
• ~ •
\ ~

\ \
\
\

SUBGOAL INDUCTION
BY JAMES H. MORRIS JR. AND BEN WEGBREIT

CSL 75-6 JULY 1975

A new proof method, subgoal induction, is presented as an alternative

or supplement to the commonly used inductive assertion method. Its

major virtue is that it can often be used to prove a loop's correctness

directly from its input-output specification without the use of an

invariant. The relation between subgoal induction and other commonly

used induction rules is explored and, in particular, it is shown that

subgoal induction can be viewed as a specialized form of computation

induction. Finally, a set of sufficient conditions are presented which

guarantee that an input-output specification is strong enough for the

induction step of a proof by subgoal induction to be valid.

Key Words and Phrases:

program verification, proving programs correct. induction rule,

computation induction, inductive assertions, structural induction,

proof rule, recursive programs, iterative programs

CR Categories:

4.19, 4.22, 5.21, 5.24

XEROX
PALO AL TO RESEARCH CENTER
3333 COYOTE HILL ROAD I PALO ALTO I CALIFORNIA 94304

1

INTRODUCTION

A variety of induction rules have been employed in program

verification. Recursion induction [8] was the first, followed by

structural induction [3,9], inductive assertions [4], and computation

induction [11]. In this paper, we present a new induction rule,

subgoal induction, which has several desirable properties: it is

applicable to recursive as well as iterative programs; it is

straightforward to use in mechanical program verification; and it leads

to relatively simple proofs. We expand on these points below.

Similar proof methods have appeared in [l,6,10,13,15]. In this

presentation, we have tended to emphasize programming methodology as

well as theoretical issues. Thus our exposition includes both informal

discussions and formal proofs.

THE RULE OF SUBGOAL INDUCTION

We begin by presenting and motivating subgoal induction in a

hopefully intuitive fashion--by coupling the induction rule with

program synthesis. That is, we consider the construction of a program

and a proof of its correctness simultaneously. Let the program be

specified by the requirement that given input x it is to produce output

z such that "l"(x; z) for some given predicatel "I". We propose to

construct a recursive program F, as fol lows. For certain X, an

appropriate z can be computed using a previously defined function; let

P(x) test for those x and H(x) be the previously defined function; this

leads t~ the fragment:

if P(x) then H(x)

and the verification condition

(VI) P(x) -+ Y(x;H(x))

lFor emphasis, we use the delimiter ";" to separate the
variable(s) from the output value. Thus "l"(a,b,c;z) relates
variables a, b, and c to the output z.

input
input

2

For all other x, we propose to replace x by a somewhat simpler value,

attempt to solve the problem for that simpler value, and then modify

that solution to obtain a solution for x; let N be the function which

maps x into the simpler value and L be the function which modifies the

solution for N(x) in order to obtain a solution for x. This leads to

the fragment

else L(x, F(N(x)))

The corresponding verification condition is

(V2) - p (x) /\ y (N (x) ; z) ... y (x; L (x I z))

This may be read as: if -P(x) and if z is an acceptable output for F

with input N(x) then L(x,z) must be an acceptable output for F with

input x. The program is then

(1.1) F(x) <= if P(x) then H(x) else L(x, F(N(x)))

The above reasoning is an informal demonstration that if the two

verification conditions Vl and V2 are valid, then Y(x;F(x)) is valid.

This is an example of the rule of subgoal induction.

The above argument tacitly assumes that F(N(x)) actually returns a

value. If, to the contrary, F(N(x)) fails to terminate then F(x) fails

to terminate. Proof of termination may be treated separately, e.g.,

based upon a well-ordering. In this paper, we will generally be

concerned with partial correctness, i.e., consider only those cases

where F(x) terminates. A more precise statement of subgoal induction

reads: If Vl and V2 are valid, then for each x if F(x) terminates

Y(x;F(x)) is true. We expand on this point and give a precise

justification below.

Observe that V2 is a stronger requirement than actually needed to

establish Y(x; F(x)). It would, in principle, suffice to prove the

somewhat weaker implication

(V2 *) - P (x) /\ Y (N (x) ; z) /\ z = F (N (x)) -t Y (x; L (x, z))

This may be read as: If -P(x) and if z is the output of F(N(x)) and if

the pair <N(x),z> is Y-acceptable then the pair <x,L(x,z)> must be Y­

acceptable. V2* follows directly from expanding the definition of F.

3

It differs from V2 in that its hypothesis includes the additional

conjunct z = F(N(x)). The essential idea of subgoal induction is the

absence of this conjunct: Provided that Y is a strong enough

specification, z is adequately constrained by the requirement that

Y(N(x);z) be true. In such cases, the conjunct z = F(N(x)) is

unnecessary, and V2 is a valid theorem which, taken together with Vl,

establishes Y(x;F(x)). We will later discuss in detail and illustrate

with examples the conditions under which Y is a strong enough

specification for this to work. Here it suffices to observe a result

we prove below: Vl and V2 are valid if and only if the verification

conditions for computation induction [11] are valid.

Example l (Subgoal Induction)

Let "/" denote integer division (with truncation) and define

E(x) <= if x = 0 then 1 else L(x, E(x/2)), and

L(x,y) <= if even(x) then y2 else K·y2.

The property to be proved is Y(x; E(x)) where Y(x; z)

verification conditions are:

(Vl) x=O ~ 1 = KX (trivial)

(V2) xi=O /\ z = Kx/2 ~ L(x,z) = Kx

The

Expanding L, this is x i= 0 /\ z = Kx/2 ~ if even(x) then z2=Kx else

K·z2=Kx which may be proved by cases on even(x). I

In the case where L and Hare the identity functions, the recursive

function F defined in (1.1) is equivalent to the following while scheme

while -P(x) do x~N(x)

Let x0 and Xf be the initial and final values of x in this scheme. To

establish Y(x0 ;xf) by subgoal induction, we must prove

(Vl) P(x) ~ Y(x;x)

(V2) - P (x) /\ Y (N (x) ; z) ~ Y (x ; z)

Note that

assertion

the idea of loop invariant

Y need not be true within

does not appear. The output

the loop and likely is not

(otherwise we're wasting iterations!). In a sense, subgoal induction

4

allows the output assertion or intention of the loop to be used

directly in its own proof.

Example~ (Subgoal Induction on a while Loop)

Consider the well-known iteration for finding the greatest common

divisor of two positive integers

while x 'I- y do if x<y then y+-y-x else x+-x-y

Suppose one wishes to prove just that the final value of x divides the

original values of x and y. The output assertion is

i"(x 0 ,y0 ;xf) - Xf divides x0 A Xf divides y0

Let ~ be the state vector. To prove Y by subgoal induction , two

verification conditions must be established. The first is

(Vl) P(~) -. i"(~;~)

where ~=<x,y> and P(~) - x=y. This becomes

x=y ... x divides x A x divides y.

The second verification condition is

(V2) -P(~) A Y(N(n;z) ... Y(~;z)

where N(~) = if x<y then <x,y-x> else <x-y,y>.

This becomes

xt-y A

z divides (if x<y then x else x-y) A

z divides (if x<y then y-x else y) ...

z divides x A z divides y

(Vl) is immediate and (V2) follows easily from the general observation

that

z divides a A z divides b -t z divides a+b

Notice that it was not necessary to invent an invariant assertion to

prove Y; Y itself was a sufficient inductive hypothesis.

It happens that the following is a good invariant

(Vz) [z divides x A z divides y ... z divides x0 A z divides y0].

However, it appears that a proof by inductive assertions will be more

complicated than the foregoing proof.

5

Because while loops are a commonly occurring syntactic form to

which subgoal induction is directly applicable, it is appropriate to

introduce a simple notation for their output assertions. We propose

while <Boolean expression> do <statement> thus <output assertion>

The <output assertion> is to be true on exit from the while loop. It

uses the following notation: If x is a free variable, then x0 (read as

"original x") is an initial value of the corresponding program variable

x; other free appearances of x are understood to denote the final value

of the corresponding program variable. Hence, the above program may be

written

while x #: y do if x<y then y+-y-x else x+-x-y

thus x divides x0 A x divides Yo

The extension of this notation to for loops and multiple-exit while

loops should be clear.

Subgoal induction can be applied to more general program structures

involving nested recursive calls and mutually recursive functions. For

example, consider

F(x) <= if P0 (x) then L0 (G(N0 (x)))

else if P1(x) then Li(G(N2(F(N1(x)))))

else L2(F(N3(x)), F(N4(x)))

G (y) < = if P 5 (y) then H (y) else F (y)

with output assertions Yr(x;F(x)) and YG(y;G(y)). To form the

verification conditions for proof by subgoal induction, three

additional concepts are required. We state and illustrate these in

turn.

(1) Mutual recursion is handled by using the output predicate for the

called function in forming the verification condition for the calling

function. Thus, the verification condition for the first path through

F is:

6

This is obtained as follows: let F be called with argument x and

suppose that P0 (x); to compute F's value, G is called with argument

N0 (x); let that result be ZG subject to the constraint VG(N0 (x); zG):

the result of F is L0 (zG); to prove F correct, we must be able to show

that VF(x;L0 (zc)).

(2) Multiple function calls on distinct functions are handled by

introducing additional individual variables--one for each called

function. Thus, the verification condition for the second path through

F is:

(FV2) -P 0 (x) /\ P1(x) /\ VF(N1(x);zF) /\ VG(N2(zF);zG) -+

VF(x;L1(zG)l

This is obtained as follows: let F be called with argument x and

suppose that -P 0 (x) and P1(x); to compute F's value, the first step is

to call F recursively with argument Ni(x); let that result be zF

subject to the constraint YF(N1(x);zF); next, G is called with N2(zF);

let that result be zc subject to the constraint that Yc(N2(zF);zc); the

result of the original call on F is Li(zc); to prove F correct, we must

be able to show that VF(x;L1(zc)).

(3) Multiple calls on the same function are handled by introducing

additional individual variables, subject to the constraint of the

output assertion and the further constraint that when the arguments to

the function are equal, then the outputs are equal.

verification condition for the third path through F is:

(FV3) -P 0 (x) /\ -P1(x) /\ VF(N3(x);z3) /\ Yy(N4(x);z4) /\

(N3(x) =N4(x) -+ z3=z4) -+ VF(x; L2(z3, z4))

Thus the

This is obtained as follows: let F be called with argument x and

suppose that -P0 (x) and -P1(x); to compute F's value, F is recursively

called twice, with arguments Na(x) and N4(x); let the results be z3 and

z4 respectively, subject to the constraints YF(N3(x);z3), Yf{N4(x);z4)

and the further constraint that if Na(x) equals N4(x) then z3 equals

7

z4; to prove F correct, we must be able to show that the final result,

L2(z3,z4), satisfies YF(x;L2(z3,z4)).

The two verification conditions for the two paths through G are

obtained analogously:

(GVl) P5(y)-+ i"G(y;H(y))

(GV2) - P 5 (y) A i"F (y; z F) -+ i" G (y; z F)

We now turn to a more precise statement of the rule of subgoal

induction. Let F be defined by

F <= r[F]

where T is a first-order program, i.e., all appearances of Fare as the

operator in a function call. Then to prove

i"(x;F(x))

it suffices to prove

where f3 is obtained from T by replacing, inside out, each call on F,

F(yi), with a new individual variable zi. Since T is assumed to be

first order, this eliminates all appearances of F from T. Hence (SGI)

is entirely free of F provided that the definition of i", i"(x;z), is

free of F.

In practice, it is useful to split (SGI) into cases--one for each

path through the program. Consider the schema

F(x) <= if P1(x) then a1(x) else if P2(x) then a2(x) else

an(x)

where the a's are arbitrary expressions possibly involving F. Subgoal

induction may be used to directly compile one verification condition

for each of the n cases in the definition. The consequent of the i th

term is i"(x;/3i) where Pi is obtained from ai by replacing, inside out,

each call on F, i.e., F(Yi), with a new individual variable. For each

8

replacement thus made, a constraint term Y('Yi;zi) is formed which

forces zi to be an acceptable output for Fon input Yi· The antecedent

of the verification condition is the conjunction of the constraint

terms and the path conditions, {Pi}· The ith verification condition is

i-1
/\ -P·(x) /\

j =1 J

"f'(x:Pi>

k
P· (x) /\ /\ "f'(y·; z-) /\

l j=l J J

An example may clarify how the Pi's are obtained.

Example ~ (Nested Recursive Function Calls)

The following function flattens an S-expression x, in the sense

that it creates a one-level list whose elements are the atoms of x in

print order, appended to y.

F(x,y) <= if atom(x) then cons(x,y) else F(car(x), F(cdr(x), y))

We wish to show that F(x,NIL) is identical to the result of a simpler

procedure G, which flattens a list in a slower but more obvious way, as

fol lows:

G(x) <= if atom(x) then cons(x,NIL) else append(G(car(x)),

G(cdr(x))).

The auxiliary function append is defined

append(x,y) <= if nul l(x) then y else

cons(car(x),append(cdr(x),y)).

The output assertion for F is Yp(x,y;z)

The verification conditions are

{z = append(G(x), y)}.

(Vl) atom(x) ~ cons(x,y) = append(G(x), y)

which is obviously valid, upon expansion of G and append.

(V2) -atom(x) /\ z1 = append(G(cdr(x)), y) /\

z2 = append(G(car(x)), z1) ~

z2 = append(G(x), y)

9

Substituting for equals and expanding G for a non-atomic argument, this

s imp l if i es to

-atom(x) ~ append{append(G(car(x)), G(cdr(x))), y}

= append{G(car(x)), append(G(cdr(x), y)}

which is an instance of a simple fact about append

append(append(u,v), w) = append(u, append(v,w)), i.e., that append is

associative.

A general statement of subgoal induction for mutually recursive

functions can now be presented. Let

... '
be a system of mutually recursive functions. Suppose we are given

output specifications for the first mSn of these

Y m (x ; Fm (x))

Then to prove Y1(x, Fl(x)), it suffices to prove

["i'il (Y1;z1) /\ ... /\ yik('Yk;zk)

~ "i'1(x;P1)

/\ /\ ('Yp=ylq ~ Zp=zq))
lSp,qSk

where /31 is obtained from r1 by replacing, inside out, each function

cal 1

Fij('Yj)

b (h 1<" <) y Zj were -Ij-m . Provided that the Y's are free of Fj's (lSjSm),

the resulting verification conditions will be free of such Fj's. Thus,

subgoal induction may be seen as a systematic way of using output

specifications to eliminate function letters from theorems to be

proved.

RELATION TO OTHER PROOF METHODS

3.1 Inductive Assertions

Subgoal induction is, in a sense, a backward method of proving

10

something compared to the inductive assertion method. The two methods

correspond to two different ways of expanding the flow chart in Figure

la into an "infinite" flow chart. Figure lb shows the conventional

expansion into a flowchart with one starting point and an infinite

number of stopping points. Figure le shows a backward expansion into a

flow chart with one stopping point and an infinite number of starting

points. This second expansion may seem unorthodox, but a careful

examination will reveal that it describes the same set of finite (i.e.,

terminating) computations as the first. Each computation corresponds

to the choice of a stopping node in Figure lb or a starting node in

Figure le.

Now suppose we wish to prove that the input-output relation

V(x0 :xr) - <ll(x0) -+ 8(x0 ;xf) holds for any finite computation which

originates in state x0 and finishes in state Xf. Obviously, to prove

this for the infinite number of start-to-stop paths in either Figure lb

or Figure le we must use an inductive method based upon the method in

which the n+lst path is generated from the first n.

The inductive assertion method uses the expansion in Figure lb as

follows. Given <ll(x 0) as an assumption, find an inductive assertion

f(x 0 ;x)

(1)

(2)

and show

<ll(x0) -+ f(x 0 ;x 0);

-P(x) /\ f(x 0 ;x) -+

i.e., it holds initially.

f(x 0 ;N(x)); i.e., if f holds between the

states at points 0 and n then it holds between states 0 and n+l.

(3) P(x) /\ f(x 0 ;x) -+ 8(x0 ;x); i.e., f(x 0 ;x) is sufficient to

prove the desired input output relation, when the computation halts.

The subgoal induction method uses the expansion in Figure le as

follows

(1) P(x) -+ V(x,x), i.e., V holds between points 1 and 0.

(2) -P(x) /\ V(N(x);xr) -+ V(x;xr), i.e., if V holds between

points n and 0, then it holds between points n+l and 0.

Thus the inductive assertion proof moves forward in the sense that

it shows that some relation between the current state and the initial

START

T
HALT

x ~ N(x)

Figure la. A flow chart

START

x +- N(x)

x +- N(x)

x +- N(x)

•
•
•

HALT

HALT

HALT

Figure lb. A forward-expanded flow chart

START

START

START

• •
•

1------1 3

x ~ N(x)

1------1 2

x ~ N(x)

HALT

Figure le. A backward-expanded flow chart

11

state is maintained as the current state becomes the next state. The

subgoal induction proof moves backward in the sense that it shows that

a relation between the current state and the final state is maintained

as the current state becomes a previous state.

The two methods are readily inter-translated. Performing the

translation for the program in Figure 1 should serve to convince the

reader.

Suppose an inductive assertion proof of B(x0 ;xf) at the end of the

loop with input assertion ~(x0) has been achieved, i.e., we have proved

To

(Fl)

(F2)

(F3)

~{x0) -+ r(x 0 ;x0)

P(x) /\ r(x 0 ;x) -+

-P(x) /\ r(x 0 ;x) -+

8(x0 ;x)

r(x 0 ;N(x))

establish the same result by subgoal induction,

Y(x 0 ;xf) - (Vy) [r(y;x0) -+ S(y;xf)]

Then prove y by subgoal induction; i.e .. prove

(Vl') P(x) -+ (\fy) [f(y;x) -+ 8(y;x)]

and

define

(V2') -P(x) /\(Vy) [f(y;N(x)) -+ 8(y;xf)] -+

(Vy') [r(y';x) -+ S(y';xf)]

These follow from F2 and F3 respectively. To prove V2', for example,

let y' be given; choose y to be y'; instantiate the free variable x0 in

F3 as y'; then V2' follows directly.

Finally, from Fl and Y{x 0 ;xf) (again choosing y to be x0) we can

deduce

~(x0) -+ 8(x0 ;xf)

Using this method, any inductive assertion proof can be translated into

a subgoal induction proof.

The translation in the other direction is similar and was shown in

[17] in a slightly different form.

8(x0 ;xf)

(Vl)

(V2)

has been shown by subgoal induction, i.e.

P(x) -+ Y(x;x)

-P(x) /\ i"(N(x);xr) -+ Y(x;xr)

~(xo)

12

To construct an inductive assertion proof define the inductive

assertion f(x 0 ;x) as follows

f(x0 ;x) - (\fy) [i"(x;y) -+ Y(x0 ;y)]

Then show

(Fl') 4>(x0) -+ (\fy) [V(x0 ;y) -+ i"(x0 ;y)]

(F2') P(x) A (\fy) [i"(x;y) -+ V(x 0 ;y)] -+ Y(x0 ;x)

(F3') -P(x) A (\fy) [i"(x; y)

(\fy') [i"(N(x) ;y') -+

These are easily proved:

Fl' is a tautology

-+ i"(x 0 ;y)]

V(xo ;y')]

-+

F2' follows from Vl, if we substitute x for y

F3' follows from V~. if we substitute Xf for y and y' I

3.2 Computation Induction

Subgoal induction may be viewed as a specialization of computation

induction [11] to the familiar problem of proving partial correctness

of first-order programs; i.e., the same problem that the inductive

assertion method treats. The details of this connection are presented

in the Appendix. Here it should suffice to illustrate the idea for the

specific scheme

F(x) <= if P(x) then x else L(F(N1(x)), F(N2(x)))

To prove Y(x;F(x)) the rule of computation induction [11] requires one

to prove

(3.1) (\fg) [(\fx') V(x';g(x')) -+

(\fx) V(x; if P(x) then x else L(g(N1(x)), g(N2(x))))]

The intuition behind this formula is that one may assume the property

to be proved for the recursive calls of F while proving it for the body

of F. The variable g is used instead of F to insure that no circular

reasoning is possible.

A plausible strategy for proving (3.1) is to instantiate the

premise

(3.2) (\fx') Y(x' ;g(x'))

13

twice, with Nl(x) and N2(x) substituted for x' and use the resulting

formulas to prove the conclusion. This is equivalent to proving

(3.3) (Vx,z1,z2) ["l"(N1(x);z1) /\. "l"(N2(x);z2) -+

"l"(x; if P(x) then x else L(z1.z2))]

While it is straightforward to show that (3.3) implies (3.1) (i.e.,

that the strategy is sound), it is somewhat surprising that (3.1)

."almost" implies (3.3). Specifically, if the clause

Nl(x)=N2(x) -+ z1=z2

is added to the premise of (3.3), yielding

(3.4) (Vx,z1,z2) ["l"(N1(x);z1) /\. "l"(N2(x);z2) /\. (N1(x)=N2(x)

z1=z2) -+ "l"(x; if P(x) then x else L(z1,z2))]

then the resulting formula follows from (3.1). In fact, (3.4) is

equivalent to (3.1). Showing (3.4) -+ (3.1) is straightforward. To

show (3.1)-+ (3.4), suppose that (3.4) is false, i.e., for some x,z1,z2

(3.5) "l"(N1(x);z1) /\ "1"(N2(x);z2).

(3.6) Nl(x)=N2(x) -+ z1=z2. and

(3.7) -"l"(x; if P(x) then x else L(z1.z2)).

To show that (3.1) is false define the partial function h by

h(y) =

z1 if y=N1(x)

z2 if y=N2(x)

undefined otherwise

By (3.6) h is well-defined. Then (3.1) is false for g=h since

(Vx') "l"(x';h(x'))

by (3.5), (recall that Y is a partial correctness relation) but

-"l"(x; if P(x) then L(h(N1(x)) ,h(N2(x)))

by (3. 7).

This informal demonstration is basically an outline of the

following theorem proved in the Appendix.

Theorem 1. The statement to be proved in a subgoal induction proof,

14

i.e., (SGI) in section 2, is equivalent to the statement required by a

computation induction proof.

COl\IBINING THE METHODS

The techniques of subgoal induction and inductive assertion provide

alternative methodologies for stating and proving properties of

programs--by "going backward" and "going forward" respectively.

Because each of these directions is most natural for certain sorts of

properties an obvious consideration is to combine them. A proof can

then be partitioned and carried out partly with inductive assertions

and partly with subgoal induction. Just how this can be done and under

what circumstances it is a good strategy can best be understood by

examining a special case of subgoal induction

naturally to a partitioning.

which leads very

specification takes a

If the input x satisfies

It is commonly the case that an output

particular form which may be read as follows:

certain constraints then the output is to have

properties;

unspecified

operation).

Y(x;z)

certain

if the

(usually

input constraints are violated, the

because such inputs

That is, i"(x;z) has the form

- <l>(x) -+ 8(x;z)

can never occur

specified

output is

in program

The constraint <I> is usually referred to as an input specification.

For simplicity, we discuss the schema F(x) <= if P(x) then H(x)

else L(x, F(N(x))); the general case of multiple recursive functions is

analogous. Writing the verification conditions for "Y as defined above,

and rearranging, we obtain

(Vl) P(x) /\ <l>(x) -+ 8(x;H(x))

(V2) -P(x) /\ <l>(x) /\ [<l>(N(x))-+ 8(N(x);z)] -+ 8(x;L(x,z))

Vl is straightforward: it requires that if the input constraint is

satisfied and the program terminates immediately then the output, H(x),

be a 8-acceptable output. V2, however, is more complex. Suppose the

15

left hand side of V2 is true, and consider proving the right hand side,

9(x; L(x,z)). Observe that 9(x; L(x,z)) involves the free variable z,

but that z is restricted in the left hand side only by the conjunct

[<l>(N(x)) -+ 9(N(x);z)]. As this conjunct could conceivably be true by

virtue of <l>(N(x)) being false, nothing necessarily is known about

9(N(x);z) and hence nothing is known about z. A plausible proof

strategy would be to establish that this cannot occur, i.e.' to first

prove

(V2a) -P(x) A <l>(x) -+ <l>(N(x)).

If true, (V2a) would guarantee that whenever the left hand side of (V2)

is true, <l>(N(X)) is true and hence 9(N(x);z)) is true. It would then

suffice to prove that

(V2b) -P(x) A <l>(x) A <l>(N(x)) A 9(N(x);z) -+ 8(x;L(x,z))

V2a is of considerable interest. It requires that <I> be an

invariant precondition for the function F: If <I> is true for some

initial value of x given as input to F, then it must be true for all

subsequent nested calls in F. Alternatively, it is useful to look at

the syntactic form of V2a and observe that it has the form of a

verification condition for the inductive assertion <I> around the loop

while -P(x) do x+-N(x).

Viewed in this way, <I> behaves as a normal invariant which, once

established, may be used to assist the proof of V2b. This is somewhat

surprising in that <I> and V2a were obtained from a subgoal induction

proof using a "backwards going" induction. It illustrates that the two

methods are really duals and that translation between them can be

carried out on a very local level. As a first guideline as to how a

proof should be partitioned, we observe that this sort of decomposition

may be useful whenever it is possible to state a relatively simple

invariant <I> describing which inputs are acceptable. Proof of this

invariant is then decoupled from the remainder of the proof concerned

withe.

Some additional syntax will help to crystallize this combined

16

method. We consider the case of while loops and extend our earlier

notation to propose

maintain <I>(x) while -P(x) do x~N(x) thus 8(x0 ;x)

Proving Vl, V2a, and V2b then establishes the input-output relation

V' (x0 ;xr) - <I>(x0) -+ [<l>(xf) /\. P(xr) /\. 8(x0 ;xr)]

Example 1 (Binary Search)

Consider the loop

maintain {b:Sc /\. (Vi I b:Si Sc) A[i]SA[i+l]}

while b ':/ c

do begin d~(b+c)/2; if key>A[d] then b~d+l else c~d end

thus {key= A[b] - (3i' lb0 Si 'Sc 0) key= A[i']}

(Note that the output assertion does not require that the key be

present in the table: it specifies that the key will be found if and

only if it is present.)

Proving that the maintain clause is, in fact, an invariant is

straightforward. Let <I>(b,c) denote this invariant, then the other

verification conditions are

(Vl) b = c /\. <l>(b,c) -+

{key= A[b] - (3i' lbSi'Sc) key= A[i']}

(V2b1) {b ':/ c /\. <l>(b,c) /\. d = (a+b)/2 /\. key>A[d] /\.

(key= A[z] - (3ild+l:SiSc) key= A[i])} -+

{key= A[z] - (3i' lb:Si'Sc) key= A[i']}

(V2b2) {b ':/ c /\. <l>(b,c) /\. d = (a+b)/2 /\. key:SA[d] /\.

(key= A[z] - (3ijb:Si:Sd) key= A[i])} -+

{key=A[z] - (3i'jb:Si'Sc)key=A[i']}I

Let us now consider a more technical aspect of this method: Is it

"as powerful" as subgoal induction in the sense that V2 implies V2a and

V2b? The answer, roughly speaking, is yes, except in cases which

should never occur. More precisely, we reason as follows:

17

Definition. i"(x; z) <I>(x) 9(x;z) is said to be "well-behaved"

with respect to F if

(Vx) (-P(x) /\. <I>(x) -+ (3z)-9(x;L(x,z)))

That is, if Y is well-behaved, then whenever <I> is true and P is false

of some x, there is some z such that L(x,z) is rejected by 9. An

output predicate Y which is not well-behaved has at least one x' which

is acceptable input (<I>(x') = true) and for which the function recurses

(P(x') = false), but for which any outcome whatever is acceptable

according to 9. This means that the function is needlessly continuing

to recurse. We cannot think of any real examples in which such a

situation occurs.

Theorem 2. If Y is well-behaved with respect to F and if V2 is valid,

then V2a and V2b are valid.

Proof (by contrapositive). First note that V2 implies V2b immediately.

Suppose that V2 is valid but that V2a is not valid; we will show that Y

is not well-behaved. Since V2a is not valid, it is false for some x,

say x',

(-V2a) -P(x') /\. <I>(x') /\. -<I>(N(x'))

is true. Consider V2 for x'

-P(x') /\. <I>(x') /\ [<I>(N(x')) -+ 8(N(x');z)] -+ 8(x';L(x',z))

Using the truth of (-V2a), this simplifies to

8(x' ;L(x' ,z))

Since (V2) is valid, this must be true for all z. Thus Y is not well­

behaved.

As a somewhat digressional point, we observe that this result may

be employed in one other way. In mechanical program verification there

is the possibility that a specification supplied by the programmer is

incomplete and not strong enough to carry itself through the induction.

V2 is then invalid and detecting this situation is necessary. Suppose

that Y(x;z) has the form <I>(x) -+ 8(x;z) and that 8 is well-behaved.

In many cases, it is possible to test for this syntactically, (e.g., if

18

8(x;z) has the form z = g(x)). Because V2a does not depend on 8, it is

less complex than V2. If the difference in complexity is significant,

V2a may provide a useful filter for testing whether Y is complete. If

V2a can be shown to be invalid, then the above theorem establishes that

y is incomplete, without further consideration of e.

The combined use of subgoal induction and inductive assertions may

be applied, of course, to complete programs as well as simple loops.

In general, a procedure has an input assert ion, and an output

assertion; intermediary points may be labeled with invariant

assertions; while and for loops may be tagged with maintain invariants

and thus subgoals. The inductive assertion method can be used to

establish the correctness of the input assertion and the invariants by

a "going forward" induction on program flow. Once established, a valid

loop invariant can be used in the proof of a verification condition for

a subgoal induction.

In particular, a while or for loop is treated as a recursive

function in the sense that its output condition is used in forming the

verification condition for a path which passes through the loop. For

example, consider some while loop, W:

maintain <I>(x) while -P(x) do x+-N(x) thus 8(x 0 ;x)

and consider some case of a recursive function F which passes through

w.
F(x) <= if P'(x) then L(x, F(N2(W(x)))) else ...

The verification condition can be treated as being formed in two steps:

(1) Remove occurrences of F, by using Yp:

P'(x) A "l"F(N2(W(x));zp) -+ Yp(x;L(x,zy))

(2) Remove occurrences of W, by using "l"w:

P'(x) /\ "I"w(x;zw) /\ Yy(N2(zw);zp) -+ Yp(x;L(x,zp))

where the loop specification Yw is defined as

Yw(x;z) - <P(x) -+ [<P(z) /\ P(z) /\ 8(x;z)].

{The treatment of for loops is analogous.) In practice, it is

convenient to carry this out in a single step and regard Yw as

specifying the semantics of a loop.

19

Considering the other direction, subgoal induction can be used to

establish the correctness of output assertions on recursive functions

by a "going backward" induction. Once established, a valid output

assertion describing the result returned by a called function can be

asserted in a normal flowchart program. This allows a direct treatment

of recursion mixed with normal program constructs such as loops, jumps,

and exits. We illustrate this mixed case with an example.

Example Q (Partition Sort)

So as to present the algorithm and its proof as simply as possible,

we use a rather high-level notation--essentially Algol 68. Procedures

may be passed and may return arrays; if A is an array, A[j: k] is the

sub-array between A[j] and A[k] inclusive; length(A) returns the length

of A; the infix operator "0 " denotes concatenation of arrays.

real array procedure PSort(A), real array A; value A;

begin int n; n~length(A);

if n = 1 return A;

begin real array[l:n] S,B; int s,b; real x;

s~b~O; x~A[n/2];

end

for j froin 1 to n do

maintain (Vi llSiSs) (S[i]<x) /\ (Vi pSiSb) (xSB[i])

/\ perm(A[l:j-1], S[l:s] 0 B[l:b]);

if A[j]<x then S[s~s+l]~A[j] else B[b~b+l] ~ A[i];

return PSort(S[l:s]) 0 PSort(B[l:b])

end PSort output assertion ordered(PSort(A)) /\ perm(A,PSort(A))

where ordered and perm are defined

ordered(A)

perm{P,B)

(VillSi<length(A)) A[i]SA[i+l]

length(A) = length{B) /\ 3R

((VillSi<length(A)) (lSR[i]Slength{A))

/\ (Vi,i'llSi<i'Slength(A)) (R[i] ~ R[i'])

/\ (VillSiSlength{A)) {A[R[i]] = B[i]))

20

Consider the proof by subgoal induction of the output assertion

Ys(A;PSort(A)) where

Ys(A;z) - ordered(z) A perm(A,z)

Let ~be the state vector. There are two cases

(Vl) P(s) -+ Ys(~;H(s))

where P(~) = length(A)=l and H(s) - A. This becomes

length(A) = 1 -+ ordered(A) A perm(A,A)

which is easily proved by expanding the definitions of ordered and

perm. To prove the second case, assume that the invariant on the for

loop has been validated by the inductive assertion technique. Further,

observe that the invariant is initially true.

input/output specification for the for loop is

Thus the verified

i"y(;A,S,B,s,b,x) - (Vi!lSiSs) (S[i]<x) A (VipSiSb) (xSB[i]) A

perm(A,S[l:s] 0 B[l:b])

(Note that in the absence of a thus clause which requires it, the input

to the loop does not appear in this specification.) Let zy be the

state vector after the for loop terminates, let Ni(zy) = S[l:s], let

N2(zy) = B[l:b], and let L(z1,z2) = z1°z2; then the second verification

condition may be written

(V2) -P(s) A i"y(s;zy) A v8(N1(zy);z 1) A v8(N2(zy);z2) -+

i"s(~;L(z 1 ,z 2))

That is,

length(A)¢1 A i"y(;A,S,B,s,b,x) A ordered(zi) A

perm(S[l:s],z1) A ordered(z2) A perm(B[l:b],z1) -+

ordered(z1°z2) A perm(A, z1°z2)

Proof of this reduces to establishing two results

ordered(z1) A ordered(z2) A perm(U,z1) A perm(V,z2)

(Vi pSiSlength(U)) (U[i J<x) (Vi I lS iSI ength(V)) (xSV[i]) -+

21

both of which may be proved by using the definition of perm.

A COMPLETENESS RESULT

We have previously touched upon a question which we now consider

more fully: Under what circumstances is a specification strong enough

to carry itself through an induction? Common experience has shown that

input-output specifications are often too weak to be induction

hypotheses, i.e., the resulting verification conditions are not valid.

Section 4 presents a negative result: If Y(x;z) has the form <l>(x) -+

S(x;z), if 'It is well-behaved, and if <I> is not an invariant, then the

induction formula is not valid. In this section we present a positive

result, establishing a completeness result for subgoal induction. For

simplicity, we consider the schema F(x) <=if P(x) then H(x) else

L(x,F(N(x))); conditions for more general forms are analogous.

Definition. 'lt(x;z) <l>(x) S(x;z) is said to be a "tight

specification" if

-P(x) /\ <l>(x) /\ 8(N(x);z1) /\ 8(N(x);z2) -+ L(x,z1) = L(x,z2)

Essentially, 'It is a tight specification if two z's that are both

accepted by 8 produce identical outputs from L.

Theorem 3. If 'lt(x; z) <l>(x)

<I> is an invariant, if F is

'lt(x;F(x)) is valid, then

-+ S(x;z) is a tight specification, if

total on the domain {xl<l>(x)}, and if

(V2} -P(x) /\ 'lt(N(x);z) -+ Y(x;L(x,z))

is valid.

Proof. Rewrite (V2) as

(5.1) -P(x) /\ <l>(x) /\ [<l>(N(x)) -+ S(N(x);z)] -+ S(x;L(x,z))

Consider some x', z' for which the left hand side is true

-P(x') /\ <l>(x') /\ [<l>(N(x'}) -+ 8(N(x');z')]

Since <I> is an invariant, <l>(x') /\ -P(x') -+ <l>(N(x')); hence, it

follows that

-P(x') /\ 4>(x') /\ cl>(N(x')) /\ 9(N(x');z')

Since F is correct and F(N(x')) is defined, cl>(N(x'))

9(N(x');F(N(x')));hence, it follows that

-P(x') /\ cl>(x') /\ cl>(N(x')) /\ 8(N(x');z') /\ 9(N(x'); F(N(x')))

From the definition of tight specification, this implies

(5.2) L(x',z') = L(x',F(N(x')))

22

Since cl>(x) -+ 9(x;F(x)) is valid, upon expanding the definition of F

we obtain

(V2*) -P(x') /\ cl>(x') /\ [cl>(N(x')) -+ 9(N(x');F(N(x')))] -+

8(x' ;L(x' ,F(N(x'))))

This, taken together with (5.2), implies

9(x' ;L(x' ,z'))

which is the right hand side of (5.1). Thus (V2) is valid.

Observe that if 9 characterizes z by a function, 8(x;z) z=g(x),

then i" is surely a tight specification. In particular, consider the

case of proving two programs F <= r[F] and G <= a[G] equivalent. Let

the output assertion for F be "l"F(x;z) - z=G(x). This is a tight

specification and it therefore follows that the verification conditions

for subgoal induction are valid. Thus this theorem can be viewed as a

generalization of results in [1] and [13].

Because of the intertran~latibility between subgoal induction,

inductive assertions, and computation induction, as established in

Section 3, it follows that results analogous to Theorem 3 apply to

these other proof methods as well. Thus we have established a

sufficient (but not of course) necessary criteria for judging when a

specification is strong enough, so that the induction step is valid.

Proof of this valid theorem depends, of course, on the decidability of

the domain--which is a distinct issue.

CONCLUSION

Currently, there are three induction methods in common use for

mechanical program verification: structural induction

23

[2,15],

inductive assertions

proposing a fourth,

[5,7,16] and computation induction [14]. In

subgoal induction, it is perhaps worthwhile to

discuss just why it might be used in preference to one of the current

methods.

At a formal level, all are equivalent when applicable: the results

of Section 3 establish the formal equivalence of computation induction

to subgoal induction and of inductive assertions to subgoal induction

restricted to flowchart programs; further, [11] establishes the formal

equivalence of structural and computational induction. The utility of

subgoal induction lies not in formal power, but rather in its

applicability, its directness, in the relative simplicity of the

assertions it requires, and in the simplicity of the verification

conditions it produces.

Subgoal induction may be useful in preference to structural

induction in cases where the structure to be

Structural induction requires an

structure so that the induction

explicit

can be

inducted on is complex.

determination of the

set-up. Such explicit

determination may be difficult to mechanize where the well-ordering is

complex, e.g., Binary Search, or Partition Sort. In such cases it may

be easier to use subgoal induction which uses the computation sequence

directly to establish the induction.

Subgoal induction may be preferable to computation induction since

it has, in effect, "compiled" the computation induction rule into an

equivalent but simpler form. In particular, subgoal induction

generates first order formulas as verification conditions whereas

computation induction generates second order formulas--due to the

quantification over function letters. Thus subgoal induction avoids

certain issues in the mechanization of higher-order logic which must be

addressed when using computation induction.

With respect to inductive assertions, we regard subgoal induction

as simply complementary. Subgoal induction can be used to generate the

24

verification conditions for function calls, thus allowing use of

recursive functions in a flowchart program. Further, the rule of

subgoal induction specialized to while loops can be used to verify such

loops without explicit inductive assertions or with weaker-than-normal

inductive assertions inside the loops. Finally, invariants verified by

the inductive assertion method can be used as auxiliary information in

proving subgoal induction verification conditions. Thus the two

methods fit well together and each somewhat simplifies the work of the

other.

ACKNOWLEDGMENT

The work reported here had its origins in trying to relate the

methods of the Boyer-Moore theorem prover to other proof techniques.

Numerous discussions with J Moore helped to clirify the relation and

raised several of the questions answered here. D. Bobrow and L. P.

Deutsch gave this paper sympathetic readings and suggested several

improvements in its presentation.

25

REFERENCES

1. Basu, S. and Misra, J. Proving loop programs. IEEE Transactions
on Software Engineering, Vol. SE-1, No. 1. (March 1975), 76-86.

2. Boyer, R. and Moore, J.S. Proving theorems about LISP functions.
JACM 22, 1 (Jan. 1975), 129-144.

3. Burstall, R.M. Proving properties of programs by structural
induction. The Computer Journal 12, 1 (Feb. 1969), 41-48.

4. Floyd, R.W. Assigning meanings to programs. Mathematical Aspects
of Computer Science, Schwartz, J.T. (Ed.), AMS, 1967, 19-32.

5. Good, D.I., London, R.L.and Bledsoe, W.W.
verification system. Int. Conf. on Reliable
Ca., April Hl75.

An interactive program
Software, Los Angeles,

6. Hoare, C.A.R. Procedures and parameters:
Lecture Notes in Mathematics 188, Engeler, E.
1971.

an axiomatic approach.
(Ed.), Springer-Verlag,

7. Igarashi, S., London, R.L. and Luckham, D.C. Automatic program
verification I: Logical basis and its implementation. AIM-200,
Stanford Artificial Intelligence Project, Stanford U., 1972.

8. McCarthy, J. A basis for a mathematical theory
Computer Programming and Formal Systems, Braffort
(Eds.), North-Holland, Amsterdam, 1963, 33-70.

of c ompu tat ion .
and Hirschberg

9. McCarthy, J., and Painter, J.A.
arithmetic expressions. Mathematical
Schwartz, J.T. (Ed.), AMS, 1967, 33-41.

Correctness
Aspects of

of a compiler for
Computer Science,

10. Manna, Z., and Pnueli, A. Formalization of froperties
functional programs. Journal of the ACM 17. 3 (July 1970 , 555-569.

of

11. Manna, Z., Ness, S., and Vuillemin, J. Inductive methods for
proving properties of programs. CACM 16, 8 (Aug. 1973), 491-502.

12. Manna, Z.
York, 1974.

Mathematical Theory of Computation. McGraw-Hill, New

13. Mills, H. The new math of computer programming. CACM 18, 1 (Jan.
1975)' 43-48.

14. MiLler, R. Implementation and applications of Scott's logic for
computable functions, SIGPLAN Notices 7,1 and SIGACT News 14 (Jan.
1972), 1-6.

15. Moore, J.S. Introducing prog into the pure lisp theorem prover.
CSL-74-3, Xerox Palo Alto Research Center (Dec. 1974).

16. Waldinger, R.J. and Levitt, K.N. Reasoning
Artificial Intelligence, 5, 3 (Fall 1974), 235-316.

about programs.

17. Wegbreit, B. Complexity of synthesizing inductive assertions.
Computer Science Laboratory, Xerox Palo Alto Research Center, January
1975.

APPENDIX: RELATION TO COl\IPUT ATION INDUCTION

We assume that the reader is familiar with the notation and

concepts of [11]. The rule of computation induction as presented

there is cast in a conceptual framework somewhat at variance from

the current one. Before illustrating the close connection between

computation induction and subgoal induction we shall attempt to

reconcile this variance. First, [11] deals more explicitly with

undefinedness: All functions are presumed to be total over a domain

and range which include w, the "undefined" value. Second, the

meaning of a function definition is based upon call-by-name

semantics, rather than the more familiar call-by-value semantics.

Let us illustrate the connection by translating a typical

partial correctness problem into the framework of [11]. Given the

function definition

h(x) <= if P(x) then H(x) else h(N(x))

prove T(x;h(x)). First we define a new function f.

f (x) < = if x = w then w else if P (x) then H (x) else f (N (x))

Thus, the call-by-name meaning of f is precisely the call-by-value

meaning of h.

i"(x;z) -

Second, define a new predicate

z=w V T(x;z)

This simply makes the partial correctness aspect of Y explicit. The

correctness problem now becomes: Prove Y(x;f(x)).

With this translation of problem statement in mind let us now

consider the rule of computation induction. Given a recursive

definition of a function with the general form

f(x) <= r[f](x)

the rule of computation induction says that to prove a(f) about f

one may prove a(O) and (Vg) [a(g) ~ a(r[g])] where g ranges over

the continuous functions. The predicate a must be admissible in the

following sense: It must be the case that

(A.1) (Vi) a(gi) ~ a(limi gi)

In other words, a computation induction proof establishes only that

a ho Ids for g0 , gl, etc. That a ho Ids in the limit then fo I lows

from (A.1).

Subgoal induction is a specialization of computation induction

in which the inductive statement a(f) is restricted to the form

(A.2) /J(f) - Y(x;f(x)) - (Vx) [f(x)=w V T(x;f(x))]

Al

and the functional 1 is restricted so that all occurrences of f in

r[f](x) are first-order in the sense that f is applied to some

arguments rather than being an argument.

The first step in showing the correspondence between the methods

is to show that the form (A.2) is restricted enough so that (A.1)

holds. In particular, we shall show that the restrictions suggested

in [12] are not necessary for predicates with the form (A.2) as long

as the domain of values has no values definable only as limits of

other values.

Lemma l· Suppose for any chain of elements x1 ~ x2 ~- ..

x = limi Xi -+ (3j) [x = Xj]

(i.e., no element is definable only as a limit). Then

(A.3) (Vi) [p(gi)J P(g)

where g = limi gi and P is as in (A.2).

Proof. First note that, for any fixed x,

g(x) = (limi gi) (x) = limi (gi(x)) (see [11])
Therefore, by the lemma's assumption, there is a j such that g(x) =

gj(X). In general this means

(A.4) (Vx) (3j) [g(x) = gj(x)]

Now, to prove (A.3) assume (Vi) [p(gi)J; i.e.,

(A.5) (Vi) (Vx) [gi(x)=w V T(x;gi(x))]
To show p(g); i.e.,

(Vx) [g(x) = w V i"(x; g(x))]

fix x and assume that g(x)~w. By (A.4) there is a j such that g(x)

= gj(x). Since gj(x)~w by assumption we have T(x;gj(x)) by (A.5).
Hence T(x;g(x)), and (A.3} is established.

The following lemma shows that if one restricts one's

information about a function, g, to a partial correctness statement

i"(x;g(x)), then the proof of any first-order statement about g can

proceed in a rather straight-forward way.

Lemma ~· The statement

(A.6) (Vg) [(Vx) [i"(x;g(x))] -+ Il(g('YI). ... ,g('Yn))]
(where i"(x;w) is true) is equivalent to

A

where II and the terms 'Yi have no occurrences of g.
A2

Proof. To show that (A.7) ~ (A.6) assume that g is given and

(A.8) (Vx) Y(x;g(x))

Instantiate (A.8) n times to get

n
(A.9) ./\ Y('Yj;g(Yj))

i=l

Instantiate (A.7) to get

~ Il(g(Y1) •... ,g(yn))

which, with (A.9) implies

Il(g(Y1) ,g(yn)).
To show that (A.6) ~ (A.7) assume that (A.7) is false; i.e., there

is some assignment to the free variables so that

n
(A.10) /\ Y(y· ·z·)

i=l l• 1

and

(A.11) /\ Yi=Yj
1:$i, j:$n

and

(A.12) -Il(z1, ... ,zn)·
Define the function h by

~

h(x) =
Zi if x=yi for any i, 1:$i:$n
w otherwise

By (A.11) h is well-defined. Now (A.6) is false for g=h since

(a) (Vx) Y(x;h(x)) by the definition of h

(b) -IT{h(Y1) ,h(yn)) for the same assignment of free
variables that produced (A.12).

The fol lowing more general form of the lemma can be proved in

the same manner.

Lemma 2.1. The statement

(Vg) [(Vx1 •... ,xm) (Y(x1, ... ,xm; g(x1) •... ,g(xm))] ~

Il(g{n ,g(Yu))]
is equivalent to

/\ /\ ("'·-'V·
l <· ·< q-,J
-1 'J-n

~

A3

In other words, one can eliminate the function letter g from the

discussion at the expense of introducing nm instances of Y.

Finally, we prove the equivalence result between subgoal

induction and computation induction.

Theorem 1. The statement to be proved in a subgoal induction proof,

i.e., (SGI) in Section 2, is equivalent to the statement required by

a computation induction proof.

Proof. Let the partial correctness statement be

Y(x;f(x))

where f is defined by

f <= 'T[f]

and 'Tis a first-order functional off. By Lemma 1, Y(x;f(x)) is an

admissible predicate for a computation induction proof so Y(x;f(x))

follows from

(A.13) i"(x;n(x))

and

(A.14) (Vg) [(Vx) [i"(x;g(x))] -. (Vy) [Y(y;r[g](y))]]

These are equivalent, respectively, to

(A. 13') i"(x; w)

and

(A.14') (Vg) [(Vx) [i"(x;g(x))] -+ Y(y;r[g](y))]

assuming y is not free in i"(x,g(x)). Now (A.13') is true by

definition so the proof of the theorem reduces to showing that

proving (A.14') is equivalent to a subgoal induction proof. But

(A.14') can be re-written in the form

(A.15) (Vg) [(Vx) [i"(x;g(x))] -+ Il(g(y1) •... ,g(yn))J

where II has the form

(A.16)

and /3 and the 'Yi are derived as in Section 2; i.e., by replacing

(inside out) each occurrence g(Yi) by a new variable Zi·

Now by Lemma 2, (A.15) is equivalent to

n
[/\ Y(y··z·) /\ /\ -1 l• l 1<· « 1- _}. J-n

n
/\ z·=z·

i = 1 1 l
/\ i"(y;p)

which is equivalent to the rule of subgoal induction.

A4

