1720A

Training
Package

P/N 648287
January, 1982
©1982 John Fluke Mfg. Co., Inc., all rights reserved. Litho in U.S.A.

[ELOKE]

Technical Bulletin

1720A Highlighted Learning Program

The 1720A stores programs on a 5-1/4 inch floppy
disk.

The disk itself is called the MEDIA.

The floppy disk has a smooth magnetic surface on
which information is stored as sequences of magnetic
pulses. The magnetic pulses are recorded along
TRACKS on the surface of the disk.

Blocks
Sectors

Tracks

Origin Hole

The disk we use with the 1720A is SINGLE SIDED
which means we can record data on only one side of
the disk.

Our data is recorded using DOUBLE DENSITY
recording techniques.

The disk is SOFT SECTORED, which means it has
one origin hole.

It contains 35 TRACKS and 350 BLOCKS. Two
BLOCKS are always used for the DIRECTORY.
Each block stores 512 bytes (256 words) of data so the

total storage capacity of the disk is approximately
175K BYTES (87K WORDS).

Our files are stored on adjacent sectors so they are
called CONTIGUOUS FILES.

A complete description of our program storage
device is as follows:

The 1720A uses a 5-1/4 inch floppy disk. It is a
SINGLE-SIDED, DOUBLE DENSITY, SOFT-
SECTORED 35-TRACK disk. Its storage capacity
is 175K BYTES (87K WORDS), and it has a
CONTIGIOUS FILE STRUCTURE.,

Because of the large amount of data stored on it, the
floppy disk is also referred to as a MASS
STORAGE DEVICE.

The Floppy Disk

The Floppy Disk: Friend or Foe?

The floppy disk is EASY TO USE and allows
FAST ACCESS TO THE DATA but if mistreated
it can be your WORST ENEMY.

In other words, DO NOT FOLD, SPINDLE OR
MUTILATE!

Care and Handling

e Always keep the disk in its protective cover when
not in use.

o Careless handling of the disks may damage them.
Avoid dropping, throwing or twisting the disks.

o Make sure to store disks vertically. Stacking may
distort them and affect their contents by pressing the
side covers into the disk.

e Direct sunlight may warp the disks. See that they
are protected from the heat of the sun.

e Magnetic sources may distort data on the disks.
Keep them away from electric motors, generators
and transformers.

e Use a felt tip pen to mark disk labels. Pressure
from a ball point pen or pencil may distort the data on
the disk.

Loading the Disk

To load the disk, open the front disk entry latch and
gently insert the disk label up, slot side first, into the
disk entry latch using partial closures to seat the disk.
Always grasp the disk by the cardboard cover and
avoid touching the disk itself.

Note: If the door is closed when the disk is
improperly seated, the disk center hole may be
damaged. This can be prevented by partially
lowering and raising the disk entry latch to
seat the drive hub prior to total closure of the
disk entry latch.

Formatting the Disk

e In order to write onto a blank disk it is necessary
to go through a preliminary step called
FORMATTING.

e During the formatting step, the floppy disk drive
designates sectors and tracks using appropriate
magnetic codes. This is an automatic process which
the 1720A performs using the FILE UTILITY
PROGRAM (FUP).

e The command for formatting is /F.

o Once the disk is formatted, it is ready to use. You
can WRITE information onto it and READ it back.

©1982, John Fluke Mfg. Co., Inc., all rights reserved

FLUKE
®

John Fluke Mfg. Co., Inc.

P.O. Box C9090, Everett, WA 98206
800-426-0361 (toll free) in most of U.S.A.
206-356-5400 from AK, HI, WA
206-356-5500 from other countries

Fluke (Holland) B.V.

P.O. Box 5053, 5004 EB, Tilburg, The Netherlands

Tel. (013) 673973, TELEX 52237

Phone or write for the name of your local Fluke representative.

Printed in U.S.A. B0076A-10U8003/SE EN

IFLUKE]
®

Technical Data

1720A Highlighted Learning Program B0077
Startup, Self Test, FDOS, Conmon

The 1720A controller goes through a series of
operations at start-up to insure the functional
operation of the hardware and to allow the
programmer/operator to get into BASIC quickly
and easily. Each operation is presented in the order
in which it occurs.

Start-up follows a logical sequence which we will go
through step-by-step.

The SELF TEST is loaded from the ROM’s
(READ ONLY MEMORY) located on the CPU
board. We will follow the START-UP
procedure step-by-step as detailed in the included
flowchart.

START-UP

* Turn on power

* Insert disk
or press RESTART if
disk is already mounted

The 1720A now goe's through a SELF TEST routine.

ERROR
MESSAGES

SYSTEM

SELF TEST| FAILURE

|
The display on the %720A will indicate;

Fluke 1720A Controller
HELLO
BOOT V x.y

The display now se({uences to

¥

Fluke 1720A Controller
SELF TEST
Error Message

SELF TEST performs a test on the following items:

*VIDEO BOARD
*MEMORY BOARD

*FLOPPY DISK INTERFACE
*IEEE INTERFACE

If any of the items do not test properly an ERROR
MESSAGE will appear.

!IVIDEO ERROR
'MEMORY ERROR

!FLOPPY ERROR
'IEEE MISSING OR FAULTY

If any SELF TEST errors are encountered, the
display will also indicate

“Press any key to continue”

Pressing any key on the keyboard or Touch Sensitive
Display will cause the start-up procedure to
continue.

The display then sequences to

FLUKE 1720A CONTROLLER
Loading
ERROR MESSAGE

The 1720A now checks to see if a floppy disk is
mounted. If so it checks to see if an operating system
is present and if so it then loads FDOS.

If a floppy disk is not mounted or the operating sys-
tem is not present on the floppy disk, the 1720A
performs the same checks on the E-disk. If the opera-
ting system is found first on the E-disk, then the
E-disk becomes the system device. If the operating
system is found first on the floppy disk, then the
floppy disk becomes the system device. If any errors
are detected, one of the following error messages will
appear:

?FLOPPY ERROR
?DISK NOT MOUNTED

?NO SYSTEM ON DEVICE
?ILLEGAL DIRECTORY

along with the message “Press any key to
continue.”

To continue after an error is encountered (such as
“?DISK NOT MOUNTED*) and the error is
corrected (mounting the disk), press any key on the
keyboard or Touch Sensitive Display to continue the
procedure.

IFLUKE]
®

FDOS IS NOW RUN (FLUKE DISK
OPERATING SYSTEM)

FDOS manages disk operations and oversees
communication between the disk and the Controller.

FDOS also checks for the presence of a
COMMAND FILE.
4

LOAD AND RUN FDOS

LOAD COMMAND FILE

COMMAND
FILE
PRESENT

Load Console
Monitor

Load Console
Monitor

Input From
Keyboard

Input From
Command File

>|S|T|F|B

The COMMAND FILE stores a set of instructions
that normally would be input by the operator from
the keyboard before BASIC is called and the MAIN
PROGRAM is executed. It executes the
preprogrammed instructions and can callup BASIC
and run the main program. It allows, therefore, a set
of start-up instructions to be executed automatically
from the disk without the use of a keyboard. The
COMMAND FILE will be covered in detail in a
later lesson after keyboard execution of these
instructions is learned. If no COMMAND FILE is
present the 1720A now loads and runs CONMON.

CONMON stands for CONSOLE MONITOR.
This is the program that oversees communication
between the user and the 1720A. It allows selection of
various utilities and programs. It asks the user to
respond to the prompt character #.

The selections Are:

?displays a menu of the selections.

S SET BAUD RATE UTILITY

T SET TIME/DATE UTILITY

F FUP (FILE UTILITY PROGRAM)
B BASIC INTERPRETER

At start-up, the baud rate defaults to 4800 baud.
(Internally selectable) The SET BAUD RATE
UTILITY allows the baud rate on the two RS-232
ports (KB1, KB2) to be changed to the desired baud
rate. An example of how to set the baud rate is shown
below:

*The underlined portions indicate the user responses.
*(CR) stands for carriage return.

Example:

Console Monitor Versions x.y 11:08 26-SEP-79
S (CR)

SET 11:08

SET Version x.y

Enter baud rate:

KBI1 (J23): 2400 (CR)
KB2 (J22): 110 (CR)

After the KB2 baud rate is entered, the 1720A
returns to CONMON and displays:

Console Monitor Version x.y 11:00 26-SEP-79
#

The SET TIME/DATE UTILITY sets the internal
clock of the 1720A. Once it is set, it is supported by
battery back-up even though power is removed from
the 1720A. The procedure is shown below:

Console Monitor Version x.y 11:08 26-SEP-79
T (CR)

TIME 11:08 26-SEP-79

Enter date: DD-MM-YY 27-9-79 (CR)

Enter time: HH-MM 11-14 (CR)

After the time is entered the 1720A returns to
CONMON and displays the prompt #.

[FLUKE]
®

The FILE UTILITY PROGRAM (FUP) is a file
transfer and management program. It is a versitile
and often used program and will be covered
separately in a later lesson. FUP allows operations
such as listing the file directory, saving, merging,
deleting, copying, and renaming files. It is also used
to format and pack a disk. The procedure for calling
FUP is shown below:

Console Monitor Version x.y 11:08 26-SEP-79
F (CR

FUP 11:08 26-SEP-79

File Utility Program Version x.y

*

To exit from FUP back into CONMON, use the
procedure shown below.

Example:

* /X (CR) or

* CTRL P

CTRL P means holding down the CTRL button and
pressing the P button.

In order to RUN a BASIC PROGRAM, it is
necessary to call up the BASIC INTERPRETER.
It is called up from CONMON and is loaded into
MAIN MEMORY. We can then LOAD the
USER’S BASIC PROGRAM into MAIN
MEMORY and RUN it. This will be covered in
detail in a later lesson. The procedure for calling
BASIC is shown below:

Example:

Console Monitor Version x.y 11:08 26-SEP-79
B (CR)

BASIC 11:08

BASIC Version x.y

Ready

There are two ways to run a BASIC program. One
way is to LOAD the program and then RUN it.

Example:

Ready

OLD “METER” (CR)
Ready

RUN (CR)

The other way is to LOAD and RUN the program
with one command.

Example:

Ready
Run “METER” (CR)

In order to HALT a program that is running, the
operator can enter the following:

CTRL C
Ready

A program can also be halted using the ABORT
button on the front panel. This button HALTS the
program and issues a DEVICE CLEAR over the
IEEE-488 BUS.

Another way to HALT a program is to use the
CONTROL P function. This function EXITS from
BASIC and returns to CONMON (unless the
program had been SAVED on the DISK or E-
DISK, it would be lost).

Example:

CTRL P
Console Monitor Version x.y 11:08 26-SEP-79
#

Another way to HALT the program and EXIT from
BASIC is shown below.

CRTL C

Ready

EXIT (CR) or CTRL T

Console Monitor Version x.y 11:08 26-SEP-79
#

Using CTRL T instead of a (CR) will also cause a
(CR) to be returned but in addition will CLEAR the
SCREEN and HOME the CURSOR.

START-UP, SELF TEST, FDOS, CONMON, FLOW CHART

@ ‘ Start-Up ’

System Failure
Self-Test

Load And
C Run FDOS
Load

Command File

Error @
Messages

No Command Yes

Fil
} Pre;:nl? j

Load Console Load Console
Monitor Monitor

©
] ;
Q)

© O

Input From Input From
Command File

Keyboard m
L »{ Task Select]

® GO

©

Program

TASK DESCRIPTION EXITS
Displays a ‘menu’ of the various tasks performable. None Required
@ Set Baudrate Utility None Required
Set Time/Date Utility None Required
@ File Utility Program CTRL P./X
BASIC Interpreter CTRL P. EXIT

NN

Filename Uses any of the Assembly Language Programs As Programmed

IFLUKE]
®

John Fluke Mfg. Co., Inc.

P.O. Box 43210, Mountlake Terrace, WA 98043
800-426-0361 (toll free) in most of U.S.A.
206-774-2481 from AK, HI, WA and Canada
206-774-2398 from other countries

Fluke (Holland) B.V.

P.O. Box 5053, 5004 EB, Tilburg, The Netherlands
Tel. (013) 673973, TELEX 52237

Phone or write for the name of your local Fluke representative. Printed in U.S.A. B0077B-10U8203/SE EN

—— Technical Data

17X X A Highlighted Learning Program B007s
FUP Fundamentals

Overview

FUP.CIL is a file transfer and file management
program. This program is stored on the disk in binary and
is called up from CONMON. The “.CIL” extension
stands for CORE IMAGE LOAD and indicates that
FUP is not a BASIC program. FUP is a versatile and
often used program which provides the capability of
performing utility operations, on file structured
devices, which are not possible in the BASIC
environment. The full list of options which can be
performed by FUP are listed below:

COMMAND OPTION

? Displays a list of the FUP options

/A Assign the default system device (SYO:)

/B Binary file transfer

Delete a file

/E Extended directory listing

/F Format a file-structured device (floppy
disk or E-Disk)

AN S
N
C

7. /L List the directory

8. /M Merge ASCII files

9. /R Rename a file

10. /S Search for bad blocks

11. /W Whole or partial copy

12. /X Exit from FUP

13. /Z Zero a file directory

14. /P Pack a file-structured device
15. /T Turn oft error checking

In this lesson we will cover some of the syntax and
fundamental considerations which are necessary in
order to implement the FUP COMMAND OPTIONS.

FILENAMES and EXTENSIONS - Information such
as programs, data or text which is stored on the disk (or
E-Disk) is accessed via a file name with its associated
extension.

NAME.EXTENSION

The FILENAME consists of from 1 to 6 letters, numbers,
spaces or S signs. The extension consists of from 1 to 3
letters, numbers, spaces, or S signs.

Examples: “b™ is used to show the space character

TEMP.BAS FDOS.SYS 8502A.BAS
RESULT.DAT FUP.CIL 8502A.BAL
RESULT.BIN 8502A.488 RESULT.b

There are six programs in the current operating system
and an optional COMMAND FILE. These programs are:

FDOS.SYS FLUKE DISK OPERATING
SYSTEM

BASIC.CIL BASIC IMMEDIATE & EDITING
MODES

FUP.CIL FILE UTILITY PROGRAM

CONMON.SYS CONSOLE MONITOR

TIME.CIL CLOCK & CALENDAR SETTING
ROUTINE

SET.CIL SET RS-232 BAUD RATE

COMMND.SYS COMMAND FILE

The above FILENAMES and EXTENSICNS relate to
the program stored under that FILENAME. The
extension “SYS” is an abbreviation for SYSTEM;
“CIL" is an abbreviation for CORE IMAGE LOAD.
The system has been programmed to look for and
recognize these specific FILE NAMES with the specific
extension.

Note: The system has not been progranuned 1o prevent the
programmer from using any of the above names with its
extension 1o store other programs or data, and in so doing,
delete the original svstem program!

Every FILENAME gets an extension when it is used to
store a program or data. The sytem assigns a default
extension if the programmer does not use an extension.

Examples of extensions and their origin:

.BAS this extension is assigned by default to any
FILENAME which is used with a SAVE
command in the BASIC MODE to store a
BASIC program as ASCII data. FUP will
assume a .BAS extension for any FILE-
NAME entered without an extension.

b a ““.space” extension is used as a default exten-
sion when a FILENAME is used with an

OPEN statement to store data, when the
program omits the extension.

FLUKE

.BIN used by some programmers to indicate
binary data. This is not a default extension. It
has no special meaning for the system.
Assigning an extension to a BINARY file is a
good way to indicate it is not an ASCII file.
Manipulation of BINARY files in FUP
requires the /B COMMAND; therefore, the
programmer needs to be able to recognize
BINARY files.

488 can be assigned to either a program or data
file to indicate to the user its use with the
IEEE-488 BUS. This is not a default
extension; it has no special meaning to the
system. *‘.488”” may be used in place of “.BAS”
and the system will still recognize the program
as a BASIC program stored as ASCII data.
*“.488”” may not be used in place of “.BAL”.
“.DMO” for demo, “.CAL” for calibration,
“TMP” for temporary, and “.TST” for
TEST are all examples of how a group of
programs could be associated by a common
extension. These extensions are treated by the
system the same as “.488”".

The SYSTEM DEVICE can be assigned from FUP
using the /A command as shown below. The FUP prompt
character is an *.

MFO0:/A
EDO:/A

assigns MFO: as SYO:
assigns EDO: as SYO:

SYNTAX of FUP COMMANDS

Now that we know what FILENAMES, EXTEN-
SIONS and DEVICES are, we will show how these are
used to perform operations in FUP.

The general FUP command is as follows:

Although FILENAME and EXTENSION are treated
separately in the above discussion, the full file name of a
program or data is really the FILENAME and the
.EXTENSION.

Note: In FUP only ASCII files may be listed out 1o a
printer. If a file is stored on the disk in both the .BAS and
BAL versions (for example: METER.BAS and
METER .BAL), and no extension is specified when using
BASIC asin RUN ‘“METER”’, the .BAL file is used. If no
extension is specified when using FUP, however, the BAS file
is used.

Devices the 1720A can transfer data to or from any of six
I/0 DEVICES which are designated by a two-letter

specification plus a single number indicating the unit
number. The designations are listed below:

KBO0: Console device (keyboard/display)
KBI1: (J23) RS-232 port

KB2: (J22) RS-232 port

MFO0: Floppy Drive

E0: Electronic Disk

MMO0: Main Memory (used for copying files)

To make operation easier, there is one other device
designation SY0:, the SYSTEM DEVICE. Either the
floppy drive (MFO:) or the Electronic Disk (ED0:) can be
assigned as SYO0:. The 1720A loads and runs the operating
system from it.

« 1980, John Fluke Mig. Co., Inc.,all rights reserved

The format for either the output or input file is:
[<DEVICE> | : <FILENAME> [<EXTENSION>]

<OQUTPUT FILE> [, <output file>] =
<INPUT FILE> [, <input file>] . <OPTION>

While multiple output files and input files may be
specified (the designations in brackets [] are optional), we
will work with the terms not enclosed in brackets as these
are the minimum necessary components of a command
line. This reduces the command line to:

<OUTPUT FILE>=<INPUT FILE>/<OPTION>

The REFERENCE POINT for all FUP operations is the
= sign

OUTPUT FILE = INPUT FILE

Direction of Data Transfer

DATA is always transferred from the RIGHT (INPUT
or source FILE) side of the = sign to the LEFT
(OUTPUT or destination FILE) side

The default states are:

<DEVICE> = SYO
<EXTENSION> = BAS

When NON-FILE STRUCTURED DEVICES like
RS-232 PORTS and the CONSOLE DEVICE (KBO:)
are used, a FILENAME and EXTENSION are not
required. For example, KB1: is a valid description of an
OUTPUT FILE.

FLUKE

We will now go through the use of the FUP commands.
This command (?) displays the contents of the file
FUP.HLP which summarizes the proper use and options
of FUP. The command sequence is shown below:

/A
/B
/D

/E

/P
/R
/S
/T

Assigns System Device
Binary File Transfer
Delete a File

Extended
Directory Listing

/F Format a Disk or the MFO0:/F or EDO./F
E-Disk
/L List a Directory MFO0:/L or KB1: EDO:/L
/M Merge ASCII Files TEST.NEW=TEST.1, TEST.2,

Pack a Device
Rename a file
Secarch for Bad Blocks
Turn off error

EDO0:/A or MFO:/A
MFO0:FUP.CIL=MMO:FUP.CIL/B
TEST.TMP/D or EDO:TEST.1,
TEST.2,TEST.3/D

MFO0:/E or EDO:/E or /E

TEST.3/M

MFO0:/P or EDO:/P or /P
TEST.1=TEST.OLD/R
MFO0:/S or /S
EDO:TEST.BAD/T

checking
MFO:TEST.BAS/T

/W Whole Copy or Partial EDO0:=MFO0:/W or
Copy MF0:=MMO0:BASIC.CIL/W
/X Exit from FUP /X

/Z Zero a Directory EDO:/Z or MF0:/Z or /Z

The FUP program is accessed from the CONSOLE
MONITOR (CONMON) program, using the following
instructions:

When “#” is displayed
1. Type F
2. Press RETURN

In order to leave FUP and return to the CONSOLE
MONITOR:

When * is displayed -
1. Type /X
2. Press RETURN

It is good programming practice to have a second disk and
even a third disk with back up copies of your programs.
FUP is a powerful tool and its operations are not
reversible. If you inadvertently exchange the positions of
the source and distination files in 2 FUP command, you
could lose the source file, and in this case, a back up copy
prevents a total loss.

FLUKE

John Fluke Mfg. Co., Inc.

P.O. Box 43210, Mountlake Terrace, WA 98043
800-426-0361 (toll free) in most of U.S.A.
206-774-2481 from AK, HI, WA and Canada
206-774-2398 from other countries

Fluke (Holland) B.V.

P.O. Box 5053, 5004 EB, Tilburg, The Netherlands

Tel. (013) 673973, TELEX 52237

Phone or write for the name of vour local Fluke representative.

Printed in U.S.A. B0078B-10U8102/SE EN

[FLUKE]
®

Technical Data

17XXA Highlighted Learning Program B0079
Communication Over The IEEE-488 Bus

The concept of the IEEE-488 Bus allows
MULTIPLE INSTRUMENTS to be connected to
a COMMON Bus. Each instrument is assigned a
DEVICE ADDRESS to allow SELECTIVE
COMMUNICATION over the bus.

The PRINT and INPUT statements are the heart of
bus communication. They allow 2-WAY
COMMUNICATION to take place between a
controller and the various instruments connected to
the bus.

A device which is SENDING DAT A over the bus s
called a TALKER.

A device which is RECEIVING DATA over the bus
is called a LISTENER.

The general form of the PRINT and INPUT
statements is shown below:

PRINT @ 2, “COMMAND STRING”

Makes addressed Device User assigned Command
instrument a Address String enclosed in

listener quotes

INPUT @ 2, VARIABLE

Makes addressed Device User assigned variable for
instrument a Address storage of data Example R,
talker As, T%

An important rule of bus communication is that
while there may be MULTIPLE LISTENERS on
the bus, only ONE TALKER may be enabled atany
given time.

We will now go through several examples to illustrate
the fundamentals of communication over the bus.

In order to do this it will be necessary to use several
additional bus commands.

this command initializes the bus to a
known state

INIT

CLEAR®@ the selected device is addressed as a
listener and a selective device clear is
1ssued

WAIT Program execution is suspended for the

time interval (in milliseconds) specified

Example 1: PROGRAM an 8502A to take a
SINGLE READING and DISPLAY it on the
controller.

10 INIT PORT 0 initializes bus

20 CLEAR@2 resets DVM

30 WAIT 5000 waiting to resct

40 PRINT@2, “VR2T0,” programs DVM for 10V DC range

50 PRINT@2, *“?” triggers reading

60 INPUT@2, R puts reading from DVM into variable R

70 PRINT R displays reading on CRT

Example 2: MODIFY the above program to take 10
READINGS and DISPLAY them in REAL TIME

add the following program lines to the Example 1
program

45 FOR 1% = 1% TO 10%
75 NEXT 1%

the complete program is shown below:

10 INIT PORT 0

20 CLEAR @ 2

30 WAIT 5000

40 PRINT @ 2, “VR2T0,”
45 FOR 1%=1% TO 10%
50 PRINT @2, “?*

60 INPUT @ 2, R
70 PRINT R
75 NEXT I%

FOR NEXT LOOP REPEATS
LINES 50, 60, 70
10 TIMES

The next example illustrates the important
distinction between displaying the readings in
REAL TIME (Example 2) and displaying them
AFTER the measurement cycle is complete
(Example 3).

EXAMPLE 3: MODIFY the program in Example 2
to TAKE 10 READINGS and STORE them in
VARIABLE R. After the LAST READING is
completed, the program WAITS 3 SECONDS and
then DISPLAYS the READINGS.

Add the following program lines to the Example 2
program:

5 DIM R (10)

60 INPUT @ 2, R (I%)

70 ! DELETE THIS LINE FROM EXAMPLE 2
80 WAIT 3000

90 FOR 1%~ 1% to 10%

100 PRINT 1%; R(1%)

110 NEXT 1%

The complete program is shown below:

5 DIM R(10) Dimensions R to hold up to 11 readings
10 INIT PORT 0

20 CLEAR @ 2

30 WAIT 5000

40 PRINT @ 2, “VR2T0”

45 FOR 1% = 1% TO 10% for next loop to take 10 readings

50 PRINT @ 2, «“?”

60 INPUT @ 2, R (I%)

75 NEXT 1%
80 WAIT 3000 inserts delay before displaying readings

90 FOR 1% = 1% TO 10%
[100 PRINT 1%; R (1%) I for next loop to display 10 readings
110 NEXT I%

Simple as these programs are, the following items
were accomplished:

1. Initialize the Bus

2. Clear an instrument

3. Send a command string to an instrument

4, Trigger a reading

5. Store readings in a variable

6. Display readings on the CRT

7. Use a wait statement

8. Dimension a variable

9. Use a for-next loop with an integer variable
10. Use a semicolon to separate printed variables

Note: Additional statements such as RBIN, RBYTE,
WBIN, and WBYTE are available to transfer binary
data, to speed up data transfer, to overcome data
format problems and to control the sequence of
data transfers. The software bulletin on the 8500
series digital voltmeter has examples of RBYTE and rFLLJ K E]
WBYTE for binary readings and their conversion ®
to floating point format.

John Fluke Mfg. Co., Inc.

P.0O. Box C9090, Everett, WA 98206
800-426-0361 (toll free) in most of U.S.A.
206-356-5400 from AK, HI, WA
206-356-5500 from other countries

Fluke (Holland) B.V.

P.O. Box 5053, 5004 EB, Tilburg, The Netherlands

Tel. (013) 673973, TELEX 52237

Phone or write for the name of your local Fluke representative.

Printed in U.S.A B0079B-10U8207/SE EN

<1982, John Fluke Mfg. Co., Inc., all rights reserved

IFLUKE]
®

Technical Data

1720A Highlighted Learning Program B0097

The System Command File stores aset of initialization
instructions that normally would be input from the keyboard
after applying power to the controller. It executes the
preprogrammed instructions and can call up BASIC and
run the main program. It allows therefore, a set of
start-up instructions to be executed automatically from
the disk.

Use of the Command File then, allows the 1720A to be
operated completely independent of the keyboard.

Some typical tasks that would be performed by a Command
File are shown below.

- CHECK TO SEE WHETHER THE CLOCK HAS
BEEN DISTURBED

- SET THE BAUD RATES ON THE RS-232 PORTS
- FORMAT THE ELECTRONIC DISK
- ASSIGN THE SYSTEM DEVICE

- DOWNLOAD FILES FROM THE FLOPPY DISK
TO THE ELECTRONIC DISK

- CALL UP BASIC

- EXECUTE IMMEDIATE MODE BASIC
COMMANDS

- RUN A BASIC PROGRAM

All modes of the controller are accessible to a Command
File just as they are from the keyboard.

There are two ways to generate a System Command
File: It can be entered directly from the keyboard while
in FUP, or a BASIC program can be used to read data
statements into the file. Using the BASIC program
allows the command file to be easily modified using the
BASIC editor. For simple command files the FUP
method is quicker. However once a command line is
entered it cannot be corrected unless the whole command
file is rewritten.

Generating A System Command File
Using FUP:

1. From CONMON enter “F” to select the File Utility
Program.

2. Enter MFO:COMND.SYS=KBO: This will assign
the file “COMMND.SYS” on the floppy disk (MFO:)
as the destination for source information to come from
the keyboard.

The Systemm Command File

3. Enter each command to be stored on a separate line.
Use the delete key to correct for errors before terminat-
ing the line with a (CR).

4. Terminate the file with a CTRL/2 (end of file).

AN EXAMPLE IS SHOWN BELOW:
Console Monitor Version x.y 8:52 19-JUN-80

FUP 8:52 19-JUN-80
File Utility Program Version x.y

* MFO.COMMND SYS"KBO
*%¥{Calls TIME) .
H{Calls FUP)
{(Formats E-Disk)
- (YES)
% (Exit from FUP)
B /%2 (Calls BASIC)
RUN“METER BAS”

<% (End of File)

Generating a System Command File
Using BASIC

This program creates two files on the floppy disk: a Com-
mand File under the name COMMD. SYS, and a copy of
this program under the name COMMD.BAS. The
DATA statements (except line 10) contain the actual
command file. Use as many DATA statements as needed.
Each data statement must contain one legitimate key-
board command. All modes of the 1720A are accessible to
a Command File just as they are from the keyboard.

1. From CONMON, type B to select the BASIC Inter-
preter.

2. Type EDIT to select the edit mode of BASIC.

3. Now enter the following program using the editing
capabilities of BASIC. Use as many data state-
ments as needed, with one quoted command line in each
statement.

[FLUKE]

1000 ON ERROR GOTO 10060

1010 DATA “ (COMAND ”
1020 DATA * Inputs ”
1030 DATA * For »
1040 DATA “ CONMON ”
1050 DATA « SET ”
1060 DATA “ FUP, ”
1070 DATA “ BASIC ”
1080 DATA “ ETC) ”

(More lines of DATA, as needed)

10000 DATA “END”

10020 READ AS\IF A$=“END” GOTO 10040

10030 PRINT #1,A$\ GOTO 10020
10040 CLOSE 1

10070 END

10010 OPEN “MFO:COMMND.SYS” AS NEW FILE 1

10050 KILL “MFO:COMMND.BAS”\SAVE “MFO:COMMND”\GOTO 10070
10060 IF ERL=10050 AND ERR=305 THEN SAVE “MFO:COMMND” ELSE OFF ERROR

Hints On Using Command Files

* Several Command Files can be kept on a disk and one
made active by assigningitto COMMND.SYS. Assume
we have the following command files stored on disk.

COMMND.ONE
COMMND.TWO
COMMND. TMP

We can make COMMND.ONE the Active Command
File by using FUP as shown below.

EXAMPLE:

*MFO:COMMND.SYS=MFQO:COMMND.ONE (CR)

CAUTION: This will delete whatever was previously
stored as “COMMND.SYS.”

This creates a file COMMND.SYS on the disk using the
contents of COMMND.ONE. Note that COMMND.ONE
is still retained on the disk for backup purposes.

Similarly, to deactivate the Command File, just delete
COMMND.SYS as shown below.

1980, John Fluke Mfg. Co., Inc., all rights reserved

EXAMPLE:
*MFO:COMMND.SYS/D (CR)

A useful application of this would be where COMMND.SYS
on the disk is used to download the contents of the Disk
to E-Disk, assign the E-Disk as the system device,
assign a file from the disk (COMMND.EDO:) as the
Commnd File for E-Disk, and then run a user program.
The two files as they would appear on the disk are shown
below.

*COMMND.SYS (CR)
T

F

EDO:/F

Y

EDO:=MFO:/W

EDO:/A
COMMND.SYS=COMMND.EDO:/R
/X

B

RUN “USER.PRG”

[FLUKE]

®

*COMMND.EDO: (CR)
B
RUN “USER.PRG”

*DISPLAYING THE CONTENTS OF THE
COMMAND FILE WHILE IT IS ACTIVE

It is possible to make use of the attributes capability of
the 1720A when generating the Display File but that
procedure will be covered in a later lesson.

To use the Display File merely place the instruction to
display it in the command file as shown below.

EXAMPLE:

Often it is useful to display the instructions contained in
the Command File while it is active. This can be easily
accomplished by adding an instruction to the Command
File telling it to list COMMND.SYS while in FUP. This
is illustrated in the sample Command File shown below.

EXAMPLE:

*COMMND.SYS (CR)

T

F

COMMND.SYS (Displays the File)
EDO:/F

Y

B
RUN“TEST 1.BAS”

*DISPLAYING MESSAGES WHILE THE
COMMAND FILE IS ACTIVE

*COMMND.SYS (CR)
T.
F) N 4
DSPLY.MSG (Displays Message)
EDO /F .
\ EDO :=MFO:/W
EDO:/A
/X
B

RUN“USER.PRG”

If instead of displaying the contents of COMMND.SYS
as was done above, we can display the contents of a differ-
ent file. This allows us to display a message by putting it
in the file. We will call the file DSPLY.MSG. It can be
generated from FUP just as Command Files can.

EXAMPLE:

*DSPLY.MSG"KBO
(CR)- :
(CR)
PLEASE STANDBY!!!!
DOWNLOADING FLOPPY TO E-?DISK
(CR) fg

|IFLUKE]
®

John Fluke Mfg. Co., Inc.

P.O. Box C9090, Everett, WA 98206
800-426-0361 (toll free) in most of U.S.A.
206-356-5400 from AK, HI, WA
206-356-5500 from other countries

Fluke (Holland) B.V.

P.O. Box 5053, 5004 EB, Tilburg, The Netherlands

Tel. (013) 673973, TELEX 52237

Phone or write for the name of your local Fluke representative,

#1982, John Fluke Mfg. Co., Inc., all rights reserved Printed in U.S.A. B0097A-10U8009/SE EN

[FLUKE]
®

Technical Data

17X X A Highlighted Learning Program B009s

FUP, the File Utility Program, is a file transfer and
management program giving you flexible control over the
files on floppy disks and on the optional Electronic Disk.
FUP sets up a communications channel between devices
and files recognized by the Floppy Disk Operating
System (FDOS).

/F - FORMAT A DISK OR ELECTRONIC
DISK

Before a floppy disk is used for the first time, its magnetic
surface is completely blank. In this form it is not possible
for the 1720A to write on the floppy disk until it has been
FORMATTED. The formatting procedure writes
addresses in the form of tracks and sectors onto the floppy
disk so that specific locations may be referenced by the
1720A. FUP is used to format either the floppy disk or
Electronic Disk.

SYNTAX: [<DEVICE>], <DEVICE>]}J/F<CR>
DEFAULT: <DEVICE>=SYO

While multiple device formatting is possible we will deal
with formatting one device.

This reduces the command line to:

[[<DEVICE=] / F <CR>]

If we wish to format a floppy disk we would insert a blank
disk in the drive and use the following command line:

[*MFO: / F <CR> |

But if MFO: is the default device (MFO: is SYO:) the
command line would be:

Example:

*/F <CR>
Really zero SYO:? YES <CR>

Notice that the 1720A asks for CONFIRMATION OF
THE FORMATTING COMMAND. After
FORMATTING, the DEVICE DIRECTORY will be
ZEROED.

NOTE: If a device containing FILES is FORMATTED,

all FILES on the device are ELIMINATED (erased).

Disk Initialization

Similarly, if MFO:is SYO: and we want to FORMAT the
ELECTRONIC DISK we would use the following
command line.

Example:

| *EDO: F <CR>
Really zero EDO:? YES <CR> |

/S - BAD BLOCK SEARCH

This command scans devices for BAD BLOCKS. It will
print to the OUTPUT FILE the NUMBER of the BAD
BLOCK and the TOTAL NUMBER OF BAD
BLOCKS found. In addition, if any of the blocks have
SOFT ERRORS (requiring more than one try to write or
read valid information onto the block) it will indicate the
NUMBER of RETRIES that were necessary.

SYNTAX: [<OUTPUTFILE> = || <DEVICE>],
<DEVICE>]] / § <CR>

DEFAULT: <DEVICE> = SYO <OUTPUT FILE>
= KBO0:

While it is possible to scan multiple devices for bad blocks
we will deal with one device. This reduces the command
line to:

'{ <OUTPUTFILE> =][<DEVICE> /'S <CR> |

If we wish to scan a disk the command
line would be:

*KBO: = MFO: / S<CR>

But since KBO: is a default condition and if MFOQ: is a
default condition the command line reduces to / S <CR>

Example:

/S <CR>

Block 273 has 1 entry
Block 275 has 1 retry
Block 326 has 3 retries
Block 351 is bad
Block 358 is bad

Total of 2 bad blocks found

FLUKE

Similarly if EDO: is SYO: we could scan a disk (MFO:)
and print the diagnostics to a FILE on EDO called
SCAN.BLK. The command line would be:

*EDO:SCAN.BLK=MFO: / S<CR>

But since EDO: is the default device the command line
would reduce to:

*SCAN.BLK=MFO: / 8<CR>

/L - List the DIRECTORY

This command prints the directory of the specified
DEVICE to the specified OUTPUTFILE.

Syntax: [<OUTPUTFILE> | =[<DEVICE> /L <CR>

Default: <OUTPUTFILE> = KBO (console device)
<DEVICE> = SYO (system device)

If we wish to list the directory of a floppy disk on the
display (KBQ:), the command would be:

*KBO: = MFO: /1. <CR>

but since KBO: is the default condition and if MFO:is the
default condition, the command simplifies to /L <CR>

Example:
*/L <CR>
Directory of SYO: on 3-Oct-79 at 16:34
Name.Ext Size Date
FDOS.SYS . 13 25-Sep-79
CONMON.SYS 2 20-Sep-79
TIME.CIL 2 20-Sep-79
SET.CIL 1 20-Sep-79
FUP.CIL 9 20-Sep-79
BASIC.CIL 50 20-Sep-79
EDIT.CIL - 9 20-Sep-79
SELECT.BAS 12 20-Sep-79
DEMO.BAS 46 21-Sep-79
LIST.13E 5 25-Sep-79
IEEE.BAS 1 2-Oct-79
ENTER.BAS 4 3-Oct-79
8520.1 29 3-Oct-79
8520.BAS 29 3-Oct-79
Total of 212 blocks in 14 files, 186 free blocks

< 1982, John Fluke Mfg. Co., Inc,, all rights reserved

Similarly, if we want to list the above directory out to a
printer connected to the RS-232 port KBI:, the following
command would be used:

*KB1: =MFO:/L <CR>

And due to the default conditions it would simplify to:

*KBI: =/L <CR> |

Finally, if SYO: is MFO: and we wish to list on the display
the directory contained on electronic disk, the command
would be:

*KBO:=EDO:/L <CR>

And due to the default conditions we would use:

| “EpO:/L </CR> |

/E - EXTENDED DIRECTORY listing

Since the 1720A employes a CONTIGUOUS file
structure, there can be blocks of UNUSED ENTRIES.
These won’t be displayed with the /L command. If a
listing of these empty entries is desired, however, the /E
command can be used instead of the /L command.

Example:
*/E <CR>
Directory of SYO: or 3-Oct-79 at 16:34
NAME.EXT SIZE DATE
FDOS.SYS 13 25-Sep-79
CONMON.SYS. 2 2 20-Sep-79
TIME.CIL 2 20-Sep-79
SET.CIL 1 20-Sep-79
FUP.CIL 9 20-Sep-79
BASIC.CIL 50 20-Sep-79
<NOT USED> 30
DEMO.BAS 46 21-Sep-79
<NOT USED> 5
ENTER.BAS 4 3-Oct-79
<NOT USED> 236
Total of 127 blocks in 8 files, 271 free blocks

FLUKE

The angle brackets indicate blocks of UNUSED
ENTRIES located between files. The /E command then
indicates not only the amount of unused blocks but also
where they are distributed on the disk.

/P - PACK A DEVICE

In order to best utilize the unused blocks on a disk it is
often desirous to have all the free space on a disk in one
Contiguous Section located after the existing files. This
is accomplished with the /P command.

SYNTAX: [<DEVICE> [, <DEVICE>]| /P <CR>
DEFAULT: <DEVICE> = SYO

While multiple device packing is possible we will deal with
packing one device. This reduces the command line to:

‘[<DEVICE>] /P <CR>

Here’s how we take the disk contents from the previous /E
DIRECTORY LISTING and pack them. The command
line would be:

*MFO:/P <CR>

But if MFO: is the default device the command line
reduces to /P <CR>,

Example:
*/P <CR>
*/E <CR>
Directory of SYO: on 3-Oct-79 at 16:40
NAME.EXT SIZE DATE
FDOS.SYS 13 . 25-Sep-79
CONMON.SYS 2 7 20-Sep-79
TIME.CIL - 2 - 20-Sep-79
SET.CIL .. 1 20-Sep-79
FUP.CIL . 9 20-Sep-79
BASIC.CIL 56 20-Sep-79
DEMO.BAS ~ 46 ° 21-Sep-79
ENTER.BAS. 4 3-Oct-79
<NOT USED> 271 3-Oct-79
Total of 127 blocks in 8 files, 271 free blocks.

Notice that now the all free space on the disk is located in
one section and there are no unused entries between files.

If we want to pack the ELECTRONIC DISK when
SYO: is the floppy disk (MFQ:) we would use the
following command line:

*EDO:/P <CR>

FLUKE

John Fluke Mfg. Co., Inc.

P.O. Box C9090, Everett, WA 98206
800-426-0361 (toll free) in most of U.S.A.
206-356-5400 from AK, HI, WA
206-356-5500 from other countries

Fluke (Holland) B.V.

P.O. Box 5053, 5004 EB, Tilburg, The Netherlands

Tel. (013) 673973, TELEX 52237

Phone or write for the name of your local Fluke representative.

Printed in U.S.A. B0098B-10U8208/SE EN

IFLUKE]

- Technical Data

17X X Highlighted Learning Program B0099

FUP, the File Utlity Program, is a file transfer and
management program giving you flexible control over the
files on floppy disks and on the optional Electronic Disk.
FUP sets up a communications channel between devices
and files recognized by the Fluke Disk Operating
System (FDOS).

FUP can be used to casily accomplish the following file
modifications:
/R RENAME A FILE

SYNTAX: <DESTINATION FILE> = <SOURCE FILE>
/R <CR>

Default: None

The INPUT FILE is RENAMED according to the name
as specified in the OUTPUT FILE list.

Example:

To take the file 193A.BAS and RENAME it to
1953A.BAS we would use the following command line:

PwssA = 193A/R <CR>

NOTE: If the devices don’t correspond, an error message is
given. If the omtput file already exists, an error message is
green.

/D DELETE A FILE

This command DELETES the specified file or files.

SYNTAX: <FILE NAME> [, <FILE NAME>]
/D <CR>

DEFAULT: None
Example:

If it is desired to DELETE the files METER.BAS and
TEST.488 the following command line would be used:

[*METERTT'EéTASS/D' <CR>

NOTE: Limited 10 eight files ar u time.

/M MERGING ASCII FILES

SYNTAX: [<DESTINATION FILE>=]<SOURCE FILE>{,
<SOURCE FILE>]/M <CR>

Modification of Files

DEFAULT: <DESTINATION FILE> = KBO:
(CONSOLE DEVICE)

CAUTION: Line numbers of the files to be merged should
not overlap.

Example:

To MERGE the content of OLD.BAS and NEW.BAS
and create a new file NEW.BAS all on the system device
we would use the following command line:

*NEW = OLD, NEW/M <CR>

NOTE: There can be a maximum of 8 FILES specified in the
SOURCE (or right side of the command).

ERROR FREE FUP

FUP is a powerful tool. Good programming practices
should be employed to avoid pitfalls when using it.

1. Make a back up copy of your disk before modifying or
packing any files. If you do make an error afterwards, it
won’t be catastrophic.

2. Verify the results of each FUP operation you do. View
the directory or files as necessary to accomplish this. It
is better to discover if you have inadvertently erased a
file or disk at the finish of each operation than when the
program can’t be recovered.

3. Verify your FUP commands as typed before you
execute them. Imagine what would happen if you typed
MFO:/Z when you really meant to type MMO:/Z.

4. Adequately identify your Floppy disks by writing
something meaningful on the label with a felt tip pen.
Formatting an already recorded disk which has a blank
label can ruin your day. Better yet,doa /L command on
a “blank” disk before you format it. If you get a
directory listing, you have saved a disk.

5. Routinely Pack and Search your disks for bad blocks.
Disks which have bad blocks should have their files
copied onto another disk. If re-formatting the
questionable disk doesn’t get rid of the bad blocks, the
disk should be discarded.

6. Besuretouse /B or /W when transferring binary files.
/B will handle any ASCII files as well.

7. Be sure to store your system command file under a
temporary name before creating a new command file.

ERROR MESSAGES

Listed below are the error messages and their explanations
which can be encountered in FUPD.

DEVICE ERROR
This error indicates a fatal error on a I/O device. Examples
are disk CRC errors, magnetic tape parity errors.

?DEVICE NOT READY
This means that the accessed device is not ready. Remedies
are loading a diskette or closing the disk door.

?WRITE PROTECTED
The diskette has a write protect tab. This can be fixed by
either removing the tab or using a non protected diskette.

?NOT A VALID DEVICE
This means thata device has been specified for which there
is no support in FDOS. Misspelling is often the cause.

?FILE NOT FOUND
This indicates that the required file could not be found on
the specified device.

?NO ROOM FOR USER ON DEVICE
This indicates that the created file caused by either
merging or copying exceeds the amount of available space.

?NO END-OF-FILE
An ASCII file had been used as an input file, while not
containing an End-Of-File mark.

?DEVICES DO NOT MATCH
A rename option with different devices has been given.

?NOT A FILE STRUCTURED DEVICE
Certain operations like packing or listing a directory are
legal only on file structured devices.

?SYNTAX ERROR

A command line as input by the user did not meet the
syntax specification as required for that particular
command.

?TOO MANY FILES
More than eight files had been specified either in the input
or output file specification.

?ILLEGAL OPTION
An unrecognized option was selected. Probably a typing
error.

?NOT A VALID FILE NAME
A filename with illegal or too many characters had been
entered.

<1982, John Fluke Mfg. Co., Inc., all rights reserved

USING FUP TO DE-BUG
BASIC PROGRAMS

Files which have been OPENED for the storage of ASCII
data can be viewed via FUP by typing the file name
followed by the carriage return. If itis a long file the paging
keys should be used. Data is stored on the disk by the
PRINT command in identically the same format that is
used to PRINT via a mechanical printer.

The data being stored on the disk can be considered as a
printed page. In this context, errors such as “input line too
long™, “too much data typed” and “not enough data
typed” become meaningful.

If your basic program is having problems outputing data to
the disk or inputing data from the disk, viewing the data
file on the CRT via FUP can provide significant insight.

FLUKE

John Fluke Mfg. Co., Inc.

P.O..Box C9090, Everett, WA 98206
800-426-0361 (toll free) in most of U.S.A.
206-356-5400 from AK, HI, WA
206-356-5500 from other countries

Fluke (Holland) B.V.

P.O. Box 5053, 5004 EB, Tilburg, The Netherlands

Tel. (013) 673973, TELEX 52237

Phone or write for the name of your local Fluke representative.

Printed in U.S.A. B0099B-10U8208/SE EN

[FLUKE]

-~ Technical Data

17X X A Highlighted Learning Program Bo100
Copying (Transferring) of Files

The File Utility Program is the ideal program to use for
duplication of files and disks. FUP inputs information
directly from the original disk to the output device For
Temporary Storage for writing on the disk you are
duplicating. More than one file can be duplicated at a time;
in fact, it is possible to duplicate an entire disk with one
command, providing the original does not exceed 89
blocks when MMO: is the destination or 254 blocks when
EDO: is the destination 508 blocks if 2 E-Disks are used).

ZERO THE DIRECTORY

There are two reasons for zeroing a directory. In the first
case, you have a floppy disk or E-Disk you wish to erase. In
the second case, you are using EDQ: or MMO: as
TEMPORARY STORAGE for duplicating floppy disks
(floppy disk #1 to temporary storage; temporary storage to
floppy disk #2) and the original floppy disk contains more
blocks than the temporary storage. Consequently, the
temporary storage must be copied to more than once and
its directory must be zeroed before it can be copied to
again.

When the /Z command is used, the DIRECTORY of the
specified DEVICE is ZEROED OUT, that is, ALL
FILE HEADERS WILL BE WIPED OUT. (Note that
the file itself still exists, just the pointer, or file header is
erased.)

SYNTAX: = [<DEVICE> [, <DEVICE>]|/Z <CR>
DEFAULT: <DEVICE> = SYO

While multiple device zeroing is possible we will deal with
zeroing one device. This reduces the command line to:

= [<DEVICE> }/Z <CR>

If we wish to zero the directory on a disk we would use the
following command line:

*MFO:/Z <CR>

But if MFO: is the default device the command line would
be:

*/Z <CR>
Really zero SYO.? YES <CR>

Notice that the 1720A asks for CONFIRMATION of the
ZEROING COMMAND.

Similarly if MFO: is SYO: and we want to ZERO the
DIRECTORY on ELECTRONIC DISK we would use
the following command line:

*EDO/Z <CR>
‘Really zero EDO: ? YES<CR>

*

If a device contains a DIRECTORY it had to have been
previously FORMATTED. Therefore after ZEROING
an EXISTING DIRECTORY, the device DOES NOT
require FORMATTING in order to use it again.

/W - WHOLE COPY A DEVICE

The /W command allows FAST DUPLICATION OF
DISKS.

All files from the SOURCE DEVICE, starting at the
specified START FILE, are COPIED to the
DESTINATION DEVICE until no more exist or the
destination device is full.

SYNTAX: [<DESTINATION DEVICE>] = [SOURCE
DEVICE> [<START FILE>])/W <CR>

<DESTINATION DEVICE> : <SOURCE
DEVICE> = SYO

If NO START FILE is specified, the WHOLE DEVICE
is copied. The copy process continues until there is NO
ROOM on the OUTPUT DEVICE for another file or
until ALL FILES have been COPIED. If a CTRLC is
given during a file transfer, the copy process is
ABORTED when copying of the CURRENT FILE has
been completed.

When a CRTL P is given, the copy process is ABORTED
and the CURRENT FILE will be CLOSED even though
the WHOLE FILE MIGHT NOT have been
TRANSFERRED. The names of all the copied files are
displayed on the console terminal.

If we wanted to COPY the contents of a DISK to
ELECTRONIC DISK we would use the following
command line:

DEFAULT:

*EDO: = MFO:/W <CR>

FLUKE

But if MFO: is the default device the command line would
be:

*EDO: = /W <CR>

Copying FDOS.SYS
Copying CONMON.SYS
Copying TIME.CIL
Copying SET.CIL
Copying FUP.CIL
Copying BASIC.CIL

*

When the * is displayed, it indicates the transfer is
completed and the contents of MFO: are now in EDO:

If we wished to make a DUPLICATE COPY of the disk
we have just transferred, we merely have to insert another
FORMATTED disk in the drive and transfer the FILES
back from EDO:. The command line would be:

MFO: = EDO:/W <CR>

But since MFO: is the default device the command line
would be:

*= EDO:/W <CR>

Copying FDOS.SYS
Copying CONMON.SYS
Copying TIME.CIL
Copying SET.CIL
Copying FUP.CIL
Copying BASIC.CIL

*

When the * is displayed it indicates the transfer is
completed and the contents of EDO: are now on the NEW
DISK which had been inserted in drive (MFO:).

Since a disk can store 200K BYTES of information and
one ELECTRONIC DISK can store 128K BYTES it
would require 2 PASSES to duplicate a disk with more
than 128K BYTES (DUAL ELECTRONIC DISKS
would eliminate this problem as there would be
256K BYTES available).

We will assume that the disk files start with FDOS.SYS,
and the SECOND PASS will copy the remaining files
starting with the one after 8520A.BAS which we will
assume to be NEW.BAS and end with the last file
TEST.BAS.

The procedure is as follows: (Assume MFO: = SYQ:)

<1982, Johr Fluke Mfg. Co., Inc., all rights reserved

FIRST PASS
Insert DISK #1 (the disk to be copied) in the drive.

* EDO: = /W <CR> -
- Copying FDOS.SYS

b

Copying 8520A.BAS

No room for user on device

*

Notice that the 1720A indicates when there is no more
room on the device to copy any additional files. Remove
DISK #1 and insert DISK #2 (the duplicate disk) in the
drive.

[

'+ = EDO:/W <CR>
Copying FDOS.SYS

b

Copying 8520A.BAS

* -

SECOND PASS

Since there is no more room on EDO: it is necessary to
ZERO its DIRECTORY before transferring the
remaining files to it.

* EDO:/Z <CR>
Really Zero: ? YES<CR> .
*

Now remove DISK #2 and insert DISK #1 in the drive.

Since we have already partially copied the files on DISK
#1 it is now necessary to SPECIFY a START FILE
(NEW.BAS) in order to transfer the remaining files to
EDO:.

* EDO: = NEW.BAS/W <CR>
Copying NEW.BAS

b

Copying TEST.BAS

*

FLUKE

At this point all the remaining files have been transferred
to EDO:.

Remove DISK #1 and insert DISK #2 in the drive.

* = EDO:/W <CR>
Copying NEW .BAS

|

Copying TEST.BAS

*

At this point, all the files on DISK #1 have been copied
onto DISK #2.

COPY OF FILES USING MAIN MEMORY
(MMO:3)

If a 1720A is not equipped with ELECTRONIC DISK jt
is still possible to copy files as was previously done with
EDO: by using the MAIN MEMORY.

FUP can assign all the available MAIN MEMORY to act
as a MASS STORAGE DEVICE. A special device will
be created by FUP to accommodate this function. This
device (MMOQ:) is only valid in FUP and is main memory.
Its size depends on the amount of available main memory.
Using the TRANSFER or WHOLE COPY commands,
the user can fill this device with files from the disk, change
the diskette and copy form MMO: to the disk. (See
TRANSFERRING BINARY FILES and TRANS-
FERRING ASCII FILES on the following pages.) If
MMO: can not hold all the files, the user must
PERFORM ADDITIONAL PASSES in order to copy
the remainder of the files. Note that MMO: will be
automatically zeroed when FUP is started.

CAUTION: Certain operations like formatting a floppy
disk will cause MMO: to be zeroed.

Example:

* MMO: = /W

Copying FDOS.SYS
Copying CONMON.SYS
Copying BASIC.CIL

*

-

NOTE:MMO: does not require formatting.

At this point all files have been transferred and the user
must now swap disks.

¥ = MMOQ:/W

| Copying FDOS.SYS

" Copying CONMON.SYS
Copying BASIC.CIL

*

REMEMBER, as when using EDO: and making
MULTIPLE PASSES it is necessary to ZERO THE
DIRECTORY on MMO: and SPECIFY A START
FILE after the FIRST PASS.

LIST ASCII FILES

SYNTAX: [<DESTINATION FILE> = <SOURCE
FILE> <CR>

<DESTINATION DEVICE>=SYO:
if a <FILENAME> is specified

DEFAULT:

<DESTINATION FILE> = KBO:
if <DESTINATION FILE> is omitted.

If NO DESTINATION FILE is SPECIFIED the
SOURCE FILE(S) will be printed on the Console
Terminal. This gives us a convenient way to list ASCII
files on the Console Terminal.

Example:

*METER.488 <CR>

will cause the file to be listed on the Console Terminal.

Example:

* KB1: = METER 488 <cx§]

will cause the file to list out to a printer connected to
RS-232 port KBI:

TRANSFERRING BINARY FILES

In order to transfer a BINARY FILE it is necessary to use
the /B command.

For instance if MFO: = SYO: and we wish to transfer the
file BASIC.CIL over to ELECTRONIC DISK we
would use the following command line:

* EDO:= BASIC.CIL/B <CR>

NOTE: Binary transfers can be made for all types of files,
(ASCII, etc.).

TRANSFERRING ASCII FILES

If MFO: = SYO: and we wish to transfer the files
METER.BAS and NEW.TST from the disk over to
ELECTRONIC DISK we would use the following line:

|+ EDO: = METER, NEW.TST <CR>

/T TURN OFF ERROR CHECKING AND
TRANSFER/COPY AN ASCII FILE

SYNTAX: Identical to copy command

On those rare occasions when one or more blocks in a file
have gone bad, the user may want to recover as much of the
file as possible. They can do so by defeating some error
checks. (Device error and No End-of-file) If a device error
occurs the block will be transferred as is, that is, it may
contain garbage. If an end-of-file mark has disappeared a
new one will be automatically appended.

Example:

* EDO: = METER.488/T <CR>

FLUKE

John Fluke Mfg. Co., Inc.

P.O. Box C9090, Everett, WA 98206
800-426-0361 (toll free) in most of U.S.A.
206-356-5400 from AK, HI, WA
206-356-5500 from other countries

Fluke (Holland) B.V.

P.O. Box 5053, 5004 EB, Tilburg, The Netherlands

Tel. (013) 673973, TELEX 52237

Phone or write for the name of your local Fluke representative.

Printed in U.S.A. B0100B-10U8208/SE EN

IFLUKE]
®

Technical Data

1720A Highlighted Learning Program Bo123

The optional electronic disk is a high-speed, file-struc-
tured mass storage system. It works just like floppy disk,
differing only in capacity and speed. E-Disk files can easily
be transferred to a floppy disk for permanent storage.
When installed, the E-Disk occupies one or both of the
circuit module slots marked ’SPARE®.

FEATURES

e High speed

e Large capacity

o Works just like the floppy disk

e Battery backup available for power interruptions

HIGH SPEED
The speed of a file storage system is normally described in
two ways:

1. Access time: The time lag between identifying a file
request and the beginning of file transfer.

2. Transfer rate: The rate that data is transferred after it
has been accessed.

Table 1 compares the hardware speed performance of the
E-Disk with that of the floppy disk. Note that software
processing overhead is in addition to these times.

E-DISK FLOPPY DISK E-DISK
ADVANTAGE

ACCESS TIME
(milliseconds) .018 550 (average) 30,600:1
TRANSFER
RATE
(bytes/second) 133,120 15,625 8.5:1
TIME TO FILL
MAIN MEMORY
(seconds) 0.46 39 8.5:1

Among the benefits of this high speed are:

* Most lexically-saved forms of BASIC programs load so
quickly that the short delay time for loading is not ap-
parent to an operator.

* Sequential files and random access virtual arrays can
be built up and accessed within a running program
without significantly slowing it down.

LARGE CAPACITY

Programs and data files on the E-Disk are organized as a
sequence of 256 or 512 data blocks. Each data block
contains 512 bytes of information. The first two blocks (1K
bytes) are reserved for a file directory.

E-DISK ™

A second E-Disk module doubles storage capacity without
the need to address each module separately. Because of
this, a single large file can occupy two modules.

The largest file that a single module E-Disk can store is 254
blocks (127K bytes). A dual module system can store 510
blocks (255K bytes). The maximum number of files is 72.

Some of the benefits of the large capacity of an E-Disk are:

* Sequential files and random access virtual arrays can
be much larger than would be possible in main me-
mory without significant sacrifice in processing speed.

* Large programs that will not fit into main memory can
be structured into modules, and chained together. Al-
though this can be done with the floppy disk, use of the
E-Disk nearly eliminates the delays of loading each
program module into memory, and frees the floppy
disk for collection of processed data.

* Floppy disk files that are too large to fit in main mem-
ory can be duplicated. (A dual-module system is re-
quired for files larges than 127K bytes.)

WORKS JUST LIKE THE FLOPPY DISK
Techniques for using the E-Disk are identical to the floppy
disk. Like any disk, the E-Disk must be formatted before
use, and contains a file directory.

The E-Disk is referred to as ED#: in program statements
and utility commands.

When installed, the E-Disk can easily be set up to be the
default System Device for files not given a named location.

Some of the benefits of working like the floppy disk are:

* Programming is simplified. Taking advantage of the
E-Disk requires no new techniques. The only difference
is referring to ED@: (the E-Disk) in place of MF#:
(the floppy disk).

* By making use of the System Device concept, pro-
grams can be structured to run on any 1720A system,
taking advantage of the E-Disk whenever it is installed.
In such a case, an E-Disk will increase the speed of
processing sequential and virtual array files, and
eliminate some requirements for an operator to ex-
change disks.

E-Disk T™ is a trademark of the John Fluke Mfg. Co., Inc.

IFLUKE]
®

BATTERY BACKUP

The E-Disk will hold its contents intact when power is
removed, provided the E-DISK BATTERY switch on the
rear power supply panel is set to ENABLE, and thereisan
internal or external source of battery power. A fully-
charged internal battery will support a single-module
E-Disk for about one hour, or a dual-module E-Disk for
about 30 minutes. An external battery can easily be con-
nected through the rear REMOTE INTERFACE con-
nector to extend this time indefinitely.

If you do not plan to make use of the battery backup
feature for the E-Disk, battery life can be extended by
leaving the feature disabled. This will prevent the battery
from having to discharge and recharge regularly.

SOME EXAMPLES

1. This Immediate Mode BASIC command will store
the lexical form of the program currently in main mem-
ory on the E-Disk, in a file named “DEMO.BAL”":

SAVEL "ED@: DEMO”

2. This FUP command copies a file from the floppy disk
to the E-Disk:

ED@:DATA.T9=MF@#:DATA.T9

3. The following FUP command is identical to the pre-
vious one, if the E-Disk is the default System Device.
The file name is carried over unchanged when it is
not specified:

=MF@#:DATA.T9

4. Ifadifferent floppy disk is then inserted, the following
FUP command writes a duplicate copy of the file onto
the second disk from the copy on the E-Disk. This also
assumes the E-Disk is the System Device:

MF#:=DATA.T9

5. When a program uses a data file on the E-Disk, a chan-
nel must first be opened. Inputand output statements
then refer to the channel number. The following Fluke
BASIC sequence opens an existing file on the E-Disk
for sequential input, and then reads its contents into
the string M3§:

2409 OPEN "ED@:DATA.T8” AS FILE 4
2416 INPUT #4, M3§

6. The following Fluke BASICsequence opens a new file
on the default System Device for sequential output,
and then stores a message in it. When the E-Disk
is installed, this file will normally go onto it unless the
System Device was reassigned:

2 1980, John Fluke Mfg. Co., Inc., all rights reserved

392¢ OPEN "MSG4” AS NEW FILE 2 SIZE 1
393¢ PRINT #2, "End of Frequency Test”

7. A random access virtual array requires a dimension
statement referencing a previously opened channel.
The following sequence opens a random access (DIM)
file on the E-Disk, dimensions an integer array into it,
and then places a value stored in integer variable N%
into one of the array elements. Note that virtual array
channels are bidirectional. The NEW specification
causes the array elements to be initially set to zero, re-
placing any existing file found with the same name.
Virtual arrays are discussed in a separate HLP bul-
letin.

10290 OPEN "ED@: DATA 43" ASNEW DIM FILE
3 SIZE 1

103¢ DIM #3, D% (15,31) 1512 elements

4969 D% (4,6) = N% IN% Previously defined
E-DISK TERMINOLOGY

Access Time
The time lag between identifying a file request and the
beginning of file transfer.

ASCII

The American Standard Code for Information
Interchange is a set of defined 7-bit binary code patterns
representing the full alphabet, numbers, and many useful
symbols and control characters.

Bit
A single unit of program or data information, set to either
one or zero. Bit is a contraction of binary digit.

Block
A fixed size of data selected to be convenient for storage or

transfer operations. In the 1720A Instrument Controller, a
block is 512 bytes.

Block-Structured

A block-structured device transfers and stores data one
block at a time, accumulating smaller amounts in a
temporary buffer until a block is available. E-Disk is a
block-structured device.

Buffer
A temporary memory storage area for accumulating
information until enough is available for the next

operation. E-Disk transfers use a l-block (512-byte)
buffer.

IFLUKE]

Byte
Eight data bits set to any pattern of ones and zeros with
defined meaning, such as binary numbers or the ASCII
code.

Chaining

The technique of separating a program into task-oriented
modules. Each module contains a RUN "next module”
statement linking it to the next task. Variables can be
passed to the next program module through a common
storage area, and data in virtual arrays can be left open for
subsequent use. Only the module currently in use occupies
space in main memory.

E-Disk ™

The optional electronic disk is a mass file-storage system
constructed of high-speed, solid-state memory and
designed to function as a serial transfer block-structured
device. With appropriate operating system software, it
appears to the system as a file-structured device.

File
A collection of information designated by name as a unit.

File-Structured
A file-structured device transfers and stores information
by file units.

Formatting

Formatting is a process of preparing a file-storage device to
accept files. After verifying the integrity of each block, an
identifying and timing pattern is recorded throughout.
The 1720A Instrument Controller accomplishes this with
the /F command option of the FUP Utility Program.

K Byte
1024 bytes.

Lexical File

A BASIC language program that has been processed by
the interpreter into the form that is used in main memory.
In this form, the program file occupies less space and loads
into memory quicker. Line numbers, keywords, operators,
and branch pointers are processed into binary form.
Lexical files are compatible only with the version of the
BASIC interpreter that generated them.

Random Access File

The contents of a random access file, such as a virtual
array, can be accessed in any desired sequence by
referencing individual elements in the file.

Sequential Access File
The contents of a sequential access file can only be
accessed from start to end.

Transfer Rate)
The rate that a file is transferred after 1t has been accessed.

Virtual Array

A collection of data defined by a DIMension statement
that references an open channel to a file-structured device,
such as the E-Disk. The data array is available to the user
program just as if it were present in main memory. For this
reason it is called virtual.

E-DISK ™

FLOPPY 1,281(B,y fes 7
- =
\V’ 128K Bytes
| V7,

@ogrnms & Chammg Modu@

Data: Files & ertual Arrays

SIIRY!

USER
PROGRAM

i

Input and Output ﬂ

KEYBOARD AND IEEE-488 RS-232
TOUCH-SENSE BUS SERIAL
DISPLAY PORTS PORTS
c—__/ INSTRUMENTATION COMMUNICATIONS
3= =

E-DISK ™ FUNCTIONS

FLUKE

John Fluke Mfg. Co., Inc.

P.O. Box 43210, Mountlake Terrace, WA 98043
800-426-0361 (toll free) in most of U.S.A.
206-774-2481 from AK, HI, WA and Canada
206-774-2398 from other countries

Fluke (Holland) B.V.

P.O. Box 5053, 5004 EB, Tilburg, The Netherlands
Tel. (013) 673973, TELEX 52237

Phone or write for the name of your local Fluke representative.

Printed in U.S.A. BO123A-10U8011/SE EN

IFLUKE]
®

Technical Data

1720A Highlighted Learning Program Bo142

Array variables include Reals (floating point), Integers
and Strings. Interger array variable names are followed
by %; string array variable names are followed by $.

Array variable names may be one or two characters
(first character may be any upper case letter; second
character may be any upper case letter or any number 0
through 9 or may be omitted); note these are the same
names as are used with simple variables. Note also that
IF, ON, OR, TO, FN, LN, PI and AS are not legal
variable names.

There are only 954 possible names for each type of
simple variable in FLUKE BASIC. This may seem to
be adequate, however, it is not enough to store the
readings from a typical digital voltmeter measurement.
Moreover, the possibilities for meaningful names from
the 954 possible names are very limited. Consider also,
the fact that 954 BASIC statements would be required
to assign a value to each possible simple variable name.
For these reasons, an alternative to simple variables is
necessary. The need for an array of variables (each
array variable is called an element) that can be
identified by a number as part of the name, is evident.

Suppose you had 10 numbers you needed to assign to
simple interger variables:

NO% =26792 \ N5% = 26797
N1% =26793 \ N6% = 26798
N2% =26794 \ N7% = 26799
N3% =26795 \ N8% = 26800
N4% = 26796 \ N9% = 26801

You could do it as shown above or you could
dimension an integer array of 10 elements:

DIM N%(9%) dimensions N%(0%) through N%(9%)

Each of the 10 array elements is a variable and is
capable of storing data like any simple variable. In
other words, DIM N%(9%) creates an additional 10
variables for the program to use.

Assignments can be made to the array element variables
in the same manner as you did with the simple
variables:

NY%(0%) = 26792
N%(1%) = 26793
NY%(2%) = 26794

N%(5%) = 26797
N%(6%) = 26798
NY%(7%) = 26799
N%(3%) = 26795 NY%(8%) = 26800
N%(4%) = 26796 N%(9%) = 26801

So far, the only difference between the simple variable
assignments and the array element assignments, are the
addition of brackets around the numbers, and the

P A A

Basic Main Memory Arrays

prerequisite DIM statement to reserve main memory
space for the array variables and to establish the array
element names as valid variable names in the program.

The numbers in the names of the array element
variables serve the same purpose as the numbers in the
simple variables, i.e., they are part of the variable name
and make the named variable unique and
distinguishable from the other variables. N1% is not the
same variable as N%(1); both are allowed. The number
within the brackets of the array element variable has
one important additional capability: it can be a variable.
Bracketed element numbers are usually called
subscripts.

Now you can make the same assignments in a more
flexible and structured manner using a FOR/NEXT
loop:

10 DIM N%(9%)

20 FOR I% = 0% TO 9%

30 READ N%(I%)

40 NEXT I%

50 DATA 26792, 26793, 26794, 26795, 26796

60 DATA 26797, 26798, 26799, 26800, 26801

70 END

Enter and RUN the above program; then from the
Immediate Mode, type:

PRINT N%(3) <CR>

The display should indicate ‘26795 which is the 4th
value in the DATA statement, The other 9 elements
can be verified in like manner, or you could simply

type:
PRINT N%(0..9) <CR>
which is the equivalent of:

FORI=01t09
PRINT N%(I)
NEXT I

The above statement functions like a FOR/NEXT loop
and increments the array element subscript numbers
from O through 9; the result is to PRINT the entire
array of variable elements with a <CR> <LF> after
each element. To suppress the <CR><LF> type:

PRINT N%(0..9); <CR>

This notation can be used for any contiguous list of
elements, e.g.,:

PRINT N%(3..7)

IFLUKE]

®

Now you have an even simpler method of making:
assignments:

10 DIM N%(9%)

20 READ N%(0..9)

30 DATA 26792, 26793, 26794, 26795, 26796
40 DATA 26797, 26798, 26799, 26800, 26801
50 END

Until now you have been working with a one-
dimensional array. It may help you to think of a one-
dimensional array as a one-row matrix. The above
example represented as a matrix would be:

~—————— Columns 0 through 9 ———>
ROW N%(0) N%(1) N%(2) N%(3) N%(4) N%(5) N%(6) N%(7) N%(8) N%(9)

FLUKE BASIC supports String Arrays and REAL
(floating point) Arrays as well as Integer Arrays.
Dimensions and Subscripts must be <32767 (the
maximum integer size). Subscripts may appear as
mathematical expressions, e.g.,:

V(A% + 3)=Volts” R(13/N)=1.1412
SN$(SQR(A%))=“Serial No.” DIM N%(X% + 3%)

If a subscript is not an integer, BASIC rounds the
subscript to an integer.

Two Dimensional (Double Subscripted)
Arrays

An array element with two subscripts can be thought of
as a variable with another character in its name. This
additional subscript gives the program the ability to
create more elements than is possible with only one
subscript. The additional subscript also gives the
program the capability of building a matrix with ROWs
as well as COLUMN .

Suppose you had 3 production shifts and you wanted to
store the total number of instruments produced by each
shift for one week (5 days). The following program is
an example of one way to do this task:

10 DIM PS%(2%,4%) ! Dimension a 3x5 array
20 READ PS%(0..2,0.4) ! READ 15 values

30 ! SHIFT DAY DAY DAY DAY DAY
40 ! 1 1 2 3 4 5
50 DATA 10, 12, 9, 7, 10
60 ! 2

70 DATA 9, 14, 10, 11, 11
80 ! 3

90 DATA 11, 7, 6, 8, 10
100 FOR 1% = 0% TO 2%

110 PRINT PS% (1%,0..4);
120 PRINT
130 NEXT 1%
140 END

€1982, John Fluke Mfg. Co., Inc,, all rights reserved

The previous program takes the data and PRINTS it in
the same arrangement as the DATA statements. Note
the subscript order is always (ROW, COLUMN). The
matrix for this array is shown below:
~<«———PS$(ROW NO., 0..4) ——>

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5

PS% ROW 0 PS%(0,0) PS%(0,1) PS%(0,2) PS%(0,3) PS%(0,4)
0..2, ROW 1 PS%(1,0) PS%(1,1) PS%(1,2) PS%(1,3) PS%(1,4)
Col. No.) ROW 2 PS%(2,0) PS%(2,1) PS%(2,2) PS%(2,3) PS%(2,4)

Multiple Arrays

More than one array may be dimensioned in a
program, e.g.,!

10 DIM A%(3,5), B%(6,10), A$(10,100)
20 DIM RL(1000)
30 DIM A5(10,10)

Redimensioning Not Allowed

BASIC programs are allowed to execute a DIM
statement for each variable only once. An error will
result if the program attempts to execute a specific
DIM statement more than once. For this reason, DIM
statements should appear early in the program and
should not be included in subroutines. The only way
around this is to re-RUN the program. RUN causes
BASIC to forget all previously executed DIM
statements.

Serial Storage of Arrays on the Disk

The following examples illustrate how array data can be
serially stored and retrieved from the disk. You may
use a different array name to retrieve data than you did
to store the data; if the arrays are alike in type (integer,
real or string) and dimensions. Note “NEW? in line
110 indicates a new file is being created on the disk.

IFLUKE]
®

Data Storage:

—

zZNnD
~-D M3
-
FAAENIN T

1
A5 NEW FILE

TICOoO0
IND D>
QO ~3 O

L]

o

o ~tn D

COHXDIDIMONX
~QWx
"
T~
@ O
>
o~
o
e
+
]
o~

GZ— &

-

>

~

w

=~
aw D
Ll BN 03]

ot ek A ok o e ok b b ok
ONO KOO
m—

aoCcoQoCoooC
moOomZ

S
s

a Retrieval:

AN3.BAS"
! IN

1
"EXAM1.DAT" AS OLD FILE
$(3%)

LINE #1, A$(0Z..5X)
! ! CLOS
A ' DIS

ZLO

L e e e e ad aian
ONCU DN OO
OOOOOGOGD

Note “OLD” in line 110 indicates this file already
exists on the disk.

Disk Storage Size Requirements

Before a Main Memory Array can be stored, space
must be reserved for it on the disk. When a new file is
OPENed, the largest available contiguous space on the
storage medium (floppy disk or E-disk) is allocated for
the single file, unless the SIZE is included in the
OPEN statement. If two NEW files are OPENed
without a SIZE statement and there is only one
contiguous space available on the disk, the Operating
System will display “? 1/0 error 306...” telling you
there is no more room on the storage device, when the
attempt is made to OPEN the second file. This will
happen even though there is enough room on the disk
for all the data you plan to store in each of the files.

Disk Size Calculation

SIZE must be stated as an integer number of
BLOCKS (1 BLOCK =512 BYTES). An Array file
may contain more than one array. File SIZE must be
large enough to equal or exceed the total number of
storage bytes required by all of the REAL elements,
INTEGER elements and STRING elements you plan
to use in the Array file.

Array values are stored on the disk as ASCII values.
One byte of disk storage is required for each character
stored.

N LETTERS "A'" THROUGH "F"

N DISK
ILE

mo

ITIALIZE

! RESERVE AND NAME DISK SFACE

Disk requirements for serial storage (no comma after

the variable):

1 byte per significant digit or string character
1 byte for the sign (even though it may be + and not

be displayed)
1 byte for decimal point (reals only)

1 byte for an included space (except with PRINT

USING) for reals and integers
2 bytes for <CR> <LF>

1 byte for EOF (end of file) character

EXAMPLES

PRINT #1, 3%

PRINT #1, -3%

PRINT #1, USING “S#”, -3%
PRINT #1, 3.285

PRINT #1, -3.285

PRINT #1, USING “S#.###”, -3.285
PRINT #1, “12345”

requires 5 bytes
requires 5 bytes
requires 4 bytes
requires 9 bytes
requires 9 bytes
requires 8 bytes
requires 7 bytes

Example for Disk Size Calculation
10 DIM S$(100), I1%(100), R(100)
Assumptions:

1. All string elements = length of 10 characters.
2. PRINT USING is utilized to insure all reals are same
length, and all integers are the same length.

20 CLOSE 1

30 OPEN “TEST.DAT” AS NEW FILE 1 SIZE 6

40 FOR J% = 1% TO 100%

45 S$(1%) = “1234567890” \ 1%(J%)=]% \ R(J%)=]%+PI
50 PRINT #1, S$(J%)

60 PRINT #1, USING “S###”, 1%(]%)

70 PRINT #1, USING “S###.##”, R(%)

80 NEXT I%
90 CLOSE 1
100 END
Strings Integers Reals EOF
BYTE SIZE =100{(10+2)+ 4 +2)+(7+2)]+1
=100 [27] + 1
=2701

BLOCK SIZE =2701/512 =5.275391 } partial block
not allowed; the next higher Integer = 6 Blocks

Note: Looping 94 times instead of 100 permits a
SIZE of 5 Blocks.

[FLUKE]

®

John Fluke Mfg. Co., Inc.

P.O. Box C9090, Everett, WA 98206
800-426-0361 (toll free) in most of U.S.A.
206-356-5400 from AK, HI, WA
206-356-5500 from other countries

Fluke (Holland) B.V.

P.O. Box 5053, 5004 EB, Tilburg, The Netherlands

Tel. (013) 673973, TELEX 52237

Phone or write for the name of your local Fluke representative.

Printed in U.S.A. B0142A-10U8204/SE EN

[FLUKE]
®

Technical Data

1720A Highlighted Learning Program Bo143

An Introduction to Virtual Arrays

Virtual Arrays Compared to Main
Memory Arrays

The 1720A BASIC provides two types of variable
arrays! for storing and retrieving data: Main Memory

(ordinary or normal) Arrays and Virtual Arrays. These
two types of arrays are identical in the following ways:

Identical:

1.

Array variables include Reals (floating point),

Virtual Arrays are different from Main Memory Arrays
in the following ways:

Differences:

1.

Main Memory Arrays reside in Main Memory.
Virtual Arrays temporarily reside in a Main
Memory Buffer of 512 bytes (1 block) per channel
(file) no.; permanently reside on a storage
medium (floppy disk or E-disk).

Integers and Strings. Integer array names are 2. ?\ddain Memoryl Alir a;s‘areair(jiatile becau_se Main
followed by %; string array names are followed by emory is volatile. Virtual Arrays survive
$ providing they have been transferred from the
' . Main Memory Buffer to the storage medium
2. O;xe or two chagacter array varxablle names (ﬁf;t (CLOSEing the file insures this).
character may be any upper case letter; secon . s
character may be any upper case letter or any 3. Virtual Arrays are not initialized by the DIM
number 0 through 9 or may be omitted). Note statement. Main Memory Arrays are assigned
that IF. ON. OR. TO. FN. LN. PI and AS are initial values by the DIM statement.
b 3 :] 3 3 2
not legal variable names. 4. Virtual Arrays are randomly? accessed from the
3. One and/or two dimensional arrays, i.e., one or storage medl}l m; Main Memory Arrays must be
two subscripts, enclosed in parentheses (if there retrieved serially? from the file storage medium.
are two subscripts they are separated by a 5. Main Memory Arrays require PRINT # < > and
comma). INPUT # < > statements to transport data to and
4. The following BASIC statements are corrent for from th(? storage medium. Virtual Arrays are
Main Memory Arrays and for Virtual Arrays as automatically updated on the storage medium as
well: they are used in the program.
— 6. Main Memory Arrays are created with a DIM or
Reals A(1) = B3(5,]%) + Z(8) a COM (common main memory for program
Integers Q2%(0) = DD%(1,1) * E%(1%) chaining) statement (COM will not support string
Strings S$(6) = “A” variables); Virtual Arrays are created with an
In other words, without additional program O_PEN and 2 DIM # state‘ment.
statements you cannot know which type of array 7. Virtual Arrays can be equivalenced* except not
(Main Memory or Virtual) the above BASIC with COM statements.
statements represent. 8. Virtual Arrays do not require a COM statement
5. Virtual Arrays can be assigned values from Main in order to be accessed by a chained program.
Memory Arrays and vice versa; Virtual Arrays COM is not needed and cannot be used with
can be used in equations with Main Memory Virtual Arrays. Main M_emory Arrays require a
Arrays. COM statement to survive program chaining.
1. Refer to Highlighted Learning Program B0142, Main Memory Arrays, 9. Elements of Virtual Array Strings have a definite,

for the dsfinition and use of arrays for 1720A BASIC programming; also
refer to section 2-27 and section 6 of the BASIC Programming Manual.

dimensioned length. Elements of Main Memory
Array strings are limited in length only by the
amount of Main Memory available.

[FLUKE]

10. Since Main Memory Arrays must share main
memory with the BASIC program the maximum
amount of Main Memory available for Main
Memory Arrays is calculated as follows (assume
program occupies 5000 bytes):

Given: Main Memory = 25,000 Bytes
—Program Size 5,000 Bytes

Maximum Array Size = 20,000 Bytes

On the other hand, each Virtual Array file can be
as large as 65,536 Bytes. Total number of Virtual
Array files is only limited by available disk
storage and the directory limit of 72 files.

11. Main Memory Arrays are stored on the disk as
ASCII data; they can be viewed by the File
Utility Program. Virtual Arrays are stored as
Binary data and cannot be viewed by the File
Utility Program.

12. Program execution errors automatically close
Virtual Array files, making Virtual Array data
inaccessible from the immediate mode, however,
this data survives on the storage medium and can
be retrieved by a program. Main Memory Arrays
are accessible from the immediate mode after a
program execution error.

13. Virtual Array data survives a re-RUN or EDIT
of the program, but Main Memory Array data is

lost in both of these situations.
2. Random Access means each variable's value is accessible without
having to count through other variables which exist on the disk ahead
of the desired variable.
3. Serial Access means a spacific variabie is accessible only by
counting through the other variables which exist ahead of it on the
disk.
4. Equivalenced variables share the same area of main memory.

Defining “Virtual”

After reading the above comparison of Virtual Arrays
and Main Memory Arrays, it can be said that Virtual
Arrays behave “virtually” the same as if they resided in
Main Memory even though they actually reside on the
storage medium (floppy disk or E-disk). With the
exception of the OPEN, CLOSE and DIM #
statements required by Virtual Arrays, the same
identical programming code can be used
interchangeably for Virtual Arrays or Main Memory
Arrays; ignoring for the moment the fact that Virtual
Array strings require some additional considerations in
some situations due to their fixed length.

Virtual Array Definition

A Virtual Array is a collection of data stored in a
random access file storage device, such as the electronic
disk or the floppy disk. The data is stored in 1720A
internal format (binary) so that no conversion is

©1982, John Fluke Mfg. Co., Inc., all rights reserved

required during input or output. After a channel has
been opened, the Virtual Array is available to the
program just like a Main memory Array.

Advantages and Disadvantages

Virtual Arrays can be used to significantly extend the
capability of a program. You will probably want to use
Virtual Arrays exclusively except in situations where
execution speed is critical.

Virtual Array Advantages

1. Non volatile — survives power down of 1720A;
survives program chaining and DELETE ALL
statements.

2. More Bytes of Main Memory are available for
program storage than when Main Memory Arrays
are used. Refer to the “TIME” example in the
“Programming with Virtual Arrays” lesson for a
typical comparison.

3. Random Access means PRINT and INPUT
statements not necessary for data I/0.

Supports Equivalencing.
5. String data can be accessed by chained programs.

Text messages can be stored on the storage
medium rather than Main Memory. Same text
can be used as often as needed.

7. Program can be re-started after a 1720A power
down and returned to the exact place in the
program where execution ceased (due to powering
down).

8. Virtual Arrays can be many times larger than
Main Memory Arrays; up to 17 times (over 400K
bytes) as much data can exist in Virtual Arrays
when a floppy disk and two E-disks are used.

Virtual Array Disadvantages

1. Not allowed in RBYTE or WBYTE statements
(see section 7 on IEEE Bus Input and Output
statements, in the BASIC Programming Manual).

2. Slower execution than Main Memory Arrays.
This difference in execution speeds becomes
significant when large amounts of data are being
sorted, assigned or operated upon. Exact speed
differences are dependent on the application.

3. Unlike Main Memory Arrays where the DIM
statement assigns a 0 value to Real and Integer
elements and an empty string, i.e., 7, to String
elements (note CHR$(0) <> »**); newly created
Virtual Arrays contain whatever byte arrangement
that exists on the storage medium where the
arrays reside.

[FLUKE]

Creating Virtual Arrays
Creating Virtual Arrays requires the following actions:

1. A filename must be associated with the Virtual
Arrays.

2. A channel number must be associated with the
filename.

3. A determination must be made to use NEW data

(create a new disk file for new data) or OLD data
(data already in a Virtual Array disk file).

4. The SIZE of the arrays in BLOCKS should be
stated (continued upper right of this page).

5. The arrays must be DIMensioned.

6. The DIMension must be associated with the
channel number picked in step 2, above.
7. The channel (file) must be CLOSEd in order to

transport the most current array data (contained
in the BUFFER) to the disk.

Main Memory Array for Comparison

The following example OPENSs a file and DIMensions
a Main Memory Array, then assigns values to the array
and stores it on the disk. Main Memory Array data is
stored on the disk in the file named “EXAMI1.DAT”.

10 'UEXANL.RASY

100 CLOSE 1 'OINI
110 OFPEN “EXAML.DAT" AS NEW FILE 1
120 DIN AS(SX) _

130 FOR I7Z=0X TO 5X%

140 ASCIZ)=CHR$ (LSH+TA) ! ASS
150 NEXT IX N
160 FRINT #1, A$(OX..5%) P STOR
170 CLOSE | P CLO
180 END

LIZE
1 ! RESERVE AND NAME DISK SFACE
LETTERS "A" THROUGH "“F™
N DISK
ILE

Virtual Array

“EXAMI.BAS” has been altered (to become
“EXAM2.BAS”) as explained in the program
comments, to use a Virtual Array instead of a Main

Memory Array. Note line 140 did not change at all and
line 160 is no longer needed.

Virtual Array data is stored in Virtual Array File
“EXAM2.BIN".

10 'TEXAM2.BASY
| 100 CLOSE 1 tIN
1110 OFEN "EXAM2.BIN" AS MEW DIM FI
120 DIM #1i, A$(SX)
130 FOR IZ=0X TO 357X
140 ASCIX)Y=CHR$(ESA+IL) VA
1 150 NEXT IZ
. 160 ! not needsd F
1170 CLOSE 1 vt C
| 180 END

LIZE
SIZE 1 ! added DIM and .BIN
! added H1,
LETTERS "A" THROUGH "F"
1, A$(0%..3%) ! STORE ON DISK
ILE

Retrieving Virtual Arrays

Retrieving Virtual Arrays requires all of the seven steps
mentioned in CREATING VIRTUAL ARRAYS
except SIZE need not be specified. The operating
system already knows the SIZE of the file named. In
fact, any attempt to change the SIZE of an OLD file
by including a SIZE statement in the OPEN statement,
will be ignored by the Operating System. The “NEW”
statement is replaced by “OLD” (if “OLD/NEW” is
omitted, the program assumes “OLD”).

Main Memory Array for Comparison

“EXAMI1.BAS” has been aitered (to become
“EXAM3.BAS”) to bring the data from file
“EXAMI1.DAT”) back into Main Memory. Note line
170 is able to access the data from Main Memory even
though the file has been closed. Note “NEW” has been
changed to “OLD”.

zZWT
m=
u

AS OLD FILE

~oor

o Z T m
T 2MoOX

i !

fo
3 >

#i, A%$(0%Z..5

zw
—mM

1 !
AS(D%L..39%) !

[e ol = TR
ONOCLID IR OO
cocoocoooo
MM -

=

THO

! IPIJITIALIZE

INFUT FILE DATA

Virtual Array

“EXAM2.BAS” has been altered (to become
“EXAM4.BAS”) to retrieve the same Virtual Arrays
created by “EXAM2.BAS”, using the data stored in
Virtual Array File “EXAM2.BIN”. Note line 140

treats A$(0..5) virtually as if it were in Main Memory.

RUN this program and then, from the immediate
mode, type: PRINT A$(0..5) <CR> and note I1/0 error
313 results because the Virtual Array file has been
CLOSEd and A$(0..5) is not in Main Memory. Note
“NEW” has been changed to “OLD”.

DISFLAY DATA

10 '"EXAM4.RAS"

100 CLOSE 1 ! IN

110 OPEN "EXAM2.BIN" AS OLD DIM FILE 1
120 DIM H1, A$(SX)

130 !

140 FRINT A$(0%..5%) !

150 !

160 | -

170 CLOSE 1 ! CLOSE FILE
180 END

ITIALIZE

For more information on Virtual Arrays, refer to 1720A

Highlighted Learning Program B0144, “Programming
with Virtual Arrays”; also refer to section 6 of the
1720A BASIC Programming Manual.

[FLUKE]

John Fluke Mfg. Co., Inc.

P.O. Box C9090, Everett, WA 98206
800-426-0361 (toll free) in most of U.S.A.
206-356-5400 from AK, HI, WA
206-356-5500 from other countries

Fluke (Holland) B.V.

P.O. Box 5053, 5004 EB, Tilburg, The Netherlands

Tel. (013) 673973, TELEX 52237

Phone or write for the name of your local Fluke representarive.

®

Printed in U.S.A. BO0143A-10U8204/SE EN

IFLUKE]
®

Technical Data

1720A Highlighted Learning Program Bo144
Programming With Virtual Arrays

Routines No Virtual Array
Should Be Without

Although Virtual Arrays behave “virtually” the same as
Main Memory Arrays, these arrays do require some
special handling to prevent unexpected events such as:
loss of data, data not stored on disk, disks that become
filled without your knowledge, tabs that don’t work,
disk garbage appearing as tnitial array values and
strings that won’t concatenate because they are filled
with “null” characters that you can’t see.

The program on the following page illustrates the use
of “handlers” which should always be used with
Virtual Arrays to prevent these unexpected events.

The purpose of the program will now be explained:

Escape Sequences (lines 100 through 160)

This module provides display enhancements and has no
direct effect on the Virtual Array.

Open Disk File to Contain

Virtual Arrays
(lines 1000 through 1130)

This module creates the Virtual Array and provides
several protections against unexpected results. The

“ON CTRL/C” handler (line 1020) guarantees the disk
file will always be CLOSEdJ if the user interrupts the
program. This file must be CLOSEd when the
program is interrupted in order to:

1. Copy the contents of the buffer onto the disk,
insuring that the data won’t be lost, and,

Delete the previous Virtual Array disk file by
having the temporary disk file take its place,
insuring no data is lost and that an extra file does
not remain on the disk.

Two OPEN statements (lines 1050 and 1070) are used.
Line 1050 assumes a data file already exists out on the
disk and attempts to OPEN this file. If no file is found,
an error is generated and the ON ERROR branch (line
1030) takes over at line 1070 and a NEW file is created,
otherwise the OLD file is OPENed. If a NEW file is
created, the flag FG% is set (line 1080) to insure the
NEW arrays get meaningful initial values (line 1120).

llExAnﬁ'll
THIS FR

R
A VIRT
T 0
(ACT

K
R

LEE X

A
u
E
L

>
nc

[
KEEXE x%x%xx ESCAPE SEQUENC

HR$ (27%)+"L[" ESCAPE
S$+"2J"+ES$+"'H" ELEAR
E

0 f
1 A
R E
E E
* *

'
i
FUHY] RASE
! ERASE

FILE TO CONTA

F
I
c
'
ES
H
L
L

egamOm--.-

TM=-MMMOTVOVANZTZ X #eew X TZO

JIIRM=MRCO

mmmo

Hnian

#«x%xx OPEN DISK

D>DDO

ES.BIN" AS OLD
ES.BIN" AS NEW

D

3

CHZOoOZ i ume
QXMB =
(=
COMHEC-TICO0
MIDNCXKZRCIRMIO
RO DA TTCIZWND
it=—m O = TCm
OSMZNDrDr-=<XI

[1gabainlw]

=

B e e o B i s o B ot ot o Do [k Bt P P ot i it et Bl N ON R N G N3
7~

=000 00000000OCUINLINRHROOOCODOO0D
WA OVRNOCUIWWN=O000 0000

ajolelelslelalels]=lllieiel=le]
O OTMOOO MO0 ~ -

ES #%%x

SCREEN AND HOME CURSOR
TO END OF LINE

TO START OF LINE
IN VIRTUAL ARRAYS xxexxx
FILES BEFORE EXITING FROGRAN
WHEN "NAMES.BIN" DOESN’T EXIST
CHANNEL 1 HAS NOT BEEN LEFT OFEN
g }NDICATE NEW DATA
ROUND "NEW" OPEN STATEMENT
E 1 SIZE 1
TE "NEW" DATA
ROM "ON ERROR" BRANCH
T ERROR HANDLER NO LONGER NEEDED
6 STRING ELEMENTS OF 32 CHARACTERS EACH
! INITIALIZE NEW DATA

Program Listing is continued on next page

IFLUKE

®
2000 '¥xxxexxxxxxxxxx%% ENTER NAMES xtxxigyxeesxexeixsx
2010 !
R GOTO 30020 HANDLE INFUT ERRORS
%8%8 ggl§$zggz To 5% CLEAR SCREEN AND HOME CURSOR
2040 FOR IX=0% 5%
2050 PRINT CPOS(Q:YS);“NAME NO.";I%Z:"IS CURRENTLY "FEL$INMS$(IX) .
2060 VAS$=NMS(IX) : S?E?PTgFgA§SLEEES§EAg?E%gBLE FOR SUBROUTINE
(033 21020 \
%géﬁ ERfH? Egggg;:%ﬁ;;"gﬁ?égGngsGIER="?LEN(VA‘)r“LEN(NMS(IZ)‘"'LEN(NNQ(IZ))
20 *RIN »15)3" LCR>"
3%11]8 I;ﬁéﬂ}' E?gg(?;lg) JELS? " POSITION CURSOR AND ERASE PREVIOUS ENTRY
2120 IF T$="" GOTO 2140 ' OPTION TO KEEF FREVIOUS ENTRY
5{20 NHS(I¥2=T$ ' TRANSFER ENTRY FROM TEMPORARY STORAGE
0 NEXT I%
2150 CLOSE 1 ' COFY BPUFFER CONTENTS ONTO DISK
5170 t 0
%gg?g :**i** ASSIGN MEANINGFUL INITIAL VALUES IN LIEU OF DISK GARBAGE xxx#x
20020 FOR J%=0% T0
20030 NH%(JZ)'“YOUR CHOICE"
20040 NEXT JX
sgag8 heTuen
510?0 gaeatasﬁuﬁt****!f* DELETE NULL CHARACTERS *%¥%%%%%x%%%X%%%%
010 !
21020 P1X4=INSTR(1X,VAS$,CHR$(0X)) ' LOCATE 1ST NULL POSITION
21030 SGXZ=5GN(FP1%) ! WAS NULL FOUNDT?
21040 F2%=F1%X-1% ' LOCATE LAST NON-NULL CHARACTER
21050 VAZ=(1X-SG%Z)*LEN(VAS$)+P2Xx56% ! LENGTH OF CHARACTER STRING W/0 NULLS
21060 VA$=LEFT(VAS,VAXL) ' STRIP OFF NULL CHARACTERS
£128 Kbt
%88?8 2*********** ERROR HANDLER FOR INFUT ERRORS x*exeecxexx
30020 FRINT CHR5(7£) JCPOS(9,15)3"ILLEGAL ENTRY":
30030 WAIT 100
30040 FRINT SL$; ! ERASE "MESSAGE"
30050 RESUME 2100
300460 !
32030 END
Enter Names (lines 2000 through 2170) 2172 VAS = VAS + “anything” ! Final LEN (VAS$) <32
This module provides the display prompts and INPUT 2174 NM$ (I%) = VA$! Assignment to Virtual Array
LINE statement to allow the user to enter six names. s This could also be done with a DEF FN (see section 6-22 of the
Notice the use of the temporary variable T$ (lines 2110 BASIC programming manual). Although somewhat slower than a
and 2120). If the user makes no entry before pressing subroutine, the defined function eliminates the need for dedicated
it variable names.
the RETURN key, the BASIC System will input an
empty string to T$ and the data contained in Assign Meaningful Initial Values
NMS$ (1%) will remain the same. in Lieu of Disk Garbage
The length of NM$(1%) and the relevant string length (lines 20000 through 20060)
is displayed (line 2080) to demonstrate the need to strip This subroutine is onl i ;

i y used if a NEW data file is
off the Null Cl]tsz‘t?ers (line 2070). Any attempt to OPENed. For an interesting experiment, type: KILL
‘c‘onca;c'natf N-u ¥ (i)’ &8 NM$%%) - NM$(I%) + “NAMES.BIN” <CR> from the immediate mode.

anyt 1?8 w1 result in ar; ellffgr ecalt}seu\g:ual Array Then go to FUP and format a new disk and copy your
St:f‘%l e eme(;)(;s :rt(: atl"fa}l,BSAgIC ‘ée to Null Characters original disk onto the new disk. Using the new disk, get
which are adde 12’1 b € ? g's(tjem. Proper. into BASIC and load (OLD) the program. Then delete
concatenation could be accomplished as follows: line 1120. RUN the program and observe the disk
2060 VA$ = NMS$(I1%) ! Virtual Array Assigned to garbage. Had Real or Integer arrays been used this
Main Memory Array module could have assigned zeros to these array
2070 GOSUB 21020 ! Strip Off Null Characters’ elements.

©1982, John Fluke Mfg. Co., Inc. All rights reserved. Litho in U.S.A. 2

[FLUKE]
®

Error Handler for Input Errors
(lines 30000 through 30060)

This subroutine prevents program interruption by
handling illegal data entries. RUN the program and
make entries which are longer than 32 characters and
watch this error handler in action. The branch to this
error handler is set-up in line 2020 of the program.

User Information

This program may be interrupted at any time by a
CTRL C, and all entries made just prior to the CTRL
C will be stored on the disk. In other words, if all
entries are correct except the 3rd name, RUN the
program and simply press RETURN until the 3rd
name is displayed; enter the 3rd name, press
RETURN, then CTRL C and you are finished.

Debugging Programs That
Use Virtual Arrays

Most programmers will attempt to PRINT variable
values from the Immediate Mode after their program
has been interrupted by an error. The variable values

can give clues as to what went wrong with the program.

It is not possible to PRINT Virtual Array values from
the Immediate Mode after the program has been
interrupted by an error, because the BASIC System
reacts to the error by CLOSEing all Virtual Array files
in order to protect their data. The same problem exists
for a CTRL C interrupt when the program contains an

ON CTRL/C branch to CLOSE the Virtual Array
Files.

Here are two ways to overcome this problem:

1. Use an ON ERROR handler which assigns key
Virtual Array values to Main Memory variables
and then CLOSEs the Virtual Array files

or

2. Develop the program using Main Memory Arrays.
If available Main Memory is lacking, develop a
module at a time using Main Memory Arrays. In
the previous program all that would have to
happen to convert it to Main Memory Arrays is:

Delete or Comment out (!) lines: 1030 through
1100, 1120 and 2150 Change line 1110 to “DIM
NM$(5%)”

After the program has been debugged, add the original
versions of the above lines back into the program and
take advantage of the Virtual Arrays, once again.

Single Dimension to Double
Dimension Equivalencing

The following example shows how to equivalence a
single dimension array with a two dimension array
having the same number of elements. Delete the “%”
from the variable names and you will see it works for
real variables as well. It also works for strings.

"EXAMGA

]
'
¢
0
D
D
F

Z
||-6
>

>0
= RDD—
:

=

AY ONE-DIM ARRAY"

[T ja pr e per por Y ST Sty

Dg—iiﬂ LZZ T2 DHEER

L] it Sl Lot 1. RN N R ATNTES
=OYONOUDNN=O00C000C000

[=]=ie]sinlelolalalo]e]n]

T72 \ PRINT A1X(1IX):"
AY TWO-DIM EQUIVALENCED ARRAY"

CING
ENSION ARRAYS

! READING FOR THE A1Z(ARRAY) DOES IT FOR THE A2X(ARRAY)

"3 \ NEXT 1%

[FLUKE]

Integer-String Equivalencing

The following example shows how to create the 16
character string “JOHN FLUKE MFG.?” using 8
integer values. The Virtual String Array A$(0) and the

Virtual Integer Array share the same disk space. To
create your own message, first assign your message to
A$(0), i.e., A$(0) = “Your Message,” then PRINT
A%(0%..7%) to see what integer values are required.

=t gt gt £ OO NION U1 IS (NI
LIN=OOOOCOO000

Result: “JOHN FLUKE MFG.?” is displayed.

The next example shows how to assign the integer
values, 1 through 8 to the Virtual Integer Array

FOR 1% = 1% TO 16%
PRINT ASCII (MID (A$(0), 1%, 1%))

A%(0%..7%) using a 16 character Virtual String Array NEXT 1%
A$(0). These two virtual arrays share the same disk Place these ASCII values in the DATA statement on
space. To create your own integer numbers, first assign line 160
these numbers to A%(0%..7%) then look at each of the)
16 characters and determine its ASCII value, e.g.,

10 ! "EXAM7" USES INTEGER-STRING EQUIVALENCING

20 ! TO ASSIGN AXZ(0X)=1,AX(1%)=2,...,A%L(7%)=8

30 CLOSE 1

40 OFEN “"DATA2.BIN" AS NEW DIM FILE i SIZE 1

50 DIM H1, A$(0)=16

60 DIN H1, AX(7X)

70 T ’: nn

80 FOR IX=1XZ TO 16%

?0 READ NZ%

100 T$=T$+CHRS$ (NX)

110 NEXT 1%

120 A$(0)=T$

130 PRINT "AXZ(0X..7%4) ="3A8%4(0%..7%4);3

140 PRINT FRINT

150 PRINT "A$(0X) = “3A$(07

140 DATA 1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0

170 CLOSE 1

180 END

Result: “A%(0%..7%) =123 456 78 is displayed.
“A$(0%) = [L_I*KV/ ” is displayed.

IFLUKE]
®

Creating Dimension Statements
Requiring More Than One Program Line

Sometimes one line won’t hold all the Virtual Arrays
you would like to DIMension. In the examples below
the DIM statement started on line 70 is continued on

line 80 by equivalencing a dummy array. The dummy
array occupies the same memory space as all the arrays
on line 70. The dummy array must contain the total
number of bytes for all the arrays on line 70 plus the
number of bytes, if any, that are left vacant prior to
overlapped Block boundaries.

10 ! "EXAMB"

20 ! EQUIVALENCING TO ADD TO THE DIMENSION STATEMENT.

30 ! FFZ(ARRAY) IS A DUMMY ARRAY EQUIVALENCED TO THE ARRAYS FOR THE

40 ! DIN STATEMENT ON LINE 70

30 CLOSE 1

60 OFEN “DATA3.PIN" AS NEW DIM FILE SIZE S

70 DIM #1, AA$C10X)=327,BB$(10%)=32%,CC3(10Z)=32%,D0$(10%)=32%,EE$(10%)=32%
80 DIN #H1, FFA(SX=114%32%/2),FF$(10X)=32%

20 CLOSE 1

100 END

10 ' “EXAMBA"

20 ! EQUIVALENCING TO ADD TO THE DIMENSION STATEMENT.

30 ! HHXZC(ARRAY) IS A DUMMY ARRAY EQUIVALENCED TO THE ARRAYS FOR THE

40 ! DIM STATERMENT ON LINE 70

90 CLOSE 1

60 OFEN "DATA3.BIN" AS NEW DIM FILE 1 SIZE 3

70 DIM #1, AASC10%)=32%,BB3(10%)=32%,CC(10%),DD(10%),EE(10%X) ,FFZ(10%),G6%(10%)
80 DIM #H1, HHX(11Xx(32+32+8+B8+8+2+2)/2),11X(10%)

{0a°ERE" 1

Using the Tab Function With Virtual
Array Strings

The Null Characters in Virtual Array Strings cause
unexpected events in PRINT and PRINT USING

statements which also include the TAB function. In
order to avoid this, assign the Virtual Array String

element to a Main Memory String variable, strip out
the Null Characters from this Main Memory variable
then use it in the PRINT or PRINT USING
statement in place of the Virtual Array element.
Example 9 compares TAB printing with and without
Null Characters.

10 ! “EXAN?"
20 ! VIRTUAL ARRAYS WITH THE TAB FUNCTION
40 OFCN "KBO:" AS NEW FILE 2
28 9PEN "DATA.VURT" AS NEW DIM FILE 1 SIZE 1
70 i COLUMN REFERENCE
80 FRINT "0 1 "
280P$INT "1234567689012345678901234567890"
110 DIM #H1, C$(0%)
120 C$(0%)="12345467890" ' ASSIGN 10 CHARACTERS TO 16 CHARACTER ELEMENT
130 VA$=C$(0X) ! SUBROUTINE PASS VARIABLE
140 GOSUR 220 ' FIND LENGTH OF STRING W/0 NULLS
150 C$=LEFT(C$(0X),VAX) ! STRIP NULLS
168 PE%N} 321“';TAB(?Z);C$;TAB(27Z);'I ! PRINT WITHOUT NULLS
%30 SRI“T “%y""?TAB(?Z);C‘(OZ)?TAB(271)5PI ! FPRINT WITH NULLS
190 CLOSE 1.2
200 END
Program Listing is continued on next page 5

IFLUKE]
®

suxxxxx%6xx% LENGTH OF STRING W/0

STR(1%Z,VAS$,CHR$ (0X))
-S6GX)*LEN(VAS)+F2X%5CG%

p

D ADGI

N
G
1
1
N

NNNNRNRNRN
ONOUDGINI-
o000 00
MUCNN V==
ZMDNO= X
O = 2NNNN
cnruillu

NULLS X%¥XXXXXXXXXXEEX¥E

How to Delete <not used> and <temp
ent> Files

<not used> and <temp ent> files accumulate on the
disk when Virtual Array files are OPENed and not
CLOSEd prior to terminating or EDITing a program.
These files can only be seen by the File Utility
Program (FUP) using the /E command, but they do
take up disk memory and can quickly fill a disk. These
files can only be deleted by packing the disk (/P
command). Note: These files are not transferred using
the /W command.

Programming For Faster Execution

The following programming techniques can make a
significant difference in the time it takes to execute a
program.

Open More Channels

A buffer in Main Memory can only contain 1 Block
(512 bytes) of a Virtual Array. When your program
uses an array element that is stored in a different block
than the block in the buffer, the BASIC System must
take the block from the buffer and store it on the disk,
then copy the other block into the buffer. Every time
this happens, the program must wait until the block
transfers are complete, resulting in a loss of program
execution speed.

Obviously, if we could get more than one block of the
Virtual Arrays into Main Memory Buffer, fewer block
transfers would be required during program execution,
with a resulting increase in execution speed. To
accomplish this, split the Virtual Arrays up into as

many as 6 separate groups; OPEN a channel number (1
through 6) for each group. This establishes a one block
buffer in Main Memory for each channel OPENed.
You will, of course, need a separate file name for each
channel OPENed. For example:

In place of —
OPEN “DATA.BIN” AS NEW FILE 1 SIZE 11

DIM #1, A (100%), B (100%), C (100%), D (100%),
E (100%), F (100%)

use —

OPEN “DATAA” AS NEW FILE 1 SIZE 2
OPEN “DATAB” AS NEW FILE 2 SIZE 2
OPEN “DATAC” AS NEW FILE 3 SIZE 2
OPEN “DATAD” AS NEW FILE 4 SIZE 2
OPEN “DATAE” AS NEW FILE 5 SIZE 2
OPEN “DATAF” AS NEW FILE 6 SIZE 2

DIM#1, A (100%)
DIM#2, B (100%)
DIM#3, C (100%)
DIM#4, D (100%)
DIM#5, E (100%)
DIM#6, F (100%)

Efficient Element Access For Two-
Dimensional Arrays

The fastest assignment of values to a large portion of a
double subscripted Virtual Array occurs when the
program associates the outside loop with the leftmost
subscript; and associates the inside loop with the
rightmost subscript as shown in the example ‘“TIME”
below:

4000 ! “TIME"

4010 CLOSEL

4020 OFEN "MFO:TEMP.DAT" AS NEW DIM FILE 1
4030 DIM H1, AX(63%,63)

4040 Ti=TINE

4050 FOR I%Z=0X TO 63%

4060 FOR_ JX=0% TO 63%

4070 AZCIX,J%) = 0%

4080 NEXT J%

4090 NEXT IZ

SIZE 16

Program Listing is continued on next page 6

[FLUKE]
®

~ Refer to the TABLE below for a
2}?8 ;giﬁ%nEUNUSED MEMORY = “;MEM comparison of execution speeds for both
4120 CLOSE 1 subscript arrangements.
4130 FRINT CHR$(7%)
4180 FRINT SRoTAL TIAE = 3 (T2-T1)/
R ' - M - 100 " "
4140 END ’ 0:" SEC

Note that the Main Memory Arrays in the example
“TIME” require 7604 more bytes of Main Memory
than the Virtual Arrays.

Take Advantage of the Electronic Disk

Storing Virtual Arrays on the E-Disk can make them
execute almost as fast as Main Memory Arrays. In the
example “TIME” above, change “MF0:” to “EDO0:” in
lines 4020 and 4140 and note the increase in execution
speed.

TABLE OF EXECUTION SPEED AND UNUSED MAIN MEMORY FOR EXAMPLE “TIME”

Floppy Disk E-Disk Main Memory
Program Lines Use “MFO0:” in Use “EDO0:” in Delete 4010, 4020,
lines 4020 and lines 4020 and 4120, 4140; 4030 reads
4140 4140 DIM A% (63%,63%)
4070 A%(1%,]%) = 0% 29.12 sec 22.36 sec 21.03 sec
4070 A%(J%,1%) = 0% 461.3 sec 31.53 sec 21.03 sec
Unused Main Memory 24274 Bytes 24274 Bytes 16670 Bytes
(MEM) -

Use the Same DIM Statement for More
Than One Open Statement

If you have groups of data which are identical as in the
following example, one DIM # statement is all that is

necessary. An error will result if you attempt to execute
a second DIM # statement for the same channel no.

10 ! “EXAM1D"

20 | MULTIFLE USE OF A SINGLE DIM STATEMENT

40 CLOSE 1

20 OFEN “DATA4.BIN® AS NEW DIM FILE 1 SIZE 1

IN #1, A$(3L)=64%

70 A$(0Z)=CFOS(4,20)+"TEXT CAN BE STORED IN VIRTUAL®"

BO A$(1%)=CPOS(5,20)+"ARRAYS FOR USE_AS A PROMPT AS™

90 A$(2%)=CF05(6,20)4"MANY TIMES AS IT IS NEEDED BY

100 A$(3%)=CPOS(7,20)+"BY YOUR PROGRAM"

110 FRINT A$(0%..3%)

130 GFEN- "DATAS.BIN" AS NEW DIM FILE 1 SIZE 1
“DATAS.BIN"

150 A$(0%)=CFO5(10,20)+"BY USING THE SAME PROMPT MANY:

160 A$(1%)=CFOS(11,20)+"TIMES, BUT ONLY HAVING T0 CODE“

170 A$(2%)=CPOS(12,20)+"IT ONCE AS A VIRTUAL ARRAY, WILL

180 A$(3%)=CFOS(13,20)+"REQUIRE MUCH LESS MAIN MEMORY

190 FRINT A$(0X..3%)

200 CLOSE 1

210 END

IFLUKE]

Chaining Programs Which
Use Virtual Arrays

Virtual Arrays can be used in lieu of the COM
statement, in fact, Virtual Arrays are better because
they allow string arrays to survive; COM statements do
not. The program “EXAMI11”, below, is meant to be

chained by the program “CHAIN”. “EXAMI10” was
altered as follows to accomplish the chaining:

insert line 205 RUN “EXAMI11”

delete lines 110 and 190 in “EXAMI10” as they
are no longer necessary

10 ! "CHAIN"
20 | MULTIPLE USE OF A SINGLE DIM STATEMENT

40 CLOSE 1)

50 OFEN "DATA4.BIN" AS NEW DIM FILE 1 SIZE 1

60 DIM H1, A$(IZ)=64%

70 A$(0%)=CF0S(4,20)4"TEXT CAN BE STORED IN VIRTUAL"

80 A$(1%Z)=CP0S(S,20)+"ARRAYS FOR USE_AS_A FROMPT AS"

90 A$(2%Z)=CP05(6,2031"MANY TIMES AS IT 1S NEEDED BY"

100 A$(3X%)=CPO0S(7,20)+"BY YOUR FROGRAM"

120 CLOSE 1 .

130 GFEN "DATAS.BIN" AS NEW DIM FILE 1 SIZE 1

150 A$(0%)=CP058{10,20)+"BY USING THE SAME FROMFT MANY"
160 A$(1Z)=CFOS(11,20)+“TIMES, BUT ONLY HAVING TO CODE™"
170 A$(2%)=CF0S(12,20)+"IT ONCE AS A VIRTUAL ARRAY, WILL"
180 A$(3Z)=CPOS(13,20)+"REQUIRE MUCH LESS MAIN MEMORY®"
200 CLOSE 1

205 RUN “EXAM11"

210 END

10 ' “EXAM11"

20 | CHAINING PROGRAMS WHICH USE EXISTING VIRTUAL ARRAY DATA
30 | USE "EXAM1D" TO CHAIN THIS FROGRAM IN

40 CLOSE 1

50 OFEN "DATA4.BIN" AS OLD DIM FILE 1

60 DIM H#1, A$(3IX)I=64X

110 FRINT A$(0%..3%)

120 CLOSE 1

130 OFEN "DATAS.BIN" AS OLD DIM FILE 1

190 PRINT A$(0%..3%

200 CLOSE 1

210 END

Additional information on program chaining with
Virtual Arrays is found in section 10 of the FLUKE
BASIC Programming Manual. This section includes an
excellent example on how to re-start a specified
program after a power interruption using Virtual
Arrays.

NOTE: It is not necessary to CLOSE and re-OPEN
channels when chaining in a program to the same
Virtual Arrays, however, to prevent unexpected results
due to errors, it is recommended that the CLOSEing
and re-OPENing always be done.

Using Partial Arrays

If you only want the leading portion of the data in a
Virtual Array, it is possible to DIMension for just that
portion your program requires. “EXAMI11” has been
altered to only use the first element of the file without
disturbing the rest of the arrays in the file. This
appears on the next page as “EXAMI2”.

10 ! "EXAM12"

20 ! USING FORTIONS OF VIRTUAL ARRAYS

30 ! USES "EXAM10" VIRTUAL ARRAY DATA

40 CLOSE 1

50 OFPEN “"DATA4.RBIN" AS OLD DIM FILE 1

60 DIM H1, AS(0%)=64%

110 FRINT A$(0%)

120 CLOSE 1

130 OPEN_"DATAS.RIN" AS OLD DIM FILE 1

190 FRINT A$(0%)

200 CLOSE 1

210 END
Dimensioning for Disk Storage Space changed to an RS-232-C port by changing “KB0:” to
Economies “KB1:” or “KB2:” in line 450.
Section 6-24 through 6-33 of the FLUKE BASIC “EXAMI14” can easily be altered to try combinations
Programming Manual and the Help Lesson “An for more or less thax}‘three arrays. Foi example,
Introduction to Virtual Arrays” describe why the order suppose a 4th array F$(20%’2%)=8% were added to
that Virtual Array declarations appear in the DIM t'he existing DIM statement on line 450_; these program
statement, affects the amount of disk storage required. lines would be updated or added as indicated:
The rule of allocating virtual array declarations from 2;22(5) g?‘;—&i’? * 307 % 20 * 19
left to right in decreasing order of array element 740 add 0= 4 o dore 123 4",,
lengths is all that is needed to insure disk storage space 750 a ad o F($or28§/' 2%)_ 8%
efficiency, except when a different declaration order is a o 5F$ (20%, 2%) = 8%
necessary to facilitate tasks such as accessing the Note: Delete comment on line 750 to make room.
leading portion of an array file (see “EXAMI12” dd: 822 FOR D% = 1% TO N% ! D% = positi
program, above). The program “EXAMI14”, below, ade: of array (r’lo. 4 0 v+ W~ position
compe e disk stoage space reqized o al s 825 IF DR~ A% OR DY = B OR D' -
P o i C% GOTO 2165
If you need help in visualizing how the bytes per 825 add \ AP$(D%) = “4”! delete comment
element are allocated for storage on the disk, study the to make room
fl‘lgorythm {1,1 “EXAMI4” (lines 1160 through 1340). 840 add ... + AP$ (4%)

EXAMI14” calculates the most efficient DIMensioning add: 935 NE%(D%) = 63% \ NY%(D%) = N3% !
for a group of three Virtual Arrays (see line 750). This Comment
program prints out all poss?ble combinations; .indi.cating 950 delete “THREE” insert “FOUR”
the disk storage space required for each Fombmanon. 960 update for FOUR FACTORIAL (4 x 3
The program allocates bytes and blocks just as the x 2 x 1 = 24 Combinations)
BASIC System would do it, in the order that the arrays .
. - add: 2165 NEXT D%
appear in the DIM statement. The printout appears on)
the 1720A display, however, the printout is easily After RUNning the program for the fourth array, the
results for best choice should be: 3240 or 3421.
10 ! EXAMFLE 14
gg : VERSION 1.0, 30 DECEMBER 1981
o .

26 ! THIS FR ‘ CALCULATES THE SEQUENCE OF VIRTUAL ARRAY DIMENSIONING

gg : UHI%H agEEAgEG IRE THE LEAST AMOUNT OF DISK STORAGE

%g éRINT CHR$(27%4)+"L2J" ! CLEAR DISFLAY

50 L$=" . HH" ' PRINT USING FORMAT FOR BLOCKS

Zg %:="gggg“ﬁ“ ' ERINT U§ING FORMAT FOR BYTES

70 !

198 ; DEFINITION OF VARIABLES
Program Listing is continued on next page 9

FLUKE

™~ -~
- S e N
[=F 2 I’
> W z
<< == w
[+ 4 nz oo
N 24 ~ Ll z-
L] << =~ ¥ | od* 4 -
» z ¥ o [<4
- > > - x Q | b
< -] w ™ B s Z/ U~
> & = N ¥ o~
<< = [=] < w x* Mlde p- 44
o <z Ll - -~ . oNeaNr ol
[+ 4 22} - ~ w - - -0
< [+ 4 2 < B i w ZZ
(=4 z z [> =~ [a=dtY
w =4 [w - ~ =z T =N M NOD
w > < x =<} N ud Zrx (o] &=
> T8 ~ o E =4 > =2 Lo . s G Wi
T & ™~ < < z] Qg OO0 O -
€ o« -~ - o} w -~ i Z ZXZ ZTXT ZT >U
x < N ~N O *® ~ w O=irmi <uid
T® L] Nr—- * o =~ v K >> > &
W > S~ -l NZ *n» Ziu z w W €0 <€ & 3
>l NN U >=lulr= * ¥ g et - == e K& <Chi=
T XL - < * ¥ ZEX =N @ Wl R/ X (& Zo
w [r 4 v 4 b s * W [t 7} - >=1 ICC «C« =<
Qw w X < >= Ol * ¥ —=ZO z 0w i Vv b -4
WE w [=) T ¢ <X ZITOe- * ¥ u W » L2 B - 4] L o2 BN VES VR T it
g Q L < O &N z> * ¥ O OZ e ~ © ! A OO O : XX
<z z z wacxT Z e X>-uid ¥ ¥ Wi N . <C!IMN Moo
z W o I =X N < ol ¥ ¥ ZEWW z I O ZZ Z = ZpFk-
W 2 Lol Z © - > O oa * ¥ Om & ~ X D>l et OO O i
wd o 52} O ORZC JOowld * * o0 Zlwi Ead ol I e A
-~ l z i e PO LIty ¥ ¥ U T~ > W =l » |l S o S
ad 2] L - <O < [+ 4 x 2 * Zud [&] =2 | R =l o L L I &]
<+ E 4 <o W ol —-COQZ-ITZ 78] K L dd=>=< » u Zi ZzZ 0y U -
(14 w - > € CZ Zr-3r3J o ¥ Eddodl ~ I W e OO0 O W A~
LT - [~ >=CZade TCZ LT X - W o= <z N - at ~X 4ad G a4 ™~
> -] e 3D EEOZW L > [aliziatals o 4 - NGO < ™M
> - w 2ac EZXTCULO=EZLIC 1Y) z NWuo et = oo [. 1} ~
w o -] Qouild O .J =3 X [=] © WOk N~ S I ~/ 7 "
wT o wujnoe =2l o) = * = OGN ONTOON IN e IR NN N o
Ik < b4 0w B« OZ sl O2Z - 23 HMONID~ WZ =1 Ow < 0OO0: <
i G- ol pe=] wQuuw . EZWOEZZO 2 <€ OUGCuL HNEY ae 0 X1 (N NG+
z uuxXu O fHW EZ>O = o N =L ~% = 3! Wk e ez ~
-4 *x (72 NUWXOF- ZOFGXH Uik — - Lapl* 4" 4 o a. Pow N N
lad - > W0 ZZ Oul O 2 - 4 x z< - ! (3 ~ N
p'4 42] < >=Oda X WS -l 1 O <€ >N ~ & =1 ~ot ON -
wo [+ 4 > ol QUEWIL>»>OWES Li = <THWwWo N LW a4l ~® —a
O el e X W o A OFWFACAL FOCL. X - P O >~ 0 o= N O~ O
A~ oI W g P SN | T R) P) & = fe Q o TO=0-Wd i w Kl - Be <<
> i dCICY ARLWNOWOOLT> W Z <ClLoiod.d ~LL 2 O »Zz o o 4+
il 1" 4 Zuibl << ZO0ZZ Jd<C G L) ~Z G NN 0 N ~
ol OOUOK D-OW FOFOZ OOLLHZ~ QI =3 WNL LG N~ il - o N
BUNO CZ ~ OFCHID ZZOOHW JWEX % W x OZOOoX =N Z 2D~ S 7 e
L cadail O3 X = +— Ll EIEINDT * z % - ~d o Wt N ™~ ~
©C 233 © OO0D E E£E AQQ s sQOC—-IQ *® *» LR 4 ND - I O/ NNONO: ol
Li. OVEZFQZO A24230 ZZOOWE-OZUH X W oK O OO - 0 . ZZr-Z - O
W O CECEE UWHZZUOLWUFIT ¥ <€ ¥ X-ZZW w - w O o s <
W EEE>-X) = =l ndand ~ X * . < Lrirt OCOBOO AN
A0 LWWZCEOTCW =Z-ZZ it nianunse = 4 WK N ~N B b P~ A~
ZZ QOO EUOrF Ik Z ¥ » ¥ -t Nl B3 > N NN+
CC ZLELCELI IO CETCEE ~~r~namasanas s 8 x * zZ * TCE » NNIRTTNRXZ
- OOQWCLWA SN DNUNNNNNNN o o [-" I ™ NN - #* vt vt] vt | X~
wwm W R 0T e 2 R X X ® NNNOGN R ® QX 1 HRINSUW
anananuu etututetutsGutetutetrdih H * NN NNNRONTHND - >0 * < NNANRQOL NG
~ NN NONNNNNWNNNNS o W * NRMONGITOAMO-NI NN ¥ T Q2 O XV
) NNNNNNNNR > JJZ D-u>-dO-No>-4. ¥ NZ % MHdtuninununu O x Wninzx b
e QOOXHTIUZ> CCHE WWZZO0NNNIDC ¥ Ol % I NNNNNNNNNNNR ECU ¥ e~ ZXE-
¥ Ll ¥ RLEAFwHONMTDIONO =N R WY OO0 O

........... Rt el bR N i LI L L S SR S P TRPNPNN, 3 ot 4 4 - 47 o A A LT o o PSPy oy W S0 Ry e P T VO -

000000000000 0000000COoCO00000ONONCCCOCONCoOOCNOCCOCONOOO00ON0OO0CO0O00CO0OINO0R
CMTINUNDOO -SNMTINIONDOO-ANMTIIONOR O == MM TLIINO A NONM T IINN DO OwW MO NOO =AMT N ONO O OwNNIM TN
Tttt S SN N NGNS N M MM MM MM MIMMIE OIS rinnnnnnNnnNnNINOOV O VOV IBIN N ANNANNANN RO OO0 m

10

Program Listing is continued on next page

FLUKE

.
O 0NN
b 4 -
> Qo0
< wildw
& ZZZ
X oOCo
T - WD >=
wow Z [<
ZzZZZ O H &
Pl o &
1 EEE b~ < <<
Lon Lo o SN < [l =]
oo Z~ il 7%)
=N @xw =4 <4
wildid aamM <3 = Lad (=]
oo £ = -2 n -
[~ I (=] Ui > <<
OCO LN X - B 53 -+ -l
|l and od - X < o ra 2l D =
zZM % - A~ Q E >4
Qa i > O *® 2 s 3w ot i i} =]
Zuw i LT =~ X = CNINJes x4 [&)
O L W X pe Qe ol o
G & L ZM % [%] oz O 1 W3 <
VW W CITC Wt % Qi TN -
W a = *® < | e ZW Ll
[+ 4 E ITIXIT > X i oo X DX -
Ze O k- oM % w i ST O O >
o NN - - OOw=- O WW +¥]
O+ | < Wi ¥ > ZZa» 73] °
w -t » a laalom b 2 -] b OO0
pc 4¢3 o Q> X [+ 1] Qb O>OZ U
(=] - -0 ¥ Ko Z EZ»0 O ZZ O
—SX Z WM X Lkl Uiz O - X2
il W W~ X HZL AQ =z Wi > JuiOZ
a0 £ NN O XK ZOIJ @ ~U0nk-a W CCH-OD
W O Ay X% DO Ll NI A O K>
we Jd ZEZ M x COUD X XN € O
iad W o#in JdtN o ®x Q AT A L N
40 e T X > @0wnaN O jiajaal ol
Qi & NNN - E WOC € Sraal) = ==222_J
CZ W COV & C O U NvwdCl~ O <
=HO G e O X >0 G vl |t mdanl
vt NNRN > (O digi~ U T T W [rqrq o
W W >>> <« O - =z D - LT
OZ L Z2Z L & Wil O oGO Ces & N2
(53 I o i 4 NNN £z == Q U
XE > << -] LIDemeui O ~
-l tal Z dd-d 0 <ot - Jd N omeme
wua wlld = T P XX > >
| 77 Ll @ e | OELOM <& -4
wo i I & bFi=i HIR « -4 x
e ug ¥3) T o et o I RS en H -~
= 0 - % ZZZ s »
|6 =N wi E e] AT~ T N
Zul Z NON gl o= MOITOT | Zwe
ol Ll Ot TS o === ROt N+
W & rtedvd L= I 3 feviexi-vlaaley] Ol
WY W e wa x CITLT T —2Z>_0
- -l e~ KT w | ol kol et od Wuaan
Gl Ll NNN W *® [] LU S N~
T <O I ¥ U D balatlalyl NN
L W s~~~ =TI ¥ ~ T 1 Pt bt it
(&3 O NNN - = ™ B Sttt
wx wildid i ® N = o e o e NN N
Qb= s ZZZ —E % Oww ZZZZZ N>=_i>=
o= O OO ¥ NN et bt B 2t Pt [(s 3]s pun]
wu=x T Zh ® NN [r4:4i4s4v 4 [=]
|-|.YLU '''''' Pprﬂrph_l- ''''' .

ilat s L
WO _1Z
WOd-Z Lild
—XZ> 0 =
ZWoOoXxZ 2w

O —2ZW

N -
BN~
N
O~ >
N3 QN
> NN
N2Z~ ~NZ
N e+
Ha= N RN
N> Qo>
DN
L > NNO NP
4 D D>~
o W
[T z

(I%)

REQUIRED

+UYZL(TX)

~~

NN

X

~

NN
NN AN
>_12om
nu-+
e tatat
NN N>
A
~r e i
NN NN
>daid>-
[PS T hum] g

Y38YX(IX) s

=~ DISPLAY RESULTS =-=--
(y
% B
Y4 B

D
L
L
GET NEXT ARRAY

T
T
T
1

vt o
T

=

R

R

R
EXT X%

-———— -

ooCCcOoOOCOoCoCoOnoOoCsoooonooOoOo0OO0OOo0000000
COoCOCOCOOOQOOHMNIMVTININNRCO—MMITNIONDRN D NM TINONDROHNMILWIONDON O NM
ONDBO=CiMTNONOOOC O OO O O vird v vdvedvd yod vl vl SOOI NN TN MM M MMM M MMM

OO OSONCNES TS OO O vt vl v vt vt el vt vt vt vt vb vt vt

i i

i i

Lalal)

v vt pl vt vl vl vt it

-
z
Lo o |
* S
x X w
] ~ W es
»® N -~ 3
* a >
»® D o X
* [(]
x ~ =
] [I ¥ 2]
* NN W
X ~ >
* w - >
x < o~ oW
* - =
x - H
»x = jds) -
L n X N
L] L = >
¥ - £ <
] > e
¥ @ I =
* =]
¥ aQ W ow
¥ w & v
» 42} el
o w
m Z > >
- D2 <« J
< [V
— - X <
(=4 < «€ O
- - 2 =z
C oz owm
> = XX
< =T NO:=z OQ
- m 2O
a ~ wm_dA_]
B N o ~advad
[R N~
a own ~ w2 ez
~ &3 aiseglise
¥ -~ T < d
N - e
x® 2z -~ anan
¥ o~ » BEHN
¥ N > >d>d
¥ >
L VY] o vouy
¥ o+ z ZXZZZ
¥ N o
® v o vununm
¥ i o 2302
K AN
¥ Nvdvd » LS
W ZUIU) vt vl v vt
EER AL L T+ 2
¥oFN
I e e ol nd
¥ Wi ZZZETZZ
B DGt it el bl
¥ dI>EEZXa
EALAL 4 ol of N e B I
[mlaiolals]eleiela]ele] =]
O =M T UION OO
O00000COOOw
NN NN IO T NN

11

Program Listing is continued on next page

<
N

1t
o

A=
Py

u
xC =
XNCNDT % DOO
*

L P
N &

$=50¢(1%)

Y L
=

N X
~O

- -

Rd — i

RCNR
RO I TISITWINIO G N

NN ZZTZZ—TM
NEDTIA b bk
o~
AN -

N+ DD

NG O O LG D GG G G TN U G I RIMOI NI R NIRONS 1D
e e O OO0 OO QO ORI s b b b ph ot
m

SN OVDNOUIN N OCOVON O UINN
[=l=]wlmlwlelelsiele]w]elel=le]l=alelelel=lo -]
MOZ MOTVDVVZ NBemeZZZimimmey
Zrm OoMADMM OZ X mmm
TOX Dt =X N 3 XXX

IIoR

GET SUBSCRIFTS FOR NEXT SEQUENCE

FICK PEST CHOICE *%%%%X%XXAXXXXXEXEXY

THEN MNZ=UBX(KZ) \ BC$=SQs$(KX) \ Kix=K{ !

";8Q% (K%

FICK SMALLEST

“3;BC$

Special Consideration for
OPEN Statements

It is often convenient to save the names of disk files as
string elements in a virtual array. File names used in
OPEN statements cannot contain the null characters
which all virtual array strings use to fill up unassigned
character positions, nor should they contain string

OUTPUT FROM "EXAM14"
SUBSCRIFTS WHICH IDENTIFY ARRAYS
ARRAY NO. 1 2 3 (ORDER: ~123)
DIN Wi, GX(1X%,4X), EC10X,9%), @3(10%)=64% ! ARRAYS BEING TESTED
ORDER: 123
ARRAY STARTING STARTING ENDING ENDING UNUSED
NO. BYTE BLOCK BYTE ELOCK BYTES
3 1 1 29 i b)
2 21 1 39 3 4
3 393 2 128, 4 56
TOTAL UNUSED BYTES &0
3 ARRAYS REQUIRING 1404 BYTES IN 3.13 BLOCKS
ACTUALLY USE 1844 BYTES IN 3.25 BLOCKS
ORDLR: 132
ARKAY STARTING STARTING ENDING ENDING UNUSED
NO. BYTE 8LOCK BYTE BLOCK BYT
1 1 1 20 i
K 21 1 256 2 4
2 257 2 1i2 4
TOTAL UNUSED BYTES 4
3 ARRAYS REGQUIRING 1604 BY1ES IN 3.14 BLOCKS
ACIUALLY USL 1448 BYTES IN 3.22 BLOCKS
ORDER: 213
AKRAY STARTING STARTING ENDING ENDING UNUSED
NO . BYTE BLOCK BYTE BLOCK BYTI
F3 1 1 368 2
1 369 2 388 2
3 389 2 128 4 &
TOTAL UNUSED BYTES I
3 ARRAYS REQUIRING 1404 BYTES IN 3.13 BLOCKS
ACTUALLY USE 1864 RYTES IN 3225 BLOCKS
QROER: 312
AKKAY S1ARTING STARTING ENDING ENDING UNUSED
NO. BYTE LLOCK BYTE BLOCK BYTES
3 1 1 192 2
L 193 2 212 2
H 213 H 72 4
TOTAL UNUSED BYTES
3 ARRAYS REQUIRING 1604 BYTES IN 3.13 BLOCKS
ACTUALLY USE 1408 BY1ES IN 3.1% BLOCKS
ORDER: 231
ARKAY STARTING STARTING ENDING ENDING UNUSED
No. BYTE BLOCK 8YTE BLOCK BYTES
1 1 348 2
3 369 2 b4 1
1 65 4 84 4
TOTAL UNUSED BYTES 1
3 ARRAYS REQUIRING 1804 BYTES IN 3.13 BLOCKS
ALTUALLY USL 1420 BYTES 1IN 3.16 BLOCKS
ORDER: 321
ARRAY STARTING STARTING ENDING ENDING UNUSED
No. BYTE BLOCK BYTE BLOCK BYTES
1 i 192 2
2 193 2 48 4
1 49 4 68 4
TOTAL UNUSED BYTES
AYS REQUIRING 1604 BYTES IN 3.13 BLOCKS
3 aRRAYS BEOUIRONE 1EBI RVIEE IN 3713 BLOCKS

12

functions such as LEFT. Before the contents of a
virtual array string element can be used as a file name
in an OPEN statement, you must assign its contents to
a main memory string and delete the'null characters.
The main memory string (containing the desired file
name without the null characters) should be used in the
OPEN statement. Methods to delete null characters are
found on page 2 of this lesson.

IFLUKE]
®

John Fluke Mfg. Co., Inc.

P.O. Box C9090, Everett, WA 98206
800-426-0361 (toll free) in most of U.S.A.
206-356-5400 from AK, HI, WA
206-356-5500 from other countries

Fluke (Holland) B.V.

P.0O. Box 5053, 5004 EB, Tilburg, The Netherlands

Tel. (013) 673973, TELEX 52237

Phone or write for the name of your local Fluke representative.

Printed in U.S.A. B0144A-10U8204/SE EN

|IFLUKE]
®

Technical Data

17X XA Software Information B0090
Stripping Remarks and Extra Spaces

ol |

AHH

0
§

]
3

Introduction

Many users have faced the dilemma of not having
sufficient memory space for running large programs.
One reason for this may be that the comments and
spaces, required for a well-documented program, use a
Jot of memory. An additional problem caused by these
comments and spaces is an increase in program run
time.

One solution has been to run the program in modules.
Although this solution works, it is not always the most
desirable because it requires additional programming
ettort. Another solution has been manually to strip the
exrra spaces and comments from the program listing,
thus allowing more program code to reside in main
remory. Unfortunately, this solution also consumes
and inordinate amount of programmer time and effort.

The purpose of this Software Bulletin is to present a
program which will automatically strip remarks and
nanecessary spaces from any BASIC program. The
reulting program will occupy considerably less
femory in most cases, and it will run faster because
the .omments and extra spaces do not have to be
hiandled by the BASIC interpreter.

‘T’he following paragraphs will describe the equipment
»+edled, the program and its limitations, how to enter
md test the program, and the benefits of using the

rogram.

From Your Basic Program

Equipment Used

The only equipment needed to run the remark program
is the minimum configuration 1720A Instrument
Controller, and your program on Floppy or E-disk.
Although the E-disk is not required to run the remark
program, it will allow the program to run faster.

The Remark Program

The REMARK PROGRAM is written in

Fluke 1720A BASIC. The program is divided into
several sections. The first sections asks the operator for
the input and output file names, then opens the files.
The next section reads a line from the input file and
strips all of the remarks from it. If a remark is the only
thing that occupies a program line, that line will be
deleted entirely. The next section of the program strips
extra spaces from the remainder of the line and stores
the line in the output file. It does not strip spaces from
quoted fields, and it strips only invalid spaces from
lines containing data statements.

Limitations

If your program contains statements that jump or refer
to lines which contain only remarks, the stripped
version of your program will produce errors when it
encounters those statements. The reason for this is that
the referenced lines will have been deleted by the
remark program, producing an error when it is run.
Therefore, it is a good idea to pre-check your program
for all IF-THEN-ELSE, GOTO, GOSUB, STOP ON,
ON GOTO, ON GOSUB, TRACE ON, and
RESUME statements which refer to remark-only lines.
Other program languages allow jumping to labels.
Frequently, these labels are the remarks in the
referenced line. Although Fluke BASIC allows jumps
to these lines, the remark program does not compensate
for the fact that such lines will have been deleted.

The remark program will not function properly if the
input file which you identify is a lexical, binary, data,
virtual array, system, (.SYS) or assembly language
(.CIL) file. It will work properly only on BASIC
programs which were originally saved on a mass storage
device with the “SAVE™ command using the BASIC
editor. Other types of files will cause fatal or
muysterious errors in the remark program.

IFLUKE]
®

The object program must have worked properly before
running REMARK on it. Otherwise it may contain
errors which REMARK assumes do not exist, causing
REMARK to modify lines when it otherwise wouldn’t.
Thoroughly debug your program before running
REMARK on it.

The portion of REMARK which deletes extra spaces
may inadvertently create errors if the process creates or
modifies BASIC keywords. For example, the statement
FOR I=S TO P will be changed to FORI=STOP,
creating the keyword STOP from the variable S,
keyword TO, and variable P. Thus, it is a good idea to
run your program through a thorough test cycle after
stripping remarks and spaces from it. The Remark
Stripping Program is now included in the BASIC
startup disk, 1720A-902.

Using the Program

Running the Program

When you run the remark program, the display will ask
whether you want to delete only remarks or both
remarks and spaces, ask for the input file name (the
name of the BASIC program you wish to strip remarks
and extra spaces from), and ask the output file name
(the name of the stripped version of your program). It
will display each line as it is either deleted (as a remark
only), or stripped of remarks and extra spaces. When
the program is finished, it will display the words “JOB
DONE!”.

Strip Remarks Only

When the display prompts you to decide whether to
strip only remarks or both remarks and spaces (see
Figure 1) make one of the following entries:

1. R and press RETURN: strips remarks only;
2. Press RETURN only: strips both remarks and spaces.

Remark Version 1.0

Strips remarks and extra spaces from BASIC eproaramss does not
correct jumeps to remark-conly lines deleted by this prosram !
R=delete remarks onlvy; <RETURN> only= delete remarks and spaces

Figure 1. Initial display.

Enter inpPut filename =

When vou enter the input <filename.extension>,the .BAS extensicon
is not needed’ invalid filenames or filetvrPes will cause errors.

Figure 2. Input file name request.

Enter outrput file name =

When vou enter the output filename, CRTCRETURN> sends results to
the display onlvy. 0T adds to the inrut filename if vou enter
<RETURN> only, or to cutput filename if vou enter no extension.

Figure 3. Output file name request.

©1982, John Fluke Mfg. Co., Inc,, all rights reserved

IFLUKE]
®

b. Test routine after only remarks are stripped.

DATA

DATA \ REM

DATA !

DATA REM

DATA \

100 DATA 45 , 78 , 'PRINT' , \REM ,
102 DATA DATA , DATA , 'DATA' , \

W N -

vl

"REM"

11!

LOYSPRINT'ONE',' "YES !

104 PRINT \ DATA 4 , " XYy » , 7 * X ' , 8 \ REM ! \ DATA
106 PRINT \ PRINT \ DATA y 2 4 23, ’ ’ 3
108 DATA 45 , T8 , 'PRINT' , \REM "REM" 1!
110 PRINT ' HELLO ' , "™ TODAY ", ™ tI* ®» , ' A "™ QONE " 2"
4000 REMOTE
4O40 PRINT .
4o4s PRINT 'ONE', ' "YES !
c. Test routine after both remarks and spaces are stripped.
1DATA
2DATA\ REM
3DATA!
4DATAREM
SDATAN
100DATA4S5 ,78 ,'PRINT',\REM ,"REM",!!!
102DATADATA ,DATA ,'DATA',\
104PRINT\DATA4 ," XYy ",7 * X * ,8 \ REM ! \ DATA
106 PRINT\PRINT\DATA,2 ,23 ,,,3
108DATA4S5 ,78 ,'PRINT',\REM ,"REM",!!]
1T10PRINT' HELLO ',"™ TODAY "," t'Ir ", ' A " QNE " 2 !
4OOOREMOTE
LOLOPRINT

Faster Run Time

A stripped version of your program will run faster than
an unstripped version. For example, when the
unstripped version of the remark program was run to
strip the remarks and spaces from that same program,
it required nearly 166 seconds of run time. However,
when the stripped version of the remark program was
run on the unstripped version, it required less than 140
seconds of run time. In both cases the floppy disk was
the mass storage device. In this case, stripping the
program before running it resulted in a 15% increase in
speed.

Run Time *(Seconds) to strip
Mass Memory Main Memory REMARK.BAS of
PROGRAM Blocks Used Used (Bytes)
Remarks Remarks and

Spaces
REMARK.BAS (ASCII, 31 15253 75.83 165.98
Unstripped)
REMARK.BAL (lexical, 29 15253 75.83 165.98
Unstripped)
REMREM.OUT (ASCII, 14 6073 68.08 146.56
Stripped of remarks)
REMSPC.OUT (ASCII, 8 2994 65.09 139.1
Stripped of remarks
and spaces)
REMSPC.BAL (lexical, 6 2994 65.09 139.1
Stripped of remarks
and spaces)
*Using floppy as the system device.

Table 2. STRIPPED and UNSTRIPPED REMARK program memory usage and run times.

For More Information

If you have questions regarding this Software Bulletin
or any other Software applications for the 1720A
Controller, contact your nearest Fluke sales
representative or manufacturing facility.

[FLUKE]

John Fluke Mfg. Co., Inc.

P.O. Box C9090, Everett, WA 98206
800-426-0361 (toll free) in most of U.S.A.
206-356-5400 from AK, HI, WA
206-356-5500 from other countries

®

Fluke (Holland) B.V.

P.O. Box 5053, 5004 EB, Tilburg, The Netherlands

Tel. (013) 673973, TELEX 52237

Phone or write for the name of your local Fluke representative.

Printed in U.S.A. B0090C-10U8209/SE EN

[FLUKE] I(E

" Technical Bulletin

1720 A Software Information B0091

Converting Binary Data to Floating
Point Numbers for 8500A, 8502A, & 8520A

Introduction

The 1720A Instrument Controller can accept readings
from the 8500A series of Fluke Programmable
Voltmeters in any format. However, only the ASCII
(American Standard Code for Information Interchange)
form can be used directly in computations with other
real numbers. The various binary forms cannot.

The purpose of this Software Bulletin is to provide
1720A software routines which convert the binary
formats to real numbers. The routines are provided
with remarks to explain them. The actual statements
which perform the conversion are minimal, however.
One of the main objectives of the routines is to make
the conversions as fast as possible. You can incorporate
these routinés as needed in your present software as
explained in this bulletin.

Equipment Needed

The only equipment needed to implement the conversion
routines is:

1720A Instrument Controller

Y1720A Programmer’s Keyboard
To operate the programs in a system you also need:

8500A, 85024, or 8520A Voltmeter

with IEEE-488 bus interface

Voltmeter test leads

IEEE488 bus cable

The device under test

Example #1

Background

What are the Weights of Binary Digits in
Binary Numbers with a Binary Point?
The value of digits to the left of the binary point
(integer portion) equals the sum of individual one’s
multiplied by a positive power of 2. The value of the
portion of the number to the right of the binary point
(fractional portion) equals the sum of the individual
one’s multiplied by a negative power of 2. The power
of 2 used depends on the bit position. This is shown in
Example #1.

What does 2’s Complement Mean?

2’s complement is a method of representing signed
binary numbers. In 2’s complement fixed point form,
the leftmost bit is a sign bit. If the number is in
floating point format, a portion of it will have an
exponent and the exponent will have its own sign bit.
The value of the whole floating point number is the
mantissa times ten-to-the-power-of-the-exponent for
the 8500/8502, or two-to-the-power-of-the-exponent
for the 8520A.

SIGN |
BIT 25 24 22 20 20 20

AN

POINT

01011000110001

25 125

BINARY POINT

22 23 2

i/ IS

Q5 6 2T SUM OF ONE-BITS
32
17222 .
+ 4
+ 25
+ 125
+ 0078125
0625 03125 .015625 .0078125 - 44.3828125

FRACTIONAL PORTION

All data, documentation, dialog, diagrams, suggestions, reports and/or
other forms of media contained in this bulletin are intended to be
informational in nature only. Implementation of such data to a user's
application should ONLY be made after careful analysis by the user's

own software experts. John Fluke Mfg. Co., Inc., specitically disclaims
all warranties on such information, express or implied, including but
not limited to any warranty of merchantability, fitness, or adequacy for
any particular purpose or use.

FLUKE

For example, in the below 8502-style binary number
system, the exponent of the base 10 and the mantissa is
1.5:

Example #2
Sign Bits

/ \

0010 01.100 = 15x102 = 150

v y— e gm—

exponent mantissa
‘,—’
Binary Decimal

In the below example of the 8520-style binary number

system, the exponent of the base 2 and the mantissa is .5:

Example #3
Sign Bits\
0100 0.100 = 5x2¢ = 5x16=8
R e N —r
exponent mantissa
s cm—
Binary Decimal

If the sign bit is a zero, the number is a positive value.
If the sign bit is a one, the number is a negative value.
The difference in the remaining bits is this: you can
determine the value of the base ten positive
number by summing up the decimal values of the
individual bits (see example #1); but to determine
the value of the negative number you must
complement the entire number (change all ones
to zeros and vise versa) and add 1. Then sum the
decimal values of the individual bits (as in
example #1) and add a minus sign. To convert the
binary number back to negative form, complement all
bits and add 1. Here are examples for both fixed point
and floating point numbers.

Example #4
Positive Floating Point Number
/ngn Blts\
Binary: 0010 01.011000
e d e

exponent mantissa
sum decimal ‘
values of 22 1.375
“one” bits: —— —

1.375 x 22

Decimal 5.5

Example #5
Negative Floating Point Number
/ Sign Bits \
Binary: 1110 10.10100
e s? ———
negative negative
exponent mantissa
(sign bit=1) (sign bit=1)
indicates
number is a
fraction
2’s ‘
complement: 0001 01.01011
(and add 1) +1 + 1
0010 01.01100
sum Decimal 1 1
values of
“one” bits: 22 1.375
add minus ‘ ‘
sign 2'\1 -1.375
-1.375 x 27
— o—
Decimal: —-.34375
Example #6
Positive Fixed Point Number
Sign Bit
Binary 01001.0010
Sum Decimal 1
values of
“one” bits 9.125
Example #7
Negative Fixed Point Number
/Sign Bit
Binary: 10110.111
2’s complement 01001.000
(complement and + 1
add 1 01001.001
Sum Decimal
values of ‘‘one” bits: 9.125
add minus sign: —9.125

1980, John Fluke Mfg. Co., Inc.. all rights rcserved

IFLUKE

What does Sign-Magnitude mean?
Sign-magnitude is another way of representing binary
numbers. In this form the leftmost bit is the sign bit.
The remaining bits do not have to be complemented or
modified in any way; they give the magnitude of the
number directly. For example:

1.011¢2)= —.3750100, and 0.011¢y= +.375q0)

A floating point number can have a 2’s complement

General Description

What are the Binary Formats?

The 8500A programmable voltmeters send readings
over the IEEE-488 interface in the following binary
formats. (Note: There are 8 bits per byte. All readings

8520A High Speed Mode
2-Byte Binary

Fixed Point

(multiply by scale

factor to get measured
value) Reading=3.25

exponent and a sign-magnitude mantissa. Such is the
case with 8520A 4-byte (normal mode) readings.

In converting input binary values, the conversion
routines follow the philosophy of the above procedure.
However, they deviate from the exact procedure in
order to provide answers faster with complete accuracy.
Further, the routines will only work on other
controllers which do integer arithmetic.

are in 2’s complement form except the 8520A 4-byte
binary which has sign-magnitude mantissa and 2’s
complement exponent.) The formats imply least
significant bits to the right.

NO EXPONENT

L N

CSIGN BIT | ERROR BIT)
00011 \010 00000000
BYT ’2 BYTE 1

IMPLIED BINARY POINT FOR 10V RANGE

ERROR BIT SETS FOR * OVERRANGE

NO EXPONENT

8502A High Speed Mode
3-Byte Binary
Fixed Point

SIGN BIT v y ERROR BIT
0001, 1100
NOT USED__/* BYTE 1

00000000
BYTE 2

00000000
BYTE 3

(multiply by scale
factor to get measured
value) Reading=1.75

[
IMPLIED BINARY POINT
ERROR OCCURS IF ERROR BIT IS

COMPLEMENT OF SIGN BIT

8520A Normal Mode
4-Byte Binary

(absolute value of reading >2.0)

EXPONENT = 2-2

N

MANTISSA = .25

r

Floating Point SIGN BIT
(no scale factor) 11111110
(exponent is power of 2) BYTE |

Reading=.0625

8500A/8502A Normal Mode

5-Byte Binar —

FloZting Poigt SIGN BIT SIGN BIT

(no scale factor) 00000011 10000000 00000000 00000000 00000001
BYTE IA BYTE 2 BYTE 3 BYTE 4 BYTE 5

(exponent is power of 10)
Reading=35

N7 N\
SIGN BIT
0 0100000 00000000 00000000
YTE 2 BYTE 3 BYTE 4

{
IMPLIED BINARY POINT

MANTISSA =35

EXPONENT = 10+

N/ A

IMPLIED BINARY POINT

3

NOTE: See topic on ““Difference Between Normal and High Speed Reading Modes’’ for correct Scale factors.

FLUKE

What does the Controller do with

the Binary Values?

When the controller reads the binary values from the
voltmeter, it cannot compute with them directly
because the controller’s internal format for numbers is
different from the format received from the voltmeters.
For example, the controller assigns 2 bytes of memory
for each integer and 8 bytes for each floating point
number (also called ‘‘real” number), while the
voltmeters send 2, 3, 4, or 5 bytes. Since the binary
formats of voltmeter readings are so varied and
different, the controller must have a program or routine
to convert the voltmeter readings into floating point
numbers which it can recognize and use in
computations.

The routines presented in this software bulletin
perform those conversions, and multiply converted
values by any necessary scale factors. They also
minimize the time required to do the conversions. They
then make the converted readings available to the user
program in the form of real number (floating point)
variables. The user program can use the values of these
variables in subsequent computations.

What are the Scale Factors all about?
Readings taken from the voltmeters (8502A and 8520A)
in high speed mode are in fixed point format. That is,
there is no exponent as part of the reading, and the
binary point is assumed always to be in the same
position. Therefore, all readings taken in the high speed
mode are in the same format, regardless of the range
setting of the instrument. Because of this, each reading
must be multiplied by a scale factor to adjust the
reading for the range setting.

All readings from the 8502A in high speed mode are
multiplied by 10 in the conversion routines to
normalize them to the 10-Volt Range. Readings from
the 8520A do not need to be multiplied by 10 first.

The conversion routines then multiply the 2-byte/
3-byte readings by a scale factor which is based on the
range setting of the respective voltmeter. The proper
scale factors are given in the next topic. The user
program must enter a scale factor parameter for the
range being used into a local variable before calling the
conversion routine.

What is the difference between Normal
and High Speed Reading Modes?

In the normal modes, the 8500A, 8502A, and 8520A
perform internal calculations to adjust the reading for
the selected range. In the high speed mode, to save
time, no internal adjustment is made. Therefore, the

controller must make the adjustment. Normal mode
readings include an exponent; high speed ones do not.
Because of the greater number of bytes per reading,
normal mode readings have more resolution than high
speed ones.

8500A - The 8500A has no high-speed mode available
on the IEEE-488 Bus. The reading sent is the actual
measured value. It has a 5-byte binary format identical
to the 8502A 5-byte format.

8502A - The 8502A has both modes. In normal mode
the reading is the actual measured value in 5-byte
binary format. In high speed mode the reading is in 3-
byte binary format, and is not the actual measured
value. To get the actual measured value, the controller
must multiply the reading by 10.

The 8502A can take high speed readings on all
functions: DC Volts (VDC), AC Volts (VAC), DC
Current (IDC), AC Current (IAC), and Ohms. When
taking ohms measurements, scale factors must be
uniquely computed, then multiplied by the converted
measured value. Although the somewhat complex
method for computing ohms scale factors is not
discussed in this bulletin, complete information is
provided by Application Bulletin 25, Appendix A.

Regardless of the type of measurement being taken,
(when in binary mode) the reading must be multiplied
by a scale factor to yield the actual measured value.
The scale factor is computed by the formula

SF=10 x RF, where RF (Range Factor) for the
different functions is given below. The 3-byte
conversion routine automatically performs the times-10
multiplication of the Range Factor once you have put
the range factor into local variable RF.

Functions/Range
VDC VAC IAC Scale Factor
100 mV --- 100 uA 1/64
IAY IaY 1 mA 1/8
10V 10V 10 mA 1
100V 100V 100 mA 8
1 kV 1 kV 1A 64
Functions/Range
IDC Scale Factor
100 uA —1/64
1 mA -1/8
10 mA -1
100 mA -8
1A —64
NOTE: Ohms scale factor must be computed from prior
ohms measurements. Refer 10 AB2S for details.

FLUKE

In the high-speed mode, the 7th bit of byte 1 is not
used. The 6th bit indicates an error condition
(overrange) if different from the sign (8th) bit (absolute
value of reading is greater than 2.0).

8520A - The 8520A has both modes. In normal mode
the reading is the actual measured value in 4-byte
binary format. The reading has a 2’s complement
exponent and sign-magnitude mantissa. Furthermore, if
the exponent equals 128, the entire value equals zero.
In high speed mode the reading is.in 2-byte binary
format, and is the actual measured value only if the
8520A is set to the 10-volt range. On any other range,
the reading must be multiplied by below scale factors
for DC volts (done by the conversion routine). In this
mode, the rightmost bit of byte 1 will equal a 1 if the
measured value is beyond the selected range. Scale-
factors for ohms measurements are different from those
for voltage measurements. Negative scale factors are

Resistance Scale DC Volts | Scale

Range Factor Range Factor

10 ohms -1.5625 100 mV 1/64

100 Ohms -125 v 1/8

1K Ohm -125 10¥ !

10K Ohms | -1250 100V 8
1000V 64

The Conversion Routines
What are They?

Tables 1 through 4 present listings of subroutines
written in Fluke BASIC for the 1720A Instrument
Controller. The routines convert voltmeter binary
readings which have been input as integer arrays to
floating point values recognizable by the 1720A, as

used to give positive results. follows:
Table 1. 85204 High Speed Mode 2-byte Binary
FODOG 1A, WEF AW Subroutline 2LYTE o+ B W
(VLK)
Tanng Yarsion 1.0 20 Mew 1980 fluke Control Froducts Merkeling
1060s !
Tanoe ! BaSIC V1.0, FDOS 1.1
10010 ¢
a1 ! DESCRIFTION: ZBEYTE will ceoenvert on inteder iN:
10014 0 on From bhe 852048 11 hoodkh s dobtnsry muo Livusis .
TO0té + ante 17208 Fouramzl znd rul Lhe shnswers h Fesuli arres RE .
POGis ¢ If the error bit iz zet by the 85204 bthen bthat resdiond is sel
oozt b to zero.
L0z !
inGz4a ! rormet of Lhe -bpete resding (&3
10026 !
1ooze !odlel betled bt O oA overtE ol bl
10030 ! bits 1-7 % lowar ord o fraciion bits (2-10 TO 27 -4
10032 ' Znd buted! bite 0-2 = higher ordered freotion bite (74 35 706 24170
10034 ¢ Imeliwd Binary Foint
JOoas ! ity 3-& = inteser bils
10038 ! bit 7 - ogidn bitk
10040 ! bit 8 = EOI bil (end of resdingy muset be mecked ovul)
10042 !
10044 ! Verizbles to be initigliced before cellinag?
10046 ¢
10048 ¢ iA% = 1nput srrevy wilh concateneled bwiee of =1l rezdinss
10050 Mz siae of 1nPul a&rray
1ouhe ! [resull zrraw
100594 ! RF = range scale faector as follows:s
10056 !
10058 ! 1210~V 1 1/764~100-mV 178=1-V 5 82100-V ; é&4-1
10061 ! 1. 56R2%=10~0hm 5 2.3-100-0khm 5 -125-1-kOha - -k Qb

H
i
| 10062 ¢

FLUKE

Table 1. 85204 High Speed Mode 2-byte Binary (Con’t.)

10044 ! Locel Verisbless
10064 !
10068 ! BE1%,B2% = betee 1 end 2 of the reeding
10070 ! Cl%,.C2% = imteger contants for coarlzasnting
1072 ! ci,cz2 = raegl constente for the bingry conversion
16074 !} 1% = lgup counter
10076 ! 187 = ejgn of number
10078
10100 Ci%Z = 255% ! constant for 17s conrlement
10110 C2%Z = R86% P eonstsnt for 27s complemant
10120 C1 = 8/RF P ronetaent for bete 1
10136 €2 = 2048/RF Peunstant for hbweibe 2
10140 !
10150 FOR IZ = 0% 10 IMZ STEF 2% P oronversion loor
10160 B1X = IAZ(LK) Poseiur bwbe 1
10170 IF B1X AND 1Z THEN RACIX/2%Z)=0 \GOTO 10240 ! wrror hee occurred
10180 B2%Z = TAZ(IZ+1X) AND CiX U getur bute 2, strie EOI
10190 IF B2X<128% THEN ISX =1XZ \ (G070 10230 U check for nedzstive rezding
10200 ISZ = ~1% ' gt g19n to nedativae
10210 BP1%X = C2%Z-B1% U complemaent buete 1
10220 B2%Z = ClZ-B2% ! complament belte 2
10230 RACIZ/2%Z) = (R24Z/C1 + B14/C2) % 1S%Z Focomrute resding
10240 NEXT 1% ' looe
10250 ¢
10260 RETURN
Table 2. 85024 High Speed Mode 3-byte Binary
11000 #3350 NERFHRAF 0NN Subroutine JIBYTE FEREHAT AN AL H AN A MU L NN A E NN SN
1100z ¢
11004 Varecion 1.0 0 PMew 1960 Fluke Control Producte flaerketins
11006 ! -
tiooe ! Swelen Softwsres-. BASIC V1.0, FDOS VIL1
11010 !
11012 ! DESCRIFTIONS JBEYTE will convert asn intesar srree <1AXEF roed in
11014 ¢ from the B3024 DVUM in hidh sewed mode (3 te binare transferd to
V17206 formet, @nd store the zhnswers 1n reeull zrraee TRAF.
: I¥ the erroe bit is gat by Lhe 85024 bthen that reading is
Voset to zero.
1
! Forasl of the 3-buete rezxding jed
11028 1 1st beted bite 0-3 = urrer order freclion bite (244 Lo 2819
11036 ! ITueliad Binare Foint
11032 ! bit 4 = inteder bBit
11034 ! hit 3 = greor bit (set if gabwoiube reading <> 2.0)
11036 !} bit & = ol used
11038 1 bhit 7 = 3idn bit
11040 T 2nd betes bite 0-7 = niddle order fraction bite (2A-12 Lo 24-5)
11042 1 Srd beted biks 0-7 = lowsr order fraction hits (24-20 TO 2413
11044 ! bit 8 = EOI bit (end of rezding; must be mssked out)

6

FLUKE

Table 2. 85024 High Speed Mode 3-byte Binary (Con’t.)

116464
11048 ! Verizblese to be initizglired before celling:
11050 !
11052 ¢ IAZ = ineul srreg wilh concatensted betes of readings
11054 ! IAZ = sige of input asrraw
11056 1} Rée = result zrraw
11038 ¢ RF = rande suale factor 3t fulluws:
11060 ! 1=10-V 5 1/&4:100-pV 1/78=1-Y & 100-y iRy
11062 !
11064 ! Locel verisbless
11066 !
11068 ! CIZ-B2%,B3% = butes 1, 2y znd 3
11070 ¢ Clx,C2% = intedar constants for comelementing
11072 ! C1,C2,C3 = real constents for converting
11074 ! 1% = loop countar
11076 ¢! 1% = gidgn of number
11078 !
11100 C1Z = 2854 ' constenl for 17e comrlement
11110 C2% = 256% U constant fFor 273 comrlement
11120 €1 = 16/(10%RF) ' vonstent for butle i
11130 C2 = 4096/(10#%RF) D ocunstant for bwbse 2 (2412)
11140 T3 = 1048576&6/(10%RF) Y constant for bute 3 (2420)
11130 !
11160 FOR IXZ = 0Z TO IMZ SBTEF 3% ! ronvercsion looe
11170 BY%Z = IAZ(L%) Posatur bute 1
11180 B2% = ITAZCIZ+1%) Vgetur bute 2
11190 B3X = IAX(IXZ+2%Z) AND Cix ! satur bute 35 strie EOI
11200 IF BIZ<128X THEN ISXZ =1% N GOTO 11250 Vocheck for nedelive rezding
11210 I8%Z = -1% ! osaet sidgn to nedatlive
11220 1% = Cl%-B1%Z fcomplement bete 1
11230 B2Z = CiZ-R2% Vocomelament bube 2
11240 B3Y = C2%-P3% Vocumplenent bele 3
11250 IF B17Z AND 32X THEN RACIZ/37%Z)=0 \GOTO 11270 ! =mrror has ocuurrad
11260 RACIZ/3%)= (B1%/C1 + BRZ/C2 + B3Z/C3) %IS%L ! conrute resull
11270 NEXT 1% . ' loor
11280 !
11290 RETURN
Table 3. 85204 4-byte Binary
000 'xsssssvayes Subrouline 4BYTE AEEEE G R R A NAT LA AN AN RA TN
12002
12004 1 Yersion 1.0 20 Mewe 1780 Fluke conlrel Froducte Marketing
12006 1
12008 ! Suslemn Softwere:’ B&SIC V1.0, FDOS V1.1
12010 !
12012 ! DESCRIFPTION: 4BYTE will cvonvert gn inleder srrew <I64AF resd in
12014 ' from the 83208 in 4-beis mods to 172048 furmst and storse Lhe dgnswers
12016 ! in result zrrawy <RAX.
12018 !
1x0x0 ¢ Formet of the 4-bute resding isd
12022 1!
12024 ! 1et buler bite 0-6& = exronent (22X) bite 240 Lo 276
120246 1! bil 7 = wxponenlt sidn bil

FLUK

E

Table 3. 85204

4-byte Binary (Con’t.)

12028
12030
12032
12034
12036
12038
12040
12042
12044
12046
12048
12050
12052
12004
12056
12008
12060 !
12062 !

1

I

1

12064
12064
12068 !
12070 ¢
12100 C1
12110 C2
12120 €2
12130 ©3
12140 C4

12180 B2
12190 B4
17200 IF
12210 18
12220 B2
12230 IF
12240 IF
12250 RA
12260 NE
12270 !

12280 RE

nd bete: bite 0-6 = urrer order fraction bits
flantissa Impliaed Rinary Foint
bit 7 mehtiscs sidgn bt

Srd butwy biks U-7

ath byter hkite 0-7
bit 8

. R
HEREL I 1

£E0I bit (and of raesding;
Veriegbles to be initislized before callinsgs
1A% input Brrey with concatensted beies

INE = giga of inpul arraw
KA resull arrav

Local verigbhles:

(2A-7 to 24-1)

middle order fraction bits (24~175 to 24-8)
towsr order frection bils (2A~23 to 24-14)

must he masskad out)

of 11

readints

P1%,B2%,64% = hutes 1,2,4 (bwle 1 is axponent)
Cixi.C2% = constants for complamzntind/masking
C1,C2,C3 = ¢onstanie for the binsrg conversion
EX = computed sxponant
1% = loor counter
I5% = gidn of numbar
“Z o= 2087 U B-bit mesk (17s comrlement)
o= 256X Poyunstant for 278 comrlament
= 128 P eonetaent for bute 2 (247)
= 32768 P cunstant for buybs 3 (2415)
= g§38860¢& P constent for bete 4 (2423)

12150 !
12160 FOR IZ = QX TO INXZ STEF 4%
12170 B1% IAZCTZ) satup

A
%

IAZCIZ+1%)

TAZ(TIZ+3%) AND C1X%

BR7Z<1287%7 THEN I8%Z = 14 N\ GOTO 12230
o= -1%

1
;
' eetur
i
I
1
Z = B2Z AND 127% 'omeshk
3
!
)
[}

satur
check

[I O]

BiX=127% THEN B1% = (L2¥-Bi%Z) =-1%
B1Z THEN EX = 24AR1%Z*ISZ ELSE EX=0X COmFuU
(IZ/74%) = (R2%/C2 +IAZ(IX+24)/C3 +B4%Z/C4) *EX
X7 1% ' loorF

TURN

conversion
buts

bute

buts

loor
1

2

4; strir EOI

for nuedstlive resding

sign

et s5ign tu nedative
bit
cume lemani wxronant

te exronent

compubts rasult

Table 4. 85004

or 85024 5-byte Binary

Suetlem Soflware: B&SIC V1.0, FDOG V

DELCRIPTION: SEYTE will convert an intersr o

1.1

[A=

I R R R R Subroutine SEYTE FEWHAN S AT A AN FNAENAES TR YN
! Yaeroron 3.0 0 Mze 1980 Fluke Control Producls ferkeling

SIAAE rezd n

from the 83004 or 835024 DVUM in 3-byie modw tu 17208 Formsts and

|I=LI_II(E|
®

Table 4. 85004 or 85024 5-byte Binary (Con’t.)

13016 1 store the snewers tn recsuli srray SRAN.
13018 !
13020 ! Formeal for the S-bule peoding 1o
13022 !
13004 1 lset bute: bilte 0-6 = menlivcs inteder bite 240 thru 244
13026 ¢ kit 7 . & mantissa si1dn bit
1a02a ! Implied Binery Point
L3030 dnd bwte: bits 0-7 = mantisse high order fraction bits (24-8 to 24-13
12032 ' Zrd bete: bhite -7 = ssnlisse mediun fraction bitse (24-14 Lo 24-9)
13034 ' 4th bute: bits 0-7 = mentissa lowsr fraction bits (24-24 bty 2A-17)
12036 1 Sth butey bits 0-7 = suponent (104%X)Y bite 240 to 24-6)
13038 ¢ bit 7 = axeonznt sisn bit
13040 ! viw 2 = BEOI bit (end of resding; must be meeked oul)
13042 1
13044 ! Varishles Lo be initielicved before vallings
13044
13048 ¢ T4Z = inrul arres with concetenested bulwe of 211 reedinss
13030 ! IMZL = wizge af inrPul arraew
12092 ! RA = rasult zrrev
13054
130546 ! toczel veriaebles aresd
13038 !
13060 ¢ Bi1Z ~ BOX s putes 1 through 5 (bete O is exrponent)
13062 ! C1lx.02% = coanstants for comelsusnting & conversiun
130464 !} C3,C4 = conelente for the binere conversion
13066 ! EX = computed axeonant
13068 ! 1% = loor counter
13076 ! i158% # omidgn of aumbep
13072 ¢
13100 Ci% = 285% ' vonetent for 17 comrlement
13110 C2X = 2956% ! constant for 273 complement
13120 €2 = 254 ' conegtanlt for bels 2 (248)
13130 C3 65536 ! constant for buste 3 (2416)
12140 C4 = 146777216 i constant for bute 4 (2424)
13150 !
13160 FOR IZ = QX TO IM%Z STEF 5% ! tonversion loop
13170 BLX = IAXZCIZ AN B4 = ITAX(IZ+1%) ' setur bytes 1 and 2
131680 B2X = TAZCIZA2%Z) N\ B4x = TARLCIZA+3%) Poeetur betes 3 and 4
13190 BSZ = IAX(I%+4%Z) AND C1¥% ' gsetur bute 37 striep EOI
13200 IF B1X<128%Z THEN ISZ =1% N\ GOTO 13240 U check for nedelive resding
13210 1S% = -1% Poguel sign Lo nedalbive
. B1% = Ci%-B1Y% N BIL = CLlU-B2% U ocomplement bylese 1 ong 2
B3%X = CL1X-B3X \ B4% = C2%Z-B4ZL Uovonelement bytes 3 and 4
IF BOZA-127% THEN BSYZ = (C2%-B9%Z) % -14 U conrlement exponent
EX = 10%~B5% = 1S%Z P ocomputse exponent
RACIZ/9%Z) = (BI1XZ+B2L/C24P3%/C3+04%4/C4)+EX ! compute resuli
NEXT 1% ' loor
]
13290 RETURN

FLUKE

How do they work with My Program?

Figure 1 shows the necessary structure of your program
using the 8520A 2-byte (High Speed Mode) conversion
routine. Refer to the figure for the following discussion.

The conversion routines function as callable
subroutines. That is, your program accesses one of
them with the GOSUB statement. Each routine
assumes that your program has read one or more
readings of the appropriate number of bytes each from
the voltmeter, and concatenated them into the elements

1720A
USER PROGRAM, 8520A HIGH SPEED MODE

1. INITIALIZE VARIABLES
RF = SCALE FACTOR OF READING FOR DESIRED RANGE
N% = NUMBER OF READINGS
B% = NUMBER OF BYTES PER READING
IM% - N% * B% —1%)
DIM TA% (IM%), RA (N% —1%)

2. COMMAND 85204 TO TAKE N BINARY READINGS ON
DESIRED RANGE NORMAL MODE —— COMMAND

IEEE
8520A 1EEE . .
» INTERFACE
g T 3 o
VOLTMETER [pis PoR)
3. TAKE IN READINGS —— } READINGS
RBYTE PORT 1, ITA%(0%..IM%)
-
READING # 1 2 3 4 5
y y) 4 ¥
BYTE # 1{2 3i4|l|2 3|4|l|2 3J4Il12 3|i|ll2 3l4|
ELEMENT # 0 1 2 3 4
OF 1A% —————

INPUT ARRAY IA%
5 READINGS OF 4 BYTES EACH

4. CALL 8520A HIGH SPEED MODE (4-BYTE)
CONVERSION SUBROUTINE

8520A 4-BYTE CONVERSION ROUTINE
A.LOOPS UNTIL ALL 5 BINARY READINGS ARE

CONVERTED.
B. PUTS CONVERTED READINGS IN REAL ARRAY RA
(0%..N% -1%)
READING # r1]2|3|4[5-l
ELEMENT #
OF RA 0o 1 2 3 4

—————— e ———

RESULT ARRAY RA
5 READINGS IN 1720A FLOATING POINT FORMAT

5. CONTINUE WITH USER PROGRAM USE READINGS
AS DESIRED.

Figurel. ProgramStructure to Use Conversion Routines

10

of an input array (IA%). Your program must also have
dimensioned the input array and the result array for the
number of readings taken and selected the correct scale
factor.

1. Set variable IM%=N%*B%-1%. This sets up IM%
to be the size of integer array IA%; N%= the
number of readings to be taken; B%= the number of
bytes per reading; 1 is subtracted because array
element numbers start at zero.

2. Setvariable RF to the scale factor for the range selected
This is needed only in 8520A 2-byte and 8502A
3-byte modes.

3. Dimension the readings’ input array 1A% for the total
number of bytes to be read, and the conversion
routine result array RA for the number of readings
to be taken. The statement DIM IA% (IM%), RA
(NY%-1%) does this.

4. Program the voltmeter to range and function. Then,
read the desired number (N%) of readings into input
array IA% (0%..IM%). Readings are concatenated
in the array.

5. Call the conversion routine. GOSUB XXXXX does
this where XXXXX is the line number of the first
executable statement of the subroutine.

The conversion routine takes the bytes from the
elements of array 1A%, converts them to real number
(floating point) format, and puts results in array RA.

If you are using either the 8502A or the 8520A in high
speed mode, the conversion routine then multiplies the
elements of array RA by the appropriate scale factor to
get the correct measurement results. The scale factors
are given in the general description. Finally, the

conversion routine returns to where your program left
off.

The number of readings the conversion routine will
handle is determined by the dimensions of the input
and result arrays, and thus by available memory. If
insufficient memory is available for the number of
readings you want to take, your program can set up the
result array (RA) as a virtual array. As such, the
elements of array RA will be stored in mass memory
(Disk or E-Disk). The integer array 1A% (input array)
cannot be a virtual array because of the way the
RBYTE statement is implemented inside the 1720A.
The procedure for using virtual arrays is described in
the 1720A Programmer’s Manual.

FLUKE

How do I enter the Conversion Routine?
1. Select the conversion routine for your application.

2. Ensure that the variables used by the routine selected
are not the same as variables intended for other
purposes in your program. If they are, change the ones
which are easiest to change so that no conflicts
occur. If you intend to use more than one conversion
routine in your overall program, you may need to
rename the variables IA%, IM%, RA and RF. You
do not need to change what the listings refer to as
LOCAL VARIABLES (unless they interfere with
your program) because they are initialized every time
the routine is entered.

3. Wherever you want your program to call the
subroutine, key in a GOSUB nnnnn statement, where
the nnnnn is the starting line number (first executable
line which is not a remark) of the subroutine.

Example Programs

Tables 5 through 8 list example programs which use
the Binary Conversion Routines in Tables 1 through 4.
The programs set up the 8502/8520 DVM:s to take 100

Table 5. 2-byte User Program

voltage readings in the High Speed or Normal mode,
put the bytes read into an input array, and display the
results. The programs assume that the conversion
subroutines are merged into the programs as described
in the listing heading. Use the merge command (/M) in
the File Utility Program to accomplish this (e.g.,
DVM2=8520 2, 2 BYTE/M).

Note that the example DVM commands shown
between the asterisk lines are examples only. They may
not be suitable for your application.

Errors which may occur are overflow error 0 if main
memory has too little room for the array of input bytes,
and error 306, meaning your mass storage medium has
too little room for the result array. To correct the first
error reload the program (it should not be merged with
any other programs or subroutines than those
mentioned in the listing heading). To correct the
second error, insert a disk with more space, or purge
some of the files.

Other errors may result from incorrect DVM command
statements. Consult the DVM manual for correct
procedures.

i Frodgram 8220 2

el 1

3! Vereion 1.0 20 Mew 1980 Fluke Control Froducts Marketing
]

oo Svetem Softwares FDOS ¥V 1.1, BASIC V 1.0

6 !

10 ! DESCRIFTION:

1z !

14 ! This rrodrem will tzke 100 reszdindge from Lhe 83208 DUM in Lhe 2-bute

16 ' mods (100-volt rangs), counvert them Lo 17204 format wsing the 2BYTE sub-

18 4 routine, and disrley them. The stetemente used Lo coamend the DUM are

20 ! EXAMPLES onluy, and are likely not to work in wour aeelication. Keg in

22 Y the serprorriele statemente in Lheir rlece before running Lhe prosdsrzm.

24 1 The 2BYTE routine is essumed to be stored at lins 10000.

Zé6 !

28 !

1000 !s*%s4sxxua88588u08% flzin Frosdreza B R R]

1001 !

1010 NZ = 100% ! humber of rezdinge to take

1020 BZ = 2% ' humbzr of bytes par reading

1030 RF = @ ' rande fzctor for 100-V ranse

1040 IMX = (NZ % BX) -1% 'wiax of ineutl arraw

1050 DIM TAZCINX), RACNXZ~1X) ' dimension srrays

1060 !

1070 UnMZL = 2% ' DUM devicee number

1080 FZ = Q% ! IEEE 488 port number

1090 INIT FORT F% ' send IFC and REN to bus

11

FLUKE

®

Table 5. 2-byte User Program (Con’t.)

1100 CLEAR FORT FZ
1110 !

1120
1130 !
1140
1130
1140
1170 !
1180
1190
1200
1210
1220
1236
1240
1250
1260
1270
1280
1270
1300
1310
1320 1
ioooag !

L R R LT L L X Y
U PRINT @VUMZ,"VR3IIGT
!OINFUT @Vni. ORS¢
' RBYTE FORT FZ.
I

NOTE: Ths abo
pUrrFoses ohile. B
considerations is
DVUM menuzl for exsa
ite functions.

]
;
i
1
g
GOSUR 10100

1

FOR I%Z=1% T0 NZ
FRINT IZ, RACIZ-1%)
NEXT I%

1

END

TAZ(DX . INX) !

U oclear bus devices

EXAMFLE STATEMENTS® %5 % 3 3 % %% 6 6 3 9 % % 3 3 3 % 9 EEEE XSRS
[Vocommand DUM to take readings

I clezr DUM ocutrut buffer
inpul readingds

demonstration
ceraful

is diven for
maw oiffer,

v is ah axample 3nd
cause wour eprlicetion

*
*

advised hafors any inelemsnbation.. Rafer Lo the *
¢t detzile on how to commend the DVM to rerform *

EEEE XA R AR

' cell 2BYTE conversion routine
" disrpley loop

Podisplay readings

' loor till finicshed

Subroutine 2BYTE

Table 6. 3-byte User Program

1z
14
14
18

This prograem wil
mode (1-KVolb rangde)
routine,

24
26 1
28 !
30 !
1000
1001 !
10610 NX
1020 BX
1030 RF b4

1040 INx (NX « BZ)
1050 DIM BCX(Z2YX),
1060 !

Note that the

The 3BYTE

ovm

100%
3%

-1%

and disrley them.

20 EXAMFLES onlyr and are
28 the errrorrizte

sltalemsnle
must b
rouline

TAZCINZ) »

it Frodram 83502 2

-

% i Version 1.0 20 Mew 1980 Flukse CTontrol Products Merketing
; i Buctun Sceftwere? FDOS ¥ 1.1, BASIC V 1.0

?cf DESCRIFTION:

1 teke 100 resdinds from
convert them to 17204
The stelemente

Lhe 82024 DUM in the 3-buete
Formal using tie JBYTE sub-
Ueed Lo commend DUM arw
likeiw net Lo work in wour Keaw in

in their place before running the Frodram.
erlernalls trigderaed in the 3I-bybe nods.
zecuned to be stored =L line 11000.

r
whe
applivabion.,

[5-3

fiein Frodreamn R A R R R R P P

' number of resdinge
' number of byteg pepe
tande fazolor for 1KV renge
sige of inrut arraey
dimension srrsvs

Lo teke
readind

RACNL- 1%) !

12

FLUKE

Table 6. 3-byte User Program (Con’t.)

1070 F% = 0%
1080 VUM% = 2%

1090 BCZCOZ) = UMY + D44%

o TT00 BUXLL» = ASCIT(I77)s

Lo "~¢&‘@
CLEAR FORT

1130 P
1140 WAIT 3500
1150 !

o 1160 !sesvssswssss

RINT @YRY,"
INFUT @yMy,

OB%
RBYTE FORT FZ,{WBYTE

4
H
1
' NOTE: Ti
Purposes cﬁlw
l

:&0H5§dwrdtlaﬂb
L LUDUR mendal | For mued
' its functions.

570 |
1280 Gﬁﬁua 110~ o
1290 :
1300 FOR Iéplémiawggg) o
1310 PRINT I%, RACIZ-1%)
1320 NEXT 1%
1330
1340 END
1

! IEEE 482 port nunber
! DVUM. devica numbee

' DVUM listen sddrecss
{ODVUM dridderconmand
toDUM 1slk zddress
3

I

!

Y

%

send-LFL and REN Lo bus
clezr bus devices
wait for DVUM to claar

FE. STATERENTOA SR 4R2auaanRELRRREXAAFHRAR AR A5 0 ¥
Uogommand OUM bu bteks rmadings *

) P alwgr DUA outrul buffer ®

luRr Fr,BLEI0%.. 2% TAX(O%Z..IN%)+3 iUl rdds *

above is an exgnple and is diven for demonsiraiion b

we dour zerlictalion mag differ, cereful’ E

e adyvised before any iwplementation. Réfer to the *

ghails on “how to command the DUM to perfora *
x4++ad*bﬂ¢+*¢+ﬂ44&444***44&4*d4+*44+¥*4‘**44*444#ﬂ+ﬂi¥+44*+++‘+10d+#+4444

czll ZBYIE cenversion rouline

o fdisrler loor
D dierlay readings
! loor Lill finished

Subroutine ZBYTE

AEARA AR A TR FXAF RS A H MRS
Table 7. 4-byte User Program

1! Frodgram 8520 4
?]
3! Version 1.0 20 Maw 1980 Fluke Tontrol Froduclte Marketing
3 . L . S Jerh=Lins
oot Susiem Software: FDOS V 1.1, BASIC V 1.0
4 ! .
10 ' DESCRIFTION:
121
14 1 Thie erodram will teke 100 readinge from the 83204 DUM in Lhe 4-bete
1? ! mode, convert them to 17204 format using the 4BYTE subroutine’ and
§u f display then. The slatenente ueed Lo commend the DUM are exameles unle
?9 Poand are likelw not to work in sour gerplication. Kes in Lthe erpropriste
ff Postatements in their place befure runhing lhe erodrasm.
24 ! The 4BRYTE routine is essumed to be storaed at line 12000.
2601
2g

13

FLUKE

Table 7. 4-byte User Program (Con’t.)

1000 143X H4EXFLXRAGE R0 20 Mein Frodgeesn AN NAHFAA AR B AL ER AR NR RN EN N
1001 !

1010 N%Z = 100% U pusber of resdings to take

1020 RZ = 4% { pumber of bytes epar readind

1030 IN% = (NX % B%) -1% VU size of input arraw

1040 VML = 2% VOPVUM device pumber

1050 PZ = 0% ¢ JEEE 488 rort number

1060 DIM IAZCIMX), RAINXL~-1X) VodimeEnsion arrays

1070 1

1080 INIT FORT FP% ! gend IFC #nd REN to bue

1090 CLEAR PORT PX Poglear bus devivces

1100 !

1110 'suxsxsssnzsxsxxxsxess EXAMFLE STATEMENTSH# AR AN AN A RN AR TR NN HRY
1120 ¢ PRINT @UMX,"DOLI&4TOTT U ocommand DVM Lo takw readings *
1130 ¢V INPUT @VUMZ, OB¢ U clesr DVUA ocutrputl buffer *
1140 ' RRYTE FORT PZ, IAZ(OXZ..INX) Voineut readings *
1150 ¢ 3
11460 ! NOTE: The above is an axamnels and is diven for demonstration *
1170 'V purrosese only. Beczuse vour grrlicetion mew differ, cereful #
1180 ! constdarations is advised before any ineplemsntation. Refer to ths *
1190 ¢V DVUM menuel for exect detlzile on how to commend Lthe DUM Lo rerfora *
1200 ! its functions. *
1210 1S X SN SN A RN NN N I NN NN H NN R NN NS AN AN AR A NN A S LA IR NN AR
1220 !

1230 GOSUR 12100 'eell 4BYTE conversion routine
1240 1

1250 FOR I%=1%Z TO NX P dierleay loor

1260 FRINT IXZ, RACIX-1%)) diselay raadings

1270 NEXT 1% ! loor till finicshed

1280 !

1290 END

1300 !

1310 !

12000 'sxssesxreNwwises Subroutine 4BYTE I T,

Table 8. 5-byte User Program

O L Ol

— v
. o o d

=

Frodram 85032 5
Version 1.0 20 Mee 1980 Fluke Countrol Froducte Markeling
Suet=zm Software: FDOS V 1.1, BASIT V 1.0
DESCRIFTION:

Thie progrem will teke 100 readinds from the 85028 DUM in Lhe S-bute
mode (i-KVoli randge), convert thaae to 17204 format using the SBYTE sub-
routine, znd disrley them. The statenents ueed 1o commend the DYUN zre
EXAMFLES only: and are likelw not to work in wour spplicabion. Kewy i;
the arprorriels stazlements in Lheir rlace before runnins Lhe vrusgem

The SBYTE routine is assumzd to be storsd 3t line 13000.)

14

FLUKE

Table 8. 5-byte User Program (Con’t.)

26 1

28 !

1000 !#¥ 3903 ¥aisasiuiannsy fein Frodgran R L e R R L
1001 !

1010 NZ = 100X ' number of resdinde to lske

1020 BZ = 3% ' numbar of buytes par resding

1030 IMZ = (NA = BZ) -1X% 'gize of inrut zrrav

1040 DIM IAZC(IMZ)y RA(NZ-LX), TALOZ) Podimension arrags

1050 ¢

1060 FZ = 0% t IEEE 488 rpori number

1070 VmMZ = 24 VDYUM device aunbaer

1080 T%(DZ) = VML + S726% UDUM Lelk zddress

1090 INIT FORT FXZ ' sung IFC and REN Lo bus

1100 CLEAR FORT PXZ Voo lweer bus devices

1110 WAIT 3500 Uwail for DUM Lo clear

1120 ! .

1130 Txsxxxusxvxxxavxzx4% EXAMNPLE STATEMENT S %4 XN i i S0 i i X u i Man i nnissiand
1140 ' FRINT 2VMX, VR4RS0OT?” Vocommand DVUM to taeke readings
1150 ' WBYTE FORT P%., TZOX) Vocommaend DYM to telhk

1160 ' RBYTE FORT PX, TAZO0Z..INZ) U ineut rdygs

1170 !

1180 ! NOTE: The ahove is an =xamele and is diven for deavnstrabion
1190 ! purpoess onle. Becsuse wour erplicalion ease differ, cereful

1200 ! considerations is sdvised before ang implzaentstion. Refer tu Lhe
1210 ! DUM menuel for exsct detsils on how Lo commend the DUM to rerfora
1220 ! its functions. -
1230 '4#4 2S5 0EAIEXLRARAHFR XX ARV X AX XA BB XX NF B
1240 ¢

1250 GosuUR 13100 ' ¢c&ll DBYTE conversiovh routine
1260

1270 FOR IZ=1%Z TO NZ ' displaw loop

1280 PRINT 1%, RACIZ~1%Z} ! display readinds

1290 NEXT 1% ' loor till finicshed

1300 ¢)

1310 END

1320 ¢

1330 !

13000 T#xsxxsuxssenrsnnes Subrouting SEYTE P R A AT A R TR ST R L2

*
*
#*
X
*
I

PR R T RS R S R AR

15

FLUKE

Jobhn Fluke Mfg. Co., Inc.

P.O. Box C9090, Everett, WA 98206
800-426-0361 (toll free) in most of U.S.A.
206-356-5400 from AK, HI, WA
206-356-5500 from other countries

Fluke (Holland) B.V.

P.O. Box 5053, 5004 EB, Tilburg, The Netherlands

Tel. (013) 673973, TELEX 52237

Phone or write for the name of your local Fluke representative.

©1982, John Fluke Mfg. Co., Inc., all rights reserved Printed in U.S.A. B0091A-10U8005/SE EN
16

IFLUKE]
®

Technical Data

Application Information Bo1o1

1720A RS-232-C

Interfacing To Serial Printers

RS-232-C Defined

EIA Standard RS-232-C provides the electronics
industry with the ground rules necessary for
independent manufacturers to design and produce both
data terminal and data communication equipment that
conforms to a common interface requirement. As a
result, a data communications system can be formed by
connecting an RS-232-C data terminal to an RS-232-C
data communication peripheral (such as a TTY,
MODEM, computer, etc.).

The RS-232-C is a hardware standard which guarantees
the following:

1. Each device on RS-232-C will use a standard 25-pin
connector which will mate to another standard 25-pin
of opposite sex.

2. No matter how the cables are connected, no smoke
or damage will occur.

3. The data and handshake lines will each be given a
specific name.

RS-232-C data and handshake lines:

In serial communications, control and data signals
usually come from one pair of lines; an additional line
sometimes provides a busy signal - used to delay data
transmission until the device can handle that data. The
data and handshake lines in RS-232-C send information
uni-directionally (simplex); that is, one end of a cable
transmits data or handshake and the other end receives
data or handshake. Care must be taken to insure that
each wire in RS-232-C has the appropriate transmitter
and receiver combination. Transmitters connected to
transmitters and receivers connected to receivers
provide no data communication. To alleviate this
problem, the RS-232-C Standard calls out the interface
on one end of the cable to be designated as a
“Terminal” and the interface on the other end is “Data
Communication Equipment”. The standard defines the
data handshake signals on each pin of the connector for
the ““Data Communication Equipment” and the
“Terminal”.

Note: There is a glossary at the end of this bulletin which
can be referred to for most of the terms which may be
unfamiliar to the reader.

RS-232-C Signal Considerations

Timing format conforming to asynchronous operation is
shown in figure 1.

IDLE SYATE
START 8IT

L }——DATA BITS —e]
MARK —e=-

SPACE

OPTIONAL PARITY BIT
STOP BITS

[TTTTTT]

[FRAME { FRAME |

ASYNCHRONOQUS TIMING

Figure 1. RS-232-C Timing Formats

Asynchronous Operation:

In asynchronous operation each character is bracketed
by start and stop bits. These bits separate the
characters and synchronize both the transmission and
reception of data. When data is not being sent, the
transmit line is held high (High=1).

Transmission Mode:

Transmission mode is a fundamental system
requirement. It defines the communication ability of
both instruments in the system configuration.
SIMPLEX indicates data transmission in one direction
only. HALF-DUPLEX permits two way
communication, but not simultaneously. Simultaneous
transmission of data in both directions defines the
FULL-DUPLEX system. Obviously, an instrument
capable of full-duplex operation can be down graded to
simplex operation. However, the reverse is not possible
without degrading the system capability.

Baud Rate:

Baud rate is usually selectable on the RS-232-C
Interface. If it is not, the manufacturer usually offers a
choice when the instrument is purchased. Character
format (bits per character and parity) is somewhat
flexible between instruments. Investigate the
requirement of both instruments before committing
either to a system configuration.

All data, documentation, dialog, diagrams, suggestions, reports and/or
other forms of media contained in this builetin are intended to be
informational in nature only. Implementation of such data to a user's
application should ONLY be made after careful analysis by the user's
own software experts. John Fluke Mtg. Co., Inc., specifically disclaims
all warranties on such information, express or implied, including but
not limited to any warranty of merchantability, fitness, or adequacy for
any particular purpose or use.

IFLUKE]
®

Data Interface Levels:

The 1720A uses EIA voltages for data interface levels.
EIA voltage levels are: 1 or OFF=25 to —3V dc, 0 or
ON=+3 to +25V dc.

This works fine on paper. However, in practice the user
must be aware of the subtleties of serial binary data
interchange to ensure that any two pieces of RS-232-C
equipment will be compatible.

RS-232-C Specification

You can obtain information on this specification from
the Electronic Industries Association, Engineering
Department, 2001 1st N.W., Washington, D.C. 20006.
Send $6.90 per document copy and ask for EIA
Standard RS-232: “Interface Between Data Terminal
Equipment and Data Communications Equipment
Employing Serial Binary Data Interchange”. A
companion document, ‘““‘Industrial Electronics Bulletin
No 9 - Application Notes for EIA Standard
RS-232-C”, costs $3.50.

Printer Considerations for RS-232-C
and the 1720A Instrument Controller

The 1720A Instrument Controller has two serial
interface ports that meet the requirements of RS-232-C
for full duplex asynchronous communication using the
EIA voltage levels. The user must verify that the data
communication peripheral is pin-for-pin compatible to
the 1720A. Table 1 details the RS-232-C cable pinouts
for the 1720A and some common printers.

Table 1. 1720A TO PRINTER CABLE CONNECTIONS

The Y1709 Printer cable has been configured to work
directly with the 1776 A Printer.The cable has a male
connector which mates with the female connector on
the 1776A printer. The cable’s female connector mates
with the male connector on the 1720A. Once the cable
has been connected to the 1776A/1720A, the system is
ready to be powered up and begin printing. Print
statements are given later in this bulletin.

Female

RS-232-C Connectors

RS-232-C Compatibility Problems

Typical compatability problems associated with
RS-232-C are:

1. There are no software standards associated with
RS-232-C. Many types of communication protocols
serve RS-232-C systems. One protocol uses USASCII
code STX (start of text) to precede data and ETX (end
of text) to follow data transmission. Another uses
USASCII code STX (start of text) to precede dataand
ETX (end of text) to follow data transmission. Another
uses USASCII ACK to acknowledge message receipt
and NAK to indicate no acknowledgement. This
ACK/NAK combination is usually found in polling
computer configurations. (STX, ETX, ACK and NAK
are nonprinting characters, for “handshaking” or
control only).

Lear Siegler Facit 4555
300 Series and

Fluke TI and Anadex

1776A 800 Series Data DP8000

Tally and Royal and
1720A RS-232-C T1605 | Centronics DEC 5000 IDS Printronix | Fluke | Telet i i

. L. ype | Printer Signal
Signal Definitions T1612 704 LA120 7000 440 300 2020A 43 P Deﬁnitionf
Chassis Ground (Shield) 1 1 1 1 1 1 1 — 1 Chassis Ground (Shield)
Transmitted Data 2 —= 3 3 3 3 3 3 2 3 Received Data
Received Data 3 —-— 2 2 2 —_ —_ — — — Transmitted Data
Request to Send 4 ——] — 8 - — — - - - Line Signal Detector
Clear to Send 5 —-—| — — — — — — _ .
Data Ser Ready 6 -— 20 20 20 20 - - — — Data Terminal Ready
Signal Common 7 —-— 7 7 7 7 7 7 7 7 Signal Common
Secondary Channel Receive 12~=—111 or 19 11 11 or 19 19 20 20 6 — Printer Busy/Read
Data Terminal Ready 20 —=| — 6 — — — — — — Data Set Reyady ’
Cable Connector Type Male Male Female Male Female Male Male Female Female = DB25S
— — Male = DB25P
requires a
parameter 14-
to handle busy
Fluke Cables Y1709 Y1709 Y1705 & Y1709 N/A N/A N/A | Y1705 &
Y1707 Y1707

©1980, John Fluke Mfg. Co., Inc., all rights reserved

|I=LLJI(E|
®

2. RS-232-C terminals and RS-232-C data communica-
tions equipment are not always hardware compatible.

A. For example, the two instruments must share at least
one of the features from each of the following
characteristics:

1.) Timing Format - Synchronous or
asynchronous

2.) Transmission Mode - Simplex, half-duplex, or
full duplex

3.) Baud Rate (bits per second) - 75, 110, 134.5,
150, 300, 600, 1200, 1800, 2000, 2400, 3600,
4800, 7200, 96000, 19200

4.) Bits per character - 5, 6, 7, or 8

5.) Parity Bit - Odd, even, high, low, not used

6.) Data Interface Levels - EIA voltage levels or
20 mA current loop

B. Care must be taken to ensure that the RS-232-C
cable is correct for the application. One of the
ambiguous areas in an RS§-232-C connection is the
use of pin 2 for transmitted data (TD) and pin 3 for
received data (RD). The confusion arises in a
simplex or half-duplex connection, where pin 2 at
one end of the line must go to pin 3 at the other end,
and vice versa; this pin transposition can be handled
in the cable itself or at either connector. Another
confusing aspect of the RS-232-Cstandard is the pin
used to indicate a busy condition. Occasionally
pin 11 - normally unassigned - has this task; in other
cases pin 19 or pin 20 - with the appropriate
polarity - is used.

Figure 2. RS-232-C/1720A Printer Cable Diagram

J1

FEMALE

B

656 FT t1 IN.———i

SHIELD J1

X

! ps 1 WIRE LIST
7 7 P[0 Pl J1
2 PIN|PIN PINJPIN
2 1 6 -
3 3 213 1224
4 1 4 3|2 T | e
l 4ls F11
5 5 4 E 19
8 f 8 E 5 2|
6 6 3] a 11.:]4
41 19
22 l 2 ‘ i B
2 20 6] 20
11 -y
1 l " ET‘_—T
9 19 20| 6 |
12 L °)
J} SCHEMATIC “Jumper Wire

Consult the manual for a particular device to
determine the proper cabling. However, if the
manual is not available, the following simple test will
tell you if a device is a terminal or data communica-
tion device (MODEM) in most cases.

Compatability Test:

RS-232-C Cable Application

Measure voltage at pins 2 and 3 with ground lead
connected to pin 7.

PERFORM TEST WITH NO CABLES CONNECTED
“TERMINAL”
Pin2 <-3V Pin3 0t +2V Pin 7 GROUND

“DATA COMMUNICATIONS DEVICE” (MODEM)
Pin2 0to+2V Pin3 <-3V Pin 7 GROUND

Obtaining A Printed Program

Listing From The 1720A

RS-232-C Printer:
Select an RS-232-C port, connect the printer and set
appropriate baud rates
Basic Immediate Mode :
1. Type: OLD *“filename” <CR>
2. Type: SAVE “KBl:” <CR>
.or SAVE “KB2:” <CR>

File Utility Program:
Type KB1:=file name <CR>

KB2:=file name <CR>

Note: Only ASCII files (.BAS) can be listed in FUP.,

Example:

1720A BASIC program which inputs data from the floppy
disk and outputs this data to an RS-232 printer.

30 © FROGRAM LIST.EAS
‘' FROGKAMMER

A0 Y KEVISION : 1.0
“u ' DATE : 15 AFR 1980

0 i PESCSIFTION 3 LISTS AN ASCII FILE ON A RE-2372-C FRINTER

0 ON ERROR GOTO 2&0

ESCAFE SEQUENCE
RESET SCREEN
FROMFT

STORE FILENAME

110 !

o0 £64 = CHR$(27X) + “L*

130 PRINT CS$:'1e";

$od FRINT ES$;"4;HENTER FILENAME 10 Bt LISTED'
150 INFUT AS

1o ' OFEN CHANNEL FOR INFUT
170 CLOSE 1 \ OFfN A$ AS FILE 1 OFEN KBL: FOR OQUIFUT

1¢0 CLOSE 2 \ OFCN "HK81:' AS NeW FILE 2

150 ! * TOF OF FORM
Lol FRINY HZ,CHR3IC(124)
Mo

LJSUOINPUL LINE DL A
73U FRINT B2, A%

140 GL10 270

INFUT EACH LINE
FRINY EACH LINE
GET NEXT LINE

Jeb ERROR HANDLER
VAT

D10 IF [RK = 305 THEN RESUME 310
.70 I ERK = 307 THFN RESUME 330
Tu0 FRINT "ERROR’GEKK: '@ LINE’GERL; \ RESUME 330

10 FRINT €5%:74;HFILE DOESN'T EXIST - TRY AGALN'; \ GOTO 140

FILE DOESN'Y EXIS]
END OF FIL:

U
310 CLOSE 1.2
2oL END

Glossary

Asynchronous
Transmission

Baud Rate

Bit

EIA

Format
Frame
Full Duplex
Half Duplex

Handshaking

Interface,
Electrical

1/0
Modem

Having a variable time interval between
successive bits, characters, or events

The number of bits that can be
transmitted in one second

One of the characters of a two valued or
binary number system such as 0 and 1.
A bit has come to signify the smallest
piece or smallest unit of information.
(A single pulse in a group of pulses.)

Electronic Industries Association
2001 Eye Street, Northwest
Washington, D.C. 20006

The predetermined arrangement
of characters

A time period encompassing the bits
which define a character

Simultaneous communication between
two points in both directions

One way communication between two
points in either direction

Communication which takes place
between two devices for the purpose of
informing each other about the status of
data being transmitted, received or
processed, in order that this may be done
in a cooperative, orderly and timely
manner without errors. Handshaking is

=vital*to the operation of asynchronous
transmission.

Electrical interconnection between
system elements

Input/Output

A contraction of “modulator-
demodulator”. In the modem, the
square-edged pulse train is impressed
(modulated) on a carrier signal of a
frequency which is within the telephone
channel frequencies between 300 and
3300 Hz. The modem also extracts

(de-modulates) the square-edged pulse
train from the carrier wave allowing
bit-serial communication over standard
telephone lines.

Parity Proper value in the binary check digit of
the transmitted and received data.

Parity Bit A binary digit appended to an array of
bits to make the sum of all bits always
odd or always even.

Parity

Checking A method used to detect single bit errors

Peripheral

Equipment In a data processing system, any
equipment distinct from the central
processing unit that may provide the
system with outside communication or
additional facilities

RS Recommended standard

Simplex Data transmission in one direction only

Sync Short for synchronization

Sync Pulse An electrical pulse transmitted to a
circuit by the master equipment to
operate a slave in synchronism with
the master.

Synchronous

Transmission A precisely timed bit stream and
character stream

TTY Teletypewriter Equipment

IFLUKE

John Fluke Mfg. Co., Inc.

P.O. Box 43210, Mountlake Terrace, WA 98043
800-426-0361 (toll free) in most of U.S.A.
206-774-2481 from AK, HI, WA and Canada
206-774-2398 from other countries

Fluke (Holland) B.V.

P.O. Box 5053, 5004 EB, Tilburg, The Netherlands

Tel. (013) 673973, TELEX 52237

Phone or write for the name of your local Fluke representative.

Printed in U.S.A. B0101B-10U8203/SE EN

	00
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	13-01
	13-02
	13-05
	13-06
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	15-01
	15-02
	15-03
	15-04

