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A new proof method, subgoal induction, is presented as an alternative 

or supplement to the commonly used inductive assertion method. Its 

major virtue is that it can often be used to prove a loop's correctness 

directly from its input-output specification without the use of an 

invariant. The relation between subgoal induction and other commonly 

used induction rules is explored and, in particular, it is shown that 

subgoal induction can be viewed as a specialized form of computation 

induction. Finally, a set of sufficient conditions are presented which 

guarantee that an input-output specification is strong enough for the 

induction step of a proof by subgoal induction to be valid. 
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INTRODUCTION 

A variety of induction rules have been employed in program 

verification. Recursion induction [8] was the first, followed by 

structural induction [3,9], inductive assertions [4], and computation 

induction [11]. In this paper, we present a new induction rule, 

subgoal induction, which has several desirable properties: it is 

applicable to recursive as well as iterative programs; it is 

straightforward to use in mechanical program verification; and it leads 

to relatively simple proofs. We expand on these points below. 

Similar proof methods have appeared in [l,6,10,13,15]. In this 

presentation, we have tended to emphasize programming methodology as 

well as theoretical issues. Thus our exposition includes both informal 

discussions and formal proofs. 

THE RULE OF SUBGOAL INDUCTION 

We begin by presenting and motivating subgoal induction in a 

hopefully intuitive fashion--by coupling the induction rule with 

program synthesis. That is, we consider the construction of a program 

and a proof of its correctness simultaneously. Let the program be 

specified by the requirement that given input x it is to produce output 

z such that "l"(x; z) for some given predicatel "I". We propose to 

construct a recursive program F, as fol lows. For certain X, an 

appropriate z can be computed using a previously defined function; let 

P(x) test for those x and H(x) be the previously defined function; this 

leads t~ the fragment: 

if P(x) then H(x) 

and the verification condition 

(VI) P(x) -+ Y(x;H(x)) 

lFor emphasis, we use the delimiter ";" to separate the 
variable(s) from the output value. Thus "l"(a,b,c;z) relates 
variables a, b, and c to the output z. 

input 
input 
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For all other x, we propose to replace x by a somewhat simpler value, 

attempt to solve the problem for that simpler value, and then modify 

that solution to obtain a solution for x; let N be the function which 

maps x into the simpler value and L be the function which modifies the 

solution for N(x) in order to obtain a solution for x. This leads to 

the fragment 

else L(x, F(N(x))) 

The corresponding verification condition is 

( V2) - p ( x) /\ y ( N ( x) ; z ) ... y ( x; L ( x I z)) 

This may be read as: if -P(x) and if z is an acceptable output for F 

with input N(x) then L(x,z) must be an acceptable output for F with 

input x. The program is then 

(1.1) F(x) <= if P(x) then H(x) else L(x, F(N(x))) 

The above reasoning is an informal demonstration that if the two 

verification conditions Vl and V2 are valid, then Y(x;F(x)) is valid. 

This is an example of the rule of subgoal induction. 

The above argument tacitly assumes that F(N(x)) actually returns a 

value. If, to the contrary, F(N(x)) fails to terminate then F(x) fails 

to terminate. Proof of termination may be treated separately, e.g., 

based upon a well-ordering. In this paper, we will generally be 

concerned with partial correctness, i.e., consider only those cases 

where F(x) terminates. A more precise statement of subgoal induction 

reads: If Vl and V2 are valid, then for each x if F(x) terminates 

Y(x;F(x)) is true. We expand on this point and give a precise 

justification below. 

Observe that V2 is a stronger requirement than actually needed to 

establish Y(x; F(x)). It would, in principle, suffice to prove the 

somewhat weaker implication 

( V2 * ) - P ( x) /\ Y ( N ( x) ; z ) /\ z = F ( N ( x)) -t Y ( x; L ( x, z) ) 

This may be read as: If -P(x) and if z is the output of F(N(x)) and if 

the pair <N(x),z> is Y-acceptable then the pair <x,L(x,z)> must be Y­

acceptable. V2* follows directly from expanding the definition of F. 
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It differs from V2 in that its hypothesis includes the additional 

conjunct z = F(N(x)). The essential idea of subgoal induction is the 

absence of this conjunct: Provided that Y is a strong enough 

specification, z is adequately constrained by the requirement that 

Y(N(x);z) be true. In such cases, the conjunct z = F(N(x)) is 

unnecessary, and V2 is a valid theorem which, taken together with Vl, 

establishes Y(x;F(x)). We will later discuss in detail and illustrate 

with examples the conditions under which Y is a strong enough 

specification for this to work. Here it suffices to observe a result 

we prove below: Vl and V2 are valid if and only if the verification 

conditions for computation induction [11] are valid. 

Example l (Subgoal Induction) 

Let "/" denote integer division (with truncation) and define 

E(x) <= if x = 0 then 1 else L(x, E(x/2)), and 

L(x,y) <= if even(x) then y2 else K·y2. 

The property to be proved is Y(x; E(x)) where Y(x; z) 

verification conditions are: 

(Vl) x=O ~ 1 = KX (trivial) 

(V2) xi=O /\ z = Kx/2 ~ L(x,z) = Kx 

The 

Expanding L, this is x i= 0 /\ z = Kx/2 ~ if even(x) then z2=Kx else 

K·z2=Kx which may be proved by cases on even(x). I 

In the case where L and Hare the identity functions, the recursive 

function F defined in (1.1) is equivalent to the following while scheme 

while -P(x) do x~N(x) 

Let x0 and Xf be the initial and final values of x in this scheme. To 

establish Y(x0 ;xf) by subgoal induction, we must prove 

(Vl) P(x) ~ Y(x;x) 

( V2) - P ( x ) /\ Y ( N ( x ) ; z ) ~ Y ( x ; z ) 

Note that 

assertion 

the idea of loop invariant 

Y need not be true within 

does not appear. The output 

the loop and likely is not 

(otherwise we're wasting iterations!). In a sense, subgoal induction 
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allows the output assertion or intention of the loop to be used 

directly in its own proof. 

Example~ (Subgoal Induction on a while Loop) 

Consider the well-known iteration for finding the greatest common 

divisor of two positive integers 

while x 'I- y do if x<y then y+-y-x else x+-x-y 

Suppose one wishes to prove just that the final value of x divides the 

original values of x and y. The output assertion is 

i"(x 0 ,y0 ;xf) - Xf divides x0 A Xf divides y0 

Let ~ be the state vector. To prove Y by subgoal induction , two 

verification conditions must be established. The first is 

(Vl) P(~) -. i"(~;~) 

where ~=<x,y> and P(~) - x=y. This becomes 

x=y ... x divides x A x divides y. 

The second verification condition is 

(V2) -P(~) A Y(N(n;z) ... Y(~;z) 

where N(~) = if x<y then <x,y-x> else <x-y,y>. 

This becomes 

xt-y A 

z divides (if x<y then x else x-y) A 

z divides (if x<y then y-x else y) ... 

z divides x A z divides y 

(Vl) is immediate and (V2) follows easily from the general observation 

that 

z divides a A z divides b -t z divides a+b 

Notice that it was not necessary to invent an invariant assertion to 

prove Y; Y itself was a sufficient inductive hypothesis. 

It happens that the following is a good invariant 

(Vz) [z divides x A z divides y ... z divides x0 A z divides y0 ]. 

However, it appears that a proof by inductive assertions will be more 

complicated than the foregoing proof. 
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Because while loops are a commonly occurring syntactic form to 

which subgoal induction is directly applicable, it is appropriate to 

introduce a simple notation for their output assertions. We propose 

while <Boolean expression> do <statement> thus <output assertion> 

The <output assertion> is to be true on exit from the while loop. It 

uses the following notation: If x is a free variable, then x0 (read as 

"original x") is an initial value of the corresponding program variable 

x; other free appearances of x are understood to denote the final value 

of the corresponding program variable. Hence, the above program may be 

written 

while x #: y do if x<y then y+-y-x else x+-x-y 

thus x divides x0 A x divides Yo 

The extension of this notation to for loops and multiple-exit while 

loops should be clear. 

Subgoal induction can be applied to more general program structures 

involving nested recursive calls and mutually recursive functions. For 

example, consider 

F(x) <= if P0 (x) then L0 (G(N0 (x))) 

else if P1(x) then Li(G(N2(F(N1(x))))) 

else L2(F(N3(x)), F(N4(x))) 

G ( y) < = if P 5 ( y ) then H ( y) else F ( y) 

with output assertions Yr(x;F(x)) and YG(y;G(y)). To form the 

verification conditions for proof by subgoal induction, three 

additional concepts are required. We state and illustrate these in 

turn. 

(1) Mutual recursion is handled by using the output predicate for the 

called function in forming the verification condition for the calling 

function. Thus, the verification condition for the first path through 

F is: 
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This is obtained as follows: let F be called with argument x and 

suppose that P0 (x); to compute F's value, G is called with argument 

N0 (x); let that result be ZG subject to the constraint VG(N0 (x); zG): 

the result of F is L0 (zG); to prove F correct, we must be able to show 

that VF(x;L0 (zc)). 

(2) Multiple function calls on distinct functions are handled by 

introducing additional individual variables--one for each called 

function. Thus, the verification condition for the second path through 

F is: 

(FV2) -P 0 (x) /\ P1(x) /\ VF(N1(x);zF) /\ VG(N2(zF);zG) -+ 

VF(x;L1(zG)l 

This is obtained as follows: let F be called with argument x and 

suppose that -P 0 (x) and P1(x); to compute F's value, the first step is 

to call F recursively with argument Ni(x); let that result be zF 

subject to the constraint YF(N1(x);zF); next, G is called with N2(zF); 

let that result be zc subject to the constraint that Yc(N2(zF);zc); the 

result of the original call on F is Li(zc); to prove F correct, we must 

be able to show that VF(x;L1(zc)). 

(3) Multiple calls on the same function are handled by introducing 

additional individual variables, subject to the constraint of the 

output assertion and the further constraint that when the arguments to 

the function are equal, then the outputs are equal. 

verification condition for the third path through F is: 

(FV3) -P 0 (x) /\ -P1(x) /\ VF(N3(x);z3) /\ Yy(N4(x);z4) /\ 

(N3(x) =N4(x) -+ z3=z4) -+ VF(x; L2( z3, z4)) 

Thus the 

This is obtained as follows: let F be called with argument x and 

suppose that -P0 (x) and -P1(x); to compute F's value, F is recursively 

called twice, with arguments Na(x) and N4(x); let the results be z3 and 

z4 respectively, subject to the constraints YF(N3(x);z3), Yf{N4(x);z4) 

and the further constraint that if Na(x) equals N4(x) then z3 equals 
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z4; to prove F correct, we must be able to show that the final result, 

L2(z3,z4), satisfies YF(x;L2(z3,z4)). 

The two verification conditions for the two paths through G are 

obtained analogously: 

(GVl) P5(y)-+ i"G(y;H(y)) 

( GV2) - P 5 ( y) A i"F ( y; z F) -+ i" G ( y; z F) 

We now turn to a more precise statement of the rule of subgoal 

induction. Let F be defined by 

F <= r[F] 

where T is a first-order program, i.e., all appearances of Fare as the 

operator in a function call. Then to prove 

i"(x;F(x)) 

it suffices to prove 

where f3 is obtained from T by replacing, inside out, each call on F, 

F(yi), with a new individual variable zi. Since T is assumed to be 

first order, this eliminates all appearances of F from T. Hence (SGI) 

is entirely free of F provided that the definition of i", i"(x;z), is 

free of F. 

In practice, it is useful to split (SGI) into cases--one for each 

path through the program. Consider the schema 

F(x) <= if P1(x) then a1(x) else if P2(x) then a2(x) else 

an(x) 

where the a's are arbitrary expressions possibly involving F. Subgoal 

induction may be used to directly compile one verification condition 

for each of the n cases in the definition. The consequent of the i th 

term is i"(x;/3i) where Pi is obtained from ai by replacing, inside out, 

each call on F, i.e., F(Yi), with a new individual variable. For each 
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replacement thus made, a constraint term Y('Yi;zi) is formed which 

forces zi to be an acceptable output for Fon input Yi· The antecedent 

of the verification condition is the conjunction of the constraint 

terms and the path conditions, {Pi}· The ith verification condition is 

i-1 
/\ -P·(x) /\ 

j =1 J 

"f'(x:Pi> 

k 
P· (x) /\ /\ "f'(y·; z-) /\ 

l j=l J J 

An example may clarify how the Pi's are obtained. 

Example ~ (Nested Recursive Function Calls) 

The following function flattens an S-expression x, in the sense 

that it creates a one-level list whose elements are the atoms of x in 

print order, appended to y. 

F(x,y) <= if atom(x) then cons(x,y) else F(car(x), F(cdr(x), y)) 

We wish to show that F(x,NIL) is identical to the result of a simpler 

procedure G, which flattens a list in a slower but more obvious way, as 

fol lows: 

G(x) <= if atom(x) then cons(x,NIL) else append(G(car(x)), 

G(cdr(x))). 

The auxiliary function append is defined 

append(x,y) <= if nul l(x) then y else 

cons(car(x),append(cdr(x),y)). 

The output assertion for F is Yp(x,y;z) 

The verification conditions are 

{z = append(G(x), y)}. 

(Vl) atom(x) ~ cons(x,y) = append(G(x), y) 

which is obviously valid, upon expansion of G and append. 

(V2) -atom(x) /\ z1 = append(G(cdr(x)), y) /\ 

z2 = append(G(car(x)), z1) ~ 

z2 = append(G(x), y) 
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Substituting for equals and expanding G for a non-atomic argument, this 

s imp l if i es to 

-atom(x) ~ append{append(G(car(x)), G(cdr(x))), y} 

= append{G(car(x)), append(G(cdr(x), y)} 

which is an instance of a simple fact about append 

append(append(u,v), w) = append(u, append(v,w)), i.e., that append is 

associative. 

A general statement of subgoal induction for mutually recursive 

functions can now be presented. Let 

... ' 
be a system of mutually recursive functions. Suppose we are given 

output specifications for the first mSn of these 

Y m ( x ; Fm ( x ) ) 

Then to prove Y1(x, Fl(x)), it suffices to prove 

["i'il (Y1;z1) /\ ... /\ yik('Yk;zk) 

~ "i'1(x;P1) 

/\ /\ ('Yp=ylq ~ Zp=zq)) 
lSp,qSk 

where /31 is obtained from r1 by replacing, inside out, each function 

cal 1 

Fij('Yj) 

b ( h 1<" < ) y Zj were -Ij-m . Provided that the Y's are free of Fj's (lSjSm), 

the resulting verification conditions will be free of such Fj's. Thus, 

subgoal induction may be seen as a systematic way of using output 

specifications to eliminate function letters from theorems to be 

proved. 

RELATION TO OTHER PROOF METHODS 

3.1 Inductive Assertions 

Subgoal induction is, in a sense, a backward method of proving 
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something compared to the inductive assertion method. The two methods 

correspond to two different ways of expanding the flow chart in Figure 

la into an "infinite" flow chart. Figure lb shows the conventional 

expansion into a flowchart with one starting point and an infinite 

number of stopping points. Figure le shows a backward expansion into a 

flow chart with one stopping point and an infinite number of starting 

points. This second expansion may seem unorthodox, but a careful 

examination will reveal that it describes the same set of finite (i.e., 

terminating) computations as the first. Each computation corresponds 

to the choice of a stopping node in Figure lb or a starting node in 

Figure le. 

Now suppose we wish to prove that the input-output relation 

V(x0 :xr) - <ll(x0 ) -+ 8(x0 ;xf) holds for any finite computation which 

originates in state x0 and finishes in state Xf. Obviously, to prove 

this for the infinite number of start-to-stop paths in either Figure lb 

or Figure le we must use an inductive method based upon the method in 

which the n+lst path is generated from the first n. 

The inductive assertion method uses the expansion in Figure lb as 

follows. Given <ll(x 0 ) as an assumption, find an inductive assertion 

f(x 0 ;x) 

(1) 

(2) 

and show 

<ll(x0 ) -+ f(x 0 ;x 0 ); 

-P(x) /\ f(x 0 ;x) -+ 

i.e., it holds initially. 

f(x 0 ;N(x)); i.e., if f holds between the 

states at points 0 and n then it holds between states 0 and n+l. 

(3) P(x) /\ f(x 0 ;x) -+ 8(x0 ;x); i.e., f(x 0 ;x) is sufficient to 

prove the desired input output relation, when the computation halts. 

The subgoal induction method uses the expansion in Figure le as 

follows 

(1) P(x) -+ V(x,x), i.e., V holds between points 1 and 0. 

(2) -P(x) /\ V(N(x);xr) -+ V(x;xr), i.e., if V holds between 

points n and 0, then it holds between points n+l and 0. 

Thus the inductive assertion proof moves forward in the sense that 

it shows that some relation between the current state and the initial 
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x ~ N(x) 

Figure la. A flow chart 
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Figure lb. A forward-expanded flow chart 
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Figure le. A backward-expanded flow chart 
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state is maintained as the current state becomes the next state. The 

subgoal induction proof moves backward in the sense that it shows that 

a relation between the current state and the final state is maintained 

as the current state becomes a previous state. 

The two methods are readily inter-translated. Performing the 

translation for the program in Figure 1 should serve to convince the 

reader. 

Suppose an inductive assertion proof of B(x0 ;xf) at the end of the 

loop with input assertion ~(x0 ) has been achieved, i.e., we have proved 

To 

(Fl) 

(F2) 

( F3) 

~{x0 ) -+ r(x 0 ;x0 ) 

P(x) /\ r(x 0 ;x) -+ 

-P(x) /\ r(x 0 ;x) -+ 

8(x0 ;x) 

r(x 0 ;N(x)) 

establish the same result by subgoal induction, 

Y(x 0 ;xf) - (Vy) [r(y;x0 ) -+ S(y;xf)] 

Then prove y by subgoal induction; i.e .. prove 

( Vl' ) P(x) -+ ( \fy) [f(y;x) -+ 8(y;x)] 

and 

define 

(V2') -P(x) /\(Vy) [f(y;N(x)) -+ 8(y;xf)] -+ 

(Vy') [r(y';x) -+ S(y';xf)] 

These follow from F2 and F3 respectively. To prove V2', for example, 

let y' be given; choose y to be y'; instantiate the free variable x0 in 

F3 as y'; then V2' follows directly. 

Finally, from Fl and Y{x 0 ;xf) (again choosing y to be x0 ) we can 

deduce 

~(x0 ) -+ 8(x0 ;xf) 

Using this method, any inductive assertion proof can be translated into 

a subgoal induction proof. 

The translation in the other direction is similar and was shown in 

[17] in a slightly different form. 

8(x0 ;xf) 

(Vl) 

(V2) 

has been shown by subgoal induction, i.e. 

P(x) -+ Y(x;x) 

-P(x) /\ i"(N(x);xr) -+ Y(x;xr) 

~(xo) 



12 

To construct an inductive assertion proof define the inductive 

assertion f(x 0 ;x) as follows 

f(x0 ;x) - (\fy) [i"(x;y) -+ Y(x0 ;y)] 

Then show 

(Fl') 4>(x0 ) -+ (\fy) [V(x0 ;y) -+ i"(x0 ;y)] 

(F2') P(x) A (\fy) [i"(x;y) -+ V(x 0 ;y)] -+ Y(x0 ;x) 

( F3') -P(x) A (\fy) [i"(x; y) 

(\fy') [i"(N(x) ;y') -+ 

These are easily proved: 

Fl' is a tautology 

-+ i"(x 0 ;y)] 

V(xo ;y' )] 

-+ 

F2' follows from Vl, if we substitute x for y 

F3' follows from V~. if we substitute Xf for y and y' I 

3.2 Computation Induction 

Subgoal induction may be viewed as a specialization of computation 

induction [11] to the familiar problem of proving partial correctness 

of first-order programs; i.e., the same problem that the inductive 

assertion method treats. The details of this connection are presented 

in the Appendix. Here it should suffice to illustrate the idea for the 

specific scheme 

F(x) <= if P(x) then x else L(F(N1(x)), F(N2(x))) 

To prove Y(x;F(x)) the rule of computation induction [11] requires one 

to prove 

(3.1) (\fg) [(\fx') V(x';g(x')) -+ 

(\fx) V(x; if P(x) then x else L(g(N1(x)), g(N2(x))))] 

The intuition behind this formula is that one may assume the property 

to be proved for the recursive calls of F while proving it for the body 

of F. The variable g is used instead of F to insure that no circular 

reasoning is possible. 

A plausible strategy for proving (3.1) is to instantiate the 

premise 

(3.2) (\fx') Y(x' ;g(x')) 
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twice, with Nl(x) and N2(x) substituted for x' and use the resulting 

formulas to prove the conclusion. This is equivalent to proving 

(3.3) (Vx,z1,z2) ["l"(N1(x);z1) /\. "l"(N2(x);z2) -+ 

"l"(x; if P(x) then x else L(z1.z2))] 

While it is straightforward to show that (3.3) implies (3.1) (i.e., 

that the strategy is sound), it is somewhat surprising that (3.1) 

."almost" implies (3.3). Specifically, if the clause 

Nl(x)=N2(x) -+ z1=z2 

is added to the premise of (3.3), yielding 

(3.4) (Vx,z1,z2) ["l"(N1(x);z1) /\. "l"(N2(x);z2) /\. (N1(x)=N2(x) 

z1=z2) -+ "l"(x; if P(x) then x else L(z1,z2))] 

then the resulting formula follows from (3.1). In fact, (3.4) is 

equivalent to (3.1). Showing (3.4) -+ (3.1) is straightforward. To 

show (3.1)-+ (3.4), suppose that (3.4) is false, i.e., for some x,z1,z2 

(3.5) "l"(N1(x);z1) /\ "1"(N2(x);z2). 

(3.6) Nl(x)=N2(x) -+ z1=z2. and 

(3.7) -"l"(x; if P(x) then x else L(z1.z2)). 

To show that (3.1) is false define the partial function h by 

h(y) = 

z1 if y=N1(x) 

z2 if y=N2(x) 

undefined otherwise 

By (3.6) h is well-defined. Then (3.1) is false for g=h since 

(Vx') "l"(x';h(x')) 

by (3.5), (recall that Y is a partial correctness relation) but 

-"l"(x; if P(x) then L(h(N1(x)) ,h(N2(x))) 

by (3. 7). 

This informal demonstration is basically an outline of the 

following theorem proved in the Appendix. 

Theorem 1. The statement to be proved in a subgoal induction proof, 
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i.e., (SGI) in section 2, is equivalent to the statement required by a 

computation induction proof. 

COl\IBINING THE METHODS 

The techniques of subgoal induction and inductive assertion provide 

alternative methodologies for stating and proving properties of 

programs--by "going backward" and "going forward" respectively. 

Because each of these directions is most natural for certain sorts of 

properties an obvious consideration is to combine them. A proof can 

then be partitioned and carried out partly with inductive assertions 

and partly with subgoal induction. Just how this can be done and under 

what circumstances it is a good strategy can best be understood by 

examining a special case of subgoal induction 

naturally to a partitioning. 

which leads very 

specification takes a 

If the input x satisfies 

It is commonly the case that an output 

particular form which may be read as follows: 

certain constraints then the output is to have 

properties; 

unspecified 

operation). 

Y(x;z) 

certain 

if the 

(usually 

input constraints are violated, the 

because such inputs 

That is, i"(x;z) has the form 

- <l>(x) -+ 8(x;z) 

can never occur 

specified 

output is 

in program 

The constraint <I> is usually referred to as an input specification. 

For simplicity, we discuss the schema F(x) <= if P(x) then H(x) 

else L(x, F(N(x))); the general case of multiple recursive functions is 

analogous. Writing the verification conditions for "Y as defined above, 

and rearranging, we obtain 

(Vl) P(x) /\ <l>(x) -+ 8(x;H(x)) 

(V2) -P(x) /\ <l>(x) /\ [<l>(N(x))-+ 8(N(x);z)] -+ 8(x;L(x,z)) 

Vl is straightforward: it requires that if the input constraint is 

satisfied and the program terminates immediately then the output, H(x), 

be a 8-acceptable output. V2, however, is more complex. Suppose the 
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left hand side of V2 is true, and consider proving the right hand side, 

9(x; L(x,z)). Observe that 9(x; L(x,z)) involves the free variable z, 

but that z is restricted in the left hand side only by the conjunct 

[<l>(N(x)) -+ 9(N(x);z)]. As this conjunct could conceivably be true by 

virtue of <l>(N(x)) being false, nothing necessarily is known about 

9(N(x);z) and hence nothing is known about z. A plausible proof 

strategy would be to establish that this cannot occur, i.e.' to first 

prove 

(V2a) -P(x) A <l>(x) -+ <l>(N(x)). 

If true, (V2a) would guarantee that whenever the left hand side of (V2) 

is true, <l>(N(X)) is true and hence 9(N(x);z)) is true. It would then 

suffice to prove that 

(V2b) -P(x) A <l>(x) A <l>(N(x)) A 9(N(x);z) -+ 8(x;L(x,z)) 

V2a is of considerable interest. It requires that <I> be an 

invariant precondition for the function F: If <I> is true for some 

initial value of x given as input to F, then it must be true for all 

subsequent nested calls in F. Alternatively, it is useful to look at 

the syntactic form of V2a and observe that it has the form of a 

verification condition for the inductive assertion <I> around the loop 

while -P(x) do x+-N(x). 

Viewed in this way, <I> behaves as a normal invariant which, once 

established, may be used to assist the proof of V2b. This is somewhat 

surprising in that <I> and V2a were obtained from a subgoal induction 

proof using a "backwards going" induction. It illustrates that the two 

methods are really duals and that translation between them can be 

carried out on a very local level. As a first guideline as to how a 

proof should be partitioned, we observe that this sort of decomposition 

may be useful whenever it is possible to state a relatively simple 

invariant <I> describing which inputs are acceptable. Proof of this 

invariant is then decoupled from the remainder of the proof concerned 

withe. 

Some additional syntax will help to crystallize this combined 
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method. We consider the case of while loops and extend our earlier 

notation to propose 

maintain <I>(x) while -P(x) do x~N(x) thus 8(x0 ;x) 

Proving Vl, V2a, and V2b then establishes the input-output relation 

V' (x0 ;xr) - <I>(x0 ) -+ [<l>(xf) /\. P(xr) /\. 8(x0 ;xr)] 

Example 1 (Binary Search) 

Consider the loop 

maintain {b:Sc /\. (Vi I b:Si Sc) A[ i ]SA[ i+l]} 

while b ':/ c 

do begin d~(b+c)/2; if key>A[d] then b~d+l else c~d end 

thus {key= A[b] - (3i' lb0 Si 'Sc 0 ) key= A[i']} 

(Note that the output assertion does not require that the key be 

present in the table: it specifies that the key will be found if and 

only if it is present.) 

Proving that the maintain clause is, in fact, an invariant is 

straightforward. Let <I>(b,c) denote this invariant, then the other 

verification conditions are 

(Vl) b = c /\. <l>(b,c) -+ 

{key= A[b] - (3i' lbSi'Sc) key= A[i']} 

(V2b1) {b ':/ c /\. <l>(b,c) /\. d = (a+b)/2 /\. key>A[d] /\. 

(key= A[z] - (3ild+l:SiSc) key= A[i])} -+ 

{key= A[z] - (3i' lb:Si'Sc) key= A[i']} 

(V2b2) {b ':/ c /\. <l>(b,c) /\. d = (a+b)/2 /\. key:SA[d] /\. 

(key= A[z] - (3ijb:Si:Sd) key= A[i])} -+ 

{key=A[z] - (3i'jb:Si'Sc)key=A[i']}I 

Let us now consider a more technical aspect of this method: Is it 

"as powerful" as subgoal induction in the sense that V2 implies V2a and 

V2b? The answer, roughly speaking, is yes, except in cases which 

should never occur. More precisely, we reason as follows: 
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Definition. i"( x; z) <I>( x) 9(x;z) is said to be "well-behaved" 

with respect to F if 

(Vx) (-P(x) /\. <I>(x) -+ (3z)-9(x;L(x,z))) 

That is, if Y is well-behaved, then whenever <I> is true and P is false 

of some x, there is some z such that L(x,z) is rejected by 9. An 

output predicate Y which is not well-behaved has at least one x' which 

is acceptable input (<I>(x') = true) and for which the function recurses 

(P(x') = false), but for which any outcome whatever is acceptable 

according to 9. This means that the function is needlessly continuing 

to recurse. We cannot think of any real examples in which such a 

situation occurs. 

Theorem 2. If Y is well-behaved with respect to F and if V2 is valid, 

then V2a and V2b are valid. 

Proof (by contrapositive). First note that V2 implies V2b immediately. 

Suppose that V2 is valid but that V2a is not valid; we will show that Y 

is not well-behaved. Since V2a is not valid, it is false for some x, 

say x', 

(-V2a) -P(x') /\. <I>(x') /\. -<I>(N(x')) 

is true. Consider V2 for x' 

-P(x') /\. <I>(x') /\ [<I>(N(x')) -+ 8(N(x');z)] -+ 8(x';L(x',z)) 

Using the truth of (-V2a), this simplifies to 

8(x' ;L(x' ,z)) 

Since (V2) is valid, this must be true for all z. Thus Y is not well­

behaved. 

As a somewhat digressional point, we observe that this result may 

be employed in one other way. In mechanical program verification there 

is the possibility that a specification supplied by the programmer is 

incomplete and not strong enough to carry itself through the induction. 

V2 is then invalid and detecting this situation is necessary. Suppose 

that Y(x;z) has the form <I>(x) -+ 8(x;z) and that 8 is well-behaved. 

In many cases, it is possible to test for this syntactically, (e.g., if 
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8(x;z) has the form z = g(x)). Because V2a does not depend on 8, it is 

less complex than V2. If the difference in complexity is significant, 

V2a may provide a useful filter for testing whether Y is complete. If 

V2a can be shown to be invalid, then the above theorem establishes that 

y is incomplete, without further consideration of e. 

The combined use of subgoal induction and inductive assertions may 

be applied, of course, to complete programs as well as simple loops. 

In general, a procedure has an input assert ion, and an output 

assertion; intermediary points may be labeled with invariant 

assertions; while and for loops may be tagged with maintain invariants 

and thus subgoals. The inductive assertion method can be used to 

establish the correctness of the input assertion and the invariants by 

a "going forward" induction on program flow. Once established, a valid 

loop invariant can be used in the proof of a verification condition for 

a subgoal induction. 

In particular, a while or for loop is treated as a recursive 

function in the sense that its output condition is used in forming the 

verification condition for a path which passes through the loop. For 

example, consider some while loop, W: 

maintain <I>(x) while -P(x) do x+-N(x) thus 8(x 0 ;x) 

and consider some case of a recursive function F which passes through 

w. 
F(x) <= if P'(x) then L(x, F(N2(W(x)))) else ... 

The verification condition can be treated as being formed in two steps: 

(1) Remove occurrences of F, by using Yp: 

P'(x) A "l"F(N2(W(x));zp) -+ Yp(x;L(x,zy)) 

(2) Remove occurrences of W, by using "l"w: 

P'(x) /\ "I"w(x;zw) /\ Yy(N2(zw);zp) -+ Yp(x;L(x,zp)) 

where the loop specification Yw is defined as 

Yw(x;z) - <P(x) -+ [<P(z) /\ P(z) /\ 8(x;z)]. 

{The treatment of for loops is analogous.) In practice, it is 

convenient to carry this out in a single step and regard Yw as 

specifying the semantics of a loop. 
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Considering the other direction, subgoal induction can be used to 

establish the correctness of output assertions on recursive functions 

by a "going backward" induction. Once established, a valid output 

assertion describing the result returned by a called function can be 

asserted in a normal flowchart program. This allows a direct treatment 

of recursion mixed with normal program constructs such as loops, jumps, 

and exits. We illustrate this mixed case with an example. 

Example Q (Partition Sort) 

So as to present the algorithm and its proof as simply as possible, 

we use a rather high-level notation--essentially Algol 68. Procedures 

may be passed and may return arrays; if A is an array, A[ j: k] is the 

sub-array between A[j] and A[k] inclusive; length(A) returns the length 

of A; the infix operator "0 " denotes concatenation of arrays. 

real array procedure PSort(A), real array A; value A; 

begin int n; n~length(A); 

if n = 1 return A; 

begin real array[l:n] S,B; int s,b; real x; 

s~b~O; x~A[n/2]; 

end 

for j froin 1 to n do 

maintain (Vi llSiSs) (S[i]<x) /\ (Vi pSiSb) (xSB[i]) 

/\ perm(A[l:j-1], S[l:s] 0 B[l:b]); 

if A[j]<x then S[s~s+l]~A[j] else B[b~b+l] ~ A[i]; 

return PSort(S[l:s]) 0 PSort(B[l:b]) 

end PSort output assertion ordered(PSort(A)) /\ perm(A,PSort(A)) 

where ordered and perm are defined 

ordered(A) 

perm{P,B) 

(VillSi<length(A)) A[i]SA[i+l] 

length(A) = length{B) /\ 3R 

((VillSi<length(A)) (lSR[i]Slength{A)) 

/\ (Vi,i'llSi<i'Slength(A)) (R[i] ~ R[i']) 

/\ (VillSiSlength{A)) {A[R[i]] = B[i])) 
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Consider the proof by subgoal induction of the output assertion 

Ys(A;PSort(A)) where 

Ys(A;z) - ordered(z) A perm(A,z) 

Let ~be the state vector. There are two cases 

(Vl) P(s) -+ Ys(~;H(s)) 

where P(~) = length(A)=l and H(s) - A. This becomes 

length(A) = 1 -+ ordered(A) A perm(A,A) 

which is easily proved by expanding the definitions of ordered and 

perm. To prove the second case, assume that the invariant on the for 

loop has been validated by the inductive assertion technique. Further, 

observe that the invariant is initially true. 

input/output specification for the for loop is 

Thus the verified 

i"y(;A,S,B,s,b,x) - (Vi!lSiSs) (S[i]<x) A (VipSiSb) (xSB[i]) A 

perm(A,S[l:s] 0 B[l:b]) 

(Note that in the absence of a thus clause which requires it, the input 

to the loop does not appear in this specification.) Let zy be the 

state vector after the for loop terminates, let Ni(zy) = S[l:s], let 

N2(zy) = B[l:b], and let L(z1,z2) = z1°z2; then the second verification 

condition may be written 

(V2) -P(s) A i"y(s;zy) A v8(N1(zy);z 1) A v8(N2(zy);z2 ) -+ 

i"s(~;L(z 1 ,z 2 )) 

That is, 

length(A)¢1 A i"y(;A,S,B,s,b,x) A ordered(zi) A 

perm(S[l:s],z1) A ordered(z2) A perm(B[l:b],z1) -+ 

ordered(z1°z2) A perm(A, z1°z2) 

Proof of this reduces to establishing two results 

ordered(z1) A ordered(z2) A perm(U,z1) A perm(V,z2) 

(Vi pSiSlength(U)) (U[ i J<x) (Vi I lS iSI ength(V)) (xSV[ i]) -+ 



21 

both of which may be proved by using the definition of perm. 

A COMPLETENESS RESULT 

We have previously touched upon a question which we now consider 

more fully: Under what circumstances is a specification strong enough 

to carry itself through an induction? Common experience has shown that 

input-output specifications are often too weak to be induction 

hypotheses, i.e., the resulting verification conditions are not valid. 

Section 4 presents a negative result: If Y(x;z) has the form <l>(x) -+ 

S(x;z), if 'It is well-behaved, and if <I> is not an invariant, then the 

induction formula is not valid. In this section we present a positive 

result, establishing a completeness result for subgoal induction. For 

simplicity, we consider the schema F(x) <=if P(x) then H(x) else 

L(x,F(N(x))); conditions for more general forms are analogous. 

Definition. 'lt(x;z) <l>(x) S(x;z) is said to be a "tight 

specification" if 

-P(x) /\ <l>(x) /\ 8(N(x);z1) /\ 8(N(x);z2) -+ L(x,z1) = L(x,z2) 

Essentially, 'It is a tight specification if two z's that are both 

accepted by 8 produce identical outputs from L. 

Theorem 3. If 'lt(x; z) <l>(x) 

<I> is an invariant, if F is 

'lt(x;F(x)) is valid, then 

-+ S(x;z) is a tight specification, if 

total on the domain {xl<l>(x)}, and if 

(V2} -P(x) /\ 'lt(N(x);z) -+ Y(x;L(x,z)) 

is valid. 

Proof. Rewrite (V2) as 

(5.1) -P(x) /\ <l>(x) /\ [<l>(N(x)) -+ S(N(x);z)] -+ S(x;L(x,z)) 

Consider some x', z' for which the left hand side is true 

-P(x') /\ <l>(x') /\ [<l>(N(x'}) -+ 8(N(x');z')] 

Since <I> is an invariant, <l>(x') /\ -P(x') -+ <l>(N(x')); hence, it 

follows that 



-P(x') /\ 4>(x') /\ cl>(N(x')) /\ 9(N(x');z') 

Since F is correct and F(N(x')) is defined, cl>(N(x')) 

9(N(x');F(N(x' )));hence, it follows that 

-P(x') /\ cl>(x') /\ cl>(N(x')) /\ 8(N(x');z') /\ 9(N(x'); F(N(x'))) 

From the definition of tight specification, this implies 

(5.2) L(x',z') = L(x',F(N(x'))) 
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Since cl>(x) -+ 9(x;F(x)) is valid, upon expanding the definition of F 

we obtain 

(V2*) -P(x') /\ cl>(x') /\ [cl>(N(x')) -+ 9(N(x');F(N(x')))] -+ 

8(x' ;L(x' ,F(N(x' )))) 

This, taken together with (5.2), implies 

9(x' ;L(x' ,z')) 

which is the right hand side of (5.1). Thus (V2) is valid. 

Observe that if 9 characterizes z by a function, 8(x;z) z=g(x), 

then i" is surely a tight specification. In particular, consider the 

case of proving two programs F <= r[F] and G <= a[G] equivalent. Let 

the output assertion for F be "l"F(x;z) - z=G(x). This is a tight 

specification and it therefore follows that the verification conditions 

for subgoal induction are valid. Thus this theorem can be viewed as a 

generalization of results in [1] and [13]. 

Because of the intertran~latibility between subgoal induction, 

inductive assertions, and computation induction, as established in 

Section 3, it follows that results analogous to Theorem 3 apply to 

these other proof methods as well. Thus we have established a 

sufficient (but not of course) necessary criteria for judging when a 

specification is strong enough, so that the induction step is valid. 

Proof of this valid theorem depends, of course, on the decidability of 

the domain--which is a distinct issue. 

CONCLUSION 

Currently, there are three induction methods in common use for 



mechanical program verification: structural induction 
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[2,15], 

inductive assertions 

proposing a fourth, 

[5,7,16] and computation induction [14]. In 

subgoal induction, it is perhaps worthwhile to 

discuss just why it might be used in preference to one of the current 

methods. 

At a formal level, all are equivalent when applicable: the results 

of Section 3 establish the formal equivalence of computation induction 

to subgoal induction and of inductive assertions to subgoal induction 

restricted to flowchart programs; further, [11] establishes the formal 

equivalence of structural and computational induction. The utility of 

subgoal induction lies not in formal power, but rather in its 

applicability, its directness, in the relative simplicity of the 

assertions it requires, and in the simplicity of the verification 

conditions it produces. 

Subgoal induction may be useful in preference to structural 

induction in cases where the structure to be 

Structural induction requires an 

structure so that the induction 

explicit 

can be 

inducted on is complex. 

determination of the 

set-up. Such explicit 

determination may be difficult to mechanize where the well-ordering is 

complex, e.g., Binary Search, or Partition Sort. In such cases it may 

be easier to use subgoal induction which uses the computation sequence 

directly to establish the induction. 

Subgoal induction may be preferable to computation induction since 

it has, in effect, "compiled" the computation induction rule into an 

equivalent but simpler form. In particular, subgoal induction 

generates first order formulas as verification conditions whereas 

computation induction generates second order formulas--due to the 

quantification over function letters. Thus subgoal induction avoids 

certain issues in the mechanization of higher-order logic which must be 

addressed when using computation induction. 

With respect to inductive assertions, we regard subgoal induction 

as simply complementary. Subgoal induction can be used to generate the 
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verification conditions for function calls, thus allowing use of 

recursive functions in a flowchart program. Further, the rule of 

subgoal induction specialized to while loops can be used to verify such 

loops without explicit inductive assertions or with weaker-than-normal 

inductive assertions inside the loops. Finally, invariants verified by 

the inductive assertion method can be used as auxiliary information in 

proving subgoal induction verification conditions. Thus the two 

methods fit well together and each somewhat simplifies the work of the 

other. 
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APPENDIX: RELATION TO COl\IPUT ATION INDUCTION 

We assume that the reader is familiar with the notation and 

concepts of [11]. The rule of computation induction as presented 

there is cast in a conceptual framework somewhat at variance from 

the current one. Before illustrating the close connection between 

computation induction and subgoal induction we shall attempt to 

reconcile this variance. First, [11] deals more explicitly with 

undefinedness: All functions are presumed to be total over a domain 

and range which include w, the "undefined" value. Second, the 

meaning of a function definition is based upon call-by-name 

semantics, rather than the more familiar call-by-value semantics. 

Let us illustrate the connection by translating a typical 

partial correctness problem into the framework of [11]. Given the 

function definition 

h(x) <= if P(x) then H(x) else h(N(x)) 

prove T(x;h(x)). First we define a new function f. 

f ( x) < = if x = w then w else if P ( x) then H ( x) else f ( N ( x) ) 

Thus, the call-by-name meaning of f is precisely the call-by-value 

meaning of h. 

i"(x;z) -

Second, define a new predicate 

z=w V T(x;z) 

This simply makes the partial correctness aspect of Y explicit. The 

correctness problem now becomes: Prove Y(x;f(x)). 

With this translation of problem statement in mind let us now 

consider the rule of computation induction. Given a recursive 

definition of a function with the general form 

f(x) <= r[f](x) 

the rule of computation induction says that to prove a(f) about f 

one may prove a(O) and (Vg) [a(g) ~ a(r[g])] where g ranges over 

the continuous functions. The predicate a must be admissible in the 

following sense: It must be the case that 

(A.1) (Vi) a(gi) ~ a(limi gi) 

In other words, a computation induction proof establishes only that 

a ho Ids for g0 , gl, etc. That a ho Ids in the limit then fo I lows 

from (A.1). 

Subgoal induction is a specialization of computation induction 

in which the inductive statement a(f) is restricted to the form 

(A.2) /J(f) - Y(x;f(x)) - (Vx) [f(x)=w V T(x;f(x))] 

Al 



and the functional 1 is restricted so that all occurrences of f in 

r[f](x) are first-order in the sense that f is applied to some 

arguments rather than being an argument. 

The first step in showing the correspondence between the methods 

is to show that the form (A.2) is restricted enough so that (A.1) 

holds. In particular, we shall show that the restrictions suggested 

in [12] are not necessary for predicates with the form (A.2) as long 

as the domain of values has no values definable only as limits of 

other values. 

Lemma l· Suppose for any chain of elements x1 ~ x2 ~- .. 

x = limi Xi -+ (3j) [x = Xj] 

(i.e., no element is definable only as a limit). Then 

(A.3) (Vi) [p(gi)J .... P(g) 

where g = limi gi and P is as in (A.2). 

Proof. First note that, for any fixed x, 

g(x) = (limi gi) (x) = limi (gi(x)) (see [11]) 
Therefore, by the lemma's assumption, there is a j such that g(x) = 

gj(X). In general this means 

(A.4) (Vx) (3j) [g(x) = gj(x)] 

Now, to prove (A.3) assume (Vi) [p(gi)J; i.e., 

(A.5) (Vi) (Vx) [gi(x)=w V T(x;gi(x))] 
To show p(g); i.e., 

(Vx) [g(x) = w V i"(x; g(x))] 

fix x and assume that g(x)~w. By (A.4) there is a j such that g(x) 

= gj(x). Since gj(x)~w by assumption we have T(x;gj(x)) by (A.5). 
Hence T(x;g(x)), and (A.3} is established. 

The following lemma shows that if one restricts one's 

information about a function, g, to a partial correctness statement 

i"(x;g(x)), then the proof of any first-order statement about g can 

proceed in a rather straight-forward way. 

Lemma ~· The statement 

(A.6) (Vg) [(Vx) [i"(x;g(x))] -+ Il(g('YI). ... ,g('Yn))] 
(where i"(x;w) is true) is equivalent to 

A 

where II and the terms 'Yi have no occurrences of g. 
A2 



Proof. To show that (A.7) ~ (A.6) assume that g is given and 

(A.8) (Vx) Y(x;g(x)) 

Instantiate (A.8) n times to get 

n 
(A.9) ./\ Y('Yj;g(Yj)) 

i=l 

Instantiate (A.7) to get 

~ Il(g(Y1) •... ,g(yn)) 

which, with (A.9) implies 

Il(g(Y1) .... ,g(yn)). 
To show that (A.6) ~ (A.7) assume that (A.7) is false; i.e., there 

is some assignment to the free variables so that 

n 
(A.10) /\ Y(y· ·z·) 

i=l l• 1 

and 

(A.11) /\ Yi=Yj 
1:$i, j:$n 

and 

(A.12) -Il(z1, ... ,zn)· 
Define the function h by 

~ 

h(x) = 
Zi if x=yi for any i, 1:$i:$n 
w otherwise 

By (A.11) h is well-defined. Now (A.6) is false for g=h since 

(a) (Vx) Y(x;h(x)) by the definition of h 

(b) -IT{h(Y1) .... ,h(yn)) for the same assignment of free 
variables that produced (A.12). 

The fol lowing more general form of the lemma can be proved in 

the same manner. 

Lemma 2.1. The statement 

(Vg) [(Vx1 •... ,xm) (Y(x1, ... ,xm; g(x1) •... ,g(xm))] ~ 

Il(g{n .... ,g(Yu))] 
is equivalent to 

/\ /\ ("'·-'V· 
l <· ·< q-,J 
-1 'J-n 

~ 

A3 



In other words, one can eliminate the function letter g from the 

discussion at the expense of introducing nm instances of Y. 

Finally, we prove the equivalence result between subgoal 

induction and computation induction. 

Theorem 1. The statement to be proved in a subgoal induction proof, 

i.e., (SGI) in Section 2, is equivalent to the statement required by 

a computation induction proof. 

Proof. Let the partial correctness statement be 

Y(x;f(x)) 

where f is defined by 

f <= 'T[f] 

and 'Tis a first-order functional off. By Lemma 1, Y(x;f(x)) is an 

admissible predicate for a computation induction proof so Y(x;f(x)) 

follows from 

(A.13) i"(x;n(x)) 

and 

(A.14) (Vg) [(Vx) [i"(x;g(x))] -. (Vy) [Y(y;r[g](y))]] 

These are equivalent, respectively, to 

(A. 13' ) i"( x; w) 

and 

(A.14') (Vg) [(Vx) [i"(x;g(x))] -+ Y(y;r[g](y))] 

assuming y is not free in i"(x,g(x)). Now (A.13') is true by 

definition so the proof of the theorem reduces to showing that 

proving (A.14') is equivalent to a subgoal induction proof. But 

(A.14') can be re-written in the form 

(A.15) (Vg) [(Vx) [i"(x;g(x))] -+ Il(g(y1) •... ,g(yn))J 

where II has the form 

(A.16) 

and /3 and the 'Yi are derived as in Section 2; i.e., by replacing 

(inside out) each occurrence g(Yi) by a new variable Zi· 

Now by Lemma 2, (A.15) is equivalent to 

n 
[ /\ Y(y··z·) /\ /\ -1 l• l 1<· « 1- _}. J-n 

n 
/\ z·=z· 

i = 1 1 l 
/\ i"(y;p) 

which is equivalent to the rule of subgoal induction. 
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