the "Progress area" option in the Set
Screen Options command.) Also displayed is a string naming the operation being
noted.

The general-purpose facility is tv:noting-progress, within which the
tv:note-progress function is used. tv:note-progress is the one that decides when
and how much progress has occurred. This is shown in the following example:

(tv:noting-progress (“Working Away By Fifths")
(loop for i from 1 to 2 by 1
do
(sleep 1))
(tv:note-progress 1 5)
(Toop for i from 1 to 2 by 1
do
(sleep 1))
(tv:note-progress 2 5)
(loop for i from 1 to 2 by 1
do
(sleep 1))
(tv:note-progress 3 5)
(loop for i from 1 to 2 by 1
do
(sleep 1))
(tv:note-progress 4 5)
(loop for i from 1 to 2 by 1
do
(sleep 1))
(tv:note-progress 5 5)
(sleep 1))

tv:dolist-noting-progress and tv:dotimes-noting-progress implement the Common

60

Programming the User Interface, Volume A August 1986

Lisp special forms dolist and dotimes in a noting-progress environment. They
take care of most simple cases.

6.1.8 Other Facilities for Program Output

Facilities for program output in the "other" category include a number of methods
for Dynamic Windows:

Other Facilities for Program Output
(flavor:method :clear-window dw:dynamic-window)
(flavor:method :clear-history dw:dynamic-window)
(flavor:method :clear-region dw:dynamic-window)
(flavor:method :delete-displayed-presentation dw:dynamic-window)
(flavor:method :visible-cursorpos-limits dw:dynamic-window)
(flavor:method :set-viewport-position dw:dynamic-window)
(flavor:method :y-scroll-position dw:dynamic-window)
(flavor:method :y-scroll-to dw:dynamic-window)
(flavor:method :x-scroll-position dw:dynamic-window)
(flavor:method :x-scroll-to dw:dynamic-window)
(flavor:method :with-output-recording-disabled dw:dynamic-window)
dw:with-own-coordinates
dw:tracking-mouse
dw::with-output-truncation
surrounding-output-with-border
dw:displayed-presentation-set-highlighting
dw:displayed-presentation-clear-highlighting

The methods listed equip you with the ability to control where in the output
history of a Dynamic Window your output will appear. This is especially
important in the case of dynamic as opposed to static windows, because it is often
impossible to know precisely where the visible portion of the window is at the time
any given output is displayed.

One way of handling this situation is with the :visible-cursorpos-limits method, as
illustrated by the following example:

(defun graphic-output-to-dynamic-window-1 ()
(let ((width 188) (height 58) (start-x 2088) (start-y 150))
(multiple-value-bind (x1 yt1 x2 y2)
(send xstandard-outputx :visible-cursorpos-limits)
(send xstandard-outputx :draw-rectangle width height
(+ x1 start-x) (+ y1 start-y)))))

In this example, we are asking the window the coordinates of the current
viewport, and using these as offsets to adjust where we send output.

61

August 1986 User Interface Management System: an Overview

The dw:with-own-coordinates macro has a similar purpose. That is, it allows you
to avoid using absolute coordinates, and to use coordinates relative to the current
viewport instead:

(defun graphic-output-to-dynamic-window-2 ()
(let ((width 188) (height 58) (start-x 2088) (start-y 158))
(dw:with-own-coordinates ()
(send xstandard-outputx :draw-rectangle width height
start-x start-y))))

Another capability of dw:with-own-coordinates is the disabling of output
recording. That is, through a keyword option to this macro, you can prevent
output from being recorded in the output history of the window to which it is
sent. (This capability is also provided by

(flavor:method :with-output-recording-disabled dw:dynamic-window).) It
defeats one of the main advantages of Dynamic Windows, but is sometimes useful,
particularly when doing graphic output. Try calling the following example with t,
to enable output recording, then nil, to disable it:

(defun moving-arrow (t-or-nil)
(dw:with-own-coordinates (t :enable-output-recording t-or-nil)
(do ((x 188 (+ x 4))
(y 188 (+y 2)))
((> x 580) ’done)
(graphics:draw-arrow 188 180 x y :alu :flip
:arrow-base-width 20
:arrow-head-length 35)
(graphics:draw-arrow 188 108 x y :alu :flip
:arrow-base-width 20
:arrow-head-Tength 35))
(graphics:draw-arrow 108 180 5680 368 :alu :flip
:arrow-base-width 20
:arrow-head-1ength 35)))

First note the speed with which the arrows are drawn. Now try scrolling
backwards and forwards over the output and observe the effects.

This brings up another point concerning graphic presentations and backwards
scrolling. Because they, like other presentations, are stored in the window’s
history by position, not with a timestamp, they are not redrawn in the order in
which they were drawn originally. For example, if you use a
graphics:draw-rectangle function to clear out a part of the window, then draw
over that part, the graphics:draw-rectangle can happen after the later drawing
when you scroll back to that portion, with the effect that parts of the graphics are
missing from the re-presented display.

If this is a potential problem in your program, then make all of your overlapping

62

Programming the User Interface, Volume A August 1986

graphics part of a superior presentation (using dw:with-output-as-presentation),
which then holds their collective place in the history. Inferiors are carefully
redrawn in the order in which they were output originally.

Three other macros are included in this category. dw:tracking-mouse lets you
track the current position of the mouse cursor, useful in graphic output
applications, and other mouse events as well. In conjunction with the mouse
handler facilities, it provides the primary interface between your programs and the
mouse process. An example showing its use in a drawing function is presented
elsewhere: See the section "Overview of Graphic Output Facilities", page 57.

dw::with-output-truncation is necessary for taking advantage of the horizontal
scrolling capability of Dynamic Windows. With it you can prevent the wrapping of
character output and let the user’s view of the output be truncated by the right
(or bottom) margin of the window. The truncated output is accessible through
scrolling. This also applies to graphic presentations that would otherwise be too
big if limited to the size of a window. (Note that formatting-table and the two
graph formatters, formatting-graph and format-graph-from-root, include this
kind of functionality as a built-in feature.)

For a simple demonstration of output truncation, try calling the following function
with t and nil:

defun truncation-test (t-or-nil)
(dw: :with-output-truncation (t :horizontal t-or-nil)
(loop repeat 188 do (write-char #\a))))

surrounding-output-with-border lets you enclose any other kind of output —
tables, graphics, whatever — in a rectangular, oval, circular, or diamond-shaped
border. To see the different shapes, try calling the following function with
:rectangle , :oval, :circle, or :diamond:

(defun shape-test (shape)
(fresh-1ine)
(surrounding-output-with-border
(xstandard-outputx :shape shape)
(present tv:selected-window ’tv:window)))

The final two functions listed, dw:displayed-presentation-set-highlighting and
dw:displayed-presentation-clear-highlighting, as their names suggest, let you
highlight and clear the highlighting of displayed presentations. This highlighting,
unrelated to mouse sensitivity, is done by either underlining the presentation or
putting it into reverse video.

63

August 1986 User Interface Management System: an Overview

6.2 Advanced Program Output Facilities

The advanced Showcase facilities for program output are divided into three areas:
o Advanced Presentation Output Facilities
o Redisplay Facilities

o Facilities for Writing Formatted Output Macros

6.2.1 Advanced Presentation Output Facilities
Several macros, listed below, are provided for doing advanced presentation output:

Advanced Presentation Output Facilities
dw:with-output-to-presentation-recording-string
dw:with-replayable-output
dw:with-resortable-output

The first, dw:with-output-to-presentation-recording-string, is the presentation-
system equivalent of the Common Lisp macro with-output-to-string. It works
similarly, but you can subsequently output the string as a presentation, not just a
string.

dw:with-replayable-output and dw:with-resortable-output are closely related, the
latter being a special case of the former. dw:with-replayable-output lets you
present all of the output generated in the body of the macro as a single
presentation. This presentation is "replayable"; that is, it can be input as a
whole, internally re-arranged in some fashion, and presented again as the same
object.

dw:with-resortable-output takes a sequence and a sorting predicate, and
constructs a dw:with-replayable-output macro to implement the sorting function.
Users can click on the presented sequence and have it redisplayed in a different
order.

To see an example of this, run the Show Processes command in a Lisp Listener.
With the mouse cursor somewhere over the output display, press the SUPER and
SHIFT keys and notice that the entire display is enclosed in a single box,
indicating that it is a single presentation.

The top mouse documentation line informs you that the Edit viewspecs handler is
available on s-sh-Mouse-M. Invoke the handler and a menu appears indicating
what your choices are for sorting the displayed processes. Select one and watch
the resort.

64

Programming the User Interface, Volume A

August 1986

The following example is a function for presenting a resortable display of network
servers. It is implemented similarly to the Show Processes command.

(defun format-servers (&optional (sort-by :none))
(fresh-Tine)
(dw:with-resortable-output
((servers sort-by :copy-of neti:xserversx)
(:none #’ignore)
(:protocol (lambda (s-1 s-2)
(string< -
(string (neti:server-protocol-name s-1))
(string (neti:server-protocol-name s-2)))))
(:medium (lambda (s-1 s-2)
(string<
(string (neti:server-medium-type s-1))
(string (neti:server-medium-type s-2)))))
(:arguments (lambda (s-1 s-2)
(< (neti:server-number-of-arguments s-1)
(neti:server-number-of-arguments s-2)))))
0O
(formatting-table ()
(formatting-column-headings ()
(with-character-face (:italic)
(with-underlining ()
(formatting-cell ()
(write-string "protocol”))
(formatting-cell ()
(write-string "medium"))
(formatting-cell ()
(write-string “no. of arguments")))))
(loop for server in servers do
(formatting-row ()
(formatting-cell ()
(format t "~a"
(neti:server-protocol-name server)))
(formatting-cell ()
(format t "~a"
(neti:server-medium-type server)))
(formatting~cell (xstandard-outputx :align :right)
(format t "~a"

(neti:server-number-of-arguments server))))))))

65

August 1986 User Interface Management System: an Overview

6.2.2 Redisplay Facilities

A set of inter-related facilities is provided for creating redisplayable output and
doing incremental redisplay. The facilities are listed in the following table:

Redisplay Facilities
dw:redisplayable-present
dw:redisplayable-format
dw:independently-redisplayable-format
dw:with-redisplayable-output
dw:redisplayer
dw:do-redisplay

Redisplayable output is similar to ordinary output in the actual display; it differs
in that, in addition to being output to a window for display, the output value is
also stored in an output cache uniquely identified with that display. When the
window is redisplayed, the new output value is first compared to the cached value
and, if different, the cache is updated with the new value for display. This has
efficiency advantages compared with non-cached output.

Incremental redisplay refers to the redisplay of individual pieces of the output to a
window, rather than redisplaying the window as a whole. It works in the manner
described above, except that each redisplayed piece of the window output is
associated with its own output cache.

The first four facilities listed in the redisplay category are for creating
redisplayable output. dw:redisplayable-present is used like present but creates a
redisplayable presentation. Similarly, dw:redisplayable-format works as format
does, but generates redisplayable output. dw:independently-redisplayable-format
is like the previous function, except that each argument in the format-control
string gets cached separately; hence its usefulness for incremental redisplay.
Finally, the macro dw:with-redisplayable-output lets you make any output-
producing code produce redisplayable output.

How you do redisplay once you have functions producing redisplayable output
depends on whether you are taking advantage of dw:define-program-framework.
If you are, then making a program pane use your redisplay function is simply a
matter of supplying that function via the :redisplay-function keyword. If,
additionally, incremental redisplay is what you want, then specify so with the
:incremental-redisplay keyword.

If you are doing redisplay outside of dw:define-program-framework, then you
need to create a redisplay object that you can pass to dw:do-redisplay, which, as
its name says, does the redisplay. Creating a redisplay object is the job of
dw:redisplayer; use this macro to enclose your redisplay function.

66

Programming the User Interface, Volume A August 1986

For examples showing the coordinated use of these facilities for incremental
redisplay, see the file sys:examples;incremental-redisplay.lisp.

6.2.3 Facllities for Writing Formatted Output Macros

Facilities for Writing Formatted Output Macros
dw:continuation-output-size _
dw:named-value-snapshot-continuation

The two facilities listed above help you write your own output formatting macros.
Given a continuation (usually a closure) and a stream,
dw:continuation-output-size tells you how much room, in spaces or pixels, the
continuation will require on the stream. This is useful, for example, for making
windows no larger than necessary to accommodate formatted displays. The
reference documentation for this facility includes an example: See the function
dw:continuation-output-size, page 209.

dw:named-value-snapshot-continuation is a macro that makes separate bindings
for free variables referenced in its body; that is, it "snapshots" the free variables
at the time the closure is constructed. This provides lexical separation between
variables in the inner loops of a formatting function and variables with the same
names in the outer loops. The reference documentation for
dw:named-value-snapshot-continuation contains additional details on when and
how to use this facility, including examples: See the macro
dw:named-value-snapshot-continuation, page 252.

6.3 Output Streams for Program Output Facilities

The default stream for output is *standard-output*, not *terminal-io*. Avoid
using the program output facilities with interactive streams like *terminal-io* and
query-io. Such streams should never be bound to output-only streams.

6.4 Naming Conventions for Program Output Macros

The naming of macros for program output has followed certain conventions.
Facility names prefixed with "with-" are macros that bind the environment but do
not directly participate in generating output. They establish a local environment
for output. Code in the bodies of such facilities is responsible for creating the
output. After output is completed, the local environment goes away.

A good example is with-character-style. Code in the body of the macro has the

67

August 1986 User Interface Management System: an Overview

job of generating characters. The macro ensures that they are output in the
specified style. When the macro is finished executing, the default character style
for the output stream used remains the same as before the macro was invoked.

Facility names in which the first word ends in "ing" are also macros that bind the
local environment and let it go again when output is completed. In addition to
this, however, they make a significant contribution to the output display, generally
adding to whatever is generated in their bodies. surrounding-output-with-border,
for example, makes an obvious contribution to the display.

68

Programming the User Interface, Volume A August 1986

69

August 1986 User Interface Management System: an Overview

7. Presentation Substrate Facilities

This section reviews presentation types and the facilities provided for their
creation and manipulation. First we present some basic concepts — what a
presentation is, what a presentation type is. Then we provide an overview of the
predefined and documented presentation types available for use in your programs.
This is followed by sections discussing the various groups of presentation substrate
facilities other than the predefined types; there are four:

e Presentation-Type Definition Facilities
¢ Presentation Input Context Facilities
¢ Presentation Input Blip Facilities

e Other Presentation Facilities

Two concluding sections provides information and examples useful when defining
your own presentation types. The first covers writing a presentation-type parser.
The second discusses the implications of defining presentation types based on
already defined data types, flavors, and structures. This discussion presents some
advanced concepts. It will probably be most meaningful to you after you have had
some experience with defining your own mouse handlers and presentation types.
For related information on handlers: See the section "Advanced Mouse Handler
Concepts", page 42.

Reference documentation for the Presentation Substrate Facilities is included in
two dictionaries. The first covers the predefined presentation types: See the
section "Dictionary of Predefined Presentation Types", page 281. The second
covers all other presentation substrate facilities: See the section "Dictionary of
Presentation Substrate Facilities", page 347.

To conclude these prefatory remarks, we call your attention to two system
facilities for acquiring information about particular presentation types and
presentations. These are the Show Presentation Type command and Presentation
Inspector, respectively. The first is a Command Processor command that displays
the argument list, supertypes, and subtypes of a specified type. The Presentation
Inspector is an option on the Presentation debugging menu, itself an option on the
standard click-right menu available for all displayed presentations. It allows you
to explore the presentation you call it on from a variety of aspects.

70

Programming the User Interface, Volume A August 1986

7.1 Basic Presentation System Concepts

What is a presentation?

Conceptually, a presentation is the user-visible aspect of an object inside the
machine. This encompasses both the way the program depicts the object for the
user, and the gestures the user performs to depict the object to the program. As
such, it forms the basis for the interface between a program and the user.

There can be many different ways for the program to depict an object to the user.
The choice of how to present the object is determined not just by the type of
object, but also by the semantics, or meaning, associated with the object by the
programmer, the program, and the user. For example, a number might be an
entry in a table describing last year’s financial results in an accounting system, a
pattern of bits to a numerologist, a slider controlling vibrato in a synthesizer voice
editing program, or a color intensity control to the user of a color painting
program. Some of these are values input, some are values output, and some are
interactive.

A presentation is a particular instance of presenting an object to the user with a
presentation type.

What is a presentation type?

A presentation type is what differentiates one presentation of an object from
another. The type of presentation is specified by the implementor of each system,
corresponding to the meaning assigned to each object in that system. In an
accounting program, this may mean a dollar amount, and be read with exactly two
digits after the decimal point. In a numerologist’s program, it is just a number
represented in binary; it can be displayed in hexadecimal, octal, or binary. If both
systems are on the screen at once, the numbers from the numerology program do
not belong in the accounting program, even though they both use numbers: the
numerologist was not working with dollar amounts.

So, a presentation type is what distinguishes the different uses of a Lisp type —
whether a number, a list, or a flavor instance — for the external user. Not only
does this differentiation appear in the syntax used to express it, but it allows
SemantiCue to make appropriate quantities available for selection with the mouse
(via mouse sensitivity), without also making inappropriate ones available.

The parts of a presentation type

A presentation type is made up of three parts:
e The name

The name is what identifies how presented objects of this type are printed,
how they are read, and how this type relates to other types. This name may
come predefined by the system, or be defined by the user.

71

August 1986 User Interface Management System: an Overview

o The data arguments

The data arguments further distinguish which objects are being described by
the type. They always denote a subset of the objects that would be denoted
without the data arguments. For example, when asking for an integer, you
can ask for an integer in a certain range by giving data arguments to the
integer presentation type.

e The presentation arguments

The presentation arguments do not distinguish between objects. Instead,
they control how the objects are presented to or accepted from the user. For
example, a presentation argument to the integer presentation type specifies
the base in which an integer should be printed or read.

The syntax for distinguishing the different parts of a presentation type and
examples are presented in the section on predefined presentation types: See the
section "Overview of Predefined Presentation Types", page 71.

7.2 Predefined Presentation Types

Presentation types form the basis of the typing system for user input and program
output. A large number of predefined presentation types exist; only a relatively
few are used for program I/0. This is because every structure, flavor, and
Common Lisp data type is also a presentation type. Most, however, are of little
use in end-user-oriented application programs. Consider, for example, the Common
Lisp types hash-table and compiled-function; you would not generally encounter
these in end-user-visible places.

In this section, we list what we regard as the types most likely to be used by
application programmers. Some, like integer, string, and boolean, are
encountered frequently in all kinds of programs. Many others, like
sys:code-fragment and net:network, are more specialized in their uses.

In any case, all of the types included here are also documented as individual
entries in the Dictionary of Predefined Presentation Types. Also, many of them
are defined in the file sys:dynamic-windows;standard-presentation-types.1isp,
where you can look for models when defining your own types. The dictionary
entry for each type notes whether it is one of those included in this file.

The documented types are divided into three groups:
1. Common Lisp Presentation Types

2. Symbolics Common Lisp Presentation Types

3. Other Presentation Types

72

Programming the User Interface, Volume A August 1986

Of course, the Common Lisp types form a subset of the Symbolics Common Lisp
types, but for the purposes of the present discussion, we separated them out. The
Other Presentation Types include the potentially useful types exported from
packages other than Symbolics Common Lisp; most of them are in the specialized-
use category.

The following table lists the useful Common Lisp presentation types:

Common Lisp Presentation Types
and
character
integer
keyword
member
not
null
number
or
package
pathname
satisfies
sequence
string
symbol
symbol-name
t

Most of these Common Lisp types should be familiar as data types. As
presentation types, they require some additional remarks. The first concerns
syntax: there is a formal way to specify a presentation type and a shorthand way.
The formal way is with a double set of parentheses as in the following accept
function:

(accept ’((integer))) ==
Enter an integer: 14

14

((INTEGER))

The shorthand way is without the parentheses:

(accept ’integer) ==>

Enter an integer [default 14]: 14
14

INTEGER

73

August 1986 User Interface Management System: an Overview

In general, we have tried in the documentation to stick with the formal syntax,
although you will encounter examples here and there that skip the parentheses.

The reason for the double set of parentheses is the second point we need to make.
Presentation types can take arguments. There are two kinds of arguments to
presentation types, data arguments and presentation arguments. Data arguments
qualify the data type of a presentation object. They affect the subtype and
supertype relationships of a type within a type family. Let’s consider another
example using the integer presentation type:

(accept ’((integer 8 188))) ==>

Enter an integer greater than or equal to 9
and less than or equal to 168: 14

14

((INTEGER 8 188))

The integer type takes optional data arguments for specifying lower and upper
range limits. The 14 returned by this accept is not an object of data type
integer; it’s of an integer subtype, those integers between 0 and 100.

Presentation arguments are always keywords. Unlike data arguments, they do not
affect the position of an object’s type in the type hierarchy; that is, they have no
impact on the internal representation of the object. Rather, they affect the
appearance of the object, or some other aspect of its presentation unrelated to data
type. Consider the integer type once again. You can change the printed
representation of an integer by changing its base:

(accept ’((integer B8 108) :base 16)) ==>

Enter a hexadecimal integer greater than or equal to 8
and less than or equal to 64: e

14

((INTEGER B8 18@) :BASE 16)

:base is a presentation argument. Internally a 14 is still returned, but externally
it is displayed as an e.

A third kind of argument to presentation types exists, called a meta-presentation
argument.

Meta-presentation arguments to presentation types are arguments that are directly
understood by accept or present. They are not dependent on the parser or
printer of any particular presentation type, and can therefore be used as
arguments to any type.

At present, a single meta-presentation argument is available, :description. Using
this keyword option, you can control the prompt created by accept for solic_ltlng

74

Programming the User Interface, Volume A August 1986

input of a given type. This allows you to make the prompt more appropriate to
the current conceptual context. For example, instead of just asking for a integer,

you could do something like:

(accept ’((integer) :description "the number of copies”)) ==>
Enter the number of copies: &

5

((INTEGER) :DESCRIPTION "the number of copies")

So, the parentheses are intended to distinguish unequivocally between data
arguments and presentation arguments. You have to use them when providing any
kind of argument to a presentation type, but can skip them with naked types.

Of the other listed Common Lisp types, note that t is the supertype of all other
types. Also note the compound types and and or; they provide a way of extending
the type system by combining types. For example, suppose we wanted to accept

only odd integers. A compound type using and would do the job:

(accept ’((and ((integer)) ((satisfies oddp))))) ==
Enter an integer satisfying 0DDP: 53
53

((AND ((INTEGER))

((SATISFIES 0DDP))))

satisfies is another Common Lisp type, used only within compound types based on

and.

Several extensions via the or type are already among the predefined Symbolics
Common Lisp types, listed below.

Symbolics Common Lisp Presentation Types

alist-member

boolean
character-face-or-style
character-style
character-style-for-device
instance
inverted-boolean
null-or-type
sequence-enumerated
subset

token-or-type
type-or-string

The three compound types mentioned above are null-or-type, token-or-type, and
type-or-string. sequence-enumerated is also a compound type, one for accepting

75

August 1986 User Interface Management System: an Overview

or presenting a sequence of objects, each one of a specified presentation type.
Using alist-member to accept an object is similar to using a menu; the object is
represented by a user-visible string different from its internal representation.
subset provides a way of accepting or presenting one or more objects in a set.

The instance presentation type is typical of the many Common Lisp types like
hash-table and compiled-function, mentioned above, unlikely to be useful in many
situations. For one thing, you cannot type the name of an instance at an accept
function; it either has to be entered via a mouse click on a previously presented
instance object, or through accept’s default mechanism. It is documented as a
dictionary entry merely as an example of such types. You should not ordinarily
need it.

The remaining presentation types, listed below, provide potentially useful I/O
capabilities spread across a broad spectrum of system software and functionality.
We encourage you to study this list, and the corresponding dictionary entries, for
types of use in your applications. Only two of these types will be discussed
further here, sys:expression and dw:no-type.

Other Presentation Types
dw:member-sequence
dw:no-type
dw:out-of-band-character
dw:raw-text
fs:directory-pathname
fs:wildcard-pathname
net:host
net:local-host
net:namespace
net:namespace-class
net:network
neti:local-network
net:object
sys:printer
neti:protocol-name
neti:site
net:user
sct:system
sct:system-version
sys:code-fragment
sys:expression
sys:font
sys:form
sys:flavor-name
sys:function-spec

76

Programming the User Interface, Volume A August 1986

sys:generic-function-name
sys:stack-frame
time:time-interval
time:time-interval-60ths
time:timezone
time:universal-time
tv:window

zwei:buffer

sys:expression plays a key role in the presentation type system. We mentioned
earlier that the number of presentation types is large, including all structures,
flavors, and a variety of little-used (for program I/0O) Common Lisp types. The
sys:expression type is the link between these types and the presentation system.
It is a supertype of all Common Lisp types (except t), and is the type from which
they inherit their printer and parser functions when these are not otherwise
defined for them. For example, the instance type inherits from sys:expression
and, through instance, so do all flavors. (The undocumented structure
presentation type plays an analogous role for all structures.)

sys:expression provides these types with a type history as well. In fact, some of
the Common Lisp presentation types listed in an earlier table also make use of
sys:expression’s type history. This is true of the integer presentation type.
Through the number presentation type, to which it and all other numeric types
are subtype, it has access to the history of sys:expression objects previously
accepted.

The expression history is the source of default values offered when types
inheriting this history are accepting objects. When used by integer, the
expression history is "pruned" of non-integer objects; an appropriate default value
can thereby be offered. Other types with access to the expression history benefit
from a similar pruning process.

dw:no-type, as its name might suggest, is not really a presentation type. Rather,
it is a bogus type for use by mouse handlers that are intended to be active only
over blank areas of a window, not over presentations.

All presentation types listed in the tables in this section are documented in a
separate dictionary: See the section "Dictionary of Predefined Presentation
Types", page 281.

7.3 Presentation-Type Definition Facilities

The Presentation-Type Definition Facilities include the functions you need to
define new presentation types. These are listed in the following table:

77

August 1986 User Interface Management System: an Overview

Presentation-Type Definition Facilities
define-presentation-type
dw:read-char-for-accept
dw:peek-char-for-accept
dw:unread-char-for-accept
dw:compare-char-for-accept
dw:read-standard-token
dw:with-accept-activation-chars
dw:with-accept-blip-chars
dw:with-accept-help
dw:with-accept-help-if
dw:completing-from-suggestions
dw:suggest
dw:complete-input
dw:complete-from-sequence

The primary facility in this category is define-presentation-type. It is this macro
that establishes how a given type is parsed by accept and printed by present. In
particular, the define-presentation-type macro for each type specifies a parsing
and printing function for that type. The functions can either be written especially
for the type or inherited from some other type. In either case, when accept or
present is called, the respective parser or printer for the presentation type in
question is used to input or output the object.

Writing presentation-type parsers is, in general, a more involved process than
writing printers. All of the remaining facilities listed after
define-presentation-type in the above table are for use in parser functions. As
with presentation types themselves, they are intended for parsing input from
Dynamic Windows. Thus, for example, dw:read-char-for-accept and
dw:peek-char-for-accept are the Dynamic Window equivalents, respectively, of
zl:tyi and zl:tyipeek for input from streams. (For information on the latter
functions: See the section "Input Functions That Work on Streams” in Reference
Guide to Streams, Files, and 1/0O.)

Beyond functions for input per se, other facilities in the Presentation-Type
Definition subcategory let you provide help and completion services for the
presentation types you define. Help messages are available to users during
program input when they press the HELP key. Using dw:with-accept-help and
dw:with-accept-help-if, you can augment the help displays for your presentation
types. Similarly, with the listed completion facilities, you can customize the
completion services available when users input objects to your programs.

For more information on writing parsers for présentation types, including
examples: See the section "Writing a Presentation Type Parser", page 80. For
more examples, see the file sys:dynamic-windows;standard-presentation-types.Tlisp.

78

Programming the User Interface, Volume A August 1986

7.4 Presentation Input Context Facilities

Facilities for manipulating presentation input contexts are listed below:

Presentation Input Context Facilities
dw:with-presentation-input-context
dw:clear-presentation-input-context
dw:presentation-input-context-option
dw:with-presentation-input-editor-context
dw:*presentation-input-context*

The primary facility in this subcategory of presentation substrate tools is the first
listed, dw:with-presentation-input-context. This macro can be used to establish
an input context just as accept establishes a context. In a sense, its relationship
to accept is analogous to that of dw:with-output-as-presentation to present.
(See the section "Overview of Basic Program Output Facilities", page 47.) It just
provides the input context; you have to do your own input/parsing. The other
facilities in this group provide additional help in manipulating the input context.

7.5 Presentation Input Blip Facilities

Presentation Input Blip Facilities
dw:echo-presentation-blip
dw:presentation-blip-object
dw:presentation-blip-options
dw:presentation-blip-presentation-type
dw::presentation-blip-mouse-char
dw:presentation-blip-typep
dw:presentation-blip-p
dw:presentation-blip-case
dw:presentation-blip-ecase

A presentation input blip is created by a translating mouse handler when a user
clicks on a displayed presentation with the gesture appropriate for that handler.
Conceptually, the blip represents how the user clicked on a sensitive presentation:
it encodes the object, its presentation type, and the gesture used.

Do not confuse presentation blips with ordinary mouse blips. The former are
generated by translating handlers in presentation input contexts established by
accept or dw:with-presentation-input-context. Mouse blips, on the other hand,

79

August 1986 User Interface Management System: an Overview

are generated by clicking the mouse in non-presentation input contexts, for
example, that established by (send xterminal-iox :any-tyi). Do not mix
presentation and non-presentation input contexts in your applications. (For more
information on mouse blips: See the section "Mouse Blips" in Programming the
User Interface, Volume B.)

The Presentation Input Blip Facilities are used within the blip clauses of a
dw:with-presentation-input-context macro to manipulate input blips. The
functions in this subcategory extract certain fields of the blip or test them in
some way.

7.6 Other Presentation Facilities

Other Presentation Facilities
dw:presentation-type-p
dw:presentation-subtypep
dw:presentation-object
dw:presentation-type
dw:presentation-equal
dw:describe-presentation-type
dw:check-presentation-type-argument
dw:with-presentation-type-arguments
dw:with-type-decoded
dw:presentation-type-name
dw:presentation-type-default

The Other Presentation Type facilities include a miscellany of useful functions.
Perhaps the most important among these is dw:presentation-subtypep. This
function tests to see if one type can be regarded as a subtype of another. Subtype
considerations are key for determining the availability of presentation objects for
input in a given context, and the applicability of mouse handlers to such objects.

In general, when the input context is for a supertype, all subtypes to that
supertype are acceptable as input. Similarly, if a mouse handler is defined for the
supertype, it is also active for all the subtypes. In both cases, the reverse is not
true; that is, when a subtype is specified, a supertype is not acceptable.

In concrete terms, when you are accepting a number, any kind of number —
integer, ratio, etc. — will do; when you are looking for an integer, any kind of
integer will do, but not any kind of number. dw:presentation-subtypep and
equivalent internal functions are the basis of such determinations.

The remaining facilities in this subcategory are for taking apart presentations and
manipulating presentation-type arguments.

80

Programming the User Interface, Volume A August 1986

7.7 Writing a Presentation Type Parser

The parser for a presentation type has the responsibility for reading characters
typed by the user, parsing the input, and returning an object of the proper type.
Consequently, the parser defines the syntax of the presentation type.

The parser function is called with one positional argument, the stream on which
to do I/O. It is also passed several keyword arguments, which the programmer
can choose to use via &key in the parser’s argument list.

The most important rule for writing a parser is that you must use the passed-in
stream for all I/O operations in the body of the parser. Failure to follow this rule
will cause your presentation type to malfunction in command lines,
dw:accepting-values menus, and other contexts.

The following is a simple presentation type definition:

(define-presentation-type system-processes ()
:parser ((stream)
(dw:complete-from-sequence si:all-processes stream
:name-key ’si:process-name
:partial-completers ’ (#\sp)))
:printer ((object stream)
(princ object stream)))

This presentation type is a version of the si:process presentation type used by the
standard system. It takes advantage of one of the input completion utilities,
dw:complete-from-sequence. The caller provides dw:complete-from-sequence
with a list of objects that form the possibilities set, and
dw:complete-from-sequence takes care of reading input and returning the process
object associated with the name that the user types.

The :partial-completers option to dw:complete-from-sequence causes individual
words of process names to complete when the user types SPACE. This option is
usually supplied for any completion set that can be broken down into space-
separated tokens (for example, command names, window names, names of people).

For completing from a set of possible inputs when it is inconvenient to actually
produce a list or vector of the possibilities, a parser uses
dw:completing-from-suggestions, which defines a lexical function called
dw:suggest, called to generate the set. To get control over the actual completion,
that is, the mapping from substrings to possible inputs, use the
dw:complete-input function.

The parser for a presentation type reads user input and defines a mapping
between the characters typed and objects of that presentation type. In other
words, the parser looks at the user’s input and determines whether or not it can
interpret it as an object of the appropriate type.

81

August 1986 User Interface Management System: an Overview

Such determinations can be made in a couple of ways. One way is by native
syntactic evaluation. For example, when reading a number, make sure all the
characters are digits and then multiply and add them to get the result. Another
is by associative lookup, for example, names of objects in a list. If an object can
be found that matches the input, the parser returns it. If not, the parser signals
a special kind of error, called a parse-error.

A parse error should normally be a flavor of error built on sys:parse-error. The
two most convenient error flavors for use in presentation type parsers are
dw:input-not-of-required-type, which takes a presentation type and unparsable
token, and zl:parse-ferror, which takes an arbitrary format string and arguments.

A parser must follow a certain discipline when reading keyboard input. This
discipline includes using special functions to read all input. The most basic of
these functions is dw:read-standard-token. It reads characters from the input
stream and returns a string containing those characters. A simple table-lookup
parser can be written using dw:read-standard-token as shown in the following
example:

(define-presentation-type color ()
:parser ((stream)
(Tetx ((input (dw:read-standard-token stream))
(color (assoc input ’(("blue" (8 8 1.8))
("red" (1.8 8 8))
("magenta” (1.8 8 1.8)))
:test #’string-equal)))
(if (nul1l color)
(signal ’dw:input-not-of-required-type
:type ’color
:string input)
(second color)))))

The call to dw:read-standard-token reads all characters typed by the user until a
delimiter is typed. When the string is returned, the parser looks it up in a table
and returns the appropriate RGB color values. If no entry matching the input is
found, the dw:input-not-of-required-type error is signalled.

The delimiters for a particular call to dw:read-standard-token are specified via
the dw:with-accept-blip-chars and dw:with-accept-activation-chars macros. The
"blip" characters are simply the set of characters that cause
dw:read-standard-token to return when one of them is typed by the user at the
end of the input line. It is a visible graphic character, like a space or period, and
can be edited into and out of an input line.

The string returned by dw:read-standard-token contains all the characters typed
up to, but not including, the terminating character. By default, there are no blip

82

Programming the User Interface, Volume A August 1986

characters, so in a simple call to accept with the color presentation type above,
dw:read-standard-token does not return until the user types an activation
character.

Activation characters are usually not graphic characters. They are not edited in
the command line, but cause the command parser to return as soon as they are
typed. By default, the available activation characters are RETURN or END.

A slightly more complicated example that involves reading tokens and individual
characters follows. Characters are read by the dw:read-char-for-accept function
and its companions, dw:unread-char-for-accept and dw:peek-char-for-accept.
The "characters” returned by these functions can also be data structures whose
exact contents are only meaningful to the input functions themselves. Therefore,
all comparisons of characters read with these functions must be done with the
dw:compare-char-for-accept function.

(define-presentation-type simple-character-style ()
:parser ((stream)
(let ((family (accept ’((member fix swiss dutch))
:prompt nil
:stream stream)))
(let ((delim (dw:read-char-for-accept stream)))
(unless (dw:compare-char-for-accept delim #\.)
(sys:parse-ferror
“Character style components must be delimited with a period”))))))

Note that the recursive call to another presentation type parser, in this case
member, left the delimiter that terminated its parse, the period, in the stream. A
parser is responsible for reading intermediate delimiters and returning successfully
with the final delimiter still in the stream.

In the case of a blip character delimiter, the delimiter will presumably be looked
at by the caller of this presentation type, to make up a complex parse. For
instance, the periods that separate the fields of a character style, or the spaces
that separate the arguments to a command processor command.

In the case of an activation character, the delimiter will cause the enclosing calls
to parsers to themselves activate. Thus, a return typed to terminate a command
line percolates up through the parsers for the individual fields that make up the

command until it causes the actual command parser to return.

7.8 User-Defined Data Types as Presentation Types

Whenever you use defstruct, defflavor, or deftype, you are creating a new data
type. Often, when you have defined such a data type, you wish to present and

83

August 1986 User Interface Management System: an Overview

accept objects of the new type in you programs. Should you present them with
the presentation type being the same as the data type, or invent a separate
presentation type, instead? When addressing this issue, you need to consider
mouse handlers both from the data type in question, and fo the data type. It is
important to remember that all data types are subtypes of sys:expression.

These issues also arise when defining presentation types in terms of data-types,
for example, defining odd-integer to be an :abbreviation-for ((and integer
((satisfies oddp)))).

Let’s consider handlers from the new type first. If you define a handler from your
type, this handler will apply to instances of your object that you present, or that
are printed out by the debugger while you are debugging your program. This is
as it should be. However, the handler might apply to other presentations as well.
In the case of odd-integer, for example, whenever you move the mouse over an
odd integer — whether it was explicitly presented as type odd-integer or not — the
handler will apply. You may approve of this behavior, but if not, then do not
define odd-integer in terms of integer; that way, the handler is only available
when explicitly asked for.

In the case of flavors and structures, if you wish to restrict the applicability of
handlers from your type to only those objects presented explicitly as this type,
then define the presentation type with a name different from the flavor or
structure.

‘Similar considerations apply to handlers to your type. If you define a translator
with a fo-presentation-type that is also a data type, remember that it will apply in
the sys:expression input context, because such an object is also a type of
expression. In particular, it will apply at the Lisp top level. Again, this may or
may not be appropriate from your point of view. If not, the solutions are the
same.

The following example should make both of these situations clearer. (The
translator in this example is intentionally slow.)

(defstruct family-tree
father
mother)

(fs:define-canonical-type :family-tree "FAMILY-TREE"
((;unix :unix42 :vms :vms4) "FAT"))

(defun family-tree-file-p (pathname)
(eql (send pathname :canonical-type) :family-tree))

(define-presentation-type family-tree-pathname ()
:expander ’((and pathname ((satisfies family-tree-file-p)))))

84

Programming the User Interface, Volume A August 1986

(define-presentation-transilator pathname-to-family-tree

(family-tree-pathname ; from type

family-tree ; o type

:gesture :select)

(pathname)

(with-open-file (file pathname
:direction :input
:element-type ’characters)
(read file)))

(cp:define-command (com-show-family-tree-directory
:command-table "GLOBAL") ()
(loop for x in (directory (send (fs:user-homedir) :new-pathname
:name :wild
:type :family-tree
:version :newest))
do (present x ’fami]y—tree—pathname)))

(cp:define-command (com-count-family-tree-generations
:command-table "GLOBAL")
((family-tree ’family-tree))
(1abels ((count (tree)
(if (null tree)
2}
(1+ (max (count (family-tree-father tree))
(count (family-tree-mother tree)))))))
(format t "The number of generations is ~D."

(count family-tree))))

In this example, pointing the mouse at a pathname that has the :family-tree
canonical type highlights the presentation. This occurs even if the pathname is
displayed as a result of a Show Directory command instead of a Show Family Tree
Directory command; or if it results from evaluating

(fs:parse-pathname "ACME:>ui-programmer>my-family.family-tree)
in a Lisp Listener. If this behavior is unwanted, then the
:expander ’((and pathname ((satisfies family-tree-file-p))))
should be omitted from the type’s definition.

Also, the pathname-to-family-tree translator applies even if you are not looking
specifically for a family tree. If you are accepting a sys:expression, perhaps in
the Lisp Listener’s command loop, you are offered the option of reading in the file.

85

August 1986 User Interface Management System: an Overview

The programmer’s intent was to make the pathnames displayed by Show Family
Tree Directory sensitive only in the family-tree input context, as produced by the
Count Family Tree Generations command. There are two ways to get this
behavior. The first is to rename the structure or the presentation type, for
example,

(defstruct (family-tree-instance (:conc-name "FAMILY-TREE-")
(:constructor make-family-tree))
father
mother)

However, sometimes it might be inconvenient to make the presentation type and
the name different. In such cases, a :tester function can be supplied to the
handler that uses dw:handler-applies-in-limited-context-p to limit the handler to
cases where the program explicitly requests a family-tree.

Another problem with the translator, as written, arises when the input context is
family-tree and the user moves the mouse over one of these pathnames. Because
SemantiCue evaluates the body to see if the handler applies, the file is read in
without the user even clicking the mouse. This problem could be prevented in
two ways. First, we could put :do-not-compose t in the option list for the
translator. This suppresses the evaluation of the body to check its return value.
Unfortunately, it also means that if we did

(accept ’((and family-tree ((satisfies dad-named-george-p)))))
the predicate dad-named-george-p would never be run.

Alternatively, the program could be remodularized, with a command that worked
on files instead of family-trees. Here is our example rewritten, to take all of
these considerations into account.

(defstruct family-tree
father
mother)

(fs:define-canonical-type :family-tree "FAMILY-TREE"
((:unix :unix42 :vms :ums4) “FAT"))

(defun family-tree-file-p (pathname)
(eql (send pathname :canonical-type) :family-tree))

(define-presentation-type family-tree-pathname ()
;3 It is not unreasonable for any pathname with the type
;; of :family-tree to be available as a
;; family-tree-pathname, so we leave this in.
:expander ’((and pathname ((satisfies family-tree-file-p)))))

86
Programming the User Interface, Volume A August 1986

(cp:define-command (com-show-family-tree-directory
:command-table "GLOBAL") ()
(Toop for x in (directory (send (fs:user-homedir)
:new-pathname
:name :wild
:type :family-tree
:version :newest))
do (present x ’family-tree-pathname)))

(defun count-family-tree-generations (tree)
(if (null tree)
0
(1+ (max (count-family-tree-generations
(family-tree-father tree))
(count-family-tree-generations
(family-tree-mother tree))))))

(cp:define-command (com-count-family-tree-generations
:command-table "GLOBAL")
((family-tree ’family-tree))
(format t “The number of generations is ~D.”"
(count-family-tree-generations family-tree)))

(cp:define-command (com-count-family-tree-file-generations
:command-table “GLOBAL")
((pathname °’family-tree-pathname})
(with-open-file (file pathname

:direction :input
:element-type ’character)

(let ((family-tree (read file)))

(format t "The number of generations is ~D."
(count-family-tree-generations family-tree)))))

An advanced concepts section in the overview of mouse handler facilities presents
information pertinent to the above discussion: See the section "Advanced Mouse
Handler Concepts"”, page 42.

87

August 1986 User Interface Management System: an Overview

8. Window Substrate Facilities

The window system substrate is documented in two areas. We are concerned here
with Dynamic Windows and facilities designed exclusively for Dynamic Windows.
Many other window substrate facilities are available, however. These facilities,
based on static windows, pre-date Genera 7.0 and are documented in Programming
the User Interface, Volume B: See the section "Using the Window System" in
Programming the User Interface, Volume B.

Virtually all of the facilities documented in that volume are not restricted in their
use to static windows. They are equally useful, and in some cases necessary, for
programming with Dynamic Windows. In fact, the Dynamic Window system is for
the most part built on the static window system. Therefore, be aware that the
facilities described in this section represent only a fraction of the window
substrate, and that the documentation for needed init options, methods and other
facilities is available in the other volume. The dictionary entry for
dw:dynamic-window provides references to the relevant sections: See the flavor
dw:dynamic-window, page 399.

The following table lists the Dynamic Window substrate facilities:

Dynamic Window Facilities
dw:dynamic-window
dw:margin-borders
dw:margin-white-borders
dw:margin-whitespace
dw:margin-drop-shadow-borders
dw:margin-ragged-borders
dw:margin-label
dw:margin-scroll-bar
(flavor:method :set-margin-components dw:margin-mixin)
(flavor:method :set-borders dw:margin-mixin)
(flavor:method :set-label dw:margin-mixin)
(flavor:method :delayed-set-label dw:margin-mixin)
(flavor:method :update-label dw:margin-mixin)
dw:set-default-end-of-page-mode

Dynamic Frame Facilities
dw:program-frame

dw:dynamic-window is the basic window flavor in the Dynamic Window substrate.
It is the dynamic equivalent of tviwindow, the basic static window flavor. Unlike

88

Programming the User Interface, Volume A August 1986

tviwindow, however, dw:dynamic-window has built into it a variety of desirable
window features. dw:dynamic-window also refers to a resource of Dynamic
Windows.

The basic Dynamic Window flavor supports an output-history, that is, presentation
recording, is scrollable, includes a visible scroll bar, has a label, and is surrounded
by a simple, one-pixel-wide border. The last three attributes — the scroll bar,
label, and border — are margin components made available via a single mixin
flavor, dw:margin-mixin.

Most of the remaining Dynamic Window facilities listed in the above table relate
to margin components. They provide a set of flavors and methods allowing you to
customize the appearance of your program’s windows, from a variety of border
designs to labels and scroll bars. The following example shows how to make a
Dynamic Window with a customized set of margin components:

(defun dynamic-window-margin-example ()
(let ((test (tv:make-window ’dw:dynamic-window
:edges-from :mouse
:margin-components
’((dw:margin-borders :thickness 1)
(dw:margin-white-borders :thickness 3)
(dw:margin-borders :thickness 10)
(dw:margin-white-borders :thickness 8)
(dw:margin-borders :thickness 3)
(dw:margin-whitespace :margin
:left :thickness 10)
(dw:margin-scroll-bar)
(dw:margin-whitespace :margin
:bottom :thickness 7)
(dw:margin-scroli-bar :margin :bottom)
(dw:margin-whitespace :margin :left
:thickness 18)
(dw:margin-Tabel :margin :bottom
:style (:sans-serif
:italic :normal))
(dw:margin-whitespace :margin :top
:thickness 18)
(dw:margin-whitespace :margin :right
:thickness 13))
:expose-p t
:mouse-blinker-character #\mouse:fat-circle)))
(send test :set-label "Margin Test Window")))

When you create this window and run the mouse cursor over it, you will notice
the cursor changing shape. The shape, in this case a "fat circle", is specified via

89

August 1986 User Interface Management System: an Overview

the :mouse-blinker-character init option. Other available mouse blinker
characters are listed in the section that follows.

Additional Dynamic Window methods are included in the program output category,
because of their usefulness in that context: See the section "Overview of Other
Facilities for Program Output”, page 60.

Dynamic frame facilities considered to be substrate-level are limited to
dw:program-frame. This is the building-block flavor used by the Frame-Up
Layout Designer and dw:define-program-framework to create program frames.
For an overview of these facilities and some frame functions: See the section
"Overview of Top-level Facilities".) Also, as is the case with Dynamic Windows
generally, static window system facilities for programming with frames are
applicable to dynamic frames as well: See the section "Frames" in Programming
the User Interface, Volume B. dw:program-frame is also a window resource.

Reference documentation for the facilities discussed in this section is included in a
separate dictionary: See the section "Dictionary of Window Substrate Facilities",
page 395.

8.1 Mouse-Blinker Characters

Through the :mouse-blinker-character init option to dw:dynamic-window, the
mouse blinker, when moved over a Dynamic Window, can assume any of the
shapes available in the mouse font (fonts:mouse). To see the glyphs included in
this font, use the Show Font Command Processor command on "mouse". Each
glyph in the font maps to a unique mouse-blinker character. The following lists
these in the order in which they appear in the font:

#Hmouse:up-arrow
#mouse:right-arrow
#\mouse:down-arrow
#\mouse:left-arrow
#mouse:vertical-double-arrow
#fimouse:horizontal-double-arrow
#\mouse:nw-arrow

#\mouse:times
#imouse:fat-up-arrow
#\mouse:fat-right-arrow
#mouse:fat-down-arrow
#\mouse:fat-left-arrow
#\mouse:fat-double-vertical-arrow
#mouse:fat-double-horizontal-arrow

90

Programming the User Interface, Volume A August 1986

#\mouse:paragraph
#\mouse:nw-corner
#\mouse:se-corner
#mouse:hourglass
#\mouse:circle-plus
#\mouse:paintbrush
#\mouse:scissors
#\mouse:trident
#f\mouse:ne-arrow
#\mouse:circle-times
#\mouse:big-triangle
#mouse:medium-triangle
#imouse:small-triangle
#\mouse:inverse-up-arrow
#fmouse:inverse-down-arrow
#mouse:filled-lozenge
#mouse:dot
#\mouse:fat-times
#\mouse:small-filled-circle
#mouse:filled-circle
#mouse:fat-circle
#mouse:fat-circle-minus
#\mouse:fat-circle-plus
#\mouse:down-arrow-to-bar
#imouse:short-down-arrow
#\mouse:up-arrow-to-bar
#\mouse:short-up-arrow
#\mouse:boxed-up-triangle
#\mouse:boxed-down-triangle

Note that mouse-blinker characters are non-printing; that is, they are intended for
on-line use only.

91

August 1986 User Interface Management System: an Overview

9. User Interface Application Example

This chapter presents a simple application illustrating the use of some of the
major facilities available in Genera’s user interface management system. The
primary focus is on the command interface aspects of setting up an application. A
separate examples file, sys:examples;ui-application-example.lisp contains the
functions presented here in a more readily compilable form.

Suppose we have a simple flavor defined like this:

(defvar xemployee-Tistx nitl)

(defflavor employee (first-name last-name (retired-p nil))

0O

:readable-instance-variables
:writable-instance-variables
:initable-instance-variables)

(defmethod (make-instance employee) (&rest ignored)
(push self xemployee-listx))

(defmethod (employee-name employee) ()
(format nil "~a ~a" first-name last-name))

(make-instance ’employee :first-name "Fred" :last-name "Flintstone")
(make-instance ’employee :first-name "Barney” :last-name "Rubble")

This is how we might define a presentation type to read objects of this flavor:

92

Programming the User Interface, Volume A August 1986

(define-presentation-type employee (() &key abbreviate)

:no-deftype t ;there’s already a flavor, so don’t try to
; define a type
:history t ;give us our own type history

:parser ((stream &key type initially-display-possibilities)
(dw:completing-from-suggestions
(stream rinitially-display-possibilities
initially-display-possibilities
:partial-completers ’ (#\space)
:type type)
(Toop for emp in xemployee-listx
do (dw:suggest (employee-name emp) emp))))
:printer ((object stream &key acceptably)
(when acceptably (write-char #\" stream))
(cond (abbreviate (write-string (employee-last-name object) stream))
(t (write-string (employee-name object) stream)))
(when acceptably (write-char #\" stream)))
:description "an employee”)

The following handler turns employees into strings by extracting their names.
Thus, in the input context established by (accept ’string), employee displays are
mouse-sensitive; clicking left (the :select gesture) on one is equivalent to typing
the employee’s name.

(define-presentation-translator employee-to-string
(employee string
:gesture :select
:documentation "“This employee’s name")
(employee)
(employee-name employee))

The following handler is a side-effecting handler. It acts on employees that are
not currently retired (discriminating by using a :tester function) in any input
context. (This is because t, meaning "any," is specified as the to-presentation-type
for this handler.) This handler runs whenever a middle click is executed while
the mouse is over an unretired employee. Since this happens without the
application (command-loop) knowing about it, programming your interface in this
style is not recommended. (Below you will see another example that shows you
how to define a handler that makes changes that your program does know about.)

93

August 1986 User Interface Management System: an Overview

(define-presentation-action retire-employee
(employee t
:gesture :middle
:tester ((employee)
(not (employee-retired-p employee)))

:documentation "Retire this employee")

(employee)
(setf (employee-retired-p employee) t))

The following function formats a table of employee information:

(defun format-employees-1ist (stream)
(fresh-Tine stream)
(formatting-table (stream)
(formatting-column-headings (stream :underline-p t)
(with-character-face (:italic stream)
(formatting-cell (stream) "name")
(formatting-cell (stream) "retired?")))
(Toop for employee in xemployee-listx
do
(formatting-row (stream)
(formatting-cell (stream)
(present employee ‘employee
:stream stream))
(formatting-cell (stream)
(format stream "~:[no~;yes™]"
(employee-retired-p employee)))))))

Here is a sample user interface framework for the application, created with the
Frame-Up Layout Designer:

94

Programming the User Interface, Volume A August 1986

(dw:define-program-framework employee-editor

:select-key #\x

:command-definer t

:command-table (:inherit-from ’nil1 :kbd-accelerator-p ’nil)

:state-variables nil

:panes

((pane-1. :title :size-from-output nil :redisplay-string nil
:redisplay~-function nil :height-in-lines 1
:redisplay-after-commands nil)

(pane-3 :display)

(pane-2 :command-menu :equalize-column-widths nil
:center-p nil :columns nil :rows nil
:menu-level :top-level)

(pane-4 :interactor :typeout-window nil :height-in-lines 4))

:configurations

’((dw::main (:layout (dw::main :column pane-1 pane-3 pane-2 pane-4))

(:sizes
(dw::main (pane-1 1 :1ines) (pane-2 :ask-window self :size-for-pane pane-2)
(pane-4 4 :lines) :then (pane-3 :even))))))

Notice that :command-definer t was specified in the above. (This is the default.)
This means that a command-defining macro called define-application-command (in
this case, define-employee-editor-command) will be defined for you. Use this macro
to define commands associated with this application.

define-application-command has a syntax very similar to cp:define-command,
differing in only several respects. First, commands defined using it will be
installed in the command table of your application, not in the Global or User
command table. Second, define-application-command takes the extra options
:kbd-accelerator, :menu-accelerator, and :menu-level (explained in more detail
below) that allow you to specify alternate ways of entering this command while in
the application. Third, the command may refer to the state variables of the
application.

Although a Command Processor command is defined when
define-application-command is used, this does not constrain you to interacting with
the application solely by typing commands on a command line. If you tell
dw:define-program-framework that your application has an :interactor pane,
then this interactor will, by default, read and execute commands defined with this
macro. (There is no requirement that your application have an interactor,
however.)

If you specify the option :menu-accelerator with some value as one of the options
to define-application-command, the command will exist in the command-menu of
your application, if one exists. :menu-accelerator t means the command name

95

August 1986 User Interface Management System: an Overview

should go in the menu. :menu-accelerator name means name should go in the
menu. :menu-level name means "put this command in the menu with menu-level
name." Thus, all the commands with :menu-accelerator something will be
accessible from a command-menu.

Similarly, :kbd-accelerator char associates this command with a specific keystroke
(as in the debugger). Your command-table must have :kbd-accelerator-p t for
this to work. (This is the "Read single keystroke accelerators” option in Frame-
Up.)

Using the above two options, you can construct interfaces that allow users to type
commands as commands, click on commands in menus, and execute commands
through single keystrokes. Using presentation-translators, you can allow the user
to click on presentations to enter commands. (An example is presented below.)
These facilities should give you enough flexibility to construct powerful user
interfaces.

Here is an example command for the employee-editor application. It simply
changes the status of an employee. It is available from the command menu as
"Change Status".

(define-employee-editor-command
(com-change-employee-status
:menu-accelerator “Change Status")
((employee ’employee
:confirm t
:prompt “employee"))
(setf (employee-retired-p employee)
(not (employee-retired-p employee)))
(fresh-1ine)
(present employee ’employee)
(write-string "’s status changed."))

This command is available from the command menu as "Show Employees", and
simply calls the table-formatting routine defined above:

(define-employee-editor-command
(com-show-employees :menu-accelerator t)

0O

(format-employees-1ist xstandard-outputx))

Note that while debugging your application, you can recompile the
dw:define-program-framework form at any time. This causes your application to
inherit any of the new options you may have added. Similarly, if you compile a
command with a :menu-accelerator, when you reselect your application and
restart the process (n-RBORT should do the job), the new item will be in the menu.
This makes debugging and prototyping very easy.

96

Programming the User Interface, Volume A August 1986

Here is an example of the third way to enter commands. In this case, a translator
from employees to commands is defined. This means that whenever the input
context is ep:command (as it will be inside the command loop written for your
application), objects presented as employees will be sensitive. The result of
clicking left on them (the :select gesture) is to cause the Change Employee Status
command to be executed with that employee as its argument.

Note that this translator applies in cp:command context. In string context, the
translator defined above will still apply. Unlike the side-effecting mouse handler
‘we defined above, this is the recommended way of interacting with your
application through the mouse. When you use a translator, your application knows
what the user did (there is no difference between clicking as above or typing
Change Employee Status). When you use a side-effecting handler, your application
does not know what happened. In this case, the display would not be updated to
show that the employee was retired had you clicked middle on the employee, but it
would be updated if you clicked left. This is because the click-left case
(translating to a command) goes through the application properly.

(define-presentation-to-command-translator change-employee-status
(employee)
(employee)
(cp:build-command ’com-change-employee-status
employee))

You can also write commands to manipulate your data structures that can be
called from top-level command loops (that is, Lisp Listeners). Simply use
cp:define-command instead. You will not be able to use the state variables of
your application, though.

(cp:define-command (com-another-way-to-change-employee-status
:command-table ’user)
((employee ’employee :prompt "employee"))
(setf (employee-retired-p employee)
(not (employee-retired-p employee)))
(present employee ’employee)
(write-string "’s status changed."))

Advanced applications may need more complex command loops than the one
written by default by dw:define-program-framework. This is what the :top-level
and :command-evaluator options to dw:define-program-framework are for.

The syntax for the :top-level option is :top-level (function-name &rest args).
Function-name is the name of a function. It will be called with one argument, the
program instance — consequently, a generic function may be appropriate for this
option if the top-level function wishes to access state variables — followed by args.
A slightly modified example from the system is:

97

August 1986 User Interface Management System: an Overview

:top-level (examiner-top-level :prompt “Flavor Examiner: ")

(defun examiner-top-level (program &rest options)
;; No point 1in making this a generic function,
;; although typically it would he.
(examiner-help program (dw:get-program-pane ’command) nil)
(apply #’dw:default-command-top-level program options))

What this does is define a top-level function for the flavor-examiner that ensures
that the flavor-examiner’s help message is displayed before the default command
loop is entered. In this case, :prompt “Flavor Examiner: " is simply passed into

dw:default-command-top-level which causes "Flavor Examiner: " to be used as

the prompt.

The syntax for the :command-evaluator option is simply :command-evaluator
function-name. function-name is the name of a function. It will be called with
three arguments, the program instance (a generic function may be appropriate for
this option if the function wishes to access state variables), the command symbol,
and the arguments to the command. The function may do anything it wishes, but
eventually should do (apply command-symbol command-args). (For information on
facilities used when writing command loops: See the section "Overview of
Command Loop Management Facilities", page 33.

For a more advanced example of dw:define-program-framework, see the
calculator program in the file sys:examples;define-program-framework.lisp. This
program creates its own command-menu and command-menu handlers to simulate
a four-function calculator. For this it uses two undocumented functions
dw:program-command-menu-item-list and dw:define-command-menu-handler.
See the referenced file for more information.

98

Programming the User Interface, Volume A August 1986

99

August 1986 Dictionary of Top-level Facilities for User Interface Programming

PART Il

Dictionary of Top-level Facilities for User Interface
Programming

100

Programming the User Interface, Volume A August 1986

101

August 1986 Dictionary of Top-level Facilities for User Interface Programming

10. Dictionary Notes

This dictionary includes reference documentation for the following facilities:
Table of Top-Level Facilitles for User Interface Programming

Frame-Up Layout Designer

Program Framework Definition
dw:define-program-framework
dw:*program-frame*
dw::find-program-window
dw:get-program-pane

Program Command Definition
dw:define-program-command
define-presentation-to-command-translator

The documentation for Frame-Up is presented first, followed by the remaining
facilities in alphabetical order (package prefixes excluded).

For conceptual documentation: See the section "Overview of Top-Level Facilities
for User Interface Programming”, page 21.

102

Programming the User Interface, Volume A August 1986

Dictionary of Top-level Facilities for User Interface Programming 103

August 1986 Frame-Up Layout Designer

11. The Facilities

11.1 Frame-Up Layout Designer

11.1.1 Introduction

The Frame-Up Layout Designer is an interactive facility for helping you create the
user interface to an application program. It is available on SELECT @, through the
System Menu, or from Zmacs.

More specifically, Frame-Up is the interactive version of
dw:define-program-framework, a macro for defining a program’s window and
command interface. Frame-Up lets you configure a program frame and specify
options for individual panes within the frame. (For more information on frames
and panes: See the section "Frames" in Programming the User Interface, Volume
B.) Other options, for the program as a whole, provide control over the program’s
command loop.

When you finish configuring the program frame and specifying pane and program
options, Frame-Up creates the corresponding dw:define-program-framework code.
This code is written to an editor buffer where it is available for hand editing.
(For information on how to edit the frame configuration, see the above-referenced
section on "Frames".) Alternatively, you can go back to Frame-Up, modify the
interface, and have the new code written out in place of the old.

Three additional sections complete the Frame-Up Layout Designer documentation:
See the section "Getting Started with Frame-Up", page 103.

See the section "Frame-Up Commands", page 104.

See the section "Zmacs Commands for Frame-Up", page 114.
For an overview of the Frame-Up Layout Designer and related facilities, in
particular, dw:define-program-framework: See the section "Overview of Top-
Level Facilities for User Interface Programming", page 21.

11.1.2 Getting Started

You can invoke the Frame-Up Layout Designer from the System Menu, via SELECT
Q, or from a Zmacs editor buffer. Because the ultimate output provided by Frame-
Up is editable Lisp code, it may be simplest to start off in a Lisp-mode buffer at
the point where you want the dw:define-program-framework macro to be written.
With the editor cursor at this point:

1. Enter the extended command (n-¥) Create Program Definition.
2. Enter the program name.

104 Dictionary of Top-level Facilities for User Interface Programming

Frame-Up Layout Designer August 1986

The name entered in step 2 is the name argument to
dw:define-program-framework. It is the name given to the program flavor
created by this macro for your application.

After invoking the Frame-Up program, whether from an editor buffer or directly,
an initial display appears including a starting configuration for the program frame
and a menu of Frame-Up commands. Program- and frame-level commands are
listed together on the left of the command menu, pane-level commands on the
right. You could start with any of these, but if you are unfamiliar with Frame-
Up, we recommend that you start with commands in the first category: See the
section "Program and Frame Commands in Frame-Up", page 104.

11.1.3 Commands

11.1.3.1 Program and Frame Commands

Five Frame-Up Layout Designer commands are included in this category: Set
Program Options; Select Configuration; Reset Configuration; Preview; and Done.
The following subsections consider each in turn.

Set Program Options

The program options you can modify using the Set Program Options command are
described below. (Where appropriate, references to the corresponding
dw:define-program-framework options are given.)

Program name The name of the program flavor created by
dw:define-program-framework for your application.

If you invoked Frame-Up from an editor buffer with the Create
Program Definition extended command, the default value for
this option is the name you supplied to that command.

Select key The key to use for selecting your program.
(See the macro "dw:define-program-framework 124.)

Name of command-defining macro
The name given to the macro created by
dw:define-program-framework and used to define commands
for your program.

The default, t, causes your program name to be used as part of
this name. For example, if the name of your program is shell-
game, the default command-defining macro will be define-shell-
game-command,

Dictionary of Top-level Facilities for User Interface Programming 105

August 1986 Frame-Up Layout Designer

You use the command macro created for you as you would
dw:define-program-command; the syntax and keywords are the
same.

(See the function "dw:define-program-framework", page 124.)

Read single-character command accelerators
Boolean option specifying whether your program accepts single-
character command accelerators; the default is No.

If you enter Yes for this option, you have three possible sources
of accelerators:

1. Accelerators you inherit when you inherit command tables
using the program option discussed below.

2. Standard accelerators you supply to your program. (See
the section "Overview of Advanced Command Facilities",
page 32.)

3. Accelerators you define yourself. (See the section
"Overview of Advanced Command Facilities", page 32.)

(See the macro "dw:define-program-framework”, page 124.)

Inherit commands from command tables
The name(s) of command table(s) from which your program
inherits commands and, if specified by the above option,
command accelerators.

For example, supplying a value of user to this option results in
all of the commands normally available in a Lisp Listener being
available in your program, in addition to program commands you
define yourself.

The default for this option — ’ (“colon full command” "standard
arguments” “standard scrolling”) — enables use of extended
(m-x) and colon full commands, standard single-character
accelerators like c-U, and standard scroll keys like SCROLL and
m-SCROLL. These are enabled only if you specify Yes to the
Read single-character command accelerators option.

(See the macro "dw:define-program-framework", page 124.)

Select Configuration

The Select Configurations command gives you a choice of two standard
configurations for your program frame. The first consists of a command-menu

106 Dictionary of Top-level Facilities for User Interface Programming

Frame-Up Layout Designer August 1986

pane and a listener pane; the second of a title, command-xhenu, display, and
interactor pane. (For a description of pane types: See the section "Set Pane
Options Frame-Up Command”, page 107.)

You may select a standard configuration and then modify it using one or more of
the pane-oriented commands: See the section "Pane Commands in Frame-Up",
page 107.

Reset Configuration

The Reset command restores the original program frame. (The original frame is
the one displayed when you first enter Frame-Up; it consists of a single display
pane.)

Preview

The Preview command lets you see what the frame you have configured looks like
on a full-screen display without having to compile your program. Without this
command, to see your program frame you would have to exit Frame-Up, compile
the dw:define-program-framework definition, and select your program. With it,
you can look at the frame directly and, if unsatisfied with the result, continue
editing the layout before writing out the interface code.

Done

The Done command signals the end of the Frame-Up session. What happens when
you invoke this command depends on how you entered Frame-Up:

¢ If you entered Frame-Up from an editor buffer via the Create Program
Definition or Edit Program Definition extended editor command, then Frame-
Up returns you to that buffer and automatically writes out the
dw:define-program-framework macro corresponding to the interface you
configured.

In the case of Edit Program Definition, the new code replaces the old code
(dw:define-program-framework macro) that was already there.

¢ If you entered Frame-Up from the System Menu or via SELECT 0, then you
are returned to the activity selected prior to entering Frame-Up.

In this case, the dw:define-program-framework code corresponding to your
interface is not written automatically to an editor buffer. You must select
the buffer you wish the code to be written to and use the extended editor
command Insert Program Definition.

Dictionary of Top-level Facilities for User Interface Programming 107

August 1986 Frame-Up Layout Designer

11.1.3.2 Pane Commands

Five Frame-Up Layout Designer commands are available for manipulating panes:
Set Pane Options; Set Pane Name; Split Pane; Swap Panes; and Delete Pane. The
following subsections discuss each in turn.

(Note that, after finishing the Frame-Up session, further editing of the code
affecting the appearance of program panes and the frame as a whole is possible.
For more information: See the section "Frames" in Programming the User
Interface, Volume B. In particular: - See the section ":layout Constraint Frame
Specification" in Programming the User Interface, Volume B. See the section

":sizes Constraint Frame Specification" in Programming the User Interface, Volume
B.)

Set Pane Options

Pane options you can modify using the Set Pane Options command include the
pane name and type. Other options depend on the pane type. Six types are
available:

Accept-Values Pane providing the features and services of a
dw:accept-variable-values menu (the kind of menu used to
display the pane options themselves).

Display Pane for display of application-generated output.

Title Pane for display of the program title.

Command-Menu Pane for menu of program commands.

Interactor Pane for interactive input/output.

Listener Similar to an interactor, but taller. (Use this pane when you

want the interaction history to be visible.)

The following subsections describe the other options available for each pane type.
(For information on additional options that you can hand-edit into the
dw:define-program-framework macro: See the macro
"dw:define-program-framework", page 124.)

Accept Values Pane Options

Accept values function
Specifies a function for creating a
dw:accept-variable-values-like display. The function may be
written either as a generic function (using defmethod) to the
program flavor or as a regular function (using defun). The
function is passed two arguments: the current instance of the
program flavor and the stream for I/O.

108

Dictionary of Top-level Facilities for User Interface Programming

Frame-Up Layout Designer August 1986

The multiple-accept display is created by wrapping the body of
the function you write in a dw:accepting-values macro: See
the macro dw:accepting-values, page 175. The wrapping is
done for you by dw:define-program-framework. The general
form of the function you write is

(defmethod (my-avv-function program) (stream)
(setq state-var-1 (accept ...)
(setq state-var-2 (accept ...)
(setq state-var-3 (accept ...)
2

For an example, see the program avv-pane-test in the file
sys:examples;define-program-framework.lisp

If you include an Accept Values pane in your program frame but
do not specify an Accept Values Function, the option defaults to
an internal function that uses your program’s state variables as
the variables in the accept-values display. The state variables
are those specified by the :state-variables option to
dw:define-program-framework: See the macro
"dw:define-program-framework 124.

This option maps to the :accept-values-function keyword option
for :accept-values panes: See the macro
"dw:define-program-framework", page 124.

Redisplay each time around command loop

Boolean option specifying whether to redisplay the pane after
each command is executed. The default is Yes for Accept-Values
panes, No for Display and Title panes.

This option maps to the :redisplay-after-commands keyword
option for program panes: See the macro
"dw:define-program-framework", page 124.

Set size of pane from contents

Height in lines

Boolean option specifying whether a pane is sized according to
the space needs of output to that pane. The default is Yes for
Accept-Values panes, No for Display and Title panes.

This option maps to the :size-from-output keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Fixes the pane height to the specified number of lines. The
default value is 1 for Title panes and 4 for Interactor panes.
No default is provided for Listener Panes.

Dictionary of Top-level Facilities for User Interface Programming 109

August 1986

Frame-Up Layout Designer

This option maps to the :height-in-lines keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Display Pane Options

Redisplay output generator

Redisplay string

This option specifies one of three possibilities for generating
redisplay to the pane: no redisplay generator (None); a redisplay
string (String); or a redisplay function (Function).

If you specify String, then the Redisplay string option appears:
See the section "Display Pane Options", page 109.

If you specify Function, then both the Redisplay function and
Incremental redisplay options appear. See the section "Display
Pane Options", page 109.

Specifies a string written to the pane (starting at top) whenever
the pane is redisplayed. This option is mutually exclusive with
_the Redisplay function option.

This option maps to the :redisplay-string keyword option for
program panes: See the macro
"dw:define-program-framework”, page 124.

Redisplay function

The function that runs whenever the pane is redisplayed. This
option is mutually exclusive with the Redisplay string option.

The redisplay function may be written either as a generic
function (using defmethod) to the program flavor or as a
regular function (using defun). The function is passed two
arguments: the current instance of the program flavor and the
stream on which to do output.

This option maps to the :redisplay-function keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Incremental redisplay

Boolean option specifying whether redisplayed information is
limited to items that have changed since the last redisplay,
rather than the entire pane; the default is No.

If you specify Yes, you must write the appropriate redisplay
function (see Redisplay function) above).

110

Dictionary of Top-level Facilities for User Interface Programming

Frame-Up Layout Designer = August 1986

Pane flavor

For information on incremental redisplay: See the section
"Overview of Advanced Program Output Facilities", page 63.
See also the file sys:examples;incremental-redisplay.lisp.

This option maps to the :incremental-redisplay keyword option
for :display panes: See the macro
"dw:define-program-framework", page 124.

The pane flavor to use for this pane; the default is
dw::dynamic-window-pane.

This option maps to the :flavor keyword option for :display
panes: See the macro "dw:define-program-framework", page
124,

Redisplay each time around command loop

Typeout window

Height in lines

Boolean option specifying whether to redisplay the pane after
each command is executed. The default is Yes for Accept-Values
panes, No for Display and Title panes.

This option maps to the :redisplay-after-commands keyword
option for program panes: See the macro
"dw:define-program-framework", page 124.

Boolean option specifying whether a typeout (pull-down) window
for *terminal-io* appears within the pane. The default is No.

This option maps to the :typeout-window keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Fixes the pane height to the specified number of lines. The
default value is 1 for Title panes and 4 for Interactor panes.
No default is provided for Listener Panes.

This option maps to the :height-in-lines keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Set size of pane from contents

Boolean option specifying whether a pane is sized according to
the space needs of output to that pane. The default is Yes for
Accept-Values panes, No for Display and Title panes.

This option maps to the :size-from-output keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Dictionary of Top-level Facilities for User Interface Programming 111

August 1986

Frame-Up Layout Designer

Title Pane Options

Redisplay output generator

Redisplay string

This option specifies one of three possibilities for generating
redisplay to the pane: no redisplay generator (None); a redisplay
string (String); or a redisplay function (Function).

If you specify String, then the Redisplay string option appears:
See the section "Display Pane Options", page 109.

If you specify Function, then both the Redisplay function and
Incremental redisplay options appear. See the section "Display
Pane Options", page 109.

Specifies a string written to the pane (starting at top) whenever
the pane is redisplayed. This option is mutually exclusive with
the Redisplay function option.

This option maps to the :redisplay-string keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Redisplay function

The function that runs whenever the pane is redisplayed. This
option is mutually exclusive with the Redisplay string option.

The redisplay function may be written either as a generic
function (using defmethod) to the program flavor or as a
regular function (using defun). The function is passed two
arguments: the current instance of the program flavor and the
stream on which to do output.

This option maps to the :redisplay-function keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Incremental redisplay

Boolean option specifying whether redisplayed information is
limited to items that have changed since the last redisplay,
rather than the entire pane; the default is No.

If you specify Yes, you must write the appropriate redisplay
function (see Redisplay function) above).

For information on incremental redisplay: See the section
"Overview of Advanced Program Output Facilities", page 63.
See also the file sys:examples;incremental-redisplay.lisp.

112

Dictionary of Top-level Facilities for User Interface Programming

Frame-Up Layout Designer August 1986

This option maps to the :incremental-redisplay keyword option
for :display panes: See the macro
"dw:define-program-framework"”, page 124.

Redisplay each time around command loop

Height in lines

Boolean option specifying whether to redisplay the pane after
each command is executed. The default is Yes for Accept-Values
panes, No for Display and Title panes.

This option maps to the :redisplay-after-commands keyword
option for program panes: See the macro
"dw:define-program-framework", page 124.

Fixes the pane height to the specified number of lines. The
default value is 1 for Title panes and 4 for Interactor panes.
No default is provided for Listener Panes.

This option maps to the :height-in-lines keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Set size of pane from contents

Boolean option specifying whether a pane is sized according to
the space needs of output to that pane. The default is Yes for
Accept-Values panes, No for Display and Title panes.

This option maps to the :size-from-output keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Command-Menu Pane Options

Menu geometry Specifies how the menu is to be laid out. You have three

choices: you can let Frame-Up come up with a configuration
(Default) that is in most cases reasonable; you can control the
layout yourself by specifying menu Rows; or you can control
layout by specifying menu Columns.

If you select Rows, then you are asked if you want to Specify
number of rows or row contents. If Number, then enter a
value in the Number of rows field that appears. If Contents,
then enter one or more command names (strings) to be the
Items in row 1, followed by the entering of one or more strings
to be the Items in row 2, and so on, until all the rows are
specified. This option maps to the :rows keyword option for
:command-menu panes: See the macro
"dw:define-program-framework”, page 124.

Dictionary of Top-level Facdilities for User Interface Programming 113

August 1986 Frame-Up Layout Designer

If you select Columns for the Menu geometry option, you
proceed in a fashion analogous to that described for Rows. This
option maps to the :columns keyword option for
:command-menu panes: See the macro
"dw:define-program-framework", page 124.

If you specify menu rows or columns by their contents, the
string used to identify each command must be the same as that
specified in the :menu-accelerator option to the command
definer used for the program. (See the macro
"dw:define-program-command"”, page 122.) The command
definer is specified by one of the options in the Set Program
Options command: See the section "Set Program Options
Frame-Up Command", page 104.

Menu identifier Symbol identifying the command menu to appear in this pane if
the program frame includes more than one. If only one
command menu is available, the default value (:TOP-LEVEL) for
this option is the appropriate choice.

This option maps to the :menu-level keyword option for
:command-menu panes: See the macro
"dw:define-program-framework", page 124.

Center menu items
Boolean option specifying whether command names are centered
(left-right) in the command menu. The default is No, causing
command names to be flush left in the column.

This option maps to the :center-p keyword option for
:command-menu panes: See the macro
"dw:define-program-framework", page 124.

Compress item columns
Boolean option specifying whether columns of command names
are compressed on the left side of the pane or spread out over
the full horizontal extent of the pane. The default is Yes
(compressed to the left).

This option maps to the :equalize-column-widths keyword
option for :command-menu panes: See the macro
"dw:define-program-framework", page 124.

Interactor and Listener Pane Options

Typeout window Boolean option specifying whether a typeout (pull-down) window
for *terminal-io* appears within the pane. The default is No.

114 Dictionary of Top-level Facilities for User Interface Programming

Frame-Up Layout Designer August 1986

This option maps to the :typeout-window keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Height in lines Fixes the pane height to the specified number of lines. The
default value is 1 for Title panes and 4 for Interactor panes.
No default is provided for Listener Panes.

This option maps to the :height-in-lines keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Set Pane Name

The Set Pane Name command lets you change the name of a pane. The
arguments to this command are the current name of the pane and the new name.

Split Pane
The Split Pane command divides the specified pane in half. Arguments to this
command are the pane to divide and whether the division is horizontal or vertical.

Splitting a pane horizontally causes the two daughter panes to appear in a column
orientation, one on top of the other. Splitting a pane vertically causes the two
daughter panes to appear in a row orientation, side-by-side.

Swap Panes

Use the Swap Pane command to exchange the position of two panes. The two
panes must occur in either the same row or same column.

Delete Pane

This command deletes a specified pane from the configuration for the program
frame.

11.1.4 Zmacs Commands for Frame-Up

11.1.4.1 Create Program Definition

The Create Program Definition command initiates a Frame-Up session from an
editor buffer. When the session is terminated (via the Done command to Frame-
Up), the dw:define-program-framework code corresponding to the configured
interface is inserted into the buffer at point.

Create Program Definition is an extended (m-x) Zmacs command. When invoked,
it firsts prompts you for the name of the program, then enters Frame-Up.

Dictionary of Top-level Facilities for User Interface Programming 115

August 1986 Frame-Up Layout Designer

If you entered Frame-Up via SELECT Q or from the System Menu, then use the
Insert Program Definition extended command to write the
dw:define-program-framework code into an editor buffer.

11.1.4.2 Insert Program Definition

Insert Program Definition is an extended (n-x) Zmacs command for writing
Frame-Up Layout Designer code into an editor buffer. Use it when you have
entered Frame-Up via SELECT Q or from the System Menu, rather than through
the Create Program Definition extended command.

When you exit from the Frame-Up session (via the Done command), select an
editor buffer and use the Insert Program Definition command to write the
dw:define-program-framework code corresponding to the configured interface.
The code is inserted at point.

11.1.4.3 Edit Program Definition

You can use the Edit Program Definition extended (m-x) command to re-enter a
Frame-Up session and make further modifications to the user interface
configuration. This occurs after you have already written into your editor buffer
the dw:define-program-framework macro corresponding to an earlier session.
(The original code may have been written through either the Create Program
Definition or Insert Program Definition extended command.)

When you terminate the new Frame-Up session (via the Done command), the code
corresponding to the new interface configuration replaces the original code.

116

Dictionary of Top-level Facilities for User Interface Programming

dsfine-presentation-to-command-translator August 1986

define-presentation-to-command-translator name Macro

(presentation-type &key tester (gesture :select)
documentation suppress-highlighting (menu t)
(context-independent nil) priority
exclude-other-handlers blank-area
do-not-compose) arglist &body body

Defines a mouse handler that translates from a displayed presentation
object into a Command Processor command using that object as input.

name

The name of the handler.

presentation-type

:tester

:gesture

The type of the displayed presentation object for which the
handler is intended.

Specifies the parameter list and body for a tester function.
The tester function determines whether the handler applies to
the current presentation, if it is otherwise applicable based on
the current presentation type and input context.

The parameter list consists of a positional argument — the
current presentation object — and a subset of the keywords
presentation, input-context, and handler. These keywords are
the same as those available for inclusion in the argument list
for the body of the handler, and are documented under arglist
in the handler documentation; they are also documented
separately: See the macro "define-presentation-action”, page
179.

Note: inefficient testers can degrade the performance of your
program. Tester functions must be capable of rapid
execution. Also, do not use the body of your handler as an
implicit tester if it does a large amount of consing or in other
ways consumes resources; this will similarly affect program
performance. For more information: See the section "Some
Efficiency Caveats for Mouse Handlers", page 44.

For functions used in :testers: See the function
dw:handler-applies-in-limited-context-p, page 192. See the
function dw:presentation-subtypep-cached, page 199.

Specifies the mouse gesture on which the handler is available.

The gesture is specified by its symbolic name rather than as
a mouse character. For example, symbolic names for
#\mouse-1, #mouse-m, and #\mouse-r include :left, :middle,

Dictionary of Top-level Facilities for User Interface Programming 117

August 1986

define-presentation-to-command-translator

and :right, respectively. (For lists of names assigned to these
and other mouse gestures, use the function
dw:mouse-char-gestures.) The default gesture is :select,
which is the same as :left.

To assign your own symbolic name to a mouse character, use
the following form:

(setf (dw:mouse-char-for-gesture symbol) #\mouse-x)

Specifying this option with nil, that is :gesture nil, results
in the handler being unavailable on any gesture, only in a
handler menu. See the macro "define-presentation-action”,
page 179.

Specifying this option with t, that is, :gesture t, results in
the handler being available on all gestures. See the macro
"define-presentation-action", page 179.

:documentation

Specifies a string or a function returning a string to be used
as mouse and menu documentation for the handler.

It is often preferable not to supply this option and to use the
default documentation instead. This is because the default
documentation incorporates a string corresponding to the
object the mouse is over, while the documentation you supply
cannot. If the name of the handler is handler-name, the
default documentation string will be "Handler Name
(presentation type) presentation object".

:suppress-highlighting

‘menu

Boolean option specifying whether to suppress highlighting of
the presentation if this handler is the only applicable one.
For example, the standard click-right menu handler uses this
option. The default is nil

Specifies the name of a menu in which the handler is to be
included. The default is t, the name of the standard click-
right handler menu.

You can define you own handler menu with
define-presentation-action: See the section
"define-presentation-action", page 179.

118 Dictionary of Top-level Facilities for User Interface Programming

define-presentation-to-command-translator August 1986

:context-independent
Boolean option specifying whether handler behavior (that is,
applicability to displayed presentations) is the same for all
contexts in a nested-context structure (accept being called
recursively); the default is nil.

This option is supplied with t, for example, if the handler’s
to-presentation-type is t (any context), and its contract is to
print additional information about a particular presentation
(that is, only the output matters).

Specifying this option t, when appropriate, allows more
possibilities to be presented on different mouse gestures.
Without it, a handler that applies in all contexts would be
matched for a particular context, to the possible exclusion of
other handlers in other contexts on other gestures. With it,
you get the same behavior for this handler, and more
possibilities as well.

For more information on context matching and related
handler issues: See the section "How Mouse Handlers Are
Found", page 42.

:priority Specifies a number adding to the priority of this handler
relative to other applicable handlers defined on the same
gesture; the default is 6.

Handler applicability to displayed presentations depends on
three factors: 1) the object type of the presentation; 2) the
presentation type of the presentation; and 3) the current
input context. A handler matching a displayed presentation
in any of these factors is applicable and invokable.

In some cases, more than one applicable handler might be
available on a given mouse gesture. In such cases, which
handler is the one displayed for that gesture in the mouse
documentation line is determined by handler precedence or
priority. The system automatically assigns priotities
according to the matching factors as follows: the priority is
incremented by 1 when the object type matches; by 4 when
the presentation type matches; and by 2 when the context
type matches.

For example, in a Lisp Listener in the command-or-form
context, an accept of a pathname appears something like the
following:

Dictionary of Top-level Facilities for User Interface Programming 119

August 1986 define-presentation-to-command-translator

(accept ’pathname)

Enter the pathname of a file [default
Q:>rel-7>sys>doc>uims>ui-dict2.sar]: ==>
Q:>rel-7>sys>doc>uims>ui-dict2.sar
#P"Q:>rel-7>sys>doc>uims>ui-dict2. sar.newest”
FS:LMFS-PATHNAME

The default pathname was accepted causing it to be presented
as both a pathname presentation (Q:>rel-7>sys>doc>uims>ui-
dict2.sar) and a sys:expression presentation
(#P"Q:>rel-7>sys>doc>uims>ui-dict2. sar.newest”).

Two handlers defined on the :select gesture are applicable to
both presentations. The first is si:com-show-file, applicable
to expression presentations with a pathname object type, or
pathname presentations of any object type. The second is
dw::quoted-expression, applicable to expression presentations
of any object type. The following table shows the priorities
determined for them by the system relative to the two
presentations in the above example:

Pathname Presentation Expression Presentation
Q:>rel-7>sys>doc>. .. #P"Q:>rel-7>sys>doc>. . .

Show File 5 5

Quote Expression 0 4

For both presentations, the system-generated priority is
highest for the show file handler. However, it was the
system programmer’s intent that the quoted expression
handler should be displayed in the mouse documentation line
whenever the mouse is over a presentation of the
sys:expression type, regardless of what other applicable
handlers might be available on the :select gesture.
Therefore, in the definition for this handler, the value of the
spriority option was made 1.5. This is added to the system-
generated priority of 4 in the bottom right cell of the table
for a total score of 5.5, enough to give this handler
precedence.

:exclude-other-handlers
Boolean option, used with :gesture t handlers, specifying
whether to exclude non-t handlers.

120 Dictionary of Top-level Facilities for User Interface Programming

define-presentation-to-command-translator August 1986

For example, any gesture selects a menu item. The
translator that implements this has a :tester option that
checks, among other things, for the keyword :no-select in the
menu-item list: See the section "The "General List" Form of
Item" in Programming the User Interface, Volume B. If the
menu item includes the :no-select keyword, the translator
does not apply. But, if :exclude-other-handlers t were not
specified for this translator, other translators would still apply
to the :no-select item’s presentation, like the :menu
(Mouse-R) gesture.

:exclude-other-handlers provides a way of saying "this
translator implements the entire contract for the presentation
it matches".

See the macro "define-presentation-action”, page 179.

:blank-area
Boolean option specifying whether the handler is active when
the mouse cursor is over areas of the screen in which no
presentations are displayed; the default is nil.

To ensure that handlers intended to be active only in blank
areas are not active over displayed presentations, use the
dw:no-type presentation type as the [from-]presentation-type
positional argument to the handler.

:do-not-compose
Boolean option specifying whether the value of body is
computed to determine if the handler satisfies the current
input context; the default is nil.

To see the need for this option, let’s consider the default
behavior. For example, if 1) you have a translating mouse
handler that returns integer objects; 2) the mouse cursor is
currently over the handler’s from-presentation-type ; 3) any
shift keys modifying the mouse gesture the handler is on are
pressed; and 4) the current input context is for integers, the
default system behavior would be to determine what the body
of the handler returns. If it returns anything other than a
single value of nil, then the handler is applicable; this fact is
indicated in the mouse documentation line and the
presentation is highlighted (if it’s not already).

Now, if the input context in this situation was for odd
integers, rather than for any integer — that is, (accept ’((and

Dictionary of Top-levsl Facilities for User Interface Programming 121

August 1986

arglist

define-presentation-to-command-translator

integer ((satisfies oddp))))) — by default this handler
would still be run to see if it returns an odd integer, that is,
that the returned object will satisfy the input context
requirements. Only if this is the case will the handler be
available. This is the motivation for the default behavior.

However, some translating handlers have side effects, for
example, popping up a menu or asking a question. It is
unlikely that you want such events occurring merely when a
user of your program waves the mouse over a presentation.
You want this behavior suppressed until the user actually
clicks on the presentation. :do-not-compose t is how you
express this intent.

As a general rule, avoid defining translators that have side
effects. One way of doing this is by defining side-effecting
handlers explicitly, with define-presentation-action.

The argument list for the body of the handler. The argument
list consists of one positional argument, the object that the
mouse cursor is over, and keyword arguments from a
predefined set.

The following predefined keywords are available for inclusion
in the argument list to a mouse handler body. Their
inclusion makes the named parameters available for use in
the body. The parameter list can specify only those keywords
that are explicitly used.

input-context
The current presentation-input context.

presentation
The presentation instance that the mouse cursor is
over.

handler The handler object of which the body is a part.

mouse-char
The mouse character that triggered the handler.
(This keyword cannot be used in the :tester function
parameter list.)

window The window object in which the current presentation
occurs.

122 Dictionary of Top-level Facilities for User Interface Programming

dw:define-program-command August 1986

The body of your translator must return at least one value, the
presentation object. Optionally, it can also return keyword-value pairs that
you define. In this case, you must return the presentation type of the
object as well. The object is the first item returned, its presentation type
the second; these are followed by the keyword-value pairs.

One predefined keyword is available, :activate. Supplied with nil, the
activation of input entered via this handler is suppressed, with t it’s
promoted. For an example: See the macro define-presentation-translator,
page 185.

The values returned by the translator will be used to construct a
presentation blip. You do not make the blip; the handler takes care of this
automatically. Any keywords the translator returns are included in the
options field of the blip. Options can be extracted from blips with the
dw:presentation-blip-options function. For an overview of this and related
functions: See the section "Overview of Presentation Input Blip Facilities",
page 78,

For an overview of define-presentation-to-command-translator and related
facilities: See the section "Overview of Top-Level Facilities for User
Interface Programming”, page 21. For an overview of mouse handler
definition facilities: See the section "Overview of Mouse Handler
Facilities”, page 39. For information on handler lookup and performance
issues: See the section "How Mouse Handlers Are Found", page 42.

dw:define-program-command (name program-name &rest options Macro
&key (keyboard-accelerator nil)
(menu-accelerator nil) (menu-level ’(:top-level))
&allow-other-keys) arglist &body body
Defines a Command Processor command for a program created with
dw:define-program-framework. The definition generates two internal
methods for the program flavor, one to parse the command and one to
execute the command. These methods provide lexical access to your
program’s state variable both in the body of the command definition and in
the command argument list; that is, you may use state variables as
arguments.

name The name given to the command. To distinguish command
names from other kinds of names, we recommend that the
prefix com- be used, for example com-exit-program. The user-
visible command does not include the prefix; in the above
example, the user-visible command is Exit Program.

Like other commands, those you define using
dw:define-program-command occupy the function namespace.

Dictionary of Top-level Facilities for User Interface Programming 123

August 1986

dw:define-program-command

program-name

The symbol or string naming the program flavor (created by
dw:define-program-framework) for which the command is
being written.

:keyboard-accelerator

Specifies the key used to invoke the command; the default is
nil. For example, if you are writing an Exit Program
command, you might wish to specify #\e, the E key, as the
keyboard accelerator.

This option may not be used if nil is specified for the
:kbd-accelerator-p option to the :command-table keyword for
dw:define-program-framework: See the macro
"dw:define-program-framework", page 124.

:menu-accelerator

Specifies whether the command identifier is displayed in a
command menu pane for the program; the default is nil.

To make the command available in a menu, supply a value of
t or a string. t causes the user-visible name of the command
to be displayed. If you provide a string, it’s displayed instead
of the user-visible name.

Note that the program frame must include a pane of the
:command-menu type in order for the command identifier to
be displayed: See the macro
"dw:define-program-framework", page 124.

:menu-level

Specifies the command menu in which the command is to be
displayed. You need to use this option explicitly only when
more than one command menu pane has been specified in the
dw:define-program-framework macro for your program.

(See the macro "dw:define-program-framework", page 124.)

Additional keyword options to dw:define-program-command are the
same as those documented under name-and-options in the dictionary
entry for cp:define-command. < Yo

arglist

The list of command arguments. Each element of the list is
itself a list of the form (arg-name presentation-type options)
where arg-name is the name of the argument;
presentation-type is the presentation-type of the argument; and
options are keyword options to the argument.

124 Dictionary of Top-level Facilities for User Interface Programming

dw.define-program-framework August 1986

Permissible options are the same as those documented under
arguments in the dictionary entry for cp:define-command.

For an overview of dw:define-program-command and related facilities:
See the section "Overview of Top-Level Facilities for User Interface
Programming”, page 21.

dw:define-program-framework name &key pretty-name Macro
(command-definer nil) (command-table nil)
(top-level ’(dw:default-command-top-level))
(command-evaluator nil) (panes
*(dw::main :listener)) selected-pane
query-io-pane terminal-io-pane label-pane
(configurations nil) (state-variables nil)
(select-key nil) (system-menu nil) (size-from-pane
nil) help
Defines a flavor specifying the screen interface, command interface, and
state variables for a program.

name The name given to the program flavor created by
dw:define-program-framework.

:pretty-name
Specifies the user-visible (that is, displayed) name of the
program. If this option is not supplied, the displayed name is
the program-flavor name specified by the name argument, but
with hyphens removed and initial caps (for example, "my-
program” becomes "My Program").

:command-definer
Specifies the symbol to be used when defining program
commands. In the typical case, this option is supplied with a
value of t (that is, :command-definer t; this results in the
creation of a program command-definition macro invoked with
the symbol define-program-name-command, where
program-name is the name argument supplied to
dw:define-program-framework.

The command-definition macro so created has the same
syntax as dw:define-program-command, but with one
exception: you do not have to supply the program-name. (See
the macro dw:define-program-command, page 122.)

The :command-definer option defaults to nil, in which case
no command-definition macro is created, and you must use
dw:define-program-command.

Dictionary of Top-level Facilities for User Interface Programming 125

August 1986 dw.define-program-framework

:command-table
Specifies a list of options to the cp:make-command-table
function. The latter form is used by
dw:define-program-framework to do basic command table
management. When supplied with the :command-table
keyword, permissible options are limited to two:
:inherit-from and :kbd-accelerator-p.

Supplying the name (symbol or string) of a command table to
the :inherit-from option makes all the commands in that
table available during the running of your program. For
example, supplying a value of "global” or "user” results in all
the commands in the global or user command table,
respectively, being included in the application command table.

If your frame includes an accept-values pane, then one of the
values to the :inherit-from option must be "accept-values-
pane". (For more information on accept-values panes: See
the macro "dw:define-program-framework”, page 124.

Supplying a value of t to :kbd-accelerator-p allows you to
specify single-key accelerators for program commands; the
default is nil. Keyboard accelerators are specified via the
command-definition macro created through the
:command-definer option to dw:define-program-framework;
via dw:define-program-command; or via
cp:define-command-accelerator. Keyboard accelerators are
also inherited when you use the :inherit-from option.

:top-level
Specifies the command loop function to be used for the
program. The default provides the standard command loop.

For information on facilities available for writing your own
command loop function: See the section "Overview of
Advanced Command Facilities", page 32.

:command-evaluator
Specifies function called after a command is read. Arguments
passed to the called function are the program instance, the
command, and any command arguments. At some point
before, during, or after the execution of application-specific
tasks, the evaluator function should (apply <command>
<arguments>).

126 Dictionary of Top-level Facilities for User Interface Programming

dw.define-program-framework August 1986

:panes Specifies a list of panes to be included in the program frame.

Each element of the list is itself a list of the form (pane-name
pane-type options). Six types of panes are available:

:title Pane for display of the program title (:pretty-name
is the default).

:command-menu
Pane for menu of program commands.

:display Pane for display of application-generated output.

:interactor
Pane for interactive input/output.

:listener Similar to an interactor, but taller. (Use this pane
when you want the interaction history to be visible.)

:accept-values
Pane providing the features and services of a
dw:accept-variable-values menu. (If your frame
includes an :accept-values pane, supply "accept-
values-pane” as one of the values with the
:inherit-from keyword to the :command-table
option: See the macro
"dw:define-program-framework"”, page 124.

The appearance and behavior of panes can be modified with a
variety of keyword options; not all are appropriate for use
with every pane type. Each option is listed below with a
description of its purpose and an indication of the pane types
for which it is appropriate:

:default-character-style
Specifies list of the form (family face size) to specify
the style of characters displayed in the pane. The
default style for :display panes is (:fix :roman
:normal); for :title panes (:sans-serif :bold :large);
and for :command-menu panes (:jess :roman
:normal). (For more information on available styles:
See the section "Character Styles" in Symbolics
Common Lisp: Language Concepts.)

This option is applicable to all pane types.
:height-in-lines ‘

Specifies integer to fix the height of the pane to a
number of text lines. The actual height in pixels

Dictionary of Top-level Facilities for User Interface Programming 127

August 1986

dw.define-program-framework

depends on the :default-character-style for the pane
(see above).

This option is applicable to the :title, :display,
:interactor, :listener, and :accept-values pane types.

:size-from-output

Boolean option specifying whether a pane is sized
according to the space needs of output to that pane;
the default is t for :command-menu and
:accept-values pane types, nil for other pane types.

This option is applicable to the :title,
:command-menu, :display, and :accept-values pane
types.

:typeout-window

Boolean option specifying whether a typeout (pull-
down) window for *terminal-io* appears within the
pane; the default is nil.

This option is applicable to :display, :interactor,
and :listener pane types.

:redisplay-string

Specifies a string written to the pane (starting at
top) whenever the pane is redisplayed. This option
is mutually exclusive with the :redisplay-function
option (see below).

:redisplay-string is applicable to the :title and
:display pane types.

:redisplay-function

Specifies name of user-defined function that runs
whenever the pane is redisplayed. This option is
mutually exclusive with the :redisplay-string option
(see above).

The redisplay function may be written either as a
generic function (using defmethod) to the program
flavor or as a regular function (using defun). The
function is passed two arguments: the current
instance of the program flavor and the stream on
which to do output.

:redisplay-function is applicable to the :title and
:display pane types.

128 Dictionary of Top-level Facilities for User Interface Programming

dw.define-program-framework August 1986

:redisplay-after-commands
Boolean option specifying whether output to the pane
is to be redisplayed after each command is executed;
the default is t.

This option is applicable to the :title, :display, and
:accept-values pane types.

The following options are applicable only to the
:command-menu pane type:

:menu-level
Specifies a unique identifier for each command menu
in the program when more than one command menu
is needed. The default value (for a single command
menu) is :top-level.

:rows Specifies a list, each element of which is a list of
command names (strings) to be included in the same
TOW.

:columns
Specifies a list, each element of which is a list of
command names (strings) to be included in the same
column.

:equalize-column-widths
Boolean option specifying whether the widths of
columns containing command names be equal; the
default is nil (widths adjusted according to size of
the outout in each column).

:center-pBoolean option specifying whether command names
are centered (left-right) in the command menu; the
default is nil (flush-left).

The following options are applicable only to the :display pane
type:

«flavor Specifies the pane flavor to use for this pane; the
default is dw::dynamic-window-pane.

:incremental-redisplay
Boolean option specifying whether redisplayed
information is limited to items that have changed

Dictionary of Top-level Facilities for User Interface Programming 129

August 1986 dw:define-program-framework

since the last redisplay, rather than the entire pane.
If t, you must write the appropriate redisplay
function (see :redisplay-function above).

For information on incremental redisplay: See the
section "Overview of Advanced Presentation Output
Facilities", page 63.

The following option is applicable only to the :accept-values
pane type:

:accept-values-function
Specifies a function for creating a
dw:accept-variable-values-like display; it defaults to
an internal one that operates on program state
variables.

The function may be written either as a generic
function (using defmethod) to the program flavor or
as a regular function (using defun). The function is
passed two arguments: the current instance of the
program flavor and the stream for I/O.

The multiple-accept display is created by wrapping
the body of the function you write in a
dw:accepting-values macro: See the macro
dw:accepting-values, page 175. The wrapping is
done for you by dw:define-program-framework.
The general form of the function you write is

(defmethod (my-avv-function program) (stream)
(setq state-var-1 (accept ...)
(setq state-var-2 (accept ...)
(setq state-var-3 (accept ...)

)

For an example, see the program avv-pane-test in
the file sys:examples;define-program-framework.lisp

The :default-character-style keyword option is inherited from
dw:dynamic-window (via dw::dynamic-window-pane on
which all program panes are based by default). Many more
keyword options exist, most of which, however, are
inappropriate for use with panes created via

130

Dictionary of Top-level Facilities for User Interface Programming

dw.define-program-framework

August 1986

dw:define-program-framework. Among keywords that are
appropriate, the following are most useful:

:blinker-p

:more-p

Boolean option specifying whether a blinker appears
in the pane. This option defaults to t for the
:interactor and :listener pane types, nil for other
pane types.

Boolean option specifying whether more processing is
enabled. More processing lets the user control
scrolling of character output to a window. The
default is t for the :display and :listener pane types,
nil for other pane types.

:end-of-page-mode

Specifies what happens when queued output exceeds
the space available in the current viewport of the
pane. There are three possibilities:

:scroll causes the pane to scroll automatically to
accommodate the output.

:truncate causes scrolling to be the responsibility of
the user, who must press the SCROLL key to see
more output.

:wrap causes new output to appear at the top of the
pane, rather than at the bottom as in the case of
:scroll or :truncate.

sseroll-factor

:label

Specifies the number of lines by which to scroll the
pane when the :end-of-page-mode is :scroll.

Specifies string that appears as a label in the lower,
left-hand corner of the pane (directly inside the
border). The character style used is the default
style for the pane. You may only use the :label
option if not using the :margin-components option,
described below.

:margin-components

Takes list of options specifying characteristics of
pane margins. The default is for a 1-pixel-wide
border and a margin between the border and
displayed output to the pane of 4 pixels.

Dictionary of Top-level Facilities for User Interface Programming 131

August 1986

dw.define-program-framework

The defaults are implemented by the list
((dw:margin-borders) (dw:margin-white-horders 4)).
dw:margin-borders and dw:margin-white-borders
are flavors for controlling the margin specifications
of dynamic windows. For an overview of these and
related facilities: See the section "Overview of
Window Substrate Facilities", page 87.

This option is applicable to all pane types.

:selected-pane

Designates pane selected (generally indicated by blinking
cursor) when program is activated. If none is designated,
this option defaults to an available pane in the following
order of priority (highest to lowest): :listener, :interactor,
:display.

:query-io-pane

Designates pane to which *query-io* is bound when program
is active. If none is designated, this option defaults to an
available pane in the following order of priority (highest to
lowest): :listener, :interactor, :display.

:terminal-io-pane

Designates pane to which *terminal-io* is bound when
program is active. If none is designated, this option defaults
to an available pane in the following order of priority (highest
to lowest): the pane with a :typeout-window option (see
above), a :listener pane, a :display pane.

:label Designates pane on which program label is displayed if the
program does not have a :title pane. If none is designated,
this option defaults to an available pane in the following
order of priority (highest to lowest): :listener, :interactor,
:display.

:configurations

Specifies the layout and sizes of panes within the program
frame. Program frames are built on a more basic type of
window known as a constraint frame. The constraint language
used to specify the layout and sizes of panes in a constraint
frame is documented elsewhere: See the section "Specifying
Panes and Constraints" in Programming the User Interface,
Volume B.

132

Dictionary of Top-level Facilities for User Interface Programming

dw:define-program-framework August 1986

In the default configuration, panes are vertically stacked in a
single column and in the order specified by the :panes option
(see above).

sstate-variables

Specifies a list of program variables whose states are
preserved between activations of the program. Each variable
is itself a list consisting of the variable name and, optionally,
a default value and presentation type. State variables are
implemented as writeable instance variables to the program
flavor.

:select-key

Specifies a character for selecting the program via the SELECT
key.

:system-menu

Boolean option specifying whether the program appears on the
System Menu. If t, the program appears both in the
Programs column of the top-level menu and in the Create
second-level menu; the default is nil

:size-from-pane

thelp

Specifies the pane on which to base the size of the program
frame; the default is nil.

Specifies the help message displayed when the HELP key is
pressed while the program is selected. The value of this
option can be either a string or a function. If it’s a string,
the string is displayed when the user presses HELP.

If it’s a function, the function receives three arguments: the
program flavor, the stream to which the help message should
be output, and the string that has been typed so far.

For an overview of dw:define-program-framework and related facilities:
See the section "Overview of Top-Level Facilities for User Interface
Programming”, page 21.

For an example and additional information on the use of certain options to
dw:define-program-framework, particularly those implementing the
command interface: See the section "User Interface Application Example",
page 91. More examples are available in the file sys:examples;define-
program-framework.lisp.

Dictionary of Top-level Facilities for User Interface Programming 133

August 1986 dw::find-program-window

dw::find-program-window program-name &rest options &key Function
(create-p t) (selected-ok t)
program-state-variables &allow-other-keys
Returns the window (frame) of a program (created via
dw:define-program-framework).

program-name
The name of the program.

:create-pBoolean option specifying whether to create an
instance of the program if one does not exist; the
default is t.

:selected-ok
Boolean option specifying whether to return the
program window if it is the currently selected
activity; the default is t.

:program-state-variables
Specifies a list of initializations for the program’s
state variables. The list is of the form ((<var-1>
<val-1>) (<var-2> <val-2>) ... (<var-n> <val-n>)).

If an instance of the program is created, its state
variables are initialized according to this
specification. If an instance already exists, its state
variables are reset according to the specification.

Other keywords permitted are programmer-defined and system init options
for the frame. If an instance of the program is created, it is initialized
according to the keyword specifications.

For an overview of dw::find-program-window and related facilities: See
the section "Overview of Top-Level Facilities for User Interface
Programming”, page 21.

dw:get-program-pane name Function
Returns specified pane in a program frame created with
dw:define-program-framework.

name The name of the pane as specified in the :panes option to
dw:define-program-framework.

For an overview of dw:get-program-pane and related facilities: See the
section "Overview of Top-Level Facilities for User Interface Programming",
page 21.

- 134 Dictionary of Top-level Facilities for User Interface Programming

dw:*program* August 1986

dw:*program* Variable
Bound to the currently active instance of a program flavor (created via
dw:define-program-framework).

For an overview of dw:*program* and related facilities: See the section
"Overview of Top-Level Facilities for User Interface Programming", page
21.

dw:program-command-table program Generic Function
Returns the command table used by an instance of a program flavor
(created via dw:define-program-framework).

program The program instance. (The currently active program
instance can be accessed as the value of dw:*program*.)

For an overview of dw:program-command-table and related facilities: See
the section "Overview of Top-Level Facilities for User Interface
Programming”, page 21.

dw:*program-frame* Variable
Bound to the program frame associated with the current instance of a
program flavor (created via dw:define-program-framework).

Use this variable for access to the program frame from a generic function

or method of the program flavor, or from a program command definition
macro.

Example (for a program flavor named "my-program"):

(define-my-program-command (com-enable-secondary-commands
:menu-accelerator "More Commands”
:menu-level :main)

O

(send dw:xprogram-framex :set-configuration ’secondary))

For access to a particular pane of the program frame, send a :get-pane
message to dw:*program-frame* or use dw:get-program-pane.

For an overview of dw:*program-frame* and related facilities: See the
section "Overview of Top-Level Facilities for User Interface Programming”,
page 21.

135

August 1986 Dictionary of Command Processor Facilities

PART IIL.

Dictionary of Command Processor Facilities

136

Programming the User Interface, Volume A August 1986

137

August 1986 Dictionary of Command Processor Facilities

12. Dictionary Notes

This dictionary includes reference documentation for both the basic and advanced
Command Processor facilities listed in the following two tables:

Table of Basic Command Facllities

Command Definition Facilities
cp:define-command

Command Processor Interface Facilities
cp:execute-command
cp:build-command
cp:*last-command-values*

Table of Advanced Command Facilities

Command Loop Management Facilities
cp:read-command
cp:read-command-or-form
cp:read-command-arguments
cp:yank-and-read-full-argument-command
cp:read-full-command
cp:read-accelerated-command
cp:echo-command
cp:unparse-command
cp:define-command-and-parser
cp:turn-command-into-form
cp::*default-blank-line-mode*
cp::*default-dispatch-mode*
cp::*default-prompt*

Command Table Management Facilities
cp:*command-table*
cp:make-command-table
cp:find-command-table
cp:install-commands
cp:delete-command-table
cp:command-in-command-table-p

Command Accelerator Facilities
cp:define-command-accelerator

138

Programming the User Interface, Volume A August 1986

In the dictionary, the facilities are arranged in alphabetical order.

For conceptual documentation: See the section "Overview of Command Processor
Facilities", page 31.

Dictionary of Command Processor Facilities 139

August 1986 cp:build-command

13. The Facilities

cp:build-command command-name &rest command-arguments Function
Constructs the internal representation of a Command Processor command
within a define-presentation-to-command-translator macro; when the
defined translator is activated, the command is invoked.

command-name
Symbol or string naming the command to invoke; if a string,
it must be in the command table to which
cp:*command-table* is currently bound.

command-arguments
Positional and keyword arguments to the named command.

Examples:

(cp:build-command “show file" "test-data.text")

(cp:build-command ’si:com-load-system "unifier”
:condition :always :automatic-answer t)

For an overview cp:build-command and related facilities: See the section
"Overview of Basic Command Facilities", page 31.

cp:*command-table* Variable
Bound to the current command table, that is, the one used by the
Command Processor when reading commands.

For an overview of cp:*command-table* and related facilities: See the
section "Overview of Command Table Management Facilities", page 33.

cp:command-in-command-table-p command-symbol command-table Function
Determines the presence of a command in a Command Processor command
table. The function returns t if the command is either in the specified
command table, or in a table from which the specified table inherits.

command-symbol
The command symbol.

command-table
The command table.

For an overview of ep:command-in-command-table-p and related facilities:
See the section "Overview of Command Table Management Facilities", page
33.

140 Dictionary of Command Processor Facilities

cp::*default-blank-line-mode* August 1986

cp::*default-blank-line-mode* Variable
The default command processor blank line mode for cp:read-command and
cp:read-command-or-form. This is a keyword that determines what action
the command processor takes when you type a blank line:

:reprompt Redisplay the prompt, if any. This is the default.
:beep Beep.
:ignore Do nothing.

The blank line mode used in Lisp Listeners and zl:break loops is the value
of cp:*blank-line-mode*.

cp::*default-dispatch-mode* Variable
The default command processor dispatch mode for
cp:read-command-or-form; a keyword. Possible values are :form-only,
:form-preferred, :command-only, and :command-preferred. For the
meanings of these values: See the section "Setting the Command Processor
Mode" in User’s Guide to Symbolics Computers. The default is
:command-preferred.

The dispatch mode used in Lisp Listeners and zl:break loops is the value
of cp:*dispatch-mode*.

cp::*default-prompt* Variable
The default command processor prompt option for ¢p:read-command and
cp:read-command-or-form. The value of this variable is passed to the
input editor as the value of the :prompt option. The value can be nil, a
string, a function, or a symbol other than nil (but not a list): See the
section "Displaying Prompts in the Input Editor" in Reference Guide to
Streams, Files, and I/O. The default is "Command: ".

The prompt used in Lisp Listeners and zl:break loops is the value of
cp:*prompt*,

cp:define-command name-and-options arguments &body body Macro
Defines a Command Processor command.

name-and-options
Either the symbol to be used as the command name or a list
whose first element is the name symbol and succeeding
elements are alternating keyword-value pairs. To distinguish
command names from other kinds of names, we recommend
that the prefix com- be used; the user-visible command name
will not include the prefix.

Dictionary of Command Processor Facilities 141

August 1986

cp.define-command

Following are the keywords that may be included in the
name-and-options list:

name

Specifies the string serving as the user-visible
command name. The default name is the result of
calling string-capitalize-words on the print name of
the symbol that is the first element of the
name-and-options list; if the name begins with the
substring "com-", the substring is omitted.

This option is useful for special capitalization within
command names.

:command-table

Specifies the command table, or a symbol/string
naming the command table, into which the command
is to be installed. For example, to install a
command into the "Global" command table, you
could supply ’global, "global”, or the form

(cp: find-command-table ’global).

This option is evaluated. If not supplied, the
command is not installed in a command table; to
install the command subsequently, use the function
cp:install-commands.

A supported synonym for the :command-table option
is :comtab.

For more information on command tables: See the
section "Command Processor Command Tables" in
Programming the User Interface, Volume B. For
information on command table management
facilities: See the section "Overview of Advanced
Command Facilities", page 32.

:comtab Specifies the command table, or a symbol/string

naming the command table, into which the command
is to be installed. For example, to install a
command into the "Global" command table, you
could supply ’global, "global”, or the form
(cp:find-command-table ’global).

This option is evaluated. If not supplied, the
command is not installed in a command table; to
install the command subsequently, use the function
cp:install-commands.

142

Dictionary of Command Processor Facilities

cp:define-command

August 1986

A supported synonym for the :comtab option is
:command-table.

For more information on command tables: See the
section "Command Processor Command Tables" in
Programming the User Interface, Volume B. For
information on command table management
facilities: See the section "Overview of Advanced
Command Facilities", page 32.

:explicit-arglist

Specifies explicitly the argument list of the function
implementing the body of the command. By default,
the argument list of this function corresponds to the
arguments specified as arguments to the command.

Typically, you do not need this option; however, it is
useful when you want the command body to receive
its arguments as an &rest arg.

:provide-output-destination-keyword

svalues

arguments

Boolean option specifying whether to provide the
:output-destination keyword. The default is t; this
allows the user of the command to redirect the
output of the command to a place other than the
screen.

To override the default action (if, for example, your
command does not produce any useful output),
specify a value of nil for this option.

Boolean option specifying whether the command
returns values; the default is nil.

(Note that even if this option is nil, the values
returned by executing the command are stored in
cp:*last-command-values*.)

The list of command arguments. Each element of the list is
itself a list of the form (arg-name presentation-type options)
where arg-name is the name of the argument;
presentation-type is the presentation-type of the argument; and
options are keyword options to the argument. (Note that
presentation-type is evaluated, and should typically be quoted;
for example, ’integer or ’pathname.)

Dictionary of Command Processor Facilities 143

August 1986

cp:define-command

Following are the keywords that may be included in the
argument specification list:

:documentation

Specifies a string to use as the help message for the
argument. The message is displayed if, after typing
the command name and any preceding positional
arguments, the user presses the HELP key.

Also displayed when the HELP key is pressed is
information about the expected type of input. Such
messages appear after the help messages you specify
using this option. They are generated by the
underlying accept functions used for doing command
input.

:prompt Specifies either a string to be used as a prompt for

the argument or a form that when evaluated returns
such a string. If a default argument is displayed,
the prompt appears before the default.

:prompt-mode

sdefault

Specifies either the :normal or :raw mode for
prompts. If :normal, the prompt you supplied using
the :prompt option (or the default prompt) is
transformed into a prompt suitable for a command
line — it is surrounded with parentheses, the default
is appended, and so on. If :raw, your prompt is
used without transformation.

Specifies a form to be evaluated to determine the
default value for the argument.

If no default is specified, the current default — taken
from the presentation history — for the presentation
type of the argument is used. (Access to the current
default for a presentation type is available through
dw:presentation-type-default.)

:mentioned-default

For a keyword argument, specifies a form to be
evaluated and used as the default value for the
argument, but only if the user types the argument
name.

144 Dictionary of Command Processor Facilities

cp:define-command August 1986

The form can refer to parameters defined for any
positional arguments (but not keyword arguments)
specified prior to this argument specification. At
the time the form is evaluated, these parameters are
bound to the values of arguments already accepted.

The default value used depends on what combination
of :default and :mentioned-default options is
supplied:

Both Use the value of :mentioned-default if the
user types the name of the argument;
otherwise, use the value of :default.

:mentioned-default only
If the user types the argument name, use
the value of :mentioned-default; otherwise,
the default is nil.

:default only
Use the value of :default.

Neither If the user does not type the argument
name, the default is nil. If the user types
the name, the argument has no default and
the user has to supply a value.

:when Specifies a predicate to be evaluated at command-
line reading time. This option provides simple
control over what arguments the command line
reads; if the predicate returns nil, the argument is
not read. The predicate can refer to any positional
arguments already read.

Example:

(cp:define-command (com-when-example)
((type ’((member integer any)) :default ’integer)
(number ’integer :when (eq type ’integer)))

-2

:name Specifies a string serving as the user-visible name of
the argument. Note: this option is only valid for
keyword arguments.

Example:

Dictionary of Command Processor Facilities ' 145

August 1986

cp:define-command

(cp:define-command (com-key-name
:command-table ’user)
(&ey (argl ’((integer 1 18))
:name “Copies”
:prompt “Number of copies (1-18)"))
(print argl))
("Key Name" . COM-KEY-NAME)

==>Key Name (keywords) :Copies
(Number of copies (1-18)) 2
2

:default-type

Specifies the default presentation type of the object
accepted as an argument value.

This option is useful only when used in conjunction
with the :default option. When the type of the
argument being read is ambiguous — for example, if
you are using an or presentation type — specifying
the :default-type option tells the Command
Processor how to present the given default; that is,
which presentation-type printer to use.

Example:

(number-or-string ’((or integer string))
:default 3 :default-type ’integer)

:provide-default

Boolean option specifying whether a default is
provided for the argument. The default value for
this option is (not (null <default>)). Consequently,
:default nil implies :provide-default nil unless, as
a special case, the presentation type being read is
boolean.

This keyword is typically useful only if, as in the
case of boolean arguments, nil happens to be a
meaningful default for the type being read.

:display-default

Specifies whether the default is printed in the
prompt. The default value for this option is t;
however, if the :provide-default option is nil, no
default is printed.

146 Dictionary of Command Processor Facilities

cp.define-command-accelerator August 1986

:confirm Boolean option specifying whether the argument
requires confirmation by the user; the default is nil

When :confirm t is specified, if the command line is
terminated before the argument has been read, the
prompt for the argument is printed (as well as the
prompts and defaults for all unread arguments
before this one on the command line), and the user
must again terminate the command line.

This mechanism ensures that the user is aware that
the argument is being specified automatically, and
that the default value, if available, is displayed. (All
destructive system commands, for example, Delete
File, use :confirm t for their critical arguments.)

For an overview of cp:define-command and related facilities: See the
section "Overview of Basic Command Facilities", page 31.

cp:define-command-accelerator name command-table characters Macro
options arglist &body body
Defines single-key accelerators for Command Processor commands.

name Name for this accelerator.

command-table
Command table in which command and accelerator are
included.

characters
List of characters (not necessarily more than one) serving as
the single-key accelerators.

options List of keyword-value pairs. Possible keywords include:

:argument-allowed
Boolean option specifying whether this accelerator is
allowed to take numeric arguments (for example,
c-3). The default depends on whether you provide
an arglist, t if you do, nil if you don’t.

:activateBoolean option specifying whether the command
defined by this accelerator executes immediately
when the accelerator is typed; the default is t. If
nil, the command requires confirmation and,
possibly, additional args.

:echo Boolean option specifying whether the command

Dictionary of Command Processor Facilities 147

August 1986

arglist

body

cp:define-command-and-parser

defined by this accelerator echoes on the command
line as if it were typed. The default is the value
supplied to the :activate option; this is because in
the :activate nil case, the command is visible after
you are finished editing and need not be repeated.

List of arguments to the accelerated command. If
:argument-allowed is nil, this arglist should be nil (no
arguments allowed).

If :argument-allowed is t, the accelerator receives two
arguments, arg-p and arg. arg-p means whether or not the
user gave an argument to this accelerator; arg is the numeric
arg. In this case, the arglist is typically just (arg-p arg), but
you can put anything here you want. This is just so that
your body can make reference to these symbols under the
names you chose.

A form that returns a command (using cp:build-command,
typically). It can make reference to the symbols bound in
arglist.

A typical body might be:

(cp:build-command ’command-one
:format (if arg-p :brief :detailed))

For an overview of cp:define-command-accelerator and related facilities:
See the section "Overview of Command Accelerator Facilities", page 34.

cp:define-command-and-parser name-and-options arglist parser Macro

&body body

Defines a Command Processor command and command line parser.

name-and-options

arglist

Either the symbol to be used as the command name or a list
whose first element is the name symbol and succeeding
elements are alternating keyword-value pairs. To distinguish
command names from other kinds of names, we recommend
that the prefix com- be used; the user-visible command name
will not include the prefix.

Permissible keywords are the same as those listed under
name-and-options in the dictionary entry for
cp:define-command.

The argument list of the function that implements the body
of the command. It is a normal, Common Lisp argument list.

148

Dictionary of Command Processor Facilities

cp:define-command-and-parser

parser

Example:

August 1986

A form used to parse the command’s arguments. This form
has lexical access to the internal functions
cp:read-command-argument, cp:read-keyword-arguments,
and cp:assign-argument-value. It should use these functions
to do the actual reading and assigning of values to command
arguments:

cp:read-command-argument presentation-type &rest options

A fletted function within
cp:define-command-and-parser. presentation-type is
the type of the argument. options are all options
acceptable in a command argument specification to
cp:define-command.

cp:read-keyword-arguments &rest keyword-specs

A macroletted macro within
cp:define-command-and-parser. keyword-specs are
command argument specifications identical to those
you would use if you were writing the command
using cp:define-command. Even if there are no
keyword arguments, the parser should end with
cp:read-keyword-arguments; any automatically
generated keywords (for example,
:output-destination) can thereby be read.

cp:assign-argument-value argument-name value

A macroletted macro within
cp:define-command-and-parser. Argument-name is
a symbol naming a command argument; value is its
value. Each argument-name should correspond to an
argument in arglist above.

(cp:define-command (com-this-is-a-test

:command-table ’user)

((file ’pathname :default nil :prompt "file")

&key
(integer ’integer :default 17
:mentioned-default 3 :prompt "the number®))

(loop for i from B to integer do

(print file)))

;;;is equivalent to

Dictionary of Command Processor Facilities 149

August 1986 cp:delete-command-table

(cp:define-command-and-parser (com-this-is-a-test
:command-table ’‘user)

;3 The arglist of the function.

;; Note the presence (and need for) the
;; default value for INTEGER 1in the

;3 argument list.

(file &key (integer 17))

;; The argument parser. It’s just one big PROGN.
;5 Note that it ends with read-keyword-arguments.
{progn (cp::assign-argument-value file
(cp: :read-command-argument ’pathname
:default nil :prompt "file"))
(cp: :read-keyword-arguments
(integer ’integer :default 17
:mentioned-default 3 :prompt “the number")))

;; The body of the command.
(loop for i from 1 to integer do (print file)))

To see other examples, try macroexpanding some cp:define-command
definitions; they expand into cp:define-command-and-parser definitions.

For an overview of cp:define-command-and-parser and related facilities:
See the section "Overview of Command Loop Management Facilities", page

33.

cp:delete-command-table command-table-or-name Function
Removes a Command Processor command table from the command table
registry.

command-table-or-name
A command table object or the name (symbol or string) of a
command table,

For an overview of cp:delete-command-table and related facilities: See
the section "Overview of Command Table Management Facilities", page 33.

cp:echo-command command-name arguments Function
Echoes a Command Processor command and its arguments to
standard-output. (The echoed command is presented "acceptably”, that
is, in such a manner that is can subsequently be parsed by accept.)

150 Dictionary of Command Processor Facilities

cp:execute-command August 1986

command-name
The command name (symbol).

arguments
A list of command arguments.

For an overview of cp:echo-command and related facilities: See the
section "Overview of Command Loop Management Facilities", page 33.

cp:execute-command command-name &rest command-arguments Function
Invokes a Command Processor command from within a program.

command-name
Symbol or string naming the command to invoke; if a string,
it must be in the command table to which
cp:*command-table* is currently bound.

command-arguments
Positional and keyword arguments to the named command.
Examples:

(cp:execute-command "show file" “test-data.text")

(cp:execute-command ’si:com-load-system “unifier”
:condition :always :automatic-answer t)

For an overview cp:execute-command and related facilities: See the
section "Overview of Basic Command Facilities", page 31.

cp:find-command-table name &key (if-does-not-exist :error) Function
Returns the Command Processor command-table object specified by the
command-table name.

name The name (symbol or string) of the command table.

:if-does-not-exist
Specifies what happens if the named command table is not
found. Three values are possible:

nil The function returns nil.

terror An error message is returned and the debugger is
entered; this is the default.

:create A new command table named name is created and
returned.

Dictionary of Command Processor Facilities 151

August 1986 cp:install-commands

For an overview of cp:find-command-table and related facilities: See the
section "Overview of Command Table Management Facilities", page 33.

cp:install-commands command-table new-commands Function
Installs Command Processor commands into a command table.

command-table
Name (symbol or string) of the command table receiving the
new commands. If it does not already exist, a command table
will be created.

new-commands
A list of commands to install.

For an overview of cp:install-commands and related facilities: See the
section "Overview of Command Table Management Facilities", page 33.

cp:*last-command-values* Variable
List of values returned by the most recently executed Command Processor
command.

For an overview cp:*last-command-values* and related facilities: See the
section "Overview of Basic Command Facilities", page 31.

cp:make-command-table name &rest init-options &key (if-exists Function
:error) &allow-other-keys
Creates and returns a Command Processor command table object.

name The name (symbol or string) of the command table.

init-options
Keyword-values pairs that are init options to the (internal)
command-table flavor from which the command table object is
created. Permissible options and values are as follows:

sinherit-from
Specifies a list of command tables from which to
inherit commands.

:command-table-delims
Specifies a list of characters to use as delimiters of
words in command names for commands in the table.
The default list is (#\Space #\Tab #\Return).

:command-table-size
An initial estimate of the number of commands the
table will include (to preclude the table from having
to grow substantially).

152 Dictionary of Command Processor Facilities

cp:make-command-table August 1986

:kbd-accelerator-p
Boolean option specifying whether single-key
accelerators may be used for commands; the default
is t.

:accelerator-case-matters
Boolean option specifying whether single-key
accelerators, if allowed, are case sensitive; the
default is nil.

:if-exists Specifies what happens if the command table named name
already exists. Four values are possible:

nil No new command table is made and the existing
command table is returned.

:supersede
The new command table is made and replaces
the old command table.

:update-options
The existing command table remains but its
options are updated to those newly specified in
the call to cp:make-command-table.

terror An error message is returned and the debugger
is entered.

Example:

(cp:make-command-table "shell-cmds” :inherit-from ’(“user”)
:kbd-accelerator-p nil)

For an overview of cp:make-command-table and related facilities: See the
section "Overview of Command Table Management Facilities", page 33.

cp:read-accelerated-command &key (command-table Function
cp:*command-table*) (stream *query-io*)
(help-stream stream) (echo-stream stream)
(whostate nil) (prompt nil) (command-prompt
cp::*full-command-prompt*)
(full-command-full-rubout nil)
(special-blip-handler nil) (timeout nil)
(input-wait nil) Gnput-wait-handler nil) (form-p
nil) (handle-clear-input nil)
(catch-accelerator-errors t)
(unknown-accelerator-is-command nil)

Dictionary of Command Processor Facilities 153

August 1986 cp.read-accelerated-command

(unknown-accelerator-tester nil)
(unknown-accelerator-reader nil)
(unknown-accelerator-reader-prompt nil)
(abort-chars nil) (suspend-chars nil) (status nil)
(intercept-function nil) (window-wakeup nil)

Reads a Command Processor command input as a single-key accelerator.

The values returned by this function depend on whether a command or
form is expected (see the :form-p option below). If the caller is expecting
a command (:form-p is nil), the values returned are the command name,
command arguments, and a flag. If the caller is expecting a form (:form-p
is t), the values returned are the form and a flag.

Possible values for the returned flag are:
:command
A command was read.
dform A form was read.

:accelerator
An accelerator character was read.

:timeout A timeout expired.
:status The window’s status changed.

:wakeup The window was asynchronously refreshed, selected, exposed,
etc.

s:unknown (or nil)
Something unknown was typed.

cp:read-accelerated-command accepts the following keyword options:

:command-table
Specifies the command table containing the accelerator; the
default is the current binding of cp:*command-table*.

:stream Specifies the stream from which to read the command; the
default is *query-io*.

shelp-stream
Specifies the output stream for help messages; the default is
the stream specified by the :stream option.

:echo-stream
Specifies the stream to which the input command is echoed;
the default is the stream specified by the :stream option.

154 Dictionary of Command Processor Facilities

cp.read-accelerated-command August 1986

To suppress echoing, supply this option with #ignore.

:whostate
Specifies a string to appear in the status line in place of
"User Input”.

:prompt Specifies a string to be used as the prompt, or a prompt
option. (See the section "Displaying Prompts in the Input
Editor" in Reference Guide to Streams, Files, and 1/0.)

:command-prompt
Specifies a string to be used as the prompt if a command is
to be read, that is, if the user types ":". The default is
cp::*full-command-prompt*, which is "Command: ".

:full-command-full-rubout
Boolean option specifying whether to return if CLEAR INPUT is
pressed (or a series RUBOUTs back to the prompt) after m-X is
typed. The default is nil, allowing the continuation m-¥
(extended) command parsing.

:special-blip-handler
Specifies a function called with mouse blips that are not
presentation input blips. (See the section "Mouse Blips" in
Programming the User Interface, Volume B.)

:timeout Specifies the length of time, in 60ths of a second, after
which, if the user types nothing,
cp:read-accelerated-command returns :timeout as the flag
and nil for the other values.

:input-wait
Specifies a function testing for some condition while in the
input-wait state. If this condition occurs, the
:input-wait-handler is invoked.

sinput-wait-handler
Specifies a function called after a condition satisfying the
:input-wait function occurs.

:form-p Boolean option specifying whether a form or command is
expected; the default is nil. If t, the function returns an
evaluable form rather than the command name and
arguments.

Dictionary of Command Processor Facilities 155

August 1986 cp.read-accelerated-command

shandle-clear-input
Boolean option specifying whether #\clear-input is treated
specially; the default is nil. If t and the CLEAR INPUT key is
pressed, the function clears the input buffer and reprompts.

:catch-accelerator-errors
Boolean option specifying that when an unknown accelerator
character is typed, the function beeps and prints out a
warning message. If nil, it signals the error flavor
cp::accelerator-error; this is the default.

:unknown-accelerator-is-command
Specifies whether unknown accelerators are dispatched to the
:unknown-accelerator-reader function.

The default is nil. Unknown accelerators that do not pass
the :unknown-accelerator-tester function give errors (which
may or may not get through to the user — see the
:catch-accelerator-errors option).

If t, all unknown accelerators dispatch to the unknown-
accelerator reader which should return a command.

A third value permitted for this option is :alpha, causing only
unknown accelerators that are alphabetic characters to be
dispatched to the unknown-accelerator reader.

:unknown-accelerator-tester
Specifies a function of one argument, the character typed,
which should return something non-nil if this particular
unknown accelerator is permitted. In this case, :unknown is
returned as the flag and the value from this function is the
first value. If :form-p is nil, the character is returned as the
second value.

sunknown-accelerator-reader
Specifies a function of no arguments that should return a
form. (The function can call ep:read-command, etc., but it
should return a form.)

:unknown-accelerator-reader-prompt
Specifies a string to use as the prompt in this case, or a
prompt option. (See See the section "Displaying Prompts in
the Input Editor" in Reference Guide to Streams, Files, and
1/0.)

156 Dictionary of Command Processor Facilities

cp:read-command August 1986

:abort-chars
Specifies a list of "abort" characters; the default is nil.

If a list of characters is provided and the user types one,
sys:abort is signalled.

ssuspend-chars
Specifies a list of "abort" characters; the default is nil.

If a list of characters is provided and the user types one, a
break loop is entered.

:status Specifies what happens if the window’s status changes.
Three values are permitted, :selected, :exposed, and nil.

If the value is :selected and the window is no longer selected,
the function returns :status.

If the value is :exposed and the window is no longer exposed
or selected, the function returns :status.

If the value is nil, the function continues to wait for input
when the window is deexposed or deselected. This is the
default.

:intercept-function
Specifies a function of one argument, a character, that gets
called on each typed character that is one of :abort-chars or
:suspend-chars.

:window-wakeup
Boolean option specifying whether to return :wakeup when
an asynchronous window system condition like expose, select,
or refresh occurs; the default is nil.

For an overview of cp:read-accelerated-command and related facilities:
See the section "Overview of Command Accelerator Facilities", page 34.

cp:read-command &optional (stream *standard-input*) &key Function
(command-table cp:*command-table*)
(blank-line-mode
cp::*default-blank-line-mode*) (prompt
cp::*default-prompt*)
Reads a Command Processor command from stream, terminated by RETURN
or END.

If stream is not supplied or is nil, it defaults to *standard-input*.

Dictionary of Command Processor Facilities 157

August 1986 cp:read-command

From the user’s point of view, a command consists of a command name,
positional arguments, and keyword arguments: See the section "Parts of a
Command" in User’s Guide to Symbolics Computers. cp:read-command
offers completion over command names, keyword argument names, and
some argument values, and it completes any unspecified command
components when the command is terminated: See the section "Completion
in the Command Processor" in User’s Guide to Symbolics Computers.

cp:read-command prompts for arguments and gives information about
what sort of values are expected. Some arguments have default values.
The user can press HELP to see documentation appropriate to the current
stage of entering the command: See the section "Help in the Command
Processor" in User’s Guide to Symbolics Computers. For a general
description of how the user enters a command: See the section "Entering
a Command" in User’s Guide to Symbolics Computers.

If :command-table is supplied, it is a command table of the acceptable
commands. The default command table is the value of
cp:*command-table*. The initial default is the "User" command table.
See the section "Command Processor Command Tables" in Programming
the User Interface, Volume B.

If :blank-line-mode is supplied, it is a keyword that determines what
action the command processor takes when the user types a blank line:

:reprompt Redisplay the prompt, if any.
:beep Beep.
zignore Do nothing.

The default blank-line-mode is the value of cp::*default-blank-line-mode*.
The initial default is :reprompt.

If :prompt is supplied, it is a prompt option for the input editor to display
at appropriate times. prompt can be nil, a string, a function, or a symbol
other than nil (but not a list): See the section "Displaying Prompts in the
Input Editor" in Reference Guide to Streams, Files, and I/O. The default
prompt is the value of cp::*default-prompt*. The initial default is
"Command: ".

cp:read-command returns two values. The first is a symbol, the name of
the command, which is defined as a function. The second is a list of the
arguments, converted to the appropriate types. Usually you execute the
command by applying the first value (the function) to the second (the
arguments).

For an overview of cp:read-command and related facilities: See the
section "Overview of Advanced Command Facilities", page 32.

158 Dictionary of Command Processor Facilities

cp:read-command-arguments August 1986

cp:read-command-arguments command-name &key Function
initial-arguments (command-table
cp:*command-table*) (stream
standard-input) (prompt nil)
Prompts for and returns the arguments to a Command Processor command.

command-name
The command name (symbol).

:initial-arguments
Specifies a list containing zero or more of the initial
arguments to the command.

:command-table
Specifies the command table containing the command; the
default is the current command table (bound to
cp:*command-table*).

:stream Specifies the input stream; the default is *standard-input*.

:prompt Specifies a string, or a function returning a string, to be used
as the prompt for the command arguments. The default
value for this option is nil, causing the prompt to be derived
from the user-visible name of the command.

Example:

(cp:read-command-arguments ’si:com-show-file :prompt
“File for viewing")

For an overview of cp:read-command-arguments and related facilities:
See the section "Overview of Command Loop Management Facilities", page
33.

cp:read-command-or-form &optional (stream *standard-input*) Function
&key (command-table cp:*command-table*)
(dispatch-mode cp::*default-dispatch-mode*)
(blank-line-mode
cp::*default-blank-line-mode*) (prompt
cp::*default-prompt*) (exception-chars nil)
(environment si:*read-form-environment*
environment-p)
Reads a form or a Command Processor command from stream. This is an
appropriate function to use at top level in a command loop that uses the
command processor.

Dictionary of Command Processor Facilities 159

August 1986 cp:read-command-or-form

If stream is not supplied or is nil, it defaults to *standard-input*.

If :dispatch-mode is specified, it is a keyword that indicates the command
processor dispatch mode. The default is the value of
cp::*default-dispatch-mode*. The initial default is :command-preferred.

The actions that cp:read-command-or-form takes depend on dispatch-mode:

:form-only Calls zl:read-form to read a form from stream.
:command-only Calls ¢p:read-command to read a command from stream.

:form-preferred Calls zl:read-form unless the first character typed is a
command dispatch character (by default, a colon). In
that case calls cp:read-command.

:command-preferred
If the first character typed is a command dispatch
character or an alphabetic character, calls
cp:read-command; otherwise, calls zl:read-form. The
user can evaluate a form that begins with an alphabetic
character by first typing a form dispatch character (by
default, a comma).

For a general description of how the user enters a command: See the
section "Entering a Command" in User’s Guide to Symbolics Computers.

If :command-table is supplied, it is a command table of the acceptable
commands. The default command table is the value of
cp:*command-table*. The initial default is the "User" command table.
See the section "Command Processor Command Tables" in Programming
the User Interface, Volume B.

If :blank-line-mode is supplied, it is a keyword that determines what
action the command processor takes when the user types a blank line:

:reprompt Redisplay the prompt, if any.
:beep Beep.
:ignore Do nothing.

The default blank-line-mode is the value of ep::*default-blank-line-mode*.
The initial default is :reprompt.

If :prompt is supplied, it is a prompt option for the input editor to display
at appropriate times. prompt can be nil, a string, a function, or a symbol
other than nil (but not a list): See the section "Displaying Prompts in the
Input Editor" in Reference Guide to Streams, Files, and I/0. The default
prompt is the value of cp::*default-prompt*. The initial default is
"Command: ".

160 Dictionary of Command Processor Facilities

cp:read-full-command August 1986

cp:read-command-or-form returns a form. If cp:read-command-or-form
calls zl:read-form to read from stream, it returns the form that
zl:read-form returns. If it calls cp:read-command, it returns a list whose
first element is a symbol, the name of the command, which is defined as a
function. The remaining elements of the list are the arguments to the
command, coerced to the appropriate types. Usually you execute the
command by evaluating the returned list.

For an overview of cp:read-command-or-form and related facilities: See
the section "Overview of Advanced Command Facilities", page 32.

cp:read-full-command

The m-¥ (extended) and colon-full-command Command Processor command
accelerator.

cp:read-full-command is a function that is suitable for use as a command
accelerator’s function. However, because it is already installed on #\: and #\m-x in
the "Colon Full Command" command-table, the best way to make use of this
facility is to have the command tables in your applications that use accelerator
characters inherit from "Colon Full Command".

For an overview of cp:read-full-command and related facilities: See the section
"Overview of Command Loop Management Facilities", page 33.

cp:turn-command-into-form command arguments Function
Translates a Command Processor command into an evaluable form.

command
The command.

arguments
The arguments to the command.

For an overview of cp:turn-command-into-form and related facilities: See
the section "Overview of Command Loop Management Facilities", page 33.

cp:unparse-command command-name arguments &optional Function
(command-table cp:*command-table*) '
(acceptably t)
Returns the input string corresponding to a Command Processor command
and its arguments. (The string is created via a call to present-to-string.)

command-name
The command name (symbol).

arguments
The list of command arguments.

Dictionary of Command Processor Facilities 161

August 1986 cp.yank-and-read-full-command

command-table
The command table containing the named command; the
default is the current command table.

acceptably
Boolean argument passed through to present-to-string and
specifying whether the output string can subsequently be
parsed by accept and used for input.

For an overview of cp:unparse-command and related facilities: See the
section "Overview of Command Loop Management Facilities", page 33.

cp:yank-and-read-full-command

The c-n-Y Command Processor command accelerator. It yanks back the last
command typed for editing.

cp:yank-and-read-full-command is a function that is suitable for use as a
command-accelerator’s function. However, the easiest way to make use of this
facility is to have the command tables in your applications that use accelerator
characters inherit from "Colon Full Command".

For an overview of cp:yank-and-read-full-command and related facilities: See
the section "Overview of Command Loop Management Facilities", page 33.

162 Dictionary of User Input Facilities

August 1986

163

August 1986 Dictionary of User Input Facilities

PART IV.

Dictionary of User Input Facilities

164

Programming the User Interface, Volume A August 1986

165
August 1986 Dictionary of User Input Facilities

14. Dictionary Notes

This dictionary includes reference documentation for both the basic and advanced
facilities provided for user input functions. These are listed in the following two
tables:

Table of Basic User Input Facilities

Facilities for Accepting Single Objects
accept
prompt-and-accept
accept-from-string
dw:menu-choose
dw:menu-choose-from-set

Facilities for Accepting Multiple Objects
dw:accept-values
dw:accept-variable-values
dw:accepting-values

Table of Advanced User Input Facilities

Mouse Handler Facilities
define-presentation-translator
define-presentation-action
dw:handler-applies-in-limited-context-p
dw:presentation-subtypep-cached
dw:de<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>