
P/N 648287
January, 1982
©1982 John Fluke Mfg. Co., Inc., all rights reserved. Lithe in U.S.A.

1720A
Training
Package

IFLLJKEI ====® Technical Bulletin
1720A Highlighted Learning Progratn

The Floppy Disk

The 1720A stores programs on a 5-114 inch floppy
disk.

The disk itself is called the MEDIA.

The floppy disk has a smooth magnetic surface on
which information is stored as sequences of magnetic
pulses. The magnetic pulses are recorded along
TRACKS on the surface of the disk.

Blocks

The disk we use with the l 720A is SINGLE SIDED
which means we can record data on only one side of
the disk.

Our data is recorded using DOUBLE DENSITY
recording techniques.

The disk is SOFT SECTORED, which means it has
one origin hole.

It contains 35 TRACKS and 350 BLOCKS. Two
BLOCKS are always used for the DIRECTORY.
Each block stores 512 bytes (256 words) of data so the
total storage capacity of the disk is approximately
l 75K BYTES (87K WORDS).

Our files are stored on adjacent sectors so they are
called CONTIGUOUS FILES.

A complete description of our program storage
device is as follows:

The 1 720 A uses a 5-1/ 4 inch floppy disk. It is a
SINGLE-SIDED, DOUBLE DENSITY, SOFT­
SECTORED 35-TRACK disk. Its storage capacity
is l 75K BYTES (87K WORDS), and it has a
CONTIGIOUS FILE STRUCTURE.

Because of the large amount of data stored on it, the
floppy disk is also referred to as a MASS
STORAGE DEVICE.

The Floppy Disk: Friend or Foe?
The floppy disk is EASY TO USE and allows
FAST ACCESS TO THE DAT A but if mistreated
it can be your WORST ENEMY.

In other words, DO NOT FOLD, SPINDLE OR
MUTILATE!

Care and Handling
• Always keep the disk in its protective cover when
not in use.

• Careless handling of the disks may damage them.
Avoid dropping, throwing or twisting the disks.

• Make sure to store disks vertically. Stacking may
distort them and affect their contents by pressing the
side covers into the disk.

• Direct sunlight may warp the disks. See that they
are protected from the heat of the sun.

• Magnetic sources may distort data on the disks.
Keep them away from electric motors, generators
and transformers.

• Use a felt tip pen to mark disk labels. Pressure
from a ball point pen or pencil may distort the data on
the disk.

Loading the Disk
To load the disk, open the front disk entry latch and
gently insert the disk label up, slot side first, into the
disk entry latch using partial closures to seat the disk.
Always grasp the disk by the cardboard cover and
avoid touching the disk itself.

Note: If the door is closed when the disk is
improperly seated, the disk center hole may be
damaged. This can be prevented by partially
lowering and raising the disk entry latch to
seat the drive hub prior to total closure of the
disk entry latch.

Formatting the Disk
• In order to write onto a blank disk it is necessary
to go through a preliminary step called
FORMATTING.

• During the formatting step, the floppy disk drive
designates sectors and tracks using appropriate
magnetic codes. This is: an automatic process which
the 1720 A performs using the FILE UTILITY
PROGRAM (FUP).
• The command for formatting is /F.

• Once the disk is formatted, it is ready to use.You
can WRITE information onto it and READ it back.

91982, John Fluke Mfg. Co., Inc., all rights reserved

IFLUKEI ====®
john Fluke Mfg. Co., Inc.
P.O. Box C9090, Everett, WA 98206
80<426-0361 (toll free) in most of U.S.A.
206-356-5400 from AK, HI, WA
206-356-5500 from other countries

Fluke (Holland) B.V.
P.O. Box 5053, 5004 EB, Tilburg, The Netherlands
Tel. (013) 673973, TELEX 52237
Phone or write for the name of your local Fluke representative.

Printed in U.S.A. B0076A- IOU8003/SE EN

IFLLJKEI ====® Technical Data
1720A Highlighted Learning Program B0077

Startup, Self Test, FDOS, Conmon

The 1720A controller goes through a series of
operations at start-up to insure the functional
operation of the hardware and to allow the
programmer/ operator to get into BASIC quickly
and easily. Each operation is presented in the order
in which it occurs.

Start-up follows a logical sequence which we will go
through step-by-step.

The SELF TEST is loaded from the ROM's
(READ ONLY MEMORY) located on the CPU
board. We will follow the START-UP
procedure step-by-step as detailed in the included
flowchart.

START-UP
* Turn on power
* Insert disk

or press RESTART if
disk is already mounted

l .
The 1720A now goes through a SELF TEST routme.

FAILURE ------1
ERROR
MESSAGES

The display on the _r20A will indicate;

Fluke 1720A Controller
HELLO

BOOT V x.y
. T

The display now sequences to
t

Fluke 1720A Controller
SELF TEST

Error Message

SELF TEST performs a test on the following items:

*VIDEO BOARD
*MEMORY BOARD

*FLOPPY DISK INTERFACE
*IEEE INTERFACE

If any of the items do not test properly an ERROR
MESSAGE will appear.

!VIDEO ERROR
!MEMORY ERROR

!FLOPPY ERROR
!IEEE MISSING OR FAULTY

If any SELF TEST errors are encountered, the
display will also indicate

I "Press any key to continue" I
Pressing any key on the keyboard or Touch Sensitive
Display will cause the start-up procedure to
continue.

The display then sequences to

FLUKE 1720A CONTROLLER
Loading

ERROR MESSAGE

The 1720A now checks to see if a floppy disk is
mounted. If so it checks to see if an operating system
is present and if so it then loads FDOS.

If a floppy disk is not mounted or the operating sys­
tem is not present on the floppy disk, the 1720A
performs the same checks on the E-disk. If the opera­
ting system is found first on the E-disk, then the
E-disk becomes the system device. If the operating
system is found first on the floppy disk, then the
floppy disk becomes the system device. If any errors
are detected, one of the following error messages will
appear:

?FLOPPY ERROR
?DISK NOT MOUNTED

?NO SYSTEM ON DEVICE
?ILLEGAL DIRECTORY

along with the message "Press any key to
continue."

To continue after an error is encountered (such as
"?DISK NOT MOUNTED") and the error is
corrected (mounting the disk), press any key on the
keyboard or Touch Sensitive Display to continue the
procedure.

~'F:L:LJ==:K:E::I = ®

FDOS IS NOW RUN (FLUKE DISK
OPERATING SYSTEM)

FDOS manages disk operations and oversees
communication between the disk and the Controller.

FD 0 S also checks for the presence of a
COMMAND FILE.

No

Input From
Keyboard

LOAD AND RUN FOOS

LOAD COMMAND FILE

Yes

Load Console
Monitor

Input From
Command File

The COMMAND FILE stores a set of instructions
that normally would be input by the operator from
the keyboard before BASIC is called and the MAIN
PROGRAM is executed. It executes the
preprogrammed instructions and can call up BASIC
and run the main program. It allows, therefore, a set
of start-up instructions to be executed automatically
from the disk without the use of a keyboard. The
COMMAND FILE will be covered in detail in a
later lesson after keyboard execution of these
instructions is learned. If no COMMAND FILE is
present the l 720A now loads and runs CONMON.

CONMON stands for CONSOLE MONITOR.
This is the program that oversees communication
between the user and the 1720 A. It allows selection of
various utilities and programs. It asks the user to
respond to the prompt character#.

The selections Are:

?displays a menu of the selections.
S SET BAUD RATE UTILITY
T SET TIME/DATE UTILITY
F FUP (FILE UTILITY PROGRAM)
B BASIC INTERPRETER

At start-up, the baud rate defaults to 4800 baud.
(Internally selectable) The SET BAUD RATE
UTILITY allows the baud rate on the two RS-232
ports (KBl, KB2) to be changed to the desired baud
rate. An example of how to set the baud rate is shown
below:

*The underlined portions indicate the user responses.
*(CR) stands for carriage return.

Example:

Console Monitor Versions x.y 11:08 26-SEP-79
S (CR)
SET 11:08
SET Version x.y
Enter baud rate:
KBI 023): 2400 (CR)
KB2 022): 110 (CR)

After the KB2 baud rate is entered, the 1720A
returns to CONMON and displays:

Console Monitor Version x.y 11:00 26-SEP-79

The SET TIME/DATE UTILITY sets the internal
clock of the 1720A. Once it is set, it is supported by
battery back-up even though power is removed from
the 1720A. The procedure is shown below:

Console Monitor Version x.y 11:08 26-SEP-79
T (CR)
TIME 11:08 26-SEP-79
Enter date: DD-MM-YY 27-9-79 (CR)
Enter time: HH-MM 11-14 (CR)

After the time is entered the 1720A returns to
CONMON and displays the prompt#.

IFLLIKEI ====®

The FILE UTILITY PROGRAM (FUP) is a file
transfer and management program. It is a versitile
and of ten used program and will be covered
separately in a later lesson. FUP allows operations
such as listing the file directory, saving, merging,
deleting, copying, and renaming files. It is also used
to format and pack a disk. The procedure for calling
FUP is shown below:

Console Monitor Version x.y 11:08 26-SEP-79
F (CR)
FUP 11:08 26-SEP-79
File Utility Program Version x.y
*

To exit from FUP back into CONMON, use the
procedure shown below.

Example:

I* IX (CR) I or I* CTRL p

CTRL P means holding down the CTRL button and
pressing the P button.

In order to RUN a BASIC PROGRAM, it is
necessary to call up the BASIC INTERPRETER.
It is called up from CONMON and is loaded into
MAIN MEMORY. We can then LOAD the
USER'S BASIC PROGRAM into MAIN
MEMORY and RUN it. This will be covered in
detail in a later lesson. The procedure for calling
BASIC is shown below:

Example:

Console Monitor Version x.y 11:08 26-SEP-79
B (CR)
BASIC 11:08
BASIC Version x.y
Ready

There are two ways to run a BASIC program. One
way is to LOAD the program and then RUN it.

Example:

Ready
OLD "METER" (CR)
Ready
RUN (CR)

The other way is to LOAD and RUN the program
with one command.

Example:

Ready
Run "METER" (CR)

In order to HALT a program that is running, the
operator can enter the following:

CTRLC
Ready

A program can also be halted using the ABORT
button on the front panel. This button HAL TS the
program and issues a DEVICE CLEAR over the
IEEE-488 BUS.

Another way to HALT a program is to use the
CONTROL P function. This function EXITS from
BASIC and returns to CONMON (unless the
program had been SAVED on the DISK or E­
DISK, it would be lost).

Example:

CTRLP
Console Monitor Version x.y 11:08 26-SEP-79

Another way to HALT the program and EXIT from
BASIC is shown below.

CRTLC
Ready
EXIT (CR) or CTRL T
Console Monitor Version x.y 11:08 26-SEP-79

Using CTRL T instead of a (CR) will also cause a
(CR) to be returned but in addition will CLEAR the
SCREEN and HOME the CURSOR.

START-UP, SELF TEST, FDOS, CONMON, FLOW CHART

8

0

0

IFLUKEI ====®
John Fluke Mfg. Co., Inc.

G
0 @

~

0 0

TASI:

P.O. Box 43210, Mountlake Terrace, WA 98043
800-426-0361 (toll free) in most of U.S.A.
206-774-2481 from AK, HI, WA and Canada
206-774-2398 from other countries

Fluke (Holland) B.V.
P.O. Box 5053, 5004 EB, Tilburg, The Netherlands
Tel. (013) 673973, TELEX 52237

8 Start-Up

0 Failure

Load And

8 Run FOOS

Load
Command File

No Yes

0
Task Select

0

DESCRIPTION

Displays a •menu' of the various tasks performable.

Set Baudrate Utility

Set Time/Date U1ility

File Utility Program

BASIC Interpreter

Uses any of the Assembly Language Programs

Phone or write for the name of your local Fluke representc.ltli•e. Printed in U.S.A.

Error 0 Messages

8

0

EXITS

None Required

None Required

None Required

CTRL P. IX

CTRL P. EXIT

As Programmed

B0077B-10U8203/SE EN

IFLUKEI ====® Technical Data
17XXA Highlighted Learning Progratn B0078

Overview

FUP.CIL is a file transfer and file management
program. This program is stored on the disk in binary and
is called up from CONMON. The ".CIL" extension
stands for CORE IMAGE LOAD and indicates that
FUP is not a BASIC program. FUP is a versatile and
often used program which provides the capability of
performing utility operations, on file structured
devices, which are not possible in the BASIC
environment. The full list of options which can be
performed by FUP are listed below:

COMMAND OPTION

1. ?
2. IA
3. IB
4. ID
5. IE
6. IF

7. IL
8. IM
9. IR
10. IS
11. IW
12. IX
13. IZ
14. IP
15. IT

Displays a list of the FUP options
Assign the default system device (SYO:)
Binary file transfer ,
Delete a file
Extended directory listing
Format a file-structured device (floppy
disk or E-Disk)
List the directory
Merge AS CI I files
Rename a file
Search for bad blocks
Whole or partial copy
Exit from FUP
Zero a file directory
Pack a file-structured device
Turn off error checking

In this lesson we will cover some of the syntax and
fundamental considerations which are necessary in
order to implement the FUP COMMAND OPTIONS.

FILENAMES and EXTENSIONS - Information such
as programs, data or text which is stored on the disk (or
E-Disk) is accessed via a file name with its associated
extension.

NAME.EXTENSION

The FILENAME consists of from 1 to 6 letters, numbers,
spaces or S signs. The extension consists of from 1 to 3
letters, numbers, spaces, or S signs.

Examples: "b" is used to show the space character
TEMP.BAS FDOS.SYS 8502A.BAS
RESULT.DAT FUP.CIL 8502A.BAL
RESULT.BIN 8502A.488 RESULT.b

FUP Fundamentals

There are six programs in the current operating system
and an optional COMMAND FILE. These programs are:

FOOS.SYS

BASIC.CIL

FUP.CIL
CO NM ON.SYS
TIME.CIL

SET.CIL
COMMND.SYS

FLUKE DISK OPERATING
SYSTEM
BASIC IMMEDIATE & EDITING
MODES
FILE UTILITY PROGRAM
CONSOLE MONITOR
CLOCK & CALENDAR SETTING
ROUTINE
SET RS-232 BAUD RATE
COMMAND FILE

The above FILENAMES and EXTENSIONS relate to
the program stored under that FILENAME. The
extension "SYS" is an abbreviation for SYSTEM;
"CIL'' is an abbreviation for CORE IMAGE LOAD.
The system has been programmed to look for and
recognize these specific FILE NAMES with the specific
extension.

Note: The ,~vste111 has not bee11 programmed 10 prez•i.:111 1he
programmer from using any of 1/ze ubm•e names ~cilh i!S
e.\"tension to store other programs or datLl, and in so doing,
delete the original !i)'Ste111 progra111!

Every FILENAME gets an extension when it is used to
store a program or data. The sytem assigns a default
extension if the programmer does not use an extension.

Examples of extensions and their origin:

.BAS this extension is assigned by default to any
FILENAME which is used with a SA VE
command in the BASIC MODE to store a
BASIC program as ASCII data. FUP will
assume a .BAS extension for any FILE­
NAME entered without an extension.

.b a" .space" extension is used as a default exten­
sion when a FILENAME is used with an
OPEN statement to store data, when the
program omits the extension.

IFLUKE:I ====®
.BIN used by some programmers to indicate

binary data. This is not a default extension. It
has no special meaning for the system.
Assigning an extension to a BINARY file is a
good way to indicate it is not an ASCII file.
Manipulation of BINARY files in FUP
requires the /B COMMAND; therefore, the
programmer needs to be able to recognize
BINARY files.

.488 can be assigned to either a program or data
file to indicate to the user its use with the
IEEE-488 BUS. This is not a default
extension; it has no special meaning to the
system. ".488" may be used in place of" .BAS"
and the system will still recognize the program
as a BASIC program stored as ASCII data.
".488" may not be used in place of" .BAL".
".DMO" for demo, ''.CAL" for calibration,
".TMP" for temporary, and ".TST" for
TEST are all examples of how a group of
programs could be associated by a common
extension. These extensions are treated by the
system the same as ".488".

Although FILENAME and EXTENSION are treated
separately in the above discussion, the full file name of a
program or data is really the FILENAME and the
.EXTENSION.

Note: In FUP only ASCII files may be listed out to a
printer. If a file is stored on the disk in both the .BAS and
.BAL versions (for example: METER .BAS and
METER.BAL), and no extension is specified when using
BASIC as in RUN ''METER'', the .BAL file is used. If no
extension is specified when using FUP, howei1er, the .BAS file
is used.

Devices the l 720A can transfer data to or from any of six
1/0 DEVICES which are designated by a two-letter
specification plus a single number indicating the unit
number. The designations are listed below:

KBO:
KBl:
KB2:
MFO:
filiM):
MMO:

Console device (keyboard/display)
(J23) RS-232 port
(J22) RS-232 port
Floppy Drive
Electronic Disk
Main Memory (used for copying files)

To make operation easier, there is one other device
designation SYO:, the SYSTEM DEVICE. Either the
floppy drive (MFO:) or the Electronic Disk (EDO:) can be
assigned as SYO:. The l 720A loads and runs the operating
system from it.

' 1980, John Fluke Mfg. Co., lnc.,all righc- rc,crwJ

The SYSTEM DEVICE can be assigned from FUP
using the I A command as shown below. The FUP prompt
character is an *.

MFO:/A
EDO:/ A

assigns MFO: as SYO:
assigns EDO: as SYO:

SYNTAX of FUP COMMANDS

Now that we know what FILENAMES, EXTEN­
SIONS and DEVICES are, we will show how these are
used to perform operations in FUP.

The general FUP command is as follows:

The format for either the output or input file is:

[<DEVICE>] : <FILENAME> [<EXTENSION>]

<OUTPUT FILE> [, <output file>] =
<INPUT FILE>[, <input file>] . <OPTION>

While multiple output files and input files may be
specified (the designations in brackets [] are optional), we
will work with the terms not enclosed in brackets as these
are the minimum necessary components of a command
line. This reduces the command line to:

I <OUTPUT FILE>=<INPUT FILE>/<OPTION> I

The REFERENCE POINT for all FUP operations is the
=sign

OUTPUT FILE = INPUT FILE

Direction of Data Transfer

DAT A is always transferred from the RIGHT (INPUT
or source FILE) side of the = sign to the LEFT
(OUTPUT or destination FILE) side

The default states are:

<DEVICE>= SYO
<EXTENSION>= .BAS

When NON-FILE STRUCTURED DEVICES like
RS-232 PORTS and the CONSOLE DEVICE (KBO:)
are used, a FILENAME and EXTENSION are not
required. For example, KBl: is a valid description of an
OUTPUT FILE.

lFLLIKEI ====®
We will now go through the use of the FUP commands.
This command (?) displays the contents of the file
FUP .HLP which summarizes the proper use and options
of FUP. The command sequence is shown below:

IA Assigns System Device
IB Binary File Transfer
ID Delete a File

IE Extended
Directory Listing

IF Format a Disk or the
E-Disk

IL List a Directory
IM Merge ASCII Files

IP Pack a Device
IR Rename a file
IS Search for Bad Blocks
IT Turn off error

checking

IW Whole Copy or Partial
Copy

IX Exit from FUP
/Z Zero a Directory

EDO:/ A or MFO:/ A
MFO:FUP.CIL=MMO:FUP.CIL/B
TEST.TMPID or EDO:TEST.1,
TEST.2,TEST.3/D
MFO:/E or EDO:/E or /E

MFO:IF or EDO:/F

MFO:IL or KBl: EDO:/L
TEST.NEW=TEST.l, TEST.2,
TEST.31M
MFO:/P or EDO:/P or IP
TEST.1-=TEST.OLDIR
MFO:IS or IS
EDO:TEST.BADIT

MFO:TEST.BASIT
EDO:=MFO:/W or
MFO:=MMO:BASIC.CIL/W
IX
EDO:/Z or MFO:/Z or IZ

The FUP program is accessed from the CONSOLE
MONITOR (CONMON) program, using the following
instructions:

When "#" is displayed
1. Type F
2. Press RETURN

In order to leave FUP and return to the CONSOLE
MONITOR:

When * is displayed -
1. Type IX
2. Press RETURN

It is good programming practice to have a second disk and
even a third disk with back up copies of your programs.
FUP is a powerful tool and its operations are not
reversible. If you inadvertently exchange the positions of
the source and distination files in a FUP command, you
could lose the source file, and in this case, a back up copy
prevents a total loss.

IFLLIKEI ====®
John Fluke Mfg. Co., Inc.
P.O. Box 43210, Mountlake Terrace, WA 98043
800-426-0361 (toll free) in most of U.S.A.
206-774-2481 from AK, HI, WA and Canada
206-774-2398 from other countries

Fluke (Holland) B.V.
P.O. Box 5053, 5004 EB, Tilburg, The Netherlands
Tel. (011) 673973, TELEX 52237
Phone or a•rire for 1he name of your lorn/ Fluke represenra1fr•e.

Primed in U.S.A. B0078B-10U81021SE EN

IFLUKEI ====® Technical Data
17XXA Highlighted Learning Progratn B0079

Communication Over The IEEE-488 Bus

The concept of the IEEE-488 Bus allows
MULTIPLE INSTRUMENTS to be connected to
a COMMON Bus. Each instrument is assigned a
DEVICE ADDRESS to allow SELECTIVE
COMM UNI CATION over the bus.

The PRINT and INPUT statements are the heart of
bus communication. They allow 2-W A Y
COMMUNICATION to take place between a
controller and the various instruments connected to
the bus.

A device which is SENDING DAT A over the bus is
called a TALKER.

A device which is RECEIVING DAT A over the bus
is called a LISTENER.

The general form of the PRINT and INPUT
statements is shown below:

PRINT@ 2, "COMMAND STRING"
Makes addressed Device User assigned Command
instrument a Address String enclosed in
listener quotes

INPUT@ 2, VARIABLE
Makes addressed Device User assigned variable for
instrument a Address storage of data Example R,
talker AS, T 11t1

An important rule of bus communication is that
while there may be MULTIPLE LISTENERS on
the bus, only ONE TALKER may be enabled at any
given time.

We will now go through several examples to illustrate
the fundamentals of communication over the bus.

In order to do this it will be necessary to use several
additional bus commands.

INIT this command initializes the bus to a
known state

CLEAR@ the selected device is addressed as a
listener and a selective device clear is
issued

WAIT Program execution is suspended for the
time interval (in milliseconds) specified

Example 1: PROGRAM an 8502A to take a
SINGLE READING and DISPLAY it on the
controller.

10 INIT PORT 0
20 CLEAR@2

initialize' bw,
re,cb DYM

30 WAIT 5000 waiting to re>et
40 PRINT@2, "VR2TO," program' DVM for JOY DC range
50 PRINT@2, "?" trigger> reading
60 INPUT@2, R pub reading from DVM into variable R
70 PRINT R di>play> reading on CRT

Example 2: MODIFY the above program to take IO
READINGS and DISPLAY them in REAL TIME

add the following program lines to the Example
program

45 FOR 1% = 1% TO 10%
75NEXT1%

the ,complete program is shown below:

10 INIT PORT 0
20 CLEAR @2
30 WAIT 5000
40 PRINT @ 2, "VR2TO,"

[

45 FOR 1%~1'*< TO IO% J 50 PRINT @2, "?"
60 INPUT @ 2, R
70 PRINT R
75 NEXT 1%

FOR NEXT LOOP REPEATS
LINES 50, 60, 70
10 TIMES

The next example illustrates the important
distinction between displaying the readings in
REAL TIME (Example 2) and displaying them
AFTER the measurement cycle is complete
(Example 3).

EXAMPLE 3: MODIFY the program in Example 2
to TAKE 10 READINGS and STORE them in
VARIABLE R. After the LAST READING is
completed, the program WAITS 3 SECONDS and
then DISPLAYS the READINGS.

Add the following program lines to the Example 2
program:

5 DIM R (10)

60 INPUT@ 2, R (1%)

70 ! DELETE THIS LINE FROM EXAMPLE 2

80 WAIT 3000

90 FOR 1%-1% to 10%

100 PRINT 1%; R(I%)

110 NEXT 1%

The complete program is shown below:

5 DIM R(lO) Dimensions R to hold up to 11 readings
10 INIT PORT 0
20 CLEAR@ 2
30 WAIT 5000
40 PRINT @ 2, "VR2TO"

[

45 FOR 1% = 1% TO 10%
50 PRINT @ 2, "?"
60 INPUT @ 2, R (1%)

75 NEXT 1%
80 WAIT 3000

~90 FOR 1% = 1% TO 10%
L 100PRINT1%; R (1%)

110 NEXT 1%

for next loop to take 10 readings

inserts delay before displaying readings

for next loop to display 10 readings

Simple as these programs are, the following items
were accomplished:

1. Initialize the Bus
2. Clear an instrument
3. Send a command string to an instrument
4. Trigger a reading
5. Store readings in a variable
6. Display readings on the CRT
7. Use a wait statement
8. Dimension a variable
9. Use a for-next loop with an integer variable
10. Use a semicolon to separate printed variables

Note: Additional statements such as REIN, RBYTE,
WEIN, and WBYTE are available to transfer binary
data, to speed up data transfer, to overcome data
format problems and to control the sequence of
data transfers. The software bulletin on the 8500
series digital voltmeter has examples of RBYTE and
WBYTE for binary readings and their conversion
to floating point format.

' 1982, John Fluke Mfg. Co., Inc., all right> reserved

IFLUKEI ====®
John Fluke Mfg. Co., Inc.
P.O. Box C9090, Everett, WA 98206
800-426-0361 (toll free) in most of U.S.A.
206-356-5400 from AK, HI, WA
206-356-5500 from other countries

Fluke (Holland) B.V.
P.O. Box 5053, 5004 EB, Tilburg, The Netherlands
Tel. (013) 673973, TELEX 52237
Phone or wn'te for the name of your local Fluke representative.

Print<.:d in l' .S.A B0079B- IOU8207 /SE EN

~'F=L=U==K=E=I ::::;;; ® Technical Data
1720A Highlighted Learning Progratn B0097

The System Command File stores a set of initialization
instructions that normally would be input from the keyboard
after applying power to the controller. It executes the
preprogrammed instructions and can call up BASIC and
run the main program. It allows therefore, a set of
start-up instructions to be executed automatically from
the disk.

Use of the Command File then, allows the l 720A to be
operated completely independent of the keyboard.

Some typical tasks that would be performed by a Command
File are shown below.

- CHECK TO SEE WHETHER THE CLOCK HAS
BEEN DISTURBED

- SET THE BAUD RATES ON THE RS-232 PORTS

- FORMAT THE ELECTRONIC DISK

- ASSIGN THE SYSTEM DEVICE

- DOWNLOAD FILES FROM THE FLOPPY DISK
TO THE ELECTRONIC DISK

- CALL UP BASIC

- EXECUTE IMMEDIATE MODE BASIC
COMMANDS

- RUN A BASIC PROGRAM

All modes of the controller are accessible to a Command
File just as they are from the keyboard.

There are two ways to generate a System Command
File: It can be entered directly from the keyboard while
in FUP, or a BASIC program can be used to read data
statements into the file. Using the BASIC program
allows the command file to be easily modified using the
BASIC editor. For simple command files the FUP
method is quicker. However once a command line is
entered it cannot be corrected unless the whole command
file is rewritten.

Generating A System Command File
Using FUP:
1. From CONMON enter "F" to select the File Utility

Program.

2. Enter MFO:COMND.SYS=KBO: This will assign
the file "COMMND.SYS" on the floppy disk (MFO:)
as the destination for source information to come from
the keyboard.

The System Command File

3. Enter each command to be stored on a separate line.
Use the delete key to correct for errors before terminat­
ing the line with a (CR).

4. Terminate the file with a CTRL/2 (end of file).

AN EXAMPLE IS SHOWN BELOW:

Console Monitor Version x.y 8:52 19-JUN-80

I* F (CR) I
FUP 8:52 19-JUN-80
File Utility Program Version x.y

* MFO:COMMND.SYS=KBO:
T ,, (Calls TIME)
Ji (Calls FU?)
EDO:/F (Forma~~'B-Disk)
Y , ~ , (YES) ,

0 0

IX (Exit from FUP)
B ~(Calls BASIC)
RUN" METER.BAS"

Z tEnd of File)

Generating a System Command File
Using BASIC

This program creates two files on the floppy disk: a Com­
mand File under the name CO MMD. SYS, and a copy of
this program under the name COMMD.BAS. The
DATA statements (except line 10) contain the actual
command file. Use as many DATA statements as needed.
Each data statement must contain one legitimate key­
board command. All modes of the l 720A are accessible to
a Command File just as they are from the keyboard.

1. From CONMON, type B to select the BASIC Inter­
preter.

2. Type EDIT to select the edit mode of BASIC.

3. Now enter the following program using the editing
capabilities of BASIC. Use as many data state­
ments as needed, with one quoted command line in each
statement.

IFLUKEI ====®

1000 ON ERROR GOTO 10060
1010 DATA" "(COMAND
1020 DATA""'' Inputs
1030 DATA",

""
<F:o~

1040 DATA" CON MON
1050 DATA" SET
1060 DATA" FUP,
1070 DATA" BASIC
1080 DATA" ETC.)

(More lines of DATA, as needed)

10000 DATA "END"
10010 OPEN "MFO:COMMND.SYS" AS NEW FILE l
10020 READ AS\ IF AS=" END" GOTO 10040
10030 PRINT #1,AS \GOTO 10020
10040 CLOSE 1
10050 KILL "MFO:COMMND.BAS"\SAVE "MFO:COMMND"\GOTO 10070
10060 IF ERL=l0050 AND ERR=305 THEN SAVE "MFO:COMMND" ELSE OFF ERROR
10070 END

Hints On Using Command Files
*Several Command Files can be kept on a disk and one
made active by assigning it to COMMND.SYS. Assume
we have the following command files stored on disk.

COMMND.ONE
COMMND.TWO
COMMND.TMP

We can make COMMND.ONE the Active Command
File by using FUP as shown below.

EXAMPLE:

*MFO:COMMND.SYS=MFO:COMMND.ONE (CR)

CAUTION: This will delete whatever was previously
stored as "COMMND.SYS."

This creates a file COMMND.SYS on the disk using the
oontents of COMMND.ONE. Note that COMMND.ONE
is still retained on the disk for backup purposes.

Similarly, to deactivate the Command File, just delete
COMMND.SYS as shown below.

1980, John Fluke Mfg. Co., Inc., all right' re,crvcd

EXAMPLE:

*MFO:COMMND.SYS/D (CR)

A useful application of this would be where COMMND.SYS
on the disk is used to download the contents of the Disk
to E-Disk, assign the E-Disk as the system device,
assign a file from the disk (COMMND.EDO:) as the
Commnd File for E-Disk, and then run a user program.
The two files as they would appear on the disk are shown
below.

*COMMND.SYS (CR)
T
F
EDO:/F
y
EDO:=MFO:/W
EDO:/A
COMMND.SYS=COMMND.EDO:/R
IX
B
RUN "USER.PRG"

IFLUKE:I ====®

*COMMND.EDO: (CR)
T
B
RUN' ~,'USER.PRG'f~

*DISPLAYING THE CONTENTS OF THE
COMMAND FILE WHILE IT IS ACTIVE

Often it is useful to display the instructions contained in
the Command File while it is active. This can be easily
accomplished by adding an instruction to the Command
File telling it to list COMMND.SYS while in FUP. This
is illustrated in the sample Command File shown below.

EXAMPLE:

*COMMND.SY~ {CR)
T
F
COMMN().SYS (Display\ tl).e Fi}<t)
EDO:/F
y
B
RUN"TEST I.BAS"
*DISPLAYING MESSAGES WHILE THE
COMMAND FILE IS ACTIVE

If instead of displaying the contents of COMMND.SYS
as was done above, we can display the contents of a differ­
ent file. This allows us to display a message by putting it
in the file. We will call the file DSPLY.MSG. It can be
generated from FUP just as Command Files can.

EXAMPLE:

*DSPLY.MSG=KBO:
(CR)
(CR)

PLEASE STANDBY!!!!
DOWNLOADING FJ..OPPY TO E .. i>ISK t

(CR).
z

It is possible to make use of the attributes capability of
the l 720A when generating the Display File but that
procedure will be covered in a later lesson.

To use the Display File merely place the instruction to
display it in the command file as shown below.

EXAMPLE:

*COMMND.SYS (CR)
T.
F
DSPLY.MSG (Displays Message)
EDO:/F,
y
EOO:=MFO:/W
EDO:/A
/X
B
RUN''USER.PRG"

~·1982, John Fluke Mfg. Co., Inc., all rights reserved

IFLLJKEI ====®
John Fluke Mfg. Co., Inc.
P.O. Box C9090, Everett, WA 98206
800-426-0361 (toll free) in most of U.S.A.
206-356-5400 from AK, HI, WA
206-356-5500 from other countries

Fluke (Holland) B.V.
P.O. Box 5053, 5004 EB, Tilburg, The Netherlands
Tel. (013) 673973, TELEX 52237
Phone or write for the name of your local Fluke representative.

Printed in U.S.A. B0097 A- IOU8009/SE EN

IFLLJKEI ====® Technical Data
17XXA Highlighted Learning Progratn B0098

Disk Initialization

FUP, the File Utility Program, is a file transfer and
management program giving yo\} flexible control over the
files on floppy disks and on the optional Electronic Disk.
FUP sets up a communications channel between devices
and files recognized by the Floppy Disk Opera ting
System (FDOS).

IF - FORMAT A DISK OR ELECTRONIC
DISK

Before a floppy disk is used for the first time, its magnetic
surface is completely blank. In this form it is not possible
for the l 720A to write on the floppy disk until it has been
FORMATTED. The formatting procedure writes
addresses in the form of tracks and sectors onto the floppy
disk so that specific locations may be referenced by the
l 720A. FUP is used to format either the floppy disk or
Electronic Disk.

SYNTAX: [<DEVICE>], <DEVICE>]]/F<CR>
DEFAULT: <DEVICE>=SYO

While multiple device formatting is possible we will deal
with formatting one device.

This reduces the command line to:

f~.[<DEVICE;]/ F, <C~>?l

If we wish to format a floppy disk we would insert a blank
disk in the drive and use the following command line:

l*MFO: IF <CR> I
But if MFO: is the default device (MFO: is SYO:) the
command line would be:

Example:

*/F <CR>
Really zero SYO;? YES <CR>

Notice that the l 720A asks for CONFIRMATION OF
THE FORMATTING COMMAND. After
FORMATTING, the DEVICE DIRECTORY will be
ZEROED.

NOTE: If a device containing FILES is FORMATTED,.
all FILES on the device are ELIMINATED (erased).

Similarly, if MFO: is SYO: and we want to FORMAT the
ELECTRONIC DISK we would use the following
command line.

Example:

;{ *EDO: F <CR> ' '<

·; Really zero EDO:? YES <CR>)

IS - BAD BLOCK SEARCH

This command scans devices for BAD BLOCKS. It will
print to the OUTPUT FILE the NUMBER of the BAD
BLOCK and the TOT AL NUMBER OF BAD
BLOCKS found. In addition, if any of the blocks have
SOFT ERRORS (requiring more than onetrytowriteor
read valid information onto the block) it will indicate the
NUMBER of RETRIES that were necessary.

SYNTAX: [<OUTPUTFILE> =][<DEVICE>[,
<DEVICE>]] / S <CR>

DEFAULT: <DEVICE>= SYO <OUTPUT FILE>
= KBO:

While it is possible to scan multiple devices for bad blocks
we will deal with one device. This reduces the command
line to:

fr <ouTPUTFILE;,~ ir <0Ev1cE> 11 s <CR> I
If we wish to scan a disk the command
line would be:

I *KBO: ~ ,MFO: I S<CR> I
But since KBO: is a default condition and if MFO: is a
default condition the command line reduces to I S <CR>

Example:
·{ ' ~

*IS <CR>

Block 273 has l entry
Block 275 has 1 retry
Block 326 has 3 retries
Block 351 is bad
Block 358 is bad

Total of 2 bad blocks found

IFLUKEI

Similarly if EDO: is SYO: we could scan a disk (MFO:)
and print the diagnostics to a FILE on EDO called
SCAN.BLK. The command line would be:

I *EDO:SCAN.BLK=MFO: I S<CR> 1
But since EDO: is the default device the command line
would reduce to:

I *SCAN.BLK=MFO: I S<CR> I

IL - List the DIRECTORY

This command prints the directory of the specified
DEVICE to the specified OUTPUTFILE.

Syntax: [<OUTPUTFILE>] =[<DEVICE>]IL <CR>

Default: <OUTPUTFILE> = KBO (console device)
<DEVICE> = SYO (system device)

If we wish to list the directory of a floppy disk on the
display (KBO:), the command would be:

I *KBO: = MFO: /L <CR> I
but since KBO: is the default condition and if MFO: is the
default condition, the command simplifies to /L <CR>

Example:

*/L <CR>

Directory of SYO: on 3-0ct-79 at 16:34

Name.Ext Size Date

FDOS.SYS 13 25-Sep-79
CONMON.SYS 2 20-Sep-79
TIME.CIL 2 20-Sep-79
SET.CIL 1 20-Sep-79
FUP.CIL 9 20-Sep-79
BASIC.CIL 50 20-Sep-79
EDIT.CIL 9 20-Sep-79
SELECT.BAS 12 20-Sep-79
DEMO.BAS 46 21-Sep-79
LIST.13E 5 25-Sep-79
IEEE.BAS 1 2-0ct-79
ENTER.BAS 4 3-0ct-79
8520. l 29 3-0ct-79
8520.BAS 29 3-0ct-79

Total of 212 blocks in 14 files, 186 free blocks

' 1982, John Fluke .\1.fg. Co., Inc., all right~ n~~erved

Similarly, if we want to list the above directory out to a
printer connected to the RS-232 port KBI:, the following
command would be used:

I *KBI: =MFO:/L <CR>J

And due to the default conditions it would simplify to:

I *KBI: =/L <CR> I
Finally, if SYO: is MFO: and we wish to list on the display
the directory contained on electronic disk, the command
would be:

I *KBO:=EDO:/L <CR> I
And due to the default conditions we would use:

I *EDO:/L </CR> I

/E - EXTENDED DIRECTORY listing

Since the l 720A employes a CONTIGUOUS file
structure, there can be blocks of UNUSED ENTRIES.
These won't be displayed with the /L command. If a
listing of these empty entries is desired, however, the /E
command can be used instead of the /L command.

Example:

*/E <CR>

Directory of SYO: or 3-0ct-79 at 16:34

NAME.EXT SIZE DATE

FDOS.SYS 13 25-Sep-79
CONMON.SYS 2 20-Sep-79
TIME.CIL 2 20-Sep-79
SET.CIL 1 20-Sep-79
FUP.CIL 9 20-Sep-79
BASIC.CIL 50 20-Sep-79
<NOT USED> 30
DEMO.BAS 46 21-Sep-79
<NOT USED> 5
ENTER.BAS 4 3-0ct-79
<NOT USED> 236

Total of 127 blocks in 8 files, 271 free blocks

IFLUKEI ====®
The angle brackets indicate blocks of UNUSED
ENTRIES located between files. The /E command then
indicates not only the amount of unused blocks but also
where they are distributed on the disk.

IP - PACK A DEVICE

In order to best utilize the unused blocks on a disk it is
often desirous to have all the free space on a disk in one
Contiguous Section located after the existing files. This
is accomplished with the IP command.

SYNTAX: [<DEVICE>[, <DEVICE>]] /P <CR>

DEFAULT: <DEVICE>= SYO

While multiple device packing is possible we will deal with
packing one device. This reduces the command line to:

I I <DEVICE>] IP <CR> I
Here's how we take the disk contents from the previous /E
DIRECTORY LISTING and pack them. The command
line would be:

l * MFO:/P <CR> I
But if MFO: is the default device the command line
reduces to /P <CR>.

Example:

*/P <CR>

*/E <CR>

Directory of SYO: on'3~0ct.:79at16:40

NAME.EXT SIZE DATE

FDOS.SYS 13 25-Sep-79
CON MON.SYS 2 20-Sep-79
TIME.CIL 2 20-Sep-79
SET.CIL .· l 20-Sep-79
FUP.CIL 9, 20-Sep-79
BASIC.CIL 56 20-Sep-79
DEMO.BAS 46 21-Sep-79
ENTER.BAS. 4 3-0ct-79
<NOT USED> 271 3-0ct-79

Total of 127 blocks in 8 files, 271 free blocks.

Notice that now the all free space on the disk is located in
one section and there are no unused entries between files.

If we want to pack the ELECTRONIC DISK when
SYO: is the floppy disk (MFO:) we would use the
following command line:

I *EDO:/P <CR> I

IFLUKEI ====®
John Fluke Mfg. Co., Inc.
P.O. Box C9090, Everett, WA 98206
800-426-0361 (toll free) in most of U.S.A.
206-356-5400 from AK, HI, WA
206-356-5500 from other countries

Fluke (Holland) B.V.
P.O. Box 5053, 5004 EB, Tilburg, The Netherlands
Tel. (013) 673973, TELEX 52237
Phone or write for the name of your local Fluke representative.

Printed in U.S.A. B0098B- IOU8208/SE EN

IFLUKE:I ====® Technical Data
17XX Highlighted Learning Progratn B0099

Modification of Files

FUP, the File Utility Program, is a file transfer and
management program giving you flexible control over the
files on floppy disks and on the optional Electronic Disk.
FUP sets up a communications channel between devices
and files recognized by the Fluke Disk Operating
System (FDOS).

FUP can be used to easily accomplish the following file
modificatiom:

/R RENAME A FILE

SYNTAX: <DESTINATION FILE>= <SOURCE FILE>
/R <CR>

Default: None

The INPUT FILE is RENAMED according to the name
a~ specified in the OUTPUT FILE list.

Example:

To take the file 193A.BAS and RENAME it to
1953A.BAS we would use the following command line:

I *1953A = 193A/R <CR> I
NOTE: If the deTias do11 't corresp011d, 1.111 error mesmge is
i;i"Z'l'll. If the 011tpw file 1.1/reudy exists, 1.111 errnr message is
J;iren.

ID DELETE A FILE

Thi~ command DELETES the ~pccificd fik or fib.

SYNTAX: <FILE NAME>[, <FILE NAME>]
ID <CR>

DEFAULT: None

Example:

If it is desired to DELETE the files METER.BAS and
TEST.488 the following command line would be used:

I *METER-:-T'EST.488/D-<CR; I

NOTE: Li111ited lO eight files ta a rime.

/M MERGING ASCII FILES

SYNTAX: [<DESTIN AT ION FILE>=]<SOURCE FILE>[,
<SOURCE FILE>]/M <CR>

DEFAULT: <DESTINATION FILE>= KBO:
(CONSOLE DEVICE)

CAUTION: Line numbers of rhe files lO be merged should
nor overlap.

Example:

To MERGE the content of OLD.BAS and NEW.BAS
and create a new file NEW.BAS all on the system device
we would use the following command line:

I *NEW =OLD, NEW /M <CR> I
NOTE: There can be a maximum of8FILES specified in rhe
SOURCE (or righr side of rhe command).

ERROR FREE FUP

FUP is a powerful tool. Good programming practices
should be employed to avoid pitfalls when using it.

1. Make a back up copy of your disk before modifying or
packing any files. If you do make an error afterwards, it
won't be catastrophic.

2. Verify the results of each FUP operation you do. View
the directory or files as necessary to accomplish this. It
is better to discover if you have inadvertently erased a
file or disk at the finish of each operation than when the
program can't be recovered.

3. Verify your FUP commands as typed before you
execute them. Imagine what would happen if you typed
MFO:/Z when you really meant to type MMO:/Z.

4. Adequately identify your Floppy disks by writing
something meaningful on the label with a felt tip pen.
Formatting an already recorded disk which has a blank
label can ruin your day. Better yet, do a /L command on
a "blank" disk before you format it. If you get a
directory listing, you have saved a disk.

5. Routinely Pack and Search your disks for bad blocks.
Disks which have bad blocks should have their files
copied onto another disk. If re-formatting the
questionable disk doesn't get rid of the bad blocks, the
disk should be discarded.

6. Be sure to use /B or /W when transferring binary files.
/B will handle any ASCII files as well.

7. Be sure to store your system command file under a
temporary name before creating a new command file.

ERROR MESSAGES

Listed below are the error messages and their explanations
which can be encountered in FUP.

DEVICE ERROR
This error indicates a fatal error on a I/O device. Examples
are disk CRC errors, magnetic tape parity errors.

?DEVICE NOT READY
This means that the accessed device is not ready. Remedies
are loading a diskette or closing the disk door.

?WRITE PROTECTED
The diskette has a write protect tab. This can be fixed by
either removing the tab or using a non protected diskette.

?NOT A VALID DEVICE
This means that a device has been specified for which there
is no support in FDOS. Misspelling is often the cause.

?FILE NOT FOUND
This indicates that the required file could not be found on
the specified device.

?NO ROOM FOR USER ON DEVICE
This indicates that the created file caused by either
merging or copying exceeds the amount of available space.

?NO END-OF-FILE
An ASCII file had been used as an input file, while not
containing an End-Of-File mark.

?DEVICES DO NOT MATCH
A rename option with different devices has been given.

?NOT A FILE STRUCTURED DEVICE
Certain operations like packing or listing a directory are
legal only on file structured devices.

?SYNTAX ERROR
A command line as input by the user did not meet the
syntax specification as required for that particular
command.

?TOO MANY FILES
More than eight files had been specified either in the input
or output file specification.

?ILLEGAL OPTION
An unrecognized option was selected. Probably a typing
error.

?NOT A VALID FILE NAME
A filename with illegal or too many characters had been
entered.

c 1982, John Fluke Mfg. Co., Inc., all rights reserved

USING FUP TO DE-BUG
BASIC PROGRAMS

Files which have been OPENED for the storage of ASCII
data can be viewed via FUP by typing the file name
followed by the carriage return. If it is a long file the paging
keys should be used. Data is stored on the disk by the
PRINT command in identically the same format that is
used to PRINT via a mechanical printer.

The data being stored on the disk can be considered as a
printed page. In this context, errors such as "input line too
long", "too much data typed" and "not enough data
typed" become meaningful.

If your basic program is having problems outputing data to
the disk or inputing data from the disk, viewing the data
file on the CRT via FUP can provide significant insight.

fFLUKEI ====®
John Fluke Mfg. Co., Inc.
P.O .. Box C9090, Everett, WA 98206
800-426-0361 (toll free) in most of U.S.A.
206-356-5400 from AK, HI, WA
206-356-5500 from other countries

Fluke (Holland) B.V.
P.O. Box 5053, 5004 EB, Tilburg, The Netherlands
Tel. (013) 673973, TELEX 52237
Phone or write for ihe name of your local Fluke represeniaiive.

l'nmc·d in l'.S.A. B0099B-IOU8208/SE EN

IFLUKEI ====® Technical Data
17XXA Highlighted Learning Progratn no100

Copying (Transferring) of Files

The File Utility Program is the ideal program to use for
duplication of files and disks. FUP inputs information
directly from the original disk to the output device For
Temporary Storage for writing on the disk you are
duplicating. More than one file can be duplicated at a time;
in fact, it is possible to duplicate an entire disk with one
command, providing the original does not exceed 89
blocks when MMO: is the destination or 254 blocks when
EDO: is the destination 508 blocks if2 E-Disks are used).

ZERO THE DIRECTORY

There are two reasons for zeroing a directory. In the first
case, you have a floppy disk or E-Disk you wish to erase. In
the second case, you are using EDO: or MMO: as
TEMPORARY STORAGE for duplicating floppy disks
(floppy disk #1 to temporary storage; temporary storage to
floppy disk #2) and the original floppy disk contains more
blocks than the temporary storage. Consequently, the
temporary storage must be copied to more than once and
its directory must be zeroed before it can be copied to
again.

When the /Z command is used, the DIRECTORY of the
specified DEVICE is ZEROED OUT, that is, ALL
FILE HEADERS WILL BE WIPED OUT. (Note that
the file itself still exists, just the pointer, or file header is
erased.)

SYNTAX:= [<DEVICE>[, <DEVICE>]]/Z <CR>

DEFAULT: <DEVICE> = SYO

While multiple device zeroing is possible we will deal with
zeroing one device. This reduces the command line to:

I = [<DEVICE>.]/Z <CR> I
If we wish to zero the directory on a disk we would use the
following command line:

I *MFO:/Z <CR> I
But if MFO: is the default device the command line would
be:

*IZ <CR>
Really zero SYO.? YES <CR>

Notice that the l 720A asks for CONFIRMATION of the
ZEROING COMMAND.

Similarly if MFO: is SYO: and we want to ZERO the
DIRECTORY on ELECTRONIC DISK we would use
the following command line:

*EDO:/Z <CR>
Really zero EDO: ? YES<CR>

*

If a device contains a DIRECTORY it had to have been
previously FORMATTED. Therefore after ZEROING
an EXISTING DIRECTORY, the device DOES NOT
require FORMATTING in order to use it again.

/W - WHOLE COPY A DEVICE

The /W command allows FAST DUPLICATION OF
DISKS.

All files from the SOURCE DEVICE, starting at the
specified START FILE, are COPIED to the
DESTINATION DEVICE until no more exist or the
destination device is full.

SYNTAX: [<DESTINATION DEVICE>]= [SOURCE
DEVICE> [<START FILE>])/W <CR>

DEFAULT: <DESTINATION DEVICE>: <SOURCE
DEVICE> = SYO

If NO ST ART FILE is specified, the WHOLE DEVICE
is copied. The copy process continues until there is NO
ROOM on the OUTPUT DEVICE for another file or
until ALL FILES have been COPIED. If a CTRLC is
given during a file transfer, the copy process is
ABORTED when copying of the CURRENT FILE has
been completed.

When a CRTL Pis given, the copy process is ABORTED
and the CURRENT FILE will be CLOSED even though
the WHOLE FILE MIGHT NOT have been
TRANSFERRED. The names of all the copied files are
displayed on the console terminal.

If we wanted to COPY the contents of a DISK to
ELECTRONIC DISK we would use the following
command line:

I *EDO: = MFO:/W <CR> I

IFLUKEI =====®
But if MFO: is the default device the command line would
be:

*EDO: = IW <CR>

Copying FDOS.SYS
Copying CONMON.SYS
Copying TIME.CIL
Copying SET.CIL
Copying FUP .CIL
Copying BASIC.CIL

*

When the * is displayed, it indicates the transfer is
completed and the contents of MFO: are now in EDO:

If we wished to make a DUPLICATE COPY of the disk
we have just transferred, we merely have to insert another
FORMATTED disk in the drive and transfer the FILES
back from EDO:. The command line would be:

MFO: = EDO:/W <CR>

But since MFO: is the default device the command line
would be:

*= EDO:/W <CR>

Copying FDOS.SYS
Copying CONMON.SYS
Copying TIME.CIL
Copying SET.CIL
Copying FUP.CIL
Copying BASIC.CIL

*
When the * is displayed it indicates the transfer is
completed and the contents ofEDO: are now on the NEW
DISK which had been inserted in drive (MFO:).

Since a disk can store 200K BYTES of information and
one ELECTRONIC DISK can store 128K BYTES it
would require 2 PASSES to duplicate a disk with more
than 128K BYTES (DUAL ELECTRONIC DISKS
would eliminate this problem as there would be
256K BYTES available).

We will assume that the disk files start with FDOS.SYS,
and the SECOND PASS will copy the remaining files
starting with the one after 8520A.BAS which we will
assume to be NEW .BAS and end with the last file
TEST.BAS.

The procedure is as follows: (Assume MFO: = SYO:)

' 1982, Johr. Fluke Mfg. Co., Inc., all rights reserved

FIRST PASS

Insert DISK #1 (the disk to be copied) in the drive.

* EDO: ·~- /W <CR>< <,

Copying FDOS.SYS

' l . ~opying 8520A.BAS

No room for user on device

* .

Notice that the l 720A indicates when there is no more
room on the device to copy any additional files. Remove
DISK #1 and insert DISK #2 (the duplicate disk) in the
drive.

=EDO:/W <CR>

Copying FDOS.SYS ..

' i Copying 8520A.BAS

*

SECOND PASS

Since there is no more room on EDO: it is necessary to
ZERO its DIRECTORY before transferring the
remaining files to it.

* EDO:/Z <CR>

Really Zero: ? YES<CR>

*
Now remove DISK #2 and insert DISK #1 in the drive.

Since we have already partially copied the files on DISK
#1 it is now necessary to SPECIFY a ST ART FILE
(NEW .BAS) in order to transfer the remaining files to
EDO:.

* EDO: = NEW .BAS/W <CR>

Copying NEW .BAS

' ' Copying TEST.BAS

*

IFLUKEI ====®
At this point all the remaining files have been transferred
to EDO:.

Remove DISK #1 and insert DISK #2 in the drive.

* = EDO:/W <CR>

Copying NEW .BAS

l
Copying TEST.BAS

*
At this point, all the files on DISK #1 have been copied
onto DISK #2.

COPY OF FILES USING MAIN MEMORY

(MMO:)

If a 1720A is not equipped with ELECTRONIC DISK it
is still possible to copy files as was previously done with
EDO: by using the MAIN MEMORY.

FUP can assign all the available MAIN MEMORY to act
as a MASS STORAGE DEVICE. A special device will
be created by FUP to accommodate this function. This
device (MMO:) is only valid in FUP and is main memory.
I ts size depends on the amount of available main memory.
Using the TRANSFER or WHOLE COPY commands,
the user can fill this device with files from the disk, change
the diskette and copy form MMO: to the disk. (See
TRANSFERRING BINARY FILES and TRANS­
FERRING ASCII FILES on the following pages.) If
MMO: can not hold all the files, the user must
PERFORM ADDITIONAL PASSES in order to copy
the remainder of the files. Note that MMO: will be
automatically zeroed when FUP is started.

CAUTION: Certain operations like formatting a floppy
disk will cause MMO: to be zeroed.

Example:

* MMO: =/W

Copying FDOS.SYS

Copying BASIC.CIL

*

NOTE:MMO: does not require formatting.

At this point all files have been transferred and the user
must now swap disks.

..* ~MMO:/W

. Copying FDOS.SYS

: Copying CONMON.SYS

Copying BASIC.GIL

*
REMEMBER, as when using EDO: and making
MULTIPLE PASSES it is necessary to ZERO THE
DIRECTORY on MMO: and SPECIFY A START
FILE after the FIRST PASS.

LIST ASCII FILES

SYNTAX: [<DESTINATION FILE>= <SOURCE
FILE> <CR>

DEFAULT: <DESTINATION DEVICE>=SYO:
if a <FILENAME> is specified

<DESTINATION FILE> = KBO:
if <DESTINATION FILE> is omitted.

If NO DESTINATION FILE is SPECIFIED the
SOURCE FILE(S) will be printed on the Console
Terminal. This gives us a convenient way to list ASCII
files on the Console Terminal.

Example:

I * METER.488 <CR> I
will cause the file to be listed on the Console Terminal.

Example:

I* KB1:=METER.488<C~ I
will cause the file to list out to a printer connected to
RS-232 port KBl:

TRANSFERRING BINARY FILES

In order to transfer a BINARY FILE it is necessary to use
the /B command.

For instance if MFO: = SYO: and we wish to transfer the
file BASIC.CIL over to ELECTRONIC DISK we
would use the following command line:

I* EDO:= ~ASIC.CIUB <CR> I
NOTE: Binary cransfers can be made for all cypes of files,
(ASCII, etc.).

TRANSFERRING ASCII FILES

If MFO: = SYO: and we wish to transfer the files
METER.BAS and NEW.TST from the disk over to
ELECTRONIC DISK we would use the following line:

(* EDO:k METER, NEW.TST <CR> I
IT TURN OFF ERROR CHECKING AND
TRANSFER/COPY AN ASCII FILE

SYNTAX: Identical to copy command

On those rare occasions when one or more blocks in a file
have gone bad, the user may want to recover as much of the
file as possible. They can do so by defeating some error
checks. (Device error and No End-of-file) If a device error
occurs the block will be transferred as is, that is, it may
contain garbage. If an end-of-file mark has disappeared a
new one will be automatically appended.

Example:

I * EDO: = METER.488/T <CR> IFLUKEI ====®
John Fluke Mfg. Co., Inc.
P.O. Box C9090, Everett, WA 98206
800-426-0361 (toll free) in most of U.S.A.
206-356-5400 from AK, HI, WA
206-356-5500 from other countries

Fluke (Holland) B.V.
P.O. Box 5053, 5004 EB, Tilburg, The Netherlands
Tel. (013) 673973, TELEX 52237
Phone or write for the name of your local Fluke representative.

Primed m U S.A. BOIOOB-IOU8208/SE EN

IFLUKEI ====® Technical Data
1720A Highlighted Learning Progratn B0123

E-DISK TM

The optional electronic disk is a high-speed, file-struc­
tured mass storage system. It works just like floppy disk,
differing only in capacity and speed. E-Disk files can easily
be transferred to a floppy disk for permanent storage.
When installed, the E-Disk occupies one or both of the
circuit module slots marked "SPARE".

FEATURES
• High speed
• Large capacity
• Works just like the floppy disk
• Battery backup available for power interruptions

HIGH SPEED
The speed of a file storage system is normally described in
two ways:

1. Access time: The time lag between identifying a file
request and the beginning of file transfer.

2. Transfer rate: The rate that data is transferred after it
has been accessed.

Table 1 compares the hardware speed performance of the
E-Disk with that of the floppy disk. Note that software
processing overhead is in addition to these times.

E-DISK FLOPPY DISK E-DISK
ADVANTAGE

ACCESS TIME
(milliseconds) .018 550 (average) 30,600:1

TRANSFER
RATE
(bytes/ second) 133,120 15,625 8.5:1

TIME TO FILL
MAIN MEMORY
(seconds) 0.46 3.9 8.5:1

Among the benefits of this high speed are:

* Most lexically-saved forms of BASIC programs load so
quickly that the short delay time for loading is not ap­
parent to an operator.

* Sequential files and random access virtual arrays can
be built up and accessed within a running program
without significantly slowing it down.

LARGE CAPACITY
Programs and data files on the E-Disk are organized as a
sequence of 256 or 512 data blocks. Each data block
contains 512 bytes of information. The firsttwo blocks (lK
bytes) are reserved for a file directory.

A second E-Disk module doubles storage capacity without
the need to address each module separately. Because of
this, a single large file can occupy two modules.

The largest file that a single module E-Disk can store is 254
blocks (127K bytes). A dual module system can store 510
blocks (255K bytes). The maximum number of files is 72.

Some of the benefits of the large capacity of an E-Disk are:

* Sequential files and random access virtual arrays can
be much larger than would be possible in main me­
mory without significant sacrifice in processing speed.

* Large programs that will not fit into main memory can
be structured into modules, and chained together. Al­
though this can be done with the floppy disk, use of the
E-Disk nearly eliminates the delays of loading each
program module into memory, and frees the floppy
disk for collection of processed data.

* Floppy disk files that are too large to fit in main mem­
ory can be duplicated. (A dual-module system is re­
quired for files larges than 127K bytes.)

WORKS JUST LIKE THE FLOPPY DISK
Techniques for using the E-Disk are identical to the floppy
disk. Like any disk, the E-Disk must be formatted before
use, and contains a file directory.

The E-Disk is referred to as ED0: in program statements
and utility commands.

When installed, the E-Disk can easily be set up to be the
default System Device for files not given a named location.

Some of the benefits of working like the floppy disk are:

* Programming is simplified. Taking advantage of the
E-Disk requires no new techniques. The only difference
is referring to EOO: (the E-Disk) in place of MF0:
(the floppy disk).

* By making use of the System Device concept, pro­
grams can be structured to run on any l 720A system,
taking advantage of the E-Disk whenever it is installed.
In such a case, an E-Disk will increase the speed of
processing sequential and virtual array files, and
eliminate some requirements for an operator to ex­
change disks.

E-Disk TM is a trademark of the John Fluke Mfg. Co., Inc.

IFLUKE:I ====®

BATTERY BACKUP
The E-Disk will hold its contents intact when power is
removed, provided theE-DISKBATTERY switch on the
rear power supply panel is set to EN ABLE, and there is an
internal or external source of battery power. A fully­
charged internal battery will support a single-module
E-Disk for about one hour, or a dual-module E-Disk for
about 30 minutes. An external battery can easily be con­
nected through the rear REMOTE INTERFACE con­
nector to extend this time indefinitely.

If you do not plan to make use of the battery backup
feature for the E-Disk, battery life can be extended by
leaving the feature disabled. This will prevent the battery
from having to discharge and recharge regularly.

SOME EXAMPLES
1. This Immediate Mode BASIC command will store

the lexical form of the program currently in main mem­
ory on the E-Disk, in a file named "DEMO.BAL":

SAVEL "EDCJ: DEMO"

2. This FUP command copies a file from the floppy disk
to the E-Disk:

EDCJ:DATA.T9=MF0:DATA.T9

3. The following FUP command is identical to the pre­
vious one, if the E-Disk is the default System Device.
The file name is carried over unchanged when it is
not specified:

=MF0:DATA.T9

4. If a different floppy disk is then inserted, the following
FUP command writes a duplicate copy of the file onto
the second disk from the copy on the E-Disk. This also
assumes the E-Disk is the System Device:

MF0:=DATA.T9

5. When a program uses a data file on the E-Disk, a chan­
nel must first be opened. Input and output statements
then refer to the channel number. The following Fluke
BASIC sequence opens an existing file on the E-Disk
for sequential input, and then reads its contents into
the string M3$:

2400 OPEN "ED0:DATA.T8" AS FILE 4
2410 INPUT #4, M3$

6. The following Fluke BASICsequenceopensanewfile
on the default System Device for sequential output,
and then stores a message in it. When the E-Disk
is installed, this file will normally go onto it unless the
System Device was reassigned:

2 CJ980, John Fluke Mfg. Co., Inc., all rights reserved

3920 OPEN "MSG4" AS NEW FILE 2 SIZE 1
393Q' PRINT #2, "End of Frequency Test"

7. A random access virtual array requires a dimension
statement referencing a previously opened channel.
The following sequence opens a random access (DIM)
file on the E-Disk, dimensions an integer array into it,
and then places a value stored in integer variable N%
into one of the array elements. Note that virtual array
channels are bidirectional. The NEW specification
causes the array elements to be initially set to zero, re­
placing any existing file found with the same name.
Virtual arrays are discussed in a separate HLP bul­
letin.

102Q'OPEN "ED@: DATA.43" AS NEW DIM FILE
3 SIZE 1

1030 DIM #3, D% (15,31) !512 elements

4960 D% (4,6) = N% !N% Previously defined

E-DISK TERMINOLOGY
Access Time
The time lag between identifying a file request and the
beginning of file transfer.

ASCII
The American Standard Code for Information
Interchange is a set of defined 7-bit binary code patterns
representing the full alphabet, numbers, and many useful
symbols and control characters.

Bit
A single unit of program or data information, set to either
one or zero. Bit is a contraction of binary digit.

Block
A fixed size of data selected to be convenient for storage or
transfer operations. In the l 720A Instrument Controller, a
block is 512 bytes.

Block-Structured
A block-structured device transfers and stores data one
block at a time, accumulating smaller amounts in a
temporary buffer until a block is available. E-Disk is a
block-structured device.

Buffer
A temporary memory storage area for accumulating
information until enough is available for the next
operation. E-Disk transfers use a 1-block (512-byte)
buffer.

IFLUKEI ====®

Byte
Eight data bits set to any pattern of ones and zeros with
defined meaning, such as binary numbers or the ASCII
code.

Chaining
The technique of separating a program into task-oriented
modules. Each module contains a RUN "next module"
statement linking it to the next tl!.Sk. Variables can be
passed to the next program module through a common
storage area, and data in virtual arrays can be left open for
subsequent use. Only the module currently in use occupies
space in main memory.

E-Disk TM

The optional electronic disk is a mass file-storage system
constructed of high-speed, solid-state memory and
designed to function as a serial transfer block-structured
device. With appropriate operating system software, it
appears to the system as a file-structured device.

File
A collection of information designated by name as a unit.

File-Structured
A file-structured device transfers and stores information
by file units.

Formatting
Formatting is a process of preparing a file-storage device to
accept files. After verifying the integrity of each block, an
identifying and timing pattern is recorded throughout.
The l 720A Instrument Controller accomplishes this with
the /F command option of the FUP Utility Program.

K Byte
1024 bytes.

Lexical File
A BASIC language program that has been processed by
the interpreter into the form that is used in main memory.
In this form, the program file occupies less space and loads
into memory quicker. Line numbers, keywords, operators,
and branch pointers are processed into binary form.
Lexical files are compatible only with the version of the
BASIC interpreter that generated them.

Random Access File
The contents of a random access file, such as a virtual
array, can be accessed in any desired sequence by
referencing individual elements in the file.

Sequential Access File
The contents of a sequential access file can only be
accessed from start to end.

Transfer Rate
The rate that a file is transferred after lt has been accessed.

Virtual Array
A collection of data defined by a DIMension statement
that references an open channel to a file-structured device,
such as the E-Disk. The data array is available to the user
program just as if it were present in main memory. For this
reason it is called virtual.

FLOPPY
DISK

175K Bytes

USER
PROGRAM

E-DISK TM

128K Bytes

Input and Output
~~~~~~~~ ~~~~~~ 

KEYBOARD AND 
TOUCH-SENSE 

DISPLAY 

IEEE-488 
BUS 

PORTS 

RS-232 
SERIAL 
PORTS 

INSTRUMENTATION COMMUNICATIONS 

E-DISK ™ FUNCTIONS 

3 



4 

IFLUKEI ====® 
John Fluke Mfg. Co., Inc. 
P.O. Box 43210, Mountlake Terrace, WA 98043 
800-426-0361 (toll free) in most of U.S.A. 
206-774-2481 from AK, HI, WA and Canada 
206-774-2398 from other countries 

Fluke (Holland) B.V. 
P.O. Box 5053, 5004 EB, Tilburg, The Netherlands 
Tel. (013) 673973, TELEX 52237 
Phone or write for the name of your local Fluke representative. 

Printed in U.S.A. B0123A-10U8011/SE EN 



IFLUKEI ====® Technical Data 
1720A Highlighted Learning Progratn BOI42 

Array variables include Reals (floating point), Integers 
and Strings. lnterger array variable names are followed 
by %; string array variable names are followed by $. 

Array variable names may be one or two characters 
(first character may be any upper case letter; second 
character may be any upper case letter or any number 0 
through 9 or may be omitted); note these are the same 
names as are used with simple variables. Note also that 
IF, ON, OR, TO, FN, LN, PI and AS are not legal 
variable names. 

There are only 954 possible names for each type of 
simple variable in FLUKE BASIC. This may seem to 
be adequate, however, it is not enough to store the 
readings from a typical digital voltmeter measurement. 
Moreover, the possibilities for meaningful names from 
the 954 possible names are very limited. Consider also, 
the fact that 954 BASIC statements would be required 
to assign a value to each possible simple variable name. 
For these reasons, an alternative to simple variables is 
necessary. The need for an array of variables (each 
array variable is called an element) that can be 
identified by a number as part of the name, is evident. 

Suppose you had 10 numbers you needed to assign to 
simple interger variables: 

NO%= 26792 \ N5% = 26797 
Nl% = 26793 \ N6% = 26798 
N2% = 26794 \ N7% = 26799 
N3% = 26795 \ N8% = 26800 
N4% = 26796 \ N9% = 26801 

You could do it as shown above or you could 
dimension an integer array of 10 elements: 

DIM N%(9%) dimensions N%(0%) through N%(9%) 

Each of the 10 array elements is a variable and is 
capable of storing data like any simple variable. In 
other words, DIM N%(9%) creates an additional 10 
variables for the program to use. 

Assignments can be made to the array element variables 
in the same manner as you did with the simple 
variables: 

N%(0%) = 26792 
N%(1%) = 26793 
N%(2%) = 26794 
N%(3%) = 26795 
N%(4%) = 26796 

\ N%(5%) = 26797 
\ N%(6%) = 26798 
\ N%(7%) = 26799 
\ N%(8%) = 26800 
\ N%(9%) = 26801 

So far, the only difference between the simple variable 
assignments and the array element assignments, are the 
addition of brackets around the numbers, and the 

Basic Main Memory Arrays 

prerequisite DIM statement to reserve main memory 
space for the array variables and to establish the array 
element names as valid variable names in the program. 

The numbers in the names of the array element 
variables serve the same purpose as the numbers in the 
simple variables, i.e., they are part of the variable name 
and make the named variable unique and 
distinguishable from the other variables. N 1 % is not the 
same variable as N%(1); both are allowed. The number 
within the brackets of the array element variable has 
one important additional capability: it can be a variable. 
Bracketed element numbers are usually called 
subscripts. 

Now you can make the same assignments in a more 
flexible and structured manner using a FOR/NEXT 
loop: 

10 DIM N%(9%) 
20 FOR 1% = 0% TO 9% 
30 READ N%(1%) 
40 NEXT 1% 
50 DAT A 26792, 26793, 26794, 26795, 26796 
60 DATA 26797, 26798, 26799, 26800, 26801 
70 END 

Enter and RUN the above program; then from the 
Immediate Mode, type: 

PRINT N%(3) <CR> 

The display should indicate "26795" which is the 4th 
value in the DATA statement. The other 9 elements 
can be verified in like manner, or you could simply 
type: 

PRINT N%(0 .. 9) <CR> 

which is the equivalent of: 

FOR I= 0 to 9 
PRINT N%(I) 
NEXT I 

The above statement functions like a FOR/NEXT loop 
and increments the array element subscript numbers 
from 0 through 9; the result is to PRINT the entire 
array of variable elements with a <CR> <LF> after 
each element. To suppress the <CR><LF> type: 

PRINT N%(0 .. 9); <CR> 

This notation can be used for any contiguous list of 
elements, e.g.,: 

PRINT N%(3 .. 7) 



IFLLJKEI ====® 

Now you have an even simpler method of making. 
assignments: 

10 DIM N%(9%) 
20 READ N%(0 .. 9) 
30 DATA 26792, 26793, 26794, 26795, 26796 
40 DATA 26797, 26798, 26799, 26800, 26801 
50 END 

Until now you have been working with a one­
dimensional array. It may help you to think of a one­
dimensional array as a one-row matrix. The above 
example represented as a matrix would be: 

,... _____ Columns 0 through 9 -----

ROW N%(0) N%(1) N%(2) N%(3) N%(4) N%(5) N%(6) N%(7) N%(8) N%(9) 

FLUKE BASIC supports String Arrays and REAL 
(floating point) Arrays as well as Integer Arrays. 
Dimensions and Subscripts must be ~32767 (the 
maximum integer size). Subscripts may appear as 
mathematical expressions, e.g.,: 

V$(A% + 3)="Volts" 
SN$(SQR(A%))="Serial No." 

R(13/N)=l.1412 
DIM N%(X% + 3%) 

If a subscript is not an integer, BASIC rounds the 
subscript to an integer. 

Two Dimensional (Double Subscripted) 
Arrays 
An array element with two subscripts can be thought of 
as a variable with another character in its name. This 
additional subscript gives the program the ability to 
create more elements than is possible with only one 
subscript. The additional subscript also gives the 
program the capability of building a matrix with ROWs 
as well as COLUMNs. 

Suppose you had 3 production shifts and you wanted to 
store the total number of instruments produced by each 
shift for one week (5 days). The following program is 
an example of one way to do this task: 

10 DIM PS%(2%,4%) ! Dimension a 3x5 array 
20 READ PS%(0 .. 2,0 . .4) ! READ 15 values 
30 ! SHIFT DAY DAY DAY DAY DAY 
40 1 1 2 3 4 5 
50 DATA 10, 12, 9, 7, 10 
60 2 
70 DATA 9, 14, 10, 11, 11 
80 3 
90 DATA 11, 7, 6, 8, 10 

100 FOR I% = 0% TO 2% 
110 PRINT PS% (I%,0 . .4); 
120 PRINT 
130 NEXT I% 
140 END 

~ 1982, John Fluke Mfg. Co., Inc., all rights reserved 

The previous program takes the data .a.nd-PRINTs it in 
the same arrangement as the DATA statements. Note 
the subscript order is always (ROW, COLUMN). The 
matrix for this array is shown below: 

PS% 
(0 .. 2, 
Col. No.) 

----PS$(ROW NO., 0 . .4) ---

Col. I Col. 2 Col. 3 Col. 4 Col. 5 

ROW 0 PS%(0,0) PS%(0,l) PS%(0,2) PS%(0,3) PS%(0,4) 
ROW l PS%(1,0) PS%(1,l) PS%(1,2) PS%(1,3) PS%(1,4) 
ROW 2 PS%(2,0) PS%(2,l) PS%(2,2) PS%(2,3) PS%(2,4) 

Multiple Arrays 
More than one array may be dimensioned in a 
program, e.g.,: 

10 DIM A%(3,5), B%(6,10), A$(10,100) 
20 DIM RL(lOOO) 
30 DIM A5(10,10) 

Redimensioning Not Allowed 
BASIC programs are allowed to execute a DIM 
statement for each variable only once. An error will 
result if the program attempts to execute a specific 
DIM statement more than once. For this reason, DIM 
statements should appear early in the program and 
should not be included in subroutines. The only way 
around this is to re-RUN the program. RUN causes 
BASIC to forget all previously executed DIM 
statements. 

Serial Storage of Arrays on the Disk 
The following examples illustrate how array data can be 
serially stored and retrieved from the disk. You may 
use a different array name to retrieve data than you did 
to store the data; if the arrays are alike in type (integer, 
real or string) and dimensions. Note "NEW" in line 
110 indicates a new file is being created on the disk. 



IFLUKEI ====® 

Data Storage: 

10 !"EXAM1.BAS" 
100 CLOSE 1 INITIALIZE 
110 OPEN "EXAM1.DAT" A'.3 NEW FILE 1 SIZE 1 ! RESERVE AND NAME DIS~( SPACE 
120 DIM A$C5/.) 
130 FOR I/.=Oi. TO 5% 
140 A$CI/.):::CHR$(65~~+I/.) ASSIGN LETTERS "A" THROUGH "F" 
150 NEXT II. 
1 6 0 p R IN T tt 1 , A $ ( 0 /. • • 51. ) I s T 0 R E 0 N D I s ~( 
170 CLOSE 1 1 CLOSE FILE 
180 END 

Data Retrieval: 

10 !"EXM\3.BAS" 
100 CLOSE 1 INITIALIZE 
110 OPEN "EXAM1.DAT" AS OLD FILE 1 
120 DIM A$C5/.) 
13() I 

140 iNPUT LINE ttl, A$C0/. .. 5%) ! INPUT FILE DATA 
150 I 

160 CLOSE 1 ! CLOSE FILE 
170 PRINT ASCOZ •• 5%) ! DISPLAY DATA 
180 END 

Note "OLD" in line 110 indicates this file already 
exists on the disk. 

Disk Storage Size Requirements 
Before a Main Memory Array can be stored, space 
must be reserved for it on the disk. When a new file is 
OPENed, the largest available contiguous space on the 
storage medium (floppy disk or E-disk) is allocated for 
the single file, unless the SIZE is included in the 
OPEN statement. If two NEW files are OPENed 
without a SIZE statement and there is only one 
contiguous space available on the disk, the Operating 
System will display "? I/O error 306 ... " telling you 
there is no more room on the storage device, when the 
attempt is made to OPEN the second file. This will 
happen even though there is enough room on the disk 
for all the data you plan to store in each of the files. 

Disk Size Calculation 
SIZE must be stated as an integer number of 
BLOCKS (1 BLOCK= 512 BYTES). An Array file 
may contain more than one array. File SIZE must be 
large enough to equal or exceed the total number of 
storage bytes required by all of the REAL elements, 
INTEGER elements and STRING elements you plan 
to use in the Array file. 

Array values are stored on the disk as ASCII values. 
One byte of disk storage is required for each character 
stored. 

Disk requirements for serial storage (no comma after 
the variable): 

1 byte per significant digit or string character 
1 byte for the sign (even though it may be+ and not 

be displayed) 
1 byte for decimal point (reals only) 
1 byte for an included space (except with PRINT 

USING) for reals and integers 
2 bytes for <CR> <LF> 
1 byte for EO F (end of file) character 

PRINT #1, 3% 
PRINT #1, -3% 

EXAMPLES 

PRINT #1, USING "S#'', -3% 
PRINT #1, 3.285 
PRINT #1, -3.285 
PRINT #1, USING "S#.###", -3.285 
PRINT #1, "12345" 

requires 5 bytes 
requires 5 bytes 
requires 4 bytes 
requires 9 bytes 
requires 9 bytes 
requires 8 bytes 
requires 7 bytes 



Example for Disk Size Calculation 
10 DIM S$(100), 1%(100), R(lOO) 

Assumptions: 

1. All string elements = length of 10 characters. 
2. PRINT USING is utilized to insure all reals are same 

length, and all integers are the same length. 

20 CLOSE 1 
30 OPEN "TEST.DAT" AS NEW FILE 1 SIZE 6 
40 FOR J% = 1% TO 100% 
45 S$(1%) = "1234567890" \ 1%(J%)=J% \ R(J%)=J%+PI 
50 PRINT #1, S$(J%) 
60 PRINT #1, USING "S###", 1%(J%) 
70 PRINT #1, USING "S###.##", R(J%) 
80 NEXT 1% 
90 CLOSE 1 

100 END 

BYTE SIZE 

Strings Integers Reals EOF 

= 100 ((10 + 2) + (4 + 2) + (7 + 2)] + 1 

= 100 (27] + 1 

= 2701 

BLOCK SIZE = 2701/512 = 5.275391} partial block 
not allowed; the next higher Integer = 6 Blocks 

Note: Looping 94 times instead of 100 permits a 
SIZE of 5 Blocks. 

IFLUKEI ====® 
John Fluke Mfg. Co., Inc. 
P.O. Box C9090, Everett, WA 98206 
800-426-0361 (toll free) in most of U.S.A. 
206-356-5400 from AK, HI, WA 
206-356-5500 from other countries 

Fluke (Holland) B.V. 
P.O. Box 5053, 5004 EB, Tilburg, The Netherlands 
Tel. (013) 673973, TELEX 52237 
Phone or wrice for che name of your local Fluke represencacive. 

Printed m U.S.A. B0142A-IOU8204/SE EN 



IFLUKEI ====® Technical Data 
1720A Highlighted Learning Progratn B0143 

An Introduction to Virtual Arrays 

Virtual Arrays Compared to Main 
Memory Arrays 
The l 720A BASIC provides two types of variable 
arrays 1 for storing and retrieving data: Main Memory 
(ordinary or normal) Arrays and Virtual Arrays. These 
two types of arrays are identical in the following ways: 

Identical: 

1. Array variables include Reals (floating point), 
Integers and Strings. Integer array names are 
followed by %; string array names are followed by 
$. 

2. One or two character array variable names (first 
character may be any upper case letter; second 
character may be any upper case letter or any 
number 0 through 9 or may be omitted). Note 
that IF, ON, OR, TO, FN, LN, PI and AS are 
not legal variable names. 

3. One and/or two dimensional arrays, i.e., one or 
two subscripts, enclosed in parentheses (if there 
are two subscripts they are separated by a 
comma). 

4. The following BASIC statements are corrent for 
Main Memory Arrays and for Virtual Arrays as 
well: 

Reals 

Integers 

Strings 

A(l) = B3(5,J%) + Z(8) 

Q2%(0) = DD%(1,l) * E%(I%) 

S$(6) ="A" 

In other words, without additional program 
statements you cannot know which type of array 
(Main Memory or Virtual) the above BASIC 
statements represent. 

5. Virtual Arrays can be assigned values from Main 
Memory Arrays and vice versa; Virtual Arrays 
can be used in equations with Main Memory 
Arrays. 

1. Refer to Highlighted Learning Program B0142, Main Memory Arrays, 
for the definition and use of arrays for 1720A BASIC programming; also 
refer to section 2-27 and section 6 of the BASIC Programming Manual. 

Virtual Arrays are different from Main Memory Arrays 
in the following ways: 

Differences: 

1. Main Memory Arrays reside in Main Memory. 
Virtual Arrays temporarily reside in a Main 
Memory Buffer of 512 bytes (1 block) per channel 
(file) no.; permanently reside on a storage 
medium (floppy disk or E-disk). 

2. Main Memory Arrays are volatile because Main 
Memory is volatile. Virtual Arrays survive 
providing they have been transferred from the 
Main Memory Buff er to the storage medium 
(CLOSEing the file insures this). 

3. Virtual Arrays are not initialized by the DIM 
statement. Main Memory Arrays are assigned 
initial values by the DIM statement. 

4. Virtual Arrays are randomly2 accessed from the 
storage medium; Main Memory Arrays must be 
retrieved serially3 from the file storage medium. 

5. Main Memory Arrays require PRINT#<> and 
INPUT # < > statements to transport data to and 
from the storage medium. Virtual Arrays are 
automatically updated on the storage medium as 
they are used in the program. 

6. Main Memory Arrays are created with a DIM or 
a COM (common main memory for program 
chaining) statement (COM will not support string 
variables); Virtual Arrays are created with an 
OPEN and a DIM # statement. 

7. Virtual Arrays can be equivalenced4 except not 
with COM statements. 

8. Virtual Arrays do not require a COM statement 
in order to be accessed by a chained program. 
COM is not needed and cannot be used with 
Virtual Arrays. Main Memory Arrays require a 
COM statement to survive program chaining. 

9. Elements of Virtual Array Strings have a definite, 
dimensioned length. Elements of Main Memory 
Array strings are limited in length only by the 
amount of Main Memory available. 



IFLLIKEI ====® 

10. Since Main Memory Arrays must share main 
memory with the BASIC program the maximum 
amount of Main Memory available for Main 
Memory Arrays is calculated as follows (assume 
program occupies 5000 bytes): 

Given: Main Memory = 25,000 Bytes 
- Program Size 5,000 Bytes 

Maximum Array Size = 20,000 Bytes 

On the other hand, each Virtual Array file can be 
as large as 65,536 Bytes. Total number of Virtual 
Array files is only limited by available disk 
storage and the directory limit of 72 files. 

11. Main Memory Arrays are stored on the disk as 
ASCII data; they can be viewed by the File 
Utility Program. Virtual Arrays are stored as 
Binary data and cannot be viewed by the File 
Utility Program. 

12. Program execution errors automatically close 
Virtual Array files, making Virtual Array data 
inaccessible from the immediate mode, however, 
this data survives on the storage medium and can 
be retrieved by a program. Main Memory Arrays 
are accessible from the immediate mode after a 
program execution error. 

13. Virtual Array data survives a re-RUN or EDIT 
of the program, but Main Memory Array data is 
lost in both of these situations. 

2. Random Access means each variable's value is accessible without 
having to count through other variables which exist on the disk ahead 
of the desired variable. 
3. Serial Access means a specific variable is accessible only by 
counting through the other variables which exist ahead of it on the 
disk. 
4. Equivalenced variables share the same area of main memory. 

Defining "Virtual" 
After reading the above comparison of Virtual Arrays 
and Main Memory Arrays, it can be said that Virtual 
Arrays behave "virtually" the same as if they resided in 
Main Memory even though they actually reside on the 
storage medium (floppy disk or E-disk). With the 
exception of the OPEN, CLOSE and DIM# 
statements required by Virtual Arrays, the same 
identical programming code can be used 
interchangeably for Virtual Arrays or Main Memory 
Arrays; ignoring for the moment the fact that Virtual 
Array strings require some additional considerations in 
some situations due to their fixed length. 

Virtual Array Definition 
A Virtual Array is a collection of data stored in a 
random access file storage device, such as the electronic 
disk or the floppy disk. The data is stored in l 720A 
internal format (binary) so that no conversion is 

lf:'!982, John Fluke Mfg. Co., Inc., all rights reserved 

required during input or output. After a channel has 
been opened, the Virtual Array is available to the 
program just like a Main memory Array. 

Advantages and Disadvantages 
Virtual Arrays can be used to significantly extend the 
capability of a program. You will probably want to use 
Virtual Arrays exclusively except in situations where 
execution speed is critical. 

Virtual Array Advantages 

1. Non volatile - survives power down of l 720A; 
survives program chaining and DELETE ALL 
statements. 

2. More Bytes of Main Memory are available for 
program storage than when Main Memory Arrays 
are used. Refer to the "TIME" example in the 
"Programming with Virtual Arrays" lesson for a 
typical comparison. 

3. Random Access means PRINT and INPUT 
statements not necessary for data I/O. 

4. Supports Equivalencing. 

5. String data can be accessed by chained programs. 

6. Text messages can be stored on the storage 
medium rather than Main Memory. Same text 
can be used as often as needed. 

7. Program can be re-started after a l 720A power 
down and returned to the exact place in the 
program where execution ceased (due to powering 
down). 

8. Virtual Arrays can be many times larger than 
Main Memory Arrays; up to 17 times (over 400K 
bytes) as much data can exist in Virtual Arrays 
when a floppy disk and two E-disks are used. 

Virtual Array Disadvantages 

1. Not allowed in RBYTE or WBYTE statements 
(see section 7 on IEEE Bus Input and Output 
statements, in the BASIC Programming Manual). 

2. Slower execution than Main Memory Arrays. 
This difference in execution speeds becomes 
significant when large amounts of data are being 
sorted, assigned or operated upon. Exact speed 
differences are dependent on the application. 

3. Unlike Main Memory Arrays where the DIM 
statement assigns a 0 value to Real and Integer 
elements and an empty string, i.e., '"', to String 
elements (note CHR$(0) <> ""); newly created 
Virtual Arrays contain whatever byte arrangement 
that exists on the storage medium where the 
arrays reside. 



='F::L::LJ=::K:E::'® 

Creating Virtual Arrays 
Creating Virtual Arrays requires the following actions: 

1. A filename must be associated with the Virtual 
Arrays. 

2. A channel number must be associated with the 
filename. 

3. A determination must be made to use NEW data 
(create a new disk file for new data) or OLD data 
(data already in a Virtual Array disk file). 

4. The SIZE of the arrays in BLOCKS should be 
stated (continued upper right of this page). 

10 I "EXM1. [!.AS" 

5. The arrays must be DIMensioned. 

6. The DIMension must be associated with the 
channel number picked in step 2, above. 

7. The channel (file) must be CLOSEd in order to 
transport the most current array data (contained 
in the BUFFER) to the disk. 

Main Memory Array for Comparison 
The following example OPENs a file and DIMensions 
a Main Memory Array, then assigns values to the array 
and stores it on the disk. Main Memory Array data is 
stored on the disk in the file named "EXAMl.DAT". 

100 CLOS[ 1 . INITIALIZE 
1 rn 0 F' EN " EX AM 1 • D A T '' A ~3 N E W F I L E l S I Z E l ! R E S ERV E AN D N At'\ E D I S ~( SF' A C E 
120 DIM A$(5/.) 
130 FOR 1%=0% T~ 5% 
1 4 0 A$ ( l /. ) :.c C 11 R $ ( ti 5 ;~ + I I. ) ASS I G N LE TT ER S "A" TH R 0 UGH "F '' 
15G NEXT I% 
1 6 0 F' ~: I N T ti 1 , A $ < 0 I. . . 5 I. ) S T 0 R E 0 N D I S f( 
170 CLOSE ' CLOSE FILE 
180 END 

Virtual Array 
"EXAMl.BAS" has been altered (to become 
"EXAM2.BAS") as explained in the program 
comments, to use a Virtual Array instead of a Main 

10 !"EXAM2.BAS" 

Memory Array. Note line 140 did not change at all and 
line 160 is no longer needed. 

Virtual Array data is stored in Virtual Array File 
"EXAM2.BIN". 

100 CLOSE 1 1 INITIALIZE 
110 OF'EN 11 EXAM2.e.IN 11 AS NEW DIM FILE 1 SIZE 1 ! added DIM and .BIN 
120 DIM H1, A$(5/.) ! add~d H1, 
130 FOR IX=OX TO 5% 
140 A$<IX>=CHR$(65/.+I/.) ASSIGN LETTERS "A" THROUGH "F" 
150 NEXT 17. 
160 • not needed PRINT ffl, A$(0/. •. 5/.) STORE ON DISK 
170 CLOSE 1 CLOSE FILE 
180 END 

Retrieving Virtual Arrays 
Retrieving Virtual Arrays requires all of the seven steps 
mentioned in CREATING VIRTUAL ARRAYS 
except SIZE need not be specified. The operating 
system already knows the SIZE of the file named. In 
fact, any attempt to change the SIZE of an OLD file 
by including a SIZE statement in the OPEN statement, 
will be ignored by the Operating System. The "NEW" 
statement is replaced by "OLD" (if "OLD/NEW" is 
omitted, the program assumes "OLD"). 

Main Memory Array for Comparison 
"EXAMl.BAS" has been altered (to become 
"EXAM3.BAS") to bring the data from file 
"EXAMl.DAT") back into Main Memory. Note line 
170 is able to access the data from Main Memory even 
though the file has been closed. Note "NEW" has been 
changed to "OLD". 



10 !"EXM'l3.E.(1S" 
100 CLOSE 1 INITIALIZE 
1 10 0 F' EN II E x M 1 • D fH " As 0 L D F I L E 1 
120 DIM A$C5!.) 
13 () I 

140 iNPUT LINE tt1, ASC0% .• 5X> ! INPUT FILE DATA 
15 fJ I 

160 CLOSE 1 I CLOSE FILE 
170 PRINT A$C0~ .. 5%) 
1so mo 

I Dif:)F'L_AY DATA 

Virtual Array 
"EXAM2.BAS" has been altered (to become 
"EXAM4.BAS") to retrieve the same Virtual Arrays 
created by "EXAM2.BAS", using the data stored in 
Virtual Array File "EXAM2.BIN". Note line 140 
treats A$(0 .. 5) virtually as if it were in Main Memory. 

10 ! 11 EXAM4.BAS 11 

100 CLOSE 1 
11 () OPEN II £XAM2. BIN" 
120 DIM H1, A$(5~) 
13() I 

RUN this program and then, from the immediate 
mode, type: PRINT A$(0 .. 5) <CR> and note I/O error 
313 results because the Virtual Array file has been 
CLOSEd and A$(0 .. 5) is not in Main Memory. Note 
"NEW" has been changed to "OLD". 

140 F'RINT A$<0% •• 5%) 
150 I 

DISPLAY DATA 

160 I 

170 CLOSE 1 
180 END 

CLOSE FILE 

For more information on Virtual Arrays, refer to 1720A 
Highlighted Learning Program B0144, "Programming 
with Virtual Arrays"; also refer to section 6 of the 
1720A BASIC Programming Manual. 

IFLLJKEI ====® 
John Fluke Mfg. Co., Inc. 
P.O. Box C9090, Everett, WA 98206 
800-426-0361 (toll free) in most of U.S.A. 
206-356-5400 from AK, HI, WA 
206-356-5500 from other countries 

Fluke (Holland) B.V. 
P.O. Box 5053, 5004 EB, Tilburg, The Netherlands 
Tel. (013) 673973, TELEX 52237 
Phone or write for the name of your local Fluke representative. 

Printed in U.S.A. B0143A-IOU8204/SE EN 



IFLUKEI ====® Technical Data 
1720A Highlighted Learning Progratn B0144 

Programming With Virtual Arrays 

Routines No Virtual Array 
Should Be Without 
Although Virtual Arrays behave "virtually" the same as 
Main Memory Arrays, these arrays do require some 
special handling to prevent unexpected events such as: 
loss of data, data not stored on disk, disks that become 
filled without your knowledge, tabs that don't work, 
disk garbage appearing as initial array values and 
strings that won't concatenate because they are filled 
with "null" characters that you can't see. 

The program on the following page illustrates the use 
of "handlers" which should always be used with 
Virtual Arrays to prevent these unexpected events. 

The purpose of the program will now be explained: 

Escape Sequences (lines 100 through 160) 

This module provides display enhancements and has no 
direct effect on the Virtual Array. 

Open Disk File to Contain 
Virtual Arrays 
(lines 1000 through 1130) 

This module creates the Virtual Array and provides 
several protections against unexpected results. The 

10 "EXAf'\5" 
20 

"ON CTRL/C" handler (line 1020) guarantees the disk 
file will always be CLOS Ed if the user interrupts the 
program. This file must be CLOSEd when the 
program is interrupted in order to: 

1. Copy the contents of the buffer onto the disk, 
insuring that the data won't be lost, and, 

2. Delete the previous Virtual Array disk file by 
having the temporary disk file take its place, 
insuring no data is lost and that an extra file does 
not remain on the disk. 

Two OPEN statements (lines 1050 and 1070) are used. 
Line 1050 assumes a data file already exists out on the 
disk and attempts to OPEN this file. If no file is found, 
an error is generated and the ON ERROR branch (line 
1030) takes over at line 1070 and a NEW file is created, 
otherwise the OLD file is OPEN ed. If a NEW file is 
created, the flag FG% is set (line 1080) to insure the 
NEW arrays get meaningful initial values (line 1120). 

30 THIS PROGRAPI DEMONSTRATES PROPER PROGRAMPIING TECHNIQUES 
40 FOR A VIRTUAL ARRAY. THE PROGRAM ALLOWS THE USER TO 
50 INPUT OR KEEP SIX NA"ES OF NO "ORE THAN 32 CHARACTERS. 
60 CHARACTER LENGTHS OF NAMES ARE DISPLAYED. 
70 
100 !**************** ESCAPE SEQUENCES ***************** 110 I 

120 ES$=CHR$C27%)+"C" ESCAPE 
130 CHS=ES$+"2J"+ES$+"~H" CLEAR SCREEN AND HOrtE CURSOR 
140 El$=ESH"K" ERASE TO END OF LINE 
150 SL$=ES$+"1K" ERASE TO START OF LINE 
160 ! 
1000 !****** OPEN DISK FILE TO CONTAIN VIRTUAL ARRAYS ****** 1010 I 

1020 6N CTRL/C GOTO 2150 ! CLOSE FILES BEFORE EXITING PROGRAM 
1030 ON ERROR GOTO 1070 ! BRANCH WHEN "NAMES.BIN" DOESN'T EXIST 
1035 CLOSE 1 ! VERIFY CHANNEL 1 HAS NOT BEEN LEFT OPEN 
1040 FGX=O ! FLAG TO INDICATE NEW DATA 
1050 OPEN "NAf'IES.BIN" AS OLD DIM FILE 1 
1060 GOTO 1100 ! JUMP AROUND "NEW" OPEN STATErtENT 
1070 OPEN "NAPIES.EHN" AS NEW DU' FILE 1 SIZE 1 
1080 FGX=U INDICATE "NEW" DATA 
!090 RESUPIE 1100 EXIT FROM "ON ERROR" e.RANCH 
1100 OFF ERROR CURRENT ERROR HANDLER NO LONGER NEEDED 
1110 Dif'I Ml, Nfl\$(5%)=32% CREATE 6 STRING ELEMENTS OF 32 CHARACTERS EACH 
1120 IF FGX THEN GOSUB 20020 \ FGX=O ! INITIALIZE NEW DATA 
1130 I 

Program Listing is continued on next page 



IFLUKEI ====® 

2000 
2010 
2020 
2030 
2040 
2050 
2060 
2070 
2080 
2090 
2100 
2110 
2120 
2130 
2140 
2150 
2160 
2170 
20000 
20010 
20020 
20030 
20040 
20050 
20060 
21000 
21010 
21020 
21030 
21040 
21050 
21060 
21070 
21080 
30000 
30010 
30020 
30030 
300~0 
30050 
30060 
32030 

!***************** ENTER NAMES ******************* 
I 

ON ERROR GOTO 30020 
PRINT CHS 

! HANDLE INPUT ERRORS 
! CLEAR SCREEN AND HOME CURSOR 

FOR D:=OX TO 5X 
PRINT CPOS(2,15H"NAPIE NO.";U;"IS CURRENTLY ";EL$;Nf'\$(U) 
VA~=NM$CIX> ! PASS TO MAIN MEMORY VARIABLE FOR SUBROUTINE 
Go~ua 21020 I STRIP OFF NULL CHARACTERS 
PRINT CPOS(3,15);"STRING LENGTH ="H.EN<VA$),"LEN<NM$(!X)=";LEN<NM$<IX>> 
PRINT CPOSC7r15);"ENTER NAME <CR>" 
PRINT CPOSC5r15>;EL$; ! POSITION CURSOR ANO ERASE PREVIOUS ENTRY 
INPUT LI NE T$ 
IF H="" GOTO 2140 OPTION TO ~{EEP PREVIOUS ENTRY 
NM$CIX>=T$ TRANSFER ENTRY FROM TEMPORARY STORAGE 
NEXT U 
CLOSE 1 COPY BUFFER CONTENTS ONTO DISK 
END 
I 

!***** 
I 

ASSIGN MEANINGFUL INITIAL VALUES IN LIEU OF DISK GARBAGE ***** 
FOR JX=OX TO 5X 

N"'$(JX)="YOUR CHOICE" 
NEXT JX 
RETURN 
I 

!*****~******~** DELETE NULL CHARACTERS *************** 
I 

P1X=INSTRC1XrVA$rCHR$(0%)) 
SGX=SGN < P 1'X > 
P2"=PU-U 
VAX=<1X-SGX>•LEN<VA$)+P2X•SGX 
VA$=LEFT<VA$,VAX> 
RETURN 
I 

LOCATE 1ST NULL POSITION 
WAS NULL FOUND? 
LOCATE LAST NON-NULL CHARACTER 
LENGTH OF CHARACTER STRING W/O NULLS 
STRIP OFF NULL CHARACTERS 

!*********** ERROR HANDLER FOR INPUT ERRORS ********** 
I 

F'RINT CHR$(7X>;CPOSC9r15>;"ILLEGAL ENTRY"; 
WAIT taaa 
r·fHNl SL$; 
RESUME 2100 
I 

END 

! £RASE "ME:SSAGE" 

Enter Names (lines 2000 through 2170) 

This module provides the display prompts and INPUT 
LINE statement to allow the user to enter six names. 
Notice the use of the temporary variable T$ (lines 2110 
and 2120). If the user makes no entry before pressing 
the RETURN key, the BASIC System will input an 
empty string to T$ and the data contained in 
NM$ (I%) will remain the same. 

The length of NM$(I%) and the relevant string length 
is displayed (line 2080) to demonstrate the need to strip 
off the Null Characters (line 2070). Any attempt to 
concatenate NM$(I%), e.g., NM$(I%) = NM$(I%) + 
"anything" will result in an error because Virtual Array 
string elements are always full due to Null Characters 
which are added by the BASIC System. Proper 
concatenation could be accomplished as follows: 

2060 VA$ = NM$(1%) ! Virtual Array Assigned to 
Main Memory Array 

2070 GOSUB 21020 ! Strip Off Null Characterss 

©J982, John Fluke Mfg. Co., Inc. All rights reserved. Litho in U.S.A. 2 

2172 VA$ =VA$ + "anything" ! Final LEN (VA$) :s:;32 
2174 NM$ (1%) =VA$ ! Assignment to Virtual Array 

5 This could also be done with a DEF FN (see section 6-22 of the 
BASIC programming manual). Although somewhat slower than a 
subroutine, the defined function eliminates the need for dedicated 
variable names. 

Assign Meaningful Initial Values 
in Lieu of Disk Garbage 
(lines 20000 through 20060) 

This subroutine is only used if a NEW data file is 
OPENed. For an interesting experiment, type: KILL 
"NAMES.BIN" <CR> from the immediate mode. 
Then go to FUP and format a new disk and copy your 
original disk onto the new disk. Using the new disk, get 
into BASIC and load (OLD) the program. Then delete 
line 1120. RUN the program and observe the disk 
garbage. Had Real or Integer arrays been used this 
module could have assigned zeros to these array 
elements. 



IFLUKEI ====® 

Error Handler for Input Errors 
(lines 30000 through 30060) 

This subroutine prevents program interruption by 
handling illegal data entries. RUN the program and 
make entries which are longer than 32 characters and 
watch this error handler in action. The branch to this 
error handler is set-up in line 2020 of the program. 

User Information 
This program may be interrupted at any time by a 
CTRL C, and all entries made just prior to the CTRL 
C will be stored on the disk. In other words, if all 
entries are correct except the 3rd name, RUN the 
program and simply press RETURN until the 3rd 
name is displayed; enter the 3rd name, press 
RETURN, then CTRL C and you are finished. 

Debugging Programs That 
Use Virtual Arrays 
Most programmers will attempt to PRINT variable 
values from the Immediate Mode after their program 
has been interrupted by an error. The variable values 
can give clues as to what went wrong with the program. 
It is not possible to PRINT Virtual Array values from 
the Immediate Mode after the program has been 
interrupted by an error, because the BASIC System 
reacts to the error by CLOSEing all Virtual Array files 
in order to protect their data. The same problem exists 
for a CTRL C interrupt when the program contains an 

ON CTRL/C branch to CLOSE the Virtual Array 
Files. 

Here are two ways to overcome this problem: 

1. Use an ON ERROR handler which assigns key 
Virtual Array values to Main Memory variables 
and then CLOSEs the Virtual Array files 

or 

2. Develop the program using Main Memory Arrays. 
If available Main Memory is lacking, develop a 
module at a time using Main Memory Arrays. In 
the previous program all that would have to 
happen to convert it to Main Memory Arrays is: 

Delete or Comment out (!) lines: 1030 through 
1100, 1120 and 2150 Change line 1110 to "DIM 
NM$(5%)" 

After the program has been debugged, add the original 
versions of the above lines back into the program and 
take advantage of the Virtual Arrays, once again. 

Single Dimension to Double 
Dimension Equivalencing 
The following example shows how to equivalence a 
single dimension array with a two dimension array 
having the same number of elements. Delete the "%" 
from the variable names and you will see it works for 
real variables as well. It also works for strings. 

10 ! "EXAl"l6A" USES INTEGER-INTEGER EQUIVALENCING 
20 ! TO EQUIVALENCE ONE AND TWO DI"ENSION ARRAYS 
30 CLOSE 1 
40 OPEN "DATA.BIN" AS NEW Dlf'I FILE 1 SIZE 1 
~O DI" Ml, A2XC1X,3%) 
60 DIM "1' A1XC7X> 
70 FOR 1%=0% TO 7% 
BO READ A1XCIX> READING FOR THE A1XCARRAY) DOES IT FOR THE A2XCARRAY> 
90 NEXT IX 
100 PRINT "DISPLAY ONE-DI" ARRAY" 
110 PRINT 
120 FOR IX=OX TO 7X \ PRINT A1X<IX);" "; \NEXT IX 
130 PRINT \ PRINT 
140 PRINT "DISPLAY TWO-DI" EQUIVALENCED ARRAY" 
150 PRINT 
160 FOR JX=OX TO 3X 
170 PRINT A2XCDX,JX), A2XC1X,JX) 
180 NEXT JX 
190 CLOSE 1 
200 DATA 100, 200, 300. 400, 500, 600, 700, 800 
210 END 

3 



IFLUKEI ====® 

Integer-String Equivalencing 
The following example shows how to create the 16 
character string "JOHN FLUKE MFG.?" using 8 
integer values. The Virtual String Array A$(0) and the 

Virtual Integer Array share the same disk space. To 
create your own message, first assign your message to 
A$(0), i.e., A$(0) = "Your Message," then PRINT 
A%(0% .. 7%) to see what integer values are required. 

10 ! "EXMl6" USES INTEGER-STRING EQUIVALENCING 
20 ! TO SPELL "JOHN FLUKE fl!FG.'?" 
30 CLOSE 1 
40 OPEN "DATA.BIN" AS NEW Dlf'I FILE 1 SIZE 1 
50 DI" Mlr A$(0)=16 
60 DIM Ml, A%(7%) 
70 FOR IX=OX TO 7% 
BO READ AX<U> 
90 NEXT IX 
100 DATA 2029B.20040.17952.21836r17739r19744r1B246r16174 
110 PRINT A$< 0 > 
120 CLOSE 1 
130 END 

Result: "JOHN FLUKE MFG.?" is displayed. 

The next example shows how to assign the integer 
values, 1 through 8 to the Virtual Integer Array 
A%(0% .. 7%) using a 16 character Virtual String Array 
A$(0). These two virtual arrays share the same disk 
space. To create your own integer numbers, first assign 
these numbers to A%(0% .. 7%) then look at each of the 
16 characters and determine its ASCII value, e.g., 

FOR 1% = 1% TO 16% 
PRINT ASCII (MID (A$(0), 1%, 1 %)) 
NEXT I% 

Place these ASCII values in the DATA statement on 
line 160. 

10 ! "EXAM7" USES INTEGER-STRING EQUIVALENCING 
20 ! TO ASSIGN AX<OX>=1,AX<1X>=2, ••• ,AX<7X>=B 
30 CLOSE 1 
40 OPEN "DATA2.BIN" AS NEW Dlf'I FILE 1 SIZE 1 
50 DIM Ml, AS<0>=16 
60 DI" Ml, AX(7%) 
70 T$="" 
80 FOR 1%=1% TO 16% 
90 READ NX 
100 T$=T$+CHR$<N%> 
110 NEXT IX 
120 AS<O>=H 
130 PRINT "A%<0% •• 7'.0 =";A%<0% •• 7%); 
140 PRINT \ PRINT 
150 PRINT "A$(0%) = ";A$CO%> 
160 DATA 1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0 
170 CLOSE 1 
180 END 

Result: "A%(0% .. 7%) = 1 2 3 4 5 6 7 8" is displayed. 
"A$(0%) = I _LJd8J j "is displayed. 

4 



IFLUKEI ====® 

Creating Dimension Statements 
Requiring More Than One Program Line 
Sometimes one line won't hold all the Virtual Arrays 
you would like to DIMension. In the examples below 
the DIM statement started on line 70 is continued on 

10 "EXAMS" 

line 80 by equivalencing a dummy array. The dummy 
array occupies the same memory space as all the arrays 
on line 70. The dummy array must contain the total 
number of bytes for all the arrays on line 70 plus the 
number of bytes, if any, that are left vacant prior to 
overlapped Block boundaries. 

20 EQUIVALENCING TO ADD TO THE DI"ENSION STATE"ENT. 
30 FFX<ARRAY> IS A DUMMY ARRAY EQUIVALENCED TO THE ARRAYS FOR THE 
40 . OI" STATE"ENT ON LINE 70 
50 CLOSE 1 
60 OPEN "DATA3.EHN" AS NEW OI" FILE 1 SIZE 5 
70 DI" Ml, AAS<10X>=321.,BBSC101.)=321.,CCS<10X>=32X,00$(10X>=32X,EES<10X>=32X 
BO Oif'I ffl, FFX<5X•11X*32X/2),FF$(10X)=32X 
90 CLOSE 1 
100 END 

10 ! "EXAf'l8A" 
20 ! EQUIVALENCING TO ADD TO THE OI"ENSION STATEMENT. 
30 ! HHX<ARRAY> IS A ou""y ARRAY EQUIVALENCED TO THE ARRAYS FOR THE 
40 ! DIM STATEMENT ON LINE 70 
50 CLOSE 1 
60 OPEN "DATA3.BIN" AS NEW Dif'I FILE 1 SIZE 3 
70 DIM Ml, AA$(10i.>=321.,BB$(101.)=321.,CC(10/.),00(10X>,EE<10X>,FFX<10X),GGX<10X> 
BO DI" Ml, HHX<11X*<32+32+8+8+B+2+2)/2),IIX<10X) 
90 CLOSE 1 
100 END 

Using the Tab Function With Virtual 
Array Strings 
The Null Characters in Virtual Array Strings cause 
unexpected events in PRINT and PRINT USING 
statements which also include the TAB function. In 
order to avoid this, assign the Virtual Array String 

element to a Main Memory String variable, strip out 
the Null Characters from this Main Memory variable 
then use it in the PRINT or PRINT USING 
statement in place of the Virtual Array element. 
Example 9 compares TAB printing with and without 
Null Characters. 

10 ! "EXAf'l9" 
20 ! VIRTUAL ARRAYS WITH THE TAB FUNCTION 
30 CLOSE 1,2 
40 OPEN "KBO;" AS NEW FILE 2 
50 OPEN "DATA.VRT" AS NEW DUI FILE 1 SIZE 1 
60 ••· 70 COLUMN REFERENCE 
BO PRINT "O 1 2 3" 
90 PRINT "123456789012345678901234567890" 
100 ! 
110 OI" ff1, CS<OX> 
120 C$<OX>="1234567890" ! ASSIGN 10 CHARACTERS TO 16 CHARACTER ELE"ENT 
130 VAS=CS<OX> ! SUBROUTINE PASS VARIABLE 
140 GOSUB 220 ! FIND LENGTH OF STRING W/O NULLS 
150 CS=LEFT<CS<OX>,VAX> ! STRIP NULLS 
160 PRINT M2,"";TAB<7%HCSHAB(27XHf'I PRINT WITHOUT NULLS 
170 PRINT M2 
180 PRINT M2,""HAB<7X>;C$<OX>HABC27XHf'I PRINT WITH NULLS 
190 CLOSE 1,2 
200 END 

Program Listing is continued on next page 5 



IFLUKEI ====® 

210 !************* LENGTH OF STRING W/O NULLS **************** 
220 I 

230 ~1X=INSTRC1X,VAf,CHR$C0%)) 
240 SGX=SGNCPlX> 
250 f'2%=PU-U 
260 VAX=C1%-SGX>*LENCVAf>+P2X*SG% 
270 RETURN 
280 END 

How to Delete <not used> and <temp 
ent> Files 
<not used> and <temp ent> files accumulate on the 
disk when Virtual Array files are OPENed and not 
CLOSEd prior to terminating or EDITing a program. 
These files can only be seen by the File Utility 
Program (FUP) using the /E command, but they do 
take up disk memory and can quickly fill a disk. These 
files can only be deleted by packing the disk (IP 
command). Note: These files are not transferred using 
the /W command. 

Programming For Faster Execution 
The following programming techniques can make a 
significant difference in the time it takes to execute a 
program. 

Open More Channels 
A buffer in Main Memory can only contain 1 Block 
(512 bytes) of a Virtual Array. When your program 
uses an array element that is stored in a different block 
than the block in the buffer, the BASIC System must 
take the block from the buffer and store it on the disk, 
then copy the other block into the buffer. Every time 
this happens, the program must wait until the block 
transfers are complete, resulting in a loss of program 
execution speed. 

Obviously, if we could get more than one block of the 
Virtual Arrays into Main Memory Buffer, fewer block 
transfers would be required during program execution, 
with a resulting increase in execution speed. To 
accomplish this, split the Virtual Arrays up into as 

! "TIME" 
CLOSE1 

many as 6 separate groups; OPEN a channel number (1 
through 6) for each group. This establishes a one block 
buffer in Main Memory for each channel OPENed. 
You will, of course, need a separate file name for each 
channel OPENed. For example: 

In place of-

OPEN "DATA.BIN" AS NEW FILE 1SIZE11 

DIM #1, A (100%), B (100%), C (100%), D (100%), 
E (100%), F (100%) 

use-

OPEN "DATAA" AS NEW FILE 1 SIZE 2 
OPEN "DATAB" AS NEW FILE 2 SIZE 2 
OPEN "DATAC" AS NEW FILE 3 SIZE 2 
OPEN "DATAD" AS NEW FILE 4 SIZE 2 
OPEN "DATAE" AS NEW FILE 5 SIZE 2 
OPEN "DATAF" AS NEW FILE 6 SIZE 2 

DIM#l, A (100%) 
DIM#2, B (100%) 
DIM#3, C (100%) 
DIM#4, D (100%) 
DIM#S, E (100%) 
DIM#6, F (100%) 

Efficient Element Access For Two­
Dimensional Arrays 
The fastest assignment of values to a large portion of a 
double subscripted Virtual Array occurs when the 
program associates the outside loop with the leftmost 
subscript; and associates the inside loop with the 
rightmost subscript as shown in the example "TIME" 
below: 

4000 
4010 
4020 
4030 
4040 
4050 
406() 
4070 
4080 
4090 

OPEN "MFO:TEMP.DAT" 
DIM Ml, AX<63X,63) 
T1=TIME 

AS NEW DIM FILE 1 SIZE 16 

FOR IX=OX TO 63% 
FOR J%=0% TO 63% 

AX<IX,JX) = OX 
NEXT JZ 

NEXT IX 

Program Listing is continued on next page 6 



IFLUKEI ====® 

4100 T2=THIE 
4110 PRINT "UNUSED MEMORY = "HIEM 
4120 CLOSE 1 
4130 PRINT CHR$C7X) 
4140 KILL "MFO ;TEMP. DAT" 
4150 PRINT "TOTAL TIPIE = ";(T2-T1)/1000;" SEC" 
4160 END 

Refer to the TABLE below for a 
comparison of execution speeds for both 
subscript arrangements. 

Take Advantage of the Electronic Disk 
Storing Virtual Arrays on the E-Disk can make them 
execute almost as fast as Main Memory Arrays. In the 
example "TIME" above, change "MFO:" to "EDO:" in 
lines 4020 and 4140 and note the increase in execution 
speed. 

Note that the Main Memory Arrays in the example 
"TIME" require 7604 more bytes of Main Memory 
than the Virtual Arrays. 

TABLE OF EXECUTION SPEED AND UNUSED MAIN MEMORY FOR EXAMPLE "TIME" 

Floppy Disk E-Disk Main Memory 

Program Lines Use "MFO:" in Use "EDO:" in Delete 4010, 4020, 
lines 4020 and lines 4020 and 4120, 4140; 4030 reads 

4140 4140 DIM A% (63%,63%) 

4070 A%(I%,J%) = 0% 29.12 sec 

4070 A%(J%,I%) = 0% 461.3 sec 

Unused Main Memory 24274 Bytes 
(MEM) · 

Use the Same DIM Statement for More 
Than One Open Statement 
If you have groups of data which are identical as in the 
following example, one DIM# statement is all that is 
necessary. An error will result if you attempt to execute 
a second DIM# statement for the same channel no. 

10 ! "EXAf'l10" 

22.36 sec 

31.53 sec 

24274 Bytes 

20 ! MULTIPLE USE OF A SINGLE DIPI STATEMENT 
30 I 
40 CLOSE 1 
50 OPEN "DATA4.BIN" AS NEW DHI FILE 1 SIZE 1 
60 DIM Ml, A$C37.>=64X 
70 A$CO::C:>=CPOSC4,20)+"TEXT CAN BE STORED IN VIRTUAL" 
BO A$C1r.>=CPOSC5,20)+"ARRAYS FOR USE AS A PROMPT AS" 
90 ASC2::C>=CPOSC6r20H"MANY TIMES AS IT IS NEEDED BY" 
100 A$C31.)=CPOSC7,20>+"BY YOUR PROGRAPI" 
110 PRINT A$CO::C •• 3::C:) 
120 CLOSE 1 

21.03 sec 

21.03 sec 

16670 Bytes 

130 OPEN "OATA5.EHN" AS NEW OHi FILE 1 SIZE 1 
150 ASCO:r.>=CF'OSC10r20)+"BY USING THE SAf'IE PROMPT fl'IANY" 
160 A$CU>=CPOSC11,20H"TIMES, BUT ONLY HAVING TO CODE" 
170 A$(27.)=CPOS<12,20H-"Ir ONCE AS A VIRTUAL ARRAY, WILL" 
180 A$C3::C:>=CPOSC13r20H"REQUIRE PIUCH LESS PIAIN MEMORY" 
190 PRINT A$COX •• 37.) 
200 CLOSE 1 
210 END 

7 



IFLLJKEI ====® 

Chaining Programs Which 
Use Virtual Arrays 
Virtual Arrays can be used in lieu of the COM 
statement, in fact, Virtual Arrays are better because 
they allow string arrays to survive; COM statements do 
not. The program "EXAMll", below, is meant to be 

10 ! "CHAIN" 

chained by the program "CHAIN". "EXAMlO" was 
altered as follows to accomplish the chaining: 

insert line 205 RUN "EXAMll" 

delete lines 110 and 190 in "EXAMlO" as they 
are no longer necessary 

20 ! MULTIPLE USE OF A SINGLE DIM STATEMENT 
30 I 

40 CLOSE 1 
50 OPEN "DATA4.e.IN" AS NEW DIM FILE 1. SIZE 1 
60 DIM "1' A$(3i.)=64i. 
70 A$ <Oi.) =CPO!H 4, 20 H II TEXT CAN e.E STORED IN VIRTUAL II 
80 A$(1i.>=CPOS(5,20)+"ARRAYS FOR USE AS A PROMPT AS" 
90 A$(2:'0=CP0bl6r2CH"P1ANY TIMES AS IT IS NEEDED BY" 
100 A$<3X)=Cf'OS(7,20>+"BY YOUR f'ROGRAl't" 
120 CLOSE 1 
130 OPEN "DATA5.e.IN" AS NEW DIM FILE 1 SIZE 1 
150 A$(0X>=Cf'OS(10,20H-"BY USING THE SAME PROMPT MANY" 
160 AS<U>=CPOS(11,20)+"TIMES, BUT ONLY HAVING lO CODE" 
170 A$<2X>=CPOS<12,20)+"IT ONCE AS A VIRTUAL ARRAY, WILL" 
180 A$C3X)=CPOSC13,20)+"REQUIRE MUCH LESS MAIN MEMORY" 
200 CLOSE 1 
205 RUN "EXAM11" 
210 END 

10 ! "EXAf'\11" 
20 ! CHAINING PROGRAMS WHICH USE EXISTING VIRTUAL ARRAY DATA 
30 ! USE "EXAl'\10" TO CHAIN HHS PROGRAM IN 
40 CLOSE 1 
50 OPEN "DATA4.EHN" AS OLD DIM FILE 1 
60 DIM "1' A$(3%>=64% 
110 PRINT A$COX •• 3X> 
120 CLOSE 1 
130 OPEN "DATA5.e.IN" AS OLD DIM FILE 1 
190 PRINT A$(0X •• 3i.) 
200 CLOSE 1 
210 END 

Additional information on program chaining with 
Virtual Arrays is found in section 10 of the FLUKE 
BASIC Programming Manual. This section includes an 
excellent example on how to re-start a specified 
program after a power interruption using Virtual 
Arrays. 

NOTE: It is not necessary to CLOSE and re-OPEN 
channels when chaining in a program to the same 
Virtual Arrays, however, to prevent unexpected results 
due to errors, it is recommended that the CLOSEing 
and re-OPENing always be done. 

8 

Using Partial Arrays 
If you only want the leading portion of the data in a 
Vir~al Array, it is possible to DIMension for just that 
portion your program requires. "EXAMll" has been 
altered to only use the first element of the file without 
disturbing the rest of the arrays in the file. This 
appears on the next page as "EXAM 12". 



I ~F=L=U==K=E=' = ® 

10 ! "EXAM12" 
20 ! USING PORTIONS OF VIRTUAL ARRAYS 
30 ! USES "EXAM10" VIRTUAL ARRAY DATA 
40 CLOSE 1 
50 OPEN "DATA4.BIN" AS OLD DHI FILE 1 
60 DIM "1' A$(0X>=64X 
110 PRINT A$<OX> 
120 CLOSE 1 
130 OPEN "DATA5.BIN" AS OLD OHi FILE 1 
190 PRINT AS<OX> 
200 CLOSE 1 
210 END 

Dimensioning for Disk Storage Space 
Economies 
Section 6-24 through 6-33 of the FLUKE BASIC 
Programming Manual and the Help Lesson "An 
Introduction to Virtual Arrays" describe why the order 
that Virtual Array declarations appear in the DIM 
statement, affects the amount of disk storage required. 

The rule of allocating virtual array declarations from 
left to right in decreasing order of array element 
lengths is all that is needed to insure disk storage space 
efficiency, except when a different declaration order is 
necessary to facilitate tasks such as accessing the 
leading portion of an array file (see "EXAM12" 
program, above). The program "EXAM14", below, 
computes the disk storage space required for all 
possible orders of DIM statement declaration. 

If you need help in visualizing how the bytes per 
element are allocated for storage on the disk, study the 
algorythm in "EXAM14" (lines 1160 through 1340). 
"EXAM14" calculates the most efficient DIMensioning 
for a group of three Virtual Arrays (see line 750). This 
program prints out all possible combinations; indicating 
the disk storage space required for each combination. 
The program allocates bytes and blocks just as the 
BASIC System would do it, in the order that the arrays 
appear in the DIM statement. The printout appears on 
the l 720A display, however, the printout is easily 

10 EXAMPLE 14 
20 VERSION 1.0, 30 DECEMBER 1981 
25 

changed to an RS-232-C port by changing "KBO:" to 
"KBl:" or "KB2:" in line 450. 

"EXAM14" can easily be altered to try combinations 
for more or less than three arrays. For example, 
suppose a 4tq array "F$(20%,2%)=8%" were added to 
the existing DIM statement on line 450; these program 
lines would be updated or added as indicated: 

520 N% = 4% 
525 NF% = 4% * 3% * 2% * 1 % 
740 add " ... 4 (order: 1234)" 
750 add " ... ,F$ (20%, 2%) = 8%" 

Note: Delete comment on line 750 to make room. 

add: 822 FOR D% = 1 % TO N% ! D% = position 
of array no. 4 

add: 823 IF D% = A% OR D% = B% OR D% = 
C% GOTO 2165 

825 add\ AP$(D%) = "4"! delete comment 
to make room 

840 add ... + AP$ (4%) 
add: 935 NE%(D%) = 63% \ NY%(D%) = N3% ! 

Comment 
950 delete "THREE" insert "FOUR" 
960 update for FOUR FACTORIAL (4 x 3 

x 2 x 1 = 24 Combinations) 
add: 2165 NEXT D% 

After RUNning the program for the fourth array, the 
results for best choice should be: 3240 or 3421. 

26 THIS PROGRAM CALCULATES THE SEQUENCE OF VIRTUAL ARRAY DIMENSIONING 
27 WHICH WILL REQUIRE THE LEAST AMOUNT OF DISK STORAGE 
28 
30 f'RINT CHR$C27'.i0+"[2J" CLEAR DISPLAY 
40 I 

50 L$="S"""·""" PRINT USING FORMAT FOR BLOrns 
60 Y$="S""""" PRINT USING FORMAT FOR BYTES 
70 I 

100 ! DEFINITION OF VARIABLES 
110 ~ 

Program Listing is continued on next page 9 



IFLLJKEI ====® 

120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
415 
420 
430 
440 
450 
46() 
500 
510 
520 
525 
530 
540 
550 
570 
575 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
BOO 
810 
820 
825 
830 
840 
850 

<Y> STANDS FOR B(Y)TE IN THE VARIABLE NAMES 
<L> STANDS FOR B(L)OCK IN THE VARIABLE NAMES 

AX ORDER SUBSCRIPT 
BX ORDER SUBSCRIPT 
ex ORDER SUBSCRIPT 
KX COUNTER FOR THE SIX POSSIBLE SEQUENCES 
U ARRAY NO. 
JX ELEMENT COUNTER 
LX BLOCK COUNTER 
NX TOTAL NO. OF ARRAYS TO BE DIMENSIONED 
YX BYTE COUNTER 
AYX = ACTUAL TOTAL BYTES USED BY ALL THE ARRAYS 
TYX = MINIMUM TOTAL BYTES REQUIRED FOR ALL THE ARRAYS 
AL = ACTUAL TOTAL BLOCKS USED BY ALL THE ARRAYS 
TL MINIMUM TOTAL BLOCKS REQUIRED FOR ALL THE ARRAYS 
MNX MINIMUM UNUSED BYTES 

ELX<I%> ENDING BLOCK NO. FOR ARRAY IX 
EYX<IX> = ENDING BYTE NO. WITHIN BLOCK NO. ELX<IX> FOR ARRAY IX 
NEX<IX> NO. OF ELEMENTS IN ARRAY IX 
NYX<IX> = NO. OF BYTES PER ELEMENT IN ARRAY IX 
SLX<IX> STARTING BLOCK NO. FOR ARRAY IX 
SQ$CKr.> = SEQUENCE OF DIMENSIONING 
SYXCIX> STARTING BYTE NO. WITHIN BLOCK NO. SL%(!%) FOR ARRAY 1% 
SZX<IX> TOTAL NO. OF BYTES REQUIRED BY ARRAY IX 
UBX<KX> UNUSED BYTES FOR THE KTH SEQUENCE TEST 

I 

I 

UYX<Ir.> ACCUMULATOR or NO. OF UNUSED BYTES IN BLOCKS USED BY ARRAY IX 
AP$C1 •• NX> =ARRAY POSITION 

!**************** PICK OUTPUT DEVICE ************** 
I 

CLOSE 1 
OPEN "Ke.a;" AS NEW FILE 1 
I 

~**************** INITIALIZATION *************** 
I 

NX=3X ! 
NFX=3X*2*1X 
RLX=BX ! 
NTX=2:Y. ! 
N1%=2X ! 
N27.=4X ! 
N3%=8% ! 
N4X=16X ! 
N5::C:=3n ! 
N6X=64X ! 
N7%=128% ! 
NBX=256X ! 
N9%=5122 
I 

NO. OF 
! = NX 
NO. OF 
NO. OF 
STRING 

ARRAYS TO BE DIMENSIONED 
FACTORIAL POSSIBLE DIMENSIONING 
BYTES REQUIRED BY A REAL NUMBER 
BYTES REQUIRED BY AN INTEGER 
LENGTH OF 2 CHARACTERS 

4 
B 

16 
32 
64 

128 
256 
512 

COMBINATIONS 

DIM SYX<NX>,SLX<NX>,EYX<NX>,ELX<NX>,UYX<NX>,NEX<NX>,NYX<NX>,SZX<NX> 
DI" SQ$CNFX), UBX<NFX), APS<NX> 
•(%=0 
I 

!********* ASSIGN SUBSCRIPTS FOR THE SIX POSSIBLE SEQUENCES ****** 
I 

t1$=" SUBSCRIPTS WHI~H IDENTIFY ARRAYS" 
T2$=" ---------------------------------" T3$= 11 ARRAY NO. 1 2 3 (ORDER: 123)" 
TO=" DIM tH, G%(17.,4X>, EC10X,9X), Q$(10X>=64X ! ARRAYS BEING TESTED" 
~RINT M1, T1$ \ PRINT Ml, T2$ \PRINT Ml, T3$ \ PRINT H1, T4$ \ PRINT M1 
toR AX=1X TO NX ! AX POSITION OF ARRAY NO. 1 
FOR BX=1X TO Ni. ! BX = POSITION OF ARRAY NO. 2 

IF BX=AX GOTO 2180 
FO~rc~%~lxT8RN~X=BX GOTO 2t15x = POSITION OF ARRAY NO. 3 

AP$CAX>="1" \ Af'$<e.X>="2" \ AP$(CX>="3" ! ARRAY POSITION STRINGS 
KX=KX+1X 1 INCREMENT TEcT COUNTER (li. TO NFX> 
SQ$CKX>=AP$<1X)+AP$C2X)+AP$C3X> ! STORE ACTUAL

0
SEQUENCE' " 

Program Listing is continued on next page 10 



IFLUKEI ====® 

860 
87() 
880 
890 
900 
910 
920 
930 
940 
950 
960 
970 
1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1430 

2000 
2010 
2020 
2030 
2040 
2050 
2060 
2070 
2080 
2090 
2100 
2110 

SUBSCRIPTS IN THE SIX VARIABLES BELOW CORRESPOND 
WITH THE SELECTED DI"ENSIONED ORDER BEING TESTED 
NO. OF ELEMENTS BYTES PER ELEMENT -- ORDER -- ARRAY NO. 

NEZ<AZ>=10Z \ NYX<AZ>=NTX ! AZTH ARRAY TO BE DIMENSIONED (1) 
NEX<BX>=110X \ NY7.(BX)=RL7. ! BXTH ARRAY TO BE DIMENSIONED <2> 
NEX(CX>=11X \ NYX(CX>=N6% ! CZTH ARRAY TO BE DIMENSIONED <3> 

NOTE THERE ARE THREE FACTORIAL POSSIBLE DIMENSION COMBINATIONS 
FOR THE ABOVE THREE ARRAYS; 123. 132, 213, 231, 312, 321 

!****•***•****** MAIN PROGRAM *********************** 
I 

YX=O 
U1:=1:Y. 

INITIALIZE BYTE COUNTER 
. INITIALIZE BLOCK COUNTER 

ue.x rnx > =O ! INITIALIZE TOTAL UNUSED BYTE ACCUMULATOR 
I 

i 
i 

---·- DISPLAY HEADINGS -----

f'RINT 
PRINT 
PRINT 
PRINT 
PRINT 

H1, TAB ( 34); "ORDER; .. ; SQ$ rn:o 
"1rTAB(9);"ARRAY";TAB(16);"STARTING";TAB<29);"STARTING"; 
H1, TAB< 44); "ENDING" ;TAB< 57 >;"ENDING" ;TAB <70 >;"UNUSED" 
"1. TAB ( 9); "NO. II; TAB ( 18); 11 BYTE 11

; TAB ( 30); "BLOC•<"; 
H1, TAB ( 45); II BYTE II ;TAB ( 57); "BLOC•< II; TAB (70); II BYTES" 

I 

! ---- ALLOCATE STORAGE TO BLOCKS ----
' FOR IX=1Z TO NX ! ARRAY NO. COUNTER 

I 

SZX<IX>=NEX<IX>*NYX<IX> ! TOTAL BYTES REQUIRED BY THE ARRAY 
SYX<IX>=YZ+1Z ! STARTING BYTE NO. 
SLX<IX>=L:r. ! STARTING BLOCK NO. 
UYX<IX>=O ! INITIALIZE UNUSED BYTE ACCUMULATOR 

FOR J%=1X TO SZX<IX> STEP NYX<IX> ELEMENT COUNTER 
IF YZtNYZCI:Y.><=512% GOTO 1280 BLOCK SIZE EXCEEDED 
UYXCIZ>=UYZCIX>~512%-YX ACCUMULATE UNUSED BYTES 
YX=O INITIALIZE BYTE COUNTER 
LX=LX+1% UPDATE BLOCK NO. 
GOTO 1230 START FILLING THE NEW BLOCK 
YX=YX+NYXCIX> INCREMENT AN ELEMENT OF BYTES 

NEXT J:r. GET NEXT ELE"ENT 

EYX<IX>=YX 
ELZ ( 1'!) =LZ 
UBXCKX>=UB~CKX>+UYXCIX> 
TYX=TY:Y.t·SZ:r.< IX> 

ENDING BYTE NO. 
ENDING BLOCK NO. 
ACCUMULATE TOTAL UNUSED BYTES 
ACCUMULATE MINIMUM TOTAL BYTES REQUIRED 

---- DISPLAY RESULTS ----
PRINT ttl,USING Y$,TABC5);MIDCSQ$(K%),I%,1%>;TAB<17);SYX<IX>; 
PRINT tt1,USING Y$,TABC29);SLXCIZ>;TAB<44>;EYX<IX>; 
PRINT ffl,USING Y$,TAB<56>:ELX<IX>:TABC69>:UYXCI%) 

NEXT IX ! GET NEXT ARRAY 
I 

!******************** DISPLAY TOTALS *****~*•*••*****•****~••* 
I 

AL=EL%(N%>-1X+EYX<N%)/512 
TL=TYZ/512 
AYX=AU:512 
PRINT Hlr USING Y$,TABC49);"TOTAL UNUSED BYTES";TABC69HUBXCKX> 
PRINT "1 PRINT "1r USING Y$,TABC4);NX:" ARRAYS REQUIRING ";TY%;" BYTES IN "; 
PRINT tt1, USING L$,TU" BLOCKS" 
PRINT Ur USING Y$,TABC14>:"ACTUALLY USE ";AY%;" BYTES IN"; 
PRINT M1r USING L$rAU" BLOCKS" 
PRINT "1 

Program Listing is continued on next page 11 



TYX=O 
I 

2120 
2140 
2150 
2160 
2170 
2180 
2190 
2200 
3000 
3010 
3020 
3030 
3040 
3050 
3060 
3070 
3080 
3090 
3100 
3110 
3120 
3130 
3140 

j ---- GET SUBSCRIPTS FOR NEXT SEQUENCE ----
NEXT CZ 
NEXT BX 
NEXT AZ 
I 

1*************** PICK BEST CHOICE ****************** I 

MNZ=UBZ<1Z) \ BC$=SQ$(1Z> 
FOR KX=U TO NF:r. 

IF UBZ<KZ><MNZ THEN MNZ=UBX<KZ> \ BC$=SQ$CKZ) \ K1Z=KZ 
NEXT •er. 

f'IC•{ SMALLEST 

PRINT H1 
PRINT IU.TAB<25H"BEST CHOICE IS TO ORDER THE ARRAYS; ";BC$ 
PRINT IU,TAB<25);"WHICH YIELDS";MN:r.;"UNUSED BYTES" 
PRINT M1 
FOR KX=K1:r.+1:r. TO NFX 

IF UBZO{Z>=MNZ THEN PRINT "OR ";SQ$(KZ> 
NEXT K:r. 
CLOSE 1 
END 

Special Consideration for 
OPEN Statements 
It is often convenient to save the names of disk files as 
string elements in a virtual array. File names used in 
OPEN statements cannot contain the null characters 
which all virtual array strings use to fill up unassigned 
character positions, nor should they contain string 

OUTPUT FROM "EXAM14" 

SUBSCf\If'TS WHICH IDtNTHY ARRAYS 
-- -- -

ARRAY NO. 1 2 3 (Of\OER: 123) 
0111 Mt, G%(1%,4%), E<lOX,9%), Qf(1Q%):::64% ! ARRAYS BEING TESH.D 

ORDER: 123 
AR I~ A Y START ING STARTING ENDING ENDING UNUSED 
NO. E'·YTE E'·LOCK e.YTE r.LQCI{ BYTE.5 

1 1 20 1 ~ 21 1 392 0 .... 2 120 
TOTAL 

. 56 
UNUSED BYTES 60 

3 ARRAYS REQUIRING 1604 BYTES IH 3.1J BLOCKS 
ACTUAll Y USE. 1664 BYTES IN 3.25 BLOCKS 

OROLR: 132 
ARf\AY START ING STARTING ENDING ENDING UNUSED 
HO. BYTE BLOCK BYTE BLOCK BYfES 

1 1 20 1 0 
21 1 256 2 .. 

257 2 112 . 0 
TOTAL UNUSED BYTES .. 

3 ARRAYS REQUIRING 1604 BYl E:.i IN 3. lJ BLOCl<S 
A Cl UAll Y USl 1648 BYTES IN 3.22 f.LOCl<S 

ORDER: 213 
ARhAY STARTING STARTING ENDING ENDING UNUSLD 
NO. BYTE BLOC~~ BYTE BLOCK BYTES 

1 1 368 2 0 
369 2 388 2 0 
389 2 128 . 60 

TOTAL UNUSED BYTES 60 

J ARRAYS REQUIRING 1604 BYTES IH 3.13 BLOCKS 
AClUALLY US[ 166.C, P.YTES IN 3.25 f 0 LOCKS 

ORO£R: 312 
AJ·if,AY ~1 AR TING ENDING ENDING UNUSED t.TAF.:T ING 
NO. BYTE CLOD: BYTE BLOCK BYTES 

1 1 192 2 0 
193 2 212 2 0 
213 2 72 . 

BYHS ~ TOTAL UNUSED 

3 ARRAYS REQUIRING 1604 BYTES IN 3. lJ BLOCKS 
ACTUALLY USE. 1608 f.YlES IN 3.14 BLOCKS 

ORDE.R: 231 
ENDING ENDING UNUSLD AkkAY START ING t.TAF.:TING 

NO. BYTE BLOIK BYTE BLOCK BYTES 
I 368 2 0 

369 l 64 . 16 
6> 84 ' 0 

TOTAL UNU!JEO BYTES 16 

3 ARRAYS REQUIRING 1604 BYTES IH 3.13 BLOCKS 
Al.lUAll Y US[ lt.20 BYTES IN 3.16 f.LOCKS 

ORDER: 321 
ARRAY STARTING STARTING ENDING lNDING UNUSCO 
NO. BYTE BLOCK BYTE BLOCK BYTES 

1 1 192 2 0 
!9J : 48 4 0 .. 68 . 0 

TOTAL UNUSED BYTE.S 0 

3 ARRAYS REQUIRING 1604 BYTES IN 3.13 BLOCl<S 
AClUALLY US[ 1604 e.vHs IN 3.13 BLOCf:S 

12 

functions such as LEFT. Before the contents of a 
virtual array string element can be used as a file name 
in an OPEN statement, you must assign its contents to 
a main memory string and delete the 1null characters. 
The main memory string (containing the desired file 
name without the null characters) should be used in the 
OPEN statement. Methods to delete null characters are 
found on page 2 of this lesson. 

IFLUKEI ====® 
John Fluke Mfg. Co., Inc. 
P.O. Box C9090, Everett, WA 98206 
800-426-0361 (toll free) in most of U.S.A. 
206-356-5400 from AK, HI, WA 
206-356-5500 from other countries 

Fluke (Holland) B.V. 
P.O. Box 5053, 5004 EB, Tilburg, The Netherlands 
Tel. (013) 673973, TELEX 52237 
Phone or write for the name of your local Fluke representative. 

Printed m U.S.A. BOJ44A-IOU8204/SE EN 



IFLUKEI ====® Technical Data 
17XXA Software lnforniation B0090 

Stripping Remarks and Extra Spaces 
From Your Basic Program 

Introduction 
Many users have faced the dilemma of not having 
~;uffic1ent memory space for running large programs. 
One reason for this may be that the comments and 
Gpaces, required for a well-documented program, use a 
)oc of memory. An additional problem caused by these 
comments and spaces is an increase in program run 
time. 

Ont• solution has been to run the program in modules. 
Although this solution works, Jt i'i not always the most 
demable because it requires additional programming 
eflort. Another solution has been manually to strip the 
cxrra spaces and comments from the program listing, 
t~u~. allowing more program code to reside in main 
mC'mory. Unfortunately, this !lolution also consumes 
:m1i inordinate amount of programmer time and effort. 

Thl· purpose of this Software Bulletin i'I to present a 
rrogram which will automatically strip remarks and 
unnecessary l>paces from any BASIC program. The 
rc•.ulting program will occupy considerably less 
ricmon- in most cases,, and it will run faster because 
the- _ommcnt'> and extra spaces do nor have to be 
handled hy the BASIC mterpreter. 

1· The following paragraph~ will describe the equipment 
--·t"ded, the program and ics limitations, how co entl~r 
nd test the program, and the benefits of using the 

. •rogram. 

Equipment Used 
The only equipment needed to run the remark program 
is the minimum configuration l 720A Instrument 
Controller, and your program on Floppy or E-disk. 
Although the E-disk is not required to run the remark 
program, it will allow the program to run faster. 

The Remark Program 
The REMARK PROGRAM is written in 
Fluke l 720A BASIC. The program is divided into 
several sections. The first sections asks the operator for 
the input and output file names, then opens the files. 
The next section reads a line from the input file and 
strips all of the remarks from it. If a remark is the only 
thing that occupies a program line, that line will be 
deleted entirely. The next section of the program strips 
extra spaces from the remainder of the line and stores 
the line in the output file. It does not strip spaces from 
quoted fields, and it strips only invalid spaces from 
lines containing data statements. 

Limitations 
If your program contains statements that jump or refer 
to lines which contain only remarks, the stripped 
version of your program will produce errors when it 
encounters those statements. The reason for this is that 
the referenced lines will have been deleted by the 
remark program, producing an error when it is run. 
Therefore, it is a good idea to pre-check your program 
for all IF-THEN-ELSE, GOTO, GOSUB, STOP ON, 
ON GOTO, ON GOSUB, TRACE ON, and 
RESUME statements which refer to remark-only lines. 
Other program languages allow jumping to labels. 
Frequently. these labels are the remarks in the 
referenced hne, Although Fluke BASIC allows jumps 
to these lines, the remark program does not compensate 
for the fact that such lines will have been deleted. 

The remark program will not function properly if the 
input file which you identify is a lexical .• binary, data, 
virtual array, system, (.SYS) or assembly language 
(.CIL) file. It will work properly only on BASIC 
programs which were originally saved on a mass 'ltorage 
device with the "SAVE., command using the BASIC 
editor. Other type~ of files will cause fatal or 
mysteriou'i errors in the remark program . 



IFLUKEI ====® 

The object program must have worked properly before 
running REMARK on it. Otherwise it may contain 
errors which REMARK assumes do not exist, causing 
REMARK to modify lines when it otherwise wouldn't. 
Thoroughly debug your program before running 
REMARK on it. 

The portion of REMARK which deletes extra spaces 
may inadvertently create errors if the process creates or 
modifies BASIC keywords. For example, the statement 
FOR I=S TOP will be changed to FORI=STOP, 
creating the keyword STOP from the variable S, 
keyword TO, and variable P. Thus, it is a good idea to 
run your program through a thorough test cycle after 
stripping remarks and spaces from it. The Remark 
Stripping Program is now included in the BASIC 
startup disk, l 720A-902. 

Remark Version 1.0 

Using the Program 
Running the Program 
When you run the remark program, the display will ask 
whether you want to delete only remarks or both 
remarks and spaces, ask for the input file name (the 
name of the BASIC program you wish to strip remarks 
and extra spaces from), and ask the output file name 
(the name of the stripped version of your program). It 
will display each line as it is either deleted (as a remark 
only), or stripped of remarks and extra spaces. When 
the program is finished, it will display the words "JOB 
DONE!". 

Strip Remarks Only 
When the display prompts you to decide whether to 
strip only remarks or both remarks and spaces (see 
Figure 1) make one of the following entries: 

1. R and press RETURN: strips remarks only; 

2. Press RETURN only: strips both remarks and spaces. 

Strips remarks and extra spaces from BASIC Programs; does not 
correct Jumps to remark-only lines deleted by this Program ! 
R=delete remarks onlv; <RETURN> onlY= delete remarks and sPaces 

Figure 1. Initial display. 

When vou enter the input <filename.extension>,the .BAS extension 
is not needed; invalid filenames or filetvPes will cause errors. 
Enter inPut filename = 

Figure 2. Input file name request. 

When vou enter the output filename, CRT<RETURN> sends results to 
the disPlav onlY •• OUT adds to the inPut filename if you enter 
<RETURN> only., or· ·to c1 utPut filename if You enter· r10 exter1sior1. 
Enter output file name = 

Figure 3. Output file name request. 

©1982, John Fluke Mfg. Co., Inc., all rights reserved 2 



IFLLJKEI ====® 

b. Test routine after only remarks are stripped. 

DATA 
2 DATA \ REM 
3 DATA 
4 DATA REM 
5 DATA \ 
100 DATA 45 78 'PRINT' , \REM , "REM" 
102 DATA DATA , DATA , 'DATA' , \ 
104 PRINT \ DATA 4 , " XY " , 7 ' X ' , 8 \ REM 
106 PRINT \ PRINT \ DATA , 2 , 23 , , 

I I I 

\ DATA 

3 
108 DATA 45 , 78 , 'PRINT' , \REM , "REM" , 111 
110 PRINT ' HELLO ' 11 TODAY ", " 'I' 11 

, ' A" ONE" 2 ' 
4000 REMOTE 
4040 PRINT 
4045 PRINT 'O'N·E I ' I "YES ' 

c. Test routine after both remarks and spaces are stripped. 

1DATA 
2DATA\ REM 
3DATAI 
4DATAREM 
5DATA\ 
100DATA45 ,78 , 1 PRINT 1 ,\REM ,"REM",!!! 
102DATADATA ,DATA ,'DATA',\ 
104PRINT\DATA4 ," XY ",7 ' X 1 ,8 \ REM I \DATA 
106PRINT\PRINT\DATA,2 ,23 ,,,3 
108DATA45 ,78 ,'PRINT 1 ,\REM ,"REM",!!! 
110PRINT' HELLO'," T,ODAY "," 'I'",' A II ONE II 2 I 

4000REMOTE 
4040PRINT 
4045PRINT 1 0NE 1 ' I "YES ' 

Faster Run Time 
A stripped version of your program will run faster than 
an unstripped version. For example, when the 
unstripped version of the remark program was run to 
strip the remarks and spaces from that same program, 
it required nearly 166 seconds of run time. However, 
when the stripped version of the remark program was 
run on the unstripped version, it required less than 140 
seconds of run time. In both cases the floppy disk was 
the mass storage device. In this case, stripping the 
program before running it resulted in a 15% increase in 
speed. 

5 



Run Time *(Seconds) to strip 
Mass Memory Main Memory REMARK.BAS of 

PROGRAM Blocks Used Used (Bytes) 
Remarks Remarks and 

Spaces 

REMARK.BAS (ASCII, 31 15253 75.83 165.98 
Unstripped) 

REMARK.BAL (lexical, 29 15253 75.83 165.98 
Unstripped) 

REMREM.OUT (ASCII, 14 6073 68.08 146.56 
Stripped of remarks) 

REMSPC.OUT (ASCII, 8 2994 65.09 139.1 
Stripped of remarks 
and spaces) 

REMSPC.BAL (lexical, 6 2994 65.09 139.1 
Stripped of remarks 
and spaces) 

*Using floppy as the system device. 

Table 2. STRIPPED and UNSTRIPPED REMARK program memory usage and run times. 

For More Information 
If you have questions regarding this Software Bulletin 
or any other Software applications for the l 720A 
Controller, contact your nearest Fluke sales 
representative or manufacturing facility. 

6 

IFLLJKEI ====® 
John Fluke Mfg. Co., Inc. 
P.O. Box C9090, Everett, WA 98206 
800-426-0361 (toll free) in most of U.S.A. 
206-356-5400 from AK, HI, WA 
206-356-5500 from other countries 

Fluke (Holland) B. V. 
P.O. Box 5053, 5004 EB, Tilburg, The Netherlands 
Tel. (013) 673973, TELEX 52237 
Phone or wn'te for the name of your local Fluke representative. 

Printed in U.S.A. B0090C-IOU8209/SE EN 



IFLUKEI ====® Technical Bulletin 
1720 A Software Infonnation B009 I 

Converting Binary Data to Floating 
Point Numbers for 8500A, 8502A, & 8520A 

Introduction 
The l 720A Instrument Controller can accept readings 
from the 8500A series of Fluke Programmable 
Voltmeters in any format. Howev~r, only the ASCII 
(American Standard Code for Information Interchange) 
form can be used directly in computations with other 
real numbers. The various binary forms cannot. 

The purpose of this Software Bulletin is to provide 
l 720A software routines which convert the binary 
formats to real numbers. The routines are provided 
with remarks to explain them. The actual statements 
which perform the conversion are minimal, however. 
One of the main objectives of the routines is to make 
the conversions as fast as possible. You can incorporate 
these routines as needed in your present software as 
explained in this bulletin. 

Equipment Needed 
The only equipment needed to implement the conversion 
routines is: 

l 720A Instrument Controller 
YI 720A Programmer's Keyboard 

To operate the programs in a system you also need: 
8500A, 8502A, or 8520A Voltmeter 

with IEEE-488 bus interface 
Voltmeter test leads 
IEEE-488 bus cable 
The device under test 

Example #1 

SIGN 

Background 

What are the Weights of Binary Digits in 
Binary Numbers with a Binary Point? 
The value of digits to the left of the binary point 
(integer portion) equals the sum of individual one's 
multiplied by a positive power of 2. The value of the 
portion of the number to the right of the binary point 
(fractional portion) equals the sum of the individual 
one's multiplied by a negative power of 2. The power 
of 2 used depends on the bit position. This is shown in 
Example #1. 

What does 2's Complement Mean? 
2's complement is a method of representing signed 
binary numbers. In 2's complement fixed point form, 
the leftmost bit is a sign bit. If the number is in 
floating point format, a portion of it will have an 
exponent and the exponent will have its own sign bit. 
The value of the whole floating point number is the 
mantissa times ten-to-the-power-of-the-exponent for 
the 8500/8502, or two-to-the-power-of-the-exponent 
for the 8520A. 

BIT 25 24 23 22 21 20 2-1 2-2 . 2-1 2-• 2-s 2-6 2-7 SUM OF ONE-BITS 

~~\\\\!///~ FIXED 
POINT 
BINARY 
NUMBER 

32 
+ 8 
+ 4 

0 1 0 1 1 0 0.0 i' 1 0 0 0 1 + .25 

,:? I I I /i\\~8125 I FRACTIONAL PORTION 

+ 
+ 

.125 

.0078125 
44.3828125 

BINARY POINT 

All data, documentation, dialog, diagrams. suggestions. reports and/or 
other forms of media contained in this bulletin are intended to be 
informational in nature only. Implementation of such data to a user's 
application should ONLY be made after careful analysis by the user's 

own software experts. John Fluke Mfg. Co., Inc., specifically disclaims 
all warranties on such Information, express or Implied, Including but 
not limited to any warranty of merchantability, fitness, or adequacy for 
any particular purpose or use. 



IFLUKEI ====® 

For example, in the below 8502-style binary nu.w.ber 
system, the exponent of the base 10 and the mantissa is 
1.5: 

Example #2 

/Sign Bit\ 
00 10 01.100 = 1.5 x 102 150 - -exponent mantissa .._....---

Binary 
~ 

Decimal 

In the below example of the 8520-style binary number 
system, the exponent of the base 2 and the mantissa is .5: 

Example #3 

/Sign Bit\ 
0100 0.100 -exponent mantissa _,, .... 

B
.-v 
mary 

.5 x 24 = .5 x 16=8 

~ 
Decimal 

If the sign bit is a zero, the number is a positive value. 
If the sign bit is a one, the number is a negative value. 
The difference in the remaining bits is this: you can 
deterJJline the value of the base ten positive 
number by summing up the decimal values of the 
individual bits (see example #1); but to determine 
the value of the negative number you must 
complement the entire number (change all ones 
to zeros and vise versa) and add 1. Then sum the 
decimal values of the individual bits (as in 
example #1) and add a minus sign. To convert the 
binary number back to negative form, complem~nt all 
bits and add 1. Here are examples for both fixed point 
and floating point numbers. 

Example #4 

Positive Floating Point Number 

Binary: 

sum decimal 
values of 
"one" bits: 

Decimal 

1 Sign Bits\ 
0010 01.011000 - -exrnt =r· 

22 1.375 ..._ _,, 
y 

1.375 x 22 
t 

5.5 

1980, John Fluke Mfg. Co., Inc.. all right> rc,erved 2 

Example #5 

Negative Floating Point Number 

/Sign Bits\ 

Binary: 1110 10.10100 

2's 
complement: 
(and add 1) 

sum Decimal 
values of 
"one" bits: 

add minus 
sign 

-negative 
exponent 
(sign bit=l) 
indicates 
number is a 
fraction 

~ 
0001 
+ 1 

0010 

i 
22 

i 
2~2 

negative 
mantissa 
(sign bit=l) 

1 
01.01011 

+ 1 

01.01100 

i 
1.375 

l 
-1.375 

/ ~1.375 x 2-2 

Decimal: -.34375 

Example #6 

Positive Fixed Point Number 

Binary 

/Sign Bit 

01001.0010 

l Sum Decimal 
values of 
"one" bits 9.125 

Example #7 

Negative Fixed Point Number 
Sign Bit 

I 
Binary: 10110 .111 

2's complement 
(complement and 
add 1 

Sum Decimal 
values of "one" bits: 

add minus sign: 

01001.000 
+ 1 

01001.001 

i 
9.125 

+ 
-9.125 



IFLUKEI ====(ii) 

What does Sign-Magnitude mean? 
Sign-magnitude is another way of representing binary 
numbers. In this form the leftmost bit is the sign bit. 
The remaining bits do not have to be complemented or 
modified in any way; they give the magnitude of the 
number directly. For example: 

1.011(2)= -.375(10>, and O.Ol lc2F +.375(10) 

A floating point number can have a 2's complement 

General Description 
What are the Binary Formats? 
The 8500A programmable voltmeters send readings 
over the IEEE-488 interface in the following binary 
formats. (Note: There are 8 bits per byte. All readings 

8520A High Speed Mode 
2-Byte Binary 
Fixed Point 
(multiply by scale 

exponent and a sign-magnitude mantissa. Such is the 
case with 8520A 4-byte (normal mode) readings. 

In converting input binary values, the conversion 
routines follow the philosophy of the above procedure. 
However, tliey deviate from the exact procedure in 
order to provide answers faster with complete accuracy. 
Further, the routines will only work on other 
controllers which do integer arithmetic. 

are in 2's complement form except the 8520A 4-byte 
binary which has sign-magnitude mantissa and 2's 
complement exponent.) The formats imply least 
significant bits to the right. 

NO EXPONENT 

"SIGN BIT 
00011 10 

BYT 2 

ERROR BIT) 
00000000......., 
BYTE 1 

factor to get measured 
value) Reading=3.25 IMPLIED BINARY POINT FOR lOV RANGE 

ERROR BIT SETS FOR± OVERRANGE 

8502A High Speed Mode 
3-Byte Binary 
Fixed Point 
(multiply by scale 
factor to get measured 
value) Reading=l.75 

8520A Normal Mode 
4-Byte Binary 
Floating Point 
(no scale factor) 
(exponent is power of 2) 

Reading= .0625 

8500A/8502A Normal Mode 
5-Byte Binary 
Floating Point 
(no scale factor) 
(exponent is power of 10) 

Reading=35 

NO EXPONENT 

SIGN BIT ~ If"" ERROR BIT 
0001 1100 00000000 

NOT USED l BYTE 1 BYTE2 
I 

IMPLIED BINARY POINT 

ERROR OCCURS IF ERROR BIT IS 
COMPLEMENT OF SIGN BIT 
(absolute value of reading ;;::2.0) 

EXPONENT = 2-2 MANTISSA = .25 
.A 

00000000 
BYTE 3 

c;IGN BIT 
11111110 

c;_SIGN BIT 
_g100000 00000000 ' 00000000 

BYTE 1 YTE2 BYTE 3 BYTE4 
f 

IMPLIED BINARY POINT 

MANTISSA= 3.5 EXPONENT = 10 +1 

~ 

~ 

~IGN BIT ~IGN BIT 
00000011~ 10000000 00000000 00000000 00000001 
BYTE 1 BYTE2 BYTE3 BYTE4 BYTE 5 

·~ 
IMPLIED BINARY POINT 

NOTE: See wpic on "Dzfference Between Normal and High Speed Reading Modes" for correct Scale faccors. 

3 



IFLUKE:I ====® 

What does the Controller do with 
the Binary Values? 
When the controller reads the binary values from the 
voltmeter, it cannot compute with them directly 
because the controller's internal format for numbers is 
different from the format received from the voltmeters. 
For example, the controller assigns 2 bytes of memory 
for each integer and 8 bytes for each floating point 
number (also called "real" number), while the 
voltmeters send 2, 3, 4, or 5 bytes. Since the binary 
formats of voltmeter readings are so varied and 
different, the controller must have a program or routine 
to convert the voltmeter readings into floating point 
numbers which it can recognize and use in 
computations. 

The routines presented in this software bulletin 
perform those conversions, and multiply converted 
values by any necessary scale factors. They also 
minimize the time required to do the conversions. They 
then make the converted readings available to the user 
program in the form of real number (floating point) 
variables. The user program can use the values of these 
variables in subsequent computations. 

What are the Scale Factors all about? 
Readings taken from the voltmeters (8502A and 8520A) 
in high speed mode are in fixed point format. That is, 
there is no exponent as part of the reading, and the 
binary point is assumed always to be in the same 
position. Therefore, all readings taken in the high speed 
mode are in the same format, regardless of the range 
setting of the instrument. Because of this, each reading 
must be multiplied by a scale factor to adjust the 
reading for the range setting. 

All readings from the 8502A in high speed mode are 
multiplied by 10 in the conversion routines to 
normalize them to the 10-Volt Range. Readings from 
the 8520A do not need to be multiplied by 10 first. 

The conversion routines then multiply the 2-byte/ 
3-byte readings by a scale factor which is based on the 
range setting of the respective voltmeter. The proper 
scale factors are given in the next topic. The user 
program must enter a scale factor parameter for the 
range being used into a local variable before calling the 
conversion routine. 

What is the difference between Normal 
and High Speed Reading Modes? 
In the normal modes, the 8500A, 8502A, and 8520A 
perform internal calculations to adjust the reading for 
the selected range. In the high speed mode, to save 
time, no internal adjustment is made. Therefore, the 

4 

controller must make the adjustment. Normal mode 
readings include an exponent; high speed ones do not. 
Because of the greater number of bytes per reading, 
normal mode readings have more resolution than high 
speed ones. 
8500A - The 8500A has no high-speed mode available 
on the IEEE-488 Bus. The reading sent is the actual 
measured value. It has a 5-byte binary format identical 
to the 8502A 5-byte format. 
8502A - The 8502A has both modes. In normal mode 
the reading is the actual measured value in 5-byte 
binary format. In high speed mode the reading is in 3-
byte binary format, and is not the actual measured 
value. To get the actual measured value, the controller 
must multiply the reading by 10. 

The 8502A can take high speed readings on all 
functions: DC Volts (VDC), AC Volts (VAC), DC 
Current (IDC), AC Current (IAC), and Ohms. When 
taking ohms measurements, scale factors must be 
uniquely computed, then multiplied by the converted 
measured value. Although the somewhat complex 
method for computing ohms scale factors is not 
discussed in this bulletin, complete information is 
provided by Application Bulletin 25, Appendix A. 

Regardless of the type of measurement being taken, 
(when in binary mode) the reading must be multiplied 
by a scale factor to yield the actual measured value. 
The scale factor is computed by the formula 
SF=lO x RF, where RF (Range Factor) for the 
differenrfunctions is given below. The 3-byte 
conversion routine automatically performs the times-10 
multiplication of the Range Factor once you have put 
the range factor into local variable RF. 

Functions/Range 

VDC VAC IAC Scale Factor 

100 mV --- 100 uA 1/64 
lV lV 1 mA 1/8 
lOV lOV 10 mA 1 
lOOV lOOV 100 mA 8 
1 kV 1 kV lA 64 

Functions/Range 

JDC Scale Factor 

100 uA -1/64 
I mA -1/8 
10 mA -1 
100 mA -8 
IA -64 

NOTE: Ohms scale faaor musl be computed from prior 
ohms measurements. Refer lO AB25 for details. 



IFLUKEI 

In the high-speed mode, the 7th bit of byte 1 is not 
used. The 6th bit indicates an error condition 
(overrange) if different from the sign (8th) bit (absolute 
value of reading is greater than 2.0). 

Resistance 
Range 

10 ohms 

100 Ohms 

lK Ohm 

lOK Ohms 

Scale 
Factor 

-1.5625 

-12.5 

-125 

-1250 

DC Volts Scale 
Range Factor 

100 mV 1/64 
lV 1/8 

lOV 1 

lOOV 8 

lOOOV 64 

8520A - The 8520A has both modes. In normal mode 
the reading is the actual measured value in 4-byte 
binary format. The reading has a 2's. complement 
exponent and sign-magnitude mantissa. Furthermore, if 
the exponent equals 128, the entire value equals zero. 
In high speed mode the reading is. in 2-byte binary 
format, and is the actual measured value only if the 
8520A is set to the 10-volt range. On any other range, 
the reading must be multiplied by below scale factors 
for DC volts (done by the conversion routine). In this 
mode, the rightmost bit of byte 1 will equal a 1 if the 
measured value is beyond the selected range. Scale­
factors for ohms measurements are different from those 
for voltage measurements. Negative scale factors are 
used to give positive results. 

The Conversion Routines 
What are They? 
Tables 1 through 4 present listings of subroutines 
written in Fluke BASIC for the l 720A Instrument 
Controller. The routines convert voltmeter binary 
readings which have been input as integer arrays to 
floating point values recognizable by the l 720A, as 
follows: 

Table 1. 8520A High Speed Mode 2-byte Binary 

j t] O l 1 Ci : .:i .-~. ·:·: ·~·· :•: : • .,: ·:~·· ~;- 7'' :i· :i'. .;;: -~· :): ·:.i- ~( .;.,: S L.I b r o LI t i n .=-.:: 2 D Y T E:. :.;: ·i :i. ... :;: -:-i· ·:'): :.: ·>: ·:.;; .; •. ·.· ·:,,- ·:: ~. ·:~: -: .. :>· :•: .:: .;.- -:.: .:..: 7( :>. * .;;: 
l 1.-iO 1L: 
JOUC1<; •h:!r~:.ic.1ri ] .O 20 ~le::':::: l'/f:[I t 11.~ko::· Ct•ntr·t•l F't·c.•dL.1ti_.~. M<::rl·u .. d .. ir19 
10006 i 

J ooot.: ' 
10010 
j (ID l ~i l 

100 :Ll.1 

l (I Cl 1 {, 
.l OU 1. ;;:, 
10U20 
Jun 2;2 
l [10? 11 I 

1()026 I 

l.iFSCf;'.J.f·'TI01~~ :;-:BYTF will Lt•nVE!r·t c:f1 in·i. .. t!!·i•.::t .. c:t1c.:':' Jt;/; r·•_ .• ,,,._; 

1n fro11l Lhe B~5:?0{1 1n h11h S1"1:!•:~d btl"ldl'"::i iuuo:h~ <:>·b'::!h:: lr"·:J1·1·,,f•:;r··,,;. 
into i7'20A fur11ie::t <:::rid 1-·L~t i..t1•.:: <:::n<:::.W1':!t"'=· 1t·1 r·•..:~:-L~lt <:::r·t·~''=' f..:(, ··• 

If the error b 1 t is 5•:d. b·~ the 8520(1 th•:Hl that r•.i!dd 1 n~ is ~~·;;t 

~ c.• r rn c: t () f th>:• / - b ·::: t .:: r E! c: d i r1 s 1 <.::. : 

](1028 1st bste: b 1 t U "' + / -· u v er· t .:_: n ~· i:· ,,. r t" u r l • i L 
10030 l 

10032 ' 2nd b~te: 
10034 
j 002\t.. 
1()038 I 

1[1[11;0 l 

10042 
10011 ,, 
10046 l 

J 00'18 
10051] I 

i ou~·.::: ' 
10054 

l A/. 
I f'I/~ 
r: f~, 

RF 

b i I:, s 1 ·- 7 " l u w •:!! r •.:H" ;j ,,, r '"' d f ,~ d ·.:: t. I \) n b i ts C2 ,\ ·- 1 () r 0 2 /\ ·- 4 ) 
bits D-2 ~hi sher ordered frCicliuri bits ()A 3 102A-1) 
IrnPli~d Binar~ Puinl 

t.• i '\..~,. 3- 6 i t·1ti:::s•.::r· bi ts. 
b i t ? ··~ i :Hi b i L 
b i t 8 E O I b i t ( e r1 d u f r· E! ci d i n ~i ; 111 u ~- t be ro <> s. k •..: d L• u t ) 

tnPut arra~ with concatenated b~tes of 2ll r~201n~s 
s i z·~ •.Jf 1 nPut arrd'::! 
t">:::,L.1 l t c::rr<.''=' 
1"·,on:~·:~ S•.:dl•~ fcict.•.H' '3S f1Jllows: 

1;.;lO-·V; i/6~'-·100-111V; i/8:-1-V; 8=·100-V; 6i,-1-k\' 
J OO:i6 I 

1 OO~i.B I 

1006U I 

10062 I 

.. 1 • :.:; 6 ~~ ~5 ::: 11] -· 0 h hi ; ... 1 2 • :.} ·- 1 0 0 ... 0 h (I\ ; .. l :2':) ... l . k 0 h fll .. .1 ~~ ·~; lj .. l u . k l) h Ill 

5 



IFLUKEI ====® 

Table 1. 8520A High Speed Mode 2-byte Binary (Con't.) 

10064 
10066 I 

1 OOt.·8 
10070 
10072 
10074 
10076 
10078 
10100 Cl/. 
10110 C27. 
10120 C1 
10130 C2 
101Lt0 

L.t•ce::l V<:::t"i<:::t:ole:.~ 

Bll., e.:?t. 
C1/.,C2t.: 
c1.c2 
IX 
IS/. 

2551. 
256i~ 

8/f\F 
= 2048/RF 

b \::~ t es 1 <:::r1 d 2 of the re<::: d i n ~1 
i r1 I;,·~ ::l •H· contd n ts f o t' co 111 P l •O! Ill~~ n t t r·1 9 

res\ constants for the bin~r~ conversion 
'L 0 OP C IJ U n t •EH' 

~- i sr1 c.•f nLHnber 

L on<.::- tan t f c.• r· 1 1 s c. C.• i1l F· l e 111 e ri t 
constant for 2's cornPlement 
c.onst~nt for bYte 
cunstant for bYL~ 2 

10150 FOR II. = 01. 10 IM/. STEP 21. Lo1·1ver<.::- i un lt•oF-· 
-,,,,~ tt.11, b\~ te l 10160 Bi/. = IA/.(l/.) 

10170 IF Bl/. AND 1% THEN RACI/./2/.):0 \GOTO 10240 
10180 B2i. = IA/.(Ii.+1/.) AND C1% 
10190 IF 821.<128/. THEN IS/. =1% \ GOTO 10230 
10200 IS/. .. -11. 
10210 Bl/. = C2/.-B1/. 
10220 B2/. = C1/.-B2% 
10230 RA(I/./2/.) = CB2/./C1 + B1%/C2) * IS/. 
10240 NEXT II. 
102~·0 
10260 RETURN 

Table 2. 8502A High Speed Mode 3-byte Binary 

11000 !*****************~ 
11002 

error hes oc.c.urrecl 
setup b~te 2, striP EOI 
check for nesative resdins 
set sign to ne9ative 
co111Ple111ent b~te 1 
co111Ple111ent b~te 2 
COltlPUte read i YtS 
loop 

11004 
11006 
11.008 
11010 
11012 
11014 
11016 
11016 
11020 
11022 
110::;-.4 
11026 I 

11028 
11030 
11032 
11034 
11036 
11038 
110-4 0 
11042 
110-4 4 

Ver~. ion 1. 0 F l u k •2 C c.1 t'1 tr u l f' t" u du L t !::-

DE~;Cf-:It'TION; 3E;YTE will c.onvt?.r·t c:n tnti:!~ii:!r c-:t··I"<.<~ <lf.iX> r8e::cl ir1 
from the 8502A DVM in hi~h speed rnode (3-bste b1nar~ transfer) to 
1720f'l forrnat, <::rid ~tore the <:::nswr:!rS 1n res.t.ilt arra~ <~:~i>. 

If the error bit is set bw the 8502A then that readin~ is 
s:et to :::ere.•. 

2F1d b~!te; 

Jrd b~tr:~: 

Illie l i ·~d 

bit " 
bit ::; 
bit 6 
bit '7 
bit<.::. D-7 
bi Ls 0·-7 
bit 8 

f!.inar\~ F'tlint 
~. i nti';:!9•.:'.r bit 

t:i! t" t' 1.w b i t ( set 
r1c.1'\, US>.:!cl 
sigr1 bit 

2.0) 

rnidclle order fre::ction bits (2A-12 to 2A-5) 
lower order fraction bits (2A-20 TO 2A-1J) 
EOI bit (encl of re~clin•; must be maskecl out> 

6 

-



IFLUKEI =====® 

Table 2. 8502A High Speed Mode 3-byte Binary (Con't.) 

11046 ' 
1jOL18 
11050 
110:;2 
11054 
11 (l!;.'_;6 

Vari2bles tu be initiali2ed before callin~: 

1105B 
11060 
11062 
11064 
11066 
11068 
1 UFO 
11072 
11074 
11076 
11078 
11100 
11110 
11120 
11130 
11l40 
11150 
11160 

c 11. 
C2/. 
Cl 
C2 
C3 

Hi/. 
IM/. 
RA 

it·1put Cc<r·r2.\::! 1,1ith cCJncati:!nated b::!tes c•f t·''"'"~lin~.i::. 
s i <!•~ 1Jf i tlPut -.:wra!:! 
resL~ l t <H· r 2'::! 

I\ F '-' rd n ~:! ·~ ·::. •..: a l ~~ fa 1~ l u t' d s f u l 1. u w"' : 
1~10-v ; 1/6~~100-mv ; 110~1-v :-·-:c !. [l[i·· 1) 

b~ti::[. 1, 2. o::nd 3 f\j x 1 821.' 83/.: 
cn;,cn 
ClrC2rC3 

1nteser constants for comPlementins 
real constants for converting 

n 
I SI. 

256/. 
16/(10!i:RF) 
4096/ < 1 O:+:RF) 
1048~·76/( 10'<.fff) 

loop count·~r 

s. i £1r1 of numbi:!r 

con:. t arit for 
c or1s L3nt f \J t'· 

C C.1n:.t<::t·d, fCJr 
cunst.:int fot• 

c c.1n:.te::nt f0r 

l's 
'')"! .. 
,:_ ;:) 

t.·1':..: "\...:..:! 

l:.i~~ t ~ 
b'::!te 

FOR I/. ~ 01. TO IM/. STEP 3/. 
11170 Bl/. IA/.(!/.) 

c onvers. i c•n l t•OP 

S>::~tUP bYt•~ 1 
setuP b::!ti:.:: 2 11180 82/. = IA/.CI/.+lt.:> 

c c.1 111 f' l e rill::! rd, 
..: orn1> l·:~rnen t 

2 ( 2'" 12) 
3 ( 2"20) 

11190 83/. = IA/.CI/.+2/.) AND Cl% setup striP EOI 
11200 IF 811.<128/. THEN IS/. =1X \ GOTO 11250 
11210 IS/. - ·-lX 
11220 Bl/. C1/.-B1/. 
11230 82/. Cl/.-82/. 
11240 B3/.: C2/.-B3/. 
11250 IF Bl/. AND 32X THEN RACI/./31.>~0 \GOTO 11270 
11260 RACIZ/3/.)= <B1Z/C1 + B2/./C2 + B3/./C3) *IS/. 
11270 NEXT II. 
11280 
11290 RETURN 

Table 3. 8520A 4-byte Binary 

1?000 ~******~*~~**~**** 
:l ~:00:2 

check fCJr negative reading 
set sign to ne~ative 
c.omPlement b~te 1 
comPlemenL b~te 2 
c.urnPlement b~Le 3 
error ha~ uc~urred 
c. CJ 111 P u t e r e :. u l t 
l uoP 

1?004 Vers10n 1.0 Fluke Lontrol Product:. M2rketins 
12006 
12008 
121) iO 

BASIC Vl.Or FOOS Vl.1 

12012 
12014 

DES CR IF' T I ON : ,; p, Y H:. w i l 1 c o r1 v er t 2 r1 i n t e 91'! r Ci r-r <== !::! <I M~ > r· e c.: d i r1 
f' r o 111 the 8 3 2 O (~ i n 4 ·- b s i;, ·=~ 111 u d ~ t 1.J 1 7 2 0 A fut' ind t and s i;, or' e I.:, fl •.i! .:iris wet' s 

1 2 0 1 (., 1 i n re ~. u l t <'= r· re::\:!. < R ~·1 > . 
l.2018 
1~1 0~:0 Forrn~<t c.1f th~2 'i·· b':.!t>.:! r·i:::e::d in~ is.• 
12022 
12024 
12026 

1st b~le: bits 0·6 
bi I:, 7 

exPonent (2AX) bit$ 2AO ~u ~A~ 

exponent sign bit 

7 



IFLUKEI ====® 

Table 3. 8520A 4-byte Binary (Con't.) 

bits 0-6 = UPPer order fraction bits (2A-7 to 2A-1) 
Mantissa ImPliecl Binary Point 
bit 7 m~ntissa sisn bit 

12028 
12030 
12032 
12034 
12036 
12038 
120i10 
1:~0 4 2 
12044 
12046 
12048 
120:'.:iO 
12052 

Jrd bYte; 
4th b'::!te: 

bits 0-7 - miclclle order fraction bits (2A-15 to 2A-8) 
bits 0-7 lower order fraction bits (2A-23 to 2A-16) 
bit B EOI bit <end of reading; must be rodsked out> 

Variables to be initi8li~~d before csllins: 

IA/. inPut ~rra!:>. with tuncatenated bytes of all r~adinss 

120~i'4 
12056 I 

l :?O~i8 
12060 
12062 
12064 

IMX Yl~e of inPut arr•~ 
f.:A -· result ar·re::'::! 

Local variablr:.-s: 

E'.1/.,P..2/.,P.'\/. 
C1%,Cn 
c1,c2,c3 
EX 
II. 
IS% 

b!:>.les 1,2,4 (b!:>.le 1 is exponent) 
constants for coroPleMentin~/Masking 

~ constants for the binarw conversion 
computed exponent 
looP counter 
':iii 9n of t1u111b•=r 

cl./. 

1 ::•o c:. 6 I 

12068 I 

1207[1 I 

12100 
12110 
12120 
12130 
12140 
12150 

25:ii. 8-bit itlBSk ( 1 7 s c.: (.1 111 P l e 111 e r1 l ) 
C2i. 2561. 1~ut1s tant f\lr' 2 1 s 1~ 1)111P l •:: mi::n t 
C2 -· 128 t trt·•=· t ant for b":::te 2 ( 2A7) 
C3 32768 constant f()t' by l:,1;: 3 ( 2·' 15) 
C4 8388608 cClnstant for b!:>.te L1 (2A23) 

12160 FOR IX • 01. TO IMX STEP 4% conversion loop 
12170 Bl% = IAi.CIX> setup bYte 1 
12:1.80 e.21.::: IA/.(I/.+1i~) setup b~te 2 
12190 B4/. = IAi.Cii.+3%) AND C1% setup byte 4; striP EOI 
12200 IF 821.<128/. THEN IS/. = 11. \ GOTO 12230 thetk for nes~live readins 
12210 IS/.= -1/. set sign tu ne~ativ~ 
12220 82/. = 82/. AND 127/. m~sk ~isn bil 
12230 IF B1i.>127i~ THEN Bl/.::, (C2%·-B1/.) :+:-11. t:u111Plero 1::nt e:<POt1•::r1L 
12240 IF 81/. THEN EX ~ 2/.AB1/.~ISi. ELSE EX~oz compute exponent 
12250 RA<Ii./41.) <B2/./C2 +IA/.(I%+2/.)/C3 +B4X/C4) *EX ! coropute result 
12260 NEXT I/. loop 
12270 
12280 RETURN 

Table 4. 8500A or 8502A 5-byte Binary 

13000 ~~~+~~~~~*~~~~~~~~ 

l 30();~ 

r\{1SIC Vl.O, FDOS V1.1 

j !• l~I () ,-, 

1 :.3006 
130(18 
1301iJ 
j 3 0 l :.' 
1 _·5 D l 4 

DE~.;CRIF'TJON: ~.iE'.YTE will lt•r1vert <.<rr ir1let--er e::r-r-e::~,: <IMD· ree::d 1r1 
f r o ill t h •:: 8 3 0 IJ A o r H ~5 0 2 A D V l"I i ti 5 ··-· b !~ t e ill o d •o:! t u 1 7 2 0 A f u r Iii d t , d n d 

8 



IFLUKEI ====® 

Table 4. 8500A or 8502A 5-byte Binary (Can't.) 

nou. 
1.3iJlB I 

13(120 I 

13022 
l 30::1 £, I 

13026 
13028 

bit& D-6 = m~ntissc; inte~er bits 2AO thru 2/\6 
bit 7 •mantissa s1•n bit 
ImPlied Binar~ Point 

:L 303(} 
13(13'.? I 

~-:ncl b':;I ti:~: 
3rd b~!tE~: 

4th b~:1t1=: 
5th bste~ 

bits 0-7 mantissa high order fraction bits (2/\-8 tu 2A-1) 
b i t =· 0 - 7 111 e:: n t i =· £, <:; hied i L.I m fr at t i o t·1 b i t. s ( 2 /\ - 1 e:. t. c• 2"' - '7' > 

13034 
13036 
1303_8 I 

bi~s 0-7 mantissa lower fraction bits (2/\-24 tu 2A-1J) 
b i t b 0-· 7 e :·: P <.1 r1 en t ( 1 0 ·" X ) b i ts ;,~" -· 0 to 2" -· 6 ) 
bit 7 exponent si•n bit 

j 301: 0 

130'·2 
L' 1.., 2 EOI bit ( i!.:!nd (..1f r>.:!C::d i t1~i; i1lus.t be me::s.hi;~d uut) 

1 :rn.:14 Var i c; b l es,. \.. <.1 t:i e i r1 i t i c: l i ~: 8 d b 8 ft• t .. 8 L e:: l l i n ~.i : 

13046 
13048 
130.SO 
130:;2 
13054 I 

130~.i6 

13058 
13060 
13062 
13064 
13066 
13068 
13070 
13072 
13100 
13110 
13120 
13130 
13140 
13150 
13160 
13170 
13180 
13190 
13200 
13210 
13220 
1323() 
13::1 11 [I 
1325() 
13260 
13270 
:J.,..J..;l.g.o 

IM::-· iriPL~t ar·r2B with turH.aten0:d,•2d b1;;:'l.8s. of i:::ll ri!.:!<:::din~·=· 
111% .. \:iiZ1i~ l"Jf irlf•ut iill"Y'dY 

RA result arrc;\:! 

Local variables are: 

Bl/. - B!::iY. 
CD;rC2i'~ 

C3,C4 

b\:ltes 1 through 5 (b!:!te 5 is iEt:o>c•nent> 
- constants for comPlementins & conversiun 

constants for the binc:r~ conversion 
EX computed exponent 
1% l t•Of· C. l•Urd .. i!.:!t" 
!Si~ = si~n uf number 

C1% = r:i C' C'' ·~ 
~1.J .... •lw 

en 256% 
c~, .:. 2~i6 

C3 65536 
C4 16777216 

FOR I/. = 0% TO IM% STEP 5% 
Bl!. !Al.CI/.) \ 82% 
83% = IAY.<IY.+2%> \ 84% 
B5% ~ IA%(1%+4%) AND Cl/. 

I A% < II. + 1 /. > 
IA%(I/.+3/.) 

IF 81%<128% THEN IS/. =1% \ GOTO 13240 
IS/. -D.: 
B1% ~ C1%-B1% \ 
83% = C1%-B3% \ 
IF B5%>127% THEN B5% 
EX ~ 10%"85% * IS% 

B:?t.;;.; C0:-·82/. 
84/. "" C2% ··B4% 
((2%-P.~1/.) "'' -1% 

RA<IZ/5%) ;;.; <B1%+B2%/C2+B3%/C3+B4%/C4>*EX 
NEXT I% 

13290 RETURN 

9 

L C.tn!:.tc:nl for 1 '!;. c ump l i:-m•::nl 
constant fut' 2"s c: o fll P l e 111 •= t1 t 
con:.tant for b':d:,e 2 (2"8) 
constant for b<.:1 t>.~ 3 (2"16) 
constant fc•r b!:!te 4 (2A24) 

c or1vers ion l ooP 
setup b<.:1tes 1 and 2 
setup b'=::tes 3 <:Hid ti 
setup b':;lte 5; striP EOI 
lheck for nesslive readin• 
set sign tu nesative 
LumPlemenl b!:!li!.:!s 1 ~nd 2 
o.:omPlernent bytes 3 and 4 
complement exponent 
cumPute 1::::-:Ponent 
co111Pute result 
loop 



How do they work with My Program? 
Figure 1 shows the necessary structure of your program 
using the 8520A 2-byte (High Speed Mode) conversion 
routine. Refer to the figure for the following discussion. 

The conversion routines function as callable 
subroutines. That is, your program accesses one of 
them with the GOSUB statement. Each routine 
assumes that your program has read one or more 
readings of the appropriate number of bytes each from 
the voltmeter, and concatenated them into the elements 

1720A 
USER PROGRAM, 8520A HIGH SPEED MODE 

I. INITIALIZE VARIABLES 
RF= SCALE FACTOR OF READING FOR DESIRED RANGE 
N'Yi, =NUMBER OF READINGS 
B% = Nl'MBER OF BYTES PER READIN(i 
IM% · N% * B% -l'K<i 
DIM IA% (IM%J, RA (N% -1%J 

2. COMMAND 8520A TO TAKEN BINARY READINGS ON 
DESIRED RANGE NORMAL MODE COMMAND 

8520A 
VOLTMETER 

IEEE 

BCS 

IEEE 
INTERFACE 

PORT I 

3. TAKE IN READINGS READINGS 

RBYTE PORT I, IA%(0% .. IM%) 

READING# 

BYTE# 

ELEMENT# 0 2 
OF IA% 

INPUT ARRAY IA% 
5 READINGS OF 4 BYTES EACH 

t 
4. CALL 8520A HIGH SPEED MODE (4-BYTE) 

CONVERSION SUBROUTINE 

8520A 4-BYTE CONVERSION ROUTINE 
A. LOOPS UNTIL ALL 5 BINARY READINGS ARE 

CONVERTED. 

4 

B. PUTS CONVERTED READINGS IN REAL ARRAY RA 
(0% .. N%-1%) 

READING It 

ELEMENT# 
OF RA 

2 4 

RESULT ARRAY RA 
5 READINGS IN 1720A FLOATING POINT FORMAT 

5. CONTINUE WITH USER PROGRAM USE READINGS 
AS DESIRED. 

Figure 1. Program Structure to Use Conversion Routines 

10 

of an input array (IA%). Your program must also have 
dimensioned the input array and the result array for the 
number of readings taken and selected the correct scale 
factor. 

1. Set variable IM%=N%*B%-1%. This sets up IM% 
to be the size of integer array IA%; N%= the 
number of readings to be taken; B%= the number of 
bytes per reading; 1 is subtracted because array 
element numbers start at zero. 

2. Set variable RF to the scale factor for the range selected 
This is needed only in 8520A 2-byte and 8502A 
3-byte modes. 

3. Dimension the readings' input array IA% for the total 
number of bytes to be read, and the conversion 
routine result array RA for the number of readings 
to be taken. The statement DIM IA% (IM%), RA 
(N%-1%) does this. 

4. Program the voltmeter to range and function. Then, 
read the desired number (N%) of readings into input 
array IA% (0% .. IM%). Readings are concatenated 
in the array. 

5. Call the conversion routine. GOSUB XXXXX does 
this where XXXXX is the line number of the first 
executable statement of the subroutine. 

The conversion routine takes the bytes from the 
elements of array IA%, converts them to real number 
(floating point) format, and puts results in array RA. 

If you are using either the 8502A or the 8520A in high 
speed mode, the conversion routine then multiplies the 
elements of array RA by the appropriate scale factor to 
get the correct measurement results. The scale factors 
are given in the general description. Finally, the 
conversion routine returns to where your program left 
off. 

The number of readings the conversion routine will 
handle is determined by the dimensions of the input 
~nd r~s~lt arrays, and thus by available memory. If 
msuffic1ent memory is available for the number of 
readings you want to take, your program can set up the 
result array (RA) as a virtual array. As such, the 
elements of array RA will be stored in mass memory 
(Disk or E-Disk). The integer array IA% (input array) 
cannot be a virtual array because of the way the 
RBYTE statement is implemented inside the l 720A. 
The procedure for using virtual arrays is described in 
the l 720A Programmer's Manual. 



IFLUKEI =====® 

How do I enter the Conversion Routine? 
1. Select· the conversion routine for your application. 

2. Ensure that the variables used by the routine selected 
are not the same as variables intended for other 
purposes in your program. If they are, change the ones 
which are easiest to change so that no conflicts 
occur. If you intend to use more than one conversion 
routine in your overall program, you may need to 
rename the variables IA%, IM%, RA and RF. You 
do not need to change what the listings refer to as 
LOCAL VARIABLES (unless they interfere with 
your program) because they are initialized every time 
the routine is entered. 

3. Wherever you want your program to call the 
subroutine, key in a GOSUB nnnnn statement, where 
the nnnnn is the starting line number (first executable 
line which is not a remark) of the subroutine. 

Example Programs 
Tables 5 through 8 list example programs which use 
the Binary Conversion Routines in Tables 1 through 4. 
The programs set up the 8502/8520 DVMs to take 100 

Table 5. 2-byte User Program 

2 
3 Version 1.0 20 M.::\:.l 17'80 
4 

voltage readings in the High Speed or Normal mode, 
put the bytes read into an input array, and display the 
results. The programs assume that the conversion 
subroutines are merged into the programs as described 
in the listing heading. Use the merge command (/M) in 
the File Utility Program to accomplish this (e.g., 
DVM2=8520 2, 2 BYTE/M). 

Note that the example DVM commands shown 
between the asterisk lines are examples only. They may 
not be suitable for your application. 

Errors which may occur are overflow error 0 if main 
memory has too little room for the array of input bytes, 
and error 306, meaning your mass storage medium has 
too little room for the result array. To correct the first 
error reload the program (it should not be merged with 
any other programs or subroutines than those 
mentioned in the listing heading). To correct the 
second error, insert a disk with more space, or purge 
some of the files. 

Other errors may result from incorrect DVM command 
statements. Consult the DVM manual for correct 
procedures. 

Fluke Control Products Marketing 

C' _, s~stem Softwsre; FOOS V 1.1, BASIC V 1.0 
6 
1 (I 
1 ~, .:.. 

1'i 
16 
18 ~ 

20 

24 I 

2C.. I 

28 

DESCRIPTION: 

This Program will take 100 readinss from the 8520A DVM in the 2-b~te 
mode (100-volt ranfe), convert them to 1720A formdt usin~ the 2BYTE sub­
routine, arid disF-·l.::~ them. The sta:tements usi::?d le• cc.•111111.::nd the DVM ar-e 
EXAMPLES on l \:! , arid a r ·~ l i k el'::! n 1l t · to work i n '::!our a PP l i c d t. i u ti • Ke'::! i n 
the a f' P r of' r i ate s la le men ts i r1 the i r P l a c. e be f c.• re run r1 i n s the t> r· o 9 re; m • 

The 2BYTE routine is assumed to be stored at line 10000. 

1000 ! ********'°'*;o:;.:;.:;.:;.:;o;;.; Main f'ro!'.lram 
1001 
1010 
1020 
1030 
1040 

NI. 
BI. 
RF 
I f't/. 

10~i0 DIM 
1060 

1[I0 I. 
2% 
8 

= <NZ * B/.) ·-1/. 
IAZ<IM/.), RA<Nl.-1/.) 

1070 VM/. = 21. 
1080 Pl. :: 0/. 
1090 !NIT PORT Pl. 

11 

number of readinss to take 
number of b\:!tes Per read1ns 

1 range factor for 100-V r~n~e 
si~e of inPut arrdY 
di 1neris i or1 ~rr~'::!s 

DVM device number 
IEEE 488 port number 

1 send IFC and REN to bus 



IFLUKEI =====® 

Table 5. 2-byte User Program (Con't.) 

1100 CLEAR PORT Pl. ! cl~ar bus devices 
1110 
1120 
1130 
11-40 
1150 
116 0 
1170 I 

EXAMPLE STATEMENTS*********************************** 
! command DVM to take readings * PRINT @VM%,'VR3I5TO?' 

INPUT t!!VM/., OP.$ 
RBYTE PORT P/., IAl.<0% •• IM/.) 

clear DVM output buffer * 

NOTE: The above is an examPle and is ~iven for demonstration 
1180 
1190 
1~'00 

1210 

p u r P o s es c.• r1 l '::I • e. e c au s e s c.• u r a P i:-· 1 i c. c.< t i o r1 m c.< '::I d i ff er , <- .:: ref u l 
con·:; i dera ti ons is advised bef Qr1:: dn'::! i 111P bH1l8tl t.a ti on. R•::f~r·· tu th•:! 
DVM manu.::1 fc.•r e:-:ac.t dete::ils on how to c.ori1111c:rnd the DVM to f'erform 
its functions. 

1220 !•*********************************************************************** 
1230 
12"10 GOSUE'o 10100 
1250 
1260 FOR I/.=1% TO NI. 
1270 PRINT I/., RACI/.-1/.) 
1280 NEXT II. 
1290 

1 c.all 2BYTE c.onversion routine 

disf'lB'::I lOOf' 
r..lisPla'::I readings 
loop till finished 

1300 END 
1310 
1320 
10000 ! Subroutine 2BYTE 

Table 6. 3-byte User Program 

' I •.. 
3 
4 
c· 
~· 
6 

l)ers.ion 1.0 

10 1 DESCRIPTION: 
12 I 

Fluke Control Products Me::rketins 

FDOS V 1.1, BASIC V 1.0 

1 '1 T h i s P r· C• ~1 r e:: rn ~J i l 1 t <:: k >.:: i 0 0 re e:: d i n s s fr o rn l, he 8 ~. O 2 ~l [) V ~\ i n i.. h .:: 3 - b '='to:: 
16 1 mode (1-KVolt. range), convert them ta 1720A format usin~ t~~ 3BYTE sub-
18 routine. and disPlBY them. The statements u~~cl to tomme::ncl the DVM ar 8 
2 U E X A M P L E S o ti l !:I ' a n d a r •::: l i k e l ~d n !j t t o w u r h i n !:I u W" a p p l i 1. a t i u n • I< e \~ i rl 

FJ 1 the apf·rc1 F-·ric::te s.taleiller1t~. if1 th121r Pl<::c.e b°'"'ft.•r->'! runr1ir1s the ~·r·c.o~ir·<::rn. 
24 1 Note that the DVM must b~ externall!:I tri~~er~cl in the 3-b~t.~ made. 
26 1 The 3BYTE routine is assumed to be stored at line 11000. 
28 I 

30 I 

1000 !******************* 
1001 
1010 N;I, 100/. 
1020 fH ~n 

1030 Fff 6-4 
1040 IMX ~ <NX * B/.) -1% 
10~·0 DIP1 BCi.:(2~0, IA/.(IM/.), 
1Q6(j I 

Main f'r·o!:.iram 

RA<N/.· 1/.) 

12 

1 number of readinss Lo take 
1 numl'.:110!r of b!:lte~ .., et' read 1 rd 
r~n~e factor for 1KV ranse 
si~e of inPut arra~ 

1 dimension arra~s 



IFLUKEI ====® 

Table 6. 3-byte User Program (Con't.) 

1070 F'/. :: 01. 
1080 VM/. :: 21. 
1090 BC/.(0/.) ~ VM/. + 544% 
rrmrin:;~ < 1~», r: ASC't 1 < ,,r~," 
1110 e.'"'" 27.) ::;, VMX + 59~/. 
i~;i/ t;t'Q:~i'.'%f• z . $4 

1130 CLEAR F'ORT F'/. 
1140 WAIT 3500 
11 ~~o 

IEEE Li88 PC!rt r1uo1ber· 
DVl'l- d·~v i c ·~ nw11bet" 
DVM listen ~clclress 
DVPI tri ss.er~''co11lman1l 
DVM tu,lk i:clclres<.:. 
lii·fiM'll.l,...lf"4 and REN to bus 
clear bus devices 
wait fQr DVM to cledr 

&} 1160 
1170 
1rsc;i 
111·0 

f;tJ***.*""**~** *~~;.; ~~f. ,f.~AMf:S.:E. STi!i TJ::tt1.£l~TS**?i"' ****·,;.: H""'****·*"' u "'**~"' * uu i<l·H;.: * 
!~PRI~rr' l!VM%,f?V'fi:41lH2,;!"'' G& 

2 

¢ • ! \'.;Olllllldnd DVM tu t.dk~ r'Bddltl9S * 
I.Nf'!,.\T l!VMl.1;<H:'.~' '! d~c-;I" .OVf'\ uu'tf.·ut buff.;;:r * 
FiBYTE PORT P/.,{lJBYTE PORT P/:,1:.Ci:\O:C .2%)} U!zfoi:.·~·i14f)"i3 : 1rli->ul. r·d~~ :.: 

1200 * 
1210 NOTE; Th·~ abciv·~ is on ·~:-:a111Ple and i!ii ':jiv•=ri for d•=mor1strC1tior1 :.: 
1220 ~,: :F'urPC.•ses' orHid :· , Becau·~e 0~c..u.Y:i+a:f-'~;f"i c. aTi ;:,r;- 111-c.i-di1".foi:r:, "c ir:ef\,i C ,.: 
1230 ~oniicleratians ~s adyJsed before any imPlementation. R~fer to the • 
1~4Q 1 !ll)V~.*tilt::l'HJ~:l ,t"tir;;?~:~x~~e t·"4r.ie~c: i lf ot;i Yt<MI!; . .to cottH1l?ncl the l)VM to Perform • 
1250 ' its functions. * 

12/0 
1280 G+P-SU~'11100,. 
1190 
13 00 FOR II. 7-U.-l <L~4"". 
1310 PRINT IX, RA<IX-1/.) 
1320 NEXT II. 
1330 
1340 END 
1350 

Table 7. 4-byte User Program 

1 I 

.-, ... 
3 I 

4 
Vers.1c.in 1.0 

' ' ~ 

-~ubrou(ine 3BYTE 

20 Mc:':-! 1980 

1 cal1 3BYT.£ c6nve.rsicm routine 

!J.j !:>P 1 p"'1 1.<101" 
1 JisPld~ reaclin~s 

loof-' till fini&hecl 

Fluke Control Product~ Marketing 

,,.. 
.J S~stem Software: FOOS V J • l, E'0 AS IC V 1. 0 
6 
10 
12 I 

1 fl I 

16 
H.~ 

20 

24 I 

';_>(_, I 

28 

DE SC R H' T l 0 N ; 

lhis Prosram will tske 100 r~2cl1nss from the 8520A DVM in the 4-b~t~ 
mode, convert them to 1720A format usin~ t~~~BfJE subroutin•~ and 
clisPlas them. The statements used lo commsricl the.DVM •~• exaroPle• unlw 
and a r e l i k e l \:I no t t o w o r k i n \:l o u r d 1~ P l i c d (, i on • ., e Y i n th ·~ cl I" I" t' o P r i d t 1:: 

statements in their Plac.e b~f0r~ runnin~ the ~~o~r~m. 
r h ·= 4 By TE r () u (, I n ·~ i s d s s U11l •~ d I;, u b •:! s l u t' ·~ d d t l i n e 1 2 () 0 0 • 

13 



IFLLJKE:I ====® 

Table 7. 4-byte User Program (Con't.) 

1 O O O ! ;.: • • "' ;.::o: ;.: • • ;.: ;.: ;.: • ;.: • • • • • Me:: i n Pr· o 9 r C.< hl 

1001 
1010 NI. ::: 100/. 
1020 Bi; = 41. 
1030 IM/. = <NI. * 8%) -1/. 
1040 VM/. :::: 27. 
1050 Pl. ::: 0/. 
1060 DIM IAl.<IM/.), RA<Nl.-1%) 
1070 
1080 INIT PORT Pl. 
1090 CLEAR PORT P/. 

number of readin•s to take 
number of bwtes per reading 
size of inPut arraw 
DVM device number 
IEEE 488 Port number 
di rn•:::ns i \JYl arra\:I·:;; 

send IFC and REN tu bus 
t: l•:::ar· bus dev i t:es 

1100 
1110 
1120 
1130 
1140 
1150 
1160 
1l 70 
1180 
1190 
1200 

EXMF'LE STATEMENTS*********************************** 

1220 

PRINT @VM/.,'DOI4TO?' 
I Nf'UT 1!!VM/., OE\$ 
RBYTE PORT P/., IA/.(0/. •• IM/.) 

' t:ornmand DVM to take readings ~ 

clear DVM outPut buffer * 
inPut readin~s * 

NOTE: The above is an examPle and is given for demonstration 
Purposes onlY. Because Your aPPlitation maw differ, careful 
cons1derat1ons is advised before anw implementation. Refer to the 
DVM me::nual for e:-:act details on ht•w tt• to1111ne::nd the DVM t<..1 i:-·erform 
its functions. 

1.?30 GOSUE'0 12100 
1240 

call 4BYTE conversion routine 

1250 FOR It.~1/. TO NI. 
1260 PRINT I/., RA<IX-1/.) 
1270 NEXT II. 
1280 
12s·o END 
1300 
1310 
12000 !••*************** 

Table 8:.. 5-byte User Program 

2 I 

3 I 

4 
5 
6 

l.I e r s i o r1 1 • 0 

10 1 DESCRIPTION: 
12 

Subrc.1ut i ni:: 4B YTE 

F'ro:3ram B502 5 

20 Me::w 1980 

di<::.Plaw loop 
diSPlaw readings 
loop till finished 

FOOS V 1.1, BASIC V 1.0 

1 L1 

16 
18 
20 

This Progr~m will take 100 readinss from the 8502A DVM in the 5-b~te 
mode <1-KVolt range), convert them to 1720A format usins the SBYTE sub­
routine, and di&Plsw them. The statement• used to c.omm~nd the DVM are 
EXAMPLES onl~. and are likel\:I not to work in '::lour aPPli(.c;tiun. ~(·::~~ in 
the aP P r·op r· i <:.<te s tate111er1ts in their P li.~t e b.;cfl•re runr1 1 n s ~he ...- r· c.• srC:<l•l. 

The 5EnTE rout 1 ne is a::;::;urn 1::d to be \:; tor·ed at line 13000. 24 

14 



IFLUKEI =====® 

Table 8. 5-byte User Program (Con't.) 

26 ! 
28 ! 
1000 
1001 
1010 
1020 
1030 
1040 
10:'.:10 

NI. ;:; 1001. 
Bl. = 5/. 
IM/. = (N/. * Bl.> -1/. 
DIM IA/.CIM/.), RA<NX-1%), Tl.CO/.) 

1060 Pl. ;:; OZ 
1070 VMi. = 27. 
1080 Tl.COX) ;:; VMI. + 576/. 
1090 !NIT PORT Pl. 
1100 CLEAR PORT PX 
1110 WAIT 3500 

number of readinss to take 
number of bwtes Per reading 
s i ~'.€! c.1f i nF'ut c::rre:1:.1 
dimension arrdYS 

IEEE 488 Port number 
DVM device number 
DVM talk address 
send IFC and REN tu bus 
c.lear bus devices 
wa i t fiJt· DVf"I l:.iJ cl edt· 

1120 
1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 
1210 
1220 
1'.BO 
1240 

!1•1111111111111111 EXAMPLE 
I PRINT @VMl.,'VR4BSOT?' 

STATEMENTS*********************************** 
! command DVM to l:.dke readings • 

WBYTE PORT Pf., Ti.COX> command DVM to talk * 
RBYTE PORT Pi., IA%COZ •• IM/.) i 11P 1..tt rd !:IS 

:.: 

NOTE: The above is an examPle and is liven far demonstration * 
Purposes onlw. Because wour aPPlication maw differ, careful • 
considerations is advised before an~ imPlement.ation. Refer t.u the * 
D V M m c: nu e:: l f t1 r e :·:at t de t e: i 1 s cm how !, t1 c L• m r1i and the D V M t c1 t=-· o';! r fur· ill ~·· 
its functions. ~ 

1250 Gosue. 13100 
1260 
1270 FOR 1%=11. TO NI. 
1280 PRINT !%, RACIZ-1%> 
1290 NEXT II. 
1300 
1310 END 
1320 
1330 

13000 !••················ Subrout i no:: :::1F0 YTE 

15 

call ~BYTE conversion routino';! 

disPla':.l lOOF' 
disPlaY readings 
looP till finished 



©1982, John Fluke Mfg. Co., Inc., all rights reserved 

16 

I =F=L=U=K~E=t 
John Fluke Mfg. Co., Inc. 
P.O. Box C9090, Everett, WA 98206 
800-426-0361 (toll free) in most of U.S.A. 
206-356-5400 from AK, HI, WA 
206-356-5500 from other countries 

Fluke (Hulland) B.V. 
P.O. Box 5053, 5004 EB, Tilburg, The Netherlands 
Tel. (013) 673973, TELEX 52237 
Phone or write for the name of your local Fluke representatfre. 

Printed in U.S.A. B0091A-IOU8005/SE EN 



IFLUKEI ====® Technical Data 
Application Infonnation Bo101 

1720A RS-232-C 
Interfacing To Serial Printers 

RS-232-C Defined 
EIA Standard RS-232-C provides the electronics 
industry with the ground rules necessary for 
independent manufacturers to design and produce both 
data terminal and data communication equipment that 
conforms to a common interface requirement. As a 
result, a data communications system can be formed by 
connecting an RS-232-C data terminal to an RS-232-C 
data communication peripheral (such as a TTY, 
MODEM, computer, etc.). 

The RS-232-C is a hardware standard which guarantees 
the following: 

1. Each device on RS-232-C will use a standard 25-pin 
connector which will mate to another standard 25-pin 
of opposite sex. 

2. No matter how the cables are connected, no smoke 
or damage will occur. 

3. The data and handshake lines will each be given a 
specific name. 

RS-232-C data and handshake lines: 

In serial communications, control and data signals 
usually come from one pair of lines; an additional line 
sometimes provides a busy signal - used to delay data 
transmission until the device can handle that data. The 
data and handshake lines in RS-232-C send information 
uni-directionally (simplex); that is, one end of a cable 
transmits data or handshake and the other end receives 
data or handshake. Care must be taken to insure that 
each wire in RS-232-C has the appropriate transmitter 
and receiver combination. Transmitters connected to 
transmitters and receivers connected to receivers 
provide no data communication. To alleviate this 
problem, the RS-232-C Standard calls out the interface 
on one end of the cable to be designated as a 
"Terminal" and the interface on the other end is "Data 
Communication Equipment". The standard defines the 
data handshake signals on each pin of the connector for 
the "Data Communication Equipment" and the 
"Terminal". 

Note: There is a glossary at the end of this bulletin which 
can be referred to for most of the terms which may be 
unfamiliar to the reader. 

RS-232-C Signal Considerations 
Timing format conforming to asynchronous operation is 
shown in figure 1. 

IDLE STATE OPTIONAL PARITY BIT 

START BIT ! STOP BITS 

I i--oATA BITS-----J _ j 
s~:~:- I I I I I I I I 1 .......... 1:-:::.:=::=:=1 ::::1:::::1=.:::-1.:1,..._-

I---FRAME-----r---FRAME------i 

ASYNCHRONOUS TIMING 

Figure 1. RS-232-C Timing Formats 

Asynchronous Operation: 

In asynchronous operation each character is bracketed 
by start and stop bits. These bits separate the 
characters and synchronize both the transmission and 
reception of data. When data is not being sent, the 
transmit line is held high (High= 1 ). 

Transmission Mode: 

Transmission mode is a fundamental system 
requirement. It defines the communication ability of 
both instruments in the system configuration. 
SIMPLEX indicates data transmission in one direction 
only. HALF-DUPLEX permits two way 
communication, but not simultaneously. Simultaneous 
transmission of data in both directions defines the 
FULL-DUPLEX system. Obviously, an instrument 
capable of full-duplex operation can be down graded to 
simplex operation. However, the reverse is not possible 
without degrading the system capability. 

Baud Rate: 

Baud rate is usually selectable on the RS-232-C 
Interface. If it is not, the manufacturer usually offers a 
choice when the instrument is purchased. Character 
format (bits per character and parity) is somewhat 
flexible between instruments. Investigate the 
requirement of both instruments before committing 
either to a system configuration. 

All data, documentation, dialog, diagrams, suggestions, reports and/or 
other forms of media contained in this bulletin are intended to be 
informational in nature only. Implementation of such data to a user's 
application should ONLY be made after careful analysis by the user's 
own software experts. John Fluke Mfg. Co., Inc., specifically disclaims 
all warranties on such information, express or implied, including but 
not limited to any warranty of merchantability, fitness, or adequacy for 
any particular purpose or use. 



Data Interface Levels: 
The 1720A uses EIA voltages for data interface levels. 
EIA voltage levels are: 1 or OFF=-25 to -3V de, 0 or 
ON=+3 to +25V de. 

This works fine on paper. However, in practice the user 
must be aware of the subtleties of serial binary data 
interchange to ensure that any two pieces of RS-232-C 
equipment will be compatible . 

RS-232-C Specification 
You can obtain information on this specification from 
the Electronic Industries Association, Engineering 
Department, 2001 1st N.W., Washington, D.C. 20006. 
Send $6.90 per document copy and ask for EIA 
Standard RS-232: "Interface Between Data Terminal 
Equipment and Data Communications Equipment 
Employing Serial Binary Data Interchange". A 
companion document, "Industrial Electronics Bulletin 
No 9 - Application Notes for EIA Standard 
RS-232-C", costs $3.50. 

Printer Considerations for RS-232-C 
and the 1720A Instrument Controller 
The l 720A Instrument Controller has two serial 
interface ports that meet the requirements of RS-232-C 
for full duplex asynchronous communication using the 
EIA voltage levels. The user must verify that the data 
communication peripheral is pin-for-pin compatible to 
the 1720A. Table 1 details the RS-232-C cable pinouts 
for the 1720A and some common printers. 

Table 1. 1720A TO PRINTER CABLE CONNECTIONS 

Fluke TI 
1776A 800 Series 
Tally and ~ 

1720A RS-232-C Tl605 Centronics DEC 
Signal Definitions Tl612 704 LA120 

Chassis Ground (Shield) I 1 I I 
Transmitted Data 2 -- 3 3 3 
Received Data ) - 2 2 2 
Request to Send 4 -- - 8 -
Clear m Send 5- - - -
Data Set Ready 6 - 20 20 20 
Signal Common 7 --- 7 7 7 
Secondary Channel Receive 12---- 11 or 19 11 11 or 19 
Data Terminal Ready 20---- - 6 -

Cable Connector Type Male Male Female 

Comments Tl820 
requires a 

parameter 14-
to handle busy 

Fluke Cables Yl709 \'1709 Yl705 & 
Yl707 

<i 1980, John Fluke Mfg. Co., Inc., all rights reserved 

The Yl 709 Printer cable has been configured to work 
directly with the 1776A Printer.The cable has a male 
connector which mates with the female connector on 
the 1776A printer. The cable's female connector mates 
with the male connector on the 1720A. Once the cable 
has been connected to the 1776A/l 720A, the system is 
ready to be powered up and begin printing. Print 
statements are given later in this bulletin. 

• ) 

. -
Femat~ 

RS-232-C Connectors 

RS-232-C Compatibility Problems 
Typical compatability problems associated with 
RS-232-C are: 

1. There are no software standards associated with 
RS-232-C. Many types of communication protocols 
serve RS-232-C systems. One protocol uses USASCII 
code STX (start of text) to precede data and ETX (end 
of text) to follow data transmission. Another uses 
USASCII code STX (start of text) to precede dataand 
ETX (end of text) to follow data transmission. Another 
uses USASCII ACK to acknowledge message receipt 
and N AK to indicate no acknowledgement. This 
ACK/NAK combination is usually found in polling 
computer configurations. (STX, ETX, ACK and NAK 
are nonprinting characters, for "handshaking" or 
control only). 

Lear Siegler Facit 4555 
300 Series and 

and Anadex 
Data DP8000 
Royal i--- and 
5000 IDS Printronix Fluke Teletype Printer Signal 
7000 440 300 2020A 43 Definitions 

I I I - I Chassis Ground (Shield) 
3 3 ) 2 3 Received Data 

- - - - - Transmitted Data 
- - - - - Line Signal Detector 
- - - - -
20 - - - Data Terminal Ready 
7 7 7 7 7 Signal Common 
19 20 20 6 - Printer Busy/Ready 
- - - - - Data Set Ready 

Male Female Male Male Female 
Female = DB25S 
Male~ DB25P 

Yl709 NIA NIA NIA Yl705 & 
Yl707 



2. RS-232-C terminals and RS-232-C data communica­
tions equipment are not always hardware compatible. 

A. For example, the two instruments must share at least 
one of the features from each of the following 
characteristics: 

l.) Timing Format - Synchronous or 
asynchronous 

2.) Transmission Mode - Simplex, half-duplex, or 
full duplex 

3.) Baud Rate (bits per second) - 75, 110, 134.5, 
150, 300, 600, 1200, 1800, 2000, 2400, 3600, 
4800, 7200, 96000, 19200 

4.) Bits per character - 5, 6, 7, or 8 
5.) Parity Bit - Odd, even, high, low, not used 
6.) Data Interface Levels - EIA voltage levels or 

20 mA current loop 

B. Care must be taken to ensure that the RS-232-C 
cable is correct for the application. One of the 
ambiguous areas in an RS-232-C connection is the 
use of pin 2 for transmitted data (TD) and pin 3 for 
received data (RD). The confusion arises in a 
simplex or half-duplex connection, where pin 2 at 
one end of the line must go to pin 3 at the other end, 
and vice versa; this pin transposition can be handled 
in the cable itself or at either connector. Another 
confusing aspect of the RS-232-C standard is the pin 
used to indicate a busy condition. Occasionally 
pin 11 - normally unassigned - has this task; in other 
cases pin 19 or pin 20 - with the appropriate 
polarity - is used. 

Figure 2. RS-232-C/1720A Printer Cable Diagram 

J1 

P1 SHIELD J1 
WIRE LIST 

I~ 
11 

I I :X 
11 

: I jjX I : 

2~=:J !!X r==:2 20 20 
11 

;~=:J !iX t=11 19 12 12 
U SCHEMATIC ·Jumper Wire 

Consult the manual for a particular device to 
determine the proper cabling. However, if the 
manual is not available, the following simple test will 
tell you if a device is a terminal or data communica­
tion device (MODEM) in most cases. 

Compatability Test: 
RS-232-C Cable Application 
Measure voltage at pins 2 and 3 with ground lead 
connected to pin 7. 

PERFORM TEST WITH NO CABLES CONNECTED 
"TERMINAL" 
Pin 2 < -3V Pin 3 0 to +2V Pin 7 GROUND 

"DATA COMMUNICATIONS DEVICE" (MODEM) 
Pin 2 0 to +2V Pin 3 < -3V Pin 7 GROUND 

Obtaining A Printed Program 
Listing From The l 720A 
RS-232-C Printer: 
Select an RS-232-C port, connect the printer and set 
appropriate baud rates 
Basic Immediate Mode : 
l. Type: OLD "filename" <CR> 
2. Type: SAVE "KBl:" <CR> 

. or SA VE "KB2:" <CR> 

File Utility Program: 
Type KB 1 :=file name <CR> 

KB2:=file name <CR> 

Note: Only ASCII files (.BAS) can be listed in PUP. 

Example: 
l 720A BASIC program which inputs data from the floppy 
disk and outputs this data to an RS-232 printer. 

l 0 f'RQ(,f.:API LI ST. E.(IS 
f-'f\OGh'l\MME f.. 

.~Li 1 f\~VlSlON 1.0 

.,u 1 onn 1s Af'R 19so 
:_.~. . 
c.O l DEsrr:JF'TION LISTS AN ASCII FILf ON A F,:f.-23?-C F'F.INTER 

l(1 

'Q 
1110' 
llll l 
J.·n [f.1 ~ CHR$C:.>7X) + "[" 

ON ERROR GOTO 2E:O 

! fSCAF'E SEOLif"NCE 
1 RESET SCREEN 

l3L PRINT CS$;'1p'; ! f'f.:OMf'l 
J1,.1 ~f.:JNT ES$;'-4;HE.N1Ef\ FILENAME 10 B~ llSTED' 1 STORE FILENAMC 
1:50 INF'UT 1H 
1 ~ l! ' 
;~(1 CLOSE l \ Of'fN Ai- AS FILE 1 
lt;ll CLOSE 2 \ Of'UI ·~~Bl:' AS Nf:.W FILE. 2 
J'1ll I 

• 1t1 f-RIN1 ll2.CU~t<1:>%li 

.'1G ! 

. .'lL JNF'UI LINf Ml. i:l 
'."'3U FRINf tt2, A$ 
_ t,(1 (H,10 :i~•O 

E F..f'..OR Ht'lNOl EF. 

Or-E.N CH•1NNEL FOR INF'lJT 
Of· EN KB 1: FOR OUl PUT 

TOf· OF FORM 

rnru1 EAC .. I LINE' 
f'RINT EACH LINC:: 
GE 1 NEXT LI NE 

• /IJ ! I FILE OVE.SN'l EXISl 
: ! (1 H rr.:r-:;. 30~· lHEN RESUME. 310 ! !:'.ND Of Flt.I 
• 10 Ir F.:RR .= 307 mm Rt51JME. 330 
:L•(1 F·F..INT 'Ef\f\Of\';(f\f,:;'li' llNE.';ERL; \ RfSUME. 33() 
_Ju i--RlNT £S$;'&;UFILE DOESN'T EXIST - TRY AGA!N'i \GOTO 140 
•,11 I 

\.!1J CLOSE 1,2 
•. l • f ~i (l 



Glossary 

Asynchronous 
Transmission 

Baud Rate 

Bit 

EIA 

Format 

Frame 

Full Duplex 

Half Duplex 

Having a variable time interval between 
successive bits, characters, or events 

The number of bits that can be 
transmitted in one second 

One of the characters of a two valued or 
binary number system such as 0 and 1. 
A bit has come to signify the smallest 
piece or smallest unit of information. 
(A single pulse in a group of pulses.) 

Electronic Industries Association 
2001 Eye Street, Northwest 
Washington, D.C. 20006 

The predetermined arrangement 
of characters 

A time period encompassing the bits 
which define a character 

Simultaneous communication between 
two points in both directions 

One way communication between two 
points in either direction 

Handshaking Communication which takes place 
between two devices for the purpose of 
informing each other about the status of 
data being transmitted, received or 
processed, in order that this may be done 
in a cooperative, orderly and timely 
manner without errors. Handshaking is 

Interface, 
Electrical 

I/O 

Modem 

"-Vitat:to the operation of asynchronous 
transmission. 

Electrical interconnection between 
system elements 

Input/Output 

A contraction of "modulator­
demodulator". In the modem, the 
square-edged pulse train is impressed 
(modulated) on a carrier signal of a 
frequency which is within the telephone 
channel frequencies between 300 and 
3300 Hz. The modem also extracts 

(de-modulates) the square-edged pulse 
train from the carrier wave allowing 
bit-serial communication over standard 
telephone lines. 

Parity 

Parity Bit 

Parity 
Checking 

Peripheral 
Equipment 

RS 

Simplex 

Sync 

Sync Pulse 

Synchronous 
Transmission 

TTY 

Proper value in the binary check digit of 
the transmitted and received data. 

A binary digit appended to an array of 
bits to make the sum of all bits always 
odd or always even. 

A method used to detect single bit errors 

In a data processing system, any 
equipment distinct from the central 
processing unit that may provide the 
system with outside communication or 
additional facilities 

Recommended standard 

Data transmission in one direction only 

Short for synchronization 

An electrical pulse transmitted to a 
circuit by the master equipment to 
operate a slave in synchronism with 
the master. 

A precisely timed bit stream and 
character stream 

Teletypewriter Equipment 

IFLUKEI =====® 
John Fluke Mfg. Co., Inc. 
P.O. Box 43210, Mountlake Terrace, WA 98043 
800-426-0361 (toll free) in most of U.S.A. 
206-774-2481 from AK, HI, WA and Canada 
206-774-2398 from other countries 

Fluke (Holland) B.V. 
P.O. Box 5053, 5004 EB, Tilburg, The Netherlands 
Tel. (013) 673973, TELEX 52237 
Phone or write for the name of your local Fluke representative. 

Prmte<l m U.S.A. BOIOIB-IOU8203/SE EN 


	00
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	13-01
	13-02
	13-05
	13-06
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	15-01
	15-02
	15-03
	15-04

