

symbolics'"

., A Programming the
I " User Interface

Cambridge, Massachusetts

Programming the User Interface, Volume A
999025

September 1986

This document corresponds to Genera 7.0 and later releases.

The software, data, and information contained herein are proprietary to, and comprise
valuable trade secrets of, Symbolics, Inc. They are given in confidence by Symbolics
pursuant to a written license agreement, and may be used, copied, transmitted, and
stored only in accordance with the terms of such license. This document may not be
reproduced in whole or in part without the prior written consent of Symbolics, Inc.

Copyright © 1986 Symbolics, Inc. All Rights Reserved.
Portions of font library Copyright © 1984 Bitstream Inc. All Rights Reserved.
Portions Copyright © 1980 Massachusetts Institute of Technology. All Rights Reserved.

Symbolics, Symbolics 3600, Symbolics 3670, Symbolics 3675, Symbolics 3640,
Symbolics 3645, Symbolics 3610, Symbolics 3620, Symbolics 3650, Genera,
Symbolics-L1sp®, Wheels, Symbolics Common Lisp, Zetalisp®, Dynamic Windows,
Document Examiner, Showcase, SmartStore, SemantiCue, Frame-Up, Firewall,
S-DYNAMICS®, S-GEOMETRY, S-PAINT, S-RENDER®, MACSYMA, COMMON LISP
MACSYMA, CL-MACSYMA, LISP MACHINE MACSYMA, MACSYMA Newsletter and
Your Next Step in Computing are trademarks of Symbolics, Inc.

Restricted Rights Legend
Use, duplication, and disclosure by the Government are subject to restrictions as set
forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software
Clause at FAR 52.227-7013.

Symbolics, Inc.
4 New England Tech Center
555 Virginia Road
Concord, MA 01742

Text written and produced on Symbolics 3600-family computers by the Documentation
Group of Symbolics, Inc.
Text masters produced on Symbolics 3600-family computers and printed on Symbolics
LGP2 Laser Graphics Printers.
Cover design: SchaferlLaCasse
Printer: CSA Press
Printed in the United States of America.

Printing year and number: 88 8786987654321

iii

August 1986 Programming the User Interface, Volume A

Table of Contents

Page

I. User Interface Management System: an Overview 1

1. Guide to User Interface Documentation 3

1.1 New and Old Facilities 3
1.2 Levels of Detail 4

2. Introduction to the User Interface Management System 7

3. Overview of Top-Level Facilities for User Interface Programming 21

3.1 User Interaction Paradigm 21
3.2 Frame-Up Layout Designer 23
3.3 Program Framework Definition Facilities 25
3.4 Program Command Facilities 28

4. Overview of Command Processor Facilities 31

4.1 Basic Command Facilities 31
4.2 Advanced Command Facilities 32

4.2.1 Command Loop Management Facilities 33
4.2.2 Command Table Management Facilities 33
4.2.3 Command Accelerator Facilities 34

5. Overview of User Input Facilities 35

5.1 Basic User Input Facilities
5.1.1 Facilities for Accepting Single Objects
5.1.2 Facilities for Accepting Multiple Objects

5.2 Advanced User Input Facilities
5.2.1 Mouse Handler Facilities
5.2.2 Mouse Gesture Interface Facilities
5.2.3 Advanced Mouse Handler Concepts

6. Overview of Program Output Facilities

6.1 Basic Program Output Facilities
6.1.1 Basic Presentation Output Facilities
6.1.2 Character Environment Facilities
6.1.3 Textual List Formatting Facilities

35
35
38
39
39
41
42

47

47
47
49
51

iv

Programming the User Interface, Volume A

6.1.4 Table Formatting Facilities
6.1.5 Graph Formatting Facilities
6.1.6 Graphic Output Facilities
6.1.7 Progress Indicator Facilities
6.1.8 Other Facilities for Program Output

6.2 Advanced Program Output Facilities
6.2.1 Advanced Presentation Output Facilities
6.2.2 Redisplay Facilities
6.2.3 Facilities for Writing Formatted Output Macros

6.3 Output Streams for Program Output Facilities
6.4 Naming Conventions for Program Output Macros

7. Presentation Substrate Facilities

7.1 Basic Presentation System Concepts
7.2 Predefined Presentation Types
7.3 Presentation-Type Definition Facilities
7.4 Presentation Input Context Facilities
7.5 Presentation Input Blip Facilities
7.6 Other Presentation Facilities
7.7 Writing a Presentation Type Parser
7.8 User-Defined Data Types as Presentation Types

8. Window Substrate Facilities

8.1 Mouse-Blinker Characters

9. User Interface Application Example

August 1986

52
56
57
59
60
63
63
65
66
66
66

69

70
71
76
78
78
79
80
82

87

89

91

II. Dictionary of Top-level Facilities for User Interface Programming 99

10. Dictionary Notes

11. The Facilities

III. Dictionary of Command Processor Facilities

12. Dictionary Notes

13. The Facilities

101

103

135

137

139

v

August 1986 Programming the User Interface, Volume A

IV. Dictionary of User Input Facilities

14. Dictionary Notes

15. The Facilities

V. Dictionary of Program Output Facilities

16. Dictionary Notes

17. The Facilities

VI. Dictionary of Predefined Presentation Types

18. Dictionary Notes

19. The Facilities

VII. Dictionary of Presentation Substrate Facilities

20. Dictionary Notes

21. The Facilities

VIII. Dictionary of Window Substrate Facilities

22. Dictionary Notes

23. The Facilities

Index

163

165

167

201

203

207

281

283

285

347

349

351

395

397

399

413

August 1986 User Interface Management System: an Overview

PART I.

User Interface Management System: an Overview

2

Programming the User Interface, Volume A August 1986

3

August 1986 User Interface Management System: an Overview

1. Guide to User Interface Documentation

1.1 New and Old Facilities

Genera 7.0 user interface facilities represent a major departure from tools offered
for user interface programming in previous releases. Although the new facilities
render many of the old ones obsolete, Genera still supports most of the old tools
for the sake of compatibility with earlier releases. (For information on
unsupported tools and incompatible changes: See the document Converting to
Genera 7.0.) Consequently, the user interface documentation (Book 7) is divided
into two major areas.

The first area, Programming the User Interface, Volume A, focuses on the new
facilities for user interface programming. Thus, Part I of this book, the Overview,
is an overview of the new facilities and does not generally refer to the old tools;
Parts II through VIII, the Dictionaries, include, with one or two exceptions, only
the new definitions.

The second area, Programming the User Interface, Volume B, corresponds to the
pre-Genera 7.0 Book 7. This material is similar to the earlier book. The only
changes are a series of minor corrections and improvements. Exceptions to this
are changes to reflect the use of character styles instead of fonts, the
implementation of mouse characters as structures, and a considerably expanded
section on text scroll windows. (For more details: See the section "Changes to
User Interface Programming Facilities in Genera 7.0" in Genera 7.0 Release Notes.

Much of the basic conceptual documentation on the window system in the old Book
7 (Programming the User Interface, Volume B) remains relevant, as does the
reference documentation for most window init options and methods. We wish to
emphasize, however, that many of the higher-level facilities in the old user
interface management system - various menu facilities, the mouse-sensitive items
facility, scroll windows, and text scroll windows - are maintained primarily for
compatibility with pre-Genera 7.0 user programs.

The new system includes tools that are generally more powerful and easier to use
than their old counterparts; in many cases, there are no counterparts in the old
system. We encourage you, therefore, to concentrate your user interface
programming efforts on facilities available in the new system. This will improve
your productivity and better ensure the compatibility of your programs with future
releases.

4

Programming the User Interface, Volume A August 1986

1.2 Levels of Detail

Just as the user interface facilities themselves are arranged in a functional
hierarchy - from the high-level and general-purpose to the low-level and special­
purpose - so too is the documentation hierarchical, from the general to the
detailed.

At the highest level of abstraction is the introductory chapter to the overview,
which outlines the major categories of user interface programming tools and
describes the organizational hierarchy. See the section "Introduction to the User
Interface Management System", page 7.

The subsequent chapters in the overview provide the next level of documentation
detail. They discuss the major and minor groups of facilities, present tables
listing the facilities included in each group, and include a variety of examples:

• See the section "Overview of Top-Level Facilities for User Interface
Programming", page 21.

• See the section "Overview of Command Processor Facilities", page 31.

• See the section "Overview of User Input Facilities", page 35.

• See the section "Overview of Program Output Facilities", page 47.

• See the section "Overview of Presentation Substrate Facilities", page 69.

• See the section "Overview of Window Substrate Facilities", page 87.

The overview concludes with a chapter outlining a sample application that
illustrates the use of some of the key user interface programming facilities
discussed in the preceding chapters: See the section "User Interface Application
Example", page 91.

Parts II through VIII provide the greatest amount of detail. These are the
dictionaries, containing reference documentation for each of the many Lisp objects
discussed in the conceptual chapters. Each object is an entry in a dictionary of
related objects. There are eight dictionaries, corresponding to the major
functional categories among which the objects (facilities) are divided:

• See the section "Dictionary of Top-level Facilities for User Interface
Programming", page 99.

• See the section "Dictionary of Command Processor Facilities", page 135.

• See the section "Dictionary User Input Facilities".

5

August 1986 User Interface Management System: an Overview

• See the section "Dictionary Program Output Facilities".

• See the section "Dictionary of Predefined Presentation Types", page 281.

• See the section "Dictionary of Presentation Substrate Facilities", page 347.

• See the section "Dictionary of Window Substrate Facilities", page 395.

Within each dictionary, the arrangement of facilities is alphabetical (package
prefixes are ignored).

6

Programming the User Interface, Volume A August 1986

7

August 1986 User Interface Management System: an Overview

2. Introduction to the User Interface Management
System

Genera's user interface management system provides a wide variety of tools for
constructing user interfaces to application programs. This toolkit includes both
high-level facilities for rapidly building a user interface framework and low-level
facilities for changing the subtler details of user interface appearance and
behavior. A number of additional tools lie in between; they provide varying
degrees of power and flexibility in the several areas of user interface
programming.

The system is largely hierarchical, with each layer of facilities built on the one
below until, at the lowest level, the enabling substrate is reached. The position of
any given tool in the hierarchy generally reflects its power and ease of use: the
more powerful, easy-to-use tools are at the top; those providing less power but
more flexibility, and also demanding a more advanced understanding of user
interface programming, are further down.

The following outline shows the major categories and subcategories of facilities
contributing to the user interface management system:

OUTLINE OF USER INTERFACE PROGRAMMING FACILITIES

Top-Level Facilities for User Interface Programming

Frame-Up Layout Designer

Program Framework Definition Facilities

Program Command Facilities

Command Processor Facilities

Basic Command Facilities

Command Definition Facilities
Command Processor Interface Facilities

Advanced Command Facilities

Command Loop Management Facilities

8

Programming the User Interface, Volume A

Command Table Management Facilities
Command Accelerator Facilities

User Input Facilities

Basic User Input Facilities

Facilities for Accepting Single Objects
Facilities for Accepting Multiple Objects

Advanced User Input Facilities

Mouse Handler Facilities
Mouse Gesture Interface Facilities

Program Output Facilities

Basic Program Output Facilities

Presentation Output Facilities
Character Environment Facilities
List Formatting Facilities
Table Formatting Facilities
Graph Formatting Facilities
Graphic Output Facilities
Progress Indicator Facilities
Other Program Output Facilities

Advanced Program Output Facilities

Advanced Presentation Output Facilities
Redisplay Facilities
Facilities for Writing Formatted Output Macros

Presentation Substrate Facilities

Predefined Presentation Types

Presentation-Type Definition Facilities

Presentation Input Context Facilities

August 1986

9

August 1986 User Interface Management System: an Overview

Presentation Input Blip Facilities

Other Presentation Facilities

Window Substrate Facilities

Dynamic Window Facilities

Dynamic Frame Facilities

This outline does ~ot reflect two additional sources of facilities for building user
interfaces. The first includes a variety of standard and special functions for
program I/O documented elsewhere: See the section "Streams" in Reference Guide
to Streams, Files, and I/O.

The second includes facilities for user interface programming provided by
Symbolics prior to Genera 7.0. For more information on new versus old facilities
and their respective documentation: See the section "Guide to User Interface
Documentation", page 3.

What follows is a series of introductory sections to the major groups of user
interface facilities. Because the presentation and Dynamic Window substrates are
basic to understanding facilities occupying higher levels in the hierarchy, we start
with them.

o Presentation Substrate

The presentation system is central to most of the facilities provided for
building user interfaces. This system provides a mechanism for specifying
types, referred to as presentation types, for doing program I/O. The
presentation-type mechanism is an extension of the Common Lisp type
system and centralizes responsibility for parsing and printing data.

In the presentation system, the printed (displayed) representation of a data
object is distinct from its stored representation; that is, its appearance on
the screen is specified independently of its internal structure. Consider, for
example, the integer presentation type. It has a : base presentation
argument. If it is appropriate for integer I/O to be in terms of binary
integers, say, or octal integers, then specifying the appropriate base produces
the desired result.

The following two examples illustrate this point. Both use the Symbolics

10

Programming the User Interface, Volume A August 1986

Common Lisp function accept to read and inter an integer object. In the
examples, the range of the integer sought is restricted to one between 0 and
100. In the first example, no base is specified, so the default base of 10 is
used; a 10 is entered and returned. In the second, we specify an octal
integer with the same range (note that accept adjusts the prompt
accordingly). Again a 10 is entered and returned but, because of the base
specification, the printed representation is in octal, that is, 12.

(accept '«integer 0 100))) ==>
Enter an integer greater than or equal to 9
and less than or equal to 109: 10
19
«INTEGER 0 100))

(accept '«integer 9 100) :base 8)) ==>
Enter an octal i~teger greater than or equal to 9
and less than or equal to 144: 12
19
((I NTEGER) : BASE 8)

The above is a simple example. The degree of control you have over the
printed representation of data types goes considerably beyond merely
specifying predefined presentation arguments. You can write your own
printer function controlling the user-visible appearance of any object. For
example, you could make integers appear as graphic presentations. Such
control over the printed representation of Lisp objects allows programs to
present output and accept input in forms most meaningful to the application
at hand.

The presentation system predefines a large number of presentation types,
including all Common Lisp types. These predefined presentation types are
included for documentation purposes with the presentation substrate
facilities. This might suggest that they are low-level and specialized, which
they are in some respects, but they are also used throughout the user
interface programming hierarchy. Most program output and user input is in
terms of presentation types.

Other presentation substrate facilities provide functions for creating new
presentation types, including parsers, help facilities, and completion facilities.
Through these tools you can extend and customize the presentation system
to suit your application needs.

Together with Dynamic Windows and the window substrate, the presentation

11

August 1986 User Interface Management System: an Overview

substrate forms the basis of SemantiCue, Genera's smart input system.
What makes this system "smart" is discussed in the following section on the
window substrate.

• Window Substrate

The window system is the second major source of user interface substrate
facilities. A window can be static or dynamic. Output to static windows is
relative to an unchanging set of window coordinates; once a static window is
full, it must be cleared entirely or partially before new output can be done
without overwriting previous output. Dynamic Windows, on the other hand,
are scrollable in both the vertical and horizontal dimensions; they have a
definite origin (0, 0), but an indefinite length and width. Scrollability is a
basic feature of Dynamic Windows and does not require the explicit use of
special procedures as in the case of static windows.

Associated with the scrollability of Dynamic Windows are the concepts of
output history and viewport. You do not have to clear a Dynamic Window to
avoid overwriting previous output. New output, unless specifically directed
otherwise, is appended to the bottom of the window's history, that is, at the
end of all previous output to the window. The window is automatically
scrolled so that the current viewport - the visible portion of the window -
shows the new output. Previous output remains viewable by scrolling
backwards through the history.

With the use of presentation types for doing output to a Dynamic Window,
not only is the previous output retained and viewable, but its semantic
content is also remembered. That is, links to the objects represented by
displayed presentations are maintained so that the objects themselves remain
accessible and usable as current program input. This capability is central to
the SemantiCue input system. In the appropriate input context (established
by your program), the displayed presentations are automatically mouse­
sensitive. Automatic mouse-sensitivity is another point where Dynamic
Windows depart from static windows; with a static window, mouse sensitivity
must be provided through explicit procedures associated with output
operations .

• Advanced Command Facilities

At the next level up from substrate facilities are advanced facilities for
command management, user input, and program output. These facilities and
the substrate facilities are available for when you need low-level tools for
user interface programming. With the exception of the predefined
presentation types, they are not intended for general use in most

12

Programming the User Interface, Volume A August 1986

applications; the general-use tools are in the "basic" and "top-level"
categories.

The advanced command facilities allow you to write your own command loop.
Three kinds of facilities are provided:

1. Tools for reading and parsing command input.

2. Tools for managing command tables.

3. Tools for defining and installing single-key command accelerators.

• Advanced User Input Facilities

The presentation and Dynamic Window substrates provide for the display of
mouse-sensitive items in your programs' windows. Being able to use these
items as program input or in other useful ways by clicking on them with the
mouse depends on the availability of mouse handlers. Handlers, in addition
to the presentation system and Dynamic Windows, form the third key
ingredient of the SemantiCue input system.

Many mouse handlers are predefined in Genera, and it is possible that you
will never have to define your own. However, with the Advanced User Input
Facilities you can create your own handlers if the need arises. They come in
two varieties: translating mouse handlers and side-effecting mouse handlers.

A translating mouse handler translates a displayed presentation of one type
to an input object of another type. For example, you could define a
translating mouse handler to extract a host object from a pathname
presentation. Such a handler would return the "Host" object if a user
clicked on the following displayed pathname: "Host:>dierdre>new-t-m­
s.lisp" .

By the way, the standard handler for inputting objects of a specified
presentation type is a translating mouse handler. This predefined facility is
known as the identity handler, because it "translates" a presentation object
to itself, that is, the same object with the same presentation type. In the
above example, if a pathname was sought rather than a host, the identity
handler would automatically be available for clicking on the displayed
presentation to return the pathname object.

A specialized type of translating handler translates presentation objects into
Command Processor commands invoked on the objects. The facility for
creating such handlers is considered top-level, and is introduced elsewhere:
See the section "Introduction to Top-Level Facilities for User Interface
Programming", page 17.

13

August 1986 User Interface Management System: an Overview

A side-effecting mouse handler accomplishes some task independently of your
main program, like showing information about a presentation object. For
example, invoking a side-effecting mouse handler on a pathname presentation
might display file. attributes; nothing gets returned to your program, but the
user has some additional information about the presentation object.

Also included in the Advanced User Input category are several ancillary
facilities providing the interface between mouse characters and mouse
gestures. A mouse gesture is the symbolic name, conventionally a keyword,
corresponding to a mouse character. For example, :select is a gesture
corresponding to #\mouse-l, that is, click-left. More than one gesture can
correspond to the same mouse character. For example, another name for
#\mouse-l is : left.

Mouse handlers are defined on a particular gesture. We say that a handler
is "available on" the gesture. The interface facilities provide translation
between mouse characters and gesture keywords. (For more information on
mouse characters and related functions: See the section "Mouse Characters"
in Programming the User Interface, Volume B.)

• Advanced Program Output Facilities

Advanced Program Output Facilities include macros and functions for

1. Creating replayable presentations.

2. Doing incremental redisplay.

3. Writing your own formatted output macros.

Replayable presentations are ones that can be rerun, in place, and displayed
in a new format. You, the programmer, specify the redisplay options, called
"viewspec choices". At runtime, a user of your program can click on the
replayable presentation and call up a menu listing the viewspec choices.
After exiting the menu the presentation is erased and redisplayed according
to choices made by the user.

To see an example of a replayable presentation, invoke the Show Processes
command in a Lisp Listener or break window. Now, with the mouse cursor
anywhere in the displayed listing, click s-sh-Middle. This brings up a menu
entitled "Output parameters" listing the viewspec choices. Try changing the
selected choice from None to any of the others, click on Done, and watch
what happens.

A set of inter-related facilities is provided for doing incremental redisplay of

14

Programming the User Interface, Volume A August 1986

program output. Output intended for redisplay is saved in an output cache.
With the redisplay facilities, you can cache formatted or presented output
and compare it against re-output of the same objects to check for changes.
If changed, the cache is updated and the objects are redisplayed; if not, both
the cache and the original display remain unaltered.

A large number of formatted output macros are already available among the
Basic Program Output Facilities. Most programmers will not need to write
their own, but if you do, we provide two facilities to help. The first is a
macro for "snapshotting" the current values of lexical variables used within
its body. The second is a function for determining the space needs of a
specified continuation on a specified stream .

• Basic Command Facilities

Above the advanced facilities in the user interface hierarchy are basic
facilities for defining commands, getting user input, and doing program
output. It is at this level and the one above (top-level facilities) that
application programmers find tools meeting most of their user interface
needs.

The basic command facilities include two kinds of functions. The first lets
you define Command Processor commands. As part of the definition process,
you install you commands in a command table, for example, the "global"
table that includes all the predefined Command Processor commands
available in a Lisp Listener. Once defined, these may be invoked identically
to the predefined commands. For example, if you define a new kind of Show
File command, which you name Show Lisp File, and install it in the "global"
table, the next time you select a Lisp Listener or enter a break loop, Show
Lisp File will be one of the available commands.

The second kind of basic command facilities provides the interface between
your programs and predefined or newly defined Command Processor
commands. That is, these functions let you assemble Command Processor
commands in your application code; when the code is run the commands are
executed .

• Basic User Input Facilities

The basic function underlying most facilities for user input from Dynamic
Windows is accept. Using this function and presentation types enables you
to do typed input. ("Typed input" refers to object types, not typing at the
keyboard.)

15

August 1986 User Interface Management System: an Overview

The output function that corresponds to accept is present. The accept
functions within your programs determine the mouse-sensitivity of previously
presented output. Consider the following series:

(present uA:>ptolemy>solar-data.dataU) ==>
A:>ptolemy>solar-data.data
#<DISPLAYED-PRESENTATION 454412134>

(present #puA:>copern;cus>solar-data.dataU) ==>
A:>copernicus>solar-data.data
#<DISPLAYED-PRESENTATION 454412456>

(accept '((string))) ==>
Enter a stri ng: A:>ptolemy>solar-data.data
uA:>ptolemy>solar-data.dataU

STRING

(accept '((pathname))) ==>
Enter the pathname of a fil e: A:>copernicus>solar-data.data
#PuA:>copernicus>solar-data.dataU

FS:LMFS-PATHNAME

In the first case, a string is presented, in the second a pathname. With the
first accept function, an input context for string objects is established.
Passing the mouse cursor over the string presentation, A:>ptolemy>solar­
data. data, causes the presentation to be highlighted, thereby telling the user
"We are looking for a string; this is a string; you can click on it and return
it as a string object". This is what was done in the example, indicated by
the italicized echo on the UEnter a stri ng U prompt line.

In the string input context, passing the mouse cursor over the presented
pathname, even though it looks the same as the string presentation, does not
result in its highlighting. Despite its appearance, it represents a pathname
object, acceptable only in contexts where pathname objects are sought. Such
a context is established by the second call to accept. In that context, the
pathname presentation is highlighted and the user can click on it to return
the presentation object, that is, the pathname object #P"A:>copernicus>solar­
data.data".

The interaction described above illustrates the kind of intelligence
incorporated into SemantiCue, that is, what makes it a "smart" user input
system. The Genera user interface relies extensively on this system. Using
accept, present, and related functions lets you create similar interfaces to
your programs.

16

Programming the User Interface, Volume A August 1986

In addition to accept, other facilities in the basic user input category
provide the ability to prompt for and accept multiple objects. The accepted
objects are returned when the function returns, or used to change the values
of specified variables directly, before the function returns.

When a multiple-accept function is executed, either a series of in-line
prompts or a separate window containing the prompts appears. The in-line
prompts are so called because they appear in the same window that the
function was called from, and remain in that window's output history. To
see an example of in-line prompts, invoke the Set Window Options command
in a Lisp Listener or break loop.

To see an example of a multiple-accept function generating a separate
window for the prompts, evaluate the following:

(dw:acc~pt-values '«integer :prompt "Half-life"
:default 24(00)

(pathname :prompt "Log file")
(integer :p~ompt "Session number"))

:prompt "Atomic experiment"
:own-window t)

The window generated is equipped with its own scroll bar (for long prompt
lists), as well as Abort and Done boxes on the bottom margin.

o Basic Program Output Facilities

The primary output facilities are those for presenting objects, the present
function in particular. This function, and those based on it, output objects
as presentations. A presentation includes not only the display itself, but also
the object presented and its presentation type. When presentations are
output to Dynamic Windows, the object type and presentation type are
"remembered"; that is, the object and type of the display at a particular set
of window coordinates are recorded in the window's output history. Because
this information remains available, previously presented objects are
themselves available for mouse input to functions for accepting objects.
(For an example of a present-accept interaction: See the section
"Introduction to Basic User Input Facilities", page 14.

In general, the display of a presented object depends on its presentation type.
However, the display of any presented object can be modified independently
of its type, and of what that type would normally dictate. If appropriate in
your application, you could present a string as a graphic display, for
example, and still have the string object be available for program input via
the mouse.

17

August 1986 User Interface Management System: an Overview

Other basic output facilities include macros for controlling character output
and a large number of formatting macros. The character output facilities
provide control over character style or style components (family, face, and
size). (For more information on character styles: See the section "Character
Styles" in Symbolics Common Lisp: Language Concepts.) Other facilities let
you specify underlining, filling, abbreviation, and truncation of character
output.

The formatting macros are high-level facilities for creating textual lists,
tables, and graphs. You provide the textual list facilities with a sequence of
objects; they provide item delimiters, like commas, and a conjunction between
the final two items. The table facilities let you create two-dimensional
displays of simple or compound objects; they give you detailed control over
layout. Two graph formatting facilities are available; both are for
constructing hierarchical graphs showing the connections among object
nodes.

Additional output facilities include a series of functions for graphic output -
points, lines, arrows, strings, circles, polygons, and so on. The basic
facilities also provide a set of methods and functions helpful for doing
graphic displays on Dynamic Windows, including one to track the mouse.

Genera's display facilities in general, and the high-level formatting macros
in particular, are collectively known as Showcase. The Showcase facilities
are intended to make generating useful and attractive displays an easier­
going task than if you had to do all the formatting yourself. You get to
spend more time on application-specific needs for program output, and less
on the requirements that most applications have in common.

• Top-Level Facilities for User Interface Programming

The top-level facilities include a utility for proto typing/designing the window
and command interface to your program, the macro on which that utility is
based, and additional facilities for enhancing the command interface.

The prototyping utility is called the Frame-Up Layout Designer. It offers
you a choice of several standard configurations for the program frame that
will form the basis of the window int9rface with your users. Alternatively,
you can interactively construct the program frame, by modifying the initial
configuration (displayed on entering the utility) or one of the standard
configurations that Frame-Up provides.

Frame-Up offers options affecting the appearance and behavior of your
program that correspond directly to options for

18

Programming the User Interface, Volume A August 1986

dw:define-program-framework, the macro on which Frame-Up is based.
These options can be grouped into three areas:

1. Options affecting panes (subwindows) within the program frame.
These options control the size and placement of program panes as well
as their function, for example, whether a pane is a command-menu
pane or one for displaying program output.

2. Options affecting your program's command loop. These options specify
how program commands are defined, aspects of command table
management, and the command loop function.

3. Miscellaneous options. Options in this area affect such things as the
user-visible name of your application, the key it can be selected on,
whether it is listed in the system menu, and so on. An important
option in this group lets you specify your program's state variables.
Doing so makes the variables accessible to methods you write for your
program.

After you have designed a prototype program frame and specified whatever
options are appropriate, Frame-Up writes out the
dw:define-program-framework code corresponding to your specifications.
The code is written to an editing buffer, where you can add the additional
user interface features you desire, and the necessary links to your
application.

Of the top-level facilities for enhancing the command interface to your
program, one of the key capabilities provided is that of
presentation-to-command translation. This capability lets your users click
with the mouse on a displayed presentation, and have that gesture cause the
execution of a command, using the presentation object as one of its
arguments. The command executed can be a standard Command Processor
command or, more likely, one you have specially created for your program.
To see how this works, evaluate the following present function, or a similar
one presenting a real pathname, in a Lisp Listener:

(present #p"y:>example>pathname.test")

Now, hold down the META key and place the mouse cursor over the presented
pathname. Look at the top mouse documentation line and should see
something like m-Mouse-L: Ed; t Fil e (fil e) Y: exampl e>pathname. test. This is
the result of having a presentation-to-command translator available on the
n-t·louse-L gesture. Clicking n-Mouse-L at this point executes the Edit File
Command Processor command on the pathname object represented by the
presented pathname.

19

August 1986 User Interface Management System: an Overview

Presentation-to-command translators are a special kind of mouse handler.
For an introduction to mouse handlers generally: See the section
"Introduction to Advanced User Input Facilities", page 12.

20

Programming the User Interface, Volume A August 1986

21

August 1986 User Interface Management System: an Overview

3. Overview of Top-Level Facilities for User Interface
Programming

The following table lists the top-level facilities available for programming the user
interface.

Table of Top-Level Facilities for User Interface Programming

Frame-Up Layout Designer

Program Framework Definition
dw:define-program-framework
dw:*program-frame*
dw::find-program-window
dw:get-program-pane

Program Command Definition
dw:define-program-command
define-presentation-to-command-translator

The implementation of these facilities is based on a model, or paradigm, for user
interaction with application programs that, because of the unique nature of the
enabling substrate, may be unfamiliar to you. (For more information on the
substrate facilities: See the section "Overview of Presentation Substrate
Facilities", page 69. See the section "Overview of Window Substrate Facilities",
page 87.) We discuss this paradigm in the first section below, before considering
the facilities themselves.

Reference documentation for the top-level facilities considered in the sections that
follow is provided in a user interface dictionary: See the section "Dictionary of
Top-level Facilities for User Interface Programming", page 99.

3.1 User Interaction Paradigm

User interfaces built on the presentation and Dynamic Window substrates provide
a style of program interaction unlike that of conventional user interfaces. Central
to the interaction paradigm is a Command Processor that is entirely based on
these substrates and manages the user interface aspects of all commands, whether
system commands or ones you create for your program. (For more on the

22

Programming the User Interface, Volume A August 1986

Command Processor: See the section "Overview of Basic Command Facilities",
page 31.)

Top-level control for the program is provided by its command loop. The command
loop for most programs is similar:

1. Read a command.

2. Execute the command.

3. Redisplay any modified data structures (that are already displayed).

The command reader part of the loop builds and then parses a complete
"sentence", the command. Command sentences generally include "verbs",
specifying the action to be performed (for example, Show File); "nouns", the
objects on which the specified action is to be performed (for example, a pathname
argument to the Show File command); and "modifiers", specializations introduced
via optional, typically keyword, arguments. In our Show File example, the only
possible modifier is the : Output Dest i nat i on keyword. The complete sentence,
then, is

Show File (file [default Q:>linda>library.text])
Q:>linda>library.text

[verb]
[noun]

(keywords) :Output Destination (a destination) Printer [modifier]
(a printer [default Asahi Shimbun]) ASAHI SHIMBUN

Users can construct command sentences from keyboard input, mouse input, or a
mixture of the two. Mouse handling with respect to the Command Processor is
synchronous, meaning that mouse and keyboard input can be interleaved in the
construction of a command sentence (they use the same input buffer). Thus, for
example, if the user types in the Show File command, the pathname argument can
be supplied by clicking on a pathname presented earlier in the output.

Only presentations of a type appropriate to the command at hand are mouse­
sensitive. Appropriate presentations are ones whose type matches that of the noun
object needed to complete the command sentence. Also appropriate are
presentations that can be translated into objects of the type needed. In the above
example using Show File, presentations of the pathname type will be sensitive, as
well as presentations for which translating mouse handlers are available that, if
invoked (by clicking), will generate pathname objects. Sensitivity is indicated by
highlighting - enclosure within a box - when the mouse cursor moves over a
presentation of the right type. (For more information on mouse handlers: See the
section "Overview of Mouse Handler Facilities", page 39.

Another kind of mouse handler is available for translating directly from a
displayed presentation into a command executed using the object represented by
the presentation, that is, the presentation object, as one of its arguments. For an

23

August 1986 User Interface Management System: an Overview

example, do a Show Directory listing in a Lisp Listener. Highlight one of the
displayed pathnames by moving the mouse cursor over it and look at the top
mouse documentation line: it informs you that by clicking left you can execute
Show File on the highlighted pathname. This and other file-related commands -
click right on a pathname to pop up the menu listing them - are available on
various mouse gestures because presentation-to-command translators have been
defined for them.

Translating mouse handlers provide one kind of command acceleration, and menus
provide another. Command menus are especially useful, and used widely in
Genera. A command menu contains a set of verbs or verb phrases that
approximate, or are the same as, the names of the commands to which they
correspond. Clicking on one of the verbs supplies, or solicits from the user, the
noun(s) and modifiers for the rest of the sentence. Typically, a command menu is
displayed when a program is selected and remains displayed until it is deselected.
For examples, look at the Peek program (menu at top) or ZmaH (menu in the
middle).

Even though some commands cannot be entered with the mouse and others would
be difficult or impossible to enter without some mouse-sensitive items to accelerate
them (for example, graphic presentations), all are managed by a common command
processing mechanism. This mechanism provides the same help, mouse
documentation, and completion facilities to your commands that it supplies to
system commands.

3.2 Frame-Up Layout Designer

The Frame-Up Layout Designer is an interactive code-building utility that helps
you write the user interface to an application program. The code produced is
written as a single definition using dw:define-program-framework (described in
another section of this overview: See the section "Overview of Program
Framework Definition Facilities", page 25.) What you are defining, precisely, is a
program flavor having as its name the name of your program.

Frame-Up, then, is the interactive version of dw:define-program-framework.
Using the latter facility, you can control, via keyword options, the specifics of the
program frame - the window interface to your application - and various aspects of
the command loop. (For an explanation of the command loop: See the section
"User Interaction Paradigm", page 21.) In Frame-Up, the same options are offered
as menu items.

During a session with Frame-Up, you configure the program frame by selecting
one of several standard configurations or by editing a default or selected
configuration. Editing operations include the splitting, swapping, sizing, and
deletion of panes (subwindows) within the program frame.

24

Programming the User Interface, Volume A August 1986

Program panes, all based on a dynamic pane flavor, come in six varieties:

• Title panes

• Command-menu panes

• Display panes

• Interactor panes

• Lisp Listener panes

• Accept-values panes (another kind of menu pane for accepting variable, user­
specified values)

For panes of each type, an appropriate set of options is available, controlling such
factors as the pane name, height, whether a typeout window can appear, and the
name of the function controlling redisplay of output to the pane.

In addition to pane options, Frame-Up provides program options for specifying the
program name, key to be used for selecting the program, and factors related to
Command Processor operations. Again, both these and the pane options are
implemented as menu items that map to keyword options to
dw:define-program-framework.

When you are done laying out your program frame and specifying interface
options, you can preview the result and, if acceptable, exit to the editor buffer
where you wish the interface code to be written. Using an editing command, you
can then have Frame-Up write the dw:define-program-framework code
corresponding to your interface into the buffer (it is appended to anything that
was already in the buffer).

At this point you have the foundation and a good part of the superstructure of the
user interface to your application. Of course, you have to write your program's
commands and all of the application-specific code not already in place. Much of
that code will manipulate your program's state variables. Note that Frame-Up,
through dw:define-program-framework, has created a program flavor for your
application. This means that your state variables can be set up as instance
variables to the program flavor, and that you can access them directly in methods
written for the program flavor.

Because of the close connection between the Frame-Up Layout Designer and
dw:define-program-framework, you may find the overview of the latter facility
helpful in understanding the former: See the section "Overview of Program
Framework Definition Facilities", page 25. For complete documentation of Frame­
Up: See the section "Frame-Up Layout Designer", page 103.

25

August 1986 User Interface Management System: an Overview

3.3 Program Framework Definition Facilities

All top-level user interface facilities are based on a model for application
programs. Typically, a set of commands is made available to the user which,
when invoked, implements the program-specific functions forming the core of the
application. As each command is executed, displayed information affected by the
invoked function(s) is updated and redisplayed. This sequence of events, from
waiting for command input through execution and redisplay, is referred to as the
command loop.

Soliciting user input and displaying or redisplaying program output are user
interface functions separable to a large extent from the implementation details of
particular applications. If those details form the core of the application, then the
user interface functions can be thought of as the framework. The framework
definition facilities let you abstract the user interface functions from your program
and implement them at a high level. Central to this capability is the macro
dw:define-program-framework.

A major function performed for you by dw:define-program-framework is that of
establishing and managing the command loop for your program. As part of the
services provided in this area, it sets up a command-definition macro specifically
for your program. This macro is essentially the same as
dw:define-program-command, which is considered in another section of this
overview. (See the section "Overview of Program Command Facilities", page 28.)
For example, say you have a game program named "nickel-dime"; the first part of
the dw:define-program-framework definition for this application might look
something like:

(dw:define-program-framework nickel-dime
:pretty-name "Nickel & Dime Game"
:command-definer define-n-d-command
...)

The value provided to the :command-definer keyword becomes the symbol for the
command-definition macro that dw:define-program-framework creates for you. In
other words, you could now Write program commands using

(defi ne-n-d-command «command-name> <program-name> [keywords])
<arglist>
<body»

In addition to establishing and managing the command loop,
dw:define-program-framework provides control in two other key areas:
management of screen real estate via a program frame (window); and management
of your program's state variables. The former capability lets you specify the
frame configuration(s) your program presents to the user. Specification details

26

Programming the User Interface, Volume A August 1986

include the types and sizes of various panes (subwindows) within the frame
created by dw:define-program-framework for your program. (For a discussion of
frames and panes: See the section "Frames" in Programming the User Interface,
Volume B.)

State variables are program variables whose states (bindings) are preserved
between activations of a program. They are managed through a keyword option to
dw:define-program-framework. By using this option, program data, which you
might otherwise store as special variables, are stored instead as instance variables.
(For a discussion of variables: See the section "Kinds of Variables" in Symbolics
Common Lisp: Language Concepts.)

The flavor to which the instance variables belong is your program itself; that is,
dw:define-program-framework creates a program flavor unique to your program
and having as its name the name of your program. An important and useful
consequence of this is that program functions may be written as methods to the
program flavor, and thereby have direct access to its instance variables, including
your state variables. (For information on flavors and methods: See the section
"Flavors" in Symbolics Common Lisp: Language Concepts.)

To illustrate these points, let's extend the nickel-dime game example begun above:

(dw:define-program-framework nickel-dime
:pretty-name "Nickel & Dime Game"
:command-definer define-n-d-command
:panes «title-pane :title)

(command-pane :command-menu)
(graphics-window :display)
(message-window :interactor))

:configurations '«first
(: 1 ayout

(first :column title-pane command-pane
graphics-window message-window))

(:sizes
(first (title-pane 0.05)

(command-pane :ask-window self
:size-for-pane command-pane)

:then
(graphics-window 0.8)
(message-window 0.2)))))

:state-variables «game-flag)
(user-input)
(game-array)
(history-list)
...)

...)

27

August 1986 User Interface Management System: an Overview

The program frame is specified first by the :panes option, which indicates the
names and types of panes included; and second by the :configurations option,
which controls details of pane layout and size.

The :state-variables option identifie,s program variables. Having been thus
identified, these variables are lexically available in methods written for the
program flavor ni ekel-di me. The following is a simple method to keep track of
moves made in the game so far:

(defmethod (game-h i sto ry n i eke l-d i me) 0
(setq history-list (append history-list

(cons game-array NIL»»

Three other facilities are provided for use in conjunction with
dw:define-program-framework. These are dw:*program-frame*,
dw::find-program-window, and dw:get-program-pane.

The first, dw:*program-frame*, is a variable bound to the currently exposed
program frame. The following example was generated by selecting the Frame-Up
Layout Designer - a example of a program created with
dw:define-program-framework (the Flavor Examiner is another) - and pressing
SUSPEND to enter a break loop:

Command: ,dw:*program-frame* ==>

#<PROGRAM-FRAME Frame-Up 1 3106337 exposed>

dw::find-program-window returns the program frame of a specified program
flavor, whether it's exposed or not. Optionally, it creates and initializes an
instance of the program if one does not already exist. Using
dw:get-program-pane is how you access a particular pane of a program frame,
rather than the frame as a whole.

Reference documentation for dw:define-program-framework and ancillary
facilities is included in a user interface dictionary: See the section "Dictionary of
Top-level Facilities for User Interface Programming", page 99. For an example
and additional information on the use of certain options to
dw:define-program-framework, particularly those implementing the command
interface: See the section "User Interface Application Example", page 91. An
advanced example is included in the file sys:examples;define-program­
framework.lisp.

The Frame-Up Layout Designer is an interactive version of
dw:define-program-framework. For an overview of this facility: See the section
"Overview of the Frame-Up Layout Designer", page 23. For more detailed
documentation: See the section " Frame-Up Layout Designer", page 103.

28

Programming the User Interface, Volume A August 1986

3.4 Program Command Facilities

Two key facilities are included in this category of top-level user interface tools.
The first is dw:define-program-command; the second is
define-presentation-to-command-translator.

The command-definition macro dw:define-program-command is intended for use
only in conjunction with dw:define-program-framework (reviewed in another
section: See the section "Overview of Program Framework Definition Facilities",
page 25.) The macro not only lets you define commands for your program, but
also specifies whether they are shown on a command-menu pane created by
dw:define-program-framework for your program frame. Moreover, use of the two
macros ensures that your commands are properly installed in the command table
created for your program (by dw:define-program-framework). In other respects,
dw:define-program-command is similar to the basic command-definition facility,
cp:define-command. (For more information on cp:define-command: See the
section "Overview of Basic Command Facilities", page 31.)

define-presentation-to-command-translator creates a mouse handler that lets
your program's users click on a presentation and, through that action, cause a
specified program command to be executed on the presentation object. To use the
terminology presented in another section, it sets up the noun-verb order of the
command sentence. Clicking on the noun initiates the completion and execution of
the command sentence. The verb part of the sentence, that is, which command
gets invoked on the noun, depends on the particular mouse gesture used.

The following example is taken from the system source. It defines the Delete File
presentation-to-command translator:

(define-presentation-to-command-translator si:com-delete-file
(fs:pathname

:gesture nil)
(path)
(cp:build-command 'si :com-delete-file (ncons path»)

Note the use of cp:build-command in the body of this translator. This is the
recommended way of interfacing to Command Processor commands from
presentation-to-command-translators. Note also that the :gesture option to the
translator is nil. This means that the translator is not available on any gesture,
but only in the click-right menu available for all presentations.

For more on the role of presentation-to-command translators in the user interface:
See the section "User Interaction Paradigm", page 21. For an overview of mouse
handlers generally: See the section "Overview of Mouse Handler Facilities", page
39.

Reference documentation for these facilities is included in a user interface

29

August 1986 User Interface Management System: an Overview

dictionary: See the section "Dictionary of Top-level Facilities for User Interface
Programming", page 99. For examples in the context of an application program:
See the section "User Interface Application Example", page 91.

30

Programming the User Interface, Volume A August 1986

31

August 1986 User Interface Management System: an Overview

4. Overview of Command Processor Facilities

The facilities described here are divided into basic and advanced categories. The
distinction is between functions that most application programmers are likely to
use regularly, and those that they are not. The boundary is not a hard one, and
we recommend that you look over both sections, especially if you are unfamiliar
with Command Processor programming.

Reference documentation for the facilities discussed here is included in a user
interface dictionary: See the section "Dictionary of Command Processor
Facilities", page 135.

4.1 Basic Command Facilities

Table of Basic Command Facilities

Command Definition Facilities
cp:define-command

Command Processor Interface Facilities
cp:execute-command
cp: build-command
cp:*last-command-values*

As the above table shows, the basic command facilities are for

o Defining new Command Processor commands

o Providing an interface between your program and pre-existing Command
Processor commands or those you newly define.

Only one basic facility is needed for defining Command Processor commands,
cp:define-command. This macro lets you both create a command and install it
into the command table of your choosing. For example, all predefined commands,
those listed when you type "help" to the Command Processor prompt in a Lisp
Listener, are in the "Global" command table. You may specify that your
commands also be available in the "Global" command table, or in an application­
specific command table. (For more information on command tables: See the
section "Command Processor Command Tables" in Programming the User Interface,
Volume B.)

32

Programming the User Interface, Volume A August 1986

If you are writing Command Processor commands intended specifically for use
with a program you have created using dw:define-program-framework, you can
do so with cp:define-command, but dw:define-program-command would be the
better choice. The latter facility is intended for use with program definitions; it
provides lexical access to a program's state variables, and other services as well:
See the section "Overview of Program Command Facilities", page 28.

The objects listed in the table under Command Processor Interface Facilities allow
you to use predefined Command Processor commands in your own code. The first,
cp:execute-command, is used by programs to invoke Command Processor
commands on a specified set of arguments. The second, cp: build-command, is
used similarly by command translators (defined with
define-presentation-to-command-translator). (For an example of a command
translator showing the use of cp: build-command, and of cp:define-command:
See the section "User Interface Application Example", page 91.)

The special variable cp:*last-command-values* provides access to the values
returned by the most recently executed Command Processor command.

4.2 Advanced Command Facilities

One of the major advantages of using the top-level facilities for building the user
interface to an application program is that they provide the command loop. (See
the section "Overview of Top-Level Facilities for User Interface Programming",
page 21.) This relieves you of explicit responsibility for creating command
prompts, reading and parsing commands, and so on. You can concentrate instead
on the application-specific details of the commands themselves.

However, if you need some subtlety of command loop behavior not available in the
default command loop functions used by dw:define-program-framework, then you
can write your own functions with the aid of the facilities reviewed in this section.
Note that this does not mean that you cannot or should not use
dw:define-program-framework to build your user interface; it means only that
you should make use of the :top-Ievel and :command-evaluator keywords to that
macro and supply your own command loop functions. For examples: See the
section "User Interface Application Example", page 91.

The Advanced Command Facilities are divided into three subcategories:

• Command Loop Management Facilities

• Command Table Management Facilities

• Command Accelerator Facilities

33

August 1986 User Interface Management System: an Overview

4.2.1 Command Loop Management Facilities

The first subcategory of Advanced Command Facilities includes facilities for
building command loops. A primary requirement is for reading and parsing
commands, the function of the first six facilities listed below, from
cp:read-command to cp:read-accelerated-command. They include command
readers for regular commands, extended commands, accelerated commands, and so
on.

Command Loop Management Facilities
cp:read-command
.cp:read-command-or-form
cp:read-command-arguments
cp:yank-and -read-full-argument-command
cp:read-full-command
cp:read-accelerated-command
cp:echo-command
cp:unparse-command
cp:define-command-and -parser
cp:turn-command-into-form
cp::*default-blank-line-mode*
cp::*default-dispatch-mode*
cp::*default-prompt*

The other facilities listed in this subcategory provide a variety of useful services.
For example, cp:unparse-command takes a command symbol and any arguments
and returns the characters that would have been typed in to produce that
command; you can use it, as the system does, to construct mouse documentation.
cp:define-command-and-parser is a low-level, command-defining macro that lets
you control how the command line is parsed. cp:turn-command-into-form takes a
command name and a list of arguments, and constructs an evaluable form.

Finally, the three special variables - cp::*default-blank-line-mode*,
cp::*default-dispatch-mode*, and cp::*default-prompt* - provide defaults for use
by cp:read-command and cp:read-command-or-form.

4.2.2 Command Table Management Facilities

Command Table Management Facilities
cp:*command-table*
cp:make-command-table
cp:find-command-table
cp:install-commands
cp:delete-command-table
cp:command-in-command-table-p

34

Programming the User Interface, Volume A August 1986

The Command Table Management Facilities are mostly self-explanatory. The
current binding of the variable, cp:*command-table*, is the command table used
by the Command Processor to read commands. The next three facilities are
functions for making and retrieving command table objects, and for installing
commands into command tables. cp:delete-command-table removes a command
table from the command table registry, and the predicate
cp:command-in-command-table-p lets you test for the inclusion of a command in
a command table.

For more information on command tables: See the section "Command Processor
Command Tables" in Programming the User Interface, Volume B.

4.2.3 Command Accelerator Facilities

Command accelerators form the focus of the final subcategory of Advanced
Command Facilities. Only one facility is provided, used for defining command
accelerators:

Command Accelerator Facilities
cp:define-command-accelerator

Command accelerators are so called because they allow you to invoke, with a
single key, a Command Processor command normally invoked by one or more
words. For example, suppose in your application you define an Exit command to
bury the program frame. You could put this command on the key E or H. A user
would merely have to press the E or H key to exit the program.

When deciding whether to create new command accelerators, be aware that your
program can inherit any command accelerators already existing in other command
tables. If your program inherits these tables via the :command-table option to
dw:define-program-framework, installed accelerators come along with the
commands they accelerate. (See the function "dw:define-program-framework",
page 124.)

If you wish to define and install your own accelerators, you can do so with
cp:define-command -accelerator.

35

August 1986 User Interface Management System: an Overview

5. Overview of User Input Facilities

This section divides the user input programming facilities of SemantiCue into
basic and advanced categories. As with similar distinctions made for Command
Processor and program output facilities, we expect most programmers to make
relatively heavy use of the basic facilities, and lighter use of the advanced
facilities. Programming styles and needs differ, however, so the distinction is a
somewhat arbitrary one, not to be taken too seriously.

If these facilities are new to you, you might find the introductory sections to this
volume helpful in understanding the following discussion: See the section
"Introduction to the User Interface Management System", page 7.

Reference documentation for all the user input facilities can be found in a user
interface dictionary: See the section "Dictionary of User Input Facilities", page
163.

5.1 Basic User Input Facilities

The user input and program output facilities provided in Genera rely on the
presentation-type system. This system is an extension of the Common Lisp type
system and was created especially to facilitate user interface programming. The
Basic User Input Facilities described in the following subsections are based on the
presentation-type system and designed for use with Dynamic Windows. For more
information on presentation types: See the section "Overview of Predefined
Presentation Types", page 71. For more on Dynamic Windows: See the section
"Overview of Window Substrate Facilities", page 87.

5.1.1 Facilities for Accepting Single Objects

Basic User Input Facilities can be categorized into those for accepting single
objects and those for accepting multiple objects. Facilities in the first category
are listed below.

Facilities for Accepting Single Objects
accept
prompt-and-accept
accept-from-string
dw:menu-choose
dw:menu-choose-from-set

The primary facility for accepting input of presentation objects is the Symbolics

36

Programming the User Interface, Volume A August 1986

Common Lisp function accept. Objects can be accepted via keyboard or mouse
input. Characters typed in at the keyboard in response to an accept prompt are
parsed, and the object they represent is returned to the calling function.
Alternatively, if the object has previously been output as a presentation and is in
the current viewport of a Dynamic Window, the user can click on the object with
the mouse and cause it to be returned directly (that is, no parsing is required).

Examples:

(accept J«string))) ==>
Enter a string: a string
"a string"
«STRING))

(accept J«string))) ==>
Enter a string [default a string]: a string
"a string"
«STRING))

In the first accept function, "a string" was typed at the keyboard. In the second
accept, the user clicked on the keyboard-entered string of the first function. In
both cases, the string object was returned.

Typically, not any kind of object is acceptable as input. Only an object of the
presentation type specified in the current accept function can be input. The
accept function establishes the current input context. For example, if the call to
accept specified an integer presentation type, only a typed in or displayed integer
would be acceptable. Numbers displayed as integer presentations would, in this
input context, be mouse-sensitive, but those displayed as part of some other kind
of presentation, for example, a file pathname, would not. Thus, accept controls
the input context and thereby the mouse sensitivity of displayed presentations.

We say above that the range of acceptable input is, typically, restricted. How
restricted is strictly up to you, the programmer. U sing compound presentation
types like and and or, and other predefined or specially devised presentation types
gives you a high degree of flexibility and control over the input context. Consider
the following example:

(accept J«or «integer 1 4))
«dw:member-sequence

("one" "two" "three" "four")))))) ==>
Enter an integer greater than or equal to 1 and
less than or equal to 4 or one J two J three, or four: three
"three"
«DW:MEMBER-SEQUENCE ("one" "two" "three" "four")))

37

August 1986 User Interface Management System: an Overview

(accept '«or «integer 1 4»
«dw:member-sequence

("one" "two" "three" "four"»»» ==>
Enter an integer greater than or equal to 1 and
less than or equal to 4 or one, two, three, or four: 4
4
«INTEGER 1 4»

The particular combination of types used above might not have any practical use,
but it does begin to illustrate what the possibilities are. Notice that accept took
care of devising a prompt. You could override this if you wanted to, but in most
cases it comes up with something reasonable.

The parser used by accept for parsing strings into presentation objects is not part
of the accept function itself. Rather, each presentation type has its own, type­
specific parser that accept calls to parse objects of that type. The parser function
is included in the form that defines a presentation type. You may write your own
presentation types, including the parsers (and printers) that go with them, but a
sizeable set of types has already been defined for you: See the section "Overview
of Predefined Presentation Types", page 71. Each is documented in a user
interface dictionary: See the section "Dictionary of Predefined Presentation
Types", page 281.

Ancillary functions for accepting single objects include prompt-and-accept and
accept-from-string. The first is the presentation-system equivalent of
prompt-and-read. It is similar to accept, taking the same keyword options, but
differs in its letting you use the format function to generate the input prompt.
accept-from-string is the presentation-system equivalent of read-from-string.

Two accept-based menu facilities are included among .the facilities for accepting
single objects. The dw:menu-choose function is a menu-generating facility for
use with Dynamic Windows. It displays a list of choices in a conventional menu
format and returns the value associated (in your code) with the selected choice.

dw:menu-choose differs from the second listed menu facility,
dw:menu-choose-from-set, in its ability to create menus of items in the "general
list" form. (See the section "The Form of a Menu Item" in Programming the User
Interface, Volume B.) dw:menu-choose-from-set is intended primarily for creating
menus from a simple list of objects.

When considering menus for your applications, bear in mind that Dynamic
Windows with displayed presentations can be regarded as menus of input
possibilities. You may not need to construct a menu in the strict sense of
dw:menu-choose to provide your users with the convenience that mouse
acceleration of data entry provides.

38

Programming the User Interface, Volume A August 1986

5.1.2 Facilities for Accepting Multiple Objects

A second category of basic facilities for user input includes functions that return
multiple objects to your program, rather than single objects. These are listed
below:

Facilities for Accepting Multiple Objects
dw:accept-values
dw:accept-variable-values
dw:accepting-values

The function dw:accept-values is similar to accept. It differs in that it accepts a
series of objects from the input stream, not just one object. The presentation type
of each input object is specified independently. In the following example, an
integer and a pathname object are sought:

(dw:accept-values '((integer :prompt "Half-life"
:default 24131(13)

(pathname :prompt "Log file"))
:prompt "Atomic experiment") ==>

Atomic experiment
Half-life: 24131313
Log file: Y:>curie>atom-data.log
ABORT aborts, END uses these values ==>
24131313
#P"Y:>CURIE>atom-data.log"

The dw:accept-variable-values function is like dw: accept-values , but instead of
returning a series of the user-entered values, it assigns these values to a set of
special variables. It does this as the values are entered, not after the function
returns. You have the option of constraining user choices for certain variables to
a predefined set.

dw:accepting-values is a macro that takes all calls to accept within its body and
puts the prompts into a single, mUltiple-prompt display like the one shown in the
example above. I t is the most versatile of the three and the one recommended for
general use. One of its big advantages over the previous functions is that the
multiple-prompt display can be modified at runtime, in response to values entered
by your user to earlier prompts in the display. In other words, the values you
solicit from your users can change "on the fly", at runtime, depending on the
values already received. The following is a simple example:

39

August 1986 User Interface Management System: an Overview

(defun return-host-or-printer ()
(fresh-line)
(let (choice

(stream *query-io*))
(dw:accepting-values (stream :own-window t)

(setq choice (accept '((member host printer))
:default 'printer
:stream stream
:prompt "Send file to host or printer?"))

(case choice
(host (accept 'neti:host :stream stream))
(printer (accept 'sys:printer :stream stream))))))

For other examples, see the file sys: exampl es; accept i ng-val ues. 1 i sp.

5.2 Advanced User Input Facilities

Facilities in this category are directed towards mouse manipulation of presentation
objects, a key feature of the SemantiCue input system. The primary facilities in
this category are those for defining mouse handlers. An ancillary set of facilities
is provided for managing the interface between the symbolic mouse gestures used
to invoke the handlers and the mouse characters to which the gestures correspond.

In the subsections that follow, we first present an overview of the mouse-handler
definers and closely allied facilities. Then we look at the mouse gesture interface
facilities. Following these two is an advanced concepts section. This section
considers the important subject of handler lookup, that is, how SemantiCue finds
the handlers applicable in any given input context, and some performance issues.
The discussion is at a fairly advanced level, and is probably best put off until after
you have a good working knowledge of handlers, presentation types, and the
Dynamic Window system.

5.2.1 Mouse Handler Facilities

Facilities that let you or your users manipulate presentation objects with the
mouse are referred to as mouse handlers. A large number of predefined mouse
handlers are already included in SemantiCua. Clicking right on a displayed
presentation in a Dynamic Lisp Listener throws up a menu of handlers applicable
to the presentation object.

You define your own, application-specific handlers using the definition macros
listed in the following table:

40

Programming the User Interface, Volume A

Mouse Handler Facilities
define-presentation-translator
define-presentation-action
dw:handler-applies-in-limited-context-p
dw:presentation-subtypep-cached
dw:delete-presentation-mouse-handler
dw:invalidate-type-handler-tables

August 1986

Translating handlers, the kind generated with define-presentation-translator, are
typically run when your program is waiting for input (of presentation objects).
Given that some presentations are visible to your user, translators let the user
click on a presentation of one type and use it as input of a different type, the type
your program is seeking.

For example, say your program wants to input the version number of a file. You
could define a translating handler that extracts the version number, an integer
object, from a pathname presentation. Your program's users would then have the
option of typing in a version number to the input prompt, or clicking on a
pathname presentation that included a version number. Such a translator could
be defined as follows:

(define-presentation-translator pathname-to-integer
(pathname integer

:gesture :middle
:documentation "Return file version number")

(pathname)
(when (numberp (send pathname :version»

(send pathname :version»)

After compiling this translator, try doing a Show Directory listing, then evaluate
(accept J «integer»). In this input context, move the mouse cursor over one of
the pathnames and notice that the top mouse documentation line now says Mouse­
M: Return fi 1 e versi on number; Mouse-R: Menu. Clicking middle enters the file
version number as an integer object.

define-presentation-to-command-translator is another translating-handler
definition facility. I t creates handlers for performing a single kind of translation,
from presentations to Command Processor commands. This is considered a high­
level facility and is discussed in another section: See the section "Overview of
Program Command Facilities", page 28.

Side-effecting mouse handlers, the kind you create with
define-presentation-action, are also typically run while your program is waiting
for input, but do not themselves supply input. Rather, they run code outside the
main control loop of your program to accomplish some action that is useful
relative to the presentation which activates them.

41

August 1986 User Interface Management System: an Overview

A common use for side-effecting handlers is to display additional information about
some presentation object. For example, if your program is providing graphic
presentations of several key variables, it may be the case that to select of one of
the variables to use as input, your user will require more information about the
variables than can be included in the graphic representations. A side-effecting
mouse handler could be used at this point to provide a display of all pertinent
information about each of the available objects.

A major use made of side-effecting handlers by SemantiCue is to display menus of
other handlers. The standard click-right menu for presentations, 'which shows
handlers available in the current input context for the presentation at hand, is
implemented in this fashion. Such handlers are created by specifying the
:defines-menu option to define-presentation-action.

For some example mouse handler definitions: See the section "User Interface
Application Example", page 91.

dw:handler-applies-in-limited-context-p and dw:presentation-subtypep-cached
are related facilities used in :tester functions defined for translators. They
restrict handler applicability to . a specified input context. For more information:
See the section "User-Defined Data Types as Presentation Types", page 82.

Other facilities concerned with mouse handlers include
dw:delete-presentation-mouse-handler and dw:invalidate-type-handler-tables.
The former eliminates a handler from your world. The latter is used when the
presentation-type inheritance hierarchy has changed and the look-up tables
controlling handler applicability need to be recomputed to reflect the change. For
example, if you have defined a type that, depending on a flag, expands one way or
another, then every time the flag changes you need to update the handler tables;
dw:invalidate-type-handler-tables does this for you automatically the next time
the tables are accessed.

5.2.2 Mouse Gesture Interface Facilities

Mouse Gesture Interface Facilities
dw:mouse-char-gesture
dw:mouse-char-gestures
dw:mouse-char-for-gesture

The Mouse Gesture Interface Facilities are ancillary to the mouse handlers. They
provide the interface between mouse gestures, the symbolic names for mouse
clicks - for example, : left, :middle, :right - and the mouse characters to which
they correspond - #\mouse-l, #\mouse-m, #\mouse-r.

With these facilities, you can use predefined mouse gestures in your code where
the symbolic names are required, or define and use new ones. Gestures are

42

Programming the User Interface, Volume A August 1986

required, in particular, for defining mouse handlers. Handlers are always defined
on some gesture.

For more information about mouse characters and mouse character functions: See
the section "Mouse Characters" in Programming the User Interface, Volume B.

5.2.3 Advanced Mouse Handler Concepts

5.2.3.1 How Mouse Handlers Are Found

You do not generally need to worry about the specifics of how SemantiCue decides
what presentations to highlight or precisely which mouse handlers are available in
a given input context. Still, it is helpful to understand the process conceptually,
as it provides insight into some of the key aspects of SemantiCue's behavior. Also,
this understanding is necessary when deciding how to correct some unexpected
behaviors of the handlers you define.

When you move the mouse over a presentation, SemantiCue performs a multi­
faceted search to find the right combination of 1) a presentation to highlight; 2)
mouse handlers on that presentation; and 3) contexts to satisfy with the values
returned by those handlers, were they invoked. The search includes the following
activities:

• The presentation under the mouse is found. Presentations are arranged in a
hierarchy; it is the innermost (smallest) presentation that is found at this
stage. This presentation is found in the window's output history from the
(x, y) position of the mouse.

• When the innermost sensitive presentation is found, the hierarchy of
presentations is searched, from innermost to outermost, to find a
presentation that has applicable handlers.

• What handlers apply to a presentation is determined by matching the
to-presentation-type of the handler with the input context(s), and the
from-presentation-type of the handler with the presentation-type of the
presentation or the type of the object (the two are not necessarily the same).

Type matching is based on the dw:presentation-subtypep function. That is,
the presentation or object type must be a subtype of the type the handler
accepts, and the type returned by the handler must be a subtype of the type
wanted by the program .

• Different levels of the software may be looking for different presentation
types. For example, when accepting a command, the parser for the
cp:command presentation type accepts a cp:command-name, which in turn
looks for some text. A handler defined with

43

August 1986 User Interface Management System: an Overview

define-presentation-to-command-translator may satisfy the accept of the
cp:command presentation-type; clicking on an item output in a He 1 p display
may satisfy the accept of cp:command-name; while the translator on c­
Mouse-M may provide some of the text that is being read by
cp:command-name's parser. The search proceeds so as to favor satisfying
the outermost context.

• Mouse handlers whose gestures are assigned to mouse characters with the
current set of shift keys down are considered. (However, other handlers may
may also be examined to determine which other shifts have commands. This
is so SemantiCue can generate the lower mouse documentation line.)

• The handlers for a particular gesture are sorted according to a precedence
ordering. This ordering follows these rules:

1. All handlers on : gesture t (that is, all handlers professing to handle
all gestures) are handled before handlers on specific gestures.

2. If the first : gesture t handler found has been defined with the
: excl ude-other-handl ers t option, then no other handlers are
considered, even if the handler with : excl ude-other-handl ers t does
not pass the tests described below.

3. The handlers are then sorted by priority, and considered in priority
order. The first one for a particular gesture that passes the tests is
the one that is used. See the macro "define-presentation-action",
page 179.

• Finally, a mouse handler must pass a series of tests before it is considered
applicable to a presentation. The tests include:

1. If there is a predicate associated with the mouse handler's
from-presentation-type, it is applied to the presentation's object. This
predicate can come either from a satisfies clause in the type or its
expansion, or from a :typep argument in the define-presentation-type.

2. If there is a :tester for the mouse handler, it is called on the
presentation, the context, the window, the handler, and the gesture.

3. The handler must either have : do-nat-compose t, or its value must not
be the single value nil. (A single value of nil means the body decided
not to handle the presentation). This returned value may then be
tested by a predicate derived from the context presentation-type, in a
manner similar to the predicate derived from the from-presentation-type,
in number 1 above.

44

Programming the User Interface, Volume A August 1986

4. If the handler declares that it defines a menu (via the :defines-menu
option), a check is made that there is at least one handler which is
declared to be in that menu that applies in the current combination of
context and presentation.

If any of these tests returns nil, the handler does not apply.

With respect to performance, it is important to realize that not all of this search
is performed each time the mouse cursor crosses a presentation. Although several
general principles related to handler efficiency exist, SemantiCue uses many
performance techniques that complicate any straightforward analysis in this area.
Most things happen considerably more quickly than the preceding description
might suggest. Because of various forms of caching, this is especially true after a
handler search has already occurred in a given context.

See the section "Some Efficiency Caveats for Mouse Handlers", page 44.

5.2.3.2 Some Efficiency Caveats for Mouse Handlers

Following are some caveats for making your mouse handlers efficient:

• Make handlers as specific as possible.

Use the most specific types appropriate as your handler's
from-presentation-type and to-presentation-type. Doing so will respectively
restrict the number of presentations to which the handler potentially applies
and the variety of input contexts in which it is potentially available.

In particular, avoid handlers for t and sys:expression contexts. These apply
in a wide variety of contexts, and the effect is cumulative; the more there
are, the slower everything becomes. If you do define such handlers, pay
particular attention to their efficiency. This also applies to translators from
and to subtypes of sys:expression. See the section "Use of User-defined
Data Types as Presentation Types".

• Keep presentation-type :expander and :abbreviation-for forms simple.

These forms are evaluated a large number of times. They should avoid both
consing and excessive computation. It is best if they are simple backquoted
forms, as the system knows how to turn such consing into stack-consing,
resulting in more speed and less work for the garbage collector.

Also, avoid large type expansions. An :expander or :abbreviation-for clause
with a large expansion, especially inside an or, results in much extra
searching and possibly increased memory requirements for the handler
lookup tables. Carried to an extreme, this could make all handler lookups

45

August 1986 User Interface Management System: an Overview

slow owing to excessive paging. If needed, use a more general type and a
satisfies clause .

• Keep :tester forms fast.

Bodies of translators can be slow so long as the :tester form returns nil in
the cases where the body would be slow.

• Keep translators fast.

Expensive computations are best done as commands, rather than as
translators. Translators run when you move the mouse; commands do not
run until you ask for them.

• If a slow translation is necessary, use : do-not-compose t.

If you feel a slow operation must be done as a translator, use : do-not­
compose t. This suppresses SemantiCue's evaluation of the result. Because
it also suppresses any contextual checking of the result, use it sparingly.

• Avoid interpreted satisfies clauses.

Write an auxiliary function and use that instead. satisfies clauses are run
during mouse handling; running them interpreted creates a needless
slowdown.

For some related information and examples: See the section "User-Defined Data
Types as Presentation Types", page 82.

46

Programming the User Interface, Volume A August 1986

47

August 1986 User Interface Management System: an Overview

6. Overview of Program Output Facilities

Genera's program output facilities are collectively known as Showcase. Here we
divide them into basic and advanced categories, as we have the Command
Processor and user input facilities. The larger category is the first, the basic
facilities, which includes a variety of functions for formatted output. The
advanced facilities provide incremental redisplay capabilities and functions helpful
when writing you own formatted output macros.

In the following sections we consider first the basic output facilities, then the
advanced facilities. This is followed by two brief notes on output streams and
naming conventions for program output macros.

Reference documentation for all Showcase facilities is included in a user interface
dictionary: See the section "Dictionary of Program Output Facilities", page 201.

6.1 Basic Program Output Facilities

The basic program output facilities are distributed among the following categories:

• Basic Presentation Output Facilities

• Character Environment Facilities

• Textual List Formatting Facilities

• Table Formatting Facilities

• Graph Formatting Facilities

• Graphic Output Facilities

• Progress Indicator Facilities

• Other Facilities for Program Output

6.1.1 Basic Presentation Output Facilities

Program output and input facilities are necessarily tightly coupled. In Genera, the
coupling is provided by presentation types and Dynamic Windows. All output of
presentation objects is potentially available as user input, mouse-sensitive in the
right input context.

48

Programming the User Interface, Volume A

Basic facilities for doing output of presentations are shown below:

Basic Presentation Output Facilities
present
present-to-string
dw:with-output-as-presentation

August 1986

The primary facilities provided for presentation output are present and
dw:with-output-as-presentation. present is the basic function for outputting
presentation objects. The exact form that the output takes, that is, its printed
representation, is not determined by present, however, but rather by the
presentation type of the object being presented. The definition of the presentation
type includes a printer function specifying the details of the output display. The
following examples show presentation of inverted-boolean and character-style
objects:

(present t '«inverted-boolean))) ==>No
#<DISPLAYED-PRESENTATION 444312267>

(present (si:parse-character-style '(:swiss :bold :large))) ==>
SWISS.BOLD.LARGE
#<DISPLAYED-PRESENTATION 425221252>

You have the option of defining your own presentation type, with its own printer
function, but many, like the two example types above, have already been defined
for you. (For a list of predefined types: See the section "Overview of Predefined
Presentation Types", page 71. Reference documentation for each listed type is
included in a user interface dictionary: See the section "Dictionary of Predefined
Presentation Types", page 281.)

If you wish to output an object as a presentation of a predefined type, but want to
modify the printed representation of the object, the
dw:with-output-as-presentation macro provides such a capability. It uses your
code to print an object rather than the printer of the presentation type. The
following function of two arguments presents the first, this, as an object of
presentation type that:

49

August 1986 User Interface Management System: an Overview

(defun present-this-as-that (this that
&optional (stream *standard-output*))

(send stream :clear-history)
(dw:with-output-as-presentation (:single-box t

:stream stream :type that :object this)
(send stream :draw-circle 250 200 25)
(send stream :draw-circle 270 200 25)))

Try calling this function with" ABC" as the first argument and J «stri ng)) as the
second. Then, do (accept J «stri ng))) and click on the graphic. You will see
that a perfectly normal string object is returned, despite its unorthodox
presentation.

The third function listed in the above table, present-to-string, is the presentation­
system equivalent of write-to-string. The output is done in such a way as to
ensure that the output object can subsequently be input as a presentation object
(via accept-from-string).

6.1.2 Character Environment Facilities

Facilities providing control over the appearance of characters and lines of
characters are listed in the following table:

Character Environment Facilities
with-character-style
with-character-family
with-character-face
with-character-size
with-underlining
abbreviating-output
filling-output
indenting-output

The first four facilities are macros affecting character style. A character style
specification includes a character family, face, and size. Macros are provided to
control each of these attributes individually or all together. The final character
style of the output characters is the result of merging the macro-specified style
against the default style set for the output stream. (For more information on
character styles: See the section "Character Styles" in Symbolics Common Lisp:
Language Concepts.)

50

Programming the User Interface, Volume A August 1986

The following example shows the use of with-character-style to italicize the
column headings in a table:

(defun table-with-italicized-heads ()
(fresh-line)
(formatting-table ()

(formatting-column-headings (())
(with-character-face (:italic)

(formatting-cell ()
"Number")

(formatting-cell ()
"Square")))

(loop for i from 1 to 1B
as square = (* i i)
do

(formatting-row ()
(formatt i ng-cell (ni 1 : al i gn : center)

(princ i))
(formatting-cell (nil :align :right)

(princ square))))))

(table-with-italicized-heads) ==>
Number Square

1 1
2 4

3 9
4 16
5 25

6 36
7 49

8 64
9 81
1B 1BB

NIL

The remaining facilities are also macros. with-underlining adds underlines to
character output. abbreviating-output terminates a line of characters and
supplies ellipses near the right edge of the output window. filling-output
prevents the breaking of lines in the middle of words; it inserts newlines at
appropriate points. indenting-output lets you insert space or a string at the
beginning of each new line of character output.

51

August 1986 User Interface Management System: an Overview

Here's an example using abbreviating-output:

(defun abbrev-test (width height)
(abbreviating-output «) :width width :height height

:show-abbreviation t)
(loop for row from 1 to 20 do

(terpri)
(loop for col from 1 to 100 do

(format T " -d:-d" row col)))))

(abbrev-test 42 10) ==>

1:11:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 1:10
2:1 2:2 2:3 2:4 2:5 2:6 2:7 2:8 2:9 2:10
3:1 3:2 3:3 3:4 3:5 3:6 3:7 3:8 3:9 3:10
4:1 4:2 4:3 4:4 4:5 4:6 4:7 4:8 4:9 4:10
5:1 5:2 5:3 5:4 5:5 5:6 5:7 5:8 5:9 5:10
6:1 6:2 6:3 6:4 6:5 6:6 6:7 6:8 6:9 6:10
7:1 7:2 7:3 7:4 7:5 7:6 7:7 7:8 7:9 7:10
8:1 8:2 8:3 8:4 8:5 8:6 8:7 8:8 8:9 8:10
9:1 9:2 9:3 9:4 9:5 9:6 9:7 9:8 9:9 9:10

NIL

6.1.3 Textual List Formatting Facilities

Textual List Formatting Facilities
format-textual-list
formatting-textual-list
formatting-textual-list-element

P.J11ong the many high-level formatting facilities provided by Showcase, those listed
above are for formatting "textual" lists. A textual list is simply a list of comma­
separated items, for example "1, 2, 3, and 4". You provide the items for the list,
and the facilities take care of inserting the commas and the "and" before the final
item.

format-textual-list is the function for creating textual lists.
formatting-textual-list is the environment-binding macro for doing the same
thing. What this and similar formatting macros provide that the functions do not
is flexibility. In this case, the format-textual-list function requires that an
explicit sequence object provide the items for formatting, for example:

52

Programming the User Interface, Volume A

(defun simple-list-formatter ()
(fresh-line)
(format-textual-list '(1 2 3 4) #'prine :eonjunetion "and"»

(simple-list-formatter) ==>
1, 2, 3, and 4
NIL

August 1986

formatting-textual-list, on the other hand, lets you write code to sequence
through the items using whatever data structure you choose, for example:

(defun simple-list-formatting ()
(fresh-line)
(formatting-textual-list (t :eonjunetion "and")

(loop for i from 1 to 4

do
(formatting-textual-list-element ()

(prine "Number ")
(pri ne i»»)

(simple-list-formatting) ==>
Number 1, Number 2, Number 3, and Number 4
NIL

As shown in the above example, formatting-textual-list-element controls the
printing of items for display by formatting-textual-list.

6.1.4 Table Formatting Facilities

Table Formatting Facilities
formatting-multiple-columns
format-sequence-as-table-rows
format-item-list
formatting-item-list
formatting-table
formatting-column
formatting-column-headings
formatting-row
formatting-cell
format-cell

The table formatting facilities shown above allow you to output tables of arbitrary
complexity. The first four listed provide relatively fast and easy tools for
generating tables. formatting-multiple-columns, for example, displays what would
otherwise be a single column of output in a multiple-column format:

53

August 1986 User Interface Management System: an Overview

(de fun quick-table ()
(fresh-line)
(formatting-multiple-columns ()

(loop for i from ~ to 79
do

(present i Jinteger)
(terpri)))))

(quick-table) ==>
~ 4 8 12 16 2~ 24 28 32 36 4~ 44 48 52 56 6~ 64 68 72 76
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77
2 6 1~ 14 18 22 26 3~ 34 38 42 46 5~ 54 58 62 66 7~ 74 78
3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79
NIL

(If you try this function, be aware that your display might not look like the one
above; the width of the output window affects the number of columns.)

format-sequence-as-table-rows takes a sequence of elements and outputs each
element on its own row. format-item-list and formatting-item-list are also used
for generating tables of simple items but, through a variety of keyword options,
provide much finer control over the appearance of the table than do the first two
facilities.

The remaining facilities, which are used together with formatting-table at the top
level, provide the greatest flexibility for constructing tables. The following
example creates a table of network servers:

54

Programming the User Interface, Volume A

(defun server-table ()
(fresh-line)
(formatting-table ()

(formatting-column-headings ()
(with-character-face (:italic)

(with-underlining ()
(formatting-cell ()

(write-string "Protocol"»
(formatting-cell ()

(write-string "Medium"»
(formatting-cell ()

(write-string "No. of Arguments"»»)
(loop for server in neti:*servers* do

(formatting-row ()
(formatting-cell ()

(format t "-a"
(neti:server-protocol-name server»)

(formatting-cell ()
(format t "-a"

(neti:server-medium-type server»)
(formatting-cell (*standard-output* :align :right)

(format t "-a"
(neti:server-number-of-arguments server»»»)

August 1986

55

August 1986 User Interface Management System: an Overview

(server-table) ==>
Protocol
MANDELBROT
UNIX-RWHO
IEN-116
TCP-FTP
TFTP

Medium
BYTE-STREAM
UDP
UDP
BYTE-STREAM
UDP

CHAOS-FOREIGN-INDEX CHAOS
RTAPE BYTE-STREAM
CONVERSE
SEND
SMTP
CHAOS-MAIL
CONFIGURATION
NFILE
QFILE
CHAOS-SCREEN-SPY

BYTE-STREAM
BYTE-STREAM
BYTE-STREAM
BYTE-STREAM
BYTE-STREAM
BYTE-STREAM-WITH-MARK
CHAOS
CHAOS

NOTIFY CHAOS
CHAOS-ROUTING-TABLE CHAOS
CHAOS-STATUS CHAOS
ECHO-XCN-TOKEN-LIST TRANSACTION-TOKEN-LIST
3688-LOGIN BYTE-STREAM
SUPDUP BYTE-STREAM
TELNET BYTE-STREAM
TTY-LOGIN BYTE-STREAM
NAMESPACE-TIMESTAMP DATAGRAM
NAMES PACE BYTE-STREAM
BAND-TRANSFER BYTE-STREAM
WHO-AM-I DATAGRAM
PRINT-DISK-LABEL BYTE-STREAM
EVAL BYTE-STREAM
NAME BYTE-STREAM
ASCII-NAME BYTE-STREAM
LISPM-FINGER DATAGRAM
UPTIME-SIMPLE DATAGRAM
TIME-SIMPLE-MSB DATAGRAM
TIME-SIMPLE DATAGRAM
RESET-TIME-SERVER DATAGRAM
NIL

No. of Arguments
1

1
2

4

1
1

1

2

1
3
1
1

2

1

1
1

1

1

1
3
3
3
3
3
8

2

2

1

2

2

1

2

2

2

8

56

Programming the User Interface, Volume A

6.1.5 Graph Formatting Facilities

Graph Formatting Facilities
format-graph-from-root
formatting-graph
formatting-graph-node
dw:find-graph-node

August 1986

Two graph formatters are provided, format-graph-from-root and
formatting-graph. Both are used for creating graphs showing the connections
between nodes. The format-graph-from-root function generates a graph from
your specification of a root node and its descendants. Here, for example, is a
flavor-component grapher built on format-graph-from-root:

(defun graph-flavor-components (flavor-name)
(labels ((component-flavors (flavor-name)

(let* ((fl (flavor:find-flavor flavor-name)))
(remove flavor-name

(cond ((flavor: :flavor-components-composed fl)
(flavor:flavor-all-components fl))

(t (flavor: : compose-flavor-components
flavor-name)))))))

(fresh-line)
(format-graph-from-root flavor-name

#J(lambda (thing stream)
(present thing 'flavor:flavor

:stream stream))
#'component-flavors
:dont-draw-duplicates t)))

If you run this function on complex flavors, by the way, you will get a chance to
exercise the horizontal scrolling capability of Dynamic Windows. This also
illustrates the point that the graph formatters (and formatting-table as well) have
built-in the functionality provided by dw::with-output-truncation to other kinds of
output. That is, output generated using these macros that exceeds the width of
the output window does not wrap around as character output ordinarily would.
Rather, the user's view of the output is truncated by the right margin of the
window, but can be obtained by horizontal scrolling.

formatting-graph works similarly to format-graph-from-root, but lets you specify
a number of nodes and their connections, not just one node and its descendants.
This allows the creation of more complex graphs than possible to create with
format-graph-from-root. (For an example: See the macro
formatting-graph-node, page 242.) Creating node objects within
formatting-graph is the job of formatting-graph-node.

57

August 1986 User Interface Management System: an Overview

Note that neither of the graph formatting facilities can be used for generating
circular graphs.

6.1.6 Graphic Output Facilities

More than a dozen facilities are included in the graphic output category, shown in
the table below:

Graphic Output Facilities
graphics: draw-string
graphics: draw-point
graphics: draw-arrow
graphics: draw-line
graphics: draw-lines
graphics:draw-cubic-spline
graphics: draw-circle
graphics: draw-ellipse
graphics: draw-triangle
graphics: draw-rectangle
graphics: draw-glyph
graphics: draw-polygon
graphics:draw-regular-polygon
graphics:draw-convex-polygon
graphics: draw-pattern

These facilities are straightforward functions for drawing strings, points, arrows,
lines, and a variety of closed plane figures. The following example draws a couple
of arrows, one with a solid shaft, the other dashed, into the point (x and y
coordinates) you call it with:

(defun draw-arrow (x y)
(dw:with-own-coordinates ()

(graphics:draw-arrow 500 500 x y)

(graphics:draw-arrow 700 500 x y
:arrow-head-length 20
:arrow-base-width 15
:dashed t)))

Here's one that uses two graphics functions, graphics:draw-circle and
graphics: draw-rectangle, inside a dw:tracking-mouse macro:

58

Programming the User Interface, Volume A

(defun follow-the-mouse ()
(dw:tracking-mouse (*standard-output*)

(:who-line-documentation-string ()
(if (zerop (tv:mouse-buttons))

"Hold any button down to draw squares"
"Release all buttons to draw circles"))

(:mouse-motion (x y)
(graphics:draw-circle x y 5))

(:mouse-motion-hold (x y)
(graphics:draw-rectangle x y (+ x 1B) (+ Y 1B)))))

August 1986

If you try the above function, you must press down one of the mouse buttons and
hold it down to draw squares.

The other graphics functions are used in a manner similarly direct. If you have a
need for such functions in your programs, try experimenting with the various
options these functions take to get a feel for the range of possibilities.

The graphics:draw-pattern function lets you use a bit-array of some arbitrary
pattern and have it displayed once or, optionally, as a (spatially) repeated pattern
within a specified area of a window. The function tv:make-binary-gray can be
used to create the pattern, as shown by the following example:

(defun ones-pattern ()
(let «raster (tv:make-binary-gray 8 8

, (#bBBBBBBBB The picture of what you
#bBBBB1BBB want the bit pattern
#bBB111BBB
#bBBBB1BBB
#bBBBB1BBB
#bBBBB1BBB
#bBBBB1BBB
#bBB11111B))))

(dw:with-own-coordinates ()
(graphics:draw-pattern 3BB 3BB

displayed to look like, in
this case the number 1.
Notice the #b in front of
each number to force the
reader into binary.

raster :right 5BB
:bottom 5BB))))

Keep in mind that any graphic display can be made the printed representation of a
presentation object with the help of dw:with-output-as-presentation.
Consequently, graphic displays can serve as sources of mouse-sensitive input to
your program. (For an example: See the section "Overview of Basic Presentation
Output Facilities", page 47.)

59

August 1986 User Interface Management System: an Overview

6.1.7 Progress Indicator Facilities

Facilities in this category of basic output facilities provide a way of
communicating the progress of some operation to your users:

Noting Progress Facilities
tv: noting-progress
tv: note-progress
tv:dolist-noting-progress
tv:dotimes-noting-progress

Progress is indicated by the advance of a progress bar in the lower, right corner
of the screen or, alternatively, by a wide bar across the entire width of the screen.
(Which is determined by the setting of the "Progress area" option in the Set
Screen Options command.) Also displayed is a string naming the operation being
noted.

The general-purpose facility is tv: noting-progress, within which the
tv:note-progress function is used. tv:note-progress is the one that decides when
and how much progress has occurred. This is shown in the following example:

(tv:noting-progress ("Working Away By Fifths")
(loop for; from 1 to 2 by 1

do
(51 eep 1»

(tv:note-progress 1 5)
(loop for; from 1 to 2 by 1

do
(51 eep 1»

(tv:note-progress 2 5)
(loop for; from 1 to 2 by 1

do
(51 eep 1»

(tv:note-progress 3 5)
(loop for; from 1 to 2 by 1

do
(51 eep 1»

(tv:note-progress 4 5)
(loop for; from 1 to 2 by 1

do
(51 eep 1»

(tv:note-progress 5 5)
(51 eep 1»

tv:dolist-noting-progress and tv:dotimes-noting-progress implement the Common

60

Programming the User Interface, Volume A August 1986

Lisp special forms dolist and dotimes in a noting-progress environment. They
take care of most simple cases.

6.1.8 Other Facilities for Program Output

Facilities for program output in the "other" category include a number of methods
for Dynamic Windows:

Other Facilities for Program Output
(flavor:method :clear-window dw:dynamic-window)
(flavor:method :clea'r-history dw:dynamic-window)
(flavor:method :clear-region dw:dynamic-window)
(flavor:method :delete-displayed-presentation dw:dynamic-window)
(flavor:method :visible-cursorpos-limits dw:dynamic-window)
(flavor:method :set-viewport-position dw:dynamic-window)
(flavor:method :y-scroll-position dw:dynamic-window)
(flavor:method :y-scroll-to dw:dynamic-window)
(flavor:method :x-scroll-position dw:dynamic-window)
(flavor:method :x-scroll-to dw:dynamic-window)
(flavor:method :with-output-recording-disabled dw:dynamic-window)
dw:with-own-coordinates
dw:tracking-mouse
dw::with-output-truncation
surrounding-output-with-border
dW:displayed-presentation-set-highlighting
dw:displayed-presentation-clear-highlighting

The methods listed equip you with the ability to control where in the output
history of a Dynamic Window your output will appear. This is especially
important in the case of dynamic as opposed to static windows, because it is often
impossible to know precisely where the visible portion of the window is at the time
any given output is displayed.

One way of handling this situation is with the :visible-cursorpos-limits method, as
illustrated by the following example:

(defun graphic-output-to-dynamic-window-1 ()
(let «width 199) (height 59) (start-x 299) (start-y 159))

(multip1e-va1ue-bind (x1 y1 x2 y2)
(send *standard-output* :visib1e-cursorpos-1imits)
(send *standard-output* :draw-rectangle width height

(+ x1 start-x) (+ y1 start-y)))))

In this example, we are asking the window the coordinates of the current
viewport, and using these as offsets to adjust where we send output.

61

August 1986 User Interface Management System: an Overview

The dw:with-own-coordinates macro has a similar purpose. That is, it allows you
to avoid using absolute coordinates, and to use coordinates relative to the current
viewport instead:

(defun graphic-output-to-dynamic-window-2 ()
(1 et «wi dth H10) (hei ght 50) (start-x 200) (start-y 150))

(dw:with-own-coordinates ()
(send *standard-output* :draw-rectangle width height

start-x start-y))))

Another capability of dw:with-own-coordinates is the disabling of output
recording. That is, through a keyword option to this macro, you can prevent
output from being recorded in the output history of the window to which it is
sent. (This capability is also provided by
(flavor:method :with-output-recording-disabled dw:dynamic-window).) It
defeats one of the main advantages of Dynamic Windows, but is sometimes useful,
particularly when doing graphic output. Try calling the following example with t,
to enable output recording, then nil, to disable it:

(defun moving-arrow (t-or-nil)
(dw:with-own-coordinates (t :enable-output-recording t-or-nil)

(do «x 100 (+ x 4))
(y 100 (+ y 2)))

«> x 500) 'done)
(graphics:draw-arrow 100 100 x y :alu :flip

:arrow-base-width 20
:arrow-head-length 35)

(graphics:draw-arrow 100 100 x y :alu :flip
:arrow-base-width 20
:arrow-head-length 35))

(graphics:draw-arrow 100 100 500 300 :alu :flip
:arrow-base-width 20
:arrow-head-length 35)))

First note the speed with which the arrows are drawn. Now try scrolling
backwards and forwards over the output and observe the effects.

This brings up another point concerning graphic presentations and backwards
scrolling. Because they, like other presentations, are stored in the window's
history by position, not with a timestamp, they are not redrawn in the order in
which they were drawn originally. For example, if you use a
graphics:draw-rectangle function to clear out a part of the window, then draw
over that part, the graphics:draw-rectangle can happen after the later drawing
when you scroll back to that portion, with the effect that parts of the graphics are
missing from the re-presented display.

If this is a potential problem in your program, then make all of your overlapping

62

Programming the User Interface, Volume A August 1986

graphics part of a superior presentation (using dw:with-output-as-presentation),
which then holds their collective place in the history. Inferiors are carefully
redrawn in the order in which they were output originally.

Three other macros are included in this category. dw:tracking-mouse lets you
track the current position of the mouse cursor, useful in graphic output
applications, and other mouse events as well. In conjunction with the mouse
handler facilities, it provides the primary interface between your programs and the
mouse process. An example showing its use in a drawing function is presented
elsewhere: See the section "Overview of Graphic Output Facilities", page 57.

dw::with-output-truncation is necessary for taking advantage of the horizontal
scrolling capability of Dynamic Windows. With it you can prevent the wrapping of
character output and let the user's view of the output be truncated by the right
(or bottom) margin of the window. The truncated output is accessible through
scrolling. This also applies to graphic presentations that would otherwise be too
big if limited to the size of a window. (Note that formatting-table and the two
graph formatters, formatting-graph and format-graph-from-root, include this
kind of functionality as a built-in feature.)

For a simple demonstration of output truncation, try calling the following function
with t and nil:

defun truncation-test (t-or-nil)
(dw: :with-output-truncation (t :horizontal t-or-nil)

(loop repeat 100 do (write-char #\a»)))

surrounding-output-with-border lets you enclose any other kind of output -
tables, graphics, whatever - in a rectangular, oval, circular, or diamond-shaped
border. To see the different shapes, try calling the following function with
: rectangl e , : oval, : ci rcl e, or : di amond:

(defun shape-test (shape)
(fresh-line)
(surrounding-output-with-border

(*standard-output* :shape shape)
(present tv:selected-window 'tv:window)))

The final two functions listed, dw:displayed-presentation-set-highlighting and
dw:displayed-presentation-clear-highlighting, as their names suggest, let you
highlight and clear the highlighting of displayed presentations. This highlighting,
unrelated to mouse sensitivity, is done by either underlining the presentation or
putting it into reverse video.

63

August 1986 User Interface Management System: an Overview

6.2 Advanced Program Output Facilities

The advanced Showcase facilities for program output are divided into three areas:

o Advanced Presentation Output Facilities

o Redisplay Facilities

o Facilities for Writing Formatted Output Macros

6.2.1 Advanced Presentation Output Facilities

Several macros, listed below, are provided for doing advanced presentation output:

Advanced Presentation Output Facilities
dw:with-output-to-presentation-recording-string
dw:with-replayable-output
dw:with-resortable-output

The first, dw:with-output-to-presentation-recording-string, is the presentation­
system equivalent of the Common Lisp macro with-output-to-string. It works
similarly, but you can subsequently output the string as a presentation, not just a
string.

dw:with-replayable-output and dw:with-resortable-output are closely related, the
latter being a special case of the former. dw:with-replayable-output lets you
present all of the output generated in the body of the macro as a single
presentation. This presentation is "replayable"; that is, it can be input as a
whole, internally re-arranged in some fashion, and presented again as the same
object.

dw:with-resortable-output takes a sequence and a sorting predicate, and
constructs a dw:with-replayable-output macro to implement the sorting function.
Users can click on the presented sequence and have it redisplayed in a different
order.

To see an example of this, run the Show Processes command in a Lisp Listener.
With the mouse cursor somewhere over the output display, press the SUPER and
SHI FT keys and notice that the entire display is enclosed in a single box,
indicating that it is a single presentation.

The top mouse documentation line informs you that the Edit viewspecs handler is
available on s-sh-~louse-M. Invoke the handler and a menu appears indicating
what your choices are for sorting the displayed processes. Select one and watch
the resort.

64

Programming the User Interface, Volume A August 1986

The following example is a function for presenting a resortable display of network
servers. It is implemented similarly to the Show Processes command.

(defun format-servers (&optional (sort-by :none))
(fresh-line)
(dw:with-resortable-output

«servers sort-by :copy-of neti:*servers*)
(: none #' ignore)
(:protocol (lambda (s-1 s-2)

(string< .
(string (neti:server-protocol-name s-1))
(string (neti:server-protocol-name s-2)))))

(:medium (lambda (s-1 s-2)
(string<

(string (neti:server-medium-type s-1))
(string (neti:server-medium-type s-2)))))

(:arguments (lambda (s-1 s-2)

o

« (neti:server-number-of-arguments s-1)
(neti:server-number-of-arguments s-2)))))

(formatting-table ()
(formatting-column-headings ()

(with-character-face (:italic)
(with-underlining ()

(formatting-cell ()
(write-string "protocol"))

(formatting-cell ()
(write-string "medium"))

(formatting-cell ()
(write-string "no. of arguments")))))

(loop for server in servers do
(formatting-row ()

(formatting-cell ()
(format t "-a"

(neti:server-protocol-name server)))
(formatting-cell ()

(format t "-a"
(neti:server-medium-type server)))

(formatting-cell (*standard-output* :align :right)
(format t "-a"

(neti:server-number-of-arguments server))))))))

65

August 1986 User Interface Management System: an Overview

6.2.2 Redisplay Facilities

A set of inter-related facilities is provided for creating redisplayable output and
doing incremental redisplay. The facilities are listed in the following table:

Redisplay Facilities
dw:redisplayable-present
dw:redisplayable-format
dw:independently-redisplayable-format
dw:with-redisplayable-output
dw:redisplayer
dw:do-redisplay

Redisplayable output is similar to ordinary output in the actual display; it differs
in that, in addition to being output to a window for display, the output value is
also stored in an output cache uniquely identified with that display. When the
window is redisplayed, the new output value is first compared to the cached value
and, if different, the cache is updated with the new value for display. This has
efficiency advantages compared with non-cached output.

Incremental redisplay refers to the redisplay of individual pieces of the output to a
window, rather than redisplaying the window as a whole. It works in the manner
described above, except that each redisplayed piece of the window output is
associated with its own output cache.

The first four facilities listed in the redisplay category are for creating
redisplayable output. dw:redisplayable-present is used like present but creates a
redisplayable presentation. Similarly, dw:redisplayable-format works as format
does, but generates redisplayable output. dw:independently-redisplayable-format
is like the previous function, except that each argument in the format-control
string gets cached separately; hence its usefulness for incremental redisplay.
Finally, the macro dw:with-redisplayable-output lets you make any output­
producing code produce redisplayable output.

How you do redisplay once you have functions producing redisplayable output
depends on whether you are taking advantage of dw:define-program-framework.
If you are, then making a program pane use your redisplay function is simply a
matter of supplying that function via the :redisplay-function keyword. If,
additionally, incremental redisplay is what you want, then specify so with the
:incremental-redisplay keyword.

If you are doing redisplay outside of dw:define-program-framework, then you
need to create a redisplay object that you can pass to dw:do-redisplay, which, as
its name says, does the redisplay. Creating a redisplay object is the job of
dw:redisplayer; use this macro to enclose your redisplay function.

66

Programming the User Interface, Volume A August 1986

For examples showing the coordinated use of these facilities for incremental
redisplay, see the file sys: exampl es; i ncremental-redi spl ay. 1 i sp.

6.2.3 Facilities for Writing Formatted Output Macros

Facilities for Writing Formatted Output Macros
dw:continuation-output-size
dw:named-value-snapshot-continuation

The two facilities listed above help you write your own output formatting macros.
Given a continuation (usually a closure) and a stream,
dw:continuation-output-size tells you how much room, in spaces or pixels, the
continuation will require on the stream. This is useful, for example, for making
windows no larger than necessary to accommodate formatted displays. The
reference documentation for this facility includes an example,: See the function
dw:continuation-output-size, page 209.

dw:named-value-snapshot-continuation is a macro that makes separate bindings
for free variables referenced in its body; that is, it "snapshots" the free variables
at the time the closure is constructed. This provides lexical separation between
variables in the inner loops of a formatting function and variables with the same
names in the outer loops. The reference documentation for
dw:named-value-snapshot-continuation contains additional details on when and
how to use this facility, including examples: See the macro
dw:named-value-snapshot-continuation, page 252.

6.3 Output Streams for Program Output Facilities

The default stream for output is *standard-output*, not *terminal-io*. Avoid
using the program output facilities with interactive streams like *terminal-io* and
query-io. Such streams should never be bound to output-only streams.

6.4 Naming Conventions for Program Output Macros

The naming of macros for program output has followed certain conventions.
Facility names prefixed with "with-" are macros that bind the environment but do
not directly participate in generating output. They establish a local environment
for output. Code in the bodies of such facilities is responsible for creating the
output. After output is completed, the local environment goes away.

A good example is with-character-style. Code in the body of the macro has the

67

August 1986 User Interface Management System: an Overview

job of generating characters. The macro ensures that they are output in the
specified style. When the macro is finished executing, the default character style
for the output stream used remains the same as before the macro was invoked.

Facility names in which the first word ends in "ing" are also macros that bind the
local environment and let it go again when output is completed. In addition to
this, however, they make a significant contribution to the output display, generally
adding to whatever is generated in their bodies. surrounding-output-with-border,
for example, makes an obvious contribution to the display.

68

Programming the User Interface, Volume A August 1986

69

August 1986 User Interface Management System: an Overview

7. Presentation Substrate Facilities

This section reviews presentation types and the facilities provided for their
creation and manipulation. First we present some basic concepts - what a
presentation is, what a presentation type is. Then we provide an overview of the
predefined and documented presentation types available for use in your programs.
This is followed by sections discussing the various groups of presentation substrate
facilities other than the predefined types; there are four:

• Presentation-Type Definition Facilities

• Presentation Input Context Facilities

• Presentation Input Blip Facilities

• Other Presentation Facilities

Two concluding sections provides information and examples useful when defining
your own presentation types. The first covers writing a presentation-type parser.
The second discusses the implications of defining presentation types based on
already defined data types, flavors, and structures. This discussion presents some
advanced concepts. It will probably be most meaningful to you after you have had
some experience with defining your own mouse handlers and presentation types.
For related information on handlers: See the section "Advanced Mouse Handler
Concepts", page 42.

Reference documentation for the Presentation Substrate Facilities is included in
two dictionaries. The first covers the predefined presentation types: See the
section "Dictionary of Predefined Presentation Types", page 281. The second
covers all other presentation substrate facilities: See the section "Dictionary of
Presentation Substrate Facilities", page 347.

To conclude these prefatory remarks, we call your attention to two system
facilities for acquiring information about particular presentation types and
presentations. These are the Show Presentation Type command and Presentation
Inspector, respectively. The first is a Command Processor command that displays
the argument list, supertypes, and subtypes of a specified type. The Presentation
Inspector is an option on the Presentation debugging menu, itself an option on the
standard click-right menu available for all displayed presentations. It allows you
to explore the presentation you call it on from a variety of aspects.

70

Programming the User Interface, Volume A August 1986

7.1 Basic Presentation System Concepts

What is a presentation?

Conceptually, a presentation is the user-visible aspect of an object inside the
machine. This encompasses both the way the program depicts the object for the
user, and the gestures the user performs to depict the object to the program. As
such, it forms the basis for the interface between a program and the user.

There can be many different ways for the program to depict an object to the user.
The choice of how to present the object is determined not just by the type of
object, but also by the semantics, or meaning, associated with the object by the
programmer, the program, and the user. For example, a number might be an
entry in a table describing last year's financial results in an accounting system, a
pattern of bits to a numerologist, a slider controlling vibrato in a synthesizer voice
editing program, or a color intensity control to the user of a color painting
program. Some of these are values input, some are values output, and some are
interactive.

A presentation is a particular instance of presenting an object to the user with a
presentation type.

What is a presentation type?

A presentation type is what differentiates one presentation of an object from
another. The type of presentation is specified by the implementor of each system,
corresponding to the meaning assigned to each object in that system. In an
accounting program, this may mean a dollar amount, and be read with exactly two
digits after the decimal point. In a numerologist's program, it is just a number
represented in binary; it can be displayed in hexadecimal, octal, or binary. If both
systems are on the screen at once, the numbers from the numerology program do
not belong in the accounting program, even though they both use numbers: the
numerologist was not working with dollar amounts.

So, a presentation type is what distinguishes the different uses of a Lisp type -
whether a number, a list, or a flavor instance - for the external user. Not only
does this differentiation appear in the syntax used to express it, but it allows
SemantiCue to make appropriate quantities available for selection with the mouse
(via mouse sensitivity), without also making inappropriate ones available.

The parts of a presentation type

A presentation type is made up of three parts:

• The name

The name is what identifies how presented objects of this type are printed,
how they are read, and how this type relates to other types. This name may
come predefined by the system, or be defined by the user.

71

August 1986 User Interface Management System: an Overview

o The data arguments

The data arguments further distinguish which objects are being described by
the type. They always denote a subset of the objects that would be denoted
without the data arguments. For example, when asking for an integer, you
can ask for an integer in a certain range by giving data arguments to the
integer presentation type .

• The presentation arguments

The presentation arguments do not distinguish between objects. Instead,
they control how the objects are presented to or accepted from the user. For
example, a presentation argument to the integer presentation type specifies
the base in which an integer should be printed or read.

The syntax for distinguishing the different parts of a presentation type and
examples are presented in the section on predefined presentation types: See the
section "Overview of Predefined Presentation Types", page 71.

7.2 Predefined Presentation Types

Presentation types form the basis of the typing system for user input and program
output. A large number of predefined presentation types exist; only a relatively
few are used for program I/O. This is because every structure, flavor, and
Common Lisp data type is also a presentation type. Most, however, are of little
use in end-user-oriented application programs. Consider, for example, the Common
Lisp types hash-table and compiled-function; you would not generally encounter
these in end-user-visible places.

In this section, we list what we regard as the types most likely to be used by
application programmers. Some, like integer, string, and boolean, are
encountered frequently in all kinds of programs. Many others, like
sys:code-fragment and net: network, are more specialized in their uses.

In any case, all of the types included here are also documented as individual
entries in the Dictionary of Predefined Presentation Types. Also, many of them
are defined in the file sys: dynami c-wi ndows; standard-presentat ion-types. 1 i sp,
where you can look for models when defining your own types. The dictionary
entry for each type notes whether it is one of those included in this file.

The documented types are divided into three groups:

1. Common Lisp Presentation Types

2. Symbolics Common Lisp Presentation Types

3. Other Presentation Types

72

Programming the User Interface, Volume A August 1986

Of course, the Common Lisp types form a subset of the Symbolics Common Lisp
types, but for the purposes of the present discussion, we separated them out. The
Other Presentation Types include the potentially useful types exported from
packages other than Symbolics Common Lisp; most of them are in the specialized­
use category.

The following table lists the useful Common Lisp presentation types:

Common Lisp Presentation Types
and
character
integer
keyword
member
not
null
number
or
package
pathname
satisfies
sequence
string
symbol
symbol-name
t

Most of these Common Lisp types should be familiar as data types. As
presentation types, they require some additional remarks. The first concerns
syntax: there is a formal way to specify a presentation type and a shorthand way.
The formal way is with a double set of parentheses as in the following accept
function:

(accept J«integer») ==>
Enter an integer: 14
14
«INTEGER»

The shorthand way is without the parentheses:

(accept Jinteger) ==>
Enter an integer [default 14J: 14
14
INTEGER

73

August 1986 User Interface Management System: an Overview

In general, we have tried in the documentation to stick with the formal syntax,
although you will encounter examples here and there that skip the parentheses.

The reason for the double set of parentheses is the second point we need to make.
Presentation types can take arguments. There are two kinds of arguments to
presentation types, data arguments and presentation arguments. Data arguments
qualify the data type of a presentation object. They affect the subtype and
supertype relationships of a type within a type family. Let's consider another
example using the integer presentation type:

(accept '((integer 0 100))) ==>
Enter an integer greater than or equal to 0
and less than or equal to 100: 14
14
((INTEGER 0 100))

The integer type takes optional data arguments for specifying lower and upper
range limits. The 14 returned by this accept is not an object of data type
integer; it's of an integer subtype, those integers between 0 and 100.

Presentation arguments are always keywords. Unlike data arguments, they do not
affect the position of an object's type in the type hierarchy; that is, they have no
impact on the internal representation of the object. Rather, they affect the
appearance of the object, or some other aspect of its presentation unrelated to data
type. Consider the integer type once again. You can change the printed
representation of an integer by changing its base:

(accept '((integer 0 100) :base 16)) ==>
Enter a hexadecimal integer greater than or equal to 0
and less than or equal to 64: e
14
((INTEGER 0 100) :BASE 16)

: base is a presentation argument. Internally a 14 is still returned, but externally
it is displayed as an e.

A third kind of argument to presentation types exists, called a meta-presentation
argument.

Meta-presentation arguments to presentation types are arguments that are directly
understood by accept or present. They are not dependent on the parser or
printer of any particular presentation type, and can therefore be used as
arguments to any type.

At present, a single meta-presentation argument is available, : description. Using
this keyword option, you can control the prompt created by accept for soliciting

74

Programming the User Interface, Volume A August 1986

input of a given type. This allows you to make the prompt more appropriate to
the current conceptual context. For example, instead of just asking for a integer,
you could do something like:

(accept '«integer) :description "the number of copies")) ==>
Enter the number of copies: 5
5
«INTEGER) :DESCRIPTION "the number of copies")

So, the parentheses are intended to distinguish unequivocally between data
arguments and presentation arguments. You have to use them when providing any
kind of argument to a presentation type, but can skip them with naked types.

Of the other listed Common Lisp types, note that t is the supertype of all other
types. Also note the compound types and and or; they provide a way of extending
the type system by combining types. For example, suppose we wanted to accept
only odd integers. A compound type using and would do the job:

(accept '«and «integer)) «satisfies oddp))))) ==>
Enter an integer satisfying ODDP: 53
53
«AND «INTEGER))

«SATISFIES ODDP))))

satisfies is another Common Lisp type, used only within compound types based on
and.

Several extensions via the or type are already among the predefined Symbolics
Common Lisp types, listed below.

Symbolics Common Lisp Presentation Types
alist-member
boolean
character-face-or-style
character-style
character-style-for-device
instance
inverted-boolean
null-or-type
sequence-enumerated
subset
token-or-type
type-or-string

The three compound types mentioned above are null-or-type, token-or-type, and
type-or-string. sequence-enumerated is also a compound type, one for accepting

75

August 1986 User Interface Management System: an Overview

or presenting a sequence of objects, each one of a specified presentation type.
Using alist-member to accept an object is similar to using a menu; the object is
represented by a user-visible string different from its internal representation.
subset provides a way of accepting or presenting one or more objects in a set.

The instance presentation type is typical of the many Common Lisp types like
hash-table and compiled-function, mentioned above, unlikely to be useful in many
situations. For one thing, you cannot type the name of an instance at an accept
function; it either has to be entered via a mouse click on a previously presented
instance object, or through accept's default mechanism. It is documented as a
dictionary entry merely as an example of such types. You should not ordinarily
need it.

The remaining presentation types, listed below, provide potentially useful 1/0
capabilities spread across a broad spectrum of system software and functionality.
We encourage you to study this list, and the corresponding dictionary entries, for
types of use in your applications. Only two of these types will be discussed
further here, sys:expression and dw:no-type.

Other Presentation Types
dw:member-sequence
dw:no-type
dw:out-of-band-character
dw:raw-text
fs:directory-pa thname
fs:wildcard-pathname
net:host
net:local-host
net:namespace
net:namespace-class
net: network
neti:local-network
net: obj ect
sys:printer
neti:protocol-name
neti:site
net:user
sct:system
sct:system-version
sys:code-fragment
sys:expression
sys:font
sys:form
sys:flavor-name
sys:function-spec

76

Programming the User Interface, Volume A

sys:generic-function-name
sys:stack-frame
time:time-interval
time:time-interval-60ths
time:timezone
time:universal-time
tv: window
zwei: buffer

August 1986

sys:expression plays a key role in the presentation type system. We mentioned
earlier that the number of presentation types is large, including all structures,
flavors, and a variety of little-used (for program 1/0) Common Lisp types. The
sys:expression type is the link between these types and the presentation system.
It is a supertype of all Common Lisp types (except t), and is the type from which
they inherit their printer and parser functions when these are not otherwise
defined for them. For example, the instance type inherits from sys:expression
and, through instance, so do all flavors. (The undocumented structure
presentation type plays an analogous role for all structures.)

sys:expression provides these types with a type history as well. In fact, some of
the Common Lisp presentation types listed in an earlier table also make use of
sys:expression's type history. This is true of the integer presentation type.
Through the number presentation type, to which it and all other numeric types
are subtype, it has access to the history of sys:expression objects previously
accepted.

The expression history is the source of default values offered when types
inheriting this history are accepting objects. When used by integer, the
expression history is "pruned" of non-integer objects; an appropriate default value
can thereby be offered. Other types with access to the expression history benefit
from a similar pruning process.

dw:no-type, as its name might suggest, is not really a presentation type. Rather,
it is a bogus type for use by mouse handlers that are intended to be active only
over blank areas of a window, not over presentations.

All presentation types listed in the tables in this section are documented in a
separate dictionary: See the section "Dictionary of Predefined Presentation
Types", page 281.

7.3 Presentation-Type Definition Facilities

The Presentation-Type Definition Facilities include the functions you need to
define new presentation types. These are listed in the following table:

77

August 1986 User Interface Management System: an Overview

Presentation-Type Definition Facilities
define-presentation-type
dw:read-char-for-accept
dw:peek-char-for-accept
dw:unread-char-for-accept
dw:compare-char-for-accept
dw:read-standard-token
dw:with-accept-activation-chars
dw:with-accept-blip-chars
dw:with-accept-help
dw:with-accept-help-if
dw:completing-from-suggestions
dw:suggest
dw:complete-input
dw:complete-from-sequence

The primary facility in this category is define-presentation-type. It is this macro
that establishes how a given type is parsed by accept and printed by present. In
particular, the define-presentation-type macro for each type specifies a parsing
and printing function for that type. The functions can either be written especially
for the type or inherited from some other type. In either case, when accept or
present is called, the respective parser or printer for the presentation type in
question is used to input or output the object.

Writing presentation-type parsers is, in general, a more involved process than
writing printers. All of the remaining facilities listed after
define-presentation-type in the above table are for use in parser functions. As
with presentation types themselves, they are intended for parsing input from
Dynamic Windows. Thus, for example, dw:read-char-for-accept and
dw:peek-char-for-accept are the Dynamic Window equivalents, respectively, of
zl:tyi and zl:tyipeek for input from streams. (For information on the latter
functions: See the section "Input Functions That Work on Streams" in Reference
Guide to Streams, Files, and 110.)

Beyond functions for input per se, other facilities in the Presentation-Type
Definition subcategory let you provide help and completion services for the
presentation types you define. Help messages are available to users during
program input when they press the HELP key. Using dw:with-accept-help and
dw:with-accept-help-if, you can augment the help displays for your presentation
types. Similarly, with the listed completion facilities, you can customize the
completion services available when users input objects to your programs.

For more information on writing parsers for presentation types, including
examples: See the section "Writing a Presentation Type Parser", page 80. For
more examples, see the file sys: dynami c-wi ndows; standard-presentat ion-types. , i sp.

,

78

Programming the User Interface, Volume A

7.4 Presentation Input Context Facilities

Facilities for manipulating presentation input contexts are listed below:

Presentation Input Context Facilities
dw:with-presentation-input-context
dw:clear-presentation-input-context
dw:presentation-input-context-option
dw:with-presentation-input-editor-context
dw:*presentation-input-context*

August 1986

The primary facility in this subcategory of presentation substrate tools is the first
listed, dw:with-presentation-input-context. This macro can be used to establish
an input context just as accept establishes a context. In a sense, its relationship
to accept is analogous to that of dw:with-output-as-presentation to present.
(See the section "Overview of Basic Program Output Facilities", page 47.) It just
provides the input context; you have to do your own input/parsing. The other
facilities in this group provide additional help in manipulating the input context.

7.5 Presentation Input Blip Facilities

Presentation Input Blip Facilities
dw:echo-presentation-blip
dw:presentation-blip-object
dw:presentation-blip-options
dw:presentation-blip-presentation-type
dw::presentation-blip-mouse-char
dw:presentation-blip-typep
dw:presentation-blip-p
dw:presentation-blip-case
dw:presentation-blip-ecase

A presentation input blip is created by a translating mouse handler when a user
clicks on a displayed presentation with the gesture appropriate for that handler.
Conceptually, the blip represents how the user clicked on a sensitive presentation:
it encodes the object, its presentation type, and the gesture used.

Do not confuse presentation blips with ordinary mouse blips. The former are
generated by translating handlers in presentation input contexts established by
accept or dw:with-presentation-input-context. Mouse blips, on the other hand,

79

August 1986 User Interface Management System: an Overview

are generated by clicking the mouse in non-presentation input contexts, for
example, that established by (send *term; nal-; 0* : any-ty;). Do not mix
presentation and non-presentation input contexts in your applications. (For more
information on mouse blips: See the section "Mouse Blips" in Programming the
User Interface, Volume B.)

The Presentation Input Blip Facilities are used within the blip clauses of a
dw:with-presentation-input-context macro to manipulate input blips. The
functions in this subcategory extract certain fields of the blip or test them in
some way.

7.6 Other Presentation Facilities

Other Presentation Facilities
dw:presentation-type-p
dw:presentation-subtypep
dw:presentation-object
dw:presentation-type
dw:presentation-equal
dw:describe-presentation-type
dw:check-presentation-type-argument
dw:with-presentation-type-arguments
dw:with-type-decoded
dw:presentation-type-name
dw:presentation-type-default

The Other Presentation Type facilities include a miscellany of useful functions.
Perhaps the most important among these is dw:presentation-subtypep. This
function tests to see if one type can be regarded as a subtype of another. Subtype
considerations are key for determining the availability of presentation objects for
input in a given context, and the applicability of mouse handlers to such objects.

In general, when the input context is for a supertype, all subtypes to that
supertype are acceptable as input. Similarly, if a mouse handler is defined for the
supertype, it is also active for all the subtypes. In both cases, the reverse is not
true; that is, when a subtype is specified, a supertype is not acceptable.

In concrete terms, when you are accepting a number, any kind of number -
integer, ratio, etc. - will do; when you are looking for an integer, any kind of
integer will do, but not any kind of number. dw:presentation-subtypep and
equivalent internal functions are the basis of such determinations.

The remaining facilities in this subcategory are for taking apart presentations and
manipulating presentation-type arguments.

80

Programming the User Interface, Volume A August 1986

7.7 Writing a Presentation Type Parser

The parser for a presentation type has the responsibility for reading characters
typed by the user, parsing the input, and returning an object of the proper type.
Consequently, the parser defines the syntax of the presentation type.

The parser function is called with one positional argument, the stream on which
to do I/O. It is· also passed several keyword arguments, which the programmer
can choose to use via &key in the parser's argument list.

The most important rule for writing a parser is that you must use the passed-in
stream for all I/O operations in the body of the parser. Failure to follow this rule
will cause your presentation type to malfunction in command lines,
dw:accepting-values menus, and other contexts.

The following is a simple presentation type definition:

(define-presentation-type system-processes ()
:parser «stream)

(dw:complete-from-sequence si:all-processes stream
:name-key 'si:process-name
:partial-completers '(#\sp»)

:printer «object stream)
(princ object stream»)

This presentation type is a version of the si:process presentation type used by the
standard system. It takes advantage of one of the input completion utilities,
dw:complete-from-sequence. The caller provides dw:complete-from-sequence
with a list of objects that form the possibilities set, and
dw:complete-from-sequence takes care of reading input and returning the process
object associated with the name that the user types.

The :partial-completers option to dw:complete-from-sequence causes individual
words of process names to complete when the user types SPACE. This option is
usually supplied for any completion set that can be broken down into space­
separated tokens (for example, command names, window names, names of people).

For completing from a set of possible inputs when it is inconvenient to actually
produce a list or vector of the possibilities, a parser uses
dw:completing-from-suggestions, which defines a lexical function called
dw:suggest, called to generate the set. To get control over the actual completion,
that is, the mapping from substrings to possible inputs, use the
dw:complete-input function.

The parser for a presentation type reads user input and defines a mapping
between the characters typed and objects of that presentation type. In other
words, the parser looks at the user's input and determines whether or not it can
interpret it as an object of the appropriate type.

81

August 1986 User Interface Management System: an Overview

Such determinations can be made in a couple of ways. One way is by native
syntactic evaluation. For example, when reading a number, make sure all the
characters are digits and then multiply and add them to get the result. Another
is by associative lookup, for example, names of objects in a list. If an object can
be found that matches the input, the parser returns it. If not, the parser signals
a special kind of error, called a parse-error.

A parse error should normally be a flavor of error built on sys:parse-error. The
two most convenient error flavors for use in presentation type parsers are
dw:input-not-of-required-type, which takes a presentation type and unparsable
token, and zl:parse-ferror, which takes an arbitrary format string and arguments.

A parser must follow a certain discipline when reading keyboard input. This
discipline includes using special functions to read all input. The most basic of
these functions is dw:read-standard-token. It reads characters from the input
stream and returns a string containing those characters. A simple table-lookup
parser can be written using dw:read-standard-token as shown in the following
example:

(define-presentation-type color ()
:parser «stream)

(let* «input (dw:read-standard-token stream))
(color (assoc input '«"blue" (001.0))

("red" (1.0 0 0))
("magenta" (1.0 0 1.0)))

:test #'string-equal)))
(if (null color)

(signal 'dw:input-not-of-required-type
:type 'color
:string input)

(second color)))))

The call to dw:read-standard-token reads all characters typed by the user until a
delimiter is typed. When the string is returned, the parser looks it up in a table
and returns the appropriate RGB color values. If no entry matching the input is
found, the dw:input-not-of-required-type error is signalled.

The delimiters for a particular call to dw:read-standard-token are specified via
the dw:with-accept-blip-chars and dw:with-accept-activation-chars macros. The
"blip" characters are simply the set of characters that cause
dw:read-standard-token to return when one of them is typed by the user at the
end of the input line. It is a visible graphic character, like a space or period, and
can be edited into and out of an input line.

The string returned by dw:read-standard-token contains all the characters typed
up to, but not including, the terminating character. By default, there are no blip

82

Programming the User Interface, Volume A August 1986

characters, so in a simple call to accept with the color presentation type above,
dw:read-standard-token does not return until the user' types an activation
character.

Activation characters are usually not graphic characters. They are not edited in
the command line, but cause the command parser to return as soon as they are
typed. By default, the available activation characters are RET URN or END.

A slightly more complicated example that involves reading tokens and individual
characters follows. Characters are read by the dw:read-char-for-accept function
and its companions, dw:unread-char-for-accept and dw:peek-char-for-accept.
The "characters" returned by these functions can also be data structures whose
exact contents are only meaningful to the input functions themselves. Therefore,
all comparisons of characters read with these functions must be done with the
dw:compare-char-for-accept function.

(define-presentation-type simple-character-style ()
:parser ((stream)

(let ((family (accept '((member fix swiss dutch))
: prompt nil
:stream stream)))

(let ((delim (dw:read-char-for-accept stream)))
(unless (dw:compare-char-for-accept delim #\.)

(sys:parse-ferror
"Character style components must be delimited with a period"))))))

Note that the recursive call to another presentation type parser, in this case
member, left the delimiter that terminated its parse, the period, in the stream. A
parser is responsible for reading intermediate delimiters and returning successfully
with the final delimiter still in the stream.

In the case of a blip character delimiter, the delimiter will presumably be looked
at by the caller of this presentation type, to make up a complex parse. For
instance, the periods that separate the fields of a character style, or the spaces
that separate the arguments to a command processor command.

In the case of an activation character, the delimiter will cause the enclosing calls
to parsers to themselves activate. Thus, a return typed to terminate a command
line percolates up through the parsers for the individual fields that make up the
command until it causes the actual command parser to return.

7.8 User-Defined Data Types as Presentation Types

Whenever you use defstruct, defflavor, or deftype, you are creating a new data
type. Often, when you have defined such a data type, you wish to present and

83

August 1986 User Interface Management System: an Overview

accept objects of the new type in you programs. Should you present them with
the presentation type being the same as the data type, or invent a separate
presentation type, instead? When addressing this issue, you need to consider
mouse handlers both from the data type in question, and to the data type. It is
important to remember that all data types are subtypes of sys:expression.

These issues also arise when defining presentation types in terms of data-types,
for example, defining odd-integer to be an :abbreviation-for « and integer
«satisfies oddp)))).

Let's consider handlers from the new type first. If you define a handler from your
type, this handler will apply to instances of your object that you present, or that
are printed out by the debugger while you are debugging your program. This is
as it should be. However, the handler might apply to other presentations as well.
In the case of odd-integer, for example, whenever you move the mouse over an
odd integer - whether it was explicitly presented as type odd-integer or not - the
handler will apply. You may approve of this behavior, but if not, then do not
define odd-integer in terms of integer; that way, the handler is only available
when explicitly asked for.

In the case of flavors and structures, if you wish to restrict the applicability of
handlers from your type to only those objects presented explicitly as this type,
then define the presentation type with a name different from the flavor or
structure.

Similar considerations apply to handlers to your type. If you define a translator
with a to-presentation-type that is also a data type, remember- that it will apply in
the sys:expression input context, because such an object is also a type of
expression. In particular, it will apply at the Lisp top leve1. Again, this mayor
may not be appropriate from your point of view. If not, the solutions are the
same.

The following example should make both of these situations clearer. (The
translator in this example is intentionally slow.)

(defstruct family-tree
father
mother)

(fs:define-canonical-type :family-tree "FAMILY-TREE"
«:unix :unix42 :vms :vms4) "FAT"))

(defun family-tree-file-p (pathname)
(eql (send pathname :canonical-type) :family-tree))

(define-presentation-type family-tree-pathname ()
:expander J«and pathname «satisfies family-tree-file-p)))))

84

Programming the User Interface, Volume A

(define-presentation-translator pathname-to-family-tree
(family-tree-pathname front type
family-tree ; to type

:gesture :select)
(pathname)

(with-open-file (file pathname

(read file)))

:direction :input
:element-type 'characters)

(cp:define-command (com-show-family-tree-directory
:command-table "GLOBAL") ()

August 1986

(loop for x in (directory (send (fs:user-homedir) :new-pathname
:name :wild
:type :family-tree
:version :newest))

do (present x 'family-tree-pathname)))

(cp:define-command (com-count-family-tree-generations
:command-table "GLOBAL")

«family-tree 'family-tree))
(labels «count (tree)

(if (null tree)
e

(1+ (max (count (family-tree-father tree))
(count (family-tree-mother tree)))))))

(format t "The number of generations is -D."
(count family-tree))))

In this example, pointing the mouse at a pathname that has the :family-tree
canonical type highlights the presentation. This occurs even if the pathname is
displayed as a result of a Show Directory command instead of a Show Family Tree
Directory command; or if it results from evaluating

(fs:parse-pathname "ACME:>ui-programmer>my-family.family-tree)

in a Lisp Listener. If this behavior is unwanted, then the

:expander '«and pathname «satisfies family-tree-file-p))))

should be omitted from the type's definition.

Also, the pathname-to-fami 1 y-tree translator applies even if you are not looking
specifically for a family tree. If you are accepting a sys:expression, perhaps in
the Lisp Listener's command loop, you are offered the option of reading in the file.

85

August 1986 User Interface Management System: an Overview

The programmer's intent was to make the pathnames displayed by Show Family
Tree Directory sensitive only in the family-tree input context, as produced by the
Count Family Tree Generations command. There are two ways to get this
behavior. The first is to rename the structure or the presentation type, for
example,

(defstruct (family-tree-instance (:conc-name "FAMILY-TREE-")
(:constructor make-family-tree»

father
mother)

However, sometimes it might be inconvenient to make the presentation type and
the name different. In such cases, a :tester function can be supplied to the
handler that uses dw:handler-applies-in-limited-context-p to limit the handler to
cases where the program explicitly requests a family-tree.

Another problem with the translator, as written, arises when the input context is
family-tree and the user moves the mouse over one of these pathnames. Because
SemantiCue evaluates the body to see if the handler applies, the file is read in
without the user even clicking the mouse. This problem could be prevented in
two ways. First, we could put : do-nat-compose t in the option list for the
translator. This suppresses the evaluation of the body to check its return value.
Unfortunately, it also means that if we did

(accept J((and family-tree ((satisfies dad-named-george-p»»)

the predicate dad-named-george-p would never be run.

Alternatively, the program could be remodularized, with a command that worked
on files instead of family-trees. Here is our example rewritten, to take all of
these considerations into account.

(defstruct family-tree
father
mother)

(fs:define-canonical-type :family-tree "FAMILY-TREE"
((:unix :unix42 :vms :vms4) "FAT"»

(defun family-tree-file-p (pathname)
(eql (send pathname : canoni cal-type) : fami 1 y-tree»

(define-presentation-type family-tree-pathname ()
JJ It is not unreasonable for any pathname with the type
;; of :family-tree to be available as a
;; family-tree-pathname J so we leave this in.
:expander J((and pathname ((satisfies family-tree-file-p»»)

86

Programming the User Interface, Volume A

(cp:define-command (com-show-family-tree-directory
:command-table "GLOBAL") ()

(loop for x in (directory (send (fs:user-homedir)
:new-pathname
:name :wild
:type :family-tree
:version :newest»

do (present x 'family-tree-pathname»)

(defun count-family-tree-generations (tree)
(i f (null tree)

9

(1+ (max (count-family-tree-generations
(family-tree-father tree»

(count-family-tree-generations
(family-tree-mother tree»»»

(cp:define-command (com-count-family-tree-generations
:command-table "GLOBAL")

«family-tree 'family-tree»
(format t "The number of generations is -D."

(count-family-tree-generations family-tree»)

(cp:define-command (com-count-family-tree-file-generations
:command-table "GLOBAL")

«pathname 'family-tree-pathname»
(with-open-file (file pathname

:direction :input
:element-type 'character)

(let «family-tree (read file»)
(format t "The number of generations is -D."

(count-family-tree-generations family-tree»»)

August 1986

An advanced concepts section in the overview of mouse handler facilities presents
information pertinent to the above discussion: See the section "Advanced Mouse
Handler Concepts", page 42.

87

August 1986 User Interface Management System: an Overview

8. Window Substrate Facilities

The window system substrate is documented in two areas. We are concerned here
with Dynamic Windows and facilities designed exclusively for Dynamic Windows.
Many other window substrate facilities are available, however. These facilities,
based on static windows, pre-date Genera 7.0 and are documented in Programming
the User Interface, Volume B: See the section "Using the Window System" in
Programming the User Interface, Volume B.

Virtually all of the facilities documented in that volume are not restricted in their
use to static windows. They are equally useful, and in some cases necessary, for
programming with Dynamic Windows. In fact, the Dynamic Window system is for
the most part built on the static window system. Therefore, be aware that the
facilities described in this section represent only a fraction of the window
substrate, and that the documentation for needed init options, methods and other
facilities is available in the other volume. The dictionary entry for
dw:dynamic-window provides references to the relevant sections: See the flavor
dw:dynamic-window, page 399.

The following table lists the Dynamic Window substrate facilities:

Dynamic Window Facilities
dw: dynamic-window
dw:margin-borders
dw:margin-white-borders
dw:margin-whitespace
dw:margin-drop-shadow-borders
dw:margin-ragged-borders
dw:margin-Iabel
dw:margin-scroll-bar
(flavor:method :set-margin-components dw:margin-mixin)
(flavor:method :set-borders dw:margin-mixin)
(flavor:method :set-Iabel dw:margin-mixin)
(flavor:method :delayed-set-Iabel dw:margin-mixin)
(flavor:method :update-Iabel dw:margin-mixin)
dw:set-default-end-of-page-mode

Dynamic Frame Facilities
dw:program-frame

dw:dynamic-window is the basic window flavor in the Dynamic Window substrate.
It is the dynamic equivalent of tv:window, the basic static window flavor. Unlike

88

Programming the User Interface, Volume A August 1986

tv: window, however, dw:dynamic-window has built into it a variety of desirable
window features. dw:dynamic-window also refers to a resource of Dynamic
Windows.

The basic Dyqamic Window flavor supports an output-history, that is, presentation
recording, is scrollable, includes a visible scroll bar, has a label, and is surrounded
by a simple, one-pixel-wide border. The last three attributes - the scroll bar,
label, and border - are margin components made available via a single mixin
flavor, dw:margin-mixin.

Most of the remaining Dynamic Window facilities listed in the above table relate
to margin components. They provide a set of flavors and methods allowing you to
customize the appearance of your program's windows, from a variety of border
designs to labels and scroll bars. The following example shows how to make a
Dynamic Window with a customized set of margin components:

(defun dynamic-window-margin-example ()
(let «test (tv:make-window 'dw:dynamic-window

:edges-from :mouse
:margin-components
'«dw:margin-borders :thickness 1)

(dw:margin-white-borders :thickness 3)
(dw:margin-borders :thickness 10)
(dw:margin-white-borders :thickness 8)
(dw:margin-borders :thickness 3)
(dw:margin-whitespace :margin

:left :thickness 10)
(dw:margin-scroll-bar)
(dw:margin-whitespace :margin

:bottom :thickness 7)
(dw:margin-scroll-bar :margin :bottom)
(dw:margin-whitespace :margin :left

:thickness 10)
(dw:margin-label :margin :bottom

:style (:sans-serif
:italic :normal))

(dw:margin-whitespace :margin :top
:thickness 10)

(dw:margin-whitespace :margin :right
:thickness 13))

:expose-p t
:mouse-blinker-character #\mouse:fat-circle)))

(send test :set-label "Margin Test Window")))

When you create this window and run the mouse cursor over it, you will notice
the cursor changing shape. The shape, in this case a "fat circle", is specified via

89

August 1986 User Interface Management System: an Overview

the :mouse-blinker-character init option. Other available mouse blinker
characters are listed in the section that follows.

Additional Dynamic Window methods are included in the program output category,
because of their usefulness in that context: See the section "Overview of Other
Facilities for Program Output", page 60.

Dynamic frame facilities considered to be substrate-level are limited to
dw:program-frame. This is the building-block flavor used by the Frame-Up
Layout Designer and dw:define-program-framework to create program frames.
For an overview of these facilities and some frame functions: See the section
"Overview of Top-level Facilities".) Also, as is the case with Dynamic Windows
generally, static window system facilities for programming with frames are
applicable to dynamic frames as well: See the section "Frames" in Programming
the User Interface, Volume B. dw:program-frame is also a window resource.

Reference documentation for the facilities discussed in this section is included in a
separate dictionary: See the section "Dictionary of Window Substrate Facilities",
page 395.

8.1 Mouse-Blinker Characters

Through the :mouse-blinker-character init option to dw:dynamic-window, the
mouse blinker, when moved over a Dynamic Window, can assume any of the
shapes available in the mouse font (fonts:mouse). To see the glyphs included in
this font, use the Show Font Command Processor command on "mouse". Each
glyph in the font maps to a unique mouse-blinker character. The following lists
these in the order in which they appear in the font:

#\mouse:up-arrow
#\mouse:right-arrow
#\mouse:down-arrow
\mouse: left-arrow
#\mouse:vertical-double-arrow
#\mouse:horizontal-double-arrow
#\mouse:nw-arrow
#\mouse:times
#\mouse:fat-up-arrow
#\mouse:fat-right-arrow
#\mouse:fat-down-arrow
#\mouse:fat-Ieft-arrow
#\mouse:fat-double-vertical-arrow
#\mouse:fat-double-horizontal-arrow

90

Programming the User Interface, Volume A

#\mouse:paragraph
#\mouse:nw-corner
#\mouse:se-corner
#\mouse:hourglass
#\mouse:circle-plus
#\mouse:paintbrush
\mouse: scissors
\mouse: trident
#\mouse:ne-arrow
\mouse: circle-times
#\mouse: big-triangle
#\mouse:medium-triangle
#\mouse:small-triangle
#\mouse:inverse-up-arrow
#\mouse:inverse-down-arrow
#\mouse:filled-Iozenge
\mouse: dot
#\mouse:fat-times
#\mouse:small-filled-circle
#\mouse:filled -circle
#\mouse:fat-circle
#\mouse:fat-circle-minus
#\mouse:fat-circle-plus
#\mouse:down-arrow-to-bar
#\mouse:short-down-arrow
#\mouse:up-arrow-to-bar
#\mouse:short-up-arrow
#\mouse: boxed-up-triangle
#\mouse: boxed-down-triangle

August 1986

Note that mouse-blinker characters are non-printing; that is, they are intended for
on-line use only,

91

August 1986 User Interface Management System: an Overview

9. User Interface Application Example

This chapter presents a simple application illustrating the use of some of the
major facilities available in Genera's user interface management system. The
primary focus is on the command interface aspects of setting up an application. A
separate examples file, sys:examplesjui-application-example.lisp contains the
functions presented here in a more readily compilable form.

Suppose we have a simple flavor defined like this:

(defvar *employee-list* nil)

(defflavor employee (first-name last-name (retired-p nil))
o

:readable-instance-variables
:writable-instance-variables
:;nitable-instance-var;abl~s)

(defmethod (make-instance employee) (&rest ignored)
(push self *employee-list*))

(defmethod (employee-name employee) ()
(format nil "-a -a" first-name last-name))

(make-instance 'employee :first-name "Fred" :last-name "Flintstone")
(make-instance 'employee :first-name "Barney" :last-name "Rubble")

This is how we might define a presentation type to read objects of this flavor:

92

Programming the User Interface, Volume A August 1986

(define-presentation-type employee «) &key abbreviate)
:no-deftype t ;there's already a flavor, so don't try to

define a type
:history t ;give us our own type history
:parser «stream &key type initially-display-possibilities)

(dw:completing-from-suggestions
(stream :initially-display-possibilities

initially-display-possibilities
:partial-completers '(#\space)
:type type)

(loop for emp in *employee-list*
do (dw:suggest (employee-name emp) emp))))

:printer «object stream &key acceptably)
(when acceptably (write-char #\" stream»)

(cond (abbreviate (write-string (employee-last-name object) stream»
(t (write-string (employee-name object) stream»)

(when acceptably (write-char #\" stream»)
:description "an employee")

The following handler turns employees into strings by extracting their names.
Thus, in the input context established by (accept 'string), employee displays are
mouse-sensitive; clicking left (the :select gesture) on one is equivalent to typing
the employee's name.

(define-presentation-translator employee-to-string
(employee string
:gesture :select
:documentation "This employee's name")

(employee)
(employee-name employee»

The following handler is a side-effecting handler. It acts on employees that are
not currently retired (discriminating by using a :tester function) in any input
context. (This is because t, meaning "any," is specified as the to-presentation-type
for this handler.) This handler runs whenever a middle click is executed while
the mouse is over an unretired employee. Since this happens without the
application (command-loop) knowing about it, programming your interface in this
style is not recommended. (Below you will see another example that shows you
how to define a handler that makes changes that your program does know about.)

93

August 1986 User Interface Management System: an Overview

(define-presentation-action retire-employee
(employee t
:gesture :middle
:tester ((employee)

(not (employee-retired-p employee)))
:documentation "Retire this employee")

(employee)
(setf (employee-retired-p employee) t))

The following function formats a table of employee information:

(defun format-employees-list (stream)
(fresh-line stream)
(formatting-table (stream)

(formatting-column-headings (stream :underline-p t)
(with-character-face (:italic stream)

(formatting-cell (stream) "name")
(formatting-cell (stream) "retired?")))

(loop for employee in *employee-list*
do

(formatting-row (stream)
(formatting-cell (stream)

(present employee 'employee
:stream stream))

(formatting-cell (stream)
(format stream "-:[no-;yes-]"

(employee-retired-p employee)))))))

Here is a sample user interface framework for the application, created with the
Frame-Up Layout Designer:

94

Programming the User Interface, Volume A August 1986

(dw:define-program-framework employee-editor
:select-key #\:t:
:command-definer t
:command-table (:inherit-from 'nil :kbd-accelerator-p 'nil)
:state-variables nil
:panes
«pane-1 :title :size-from-output nil :redisplay-string nil

:redisplay-function nil :height-in-lines 1
:redisplay-after-commands nil)

(pane-3 :display)
(pane-2 :command-menu :equalize-column-widths nil

:center-p nil :columns nil :rows nil
:menu-level :top-level)

(pane-4 :interactor :typeout-window nil :height-in-lines 4»
:configurations
'«dw::main (:layout (dw::main :column pane-1 pane-3 pane-2 pane-4»

(:sizes
(dw: :main (pane-1 1 :lines) (pane-2 :ask-window self :size-for-pane pane-2)

(pane-4 4 :lines) :then (pane-3 :even»»»

Notice that : command-defi ner t was specified in the above. (This is the default.)
This means that a command-defining macro called defi ne-application-command (in
this case, defi ne-empl oyee-edi tor-command) will be defined for you. Use this macro
to define commands associated with this application.

defi ne-application-command has a syntax very similar to cp:define-command,
differing in only several respects. First, commands defined using it will be
installed in the command table of your application, not in the Global or User
command table. Second, defi ne-application-command takes the extra options
:kbd-accelerator, : menu-accelerator, and :menu-Ievel (explained in more detail
below) that allow you to specify alternate ways of entering this command while in
the application. Third, the command may refer to the state variables of the
application.

Although a Command Processor command is defined when
defi ne-application-command is used, this does not constrain you to interacting with
the application solely by typing commands on a command line. If you tell
dw:define-program-framework that your application has an :interactor pane,
then this interactor will, by default, read and execute commands defined with this
macro. (There is no requirement that your application have an interactor,
however.)

If you specify the option :menu-accelerator with some value as one of the options
to defi ne-application-command, the command will exist in the command-menu of
your application, if one exists. : menu-accel erator t means the command name

95

August 1986 User Interface Management System: an Overview

should go in the menu. : menu-aeeel erator name means name should go in the
menu. : menu-l evel name means "put this command in the menu with menu-level
name." Thus, all the commands with : menu-aeeel erator something will be
accessible from a command-menu.

Similarly, : kbd-aeeel erator char associates this command with a specific keystroke
(as in the debugger). Your command-table must have : kbd-aeeel erator-p t for
this to work. (This is the "Read single keystroke accelerators" option in Frame­
Up,)

Using the above two options, you can construct interfaces that allow users to type
commands as commands, click on commands in menus, and execute commands
through single keystrokes. Using presentation-translators, you can allow the user
to click on presentations to enter commands. (An example is presented below.)
These facilities should give you enough flexibility to construct powerful user
interfaces.

Here is an example command for the empl oyee-edi tor application. It simply
changes the status of an employee. It is available from the command menu as
"Change Status".

(define-employee-editor-command
(eom-ehange-employee-status

:menu-aeeelerator "Change Status")
«employee Jemployee
:eonfirm t
:prompt "employee"))

(setf (employee-retired-p employee)
(not (employee-retired-p employee)))

(fresh-line)
(present employee Jemployee)
(write-string "J s status changed."))

This command is available from the command menu as "Show Employees", and
simply calls the table-formatting routine defined above:

(define-employee-editor-eommand
(com-show-employees :menu-aceelerator t)
o

(format-employees-list *standard-output*))

Note that while debugging your application, you can recompile the
dw:define-program-framework form at any time. This causes your application to
inherit any of the new options you may have added. Similarly, if you compile a
command with a : menu-accelerator, when you reselect your application and
restart the process (M-ABORT should do the job), the new item will be in the menu.
This makes debugging and proto typing very easy.

96

Programming the User Interface, Volume A August 1986

Here is an example of the third way to enter commands. In this case, a translator
from employees to commands is defined. This means that whenever the input
context is cp:command (as it will be inside the command loop written for your
application), objects presented as employees will be sensitive. The result of
clicking left on them (the :select gesture) is to cause the Change Employee Status
command to be executed with that employee as its argument.

Note that this translator applies in cp:command context. In string context, the
translator defined above will still apply. Unlike the side-effecting mouse handler
-we defined above, this is the recommended way of interacting with your
application through the mouse. When you use a translator, your application knows
what the user did (there is no difference between clicking as above or typing
Change Employee Status). When you use a side-effecting handler, your application
does not know what happened. In this case, the display would not be updated to
show that the employee was retired had you clicked middle on the employee, but it
would be updated if you clicked left. This is because the click-left case
(translating to a command) goes through the application properly.

(define-presentation-to-command-translator change-employee-status
(employee)

(employee)
(cp:build-command Jcom-change-employee-status

employee))

You can also write commands to manipulate your data structures that can be
called from top-level command loops (that is, Lisp Listeners). Simply use
cp:define-command instead. You will not be able to use the state variables of
your application, though.

(cp:define-command (com-another-way-to-change-employee-status
:command-table Juser)

«employee Jemployee :prompt "employee"))
(setf (employee-retired-p employee)

(not (employee-retired-p employee)))
(present employee Jemployee)
(write-string "J s status changed."))

Advanced applications may need more complex command loops than the one
written by default by dw:define-program-framework. This is what the :top-Ievel
and :command-evaluator options to dw:define-program-framework are for.

The syntax for the :top-Ievel option is : top-l evel (function-name &rest args).
Function-name is the name of a function. It will be called with one argument, the
program instance - consequently, a generic function may be appropriate for this
option if the top-level function wishes to access state variables - followed by args.
A slightly modified example from the system is:

97

August 1986 User Interface Management System: an Overview

:top-level (examiner-top-level :prompt "Flavor Examiner: ")

(defun examiner-top-level (program &rest options)
;; No point in making this a generic function,
;; although typically it would be.
(examiner-help program (dw:get-program-pane 'command) nil)
(apply #'dw:default-command-top-level program options))

What this does is define a top-level function for the flavor-examiner that ensures
that the flavor-examiner's help message is displayed before the default command
loop is entered. In this case, :prompt "Flavor Examiner: " is simply passed into
dw:default-command-top-Ievel which causes "Flavor Examiner: " to be used as
the prompt.

The syntax for the :command-evaluator option is simply: command-eval uator
function-name. function-name is the name of a function. It will be called with
three arguments, the program instance (a generic function may be appropriate for
this option if the function wishes to access state variables), the command symbol,
and the arguments to the command. The function may do anything it wishes, but
eventually should do (appl y command-symbol command-args). (For information on
facilities used when writing command loops: See the section "Overview of
Command Loop Management Facilities", page 33.

For a more advanced example of dw:define-program-framework, see the
cal cul ator program in the file sys: exampl es; defi ne-program-framework. 1 i sp. This
program creates its own command-menu and command-menu handlers to simulate
a four-function calculator. For this it uses two undocumented functions
dw:program-command-menu-item-list and dw:define-command-menu-handler.
See the referenced file for more information.

98

Programming the User Interface, Volume A August 1986

99

August 1986 Dictionary of Top-level Facilities for User Interface Programming

PART II.

Dictionary of Top-level Facilities for User Interface
Programming

100

Programming the User Interface, Volume A August 1986

101

August 1986 Dictionary of Top-level Facilities for User Interface Programming

10. Dictionary Notes

This dictionary includes reference documentation for the following facilities:

Table of Top-level Facilities for User Interface Programming

Frame-Up Layout Designer

Program Framework Definition
dw:define-program-framework
dw:*program-frame*
dw::find-program-window
dw:get-program-pane

Program Command Definition
dw:define-program-command
define-presentation-to-command-translator

The documentation for Frame-Up is presented first, followed by the remaining
facilities in alphabetical order (package prefixes excluded).

For conceptual documentation: See the section "Overview of Top-Level Facilities
for User Interface Programming", page 21.

102

Programming the User Interface, Volume A August 1986

Dictionary of Top-level Facilities for User Interface Programming 103

August 1986 Frame-Up Layout Designer

11. The Facilities

11.1 Frame-Up Layout Designer

11.1.1 Introduction

The Frame-Up Layout Designer is an interactive facility for helping you create the
user interface to an application program. It is available on SELECT Q, through the
System Menu, or from Zmacs.

More specifically, Frame-Up is the interactive version of
dw:define-program-framework, a macro for defining a program's window and
command interface. Frame-Up lets you configure a program frame and specify
options for individual panes within the frame. (For more information on frames
and panes: See the section "Frames" in Programming the User Interface, Volume
B.) Other options, for the program as a whole, provide control over the program's
command loop.

When you finish configuring the program frame and specifying pane and program
options, Frame-Up creates the corresponding dw:define-program-framework code.
This code is written to an editor buffer where it is available for hand editing.
(For information on how to edit the frame configuration, see the above-referenced
section on "Frames".) Alternatively, you can go back to Frame-Up, modify the
interface, and have the new code written out in place of the old.

Three additional sections complete the Frame-Up Layout Designer documentation:
See the section "Getting Started with Frame-Up", page 103.

See the section "Frame-Up Commands", page 104.

See the section "Zmacs Commands for Frame-Up", page 114.
For an overview of the Frame-Up Layout Designer and related facilities, in
particular, dw:define·program-framework: See the section "Overview of Top­
Level Facilities for User Interface Programming", page 21.

11.1.2 Getting Started

You can invoke the Frame-Up Layout Designer from the System Menu, via SELECT

Q, or from a Zmacs editor buffer. Because the ultimate output provided by Frame­
Up is editable Lisp code, it may be simplest to start off in a Lisp-mode buffer at
the point where you want the dw:define-program-framework macro to be written.
With the editor cursor at this point:

1. Enter the extended command (M-X) Create Program Definition.

2. Enter the program name.

104 Dictionary of Top-level Facilities for User Interface Programming

Frame-Up Layout Designer August 1986

The name entered in step 2 is the name argument to
dw:define-program-framework. It is the name given to the program flavor
created by this macro for your application.

After invoking the Frame-Up program, whether from an editor buffer or directly,
an initial display appears including a starting configuration for the program frame
and a menu of Frame-Up commands. Program- and frame-level commands are
listed together on the left of the command menu, pane-level commands on the
right. You could start with any of these, but if you are unfamiliar with Frame­
Up, we recommend that you start with commands in the first category: See the
section "Program and Frame Commands in Frame-Up", page 104.

11.1.3 Commands

11.1.3.1 Program and Frame Commands

Five Frame-Up Layout Designer commands are included in this category: Set
Program Options; Select Configuration; Reset Configuration; Preview; and Done.
The following subsections consider each in turn.

Set Program Options

The program options you can modify using the Set Program Options command are
described below. (Where appropriate, references to the corresponding
dw:define-program-framework options are given.)

Program name The name of the program flavor created by
dw:define-program-framework for your application.

Select key

If you invoked Frame-Up from an editor buffer with the Create
Program Definition extended command, the default value for
this option is the name you supplied to that command.

The key to use for selecting your program.

(See the macro "dw:define-program-framework 124.)

Name of command-defining macro
The name given to the macro created by
dw:define-program-framework and used to define commands
for your program.

The default, t, causes your program name to be used as part of
this name. For example, if the name of your program is shell­
game, the default command-defining macro will be define-shell­
game-command.

Dictionary of Top-level Facilities for User Interface Programming 105

August 1986 Frame-Up Layout Designer

You use the command macro created for you as you would
dw:define-program-command; the syntax and keywords are the
same.

(See the function "dw:define-program-framework", page 124.)

Read single-character command accelerators
Boolean option specifying whether your program accepts single­
character command accelerators; the default is No.

If you enter Yes for this option, you have three possible sources
of accelerators:

1. Accelerators you inherit when you inherit command tables
using the program option discussed below.

2. Standard accelerators you supply to your program. (See
the section "Overview of Advanced Command Facilities",
page 32.)

3. Accelerators you define yourself. (See the section
"Overview of Advanced Command Facilities", page 32.)

(See the macro "dw:define-program-framework", page 124.)

Inherit commands from command tables
The name(s) of command table(s) from which your program
inherits commands and, if specified by the above option,
command accelerators.

For example, supplying a value of user to this option results in
all of the commands normally available in a Lisp Listener being
available in your program, in addition to program commands you
define yourself.

The default for this option - ' (" colon full command" "standard
arguments" "standard scroll; ng") - enables use of extended
(£'I-x) and colon full commands, standard single-character
accelerators like c-U, and standard scroll keys like SCROLL and
£'I-SCROLL. These are enabled only if you specify Yes to the
Read single-character command accelerators option.

(See the macro "dw:define-program-framework", page 124.)

Select Configuration

The Select Configurations command gives you a choice of two standard
configurations for your program frame. The first consists of a command-menu

106 Dictionary of Top-level Facilities for User Interface Programming

Frame-Up Layout Designer August 1986

pane and a listener pane; the second of a title, command-menu, display, and
interactor pane. (For a description of pane types: See the section "Set Pane
Options Frame-Up Command", page 107.)

You may select a standard configuration and then modify it using one or more of
the pane-oriented commands: See the section "Pane Commands in Frame-Up" ,
page 107.

Reset Configuration

The Reset command restores the original program frame. (The original frame is
the one displayed when you first enter Frame-Up; it consists of a single display
pane.)

Preview

The Preview command lets you see what the frame you have configured looks like
on a full-screen display without having to compile your program. Without this
command, to see your program frame you would have to exit Frame-Up, compile
the dw:define-program-framework definition, and select your program. With it,
you can look at the frame directly and, if unsatisfied with the result, continue
editing the layout before writing out the interface code.

Done

The Done command signals the end of the Frame-Up session. What happens when
you invoke this command depends on how you entered Frame-Up:

• If you entered Frame-Up from an editor buffer via the Create Program
Definition or Edit Program Definition extended editor command, then Frame­
Up returns you to that buffer and automatically writes out the
dw:define-program-framework macro corresponding to the interface you
configured.

In the case of Edit Program Definition, the new code replaces the old code
(dw:define-program-framework macro) that was already there.

• If you entered Frame-Up from the System Menu or via SELECT Q, then you
are returned to the activity selected prior to entering Frame-Up.

In this case, the dw:define-program-framework code corresponding to your
interface is not written automatically to an editor buffer. You must select
the buffer you wish the code to be written to and use the extended editor
command Insert Program Definition.

Dictionary of Top-level Facilities for User Interface Programming 107

August 1986 Frame-Up Layout Designer

11.1.3.2 Pane Commands

Five Frame-Up Layout Designer commands are available for manipUlating panes:
Set Pane Options; Set Pane Name; Split Pane; Swap Panes; and Delete Pane. The
following subsections discuss each in turn.

(Note that, after finishing the Frame-Up session, further editing of the code
affecting the appearance of program panes and the frame as a whole is possible.
For more information: See the section "Frames" in Programming the User
Interface, Volume B. In particular: -See the section ":layout Constraint Frame
Specification" in Programming the User Interface, Volume B. See the section
":sizes Constraint Frame Specification" in Programming the User Interface, Volume
B.)

Set Pane Options

Pane options you can modify using the Set Pane Options command include the
pane name and type. Other options depend on the pane type. Six types are
available:

Accept-Values

Display

Title

Pane providing the features and services of a
dw:accept-variable-values menu (the kind of menu used to
display the pane options themselves).

Pane for display of application-generated output.

Pane for display of the program title.

Command-Menu Pane for menu of program commands.

Interactor

Listener

Pane for interactive input/output.

Similar to an interactor, but taller. (Use this pane when you
want the interaction history to be visible.)

The following subsections describe the other options available for each pane type.
(For information on additional options that you can hand-edit into the
dw:define-program-framework macro: See the macro
"dw:define-program-framework", page 124.)

Accept Values Pane Options

Accept values function
Specifies a function for creating a
dw:accept-variable-values-like display. The function may be
written either as a generic function (using defmethod) to the
program flavor or as a regular function (using defun). The
function is passed two arguments: the current instance of the
program flavor and the stream for I/O.

108 Dictionary of Top-level Facilities for User Interface Programming

Frame-Up Layout Designer August 1986

The multiple-accept display is created by wrapping the body of
the function you write in a dw:accepting-values macro: See
the macro dw:accepting-values, page 175. The wrapping is
done for you by dw:define-program-framework. The general
form of the function you write is

(defmethod (my-avv-function program) (stream)
(setq state-var-1 (accept ...)
(setq state-var-2 (accept ...)
(setq state-var-3 (accept ...)
...)

For an example, see the program avv-pane-test in the file
sys:examples;define-program-framework.lisp

If you include an Accept Values pane in your program frame but
do not specify an Accept Values Function, the option defaults to
an internal function that uses your program's state variables as
the variables in the accept-values display. The state variables
are those specified by the :state-variables option to
dw:define-program-framework: See the macro
"dw:define-program-framework 124.

This option maps to the :accept-values-function keyword option
for :accept-values panes: See the macro
"dw:define-program-framework", page 124.

Redisplay each time around command loop
Boolean option specifying whether to redisplay the pane after
each command is executed. The default is Yes for Accept-Values
panes, No for Display and Title panes.

This option maps to the :redisplay-after-commands keyword
option for program panes: See the macro
"dw:define-program-framework", page 124.

Set size of pane from contents
Boolean option specifying whether a pane is sized according to
the space needs of output to that pane. The default is Yes for
Accept-Values panes, No for Display and Title panes.

This option maps to the :size-from-output keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Height in lines Fixes the pane height to the specified number of lines. The
default value is 1 for Title panes and 4 for Interactor panes.
No default is provided for Listener Panes.

Dictionary of Top-level Facilities for User Interface Programming 109

August 1986 Frame-Up Layout Designer

This option maps to the :height-in-lines keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Display Pane Options

Redisplay output generator
This option specifies one of three possibilities for generating
redisplay to the pane: no redisplay generator (None); a redisplay
string (Stri ng); or a redisplay function (Function).

If you specify String, then the Redisplay string option appears:
See the section "Display Pane Options", page 109.

If you specify Funct i on, then both the Redisplay function and
Incremental redisplay options appear. See the section "Display
Pane Options", page 109.

Redisplay string Specifies a string written to the pane (starting at top) whenever
the pane is redisplayed. This option is mutually exclusive with
the Redisplay function option.

This option maps to the :redisplay-string keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Redisplay function
The function that runs whenever the pane is redisplayed. This
option is mutually exclusive with the Redisplay string option.

The redisplay function may be written either as a generic
function (using defmethod) to the program flavor or as a
regular function (using defun). The function is passed two
arguments: the current instance of the program flavor and the
stream on which to do output.

This option maps to the :redisplay-function keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Incremental redisplay
Boolean option specifying whether redisplayed information is
limited to items that have changed since the last redisplay,
rather than the entire pane; the default is No.

If you specify Yes, you must write the appropriate redisplay
function (see Redisplay function) above).

110 Dictionary of Top-level Facilities for User Interface Programming

Frame-Up Layout Designer August 1986

Pane flavor

For information on incremental redisplay: See the section
"Overview of Advanced Program Output Facilities", page 63.
See also the file sys: exampl es i i ncremental-redi spl ay. 1 i sp.

This option maps to the :incremental-redisplay keyword option
for :display panes: See the macro
"dw:define-program-framework", page 124.

The pane flavor to use for this pane; the default is
dw::dynamic-window-pane.

This option maps to the :flavor keyword option for :display
panes: See the macro "dw:define-program-framework", page
124.

Redisplay each time around command loop
Boolean option specifying whether to redisplay the pane after
each command is executed. The default is Yes for Accept-Values
panes, No for Display and Title panes.

This option maps to the :redisplay-after-commands keyword
option for program panes: See the macro
"dw:define-program-framework", page 124.

Typeout window Boolean option specifying whether a typeout (pull-down) window
for *terminal-io· appears within the pane. The default is No.

This option maps to the :typeout-window keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Height in lines Fixes the pane height to the specified number of lines. The
default value is 1 for Title panes and 4 for Interactor panes.
No default is provided for Listener Panes.

This option maps to the :height-in-lines keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Set size of pane from contents
Boolean option specifying whether a pane is sized according to
the space needs of output to that pane. The default is Yes for
Accept-Values panes, No for Display and Title panes.

This option maps to the :size-from-output keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Dictionary of Top-level Facilities for User Interface Programming 111

August 1986 Frame-Up Layout Designer

Title Pane Options

Redisplay output generator
This option specifies one of three possibilities for generating
redisplay to the pane: no redisplay generator (None); a redisplay
string (Stri ng); or a redisplay function (Function).

If you specify Stri ng, then the Redisplay string option appears:
See the section "Display Pane Options", page 109.

If you specify Function, then both the Redisplay function and
Incremental redisplay options appear. See the section "Display
Pane Options", page 109.

Redisplay string Specifies a string written to the pane (starting at top) whenever
the pane is redisplayed. This option is mutually exclusive with
the Redisplay function option.

This option maps to the :redisplay-string keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Redisplay function
The function that runs whenever the pane is redisplayed. This
option is mutually exclusive with the Redisplay string option.

The redisplay function may be written either as a generic
function (using defmethod) to the program flavor or as a
regular function (using defun). The function is passed two
arguments: the current instance of the program flavor and the
stream on which to do output.

This option maps to the :redisplay-function keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Incremental redisplay
Boolean option specifying whether redisplayed information is
limited to items that have changed since the last redisplay,
rather than the entire pane; the default is No.

If you specify Yes, you must write the appropriate redisplay
function (see Redisplay function) above).

For information on incremental redisplay: See the section
"Overview of Advanced Program Output Facilities", page 63.
See also the file sys: exampl es; i ncremental-redi spl ay. 1 i sp.

112 Dictionary of Top-level Facilities for User Interface Programming

Frame-Up Layout Designer August 1986

This option maps to the :incremental-redisplay keyword option
for :display panes: See the macro
"dw:define-program-framework", page 124.

Redisplay each time around command loop
Boolean option specifying whether to redisplay the pane after
each command is executed. The default is Yes for Accept-Values
panes, No for Display and Title panes.

This option maps to the :redisplay-after-commands keyword
option for program panes: See the macro
"dw:define-program-framework", page 124.

Height in lines Fixes the pane height to the specified number of lines. The
default value is 1 for Title panes and 4 for Interactor panes.
No default is provided for Listener Panes.

This option maps to the :height-in-lines keyword option for
program panes: See the 'macro
"dw:define-program-framework", page 124.

Set size of pane from contents
Boolean option specifying whether a pane is sized according to
the space needs of output to that pane. The default is Yes for
Accept-Values panes, No for Display and Title panes.

This option maps to the :size-from-output keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Command-Menu Pane Options

Menu geometry Specifies how the menu is to be laid out. You have three
choices: you can let Frame-Up come up with a configuration
(Defaul t) that is in most cases reasonable; you can control the
layout yourself by specifying menu Rows; or you can control
layout by specifying menu Col umns.

If you select Rows, then you are asked if you want to Specify
number of rows or row contents. If Number, then enter a
value in the Number of rows field that appears. If Contents,
then enter one or more command names (strings) to be the
Items in row 1, followed by the entering of one or more strings
to be the Items in row 2, and so on, until all the rows are
specified. This option maps to the :rows keyword option for
:command-menu panes: See the macro
"dw:define-program-framework", page 124.

Dictionary of Top-level Facilities for User Interface Programming 113

August 1986 Frame-Up Layout Designer

If you select Columns for the Menu geometry option, you
proceed in a fashion analogous to that described for Rows. This
option maps to the :columns keyword option for
:command-menu panes: See the macro
"dw:define-program-framework", page 124.

If you specify menu rows or columns by their contents, the
string used to identify each command must be the same as that
specified in the :menu-accelerator option to the command
definer used for the program. (See the macro
"dw:define-program-command", page 122.) The command
definer is specified by one of the options in the Set Program
Options command: See the section "Set Program Options
Frame-Up Command", page 104.

Menu identifier Symbol identifying the command menu to appear in this pane if
the program frame includes more than one. If only one
command menu is available, the default value (: TOP-LEVEL) for
this option is the appropriate choice.

This option maps to the :menu-Ievel keyword option for
:command-menu panes: See the macro
"dw:define-program-framework", page 124.

Center menu items
Boolean option specifying whether command names are centered
(left-right) in the command menu. The default is No, causing
command names to be flush left in the column.

This option maps to the :center-p keyword option for
:command-menu panes: See the macro
"dw:define-program-framework", page 124.

Compress item columns
Boolean option specifying whether columns of command names
are compressed on the left side of the pane or spread out over
the full horizontal extent of the pane. The default is Yes
(compressed to the left).

This option maps to the :equalize-column-widths keyword
option for :command-menu panes: See the macro
"dw:define-program-framework", page 124.

Interactor and Listener Pane Options

Typeout window Boolean option specifying whether a typeout (pull-down) window
for *terminal-io* appears within the pane. The default is No.

114 Dictionary of Top-level Facilities for User Interface Programming

Frame-Up Layout Designer August 1986

This option maps to the :typeout-window keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

Height in lines Fixes the pane height to the specified number of lines. The
default value is 1 for Title panes and 4 for Interactor panes.
No default is provided for Listener Panes.

Set Pane Name

This option maps to the :height-in-lines keyword option for
program panes: See the macro
"dw:define-program-framework", page 124.

The Set Pane Name command lets you change the name of a pane. The
arguments to this command are the current name of the pane and the new name.

Split Pane

The Split Pane command divides the specified pane in half. Arguments to this
command are the pane to divide and whether the division is horizontal or vertical.

Splitting a pane horizontally causes the two daughter panes to appear in a column
orientation, one on top of the other. Splitting a pane vertically causes the two
daughter panes to appear in a row orientation, side-by-side.

Swap Panes

Use the Swap Pane command to exchange the position of two panes. The two
panes must occur in either the same row or same column.

Delete Pane

This command deletes a specified pane from the configuration for the program
frame.

11.1.4 Zmacs Commands for Frame-Up

11.1.4.1 Create Program Definition

The Create Program Definition command initiates a Frame-Up session from an
editor buffer. When the session is terminated (via the Done command to Frame­
Up), the dw:define-program-framework code corresponding to the configured
interface is inserted into the buffer at point.

Create Program Definition is an extended (M-X) Zmacs command. When invoked,
it firsts prompts you for the name of the program, then enters Frame-Up.

Dictionary of Top-level Facilities for User Interface Programming 115

August 1986 Frame-Up Layout Designer

If you entered Frame-Up via SELECT Q or from the System Menu, then use the
Insert Program Definition extended command to write the
dw:define-program-framework code into an editor buffer.

11.1.4.2 Insert Program Definition

Insert Program Definition is an extended (£'I-x) Zmacs command for writing
Frame-Up Layout Designer code into an editor buffer. Use it when you have
entered Frame-Up via SELECT Q or from the System Menu, rather than through
the Create Program Definition extended command.

When you exit from the Frame-Up session (via the Done command), select an
editor buffer and use the Insert Program Definition command to write the
dw:define-program-framework code corresponding to the configured interface.
The code is inserted at point.

11.1.4.3 Edit Program Definition

You can use the Edit Program Definition extended (£'I-x) command to re-enter a
Frame-Up session and make further modifications to the user interface
configuration. This occurs after you have already written into your editor buffer
the dw:define-program-framework macro corresponding to an earlier session.
(The original code may have been written through either the Create Program
Definition or Insert Program Definition extended command.)

When you terminate the new Frame-Up session (via the Done command), the code
corresponding to the new interface configuration replaces the original code.

116 Dictionary of Top-level Facilities for User Interface Programming

define-pres enta tion-to-command-translator August 1986

define-presentation-to-command-translator name Macro
(presentation-type &key tester (gesture :select)
documentation suppress-highlighting (menu t)

(context-independent nil) priority
exclude-other-handlers blank-area
do-not-compose) arglist &body body

Defines a mouse handler that translates from a displayed presentation
object into a Command Processor command using that object as input.

name The name of the handler.

presentation-type
The type of the displayed presentation object for which the
handler is intended.

:tester Specifies the parameter list and body for a tester function.
The tester function determines whether the handler applies to
the current presentation, if it is otherwise applicable based on
the current presentation type and input context.

The parameter list consists of a positional argument - the
current presentation object - and a subset of the keywords
presentation, input-context, and handler. These keywords are
the same as those available for inclusion in the argument list
for the body of the handler, and are documented under arglist
in the handler documentation; they are also documented
separately: See the macro "define-presentation-action", page
179.

Note: inefficient testers can degrade the performance of your
program. Tester functions must be capable of rapid
execution. Also, do not use the body of your handler as an
implicit tester if it does a large amount of consing or in other
ways consumes resources; this will similarly affect program
performance. For more information: See the section "Some
Efficiency Caveats for Mouse Handlers", page 44.

For functions used in :testers: See the function
dw:handler-applies-in-limited-context-p, page 192. See the
function dw:presentation-subtypep-cached, page 199.

:gesture Specifies the mouse gesture on which the handler is available.

The gesture is specified by its symbolic name rather than as
a mouse character. For example, symbolic names for
#\mouse-l, #\mouse-m, and #\mouse-r include : left, : middle,

Dictionary of Top-level Facilities for User Interface Programming 117

August 1986 define-presentation-to-command-translator

and : right, respectively. (For lists of names assigned to these
and other mouse gestures, use the function
dw:mouse-char-gestures.) The default gesture is :select,
which is the same as :left.

To assign your own symbolic name to a mouse character, use
the following form:

(setf (dw:mouse-char-for-gesture syr,nbol) #\mouse-x)

Specifying this option with nil, that is : gesture n;', results
in the handler being unavailable on any gesture, only in a
handler menu. See the macro "define-presentation-action",
page 179.

Specifying this option with t, that is, : gesture t, results in
the handler being available on all gestures. See the macro
"define-presentation-action", page 179.

: documentation
Specifies a string or a function returning a string to be used
as mouse and menu documentation for the handler.

It is often preferable not to supply this option and to use the
default documentation instead. This is because the default
documentation incorporates a string corresponding to the
object the mouse is over, while the documentation you supply
cannot. If the name of the handler is handler-nar,ne, the
default documentation string will be "Handler Name
(presentation type) presentation object".

:suppress-highligh ting
Boolean option specifying whether to suppress highlighting of
the presentation if this handler is the only applicable one.
For example, the standard click-right menu handler uses this
option. The default is nil.

:menu Specifies the name of a menu in which the handler is to be
included. The default is t, the name of the standard click­
right handler menu.

You can define you own handler menu with
define-presentation-action: See the section
"define-presentation-action", page 179.

118 Dictionary of Top-level Facilities for User Interface Programming

define-presentation-to-command-translator August 1986

: context-independent
Boolean option specifying whether handler behavior (that is,
applicability to displayed presentations) is the same for all
contexts in a nested-context structure (accept being called
recursively); the default is nil.

This option is supplied with t, for example, if the handler's
to-presentation-type is t (any context), and its contract is to
print additional information about a particular presentation
(that is, only the output matters).

Specifying this option t, w}:len appropriate, allows more
possibilities to be presented on different mouse gestures.
Without it, a handler that applies in all contexts would be
matched for a particular context, to the possible exclusion of
other handlers in other contexts on other gestures. With it,
you get the same behavior for this handler, and more
possibilities as well.

For more information on context matching and related
handler issues: See the section "How Mouse Handlers Are
Found", page 42.

:priority Specifies a number adding to the priority of this handler
relative to other applicable handlers defined on the same
gesture; the default is B.

Handler applicability to displayed presentations depends on
three factors: 1) the object type of the presentation; 2) the
presentation type of the presentation; and 3) the current
input context. A handler matching a displayed presentation
in any of these factors is applicable and invokable.

In some cases, more than one applicable handler might be
available on a given mouse gesture. In such cases, which
handler is the one displayed for that gesture in the mouse
documentation line is determined by handler precedence or
priority. The system automatically assigns priotities
according to the matching factors as follows: the priority is
incremented by 1 when the object type matches; by 4 when
the presentation type matches; and by 2 when the context
type matches.

For example, in a Lisp Listener in the command-or-form
context, an accept of a pathname appears something like the
following:

Dictionary of Top-level Facilities for User Interface Programming 119

August 1986 define-presentation-to-command-translator

(accept Jpathname)
Enter the pathname of a file [default
Q:>rel-7>sys>doc>uims>ui-dict2.sar]: ==>
Q:>rel-7>sys>doc>uims>ui-dict2.sar
#P"Q:>rel-7>sys>doc>uims>ui-dict2.sar.newest"
FS:LMFS-PATHNAME

The default pathname was accepted causing it to be presented
as both a pathname presentation (Q:>rel-7>sys>doc>uims>ui­
dict2.sar) and a sys:expression presentation
(#P"Q:>rel-7>sys>doc>uims>ui-dict2.sar.newest").

Two handlers defined on the :select gesture are applicable to
both presentations. The first is si:com-show-file, applicable
to expression presentations with a pathname object type, or
pathname presentations of any object type. The second is
dw::quoted-expression, applicable to expression presentations
of any object type. The following table shows the priorities
determined for them by the system relative to the two
presentations in the above example:

Pathname Presentation Expression Presentation
Q:>rel-7>sys>doc> ... #P"Q:>rel-7>sys>doc> ...

Show File 5 5

Quote Expression o 4

For both presentations, the system-generated priority is
highest for the show file handler. However, it was the
system programmer's intent that the quoted expression
handler should be displayed in the mouse documentation line
whenever the mouse is over a presentation of the
sys:expression type, regardless of what other applicable
handlers might be available on the :select gesture.
Therefore, in the definition for this handler, the value of the
:priority option was made 1.5. This is added to the system­
generated priority of 4 in the bottom right cell of the table
for a total score of 5.5, enough to give this handler
precedence.

:exclude-other-handlers
Boolean option, used with: gesture t handlers, specifying
whether to exclude non-t handlers.

120 Dictionary of Top-level Facilities for User Interface Programming

define-presentation-to-command-translator August 1986

For example, any gesture selects a menu item. The
translator that implements this has a :tester option that
checks, among other things, for the keyword :no-select in the
menu-item list: See the section "The "General List" Form of
Item" in Programming the User Interface, Volume B. If the
menu item includes the :no-select keyword, the translator
does not apply. But, if : excl ude-other-handl ers t were not
specified for this translator, other translators would still apply
to the :no-select item's presentation, like the :menu
(Mouse-R) gesture.

:exclude-other-handlers provides a way of saying "this
translator implements the entire contract for the presentation
it matches".

See the macro "define-presentation-action", page 179.

: blank-area
Boolean option specifying whether the handler is active when
the mouse cursor is over areas of the screen in which no
presentations are displayed; the default is nil.

To ensure that handlers intended to be active only in blank
areas are not active over displayed presentations, use the
dw:no-type presentation type as the [from-]presentation-type
positional argument to the handler.

:do-not-compose
Boolean option specifying whether the value of body is
computed to determine if the handler satisfies the current
input context; the default is nil.

To see the need for this option, let's consider the default
behavior. For example, if 1) you have a translating mouse
handler that returns integer objects; 2) the mouse cursor is
currently over the handler's from-presentation-type ; 3) any
shift keys modifying the mouse gesture the handler is on are
pressed; and 4) the current input context is for integers, the
default system behavior would be to determine what the body
of the handler returns. If it returns anything other than a
single value of nil, then the handler is applicable; this fact is
indicated in the mouse documentation line and the
presentation is highlighted (if it's not already).

Now, if the input context in this situation was for odd
integers, rather than for any integer - that is, (accept '((and

Dictionary of Top-level Facilities for User Interface Programming 121

August 1986 de fin e-presen tation-to-command-transla tor

; nteger ((sat; sf; es oddp))))) - by default this handler
would still be run to see if it returns an odd integer, that is,
that the returned object will satisfy the input context
requirements. Only if this is the case will the handler be
available. This is the motivation for the default behavior.

However, some translating handlers have side effects, for
example, popping up a menu or asking a question. It is
unlikely that you want such events occurring merely when a
user of your program waves the mouse over a presentation.
You want this behavior suppressed until the user actually
clicks on the presentation. : do-nat-compose t is how you
express this intent.

As a general rule, avoid defining translators that have side
effects. One way of doing this is by defining side-effecting
handlers explicitly, with define-presentation-action.

arglist The argument list for the body of the handler. The argument
list consists of one positional argument, the object that the
mouse cursor is over, and keyword arguments from a
predefined set.

The following predefined keywords are available for inclusion
in the argument list to a mouse handler body. Their
inclusion makes the named parameters available for use in
the body. The parameter list can specify only those keywords
that are explicitly used.

input-context
The current presentation-input context.

presentation
The presentation instance that the mouse cursor is
over.

handler The handler object of which the body is a part.

mouse-char
The mouse character that triggered the handler.
(This keyword cannot be used in the :tester function
parameter list.)

window The window object in which the current presentation
occurs.

122 Dictionary of Top-level Facilities for User Interface Programming

dw:define-program-command August 1986

The body of your translator must return at least one value, the
presentation object. Optionally, it can also return keyword-value pairs that
you define. In this case, you must return the presentation type of the
object as well. The object is the first item returned, its presentation type
the second; these are followed by the keyword-value pairs.

One predefined keyword is available, : activate. Supplied with nil, the
activation of input entered via this handler is suppressed, with tit's
promoted. For an example: See the macro define-pres entation-translator,
page 185.

The values returned by the translator will be used to construct a
presentation blip. You do not make the blip; the handler takes care of this
automatically. Any keywords the translator returns are included in the
options field of the blip. Options can be extracted from blips with the
dw:presentation-hlip-options function. For an overview of this and related
functions: See the section "Overview of Presentation Input Blip Facilities",
page 78.

For an overview of define-presentation-to-command-translator and related
facilities: See the section "Overview of Top-Level Facilities for User
Interface Programming", page 21. For an overview of mouse handler
definition facilities: See the section "Overview of Mouse Handler
Facilities", page 39. For information on handler lookup and performance
issues: See the section "How Mouse Handlers Are Found", page 42.

dw:define-program-command (name program-name &rest options Macro
&key (keyboard-accelerator nil)
(menu-accelerator nil) (menu-level '(:top-Ievel))
&allow-other-keys) arglist &body body

Defines a Command Processor command for a program created with
dw:define-program-framework. The definition generates two internal
methods for the program flavor, one to parse the command and one to
execute the command. These methods provide lexical access to your
program's state variable both in the body of the command definition and in
the command argument list; that is, you may use state variables as
arguments.

name The name given to the command. To distinguish command
names from other kinds of names, we recommend that the
prefix com- be used, for example com-ex; t-program. The user­
visible command does not include the prefix; in the above
example, the user-visible command is Ex; t Program.

Like other commands, those you define using
dw:de~ine-program-command occupy the function namespace.

Dictionary of Top-level Facilities for User Interface Programming 123

August 1986 dw:define-program-command

program-name
The symbol or string naming the program flavor (created by
dw:define-program-framework) for which the command is
being written.

:keyboard-accelerator
Specifies the key used to invoke the command; the default is
nil. For example, if you are writing an Exit Program
command, you might wish to specify #\e, the E key, as the
keyboard accelerator.

This option may not be used if nil is specified for the
:kbd-accelerator-p option to the :command-table keyword for
dw:define-program-framework: See the macro
"dw:define-program-framework", page 124.

: menu-accelerator
Specifies whether the command identifier is displayed in a
command menu pane for the program; the default is nil.

To make the command available in a menu, supply a value of
t or a string. t causes the user-visible name of the command
to be displayed. If you provide a string, it's displayed instead
of the user-visible name.

Note that the program frame must include a pane of the
:command-menu type in order for the command identifier to
be displayed: See the macro
"dw:define-program-framework", page 124.

: menu-level
Specifies the command menu in which the command is to be
displayed. You need to use this option explicitly only when
more than one command menu pane has been specified in the
dw:define-program-framework macro for your program.
(See the macro "dw:define-program-framework", page 124.)

Additional keyword options to dw:define-program-command are the
same as those documented under name-and-options in the dictionary
entry for cp:define-command. ~" ",;, tf ()

arglist The list of command arguments. Each element of the list is
itself a list of the form (arg-name presentation-type options)
where arg-name is the name of the argument;
presentation-type is the presentation-type of the argument; and
options are keyword options to the argument.

124 Dictionary of Top-level Facilities for User Interface Programming

dw:define-program-framework August 1986

Permissible options are the same as those documented under
arguments in the dictionary entry for cp:define-command.

For an overview of dw:define-program-command and related facilities:
See the section "Overview of Top-Level Facilities for User Interface
Programming", page 21.

dw:define-program-framework name &key pretty-name Macro
(command-definer nil) (command-table nil)
(top-level '(dw:default-command-top-Ievel))
(command-evaluator nil) (panes
'(dw::main :listener») selected-pane
query-io-pane terminal-io-pane label-pane
(configurations nil) (state-variables nil)
(select-key nil) (system-menu nil) (size-from-pane
nil) help

Defines a flavor specifying the screen interface, command interface, and
state variables for a program.

name The name given to the program flavor created by
dw:define-program-framework.

:pretty-name
Specifies the user-visible (that is, displayed) name of the
program. If this option is not supplied, the displayed name is
the program-flavor name specified by the name argument, but
with hyphens removed and initial caps (for example, "my­
program" becomes "My Program").

: command-definer
Specifies the symbol to be used when defining program
commands. In the typical case, this option is supplied with a
value of t (that is, : command-def; ner t; this results in the
creation of a program command-definition macro invoked with
the symbol define-program-name-command, where
program-name is the name argument supplied to
dw:define-program-framework.

The command-definition macro so created has the same
syntax as dw:define-program-command, but with one
exception: you do not have to supply the program-name. (See
the macro dw:define-program-command, page 122.)

The :command-definer option defaults to nil, in which case
no command-definition macro is created, and you must use
dw:define-program-command.

Dictionary of Top-level Facilities for User Interface Programming 125

August 1986 dw:define-program-framework

: command-table
Specifies a list of options to the cp:make-command-table
function. The latter form is used by
dw:define-program-framework to do basic command table
management. When supplied with the :command-table
keyword, permissible options are limited to two:
:inherit-from and :kbd-accelerator-p.

Supplying the name (symbol or string) of a command table to
the :inherit-from option makes all the commands in that
table available during the running of your program. For
example, supplying a value of "91 obal" or "user" results in all
the commands in the global or user command table,
respectively, being included in the application command table.

If your frame includes an accept-values pane, then one of the
values to the :inherit-from option must be "accept-values­
pane". (For more information on accept-values panes: See
the macro "dw:define-program-framework", page 124.

Supplying a value of t to :kbd-accelerator-p allows you to
specify single-key accelerators for program commands; the
default is nil. Keyboard accelerators are specified via the
command-definition macro created through the
:command-definer option to dw:define-program-framework;
via dw:define-program-command; or via
cp:define-command-accelerator. Keyboard accelerators are
also inherited when you use the :inherit-from option.

:top-Ievel
Specifies the command loop function to be used for the
program. The default provides the standard command loop.

For information on facilities available for writing your own
command loop function: See the section "Overview of
Advanced Command Facilities", page 32.

: command-evaluator
Specifies function called after a command is read. Arguments
passed to the called function are the program instance, the
command, and any command arguments. At some point
before, during, or after the execution of application-specific
tasks, the evaluator function should (apply <command>
<arguments» .

126 Dictionary of Top-level Facilities for User Interface Programming

dw:define-program-framework August 1986

:panes Specifies a list of panes to be included in the program frame.

Each element of the list is itself a list of the form (pane-name
pane-type options). Six types of panes are available:

:title Pane for display of the program title (:pretty-name
is the default).

: command-menu
Pane for menu of program commands.

:display Pane for display of application-generated output.

:interactor
Pane for interactive input/output.

:listener Similar to an interactor, but taller. (Use this pane
when you want the interaction history to be visible.)

:accept-values
Pane providing the features and services of a
dw:accept-variable-values menu. (If your frame
includes an :accept-values pane, supply "accept­
values-pane" as one of the values with the
:inherit-from keyword to the :command-table
option: See the macro
"dw:define-program-framework", page 124.

The appearance and behavior of panes can be modified with a
variety of keyword options; not all are appropriate for use
with every pane type. Each option is listed below with a
description of its purpose and an indication of the pane types
for which it is appropriate:

:default-character-style
Specifies list of the form (family face size) to specify
the style of characters displayed in the pane. The
default style for :display panes is (:ilX :roman
:normal); for :title panes (:sans-serif :bold :large);
and for :command-menu panes (:jess :roman
:normal). (For more information on available styles:
See the section "Character Styles" in Symbolics
Common Lisp: Language Concepts.)

This option is applicable to all pane types.

: heigh t-in-lines
Specifies integer to fix the height of the pane to a
number of text lines. The actual height in pixels

Dictionary of Top-level Facilities for User Interface Programming 127

August 1986 dw:define-program-framework

depends on the :default-character-style for the pane
(see above).

This option is applicable to the : title, : display,
:interactor, : listener, and :accept-values pane types.

:size-from-output
Boolean option specifying whether a pane is sized
according to the space needs of output to that pane;
the default is t for :command-menu and
:accept-values pane types, nil for other pane types.

This option is applicable to the : title,
: command-menu, : display, and :accept-values pane
types.

:typeout-window
Boolean option specifying whether a typeout (pull­
down) window for *terminal-io* appears within the
pane; the default is nil.

This option is applicable to : display, :interactor,
and :listener pane types.

: redisplay-string
Specifies a string written to the pane (starting at
top) whenever the pane is redisplayed. This option
is mutually exclusive with the :redisplay-function
option (see below).

:redisplay-string is applicable to the :title and
:display pane types.

: redisplay-function
Specifies name of user-defined function that runs
whenever the pane is redisplayed. This option is
mutually exclusive with the :redisplay-string option
(see above).

The redisplay function may be written either as a
generic function (using defmethod) to the program
flavor or as a regular function (using defun). The
function is passed two arguments: the current
instance of the program flavor and the stream on
which to do output.

:redisplay-function is applicable to the :title and
:display pane types.

128 Dictionary of Top-level Facilities for User Interface Programming

dw:defin e-program-frame work August 1986

:redisplay-after-commands
Boolean option specifying whether output to the pane
is to be redisplayed after each command is executed;
the default is t.

This option is applicable to the :titIe, :display, and
:accept-values pane types.

The following options are applicable only to the
:command-menu pane type:

: menu-level

: rows

Specifies a unique identifier for each command menu
in the program when more than one command menu
is needed. The default value (for a single command
menu) is :top-leveI.

Specifies a list, each element of which is a list of
command names (strings) to be included in the same
row.

: columns
Specifies a list, each element of which is a list of
command names (strings) to be included in the same
column.

:equalize-column-widths
Boolean option specifying whether the widths of
columns containing command names be equal; the
default is nil (widths adjusted according to size of
the outout in each column).

:center-pBoolean option specifying whether command names
are centered (left-right) in the command menu; the
default is nil (flush-left).

The following options are applicable only to the :display pane
type:

:flavor Specifies the pane flavor to use for this pane; the
default is dw::dynamic-window-pane.

:incremental-redisplay
Boolean option specifying whether redisplayed
information is limited to items that have changed

Dictionary of Top-level Facilities for User Interface Programming 129

August 1986 dW:define-program-framework

since the last redisplay, rather than the entire pane.
If t, you must write the appropriate redisplay
function (see :redisplay-function above).

For information on incremental redisplay: See the
section "Overview of Advanced Presentation Output
Facilities", page 63.

The following option is applicable only to the :accept-values
pane type:

: accept-values-function
Specifies a function for creating a
dw:accept-variable-values-like display; it defaults to
an internal one that operates on program state
variables.

The function may be written either as a generic
function (using defmethod) to the program flavor or
as a regular function (using defun). The function is
passed two arguments: the current instance of the
program flavor and the stream for 110.

The multiple-accept display is created by wrapping
the body of the function you write in a
dw:accepting-values macro: See the macro
dw:accepting-values, page 175. The wrapping is
done for you by dw:define-program-framework.
The general form of the function you write is

(defmethod (my-avv-function program) (stream)
(setq state-var-1 (accept ...)
(setq state-var-2 (accept ...)
(setq state-var-3 (accept ...)
...)

For an example, see the program avv-pane-test in
the file sys:examples;define-program-framework.lisp

The :default-character-style keyword option is inherited from
dw:dynamic-window (via dw::dynamic-window-pane on
which all program panes are based by default). Many more
keyword options exist, most of which, however, are
inappropriate for use with panes created via

130 Dictionary of Top·level Facilities for User Interface Programming

dw:define-program·framework August 1986

dw:define-program-framework. Among keywords that are
appropriate, the following are most useful:

:blinker-p
Boolean option specifying whether a blinker appears
in the pane. This option defaults to t for the
:interactor and :listener pane types, nil for other
pane types.

:more-p Boolean option specifying whether more processing is
enabled. More processing lets the user control
scrolling of character output to a window. The
default is t for the :display and :listener pane types,
nil for other pane types.

:end-of-page-mode
Specifies what happens when queued output exceeds
the space available in the current viewport of the
pane. There are three possibilities:

:scroll causes the pane to scroll automatically to
accommodate the output.

:truncate causes scrolling to be the responsibility of
the user, who must press the SCROLL key to see
more output.

:wrap causes new output to appear at the top of the
pane, rather than at the bottom as in the case of
:scroll or : truncate.

: scroll-factor
Specifies the number of lines by which to scroll the
pane when the :end-of-page-mode is :scroll.

:label Specifies string that appears as a label in the lower,
left-hand corner of the pane (directly inside the
border). The character style used is the default
style for the pane. You may only use the :label
option if not using the :margin-components option,
described below.

: margin-components
Takes list of options specifying characteristics of
pane margins. The default is for a I-pixel-wide
border and a margin between the border and
displayed output to the pane of 4 pixels.

Dictionary of Top-level Facilities for User Interface Programming 131

August 1986

:selected-pane

dw:define-program-framework

The defaults are implemented by the list
«dw:margin-borders) (dw:margin-white-borders 4)).
dw:margin-borders and dw:margin-white-borders
are flavors for controlling the margin specifications
of dynamic windows. For an overview of these and
related facilities: See the section "Overview of
Window Substrate Facilities", page 87.

This option is applicable to all pane types.

Designates pane selected (generally indicated by blinking
cursor) when program is activated. If none is designated,
this option defaults to an available pane in the following
order of priority (highest to lowest): : listener, :interactor,
: display.

: query-io-pane
Designates pane to which *query-io* is bound when program
is active. If none is designated, this option defaults to an
available pane in the following order of priority (highest to
lowest): :listener, :interactor, :display.

:terminal-io-pane
Designates pane to which *terminal-io* is bound when
program is active. If none is designated, this option defaults
to an available pane in the following order of priority (highest
to lowest): the pane with a :typeout-window option (see
above), a :listener pane, a :display pane.

:label Designates pane on which program label is displayed if the
program does not have -a :title pane. If none is designated,
this option defaults to an available pane in the following
order of priority (highest to lowest): : listener, :interactor,
: display.

: configurations
Specifies the layout and sizes of panes within the program
frame. Program frames are built on a more basic type of
window known as a constraint frame. The constraint language
used to specify the layout and sizes of panes in a constraint
frame is documented elsewhere: See the section "Specifying
Panes and Constraints" in Programming the User Interface,
Volume B.

132 Dictionary of Top-level Facilities for User Interface Programming

dw:define-program-framework August 1986

In the default configuration, panes are vertically stacked in a
single column and in the order specified by the :panes option
(see above).

: state-variables
Specifies a list of program variables whose states are
preserved between activations of the program. Each variable
is itself a list consisting of the variable name and, optionally,
a default value and presentation type. State variables are
implemented as write able instance variables to the program
flavor.

:select-key
Specifies a character for selecting the program via the SELECT

key.

: system-menu
Boolean option specifying whether the program appears on the
System Menu. If t, the program appears both in the
Programs column of the top-level menu and in the Create
second-level menu; the default is nil.

:size-from-pane

:help

Specifies the pane on which to base the size of the program
frame; the default is nil.

Specifies the help message displayed when the HELP key is
pressed while the program is selected. The value of this
option can be either a string or a function. If it's a string,
the string is displayed when the user presses HELP.

If it's a function, the function receives three arguments: the
program flavor, the stream to which the help message should
be output, and the string that has been typed so far.

For an overview of dw:define-program-framework and related facilities:
See the section "Overview of Top-Level Facilities for User Interface
Programming", page 21.

For an example and additional information on the use of certain options to
dw:define-program-framework, particularly those implementing the
command interface: See the section "User Interface Application Example",
page 91. More examples are available in the file sys:examples;define­
program-framework. lisp.

Dictionary of Top-level Facilities for User Interface Programming 133

August 1986 dw::find-program-window

dw::find-program-window program-name &rest options &key Function
(create-p t) (selected-ok t)
program-state-variables &allow-other-keys

Returns the window (frame) of a program (created via
dw:define-program-framework).

program-name
The name of the program.

:create-pBoolean option specifying whether to create an
instance of the program if one does not exist; the
default is t.

:selected-ok
Boolean option specifying whether to return the
program window if it is the currently selected
activity; the default is t.

:program-state-variables
Specifies a list of initializations for the program's
state variables. The list is of the form « <var-l>
<val-l» «var-2> <val-2» ... «var-n> <val-n»).

If an instance of the program is created, its state
variables are initialized according to this
specification. If an instance already exists, its state
variables are reset according to the specification.

Other keywords permitted are programmer-defined and system init options
for the frame. If an instance of the program is created, it is initialized
according to the keyword specifications.

For an overview of dw::find-program-window and related facilities: See
the section "Overview of Top-Level Facilities for User Interface
Programming", page 21.

dw:get-program-pane name
Returns specified pane in a program frame created with
dw:define-program-framework.

Function

name The name of the pane as specified in the :panes option to
dw:define-program-framework.

For an overview of dw:get-program-pane and related facilities: See the
section "Overview of Top-Level Facilities for User Interface Programming",
page 21.

134 Dictionary of Top-level Facilities for User Interface Programming

dw:*program* August 1986

dw:*program* Variable
Bound to the currently active instance of a program flavor (created via
dw:define-program-framework).

For an overview of dw:*program* and related facilities: See the section
"Overview of Top-Level Facilities for User Interface Programming", page
21.

dw:program-command-table program Generic Function
Returns the command table used by an instance of a program flavor
(created via dw:define-program-framework).

program The program instance. (The currently active program
instance can be accessed as the value of dw:*program*.)

For an overview of dw:program-command-table and related facilities: See
the section "Overview of Top-Level Facilities for User Interface
Programming", page 21.

dw:*program-frame* Variable
Bound to the program frame associated with the current instance of a
program flavor (created via dw:define-program-framework).

Use this variable for access to the program frame from a generic function
or method of the program flavor, or from a program command definition
macro.

Example (for a program flavor named "my-program"):

(define-my-program-command (com-enable-secondary-commands
:menu-accelerator "More Commands"
: menu-l evel : mai n)

o
(send dw:*program-frame* :set-configuration 'secondary))

For access to a particular pane of the program frame, send a :get-pane
message to dw:*program-frame* or use dw:get-program-pane.

For an overview of dw:*program-frame* and related facilities: See the
section "Overview of Top-Level Facilities for User Interface Programming",
page 21.

135

August 1986 Dictionary of Command Processor Facilities

PART III.

Dictionary of Command Processor Facilities

136

Programming the User Interface, Volume A August 1986

137

August 1986 Dictionary of Command Processor Facilities

12. Dictionary Notes

This dictionary includes reference documentation for both the basic and advanced
Command Processor facilities listed in the following two tables:

Table of Basic Command Facilities

Command Definition Facilities
cp:define-command

Command Processor Interface Facilities
cp:execute-command
cp: build-command
cp:*last-command-values*

Table of Advanced Command Facilities

Command Loop Management Facilities
cp:read-command
cp:read-command-or-form
cp:read-command-arguments
cp:yank-and-read-full-argument-command
cp:read-full-command
cp:read-accelerated-command
cp:echo-command
cp:unparse-command
cp:define-command-and-parser
cp:turn-command-into-form
cp::*default-blank-line-mode*
cp::*default-dispatch-mode*
cp::*default-prompt*

Command Table Management Facilities
cp:*command-table*
cp:make-command-table
cp:find-command-table
cp:install-commands
cp:delete-command-table
cp:command-in-command-table-p

Command Accelerator Facilities
cp:define-command-accelerator

138

Programming the User Interface, Volume A August 1986

In the dictionary, the facilities are arranged in alphabetical order.

For conceptual documentation: See the section "Overview of Command Processor
Facilities", page 31.

Dictionary of Command Processor Facilities 139

August 1986 cp:build-command

13. The Facilities

cp: build-command command-name &rest command-arguments Function
Constructs the internal representation of a Command Processor command
within a define-presentation-to-command-translator macro; when the
defined translator is activated, the command is invoked.

command-name
Symbol or string naming the command to invoke; if a string,
it must be in the command table to which
cp:*command-table* is currently bound.

command-arguments
Positional and keyword arguments to the named command.

Examples:

(cp:build-command "show file" "test-data. text")

(cp:build-command 'si:com-load-system "unifier"
:condition :always :automatic-answer t)

For an overview cp: build-command and related facilities: See the section
"Overview of Basic Command Facilities", page 31.

cp:*command-table* Variable
Bound to the current command table, that is, the one used by the
Command Processor when reading commands.

For an overview of cp:*command-table* and related facilities: See the
section "Overview of Command Table Management Facilities", page 33.

cp:command-in-command-table-p command-symbol command-table Function
Determines the presence of a command in a Command Processor command
table. The function returns t if the command is either in the specified
command table, or in a table from which the specified table inherits.

command-symbol
The command symbol.

command-table
The command table.

For an overview of cp:command-in-command-table-p and related facilities:
See the section "Overview of Command Table Management Facilities", page
33.

140 Dictionary of Command Processor Facilities

cp::*default-blank-line-mode * August 1986

cp::*default-blank-line-mode* Variable
The default command processor blank line mode for cp:read-command and
cp:read-command-or-form. This is a keyword that determines what action
the command processor takes when you type a blank line:

:reprompt

:beep

: ignore

Redisplay the prompt, if any. This is the default.

Beep.

Do nothing.

The blank line mode used in Lisp Listeners and zl: break loops is the value
of cp:*blank-line-mode*.

cp::*default-dispatch-mode* Variable
The default command processor dispatch mode for
cp:read-command-or-form; a keyword. Possible values are :form-only,
:form-preferred, : command-only, and : command-preferred. For the
meanings of these values: See the section "Setting the Command Processor
Mode" in User's Guide to Symbolics Computers. The default is
: command-preferred.

The dispatch mode used in Lisp Listeners and zl: break loops is the value
of cp:*dispatch-mode*.

cp::*default-prompt* Variable
The default command processor prompt option for cp:read-command and
cp:read-command-or-form. The value of this variable is passed to the
input editor as the value of the :prompt option. The value can be nil, a
string, a function, or a symbol other than nil (but not a list): See the
section "Displaying Prompts in the Input Editor" in Reference Guide to
Streams, Files, and I/O. The default is "Command: ".

The prompt used in Lisp Listeners and zl: break loops is the value of
cp:*prompt* .

cp:define-command name-and-options arguments &body body
Defines a Command Processor command.

name-and-options

Macro

Either the symbol to be used as the command name or a list
whose first element is the name symbol and succeeding
elements are alternating keyword-value pairs. To distinguish
command names from other kinds of names, we recommend
that the prefix com- be used; the user-visible command name
will not include the prefix.

Dictionary of Command Processor Facilities 141

August 1986 cp:define-command

Following are the keywords that may be included in the
name-and-options list:

:name Specifies the string serving as the user-visible
command name. The default name is the result of
calling string-capitalize-words on the print name of
the symbol that is the first element of the
name-and-options list; if the name begins with the
substring "com-", the substring is omitted.

This option is useful for special capitalization within
command names.

: command-table
Specifies the command table, or a symbol/string
naming the command table, into which the command
is to be installed. For example, to install a
command into the "Global" command table, you
could supply Jglobal, "global", or the form
(cp:find-cammand-table Jglabal).

This option is evaluated. If not supplied, the
command is not installed in a command table; to
install the command subsequently, use the function
cp:install-commands.

A supported synonym for the :command-table option
is :comtab.

For more information on command tables: See the
section "Command Processor Command Tables" in
Programming the User Interface, Volume B. For
information on command table management
facilities: See the section "Overview of Advanced
Command Facilities", page 32.

:comtab Specifies the command table, or a symbol/string
naming the command table, into which the command
is to be installed. For example, to install a
command into the "Global" command table, you
could supply J 9 1 aba 1, "g 1 aba 1 ", or the form
(cp:find-command-table Jglobal).

This option is evaluated. If not supplied, the
command is not installed in a command table; to
install the command subsequently, use the function
cp:install-commands.

142

cp:define-command

Dictionary of Command Processor Facilities

August 1986

A supported synonym for the :comtab option is
: command-table.

For more information on command tables: See the
section "Command Processor Command Tables" in
Programming the User Interface, Volume B. For
information on command table management
facilities: See the section "Overview of Advanced
Command Facilities", page 32.

:explicit-arglist
Specifies explicitly the argument list of the function
implementing the body of the command. By default,
the argument list of this function corresponds to the
arguments specified as arguments to the command.

Typically, you do not need this option; however, it is
useful when you want the command body to receive
its arguments as an &rest argo

:provide-output-destination-keyword
Boolean option specifying whether to provide the
:output-destination keyword. The default is t; this
allows the user of the command to redirect the
output of the command to a place other than the
screen.

To override the default action (if, for example, your
command does not produce any useful output),
specify a value of nil for this option.

: values Boolean option specifying whether the command
returns values; the default is nil.

(Note that even if this option is nil, the values
returned by executing the command are stored in
cp:*last-command-values* .)

arguments
The list of command arguments. Each element of the list is
itself a list of the form (arg-name presentation-type options)
where arg-name is the name of the argument;
presentation-type is the presentation-type of the argument; and
options are keyword options to the argument. (Note that
presentation-type is evaluated, and should typically be quoted;
for example, 'integer or 'pathname.)

Dictionary of Command Processor Facilities 143

August 1986 cp:define-command

Following are the keywords that may be included in the
argument specification list:

: documentation
Specifies a string to use as the help message for the
argument. The message is displayed if, after typing
the command name and any preceding positional
arguments, the user presses the HELP key.

Also displayed when the HELP key is pressed is
information about the expected type of input. Such
messages appear after the help messages you specify
using this option. They are generated by the
underlying accept functions used for doing command
input.

:prompt Specifies either a string to be used as a prompt for
the argument or a form that when evaluated returns
such a string. If a default argument is displayed,
the prompt appears before the default.

:prompt-mode
Specifies either the :normal or :raw mode for
prompts. If :normal, the prompt you supplied using
the :prompt option (or the default prompt) is
transformed into a prompt suitable for a command
line - it is surrounded with parentheses, the default
is appended, and so on. If :raw, your prompt is
used without transformation.

:default Specifies a form to be evaluated to determine the
default value for the argument.

If no default is specified, the current default - taken
from the presentation history - for the presentation
type of the argument is used. (Access to the current
default for a presentation type is available through
dw:presentation-type-default.)

:mentioned-default
For a keyword argument, specifies a form to be
evaluated and used as the default value for the
argument, but only if the user types the argument
name.

144

cp:define-command

Dictionary of Command Processor Facilities

August 1986

The form can refer to parameters defined for any
positional arguments (but not keyword arguments)
specified prior to this argument specification. At
the time the form is evaluated, these parameters are
bound to the values of arguments already accepted.

The default value used depends on what combination
of :default and :mentioned-default options is
supplied:

Both Use the value of :mentioned-default if the
user types the name of the argument;
otherwise, use the value of :default.

:mentioned-default only
If the user types the argument name, use
the value of :mentioned-default; otherwise,
the default is nil.

:default only
Use the value of : default.

Neither If the user does not type the argument
name, the default is nil. If the user types
the name, the argument has no default and
the user has to supply a value.

:when Specifies a predicate to be evaluated at command­
line reading time. This option provides simple
control over what arguments the command line
reads; if the predicate returns nil, the argument is
not read. The predicate can refer to any positional
arguments already read.

Example:

(cp:define-command (com-when-example)
((type '((member integer any)) :default 'integer)
(number 'integer :when (eq type 'integer)))

...)

: name Specifies a string serving as the user-visible name of
the argument. Note: this option is only valid for
keyword arguments.

Example:

Dictionary of Command Processor Facilities 145

August 1986

: default-type

cp:define-command

(cp:define-command (com-key-name
:command-table 'user)

(&key (arg1 '«integer 1 10))
:name "Copies"
:prompt "Number of copies (1-10)"))

(print arg1))
("Key Name" . COM-KEY-NAME)

==>Key Name (keywords) :Copies
(Number of copies (1-10)) 2
2

Specifies the default presentation type of the object
accepted as an argument value.

This option is useful only when used in conjunction
with the :default option. When the type of the
argument being read is ambiguous - for example, if
you are using an or presentation type - specifying
the :default-type option tells the Command
Processor how to present the given default; that is,
which presentation-type printer to use.

Example:

(number-or-string '«or integer string))
:default 3 :default-type 'integer)

:provide-default
Boolean option specifying whether a default is
provided for the argument. The default value for
this option is (not (null <default»). Consequently,
: defaul t nil implies : prov; de-defaul t nil unless, as
a special case, the presentation type being read is
boolean.

This keyword is typically useful only if, as in the
case of boolean arguments, nil happens to be a
meaningful default for the type being read.

: display-default
Specifies whether the default is printed in the
prompt. The default value for this option is t;
however, if the :provide-default option is nil, no
default is printed.

146 Dictionary of Command Processor Facilities

cp:define-command-accelerator August 1986

:confirm Boolean option specifying whether the argument
requires confirmation by the user; the default is nil.

When: confi rm t is specified, if the command line is
terminated before the argument has been read, the
prompt for the argument is printed (as well as the
prompts and defaults for all unread arguments
before this one on the command line), and the user
must again terminate the command line.

This mechanism ensures that the user is aware that
the argument is being specified automatically, and
that the default value, if available, is displayed. (All
destructive system commands, for example, Delete
File, use : confi rm t for their critical arguments.)

For an overview of cp:define-command and related facilities: See the
section "Overview of Basic Command Facilities", page 31.

cp:define-command-accelerator name command-table characters
options arglist &body body

Macro

Defines single-key accelerators for Command Processor commands.

name Name for this accelerator.

command-table
Command table in which command and accelerator are
included.

characters
List of characters (not necessarily more than one) serving as
the single-key accelerators.

options List of keyword-value pairs. Possible keywords include:

: argument-allowed
Boolean option specifying whether this accelerator is
allowed to take numeric arguments (for example,
c-3). The default depends on whether you provide
an arglist, t if you do, nil if you don't.

:activateBoolean option specifying whether the command
defined by this accelerator executes immediately
when the accelerator is typed; the default is t. If
nil, the command requires confirmation and,
possibly, additional args.

:echo Boolean option specifying whether the command

Dictionary of Command Processor Facilities 147

August 1986 cp:define-command-and-parser

defined by this accelerator echoes on the command
line as if it were typed. The default is the value
supplied to the :activate option; this is because in
the :activate nil case, the command is visible after
you are finished editing and need not be repeated.

arglist List of arguments to the accelerated command. If
:argument-allowed is nil, this arglist should be nil (no
arguments allowed).

If :argument-allowed is t, the accelerator receives two
arguments, arg-p and argo arg-p means whether or not the
user gave an argument to this accelerator; arg is the numeric
argo In this case, the arglist is typically just (arg-p arg), but
you can put anything here you want. This is just so that
your body can make reference to these symbols under the
names you chose.

body A form that returns a command (using cp:build-command,
typically). It can make reference to the symbols bound in
arglist.

A typical body might be:

(cp:build-command 'command-one
:format (if arg-p :brief :detailed))

For an overview of cp:define-command-accelerator and related facilities:
See the section "Overview of Command Accelerator Facilities", page 34.

cp:define-command-and-parser name-and-options arglist parser
&body body

Defines a Command Processor command and command line parser.

name-and-options

Macro

Either the symbol to be used as the command name or a list
whose first element is the name symbol and succeeding
elements are alternating keyword-value pairs. To distinguish
command names from other kinds of names, we recommend
that the prefix com- be used; the user-visible command name
will not include the prefix.

Permissible keywords are the same as those listed under
name-and-options in the dictionary entry for
cp:define-command.

arglist The argument list of the function that implements the body
of the command. It is a normal, Common Lisp argument list.

148 Dictionary of Command Processor Facilities

cp:define-command-and-parser August 1986

parser A form used to parse the command's arguments. This form
has lexical access to the internal functions
cp:read-command-argument, cp:read-keyword-arguments,
and cp:assign-argument-value. I t should use these functions
to do the actual reading and assigning of values to command
arguments:

Example:

cp:read-command-argument presentation-type &rest options
A fletted function within
cp:define-command-and-parser. presentation-type is
the type of the argument. options are all options
acceptable in a command argument specification to
cp:define-command.

cp:read-keyword-arguments &rest keyword-specs
A macroletted macro within
cp:define-command-and-parser. keyword-specs are
command argument specifications identical to those
you would use if you were writing the command
using cp:define-command. Even if there are no
keyword arguments, the parser should end with
cp:read-keyword-arguments; any automatically
generated keywords (for example,
:output-destination) can thereby be read.

cp:assign-argument-value argument-name value
A macroletted macro within
cp:define-command-and-parser. Argument-name is
a symbol naming a command argument; value is its
value. Each argument-name should correspond to an
argument in arglist above.

(cp:define-command (com-this-is-a-test
:command-table 'user)

((file 'pathname :default nil :prompt "file")
&key
(integer 'integer :default 17

:mentioned-default 3 :prompt "the number"»
(loop for i from 0 to integer do

(pri nt fil e»)

;;;is equivalent to

Dictionary of Command Processor Facilities 149

August 1986 cp:delete-command-table

(cp:define-command-and-parser (com-this-is-a-test
:command-table 'user)

JJ The arglist of the function.
Note the presence (and need for) the

JJ default value for INTEGER in the
argument list.

(file &key (integer 17»

The argument parser. It's just one big PROGN.
Note that it ends with read-keyword-arguments.

(progn (cp: : assign-argument-value file
(cp::read-command-argument 'pathname

:default nil :prompt "file"»
(cp::read-keyword-arguments

(integer 'integer :default 17
:mentioned-default 3 :prompt "the number"»)

;; The body of the command.
(loop for i from 1 to integer do (print file»)

To see other examples, try macro expanding some cp:define-command
definitions; they expand into cp:define-command-and-parser definitions.

For an overview of cp:define-command-and-parser and related facilities:
See the section "Overview of Command Loop Management Facilities", page
33.

cp:delete-command-table command-table-or-name Function
Removes a Command Processor command table from the command table
registry.

command-table-or-name
A command table object or the name (symbol or string) of a
command table.

For an overview of cp:delete-command-table and related facilities: See
the section "Overview of Command Table Management Facilities", page 33.

cp:echo-command command-name arguments Function
Echoes a Command Processor command and its arguments to
standard-output. (The echoed command is presented "acceptably", that
is, in such a manner that is can subsequently be parsed by accept.)

150 Dictionary of Command Processor Facilities

cp:execute-command August 1986

command-name
The command name (symbol).

arguments
A list of command arguments.

For an overview of cp:echo-command and related facilities: See the
section "Overview of Command Loop Management Facilities", page 33.

cp:execute-command command-name &rest command-arguments Function
Invokes a Command Processor command from within a program.

command-name
Symbol or string naming the command to invoke; if a string,
it must be in the command table to which
cp:*command-table* is currently bound.

command-arguments
Positional and keyword arguments to the named command.

Examples:

(cp:execute-command "show file" "test-data. text")

(cp:execute-command 'si:com-load-system "unifier"
:condition :always :automatic-answer t)

For an overview cp:execute-command and related facilities: See the
section "Overview of Basic Command Facilities", page 31.

cp:find-command-table name &key (if-does-not-exist :error) Function
Returns the Command Processor command-table object specified by the
command-table name.

name The name (symbol or string) of the command table.

:if-does-not-exist
Specifies what happens if the named command table is not
found. Three values are possible:

nil The function returns nil.

: error An error message is returned and the debugger is
entered; this is the default.

:create A new command table named name is created and
returned.

Dictionary of Command Processor Facilities 151

August 1986 cp:install-commands

For an overview of cp:find-command-table and related facilities: See the
section "Overview of Command Table Management Facilities", page 33.

cp:install-commands command-table new-commands Function
Installs Command Processor commands into a command table.

command-table
Name (symbol or string) of the command table receiving the
new commands. If it does not already exist, a command table
will be created.

new-commands
A list of commands to install.

For an overview of cp:install-commands and related facilities: See the
section "Overview of Command Table Management Facilities", page 33.

cp:*last-command-values* Variable
List of values returned by the most recently executed Command Processor
command.

For an overview cp:*last-command-values* and related facilities: See the
section "Overview of Basic Command Facilities", page 31.

cp:make-command-table name &rest init-options &key (if-exists Function
:error) &allow-other-keys

Creates and returns a Command Processor command table object.

name The name (symbol or string) of the command table.

init-options
Keyword-values pairs that are init options to the (internal)
command-table flavor from which the command table object is
created. Permissible options and values are as follows:

: inherit-from
Specifies a list of command tables from which to
inherit commands.

:command-table-delims
Specifies a list of characters to use as delimiters of
words in command names for commands in the table.
The default list is (#\Space #\ Tab #\Return).

: command-table-size
An initial estimate of the number of commands the
table will include (to preclude the table from having
to grow substantially).

152 Dictionary of Command Processor Facilities

cp:make-command-table August 1986

:kbd-accelerator-p
Boolean option specifying whether single-key
accelerators may be used for commands; the default
is t.

:accelerator-case-matters
Boolean option specifying whether single-key
accelerators, if allowed, are case sensitive; the
default is nil.

:if-exists Specifies what happens if the command table named name
already exists. Four values are possible:

nil No new command table is made and the existing
command table is returned.

:supersede
The new command table is made and replaces
the old command table.

:update-options
The existing command table remains but its
options are updated to those newly specified in
the call to cp:make-command-table.

:error An error message is returned and the debugger
is entered.

Example:

(cp:make-command-table "shell-cmds" :inherit-from '("user")
:kbd-accelerator-p nil)

For an overview of cp:make-command-table and related facilities: See the
section "Overview of Command Table Management Facilities", page 33.

cp:read-accelerated-command &key (command-table
cp:*command-table*) (stream *query-io*)
(help-stream stream) (echo-stream stream)
(whostate nil) (prompt nil) (command-prompt
cp::*full-command-prompt*)
(full-command-full-rubout nil)
(special-blip-handler nil) (timeout nil)
(input-wait nil) (input-wait-handler nil) (form-p
nil) (handle-clear-input nil)
(catch-accelerator-errors t)

(unknown-accelerator-is-command nil)

Function

Dictionary of Command Processor Facilities 153

August 1986 cp.read-accelerated-command

(unknown-accelerator-tester nil)
(unknown-accelerator-reader nil)
(unknown-accelerator-reader-prompt nil)
(abort-chars nil) (suspend-chars nil) (status nil)
(intercept-function nil) (window-wakeup nil)

Reads a Command Processor command input as a single-key accelerator.

The values returned by this function depend on whether a command or
form is expected (see the :form-p option below). If the caller is expecting
a command (:form-p is nil), the values returned are the command name,
command arguments, and a flag. If the caller is expecting a form (:form-p
is t), the values returned are the form and a flag.

Possible values for the returned flag are:

: command
A command was read.

:form A form was read.

: accelerator
An accelerator character was read.

:timeout A timeout expired.

:status The window's status changed.

:wakeup The window was asynchronously refreshed, selected, exposed,
etc.

:unknown (or nil)
Something unknown was typed.

cp:read-accelerated-command accepts the following keyword options:

: command-table
Specifies the command table containing the accelerator; the
default is the current binding of cp:*command-table*.

:stream Specifies the stream from which to read the command; the
default is *query-io*.

:help-stream
Specifies the output stream for help messages; the default is
the stream specified by the :stream option.

:echo-stream
Specifies the stream to which the input command is echoed;
the default is the stream specified by the :stream option.

154 Dictionary of Command Processor Facilities

cp:read-accelerated-command August 1986

To suppress echoing, supply this option with #'ignore.

:whostate
Specifies a string to appear in the status line in place of
"User Input".

:prompt Specifies a string to be used as the prompt, or a prompt
option. (See the section "Displaying Prompts in the Input
Editor" in Reference Guide to Streams, Files, and I/O.)

: command-prompt
Specifies a string to be used as the prompt if a command is
to be read, that is, if the user types ":". The default is
cp::*full-command-prompt*, which is "Command: "

:full-command-full-rubout
Boolean option specifying whether to return if CLEAR I NPUT is
pressed (or a series RU80UT s back to the prompt) after M-X is
typed. The default is nil, allowing the continuation M-X
(extended) command parsing.

:special-blip-handler
Specifies a function called with mouse blips that are not
presentation input blips. (See the section "Mouse Blips" in
Programming the User Interface, Volume B.)

:timeout Specifies the length of time, in 60ths of a second, after
which, if the user types nothing,
cp:read-accelerated-command returns :timeout as the flag
and nil for the other values.

: input-wait
Specifies a function testing for some condition while in the
input-wait state. If this condition occurs, the
:input-wait-handler is invoked.

:input-wait-handler
Specifies a function called after a condition satisfying the
:input-wait function occurs.

:form-p Boolean option specifying whether a form or command is
expected; the default is nil. If t, the function returns an
evaluable form rather than the command name and
arguments.

Dictionary of Command Processor Facilities 155

August 1986 cp:read-accelerated-command

:handle-clear-input
Boolean option specifying whether #\clear-input is treated
specially; the default is nil. If t and the CLEAR I NPUT key is
pressed, the function clears the input buffer and reprompts.

: catch-accelerator-errors
Boolean option specifying that when an unknown accelerator
character is typed, the function beeps and prints out a
warning message. If nil, it signals the error flavor
cp::accelerator-error; this is the default.

:unknown-accelerator-is-command
Specifies whether unknown accelerators are dispatched to the
:unknown-accelerator-reader function.

The default is nil. Unknown accelerators that do not pass
the :unknown-accelerator-tester function give errors (which
mayor may not get through to the user - see the
:catch-accelerator-errors option).

If t, all unknown accelerators dispatch to the unknown­
accelerator reader which should return a command.

A third value permitted for this option is : alpha, causing only
unknown accelerators that are alphabetic characters to be
dispatched to the unknown-accelerator reader.

:unknown-accelerator-tester
Specifies a function of one argument, the character typed,
which should return something non-nil if this particular
unknown accelerator is permitted. In this case, :unknown is
returned as the flag and the value from this function is the
first value. If :form-p is nil, the character is returned as the
second value.

:unknown-accelerator-reader
Specifies a function of no arguments that should return a
form. (The function can call cp:read-command, etc., but it
should return a form.)

:unknown-accelerator-reader-prompt
Specifies a string to use as the prompt in this case, or a
prompt option. (See See the section "Displaying Prompts in
the Input Editor" in Reference Guide to Streams, Files, and
110.)

156 Dictionary of Command Processor Facilities

cp:read-command August 1986

: abort-chars
Specifies a list of "abort" characters; the default is nil.

If a list of characters is provided and the user types one,
sys:abort is signalled.

:suspend-chars
Specifies a list of "abort" characters; the default is nil.

If a list of characters is provided and the user types one, a
break loop is entered.

:status Specifies what happens if the window's status changes.
Three values are permitted, :selected, : exposed, and nil.

If the value is :selected and the window is no longer selected,
the function returns : status.

If the value is :exposed and the window is no longer exposed
or selected, the function returns :status.

If the value is nil, the function continues to wait for input
when the window is deexposed or deselected. This is the
default.

:intercept-function
Specifies a function of one argument, a character, that gets
called on each typed character that is one of :abort-chars or
:suspend-chars.

:window-wakeup
Boolean option specifying whether to return :wakeup when
an asynchronous window system condition like expose, select,
or refresh occurs; the default is nil.

For an overview of cp:read-accelerated-command and related facilities:
See the section "Overview of Command Accelerator Facilities", page 34.

cp:read-command &optional (stream *standard-input*) &key Function
(command-table cp:*command-table*)
(blank-line-mode
cp::*default-blank-line-mode*) (prompt
cp::*default-prompt*)

Reads a Command Processor command from stream, terminated by RETURN
or END.

If stream is not supplied or is nil, it defaults to *standard-input*.

Dictionary of Command Processor Facilities 157

August 1986 cp:read-command

From the user's point of view, a command consists of a command name,
positional arguments, and keyword arguments: See the section "Parts of a
Command" in User's Guide to Symbolics Computers. cp:read-command
offers completion over command names, keyword argument names, and
some argument values, and it completes any unspecified command
components when the command is terminated: See the section "Completion
in the Command Processor" in User's Guide to Symbolics Computers.

cp:read-command prompts for arguments and gives information about
what sort of values are expected. Some arguments have default values.
The user can press HELP to see documentation appropriate to the current
stage of entering the command: See the section "Help in the Command
Processor" in User's Guide to Symbolics Computers. For a general
description of how the user enters a command: See the section "Entering
a Command" in User's Guide to Symbolics Computers.

If :command-table is supplied, it is a command table of the acceptable
commands. The default command table is the value of
cp:*command-table*. The initial default is the "User" command table.
See the section "Command Processor Command Tables" in Programming
the User Interface, Volume B.

If : blank-line-mode is supplied, it is a keyword that determines what
action the command processor takes when the user types a blank line:

:reprompt

:beep

:ignore

Redisplay the prompt, if any.

Beep.

Do nothing.

The default blank-line-mode is the value of cp::*default-blank-line-mode*.
The initial default is :reprompt.

If :prompt is supplied, it is a prompt option for the input editor to display
at appropriate times. prompt can be nil, a string, a function, or a symbol
other than nil (but not a list): See the section "Displaying Prompts in the
Input Editor" in Reference Guide to Streams, Files, and I/O. The default
prompt is the value of cp::*default-prompt*. The initial default is
"Command: ".

cp:read-command returns two values. The first is a symbol, the name of
the command, which is defined as a function. The second is a list of the
arguments, converted to the appropriate types. Usually you execute the
command by applying the first value (the function) to the second (the
arguments).

For an overview of cp:read-command and related facilities: See the
section "Overview of Advanced Command Facilities", page 32.

158 Dictionary of Command Processor Facilities

cp:read-command-arguments August 1986

cp:read-command-arguments command-name &key Function
initial-arguments (command-table
cp:*command-table*) (stream
standard-input) (prompt nil)

Prompts for and returns the arguments to a Command Processor command.

command-name
The command name (symbol).

: initial-arguments
Specifies a list containing zero or more of the initial
arguments to the command.

: command-table
Specifies the command table containing the command; the
default is the current command table (bound to
cp:*command-table*).

:stream Specifies the input stream; the default is *standard-input*.

:prompt Specifies a string, or a function returning a string, to be used
as the prompt for the command arguments. The default

Example:

value for this option is nil, causing the prompt to be derived
from the user-visible name of the command.

(cp:read-command-arguments 'si:com-show-file :prompt
"File for viewing")

For an overview of cp:read-command-arguments and related facilities:
See the section "Overview of Command Loop Management Facilities", page
33.

cp:read-command-or-form &optional (stream *standard-input*) Function
&key (command-table cp:*command-table*)
(dispatch-mode cp::*default-dispatch-mode*)
(blank-line-mode
cp::*default-blank-line-mode*) (prompt
cp::*default-prompt*) (exception-chars nil)
(environment si:*read-form-environment*
en v ironment-p)

Reads a form or a Command Processor command from stream. This is an
appropriate function to use at top level in a command loop that uses the
command processor.

Dictionary of Command Processor Facilities 159

August 1986 cp:read-command-or-form

If stream is not supplied or is nil, it defaults to *standard-input*.

If :dispatch-mode is specified, it is a keyword that indicates the command
processor dispatch mode. The default is the value of
cp::*default-dispatch-mode*. The initial default is : command-preferred.

The actions that cp:read-command-or-form takes depend on dispatch-mode:

:form-only Calls zl:read-form to read a form from stream.

:command-only Calls cp:read-command to read a command from stream.

:form-preferred Calls zl:read-form unless the first character typed is a
command dispatch character (by default, a colon). In
that case calls cp:read-command.

: command-preferred
If the first character typed is a command dispatch
character or an alphabetic character, calls
cp:read-command; otherwise, calls zl:read-form. The
user can evaluate a form that begins with an alphabetic
character by first typing a form dispatch character (by
default, a comma).

For a general description of how the user enters a command: See the
section "Entering a Command" in User's Guide to Symbolics Computers.

If :command-table is supplied, it is a command table of the acceptable
commands. The default command table is the value of
cp:*command-table*. The initial default is the "User" command table.
See the section "Command Processor Command Tables" in Programming
the User Interface, Volume B.

If :blank-line-mode is supplied, it is a keyword that determines what
action the command processor takes when the user types a blank line:

:reprompt

:beep

: ignore

Redisplay the prompt, if any.

Beep.

Do nothing.

The default blank-line-mode is the value of cp::*default-blank-line-mode*.
The initial default is :reprompt.

If :prompt is supplied, it is a prompt option for the input editor to display
at appropriate times. prompt can be nil, a string, a function, or a symbol
other than nil (but not a list): See the section "Displaying Prompts in the
Input Editor" in Reference Guide to Streams, Files, and I/O. The default
prompt is the value of cp::*default-prompt*. The initial default is
"Command: ".

160 Dictionary of Command Processor Facilities

cp:read-full-command August 1986

cp:read-command-or-form returns a form. If cp:read-command-or-form
calls zl:read-form to read from stream, it returns the form that
zl:read-form returns. If it calls cp:read-command, it returns a list whose
first element is a symbol, the name of the command, which is defined as a
function. The remaining elements of the list are the arguments to the
command, coerced to the appropriate types. Usually you execute the
command by evaluating the returned list.

For an overview of cp:read-command-or-form and related facilities: See
the section "Overview of Advanced Command Facilities", page 32.

cp:read-full-command

The M-H (extended) and colon-full-command Command Processor command
accelerator.

cp:read-full-command is a function that is suitable for use as a command
accelerator's function. However, because it is already installed on #\: and #\m-x in
the "Colon Full Command" command-table, the best way to make use of this
facility is to have the command tables in your applications that use accelerator
characters inherit from "Colon Full Command".

For an overview of cp:read-full-command and related facilities: See the section
"Overview of Command Loop Management Facilities", page 33.

cp:turn-command-into-form command arguments Function
Translates a Command Processor command into an evaluable form.

command
The command.

arguments
The arguments to the command.

For an overview of cp:turn-command-into-form and related facilities: See
the section "Overview of Command Loop Management Facilities", page 33.

cp:unparse-command command-name arguments &optional Function
(command-table cp:lllcommand-tablelll)
(acceptably t)

Returns the input string corresponding to a Command Processor command
and its arguments. (The string is created via a call to present-to-string.)

command-name
The command name (symbol).

arguments
The list of command arguments.

Dictionary of Command Processor Facilities 161

August 1986 cp:yank-and-read-ful/-command

command-table
The command table containing the named command; the
default is the current command table.

acceptably
Boolean argument passed through to present-to-string and
specifying whether the output string can subsequently be
parsed by accept and used for input.

For an overview of cp:unparse-command and related facilities: See the
section "Overview of Command Loop Management Facilities", page 33.

cp :yan k-and-read-full-command

The c-£,}-y Command Processor command accelerator. It yanks back the last
command typed for editing.

cp:yank-and-read-full-command is a function that is suitable for use as a
command-accelerator's function. However, the easiest way to make use of this
facility is to have the command tables in your applications that use accelerator
characters inherit from "Colon Full Command".

For an overview of cp:yank-and-read-full-command and related facilities: See
the section "Overview of Command Loop Management Facilities", page 33.

162 Dictionary of User Input Facilities

August 1986

163

August 1986 Dictionary of User Input Facilities

PART IV.

Dictionary of User Input Facilities

164

Programming the User Interface, Volume A August 1986

165

August 1986 Dictionary of User Input Facilities

14. Dictionary Notes

This dictionary includes reference documentation for both the basic and advanced
facilities provided for user input functions. These are listed in the following two
tables:

Table of Basic User Input Facilities

Facilities for Accepting Single Objects
accept
prompt-and-accept
accept-from-string
dw:menu-choose
dw:menu-choose-from-set

Facilities for Accepting Multiple Objects
dw:accept-values
dw:accept-variable-values
dw:accepting-values

Table of Advanced User Input Facilities

Mouse Handler Facilities
define-presenta tion-translator
define-presentation-action
dw:handler-applies-in-limited-context-p
dw:presentation-subtypep-cached
dw:delete-presentation-mouse-handler
dw:invalidate-type-handler-tables

Mouse Gesture Interface Facilities
dw:mouse-char-gesture
dw:mouse-char-gestures
dw:mouse-char-for-gesture

In the dictionary, the facilities are arranged in alphabetical order (package
pref'lxes excluded).

For conceptual documentation: See the section "Overview of User Input
Facilities", page 35.

166

Programming the User Interface, Volume A August 1986

Dictionary of User Input Facilities 167

August 1986 accept

15. The Facilities

accept presentation-type &key (stream *query-io*) (prompt Function
:enter-type) (prompt-mode :normal)
activation-chars additional-activation-chars
blip-chars additional-blip-chars (inherit-context
t) (default t) (provide-default
'dw: :unless-default-is-nil) (default-type
dw:presentation-type) (display-default
dw::prompt) present-default history
(prompts-in-line dw::*accept-active*)
(initially-dis play-possibilities nil) input-sensitizer
(handler-type 'dw::parser) query-identifier
(separate-inferior-queries nil)

Reads printed representation of a Lisp object from a stream. If the
representation is entered via a mouse gesture, it returns the object; if the
representation is entered as a series of keyboard characters, it parses the
series and returns the object.

presentation-type
Presentation type of the object to be accepted.

:stream Specifies stream from which object is read; the default is
query-io.

:prompt Specifies characteristics of the input prompt. Allowable
values for this option are:

nil No prompt is printed.

string String to be used as prompt.

function Function to display a prompt string. It must take
two positional arguments. The first is the stream
on which the prompt is to be displayed. The second
is a keyword indicating the origin of the function
call; for available keywords and related information:
See the section "Displaying Prompts in the Input
Editor" in Reference Guide to Streams, Files, and
I/O.

You typically provide a prompt function when you
want the prompt to change dynamically. In such
cases, you can ignore the second argument.

168

accept

Dictionary of User Input Facilities

August 1986

: enter-type
Causes the prompt "Enter a <presentation type>" to
be used. The presentation type is that specified by
the presentation-type argument to accept.

If :prompt is not nil, the default, if any, is displayed
automatically after the prompt string. For example, a prompt
string of "to file" for a presentation type of pathname is
displayed as "to file (default Q:>foo.bar):".

If you provide a prompt string, whether accept provides
trailing punctuation is determined by the :prompt-mode
option.

:prompt-mode
Specifies whether a colon and space is appended to a user­
supplied prompt. A value of :normal causes a trailing colon
and space to be appended; a value of :raw does not. (See the
function "accept", page 167.)

: activation-chars
Takes a list of characters that are used as activation
characters for the duration of the call to accept. The default
activators are #\return and #\end.

Activation characters signal the end of user input to the
accept function. If input to the function is via the keyboard,
the user must necessarily press an activation character to
activate the accept.

If input is via a translating mouse handler, defined by
define-presentation-to-command -translator or
define-presentation-translator, then whether an activation
character is necessary depends on whether the translator
returns an : act i vate t keyword-value pair .. See the macro
define-presentation-translator, page 185.

:additional-activation-chars
Similar to : activation-chars; the list of characters supplied is
added to the list of activators. Additional activation
characters may be useful for activating accept when called
recursively.

: blip-chars
Takes a list of characters that serve as delimiters of input
fields for the duration of the call to accept.

Dictionary of User Input Facilities 169

August 1986 accept

: additional-blip-chars
Similar to : blip-chars; the list of characters supplied is added
to the list of delimiters. Additional blip characters may be
useful for terminating input fields when accept is called
recursively.

: inherit-context
Boolean option specifying whether the current invocation of
accept inherits the existing input context or establishes a
new root node; the default value is t. This option is useful
for controlling the input contexts at different levels in a
recursive call to accept.

:default Specifies the object to be used as the default value for this
accept. If no object is specified by this option - and a
default is to be displayed (see the :provide-default option) -
then the object offered is the one at the top of the
presentation history for the presentation type specified in the
presentation-type argument.

:provide-default
Specifies whether to provide a default value for this accept.
If this option is not specified, a default value is displayed
unless it is nil. If nil is a valid default that you want to be
provided, then you must specify: prov; de-defaul t t.

: default-type
Specifies the presentation type of the object offered as the
default for completing the call to accept. The default for
this option is the type specified by the presentation-type
argument.

This option is useful for specifying explicitly the presentation
type of the default when accepting compound presentation
types, such as those created with the or presentation type.
See the presentation type or, page 318.

: display-default
Controls the display of the default object. A value of t causes
the default to be displayed whether or not a prompt is
displayed; nil suppresses the display of the default whether or
not a prompt is displayed.

The default value for this option, dw::prompt, causes the
default to be displayed when a prompt is displayed, and the
default to be suppressed when a prompt is not displayed.

170

accept

Dictionary of User Input Facilities

August 1986

:present-default
Boolean option specifying whether the default object is
presented and accepted. This option is for the internal use of
dw:accept-variable-values and related facilities.

:history Specifies which presentation-type history to use for yanking
purposes. A value of nil, the default, causes the history of
the type specified by the presentation-type argument to be
used.

Aside from providing another presentation type, you may also
supply as the value to this option a history object. This
would be appropriate if you constructed the presentation-type
history yourself, rather than letting the presentation substrate
do it for you.

:prompts-in-line
Boolean option specifying whether prompt is displayed in-line
with parentheses or with a trailing colon. The default is t if
the accept was called recursively, nil otherwise.

:initially-display-possibilities
Boolean option specifying whether to display the objects that
could be used as input in the current context; the default is
nil. If t, the possibilities are presented before the prompt
appears. This is the same list of possibilities that is
displayed when the user presses HELP after the initial prompt
appears.

:input-sensitizer
This option is used internally by dw:accept-variable-values
and related facilities.

:handler-type
This option is used internally by dw:accept-variable-values
and related facilities.

: query-identifier
Specifies a unique identifier for this call to accept; the
default is derived from the prompt.

This option is only used when the accept is part of a
multiple-accept form. See the function
"dw:accepting-values", page 175 ..

Dictionary of User Input Facilities 171

August 1986 accept-from-string

:separa te-inferior-queries
Boolean option specifying whether recursive calls to accept go
on separate lines when executing an dw:accept-values
function; the default is nil.

For an overview of accept and related facilities: See the section "Overview
of Facilities for Accepting Single Objects", page 35.

accept-froM-string presentation-type- string &rest args &key index Function
(start 0) end &allow-other-keys

Reads the printed representation of a Lisp object from a string and returns
the object with a specified presentation type. This function is the
presentation-system equivalent of the Common Lisp function
read-froM-string.

presentation-type
Presentation type of the object to be accepted.

string String from which to accept the object.

args Keyword options to accept.

: index [Not implemented]

:start Specifies the position of the first character to be parsed. The
default is 0, the position of the first character.

: end Specifies the position of the first character not to include in
the parsing of the string.

Examples:

(accept-from-string Jstring "Test 1") ==>
"Test 1"
STRING

(accept-from-string Jinteger "Test 2" :start 5) ==>
2
INTEGER

For an overview of accept-froM-string and related facilities: See the
section "Overview of Facilities for Accepting Single Objects", page 35.

dw:accept-values descriptions &key (prompt nil) (near-mode
'(:mouse» (stream *query-io*) (own-window
nil) (temporary-p dw::own-window)
(initially-select-query-identifier nil)

Function

172 Dictionary of User Input Facilities

accept -from-string August 1986

Reads a series of printed representations of Lisp objects from a stream and
returns one value for each object read. The objects may entered via mouse
gestures or as keyboard input.

descriptions
List of descriptions. Each description is a list of a
presentation type and a set of the keyword options; available
keywords are those allowed by accept.

Note that when the same presentation type appears in more
than one description, they must be distinguished by the
:prompt option. Failing to do so results in the same value
being returned for all occurrences of that type.

Example:

(dw:accept-values '((integer :prompt "Half-life"
:default 24000)

(pathname :prompt "Log file")
(integer :prompt "Session number"»

:prompt "Atomic experiment")

:prompt Specifies a string, or a function returning a string, serving as
the prompt or heading for the whole series of input prompts
that follow.

: near-mode
Specifies where the menu appears. The default makes it
appear near the position of the mouse cursor at the time the
function is called. For other possibilities: See the method
(flavor:method :expose-near tv:essential-set-edges> in
Programming the User Interface, Volume B.

This option is applicable only when the value of the
:own-window option is t.

:stream Specifies the stream to be used for input and output; the
default is *query-io*.

: own-window
Specifies whether the input/output interaction occurs in a
separate, momentary window or runs "in place" in the
current window like ordinary input/output; the default is nil.

:temporary-p
Specifies whether the menu window is temporary or

Dictionary of User Input Facilities 173

August 1986 dw:accept-variable-values

momentary. If the value of the :own-window option is t,
then the default is a temporary window; if the value of
:own-window is nil, then this option is inapplicable.

:ini tially-select-query-identifier
Specifies that a particular field is pre-selected when the user
interaction begins. The field to be selected is tagged by the
:query-identifier option to accept, passed through to accept
by dw:accept-values. Use this tag as the value for the
:initially-select-query-identifier keyword, as shown in the
following example:

(dw:accept-values '«integer :prompt "Number of times"
:query-identifier fred)

(boolean :prompt "Backwards"))
:initially-select-query-identifier 'fred)

When the initial display is output, the mouse cursor appears
after the prompt of the tagged field, just as if the user had
selected that field by clicking on it. Note that the default
value,if any, for the selected field is not displayed.

For an overview of dw:accept-values and related facilities: See the section
"Overview of Facilities for Accepting Multiple Objects", page 38.

dw:accept-variable-values variables &key (prompt "Choose Function
Variable Values") (near-mode '(:mouse»
(delayed t) (stream *query-io*) (own-window
nil) (temporary-p dw::own-window)
(initially-select-query-identifier nil)

Provides a menu-like facility for setting the values of special variables to
values provided by the user. The value for each variable is read via a call
to accept using a specified presentation type.

(Usage note: dw:accept-variable-values is intended for use with special
variables, not local ones. As such, it is useful for conversion from
tv:choose-variable-values but is, in general, less appropriate for new
applications of mUltiple-accept technology. For the latter, we recommend
using dw:accept-values and dw:accepting-values.)

variables A list of variable descriptions. Each description is a list of a
variable name, a prompt string, and a presentation type.

Example:

174 Dictionary of User Input Facilities

dw:accept-variab/e-vaJues August 1986

(dw:accept-variable-values
'«*a* "Number" integer)

(*b* "File" pathname)
(*c* "Printer" sys:printer») ==>

Choose Variable Values
Number: an integer
F i 1 e: the pathname of a file
Pri nter: a printer
ABORT aborts, END uses these values

:prompt Specifies a string, or a function returning a string, serving as
the prompt or heading for the whole series of input prompts
that follow.

:near-mode
Specifies where the menu appears. The default makes it
appear near the position of the mouse cursor at the time the
function is called. For other possibilities: See the method
(flavor:method :expose-near tv:essential-set-edges) in
Programming the User Interface, Volume B.

This option is applicable only when the value of the
:own-window option is t.

:delayed Boolean option specifying whether variables are updated with
user-supplied values after the entire accept-variable-values
interaction is complete, or individually after input to each
variable field is terminated; the default is t.

:stream Specifies the stream to be used for input and output; the
default is *query-io*.

: own-window
Specifies whether the input/output interaction occurs in a
separate, momentary window or runs "in place" in the
current window like ordinary input/output; the default is nil.

:temporary-p
Specifies whether the menu window is temporary or
momentary. If the value of the :own-window option is t,
then the default is a temporary window; if the value of
:own-window is nil, then this option is inapplicable.

:initially-select-query-identifier
[Not implemented]

Dictionary of User Input Facilities 175

August 1986 dw:accepting-va/ues

For an overview of dw:accept-variable-values and related facilities: See
the section "Overview of Facilities for Accepting Multiple Objects", page
38.

dw:accepting-values (&optional (stream '*query-io*) &key Macro
(own-window nil) (display-exit-boxes
(not dw::own-window» (temporary-p
dw::own-window) (label "Multiple accept")
(near-mode '(:mouse»
(initially-select-query-identifier nil)
(resynchronize-every-pass nil) &body body)

Causes all calls to accept within body to appear in a single,
dw:accept-variable-values-like menu that can be modified dynamically.

stream Stream for input and output; the default is *query-io*.

: own-window
Specifies whether the input/output interaction occurs in a
separate, momentary window or runs "in place" in the
current window like ordinary input/output; the default is nil.

:display-exit-boxes
Boolean option specifying whether the Abort-End exit message
is displayed. The default is to display it unless the
interaction is in its own window (see the :own-window
option).

:temporary-p
Specifies whether the menu window is temporary or
momentary. If the value of the :own-window option is t,
then the default is a temporary window; if the value of
:own-window is nil, then this option is inapplicable.

:label Specifies a string to serve as the title of the interaction
menu. This option is applicable only if the value of the
:own-window option is t.

:near-mode
Specifies where the menu appears. The default makes it
appear near the position of the mouse cursor at the time the
function is called. For other possibilities: See the method
(flavor:method :expose-near tv:essential-set-edges) in
Programming the User Interface, Volume B.

This option is applicable only when the value of the
:own-window option is t.

176 Dictionary of User Input Facilities

dw:accepting-values August 1986

:initially-select-query-identifier
Specifies that a particular field is pre-selected when the user
interaction begins. The field to be selected is tagged by the
:query-identifier option to accept; use this tag as the value
for the :initially-select-query-identifier keyword, as shown in
the following example:

(let (a b c)
(dw:accepting-values (*query-io*

:initially-select-query-identifier 'the-tag)
(setq a (accept 'pathname :prompt "The file"))
(setq b (accept 'integer :prompt "The number"

:query-identifier 'the-tag))
(setq c (accept 'sys:printer

:prompt "The printer")))
(format t "Printing -0 copies of

file -A on -A" b a c))

When the initial display is output, the mouse cursor appears
after the prompt of the tagged field, just as if the user had
selected that field by clicking on it. Note that the default
value, if any, for the selected field is not displayed.

:resynchronize-every-pass
Boolean option specifying whether to redisplay after each
value is accepted; the default is nil.

You can use this option to alter dynamically the multiple­
accept display. The following is a simple example. It
initially displays an integer field that disappears if a value
other than 1 is entered; in its place a two-field display
appears.

(defun alter-multiple-accept ()
(fresh-line)
(let «flag 1))

(dw:accepting-values
(t :resynchronize-every-pass t)

(i f (= fl ag 1)
(setq flag (accept 'integer :default flag))
(accept 'string)
(accept 'pathname)))))

As the example shows, to use this option effectively, the
controlling variable(s) must be initialized outside the lexical
scope of the dw:accepting-values macro.

Dictionary of User Input Facilities 177

August 1986 dw:accepting-va/ues

body The body is run in order to generate the initial prompt/value
display. The body (or some part of it) is re-run each time a
change is made; so the dependencies that later calls to accept
may have on earlier ones will be correctly resolved. Because
the body is run repeatedly, you must be careful of side-effects
in the body code.

Also, because the stream carries the state information, all
input/output calls within the body must use the stream
specified in the dw:accepting-values options list.

Good examples:

(let (a b c)
(dw:accepting-va1ues (*query-io*

:prompt "Good Example")
(setq a (accept 'pathname :prompt "The file"»
(setq b (accept 'integer :prompt "The number"»
(setq c (accept 'sys:printer

:prompt "The printer"»)
(format t "Printing -0 copies of

file -A on -A" b a c»

(mu1tip1e-va1ue-bind (a b c)
(dw:accepting-va1ues ()

(values
(accept 'pathname :prompt "The file")
(accept 'integer :prompt "The number")
(accept 'sys:printer

:prompt "The printer"»)
(format t "Printing -0 copies of

file -A on -A" b a c»

Poor example:

(let «the-list nil»
(dw:accepting-va1ues ()

(push
(1 ist

(accept 'pathname :prompt "The file")
(accept 'sys:printer :prompt "The printer"»

the-l i st))
(format t "The list = -5" the-list»

The above example is a poor one because the output list will
have an unpredictable number of elements; this detracts from
its usefulness.

178 Dictionary of User Input Facilities

dw:accepting-va/ues August 1986

A useful presentation type to use with accept functions in the body of a
dw:accepting-values macro is alist-member. Its usefulness derives from
the keyword options available for inclusion in the item lists contributing to
the alists. Three options exist: : documentation, : style, and
: selected-style.

The value of the :documentation keyword is a string that appears in the
mouse documentation line when the mouse cursor is over the item (that is,
the item is highlighted).

:style specifies the character style for the item when it is displayed.
:selected-style specifies the character style of the item when it is selected,
that is, after it has been clicked on. The ,:selected-style defaults to the
boldface version of the unselected style.

Use of the aUst-member presentation type with dw:accepting-values is
illustrated by the following example:

(defun filter-a-v ()
(let «low-pass-list

J«"Mean" :value :mean
:documentation "1 1 mask"
:style (:swiss :roman :normal)
:selected-style (:dutch :bold nil))

("Gaussian" :value :gauss
:documentation"1 2 1 mask"
:style (:swiss :roman :normal)
:selected-style (:dutch :bold nil))))

(edge-list
J«"LaplacianJ HP" :value :lpl-hp

:documentation "-1 3 -1 mask"
:style (:swiss :roman :normal)
:selected-style (:dutch :bold nil))

("LaplacianJ ED" :value :lpl-ed
:documentation "-1 2 -1 mask"
:style (:swiss :roman :normal)
:selected-style (:dutch :bold nil)))))

(dw:accepting-values (*query-io* :own-window t)
(fresh-line)
(setq lo-pass-f (accept '«alist-member

:alist Jlow-pass-list)
:description "a low-pass filter")))

(setq edge-f (accept '«alist-member
:alist Jedge-list)
:description "a hi-pass/edge filter"))))))

Dictionary of User Input Facilities 179

August 1986 define-presentation-action

For an overview of dw:accepting-values and related facilities: See the
section II Overview of Facilities for Accepting Multiple Objects ", page 38.

For additional examples, see the file sys: exampl es; accept i ng-val ues. 1 i sp

define-presentation-action name (from-presentation-type Macro
to-presentation-type &key tester (gesture :select)
documentation suppress-highlighting (menu t)
<context-independent nil) priority
exclude-other-handlers blank-area defines-menu)
arglist &body body

Defines a side-effecting mouse handler for performing actions on a
displayed presentation object that are independent of the main body and
command loop of an application.

name The name of the handler.

from-presentation-type
The type of the displayed presentation object.

to-presentation-type
A presentation type. This argument establishes the input
context in which the handler is active. The value usually
supplied is t, meaning that the handler is potentially available
in any input context.

:tester Specifies the parameter list and body for a tester function.
The tester function determines whether the handler applies to
the current presentation, if it is otherwise applicable based on
the current presentation type and input context.

The parameter list consists of a positional argument - the
current presentation object - and a subset of the keywords
presentation, input-context, and handler. These keywords are
the same as those available for inclusion in the argument list
for the body of the handler, and are documented under arglist
in the handler documentation; they are also documented
separately: See the macro "define-presentation-action", page
179.

Note: inefficient testers can degrade the performance of your
program. Tester functions must be capable of rapid
execution. Also, do not use the body of your handler as an
implicit tester if it does a large amount of consing or in other
ways consumes resources; this will similarly affect program

180 Dictionary of User Input Facilities

define-pres entation-action August 1986

performance. For more information: See the section "Some
Efficiency Caveats for Mouse Handlers", page 44.

For functions used in :testers: See the function
dw:handler-applies-in-limited-context-p, page 192. See the
function dw:presentation-subtypep-cached, page 199.

:gesture Specifies the mouse gesture on which the handler is available.

The gesture is specified by its symbolic name rather than as
a mouse character. For example, symbolic names for
#\mouse-l, #\mouse-m, and #\mouse-r include : left, :middle,
and : right, respectively. (For lists of names assigned to these
and other mouse gestures, use the function
dw:mouse-char-gestures.) The default gesture is :select,
which is the same as : left.

To assign your own symbolic name to a mouse character, use
the following form:

(setf (dw:mouse-char-for-gesture syr.nbol) #\mouse-x)

Specifying this option with nil, that is : gesture nil, results
in the handler being unavailable on any gesture, only in a
handler menu. See the macro "define-presentation-action",
page 179.

Specifying this option with t, that is, : gesture t, results in
the handler being available on all gestures. See the macro
"define-presentation-action", page 179.

: documentation
Specifies a string or a function returning a string to be used
as mouse and menu documentation for the handler.

It is often preferable not to supply this option and to use the
default documentation instead. This is because the default
documentation incorporates a string corresponding to the
object the mouse is over, while the documentation you supply
cannot. If the name of the handler is handler-nar.ne, the
default documentation string will be "Handler Name
(presentation type) presentation object".

: suppress-highlighting
Boolean option specifying whether to suppress highlighting of
the presentation if this handler is the only applicable one.

Dictionary of User Input Facilities 181

August 1986 define-presentation-action

For example, the standard click-right menu handler uses this
option. The default is nil.

:menu Specifies the name of a menu in which the handler is to be
included. The default is t, the name of the standard click­
right handler menu.

You can define you own handler menu with
define-presentation-action: See the macro
"define-presentation-action", page 179.

: context-independent
Boolean option specifying whether handler behavior (that is,
applicability to displayed presentations) is the same for all
contexts in a nested-context structure (accept being called
recursively); the default is nil.

This option is supplied with t, for example, if the handler's
to-presentation-type is t (any context), and its contract is to
print additional information about a particular presentation
(that is, only the output matters).

Specifying this option t, when appropriate, allows more
possibilities to be presented on different mouse gestures.
Without it, a handler that applies in all contexts would be
matched for a particular context, to the possible exclusion of
other handlers in other contexts on other gestures. With it,
you get the same behavior for this handler, and more
possibilities as well.

For more information on context matching and related
handler issues: See the section "How Mouse Handlers Are
Found", page 42.

:priority Specifies a number adding to the priority of this handler
relative to other applicable handlers defined on the same
gesture; the default is 8.

Handler applicability to displayed presentations depends on
three factors: 1) the object type of the presentation; 2) the
presentation type of the presentation; and 3) the current
input context. A handler matching a displayed presentation
in any of these factors is applicable and invokable.

In some cases, more than one applicable handler might be
available on a given mouse gesture. In such cases, which
handler is the one displayed for that gesture in the mouse

182

define-pres enta tion-action

Dictionary of User Input Facilities

August 1986

documentation line is determined by handler precedence or
priority. The system automatically assigns priorities
according to the matching factors as follows: the priority is
incremented by 1 when the object type matches; by 4 when
the presentation type matches; and by 2 when the context
type matches.

For example, in a Lisp Listener in the command-or-form
context, an accept of a pathname appears something like the
following:

(accept Jpathname)
Enter the pathname of a file [default
Q:>rel-7>sys>doc>uims>ui-dict2.sar]: ==>
Q:>rel-7>sys>doc>uims>ui-dict2.sar
#P"Q:>rel-7>sys>doc>uims>ui-dict2.sar.newest"
FS:LHFS-PATHNAHE

The default pathname was accepted causing it to be presented
as both a pathname presentation (Q:>rel-7>sys>doc>uims>ui­
dict2.sar) and a sys:expression presentation
(#P"Q:>rel-7>sys>doc>uims>ui-dict2.sar.newest").

Two handlers defined on the :select gesture are applicable to
both presentations. The first is si:com-show-file, applicable
to expression presentations with a pathname object type, or
pathname presentations of any object type. The second is
dw::quoted-expression, applicable to expression presentations
of any object type. The following table shows the priorities
determined for them by the system relative to the two
presentations in the above example:

Pathname Presentation Expression Presentation
Q:>rel-7>sys>doc> ... #P"Q:>rel-7>sys>doc> ...

Show File 5 5

Quote Expression o 4

For both presentations, the system-generated priority is
highest for the show file handler. However, it was the
system programmer's intent that the quoted expression
handler should be displayed in the mouse documentation line
whenever the mouse is over a presentation of the
sys:expression type, regardless of what other applicable

Dictionary of User Input Facilities 183

August 1986 define-presentation-action

handlers might be available on the :select gesture.
Therefore, in the definition for this handler, the value of the
:priority option was made 1.5. This is added to the system­
generated priority of 4 in the bottom right cell of the table
for a total score of 5.5, enough to give this handler
precedence.

:exclude-other-handlers
Boolean option, used with : gestu re t handlers, specifying
whether to exclude non-t handlers.

For example, any gesture selects a menu item. The
translator that implements this has a :tester option that
checks, among other things, for the keyword :no-select in the
menu-item list: See the section "The "General List" Form of
Item" in Programming the User Interface, Volume B. If the
menu item includes the :no-select keyword, the translator
does not apply. But, if : excl ude-other-handl ers t were not
specified for this translator, other translators would still apply
to the :no-select item's presentation, like the :menu
(Mouse-R) gesture.

:exclude-other-handlers provides a way of saying "this
translator implements the entire contract for the presentation
it matches".

See the macro "define-presentation-action", page 179.

: blank-area
Boolean option specifying whether the handler is active when
the mouse cursor. is over areas of the screen in which no
presentations are displayed; the default is nil.

To ensure that handlers intended to be active only in blank
areas are not active over displayed presentations, use the
dw:no-type presentation type as the [from-]presentation-type
positional argument to the handler.

: defines-menu
Specifies the handler menu that that this handler invokes.
That is, when this option is specified, it means that this
handler is to produce a menu of other handlers that apply to
the presentation at hand. Other handlers are included in this
menu by specifying their :menu options with the menu named
by : defines-menu.

184 Dictionary of User Input Facilities

define-presentation-action August 1986

The following example is for the Presentation debuggi ng menu,
available on s-Mouse-R for all presentations, in all input
contexts (both the from- and to-presentation-types are t):

(define-presentation-action presentation-debugging-menu
(t t

:documentation "Presentation debugging menu"
:gesture :presentation-debugging-menu
:menu (t :style (nil :italic nil»
:defines-menu :presentation-debugging
:context-independent t
:blank-area t)

(ignore &rest args)
(return-from presentation-debugging-menu

(apply #'dw::call-presentation-menu
:presentation-debugging args»)

Note the body: except for the keyword identifying the menu,
:presentation-debugging, this is the same for all side­
effecting- handlers that generate handler menus. The function
creating the menu is dw::call-presentation-menu. Use it
exactly as shown in the example.

arglist The argument list for the body of the handler. The argument
list consists of one positional argument, the object that the
mouse cursor is over, and keyword arguments from a
predefined set.

The following predefined keywords are available for inclusion
in the argument list to a mouse handler body. Their
inclusion makes the named parameters available for use in
the body. The parameter list can specify only those keywords
that are explicitly used.

input-context
The current presentation-input context.

presentation
The presentation instance that the mouse cursor is
over.

handler The handler object of which the body is a part.

Dictionary of User Input Facilities 185

August 1986 define-presenta tion-transla tor

mouse-char
The mouse character that triggered the handler.
(This keyword cannot be used in the :tester function
parameter list.)

window The window object in which the current presentation
occurs.

For an overview of define-presentation-action and related facilities: See
the section "Overview of Mouse Handler Facilities", page 39. For
information on handler lookup and performance issues: See the section
"How Mouse Handlers Are Found", page 42.

define-presentation-translator name (from-presentation-type Macro
to-presentation-type &key tester (gesture :select)
documentation suppress-highlighting (menu t)
(context-independent nil) priority
exclude-other-handlers blank-area
do-not-compose) arglist &body body

Defines a mouse handler that translates from a displayed presentation
object of a certain type to a returned presentation object of a different
type. Typically, the "translation" is a matter of extracting a nested object,
for example, a host object from a pathname object.

name The name of the handler.

from-presentation-type
The type of the displayed presentation object.

to-p resentation-type
The type of the returned presentation object.

:tester Specifies the parameter list and body for a tester function.
The tester function determines whether the handler applies to
the current presentation, if it is otherwise applicable based on
the current presentation type and input context.

The parameter list consists of a positional argument - the
current presentation object - and a subset of the keywords
presentation, input-context, and handler. These keywords are
the same as those available for inclusion in the argument list
for the body of the handler, and are documented under arglist
in the handler documentation; they are also documented
separately: See the macro "define-presentation-action", page
179.

Note: Inefficient testers can degrade the performance of your

186 Dictionary of User Input Facll,"es

define-presentation-trans/ator August 1986

program. Tester functions must be capable of rapid
execution. Also, do not use the body of your handler as an
implicit tester if it does a large amount of consing or in other
ways consumes resources; this will similarly affect program
performance. For more information: See the section "Some
Efficiency Caveats for Mouse Handlers", page 44.

For functions used in : testers: See the function
dw:handler-applies-in-limited-context-p, page 192. See the
function dw:presentation-subtypep-cached, page 199.

:gesture Specifies the mouse gesture on which the handler is available.

The gesture is specified by its symbolic name rather than as
a mouse character. For example, symbolic names for
#\mouse-l, #\mouse-m, and #\mouse-r include : left, :middle,
and : right, respectively. (For lists of names assigned to these
and other mouse gestures, use the function
dw:mouse-char-gestures.) The default gesture is :select,
which is the same as : left.

To assign your own symbolic name to a mouse character, use
the following form:

(setf (dw:mouse-char-for-gesture syntbol) #\mouse-x)

Specifying this option with nil, that is : gestu re nil, results
in the handler being unavailable on any gesture, only in a
handler menu. See the macro "define-presentation-action",
page 179.

Specifying this option with t, that is, : gestu re t, results in
the handler being available on all gestures. See the macro
"define-presentation-action", page 179.

: documentation
Specifies a string or a function returning a string to be used
as mouse and menu documentation for the handler.

I t is often preferable not to supply this option and to use the
default documentation instead. This is because the default
documentation incorporates a string corresponding to the
object the mouse is over, while the documentation you supply
cannot. If the name of the handler is handler-nante, the
default documentation string will be "Handler Name
(presentation type) presentation object".

Dictionary of User Input Facilities 187

August 1986 define-pres enta tion-transla tor

: suppress-highlighting
Boolean option specifying whether to suppress highlighting of
the presentation if this handler is the only applicable one.
For example, the standard click-right menu handler uses this
option. The default is nil.

:menu Specifies the name of a menu in which the handler is to be
included. The default is t, the name of the standard click­
right handler menu.

You can define you own handler menu with
define-presentation-action: See the function
II define-presentation-action", page 179.

: context-independent
Boolean option specifying whether handler behavior (that is,
applicability to displayed presentations) is the same for all
contexts in a nested-context structure (accept being called
recursively); the default is nil.

This option is supplied with t, for example, if the handler's
to-presentation-type is t (any context), and its contract is to
print additional information about a particular presentation
(that is, only the output matters).

Specifying this option t, when appropriate, allows more
possibilities to be presented on different mouse gestures.
Without it, a handler that applies in all contexts would be
matched for a particular context, to the possible exclusion of
other handlers in other contexts on other gestures. With it,
you get the same behavior for this handler, and more
possibilities as well.

For more information on context matching and related
handler issues: See the section II How Mouse Handlers Are
Found ", page 42.

:priority Specifies a number adding to the priority of this handler
relative to other applicable handlers defined on the same
gesture; the default is fl.

Handler applicability to displayed presentations depends on
three factors: 1) the object type of the presentation; 2) the
presentation type of the presentation; and 3) the current
input context. A handler matching a displayed presentation
in any of these factors is applicable and invokable.

188 Dictionary of User Input Facilities

define-presentation-trans/ator August 1986

In some cases, more than one applicable handler might be
available on a given mouse gesture. In such cases, which
handler is the one displayed for that gesture in the mouse
documentation line is determined by handler precedence or
priority. The system automatically assigns priorities
according to the matching factors as follows: the priority is
incremented by 1 when the object type matches; by 4 when
the presentation type matches; and by 2 when the context
type matches.

For example, in a Lisp Listener in the command-or-form
context, an accept of a pathname appears something like the
following:

(accept Jpathname)
Enter the pathname of a file [default
Q:>rel-7>sys>doc>uims>ui-dict2.sarJ: ==>
Q:>rel-7>sys>doc>uims>ui-dict2.sar
#P"Q:>rel-7>sys>doc>uims>ui-dict2.sar.newest"
FS:LHFS-PATHNAHE

The default pathname was accepted causing it to be presented
as both a pathname presentation (Q:>rel-7>sys>doc>uims>ui­
dict2.sar) and a sys:expression presentation
(#P"Q:>rel-7>sys>doc>uims>ui-dict2.sar.newest").

Two handlers defined on the :select gesture are applicable to
both presentations. The first is si:com-show-file, applicable
to expression presentations with a pathname object type, or
pathname presentations of any object type. The second is
dw::quoted-expression, applicable to expression presentations
of any object type. The following table shows the priorities
determined for them by the system relative to the two
presentations in the above example:

Pathname Presentation Expression Presentation
Q:>rel-7>sys>doc> ... #P"Q:>rel-7>sys>doc> ...

Show File 5 5

Quote Expression o 4

For both presentations, the system-generated priority is
highest for the show file handler. However, it was the
system programmer's intent that the quoted expression

Dictionary of User Input Facilities 189

August 1986 define-presentation-trans/ator

handler should be displayed in the mouse documentation line
whenever the mouse is over a presentation of the
sys:expression type, regardless of what other applicable
handlers might be available on the :select gesture.
Therefore, in the definition for this handler, the value of the
:priority option was made 1 .5. This is added to the system­
generated priority of 4 in the bottom right cell of the table
for a total score of 5.5, enough to give this handler
precedence.

:exclude-other-handlers
Boolean option, used with : gesture t handlers, specifying
whether to exclude non-t handlers.

For example, any gesture selects a menu item. The
translator that implements this has a :tester option that
checks, among other things, for the keyword :no-select in the
menu-item list: See the section "The "General List" Form of
Item" in Programming the User Interface, Volume B. If the
menu item includes the :no-select keyword, the translator
does not apply. But, if : excl ude-other-handl ers t were not
specified for this translator, other translators would still apply
to the :no-select item's presentation, like the :menu
(Mouse-R) gesture.

:exclude-other-handlers provides a way of saying "this
translator implements the entire contract for the presentation
it matches".

See the macro "define-presentation-action", page 179.

: blank-area
Boolean option specifying whether the handler is active when
the mouse cursor is over areas of the screen in which no
presentations are displayed; the default is nil.

To ensure that handlers intended to be active only in blank
areas are not active over displayed presentations, use the
dw:no-type presentation type as the [from-]presentation-type
positional argument to the handler.

:do-not-compose
Boolean option specifying whether the value of body is
computed to determine if the handler satisfies the current
input context; the default is nil.

190 Dictionary of User Input Facilities

defin e-pres en ta tion-tran s/a tor August 1986

To see the need for this option, let's consider the default
behavior. For example, if 1) you have a translating mouse
handler that returns integer objects; 2) the mouse cursor is
currently over the handler's from-presentation-type ; 3) any
shift keys modifying the mouse gesture the handler is on are
pressed; and 4) the current input context is for integers, the
default system behavior would be to determine what the body
of the handler returns. If it returns anything other than a
single value of nil, then the handler is applicable; this fact is
indicated in the mouse documentation line and the
presentation is highlighted (if it's not already).

Now, if the input context in this situation was for odd
integers, rather than for any integer - that is, (accept I ((and
; nteger «sat; sf; es oddp»») - by default this handler
would still be run to see if it returns an odd integer, that is,
that the returned object will satisfy the input context
requirements. Only if this is the case will the handler be
available. This is the motivation for the default behavior.

However, some translating handlers have side effects, for
example, popping up a menu or asking a question. It is
unlikely that you want such events occurring merely when a
user of your program waves the mouse over a presentation.
You want this behavior suppressed until the user actually
clicks on the presentation. : do-nat-compose t is how you
express this intent.

As a general rule, avoid defining translators that have side
effects. One way of doing this is by defining side-effecting
handlers explicitly, with define-presentation-action.

arglist The argument list for the body of the handler. The argument
list consists of one positional argument, the object that the
mouse cursor is over, and keyword arguments from a
predefined set.

The following predefined keywords are available for inclusion
in the argument list to a mouse handler body. Their
inclusion makes the named parameters available for use in
the body. The parameter list can specify only those keywords
that are explicitly used.

input-context
The current presentation~input context.

Dictionary of User Input Facilities 191

August 1986 define-presentation-translator

presentation
The presentation instance that the mouse cursor is
over.

handler The handler object of which the body is a part.

mouse-char
The mouse character that triggered the handler.
(This keyword cannot be used in the :tester function
parameter list.)

window The window object in which the current presentation
occurs.

The body of your handler must return at least one value, the presentation
object. Optionally, it can also return keyword-value pairs that you define.
In this case, you must return the presentation type of the object as well.
The object is the first item returned, its presentation type the second;
these are followed by the keyword-value pairs.

One predefined keyword is available, : activate. Supplied with nil, the
activation of input entered via this handler is suppressed, with tit's
promoted. The following example is taken from the system code:

(define-presentation-translator command-name-to-command
(cp:command-name cp:command)
(command-name)

(val ues

'(,command-name) 'command :activate nil))

This translator allows commands displayed as command-name presentations
- for example, in the display generated when you press HELP after entering
the first word of a command to the command processor prompt - to be
used as command object input. Because: act i vate ni 1 is provided, the
command is not executed immediately after clicking on its name; the user
must press RET URN to activate the command.

The values returned by the translator will be used to construct a
presentation blip. You do not make the blip; the handler takes care of this
automatically. Any keywords the translator returns are included in the
options field of the blip. Options can be extracted from blips with the
dw:presentation-blip-options function. For an overview of this and related
functions: See the section "Overview of Presentation Input Blip Facilities",
page 78.

For an overview of define-presentation-translator and related facilities:
See the section "Overview of Mouse Handler Facilities", page 39. For

192 Dictionary of User Input Facilities

dW:delete-presentation-mouse-handler August 1986

information on handler lookup and performance issues: See the section
"How Mouse Handlers Are Found", page 42.

dw:delete-presentation-mouse-handler name Function
Removes an already defined presentation mouse handler.

name The name of the mouse handler to remove.

For an overview of dw:delete-presentation-mouse-handler and related
facilities: See the section "Overview of Mouse Handler Facilities", page 39.

dw:handler-applies-in-limited-context-p context Function
limiting-context-type

This function is intended for use in the :tester forms o(mouse handlers.
It takes a context as provided in the :context keyword argument to a tester,
and a presentation type to use as the limiting-context-type. It returns t if
and only if the presentation type in the context is a subtype of the
limiting-context-type. Because of caching, it is much faster than using
dw:presentation-subtypep for this purpose, and it provides the convenience
of extracting the presentation type from the context. See the function
dw:presentation-subtypep-cached, page 199.

This function is typically used with translating handlers whose
to-presentation-type is a subtype of sys:expression. For example, a
translator from a . bi n pathname to a . 1 i sp pathname may be intended for
use only in the pathname input context, not when any Lisp object is
acceptable. By putting dw:handler-applies-to-limited-context-p in the
:tester of the handler, the handler can be limited to contexts that are
looking for some type of pathname.

Example:

(define-presentation-translator source-file-pathname
(pathname pathname

(pathname)

:tester «ignore &key context)
(dw:handler-applies-in-limited-context-p

context Jpathname)))

(send (send (send pathname :generic-pathname) :get
:qfasl-source-file-unique-id)

:new-pathname :version :newest))

For an overview of dw:handler-applies-in-limited-context-p and related
facilities: See the section "Overview of Mouse Handler Facilities", page 39.

Dictionary of User Input Facilities 193

August 1986 dw :invaJida te-type-handler -tables

dw:invalidate-type-handler-tables Function
Invalidates presentation mouse handler lookup tables. The next time the
tables are accessed, they are updated by this function to reflect any
changes in the type hierarchy affecting handler applicability.

This function gets called by the system whenever a new presentation type
is defined. You need to call it directly only if your presentation-type
definitions change dynamically at runtime, for example, through a flag in
the :abbreviation-for option. However, because the updating of the
handler lookup tables does not occur in real time, you should avoid such
usage.

For an overview of dw:invalidate-type-handler-tables and related facilities:
See the section "Overview of Mquse Handler Facilities", page 39.

dw:menu-choose item-list &key (prompt nil) (default nil) Function
(presentation-type nil) (printer nil) (near-mode
'(:mouse» (superior tv:mouse-sheet) (center-p
dw::*default-menu-center-p*) (character-style
'(:jess :roman :large» (momentary-p t)
(temporary-p dw::momentary-p)

Constructs a menu from a list of items and returns the value associated
with the selected item; also returned are the item and the mouse character
that was used to select it.

item-list A quoted list of items to include in the menu display. A
menu item can have various forms: See the section "The
Form of a Menu Item" in Programming the User Interface,
Volume B.

If you wish to control the mouse documentation associated
with an item, use the "general list" form and include the
:documentation menu-item option.

Example:

(dw:menu-choose '«"First Choice" :value 1
:documentation "Mouse Doc One")

("Second Choice" :value 2
:documentation "Mouse Doc Two")))

The other available menu-item option is :style, specifying the
character style of the individual item. This contrasts with
the :character-style option to dw:menu-choose as a whole,
which specifies the style for all items. If both are specified,
the locally specified :style prevails. For an example, see the
:character-style option; descriptions of this and other options
to dw:menu-choose follow.

194 Dictionary of User Input Facilities

dw:menu-choos9 August 1986

:prompt Specifies a string to use as a title for the menu. The menu
title appears at the top of the menu.

:default Specifies an item in the item-list that is the currently selected
(highlighted) item when the menu is first displayed.

If the item list is a simple one containing symbols, then
specify the default item by its symbol as shown below:

Simple example:

(dw:menu-choose '(a b c) :default 'a)

If the items are themselves lists, then supply the default item
in a fashion similar to that shown in the following example:

(setq item-list '«"One" :value 1) ("Two" :value 2»)
(dw:menu-choose item-list :default (first item-list»

:presentation-type
Specifies the presentation type of the items presented in the
menu. This results in the printer for that presentation type
being used to display the items in the menu.

Because each item (element) in item-list is passed to the
presentation type's printer, using this option is, in general,
only appropriate when item-list is a simple list of objects (as
opposed to a "general list"). In this case, you might also
consider using dw:menu-choose-from-set rather than
dw:menu-choose.

:printer Specifies a function of two arguments for printing the menu
items. The arguments are an object - one element of the
item-list - and a stream. If both this option and the
:presentation-type option are specified, the printer used is
the one specified by this option, not that of the presentation
type.

Example:

(dw:menu-choose '«a :value test)
(b :value 17»

:printer
#'(lambda (object stream)

(format stream
"xxx-Axxx" (car object»»

Dictionary of User Input Facilities 195

August 1986 dw:menu-choose

The example function pops up a menu displaying two choices,
"xxxAxxx" and "xxxBxxx". Clicking on "xxxAxxx" returns
TEST; clicking on "xxxBxxx" returns 17.

: near-mode
Specifies where the menu appears. The default makes it
appear near the position of the mouse cursor at the time the
function is called. For other possibilities: See the method
(flavor:method :expose-near tv:essential-set-edges> in
Programming the User Interface, Volume B.

: superior
Specifies the window that is the superior of the menu
window; the default is tv:mouse-sheet.

:center-p·Boolean option specifying whether items displayed in the
menu are centered, left to right. The default is nil, which
causes the items to be flush left.

: character-style
Specifies the character style for display of menu items. The
default is (:jess :roman :large).

If the :style option for an individual item is specified, this
locally overrides. the :character-style specified for the menu
as a whole, but does not affect other items. The example
below illustrates this:

:momentary-p

(dw:menu-choose '«"First Choice" :value 1
: styl e (nil ni 1 : normal))

("Second Choice" :value 2))
:character-style

'(:serif :bold :very-large))

Boolean option specifying whether the menu is momentary or
temporary; the default is momentary. If you wish to make
the menu temporary, supply a value of nil to this option and t
to the :temporary-p option.

A momentary window is de-activated and returns a value of
nil if the user moves the mouse cursor off the menu. A
temporary menu remains active until the user selects a menu
item.

196 Dictionary of User Input Facilities

dw:menu-choose-from-set August 1986

:temporary-p
Boolean option specifying whether the menu is temporary or
momentary; the default is momentary. If you wish to make
the menu temporary, supply a value of t to this option and nil
to the :momentary-p option.

A momentary window is de-activated and returns a value of
nil if the user moves the mouse cursor off the menu. A
temporary menu remains active until the user selects a menu
item.

For an overview of dw:menu-choose and related facilities: See the section
"Overview of Facilities for Accepting Single Objects", page 35.

dw:menu-choose-from-set list presentation-type &key (printer nil) Function
(prompt nil) (default nil) (near-mode '(:mouse»
(superior tv:mouse-sheet) (center-p
dw::*default-menu-center-p*) (character-style
'(:jess :roman :large» (momentary-p t)
(temporary-p dw::momentary-p)

Constructs a menu from a list of objects of a specified presentation type
and returns the selected object.

This function is similar to dw:menu-choose, but is intended primarily for
presenting a simple list of items in menu format, not items of the "general
list" form that dw:menu-choose handles.

list The list of objects.

presentation-type

Examples:

The presentation type used to present the objects (but see the
:printer option below).

(dw:menu-choose-from-set '(a b c) 'symbol)

(dw:menu-choose-from-set '(#p"sys:site;foo.bar"
#p"y:>doughty>a.b") 'pathname)

(setq item-list '("One" "Two"»
(dw:menu-choose-from-set item-list 'string)

:printer Specifies a function of two arguments for printing menu
items. The arguments are an object - one element of list -

Dictionary of User Input Facilities 197

August 1986 dw:menu-choose-from-set

and a stream. If specified, this printer is used for displaying
menu items rather than that of the specified presentation-type.

Example:

(dw:menu-choose-from-set '(#p"sys:site;config.data"
#p"y:>doty>examples.lisp") 'pathname

:printer
#'(lambda (object stream)

(write-string
(send object :name)
stream»)

The example function creates a menu displaying the choices
"CONFIG" and "EXAMPLES". Pathname objects are still
returned when clicked on; just the appearance in the menu
has changed.

:prompt Specifies a string to use as a title for the menu. The menu
title appears at the top of the menu.

:default Specifies an item to be the currently selected (highlighted)
item when the menu is first displayed.

Examples:

:near-mode

(dw:menu-choose-from-set '(a b c) 'symbol :default 'a)

(setq item-list '("One" "Two"»
(dw:menu-choose-from-set item-list 'string

:default (first item-list»

Specifies where the menu appears. The default makes it
appear near the position of the mouse cursor at the time the
function is called. For other possibilities: See the method
(flavor:method :expose-near tv:essential-set-edges> in
Programming the User Interface, Volume B.

: superior
Specifies the window that is the superior of the menu
window; the default is tv:mouse-sheet.

:center-pBoolean option specifying whether items displayed in the
menu are centered, left to right. The default is nil, which
causes the items to be flush left.

198 Dictionary of User Input Facilities

dw:mouse-char-for-gesture August 1986

: character-style
Specifies the character style for display of menu items. The
default is (:jess :roman :large).

:momentary-p
Boolean option specifying whether the menu is momentary or
temporary; the default is momentary. If you wish to make
the menu temporary, supply a value of nil to this option and t
to the :temporary-p option.

A momentary window is de-activated and returns a value of
nil if the user moves the mouse cursor off the menu. A
temporary menu remains active until the user selects a menu
item.

:temporary-p
Boolean option specifying whether the menu is temporary or
momentary; the default is momentary. If you wish to make
the menu temporary, supply a value of t to this option and nil
to the :momentary-p option.

A momentary window is de-activated and returns a value of
nil if the user moves the mouse cursor off the menu. A
temporary menu remains active until the user selects a menu
item.

For an overview of dw:menu-choose-from-set and related facilities: See
the section "Overview of Facilities for Accepting Single Objects", page 35.

dw:mouse-char-for-gesture gesture Function
Returns the mouse character associated with a gesture. You can use this
function to assign a new gesture symbol to a mouse character.

gesture An existing or new gesture symbol.

To assign your own symbolic name to a mouse character, use the following
form:

(setf (mouse-char-for-gesture gesture) #\mouse-x)

Conventionally, the gesture symbol is a keyword.

For an overview of dw:mouse-char-for-gesture and related facilities: See
the section "Overview of Mouse Gesture Interface Facilities", page 41.

For information on mouse characters: See the section "Mouse Characters"
in Programming the User Interface, Volume B.

Dictionary of User Input Facilities 199

August 1986 dw:mouse-char-gesture

dw:mouse-char-gesture mouse-char Function
Returns the standard gesture associated with a mouse character.

mouse-char
The mouse character (for example, #\mouse-m).

For an overview of dw:mouse-char-gesture and related facilities: See the
section "Overview of Mouse Gesture Interface Facilities", page 41.

For information on mouse characters: See the section "Mouse Characters"
in Programming the User Interface, Volume B.

dw:mouse-char-gestures mouse-char Function
Returns a list of gestures associated with a mouse character.

mouse-char
The mouse character (for example, #\mouse-m).

For an overview of dw:mouse-char-gestures and related facilities: See the
section "Overview of Mouse Gesture Interface Facilities", page 41.

For information on mouse characters: See the section "Mouse Characters"
in Programming the User Interface, Volume B.

dw:presentation-subtypep-cached subtype supertype Function
Determines whether one presentation type is a subtype of another
presentation type.

subtype The putative subtype presentation type.

supertype The putative supertype presentation type.

This is like dw:presentation-subtypep, but it encaches the result of the
lookup. (See the function dw:presentation-subtypep, page 382.) It is
intended primarily for use in the :tester forms of mouse handlers.
Although it is generally more convenient to use
dw:handler-applies-in-limited-context-p, more complex testers may need
dw:presentation-subtypep-cached, on which the former is based:

(defun handler-applies-in-limited-context-p
(context limiting-context-type)

(let «context-type
(presentation-input-context-presentation-type

context)))
(presentation-subtypep-cached

context-type limiting-context-type)))

200 Dictionary of User Input Facilities

prompt-and-accept August 1986

See the function dw:handler-applies-in-limited-context-p, page 192.

For an overview of dw:presentation-subtypep-cached and related facilities:
See the section "Overview of Mouse Handler Facilities", page 39.

prompt-and-accept presentation-type-or-args &optional format-string Function
&rest format-args

Prompts for and accepts user input. (This function is similar to accept; it
differs in its reliance on the format function for creating the input
prompt.)

presentation-type-or-args
Presentation type of the input object or, alternatively, a list of
keyword-value pairs.

Available keywords are the same as those for accept with one
exception. This is the :type keyword, specifying the
presentation type of the input object. If keywords are
provided, one of them must be : type.

format-string
Control string for the format function.

format-args

Example:

Arguments for the format specifiers included in the
format-string.

(prompt-and-accept J(:type string :default "J. Doe")
"Please enter your name")

For an overview of prompt-and-accept and related facilities: See the
section "Overview of Facilities for Accepting Single Objects", page 35.

201

August 1986 Dictionary of Program Output Facilities

PARTV.

Dictionary of Program Output Facilities

202

Programming the User Interface, Volume A August 1986

203

August 1986 Dictionary of Program Output Facilities

16. Dictionary Notes

This dictionary includes reference documentation for both the basic and advanced
facilities provided for doing program output. These are listed in the following two
tables:

Table of Basic Program Output Facilities

Basic Presentation Output Facilities
present
present-to-string
dw:with-output-as-presentation

Character Environment Facilities
with-character-face
with-character-family
with-character-size
with-character-style
abbreviating-output
filling-output
indenting-output
with-underlining

Textual List Formatting Facilities
forma t-textual-list
formatting-textual-list
formatting-textual-list-element

Table Formatting Facilities
formatting-multiple-columns
format-sequence-as-table-rows
format-item-list
formatting-item-list
formatting-table
formatting-column
formatting-column-headings
formatting-row
formatting-cell
format-cell

204

Programming the User Interface, Volume A August 1986

Graph Formatting Facilities
format-graph-from-root
formatting-graph
formatting-graph-node
dw:find-graph-node

Graphic Output Facilities
graphics: draw-string
graphics:draw-point
graphics: draw-arrow
graphics: draw-line
graphics: draw-lines
graphics:draw-cubic-spline
graphics: draw-circle
graphics: draw-ellipse
graphics: draw-triangle
graphics: draw-rectangle
graphics: draw-glyph
graphics: draw-polygon
graphics:draw-regular-polygon
graphics:draw-convex-polygon
graphics: draw-pattern

Progress Indicator Facilities
tv:noting-progress
tv: note-progress
tv:dolist-noting-progress
tv:dotimes-noting-progress

Other Facilities for Program Output
(flavor:method :clear-window dw:dynamic-window)
(flavor:method :clear-history dw:dynamic-window)
(flavor:method :clear-region dw:dynamic-window)
(flavor:method :delete-displayed-presentation dw:dynamic-window)
(flavor:method :visible-cursorpos-limits dw:dynamic-window)
(flavor:method :set-viewport-position dw:dynamic-window)
(flavor:method :y-scroll-position dw:dynamic-window)
(flavor:method :y-scroll-to dw:dynamic-window)
(flavor:method :x-scroll-position dw:dynamic-window)
(flavor:method :x-scroll-to dw:dynamic-window)
(flavor:method :with-output-recording-disabled dw:dynamic-window)
dw:with-own-coordinates
surrounding-output-with-border
dw:tracking-mouse

205

August 1986 Dictionary of Program Output Facilities

dw::with-output-truncation
dw:displayed-presentation-set-highlighting
dw:displayed-presentation-clear-highlighting

Table of Advanced Program Output Facilities

Advanced Presentation Output Facilities
dw:with-output-to-presentation-recording-string
dw:with-replayable-output
dw:with-resortable-output

Redisplay Facilities
dw:redisplayable-present
dw:redisplayable-format
dw:independently-redisplayable-format
dw:with-redisplayable-output
dw:redisplayer
dw:do-redisplay

Facilities for Writing Formatted Output Macros
dw:continuation-output-size
dw:named-value-snapshot-continuation

In the dictionary, the facilities are arranged in alphabetical order (package
preiIxes excluded).

For conceptual documentation: See the section "Overview of Program Output
Facilities", page 47.

206

Programming the User Interface, Volume A August 1986

Dictionary of Program Output Facilities 207

August 1986 abbreviating-output

17. The Facilities

abbreviating-output (&optional stream &key width height Macro
lozenge-returns show-abbreviation
abbreviate-initial-whitespace) &body body

Binds local environment such that character output is abbreviated. That is,
output exceeding a specified width or height (in characters) is truncated.

stream The output stream; the default is *standard-output*.

:width Specifies the width, in characters, beyond which abbreviation
occurs, or t or nil. If nil, the default, individual lines are not
truncated. If t, the width used is the value returned by the
stream's :size-in-characters.

: height Specifies the height, in lines, beyond which abbreviation
occurs, or t or nil. If nil, the default, no truncation occurs.
If t, the height used is the value returned by the stream's
:size-in-characters.

:lozenge-returns
Boolean option specifying whether #\return characters at line
truncations are displayed within a lozenge, rather than
causing a newline; the default is nil.

:show-ab breviation
Boolean option specifying whether an ellipsis (...) is
displayed where output truncation occurs. The default is nil,
meaning that there is no explicit indication that truncation
has occurred.

:abbreviate-initial-whitespace
Boolean option specifying that initial whitespace (spaces, tabs,
newlines) be suppressed; the default is nil.

208 Dictionary of Program Output Facilities

abbreviating-output August 1986

Example:

(defun abbrev-test (width height lozenge-p)
(abbreviating-output «) :width width :height height

:lozenge-returns lozenge-p
:show-abbreviation t)

(loop for row from 1 to 20 do
(terpri)
(loop for col from 1 to 100 do

(format T " -d:-d" row col)))))

(abbrev-test 42 10 nil)

The body code continues to run normally to completion, even though its
output to stream may be truncated.

Within abbreviating-output, the :set-cursorpos operation is restricted.
Only the x position may be specified, and then, only in characters.

For an overview of abbreviating-output and related facilities: See the
section "Overview of Character Environment Facilities", page 49.

:clear-history of dw:dynamic-window Method
Eliminates all items in the output history of the window, and resets the
viewport to the top of the history.

For an overview of (flavor:method :clear-history dw:dynamic-window)
and related facilities: See the section "Overview of Other Facilities for
Program Output", page 60.

:clear-region left top right bottom of dw:dynamic-window Method
Clears the output display in a rectangular area of the window. Specify the
region in terms of absolute window coordinates.

left The x-coordinate for the left edge of the cleared area.

top The y-coordinate for the top edge of the cleared area.

right The x-coordinate for the right edge of the cleared area.

bottom The y-coordinate for the bottom edge of the cleared area.

For an overview of (flavor:method :clear-region dw:dynamic-window) and
related facilities: See the section "Overview of Other Facilities for
Program Output", page 60.

:clear-window of dw:dynamic-window Method
Scrolls the window forward in the vertical dimension far enough to
eliminate previous output from the current display. Note that only the
display is affected, not the window's output history.

Dictionary of Program Output Facilities 209

August 1986 dw:continuation-oufpuf-size

For an overview of (flavor:method :clear-window dw:dynamic-window)
and related facilities: See the section "Overview of Other Facilities for
Program Output", page 60.

dw:continuation-output-size continuation stream &optional (unit Function
:pixel)

Determines the amount of space a specified continuation would require for
output on a specified stream. Four values are returned: width, height,
cursor-motion-x, and cursor-motion-y.

The continuation is funcalled with a single argument, an internal stream,
which tracks the cursor motion caused by the output code of continuation.

continuation
The continuation to run.

stream The output stream. This must be supplied, even though no
output is actually sent to it, because information about the
stream is necessary. For example, if a :string-Iength
message is involved, the default character style for the
stream is needed information.

unit The unit of measure. The default is :pixel; the other possible
value is : character.

Example:

(defmacro centering-about-point «stream x y) &body body)
l(centering-about-point-internal

(zl :named-lambda centering-about-point (Jstream) J@body)
Jstream JX JY))

(defun centering-about-point-internal (continuation stream x y)
(multiple-value-bind (width height)

(dw:continuation-output-size continuation stream)
(let «start-x (- x (round width 2)))

(start-y (- y (round height 2))))
(dw:in-sub-window (stream start-x start-y width height)

(funcall continuation stream))
;; Drawing the lines is just to verify the centering
(graphics:draw-line start-x start-y (+ start-x width) (+ start-y height))
(graphics:draw-line (+ start-x width) start-y start-x (+ start-y height))
)))

210 Dictionary of Program Output Facilities

dw:continuation-output-size August 1986

;;; Some code to test it
(defun test-centering ()

(send *standard-output* :clear-window)
(multiple-value-bind (left top right bottom)

(send *standard-output* :visible-cursorpos-limits)
(let «center-x (round (+ left right) 2»

(center-y (round (+ top bottom) 2»)
(centering-about-point (*standard-output* center-x center-y)

;; Surround with border just to show the bounding box of the output
(dw:surrounding-output-with-border (*standard-output*)

;; Generate some output
(cp:execute-command "Show Flavor Handler"

':tyo'dw:dynamic-window
:code :detailed»»

;; Drawing the lines is just to verify the centering
(graphics:draw-line left top right bottom)
(graphics:draw-line right top left bottom)
;; Pause to read a character before the command prompt
;;clobbers our carefully crafted output.
(read-char»)

" In a full-size Lisp Listener, try
" (with-character-size (:large) (test-centering»

For an overview of dw:continuation-output-size and related facilities: See
the section "Overview of Facilities for Writing Formatted Output Macros",
page 66.

:delete-displayed-presentation displayed-presentation of Method
dw:dynamic-window

Deletes an already displayed presentation from a Dynamic Window's output
history and display.

displayed-presentation
The presentation to delete.

For an overview of
(flavor:method :delete-displayed-presentation dw:dynamic-window) and
related facilities: See the section "Overview of Other Facilities for
Program Output", page 60.

Dictionary of Program Output Facilities 211

August 1986 dw:disp/ayed-presen tation-c/ear-highlighting

dW:displayed-presentation-clear-highlighting
displayed-presentation window &optional

(highlighting-mode :underline)
Eliminates highlighting of a displayed presentation (see
dw:displayed-presentation-set-highlighting).

displayed-presentation
The highlighted presentation.

window The window displaying the presentation.

highlighting-mode

Generic Function

The mode in which the displayed presentation is highlighted,
either :underline (the default for
dw:displayed-presentation-set-highlighting) or
: inverse-video.

For an overview of dw:displayed-presentation-clear-highlighting and
related facilities: See the section "Overview of Other Facilities for
Program Output", page 60.

dw:displayed-presentation-set-highlighting
displayed-presentation window &optional
(highlighting-mode :underline)

Highlights a displayed presentation.

displayed-presentation
The presentation to highlight.

window The window displaying the presentation.

highlighting-mode

Generic Function

Either :underline (the default) or : inverse-video.

For an overview of dw:displayed-presentation-set-highlighting and related
facilities: See the section "Overview of Other Facilities for Program
Output", page 60.

dw:do-redisplay redisplay-piece &optional (stream Generic Function
standard-output) &key full-set-cursorpos
truncate-p

Causes incremental redisplay from a redisplay object (created by
dw:redisplayer: See the macro dw:redisplayer, page 258.). It runs the
code in the body of the redisplayer, doing output to stream with respect to
the display cache points described under dw:with-redisplayable-output:
(See the macro dw:with-redisplayable-output, page 273.)

212 Dictionary of Program Output Facilities

tv:dolist-noting-progress August 1986

redisplay-piece
The redisplay object.

stream The output stream; the default is *standard-output*.

:full-set-cursorpos
Boolean option specifying whether the cursor will move
backwards or sideways, rather than in strict tty style, so that
a special stream is necessary; the default is nil.

:truncate-p
Option specifying whether to do the redisplay with the output
stream in truncate mode. With: truncate-p n; 1, the default,
the output window rescrolls to update separate parts of the
display. With : truncate-p t, some updating happens off­
screen.

A third value permitted for this option is : if-necessary. In
this case, dw:do-redisplay simulates, if necessary, some
cursor motion on behalf of the output stream.

dw:do-redisplay is one of a number of facilities used to do incremental
redisplay. For examples, see the file sys:examples;incremental­
redisplay.lisp.

For an overview of dw:do-redisplay and related facilities: See the section
"Overview of Advanced Presentation Output Facilities", page 63.

tv:dolist-noting-progress (var listform name &optional Macro
(progress-note-variable
'tv:*current-progress-note*) (process
'sys:current-process)) &body body

Binds local environment such that the progress of a dolist special form is
noted by a progress bar displayed in the status line at the bottom of the
screen.

var A variable bound to each successive element in listform on
each successive iteration.

listform The list.

name A string naming the operation being noted. This string is
displayed with the progress bar.

progress-note-variable
The variable bound to the note object; the default is
tv:*current-progress-note* .

Dictionary of Program Output Facilities 213

August 1986 tv:dotimes-noting-progress

process The process on whose behalf the progress is noted; the
default is sys:current-process. This is used to determine the
precedence of notes.

Example:

(defun note-element-printing (list)
(tv:dolist-noting-progress (element list "Printing elements")

(print element)
(sleep 1)))

For an overview of tV:dolist-noting-progress and related facilities: See the
section "Overview of Progress Indicator Facilities", page 59.

tv:dotimes-noting-progress (var countform name &optional Macro
(progress-note-variable
'tv:*current-progress-note*) (process
'sys:current-process)) &body body

Binds local environment such that the progress of a do times special form
is noted by a progress bar displayed in the status line at the bottom of the
screen.

var A variable bound to the count (0, 1, 2, and so on) on each
successive iteration.

countform

name

The number of iterations.

A string naming the operation being noted. This string is
displayed with the progress bar.

progress-note-variable
The variable bound to the note object; the default is
tv:*current-progress-note* .

process The process on whose behalf the progress is noted; this is
used to determine the precedence of notes.

Example:

(defun note-square-roots (n)
(tv:dotimes-noting-progress

(count n "Calculating square roots")
(sqrt count)))

For an overview of tv:dotimes-noting-progress and related facilities: See
the section "Overview of Progress Indicator Facilities", page 59.

214 Dictionary of Program Output Facilities

graphics:draw-arrow August 1986

graphics:draw-arrow from-x from-y to-x to-y &key (stream
standard-output) (alu :draw)
(arrow-head-length
graphics::*default-arrow-Iength*)
(arrow-base-width
graphics::*default-arrow-width*) (dashed nil)
dash-spacing dash-length initial-dash-phase
(draw-partial-dashes t)

Draws an arrow.

from-x The x-coordinate for the base of the arrow.

from-y The y-coordinate for the base of the arrow.

to-x The x-coordinate for the tip of the arrow.

to-y The y-coordinate for the tip of the arrow.

Function

:stream Specifies the output stream; the default is *standard-output*.

:alu Specifies the drawing mode. Possible values for this option
are:

:draw Pixels specified by the graphics function are turned
on, regardless of whether some of the pixels were
already on. This is the default drawing mode.

:erase Pixels specified by the graphics function are turned
off, regardless of whether some of the pixels were
already off.

: flip Pixels specified by the graphics function are turned
on if they were previously off, and off if they were
previously on.

:arrow-head-Iength
Specifies the length, in pixels, of the arrowhead; the default
is 12.

: arrow-base-width
Specifies the width, in pixels, of the base of the arrowhead;
the default is 5.

:dashed Boolean option specifying whether the shaft of the arrow is
drawn as a series of dashes; the default is nil.

: dash-spacing
Specifies the distance, in pixels, between dashes.

Dictionary of Program Output Facilities 215

August 1986 graphics:draw-circle

: dash-length
Specifies the length, in pixels, of individual dashes.

:initial-dash-phase
Specifies the offset, in pixels, of the start of the first dash
from the starting point of the line.

:draw-partial-dashes
Boolean option specifying whether a partial dash is drawn at
the end of a dashed line so that it reaches its specified end­
point; the default is t.

For an overview of graphics:draw-arrow and related functions: See the
section "Overview of Graphic Output Facilities", page 57.

graphics: draw-circle center-x center-y radius &key (stream
standard-output) (alu :draw) (inner-radius
0) (thickness 1) (start-angle 0) (end-angle
(* pi 2» (filled t) (mask nil)

Draws a circle.

center-x The x-coordinate for the center of the circle.

center-y The y-coordinate for the center of the circle.

radius The radius of the circle.

Function

:stream Specifies the output stream; the default is *standard-output*.

:alu Specifies the drawing mode. Possible values for this option
are:

:draw Pixels specified by the graphics function are turned
on, regardless of whether some of the pixels were
already on. This is the default drawing mode.

:erase Pixels specified by the graphics function are turned
off, regardless of whether some of the pixels were
already off.

:flip Pixels specified by the graphics function are turned
on if they were previously off, and off if they were
previously on.

:inner-radius
Specifies the inner radius of a (filled) ring figure. When
using this option, do not specify the :thickness and :filled
options.

216 Dictionary of Program Output Facilities

graphics:draw-convex-polygon August 1986

: thickness
Specifies the thickness, in pixels, of the line drawn; the
default is 1.

If you specify this option to a value greater than 1, the
resulting figure is unfilled, regardless of the value specified
by the :filled option. The extra thickness is added to the
interior of the figure.

: start-angle
[Not implemented]

: end-angle
[Not implemented]

: filled Boolean option specifying whether all pixels within the figure
are turned on, or only the outline pixels; the default is t.

: mask [Not implemented]

For an overview of graphics:draw-circle and related functions: See the
section "Overview of Graphic Output Facilities", page 57.

graphics:draw-convex-polygon points &key (stream Function
·standard-output*) (alu :draw) (mask nil)
(filled t)

Draws a convex polygon. This function is more efficient than
graphics:draw-polygon for drawing convex polygons. If you cannot
guarantee that the points argument will describe a convex figure, use the
latter function.

points A list of points in the form (xl yl x2 y2 ... xn yn); these form
the points of the polygon.

:stream Specifies the output stream; the default is ·standard-output·.

:alu Specifies the drawing mode. Possible values for this option
are:

:draw Pixels specified by the graphics function are turned
on, regardless of whether some of the pixels were
already on. This is the default drawing mode.

:erase Pixels specified by the graphics function are turned
off, regardless of whether some of the pixels were
already off.

Dictionary of Program Output Facilities 217

August 1986 graphics:draw-cubic-spline

: flip Pixels specified by the graphics function are turned
on if they were previously off, and off if they were
previously on.

:mask [Not implemented]

:filled Boolean option specifying whether all pixels within the figure
are turned on, or only the outline pixels; the default is t.

For an overview of graphics:draw-convex-polygon and related functions:
See the section "Overview of Graphic Output Facilities", page 57.

graphics:draw-cubic-spline points &key (stream
standard-output) (alu :draw) (thickness 1)
(filled nil) (start-relaxation :relaxed)
(end-relaxation graphics: : start-relaxation)
(mask nil)

Draws a cubic spline through a series of points.

points A list of points in the form (xl yl x2 y2 _._ xn yn).

Function

:stream Specifies the output stream; the default is *standard-output*.

:alu Specifies the drawing mode. Possible values for this option
are:

:draw Pixels specified by the graphics function are turned
on, regardless of whether some of the pixels were
already on. This is the default drawing mode.

:erase Pixels specified by the graphics function are turned
off, regardless of whether some of the pixels were
already off.

: flip Pixels specified by the graphics function are turned
on if they were previously off, and off if they were
previously on.

: thickness
Specifies the thickness, in pixels, of the line drawn; the
default is 1.

:filled Boolean option specifying whether all pixels within the figure
are turned on, or only the outline pixels; the default is t.

[Not implemented for graphics:draw-cubic-spline.]

218 Dictionary of Program Output Facilities

graphics :dra w-e/lipse August 1986

:start-relaxa tion
Determines the derivative of the curve at its starting point
(xl yl) and, by default, its ending point (xn yn). Three values
are possible:

:relaxed The derivatives at the end-points are set to values
that continue the trend of the curve established by
neighboring points.

: cyclic Forces the derivatives at the two end-points of the
curve to be equal. When the starting and ending
points are equal, this value results in a smooth,
continuous curve.

: anti-cyclic

: end-relaxation

Forces the derivatives at the two end-points of the
curve to be equal in magnitude but opposite in sign.
When the starting and ending points are equal, this
value causes the curve to come to a point.

By default, this is set to the value of :start-relaxation, which
is always what you want.

:mask [Not implemented]

For an overview of graphics:draw-cubic-spline and related functions: See
the section "Overview of Graphic Output Facilities", page 57.

graphics: draw-ellipse center-x center-y semi-major-x semi-major-y Function
semi-minor-x semi-minor-y &key (stream
standard-output) (alu :draw) (filled nil)
(mask nil) (thickness 1)

Draws an ellipse. The ellipse is aligned rectangularly; that is, the axes of
the ellipse must lie along the vertical and horizontal axes of the display
window.

center-x The horizontal center of the ellipse.

center-y The vertical center of the ellipse.

semi-major-x
The x-coordinate of one end-point of the major axis.

semi-major-y
The y-coordinate of one end-point of the major axis.

Dictionary of Program Output Facilities 219

August 1986 graphics:draw-glyph

semi-minor-x
The x-coordinate of one end-point of the minor axis.

semi-minor-y
The y-coordinate of one end-point of the minor axis.

:stream Specifies the output stream; the default is *standard-output*.

:alu Specifies the drawing mode. Possible values for this option
are:

:draw Pixels specified by the graphics function are turned
on, regardless of whether some of the pixels were
already on. This is the default drawing mode.

:erase Pixels specified by the graphics function are turned
off, regardless of whether some of the pixels were
already off.

: flip Pixels specified by the graphics function are turned
on if they were previously off, and off if they were
previously on.

:filled Boolean option specifying whether all pixels within the figure
are turned on, or only the outline pixels; the default is t.

:mask [Not implemented]

: thickness
Specifies the thickness, in pixels, of the line drawn; the
default is 1.

For an overview of graphics:draw-ellipse and related functions: See the
section "Overview of Graphic Output Facilities", page 57.

graphics:draw-glyph index font x y &key (stream
standard-output) (alu :draw)

Draws a figure referenced by a font array.

index

font

The index into the font array.

The font.

Function

x

y

The x-coordinate where the glyph is drawn (left edge).

The y-coordinate where the glyph is drawn (baseline).

:stream Specifies the output stream; the default is *standard-output*.

220 Dictionary of Program Output Facilities

graphics:draw-line August 1986

:alu

Example:

Specifies the drawing mode. Possible values for this option
are:

:draw Pixels specified by the graphics function are turned
on, regardless of whether some of the pixels were
already on. This is the default drawing mode.

:erase Pixels specified by the graphics function are turned
off, regardless of whether some of the pixels were
already off.

:flip Pixels specified by the graphics function are turned
on if they were previously off, and off if they were
previously on.

(de fun glyph-example ()
(graphics:draw-glyph (char-code #\~) fonts:mouse 100 100»

To see the elements of a font, use the Show Font command. To see the
list of loaded fonts, press the HELP key to the Show Font command. For
more information on fonts, including information on how to create your
own: See the section "Font Editor" in Text Editing and Processing.

For an overview of graphics:draw-glyph and related functions: See the
section "Overview of Graphic Output Facilities", page 57.

graphics:draw-line start-x start-y end-x end-y &key (stream
standard-output) (alu :draw)
(draw-end-point t) (mask nil) (thickness 1)
(dashed nil) dash-spacing dash-length
initial-dash-phase (draw-partial-dashes t)

Draws a line.

start-x The x-coordinate of the starting point.

start-y The y-coordinate of the starting point.

end-x The x-coordinate of the ending point.

en-dey The y-coordil1ate of the ending point.

Function

:stream Specifies the output stream; the default is *standard-output*.

:alu Specifies the drawing mode. Possible values for this option
are:

:draw Pixels specified by the graphics function are turned

Dictionary of Program Output Facilities 221

August 1986 graphics:draw-line

on, regardless of whether some of the pixels were
already on. This is the default drawing mode.

:erase Pixels specified by the graphics function are turned
off, regardless of whether some of the pixels were
already off.

: flip Pixels specified by the graphics function are turned
on if they were previously off, and off if they were
previously on.

:draw-end-point
Boolean option specifying whether to draw the final point; the
default is t.

:mask [Not implemented]

: thickness
Specifies the thickness, in pixels, of the line drawn; the
default is 1.

:dashed Boolean option specifying whether the line is drawn as a
series of dashes; the default is nil.

: dash-spacing
Specifies the distance, in pixels, between dashes.

: dash-length
Specifies the length, in pixels, of individual dashes.

:initial-dash-phase
Specifies the offset, in pixels, of the start of the first dash
from the starting point of the line.

: draw-partial-dashes
Boolean option specifying whether a partial dash is drawn at
the end of a dashed line so that it reaches its specified end­
point; the default is t.

For an overview of graphics:draw-line and related functions: See the
section "Overview of Graphic Output Facilities", page 57.

graphics: draw-lines points &key (stream *standard-output*) (alu
:draw) (mask nil) (thickness 1) (draw-end-point
t) (closed nil) (dashed nil) dash-spacing
dash-length initial-dash-phase

Function

222 Dictionary of Program Output Facilities

graphlcs:draw-Ilnes August 1986

(draw-partial-dashes t)
Draws a connected series of line segments.

points A list of points in the form (xl yl x2 y2 ... xn yn).

:stream Specifies the output stream; the default is *standard-output*.

:alu Specifies the drawing mode. Possible values for this option
are:

:draw Pixels specified by the graphics function are turned
on, regardless of whether some of the pixels were
already on. This is the default drawing mode.

:erase Pixels specified by the graphics function are turned
off, regardless of whether some of the pixels were
already off.

: flip Pixels specified by the graphics function are turned
on if they were previously off, and off if they were
previously on.

:mask [Not implemented]

: thickness
Specifies the thickness, in pixels, of the line drawn; the
default is 1.

:draw-end-point
Boolean option specifying whether to draw the final point; the
default is t.

:dashed Boolean option specifying whether the lines are drawn as
series of dashes; the default is nil.

: dash-spacing
Specifies the distance, in pixels, between dashes.

:dash-Iength
Specifies the length, in pixels, of individual dashes.

:initiaI-dash-phase
Specifies the offset, in pixels, of the start of the first dash
from the starting point of the line.

Dictionary of Program Output FacJJ/tles 223

August 1986 graphics:draw-pattern

: draw-partial-dashes
Boolean option specifying whether a partial dash is drawn at
the end of a dashed line so that it reaches its specified end­
point; the default is t.

For an overview of graphics:draw-lines and related functions: See the
section "Overview of Graphic Output Facilities", page 57.

graphics:draw-pattern left top pattern &key (stream Function
standard-output) (alu :draw) (right nil)
(bottom nil) (pattern-left 0) (pattern-top 0)
(copy-pattern nil)

Draws a pattern of display bits/pixels. To copy the pattern over a wide
area, use the :right and : bottom options to this function.

left The left edge of the window area where the pattern is drawn.

top The top edge of the window area where the pattern is drawn.

pattern The raster array containing the pattern to be drawn. You
can provide your own raster - the tv:make-binary-gray
function is useful here (see example below) - or use one of
the standard, background-gray patterns: tv:25%-gray,
tv: 33%-gray, tv:50%-gray, or tv:750/0-gray.

:stream Specifies the output stream; the default is *standard-output*.

:alu Specifies the drawing mode. Possible values for this option
are:

:draw Pixels specified by the graphics function are turned
on, regardless of whether some of the pixels were
already on. This is the default drawing mode.

:erase Pixels specified by the graphics function are turned
off, regardless of whether some of the pixels were
already off.

:flip Pixels specified by the graphics function are turned
on if they were previously off, and off if they were
previously on.

: right Specifies the right edge of the window area where the pattern
is drawn.

: bottom Specifies the bottom edge of the window area where the
pattern is drawn.

224 Dictionary of Program Output Facilities

graphics:draw-pattern August 1986

:pattern-Ieft
Specifies the column in the pattern array that is the first one
drawn. This controls the pattern's phase in the horizontal
dimension.

:pattern-top
Specifies the row in the pattern array that is the first one
drawn. This controls the pattern's phase in the vertical
dimension.

: copy-pattern

Examples:

Boolean option specifying whether to copy the pattern array
to another array, used when displaying the output history of
the window.

The default is nil, appropriate when the pattern array
remains constant. However, if the pattern array can change
between calls to this function, and you wish the originally
displayed pattern to be the one retained in the output history,
then set this option to t.

(defun standard-gray-pattern ()
(dw:with-own-coordinates ()

(graphics:draw-pattern 300 100 tV:50%-gray :right 500
:bottom 300)))

(de fun ones-pattern ()
(let «raster (tv:make-binary-gray 8 8

J(#b00000000 The picture of what you
#b00001000 want the bit pattern
#b00111000 displayed to look like J in
#b00001000
#b00001000
#b00001000
#b00001000
#b00111110))))

(dw:with-own-coordinates ()

this case the number 1.
Notice the #b in front of
each number to force the
reader into binary.

(graphics:draw-pattern 300 300 raster :right 500
:bottom 500))))

For an overview of graphics:draw-pattern and related functions: See the
section "Overview of Graphic Output Facilities", page 57.

Dictionary of Program Output Facilities 225

August 1986 graphics:draw-point

graphics:draw-point X Y &key (stream *standard-output*) (alu Function
: draw)

Draws a point.

X The point's x-coordinate.

y The point's y-coordinate.

:stream Specifies the output stream; the default is *standard-output*.

:alu Specifies the drawing mode. Possible values for this option
are:

:draw Pixels specified by the graphics function are turned
on, regardless of whether some of the pixels were
already on. This is the default drawing mode.

:erase Pixels specified by the graphics function are turned
off, regardless of whether some of the pixels were
already off.

:flip Pixels specified by the graphics function are turned
on if they were previously off, and off if they were
previously on.

For an overview of graphics:draw-point and related functions: See the
section "Overview of Graphic Output Facilities", page 57.

graphics:draw-polygon points &key (stream *standard-output*)
(alu :draw) (mask nil) (filled t)

Draws a polygon connecting a set of points.

Function

points A list of points in the form (xl yl x2 y2 ... xn yn); these form
the points of the polygon.

:stream Specifies the output stream; the default is *standard-output*.

:alu Specifies the drawing mode. Possible values for this option
are:

:draw Pixels specified by the graphics function are turned
on, regardless of whether some of the pixels were
already on. This is the default drawing mode.

:erase Pixels specified by the graphics function are turned
off, regardless of whether some of the pixels were
already off.

226 Dictionary of Program Output Facilities

graphics:draw-rectangle August 1986

: flip Pixels specified by the graphics function are turned
on if they were previously off, and off if they were
previously on.

:mask [Not implemented]

: filled Boolean option specifying whether all pixels within the figure
are turned on, or only the outline pixels; the default is t.

For an overview of graphics:draw-polygon and related functions: See the
section "Overview of Graphic Output Facilities", page 57.

graphics: draw-rectangle left top right bottom &key (stream
standard-output) (alu :draw) (filled t)
(thickness 1) (pattern t) (mask nil)

Draws a rectangle.

left The x-coordinate of the left side of the rectangle.

top The y-coordinate of the top side of the rectangle.

right The x-coordinate of the bottom side of the rectangle.

bottom The y-coordinate of the bottom side of the rectangle.

Function

:stream Specifies the output stream; the default is *standard-output*.

:alu Specifies the drawing mode. Possible values for this option
are:

:draw Pixels specified by the graphics function are turned
on, regardless of whether some of the pixels were
already on. This is the default drawing mode.

: erase Pixels specified by the graphics function are turned
off, regardless of whether some of the pixels were
already off.

:flip Pixels specified by the graphics function are turned
on if they were previously off, and off if they were
previously on.

: filled Boolean option specifying whether all pixels within the figure
are turned on, or only the outline pixels; the default is t.

:thickness
Specifies the thickness, in pixels, of the line drawn; the
default is 1.

Dictionary of Program Output Facilities 227

August 1986 graphics:draw-regu!ar-polygon

To make use of this option, you must specify the :filled option
with a value of nil. The additional thickness is added to the
interior of the figure.

:pattern Specifies a raster array containing a pattern to be drawn
within the rectangle. You can provide your own raster - see
the example given for graphics:draw-pattern - or use, one of
the standard, background-gray patterns: tv:25%-gray,
tv:33%-gray, tv:50%-gray, or tv: 75%-gray.

This option overrides the : fi 11 ed t option.

:mask [Not implemented]

For an overview of graphics:draw-rectangle and related functions: See
the section "Overview of Graphic Output Facilities", page 57.

graphics:draw-regular-polygon start-x start-y end-x end-y Function
number-of-sides &key (stream
standard-output) (alu :draw) (handedness
:left) (mask nil) (filled t)

Given the starting and ending coordinates for a single side and the number
of sides, draws a regular polygon.

start-x The x-coordinate of the starting point for side 1.

start-y The y-coordinate of the starting point for side 1.

end-x The x-coordinate of the ending point for side 1.

end-y The y-coordinate of the ending point for side 1.

number-of-sides
The total number of sides.

:stream Specifies the output strean1; the default is *standard-output*.

:alu Specifies the drawing mode. Possible values for this option
are:

:draw Pixels specified by the graphics function are turned
on, regardless of whether some of the pixels were
already on. This is the default drawing mode.

:erase Pixels specified by the graphics function are turned
off, regardless of whether some of the pixels were
already off.

228 Dictionary of Program Output Facilities

graphics :dra w-string August 1986

:flip Pixels specified by the graphics function are turned
on if they were previously off, and off if they were
previously on.

: handedness
Specifies whether the polygon is drawn to the :left or :right
of side 1. The default is : left, meaning that, if you were
located at (start-x start-y) and facing (end-x end-y), the
polygon would be drawn to your left.

:mask [Not implemented]

:filled Boolean option specifying whether all pixels within the figure
are turned on, or only the outline pixels; the default is t.

For an overview of graphics:draw-regular-polygon and related functions:
See the section "Overview of Graphic Output Facilities", page 57.

graphics:draw-string string start-x start-y &key (toward-x
(1+ graphics::start-x» (toward-y
graphics::start-y) (stream ·standard-output*)
(alu :draw) (stretch-p nil) (mask nil)

Draws a character string.

string The string.

Function

start-x The x-coordinate where drawing of the string begins. This
argument specifies the left edge of the first character.

start-y The y-coordinate where drawing of the string begins. This
argument specifies the baseline of the first character.

:toward-x
The x-coordinate toward which the string is drawn. The
default value is one greater than the starting x-coordinate,
meaning that the string is drawn to the right; its deviation
from the horizQntal is determined by the :toward-y option.

:tnWllt"l'1-v
. - - .• --- - oJ

The y-coordinate toward which the string is drawn. The
default value is equal to the starting y-coordinate, meaning
that the string is drawn horizontally.

:stream Specifies the output stream; the default is *standard-output*.

:alu Specifies the drawing mode. Possible values for this option
are:

Dictionary of Program Output Facilities 229

August 1986 graphics:draw-triangle

:draw Pixels specified by the graphics function are turned
on, regardless of whether some of the pixels were
already on. This is the default drawing mode.

:erase Pixels specified by the graphics function are turned
off, regardless of whether some of the pixels were
already off.

: flip Pixels specified by the graphics function are turned
on if they were previously off, and off if they were
previously on.

:stretch-p
Boolean option specifying whether the characters are spaced
evenly between the starting (start-x start-y) and ending
(:toward-x <end-x> :toward-y <end-y» coordinates.

If the space provided is greater than that required by the
default spacing between characters of the given style, then
additional spacing is inserted; the string is stretched. If the
space is less than that required by the default spacing, space
is eliminated; the string is compressed.

The default is nil, meaning that the default spacing for the
character style in question is used, regardless of the distance
between the starting and ending coordinates.

:mask [Not implemented]

To control the character style in which the string is drawn, use this
function inside the body of a character-style macro, for example,
with-character-style.

For an overview of graphics:draw-string and related functions: See the
section "Overview of Graphic Output Facilities", page 57.

graphics:draw-triangle xl yl x2 y2 x3 y3 &key (stream
standard-output) (alu :draw) (filled t) (mask
nil)

Draws a triangle.

xl The x-coordinate of the first point of the triangle.

yl The y-coordinate of the first point of the triangle.

x2 The x-coordinate of the second point of the triangle.

y2 The y-coordinate of the second point of the triangle.

Function

230 Dictionary of Program Output Facilities

filling-output August 1986

x3

y3

The x-coordinate of the third point of the triangle.

The y-coordinate of the third point of the triangle.

:stream Specifies the output stream; the default is *standard-output*.

:alu Specifies the drawing mode. Possible values for this option
are:

:draw Pixels specified by the graphics function are turned
on, regardless of whether some of the pixels were
already on. This is the default drawing mode.

:erase Pixels specified by the graphics function are turned
off, regardless of whether some of the pixels were
already off.

: flip Pixels specified by the graphics function are turned
on if they were previously off, and off if they were
previously on.

: filled Boolean option specifying whether all pixels within the figure
are turned on, or only the outline pixels; the default is t.

:mask [Not implemented]

For an overview of graphics:draw-triangle and related functions: See the
section "Overview of Graphic Output Facilities", page 57.

filling-output (&optional stream &key fill-column (fill-on-spaces t) Macro
after-line-break after-line-break-initially-too)
&body body

Binds local environment such that character output is filled; that is,
filling-output makes sure that any output done within its body does not
split "words" across lines.

"Words" are separated by spaces. When a line is broken to keep from
wrapping past the end of a line, the line break is made at a space.

strea.m

:fill-column
Specifies the length, in pixels, of filled lines. :fill-column is
the cursorpos of the right end of the line.

If :fill-column is unspecified, line length is determined as
follows: If the underlying stream supports the

Dictionary of Program Output Facilities 231

August 1986 dw:find-graph-node

:visible-cursorpos-limits message, as do all Dynamic
Windows, the right-hand cursorpos limit is used. Otherwise,
if the underlying stream supports the :inside-size message,
the inside size is used. If neither of the two preceding
messages are supported, simple character counting is used,
and lines are filled to 95 characters in width.

: after-line-break
Specifies a string to be sent to stream after line breaks; the
string appears at the beginning of each new line.

:after-line-break-initially-too
Boolean option specifying whether the :after-line-break text
is to be written to stream before doing body, that is, at the
beginning of the first line; the default is nil.

:fill-on-spaces
Boolean option specifying whether lines are to be filled at
spaces, the default behavior.

If nil, lines are filled at the text resulting from sending the
:conditional-string-out message (undocumented) to the
internal stream supporting filling-output.

Example:

(defun filling-test ()
(fresh-line)
(filling-output (*standard-output*

:fill-column 42B
:after-line-break "Hi Dad J "

:after-line-break-initially-too t)
(loop for i from 1 to 1BB

do
(Format t "Hello Hom! H»~»~

For an overview of filling-output and related facilities: See the section
"Overview of Character Environment Facilities", page 49.

dw:find-graph-node redisplay-helper-stream id &key (key Generic Function
#'identity) (test #'eql)

Searches for a node object given its symbol and the output stream on which
it is to be displayed. The function returns the object if it finds It, nil
otherwise.

232 Dictionary of Program Output Facilities

format-cell August 1986

Node objects are created with formatting-graph-node: See the macro
formatting-graph-node, page 242. Also, see that facility for an example.

redisplay-helper-stream
The output stream for the node. This should be the same
stream in use by formatting-graph.

id The symbol for the node: See the macro
formatting-graph-node, page 242.

:key Specifies a function applied to a node object before
comparison with id.

:test Specifies the function used to compare node objects with the
one specified by id.

For an overview of dw:find-graph-node and related facilities: See the
section "Graph Formatting Facilities", page 56.

format-cell object printer &key (stream *standard-output*) align Function
Controls the printing of a table element within a formatting-table or
formatting-it em-list macro (see formatting-table for an example).

object The table element.

printer The function used to display each element. The function is
passed two arguments, the object and the output stream. You
can have the function write to the stream any information
you want included in the table for that element.

:stream Specifies the output stream; the default is *standard-output*.

: align Specifies how elements of a column should be aligned. The
default (nil), causes the elements to be flush-left in the
column. The other possible values are :right (flush-right)
and :center (centered).

For an overview of format-cell and related facilities: See the section
;; Overview of Table Formatting Facilities", page 52.

format-graph-from-root root-object object-printer inferior-producer
&key (stream *standard-output*)
(dont-draw-duplicates nil) (key #'identity) (test
#'eql) (root-is-sequence nil) (orientation
:vertical) (direction :after)
(default-drawing-mode :line) (cutoff-depth nil)

Function

Dictionary of Program Output Facilities 233

August 1986

(balance-evenly nil) (border
'(:shape :rectangle» (row-spacing 40)
(within-row-spacing 20) (column-spacing 20)
(within-column-spacing 10)

forma t-graph-from-roo t

Constructs and displays a tree graph.

root-object
The root element of the set, from which the tree can be
derived.

object-printer
A function used to display each tree node. The function is
passed the object associated with that node and the stream on
which to do output.

inferior-producer
A function that knows how to extract the inferiors from a
node object. It is passed one argument, the node in question.

:stream Specifies the output stream; the default is *standard-output*.

:dont-draw-duplicates
Boolean option specifying whether items that are duplicated
in the tree are drawn only once (with all the reference lines
drawn to the same object) or multiple times (once for each
occurrence in the tree); the default is nil. (See the :test and
:key options.)

:key Specifies the function used to extract the node object
attribute used for duplicate comparison. The default is
identity, that is, the object itself.

:test Specifies the test function used for duplicate detection. The
default is eql.

:root-is-sequence
Specifies that the value supplied for root-object is a sequence.
Each element of the sequence becomes a separate root. (The
resulting graphs might not themselves be separate if the
:dont-draw-duplicates option is t.)

:orientation
Specifies :vertical or :horizontal orientation for the graph
display.

234 Dictionary of Program Output Facilities

format-graph-from-root August 1986

: direction
Specifies whether new nodes should be drawn above, below,
left, or right of the current node. Possible values are :after
and :before; the default is : after.

For : or; entat; on : hor; zontal, :after means to the right,
:before to the left. For :or;entat;on :vert;cal, :after means
below, : before means above.

:default-drawing-mode
Specifies the drawing mode used to connect nodes of the tree.
The default is :line , which connects the nodes with solid
lines. Other modes are : dashed-line, : arrow, and
: dashed-arrow.

: cutoff-depth
Specifies how many levels of each branch of the tree should
be explored.

: balance-evenly
Specifies whether the subtrees of the tree should all be the
same size (width or height, depending on : orientation) , the
size of the largest subtree. The default is nil.

: border Specifies the shape and thickness, in pixels, of the border
drawn around each node. The default is (: shape : rectangl e
: th; ckness 1). Other possible shapes are : circle, : oval, and
: diamond. nil means no border.

Abbreviations:

Full Form
:border (:shape xxxx)
:border (:thickness n)

: row-spacing

Abbreviated Form
:border xxxx
:border n

For :vertical orientation, specifies the spacing, in pixels,
between rOWR of tree nodes; the default is 413.

:within-row-spacing
For :horizontal orientation, specifies the spacing, in pixels,
between columns of tree nodes; the default is 20.

:column-spacing
For :vertical orientation, specifies the spacing, in pixels,
between columns of tree nodes; the default is 20.

Dictionary of Program Output Facilities 235

August 1986 forma t-graph-from-roo t

:within-column-spacing
For :horizontal orientation, specifies the spacing, in pixels,
between rows of tree nodes; the default is 10.

Examples:

(defun format-graph-from-root-example-1 ()
(fresh-line)
;; you wouldnJt actually bother to write this letJ but it makes
;; for a clearer example.
(let «root (pkg-find-package "hardcopy")

(print-function #Jprinc)
(inferior-producer #Jsi:pkg-used-by-list))

(format-graph-from-root root

J J J

J J J

print-function
inferior-producer»))

Try calling the following flavor-component grapher first
first on simple flavors like net:object and tv:minimum-window.
Hare complex flavors let you exercise the horizontal scrolling
capability of Dynamic Windows.

(defun graph-flavor-components (flavor-name)
(labels «component-flavors (flavor-name)

(let* «fl (flavor:find-flavor flavor-name»)
(remove flavor-name

(cond «flavor: :flavor-components-composed fl)
(flavor:flavor-all-components fl»

(t (flavor::compose-flavor-components
flavor-name»»»)

(fresh-line)
(format-graph-from-root flavor-name

#J(lambda (thing stream)
(present thing Jflavor:flavor

:stream stream)
#Jcomponent-flavors
:dont-draw-duplicates t»)

Do not use format-graph-from-root to draw circular graphs.

For an overview of format-graph-from-root and related facilities: See the
section "Overview of Graph Formatting Facilities", page 56.

236 Dictionary of Program Output Facilities

format-item-list August 1986

format-item-list list &key (stream *standard-output*) printer
presentation-type (fresh-line t) (return-at-end t)
(order-columnwise t) (optimal-number-of-rows
si:*optimal-number-of-rows*)
(additional-indentation 2)
(equalize-column-widths nil) max-width
max-height

Function

Displays the elements of a list in a tabular format.

list The list of items to display.

:stream Specifies the output stream; the default is *standard-output*.

:printer Specifies the function used to display the items; the default
printer is prine. The function is passed two arguments, an
item and the output stream.

This option and the :presentation-type option are mutually
exclusive. For

:presentation-type
Specifies the presentation type used to display the items.
Items are output via calls to present. Items output as
presentations can be used as mouse-sensitive input in the
proper input context.

This option and the :printer option are mutually exclusive.

:fresh-line
Boolean option specifying whether a fresh-line operation
should be performed on the output stream before the table is
displayed; the default is t.

:return-at-end
Boolean option specifying whether a newline should be printed
on the output stream when the table display is completed; the
default is t.

:or.ier-columnwise
Boolean option specifying whether table items are ordered as
a series of columns, the default, or rows.

Dictionary of Program Output Facilities 237

August 1986

Column-wise ordering

4 7

258

369

:optimal-number-of-rows

format-sequence-as-table-rows

Row-wise ordering

1 2 3

4 5 6

789

Specifies the number of rows in the table. If the number of
rows specified is too small or too large to accommodate the
list of items supplied, the appropriate number of rows closest
to that specified is used.

: additional-indentation
Specifies the number of characters by which the left margin
of the table is indented; the default is 2.

: equalize-column-widths
Boolean option specifying whether all columns have the same
width (that of the widest column); the default is nil.

: max-width
Specifies the maximum width, in pixels, of the table display.

: max-height
Specifies the maximum height, in pixels, of the table display.

For an overview of format-item-list and related facilities: See the section
"Overview of Table Formatting Facilities", page 52.

format-sequence-as-table-rows sequence printer &rest options
&key (stream *standard-output*)
&allow-other-keys

Displays the elements in a sequence as a series of table rows.

Function

sequence The sequence to be displayed. Each element of the sequence
become one row in the resulting table.

printer The function used to display each element. The function is
passed two arguments, an element of the sequence and an
output stream. You can have the function write to the
stream any information you want included in the table row
for that item.

options [Reserved]

238 Dictionary of Program Output Facilities

format-textual-list August 1986

:stream Specifies the output stream; the default is *standard-output*.

Additional keyword options available for this function are the same as
those to formatting-table.

For an overview of format-sequence-as-table-rows and related facilities:
See the section "Overview of Table Formatting Facilities", page 52.

format-textual-list sequence function &rest args &key (separator Function
" , ") finally if-two filled after-line-break
conjunction (stream *standard-output*)

Outputs a sequence of items as a textual list; for example, "1 2 3 4"
becomes "1, 2, 3, and 4":

(defun simple-list-formatter ()
(fresh-line)
(format-textual-list '(1 2 3 4) #'prine :eonjunetion "and"))

sequence The sequence to output.

function The function used to print sequence elements.

:separator
Specifies the characters to use to separate elements of a
textual list. The default is ", " (comma followed by a space).

:finally Specifies the separator to be used between the next-to-Iast
and last elements of the list. The default is nil, meaning use
the regular separator (specified by the :separator option).

A typical value is " and ".

: if-two Specifies the separator to use when there are only two
elements in the list. A typical value is " and ".

:filled Specifies whether the list should be "filled"; the default is
nil.

A filled list is one containing newline characters at
~1"'\T'\"'I'\T\,..;nf-n ""'''';'J'''\f-C''' " n"7n T": ,..". n.f!' "".f..._, -c ___ _ ':,....t...+
..... ~~ ... v~ \lV ~v \1 ... \IV ,p ... '-'y'-' " n ... u,p,p.L.l.l6 V.L VU"'PU" .LJ.V.l.l.l J.J.6.l.lll

margin to left. Thus, specifying: fi 11 ed t for a long list
results in two or more separate lines of output - each of a
length less than the width of the output window - rather
than one long, wrapped line. Line breaks come between list
elements, not within.

Another value permitted for this option is : before. This is

Dictionary of Program Output Facilities 239

August 1986 formatting-cell

like t, except that in the case where a line break occurs at a
:separator, the break is made before the separator rather
than after.

:after-line-break
In : fi 11 ed t mode, specifies the string to insert at the
beginning of each new line. This is useful for specifying
leading indentation, etc. (See the :filled option.)

: conjunction
Specifies a string to use in the position between the last two
elements. Typical values are" and" and" or".

This option is similar to the :finally option, but does not
affect the separator between the last two elements, unless
only two elements occur. That is, the :conjunction option
takes care of the two-element case; the :if-two option is not
necessary if you use this option.

:stream Specifies the output stream; the default is *standard-output*.

For an overview of format-textual-list and related facilities: See the
section "Overview of Textual List Formatting Facilities", page 51.

formatting-cell (&optional stream &key align) &body body Macro
Binds local environment to control the printing of a table element within a
formatting-table macro (see the latter facility for examples).

stream The output stream; the default is *standard-output*.

:align Specifies how elements of a column should be aligned. The
default (nil), causes the elements to be flush-left in the
column. The other possible values are :right (flush-right)
and :center (centered).

For an overview of formatting-cell and related facilities: See the section
"Overview of Table Formatting Facilities", page 52.

formatting-column (&optional stream &rest options) &body body Macro
Controls column layout within a formatting-table macro (see the latter
facility for examples).

stream Specifies the output stream; the default is *standard-output*.

options [Reserved]

240 Dictionary of Program Output Facilities

formatting-column-headings August 1986

For an overview of formatting-column and related facilities: See the
section "Overview of Table Formatting Facilities", page 52.

formatting-column-headings (&optional stream &rest options) Macro
&body forms

Controls the display of column headings within a formatting-table macro.

Example:

(defun table-with-column-headings
(&optional (column-one-label "Number"»

(fresh-line)
(formatting-table ()

(formatting-column-headings ()
(formatting-cell () (write-string column-one-label»
(formatting-cell () "Square"»

(loop for i from 1 to 19
as square = (* i i)
do

(formatting-row ()
(formatting-cell ()

(princ i»
(formatting-cell ()

(princ square»»»

stream Specifies the output stream; the default is *standard-output*.

options The following option is available:

underline-p
Boolean option specifying whether column headings
are underlined; the default is nil.

For an overview of formatting-column-headings and related facilities: See
the section "Overview of Table Formatting Facilities", page 52.

formatting-graph (&optional stream &key (orientation :vertical) Macro
(balance-evenly nil) (row-spacing 40)
(within-row-spacing 20) (column-spacing 20)
(within-column-spacing 10)
(default-drawing-mode :line» &body body

Binds local environment to output graph connecting node objects generated
in the body of the macro. The node objects are created by the macro
formatting-graph-node.

stream The output stream; the default is *standard-output*.

Dictionary of Program Output Facilities 241

August 1986 formatting-column-headings

: orientation
Specifies :vertical or :horizontal orientation for the graph
display.

: balance-evenly
Specifies whether the subtrees of the tree should all be the
same size (width or height, depending on : orientation) , the
size of the largest subtree. The default is nil.

: row-spacing
For :vertical orientation, specifies the spacing, in pixels,
between rows of tree nodes; the default is 40.

:within-row-spacing
For :horizontal orientation, specifies the spacing, in pixels,
between columns of tree nodes; the default is 20.

: column-spacing
For :vertical orientation, specifies the spacing, in pixels,
between columns of tree nodes; the default is 20.

:within-column-spacing
For :horizontal orientation, specifies the spacing, in pixels,
between rows of tree nodes; the default is 10.

:default-drawing-mode
Specifies the drawing mode used to connect nodes of the tree.
The default is :line , which connects the nodes with solid
lines. Other modes are : dashed-line, : arrow, and
:dashed-arrow.

Example:

(defun simple-graph (stream)
(fresh-line stream)
(formatting-graph (stream :orientation :horizontal)

(let «node-a (formatting-graph-node (stream)
(surrounding-output-with-border

(stream :shape :reetangle :thiekness 3)
(prine 'a stream»»)

(formatting-graph-node (stream :eonneetions '(:right ,node-a)
:drawing-mode :dashed-line)

(surrounding-output-with-border
(stream :shape :reetangle :thiekness 3)
(prine Jb stream)))

242 Dictionary of Program Output Facilities

formatting-graph-node August 1986

If you want to try this example, compile it first. For a more complex
example: See the macro formatting-graph-node, page 242.

Do not use formatting-graph to draw circular graphs.

For an overview of formatting-graph and related facilities: See the
section "Overview of Graph Formatting Facilities", page 56.

formatting-graph-node (&optional stream &key id connections Macro
(drawing-mode t» &body body

Binds local environment to create node objects for use by the
formatting-graph macro. For an example, see the dictionary entry for the
latter facility.

stream The output stream; the default is *standard-output*.

:id Specifies a symbol for the node. A node symbol is used as an
argument to dw:find-graph-node: See the generic function
dw:find-graph-node, page 231.

: connections
Specifies the connections between this node and one or more
other nodes. The specification is a list in the form «key
node-obJect-i) (key node-obJect-2) ... (key node-obJect-n» ,
where key is one of :left, :right, : above, or : below.

: drawing-mode

Example:

Specifies the drawing mode used to connect this node with
other nodes of the tree. This specification locally overrides
the :default-drawing-mode specified by formatting-graph.
Possible modes are :line, : dashed-line, :arrow, and
:dashed -arrow.

Dictionary of Program Output Facilities 243

August 1986

(defun graph-1 (list unique-id-p)
(let «stream *standard-output*))

(fresh-line stream)
(formatting-graph (stream)

(labels «do-one (contents &rest connections)
(let «node nil))

(when unique-id-p
(let «already-there

forma tting-item-lis t

(dw:find-graph-node stream contents)))
(when already-there

(dw: :connect-graph-nodes
stream already-there connections)

(setq node already-there))))
(unless node

(setq node (formatting-graph-node
(stream

: i d contents
:connections connections)

(surrounding-output-with-border
(stream)
(prin1 contents stream)))))

(when (consp contents)
(dolist (sublist contents)

(do-one sublist :after node))))))
(do-one list)))))

(graph-1 '(a (b c) c) ni 1)
(graph-1 '(a (b c) c) t)
(graph-1 '(#1=(x y 2) (w #1#) y) nil)
(graph-1 '(#1=(x y 2) (w #1#) y) t)

For an overview of formatting-graph-node and related facilities: See the
section "Overview of Graph Formatting Facilities", page 56.

formatting-item-list (&optional stream &key inter-row-spacing Macro
inter-column-spacing row-wise output-row-wise
n-rows n-columns inside-width inside-height
max-width max-height) &body body

Binds local environment to output a list of items created in the body of the
macro as a table.

Example:

244 Dictionary of Program Output Facilities

tormatting-item-list August 1986

(defun formatting-list-example ()
(formatting-item-list (t :n-columns 3)

(fresh-line)
(loop for (p) in si:active-processes

do
(when p

(formatt i ng-cell 0
(write-string (si:process-name p)))))))

stream The output stream; the default *standard-output*.

:inter-row-spacing
Specifies the number of pixels between rows; the default is 8.

: inter-column-spacing
Specifies the number of pixels between columns of the table;
the default is the width of two spaces.

:row-wise
Boolean option specifying that the table is built by rows, that
is, that the each succeeding item in the list be placed in the
same row, one column after the previous item (except for line
breaks); the default is t. nil specifies that each item be
placed in the same column, one row below the previous item.

:output-row-wise
Boolean option specifying that the table be displayed row-by­
row. The default is nil, causing the table to be displayed in
the order in which it is constructed (see the :row-wise
option.)

:n-rows Specifies the number of rows the table should have.

:n-columns
Specifies the number of columns the table should have.

: inside-width
Specifies the exact width, in pixels, of the table display.

: inside-height
Specifies the exact height, in pixels, of the table display.

: max-width
Specifies the maximum width, in pixels, of the table display.

Dictionary of Program Output Facilities 245

August 1986 formatting-multiple-columns

: max-height
Specifies the maximum height, in pixels, of the table display.

For an overview of formatting-item-list and related facilities: See the
section "Overview of Table Formatting Facilities", page 52.

formatting-multiple-columns (&optional stream &key Macro
number-of-columns) &body body

Binds local environment such that the lines of text generated by the body
of the macro are output in a multiple-column format.

stream The output stream; the default is *standard-output*.

:number-of-columns

Example:

Specifies the number of columns into which the items are
arranged. If this is unspecified, it uses as many columns as
will fit, based on the stream's :inside-size.

(defun test-columns (&optional (stream *standard-output*»
(loop for hundreds from B to 1BB by 1BB do

(terpri stream)
(formatting-multiple-columns (stream)

(loop for j from 1 to 2B do
(format stream "-d -r-X" (+ j hundreds) (+ j hundreds»»»

Usage note: you should not use formatting-table within
formatting-multiple-columns. Instead, use the :multiple-columns option
to formatting-table: See the macro "formatting-table", page 246.

For an overview of formatting-multiple-columns and related facilities: See
the section "Overview of Table Formatting Facilities", page 52.

formatting-row (&optional stream &rest options) &body body Macro
Controls row layout within a formatting-table macro (see the latter facility
for examples).

stream The output stream; the default is *standard-output*.

options [Reserved]

For an overview of formatting-row and related facilities: See the section
"Overview of Table Formatting Facilities", page 52.

246 Dictionary of Program Output Facilities

formatting-table August 1986

formatting-table (&optional stream &key equalize-column-widths
extend-width extend-height inter-row-spacing
inter-column-spacing multiple-columns
(multiple-column-inter-column-spacing
dw::inter-column-spacing)
(equalize-multiple-column-widths nil)
(output-multiple-columns-row-wise nil» &body
body

Binds local environment to output items in a tabular format.

Macro

This macro must be used in conjunction with at least two others. The
first, formatting-row or formatting-column, controls whether items are
output as table rows or table columns, respectively. The second,
formatting-cell or format-cell, controls the printing of each item.
Contrast the output of the following two examples:

(defun row-oriented-table-formatting ()
(fresh-line)
(formatting-table ()

(loop for i from 1 to 19
as square = (*

do
(formatting-row ()

(formatting-cell 0
(princ i»

(formatting-cell ()
(princ square»»»

i)

(defun column-oriented-table-formatting ()
(fresh-line)
(formatting-table ()

(loop for i from 1 to 19
as square = (* i)

do
(formatting-column ()

(format-cell i #Jprinc)
(format-cell square #Jprinc»»)

stream The output stream; the default is *standard-output*.

: equalize-column-widths
Boolean option specifying whether all columns have the same
width (that of the widest column); the default is nil.

Dictionary of Program Output Facilities 247

August 1986 formatting-table

: extend-width
Specifies whether the spacing of table columns is extended;
the default is nil. Alternative values are t, meaning make
use of the full horizontal space available, or a number,
indicating the number of pixels over which to extend the
table.

: extend-height
Specifies whether the spacing of table rows is extended; the
default is nil. Alternative values are t, meaning make use of
the full vertical space available, or a number, indicating the
number of pixels over which to extend the table.

:inter-row-spacing
Specifies the minimum number of pixels inserted between
rows of the table; the default is O. This value will be the
actual number of pixels inserted unless overridden by the
:extend-height option.

: inter-column-sp acing
Specifies the minimum number of pixels inserted between
columns of the table; the default is the width of a space.
This value will be the actual number of pixels inserted unless
overriden by the :extend-width option.

: multiple-columns
Boolean option specifying that table rows be distributed
among a. series of two or more columns.

For example,

Set Point #1: 50
Set Point #2: 36
Set Point #3: 65
Set Point #4: 45

becomes

Set Point #1: 50 Set Point #3: 65
Set Point #2: 36 Set Point #4: 45

The arrangement of rows and columns generated is such that
the number of columns is maximixed, the number of rows is
minimized, and the hole, if any, left in the lower right corner
of the table is the smallest possible.

: multiple-column-inter-column-spacing
Specifies the number of pixels to insert between columns in a

248 Dictionary of Program Output Facilities

formatting-textual-list August 1986

multiple-column display (:multiple-columns option is t). It
defaults to the value of the :inter-column-spacing option.

:equalize-multiple-column-widths
Boolean option specifying whether all columns in a multiple
column display (:multiple-columns option is t) have the same
width (that of the widest column); the default is nil.

:output-multiple-columns-row-wise
Boolean option specifying whether columns in a mUltiple­
column display (:multiple-columns option is t) are displayed
by outputting all the elements in one row followed by all in
the next, and so on. The default is nil, meaning that the
order of display is "column-wise": first all the elements in
one column are output, then all the elements in the next, and
so on.

The resulting display is the same no matter which way this
flag is set; only the order in which the elements are displayed
is changed. This affects the order in which calls to
formatting-row are made within the body of the table­
formatting macro. In the default case, calls are made in the
order given; in the alternative case, call order is
unpredictable.

For an overview of formatting-table and related facilities: See the section
"Overview of Table Formatting Facilities", page 52.

formatting-textual-list (&optional stream &key (separator",") Macro
finally if-two filled after-line-break conjunction)
&body body

Binds local environment to output a sequence of items as a textual list.
This macro must be used in conjunction with the
formatting-textual-list-element macro specifying the printing function.

Example:

(defun simple-list-formatting ()
(fresh-line)
(formatting-textual-list (t :eonjunetion "and")

(loop for i from 1 to 4
do

(formatting-textual-list-element ()
(prine i»»)

stream The output stream; the default is *standard-output*.

Dictionary of Program Output Facilities 249

August 1986 formatting-textual-list

:separator
Specifies the characters to use to separate elements of a
textual list. The default is ", " (comma followed by a space).

:finally Specifies the separator to be used between the next-to-last
and last elements of the list. The default is nil, meaning use
the regular separator (specified by the :separator option).

A typical value is " and ".

: if-two Specifies the separator to use when there are only two
elements in the list. A typical value is " and ".

:filled Specifies whether the list should be "filled"; the default is
nil.

A filled list is one containing newline characters at
appropriate points to prevent wrapping of output from right
margin to left. Thus, specifying: fi 11 ed t for a long list
results in two or more separate lines of output - each of a
length less than the width of the output window - rather
than one long, wrapped line. Line breaks come between list
elements, not within.

Another value permitted for this option is : before. This is
like t, except that in the case where a line break occurs at a
: separator, the break is made before the separator rather
than after.

:after-line-break
In : f i 11 ed t mode, specifies the string to insert at the
beginning of each new line. This is useful for specifying
leading indentation, etc. (See the :filled option.)

: conjunction
Specifies a string to use in the position between the last two
elements. Typical values are" and" and" or".

This option is similar to the :finally option, but does not
affect the separator between the last two elements, unless
only two elements occur. That is, the :conjunction option
takes care of the two-element case; the :if-two option is not
necessary if you use this option.

For an overview of formatting-textual-list and related facilities: See the
section "Overview of Textual List Formatting Facilities", page 51.

250 Dictionary of Program Output Facilities

formatting-textual-list-element August 1986

formatting-textual-list-element (&optional stream) &body body Macro
Controls the printing of items output as textual list elements within a
formatting-textual-list macro.

Example:

(formatting-textual-list (t :eonjunetion "and")
(loop for i from 1 to 4 doing

(formatting-textual-list-element () (prine i»»

stream The output stream; the default is *standard-output*.

For an overview of formatting-textual-list-element and related facilities:
See the section "Overview of Textual List Formatting Facilities", page 51.

indenting-output (stream indentation) &body body Macro
Binds local environment to control the insertion of spaces or other
characters at the beginning of each newline output to a stream.

stream The output stream. As a special case, t and nil are
abbreviations for *standard-output*.

indentation
What gets inserted at the beginning of each line output to
the stream. Three possibilities exist:

integer The number of spaces to indent.

string A string to print at the beginning of each line.

function A function to print a string. The function receives
one argument, the output stream. Because the
system calls this function with other streams, for
example, with a dummy stream to determine the
space requirements of the output, it should output
something of the same size each time it is called.

You should either begin the body with (terpri stream), or equivalent, or
pre-position the stream to the same place as the indentation.

Examples:

(defun simple-indenter ()
(indenting-output (t 10)

(loop for i from 1 to 5

do
(terpri)
(format t "This is indented line -d" i»»

Dictionary of Program Output Facilities 251

August 1986 dw:independently-redispJayabJe-format

The trace special form uses indenting-output as follows:

(flet ((indent (stream)
(loop for n from 1 below trace-level do

(write-char (if ... #\1 #\sp) stream))))
(indenting-output (*trace-output* #'indent)

(terpri *trace-output*)
...))

For an overview of indenting-output and related facilities: See the section
"Overview of Character Environment Facilities", page 49. For a related
facility: See the macro sys:with-indentation in Reference Guide to
Streams, Files, and liD.

dw:independently-redisplayable-format stream format-string Macro
&rest format-args

Outputs a formatted string such that each format argument is
independently redisplayable. (See the macro dw:with-redisplayable-output,
page 273.)

stream The output stream; the default is *standard-output*.

format-string
The format-control string. (See the function format in
Reference Guide to Streams, Files, and 110.)

format-args
The format arguments.

The format-string is parsed at compile time, resulting in a series of calls to
dw:redisplayable-format or format. Some restrictions result:

• stream may not be nil, although format would permit it.

o format commands that need all the format arguments, like
conditionals, iterations, or gotos, cannot be used.

dw:independently-redisplayable-format is one of a number of facilities
used to do incremental redisplay. For examples, see the file
sys:examples;incremental-redisplay.lisp.

For an overview of dw:independently-redisplayable-format and related
facilities: See the section "Overview of Advanced Presentation Output
Facilities", page 63.

252 Dictionary of Program Output Facilities

dw:named-value-snapshot-continuation August 1986

dw:named-value-snapshot-continuation name var-list &body body Macro
Generates a lexical closure of its body, except that it snapshots the current
values of lexical variables used free within body.

name The internal-function name for the generated lexical closure.
This supplies the X in names like (: INTERNAL SOMETHING 2 X).

var-list The lambda-list for the generated lexical closure.

dw:named-value-snapshot-continuation can be of use, for example, when
collecting closures within an iteration. The following code

(defun print-reverse-of-list (list)
(let «list-of-closures (»)

(dolist (x list)
(push (lambda (stream) (print x stream»

list-of-closures»
(dolist (closure list-of-closures)

(funcall closure *standard-output*»»

(print-reverse-of-list '(1 2 3»

would print three occurrences of 3. This is because the first doUst might
macroexpand into something like

(1 et «x) (temp 1 i st»
(prog ni 1
loop (when (null temp) (return»

(setq x (pop temp»
(push (lambda (stream) (print x stream»

list-of-closures)
(go loop»)

where each (1 ambda ...) snapshots exactly the same binding of x.
Unfortunately, this means that each time through the loop, x - the same x
in all the closures - gets setq'd. A way around this is to introduce a new
binding for the x at the point the closure is produced:

Dictionary of Program Output Facilities 253

August 1986 tv:note-progress

(1 et «x)
(temp list»

(prog ni 1
(when (null temp) (return»
(setq x (pop temp»
(push (let «x x»

(lambda (stream) (print x stream»)
list-of-closures»)

Here the x snapshotted by the closure is different for each closure,
achieving the desired effect.

dw:named-value-snapshot-continuation processes the body, identifying
freely-referenced lexical variables which need such snapshotting. It also
does special processing for self and instance variables referenced within
flavor methods. As a result, the above fragment could be written

(defun print-reverse-of-list (list)
(let «list-of-closures (»)

(dolist (x list)
(push (dw:named-value-snapshot-continuation

writer (stream)
(print x stream»

list-of-closures))
(dolist (closure list-of-closures)

(funcall closure *standard-output*»»)

and then (pri nt-reverse-of-1 i st '(1 2 3)) would correctly print 3, 2, 1.

For an overview of dw:named-value-snapshot-continuation and related
facilities: See the section "Overview of Facilities for Writing Formatted
Output Macros", page 66.

tv: note-progress numerator &optional (denominator 1) (note Function
tv:*current-progress-note*)

Notes the progress of an operation by updating the progress bar. This
function is only used in the body of the tv:noting-progress macro (for
examples, look at the dictionary entry for that facility). The progress bar
is updated by fractional amounts between 0 and 1.

numerator
The numerator of the fraction by which to update the bar.

denominator
The denominator of the fraction by which to update the bar;
the default is 1.

254 Dictionary of Program Output Facilities

tv:noting-progress August 1986

note The note object (bound to the variable supplied to
tv: noting-progress).

For an overview of tv:note-progress and related facilities: See the section
"Overview of Progress Indicator Facilities", page 59.

tv: noting-progress (name &optional (variable Macro
'tv:*current-progress-note*) (process
'sys:current-process» &body body

Binds local environment such that the progress of an operation performed
within the body of the macro is noted by a progress bar displayed in the
status line at the bottom of the screen. The function tv:note-progress
does the updating of the progress bar.

name A string naming the operation being noted. This string is
displayed above the progress bar.

variable The variable bound to the note object; the default is
tv:*current-progress-note*. This variable is an argument to
tv:note-progress.

process The process on whose behalf the progress is noted; the
default is sys:current-process. This is used to determine the
precedence of notes.

Examples:

(tv:noting-progress ("Working Away By Tenths")
(loop for i from .1 to 1.B by .1

do
(tv:note-progress i)

(sleep 1»)

Dictionary of Program Output Facilities 255

August 1986

(tv:noting-progress ("Working Away By Fifths")
(loop for i from 1 to 2 by 1

do
(sleep 1»

(tv:note-progress 1 5)
(loop for i from 1 to 2 by 1

do
(sleep 1»

(tv:note-progress 2 5)
(loop for i from 1 to 2 by 1

do
(sleep 1»

(tv:note-progress 3 5)
(loop for i from 1 to 2 by 1

do
(sleep 1»

(tv:note-progress 4 5)
(loop for i from 1 to 2 by 1

do
(sleep 1»

(tv:note-progress 5 5)
(sleep 1»

present

For an overview of tv:noting-progress and related facilities: See the
section "Overview of Progress Indicator Facilities", page 59.

present object &optional (presentation-type (type-of dw::object» Function
&key (stream ·standard-output*) (acceptably
nil) (sensitive t) (form nil) (location nil)
(single-box nil) (allow-sensitive-inferiors t)

Outputs a presentation object to a stream. If the stream supports
presentation remembering, the presented object is accessible via the mouse
in the appropriate input context; if not, the printed representation is the
same, but the object is not mouse-sensitive.

object The object to be presented.

presentation-type
The presentation type to be used in presenting the object; the
default is the type of the object.

:stream Specifies stream on which the object is presented; the default
is ·standard-output*.

256

present

Dictionary of Program Output Facilities

August 1986

: acceptably
Boolean option specifying whether to present the object in
such a way that it can later be parsed by accept; the default
is nil. This option is useful when output is to strings or
files, but not necessary when output is to Dynamic Windows.

: sensitive
Boolean option specifying whether the presentation is mouse­
sensitive; the default is t. This option is useful for explicitly
preventing mouse sensitivity of objects presented to Dynamic
Windows.

:form Specifies a form that can be passed to setf to store a new
value in place of the current output value. This option and
:location are mutually exclusive.

The form supplied for this option is used by a predefined,
side-effecting mouse handler (available on c-M-Mouse-R) to
modify the contents of structure slots.

:locationSpecifies a locative that can be used to store a new value in
place of the current output value. This option and :form are
mutually exclusive.

The locative supplied for this option is used by a predefined,
side-effecting mouse handler (available on C-M-Mouse-R) to
modify the contents of structure slots.

: single-box
Specifies that mouse-sensitivity of objects output in a series of
inferior calls to this form be indicated by a single, large box
for highlighting rather than the sum of all the individual
boxes. This option is used mostly with graphic presentations.

: allow-sens i tive-inferiors
Boolean option specifying whether nested calls to present or
dw:with-output-as-presentation from inside this presentation
- for example, when presenting the individual elements of a
Lisp list - generate presentation objects. The default is t.

For an example: See the macro
"dw:with-output-as-presentation", page 268.

For an overview of present and related facilities: See the section
"Overview of Basic Presentation Output Facilities", page 47.

Dictionary of Program Output Facilities 257

August 1986 present-to-string

present-to-string object &optional (presentation-type Function
(dw::decode-old-presentation-type (type-of dw::object) :atomic-ok t»)
&key (string nil) index acceptably
for-context-type

Outputs a presentation object to a string.

object The object to be presented.

presentation-type
The presentation type to be used in presenting the object; the
default is the type of the object.

:string Specifies a string to which the object is presented. The
default is nil, causing a new string object to be created.

:index The character position in the string array where the
presenting of the object begins; the default is position 0. Use
this option only if the :string option is non-nil.

: acceptably
Boolean option specifying whether the object should be
presented in such a way that it can later be parsed by
accept; the default is nil.

:for-context-type
Specifies the input context on whose behalf the presentation
is made. This affects the printing of the string. For
example, the Command Processor uses this option to ensure
that command names are preceded by colons when in the
I command-or-form context (and form-preferred dispatch mode).

For an overview of present-to-string and related facilities: See the section
"Overview of Basic Presentation Output Facilities", page 47.

dw:redisplayable-format stream format-string &rest format-args Function
Outputs a formatted string redisplayably. This simply calls format within
a caching point for incremental redisplay. (See the macro
dw:with-redisplayable-output, page 273.) format-string is used as the
cache-id; the list format-args is used as the cache-value.

stream The output stream; the default is *standard-output*.

format-string
The format-control string. (See the function format in
Reference Guide to Streams, Files, and I/O.)

format-args
The format arguments.

258 Dictionary of Program Output Facilities

dw:redispla yable-present August 1986

dw:redisplayable-format is one of a number of facilities used to do
incremental redisplay. For examples, see the file sys:examples;incremental­
redisplay. lisp.

For an overview of dw:redisplayable-format and related facilities: See the
section "Overview of Advanced Presentation Output Facilities", page 63.

dw:redisplayable-present object &optional presentation-type &key Function
(stream *standard-output*) (unique-id nil)

&allow-other-keys
Presents an object redisplayably. This simply calls present within a
caching point for incremental redisplay. (See the macro
dw:with-redisplayable-output, page 273.) The object itself is used as the
cache-value.

object The object to present.

presentation-type
The presentation type to display the object as; the default is
the Lisp object type of the object, that is, (type-of object).

:stream Specifies the output stream; the default is *standard-output*.

:unique-id
Identifies the particular incremental redisplay cache. This
may be any object, as long as it is unique with respect to the
id-test predicate among all such ids in the current
incremental redisplay.

Other keyword options to dw:redisplayable-present are the same as those
to present, to which they are passed: See the function present, page 255.

dw:redisplayable-present is one of a number of facilities used to do
incremental redisplay. For examples, see the file sys:examples;incremental­
redisplay.lisp.

For an overview of dw:redisplayable-present and related facilities: See
the section "Overview of Advanced Presentation Output Facilities", page
63.

dw:redisplayer (&optional stream) &body body Macro
Creates a redisplay object out of its body which can be used to do
incremental redisplay on stream. Provide the redisplay object as the
redisplay-piece argument to dw:do-redisplay: See the generic function
dw:do-redisplay, page 211.

Dictionary of Program Output Facilities 259

August 1986 :set-viewp0rl-position

stream The output stream; the default is *standard-output*.

dw:redisplayer is one of a number of facilities used to do incremental
redisplay. For examples, see the file sys:examples;incremental­
redisplay.lisp.

For an overview of dw:redisplayer and related facilities: See the section
"Overview of Advanced Presentation Output Facilities", page 63.

:set-viewport-position new-left new-top of dw:dynamic-window Method
Scrolls the window to a specified location in the window's output history.
Specify the location in terms of absolute window coordinates.

new-left The x-coordinate for the viewport's left edge.

new-top The y-coordinate for the viewport's top edge.

For an overview of
(flavor:method :set-viewport-position dw:dynamic-window) and related
facilities: See the section "Overview of Other Facilities for Program
Output", page 60.

surrounding-output-with-border (&optional stream &key (shape Macro
: rectangle) (thickness 1) (margin 1) (pattern
t) (filled nil) (width nil) (height nil)

(move-cursor t» &body body
Binds local environment such that output generated in the body of the
macro is enclosed within a border. The border is sized to just surround
the output.

stream The output stream; the default is *standard-output*.

:shape Specifies the shape of the border; the default is : rectangle.
Other possible shapes are : circle, : oval, and : diamond.

: thickness
Specifies the thickness, in pixels, of the border; the default is
1.

:margin Specifies the minimum whitespace, in pixels, between the
border and the enclosed output.

:pattern Specifies the pattern to be used in drawing the border. At
present, only the :rectangle shape uses the pattern specified.

Example:

260 Dictionary of Program Output Facilities

surrounding-output-with-border August 1986

(defun pattern-test ()
(fresh-line)
(surrounding-output-with-border

(*standard-output* :shape :rectangle
:pattern tV:50%-gray)

(present tv:selected-window Jtv:window»)

If the :filled option is t, the pattern is drawn throughout the
rectangular area and XORed with the unfilled values of the
area's pixels.

For more information on how to specify patterns: See the
function graphics: draw-pattern, page 223.

: filled Boolean option specifying whether the shaped enclosed by the
border is filled; the default is nil. If t, filling occurs by
XORing the turned-on and unfilled values of the pixels in the
filled area.

If a pattern is specified by the :pattern option, filling occurs
by XORing the pattern values and unfilled values of the
pixels. In general, the best results are achieved by leaving
the :pattern option unspecified if you intend to fill.

:width Specifies the the maximum width, in pixels, of the border; the
default (nil) places no limit on the maximum.

:height Specifies the the maximum height, in pixels, of the border;
the default (nil) places no limit on the maximum.

: move-cursor

Example:

Boolean option specifying whether a newline is performed at
the end of body.

(de fun shape-test (shape fill-p)
(fresh-line)
(surrounding-output-with-border

(*standard-output* :shape shape
: fi 11 ed fi ll-p)

(present tv:selected-window Jtv:window»)

To see how the differently shaped borders look, try calling the above with
the various shape keywords.

Dictionary of Program Output Facilities 261

August 1986 dw:tracklng-mouse

For an overview of surrounding-output-with-border and related facilities:
See the section "Overview of Other Facilities for Program Output", page
60.

dw:tracking-mouse (&optional stream &key (whostate "Track Macro
Mouse") (who-line-documentation-string nil))
&body clauses

Tracks the mouse in the user process. User-supplied routines are executed
when mouse events occur, such as position changes and the pressing or
releasing of a button.

stream The output stream; the default is *standard-output*.

:whostate
Specifies the string displayed in the run-state slot of the
status line. The default value is "Track Mouse".

:who-line-documentation-string
Specifies the mouse documentation string.

clauses Keyword-value pairs supplying routines (the values) executed
when the mouse event indicated by the keyword occurs.
Some keywords provide arguments. Available keywords and
their arguments are described below:

:presentation (presentation)
Smallest presentation under mouse, or nil; called
when the mouse moves.

:presentation-hold (presentation)
Same as :presentation, but used if a mouse button
is still down.

:mouse-motion (x y)

Position of the mouse; called when the mouse moves.

:mouse-motion-hold (x y)

Same as :mouse-motion, but used if a mouse button
is still down.

:who-line-documentation-string ()
Allows dynamic control of mouse documentation line;
called whenever anything changes.

:release-mouse () Called when all mouse buttons are up after
some were down.

262 Dictionary of Program Output Facilities

dw:tracking-mouse August 1986

:keyboard (char)
Called when user presses a keyboard key (rather
than clicking).

:presentation-click (presentation mouse-char)
Called when a mouse button is pressed. presentation
is the smallest presentation under mouse, or nil;
mouse-char is the mouse-character object
corresponding to the mouse gesture used.

:mouse-click (mouse-char x y)

Called when a mouse button is pressed. Arguments
are the mouse position and the mouse-character
object corresponding to the mouse gesture used.

To see the macro in action, try the following example:

", To run this function create two lisp listeners side by side.
", In the first Lisp Listener type the form:

", (setq *LL1* *terminal-io*).
jjj Click left on the second Lisp Listener and enter the form:
, J J (mouse-1 *terminal-io*).

(defun mouse-1 (window)
(dw:tracking-mouse (window)

(:who-line-documentation-string ()
(if (zerop (tv:mouse-buttons»

"Buttons up"
"Buttons Down"»

(:release-mouse ()
(format *LL1* "-&Mouse key released"»

(:mouse-motion (x y)
(format *LL1* "-&Mouse motion(-d,-d)" x y»

(:mouse-motion-hold (x y)
(format *LL1* "-&Mouse motion ho1d(-d,-d)" x y»

(:mouse-click (button x y)
(graphics:draw-rectangle x y (+ x 10) (+ Y 10»
(selector button char-mouse-equal
(#\mouse-1eft (format *LL1* "-&Left click"»
(#\mouse-midd1e-2 (return-from mouse-1 "-&That's All Folks!"»»»

For an overview of dw:tracking-mouse and related facilities: See the
section "Overview of Other Facilities for Program Output", page 60.

Dictionary of Program Output Facilities 263

August 1986 with-character-face

:visible-cursorpos-limits &optional (unit :pixel) of Method
dw:dynamic-window

Returns the left, top, right, and bottom limits of the current viewport. The
limits are returned as absolute window locations.

unit The unit of measure for the viewport limits; the default is
:pixel. The alternative is : character. The character used is
the space character in the window's default character style.

For an overview of
(flavor:method :visible-cursorpos-limits dw:dynamic-window) and related
facilities: See the section "Overview of Other Facilities for Program
Output", page 60.

with-character-face (face &optional (stream t) &key Macro
bind-Line-height) &body body

Binds the local environment such that character output is in the specified
face.

face The face to be used for character output, for example, : bold
or : italic.

stream Output stream; the default is *standard-output*.

:bind-line-height
Boolean option specifying whether the height, in pixels, of the
line containing the character output is based on the size of
the default character style or of the style specified in the
macro. Whether you specify t or nil (the default) depends on
the context of the output. To see the difference, run the
following function first with nil, then with t:

(defun line-height-binder (bind)
(format t "-&Foo")
(with-character-style ('(:f;x :roman :very-large) t

:bind-line-height bind)
(write-string "bar"))

(write-string "baz")
(dotimes (j 2) (terpri))
(with-character-style ('(:fix :roman :very-large) t

:bind-line-height bind)
(format t "-&Frob one-XFrob two-X"))

(format t "Last line"))

In this example, the difference is apparent; much more subtle
are the differences produced when only the character family
or face is changed, as opposed to its size.

264 Dictionary of Program Output Facilities

with-character-family August 1986

The height of the default character style is determined from
the height of the space character.

To see a list of valid character style faces, evaluate the variable
si:*valid-faces*. For more information on character styles: See the section
"Character Styles" in Symbolics Common Lisp: Language Concepts.

For an overview of with-character-face and related facilities: See the
section "Overview of Character Environment Facilities", page 49.

with-character-family (family &optional (stream t) &key Macro
bind-line-height) &body body

Binds the local environment such that character output is in the specified
family.

style The family to be used for character output, for example,
:serif or :jess.

stream Output stream; the default is *standard-output*.

: bind -line-height
Boolean option specifying whether the height, in pixels, of the
line containing the character output is based on the size of
the default character style or of the style specified in the
macro. Whether you specify t or nil (the default) depends on
the context of the output. To see the difference, run the
following function first with nil, then with t:

(de fun line-height-binder (bind)
(format t "-&Foo")
(with-character-style ('(:fix :roman :very-large) t

:bind-line-height bind)
(write-string "bar"»

(write-string "baz")
(dotimes (j 2) (terpri»
(with-character-style ('(:fix :roman :very-large) t

:bind-line-height bind)
(format t "-&Frob one-%Frob two-%"»

(format t "Last line"»

In this example, the difference is apparent; much more subtle
are the differences produced when only the character family
or face is changed, as opposed to its size.

The height of the default character style is determined from
the height of the space character.

Dictionary of Program Output Facilities 265

August 1986 with-character-size

To see a list of valid character style families, evaluate the variable
si:*valid-families*. For more information on character styles: See the
section "Character Styles" in Symbolics Common Lisp: Language Concepts.

For an overview of with-character-family and related facilities: See the
section "Overview of Character Environment Facilities", page 49.

with-character-size (size &optional (stream t) &key Macro
bind-line-height) &body body

Binds the local environment such that character output is of the specified
size.

slze The size of character output, for example, :very-small or
:very-Iarge.

stream Output stream; the default is *standard-output*.

:bind-line-height
Boolean option specifying whether the height, in pixels, of the
line containing the character output is based on the size of
the default character style or of the style specified in the
macro. Whether you specify t or nil (the default) depends on
the context of the output. To see the difference, run the
following function first with nil, then with t:

(defun line-height-binder (bind)
(format t "-&Foo")
(with-character-style (J(:fix :roman :very-large) t

:bind-line-height bind)
(write-string "bar"»

(write-string "baz")
(dotimes (j 2) (terpri»
(with-character-style (J(:fix :roman :verY-large) t

:bind-line-height bind)
(format t "-&Frob one-%Frob two-I"»~

(format t "Last line"»

In this example, the difference is apparent; much more subtle
are the differences produced when only the character family
or face is changed, as opposed to its size.

The height of the default character style is determined from
the height of the space character.

To see a list of valid character style sizes, evaluate the variable
si:*valid-sizes*. For more information on character styles: See the section
"Character Styles" in Symbolics Common Lisp: Language Concepts.

266 Dictionary of Program Output Facilities

with-character-style August 1986

For an overview of with-character-face and related facilities: See the
section "Overview of Character Environment Facilities", page 49.

with-character-style (style &optional (stream t) &key Macro
bind-line-height) &body body

Binds the local environment such that character output is in the specified
style.

style List of the form (:family :face :size) specifying character style.

stream Output stream; the default is *standard-output*.

:bind-line-height
Boolean option specifying whether the height, in pixels, of the
line containing the character output is based on the size of
the default character style or of the style specified in the
macro. Whether you specify t or nil (the default) depends on
the context of the output. To see the difference, run the
following function first with nil, then with t:

(de fun line-height-binder (bind)
(format t "-&Foo")
(with-character-style (J(:fix :roman :very-large) t

:bind-line-height bind)
(write-string "bar"»

(write-string "baz")
(dot i mes (j 2) (terpri»
(with-character-style (J(:fix :roman :very-large) t

:bind-line-height bind)
(format t "-&Frob one-%Frob two-I"»~

(format t "Last line"»

In this example, the difference is apparent; much more subtle
are the differences produced when only the character family
or face is changed, as opposed to its size.

The height of the default character style is determined from
the height of the space character.

A character style specifies three style components: family, face, and size.
To see lists of valid families, faces, and sizes, evaluate the respective
variables si:*valid-families*, si:*valid-faces*, and si:*valid-sizes*. (The
same information is presented in another section: See the section
"Available Character Styles" in Symbolics Common Lisp: Language
Concepts.) Note that not all permutations of family, face, and size are
legitimate character styles.

Dictionary of Program Output Facilities 267

August 1986 with-character-style

A partially specified character style is merged against the default character
style for the window. (See the init option
(flavor:method :default-character-style tv:sheet) in Programming the User
Interface, Volume B. See the section "Merging Character Styles" in
Symbolics Common Lisp: Language Concepts.) Consider the following
example (which has to be compiled):

(defun character-style-merge ()
(dw:with-own-coordinates (t)

(wi th-character-styl e (J (ni 1 : bol d : 1 arge) t)
(graphics:draw-string "CURRENT DATA" 100 100

:alu :flip»»

The character style specification in the above example only specifies two
components, face and size. The nil supplied in the family component slot
means that the default family for the window is used. If you wish to keep
the defaults for two of the components, then you can use one of the
following macros:

with-character-family
with-character-face
with-character-size

You can determine the character style corresponding to a particular TV
font by using the si:backtranslate-font function. (See the function
si:backtranslate-font in Programming the User Interface, Volume B.)

Example:

(si:backtranslate-font Jfonts:bigfnt)
#<CHARACTER-STYLE FIX. ROMAN. VERY-LARGE 260250707>
#<STANDARD-CHARACTER-SET 260000540>
o
#<B&W-SCREEN-DISPLAY-DEVICE 260302767>

The example shows that fonts: bigfnt corresponds to the
(:fix :roman :very-Iarge) character style.

For more information on character styles: See the section "Character
Styles" in Symbolics Common Lisp: Language Concepts.

For an overview of with-character-style and related facilities: See the
section "Overview of Character Environment Facilities", page 49.

268 Dictionary of Program Output Facilities

dw :with-output -as-presentation August 1986

dw:with-output-as-presentation (&key stream object type form Macro
location single-box (allow-sensitive-inferiors t))

&body body
Outputs an object as a presentation object; in effect, allows you to rewrite
the printer function (used locally) for a presentation type. The following
example illustrates this point:

(defun present-this-as-that (this that
&optional (stream *standard-output*))

(send stream :clear-history)
(dw:with-output-as-presentation (:single-box t

:stream stream :type that :object this)
(send stream :draw-circle 259 299 25)
(send stream :draw-circle 279 299 25)))

Try calling this function with" ABC" as the first argument and 'stri ng as
the second. Now, do (accept 'string) and click on the graphic.

Note the :single-box t option used in the above example. This is nearly
always appropriate when using this macro for graphic presentations.

Following are the keyword arguments recognized by
dw:with-output-as-presentation. Note that some of them are required.

:stream Specifies stream on which the object is presented; the default
is *standard-output*.

:object Specifies the presentation object of the output presentation.
If you do not use this option, then you must supply either the
:form or :location option.

:type Specifies the type of the presentation. You must provide this
option.

:form Specifies a form that can be passed to setf to store a new
value in place of the current output value. This option and
:location are mutually exclusive.

The form supplied for this option is used by a predefined,
side-effecting mouse handler (available on c-M-Mouse-R) to
modify the contents of structure slots.

:locationSpecifies a locative that can be used to store a new value in
place of the current output value. This option and :form are
mutually exclusive.

The locative supplied for this option is used by a predefined,

Dictionary of Program Output Facilities 269

August 1986 dw:with-output-as-presentation

side-effecting mouse handler (available on C-M-Mouse-R) to
modify the contents of structure slots.

: single-box
Specifies that mouse-sensitivity of objects output in a series of
inferior calls to this form be indicated by a single, large box
for highlighting rather than the sum of all the individual
boxes. This option is used mostly with graphic presentations.

:allow-sensitive-inferiors
Boolean option specifying whether nested calls to present or
dw:with-output-as-presentation from inside this presentation
- for example, when presenting the individual elements of a
Lisp list - generate presentation objects. The default is t.

Example:

(defun sensitive-inferior-test (sensitive-p)
(dw:with-output-as-presentation

(: object fl
:type 'sys:flavor-name
:allow-sensitive-inferiors sensitive-p)

(format t "The flavor -5." fl)))

Try setqing fl to some flavor then calling sensitive-inferiors­
test with t, then nil. You should find that in the first case
both the entire presentation and the flavor name are
individually sensitive depending on where you have the mouse
cursor; in the latter case, only the entire presentation is
sensitive.

For an overview of dw:with-output-as-presentation and related facilities:
See the section "Overview of Basic Presentation Output Facilities", page
47.

:with-output-recording-disabled continuation xstream of
dw:dynamic-window

Disables output recording on a specified window for a specified
continuation.

continuation

Method

The continuation, a function of one argument, the output
stream.

xstream The window whose output recording is disabled.

270 Dictionary of Program Output Facilities

dw:with-output-to-presentation-recording-string August 1986

Example:

(defun draw-circles (stream)
(loop repeat 59

do
(gra~'ics:draw-circle

(random 599)
(random 599) 19 :stream stream»)

(send *standard-output*
:with-output-recording-disabled
#Jdraw-circles *terminal-io*)

You could incorporate this method into a macro as follows:

(defmacro with-output-recording-disabled
«stream) &body body)

l(send Jstream :with-output-recording-disabled
(dw::named-continuation

with-output-recording-disabled (Jstream)
J@body)

Jstream»

JJJ Uses the macro.
(defun new-draw-circles

(&optional (stream *standard-output*»
(with-output-recording-disabled (stream)

(loop repeat 59
do

(graphics:draw-circle
(random 599) (random 599) 19 :stream stream»»

For an overview of
(flavor:method :with-output-reeording-disabled dw:dynamie-window) and
related facilities: See the section "Overview of Other Facilities for
Program Output", page 60.

dw:with-output-to-presentation-recording-string (stream) &body Macro
body

Binds local environment to output to a string, the way
with-output-to-string does, except that the string records presentations
resulting from calls to present and dw:with-output-as-presentation. If
the resulting string is subsequently printed (via prine or present) to a
stream supporting presentations, the recorded presentations are re­
presented to that stream.

Dictionary of Program Output Facilities 271

August 1986 dw::with-output-truncation

stream The output stream; the default is *standard-output*.

dw:with-output-to-presentation-recording-string is distinguished from
present-to-string as follows:

w-o-to-p-r-string present-to-string
Returns a presentation-recording string
Arbitrary body writing to string

Returns an ordinary string
Single object to be presented

Example:

(defun test-pr-string ()
(let «string (dw:with-output-to-presentation-recording-string

(*standard-output*)
(dolist (symbol J(butcher baker candlestick-maker))

(write-string" ")
(present symbol Jsymbol)))))

(format T "-&-s-XThese should be mouse-sensitive: (-a}-X"
string string)

(accept Jsymbol)))

For an overview of dw:with-output-to-presentation-recording-string and
related facilities: See the section "Overview of Advanced Presentation
Output Facilities", page 63.

dw::with-output-truncation (&optional stream &rest options) Macro
&body body

Binds the local environment to allow textual output to extend beyond the
bottom and right borders of the output window.

stream The output stream; the default is *standard-output*.

To access text extending beyond the margins of the output
window, the window needs vertical and horizontal scroll bars.
For information on how to equip Dynamic Windows with
scroll bars (and other margin components): See the flavor
dw:dynamic-window, page 399.

options Two options are available:

:horizontal
Boolean option specifying whether truncation occurs
in the horizontal dimension; the default is t.

"Truncation" here means that output exceeding the
width of the window extends beyond the right

272 Dictionary of Program Output Facilities

dw:with-own-coordinates August 1986

Example:

margin of the current window viewport; the margin
truncates the user's view of the output. If nil, the
output wraps to the next line.

:vertical Boolean option specifying whether truncation occurs
in the vertical dimension. The default is t, meaning
that output exceeding the height of the window
extends below the bottom margin of the current
window viewport.

(defun truncation-test (t-or-nil)
(dw::with-output-truncation (t :horizontal t-or-nil)

(loop repeat 199 do (write-char #\a»»

For an overview of dw::with-output-truncation and related facilities: See
the section "Overview of Character Environment Facilities", page 49.

dw:with-own-coordinates (&optional stream &key left top right Macro
bottom (clear-window t) (erase-window nil)
(enable-out put-recording t» &body body

Binds the local environment such that output to a Dynamic Window is in a
refreshed area, and the coordinate system is relative to the current
viewport, not the window's origin.

stream The output stream; the default is *standard-output*.

: left Specifies the x-coordinate at the beginning of the area to be
erased when the :erase-window option is t.

:top Specifies the y-coordinate at the beginning of the area to be
erased when the :erase-window option is t.

: right Specifies the x-coordinate at the end of the area to be erased
when the :erase-window option is t.

: bottom Specifies the y-coordinate at the end of the area to be erased
when the :erase-window option is t.

: clear-window
Boolean option specifying whether the window is scrolled to a
clear area before output begins; the default is t.

: erase-window
Boolean option specifying that the output window be erased
before output begins; the default is nil.

Dictionary of Program Output Facilities 273

August 1986 dw:with-redisplayable-output

If this option is t, use the : left, :top, :right, and : bottom
keywords to specify the coordinates of the area to be erased.
If no coordinates are specified, they default to the coordinates
of the current viewport. Output begins at the top of the
erased area.

:enable-output-recording
Boolean option specifying whether output is retained in the
output history of the window; the default is t.

This option is useful with animated graphic presentations
that, because of the time required for redisplay, can impede
scrolling through a window's history.

For an overview of dw:with-own-coordinates and related facilities: See
the section "Overview of Other Facilities for Program Output", page 60.

dw:with-redisplayable-output (&key stream cache-value unique-id Macro
(cache-test #'eqI) copy-cache-value (id-test #'eql)
) &body body

Introduces a caching point for incremental redisplay. If this is used
outside the dynamic scope of an incremental redisplay, it has no particular
effect. However, when incremental redisplay is occurring, the supplied
cache-value is compared with the value stored in the cache identified by
unique-id. If the values differ, the code in body runs, and cache-value is
saved for next time. If the cache values are the same, the code in body is
not run, because the current output is still valid.

:stream Specifies the output stream; the default is *standard-output*.

: cache-value
Specifies the value to be compared each time against the
value stored in the cache.

:unique-id
Identifies the particular incremental redisplay cache. This
may be any object, as long as it is unique with respect to the
id-test predicate among all such ids in the current
incremental redisplay.

:cache-test
Specifies the test used to compare cache-value against the
value saved in the cache. The default is eql.

274 Dictionary of Program Output Facilities

dw:with-rep/ayab/e-output August 1986

:copy-cache-value
Boolean option specifying whether to copy-seq the cache
value before saving it in the cache. Use this, for example,
when the cache value is a stack list which must be copied
before being stored away somewhere.

:id-test Specifies the test used to locate the cache identified by
unique-id among the caches used by the current incremental
redisplay. The default is eql.

dw:with-redisplayable-output is one of a number of facilities used to do
incremental redisplay. For examples, see the file sys:examples;incremental­
redisplay.lisp.

For an overview of dw:with-redisplayable-output and related facilities:
See the section "Overview of Advanced Presentation Output Facilities",
page 63.

dw:with-replayable-output (&rest parameters) &body body Macro
Binds the local environment such that all of the output generated by body
becomes a single, replayable presentation.

The code in body is snapshotted (using
dw:named-value-snapshot-continuation) so that it can be rerun (replayed)
in an altered environment; this results in a new printed representation.
The user specifies the new output parameters at runtime via the Edit
Viewspecs mouse handler. This handler is invoked by clicking s-sh-Middle
on a replayable presentation.

parameters

Example:

A list of variable specifications in the style of
dw:accept-variable-values. That is, each item in the list is
a list of the form (variable-name prompt-string
presentation-type) .

The parameters are used to construct an
dw:accept-variable-values menu which pops up in response
to the mouse gesture Edit Viewspecs (s-sh-Middle). The
values of the variables can then be changed by the user, and
the presentation rerun with the new values.

Dictionary of Program Output Fadlltles 275

August 1986 dw:with-replayable-output

j j j Compile and run this code, then Edit Viewspecs by
; ;; clicking s-sh-Middle on its output.
(defun wrpo 0

(fresh-line)
(let «style '(:fix :roman :normal»

(width 50)
(start 1»

(dw:with-replayable-output
«style "Character style" character-style)
(width "Width in characters" «integer 5 120»)
(start "Starting from" integer»

(with-character-style (style)
(let «fill-width

(* width (send *standard-output* :char-width»»
(filling-output «) :fill-column fill-width)

(loop repeat 50
for i from start
do (format T " -r" i»»»»

Note that other presentations on the screen are not moved to account for
changes in the size of the target presentation due to replaying. It is
possible for gaps or overwriting to occur. If this is a problem, then
consider the facilities provided for incremental redisplay. See the Advanced
Presentation Output Facilities section, referenced below, for more
information.

dw:with-replayable-output is similar to dw:with-output-as-presentation in
the sense that it lets you define a presentation-type printer "on the fly",
that is, not as part of a presentation type. In the case of
dw:with-replayable-output, you are writing a printer that can be modified
by the user at runtime, via the Edit Viewspecs handler. This is not the
only way to provide users with the ability to alter displayed presentations;
you can use the :viewspec-choices option to define-presentation-type to
provide the same capability with regard to all presentations of the defined
type: See the macro "define-presentation-type", page 366.

dw:with-resortable-output is a specialization of dw:with-replayable-output
for re-ordering and redisplaying lists: See the macro
dw:with-resortable-output, page 276.

For an overview of dw:with-replayable-output and related .facilities: See
the section" Overview of Advanced Presentation Output Facilities", page
63.

276 Dictionary of Program Output Facilities

dw:with-resortable-output August 1986

dw:with-resortable-output ((list key &key copy-of) &rest Macro
sort-clauses) other-parameters &body body

Binds the local environment such that all of the output generated by body
becomes a single, replayable presentation. The list can be output in one of
several orders specified by sorting predicates. Which sorting predicate is
used can be specified by users at runtime via the Edit Viewspecs mouse
handler, available on s-sh-Middle.

list A variable holding the sequence of items for output.

key A variable holding an identifier for selecting which of the
sort-clauses is used.

:copy-of Specifies a list to be copied and sorted instead of list. The
value is copied by copy-seq. Typically, the value of this
option is list. Use it when you do not want the order of the
original list to be destroyed by sorting.

sort-clauses
An ecase body, selecting on sort keys (the value of key), and
returning a sort predicate.

other-parameters
Other parameters included in the parameters argument passed
to dw:with-replayable-output: See the macro
dw:with-replayable-output, page 274. These and the sorting
options appear in the dw:accept-variable-values display
created by the Edit Viewspecs handler.

To see this macro in action, execute the Command Processor command
Show Processes or Show Directory. Both use dw:with-resortable-output
and produce output resortable via the Edit Viewspecs handler (s-sh-Middle).

Another example:

Dictionary of Program Output Facilities 277

August 1986 with-underlining

(defun sortable-output ()
(let «data (make-array 19»

(how : al pha)
(style '(:swiss nil nil»)

(dotimes (i 19)
(setf (aref data i)

(list i (format nil "-r" i»»
(dw:with-resortable-output

;; 1 i st and key
«data how)
;; sort clauses
(:alpha

(1 ambda (x y)
(string-lessp (second x) (second y»»

(: 1 ength
(lambda (x y)

« (string-length (second x»
(string-length (second y»»)

(:number
(1 ambda (x y)

« (first x) (first y»»)
" other parameter
«style "Character style" character-style»
;; body
(with-character-style (style)

(format t "-&Here come the data, sorted by -(-a-): " how)
(format-textual-list data

(lambda (x stream)
(prine (second x) stream»»»)

For an overview of dw:with-resortable-output and related facilities: See
the section "Overview of Advanced Presentation Output Facilities", page
63.

with-underlining (&optional stream) &body body Macro
Binds the local environment such that character output is underlined.

stream Output stream; the default is *standard-output*.

Example:

278 Dictionary of Program Output Facilities

:x-scroll-position August 1986

(de fun underline-example ()
(fresh-line)
(with-underlining ()

(prine 12345)
(sleep 2)
(prine 56789)))

For an overview of with-underlining and related facilities: See the section
"Overview of Character Environment Facilities", page 49.

:x-scroll-position of dw:dynamic-window
Returns four values:

1. The absolute location of the current viewport's left edge.

2. The viewport's horizontal extent.

3. The window's minimum x-coordinate (typically 9).

4. The absolute location of the viewport's right edge.

Method

For an overview of (flavor:method :x-scroll-position dw:dynamic-window)
and related facilities: See the section "Overview of Other Facilities for
Program Output", page 60.

:x-scroll-to position type of dw:dynamic-window
Scrolls the window to a specified x-coordinate.

position The x-coordinate to scroll to.

Method

type The type of scrolling operation. Three possibilities exist:

: absolute
The position argument specifies an absolute window
location.

:relative The position argument specifies a location, in pixels,
relative to the current position of the cursor.

: relative-jump
The position argument specifies a location, in
characters, relative to the current position of the
cursor. The width of a character in pixels depends
on the default character style for the window; the
width of the space character is used.

For an overview of (flavor:method :x-scroll-to dw:dynamic-window) and

Dictionary of Program Output Facilities 279

August 1986 :y-scroll-position

related facilities: See the section "Overview of Other Facilities for
Program Output", page 60.

:y-scroll-position of dw:dynamic-window
Returns four values:

1. The absolute location of the current viewport's top edge.

2. The viewport's vertical extent.

3. The window's minimum y-coordinate (typically 0).

4. The absolute location of the viewport's bottom edge.

Method

For an overview of (flavor:method :y-scroll-position dw:dynamic-window)
and related facilities: See the sectipn "Overview of Other Facilities for
Program Output", page 60.

:y-scroll-to position type of dw:dynamic-window
Scrolls the window to a specified y-coordinate.

position The y-coordinate to scroll to.

Method

type The type of scrolling operation. Three possibilities exist:

: absolute
The position argument specifies an absolute window
location.

:relative The position argument specifies a location, in pixels,
relative to the current position of the cursor.

: relative-jump
The position argument specifies a location, in lines,
relative to the current position of the cursor. The
height of a line in pixels depends on the default
character style for the window.

For an overview of (flavor:method :y-scroll-to dw:dynamic-window) and
related facilities: See the section "Overview of Other Facilities for
Program Output", page 60.

280 Dictionary of Predefined Presentation Types

August 1986

281

August 1986 Dictionary of Predefined Presentation Types

PART VI.

Dictionary of Predefined Presentation Types

282

Programming the User Interface, Volume A August 1986

283

August 1986 Dictionary of Predefined Presentation Types

18. Dictionary Notes

This dictionary includes reference documentation for the following presentation
types:

Table of Predefined Presentation Types

Common Lisp Presentation Types
and
character
integer
keyword
member
not
null
number
or
package
pathname
satisfies
sequence
string
symbol
symbol-name
t

Symbolics Common Lisp Presentation Types
alist-member
boolean
character-face-or-style
character-style
character-style-for-device
instance
inverted-boolean
null-or-type
sequence-enumerated
subset
token-or-type
type-or-string

284

Programming the User Interface, Volume A

Other Presentation Types
dw:member-sequenee
dw:no-type
dw:out-of-band-eharaeter
dw:raw-text
dw:replayable-output
fs:direetory-pathname
fs:wildeard-pathname
net:host
net:loeal-host
net:namespaee
net:namespaee-elass
net: network
neti:loeal-network
net:objeet
sys:printer
neti:protoeol-name
neti:site
net:user
set:system
set: system-version
sys:eode-fragment
sys:expression
sys:font
sys:form
sys:flavor-name
sys:funetion-spee
sys:generie-funetion-name
sys:printer
sys:staek-frame
time: time-interval
time:time-interval-60ths
time:timezone
time:universal-time
tv: window
zwei: buffer

August 1986

In the dictionary, the types are arranged in alphabetical order (package prefIxes
excluded).

For conceptual documentation: See the section "Overview of PredefIned
Presentation Types", page 71.

Dictionary of Predefined Presentation Types 285

August 1986 alist-member

19. The Facilities

aUst-member (&key alist) &key convert-spaces-to-dashes nil Presentation Type
Type for accepting or presenting an association list item.

:aUst Data option specifying the list of items. The usual form of
item is a dotted pair of the print string and its object:
«String-l _ object-l) (string-2. object-2) ... (string-n.
object-n») .

Alternatively, items can be in the "general list" form: See
the section "The Form of a Menu Item" in Programming the
User Interface, Volume B. One of the advantages of this form
is that documentation for each item can be added that will
appear if the user asks for help (presses the HELP key) during
an accept of this type. Documentation is specified with the
:documentation keyword. See the examples section of
aUst-member.

Two other keywords are permitted in an item list. The first
is :style, specifying the character style of the presented item.

The second is :selected-style. This keyword may only be
used when alist-member is part of a dw:accepting-values
function. It specifies the character style of the item when it
is selected, that is, after it has been clicked on. The
:selected-style defaults to the boldface version of the
unselected style. For an example: See the macro
dw:accepting-values, page 175.

:convert-spaces-to-dashes

Examples:

Presentation option specifying whether spaces in the print
string should be converted to dashes; the default is nil.

(accept '«alist-member :alist «"Item 1" . a) ("Item 2" . b»)

:convert-spaces-to-dashes t») ==>
Enter Item-1 or Item-2: Item-2

B
«ALIST-MEMBER :ALIST «"Item 1" . A) ("Item 2" .8»)

:CONVERT-SPACES-TO-DASHES T)

286

alist-member

Dictionary of Predefined Presentation Types

August 1986

(present Jb J«alist-member :alist «"Item 1" . a) ("Item 2" . b)))
:convert-spaces-to-dashes t)) ==>

Item-2
#<DISPLAYED-PRESENTATION 444272462>

(defun filter-alist-example ()
(let «operator-alist

J«"Gaussian" :value :gauss
:documentation "low-pass filter")

("Laplacian J HP" :value :lpl-hp
:documentation "high-pass filter")

("Laplacian J ED" :value :lpl-ed
:documentation "edge detector")

("Roberts" :value :rbts
:documentation "edge detector")

("Prewitt J Hz" :value :prw-hz
:documentation "horizontal edge detector")

("Prewitt J Vt" :value :prw-vt
:documentation "vertical edge detector")

("Sobel J Hz" :value :sbl-hz
:documentation "horizontal edge detector")

("Sobel J Vt" :value :sbl-vt
:documentation "vertical edge detector"))))

(accept '«alist-member :alist Joperator-alist)
:description "a 2-dimensional image filter"))))

(filter-alist-example) ==>
Enter a 2-dimensional image filter: HELP
You are being asked to enter a 2-dimensional image filter.

These are the possible 2-dimensional image filters:
Gaussian
Laplacian J ED
Laplacian J HP
PrewittJ Hz
PrewittJ Vt
Roberts
Sobel J Hz
Sobel J Vt

low-pass filter
edge detector
high-pass filter
horizontal edge detector
vertical edge detector
edge detector
horizontal edge detector
vertical edge detector

Dictionary of Predefined Presentation Types

August 1986

Enter a 2-dimensional image filter: Laplacian, HP
:LPL-HP
«ALIST-MEMBER :ALIST

«"Gaussian" :VALUE :GAUSS :DOCUMENTATION
"low-pass filter")

("Laplacian, HP" :VALUE :LPL-HP :DOCUMENTATION
"high-pass filter")

("Laplacian, ED" :VALUE :LPL-ED :DOCUMENTATION
"edge detector")

("Roberts" :VALUE :RBTS :DOCUMENTATION
"edge detector")

("Prewitt, Hz" :VALUE :PRW-HZ :DOCUMENTATION
"horizontal edge detector")

("Prewitt, Vt" :VALUE :PRW-VT :DOCUMENTATION
"vertical edge detector")

("Sobel, Hz" :VALUE :SBL-HZ :DOCUMENTATION
"horizontal edge detector")

("Sobel, Vt" :VALUE :SBL-VT :DOCUMENTATION
"vertical edge detector"»)

:DESCRIPTION "a 2-dimensional image filter")

287

and

Because the prompt generated by accept for input of alist-member items
can sometimes be awkward, you may want to use the meta-presentation
argument :description to change it. (See the section "Overview of
Predefined Presentation Types", page 71.) This was done in the (filter­
alist-example) above.

The filter example also demonstrates the advantage of providing an alist of
the general list form. The :documentation provided in the alist can add
much useful information to the display.

A type history is not available for the alist-member presentation type.

alist-member is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

and (&rest types) Presentation Type
Compound type for accepting or presenting an object of two or more
presentation types. Typically, the second and subsequent types are derived
via the satisfies presentation type.

288

boolean

Dictionary of Predefined Presentation Types

August 1986

types Data arguments specifying the contributing presentation
types.

Examples:

(accept '«and sys:expression (satisfies symbolp)))) ==>
Enter the representation of any Lisp
object satisfying SYMBOLP: ramjet
RAMJET
«AND SYS:EXPRESSION

(SATISFIES SYMBOLP)))

(accept '«and «integer)) «satisfies oddp))
«satisfies plusp))))) ==>

Enter an integer satisfying ODDP and
PLUSP [default 9]: 21
21
«AND «INTEGER))

«SATISFIES ODOP))
«SATISFIES PLUSP))))

The compound presentation type in the first example is equivalent to the
symbol presentation type and is, in fact, how that type is defined.

and can combine any number of satisfies types with an initial,
non-satisfies type. The second example above shows an initial integer type
used with two satisfies types to solicit input of odd, positive integers.

Note that the compound type has access to the type history of the initial
presentation type, if one exists. However, it does not automatically use the
value at the top of the history as the default value in an accept function.
Rather, it uses the item most recently added to the type history that also
satisfies the satisfies function(s).

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

boolean Presentation Type
Type for accepting or presenting a yes-or-no answer, where "yes" is t and
"no" is nil.

Examples:

Dictionary of Predefined Presentation Types 289

August 1986 zwei:buffer

(accept J«boolean))) ==>
Enter Yes or No: No
NIL
«BOOLEAN))

(present t J«boolean))) ==>Yes
#<DISPLAYED-PRESENTATION 444300153>

A type history is not available for the boolean presentation type.

boolean is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

See also the inverted-boolean presentation type.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

zwei: buffer &key (create-p :if-forced) Presentation Type
Type for accepting or presenting Zmacs editor buffers.

:create-pPresentation option specifying whether to create the buffer
entered in response to an accept prompt if it does not
already exist.

Examples:

The default is : if-forced. This provides the user the option of
changing the input or creating the new buffer, rather than
just creating the buffer as in the case of : create-p t.

(accept J«zwei:buffer))) ==>
Enter an editor buffer
[default ui-dict15.sar >sys>doc>uims Q:J: HELP ==>
You are being asked to enter an editor buffer.

These are the possible editor buffers:
:t:Buffer-1:t:
:t:Definitions-1*
doc-29-55.lisp >sys>doc>patch>doc-29 Q:
miscui2.sar >sys>doc>miscui Q:
standard-presentation-types.lisp >sys>dynamic-windows Q:
ui-dict15.sar >sys>doc>uims Q:

290 Dictionary of Predefined Presentation Types

character August 1986

Enter an editor buffer
[default ui-dict15.sar >sys>doc>uims Q:J: *Buffer-l*
#<NON-FILE-BUFFER "*Buffer-1*" 47788884>

(accept '((zwei:buffer) :create-p t)) ==>
Enter an editor buffer
[default ui-dict15.sar >sys>doc>uims Q:J: faa. test
#<NON-FILE-BUFFER "foo.test" 47788567>
((ZWEI:BUFFER) :CREATE-P T)

(present (zwei:make-buffer 'zwei:non-file-buffer)
'((zwei:buffer))~ ==>*Buffer-2*

#<DISPLAYED-PRESENTATION 274672153>

The zwei: buffer presentation type uses the special variable
zwei:*buffer-history* to provide its type history.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

character
Type for accepting or presenting single characters.

Examples:

(accept '((character)) ==>
Enter a character: R
#\R
((CHARACTER))

(accept '((character)) ==>
Enter a character: r
#\r
((CHARACTER))

(accept '((character)) ==>
Enter a character: %
#\%
((CHARACTER))

(accept '((character)) ==>
Enter a character: 3
#\3

Presentation Type

Dictionary of Predefined Presentation Types 291

August 1986

(present #\J J«character))) ==>J
#<DISPLAYED-PRESENTATION 445346702>
«CHARACTER))

character-face-or-style

Use the character presentation type for normal, editable character input.
To accept characters that would be mistaken as input-editor commands, for
example #\c-b, use dw:out-of-band-character instead.

There is no type history for the character presentation type.

character is one of a number of types defined in sys:dynamic-
windows; standard-pre sentation-type s.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

character-face-or-style (&key device (against-default Presentation Type
si: * standard-default-character-style *)) &key
for-attribute-list

Type for accepting either a fully specified character style, or just the face
component. (The device argument, although implemented as a keyword, is
required.)

:device Data option specifying the device for the character style.
There are four possibilities: si:*b&w-screen*,
19p:*lgp-printer*, Igp:*lgp2-printer*, and
dmpl:*dmpl-printer* .

: against-default
Data option specifying a default character style against which
the input character style is merged. See the section
"Merging Character Styles" in Symbolics Common Lisp:
Language Concepts.

:for-attribute-list

Examples:

Presentation option specifying whether the character style
should be presented in list form, for example, (: fi x : bo 1 d
: normal). The default is nil. Supply a value of t when
presenting a character style for inclusion in the attribute list
of file.

292 Dictionary of Predefined Presentation Types

character-style August 1986

(accept \«character-face-or-style
:device ,si:*b&w-screen*))) ==>
Enter a character face or style: BOLD
#<CHARACTER-STYLE NIL.BOLD.NIL 155157247>
((CHARACTER-FACE-OR-STYLE :DEVICE
#<B&W-SCREEN-DISPLAY-DEVICE 154221604»)

(accept \«character-face-or-style
:device ,s;:*b&w-screen*))) ==>
Enter a character face or style: DUTCH.ROMAN.NORMAL
#<CHARACTER-STYLE DUTCH.ROMAN.NORMAL 154174235>
«(CHARACTER-FACE-OR-STYLE :DEVICE
#<8&W-SCREEN-DISPLAY-DEVICE 154221604»)

The character-face-or-style presentation type does not support a type
history.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

character-style (&key against-default) &key for-attribute-list
Type for accepting or presenting character styles.

Presentation Type

: against-default
Data option specifying a default character style against which
the input character style is merged. See the section
"Merging Character Styles" in Symbolics Common Lisp:
Language Concepts.

:for-attribute-list
Presentation option specifying whether the character style
should be presented in list form, for example, (: fix : bo 1 d
:normal). The default is nil. Supply a value oft when
presenting a character style for inclusion in the attribute list
of file.

When accepting a character style, the user is prompted for the family, face,
and size, in that order. The first two entries must be terminated by a
period, the last by RET URN or END .

. Examples:

Dictionary of Predefined Presentation Types 293

August 1986

(accept J«character-style))) ==>
Enter a valid character style: SWISS.BOLD.LARGE
#<CHARACTER-STYLE SWISS.BOLD.LARGE 264231477>

character-sfyJe-for-device

(present (si:parse-character-style J(:swiss :bold :large))) ==>
SWISS. BOLD. LARGE
#<DISPLAYED-PRESENTATION 425221252>

The character-style presentation type supports a type history.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

character-style-for-device (&key device (against-default Presentation Type
si: * standard-default-character-sty le *)
(allow-relative t) (allow-device-font nil)) &key
for-attribute-list (provide-subhelp t)

Type for accepting or presenting character styles for a specified device.
(The device argument, although implemented as a keyword, is required.)

:device Data option specifying the device for the character style.
There are four possibilities: si:*b&w-screen*,
19p:*lgp-printer*, Igp:*lgp2-printer*, and
dmpl:*dmpl-printer* .

: against-default
Data option specifying a default character style against which
the input character style is merged. See the section
"Merging Character Styles" in Symbolics Common Lisp:
Language Concepts.

: allow-relative
Data option specifying whether relative style specifications,
such as smaller or larger, are permitted. See the section
"Merging Character Styles" in Symbolics Common Lisp:
Language Concepts.

:allow-device-font
Data option specifying whether a device font is permitted; the
default is nil.

Device fonts are applicable only to the black-and-white screen
device (si:*b&w-screen*). For a list of possibilities, press
HELP after entering" device-font." in an accept of this
presentation type, with this option specified t.

294 Dictionary of Predefined Presentation Types

character-style-for-device August 1986

For more information about device fonts: See the section
"Mapping a Character Style to a Font" in Symbolics Common
Lisp: Language Concepts.

:for-attribute-list
Presentation option specifying whether the character style
should be presented in list form, for example, (: fi x : bo 1 d
: normal). The default is nil. Supply a value of t when
presenting a character style for inclusion in the attribute list
of file.

:provide-subhelp

Examples:

Presentation option specifying whether to provide a HELP
display; the default is t. Disable this if a higher-level call
provides help.

(accept '«character-style-for-device
:device ,si:*b&w-screen*))) ==>
Enter a character style: FIX.BOLD.TINY
#<CHARACTER-STYLE FIX.BOLD.TINY 154222436>
«CHARACTER-STYLE-FOR-DEVICE :DEVICE
#<8&W-SCREEN-DISPLAY-DEVICE 154221684»)

(accept '«character-style-for-device
:device ,lgp:*lgp2-printer* :allow-relative t))) ==>
Enter a character style [default FIX.BOLD.TINY]: SWISS.BOLD.SAME
#<CHARACTER-STYLE SWISS.BOLD.SAME 15212221>
«CHARACTER-STYLE-FOR-DEVICE :DEVICE
#<LGP2-DISPLAY-DEVICE 154173651> :ALLOW-RELATIVE T))

(accept '«character-style-for-device
:device ,si:*b&w-screen* :allow-device-font t))) ==>
Enter a character style: DEVICE-FONT.BIGFNT
#<CHARACTER-STYLE DEVICE-FONT.BIGFNT.NORMAL 14251534>
«CHARACTER-STYLE-FOR-DEVICE :DEVICE
#<8&W-SCREEN-DISPLAY-DEVICE 154221684> :ALLOW-DEVICE-FONT T))

character-style-for-device is a subtype of character-style, fronl which it
inherits a type history.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

Dictionary of Predefined Presentation Types 295

August 1986 sys:code-fragment

sys:code-fragment Presentation Type
Type for accepting or presenting pieces of Lisp code. This presentation
type is a subtype of sys:form, and intended primarily for accessing code
fragments in editor buffers. The following example, the definition of a
translating mouse handler for editor commands, uses sys:code-fragment as
the from-presentation-type argument:

(zwei:define-presentation-to-editor-command-translator
typeout-menu-arglist-from-buffer
(sys:code-fragment "Arglist" *standard-comtab*
:gesture :hyper-meta-middle)

(function-spec)
(when (and (sys:validate-function-spec function-spec)

(fdefinedp function-spec))
t(typeout-menu-arglist Jfunction-spec)))

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

fs:directory-pathname &key (default-version :newest) Presentation Type
default-type nil) (default-name nil) dont-merge-default

(direction :read) (format :normal)
Type for accepting or presenting directory pathnames.

This presentation type can be useful if you need to distinguish
unequivocally between directory pathname presentations and file pathname
presentations. For example, if you can arrange for the availability to your
users of some fs:directory-pathname presentations, then mouse handlers
performing directory-related functions can be defined that do not have to
test whether a given pathname presentation is a directory pathname, or
extract directory objects from pathname presentations.

fs:directory-pathname is a subtype of the pathname presentation type,
from which it inherits a printer, parser, and type history. It also takes the
same keyword arguments, as follows:

: default-version
Presentation option specifying the default version number of
an accepted file. The default value for this option is : newest,
the newest file version.

: default-type
Presentation option specifying the default file type, for
example, "lisp", "text", "data", and so on. The default value
for this option is nil.

296 Dictionary of Predefined Presentation Types

fs:directory-pathname August 1986

: default-name
Presentation option specifying the default file name. The
default value for this option is nil.

:dont-merge-default
Presentation option specifying whether to prevent merging of
a partially specified pathname entered by the user against the
default pathname. The default value for this option is nil,
meaning that merging occurs when appropriate; that is, parts
of the pathname not entered by the user are supplied from
the default.

Suppression of merging against the default and providing a
different default (against which merging mayor may not be
enabled) are different issues. To deal with the latter, use the
:default option to accept: See the function "accept", page
167. An example follows:

:direction

(accept J«pathname) :default-type nil)
:default (send (fs:default-pathname)

:new-pathname :type nil
:version :newest»

Presentation option specifying either :read (the default) or
:write. The value supplied is passed through to
fs:complete-pathname and affects completion behavior. (See
the function fs:complete-pathname in Reference Guide to
Streams, Files, and I/O.)

Use the default (:read) if the user is likely to enter the
pathname of an already existing file when prompted by
accept, :write otherwise.

:format Presentation option specifying the output format of the
pathname. There are four choices:

:normal For example, S: >mb>dw-pgms>fancy-wi ndows. 1 i sp.
This is the default format.

: directory
For example, >mb>dw-pgms>. The host, file name, and
file type are not displayed.

:dired For example, fancy-wi ndows. 1 i sp. Only the file
name and type are displayed.

Dictionary of Predefined Presentation Types 297

August 1986 sys:expression

:editor For example, fancy-wi ndows. , ; sp >mb>dw-pgms S. The
display format is that used by Zmacs.

For examples illustrating the use of these keywords in pathname
presentations: See the presentation type pathname, page 320.

fs:directory-pathname is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

sys:expression &rest options Presentation Type
Type for accepting or presenting expressions. An expression is the
readable, printed representation of a Lisp object. The expression is not
evaluated.

options Presentation options controlling the generation of the printed
representation. They are listed in the following table, along
with the special variables providing each option with its
default value. (Note that these options are the same as those
available for the Common Lisp function write.)

Option
:escape
:pretty
:abbreviate-quote
:radix
:base
:circle
: level
:length
:case
:gensym
: array
: readably
: array-length
:string-Iength
:bit-vector-Iength
:structure-contents

Special Variable
print-escape
print-pretty
print-ab breviate-quote
print-radix
print-base
print-circle
print-Ievel
print-Iength
print-case
print-gensym
print-array
print-readably
print-array-Iength
*print-string-length *
print-bit-vector-Iength
print-structure-~ontents

The special variables are documented together in another section: See
the section "Output Functions" in Reference Guide to Streams,

298 Dictionary of Predefined Presentation Types

sys:expression August 1986

Examples:

Files, and liD. Consult the documentation for the individual
variables to find out what they do and what values they can
have. These values are the same that can be supplied with
the corresponding presentation options to sys:expression.

(accept '«sys:expression))) ==>
Enter the representation of any Lisp object
[default (ACCEPT '«SYS:EXPRESSION)))]: setq
SETQ
«SYS:EXPRESSION))

(accept '«sys:expression))) ==>
Enter the representation of any Lisp object
[default (ACCEPT '«SYS:EXPRESSION)))]: (+ 33 900)
(+ 33 900)
«SYS:EXPRESSION))

(present (net:find-object-named :network "DNA")
'«sys:expression))) ==>#<DNA-NETWORK DNA 13702517>
#<DISPLAYED-PRESENTATION 275045641>

(accept '«sys:expression))) ==>
Enter the representation of any Lisp object
[default (ACCEPT '«SYS:EXPRESSION)))]:
'#<.DISPLAYED-PRESENTATION 275045641>
'#<DISPLAYED-PRESENTATION 275045641>
SYS:FORM

The sys:expression type occupies a unique position in the data type
hierarchy, namely, the highest spot but for one, that occupied by t. This
means that, except for t, sys:expression is supertype to all other Symbolics
Common Lisp types.

For all data types not explicitly defined as presentation types (via
define-presentation-type) , sys:expression serves as the access point to the
presentation system. It provides these types with a parser, printer, and
type history. In fact, it provides one or more of these functions to many
defined presentation types as well.

sys:expression's history includes all previously accepted Lisp objects. This
is why, in the accept examples above, the default is always (ACCEPT
'«SYS:EXPRESSION))); this expression is the most recently accepted one.

Dictionary of Predefined Presentation Types 299

August 1986 sys:flavor-name

When accessed by other types, sys:expression's type history is pruned to
objects of the accessing type. For example, number and types descended
from number do not maintain their own type histories. When a previously
accepted value is needed to provide, say, a default value in an accept of an
integer, the expression history is pruned to integer objects of which the
most recently accepted is used as the default.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

sys:flavor-name Presentation Type
Type for accepting or presenting symbols that name flavors.

Examples:

(accept J«sys:flavor-name))) ==>
Enter a flavor name: DW:PROGRAH-FRAHE
DW:PROGRAH-FRAHE
«SYS:FLAVOR-NAHE))

(present Jdw:marg;n-m;x;n J«sys:flavor-name))) ==>DW:HARGIN-HIXIN
#<DISPLAYED-PRESENTATION 275147735>

(accept J«sys:flavor-name))) ==>
Enter a flavor name [default DW:PROGRAH-FRAHEJ: DW:HARGIN-HIXIN
DW:HARGIN-HIXIN
«SYS:FLAVOR-NAHE))

The sys:flavor-name presentation type supports a type history.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

sys:font
Type for accepting or presenting loaded fonts.

Examples:

(accept J«sys:font))) ==>
Enter a loaded font: HELP ==>
You are being asked to enter a loaded font.

Presentation Type

300 Dictionary of Predefined Presentation Types

sys:font August 1986

There are 87 possible loaded fonts. Do you want to see them all?
(Y or N) Yes.
These are the possible loaded fonts:

5X5 DUTCH20B HL141 MEDFNTBI
DUTCH20BI HL18
DUTCH201
EINY7
EUREX121

HL18B
HL18BI
HL181

MEDFNTI
MOUSE
NARROW
SWISS12-CCAPS

TR12BI
TR121
TR14
TR14B
TR141

BIGFNT
BIGFNTB
BIGFNTBI
BIGFNTI
BOXFONT
CPT FONT
CPTFONTB

EUREX241 HL8 SWISS12B-CCAPS TR18
HIPP012
HL10

CPTFONTBI HL10B
CPTFONTC HL10BI
CPTFONTCB HL101
CPTFONTCC HL12
CPTFONTI HL12B
DUTCH14 HL12BI
DUTCH14B HL121
DUTCH14BI HL14
DUTCH141 HL14B
DUTCH20 HL14BI

HL8B
HL8BI
HL81

SWISS20
SWISS20B
SWISS20BI

JESS13 SWISS201
JESS13B SYMBOL12
JESS13I TINY
JESS14 TR10
JESS14B TR10B
JESS14I TR10BI
MATH12 TR10I
MEDFNT TR12
MEDFNTB TR12B

Enter a loaded font: DUTCH20
#
SYS:FONT

(accept '«sys:font))) ==>
Enter a loaded font [default DUTCH20]: SWISS20
#
«SYS:FONT))

TR18B
TR8
TR8B
TR8BI
TR8I
TVFONT
TVFONTB
TVFONTBI
TVFONTI

(present (si:get-font si:*b&w-screen* si:*standard-character-set*
'(:jess :roman :normal))) ==>JESS13
#<DISPLAYED-PRESENTATION 440305757>

The sys:font presentation type supports a type history.

sys:font is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

Dictionary of Predefined Presentation Types 301

August 1986 sys:form

sys:form &key (environment si:*read-form-environment*)
Type for accepting or presenting Lisp forms.·

: environment

Presentation Type

Presentation option specifying the lexical environment of an
input form. (For more on environments: See the section
"Lexical Environment Objects and Arguments" in Symbolics
Common Lisp: Language Concepts.)

(accept '«sys:form») ==>
Enter A Lisp expression to be evaluated
[default (ACCEPT '«SYS:FORM»)]: (symbolp t)
(SYMBOLP T)

«SYS:FORM»

(present '(symbolp t) '«sys:form») ==>(SYMBOLP T)
#<OISPLAYED-PRESENTATION 275141170>

Command: (SYMBOLP T)
T

Presented forms are evaluable. In the above examples, run in the
command-or-form context, the (SYMBOLP T) form was entered to the
Command: prompt by clicking left on the output of the preceding present
function. This form was immediately evaluated. Contrast this behavior
with that of sys:expression presentations; presented forms are quoted and
not evaluable directly.

The sys:form presentation type inherits its printer and type history from
sys:expression.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

sys:function-spec (&key defined-p) &key (partial-completers Presentation Type
'(#\space»

Type for accepting or presenting valid function specs. (For information on
function specs: See the section "Function Specs" in Symbolics Common
Lisp: Language Concepts.)

:defined-p
Data option restricting function specs to those that are
defined; the default is nil.

302 Dictionary of Predefined Presentation Types

sys:generic-function-name August 1986

:partial-completers

Examples:

Presentation option specifying a list of characters to be used
as completers of function-spec tokens during input; the
default list is (#\space).

(present '+ '«sys:function-spec))) ==>+
#<DISPLAYED-PRESENTATION 275374421>

(accept '«sys:function-spec))) ==>
Enter a valid function spec: +
+
«SYS:FUNCTION-SPEC))

(accept '«sys:function-spec))) ==>
Enter a valid function spec [default +J: (:PROPERTY alpha bravo)
(:PROPERTY ALPHA BRAVO)
«SYS:FUNCTION-SPEC))

(accept '«sys:function-spec :defined-p t))) ==>
Enter a defined function spec: (:PROPERTY alpha bravo)
(:PROPERTY ALPHA BRAVO) is not a defined function spec.
Type RUBOUT to correct your input. [AbortJ

(defun (:property alpha bravo) () 1) ==>
(:PROPERTY ALPHA BRAVO)

(accept '«sys:function-spec :defined-p t))) ==>
Enter a defined function spec
[default (:PROPERTY ALPHA BRAVO)J: (:PROPERTY ALPHA BRAVO)
(:PROPERTY ALPHA BRAVO)
«SYS:FUNCTION-SPEC :DEFINED-P T))

The sys:function-spec presentation type supports a type history.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

sys:generic-function-name &key show-compatible-message Presentation Type
Type for accepting or presenting function specs for generic functions.

:show-compatible-message
Presentation option specifying whether to also print, if

Dictionary of Predefined Presentation Types 303

August 1986 net:host

defined, the name of the compatible message for the generic
function. (Compatible messages are specified by an option to
defgeneric: See the section "Defining a Compatible Message
for a Generic Function" in Symbolics Common Lisp: Language
Concepts.)

Examples:

(accept J«sys:generic-function-name») ==>
Enter a generic function name: HELP
You are being asked to enter a generic function name.

There are 1163B possible generic function names.
Do you want to see them all? (Y or N) No. [Thanks J anyway.]

Enter a generic function name: DW:DO-REDISPLAY
DW:DO-REDISPLAY
«SYS:GENERIC-FUNCTION-NAHE»

(present Jsys:print-self J«sys:generic-function-name») ==>
SYS:PRINT-SELF
#<DISPLAYED-PRESENTATION 275755254>

(present Jsys:print-self J«sys:generic-function-name)
:show-compatible-message t» ==>SYS:PRINT-SELF (:PRINT-SELF)
#<DISPLAYED-PRESENTATION 275755527>

The sys:generic-function-name presentation type supports a type history.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

net:host
Type for accepting or presenting a network host.

Examples:

(accept J«net:host») ==>
Enter the name of a host: Harpagornis
#<LISPH-HOST HARPAGORNIS 53344734>
«NET:HOST»

Presentation Type

304

instance

Dictionary of Predefined Presentation Types

(accept J«net:host») ==>
Enter the name of a host [default HARPAGORNIS]: laurent
#<MSDOS-HOST YVES-ST-LAURENT 5336B1167>
«NET:HOST»

(present (si:parse-host "owl") J«net:host») ==>OWL
#<DISPLAYED-PRESENTATION 275435731>

(accept J«net:host») ==>
Enter the name of a host [default YVES-ST-LAURENT]: OVVL
#<LISPM-HOST OWL 137B7365>
«NET:HOST»

August 1986

The net:host presentation type has its own parser and type history; it
inherits its printer via net:object, to which it is subtype, from
sys:expression.

net:host is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

instance (&optional (flavor '*» Presentation Type
Type for accepting or presenting flavor instances.

flavor Data argument specifying what flavor this is an instance of;
the default leaves the flavor unspecified.

Examples:

(present (tv:make-window Jdw:dynamic-window) Jinstance) ==>
Dynamic Window 1
#<DISPLAYED-PRESENTATION 444315574>

(accept J«instance») ==>
Enter the representation of any Lisp obj ect: Dynamic VVindow 1
#<DYNAHIC-WINDOW Dynamic Window 1 12BB437 deactivated>
INSTANCE

Dictionary of Predefined Presentation Types 305

August 1986 integer

(accept '«instance 'dw:dynamic-window»
:prompt "Enter an instance") ==>

Enter an instance [default Dynamic Window 1]: Dynamic Window 1
#<DYNAHIC-WINDOW Dynamic Window 1 1200437 deactivated>
«INSTANCE 'DW:DYNAHIC-WINDOW»

The instance presentation type inherits its printer and parser functions -
as well as a type history - from the sys:expression presentation type.
Thus, in the first accept function above, the prompt says to "Enter the
representation of any Lisp object". We override this by providing our own
prompt in the second call to accept.

In the first accept form, the entered Dynamic Window 1 is in italics
because it was entered via a mouse click on the presentation created by the
present function. If we had tried to type in "dynamic window 1", accept
would, have returned the object DYNAMIC when the first space character
was typed.

instance is not a presentation type that you are likely to need for writing
end-user interfaces to applications. A number of Common Lisp presentation
types are in this category, for example, structure and hash-table. Like
instance, all inherit their parser, printer, and type history from
sys:expression. And, as in the case of instance, when sys:expression's
type history is accessed to provide, for example, a default value in an
accept function, the history is "pruned" to objects only of the sought-after
type. Thus, in the second accept function above, not any Lisp object is
offered as a default, but an instance object.

All flavors are subtype to the instance presentation type. Similarly, all
structures are subtype to the structure type. The two types are thereby
important for links they provide to the presentation-type system for flavors
and structures, respectively.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

integer (&optional (range-low '*) (range-high '*» &key (base 10) Presentation Type
Type for accepting or presenting integers.

range-low
Data argument specifying a lower limit for integer objects.
The default is no lower limit.

306

integer

Dictionary of Predefined Presentation Types

August 1986

range-high
Data argument specifying an upper limit for integer objects.
The default is no upper limit.

:base

Examples:

Presentation option specifying the base used for integer
presentations; the default is 10.

(accept '«integer 0 188») ==>
Enter an integer greater than or equal to 8
and less than or equal to 188: 8
8

«INTEGER 8 188»

(accept '«integer (0) (108»» ==>
Enter an integer greater than 8 and less than 188: 1
1

«(INTEGER (8) (188»)

(present 18 '«integer) :base 8» ==>12
#<DISPLAYED-PRESENTATION 445411244>

(accept '«integer 8 188»)
Enter an integer greater than or equal to 8
and less than or equal to 188: 12
18
((I NTEGER) : BASE 8)

(accept '«integer 8 188) :base 8» ==>
Enter an octal integer greater than or equal to 8
and less than or equal to 144: 12
10
«INTEGER) :BASE 8)

(present 58 '«integer 8 188») ==>58
#<DISPLAYED-PRESENTATION 445438232>

(accept '«integer»)
Enter an integer [default 8]: 58
58
«INTEGER 8 188»

Dictionary of Predefined Presentation Types 307

August 1986 inverted-boolean

(accept '«integer))) ==>
Enter an integer [default 5J: 50
50
«INTEGER 0 100))

When specifying range limits, if the limits are provided without enclosing
parentheses, they are inclusive; with parentheses, exclusive. Contrast the
first two present functions.

The 1 2 input to the second and third accept functions above was entered
by clicking on the output of the first present function. Note that,
regardless of the base used for the integer presentation, the object returned
remains the same.

Note also in the second and third accepts that the data type returned is
the one entered, an integer, not a range-restricted integer, even though the
functions restricted the range of acceptable integers. Contrast this with
the final present-accept pair: the object presented as a range-restricted
integer is entered to a non-restricted integer accepting function; the
object's data type (subtype, actually) is retained.

Finally, note that the integer presentation type supports a type history
(inherited from sys:expression), the source of the default value offered in
the last accept function, but that range-restricted integer types do not.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

inverted-boolean Presentation Type
Type for accepting or presenting a yes-or-no answer, where "yes" is nil and
"no" is t. Use it when the sense of the internal action is inverted from
the user sense.

Examples:

(accept '«inverted-boolean))) ==>
:Enter Yes or No: No
T

«INVERTED-BOOLEAN))

(present t '«inverted-boolean))) ==>No
#<DISPLAYED-PRESENTATION 444312267>

308

keyword

Dictionary of Predefined Presentation Types

August 1986

A type history is not available for the inverted-boolean presentation type.

inverted-boolean is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

See also the boolean presentation type.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

keyword Presentation Type
Type for accepting or presenting keywords.

Examples:

(accept '«keyword))) ==>
Enter a keyword: orientation
:ORIENTATION
«KEYWORD))

(accept '«keyword))) ==>
Enter a keyword [default ORIENTATION]: :sojac
:I:SOJACI
«KEYWORD))

(accept '«keyword)))
Enter a keyword: 1492
: 114921
«KEYWORD))

(present :orientation '«keyword))) ==>ORIENTATION
#<DISPLAYED-PRESENTATION 454276732>

keyword inherits its printer and type history from the sys:expression
presentation type.

keyword is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

net: local-host Presentation Type
Type for accepting or presenting the local host. The local host is accepted
and presented as "Local".

Examples:

Dictionary of Predefined Presentation Types 309

August 1986 neti:/oca/-network

(accept J«si:local-host») ==>
Enter a local host: Local
#<LISPM-HOST OYSTERCATCHER 13702373>
«SI:LOCAL-HOST»

(present net:*local-host* J«si:local-host») ==>Local
#<DISPLAYED-PRESENTATION 275456200>

(accept J«si:local-host») ==>
Enter a local host [default Local]: Local
#<LISPM-HOST OYSTERCATCHER 13702373>
«SI:LOCAL-HOST»

The net:local-host presentation type is subtype to the net:host type, but
has its own parser and printer. It inherits a type history from the latter,
but prunes it to occurrences of "Local".

net:local-host is one of a number of types defined in sys:dynamic­
windows; standard-pre sentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

neti:local-network Presentation Type
Type for accepting or presenting local network objects. (A local network is
one to which th current machine is connected.)

Examples:

(accept J«neti:local-network») ==>
Enter a local network: HELP
You are being asked to enter a local network.

These are the possible local networks:
CHAOS
FBAND
INTERNET

Enter a local network: INTERNET
#<INTERNET-NETWORK INTERNET 13700021>
«NETI:LOCAL-NETWORK»

310

member

Dictionary of Predefined Presentation Types

(present (car neti:*local-networks*)
'«neti:local-network))) ==>FBAND

#<DISPLAYED-PRESENTATION 275517991>

(accept '«neti:local-network)))
Enter a local network [default INTERNET]: l?BAJVlJ
#<FBAND-NETWORK FBAND 261216753>
«NETI:LOCAL-NETWORK))

August 1986

The neti:local-network presentation type supports its own type history.

neti:local-network is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

member (&rest elements) Presentation Type
Type for accepting or presenting one of a series of objects. The printed
representations of the objects must be unique, that is, no two
representations can be string-equal.

elements The series of objects. These objects are data arguments for
this presentation type.

Examples:

(accept '«member New York Stock Exchange))) ==>
Enter New, York, Stock, or Exchange: York
YORK
«MEMBER NEW YORK STOCK EXCHANGE))

(accept '«member ,(pathname "y:>pgm>ui-1.lisp")
,(pathname "y:>pgm>ui-2.lisp")
,(pathname "y:>pgm>ui-3.lisp")))) ==>

Enter Y:>pgm>ui-1.lisp, Y:>pgm>ui-2.lisp,
or Y:>pgm>u;-3.lisp: Y:>pgm>u;-2.lisp
#P"Y:>pgm>u;-2.lisp"
«MEMBER #P"Y:>pgm>u;-1.lisp" #P"Y:>pgm>ui-2.lisp"
#P"Y:>pgm>ui-3.lisp"))

Dictionary of Predefined Presentation Types 311

August 1986 dw:member-sequence

Because the prompt generated by accept for input of member objects can
sometimes be awkward, you may want to use the meta-presentation
argument :description to change the prompt. (See the section "Predefined
Presentation Types", page 71.)

The member presentation type works differently from the member function
in how it determines group membership. The presentation type merely
checks to see if the printed representation of an object is the same as one
of its elements. The function bases membership decisions on eql.

There is no type history for the member presentation type.

The dw:member-sequence presentation type is similar to member, except
that it takes a single argument instead of a series of arguments. See the
presentation type dw:member-sequence, page 311.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

dw:member-sequence (sequence) Presentation Type
Type for accepting or presenting one of a series of objects. The printed
representations of the objects must be unique, that is, no two
representations can be string-equal.

sequence Data argument specifying a sequence containing the objects.

Examples:

(accept '«dw:member-sequence
(Kierkegaard Heidegger Bubar Barth)))) ==>

Enter Kierkegaard. Heidegger. Bubar, or Barth: Heidegger
HEIDEGGER
«DW:MEMBER-SEQUENCE (KIERKEGAARD HEIDEGGER BUBAR BARTH)))

(setq adenosine-list '("AMP" "ADP" "ATP"))
("AMP" "ADP" "ATP")

(accept '«dw:member-sequence ,adenosine-list)))
Enter AMP, ADP, or ATP: ATP
"ATP"
«DW:MEMBER-SEQUENCE ("AMP" "ADP" "ATP")))

Because the prompt generated by accept for input of dw:member-sequence
objects can sometimes be awkward, you may want to use the meta­
presentation argument :description to change it. (See the section
"Predefined Presentation Types", page 71.)

312 Dictionary of Predefined Presentation Types

neti:namespace August 1986

dw:member-sequence is similar to the member presentation type, except
that it take a single argument instead of a series of arguments. See the
presentation type member, page 310.

The dw:member-sequence presentation type does not support a type
history.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

neti:namespace Presentation Type
Type for accepting or presenting namespace objects.

Examples:

(present net:*namespace* '«neti:namespace))) ==>SCRC
#<DISPLAYED-PRESENTATION 275467554>

(accept '«neti:namespace)))
Enter a namespace: SCRC
#<NAMESPACE SCRe 13788287>
«NETI:NAMESPACE))

(accept '«neti:namespace)))
Enter a namespace [default SCRe]: SCRe
#<NAMESPACE SCRC 13788287>
«NETI:NAMESPACE))

Through flavor inheritance, the neti:namespace presentation type is
subtype to the net:object type, from which it inherits a type history. The
history inherited includes all accepted objects of the net:object type; that
is, no pruning of the history occurs.

For presentations of namespace classes, as opposed to the namespace
objects themselves, use the net:namespace-class presentation type.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

net:namespace-class Presentation Type
Type for accepting or presenting namespace classes, of which there are
currently seven:

:file-system
:user
:printer

Dictionary of Predefined Presentation Types 313

August 1986 net:network

: network
:host
:site
:namespace

Examples:

(accept J«net:namespace-class))) ==>
Enter a namespace class: printer
:PRINTER
«NET:NAMESPACE-CLASS))

(accept J«net:namespace-class))) ==>
Enter a namespace class: Namespace
:NAMESPACE
«NET:NAMESPACE-CLASS))

(present :site J«net:namespace-class))) ==>Site
#<DISPLAYED-PRESENTATION 275427546>

The net:namespace-class presentation type is based on the
dw:member-sequence type. Neither supports a type history.

For presentations of namespace objects, as opposed to namespace classes,
use the net:namespace presentation type.

net:namespace-class is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

net: network
Type for accepting or presenting network objects.

Examples:

(present (net:find-object-named
:network "DNA") J«net:network))) ==>DNA

#<DISPLAYED-PRESENTATION 275510033>

(accept J«net:network))) ==>
Enter a network: l)]{}l
#<DNA-NETWORK DNA 13702517>
«NET:NETWORK))

Presentation Type

314 Dictionary of Predefined Presentation Types

dw:no-type August 1986

Through flavor inheritance, the net:network presentation type is subtype to
the net:object type, from which it inherits a type history. The history
inherited includes all accepted objects of the net:object type; that is, no
pruning of the history occurs.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

dw:no-type Presentation Type
Bogus presentation type for use with mouse handlers. dw:no-type is used
to ensure that handlers intended to be active only over blank areas of a
window are not active over presentations. See the macro
"define-presentation-action", page 179.

For an overview of dw:no-type and related facilities: See the section
"Overview of Presentation Substrate Facilities", page 69.

not (type) Presentation Type
Type for modifying a satisfies presentation type. There is no parser or
printer for this type; it can only be used as part of a compound type
incorporating satisfies.

type Data argument specifying the presentation type to qualify.
The only legitimate possibility is a satisfies type.

There is no type history for the not presentation type.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

null Presentation Type
Type for accepting or presenting a null object (nil). The null type is
necessary because no parser or printer can be defined for nil.

Null objects are presented as "None". They can be accepted by pressing
RET URN to the accept function prompt, or clicking on a previously presented
"None".

Examples:

(present ni 1 I «null))) ==>None

#<OISPLAYED-PRESENTATION 454227454>

(present nil) ==>None
#<OISPLAYED-PRESENTATION 454227707>

Dictionary of Predefined Presentation Types 315

August 1986 nUIl-or-type

(accept '«null») ==>
Enter a null value: <RETURN>
NIL
«NULL))

(accept '«null») ==>
Enter a null value: }Vone
NIL
NULL

The most common use of null is as part of an or compound presentation
type. For such a combination, use the null-or-type presentation type.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

null-or-type (presentation-type) Presentation Type
Compound type for accepting or presenting either nil or an object of a
specified presentation type. nil is accepted or presented as " None" .

presentation-type
Data argument specifying a presentation type.

Examples:

(accept '«null-or-type number») ==>
Enter a null or type: 2.2
2.2
«NULL-DR-TYPE NUMBER»

(accept '«null-or-type number»
:prompt "Enter a number or \"None\"") ==>

Enter a number or "None" [default 2.2]: None
NIL
«NULL-DR-TYPE NUMBER»

(present nil '(null-or-type number») ==>None
#<DISPLAYED-PRESENTATIDN 444713264>

If the type specified in the null-or-type presentation type supports a type
history, this history is used. This is the source of the default value shown
in the second call to accept above.

316

number

Dictionary of Predefined Presentation Types

August 1986

null-or-type is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

number (&optional range-low range-high) &key (base 10)
Type for accepting or presenting numbers.

Presentation Type

range-low
Data argument specifying a lower limit for number objects.
The default is no lower limit.

range-high

:base

Examples:

Data argument specifying an upper limit for number objects.
The default is no upper limit.

Presentation option specifying the base used for integer
presentations; the default is 19.

(accept 'number)
Enter a number: 23
23
(NUMBER)

(accept '(number :base 19» ==>
Enter a decimal number: 12
12
(NUMBER :BASE 19)

(accept '«number 9 19) :base 2» ==>
Enter a binary number greater than or equal to 9
and less than or equal to 1919: 111
7

«NUMBER 9 19) :BASE 2)

(accept '«number 9 19) :base 2» ==>
Enter a binary number greater than or equal to 9
and less than or equal to 1919: 2
2

«NUMBER 9 19) :BASE 2)

When specifying range limits, if the limits are provided without enclosing
parentheses, they are inclusive; with parentheses, exclusive.

Dictionary of Predefined Presentation Types 317

August 1986 net:obJect

Unlike the integer presentation type, number does not check input for
violation of the :base specification. Thus, in the final accept function
above, a 2 is entered and returned even though binary numbers are sought.

number is supertype to all other numeric presentation types. See the
section "Types of Numbers" in Symbolics Common Lisp: Language
Concepts. It provides the family with its printer and parser functions. As
with other Common Lisp types, number is subtype to sys:expression, from
which it inherits a type history.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

net: obj ect Presentation Type
Type for accepting or presenting network objects.

Examples:

(accept '((net:object))) ==>
Enter a namespace object: (Class) HELP==>
You are being asked to enter a namespace object.

These are the possible namespace classes:
File-System Printer
Host Site
Namespace User
Network

Enter a namespace object: User JO
#<USER JO 13731243>
((NET:OBJECT))

(accept '((net:object))) ==>
Enter a namespace object [default JO]: Host OYSTERCATCHER
#<LISPH-HOST OYSTERCATCHER 13702373>
((NET:OBJECT))

(present (net:find-object-named :network "chaos")
'((net:object))) ==>CHAOS
#<OISPLAYEO-PRESENTATION 275037261>

(accept '((net:object))) ==>
Enter a namespace obj ect [defaul t OYSTERCATCHERJ: CHAOS
#<CHAOS-NETWORK CHAOS 13700033>
CHAOS: CHAOS-NETWORK

318

or

Dictionary of Predefined Presentation Types

August 1986

When accepting net:object input, the user is first prompted for the class of
the object. The possible classes, from File-System to User, are listed in the
help display shown in the first example above. After entering the class of
net object, the user should type a space and then the name of the object
itself.

The net:object presentation type is built on a flavor of the same name. It
inherits its printer and type history from the sys:expression presentation
type. It is, in turn, supertype to several other network-related types:

net:host
net:local-host
neti:namespace
net: network
neti:site
net:user

When you wish handle a particular class of network object, as opposed to
any object, one of the above presentation types might be more suitable than
net: obj ect.

net:object is one of a number of types defined in sys:dynamic-
windows; standard-pre sentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

or (&rest types) Presentation Type
Compound type for accepting objects as one of two or more possible
presentation types. (Presenting objects as or types is not useful.)

types Data arguments specifying the possible presentation types.

Examples:

(present 'some-symbol) ==>SOME-SYMBOL
#<OISPLAYED-PRESENTATION 274336643>

(present "some-string") ==>some-string
#<DISPLAYED-PRESENTATION 274337291>

(accept '«or symbol string») ==>
Enter a symbol or a string: SOME-SYMBOL
SOME-SYMBOL
SYMBOL

Dictionary of Predefined Presentation Types 319

August 1986 dw:out-of-band-character

(accept J«or symbol string») ==>
Enter a symbol or a stri ng [defaul t SOME-SYMBOL]: some-string
"some-string"
STRING

Some tips on the use of or: Never give it to accept directly or use it in a
cp:define-command. What or is good for is automatically writing token
rescanning multiple syntax parsers for your own presentation type. Use it
in an : expander: See the function "define-presentation-type", page 366.
The types null-or-type, token-or-type, and type-or-string are provided for
the common cases.

The or presentation type has access to the sys:expression type history.
The value provided as a default in an accept of an or type is the most
recently accepted object whose presentation type is one of the possible
types.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

dw:out-of-band-character (&rest chars) Presentation Type
Type for accepting characters that would normally be interpreted as input
editor commands, such as the shifted characters c-B or c-E.

chars Data arguments specifying the shifted characters.

Examples:

(accept J«dw:out-of-band-character #\c-F #\m-Scroll #\m-C») ==>
Enter one of the characters c-F J M-SCROLL J or M-sh-C: M-SCROLL
#\m-Scroll
«DW:OUT-OF-BAND-CHARACTER #\c-F #\m-Scroll #\m-C»

(accept J«dw:out-of-band-character #\c-F #\m-SCROLL #\m-C») ==>
Enter one of the characters c-F J M-SCROLL J or M-sh-C
[default Meta-Scroll]: c-F
#\c-F
«DW:OUT-OF-BAND-CHARACTER #\c-F #\m-Scroll #\m-C»

dw:out-of-band-character is subtype to the character presentation type,
from which it inherits its printer and type history. The type history is
pruned to include only previously accepted out-of-band characters.

320

package

Dictionary of Predefined Presentation Types

To accept or present ordinary characters, use character: See the
presentation type character, page 290.

August 1986

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

package Presentation Type
Type for accepting or presenting packages.

Examples:

(present (find-package 'dynamic-windows) '«package») ==>
DYNAMIC-WINDOWS
#<OISPLAYED-PRESENTATION 274353464>

(accept '«package») ==>
Enter a package: DYNAMIC-WINDOWS
#<Package DYNAMIC-WINDOWS 45652740>
«PACKAGE»

(accept '«package))) ==>
Enter a package [default DYNAMIC-WINDOWS]: SCL
#<Package SYMBOLICS-COMMON-LISP 46405507>
«PACKAGE»

The package presentation type supports a type history.

package is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

pathname &key (default-version :newest) (default-type nil) Presentation Type
(default-name nil) dont-merge-default (direction
:read) (format :normal)

Type for accepting or presenting pathnames.

: default-version
Presentation option specifying the default version number of
an accepted file. The default value for this option is : newest,
the newest file version.

: default-type
Presentation option specifying the default file type, for

Dictionary of Predefined Presentation Types 321

August 1986 package

example, "lisp", "text", "data", and so on. The default value
for this option is nil.

: default-name
Presentation option specifying the default file name. The
default value for this option is nil.

:dont-merge-default
Presentation option specifying whether to prevent merging of
a partially specified pathname entered by the user against the
default pathname. The default value for this option is nil,
meaning that merging occurs when appropriate; that is, parts
of the pathname not entered by the user are supplied from
the default.

Suppression of merging against the default and providing a
different default (against which merging mayor may not be
enabled) are different issues. To deal with the latter, use the
:default option to accept: See the function "accept", page
167. An example follows:

:direction

(accept J«pathname) :default-type nil)
:default (send (fs:default-pathname)

:new-pathname :type nil
:version :newest»

Presentation option specifying either :read (the default) or
:write. The value supplied is passed through to
fs:complete-pathname and affects completion behavior. (See
the function fs:complete-pathname in Reference Guide to
Streams, Files, and I/O.)

Use the default (:read) if the user is likely to enter the
pathname of an already existing file when prompted by
accept, :write otherwise.

:format Presentation option specifying the output format of the
pathname. There are four choices:

:normal For example, S: >mb>dw-pgms>fancy-wi ndows. 1 i sp.
This is the default format.

: directory
For example, >mb>dw-pgms>. The host, file name, and
file type are not displayed.

322 Dictionary of Predefined Presentation Types

package August 1986

:dired For example, fancy-wi ndows . 1 i sp. Only the file
name and type are displayed.

: editor For example, fancy-wi ndows. 1 i sp >mb>dw-pgms S. The
display format is that used by Zmacs.

Examples:

(present #p"y:>yosemite-s>gold.text") ==>Y:>yosemite-s>gold.text
#<DISPLAYED-PRESENTATION 274378245>

(present #p"y:>yosemite-s>gold.text" '«pathname)

gold. text >yosemite-s Y:
#<DISPLAYED-PRESENTATION 274378523>

(accept '«pathname») ==>

:format :editor» ==>

Enter the pathname of a file: gold. text >yosemite-s Y:
#P"Y:>yosemite-s>gold.text"
«PATHNAME) :FORMAT :EDITOR)

(accept '«pathname) :default-version 1» ==>
Enter the pathname of a file
[default Y:>yosemite-s>gold.text]: silver
#P"Y:>yosemite-s>silver.text.1"
FS:LMFS-PATHNAME

(accept '«pathname) :default-type "data"
:default-name "the-rabbit"» ==>

Enter the pathname of a file
[default Y:>yosemite-s>silver.text.1]: Y:>yosemite-s>
#P"Y:>yosemite-s>the-rabbit.data.newest"
FS:LMFS-PATHNAME

(accept '«pathname) :dont-merge-default t» ==>
Enter the pathname of a file
[default Y:>yosemite-s>the-rabbit.data]: other-varmints
#P"Y:other-varmints"
FS:LMFS-PATHNAME

Dictionary of Predefined Presentation Types 323

August 1986 sys:printer

(accept '«pathname))) ==>
Enter the pathname of a file
[default Y:>other-varmints]: VIXEN:/b-bunny/y-s.data
#P"VIXEN:/b-bunny/y-s.data"
FS:UNIX42-PATHNAME

The pathname presentation type supports a type history.

pathname is one of a number of types defined in sys:dynamic-
windows; standard-pre sentation-type s.lisp. See that file for the source code.

Two subtypes to pathname are included among the documented predefined
presentation types:

• fs:directory-pathname

• fs:wildcard-pathname

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

sys:printer Presentation Type
Type for accepting or presenting printers.

Examples:

(accept '«sys:printer)))
Enter a printer [default Symbolics Paradigm]: Symbolics Paradigm
#<LGP2-PRINTER PARADIGM 13791259>
SYS:PRINTER

(present (net:find-object-named :printer "Asahi")
'«sys:printer))) ==>Asahi Shimbun

#<DISPLAYED-PRESENTATION 275641455>

The sys:printer presentation type supports a type history.

sys:printer is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

324 Dictionary of Predefined Presentation Types

neti:protocol-name August 1986

neti:protocol-name (&key service) Presentation Type
Type for accepting or presenting names of network protocols.

Examples:

(accept J«neti:protocol-name») ==>
Enter a network protocol: Domain-Simple
:DOHAIN-SIHPLE
«NETI:PROTOCOL-NAHE»

(present :converse J«neti:protocol-name») ==>CONVERSE
#<DISPLAYED-PRESENTATION 275693433>

(present (car neti:*protocol-list*)
J«neti:protocol-name») ==>HANDELBROT

#<DISPLAYED-PRESENTATION 275697926>

There is no type history for the neti:protocol-name presentation type.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

dw:raw-text Presentation Type
Type providing access to the individual characters from which all textual
presentations are constructed. This type is for the exclusive use of mouse
handlers, usually as the from-presentation-type argument. (For more on
handlers: See the section "Overview of Mouse Handler Facilities", page
39.) You cannot use it to accept or present text or characters.

The following example is the source code for a translating mouse handler
defined on dw:raw-text, translating it to an internal presentation type,
dw::character-style-family:

(define-presentation-translator
si:characters-character-style-family
(dw:raw-text dw::character-style-family) (bp)

(when « (second bp) (string-length (first bp»)
(1 et «char (aref (fi rst bp) (second bp»»

(si:cs-family (si:char-style char»»)

zwei:bp is a presentation type inheriting from dw:raw-text, and used for
accessing text characters in editor buffers.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

Dictionary of Predefined Presentation Types 325

August 1986 satisfies

satisfies (satisfies-function) Presentation Type
satisfies is a Common Lisp type specifier that takes a predicate as an
argument and returns t or nil according to the return from the predicate.
The satisfies type is used only as part of an and presentation type.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

sequence (&optional (type '*)) &key (sequence-delimiter #\,) Presentation Type
(echo-space t)

Type for accepting or presenting one or more objects of a specified
presentation type.

type Presentation type for the objects in the sequence. The
specified type is a data argument to the sequence
presentation type.

The type argument defaults to the t presentation type.
Because t has no parser and uses princ as its printer, not
supplying the type argument when you use the sequence
presentation type does not produce useful results.

: sequence-delimiter
Presentation option specifying the character used to delimit
items in the sequence; the default is the comma character,
#\,.

When accepting objects in an enumerated sequence, the user
must enter the sequence-delimiter character between items.

:echo-space
Presentation option specifying whether to echo a space
character after the comma (or other :sequence-delimiter
character) is typed; the default is t.

Although not a subtype, sequence can be regarded as a specialized version
of the sequence-enumerated presentation type. Instead of specifying a
series of presentation types as in the case of sequence-enumerated, you
specify only one type for the entire series of objects. In fact, when objects
are entered individually to an accept of a sequence, the types of the
objects, although identical, are enumerated. Observe this behavior in the
first example below.

Examples:

326 Dictionary of Predefined Presentation Types

sequence-enumerated August 1986

(accept '((sequence package))) ==>
Enter one or more packages
[default SYMBOlICS-COMMON-lISP]: SCl, OW, TV, SCT
(#<Package SYMBOlICS-COMMON-lISP 46405507>
#<Package DYNAMIC-WINDOWS 45652740>
#<Package TV 46031453>
#<Package SYSTEM-CONSTRUCTION-TOOL 46366410»
((SEQUENCE-ENUMERATED PACKAGE PACKAGE PACKAGE PACKAGE))

(present '(0 16 32 64) '((sequence ((integer) :base 16))))
#<OISPLAYED-PRESENTATION 274631670>

(accept '((integer))) ==>
Enter an integer: 40
64
((INTEGER) : BASE 16)

(accept '((sequence integer))) ==>
Enter one or more integers: 0, 10, 20, 40
(0 16 32 64)
((SEQUENCE ((INTEGER) :BASE 16)))

Note that when you have presented a sequence of objects, that the objects
are subsequently acceptable as input either as individual objects or as the
sequence. This is shown by the last three examples above. We present a
series of integers, and subsequently click on one of them (40) to enter it to
an accept or an integer; and then click on the entire sequence to give it to
an accept of and integer sequence.

The sequence presentation type has access to the type history supported, if
any, by the specified type.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

sequence-enumerated (&rest data-types) &key (sequence-delimitBresentation Type
#\,) (echo-space t)

Compound type for accepting or presenting a sequence of objects, each of a
specified presentation type.

data-types
The presentation types of the objects. These are the data
arguments to the sequence-enumerated presentation type.

Dictionary of Predefined Presentation Types 327

August 1986 neti:site

:sequence-delimiter
Presentation option specifying the character used to delimit
items in the sequence; the default is the comma character,
#\,.

When accepting objects in an enumerated sequence, the user
must enter the sequence-delimiter character between items.

:echo-space
Presentation option specifying whether to echo a space
character after the comma (or other :sequence-delimiter
character) is typed; the default is t.

Examples:

(accept J«sequence-enumerated (integer 1 10)
sys:form string))) ==>

Enter an integer greater than or equal to 1 and less
than or equal to 10 J A Lisp expression to be evaluated J
and a string: 5J (setq alpha "bravo")J "Not very useful"
(5 (SETQ ALPHA "bravo") "Not very useful")
«SEQUENCE-ENUMERATED (INTEGER 1 10) SYS:FORM STRING))

(present '(J(pathname "y:>ui.lisp") telson
J(find-package "dynamic-windows"))

J«sequence-enumerated pathname symbol package))) ==>
Y:>ui.lisPJ TELSON J and DYNAMIC-WINDOWS
#<DISPLAYED-PRESENTATION 444476230>

The sequence-enumerated presentation type does not support a type
history.

sequence-enumerated is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

neti:site Presentation Type
Type for accepting or presenting site objects.

Examples:

328 Dictionary of Predefined Presentation Types

sys:stack-frame August 1986

(present net:*local-site* '«neti:site))) ==>SCRC
#<OISPLAYEO-PRESENTATION 275626405>

(accept '«neti:site))) ==>
Enter a site: SGRG
#<SITE SCRC 13700014>
«NETI :SITE))

Through flavor inheritance, the neti:site presentation type is subtype to the
net:object type, from which it inherits a type history. The history
inherited includes all accepted objects of the net:object type; that is, no
pruning of the history occurs.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

sys:stack-frame Presentation Type
Type for accepting or presenting stack frames. This presentation type is
intended primarily for use by the debugger and debugging functions.

The following example shows entry into the debugger from an editor
typeout window. The debugger was entered because oddp was called with
no arguments. The frame, ODDP, containing the error is at the top of the
stack.

Command: (oddp) ==>
Trap: The function ODDP was called with too few arguments.

ODDP:
--Missing args:-­
Arg 0 (I NTEGER)

s-A, RESUME: Supply the missing arguments.
s-B: Retry the FUNCALL-N-RETURN instruction
s-C, ABORT: Return to Breakpoint ZMACS in Editor Typeout Window
s-O: Editor Top Level
s-E: Restart process ZMACS-WINOOWS
-7 Eval (prograr.n): (setq stk-frm (accept '«sys:stack-frame)))) ==>
Enter a stack frame: OOOP
(#<OTP-LOCATIVE 52700741> . #<TOO-FEW-ARGUMENTS-TRAP 44070612»
-7 Eval (prograr.n): (present stk-frm '«sys:stack-frame))) ==>OOOP
#<OISPLAYEO-PRESENTATION 276024201>
-7 Abort Abort
Return to Breakpoint ZMAGS in Editor Typeout Window

Dictionary of Predefined Presentation Types 329

August 1986 string

sys:stack-frame does not support a type history.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

string &key delimiters Presentation Type
Type for accepting or presenting strings.

: delimiters
Presentation option specifying a list of characters serving as
string delimiters (terminators) during input of strings to
accept. The default delimiters are #\return and #\end.

Examples:

(accept J«string») ==>
Enter a string: "Morgan the Pirate"
"Morgan the Pirate"
«STRING»

(accept J«string) :delimiters (#\line») ==>
Enter a string (end with LINE)
[default Morgan the Pirate]: Several species
of small J furry
creatures gathered
together in a cave

"Several species
of small J furry
creatures gathered
together in a cave
«STRING) :DELIMITERS (#\Line»

(present "Another whimsical string") ==>Another whimsical string
#<DISPLAYED-PRESENTATION 274760165>

(accept J«string»)
Enter a stri ng: Another whimsical string
"Another whimsical string"
STRING

The string presentation type supports a type history.

330

subset

Dictionary of Predefined Presentation Types

August 1986

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

subset (&rest keywords) Presentation Type
Type for accepting or presenting zero or more objects from a group of
keyword identifiers.

keywords The set of keywords. These are data arguments to the
subset presentation type.

Examples:

(accept '«subset :mercenaria :mya :mytilus») ==>
Enter a subset of the identifiers HERCENARIA ,
HYA , and HYTILUS: Hercenaria , Hytilus
(:HERCENARIA :HYTILUS)
«SUBSET :HERCENARIA :HYA :HYTILUS»

(present I(:mya) '«subset :mercenaria :mya :mytilus») ==>HYA
#<OISPLAYED-PRESENTATION 444621057>

When accepting input of this type, the user must separate identifiers with
commas. If input is terminated without any identifiers having been
entered, accept returns nil.

A type history is not available for the subset presentation type.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

symbol
Type for accepting or presenting symbols.

Examples:

(accept '«symbol»)
Enter a symbol: RNA
RNA
«SYMBOL»

(accept '«symbol»)
Enter a symbol [default RNA): DNA
DNA
«SYMBOL»

Presentation Type

Dictionary of Predefined Presentation Types 331

August 1986 symbol-name

(present 't-RNA)
#<DISPLAYED-PRESENTATION 274753204>

(accept '«symbol»)
Enter a symbol [default RNA]: T-RNA
T-RNA
SYMBOL

The symbol presentation type inherits its parser, printer, and type history
from the sys:expression presentation type.

To accept or present symbol names as opposed to symbol objects, use the
symbol-name presentation type.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

symbol-name Presentation Type
Type for accepting or presenting a symbol name, that is, the print name of
a symbol. (For accepting or presenting symbol objects, use the symbol
presentation type.)

Examples:

(accept '«symbol-name))
Enter a symbol name: T-M-S
"T-M-S"
«SYMBOL-NAME)

(present "T-M-S" '«symbol-name)) ==>T-M-S
#<DISPLAYED-PRESENTATION 444645436>

The symbol-name presentation type inherits its printer and type history
from the string presentation type.

symbol-name is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 6~.

332 Dictionary of Predefined Presentation Types

sct:system August 1986

sct:system (&key (patchable-only nil) (true-systems-only nil»
Type for accepting or presenting systems.

:patchable-only

Presentation Type

Data option restricting systems to those that are patchable;
the default is nil.

:true-systems-only

Examples:

Data option restricting systems to true systems, as opposed to
either subsystems or systems that are undefined; the default
is nil.

(accept '«sct:system») ==>
Enter a system or subsystem: Dynamic Windows
#<SUBSYSTEM DYNAMIC-WINDOWS 261254415>
«SCT:SYSTEM»

(accept '«sct:system :true-systems-only t») ==>
Enter a system: Documentation Database
#<SYSTEM DOC 261374510>
«SCT:SYSTEM :TRUE-SYSTEMS-ONLY T»

(present (sct:find-system-named 'extended-help)
'«sct:system») ==>Extended Help

#<DISPLAYED-PRESENTATION 274651506>

(present (car sct:*all-systems*) '«sct:system») ==>System
#<DISPLAYED-PRESENTATION 274641244>

The sct:system presentation type supports a type history.

sct:system is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

sct:system-version Presentation Type
Type for accepting or presenting a system version designator. Three kinds
of designators are permitted:

• a positive, non-zero integer

Dictionary of Predefined Presentation Types 333

August 1986

t

• one of the special keywords :released, :latest, or :newest

• an arbitrary keyword

Examples:

(accept J«sct:system-version») ==>
Enter a version designator: 2
2

«SCT:SYSTEH-VERSION»

(accept J«sct:system-version») ==>
Enter a version designator: Released
:RELEASEO
«SCT:SYSTEH-VERSION»

(accept J«sct:system-version») ==>
Enter a version designator: arbitrary
:ARBITRARY
«SCT:SYSTEH-VERSION»

(present :newest J«sct:system-version») ==>Newest
#<OISPLAYEO-PRESENTATION 274677471>

The sct:system-version presentation type does not support a type history.

sct:system-version is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

Presentation Type
Type that is supertype to all other presentation types.

t occupies a necessary spot (the top) in the type hierarchy, and is
important for that reason. However, it has no parser and cannot be used
with accept. Moreover, objects presented as t presentations are not mouse­
sensitive in any input context.

One of the key uses for the t type is in mouse handlers, as the
from-presentation-type or to-presentation-type. If the former, it means that
the handler in question is potentially applicable to any type of presentation;
if the latter, it means that the handler is potentially applicable in any
input context. See the section "Advanced Mouse Handler Concepts", page
42.

334 Dictionary of Predefined Presentation Types

time :time-interval August 1986

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

time: time-interval Presentation Type
Type for accepting or presenting intervals of time. Internally, time
intervals are in seconds; externally, in seconds, minutes, hours, days, weeks,
and years. nil is represented as "never".

Examples:

(accept '«time:time-interval») ==>
Enter a time interval: 1 second
1

«TIME:TIME-INTERVAL»

(accept '«time:time-interval») ==>
Enter a time interval [default 1 second]: 1 minute
60
«TIME:TIME-INTERVAL»

(accept '«time:time-interval») ==>
Enter a time interval [default 1 minute]: 1 hour
3600
«TIME:TIME-INTERVAL»

(present 3661 '«time:time-interval») ==>1 hour 1 minute 1 second
#<DISPLAYED-PRESENTATION 276047342>

(present nil '«time:time-;nterval») ==>never
#<DISPLAYED-PRESENTATION 276047575>

Note that time intervals are specified with integers only.

The time:time-interval presentation type supports a type history.

time:time-interval is one of a number of types defined in sys:dynamic­
windows; standard-pre sentation-type s.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

time:time-interval-60ths Presentation Type
Type for accepting or presenting intervals of time. Internally, time
intervals are in 60ths of a second; externally, in seconds, minutes, hours,
days, weeks, and years. nil is represented as "never".

Dictionary of Predefined Presentation Types 335

August 1986 time:timezone

Examples:

(accept '«time:time-interval-69ths))) ==>
Enter a time interval 69ths: 1 second
69
«TIHE:TIHE-INTERVAL-69THS))

(accept '«time:time-interval-69ths))) ==>
Enter a time interval 69ths [default 1 second]: 1 minute
3699
«TIHE:TIHE-INTERVAL-69THS))

(accept '«time:time-interval-69ths))) ==>
Enter a time interval 69ths [default 1 minute]: 1 hour
216999
«TIHE:TIHE-INTERVAL-69THS))

(present 3661 '«time:time-interval-69ths))) ==>1 minute 1 second
#<DISPLAYED-PRESENTATION 276961445>

(present 39 '«time:time-interval-69ths))) ==>9 seconds
#<DISPLAYED-PRESENTATION 276962366>

(present 31 '«time:time-interval-69ths))) ==>1 second
#<DISPLAYED-PRESENTATION 276962621>

(present nil '«time:time-interval-69ths))) ==>never
#<DISPLAYED-PRESENTATION 276961799>

Note that time intervals are specified with integers only; also, that they are
rounded to the nearest second when presented.

The time:time-interval-60ths presentation type supports a type history.

time:time-interval-60ths is one of a number of types defined in
sys:dynamic-windows;standard-presentation-types.lisp. See that file for
the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

time:timezone &key force-numeric-p Presentation Type
Type for accepting or presenting timezones.

Timezones are represented externally either by commonly accepted

336 Dictionary of Predefined Presentation Types

time:timezone August 1986

abbreviations, for example, "EST" (for Eastern Standard Time), or by a
signed digit string, for example, "-0500". The sign of the digit string
indicates the location of the timezone relative to Greenwich; positive means
east, negative west.

Internally, timezones are represented by numbers in the form n.D or n.5.
Note that the sign of the externally displayed digit string is opposite to
that of the number used internally. The printed digit string "-0530", for
example, corresponds to an internal representation of 5.5.

:force-numeric-p

Examples:

Presentation option specifying whether a timezone is
presented only by a signed digit string. The default is nil;
this causes the timezone's unique abbreviation, if there is
one, to be printed. If a unique abbreviation is not available,
the digit string is printed regardless of the value supplied for
this option.

(accept J«time:time2one») ==>
Enter a defined time20ne symbol or an hour offset from GMT
such as +B5BB (east of GMT) or -B33B (west of GMT): EST
5

«TIME:TIMEZONE»

(accept J«time:time2one») ==>
Enter a defined time20ne symbol or an hour offset from GMT
such as +B5BB (east of GMT) or -B33B (west of GMT): -B5BB
5

«TIME:TIMEZONE»

(present 5 J«time:time2one») ==>EDT
#<OISPLAYED-PRESENTATION 274454265>

(present 5 J«time:time2one) :force-numeric-p t» ==>-B4BB
#<OISPLAYED-PRESENTATION 27445452B>

Note in the last two examples, created in July, that the displayed
presentations reflect daylight savings time. At sites in timezones for which
straightforward rules exist governing the chan"ge from standard to daylight­
savings time and back again, the timezone utility automatically switches
over to the appropriate abbreviation and digit string. For other timezones,

Dictionary of Predefined Presentation Types 337

August 1986 token-or-type

the switch must be made manually. In either case, time:timezone
presentations display the current setting for daylight savings time. For
more information: See the section "Specifying a Time Zone for Your Site"
in Site Operations.

The time:timezone presentation type does not support a type history.

time:timezone is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

token-or-type (special-tokens otherwise-type) Presentation Type
Compound type for accepting or presenting a special token - for example
"None", "Any", "All" - or an object of a specified type.

special-tokens
Data argument specifying a list of tokens. The list is an
alist: each item is a dotted pair of a print string and its
object: «String-l. object-l) (string-2. object-2) ... (string-n

object-n))

otherwise-type

Examples:

Data argument specifying the presentation type to use for
accepting or presenting objects other than listed tokens.

(accept '«token-or-type «"either" . :either)
("neither" . :neither)
(" both" . : both»

«subset :fixed-wing :rotary-wing»»
:prompt "Enter \"fixed-wing\", \"rotary-wing\", \"either\",
\"neither\", or \"both\"") ==>

Enter "fixed-wing", "rotary-wing", "either", "neither",
or "both": Fixed-Wing
(:FIXED-WING)
«SUBSET :FIXED-WING :ROTARY-WING»

338 Dictionary of Predefined Presentation Types

type-or-string August 1986

(accept '«token-or-type «"either" . :either)
("neither" . :neither)
("both" . :both»

«subset :fixed-wing :rotary-wing»»
:prompt "Enter \"fixed-wing\", \"rotary-wing\", \"either\",
\"neither\", or \"both\"") ==>

Enter "fixed-wing", "rotary-wing", "either", "neither", or "both":
neither
:NEITHER
(#<DTP-LOCATIVE ...)

(present' (:fixed-wing) '«token-or-type «"either" . :either)
("neither" . :neither)

FIXED-WING
#<DISPLAYED-PRESENTATION 444762334>

(" both" . : both»
«subset :fixed-wing

:rotary-wing»») ==>

(present :both '«token-or-type «"either" .:either)
("neither" . :neither)
("both" . :both»

«subset :fixed-wing :rotary-wing»») ==>
both
#<OISPLAYED-PRESENTATION 444763221>

If the presentation type specified by otherwise-type supports a type history,
the history is available for objects of that type.

token-or-type is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.1isp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

type-or-string (presentation-type) Presentation Type
Compound type for accepting or presenting objects of a specified type or
strings.

presentation-type
Data argument specifying the presentation type to use for
accepting or presenting objects which are not strings.

Dictionary of Predefined Presentation Types 339

August 1986 tim e:universal-tim e

Examples:

(accept '«type-or-string net:user»)
Enter a user: JWALKER
#<USER JWALKER 6434293>
SI : USER

(accept , «type-or-string net:user»
:default (dw:presentation-type-default 'net:user)

Enter a user [default JWALKER]: JBIRD
"JBIRD"
STRING

(present 'JWALKER , «type-or-string net:user») ==>JWALKER
#<DISPLAYED-PRESENTATION 445112577>

(present "JWALKER" , «type-or-string net:user») ==>JWALKER
#<DISPLAYED-PRESENTATION 445195972>

Although the type specified by presentation-type might support a type
history, accepting a type-or-string does not automatically display the
default; you have to provide one to accept yourself. This is illustrated in
the second accept form above.

Note in the present examples that the objects presented have the same
printed representation. The first, however, is an net:user object, the
second a string object. Each will only be mouse-sensitive in the
appropriate input context.

type-or-string is one of a number of types defined in sys:dynamic­
windows; standard-pre sentation-type s.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

time:universal-time &key base-time past-p must-have timezone Presentation Type
long-date brief

Type for accepting or presenting universal times. (Universal time is
measured in seconds elapsed since midnight, Jan 1, 1900, GMT.)

When accepting universal times, a large variety of input formats are
possible. For more information and examples: See the section "Reading
Dates and Times" in Programming the User Interface, Volume B.

The following keyword options, all presentation arguments, are available.
The first three - :base-time, :past-p, and :must-have - affect the input of

340 Dictionary of Predefined Presentation Types

time:universal-time August 1986

universal times. The second three - :timezone, :long-date, and :brief -
affect their output. The discussion of each includes examples.

:base-time
Presentation option specifying a base time from which
defaults are taken for unspecified components when accepting
a universal time.

The base time is specified as the number of seconds since
midnight, January 1, 1900 (that is, 1/01/00 00:00:00). In the
following example, the base time is midnight, January 1, 1986.

Example:

(accept '«time:universal-time) :base-time 2713928400
:description "a date in 1986"))) ==>

Enter a date in 1986: 3/2 ==>3/02/86 00:00:00
2719112400
«TIME:UNIVERSAL-TIME) :BASE-TIME 2713928400)

:past-p Presentation option specifying whether partially specified
times default to the nearest corresponding universal time in
the past or future; the default is nil.

The following examples were created in 7/86.

Examples:

(accept '«time:universal-time))) ==>
Enter a universal time: 3/2 ==>3/02/87 00:00:00
2750648400
«TIME:UNIVERSAL-TIME))

(accept '«time:universal-time))) ==>
Enter a universal time
[default 3/02/87 00:00:00J: 8/2 ==>8/02/86 00:00:00
2732328000
«TIME:UNIVERSAL-TIME))

(accept '«time:universal-time) :past-p t)) ==>
Enter a universal time in the past
[default 8/02/86 00:00:00J: 3/2 ==>3/02/86 00:00:00
2719112400
«TIME:UNIVERSAL-TIME) :PAST-P T)

Dictionary of Predefined Presentation Types 341

August 1986

:must-have

tlme:universal-time

(accept '«time:universal-time) :past-p t)) ==>
Enter a universal time in the past
[default 3/92/86 99:99:99J: 8/2 ==>8/92/85 99:99:99
2799792999
«TIHE:UNIVERSAL-TIHE) :PAST-P T)

Presentation option specifying that the year field or second
field or both must be explicitly entered when accepting a
universal time. The required fields are provided as a list.

Example:

:timezone

(accept '«time:universal-time) :must-have (year))) ==>
Enter a universal time, year is required
[default 7/97/86 19:19:99J: 12/12 ==>
no year supplied
Type RUBOUT to correct your input.
Enter a universal time, year is required
[default 7/97/86 19:19:99J: 12/12/47 99:99:99
1512968499
«TIHE:UNIVERSAL-TIHE) :HUST-HAVE (YEAR))

Presentation option specifying the timezone used when
presenting universal times. time:*timezone* provides the
default value.

Supply the value as a number (either n or n.5): 0 specifies
Greenwich Mean Time; positive numbers timezones to the
west of Greenwich; negative numbers timezones to the east.
(For more on timezone representations: See the presentation
type time:timezone, page 335.)

Examples:

(present 123456789 '«time:universal-time)
:timezone -5)) ==>12/1/93 92:33:99

#<OISPLAYEO-PRESENTATION 274337427>

(present 123456789 '«time:universal-time)
:timezone 9)) ==>11/39/93 21:33:99

#<OISPLAYEO-PRESENTATION 274340115>

342

net:user

: long-date

Dictionary of Predefined Presentation Types

August 1986

(present 123456789 J«time:universal-time)
:timezone 5)) ==>11/30/03 16:33:09

#<DISPLAYED-PRESENTATION 274337662>

(present 123456789 J«time:universal-time)
:timezone 5.5)) ==>11/30/03 16:03:09

#<DISPLAYED-PRESENTATION 274345125>

Presentation option specifying that the date be presented as
in the following example when presenting universal times;

(present 123456789 J«time:universal-time)
:long-date t)) ==>

Monday the thirtieth of November J 1903; 4:33:09 pm
#<DISPLAYED-PRESENTATION 274353534>

: brief Presentation option specifying whether presented times should
be printed briefly, that is, without the seconds field. Contrast
the following two examples:

(present (time:get-universal-time)
J«time:universal-time))) ==>7/07/86 14:55:35

#<DISPLAYED-PRESENTATION 274421523>

(present (time:get-universal-time)
J«time:universal-time) :brief t)) ==>7/7/86 14:55

#<DISPLAYED-PRESENTATION 274421756>

time:universal-time is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities" ,. page 69.

net:user Presentation Type
Type for accepting or presenting user objects.

Examples:

Dictionary of Predefined Presentation Types 343

August 1986

(present s;:*user* '((s;:user») ==>REG
#<DISPLAYED-PRESENTATION 275633757>

(accept '((s;:user») ==>
Enter a user: REG
#<USER REG 13730364>
((SI:USER»

fs :wildcard-pathname

Through flavor inheritance, the net:user presentation type is subtype to the
net:object type, from which it inherits a type history. The history
inherited includes all accepted objects of the net:object type; that is, no
pruning of the history occurs.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

fs:wildcard-pathname &key (default-version :newest) Presentation Type
default-type nil) (default-name nil) dont-merge-default

(direction :read) (format :normal)
Type for accepting or presenting pathnames that include wildcard
characters.

This presentation type can be useful if you need to distinguish
unequivocally between pathname presentations that include wildcard
characters (asterisks) and other file pathname presentations. For example,
if you can arrange for the availability to your users of some
fs:wildcard-pathname presentations, then mouse handlers performing
functions specifically on pathnames containing wildcards can be defined
that do not have to test whether a given pathname presentation includes a
wildcard character.

fs:wildcard-pathname is a subtype of the pathname presentation type,
from which it inherits a printer, parser, and type history. It also takes the
same keyword arguments, as follows:

: default-version
Presentation option specifying the default version number of
an accepted file. The default value for this option is : newest,
the newest file version.

: default-type
Presentation option specifying the default file type, for
example, "lisp", "text", "data", and so on. The default value
for this option is nil.

344 Dictionary of Predefined Presentation Types

fs:wildcard-pathname August 1986

: default-name
Presentation option specifying the default file name. The
default value for this option is nil.

:dont-merge-default
Presentation option specifying whether to prevent merging of
a partially specified pathname entered by the user against the
default pathname. The default value for this option is nil,
meaning that merging occurs when appropriate; that is, parts
of the pathname not entered by the user are supplied from
the default.

Suppression of merging against the default and providing a
different default (against which merging mayor may not be
enabled) are different issues. To deal with the latter, use the
:default option to accept: See the function "accept", page
167. An example follows:

:direction

(accept '((pathname) :default-type nil)
:default (send (fs:default-pathname)

:new-pathname :type nil
:version :newest))

Presentation option specifying either :read (the default) or
: write. The value supplied is passed through to
fs:complete-pathname and affects completion behavior. (See
the function fs:complete-pathname in Reference Guide to
Streams, Files, and lID.)

Use the default (:read) if the user is likely to enter the
pathname of an already existing file when prompted by
accept, :write otherwise.

:format Presentation option specifying the output format of the
pathname. There are four choices:

:normal For example, S: >mb>dw-pgms>fancy-wi ndows. 1 i sp.
This is the default format.

:directory
For example, >mb>dw-pgms>. The host, file name, and
file type are not displayed.

:dired For example, fancy-wi ndows. 1 i sp. Only the file
name and type are displayed.

Dictionary of Predefined Presentation Types 345

August 1986 tv:window

:editor For example, fancy-wi ndows. 1 i sp >mb>dw-pgms S. The
display format is that used by Zmacs.

For examples illustrating the use of these keywords in pathname
presentations: See the presentation type pathname, page 320.

fs:wildcard-pathname is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

tv: window Presentation Type
Type for accepting or presenting window objects.

Examples:

(accept J«tv:window») ==>
Enter a window [default Editor Typeout Window 3]: HELP ==>
You are being asked to enter a window.

These are the possible windows:
Background Dynamic Lisp Interactor 1
Command ... (2)
Converse
Converse Frame 1
Dex ... (7)
Dynamic ... (2)
Editor Typeout Window 3
Fsmaint ... (2)

Mai n (2)
Mode (2)
Peek (2)
Typein ... (4)
Who ... (8)
Zmacs ... (3)
Zmail ... (4)
Zwei ... (7)

Enter a window [default Editor Typeout Window 3]: Converse Frame 1
#<CONVERSE-FRAME Converse Frame 1 1107255 deexposed>
«TV: WI NDOW))

(present (tv:make-window Jdw:dynamic-window)
J«tv:window))) ==>Dynamic Window 1

#<DISPLAYED-PRESENTATION 274625374>

The tv:window presentation type supports a type history.

tv:window is one of a number of types defined in sys:dynamic­
windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the
section "Overview of Presentation Substrate Facilities", page 69.

346 Dictionary of Presentation Substrate Facilities

August 1986

347

August 1986 Dictionary of Presentation Substrate Facilities

PART VII.

Dictionary of Presentation Substrate Facilities

348

Programming the User Interface, Volume A August 1986

349

August 1986 Dictionary of Presentation Substrate Facilities

20. Dictionary Notes

This dictionary includes reference documentation for the presentation substrate
facilities, excluding predefined presentation types. These facilities are:

Table of Presentation Substrate Facilities

Presentation-Type Definition Facilities
define-presentation-type
dw:read-char-for-accept
dw:peek-char-for-accept
dw:unread-char-for-accept
dw:compare-char-for-accept
dw:read-standard-token
dw:with-accept-activation-chars
dw:with-accept-blip-chars
dw:with-accept-help
dw:with-accept-help-if
dw:completing-from-suggestions
dw:suggest
dw:complete-input
dw:complete-from-sequence

Presentation Input Context Facilities
dw:with-presentation-input-context
dw:clear-presentation-input-context
dw:presentation-input-context-option
dw:with-presentation-input-editor-context
dw:*presentation-input-context*

Presentation Input Blip Facilities
dw:echo-presenta tion-blip
dw:presentation-blip-object
dw:presentation-blip-options
dw:presentation-blip-presentation-type
dw::presentation-blip-mouse-char
dw:presentation-blip-typep
dw:presentation-blip-p
dw:presentation-blip-case
dw:presentation-blip-ecase

350

Programming the User Interface, Volume A

Other Presentation Facilities
dw:presentation-type-p
dw:presentation-subtypep
dw:presentation-object
dw:presentation-type
dw:presentation-equal
dw:describe-presentation-type
dw:check-presentation-type-argument
dw:with-presentation-type-arguments
dw:with-type-decoded
dw:presentation-type-name
dw:presentation-type-default
dw:displayed-presentation-set-highlighting
dw:displayed-presentation-clear-highlighting

August 1986

In the dictionary, the facilities are arranged in alphabetical order (package
prefIxes excluded).

For conceptual documentation: See the section "Overview of Presentation
Substrate Facilities", page 69.

For documentation of predefined presentation types: See the section "Dictionary of
Predefined Presentation Types", page 281.

Dictionary of Presentation Substrate Facilities 351

August 1986 dw:check-presentation-type-argument

21. The Facilities

dw:check-presentation-type-argument type-arg &key (evaluated t) Function
(function compiler:default-warning-function)
(definition-type
compiler:default-warning-definition-type)

Checks an argument that is expected to be a presentation type for validity.

type-arg A form evaluating to a presentation type.

: evaluated
Boolean option specifying whether type-arg is expected to be
quoted; the default is t.

: function
Specifies a symbol naming the function for which the
compiler warning is issued. This name is displayed in the
warning instead of the name of the function in which the
error occurred; the latter behavior is the default.

: definition-type
Specifies the definition type (, defun, J defvar, etc.) of the Lisp
object that caused the compiler warning. The name for
objects of this type ("Function", "Variable", etc.) is displayed
in the warning instead of the name for the type of object in
which the error occurred; the latter behavior is the default.

This function should be used in macros that take presentation types as
arguments and in style-checkers for functions that take presentation types.

Here is an example of the use of dw:check-presentation-type-argument in
a macro:

(defmacro with-value «(variable-name presentation-type) &body body)
(dw:check-presentation-type-argument presentation-type :evaluated nil)
'(let ((,variable-name (accept' ,presentation-type»)

,@body»

If you try to compile the following function, which contains an invalid
specification of the integer presentation type inside an invocation of with­
value, you get a compiler error diagnosing the problem:

352 Dictionary of Presentation Substrate Facilities

dw:clear-presentation-input-context August 1986

(de fun check-type-test ()
(with-value (x «integer 3 5 extra-argument»)

(format t U-&Value is -Su x»)

The :evaluated keyword is used to control whether
dw:check-presentation-type-argument expects the presentation type to be
quoted or not. In the macro example above, the presentation type is
inserted unquoted into the invocation of the wi th-val ue macro. If you
wanted wi th-val ue to evaluate its presentation-type argument (for instance,
so that a variable that was bound to a presentation type could be used),
then you would supply : eval uated t (the default). The rewritten example
follows:

(defmacro with-value «variable-name presentation-type) &body body)
(dw:check-presentation-type-argument presentation-type :evaluated t)
'(let «Jvariable-name (accept Jpresentation-type»)

J@body»

(defun check-type-test ()
(with-value (x J«integer 3 5 extra-argument»)

(format t U-&Value is -Su x»)

(In both of the above examples, multiple error messages result because
accept itself uses dw:check-presentation-type-argument to validate its
arguments.)

For an overview of dw:check-presentation-type-argument and related
facilities: See the section "Overview of Other Presentation Facilities",
page 79.

dw:clear-presentation-input-context Function
Clears the current input context. This is useful for eliminating the input
context established by a function's callers in order to establish a new input
context that doesn't inherit from the callers.

For an overview of dw:clear-presentation-input-context and related
facilities: See the section "Overview of Presentation Input Context
Facilities", page 78.

dw:compare-char-for-accept char-from-accept comparandum Function
Compares an input character with a specified character. Use this function
instead of char-equal when manipulating characters read with
dw:read-char-for-accept.

char-from-accept
The input character (returned by dw:read-char-for-accept).

Dictionary of Presentation Substrate Facilities 353

August 1986 dw:complete-from-sequence

comparandum
The comparison character. This may be any standard
character.

For an overview of dw:compare-char-for-accept and related facilities: See
the section "Overview of Presentation-Type Definition Facilities", page 76.

dw:complete-from-sequence sequence stream &key type (name-key Function
#'string) (value-key #'identity) (delimiters
dw::*standard-completion-delimiters*)
(allow-any-input nil) (enable-forced-return nil)
(initially-display-possibilities nil)
(partial-completers nil) (complete-activates nil)
(compress-choices 20) (compression-delimiter)

Provides input completion from a sequence of possible completions for input
to accept. Returned values are the object associated with the completion
string; t or nil depending on whether or not the completion was the only
one possible; and the completion string.

sequence The sequence of possible completions.

stream The input stream.

:type Specifies the presentation type to use when displaying help
information for possible completions. This makes the
displayed possibilities mouse-sensitive.

If the completion utility is being called from the parser of a
presentation type, that type should be supplied as the value of
this option.

: name-key
Specifies the function called on each element in the sequence
for extracting the completion string. The default function is
string. Another useful function is string-capitalize-words.

:value-key
Specifies the function called on each element in the sequence
for extracting the value to be associated with the element's
completion string. The default function is identity, which
extracts the element itself.

: delimiters
Specifies a list of characters used by the standard completion
mechanism to tokenize completion strings. The default value

354 Dictionary of Presentation Substrate Facilities

dw:complete-from-sequence August 1986

is the binding of dw::*standard-completion-delimiters*; this
variable is preset to "- " (hyphen and space).

:alIow-any-input
Boolean option specifying whether the completer accepts
keyboard input from the user that does not match any of the
possible completion strings; the default is nil.

Most parsers should specify : all ow-any- input nil. In a call
to accept for which you want to allow input that does not
match any of the completions, use the type-or-string
presentation type.

Note that the completion facilities always signal the error
dw:input-not-of-required-type when a user types RET URN at
blank input. This is intended to allow accept to fill in the
default in the blank case. It means, however, that a caller of
a completion facility that passes : all ow-any-i nput t must also
condition-bind for dw:input-not-of-required-type, if you
want a null line to be treated the same as any other input.

:enable-forced-return
Boolean option specifying whether the user can force a
response that is not a member of the completion set; the
default is nil.

If this option is t, the user can terminate input with
c-RETURN, causing the completion utility to return to the
caller whatever input the user supplied. This is useful in
situations where you expect the user to specify a member of a
set of possibilities, but want to provide a way for supplying a
new name to be added to the set. (The Zmacs Select Buffer
(c-X B) command uses this feature to allow the user to create
new buffers.)

: initially-display-possibili ties
Boolean option specifying whether to display the entire set of
completion possibilities before prompting for input; the
default is nil. If t, the behavior is as if the user typed He1 p
before any other input.

Most parsers should supply to this option the same value that
was supplied to them by accept. accept, in turn, has an
:initially-display-possibilities option controlled by its caller:
See the function "accept", page 167.

Dictionary of Presentation Substrate Facilities 355

August 1986 dw:complete-from-sequence

:partial-completers
Specifies a list of characters that trigger partial completion
when entered by the user.

Partial completion restricts completion to only one token of
the completion set possibilities, even if enough characters
have been supplied to uniquely identify one of the members of
the completion set. For example, the Command Processor
uses #\space as a partial completer.

The syntax of a token is defined by the :delimiters option:
See the function "dw:complete-input", page 356.

: complete-activates
Boolean option specifying whether the COMPLET E key causes
activation, that is, whether the completion utility returns if a
unique completion was found. The default is nil.

This option is used to control completion behavior in a multi­
field input context, such as in the command processor.
Normally, the END key performs completion and then returns
if the resulting completion is unique.

: compress-choices
Specifies whether to compress the display of completion
possibilities that have a common left token (as defined by the
:compression-delimiter option: For more information: See
the function "dw:complete-input", page 356. Three values
are possible:

An integer
When the possibilities exceed this number, the
display is compressed. The default value is 20.

:always Whenever more than one possibility exists, the
display is compressed.

: never The display is never compressed, regardless of the
number of possibilities.

Compressed displays have the form "token ... (n)", where token
is the shared left token and n is the number of possible
completions.

To see an example of choice compression, press HELP to the
command processor prompt in a Dynamic Lisp Listener. You
get the following display (abbreviated for this example):

356 Dictionary of Presentation Substrate Facilities

dw:complete-input August 1986

You are being asked to enter a command or form.
Use the Help :Format Detailed command to see a full
list of command names.

These are the possible command names:
Add Paging File
Append
Clean File
Clear ... (3)
Close Fil e
Compare Directories
Compil e ... (2)
Copy ... (5)
Create ... (4)
Debug Process

"Add Paging File", "Append", and "Clean File" are full
command names. "Clear" is a left token shared by three
commands, Clear All Breakpoints, Clear Breakpoint, and Clear
Output History. These three completion choices have been
compressed to "Clear ... (3)". The user can expand this and
other compressed choices by clicking on them with the mouse.

: compression-delimiter
Specifies a list of characters used for delimiting the shared
left tokens in a display of completion possibilities. The
default value is \ (#\space).

For more information: See the function
"dw:complete-input", page 356.

For an overview of dw:complete-from-sequence and related facilities: See
the section "Overview of Presentation-Type Definition Facilities", page 76.

dw:complete-input stream function &key (allow-any-input nil) Function
enable-forced-return partial-completers (type nil)
parser (compress-choices 20)
(compression-delimiter) (help-offers-possibilities
t) (initially-dis play-possibilities nil)
(complete-activates nil) (documenter nil)
(document (not (null dw::documenter»)

Provides input completion for input to accept. Returned values are the
object associated with the completion string; t or nil depending on whether
or not the completion was the only one possible; and the completion string.

Dictionary of Presentation Substrate Facilities 357

August 1986 dw:complete-input

stream The input stream.

function The completion function. The function receives two
arguments, the input supplied by the user and a keyword
specifying an operation.

Operations are divided into two categories, completion
operations and possibility operations. The former attempt to
complete and return the completion; the latter return either a
list of possible completions or the number of possible
completions. Available keywords for each type are described
below:

Completion Operations

: complete
Complete and return as much as possible based
on the input so far.

: complete-limited
Complete and return the current input "chunk"
only, even if the input uniquely identifies a full
completion possibility. The meaning of "chunk"
depends on the type of input. For example, in
the case of command processor commands, a
chunk is a word in the command name.

:complete-maximal
Complete and return as much as possible based
on the input so far, even if that means adding
empty tokens between delimiters.

Regardless of the completion operation, the completion
function must return the following five values:

1. The string resulting from completing the input
string.

2. A boolean indicating if the completion is unique,
that is, if it identifies one and only one of the
completion possibilities.

3. The object associated with the completion if it is
unique.

4. The index in the completion string of the first
point of ambiguity if the string is not unique, that

358

dw:complete-input

Dictionary of Presentation Substrate Facilities

August 1986

is, the leftmost place in the string where a
difference arises between two or more completion
possibilities. The completer generally tries to
position the input cursor at that point so that the
user can resolve the ambiguity.

5. The number of possible input completions; this may
be B.

Possibility Operations

:possibilities
Return a list of completion possibilities that
begin with the input string.

: apropos-possibilities
Return a list of the completion possibilities that
contain the input string anywhere in the
completion string.

The function may split the input into tokens
and search for possibilities that contain all the
tokens somewhere in the completion string. In
this case, it should return as a second value the
list of tokens extracted from the original input
string.

:possibilities-quick-length
Returns the number of completion possibilities
that begin with the input string.

:apropos-possibilities-quick-length
Return the number completion possibilities that
contain the input string anywhere in the
completion string.

The completion function can return nil to indicate that it
does not support the "quick-length" operations. In this
case, the completer utility asks for a full :possibilities or
:apropos-possibilities list and counts the number of
elements to return.

:allow-any-input
Boolean option specifying whether the completer accepts
keyboard input from the user that does not match any of the
possible completion strings; the default is nil.

Dictionary of Presentation Substrate Facilities 359

August 1986 dw:complete-input

Most parsers should specify : all ow-any- input n; l. In a call
to accept for which you want to allow input that does not
match any of the completions, use the type-or-string
presentation type.

Note that the completion facilities always signal the error
dw:input-not-of-required-type when a user types RET URN at
blank input. This is intended to allow accept to fill in the
default in the blank case. I t means, however, that a caller of
a completion facility that passes : all ow-any-i nput t must also
condition-bind for dw:input-not-of-required-type, if you
want a null line to be treated the same as any other input.

:enable-forced-return
Boolean option specifying whether the user can force a
response that is not a member of the completion set; the
default is nil.

If this option is t, the user can terminate input with
c-RET URN, causing the completion utility to return to the
caller whatever input the user supplied. This is useful in
situations where you expect the user to specify a member of a
set of possibilities, but want to provide a way for supplying a
new name to be added to the set. (The Zmacs Select Buffer
(c-H 8) command uses this feature to allow the user to create
new buffers.)

:partial-completers

: type

Specifies a list of characters that trigger partial completion
when entered by the user.

Partial completion restricts completion to only one token of
the completion set possibilities, even if enough characters
have been supplied to uniquely identify one of the members of
the completion set. For example, the Command Processor
uses #\space as a partial completer.

The syntax of a token is defined by the :delimiters option:
See the macro "dw:completing-from-suggestions", page 362.

Specifies the presentation type to use when displaying help
information for possible completions. This .makes the
displayed possibilities mouse-sensitive.

If the completion utility is being called from the parser of a
presentation type, that type should be supplied as the value of
this· option.

360 Dictionary of Presentation Substrate Facilities

dw:complete-input August 1986

:parser Specifies the function called to translate input strings into
objects of the desired type. The function is called with one
argument, the string entered by the user.

This option is typically used when the set of possible
completions is not known in advance, and can therefore not
be enumerated. If they can be enumerated, use
dw:complete-from-sequence or
dw:completing-from-suggestions instead.

The parser function is called on each possible completion
string when a list of possibilities is generated, and on the
user-supplied input when the completion utility is about to
return a value.

:compress-choices
Specifies whether to compress the display of completion
possibilities that have a common left token (as defined by the
:compression-delimiter option: See the function
"dw:complete-input", page 356. Three values are possible:

An integer
When the possibilities exceed this number, the
display is compressed. The default value is 2B.

:always Whenever more than one possibility exists, the
display is compressed.

: never The display is never compressed, regardless of the
number of possibilities.

Compressed displays have the form "token ... (n)", where token
is the shared left token and n is the number of possible
completions.

To see an example of choice compression, press HELP to the
command processor prompt in a Dynamic Lisp Listener. You
get the following display (abbreviated for this example):

You are being asked to enter a command or form.
Use the Help :Format Detailed command to see a full
list of command names.

Dictionary of Presentation Substrate Facilities 361

August 1986

These are the possible command names:
Add Paging File
Append
Cl ean Fil e
Clear ... (3)
Close File
Compare Directories
Compil e ... (2)
Copy ... (5)
Create ... (4)
Debug Process

dw:complete-input

"Add Paging File", "Append", and "Clean File" are full
command names. "Clear" is a left token shared by three
commands, Clear All Breakpoints, Clear Breakpoint, and Clear
Output History. These three completion choices have been
compressed to "Clear ... (3)". The user can expand this and
other compressed choices by clicking on them with the mouse.

: compression-delimiter
Specifies a list of characters used for delimiting the shared
left tokens in a display of completion possibilities. The
default value is '(#\space).

For more information: See the function
"dw:complete-input", page 356.

:help-offers-possibilities
Boolean option specifying whether the full list of completion
possibilities is displayed when the user presses the HELP key;
the default is t.

:initiaIIy-display-possibiIities
Boolean option specifying whether to display the entire set of
completion possibilities before prompting for input; the
default is nil. If t, the behavior is as if the user typed Hel p

before any other input.

Most parsers should supply to this option the same value that
was supplied to them by accept. accept, in turn, has an
:initiaIIy-display-possibiIities option controlled by its caller:
See the function "accept", page 167.

362 Dictionary of Presentation Substrate Facilities

dw:completing-from-suggestions August 1986

: complete-activates
Boolean option specifying whether the COMPLET E key causes
activation, that is, whether the completion utility returns if a
unique completion was found. The default is nil.

This option is used to control completion behavior in a multi­
field input context, such as in the command processor.
Normally, the END key performs completion and then returns
if the resulting completion is unique.

:documenter
Specifies a function called to generate documentation for the
elements of a pos~ibilities display. The function receives two
arguments, a completion possibility and the output stream for
displaying the documentation.

: document
Specifies how each possibility displayed as a result of a HELP

request is documented. Three values are possible:

t Display the documentation. If a documentation
function is specified by the :documenter option, it is
called on each possibility; otherwise, the Common
Lisp function documentation is called.

nil Do not display any documentation.

: if-unique
Display documentation only if there is a unique
completion of the input supplied by the user.

The default for this option is t if a :documenter function is
supplied, nil otherwise. (See the function
"dw:complete-input", page 356.)

For an overview of dw:complete-input and related facilities: See the
section "Overview of Presentation-Type Definition Facilities", page 76.

dw:completing-from-suggestions (stream &key (allow-any-input t) Macro
(delimiters
dw::*standard-completion-delimiters*)
(enable-forced-return nil) (partial-completers nil)
(type nil) (parser nil) (complete-activates nil)
(compress-choices 20) (compression-delimiter nil)
(initially-dis play-possibilities nil)) &body body

Binds local environment to provide input completion for input to accept.

Dictionary of Presentation Substrate Facilities 363

August 1986 dw:completing-from-suggestions

Returned values are the object associated with the completion string; t or
nil depending on whether or not the completion was the only one possible;
and the completion string.

stream The input stream.

:allow-any-input
Boolean option specifying whether the completer accepts
keyboard input from the user that does not match any of the
possible completion strings; the default is nil.

Most parsers should specify : all ow-any-i nput nil. In a call
to accept for which you want to allow input that does not
match any of the completions, use the type-or-string
presentation type.

Note that the completion facilities always signal the error
dw:input-not-of-required-type when a user types RETURN at
blank input. This is intended to allow accept to fill in the
default in the blank case. It means, however, that a caller of
a completion facility that passes : all ow-any-i nput t must also
condition-bind for dw:input-not-of-required-type, if you
want a null line to be treated the same as any other input.

: delimiters
Specifies a list of characters used by the standard completion
mechanism to tokenize completion strings. The default value
is the binding of dw::*standard-completion-delimiters*; this
variable is preset to" "(hyphen and space).

:enable-forced-return
Boolean option specifying whether the user can force a
response that is not a member of the completion set; the
default is nil.

If this option is t, the user can terminate input with
c-RET URN, causing the completion utility to return to the
caller whatever input the user supplied. This is usefuL in
situations where you expect the user to specify a member of a
set of possibilities, but want to provide a way for supplying a
new name to be added to the set. (The Zmacs Select Buffer
(c-X 8) command uses this feature to allow the user to create
new buffers.)

364 Dictionary of Presentation Substrate Facilities

dw:completing-from-suggestions August 1986

:partial-completers

: type

Specifies a list of characters that trigger partial completion
when entered by the user.

Partial completion restricts completion to only one token of
the completion set possibilities, even if enough characters
have been supplied to uniquely identify one of the members of
the completion set. For example, the Command Processor
uses #\space as a partial completer.

The syntax of a token is defined by the :delimiters option:
See the function "dw:complete-from-sequence", page 353.

Specifies the presentation type to use when displaying help
information for possible completions. This makes the
displayed possibilities mouse-sensitive.

If the completion utility is being called from the parser of a
presentation type, that type should be supplied as the value of
this option.

:parser Specifies the function called to translate input strings into
objects of the desired type. The function is called with one
argument, the string entered by the user.

This option is typically used when the set of possible
completions is not known in advance, and can therefore not
be enumerated. If they can be enumerated, use
dw:complete-from-sequence or
dw:completing-from-suggestions instead.

The parser function is called on each possible completion
string when a list of possibilities is generated, and on the
user-supplied input when the completion utility is about to
return a value.

: complete-activates
Boolean option specifying whether the COMPLET E key causes
activation, that is, whether the completion utility returns if a
unique completion was found. The default is nil.

This option is used to control completion behavior in a multi­
field input context, such as in the command processor.
Normally, the END key performs completion and then returns
if the resulting completion is unique.

:compress-choices
Specifies whether to compress the display of completion

Dictionary of Presentation Substrate Facilities 365

August 1986 dw:completing-from-suggestions

possibilities that have a common left token (as defined by the
:compression-delimiter option: See the function
dw:complete-input, page 356. Three values are possible:

An integer
When the possibilities exceed this number, the
display is compressed. The default value is 20.

:always Whenever more than one possibility exists, the
display is compressed.

: never The display is never compressed, regardless of the
number of possibilities.

Compressed displays have the form "token ... (n)", where token
is the shared left token and n is the number of possible
completions.

To see an example of choice compression, press HELP to the
command processor prompt in a Dynamic Lisp Listener. You
get the following display (abbreviated for this example):

You are being asked to enter a command or form.
Use the Help :Format Detailed command to see a full
list of command names.

These are the possible command names:
Add Paging File
Append
Cl ean Fil e
Clear ... (3)
Close Fil e
Compare Directories
Compil e ... (2)
Copy ... (5)
Create ... (4)
Debug Process

"Add Paging File", "Append", and "Clean File" are full
command names. "Clear" is a left token shared by three
commands, Clear All Breakpoints, Clear Breakpoint, and Clear
Output History. These three completion choices have been
compressed to "Clear ... (3)". The user can expand this and
other compressed choices by clicking on them with the mouse.

366 Dictionary of Presentation Substrate Facilities

define-presentation-type August 1986

: compression-delimiter
Specifies a list of characters used for delimiting the shared
left tokens in a display of completion possibilities. The
default value is \ (#\space).

For more information: See the function
"dw:complete-input", page 356.

:initially-display-possibilities
Boolean option specifying whether to display the entire set of
completion possibilities before prompting for input; the
default is nil. If t, the behavior is as if the user typed He' P
before any other input.

Most parsers should supply to this option the same value that
was supplied to them by accept. accept, in turn, has an
:initially-display-possibilities option controlled by its caller:
See the function "accept", page 167.

For an overview of dw:completing-from-suggestions and related facilities:
See the section "Overview of Presentation-Type Definition Facilities", page
76.

define-presentation-type type-name (data-arglist . pr-arglist) &key
parser printer viewspec-choices description
describer no-deftype (history nil) expander
abbreviation-for choose-dis player
multiple-accept-displayer menu-displayer
presentation-type-arguments
presentation-subtypep do-compiler-warnings
typep (data-arguments-are-disjoint t)

Defines a new presentation type.

type-name
Specifies the name for the new type.

data-arglist

Macro

Specifies arguments describing an object of this type;
data-arglist may be any permissible defun-style argument list.

Data arguments are used to determine the sensitivity of an
object in any given input context established by accept, and
the applicability of defined mouse handlers. They also
participate in determining the subtype and supertype
relationships of the type. (For more information and

Dictionary of Presentation Substrate Facilities 367

August 1986 define-presentation-type

examples: See the section "Overview of Predefined
Presentation Types", page 71.)

pr-arglist Specifies keyword arguments that affect the accepting or
presenting of an object of this type; such keywords are
handled in the body of the presentation type's :parser, or
:printer respectively (see below).

Unlike data arguments, presentation arguments are not
relevant to determining mouse sensitivity or subtype and
supertype relationships. (For more information and examples:
See the section "Overview of Predefined Presentation Types",
page 71.)

(Certain predefined keywords are meta-presentation
arguments. They can be used when calling any type and are
understood directly by accept or present, rather than used by
the type's parser or printer. At present, such arguments are
limited to :description. For more information: See the
section "Predefined Presentation Types", page 71.

:parser Specifies a function for parsing a presentation object of the
defined type. This is what accept calls for inputting objects
entered as a series of characters.

Arguments passed to the parser function include the input
stream and a set of optional keywords. These arguments
must be declared in the argument list for the parser function.
The parser keyword options are:

:data-type-args
Specifies the arguments to the Common Lisp (CL)
type specification. For example, for CL type
(i ntege r e 5), the value of this option would be (0

5).

This option is useful only for presentation types that
are based on CL types with data arguments.

:presentation-args
Specifies the presentation arguments to the
presentation type. This option is not usually needed,
as the presentation arguments are· available lexically
in the bodies of this and other presentation-type
functions (that is, the :printer and :describer
functions).

368 Dictionary of Presentation Substrate Facilities

define-presentation-type August 1986

: original-type

: type

Specifies the presentation type originally supplied in
the call to accept. The :parser function that gets
invoked is found via the presentation-type
inheritance mechanism.

Note that when accept is called recursively, as part
of an expan~ion, via the and or or presentation type,
or in similar situations, the original type is not the
"top-level" presentation type. Rather, it is the head
of the last chain of inheritance tracking.

Not used by the parser.

:default Value is supplied by accept. You only need to use
this for merging; actual defaulting is handled at a
higher level.

: initially-display-possibilities
Boolean option specifying whether to display the
objects that could be used as input in the current
context; the default is nil. If t, the possibilities are
presented before the input prompt appears.

Additionally, there are two other sources of keyword
arguments; 1) keywords declared in the type's data-arglist and
pr-arglist; and 2) keywords to the accept function that uses
the parser.

Keywords originating in the data-arglist or pr-arglist are
available lexically in the body of the parser function, and do
not have to be explicitly declared in the argument list to the
parser function.

Keywords originating in an accept function call, on the other
hand, do need to be explicitly declared in the parser's
argument list.

The syntax for the parser function is as follows:

:parser «stream &key <parser keywords> <accept
keywords» body)

:printer Specifies a function for printing a presentation object of the
defined type. This is what present calls for outputting
objects.

Arguments passed to the printer function include the object,

Dictionary of Presentation Substrate Facilities 369

August 1986 define-presentation-type

the output stream, and a set of optional keywords. These
arguments must be declared in the argument list for the
printer function. The printer keyword options are:

:data-type-args
Specifies the arguments to the Common Lisp (CL)
type specification. For example, for CL type
(integer 0 5), the value of this option would be (0
5).

This option is useful only for presentation types that
are based on CL types with data arguments.

:presentation-args
Specifies the presentation arguments to the
presentation type. This option is not usually needed,
as the presentation arguments are available lexically
in the bodies of this and other presentation-type
functions (that is, the :parser and :describer
functions).

: original-type
Specifies the presentation type originally supplied in
the call to present. The :printer function that gets
invoked is found via the presentation-type
inheritance mechanism.

:type Not used by the printer.

:acceptably
Boolean option specifying whether to print the
presentation in such way that it can be parsed by
accept as the specified presentation type.

Additionally, there are two other sources of keyword
arguments; 1) keywords declared in the type's data-arglist and
pr-arglist; and 2) keywords to the present function that uses
the printer.

Keywords originating in the data-arglist or pr-arglist are
available lexically in the body of the printer function, and do
not have to be explicitly declared in the argument list to the
printer function.

Keywords originating in an present function call, on the
other hand, do need to be explicitly declared in the printer's
argument list.

370 Dictionary of Presentation Substrate Facilities

define-presentation-type August 1986

The syntax for the printer function is as follows:

:printer «object stream &key <.parser keywords>
<present keywords» body)

:viewspec-choices

Example:

Specifies form that returns a list of locatives, presentation
types, and prompts to slots in the presentation type. This
provides the ability to do in-place modification of presentation
printing.

(defflavor employee «first-name)
(1 ast-name)
(status»

o
: readable-instance-variables
:writable-instance-variables
:initable-instance-variables)

Dictionary of Presentation Substrate Facilities 371

August 1986 define-presentation-type

(define-presentation-type employee «)

:no-deftype t

;; keywords for different printed representations
&key (format :last-name-first)

(include-status nil))

:printer «employee stream)
(ecase format

(:last-name-first
(format stream "-A, -A"

(employee-last-name employee)
(employee-first-name employee)))

(:first-name-first
(format stream "-A -A"

(employee-first-name employee)
(employee-last-name employee)))

(: 1 ast-name-on 1 y
(write-string

(employee-last-name employee) stream)))
(when include-status

(format stream" (-(-A-))"
(employee-status employee))))

:viewspec-choices «&key type)
;; a necessary internal function
(dw: :presentation-type-keyword-options-into-cvv

type
;; Choice 1: keyword, pres type (member),
;; selected choice (optional), and prompt

'«:format «member :last-name-first
:first-name-first
:last-name-only))

:last-name-first "Format of name")
;; Choice 2: keyword, pres type (boolean),
;; selected choice (optional), and prompt
(:include-status boolean nil "Include status")))))

(present (make-instance 'employee :last-name "Jones"
:first-name "Fred" :status :retired))

Compile the two definitions; then evaluate the present function. You can
either click s-sh-Middle on the presentation to invoke the Edit Viewspecs
mouse handler or click right on the presentation to get a menu of options,
one of which is "Edit viewspecs". Clicking s-sh-Middle or selecting the

372 Dictionary of Presentation Substrate Facilities

defin e-pres entation-type August 1986

"Edit viewspecs" option brings up a dw:accept-variable-values menu.
Using this, you can specify how the presentation is displayed.

With the :viewspec-choices option, you give your users the ability to
modify at runtime all displayed presentations of the defined type. To
provide same capability with respect to arbitrary program output, you can
use dw:with-replayable-output: See the macro
dw:with-replayable-output, page 274.

: description
Specifies a string describing the presentation type, for
example, "an integer". This string is used in the prompt
displayed by accept when inputting an object of this type.

This option and the :describer option are mutually exclusive.
If neither option is supplied, a description is created based on
inheritance from a Common Lisp type; if that is not possible,
then the description defaults to the string "anything".

Do not confuse this option with the :description meta­
presentation argument: See the section "Predefined
Presentation Types", page 71.

: describer
Specifies a function for returning a string to be used as the
description of the presentation type. This string is used in
the prompt displayed by accept when inputting an object of
this type. The describer function is generally used only for
complex presentation types, such as compound and aggregate
types.

Arguments passed to the describer function include the input
stream and a set of optional keywords. The describer
function keywords are:

:data-type-args
Specifies the arguments to the Common Lisp (CL)
type specification. For example, for CL type
(integer 0 5), the value of this option would be (0

5).

This option is useful only for presentation types that
are based on CL types with data arguments.

:presentation-args
Specifies the presentation arguments to the
presentation type. This option is not usually needed,

Dictionary of Presentation Substrate Facilities 373

August 1986

:type

define-presenfation-fype

as the presentation arguments are available lexically
in the bodies of this and other presentation-type
functions (that is, the :parser and :printer
functions).

Specifies the presentation type from which the
describer function is inherited.

:plural-count
Boolean option specifying whether the type
description is pluralized.

The syntax for the describer function is:

:describer «stream &key <describer keywords» body)

This option and the :description option are mutually
exclusive. If neither option is supplied, a description is
created based on inheritance from a Common Lisp type; if
that is not possible, then the description defaults to the string
"anything" .

:no-deftype
Boolean option specifying whether this definition only defines
a presentation type and not also a new data type. The
default (nil) results in the generation of a deftype.

: no-deftype t must be supplied if a deftype is provided
elsewhere for the symbol used as the type-name argument in
the presentation type definition. This also applies to
presentation types being defined for flavors and structures
previously defined by defflavor and defstruct, respectively.
For more information: See the section "User-Defined Data
Types as Presentation Types", page 82.

:history Boolean option specifying whether a separate history is
created for this presentation type. The default is nil,
meaning that the history will be found via inheritance.

: expander
Specifies a form that is invoked to generate the "expansion"
of the presentation type, for example, «or pres-typel
pres-type2)) . Expansions allow for presentation types to
inherit presentation functions (that is, parsers, printers,
describers) from other presentation types. The presentation
arguments are available lexically.

374 Dictionary of Presentation Substrate Facilities

define-presentation-type August 1986

If you do not specify an :expander, then you must either
specify the :abbreviation-for option or supply a parser and
printer. If you do specify an expander, you can still supply
the presentation type with its own parser or printer, and just
inherit the function not supplied; however, you may not
specify the :abbreviation-for option.

: abbreviation-for
Specifies the form for which this presentation type serves as
an abbreviation. The form defines a new presentation type by
combining or in other ways qualifying existing presentation
types, for example, « and pres-type (sat is f i es a-predicate))).

:choose-displayer

Example:

Specifies a form that does output showing the choice or
choices that can be made for a presentation of this type in a
menu or multiple-accept context. This output is in place of
the default value normally used, and is useful in cases when
you want a sequence or enumeration of choices displayed.

Use the internal function
dw::accept-values-choose-from-sequence to write this form.
The following example is extracted from the definition for the
aUst-member presentation type. The full definition is
included in the file sys:dynamic-windows;standard­
presentation-types. lisp.

(define-presentation-type alist-member «&key alist)
&key (convert-spaces-to-dashes nil))

:choose-displayer «stream object query-identifier
&key original-type)

...)

(accept-values-choose-from-sequence
stream alist object query-identifier
:type original-type
:key #'tv:menu-execute-no-side-effects»

:multiple-accept-displayer
Specifies a form that does output showing the choice or
choices that can be made for a presentation of this type in a
multiple-accept context. This output is in place of the default
value normally used, and is useful in cases when you want a
sequence or enumeration of choices displayed.

Dictionary of Presentation Substrate Facilities 375

August 1986 define-presentation-type

Use the internal function
dw::accept-values-choose-from-sequence to write this form.
An example is shown under the :choose-displayer keyword:
See the function "define-presentation-type", page 366.

:menu-displayer
Specifies a form that does output showing the choice or
choices that can be made for a presentation of this type in a
menu context. This output is in place of the default value
normally used, and is useful in cap.es when you want a
sequence or enumeration of choices displayed.

Use the internal function
dw::accept-values-choose-from-sequence to write this form.
An example is shown under the :choose-displayer keyword:
See the macro "define-presentation-type", page 366.

:presentation-type-arguments
Specifies a list of type arguments appearing in the
presentation type's data-arglist which are themselves
presentation types.

define-presentation-type uses this list in writing the
appropriate :do-compiler-warnings option to the macro if this
option is not supplied explicitly.

:presentation-subtypep
Specifies a comparison function for deciding whether this
presentation type is a subtype of some other presentation
type, that is, for determining its equivalence-class
membership.

The function receives two arguments, both lists. The first is
a list of the type-name and data arguments of this
presentation type; the second is a list of the type-name and
data arguments of the putative supertype, that is, of the
presentation type with which this one is being compared.

Such decisions are ordinarily made by
dw:presentation-subtypep. They determine the applicability
of mouse handlers to displayed presentations in a given input
context. By writing the comparison function yourself, you can
control the mouse sensitivity of presentations of the defined
type relative to available mouse handlers.

Because you likely want to use arguments in the data-arglist

376 Dictionary of Presentation Substrate Facilities

define-presentation-type August 1986

for writing the comparison function, you should not use the
default value (t) for the :data-arguments-are-disjoint option
to define-presentation-type. Rather, supply the latter option
with a value of nil.

:do-compiler-warnings
Specifies a function for checking that presentation-type
arguments appearing in the data-arglist and available at
compile time are of the correct type. If you specify such
arguments in the :presentation-type-arguments option, you
do not need to write a :do-compiler-warnings function.

:typep Specifies a function that determines whether a given
presentation object is of the type specified by the data
arguments in the presentation type. It takes one argument,
the presentation object.

The :typep function is used to determine, for example,
whether a displayed integer presentation in an input context
established by (accept J «integer 1 10))) can be used as
input, that is, whether the displayed integer is in fact
between 1 and 10. In the general case, the :typep function
must consider all of the positional and keyword data
arguments to a presentation type in determining if the
presentation object at hand is of the type sought. The data
arguments are made lexically available to the :typep function
when it is invoked. (The presentation arguments are not
available.)

:data-arguments-are-disj oint
Boolean option specifying whether the arguments included in
the data-arglist are to be used as keys for determining the
equivalence class of the presentation type. The default is t;
this results in the data arguments to this presentation type
being compared by eqi with those of other presentation types
when determining equivalence-class membership.

If you use the :presentation-suhtypep option to
define-presentation-type for writing the comparison function
controlling equivalence-class membership, then you should
supply the :data-arguments-are-disjoint option with a value
of nil. Also supply a value of nil if the data arguments to
this type are not appropriate for comparison by eql.

For an overview of define-presentation-type and related facilities: See the
section "Overview of Presentation-Type Definition Facilities", page 76.

Dictionary of Presentation Substrate Facilities 377

August 1986 dw:describe-presentation-type

For information on writing parsers for presentation types, including
examples: See the section "Writing a Presentation Type Parser", page 80.
For more examples, see the file sys:dynamic-windows;standard-presentation­
types.lisp.

dw:describe-presentation-type type &optional (stream Function
standard-output) plural-count

Outputs the description of a presentation type provided by the type's
definition (define-presentation-type macro).

type The presentation type to be described.

stream The output stream; the default is *standard-output*.

plural-count
Controls whether the description is pluralized. Three values
are possible:

nil Do not pluralize the description.

t Pluralize the description.

number Include this number in the pluralization.

Examples:

(dw:describe-presentation-type 'integer) ==>an integer

(dw:describe-presentation-type 'integer t t) ==>integers

(dw:describe-presentation-type 'integer t 12) ==>twelve integers

(dw:describe-presentation-type 'integer t 12.2) ==>12.2 integers

For an overview of dw:describe-presentation-type and related facilities:
See the section "Overview of Other Presentation Facilities", page 79.

dw:echo-presentation-blip stream blip &optional (start-bp
(send stream :read-Iocation» for-context-type

Echos a presentation blip from the input buffer.

stream The input stream.

blip The presentation blip.

Function

start-bp The position in the input buffer where the presentation blip
begins.

378 Dictionary of Presentation Substrate Facilities

dw:peek-char-for-accept August 1986

for-context-type
The input context on whose behalf the presentation blip is
echoed. This affects the printing of the blip. For example,
the Command Processor uses this option to ensure that
echoed command names are preceded by colons when in the
J command-or-form context.

For an overview of dw:echo-presentation-blip and related facilities: See
the section "Overview of Presentation Input Blip Facilities", page 78.

dw:peek-char-for-accept stream &optional hang Function
Returns the next character in the input stream without removing it from
the stream. This is equivalent to calling dw:read-char-for-accept followed
by dw:unread-char-for-accept.

stream The input stream.

hang Boolean option specifying whether, if no character is available
in the input stream, the function waits until a character is
available or returns nil. The default is nil.

For an overview of dw:peek-char-for-accept and related facilities: See the
section "Overview of Presentation-Type Definition Facilities", page 76.

dw:presentation-blip-case blip &body clauses Macro
Dispatches to clauses based on the presentation-type field of a presentation
blip.

blip The presentation blip.

clauses The case clauses.

This macro is similar to the case special form, and could be written as

(case (dw:presentation-blip-presentation-type blip)
<clauses»

but with one exception: comparison of the extracted presentation type with
the types used as keys to the clauses is based on
dw:presentation-subtypep, not eql.

Normally, you would not use this macro directly. See the macro
dw:with-presentation-input-context, page 388.

For an overview of dw:presentation-blip-case and related facilities: See
the section "Overview of Presentation Input Blip Facilities", page 78.

Dictionary of Presentation Substrate Facilities 379

August 1986 dw :presentation-blip-ecas e

dw:presentation-blip-eease blip &body clauses Macro
Dispatches to clauses based on the presentation-type field of a presentation
blip.

blip The presentation blip.

clauses The eease clauses.

This macro is similar to the eease special form, and could be written as

(ecase (dw:presentation-blip-presentation-type blip)
<clauses»

but with one exception: comparison of the extracted presentation type with
the types used as keys to the clauses is based on
dw:presentation-subtypep, not eql.

Normally, you would not use this macro directly. See the macro
dw:with-presentation-input-eontext, page 388.

For an overview of dw:presentation-blip-eease and related facilities: See
the section II Overview of Presentation Input Blip Facilities ", page 78.

dw:presentation-blip-objeet presentation-blip Function
Returns the presentation object from a presentation blip.

presentation-blip
The presentation blip.

For an overview of dw:presentation-blip-objeet and related facilities: See
the section II Overview of Presentation Input Blip Facilities ", page 78.

dw:presentation-blip-options presentation-blip Function
Returns the options field (a list of keyword-value pairs) of a presentation
blip.

presentation-blip
The presentation blip.

The options inserted in a presentation blip are obtained from the values
returned by translating mouse handlers. A standard blip option is
: activate, which can be used by a translator to promote or prevent
activation of the current field, that is, a return from the current call to
accept. (See the macro define-presentation-translator,. page 185.)

For an overview of dw:presentation-blip-options and related facilities: See
the section II Overview of Presentation Input Blip Facilities ", page 78.

380 Dictionary of Presentation Substrate Facilities

dw:presentation-blip-p August 1986

dw:presentation-blip-p blip Function
Determines whether a blip is a presentation blip.

blip The blip.

For an overview of dw:presentation-blip-p and related facilities: See the
section "Overview of Presentation Input Blip Facilities", page 78.

dw: :presentation-blip-mouse-char presentation-blip Function
Returns the mouse character from a presentation blip.

presentation-blip
The presentation blip.

For an overview of dw::presentation-blip-mouse-char and related facilities:
See the section "Overview of Presentation Input Blip Facilities", page 78.

dw:presentation-blip-presentation-type presentation-blip
Returns the presentation type from a presentation blip.

presentation-blip
The presentation blip.

Function

For an overview of dw:presentation-blip-presentation-type and related
facilities: See the section "Overview of Presentation Input Blip Facilities", page
78.

dw:presentation-blip-typep blip type Function
Determines whether the presentation type of a presentation blip is of a
specified type. (The comparison is based on dw:presentation-subtypep).

blip The presentation blip.

type The presentation type with which the type of the blip is
compared.

For an overview of dw:presentation-blip-typep and related facilities: See
the section "Overview of Presentation Input Blip Facilities", page 78.

dw:presentation-equal presentation-l presentation-2 Punction
Determines whether two presentations are "equal", that is, whether they
are presenting the same object in the same manner.

presentation-l
The first presentation.

Dictionary of Presentation Substrate Facilities 381

August 1986 dw: Itpresen tation-input-context It

presentation-2
The second presentation.

For an overview of dw:presentation-equal and related facilities: See the
section "Overview of Other Presentation Facilities", page 79.

dw:*presentation-input-context* Variable
Bound to the current presentation input context.

An input context is a list of the form (presentati on-type superi or-context
throw-fl ag . options). Each time a new input context is established, it
becomes the new top-level context, enclosing the previous top-level context.
(See the macro dw:with-presentation-input-context, page 388. Thus, there
may be a hierarchy of contexts.

For example, if you have a presentation type microcode-version whose
parser is defined as follows

(define-presentation-type microcode-version ()
:parser «stream)

(accept Jinteger :stream stream))
:printer «object stream)

(princ object stream)))

the call (accept J «mi crocode-versi on))) results in the following input
context:

(INTEGER (MICROCODE-VERSION NIL T :INHERIT T) T :INHERIT T)

The initial call to accept establishes the MICROCODE-VERSION context and
calls the parser for microcode-version. The parser calls accept with the
presentation type integer, and accept establishes a new context for
INTEGER; the new context contains the old context for MICROCODE-VERSION.

For an overview of dw:*presentation-input-context* and related facilities:
See the section "Overview of Presentation Input Context Facilities", page
78.

dw:presentation-input-context-option presentation-input-context Function
indicator

Extracts the value of the specified option from an input context. The input
context options are supplied in the options clause to
dw:with-presentation-input-context.

presentation-input-context
Specifies the input context.

indicator Specifies the name of the option to be extracted from the
input context.

382 Dictionary of Presentation Substrate Facilities

dw:presentation-subtypep August 1986

For an overview of dw:presentation-input-context-option and related
facilities: See the section "Overview of Presentation Input Context
Facilities", page 78.

dw:presentation-subtypep subtype supertype Function
Determines whether one presentation type is a subtype of another
presentation type.

sUbtype The putative subtype presentation type.

supertype The putative supertype presentation type.

This function is the presentation system equivalent of the Common Lisp
function subtypep. As does the latter, it returns two values: the first
indicates whether the first type is a subtype of the second; the second
whether the first result is certain. Three combinations are possible:

t
nil
nil

t
t
nil

subtype is definitely a subtype of supertype
subtype is definitely not a subtype of supertype
the relationship could not be determined with certainty

For an overview of dw:presentation-subtypep and related facilities: See
the section "Overview of Other Presentation Facilities", page 79.

dw:presentation-type-default presentation-type Function
Returns the current default - the object at the top of the type history - for
a presentation type, if the type supports a history; otherwise, it returns nil.

presentation-type
The presentation type.

Example:

(dw:presentation-type-default 'pathname)
==>#P"V:>reg>saved-mail>ui>defpgm.babyl.newest"
FS:LMFS-PATHNAME
T

For an overview of dw:presentation-type-default and related facilities:
See the section "Overview of Other Presentation Facilities", page 79.

dw:presentation-type-name type Function
Returns the name of the presentation type from a presentation-type
specification.

type The type specification.

Dictionary of Presentation Substrate Facilities 383

August 1986 dw:presentation-type-p

Example:

(dw:presentation-type-name '«pathname) :dont-merge-default nil»
PATHNAHE

For an overview of dw:presentation-type-name and related facilities: See
the section "Overview of Other Presentation Facilities", page 79.

dw:presentation-type-p type
Returns t if its argument is a presentation type, nil otherwise.

type An object.

Example:

(defun pres-type-p-test (x type)
(if (dw:presentation-type-p type)

(present x type»)

(pres-type-p-test 6 '«integer 1 18») ==>6

Function

For an overview of dw:presentation-type-p and related facilities: See the
section "Overview of Other Presentation Facilities", page 79.

dw:read-char-for-accept stream Function
Returns the next character in the input stream and removes this character
from the stream.

stream The input stream.

The character returned may be a presentation blip character containing
information specific to the accept input mechanism. Therefore, characters
read via dw:read-char-for-accept should only be manipulated by the
related Dynamic Window input functions. For example, you cannot use
char-equal to compare a character returned by dw:read-char-for-accept
with a standard character; you must use dw:compare-char-for-accept .
instead.

For an overview of dw:read-char-for-accept and related facilities: See the
section "Overview of Presentation-Type Definition Facilities", page 76.

dw:read-standard-token stream Function
Parses string as delimited by activation and blip characters established by
dw:with-accept-activation-chars and dw:with-accept-blip-chars,
respectively.

stream The input stream.

384 Dictionary of Presentation Substrate Facilities

dw:suggest August 1986

For an overview of dw:read-standard-token and related facilities: See the
section "Overview of Presentation-Type Definition Facilities", page 76.

dw:suggest completion-string object Function
Adds an element to a completion table being constructed inside a
dw:completing-from-suggestions macro. dw:suggest is not used'
independently of this macro.

completion-string

object

The completion string.

The object associated with the completion string (and to be
returned by dw:completing-from-suggestions).

For an overview of dw:suggest and related facilities: See the section
"Overview of Presentation-Type Definition Facilities", page 76.

dw:unread-char-for-accept char stream Function
Puts a character back into the input stream. This character will be the
next one read by a subsequent call to dw:read-char-for-accept.

char The character.

stream The input stream.

For an overview of dw:unread-char-for-accept and related facilities: See
the section "Overview of Presentation-Type Definition Facilities", page 76.

dw:with-accept-activation-chars (additional-characters &key Macro
override) &body body

Binds local environment to establish additional characters to be used as
delimiters of input strings. Predefined activation characters are #\return,
and #\end.

additional-characters
A list of characters to be used as additional delimiters.

: override
Boolean option specifying whether the characters provided in
the additional-characters argument are the only delimiters
used within the body of the macro. If t, the provided
characters replace the existing set for the dynamic extent of
the macro. The default is nil, meaning that the supplied
characters are added to the existing set of delimiters.

For an overview of dw:with-accept-activation-chars and related facilities:

Dictionary of Presentation Substrate Facilities 385

August 1986 dw:with-accept-blip-chars

See the section "Overview of Presentation-Type Definition Facilities", page
76.

dw:with-accept-blip-chars (additional-characters &key override) Macro
&body body

Binds local environment to establish additional characters to be used as
delimiters of input blips. The characters are additional only if a previous,
higher-level call to this macro in a nested structure has established an
existing set of delimiters; no predefined set exists.

additional-characters
A list of characters to be used as additional delimiters.

: override
Boolean option specifying whether the characters provided in
the additional-characters argument are the only delimiters
used within the body of the macro. If t, the provided
characters replace the existing set for the dynamic extent of
the macro. The default is nil, meaning that the supplied
characters are added to the existing set of delimiters.

For an overview of dw:with-accept-blip-chars and related facilities: See
the section "Overview of Presentation-Type Definition Facilities", page 76.

dw:with-accept-help options &body body Macro
Binds local environment to control HELP-key documentation for input to
accept.

options A list of option specifications. Each specification is itself a
list of the form «help-option> <help-string».

help-option
The help-type or a list of the form «help-type>
<mode-flag». Help types are:

: top-level-help
Specifies that help-string be used instead of
the default help documentation provided by
accept.

:subhelp Specifies that help-string be used in
addition to the default help documentation
provided by accept.

Available modes include:

386 Dictionary of Presentation Substrate Facilities

dw:with-accept-help August 1986

Examples:

:append Specifies that the current help string be
appended to any previous help strings of
this type (top-level help or subhelp). This
is the default mode.

: override
Specifies that the current help string is the
help for this help type; no lower-level calls
to dw:with-accept-help can override this.
(:override works from the outside in.)

: establish-unless-overridden

help-string

Specifies that the current help string be
the help text for this help unless a higher­
level call to dw:with-accept-help has
already established a help string for this
help type in the :override mode.

A string or a function returning a string. If a
function, it receives two arguments, the stream and
the string-so-far.

(dw:with-accept-help «:subhelp "This is a test."»
(accept 'pathname»

==> You are being asked to enter a pathname. [ACCEPT did this]
This is a test. [You did this]
Use c-? or c-/ for a list of possibilities.[Completer did this]

(dw:with-accept-help «:top-level-help "This is a test."»
(accept Jpathname»

==> This is a test. [You did this]
Use c-? or c-/ for a list of possibilities. [Completer did this]

(dw:with-accept-help «(:subhelp :override) "This is a test."»
(accept 'pathname»

Dictionary of Presentation Substrate Facilities 387

August 1986

==> You are being asked to enter a pathname.
This is a test.

(define-presentation-type test ()
:parser «stream)

(dw:with-accept-help

dw:with-accept-help-if

[ACCEPT did this]
[You did this]
[Completer did
nothing because
you overrode it]

«:subhelp "A test is made up of three things:"))
(dw:completing-from-suggestions ...))))

(accept 'test) ==> You are being asked to enter a test.
A test is made up of three things:

;;;use function to provide help string
(dw:with-accept-help «(:top-level-help :override)

....)

(lambda (stream string-sa-far)
(format stream "You are typing

a pathname"))))

For an overview of dw:with-accept-help and related facilities: See the
section "Overview of Presentation-Type Definition Facilities", page 76.

dw:with-accept-help-if eond options &body body Maero
Conditionally binds local environment to control HELP-key documentation for
input to accept. Similar to dw:with-accept-help, but conditional.

eond The condition.

options A list of option specifications. Each specification is itself a
list of the form «help-option> <help-string».

help-option
The help-type or a list of the form «help-type>
<mode-flag». Help types are:

:top-Ievel-help
Specifies that help-string be used instead of
the default help documentation provided by
accept.

:subhelp Specifies that help-string be used in

388 Dictionary of Presentation Substrate Facilities

dw:with-presentation-input-context August 1986

addition to the default help documentation
provided by accept.

Available modes include:

:append Specifies that the current help string be
appended to any previous help strings of
this type (top-level help or subhelp). This
is the default mode.

:override
Specifies that the current help string is the
help for this help type; no lower-level calls
to dw:with-accept-help can override this.
(:override works from the outside in.)

:establish-unless-overridden

help-string

Specifies that the current help string be
the help text for this help unless a higher­
level call to dw:with-accept-help has
already established a help string for this
help type in the :override mode.

A string or a function returning a string. If a
function, it receives two arguments, the stream and
the string-so-far.

This macro is equivalent to the following form:

(i f <cond>
(dw:with-accept-help <> body)
body)

For examples, see the dictionary entry for dw:with-accept-help.

For an overview of dw:with-accept-help-if and related facilities: See the
section "Overview of Presentation-Type Definition Facilities", page 76.

dw:with-presentation-input-context (presentation-type &rest Macro
options) (&optional (blip-var 'dw::.blip.»
non-bLip-form &body blip-cases

Binds local environment to the input context of a specified presentation
type. (This essentially establishes mouse sensitivity for that type, and is
one of the building blocks for accept.) The body (non-blip-form) is
executed. If no mouse gestures are made by the user during execution of
the body, this form returns the value of the non-bLip-form. If the user

Dictionary of Presentation Substrate Facilities 389

August 1986 dw:with-presentation-Input-editor-context

clicks on a presentation of an appropriate type, the corresponding blip-cases
form is executed, with the resulting presentation blip bound as the value of
blip-var.

presentation-type
The presentation type establishing the new input context.
This may be a compound type incorporating more than one
primitive type.

options Two predefined keyword options are available:

:stream Specifies the input stream; the default is
standard-input .

:inherit Boolean option specifying whether to inherit an
existing input context or to establish a new root
node; the default is t.

You may use any additional keywords you want.

blip-var The symbol to bind to the blip generated by clicking on an
object of the specified type while in the context.

non-blip-form
The body form to execute inside the established input context.

blip-casesA case statement clause list. The keys are presentation
types. The clause whose key matches the presentation type of
the blip is executed, with the blip-var bound to the blip.

The presentation types available for use as keys are limited to
the type specified by the presentation-type argument or, in the
case of a compound presentation type (for example, or), the
types specified; and the type or types inherited in the case of
a nested use of this macro.

For an overview of dw:with-presentation-input-context and related
facilities: See the section "Overview of Presentation Input Context
Facilities", page 78.

dw:with-presentation-input-editor-context (stream Macro
presentation-type _ options) (&optional (blip-var
'dw::.blip.) start-loc-var) non-blip-form &body
blip-cases

Establishes an input context around a call to the input editor to read
keyboard input from the user. The body (non-blip-form) is executed. If no
mouse gestures' are made by the user during execution of the body, this

390 Dictionary of Presentation Substrate Facilities

dw:with-presentation-input-editor-context August 1986

form returns the value of the non-blip-form. If the user clicks on a
presentation of an appropriate type, the resulting presentation blip is bound
as the value of blip-var; the current location in the input buffer is bound as
the value of start-Ioc-var; and the corresponding blip-cases form is executed.

accept uses this mechanism to establish an input context for the
presentation type being read. This is one of the substrate functions used
to build accept. Most programs simply want to call accept, instead of
working at this low level.

stream The input stream; the default is *standard-input*.

presentation-type
The presentation type establishing the new input context.
This may be a compound type incorporating more than one
primitive type.

options One predefined keyword option is available:

:inherit Boolean option specifying whether to inherit an
existing input context or to establish a new root
node; the default is t.

You may use any additional keywords you want.

blip-var The symbol to bind to the blip generated by clicking on an
object of the specified type while in the context.

start-Ioc-var
The symbol to bind to the input buffer location at the time
the presentation blip is received.

non-blip-form
The body form to execute inside the established input context.

blip-casesA case statement clause list. The keys are presentation
types. The clause whose key matches the presentation type of
the blip is executed, with the blip-var bound to the blip.

The presentation types available for use as keys are limited to
the type specified by the presentation-type argument or, in the
case of a compound presentation type (for example, or), the
types specified; and the type or types inherited in the case of
a nested use of this macro.

This macro is built on dw:with-presentation-input-context, to which it is
similar:

Dictionary of Presentation Substrate Facilities 391

August 1986 dw:with-presentation-type-arguments

(dw:with-presentation-input-editor-context (stream type)
(blip-var)

body-form
blip-clauses)

is the same as

(with-input-editing (stream)
(dw:with-presentation-input-context

(type :stream stream)
(bl i p-var)

body-form
blip-clauses))

For an overview of dw:with-presentation-input-editor-context and related
facilities: See the section "Overview of Presentation Input Context
Facilities", page 78.

dw:with-presentation-type-arguments (type-name type) &body Macro
body

Binds local environment such that the arguments in a presentation-type
specification are lexically available within the body of the macro.

type-name
The name of the presentation type whose arguments are to be
used, for example, pathname.

type The type specification, for example, I «pathname) : format
:directory :direction :write).

The type-name argument is known at compile time. It fixes the template
for decoding the arguments of the particular type specification passed to
the macro at runtime.

Example:

(define-presentation-type wood «&key tree grade)
&key show-price)

:printer «wood stream &key type)
(format stream "-A [wood -A, -A-:[-; -20 cents-JJ"

wood tree grade show-price
(compute-woad-price type))))

392 Dictionary of Presentation Substrate Facilities

dw:with-type-decoded August 1986

(defun compute-woad-price (presentation-type)
(dw:with-presentation-type-arguments (wood presentation-type)

(let «base-price
(ecase tree
(mahogany 69)
(pine 12)
(teak 75»)

(grade-multiplier
(ecase grade
(firsts-and-seconds 1.3)
(firewood .2»»

(~ base-price grade-multiplier»»

(compute-woad-price '«wood :tree teak :grade firewood)
:show-price t» ==>

15.B

For an overview of dw:with-presentation-type-arguments and related
facilities: See the section "Overview of Other Presentation Facilities",
page 79. See also: dw:with-type-decoded.

dw:with-type-decoded (type-name-var &optional data-args-var Macro
presentation-args-var) type &body body

Binds local environment such that the type-name and, optionally, arguments
in a presentation-type specification are bound to variables lexically available
within the body of the macro.

type-name-var
Symbol to bind the type-name of the presentation type.

data-args-var
Symbol to bind to a list of the data arguments of the
presentation type.

presentation-args-var

Example:

Symbol to bind to a list of the presentation arguments of the
presentation type.

Dictionary of Presentation Substrate Facilities 393

August 1986 dw:with-type-decoded

(defun with-type-decoded-test ()
(dw:with-type-decoded (type-name data-args pres-args)

J((integer 1 10) :base 8
:description "Integer between 1 and 10")

(format t "-2ZType: -A
-ZData Arguments: -A
-ZPresentation Arguments: -A"
type-name data-args pres-args»)

(with-type-args-test) ==>

Type: INTEGER

Data Arguments: (1 10)

Presentation Arguments: (BASE 8 DESCRIPTION Integer between 1 and 10)

For an overview of dw:with-type-decoded and related facilities: See the
section "Overview of Other Presentation Facilities", page 79. See also:
dw:with-presentation-type-arguments.

394 Dictionary of Window Substrate Facilities

August 1986

395

August 1986 Dictionary of Window Substrate Facilities

PART VIII.

Dictionary of Window Substrate Facilities

396

Programming the User Interface, Volume A August 1986

397

August 1986 Dictionary of Window Substrate Facilities

22 .. Dictionary Notes

This dictionary includes reference documentation for the following facilities:

Table of Window Substrate Facilities

Dynamic Window Facilities
dw:dynamic-window
dw:margin-borders
dw:margin-white-borders
dw:margin-whitespace
dw:margin-drop-shadow-borders
dw:margin-ragged-borders
dw:margin-Iabel
dw:margin-scroll-bar
(flavor:method :set-margin-components dw:margin-mixin)
(flavor:method :set-borders dw:margin-mixin)
(flavor:method :set-Iabel dw:margin-mixin)
(flavor:method :delayed-set-Iabel dw:margin-mixin)
(flavor:method :update-Iabel dw:margin-mixin)
dw:set-default-end-of-page-mode

Dynamic Frame Facilities
dw:program-frame

In the dictionary, the facilities are arranged in alphabetical order (package
prefIxes excluded).

For conceptual documentation: See the section "Overview of Window Substrate
Facilities", page 87.

398

Programming the User Interface, Volume A August 1986

Dictionary of Window Substrate Facilities 399

August 1986 :delayed-set-Iabel

23. The Facilities

:delayed-set-Iabel new-label of dw:margin-mixin Method
Provides a new label for a Dynamic Window, but delays the writing of the
new label until the :update-Iabel message is sent: See the method
(flavor:method :update-Iabel dw:margin-mixin), page 411.

new-label The label string.

The new-label can be specified with any of the options acceptable to
dw:margin-mixin.

For an overview of (flavor:method :delayed-set-Iabel dw:margin-mixin)
and related facilities: See the section "Overview of Window Substrate
Facilities", page 87.

dw:dynamic-window Flavor
The basic Dynamic Window flavor. It provides output-history recording (of
displayed presentations) as well as vertical and horizontal scrolling.
Dynamic Windows are created in the same manner as static windows, with
the tv:make-window function.

dw:dynamic-window is built on several component flavors, from which it
inherits a large number of init options. These include all init options
(about 40) to the basic, non-Dynamic Window flavor, tv:window. Below we
provide references to these inherited options, but first discuss four that are
specific to Dynamic Windows.

:end-of-page-mode
Specifies what happens when queued output exceeds the space
available in the current viewport of the window. There are
four possibilities:

:default Uses the global default for Dynamic Windows set by
the Set Screen Options command or the
dw:set-default-end-of-page-mode function on which
the command is based.

: scroll Causes the window to scroll automatically to
accommodate the output. The amount by which the
window is scrolled is set by the :scroll-factor init
option to Dynamic Windows.

: truncate
Causes scrolling to be the responsibility of the user,
who must press the SCROLL key to see more output.

400 Dictionary of Window Substrate Facilities

dw:dynamic-window August 1986

:wrap Causes new output to appear at the top of the
window, rather than at the bottom as in the case of
:scroll or : truncate.

: scroll-factor
Specifies the amount by which a Dynamic Window is scrolled
when the value of its :end-of-page-mode init option is :scroll.
Possible values include an integer (number of lines), ratio
(fraction of the screen), or nil (use the global default set by
the Set Screen Options command or the function
dw:set-end-of-page-mode).

:mouse-blinker-character
Specifies the shape of the mouse cursor when it is over the
window, for example, #\mouse:fat-circle. The default is
#\nw-arrow. For a full listing of all the possibilities: See
the section "Mouse-Blinker Characters", page 89.

: margin-components
Specifies a list of the form «component-l [keys])
(component-2 [keys]) ... (component-n [keys])), where
component-x is one of a set of margin-component flavors and
keys are zero or more keywords or keyword-value pairs
appropriate for the given flavor.

Available margin-component flavors include the following:

dw:margin-borders
Provides a four-sided, black (normal video) border of
a specified thickness.

dw:margin-white-borders
Provides a four-sided, white border of a specified
thickness.

dw:margin-whitespace
Provides whitespace of a specified thickness on a
specified margin.

dw:margin-drop-shadow-borders
Provides a three-pixel-wide black border shadowed on
its right and bottom margins by an eight-pixel-wide
gray border.

dw:margin-ragged-borders
Provides a ragged (wavy) border of a specified
thickness.

Dictionary of Window Substrate Facilities 401

August 1986 dw:dynamic-window

dw:margin-Iabel
Provides a label on the upper or lower margin. By
default, the label string is created from the name of
the window flavor.

dw:margin-scroll-bar
Provides the standard elevator scroll bar on the
specified margin.

For more detailed information on these flavors, including
allowable keywords, see the respective dictionary entry for
each.

The following example illustrates the use of margin­
component flavors. Note that the margin is built from the
outside in.

(defun dynamic-window-margin-example ()
(let «test (tv:make-window 'dw:dynamic-window

:edges-from :mouse
:margin-components
'«dw:margin-borders :thickness 1)

(dw:margin-white-borders :thickness 3)
(dw:margin-borders :thickness 10)
(dw:margin-white-borders :thickness 8)
(dw:margin-borders :thickness 3)
(dw:margin-whitespace :margin :left :thickness 10)
(dw:margin-scroll-bar)
(dw:margin-whitespace :margin :bottom :thickness 7)
(dw:margin-scroll-bar :margin :bottom)
(dw:margin-whitespace :margin :left :thickness 10)
(dw:margin-label :margin :bottom

:style (:sans-serif :italic :normal))
(dw:margin-whitespace :margin :top :thickness 10)
(dw:margin-whitespace :margin :right :thickness 13))

:expose-p t)))
(send test :set-label "Margin Test Window")))

The remaining init options to dw:dynamic-window are those it shares with
tv: window. These are documented elsewhere. Below are references to the
relevant sections followed in each case by a list of the init options covered:

Reference: See the section "Creating a Window" in Programming the User
Interface, Volume B.

402 Dictionary of Window Substrate Facilities

dw:dynamic-window August 1986

:blinker-p
:default-character-style
: save-bits
:superior
:activate-p
:expose-p

Reference: See the section "Window Attributes for Character Output" in
Programming the User Interface, Volume B.

:more-p
:vsp
:reverse-video-p
:deexposed-typeout-action
:deexposed-typein-action
:right-margin-character-flag
: backspace-not-overprinting-flag
:cr-not-newline-flag
:tab-nchars

Reference: See the section "Initializing Window Size and Position" in
Programming the User Interface, Volume B.

: left
:x
:top
:y
:position
: right
:bottom
: width
: height
:size

:inside-width
: inside-height

: inside-size
: edges
: character-width
: character-height

:integral-p
: edges-from
:minimum-height

: minimum-width

Reference: See the section "Window Borders" in Programming the User
Interface, Volume B.

:borders
: border-Margin-width

Reference: See the section "Window Labels" in Programming the User
Interface, Volume B.

:name
:label

Dictionary of Window Substrate Facilities 403

August 1986 dw:dynamic-window

Reference: See the section "Flavors for Panes and Frames" in
Programming the User Interface, Volume B.

:io-buffer

In addition to the large overlap in init options between static and Dynamic
Windows, virtually all of the window methods, messages, and functions
documented in Programming the User Interface, II for static windows can
also be used with Dynamic Windows. These are too numerous to list
individually as we did for the init options; we refer you to the following
sections for more information:

Reference: See the section "Window Graying" in Programming the User
Interface, Volume B.

Reference: See the section "Window Status" in Programming the User
Interface, Volume B.

Reference: See the section "Activities and Window Selection" in
Programming the User Interface, Volume B.

Reference: See the section "Creating a Window" in Programming the User
Interface, Volume B.

Reference: See the section "Character Output to Windows" in
Programming the User Interface, Volume B.

Reference: See the section "Line-Truncating Windows" in Programming the
User Interface, Volume B.

Reference: See the section "Graphic Output to Windows" in Programming
the User Interface, Volume B. (Also: See the section "Overview of Graphic
Output Facilities", page 57.)

Reference: See the section "Notifications" in Programming the User
Interface, Volume B.

Reference: See the section "Using TV Fonts" in Programming the User
Interface, Volume B.

Reference: See the section "Handling the Mouse" in Programming the User
Interface, Volume B.

Reference: See the section "Window Sizes and Positions" in Programming
the User Interface, Volume B.

Reference: See the section "Window Labels" in Program'!Ling the User
Interface, Volume B. (Only the :name method.)

Finally, a number of methods intended exclusively for Dynamic Windows
are available. These are included among both Basic Program Output
Facilities (See the section "Overview of Other Facilities for Program

404 Dictionary of Window Substrate Facilities

dw:dynamic-window August 1986

Output", page 60.) and window substrate facilities (See the section
"Overview of Window Substrate Facilities", page 87.)

dw:dynamic-window Resource
A resource of Dynamic Windows. The resource is created via
tv:defwindow-resource with the :initial-copies option set to 1 and the
:reuseable-when option set to : deactivated. (For more information on
resources generally: See the section "Resources" in Internals, Processes,
and Storage Management.)

The following keyword options are available when allocating from or using
the Dynamic Window resource:

:momentary-p
Boolean option specifying whether the window provided is
momentary, that is, whether it is deactivated if the mouse
cursor is moved off the window. The default is nil.

:temporary-p
Boolean option specifying whether the window provided is
temporary, that is, whether it locks the superior window until
it is deactivated. The default is the value of the
:momentary-p option. If nil,

:hysteresis
If the :momentary-p option is t, specifies the distance, in
pixels, that the mouse cursor must be from the edge of the
window before it is deactivated. The default value is 25.

Note that in order to use these keywords, you must also supply an optional
positional argument for the window's superior. In the following example,
the superior is tv:main-screen, which is also the default if no arguments
are supplied.

Example:

(defun dw-resource ()
(using-resource (my-dw dw:dynamic-window tv:main-screen

:momentary-p t :hysteresis 15)
(send my-dw :set-size 588 388)
(send my-dw :expose»)

dw:margin-borders Flavor
Flavor for providing Dynamic Windows with a four-sided, black (or draw-alu
color) border.

dw:margin-borders accepts the following init option:

Dictionary of Window Substrate Facilities 405

August 1986 dw:margin-drop-shadow-borders

:thickness
Specifies the thickness, in pixels, of the border; the default is
1.

For an overview of dw:margin-borders and related facilities: See the
section "Overview of Window Substrate Facilities", page 87.

dw:margin-drop-shadow-borders Flavor
Flavor for providing Dynamic Windows with a black (normal video) border
shadowed on its right and bottom margins by a gray border.

dw:margin-drop-shadow-borders accepts the following init options:

:non-shadow-thickness
Specifies the thickness, in pixels, of the black border; the
default is 3.

: outside-margin
Specifies the thickness, in pixels, of whitespace surrounding
the shadowed and non-shadowed borders of the box; the
default is e.

: shadow-thickness
Specifies the thickness, in pixels, of the gray margins on the
right and bottom edges of the window; the default is 8.

For an overview of dw:margin-drop-shadow-borders and related facilities:
See the section "Overview of Window Substrate Facilities", page 87.

dw:margin-Iabel Flavor
Flavor for specifying Dynamic Window labels.

dw:margin-Iabel accepts the following init options:

:background-gray
Specifies a binary array to use as a background pattern for
the label.

You can provide your own array via the
tv:make-binary-array function - for an example, see the
dictionary entry for graphics:draw-pattern - or use one of
the standard, background-gray patterns: tv: 25%-gray,
tv: 33%-gray, tv: 5 O%-gray, or tv: 75%-gray.

Note that the specification is for an array object, not its
symbol.

406 Dictionary of Window Substrate Facilities

dw:margin-ragged-borders August 1986

: box Specifies whether to enclose the label in a box; the default is
nil. Other permissible values are :inside and : outside. If
you wish to box the label within a just-specified border, use
:inside; if you wish to box the label outside of a border about
to be specified, use :outside.

: box-thickness
Specifies the thickness, in pixels, of the line used to draw a
box around the label when the :box init option is non-nil.

:centered-p
Boolean option specifying whether the label is left-right
centered. The default is nil, causing the label to appear on
the left side of the margin.

:extend-box-p
Boolean option specifying whether the box drawn (when the
:box option is non-nil) extends the full length of the margin
or is limited to the length of the label; the default is t.

:margin Specifies the margin, :top or : bottom, on which the label
appears; the default is :bottom.

:string Specifies the label string. The default string is derived from
the name of the window flavor used to make th~ window
instance.

:NlaiadteWstyle
Specifies the character style used for writing the label string.
The default value is the character-style default for the screen.

After a window instance is created, you can change its label by using
(flavor:method :set-Iabel dw:margin-mixin).

For an overview of dw:margin-Iabel and related facilities: See the section
"Overview of Window Substrate Facilities", page 87.

dw:margin-ragged-borders Flavor
Flavor for providing Dynamic Windows with a ragged (wavy) border to
indicate that more output can be viewed by scrolling in the direction
indicated. The border is only ragged when there is in fact more output to
be viewed; otherwise, it is straight.

dw:margin-ragged-borders accepts the following init options:

Dictionary of Window Substrate Facilities 407

August 1986 dw:margin-scroll-bar

:horizontal-too
Boolean option specifying whether to provide ragged left and
right margins in addition to ragged top and bottom margins;
the default is t.

: thickness
Specifies the thickness, in pixels, of the border; the default is
1.

For an overview of dw:margin-ragged-borders and related facilities: See
the section "Overview of Window Substrate Facilities", page 87.

dw:margin-scroll-bar Flavor
Flavor for providing an "elevator" scroll bar to a Dynamic Window.

dw:margin-scroll-bar accepts the following init options:

: elevator-thickness
Specifies the overall width, in pixels, of the scroll bar; the
default is 10.

:margin Specifies the margin - : left, : right, :top, or : bottom - on
which the scroll bar appears; the default is : left.

:shaft-whitespace-thickness
Specifies the thickness, in pixels, of additional whitespace
(normal video) inserted on each side of the scroll bar between
it and the neighboring component. The default is 0, causing
the whitespace to be one-pixel-wide on both sides.

:visibility
Specifies when the scroll bar is visible. Three values are
permitted:

:normal The scroll bar appears when the flavor is
instantiated and remains visible regardless of
whether it is needed. This is the default.

:if-requested
An empty elevator shaft appears when the flavor is
instantiated and after each new output operation to
the window. If the user moves the mouse cursor
into the scroll bar area, the standard cross-hatched
pattern in drawn in the shaft and the scroll bar
becomes normally active.

408 Dictionary of Window Substrate Facilities

dw:margin-white-borders August 1986

: if-needed
The scroll bar does not appear until the output
exceeds the window space available for displaying it,
that is, until the need for scrolling arises; thereafter
it remains visible and normally active. The space
needed for drawing the scroll bar is reserved by
whitespace (normal video) until the scroll bar
appears.

For an overview of dw:margin-scroll-bar and related facilities: See the
section "Overview of Window Substrate Facilities", page 87.

dw:margin-white-borders Flavor
Flavor for providing Dynamic Windows with a four-sided, white (or erase­
alu color) border.

dw:margin-white-borders accepts the following init option:

: thickness
Specifies the thickness, in pixels, of the border; the default is
1.

For an overview of dw:margin-white-borders and related facilities: See
the section "Overview of Window Substrate Facilities", page 87.

dw: margin-whitesp ace Flavor
Flavor for providing Dynamic Windows with whitespace (or erase-alu color)
on a margin.

dw:margin-whitespace accepts the following init options:

:margin Specifies the margin, one of :left, : right, :top, or : bottom.

: thickness
Specifies the thickness, in pixels, of the border; the default is
1.

For an overview of dw:margin-whitespace and related facilities: See the
section "Overview of Window Substrate Facilities", page 87.

dw:program-frame Flavor
The flavor used by dw:define-program-framework for the program frames
it creates. dw:program-frame is the Dynamic Window equivalent of
tv:constraint-frame-with-shared-io-buffer, which it incorporates as one of
its component flavors; another component flavor is tv:process-mixin.
Generally, you do not make direct use of this flavor; that you leave up to
dw:define-program-framework.

Dictionary of Window Substrate Facilities 409

August 1986 dw:program-frame

Init options, methods, and messages for this flavor include all of those for
tv:constraint-frame-with-shared-io-buffer: See the section "Frames" in
Programming the User Interface, Volume B. The following are additional
init options:

:label See the section "Window Labels" in Programming the User
Interface, Volume B.

: margin-components
See the flavor dw:dynamic-window, page 399.

:process See the section "Windows and Processes" in Programming the
User Interface, Volume B.

:program
The name of the program for which this is the program
frame.

:query-io-pane
Specifies the pane to which *query-io* is bound when an
instance of the program frame is active.

:size-from-pane
Specifies the pane on which to base the size of the program
frame.

:terminal-io-pane
Specifies the pane to which *terminal-io* is bound when an
instance of the program frame is active.

For an overview of dw:program-frame and related facilities: See the
section "Overview of Window Substrate Facilities", page 87.

dw:program-frame Resource
A resource of program frames (of the kind used by
dw:define-program-framework). The resource is created via
tv:defwindow-resource with the :initial-copies option set to nil and the
:reuseable-when option set to : deactivated. (For more information on
resources generally: See the section "Resources" in Internals, Processes,
and Storage Management.)

The following keyword options are available when allocating from or using
the program frame resource:

:temporary-p
Boolean option specifying whether the frame provided is

410 Dictionary of Window Substrate Facilities

:set-borders August 1986

temporary, that is, whether it locks the superior window until
it is deactivated.

:process The process associated with the frame or nil, for no
associated process. The default process is that of the
program for which this frame was created (by
dw:define-program-framework).

When using this resource, you must supply the name of the program whose
frame is to be provided. In the following example, a Frame-Up Layout
Designer frame is specified.

Example:

(defun pf-resource ()
(using-resource (my-pf dw:program-frame 'dw: : layout-designer)

(send my-pf :expose)))

:set-borders borders of dw:margin-mixin Method
Replaces the current borders of a Dynamic Window with simple borders
(like those provided by dw:margin-borders).

borders The thickness, in pixels, of the new borders; the default is 1.

For an overview of (flavor:method :set-borders dw:margin-mixin) and
related facilities: See the section "Overview of Window Substrate
Facilities", page 87.

dw:set-default-end-of-page-mode new-end-of-page-mode &optional Function
(new-scroll-factor nil)

Sets global default for what happens when queued output exceeds the space
available in the current viewport of a Dynamic Window.

new-end-of-page-mode
The new mode. There are three possibilities:

:scroll Causes the window to scroll automatically to
accommodate the output. If you supply this
argument, make sure you also supply a numeric
value for the new-scroll-factor argument.

: truncate
Causes scrolling to be the responsibility of the user,
who must press the SCROLL key to see more output.

:wrap Causes new output to appear at the top of the
window, rather than at the bottom as in the case of
:scroll or : truncate.

Dictionary of Window Substrate Facilities 411

August 1986 :set-Iabel

new-scroll-factor
The amount by which the window is scrolled when the value
of the new-end-of-page-mode argument is :scroll. Permissible
values include integers (number of lines) and ratios (fraction
of the screen). Do not use the default value (nil), or else an
error results.

For an overview of dw:set-default-end-of-page-mode and related facilities:
See the section "Overview of Window Substrate Facilities", page 87.

:set-Iabel label of dw:margin-mixin
Provides a new label for a Dynamic Window.

label The label string.

The label can be specified with any of the options acceptable to
dw:margin-mixin.

Method

For an overview of (flavor:method :set-Iabel dw:margin-mixin) and related
facilities: See the section "Overview of Window Substrate Facilities", page
87.

:set-margin-components new-components of dw:margin-mixin Method
Replaces the current margin components of a Dynamic Window with a new
set of components.

new-components
Specifies a list of the form «component-l [keys])
(component-2 [keys]) ... (component-n [keys]», where
component-x is one of a set of margin-component flavors and
keys are zero or more keywords or keyword-value pairs
appropriate for the given flavor.

For a list of available margin-component flavors and an
example: See the flavor dw:dynamic-window, page 399.

For an overview of
(flavor:method :set-margin-components dw:margin-mixin) and related
facilities: See the section "Overview of Window Substrate Facilities", page
87.

:update-Iabel of dw:margin-mixin Method
Causes a new label to be written for a Dynamic Window. The label must
have previously been created via the :delayed-set-Iabel method: See the
method (flavor:method :delayed-set-Iabel dw:margin-mixin), page 399.

412 Dictionary of Window Substrate Facilities

:update-Iabel August 1986

For an overview of (flavor:method :update-Iabel dw:margin-mixin) and
related facilities: See the section "Overview of Window Substrate
Facilities", page 87.

August 1986

A

Index

A
:abbrevlate-quote presentation option to

sys:expresslon 297
abbreviating-output 49, 201
abbrevlatlng-output macro 207
:abbrevlatlon-for 193
:abbrevlatlon-for type expansions and handler

performance 44
sys: abort 155

:above 242
:absolute 278, 279

Command acceleration 21
:accelerator 153

Command Processor command accelerator 160, 161
:accelerator-case-matters 151

cp:: accelerator-error 155
Command Accelerator Facilities 32,137,146, 153

Overview of Command Accelerator Facilities 34
Command accelerators 123, 125

accept 14,35,163,255,388,389
:default option to accept 296, 321, 344

accept function 167
Multiple- accept functions 14, 38
Multiple- accept technology 173

accept-from-strlng 35,47, 163
accept-from-strlng function 171
Accepting Multiple Objects 35

Facilities for Accepting Multiple Objects 165, 171, 173, 175
Overview of Facilities for Accepting Multiple Objects 38

Accepting Single Objects 35

413

Index

A

Facilities for Accepting Single Objects 165, 167, 171, 193, 196,
200

Overview of Facilities for Accepting Single Objects 35
dw: accepting-values 38, 163, 170, 285
dw: accepting-values macro 175
dw: accept-values 38, 163, 170
dw: accept-values function 171

:accept-values panes 125
:accept-values-functlon 125
Accept Values Function Option to Frame-Up Accept

Values Panes 107
Accept Values Pane Options 107
Accept-values panes 125

Accept Values Function Option to Frame-Up Accept Values Panes 107
dw: accept-variable-values 38, 163,274,276
dw: accept-variable-values function 173

:actlvate 146, 168
Activation character delimiter 80
Advanced Command Facilities 31

Overview of Advanced Command Facilities 32
Table of Advanced Command Facilities 137

Advanced Mouse Handler Concepts 42
Advanced Presentation Output Facilities 63,205,

211,251,257,258,270,273,274,276
Overview of Advanced Presentation Output Facilities 63

414

Programming the User Interface, Volume A August 1986

B

Advanced Program Output Facilities 47
Overview of Advanced Program Output Facilities 63

Table of Advanced Program Output Facilities 205
Advanced User Input Facilities 35

Overview of Advanced User Input Facilities 39
Table of Advanced User Input Facilities 165

:after 233
allst-member 71, 175, 281
allst-member presentation type 285
:alpha 155
:always 355, 360, 364
and 71,281
and presentation type 287
Animated graphic presentations 210, 273
:antl-cycllc 217
:append 385, 387

Mouse handler applicability 117, 118, 181, 187
User Interface Application Example 91

:apropos-posslblllties 356
:apropos-posslblllties-quick-length 356

How Mouse Handlers are Found 39, 42
:descrlptlon meta-presentation argument 71

:argument-allowed 146
Data arguments 71

Meta-presentation arguments 285, 310, 311, 366
Presentation arguments 71

Presentation type arguments 71
Redisplay Each Time Around Command Loop Option to Frame-Up

Panes 108,110,112
:array presentation option to sys:expresslon 297
:array-Iength presentation option to

sys:expresslon 297
:arrow 234, 241 , 242

cp: . assign-argument-value 147

B
sl: *b&w-screen* 291,293

Background-gray patterns 223, 227
sl: backtranslate-font 266

Graphic presentations and backwards scrolling 60
Progress bar 59

:base presentation option to sys:expresslon 297
Basic Command Facilities 31,140

Overview of Basic Command Facilities 31
Table of Basic Command Facilities 31, 137

Basic Presentation Output Facilities 47,203,255,
257,268

Overview of Basic Presentation Output Facilities 47
Basic Presentation System Concepts 69, 70
Basic Program Output Facilities 47

Overview of Basic Program Output Facilities 47
Table of Basic Program Output Facilities 203

Basic User Input Facilities 35
Overview of Basic User Input Facilities 35

Table of Basic User Input Facilities 165
:beep 156, 158
:before 233, 238, 249
:below 242
:blt-vector-Iength presentation option to

sys:expresslon 297

B

415

August 1986 Index

c

:bllnker-p 125
Presentation blip 383

Blip character delimiter 80
Overview of Presentation Input Blip Facilities 78

Presentation Input Blip Facilities 69,349,377,378,379,380
Presentation blips 116, 185

Presentation blips and mouse blips 78
Presentation blips and mouse blips 78

Book 7 3
boolean 71,281
boolean presentation type 288
:bottom 406,407,408

zwel: bp 324
break 156

zwel: buffer 71,281
zwel: buffer presentation type 289

cp: build-command 28,31,135
cp: build-command function 139

c
c-m-Mouse-R 256,268

Output cache 273
dw:: cali-presentation-menu 183

:case presentation option to sys:expresslon 297
Some Efficiency Caveats for Mouse Handlers 42, 44

:center 232, 239
Centering command menu items 112
:center-p 125
:character 209, 263
character 71, 281

Mouse character 198, 199
character presentation type 290

Activation character delimiter 80
Blip character delimiter 80

Character Enviroment Facilities 203

c

Character Environment Facilities 47,207,230,250,
263,264,265,266,271,277

Overview of Character Environment Facilities 49
character-face-or-style 71, 281
character-face-or-style presentation type 291
Character height 263, 264, 265, 266

Mouse-Blinker Characters 89
Shifted characters 319

character-style 71, 281
:character-style 285
Character-style presentation type 292
character-style-for-devlce 71, 281
character-style-for-devlce presentation type 293

dw: check-presentatlon-type-argument 79, 347
dw: check-presentatlon-type-argument function 351

Viewspec choices 13
tv: choose-variable-values 173

:clrcle 234, 259
:clrcle presentation option to sys:expresslon 297

Presentation type equivalence dasses 375, 376
:clear-hlstory method of dw:dynamlc-wlndow 208

(flavor:method: clear-history dw:dynamlc-wlndow) 60, 201
dw: clear-presentatlon-Input-context 78, 347
dw: clear-presentatlon-Input-context function 352

:clear-reglon method of dw:dynamlc-wlndow 208

416

Programming the User Interface, Volume A August 1986

(flavor:method: clear-region dw:dynamlc-wlndow) 60, 201
:clear-window method of dw:dynamlc-window 208

(flavor:method: clear-window dw:dynamlc-wlndow) 60, 201
. sys: code-fragment 71,281

sys: code-fragment presentation type 295
:columns 125

Compressing command menu item columns 112
:command 153

Delete Pane Frame-Up Command 114
Done Frame-Up Command 106

Preview Frame-Up Command 106
Reset Configuration Frame-Up Command 106
Select Configuration Frame-Up Command 105

Set Pane Name Frame-Up Command 114
Set Pane Options Frame-Up Command 107

Set Program Options Frame-Up Command 104
Split Pane Frame-Up Command 114

Swap Panes Frame-Up Command 114
"Colon Full Command" command table 160, 161

Command acceleration 21
Command Processor command accelerator 160, 161

Command Accelerator Facilities 32,137,146,153
Overview of Command Accelerator Facilities 34

Command accelerators 123, 125
:command-deflner 91, 125

Command Processor command definition 31, 140
Program Command Definition 21, 25, 28, 101, 122, 124

Command Definition Facilities 31, 137
:command-evaluator 32, 91

Advanced Command Facilities 31
Basic Command Facilities 31,140

Overview of Advanced Command Facilities 32
Overview of Basic Command Facilities 31

Overview of Program Command Facilities 28
Table of Advanced Command Facilities 137

Table of Basic Command Facilities 31, 137
Create Program Definition Zmacs Command for Frame-Up 114

Edit Program Definition Zmacs Command for Frame-Up 115
Insert Program Definition Zmacs Command for Frame-Up 115

cp: command-In-command-table-p 33, 135
cp: command-In-command-table-p function 139

Command interface 17,91
Command Processor command interface 31

Program command interface 124
Command loop 11, 21, 25, 91, 125
Command Loop Management Facilities 32,137,147,

149,156,158,160,161
Overview of Command Loop Management Facilities 33

Redisplay Each Time Around Command Loop Option to Frame-Up Panes 108,
110, 112

:command-menu panes 123, 125
Command menu geometry 112, 125
Command menu identifier 112

Compressing command menu item columns 112
Centering command menu items 112

Command-Menu Pane Options 112
Command menus 21

Multiple command menus 123, 125
Command name 141
:command-only 158
Command Processor 21, 32, 257

417

August 1986 Index

Command Processor command accelerator 160. 161
Command Processor command definition 31. 140
Command Processor command interface 31
Command Processor dispatch modes 158

Dictionary Notes: Command Processor Facilities 137
Dictionary of Command Processor Facilities 135
Overview of Command Processor Facilities 31

The Facilities: Command Processor Facilities 139
Command Processor Interface Facilities 31. 137.

139.150.151
Frame-Up Commands 104

Command sentence 21
Zmacs Commands for Frame-Up 114

Pane Commands in Frame-Up 107
Program and Frame Commands in Frame-Up 104

Command table 31
"Colon Full Command" command table 160. 161

:Inherlt-from to :command-table 125
:kbd-accelerator-p to :command-table 125

cp: *command-table* 33. 135. 139. 150. 153
cp: *command-table* varir.ble 139

:command-table-dellms 151
Command table management 125.141
Command Table Management Facilities 32.137.

139,149,150,151
Overview of Command Table Management Facilities 33

:command-table-slze 151
dw: compare-char-for-accept 76, 347, 383
dw: compare-char-for-accept function 352

:complete 356
dw: complete-from-sequence 76,80,347,360,364
dw: complete-from-sequence function 353
dw: complete-Input 76, 347
dw: complete-Input function 356

:complete-lImlted 356
:complete-maxlmal 356

dw: completlng-from-suggestions 76.80. 347, 360,
364

dw: completlng-from-suggestlons macro 362
Completion utility 353, 356, 362, 384

Flavor component grapher 233
Dynamic Window Margin Components 399,404,405,406,407,408,410,411

Compound presentation types 287,314,315,318,
325,337,338

Compressing command menu item columns 112
Advanced Mouse Handler Concepts 42

Basic Presentation System Concepts 69, 70
Reset Configuration Frame-Up Command 106
Select Configuration Frame-Up Command 105

dw:: connect-graph-nodes 242
tv: constralnt-frame-wlth-shared-Io-buffer 408

Set Size of Pane From Contents Option to Frame-Up Panes 108, 110, 112
Input context 14, 35

cp:command context 91
Presentation input context 169, 257

Overview of Presentation Input Context Facilities 78
Presentation Input Context Facilities 69,349,352,381,388,389

Continuation 13, 209
dw: contlnuatlon-output-slze 66, 201
dw: contlnuatlon-output-slze function 209

Naming Conventions for Program Output Macros 47,66

418

Programming the User Interface, Volume A August 1986

Dynamic Window coordinates 60
copy-seq 276
cp::accelerator-error 155
cp: :*defauit-biank-line-mode* 33
cp: :*defauit-biank-line-mode* variable 140
cp: :*default-dlspatch-mode* 33
cp::*default-dlspatch-mode* variable 140
cp::*default-prompt* 33
cp::*default-prompt* variable 140
cp::*full-command-prompt* 154
cp:asslgn-argument-value 147
cp:bulld-command 28, 31, 135
cp:bulld-command function 139
cp:command-In-command-table-p 33, 135
cp:command-In-command-table-p function 139
cp:*command-table* 33,135,139,150,153
cp:*command-table* variable 139
cp:deflne-command 31,91,122,135,147
cp:define-command macro 140
cp:deflne-command-accelerator 34,125,135
cp:deflne-command-accelerator macro 146
cp:deflne-command-and-parser 33, 135
cp:deflne-command-and-parser macro 147
cp:delete-command-table 33,135
cp:delete-command-table function 149
cp:echo-command 33, 135
cp:echo-command function 149
cp:execute-command 31,135
cp:execute-command function 150
cp:flnd-command-table 33, 135
cp:flnd-command-table function 150
cp:lnstall-commands 33, 135
cp:lnstall-commands function 151
cp :*Iast-command-values* 31, 135, 142
cp:*last-command-values* variable 151
cp:make-command-table 33, 135
cp:make-command-table function 151
cp:read-accelerated-command 33, 135
cp:read-accelerated-command function 153
cp:read-command 33,135
cp:read-command function 156
cp:read-command-argument 147
cp:read-command-arguments 33,135
cp:read-command-arguments function 158
cp:read-command-or-form 33,135
cp:read-command-or-form function 158
cp:read-full-command 33,135,160
cp:read-keyword-arguments 147
cp:turn-command-Into-form 33, 135
cp:turn-command-Inlo-form function 160
cp:unparse-command 33,135
cp:unparse-command function 160
cp:yank-and-read-full-argument-command 33
cp:yank-and-read-full-command 135, 161
:create 150
Create Program Definition Zmacs Command for

Frame-Up 114
Current viewport 263, 278, 279, 399

Mouse cursor shape 89
:cycllc 217

August 1986

D

419

Index

D
:dashed-arrow 234, 241, 242
:dashed~lne 234,241,242
Data arguments 71
Data type hierarchy 297

User-defined Data Types as Presentation Types 69, 82
Debugger 328

Presentation debugging menu 69
:default 399
:default option to accept 296, 321 , 344

cp:: *defauit-biank-line-mode* 33
cp:: *defauit-biank-line-mode* variable 140

:default-character-style 125
dw: default-command-top-Ievel 91
cp:: *default-dlspatch-mode* 33
cp:: *default-dlspatch-mode* variable 140
Is: default-path name 296,321,344

cp:: *default-prompt* 33
cp:: *default-prompt* variable 140
cp: define-command 31,91,122,135,147
cp: deflne-command macro 140
cp: define-command-accelerator 34,125,135
cp: deflne-command-accelerator macro 146
cp: define-command-and-parser 33, 135
cp: deflne-command-and-parser macro 147
dw: deflne-command-menu-handler 91

Define-presentation-action 121, 184, 190
define-presentation-action 39, 91, 116, 120, 163,

179,185,189
define-presentation-action macro 179
deflne-presentatlon-to-command-translator 21,

28,31,39,91,99,116,139,168,179,185

D

Define-presentation-to-command-translator 121, 184,
190

deflne-presentation-to-command-translator

zwel:
macro 116

define-presentation-to-edltor-command-translator 295
define-presentation-translator 39, 91, 116, 163,

168, 179, 185, 379
Define-presentation-translator 121, 184, 190
define-presentation-translator macro 185
define-presentatlon-type 76, 347
define-presentation-type macro 366

dw: define-program-command 21, 25, 28, 31, 99, 124,
125

dw: deflne-program-command macro 122
dw: deflne-program-framework 17,21,23,25,32,34,

87,91,99,122,133,134,408,410
dw: deflne-program-framework macro 124

Command Processor command definition 31, 140
Program Command Definition 21, 25, 28, 101, 122, 124

Program Framework Definition 21, 101, 124
Command Definition Facilities 31, 137

Overview of Presentation-Type Definition Facilities 76
Overview of Program Framework Definition Facilities 25

Presentation-Type Definition Facilities 69,349,352,353,356,362,366,
378,383,384,385,387

Create Program Definition Zmacs Command for Frame-Up 114
Edit Program Definition Zmacs Command for Frame-Up 115

Insert Program Definition Zmacs Command for Frame-Up 115

420

Programming the User Interface, Volume A August 1986

tv: defwlndow-resource 404, 409
:delayed-set-Iabel method of dw:margln-mixln 399

(flavor:method: delayed-set-Iabel dw:margln-mlxln) 87,395
cp: delete-command-table 33, 135
cp: delete-command-table function 149

:delete-dlsplayed-presentatlon method of
dw:dynamlc-wlndow 210

(flavor:method :
delete-displayed-presentation dw:dynamlc-window) 60,
201

Delete Pane Frame-Up Command 114
dw: delete-presentation-mouse-handler 39, 163
dw: delete-presentatlon-mouse-handler function 192

Activation character delimiter 80
Blip character delimiter 80

dw: describe-presentation-type 79,347
dw: describe-presentation-type function 377

:descrlptlon 285, 310, 311
:descrlptlon meta-presentation argument 71

Frame-Up Layout Designer 17,21,99, 101, 103
Overview of the Frame-Up Layout Designer 23

Levels of Detail 4
:dlamond 234, 259
Dictionary Notes: Command Processor Facilities 137
Dictionary Notes: Predefined Presentation Types 283
Dictionary Notes: Presentation Substrate

Facilities 349
Dictionary Notes: Program Output Facilities 203
Dictionary Notes: Top-Level Facilities for User

Interface Programming 1 01
Dictionary Notes: User Input Facilities 165
Dictionary Notes: Window Substrate Facilities 397
Dictionary of Command Processor Facilities 135
Dictionary of Predefined Presentation Types 281
Dictionary of Presentation Substrate Facilities 347
Dictionary of Program Output Facilities 201
Dictionary of Top-level Facilities for User Interface

Programming 99
Dictionary of User Input Facilities 163
Dictionary of Window Substrate Facilities 395
:dlrectory 296, 321, 344

fs: directory-path name 71, 281
fs: dlrectory-pathname presentation type 295

:dlred 296,321,344
Disabling output recording 60

Command Processor dispatch modes 158
:dlsplay panes 125

dw: dlsplayed-presentation-clear-hlghlighting 60, 201
dw: dlsplayed-presentatlon-clear-hlghlightlng generic

function 211
dw: dlsplayed-presentation-set-hlghlighting 60, 201
dw: dlsplayed-presentatlon-set-hlghllghting generic

function 211
Displayed program name 124
Display Pane Options 1 09

Incremental Redisplay Option to Frame-Up Display Panes 109, 111
Pane Flavor Option to Frame-Up Display Panes 110

dmp1 :*dmp1-prlnter*. 291, 293
dmp1: *dmp1-prlnter*. 291, 293

:documentation 193, 285
Guide to User Interface Documentation 3

421

A,ugust 1986 Index

Mouse documentation 261
tv: dollst-noting-progress 201
tv: dollst-noting-progress macro 212

Done Frame-Up Command 106
:do-not-compose mouse handler option and

performance 82
The :do-not-compose mouse handler option and

performance 44
dw: do-redisplay 201
dw: do-redisplay generic function 211
tv: dotimes-notlng-progress 201
tv: dotimes-notlng-progress macro 213

:draw 214,215,216,217,219,220,222,223,225,
226,227,228,230

graphics: draw-arrow 57,201
graphics: draw-arrow function 214
graphics: draw-circle 57,201
graphics: draw-circle function 215
graphics: draw-convex-polygon 57,201
graphics: draw-convex-polygon function 216
graphics: draw-cublc-spllne 57, 201
graphics: draw-cublc-spllne function 217
graphics: draw-ellipse 57,201
graphics: draw-ellipse function 218
graphics: draw-glyph 57,201
graphics: draw-glyph function 219
Graphics drawing mode 214,215,216,217,219,220,222,

223,225,226,227,228,230
graphics: draw-line 57, 201
graphics: draw-line function 220
graphics: draw-lines 57,201
graphics: draw-lines function 222
graphics: draw-pattern 57,201
graphics: draw-pattern function 223
graphics: draw-point 57,201
graphics: draw-point function 225
graphics: draw-polygon 57,201,216
graphics: draw-polygon function 225
graphics: draw-rectangle 57,201
graphics: draw-rectangle function 226
graphics: draw-regular-polygon 57,201
graphics: draw-regular-polygon function 227
graphics: draw-string 57,201
graphics: draw-string function 228
graphics: draw-triangle 57,201
graphics: draw-triangle function 229

dw::call-presentatlon-menu 183
dw::connect-graph-nodes 242
dw::dynamlc-wlndow-pane 125
dw::f1nd-program-wlndow 25, 99
dw::f1nd-program-wlndow function 133
dw::layout-deslgner 409
dw::presentatlon-bllp-mouse-char 78,347
dw::presentatlon-bllp-mouse-char function 380
dw::quoted-expresslon 118, 181, 187
dw::wlth-output-truncatlon 56, 60, 201

:horlzontal option to dw::wlth-output-truncatlon 271
:vertical option to dw::wlth-output-truncation 271

dw::wlth-output-truncatlon macro 271
dw:acceptlng-values 38, 163, 170, 285
dw:acceptlng-values macro 175

422

Programming the User Interface, Volume A August 1986

dw:accept-values 38, 163, 170
dw:accept-values function 171
dw:accept-varlable-values 38,163,274,276
dw:accept-varlable-values function 173
dw:check-presentatlon-type-argument 79,347
dw:check-presentatlon-type-argument

function 351
dw:clear-presentatlon-Input-context 78,347
dw:clear-presentatlon-Input-context function 352
dw:compare-char-for-accept 76, 347, 383
dw:compare-char-for-accept function 352
dw:complete-from-sequence 76,80,347,360,364
dw:complete-from-sequence function 353
dw:complete-Input 76,347
dw:complete-input function 356
dw:completlng-from-suggestlons 76,80,347,360,

364
dw:completlng-from-suggestlons macro 362
dw:continuatlon-output-slze 66,201
dw:contlnuatlon-output-slze function 209
dw:default-command-top-Ievel 91
dw:define-command-menu-handler 91
dw:define-program-command 21, 25, 28, 31, 99,

124,125
dw:deflne-program-command macro 122
dw:deflne-program-framework 17, 21, 23, 25, 32,

34,87,91,99,122,133,134,408,410
dw:deflne-program-framework macro 124
dw:delete-presentatlon-mouse-handler 39, 163
dw:delete-presentation-mouse-handler

function 192
dw:descrlbe-presentatlon-type 79,347
dw:descrlbe-presentatlon-type function 377
dw:dlsplayed-presentatlon-clear-hlghllghting 60,

201
dw:dlsplayed-presentatlon-clear-hlghllghtlng

generic function 211
dw:displayed-presentatlon-set-hlghllghtlng 60,

201
dw:dlsplayed-presentatlon-set-hlghllghtlng

generic function 211
dw:do-redlsplay 201
dw:do-redlsplay generic function 211
dw:dynamlc-wlndow 87,89,395

:clear-hlstory method of dw:dynamlc-wlndow 208
:clear-reglon method of dw:dynamlc-wlndow 208

:clear-window method of dw:dynamlc-wlndow 208
:delete-dlsplayed-presentatlon method of dw:dynamlc-wlndow 210

:set-vlewport-posltlon method of dw:dynamlc-wlndow 259
:vlslble-cursorpos-lImlts method of dw:dynamlc-wlndow 263

:wlth-output-recordlng-disabled method of dw:dynamlc-wlndow 269
:x-scroll-posltlon method of dw:dynamlc-wlndow 278

:x-scroll-to method of dw:dynamlc-wlndow 278
:y-scroll-position method of dw:dynamlc-wlndow 279

:y-scroll-to method of dw:dynamlc-wlndow 279
dw:dynamlc-wlndow flavor 399
dw:dynamlc-wlndow resource 404
dw:echo-presentatlon-bllp 78,347
dw:echo-presentatlon-bllp function 377
dw:find-graph-node 56, 201, 242
dw:flnd-graph-node generic function 231

423

August 1986 Index

dw:get-program-pane 21. 25. 99. 134
dw:get-program-pane function 133
dw:handler-applles-in-lImlted-context-p 39. 82.

163
dw:handler-applles-ln-lImlted-context-p

function 192
dw:lndependently-redlsplayable-format 201
dw:lndependently-redlsplayable-format macro 251
dw:lnput-not-of-requlred-type 80. 354. 358. 363
dw:lnvalldate-type-handler-tables 39. 163
dw:lnvalldate-type-handler-tables function 193
dw:margln-borders 87. 125.395.400
dw:margln-borders flavor 404
dw:margln-drop-shadow-borders 87.395.400
dw:margln-drop-shadow-borders flavor 405
dw:margln-Iabel 87.395.400
dw:margin-Iabel flavor 405

:delayed-set-Iabel method of dw:margln-mlxln 399
:set-borders method of dw:margln-mlxln 410

:set-Iabel method of dw:margln-mlxin 411
:set-margln-components method of dw:margln-mlxln 411

:update-Iabel method of dw:margln-mlxln 411
dw:margln-ragged-borders 87. 395. 400
dw:margln-ragged-borders flavor 406
dw:margln-scroll-bar 87. 395. 400
dw:margln-scroll-bar flavor 407
dw:margln-whlte-borders 87. 125.395.400
dw:margln-whlte-borders flavor 408
dw:margln-whltespace 87.395.400
dw:margln-whltespace flavor 408
dw:member-sequence 71.281.310
dw:member-sequence presentation type 311
dw:menu-choose 35. 163
dw:menu-choose function 193
dw:menu-choose-from-set 35. 163
dw:menu-choose-from-set function 196
dw:mouse-char-for-gesture 41. 116. 163. 180. 186
dw:mouse-char-for-gesture function 198
dw:mouse-char-gesture 41. 163
dw:mouse-char-gesture function 199
dw:mouse-char-gestures 41. 163
dw:mouse-char-gestures function 199
dw:named-value-snapshot-contlnuatlon 66. 201.

274
dw:named-value-snapshot-contlnuatlon

macro 252
dw:no-type 71. 120. 183. 189. 281
dw:no-type presentation type 314
dw:out-of-band-character 71.281
dw:out-of-band-character presentation type 319
dw:peek-char-for-accept 76. 80. 347
dw:peek-char-for-accept function 378
dw:presentatlon-bllp-case 78.347
dw:presentatlon-bllp-case macro 378
dw:presentatlon-bllp-ecase 78. 347
dw:presentatlon-bllp-ecase macro 379
dw:presentatlon-bllp-object 78. 347
dw:presentatlon-bllp-object function 379
dw:presentatlon-bllp-optlons 78. 116. 185. 347
dw:presentatlon-bllp-optlons function 379
dw:presentatlon-bllp-p 78. 347

424

Programming the User Interface, Volume A August 1986

dw:presentatlon-bllp-p function 380
dw:presentatlon-bllp-presentatlon-type 78, 347
dw:presentatlon-bllp-presentatlon-type

function 380
dw:presentatlon-bllp-typep 78, 347
dw:presentatlon-bllp-typep function 380
dw:presentatlon-equal 79,347
dw:presentatlon-equal function 380
dw:*presentatlon-Input-context* 78,347
dw:*presentatlon-Input-context* variable 381
dw:presentatlon-Input-context-optlon 78, 347
dw:presentatlon-Input-context-optlon function 381
dw:presentation-obJect 79
dw:presentatlon-subtypep 79,347, 375, 378, 379
dw:presentatlon-subtypep function 382
dw:presentatlon-subtypep-cached 39, 163
dw:presentatlon-subtypep-cached function 199
dw:presentatlon-type 79
dw:presentatlon-type-default 79, 143,347
dw:presentatlon-type-default function 382
dw:presentatlon-type-name 79, 347
dw:presentatlon-type-name function 382
dw:presentatlon-type-p 79,347
dw:presentatlon-type-p function 383
dw:*program* 99
dw:*program* variable 134
dw:program-command-menu-Item-Ilst 91
dw:program-command-table 99
dw:program-command-table generic function 134
.:Jw:program-frame 87, 395
dw:program-frame flavor 408
dw:program-frame resource 409
dw:*program-frame* 21, 25, 99
dw:*program-frame* variable 134
dw:raw-text 71,281
dw:raw-text presentation type 324
dw:read-char-for-accept 76,80,347,352,378
dw:read-char-for-accept function 383
dw:read-standard-token 76, 80, 347
dw:read-standard-token function 383
dw:redlsplayable-format 201
dw:redlsplayable-format function 257
dw:redlsplayable-present 201
dw:redlsplayable-present function 258
dw:redlsplayer 201
dw:redlsplayer macro 258
dw:set-default-end-of-page-mode 87, 395
dw:set-default-end-of-page-mode function 410
dw:suggest 76,80,347
dw:suggest function 384
dw:tracklng-mouse 60, 201
dw:tracklng-mouse macro 261
dw:unread-char-for-accept 76,80,347,378
dw:unread-char-for-accept function 384
dw:wlth-accept-actlvatlon-chars 76,80,347,383
dw:wlth-accept-actlvatlon-chars macro 384
dw:wlth-accept-bllp-chars 76,80,347,383
dw:wlth-accept-bllp-chars macro 385
dw:wlth-accept-help 76, 347
dw:wlth-accept-help macro 385
dw:wlth-accept-help-If 76, 347

August 1986

dw:wlth-accept-help-If macro 387
dw:with-output-as-presentatlon 47, 57, 201
dw:wlth-output-as-presentatlon macro 268

425

Index

dw:wlth-output-to-presentatlon-recordlng-strlng 63,
201

dw:wlth-output-to-presentatlon-recording-string
macro 270

dw:wlth-own-coordlnates 60, 201
dw:wlth-own-coordinates macro 272
dw:wlth-presentation-input-context 78,347,381,

389
dw:wlth-presentation-Input-context macro 388
dw:wlth-presentation-Input-editor-context 78, 347
dw:wlth-presentation-Input-editor-context

macro 389
dw:wlth-presentation-type-arguments 79, 347
dw:wlth-presentation-type-arguments macro 391
dw:wlth-redlsplayable-output 201
dw:wlth-redlsplayable-output macro 273
dw:wlth-replayable-output 63, 201, 370
dw:with-replayable-output macro 274
dw:wlth-resortable-output 63, 201
dw:wlth-resortable-output macro 276
dw:with-type-decoded 79,347
dw:with-type-decoded macro 392
Dynamic Frame Facilities 87,397,408,409

:clear-hlstory method of dw: dynamic-window 208
:clear-region method of dw: dynamic-window 208

:clear-wlndow method of dw: dynamic-window 208
:delete-dlsplayed-presentatlon method of dw: dynamic-window 210

dw: dynamic-window 87, 89, 395
:set-vlewport-posltlon method of dw: dynamic-window 259

:visible-cursorpos-limits method of dw: dynamic-window 263
:with-output-recording-disabled method of dw: dynamic-window 269

:x-scroll-position method of dw: dynamic-window 278
:x-scroll-to method of dw: dynamic-window 278

:y-scroll-position method of dw: dynamic-window 279
:y-scroll-to method of dw: dynamic-window 279

dw: dynamic-window flavor 399
dw: dynamic-window resource 404

(flavor:method :clear-hlstory dw: dynamic-window) 60, 201
(flavor:method :clear-reglon dw: dynamic-window) 60, 201

(flavor:method :clear-wlndow dw: dynamic-window) 60, 201
(flavor:method :delete-dlsplayed-presentatlon dw: dynamic-window) 60, 201

(flavor:method :set-viewport-posltion dw: dynamic-window) 60, 201
(f1avor:method :visible-cursorpos-lImlts dw: dynamic-window) 60, 201

(flavor:method :with-output-recording-disabled dw:
dynamic-window) 60, 201

(flavor:method :x-scroll-posltlon dw: dynamic-window) 60, 201
(f1avor:method :x-scroll-to dw: dynamic-window) 60, 201

(flavor:method :y-scroll-position dw: dynamic-window) 60, 201
(flavor:method :y-scroll-to dw: dynamic-window) 60, 201

Dynamic Window coordinates 60
Dynamic Window Facilities 87,397,399,404,405,

406,407,408,410,411
Dynamic Window init options 399
Dynamic Window Margin Components 399, 404, 405,

406,407,408,410,411
Dynamic Window methods and messages 399

dw:: dynamlc-wlndow-pane 125

426 ______________________________ 'e __ __

Programming the User Interface, Volume A August 1986

E

Dynamic Windows 11, 87
User interaction with Dynamic Windows 21

E
Redisplay

cp:
cp:
dw:
dw:

Some

Character
Character

Overview of Character

Presentation type

User Interface Application
cp:
cp:

:abbrevlation-for type
:expander type

(flavor:method
:abbreviate-quote presentation option to sys:

:array presentation option to sys:
:array-Iength presentation option to sys:

:base presentation option to sys:
:blt-vector-Iength presentation option to sys:

:case presentation option to sys:
:clrcle presentation option to sys:

:escape presentation option to sys:
:gensym presentation option to sys:

:Iength presentation option to sys:
:Ievel presentation option to sys:

:pretty presentation option to sys:
:radlx presentation option to sys:

:readably presentation option to sys:
:string-Iength presentation option to sys:

:structure-contents presentation option to sys:
sys:
sys:

The sys:

sys:

E
Each Time Around Command Loop Option to Frame-

Up Panes 108,110,112
:echo 146
echo-command 33. 135
echo-command function 149
echo-presentation-blip 78.347
echo-presentation-blip function 377
:edltor 296, 321, 344
Edit Program Definition Zmacs Command for

Frame-Up 115
Edit Viewspecs 274. 276. 370
Edit viewspecs handler 63
Efficiency Caveats for Mouse Handlers 42. 44
:end-of-page-mode 125
:enter-type 167
Enviroment Facilities 203
Environment Facilities 47.207,230.250,263,264.

265,266.271,277
Environment Facilities 49
:equallze-column-wldths 125
equivalence classes 375, 376
:erase 214.215.216.217.219.220.222,223.225.

226.227,228.230
:error 150. 152
:escape presentation option to sys:expresslon 297
:establlsh-unless-overrldden 385, 387
Example 91
execute-command 31, 135
execute-command function 150
:expander type expansions and handler

performance 44
expansions and handler performance 44
expansions and handler performance 44
:exposed 156
:expCise-near tv:essential-set-edges) 172. 174, 175
expression 297
expression 297
expression 297
expression 297
expression 297
expression 297
expression 297
expression 297
expression 297
expression 297
expression 297
expression 297
expression 297
expression 297
expression 297
expression 297
expression 71. 281, 304
expression presentation type 297
expression presentation type and handler

performance 44
expression presentation type and performance 82

427

August 1986 Index

F F F
Advanced Command Facilities 31

Advanced Presentation Output Facilities 63,205,211,251,257, 258,270,273, 274,
276

Advanced Program Output Facilities 47
Advanced User Input Facilities 35

Basic Command Facilities 31, 140
Basic Presentation Output Facilities 47,203,255,257,268

Basic Program Output Facilities 47
Basic User Input Facilities 35

Character Enviroment Facilities 203
Character Environment Facilities 47,207,230,250,263,264,265,266,271,

277
Command Accelerator Facilities 32,137,146, 153

Command Definition Facilities 31, 137
Command Loop Management Facilities 32,137,147,149,156,158,160,161

Command Processor Interface Facilities 31,137,139,150,151
Command Table Management Facilities 32,137,139,149,150,151

Dictionary Notes: Command Processor Facilities 137
Dictionary Notes: Presentation Substrate Facilities 349

Dictionary Notes: Program Output Facilities 203
Dictionary Notes: User Input Facilities 165

Dictionary Notes: Window Substrate Facilities 397
Dictionary of Command Processor Facilities 135

Dictionary of Presentation Substrate Facilities 347
Dictionary of Program Output Facilities 201

Dictionary of User Input Facilities 163
Dictionary of Window Substrate Facilities 395

Dynamic Frame Facilities 87,397,408,409
Dynamic Window Facilities 87,397,399,404,405,406,407,408,410,

411
Graph Formatting Facilities 47,203,231,233,240,242

Graphic Output Facilities 47,203,214,215,216,217,218,219,220,
222,223,225,226,227,228,229

Mouse Gesture Interface Facilities 39, 165, 198, 199
Mouse Handler Facilities 39, 121, 165, 179, 184, 185, 190, 192, 193

New and Old Facilities 3
Other Presentation Facilities 69,349,351,377,380,382,383,391,392

Output Streams for Program Output Facilities 47,66
Overview of Advanced Command Facilities 32

Overview of Advanced Presentation Output Facilities 63
Overview of Advanced Program Output Facilities 63

Overview of Advanced User Input Facilities 39
Overview of Basic Command Facilities 31

Overview of Basic Presentation Output Facilities 47
Overview of Basic Program Output Facilities 47

Overview of Basic User Input Facilities 35
Overview of Character Environment Facilities 49
Overview of Command Accelerator Facilities 34

Overview of Command Loop Management Facilities 33
Overview of Command Processor Facilities 31

Overview of Command Table Management Facilities 33
Overview of Graph Formatting Facilities 56

Overview of Graphic Output Facilities 57
Overview of Mouse Gesture Interface Facilities 41

Overview of Mouse Handler Facilities 39
Overview of Other Presentation Facilities 79

Overview of Presentation Input Blip Facilities 78
Overview of Presentation Input Context Facilities 78

Overview of Presentation Substrate Facilities 69
Overview of Presentation-Type Definition Facilities 76

428

Programming the User Interface, Volume A August 1986

Overview of Program Command Facilities 28
Overview of Program Framework Definition Facilities 25

Overview of Program Output Facilities 47
Overview of Progress Indicator Facilities 59

Overview of Redisplay Facilities 65
Overview of Table Formatting Facilities 52

Overview of Textual List Formatting Facilities 51
Overview of User Input Facilities 35

Overview of Window Substrate Facilities 87
Presentation Input Blip Facilities 69,349,377, 378, 379, 380

Presentation Input Context Facilities 69, 349, 352, 381, 388, 389
Presentation Substrate Facilities 325, 380

Presentation-Type Definition Facilities 69,349,352, 353, 356, 362,366, 378, 383,
384,385,387

Progress Indicator Facilities 203, 212, 213, 253, 254
Redisplay Facilities 63,205

Table Formatting Facilities 47,203,232,236,237,239,240,243,245,
246

Table of Advanced Command Facilities 137
Table of Advanced Program Output Facilities 205

Table of Advanced User Input Facilities 165
Table of Basic Command Facilities 31, 137

Table of Basic Program Output Facilities 203
Table of Basic User Input Facilities 165

Table of Presentation Substrate Facilities 349
Table of Window Substrate Facilities 87,397

Textual List Formatting Facilities 47,203,238,248,250
The Facilities: Command Processor Facilities 139

The Facilities: Presentation Substrate Facilities 351
The Facilities: Program Output Facilities 207

The Facilities: User Input Facilities 167
The Facilities: Window Substrate Facilities 399

Top-Level Facilities 103
User Interface Programming Facilities 3

The Facilities: Command Processor Facilities 139
Facilities for Accepting Multiple Objects 165, 171,

173,175
Overview of Facilities for Accepting Multiple Objects 38

Facilities for Accepting Single Objects 165, 167, 171,
193,196,200

Overview of Facilities for Accepting Single Objects 35
Other Facilities for Program Output 47,203,208,210, 211,

259,261,263,269,272,278,279
Overview of Other Facilities for Program Output 60

Dictionary Notes: Top-Level Facilities for User Interface Programming 101
Dictionary of Top-level Facilities for User Interface Programming 99
Overview of Top-Level Facilities for User Interface Programming 21

Table of Top-Level Facilities for User Interface Programming 21, 101
The Facilities: Top-Level Facilities for User Interface Programming 103

Top-Level Facilities for User Interface Programming 116, 122,
124, 133, 134

Facilities for Writing Formatted Output Macros 63,
205,209,252

Overview of Facilities for Writing Formatted Output Macros 66
The Facilities: Predefined Presentation Types 285
The Facilities: Presentation Substrate Facilities 351
The Facilities: Program Output Facilities 207
The Facilities: Top-Level Facilities for User Interface

Programming 103
The Facilities: User Input Facilities 167
The Facilities: Window Substrate Facilities 399

429

August 1986 Index

filling-output 49, 201
filling-output macro 230

cp: flnd-command-table 33, 135
cp: flnd-command-table function 150
dw: flnd-graph-node 56, 201, 242
dw: flnd-graph-node generic function 231

dw:: flnd-program-wlndow 25,99
dw:: flnd-program-wlndow function 133

:flavor 125
dw:dynamlc-wlndow flavor 399

dw:margln-borders flavor 404
dw:margln-drop-shadow-borders flavor 405

dw:margln-label flavor 405
dw:margln-ragged-borders flavor 406

dw:margln-scroll-bar flavor 407
dw:margln-whlte-borders flavor 408

dw:margln-whltespace flavor 408
dw:program-frame flavor 408

Program flavor 23
Flavor component grapher 233
(f1avor:method :expose-near

tv:essential-set-edges) 172, 174, 175
sys: flavor-name 71,281
sys: flavor-name presentation type 299

Pane Flavor Option to Frame-Up Display Panes 110
Flavors and presentation types 304
:fllp 214,215,216,217,219,220,222,223,225,

226,227,228,230
Mouse font 89

sys: font 71, 281
sys: font presentation type 299

TV fonts 266
:form 153

sys: form 71,281
sys: form presentation type 301

format-coli 52, 201
format-cell function 232
format-graph-from-root 56, 201
format-graph-from-root function 233
format-Item-llst 52, 201
format-Item-llst function 236
format-sequenco-as-table-rows 52, 201
format-sequence-as-table-rows function 237

Facilities for Writing Formatted Output Macros 63,205,209,252
Overview of Facilities for Writing Formatted Output Macros 66

Writing formatted output macros 13
format-textual-list 51, 201
format-textual-list function 238
formattlng-cell 52, 201
formatting-ceil macro 239
formattlng-column 52, 201
formattlng-column macro 239
formatting-column-headings 52, 201
formatting-column-headings macro 240

Graph Formatting Facilities 47,203,231,233,240,242
Overview of Graph Formatting Facilities 56
Overview of Table Formatting Facilities 52

Overview of Textual List Formatting Facilities 51
Table Formatting Facilities 47,203,232,236,237,239,

240,243,245,246
Textual List Formatting Facilities 47,203,238,248,250

430

Programming the User Interface, Volume A August 1986

formatting-graph 56, 201
formatting-graph macro 240
formattlng-graph-node 56, 201, 231
formattlng-graph-node macro 242
formatting-Item-list 52, 201
formattlng-Item-llst macro 243
Formatting macros 16
formatting-multi pie-columns 52, 201
formatting-multiple-columns macro 245
Formatting output 16
formatting-row 52, 201
formatting-row macro 245
formatting-table 52, 201
formatting-table macro 246
formatting-textual-list 51, 201
formatting-textual-list macro 248
formatting-textual-list-element 51, 201
formatting-textual-list-element macro 250
:form-only 158
:form-preferred 158

How Mouse Handlers are Found 39, 42
Program frame 23, 25

Program and Frame Commands in Frame-Up 104
Dynamic Frame Facilities 87,397,408,409

Create Program Definition Zmacs Command for Frame-Up 114
Edit Program Definition Zmacs Command for Frame-Up 115

Getting Started with Frame-Up 103
Insert Program Definition Zmacs Command for Frame-Up 115

Introduction to Frame-Up 1 03
Pane Commands in Frame-Up 107

Program and Frame Commands in Frame-Up 104
Zmacs Commands for Frame-Up 114

Accept Values Function Option to Frame-Up Accept Values Panes 107
Delete Pane Frame-Up Command 114

Done Frame-Up Command 106
Preview Frame-Up Command 106

Reset Configuration Frame-Up Command 106
Select Configuration Frame-Up Command 105

Set Pane Name Frame-Up Command 114
Set Pane Options Frame-Up Command 107

Set Program Options Frame-Up Command 104
Split Pane Frame-Up Command 114

Swap Panes Frame-Up Command 114
Frame-Up Commands 104

Incremental Redisplay Option to Frame-Up Display Panes 109, 111
Pane Flavor Option to Frame-Up Display Panes 11 0

Frame-Up Layout Designer 17, 21, 99, 101, 103
Overview of the Frame-Up Layout Designer 23

Height in Lines Option to Frame-Up Panes 108, 110, 112, 114
Redisplay Each Time Around Command Loop Option to

Frame-Up Panes 108, 110, 112
Redisplay Function Option to Frame-Up Panes 1 09, 111

Redisplay Output Generator Option to Frame-Up Panes 109, 111
Redisplay String Option to Frame-Up Panes 109, 111

Set Size of Pane From Contents Option to Frame-Up Panes 108, 110, 112
Typeout Window Option to Frame-Up Panes 110, 113

Program Framework Definition 21, 101, 124
Overview of Program Framework Definition Facilities 25

Set Size of Pane From Contents Option to Frame-Up Panes 108, 110,
112

fs:default-pathname 296, 321, 344

August 1986

fs:dlrectory-pathname 71. 281
fs:dlrectory-pathname presentation type 295
fs:wlldcard-pathname 71. 281
fs:wlldcard-pathname presentation type 343

"Colon Full Command" command table 160. 161
cp:: *full-command-prompt* 154

accept function 167
accept-from-strlng function 171
cp:bulld-command function 139

cp:command-In-command-table-p function 139
cp :delete-command-table function 149

cp:echo-command function 149
cp:execute-command function 150

cp:flnd-command-table function 150
cp:lnstall-commands function 151

cp:make-command-table function 151
cp:read-accelerated-command function 153

cp:read-command function 156
cp:read-command-arguments function 158

cp:read-command-or-form function 158
cp:turn-command-Into-form function 160

cp:unparse-command function 160
dw::find-program-window function 133

dw::presentatlon-blip-mouse-char function 380
dw:accept-values function 171

dw:accept-variable-values function 173
dw:check-presentatlon-type-argument function 351

dw:clear-presentatlon-Input-context function 352
dw:compare-char-for-accept function 352
dw:complete-from-sequence function 353

dw:complete-Input function 356
dw:contlnuatlon-output-slze function 209

dw:delete-presentatlon-mouse-handler function 192

431

Index

dw:describe-presentation-type function 377
dw:dlsplayed-presentatlon-clear-hlghllghtlng generic

function 211
dw:dlsplayed-presentatlon-set-hlghllghtlng generic function 211

dw:do-redisplay generic function 211
dw:echo-presentatlon-bllp function 377

dw:find-graph-node generic function 231
dw:get-program-pane function 133

dW:handler-applies-in-lImlted-context-p function 192
dw:lnvalidate-type-handler-tables function 193

dw:menu-choose function 193
dw:menu-choose-from-set function 196

dw:mouse-char-for-gesture function 198
dw:mouse-char-gesture function 199

dw:mouse-char-gestures function 199
dw:peek-char-for-accept function 378

dw:presentation-blip-obJect function 379
dw:presentation-bllp-optlons function 379

dw:presentation-bllp-p function 380
dw:presentatlon-bllp-presentatlon-type function 380

dw:presentatlon-bllp-typep function 380
dw:presentatlon-equal function 380

dw:presentatlon-Input-context-optlon function 381
dw:presentatlon-subtypep function 382

dw:presentation-subtypep-cached function 199
dw:presentatlon-type-default function 382

dw:presentatlon-type-name function 382
dw:presentation-type-p function 383

432

Programming the User Interface, Volume A August 1986

G

dw:program-command-table generic function 134
dw:read-char-for-accept function 383
dw:read-standard-token function 383
dw:redlsplayable-format function 257

dw:redisplayable-present function 258
dw:set-default-end-of-page-mode function 410

dw:suggest function 384
dw:unread-char-for-accept function 384

format-cell function 232
format-graph-from-root function 233

format-item-list function 236
format-sequence-as-table-rows function 237

format-textual-list function 238
graphlcs:draw-arrow function 214
graphlcs:draw-clrcle function 215

graphics:draw-convex-polygon function 216
graphics:draw-cubic-spllne function 217

graphlcs:draw-elllpse function 218
graphlcs:draw-glyph function 219

graphlcs:draw-Ilne function 220
graphics:draw-Ilnes function 222

graphics:draw-paUern function 223
graphics:draw-polnt function 225

graphlcs:draw-polygon function 225
graphlcs:draw-rectangle function 226

graphlcs:draw-regular-polygon function 227
graphlcs:draw-strlng function 228

graphlcs:draw-trlangle function 229
present function 255

present-to-strlng function 257
prompt-and-accept function 200

tv:note-progress function 253
Accept Values Function Option to Frame-Up Accept Values

Panes 107
Redisplay Function Option to Frame-Up Panes 109, 111

Multiple-accept functions 14,38
sys: function-spec 71, 281
sys: function-spec presentation type 301

G
Redisplay Output Generator Option to Frame-Up Panes 109, 111

dw:dlsplayed-presentatlon-clear-hlghllghtlng generic function 211
dw:dlsplayed-presentatlon-set-hlghllghtlng generic function 211

dw:do-redlsplay generic function 211
dw:flnd-graph-node generic function 231

dw:program-command-table generic function 134
sys: generlc-functlon-name 71, 281

G

sys: generlc-functlon-name presentation type 302
:gensym presentation option to sys:expresslon 297

Command menu geometry 112, 125
Mouse gesture 12
Mouse Gesture Interface Facilities 39, 165, 198, 199

Overview of Mouse Gesture Interface Facilities 41
sl: get-font 299

:get-pane 134
dw: get-program-pane 21,25,99, 134
dw: get-program-pane function 133

Getting Started with Frame-Up 103
Flavor component grapher 233

Graph Formatting Facilities 47,203,231,233,240,

433

August 1986 Index

H

242
OveNiewof Graph Formatting Facilities 56

Graphic Output Facilities 47,203,214, 215, 216,
217,218,219,220,222,223,225,226,227,
228,229

OveNiewof Graphic Output Facilities 57
Graphic presentations 256, 268, 269

Animated graphic presentations 210, 273

H

Graphic presentations and backwards scrolling 60
graphlcs:draw-arrow 57, 201
graphlcs:draw-arrow function 214
graphlcs:draw-clrcle 57, 201
graphlcs:draw-clrcle function 215
graphlcs:draw-convex-polygon 57,201
graphlcs:draw-convex-polygon function 216
graphlcs:draw-cublc-spllne 57, 201
graphlcs:draw-cublc-spline function 217
graphlcs:draw-elllpse 57, 201
graphlcs:draw-ellipse function 218
graphlcs:draw-glyph 57,201
graphlcs:draw-glyph function 219
graphlcs:draw-line 57,201
graphics:draw-Ilne function 220
graphics:draw-lines 57, 201
graphlcs:draw-Iines function 222
graphlcs:draw-pattern 57, 201
graphlcs:draw-pattern function 223
graphlcs:draw-polnt 57, 201
graphlcs:draw-polnt function 225
graphlcs:draw-polygon 57,201,216
graphlcs:draw-polygon function 225
graphlcs:draw-rectangle 57, 201
graphlcs:draw-rectangle function 226
graphlcs:draw-regular-polygon 57, 201
graphlcs:draw-regular-polygon function 227
graphlcs:draw-string 57,201
graphics:draw-strlng function 228
graphlcs:draw-triangle 57,201
graphlcs:draw-trlangle function 229
Graphics drawing mode 214, 215, 216, 217, 219,

220,222,223,225,226,227,228,230
Guide to User Interface Documentation 3

Edit viewspecs handler 63
Identity handler 12
Mouse handler applicability 117, 118, 181, 187

H

dw: handler-applies-ln-lImlted-context-p 39, 82, 163
dw: handler-applies-ln-lImlted-context-p function 192

Advanced Mouse Handler Concepts 42
Mouse Handler Facilities 39, 121, 165, 179, 184, 185, 190,

192,193
Overview of Mouse Handler Facilities 39

Handler lookup 39
Mouse handler menus 183

:do-not-compose mouse handler option and performance 82
The :do-not-compose mouse handler option and performance 44

The :tester mouse handler option and performance 44
:abbreviation.;.for type expansions and handler performance 44

:expander type expansions and handler performance 44

434

Programming the User Interface, Volume A August 1986

The sys:expresslon presentation type and handler performance 44
The t presentation type and handler performance 44

Mouse handler precedence 118, 181, 187
Mouse Handlers 121,184,190,314,333

Performance in mouse handlers 82
Performance of Mouse Handlers 42

Side-effecting mouse handlers 12, 179
Some Efficiency Caveats for Mouse Handlers 42, 44

Testing translator handlers 120, 189
Translating mouse handlers 12, 21, 116, 185, 379

How Mouse Handlers are Found 39,42
Mouse handler testers 116, 179, 185

Character height 263, 264, 265, 266
:height-in-lines 125
Height in Lines Option to Frame-Up Panes 108, 110,

112, 114
Help message 132, 143
Help utility 385, 387

Data type hierarchy 297
Highlighting mode 211

Output history 11, 16
Presentation-type history 382
Presentation type history 71, 170, 297
Presentation type history inheritance 71
Presentation type history pruning 71

Type history pruning 297
:horlzontal 233, 240
:horlzontal option to

dw: :wlth-output-truncatlon 271
Horizontal scrolling 56, 60, 233, 271

net: host 71,281
net: host presentation type 303

How Mouse Handlers are Found 39,42

Command menu identifier 112
Identity handler 12
:If-forced 289
:If-necessary 212
:If-needed 407
:If-requested 407
:If-unlque 362
:Ignore 156, 158
Incremental redisplay 13, 125, 211, 251, 257, 258,

273
:Incremental-redlsplay 125
Incremental Redisplay Option to Frame-Up Display

Panes 109,111
Indentlng-output 49, 201
Indenting-output macro 250

dw: Independently-redlsplayable-format 201
dw: Independently-redlsplayable-format macro 251

Overview of Progress Indicator Facilities 59
Progress Indicator Facilities 203,212,213,253,254

Presentation type history inheritance 71
:Inherlt-from 151
:Inherlt-from to :command-table 125

Dynamic Window init options 399
In-line prompts 14

Overview of Presentation Input Blip Facilities 78

435

August 1986 Index

Presentation Input Blip Facilities 69,349,377,378,379,380
Input context 14, 35

Presentation Input context 169, 257
Overview of Presentation Input Context Facilities 78

Presentation Input Context Facilities 69,349,352,381,388,389
Advanced User Input Facilities 35

Basic User Input Facilities 35
Dictionary Notes: User Input Facilities 165

Dictionary of User Input Facilities 163
Overview of Advanced User Input Facilities 39

Overview of Basic User Input Facilities 35
Overview of User Input Facilities 35

Table of Advanced User Input Facilities 165
Table of Basic User Input Facilities 165
The Facilities: User Input Facilities 167

dw: Input-not-of-requlred-type 80, 354, 358, 363
Insert Program Definition Zmacs Command for

Frame-Up 115
:Inslde 405
:Inslde-slze 230, 245

Presentation Inspector 69
cp: Install-commands 33, 135
cp: Install-commands function 151

Instance 71,281
Instance presentation type 304
Integer 71, 281
Integer presentation type 305

User Interaction Paradigm 21
User interaction with Dynamic Windows 21

:Interactor panes 125
Interactor and Listener Pane Options 113

Command interface 17,91
Command Processor command interface 31

Program command interface 124
Program screen interface 124

Window interface 17
User Interface Application Example 91

Guide to User Interface Documentation 3
Command Processor Interface Facilities 31,137,139,150,151

Mouse Gesture Interface Facilities 39,165,198,199
Overview of Mouse Gesture Interface Facilities 41

Introduction to the User Interface Management System 7
User Interface Management System: an Overview

Dictionary Notes: Top-Level Facilities for User Interface Programming 101
Dictionary of Top-level Facilities for User Interface Programming 99
Overview of Top-Level Facilitios for User Interface Programming 21

Table of Top-Level Facilities for User Interface Programming 21, 101
The Facilities: Top-Level Facilities for User Interface Programming 103

Top-Level Facilities for User Interface Programming 116, 122, 124, 133, 134
User Interface Programming Facilities 3

Introduction to Frame-Up 103
Introduction to the User Interface Management

System 7
dw: Invalldate-type-handler-tables 39, 163
dw: Invalldate-type-handler-tables function 193

:Inverse-vldeo 211
Inverted-boolean 71, 281
Inverted-boolean presentation type 307

What is a Pr(fIoJentation? 70
What is a Presentation Type? 70

Centering command menu items 112

436

Programming the User Interface, Volume A August 1986

K

L

M

K

L

:kbd-accelerator 91
:kbd-accelerator-p 151
:kbd-accelerator-p to :command-table 125
:keyboard 261
keyword 71,281
keyword presentation type 308

:Iabel 125
cp: *Iast-command-values* 31, 135, 142
cp: *Iast-command-values* variable 151

:Iatest 332
dw:: layout-designer 409

Frame-Up Layout Designer 17, 21, 99, 101, 103
Overview of the Frame-Up Layout Designer 23

:Ieft 228,242,407,408

K

L

:Iength presentation option to sys:expression 297
:Ievel presentation option to sys:expression 297
Levels of Detail 4

Igp: *lgp2-prlnter* 291, 293
Igp:*lgp2-prlnter* 291, 293
Igp:*lgp-prlnter* 291, 293

Igp: *Igp-prlnter* 291, 293
:lIne 234,241,242

Height in Lines Option to Frame-Up Panes 108, 110, 112, 114
:lIstener panes 125

Interactor and Listener Pane Options 113
Overview of Tex1ual List Formatting Facilities 51

Tex1ual List Formatting Facilities 47,203,238,248,250
net: local-host 71,281
net: local-host presentation type 308
netl: local-network 71,281
netl: local-network presentation type 309

Handler lookup 39
Command loop 11, 21, 25, 91, 125
Command Loop Management Facilities 32,137,147,149,156,

158,160,161
Overview of Command Loop Management Facilities 33

Redisplay Each Time Around Command Loop Option to Frame-Up Panes 108, 110, 112

M M
abbreviating-output macro 207
cp:deflne-command macro 140

cp:deflne-command-accelerator macro 146
cp:deflne-command-and-parser macro 147

define-presentation-action macro 179
define-presentation-to-command-translator macro 116

define-presentation-translator macro 185
define-presentation-type macro 366

dw: :with-output-truncatlon macro 271
dw:acceptlng-values macro 175

dw:completlng-from-suggestlons macro 362
dw:define-program-command macro 122

437

August 1986 Index

dW:define-program-framework macro 124
dw:lndependently-redisplayable-format macro 251
dw:named-value-snapshot-contlnuatlon macro 252

dw:presentatlon-bllp-case macro 378
dw:presentation-bllp-ecase macro 379

dw:redisplayer macro 258
dw:tracklng-mouse macro 261

dw:wlth-accept-actlvatlon-chars macro 384
dw:wlth-accept-bllp-chars macro 385

dw:with-accept-help macro 385
dw:wlth-accept-help-If macro 387

dw:wlth-output-as-presentatlon macro 268
dw:with-output-to-presentatlon-recordlng-strlng macro 270

dw:wlth-own-coordlnates macro 272
dw:wlth-presentatlon-Input-context macro 388

dw:with-presentation-Input-editor-context macro 389
dw:with-presentation-type-arguments macro 391

dw:with-redisplayable-output macro 273
dw:with-replayablo-output macro 274
dw:with-resortable-output macro 276

dw:with-type-decoded macro 392
filling-output macro 230

formattlng-cell macro 239
formatting-column macro 239

formattlng-column-headlngs macro 240
formatting-graph macro 240

formatting-graph-node macro 242
formatting-item-list macro 243

formatting-multiple-columns macro 245
formatting-row macro 245

formatting-table macro 246
formatting-toxtual-list macro 248

formatting-textual-list-element macro 250
Indenting-output macro 250

surroundlng-output-wlth-border macro 259
tv:dolist-noting-progress macro 212

tv:dotimes-notlng-progress macro 213
tv:notlng-progress macro 254

with-character-face macro 263
with-characler-famlly macro 264

wlth-character-size macro 265
with-character-style macro 266

with-underlining macro 277
Facilities for Writing Formatted Output Macros 63, 205,209, 252

Formatting macros 16
Naming Conventions for Program Output Macros 47,66

Overview of Facilities for Writing Formatted Output Macros 66
Writing formatted output macros 13

tv: make-blnary-gray 57, 223
cp: make-command-table 33, 135
cp: make-command-table function 151
tv: make-window 399

Command table management 125,141
Command Loop Management Facilities 32,137,147,149,156,158,

160, 161
Command Table Management Facilities 32,137,139,149,150,151

Overview of Command Loop Management Facilities 33
Overview of Command Table Management Facilities 33

Introduction to the User Interface Management System 7
User Interface Management System: an Overview 1

dw: margin-borders 87, 125, 395, 400

438

Programming the User Interface, Volume A August 1986

dw: margin-borders flavor 404
:margln-components 125

Dynamic Window Margin Components 399, 404, 405, 406, 407, 408,
410,411

dw: margln-drop-shadow-borders 87, 395, 400
dw: margln-drop-shadow-borders flavor 405
dw: margin-label 87, 395, 400
dw: margin-label flavor 405

:delayed-set-Iabel method of dw: margln-mlxln 399
:set-borders method of dw: margln-mlxln 410

:set-Iabel method of dw: margln-mlxln 411
:set-margln-components method of dw: margln-mlxin 411

:update-Iabel method of dw: margln-mlxln 411
(flavor:method :delayed-set-Iabel dw: margin-mlxln) 87, 395

(flavor:method :set-borders dw: margln-mlxln) 87,395
(flavor:method :set-Iabel dw: margln-mlxln) 87, 395

(flavor:method :set-margln-components dw: margln-mlxln) 87, 395
(flavor:method :update-Iabel dw: margin-mlxln) 87, 395

dw: margln-ragged-borders 87, 395, 400
dw: margln-ragged-borders flavor 406
dw: margln-scroll-bar 87,395,400
dw: margln-scroll-bar flavor 407
dw: margin-whlte-borders 87, 125, 395, 400
dw: margln-whlte-borders flavor 408
dw: margln-whltespace 87,395,400
dw: margin-whites pace flavor 408

member 71, 281, 311
member presentation type 310

dw: member-sequence 71, 281,310
dw: member-sequence presentation type 311

Presentation debugging menu 69
:menu-accelerator 91

dw: menu-choose 35, 163
dw: menu-choose function 193
dw: menu-choose-from-set 35, 163
dw: menu-choose-from-set function 196

Command menu geometry 112, 125
Command menu identifier 112

Compressing command menu item columns 112
Centering command menu items 112

:menu-Ievel 91, 125
Command menus 21

Mouse handler menus 183
Multiple command menus 123, 125

Menu title 194, 197
Help message 132, 143

Dynamic Window methods and messages 399
:descriptlon meta-presentation argument 71

Meta-presentation arguments 285,310,311,366
(flavor: method :clear-hlstory dw:dynamic-window) 60,

201
(flavor: method :clear-region dw:dynamic-window) 60,

201
(flavor: method :clear-window dw:dynamlc-window) 60,

201
(flavor: method :delayed-set-Iabel dw:margin-mlxin) 87,

395
(flavor:

method :delete-dlsplayed-presentation dw:dynamlc-window) 6
201

(flavor: method :set-borders dw:margln-mlxln) 87,395

August 1986

439

Index

(flavor: method :set-Iabel dw:margin-mixin) 87,395
(flavor:

(flavor:

method :set-margin-components dw:margin-mixin) 87,
395

method :set-vlewport-posltion dw:dynamic-window) 60,
201

(flavor: method :update-Iabel dw:margin-mlxln) 87,395
(flavor:

(flavor:

(flavor:

method :vlsibie-cursorpos-llmits dw:dynamic-window) 60,
201

method :wlth-output-recording-dlsabled dw:dynamlc-window
201

method :x-scroll-posltlon dw:dynamic-wlndow) 60,
201

(flavor: method :x-scroll-to dw:dynamlc-wlndow) 60, 201
(flavor:

method :y-scroll-posltlon dw:dynamic-window) 60,
201

(flavor: method :y-scroll-to dw:dynamic-wlndow) 60, 201
:clear-hlstory method of dw:dynamic-wlndow 208
:clear-region method of dw:dynamic-window 208

:clear-wlndoVi method of dw:dynamlc-wlndow 208
:delete-displayed-presentatlon method of dw:dynamlc-wlndow 210

:set-vlewport-posltion method of dw:dynamlc-wlndow 259
:vlsibie-cursorpos-llmits method of dw:dynamlc-wlndow 263

:with-output-recording-dlsabled method of dw:dynamlc-window 269
:x-scroll-position method of dw:dynamlc-wlndow 278

:x-scroll-to method of dw:dynamlc-window 278
:y-scroll-posltlon method of dw:dynamlc-wlndow 279

:y-scroll-to method of dw:dynamlc-wlndow 279
:delayed-set-Iabel method of dw:margln-mlxln 399

:set-borders method of dw:margln-mlxin 410
:set-Iabel method of dw:margin-mlxln 411

:set-margln-components method of dw:margln-mlxin 411
:update-Iabel method of dw:margin-mlxin 411

Dynamic Window methods and messages 399
Graphics drawing mode 214,215,216,217,219,220,222,223,225,

226,227,228,230
Highlighting mode 211

Command Processor dispatch modes 158
:more-p 125
:mou!lo-bllnlmr-chnrnctor 89
Mouse-Blinker Characters 89
Mouse-blinker shape 400

Presentation blips and mouse blips 78
Mouse character 198, 199

dw: mouse-char-for-gesture 41, 116, 163, 180, 186
dw: mouse-char-for-gesture function 198
dw: mouse-char-gesture 41, 163
dw: mouse-char-gesture function 199
dw: mouse-char-gestures 41, 163
dw: mouse-char-gestures function 199

Mouse cursor shape 89
Mouse documentation 261
Mouse font 89
Mouse gesture 12
Mouse Gesture Interface Facilities 39, 165, 198, 199

Overview of Mouse Gesture Interface Facilities 41

440

Programming the User Interface, Volume A August 1986

N

Mouse handler applicability 117, 118, 181, 187
Advanced Mouse Handler Concepts 42

Mouse Handler Facilities 39, 121, 165, 179, 184,
185,190,192,193

Overview of Mouse Handler Facilities 39
Mouse handler menus 183

:do-not-compose mouse handler option and performance 82
The :do-not-compose mouse handler option and performance 44

The :tester mouse handler option and performance 44
Mouse handler precedence 118, 181, 187
Mouse Handlers 121, 184, 190, 314, 333

Performance in mouse handlers 82
Performance of Mouse Handlers 42

Side-effecting mouse handlers 12, 179
Some Efficiency Caveats for Mouse Handlers 42, 44

Translating mouse handlers 12, 21, 116, 185, 379
How Mouse Handlers are Found 39, 42

Mouse handler testers 116, 179, 185
:mouso-motlon 261
:mouse-motlon-hold 261
Mouse sensitivity 255
Multiple-accept functions 14, 38
Multiple-accept technology 173
Multiple command menus 123, 125

Accepting Multiple Objects 35
Facilities for Accepting Multiple Objects 165, 171, 173, 175

Overview of Facilities for Accepting Multiple Objects 38

N
Command name 141

Displayed program name 124

N

dw: named-value-snapshot-contlnuatlon 66,201,274
dw: named-value-snapshot-continuatlon macro 252

Set Pane Name Frame-Up Command 114
net: namespace 71

netl: namespace 281
netl: namespace presentation type 312
net: namespace-class 71, 281
net: namespace-class presentation type 312

Naming Conventions for Program Output Macros 47,
66

net:host 71, 281
net:host presentation type 303
net:local-host 71, 281
net:local-host presentation type 308
net:namespaco 71
net:namespace-class 71, 281
net:namespace-class presentation type 312
net:network 71,281
net:network presentation type 313
net:object 71, 281
net:obJect presentation type 317
net:user 71, 281
net:user presentation type 342
netl:local-network 71,281
netl :Iocal-network presentation type 309
netl:namespace 281
netl:namespace presentation type 312
netl:protocol-name 71,281
netl:protocol-name presentation type 324

441

August 1986 Index

o

netl:slte 71,281
netl :slte presentation type 327

nat: network 71, 281
net: network presentation type 313

:never 355,360,364
New and Old Facilities 3
:newest 295, 320, 332, 343
:normal 143, 168, 296, 321, 344, 407
not 71,281
not presentation type 314

Presentation type notation 71
tv: note-progress 201
tv: note-progress function 253

Dictionary Notes: Command Processor Facilities 137
Dictionary Notes: Predefined Presentation Types 283
Dictionary Notes: Presentation Substrate Facilities 349
Dictionary Notes: Program Output Facilities 203
Dictionary Notes: Top-Level Facilities for User Interface

Programming 101
Dictionary Notes: User Input Facilities 165
Dictionary Notes: Window Substrate Facilities 397

tv: noting-progress 201
tv: noting-progress macro 254

dw: no-type 71, 120, 183, 189, 281
dw: no-type presentation type 314

null 71,281

o

null presentation type 314
nUIl-or-type 71, 281
nUIl-or-type presentation type 315
number 71, 281
number presentation type 316
Numeric presentation types 316

net: object 71, 281
Presentation object 21

net: object presentation type 317
Accepting Multiple Objects 35

Accepting Single Objects 35
Facilities for Accepting Multiple Objects 165, 171, 173, 175

Facilities for Accepting Single Objects 165, 167, 171, 193, 196,200
Overview of Facilities for Accepting Multiple Objects 38

Overview of Facilities for Accepting Single Objects 35
New and Old Facilities 3

:do-not-compose mouse handler option and performance 82
The :do-not-compose mouse handler option and performance 44

The :tester mouse handler option and performance 44
Accept Values Pane Options 107

Command-Menu Pane Options 112
Display Pane Options 109

Dynamic Window init options 399
Interactor and Listener Pane Options 113

Set Screen Options 59
Title Pane Options 111
Set Pane Options Frame-Up Command 107

Set Program Options Frame-Up Command 104
:default option to accept 296, 321, 344

:horizontal option to dw::with-output-truncation 271
:vertical option to dw::wlth-output-truncation 271

Accept Values Function Option to Frame-Up Accept Values Panes 107

o

442

Programming the User Interface, Volume A August 1986

Incremental Redisplay Option to Frame-Up Display Panes 109, 111
Pane Flavor Option to Frame-Up Display Panes 110

Height in Unes Option to Frame-Up Panes 10B, 110, 112, 114
Redisplay Each Time Around Command Loop Option to Frame-Up Panes 10B, 110, 112

Redisplay Function Option to Frame-Up Panes 109, 111
Redisplay Output Generator Option to Frame-Up Panes 109, 111

Redisplay String Option to Frame-Up Panes 109, 111
Set Size of Pane From Contents Option to Frame-Up Panes 10B, 110, 112

Typeout Window Option to Frame-Up Panes 110, 113
:abbrevlate-quote presentation option to sys:expresslon 297

:array presentation option to sys:expresslon 297
:array-Iength presentation option to sys:expresslon 297

:base presentation option to sys:expresslon 297
:blt-vector-Iength presentation option to sys:expresslon 297

:case presentation option to sys:expresslon 297
:clrcle presentation option to sys:expression 297

:escape presentation option to sys:expression 297
:gensym presentation option to sys:expresslon 297

:Iength presentation option to sys:expresslon 297
:Ievel presentation option to sys:expresslon 297

:pretty presentation option to sys:expresslon 297
:radix presentation option to sys:expression 297

:readably presentation option to sys:expresslon 297
:strlng-Iength presentation option to sys:expresslon 297

:structure-contents presentation option to sys:expresslon 297
or 71, 169,2B1
or presentation type 145, 31B
Other Facilities for Program Output 47,203, 20B,

210,211,259,261,263,269,272,278,279
Overview of Other Facilities for Program Output 60

Other Presentation Facilities 69,349,351,377,380,
382,383,391,392

Overview of Other Presentation Facilities 79
dw: out-of-band-character 71,281
dw: out-of-band-character presentation type 319

Formatting output 16
Other Facilities for Program Output 47,203,208,210,211,259,261,263,269,

272,278,279
Overview of Other Facilities for Program Output 60

Replayable output 63
Resortable output 63

Output cache 273
:output-destlnatlon 142

Advanced Presentation Output Facilities 63,205,211,251,257,258,270,
273,274,276

Advanced Program Output Facilities 47
Basic Presentation Output Facilities 47,203,255,257,268

Basic Program Output Facilities 47
Dictionary Notes: Program Output Facilities 203

Dictionary of Program Output Facilities 201
Graphic Output Facilities 47,203,214,215,216,217,218,

219,220,222,223,225,226,227,228,229
Output Streams for Program Output Facilities 47, 66

Overview of Advanced Presentation Output Facilities 63
Overview of Advanced Program Output Facilities 63
Overview of Basic Presentation Output Facilities 47

Overview of Basic Program Output Facilities 47
Overview of Graphic Output Facilities 57

Overview of Program Output Facilities 47
Table of Advanced Program Output Facilities 205

Table of Basic Program Output Facilities 203

443

August 1986 Index

The Facilities: Program Output Facilities 207
Redisplay Output Generator Option to Frame-Up Panes 109,

111
Output history 11, 1 6

Facilities for Writing Formatted Output Macros 63, 205, 209, 252
Naming Conventions for Program Output Macros 47, 66

Overview of Facilities for Writing Formatted Output Macros 66
Writing formatted output macros 13

Output recording 16
Disabling output recording 60

Output remembering 16
Output Streams for Program Output Facilities 47,66
:outslde 405
:oval 234, 259

User Interface Management System: an Overview 1
Overview of Advanced Command Facilities 32
Overview of Advanced Presentation Output

Facilities 63
Overview of Advanced Program Output Facilities 63
Overview of Advanced User Input Facilities 39
Overview of Basic Command Facilities 31
Overview of Basic Presentation Output Facilities 47
Overview of Basic Program Output Facilities 47
Overview of Basic User Input Facilities 35
Overview of Character Environment Facilities 49
Overview of Command Accelerator Facilities 34
Overview of Command Loop Management

Facilities 33
Overview of Command Processor Facilities 31
Overview of Command Table Management

Facilities 33
Overview of Facilities for Accepting Multiple

Objects 38
Overview of Facilities for Accepting Single Objects 35
Overview of Facilities for Writing Formatted Output

Macros 66
Overview of Graph Formatting Facilities 56
Overview of Graphic Output Facilities 57
Overview of Mouse Gesture Interface Facilities 41
Overview of Mouse Handler Facilities 39
Overview of Other Facilities for Program Output 60
Overview of Other Presentation Facilities 79
Overview of Predefined Presentation Types 71
Overview of Presentation Input Blip Facilities 78
Overview of Presentation Input Context Facilities 78
Overview of Presentation Substrate Facilities 69
Overview of Presentation-Type Definition

Facilities 76
Overview of Program Command Facilities 28
Overview of Program Framework Definition

Facilities 25
Overview of Program Output Facilities 47
Overview of Progress Indicator Facilities 59
Overview of Redisplay Facilities 65
Overview of Table Formatting Facilities 52
Overview of Textual List Formatting Facilities 51
Overview of the Frame-Up Layout Designer 23
Overview of Top-Level Facilities for User Interface

Programming 21
Overview of User Input Facilities 35
Overview of Window Substrate Facilities 87

444

Programming the User Interface, Volume A August 1986

p p
package 71,281
package presentation type 320
Pane Commands in Frame-Up 107

p

Pane Flavor Option to Frame-Up Display Panes 110
Delete Pane Frame-Up Command 114

Split Pane Frame-Up Command 114
Set Size of Pane From Contents Option to Frame-Up Panes 108,

110, 112
Set Pane Name Frame-Up Command 114

Accept Values Pane Options 107
Command-Menu Pane Options 112

Display Pane Options 109
Interactor and Listener Pane Options 113

Title Pane Options 111
Set Pane Options Frame-Up Command 107

:panes 133
:accept-values panes 125

Accept-values panes 125
Accept Values Function Option to Frame-Up Accept Values

Panes 107
:command-menu panes 123, 125

:display panes 125
Height in Lines Option to Frame-Up Panes 108, 110, 112, 114

Incremental Redisplay Option to Frame-Up Display Panes 109, 111
:Interactor panes 125

:lIstener panes 125
Pane Flavor Option to Frame-Up Display Panes 110

Program panes 23, 25, 125
Redisplay Each Time Around Command Loop Option to Frame-Up

Panes 108,110,112
Redisplay Function Option to Frame-Up Panes 109, 111

Redisplay Output Generator Option to Frame-Up Panes 109, 111
Redisplay String Option to Frame-Up Panes 109, 111

Set Size of Pane From Contents Option to Frame-Up Panes 108, 110, 112
:tltle panes 125

Typeout Window Option to Frame-Up Panes 110, 113
Swap Panes Frame-Up Command 114

User Interaction Paradigm 21
sl: parse-character-style 292
zl: parse-ferror 80

Writing a Presentation Type Parser 80
The parts of a presentation type 70

path name 71, 281
path name presentation type 320

Background-gray patterns 223, 227
dw: peek-char-for-accept 76, 80,347
dw: peek-char-for-accept function 378

:abbrevlation-for type expansions and handler performance 44
:do-not-compose mouse handler option and performance 82

:expander type expansions and handler performance 44
sys:expresslon presentation type and performance 82

t presentation type and performance 82
The :do-not-compose mouse handler option and performance 44

The sys:expresslon presentation type and handler performance 44
The t presentation type and handler performance 44

The :tester mouse handler option and performance 44
Performance in mouse handlers 82
Performance in SemantiCue 42, 44
Performance of Mouse Handlers 42
:plxel 209, 263

445

August 1986 Index

:posslblllties 356
:posslblllties-quick-length 356

Mouse handler precedence 118, 181, 187
Predefined Presentation Types 69, 285, 287, 288,

289,290,291,292,293,295,297,299,301,
302,303,304,305,307,308,309,310,311,
312,313,314,315,316,317,318,319,320,
323,324,325,326,327,328,329,330,331,
332,333,334,335,337,338,339,342,343,
345

Dictionary Notes: Predefined Presentation Types 283
Dictionary of Predefined Presentation Types 281
Overview of Predefined Presentation Types 71

Table of Predefined Presentation Types 283
The Facilities: Predefined Presentation Types 285

present 14,16,47,201
present function 255
:presentatlon 261

What is a Presentation? 70
Presentation arguments 71
Presentation blip 383

dw: presentatlon-bllp-case 78,347
dw: presentatlon-bllp-case macro 378
dw: presentatlon-blip-eease 78,347
dw: presentatlon-blip-eease macro 379

dw:: presentation-bllp-mouse-char 78,347
dw:: presentatlon-bllp-mouse-char function 380
dw: presentation-blip-obJect 78, 347
dw: presentation-blip-obJect function 379
dw: presentation-blip-options 78, 116, 185, 347
dw: presentation-blip-options function 379
dw: presentation-blip-p 78, 347
dw: presentatlon-bllp-p function 380
dw: presentatlon-bllp-presentatlon-type 78, 347
dw: presentatlon-bllp-presentatlon-type function 380

Presentation blips 116, 185
Presentation blips and mouse blips 78

dw: presentatlon-bllp-typep 78, 347
dw: presentatlon-bllp-typep function 380

:presentatlon-cllck 261
Presentation debugging menu 69

dw: presentation-equal 79, 347
dw: presentation-equal function 380

Other Presentation Facilities 69, 349, 351, 377, 380, 382,
383,391,392

Overview of Other Presentation Facilities 79
:presentatlon-hold 261
Presentation Input Blip Facilities 69,349,377,378,

379,380
Overview of Presentation Input Blip Facilities 78

Presentation input context 169, 257
dw: *presentatlon-Input-context* 78, 347
dw: *presentatlon-Input-context* variable 381

Presentation Input Context Facilities 69,349,352,
381,388,389

Overview of Presentation Input Context Facilities 78
dw: presentatlon-Input-context-optlon 78, 347
dw: presentatlon-input-context-optlon function 381

Presentation Inspector 69
Presentation object 21

dw: presentation-object 79

446

Programming the User Interface, Volume A August 1986

:abbrevlate-quote presentation option to sys:expresslon 297
:array presentation option to sys:expresslon 297

:array-Iength presentation option to sys:expresslon 297
:base presentation option to sys:expresslon 297

:blt-vector-Iength presentation option to sys:expresslon 297
:case presentation option to sys:expresslon 297

:clrcle presentation option to sys:expresslon 297
:escape presentation option to sys:expresslon 297

:gensym presentation option to sys:expresslon 297
:Iength presentation option to sys:expresslon 297

:Ievel presentation option to sys:expresslon 297
:pretty presentation option to sys:expresslon 297
:radlx presentation option to sys:expresslon 297

:readably presentation option to sys:expresslon 297
:strlng-Iength presentation option to sys:expresslon 297

:structure-contents presentation option to sys:expresslon 297
Advanced Presentation Output Facilities 63,205,211,251,257,

258,270,273,274,276
Basic Presentation Output Facilities 47,203,255,257,268

Overview of Advanced Presentation Output Facilities 63
Overview of Basic Presentation Output Facilities 47

Presentation remembering 255
Presentations 16

Animated graphic presentations 210, 273
Graphic presentations 256, 268, 269

Replayable presentations 13
Graphic presentations and backwards scrolling 60

Presentation Substrate Facilities 325,380
Dictionary Notes: Presentation Substrate Facilities 349

Dictionary of Presentation Substrate Facilities 347
Overview of Presentation Substrate Facilities 69

Table of Presentation Substrate Facilities 349
The Facilities: Presentation Substrate Facilities 351

dw: presentatlon-subtypep 79,347, 375, 378, 379
dw: presentatlon-subtypep function 382
dw: presentatlon-subtypep-cached 39, 163
dw: presentatlon-subtypep-cached function 199

Presentation system 9
Basic Presentation System Concepts 69, 70

Presentation-to-command translation 17, 21
anst-member presentation type 285

and presentation type 287
boolean presentation type 288

character presentation type 290
character-face-or-style presentation type 291

character-style presentation type 292
character-style-for-devlce presentation type 293

dw: presentation-type 79
dw:member-sequence presentation type 311

dw:no-type presentation type 314
dw:out-of-band-character presentation type 319

dw:raw-text presentation type 324
fs:dlrectory-pathname presentation type 295
fs:wlldcard-pathname presentation type 343

Instance presentation type 304
Integer presentation type 305

Inverted-boolean presentation type 307
keyword presentation type 308
member presentation type 310
net:host presentation type 303

net:local-host presentation type 308

447

August 1986 Index

net:namespace-class presentation type 312
net:network presentation type 313

net:obJect presentation typo> 317
net:user presentation type 342

netl:local-network presentation type 309
netl:namespace presentation type 312

netl:protocol-name presentation type 324
netl :slte presentation type 327

not presentation type 314
null presentation type 314

null-or-type presentation type 315
number presentation type 316

or presentation type 145, 318
package presentation type 320

path name presentation type 320
satisfies presentation type 325

sct:system presentation type 332
sct:system-verslon presentation type 332

sequence presentation type 325
sequence-enumerated presentation type 326

Show Presentation Type 69
string presentation type 329

subset presentation type 330
symbol presentation type 330

symbol-name presentation type 331
sys:code-fragment presentation type 295

sys:expresslon presentation type 297
sys:flavor-name presentation type 299

sys:font presentation type 299
sys:form presentation type 301

sys:functlon-spec presentation type 301
sys:generlc-functlon-name presentation type 302

sys:prlnter presentation type 323
sys:stack-frame presentation type 328

t presentation type 333
The parts of a presentation type 70

tlme:tlme-Interval presentation type 334
tlme:tlme-lnterval-60ths presentation type 334

tlme:tlmezone presentation type 335
Ume:unlversal-tlme presentation type 339

token-or-type presentation type 337
tv:wlndow presentation type 345

type-or-slrlng presentation type 338
zwel:buffer presentation type 289

What is a Presentation Type? 70
The sys:expresslon presentation type and handler performance 44

The t presentation type and handler performance 44
sys:expresslon presentation type and performance 82

t presentation type and performance 82
Presentation type arguments 71

dw: presentatlon-type-default 79,143,347
dw: presentatlon-type-default function 382

Presentation-Type Definition Facilities 69, 349, 352,
353,356,362,366,378,383,384,385,387

Overview of Presentation-Type Definition Facilities 76
Presentation type equivalence classes 375, 376
Presentation type history 71, 170, 297
Presentation-type history 382
Presentation type history inheritance 71
Presentation type history pruning 71

dw: presentatlon-type-name 79, 347

448

Programming the User Interface, Volume A August 1986

dw: presentatlon-type-name function 382
Presentation type notation 71

dw: presentatlon-type-p 79,347
dw: presentatlon-type-p function 383

Writing a Presentation Type Parser 80
Presentation types 9

Compound presentation types 287,314,315,318,325,337,338
Dictionary Notes: Predefined Presentation Types 283

Dictionary of Predefined Presentation Types 281
Flavors and presentation types 304

Numeric presentation types 316
Overview of Predefined Presentation Types 71

Predefined Presentation Types 69,285,287,288,289,290,291,
292,293,295,297,299,301,302,303,304,
305,307,308,309,310,311,312,313,314,
315,316,317,318,319,320,323,324,325,
326,327,328,329,330,331,332,333,334,
335,337,338,339,342,343,345

Structures and presentation types 304
Table of Predefined Presentation Types 283

The Facilities: Predefined Presentation Types 285
Use of satisfies in presentation types 44

User-defined Data Types as Presentation Types 69, 82
Presentation type syntax 71
present-to-strlng 47, 201, 270
present-to-strlng function 257
:pretty presentation option to sys:expression 297
Preview Frame-Up Command 1 06

sys: printer 71,281
sys: printer presentation type 323

tv: process-mlxln 408
Command Processor 21, 32, 257
Command Processor command accelerator 160, 161
Command Processor command definition 31,140
Command Processor command interface 31
Command Processor dispatch modes 158

Dictionary Notes: Command Processor Facilities 137
Dictionary of Command Processor Facilities 135
Overview of Command Processor Facilities 31

The Facilities: Command Processor Facilities 139
Command Processor Interface Facilities 31,137,139,150,151

dw: *program* 99
dw: *program* variable 134

Program and Frame Commands in Frame-Up 104
Program Command Definition 21, 25, 28, 101, 122,

124
Overview of Program Command Facilities 28

Program command interface 124
dw: program-command-menu-Item-list 91
dw: program-command-table 99
dw: program-command-table generic function 134

Create Program Definition Zmacs Command for
Frame-Up 114

Edit Program Definition Zmacs Command for
Frame-Up 115

Insert Program Definition Zmacs Command for
Frame-Up 115

Program flavor 23
Program frame 23, 25

dw: program-frame 87, 395
dw: program-frame flavor 408

449

August 1986 Index

dw: program-frame resource 409
dw: *program-frame* 21, 25, 99
dw: *program-frame* variable 134

Program Framework Definition 21, 101, 124
Overview of Program Framework Definition Facilities 25

Dictionary Notes: Top-Level Facilities for User Interface
Programming 101

Dictionary of Top-level Facilities for User Interface Programming 99
Overview of Top-Level Facilities for User Interface Programming 21

Table of Top-Level Facilities for User Interface Programming 21, 101
The Facilities: Top-Level Facilities for User Interface Programming 103

Q

R

Top-Level Facilities for User Interface Programming 116, 122, 124, 133, 134
User Interface Programming Facilities 3

Displayed program name 124
Set Program Options Frame-Up Command 104

Other Facilities for Program Output 47,203,208,210,211,259,261,
263,269,272,278,279

Overview of Other Facilities for Program Output 60
Advanced Program Output Facilities 47

Basic Program Output Facilities 47
Dictionary Notes: Program Output Facilities 203

Dictionary of Program Output Facilities 201
Output Streams for Program Output Facilities 47,66

Overview of Program Output Facilities 47
Overview of Advanced Program Output Facilities 63

Overview of Basic Program Output Facilities 47
Table of Advanced Program Output Facilities 205

Table of Basic Program Output Facilities 203
The Facilities: Program Output Facilities 207

Naming Conventions for Program Output Macros 47,66
Program panes 23, 25, 125
Program screen interlace 124
Program state variables 23, 25, 124
Progress bar 59
Progress Indicator Facilities 203, 212, 213, 253, 254

Overview of Progress Indicator Facilities 59
prompt-and-accept 35, 163
prompt-and-accept function 200

In-line prompts 14
netl: protocol-name 71,281
netl: protocol-name presentation type 324

Presentation type history pruning 71
Type-history pruning 304
Type history pruning 297

Q
:query-Identlfier 173, 176

dw:: quoted-expression 118, 181, 187

R
:radlx presentation option to sys:expression 297
:raw 143, 168

dw: raw-text 71, 281
dw: raw-text presentation type 324

:read 296, 321, 344
:readably presentation option to

sys:expresslon 297
cp: read-accelerated-command 33, 135

Q

R

450

Programming the User Interface, Volume A August 1986

cp: read-accelerated-command function 153
dw: read-char-for-accept 76, 80, 347, 352, 378
dw: read-char-for-accept function 383
cp: read-command 33, 135
cp: read-command function 156
cp: read-command-argument 147
cp: read-command-arguments 33, 135
cp: read-command-arguments function 158
cp: read-command-or-form 33, 135
cp: read-command-or-form function 158

read-from-string 171
cp: read-full-command 33, 135, 160
cp: read-keyword-arguments 147
dw: read-standard-token 76, 80, 347
dw: read-standard-token function 383

Disabling output recording 60
Output recording 16

:rectangle 234, 259
Redisplay 176

Incremental redisplay 13, 125, 211, 251, 257, 258, 273
dw: redlsplayable-format 201
dw: redlsplayable-format function 257
dw: redlsplayable-present 201
dw: redlsplayable-present function 258

:redlsplay-after-commands 125
Redisplay Each Time Around Command Loop Option

to Frame-Up Panes 108, 110, 112
dw: redlsplayer 201
dw: redlsplayer macro 258

Redisplay Facilities 63, 205
Overview of Redisplay Facilities 65

:redlsplay-functlon 125
Redisplay Function Option to Frame-Up Panes 109,

111
Incremental Redisplay Option to Frame-Up Display Panes 109,

111
Redisplay Output Generator Option to Frame-Up

Panes 109,111
:redlsplay-strlng 125
Redisplay String Option to Frame-Up Panes 109, 111
:relatlve 278, 279
:relatlve-jump 278, 279
:relaxed 217
:released 332
:release-mouse 261

Output remembering 16
Presentation remembering 255

Replayable output 63
Replayable presentations 13
:reprompt 156, 158
Reset Configuration Frame-Up Command 106
Resortable output 63

dw:dynamic-window resource 404
dw:program-frame resource 409

:rlght 228,232,239,242,407,408
:rows 125

August 1986

s

451

Index

s
satisfies 71,281,287,314

Use of satisfies in presentation types 44
satisfies presentation type 325

Program screen interface 124
Set Screen Options 59

:scroll 125, 399, 410
:scroll-factor 125

Graphic presentations and backwards scrolling 60
Horizontal scrolling 56,60,233,271

sct:system 71,281
sct:system presentation type 332
sct:system-verslon 71,281
sct:system-verslon presentation type 332
Select Configuration Frame-Up Command 105
:selected 156
:selected-character-style 285
Selected item 194, 197
:selected-style 175
SemantiCue 9, 11, 12, 14, 35, 39

Performance in SemantiCue 42, 44
Mouse sensitivity 255

Command sentence 21
sequence 71, 281
sequence presentation type 325
sequence-enumerated 71, 281,325
sequence-enumerated presentation type 326
:set-borders method of dw:margln-mlxln 410

(flavor:method: set-borders dw:margln-mlxln) 87,395
dw: set-default-end-of-page-mode 87,395
dw: set-default-end-of-page-mode function 410

:set-Iabel method of dw:margln-mlxln 411
(flavor:method: set-label dw:margln-mlxln) 87,395

:set-margln-components method of
dw:margln-mlxln 411

s

(flavor:method: set-margin-components dw:margln-mlxln) 87,395
Set Pane Name Frame-Up Command 114
Set Pane Options Frame-Up Command 107
Set Program Options Frame-Up Command 104
Set Screen Options 59
Set Size of Pane From Contents Option to Frame-Up

Panes 108,110,112
:set-vlewporl-posltlon method of

dw:dynamlc-wlndow 259
(flavor:method: set-vlewport-posltion dw:dynamlc-wlndow) 60,

201
Mouse-blinker shape 400
Mouse cursor shape 89

Shifted characters 319
Showcase 13,16,47,63
Show Presentation Type 69
sl:*b&w-screen* 291, 293
sl:backtranslate-font 266
sl:get-font 299
sl :parse-character-style 292
si :*valld-faces* 263, 266
sl:*valld-famllles* 264,266
sl :*valld-slzes* 266
Side-effecting mouse handlers 12, 179

Accepting Single Objects 35
Facilities for Accepting Single Objects 165,167,171,193,196,200

452

Programming the User Interface, Volume A August 1986

Overview of Facilities for Accepting Single Objects 35
netl: site 71,281
netl: site presentation type 327

:slze-from-output 125
Set Size of Pane From Contents Option to Frame-Up

Panes 108,110,112
Snapshotting 13
Some Efficiency Caveats for Mouse Handlers 42, 44
Split Pane Frame-Up Command 114

sys: stack-frame 71,281
sys: stack-frame presentation type 328

Getting Started with Frame-Up 103
Program state variables 23, 25, 124

. :status 153
Output Streams for Program Output Facilities 47, 66

string 71, 281
string presentation type 329
:string-Iength presentation option to

sys:expression 297
Redisplay String Option to Frame-Up Panes 109, 111

:structure-contents presentation option to
sys:expresslon 297

Structures and presentation types 304
:subhelp 385, 387
subset 71,281
subset presentation type 330

Dictionary Notes: Presentation Substrate Facilities 349
Dictionary Notes: Window Substrate Facilities 397
Dictionary of Presentation Substrate Facilities 347

Dictionary of Window Substrate Facilities 395
Overview of Presentation Substrate Facilities 69

Overview of Window Substrate Facilities 87
Presentation Substrate Facilities 325, 380

Table of Presentation Substrate Facilities 349
Table of Window Substrate Facilities 87,397

The Facilities: Presentation Substrate Facilities 351
The Facilities: Window Substrate Facilities 399

subtypep 382
dw: suggest 76, 80, 347
dw: suggest function 384

:supersede 152
surroundlng-output-wlth-border 60, 201
surroundlng-output-wlth-border macro 259
Swap Panes Frame-Up Command 114
symbol 71, 281
symbol presentation type 330
symbol-name 71, 281
symbol-name presentation type 331

Presentation type syntax 71
sys :abort 155
sys:code-fragment 71, 281
sys:code-fragment presentation type 295
sys:expresslon 71, 281,304

:abbreviate-quote presentation option to sys:expression 297
:array presentation option to sys:expresslon 297

:array-Iength presentation option to sys:expresslon 297
:base presentation option to sys:expresslon 297

:bit-vector-Iength presentation option to sys:expresslon 297
:case presentation option to sys:expresslon 297

:clrcle presentation option to sys:expresslon 297
:escape presentation option to sys:expresslon 297

453

August 1986 Index

T

:gensym presentation option to
:Iength presentation option to

:Ievel presentation option to
:pretty presentation option to
:radlx presentation option to

:readably presentation option to
:strlng-Iength presentation option to

:strueture-eontents presentation option to

The

sys:expresslon 297
sys:expresslon 297
sys:expresslon 297
sys:expresslon 297
sys:expresslon 297
sys:expresslon 297
sys:expresslon 297
sys:expresslon 297
sys:expresslon presentation type 297
sys:expresslon presentation type and handler

performance 44
sys:expression presentation type and

performance 82
sys:flavor-name 71, 281
sys:flavor-name presentation type 299
sys:font 71, 281
sys:font presentation type 299
sys:form 71,281
sys:form presentation type 301
sys:funetlon-spec 71, 281
sys:funetlon-spec presentation type 301
sys:generle-functlon-name 71, 281
sys:generle-functlon-namo presentation type 302
sys:prlnter 71, 281

Introduction to the User Interface Management
Presentation

set:
set:

User Interface Management
Basic Presentation

set:
set:

T

sys:prlnter presentation type 323
sys:staek-frame 71,281
sys:staek-frame presentation type 328
System 7
system 9
system 71,281
system presentation type 332
System: an Overview 1
System Concepts 69, 70
system-version 71, 281
system-version presentation type 332

t 71,281
t presentation type 333

The t presentation type and handler performance 44
t presentation type and performance 82

"Colon Full Command" command table 160, 161
Command table 31

Table Formatting Facilities 47, 203, 232, 236, 237,
239,240,243,245,246

Overview of Table Formatting Facilities 52
Command table management 125, 141

T

Command Table Management Facilities 32,137,139,149,150,
151

Overview of Command Table Management Facilities 33
Table of Advanced Command Facilities 137
Table of Advanced Program Output Facilities 205
Table of Advanced User Input Facilities 165
Table of Basic Command Facilities 31,137
Table of Basic Program Output Facilities 203
Table of Basic User Input Facilities 165
Table of Predefined Presentation Types 283
Table of Presentation Substrate Facilities 349
Table of Top-Level Facilities for User Interface

Programminq 21, 101

454

Programming the User Interface, Volume A August 1986

Table of Window Substrate Facilities 87,397
Multiple-accept technology 173

The :tester mouse handler option and performance 44
Mouse handler testers 116, 179, 185

Testing translator handlers 120, 189
Textual Ust Formatting Facilities 47,203,238,248,

250
Overview of Textual Ust Formatting Facilities 51

tlme:tlme-Interval 71,281
tlme:tlme-Interval presentation type 334
tlme:tlme-lnterval-GOths 71, 281
tlme:tlme-lnterval-GOths presentation type 334
tlme:tlmezone 71,281
tlme:tlmezone presentation type 335
tlme:unlversal-tlme 71,281
tlme:unlversal-tlme presentation type 339

Redisplay Each Time Around Command Loop Option to Frame-Up
Panes 108,110,112

time: time-Interval 71, 281
time: time-Interval presentation type 334
time: tlme-lnterval-60ths 71, 281
time: tlme-lnterval-60ths presentation type 334

:tlmeout 153
time: tlmezone 71, 281
time: tlmezone presentation type 335
Menu title 194, 197

:tltle panes 125
Title Pane Options 111
token-or-type 71, 281
token-or-type presentation type 337
:top 406, 407, 408
:top-Ievel 32, 91
Top-Level Facilities 103
Top-Level Facilities for User Interface

Programming 116, 122, 124, 133, 134
Dictionary Notes: Top-Level Facilities for User Interface

Programming 101
Dictionary of Top-level Facilities for User Interface

Programming 99
Overview of Top-Level Facilities for User Interface

Programming 21
Table of Top-Level Facilities for User Interface

Programming 21, 101
The Facilities: Top-Level Facilities for User Interface

Programming 103
:top-Ievel-help 385, 387

dw: tracking-mouse 60, 201
dw: tracking-mouse macro 261

Translating mouse handlers 12, 21, 116, 185, 379
Presentation-to-command translation 17,21

Testing translator handlers 120,189
:truncate 125, 399, 410

cp: turn-command-Into-form 33, 135
cp: turn-command-Into-form function 160

tv:choose-varlable-values 173
tv:constralnt-frame-wlth-shared-Io-buffer 408
tv:defwlndow-resource 404, 409
tv:dollst-notlng-progress 201
tv:dollst-notlng-progress macro 212
tv:dotlmes-notlng-progress 201
tv:dotlmes-notlng-progress macro 213

455

August 1986 Index

tv:make-blnary-gray 57,223
tv:make-wlndow 399
tv:note-progress 201
tv:note-progress function 253
tv:notlng-progress 201
tv:notlng-progress macro 254
tv:process-mlxln 408
tv:wlndow 71,281
tv:wlndow presentation type 345

(flavor:method :expose-near tv:essential-set-edges) 172, 174, 175
TV fonts 266

allst-member presentation type 285
and presentation type 287

boolean presentation type 288
character presentation type 290

character-face-or-style presentation type 291
character-style presentation type 292

character-style-for-devlce presentation type 293
dw:member-sequence presentation type 311

dw:no-type presentation type 314
dw:out-of-band-character presentation type 319

dw:raw-text presentation type 324
fs:dlrectory-pathname presentation type 295
fs:wlldcard-pathname presentation type 343

Instance presentation type 304
Integer presentation type 305

Inverted-boolean presentation type 307
keyword presentation type 308
member presentation type 310
net:host presentation type 303

net:local-host presentation type 308
net:namespace-class presentation type 312

net:network presentation type 313
net:obJect presentation type 317

net:user presentation type 342
neli :Iocal-network presentation type 309

neti:namespace presentation type 312
netl:protocol-name presentation type 324

neti :slte presentation type 327
not presentation type 314
null presentation type 314

null-or-type presentation type 315
number presentation type 316

or presentation type 145, 318
package presentation type 320

path name presentation type 320
satisfies presentation type 325

sct:system presentation type 332
sct:system-version presentation type 332

sequence presentation type 325
sequence-enumerated presentation type 326

Show Presentation Type 69
string presentation type 329

subset presentation type 330
symbol presentation type 330

symbol-name presentation type 331
sys:code-fragment presentation type 295

sys:expresslon presentation type 297
sys:flavor-name presentation type 299

sys:font presentation type 299
sys:form presentation type 301

456

Programming the User Interface, Volume A August 1986

sys:functlon-spec presentation type 301
sys:generic-functlon-name presentation type 302

sys:printer presentation type 323
sys:stack-frame presentation type 328

t presentation type 333
The parts of a presentation type 70

tlme:tlme-Interval presentation type 334
tlme:t1me-lnterval-60ths presentation type 334

tlme:timezone presentation type 335
time:universal-tlme presentation type 339

token-or-type presentation type 337
tv:window presentation type 345

type-or-string presentation type 338
zwel :buffer presentation type 289

What is a Presentation Type? 70
The sys:expresslon presentation type and handler performance 44

The t presentation type and handler performance 44
sys:expression presentation type and performance 82

t presentation type and performance 82
Presentation type arguments 71
Presentation type equivalence classes 375, 376

:abbrevlatlon-for type expansions and handler performance 44
:expander type expansions and handler performance 44

Data type hierarchy 297
Presentation type history 71, 170, 297
Presentation type history inheritance 71

Type history pruning 297
Type-history pruning 304

Presentation type history pruning 71
Presentation type notation 71

type-or-string 71, 281, 354, 358, 363
type-or-strlng presentation type 338
:typeout-window 125
Typeout Window Option to Frame-Up Panes 110,

113
Writing a Presentation Type Parser 80

Compound presentation types 287,314,315,318,325,337,338
Dictionary Notes: Predefined Presentation Types 283

Dictionary of Predefined Presentation Types 281
Flavors and presentation types 304

Numeric presentation types 316
Overview of Predefined Presentation Types 71

Predefined Presentation Types 69, 285, 287, 288, 289, 290, 291, 292, 293,
295,297,299,301,302,303,304,305,307,
308,309,310,311,312,313,314,315,316,
317,318,319,320,323,324,325,326,327,
328,329,330,331,332,333,334,335,337,
338,339,342,343,345

Presentation types 9
Structures and presentation types 304

Table of Predefined Presentation Types 283
The Facilities: Predefined Presentation Types 285

Use of satisfies in presentation types 44
User-defined Data Types as Presentation Types 69, 82

User-defined Data Types as Presentation Types 69, 82
Presentation type syntax 71

457

August 1986 Index

u

v

u
:underllne 211

time: universal-time 71, 281
time: universal-time presentation type 339

:unknown 153
cp: unparse-command 33, 135
cp: unparse-command function 160
dw: unread-char-for-accept 76,80,347,378
dw: unread-char-for-accept function 384

:update-Iabel method of dw:margln-mlxln 411
(flavor:method: update-label dw:margln-mlxln) 87, 395

:update-optlons 152
net: user 71, 281
net: user presentation type 342

u

User-defined Data Types as Presentation Types 69,
82

Advanced User Input Facilities 35
Basic User Input Facilities 35

Dictionary Notes: User Input Facilities 165
Dictionary of User Input Facilities 163
Overview of User Input Facilities 35

Overview of Advanced User Input Facilities 39
Overview of Basic User Input Facilities 35

Table of Advanced User Input Facilities 165
Table of Basic User Input Facilities 165
The Facilities: User Input Facilities 167

User Interaction Paradigm 21
User interaction with Dynamic Windows 21
User Interface Application Example 91

Guide to User Interface Documentation 3
Introduction to the Us~r Interface Management System 7

User Interface Management System: an Overview
Dictionary Notes: Top-Level Facilities for User Interface Programming 101

Dictionary of Top-level Facilities for User Interface Programming 99
Overview of Top-Level Facilities for User Interface Programming 21

Table of Top-Level Facilities for User Interface Programming 21, 101
The Facilities: Top-Level Facilities for User Interface Programming 103

Top-Level Facilities for User Interface Programming 116, 122, 124, 133, 134
User Interface Programming Facilities 3
Utilities 23

Completion utility 353, 356, 362, 384
Help utility 385, 387

V
sl: *valld-faces* 263, 266
sl: *valld-famllles* 264,266
sl: *valld-slzes* 266

:value 193

v

Accept Values Function Option to Frame-Up Accept Values
Panes 107

Accept Values Pane Options 107
Accept Values Function Option to Frame-Up Accept Values Panes 107

cp::*default-biank-line-mode* variable 140
cp::*default-dispatch-mode* variable 140

cp::*default-prompt* variable 140
cp:*command-table* variable 139

cp:*last-command-values* variable 151
dw:*presentation-input-context* variable 381

dw:*program* variable 134

458

Programming the User Interface, Volume A August 1986

w

dw:*program-frame* variable 134
Program state variables 23, 25, 124

:vertlcal 233, 240
:vertlcal option to dw::wlth-output-truncatlon 271
Viewport 11

Current viewport 263, 278, 279, 399
Viewspec choices 13

Edit View specs 274, 276, 370
Edit viewspecs handler 63

:vlslble-cursorpos-lImlts 230
:vlslble-cursorpos-lImlts method of

dw:dynamlc-wlndow 263
(flavor:method: vlslble-cursorpos-limlts dw:dynamlc-window) 60,

201

W
:wakeup 153
What is a Presentation? 70
What is a Presentation Type? 70
:who-line-documentation-string 261

fs: wildcard-path name 71, 281
fs: wildcard-pathname presentation type 343
tv: window 71,281
tv: window presentation type 345

Dynamic Window coordinates 60

w

Dynamic Window Facilities 87,397,399,404,405,406,407,
408,410,411

Dynamic Window init options 399
Window interface 17

Dynamic Window Margin Components 399,404,405,406,
407,408,410,411

Dynamic Window methods and messages 399
Typeout Window Option to Frame-Up Panes 110, 113
Dynamic Windows 11, 87

User interaction with Dynamic Windows 21
Dictionary Notes: Window Substrate Facilities 397

Dictionary of Window Substrate Facilities 395
Overview of Window Substrate Facilities 87

Table of Window Substrate Facilities 87,397
The Facilities: Window Substrate Facilities 399

dw: wlth-accept-actlvatlon-chars 76,80,347,383
dw: wlth-accept-actlvatlon-chars macro 384
dw: wlth-accept-bllp-chars 76, 80, 347, 383
dw: wlth-accept-bllp-chars macro 385
dw: wlth-accept-help 76, 347
dw: wlth-accept-help macro 385
dw: wlth-accept-help-If 76, 347
dw: wlth-accept-help-If macro 387

wlth-character-face 49, 201
wlth-character-face macro 263
wlth-character-famlly 49, 201
with-character-famlly macro 264
with-character-slze 49, 201
wlth-character-slze macro 265
wlth-character-style 49, 201, 228
wlth-character-style macro 266

dw: with-output-as-presentatlon 47,57,201
dw: wlth-output-as-presentation macro 268

:wlth-output-recordlng-dlsabled method of
dw:dynamlc-wlndow 269

August 1986

x

y

459

Index

(flavor:method :
with-output-recording-disabled dw:dynamic-window) 60,
201

dw: with-output-to-presentatlon-recording-string 63,
201

dw: with-output-to-presentatlon-recordlng-string
macro 270

wIth-output-to-string 270
dw:: with-output-truncation 56, 60, 201

:horizontal option to dw:: wIth-output-truncaUon 271
:vertical option to dw:: wIth-output-truncatlon 271

dw:: with-output-truncatIon macro 271
dw: with-own-coordinates 60, 201
dw: wIth-own-coordinates macro 272
dw: with-presentation-input-context 78, 347, 381, 389
dw: with-presentation-input-context macro 388
dw: with-presentation-Input-editor-context 78, 347
dw: wIth-presentation-input-editor-context macro 389
dw: with-presentation-type-arguments 79, 347
dw: with-presentation-type-arguments macro 391
dw: wIth-redisplayable-output 201
dw: with-redisplayable-output macro 273
dw: with-replayable-output 63, 201, 370
dw: with-replayable-output macro 274
dw: with-resortable-output 63, 201
dw: with-resortable-output macro 276
dw: wlth-type-decoded 79, 347
dw: wlth-type-decoded macro 392

with-underlining 49, 201
with-underlining macro 277
:wrap 399,410
:write 296,321,344
Writing a Presentation Type Parser 80
Writing formatted output macros 13

Facilities for Writing Formatted Output Macros 63, 205, 209, 252
Overview of Facilities for Writing Formatted Output Macros 66

x
:x-scroll-posltlon method of

dw:dynamlc-wlndow 278
(flavor:method: x-scroll-posltlon dw:dynamlc-wlndow) 60,201

:x-scroll-to method of dw:dynamlc-window 278
(flavor:method: x-scroll-to dw:dynamlc-wlndow) 60, 201

y
cp: yank-and-read-full-argument-command 33
cp: yank-and-read-full-command 135, 161

:y-scroll-posltlon method of
dw:dynamlc-wlndow 279

(flavor:method: y-scroll-posltlon dw:dynamlc-wlndow) 60, 201
:y-scroll-to method of dw:dynamlc-wlndow 279

(flavor:method: y-scroll-to dw:dynamlc-wlndow) 60, 201

x

y

460

Programming the User Interface, Volume A

z z
zl:parse-ferror 80

Create Program Definition Zmacs Command for Frame-Up 114
Edit Program Definition Zmacs Command for Frame-Up 115

Insert Program Definition Zmacs Command for Frame-Up 115
Zmacs Commands for Frame-Up 114
zwel:bp 324
zwei:buffer 71, 281
zwei :buffer presentation type 289

August 1986

z

zwel:deflne-presentatlon-to-edltor-command-translator 295

