
Gould Millennium
95085 Microsystem Emulator

Product Description

•} GOULD
Electronics & Electrical Products

There Is One Fast Way
to Develop a Microprocessor-Based System

Gould Millennium Invented It!

You probably realize that you must use
in-circuit emulation when you're develop­
ing systems around microprocessors. It's
the only way that you can look around
inside the system. But there are lots of
difficult choices involved in selecting the
ICE™ that you need.

Opaque emulation. Almost every
manufacturer of in-circuit emulators
advertises "fully transparent" emulation.
So you need to know the right questions
to ask. Is it functionally and electrically
transparent? Does it support all the
operating modes of your target
microprocessor? Does it insert artificial
wait states? Does it use any of the
target system address space? Does it
operate at full microprocessor clock
speeds? Does it provide the proper input
and output impedances? If your emula­
tion isn't transparent, you may spend
more time developing an emulator-based
system than a microprocessor-based
system.

™ Trademark of Intel Corporation.

Overbundled system. With many devel­
opment systems, you must tie up $25,000
worth of computer to use a $5,000 option.
Programmers can't edit or assemble code
while engineers use the ICE option or
vice versa. System development consists
of software development (coding,
editing, assembly/compilation, debug­
ging), proceeding in parallel with hard­
ware development (designing, prototyping,
debugging). The programmers need the
development system's text editor, file
manager, assemblers, and compilers. The
programmers and engineers both need
ICE. They should be able to use them
separately.

Dedicated Systems. Some develop-
ment systems are excellent in many
respects except that they support the
offerings of only one microprocessor
manufacturer. What if you want to use
one microprocessor as a number crun­
cher and another as an 1/0 controller?
You could end up with two imcompatible
development systems and ICE units if
you're not careful. Your development
systems and ICE should be able to sup­
port all of the microprocessors that you
are using now and those you may use .
in the future. These development
systems are called "universal", and we
invented the concept.

The Gould Millennium Fast,
Efficient Way to System
Development

Gould Millennium invented the fast, effi­
cient way to develop microprocessor­
based systems, and we have been
improving it for years. Our development
system philosophy is based on eight
years experience in the design and
development of microprocessor-based
systems. We have developed more than
thirty of them , so we understand the
design engineer's problems.

Gould Millennium was the first company
to produce a universal development
system . That was in 1976, and since
then we have manufactured and shipped
more of them than any other company.

Our previous development systems were
sold under other names (names such as
Tektronix, Signetics, and Motorola). Our
experience with development system
design and microprocessor-based pro­
duct design has taught us just about
everything there is to know about
development systems. The 9500 family
is the result of that experience.

Your interface to a development system is
the system's command set. Our engineers
improved on the command sets from pre­
vious systems. Then they added com­
mands that were lacking. The result is a
powerful , 'friendly ' command set that is
easy to use. You can concentrate on your
development task, not on how to use your
development system.

9508S Microsystem Emulator. A stand­
alone in-circuit emulator which supports
all of the popular 8-bit microprocessors
and microcomputers. The 9508S
Microsystem Emulator is our second­
generation of 8-bit ICE. We have
expanded the features available in the
9508; more memory, more sophisticated
and versatile host communications,
higher speed communications, service
requests to and from the console, and
command file capability have been
added to our high quality emulation to
make it even more powerful and easy to
use. It is the subject of this Product
Description.

3

Figure 1.

9516 Microsystem Integration Station:
a more sophisticated stand-alone in­
circuit emulator which will support 16-bit
microprocessors as well as 8-bit
microprocessors.

9520 Software Development System:
a multi-tasking software development
system which starts as a single-user
system and is upgradable to a dual-user
system.

9540 Software Development System:
provides multi-user support via the Unix
operating system with hard disk.

The Gould Millennium 9500 family of
development systems helps you avoid
those difficult choices by providing all
the development capability you will ever
need. Here's why the 9508S
Microsystem Emulator is your best
choice.

Ultimate Performance. Gould
Millennium starts with the best in-circuit
emulators available anywhere. They are
totally transparent to the system under
development. They support all of the
operating modes of the target
microprocessors. They don 't intrude on
the target microprocessor's memory or
1/0 addressing space. They operate at
the maximum clock rate of the target
microprocessor. They don't introduce
artificial wait states.

4

We start with solid emulation perfor­
mance. Then we add powerful debug
features like real-time trace, complex
hardware breakpoints, in-line
and mnemonic display. But the impor­
tant thing is, if your system under
development works with the 9508S, it
will work with the target microprocessor,
and if it works with the target
microprocessor, our emulators won 't
hide the problem .

Unbundled Functions. The 9508S is a
stand-alone in-circuit emulator. It doesn't
need a host development system to per­
form all of its intended functions. Its real­
time trace, in-line assembler/disassembler,
complex breakpoints, memory mapping,
register display/modification, and debug
command set are all self-contained. Soft­
ware debug and hardware development
are unbundled from software generation.

Your 9520 Software Development
System (or your host mini or MOS) does
the software generation. Download it to
the 9508S Microsystem Emulator over a
standard RS-232 serial link. Then break
the link. The 9520 Software Develop­
ment System is free to do its job. The
9508S Microsystem Emulator takes over
the jobs of software debug and hardware
debug. It's like having two complete
development systems.

Universal Support. Gould Millennium
invented universal development systems,
and the 9508S Microsystem Emulator is
another step in that concept. It supports
all of the popular 8-bit microprocessors
and microcomputers.

8021 8048 6800A
8035 8748-4 6801
8035-4 8748-8 6802
8035-8 8049 6803
8039 8049-6 6808
8039-6 8050 6809
8040 8080A 68A09
8041A 8085A-2 68B09
8741A 6809E
8741-6 Z80A 68A09E

68B09E

The Right Price. The 9508S
Microsystem Emulator is an in-circuit
emulator that can be used as a stand­
alone unit, as a terminal on the 9520
Software Development System, or as an
add-on terminal to your existing
minicomputer or development system.
Its price is competitive, but its real
economy is in the flexibility that it offers.
You buy just the power you need. You
don't scrap your existing development
system or computer. When purchased
with the 9520 Software Development
System, it provides the highest possible
productivity and development capability
for the price.

Ultimate performance. Unbundled func­
tions. Universal support. Reasonable
price. These are the foundations upon
which the 9508S Microsystem Emulator
is built.

I

I

The 9508S Microsystem Emulator
Ultimate Emulation
Performance Coupled With
Debugging Tools that Speed
the Development of Your
Microprocessor-Based System

The 9508S consists of a main unit con­
taining common control circuits, real­
time trace module, emulation memory,
power supply, and the microprocessor
in-circuit emulation module. The ICE
module is connected to an emulation
pod with probe.

A video terminal is connected to the
main unit through an RS-232 serial port.
A second RS-232 port allows the 9508S
to be connected to the 9520 Software
Development System or other host com­
puter. Several serial protocols are sup­
ported for communications up to 19.2K
baud.

Compatible host systems, other than the
9520, include other development
systems such as those manufactured by
Intel, Motorola, and Zilog, and minicom­
puters such as those manufactured by
Digital Equipment , Data General, and
Hewlett-Packard. A sophisticated com­
munications interface supports a variety
of protocols and gives you software con­
trol of several communications
parameters.

MASTER
CENTRAL

PROCESSING UNIT

SYSTEM *
BUS

MASTER MEMORY
READ-ONLY/

RANDOM-ACCESS
MEMORY

DEBUG
LOGIC

t

Figure 2.

E] u

l

Figure 3. The Gould Millennium 9508S Block Diagram.

REAL-TIME
TRACE

*
EMULATION MEMORY

16K/64K
RAM OVERLAY

-

--

SERIAL PORT

EXTERNAL PROBES

CLOCK

COMMUNICATION

TO HOST---~
(IF DESIRED)

TO CRT
~--► CONTROL

CONSOLE

5

Most operations, however, will be per­
formed in a stand-alone mode. When
you are developing hardware, debugging
software, or integrating hardware and
software, the 9508S provides all the
tools you need.

When you are developing software, you
will assemble your programs on a host
system and download the object code to
the 9508S for execution and debug. You
can break the link once the download is
done, because the host system is
needed only for program editing,
assembly, and storage.

All of the program execution is
accomplished in the 9508S. Your 9520
Software Development System or host
minicomputer is free for other parallel
activities.

If you want to save partially debugged
software, just re-establish the link and
upload it to the 9520. When you are ready
to continue debugging, download it again
and continue where you left off.

6

Powerful
Debug Features
Make It Possible

Emulation Memory

During software debug and the early
stages of system integration, your pro­
grams will usually be loaded into the
9508S emulation memory for execution
and debug.

Emulation memory is available in 16K and
64K modules. Emulation memory is totally
separate from 9508S master ROM and
RAM. The 9508S master memory does not
intrude on the target microprocessor's
addressing space.

Segments of the emulation memory may
be mapped into the target micro­
processor's address space. Mappable
segments may be from 256 bytes to 64K
bytes. This allows software modules
which are being debugged to interact
with previously debugged modules which
are resident in the prototype hardware.
But no matter where the software is that
is being debugged, it is under the con­
trol of the 9508S.

Memory Modification
and Display

Powerful memory monitoring and control
commands are available to control your
program and data memory regardless of
where it is located.

Base Address Registers enable you to
specify up to four base addresses and
then address memory locations relative to
them. This is especially useful when you
are working with relocatable programs
since linked modules will seldom be
loaded at the addresses shown on your
program listings.

A base address register lets you set the
actual starting address of a relocatable
module in the base address register and
then address memory using the addresses
contained in your program listings, offset
by the base address. You don't have to
perform hexadecimal addition or subtrac­
tion with all its chances for errors.

In-Line Disassembler converts machine
language programs to assembly
language mnemonics. This makes your
displayed program segments from
memory look like your program listings,
so you don 't have to relate hexadecimal
numbers to microprocessor instructions;
potential errors are reduced and
debugging is speeded up.

In-Line Assembler provides a direct
translation from assembly language
mnemonics to machine language code.
You can patch your programs in assembly
language rather than having to translate to
machine language manually. This elimi­
nates another potential source of errors,
and reduces the amount of time that you
need to reassemble or recompile your pro­
gram on the 9520 Software Development
System.

This is a line-by-line assembler which
recognizes the mnemonics of the target
microprocessor. It's not a powerful
macro assembler such as the equivalent
assembler on the 9520, but it will
translate one instruction at a time and
put it at the memory location that you
specify. It's a real debugging time-saver
and mistake-avoider.

Memory Display Commands provide
simple, precise methods for displaying the
contents of memory. One command ,
DISM, displays memory in assembly lan­
guage mnemonics. The DUMP command
displays memory in hexadecimal format
with ASCII equivalents at the end of each
display line.

Figure 4.

Memory Modification Commands allow
you to change memory quickly and
accurately. The ASM command is used to
make changes in assembly language
mnemonics. The EXAM command lets
you examine one memory location at a
time and either modify it or leave it
unchanged. The PATCH command lets
you modify contiguous memory locations
(up to 64 bytes) with an ASCII or hexa­
decimal string. The FILL command lets
you load a range of memory with an
ASCII or hexadecimal string; for exam­
ple, loading all of unused memory with
HALT instructions so that program exe­
cution will stop if your program jumps
outside of its intended bounds. The
MOVE command is used to move blocks
of memory from one location to another.

Register Modification
and Display

In all cases you can display and modify
any register which can be accessed by
your program. You can display all registers
with a single command on your video ter­
minal. The REG command is used to con­
trol register display and modification.

Service Requests

The ability to transmit characters or
messages to and from the console is
suppl ied by the service request com­
mand, SVC. SVC allows you to utilize
the system console from within your
user program.

Real-Time Trace

Next to ICE itself, real-time trace is pro­
bably the most powerful tool available to
designers of microprocessor-based
systems. It is used in all phases of
system development: in hardware
development when you want to see
what's happening between your
microprocessor and your complex
peripherals; in software debug when you
need to trace program execution paths
to determine where a program is coming
from and where it is going; in system
integration when you must trace the
interaction of unproven hardware and
unproven software.

The 9508S real-time trace has a high
speed memory which records the last
128 events on the target micro­
processor's bus and on the eight exter­
nal data probes. It can be qualified to
record all events or only specific types
of events such as instruction fetches or
memory writes.

Real-time trace is used in conjunction with
a powerful hardware breakpoint capability.
The breakpoint logic is used to stop pro­
gram execution in the area in which you
are interested, and the real-time trace
buffer lets you see what happened there.

EXT.
ADDRESS DATA DATA BUS-OP

------ 35 BITS -----

Figure 5.

Here are some specifics about the
9508S real-time trace capabilities.

I
128

WORDS

j

Trace Buffer is 128 locations deep and 35
bits wide. Information recorded in each
location consists of 16 bits of address, 8
bits of data, 8 bits of external probe data,
and bus transaction type. Trace buffer
stores can be qualified so that only
specific types of transactions will be
recorded. You can select Memory Read,
Memory Write, all Memory, 1/0 Read, 1/0
Write, all 1/0, Instruction Fetch cycles, all
Reads, or all Writes.

External Probes consist of 8 data
probes, a clock probe, and a ground
probe. They can be used to monitor 1/0
ports during program execution, external
status indicators, or anything else of a
digital nature which may be going on
outside of the target microprocessor.

They can be recorded synchronously by
the microprocessor clock or sampled by
an asynchronous clock for storage at
microprocessor clock time. There is also
a latch mode for detecting multiple tran­
sitions occurring between micropro­
cessor clocks. They can also be
included in the breakpoint equations, so
that breaks and triggers can be condi­
tioned by external events as well as
internal bus transactions.

Breakpoints

The 9508S Microsystem Emulator has
four breakpoints:

One simple hardware breakpoint on
addresses. (See GO command on
page 16.)

One software breakpoint on micro­
processor register contents. (See
REGBRK command on page 16.)

Two complex hardware breakpoints.

The complex hardware breakpoints pro­
vide the greatest flexibility and debugging
power and will be covered in considerable
detail in the following paragraphs.

There are two trigger/~reakpoint circuits
which can operate independently to pro­
vide two separate trigger/breakpoint con­
ditions, or they may work together to multi­
ply their power for diagnosing complex
problems. Operating modes are Inde­
pendent, Limit , Arm, and Freeze.

Independent Mode. This mode illustrates
the basic functions of the two circuits. Each
operates independently and identically.
The accompanying flow chart illustrates
the Independent Mode. Each flow chart
block, representing a circuit feature , pro­
vides significant debugging power.

• Event Specification. The first step in
using breakpoints is to set up an event
comparison register. Each of the two
breakpoint circuits has one of these
registers. When setting it up, you will
make the following selections.

ADDRESS. Set an address value, and
select comparison on EQUAL, LESS
THAN/EQUAL, or GREATER THAN/
EQUAL. Address range is 16 bits.

7

START

.-----------►I- - - - - -- -- -- -- ------ - - --

NO

NO

NO

YES

YES

DELAY

GENERATE
TRIGGER

YES

HALT
TARGET

PROGRAM

Figure 6. Independent Mode.
8

The two hardware EVENT registers may be
conditioned as follows:

16-bit address (= , = <, = >)
8-bit data(= , = < , = >)
8 external probe bits (1 , 0, X)

Bus transaction type (read , write ,
memory, 1/0, fetch)

An EVENT PASS COUNT of up to 65,535 events may
be imposed.

Once the PASS COUNT requirement has been satis­
fied , a DELAY may be imposed prior to the generation
of a TRIGGER or HALT. The DELAY may be up to
65,535 EVENTS, FETCHES, BUS CYCLES, TRACE
STORES, MICROSECONDS, or MILLISECONDS.

When the DELAY requirement has been satisfied , a
TRIGGER will be generated. It may be used to syn­
chronize another instrument such as an oscilloscope or
logic analyzer.

Upon generation of the TRIGGER, target program
execution will be halted if the breakpoint HALT is
selected, or it will continue if the HALT is not selected.

Program execution will continue following the HALT
when RUN is generated, either by the generation of a
GO command from the terminal keyboard , or an
automatic RUN following HALT generated by a
command.

DAT A. This 8-bit data selection allows
such combinations as breaking on a
specific value being written to a
selected memory location or 1/0 port.

EXTERNAL DATA. The external data
probes that are used to capture data
for real-time trace may also be
included in the breakpoint equation.
Each bit may be selected as "1",
"0", or "X" for don't care. You could,
for example, include a single status
bit in your breakpoint equation and
ingore all other conditions. You could
break on the generation of an interrupt,
the acknowledge signal from a
peripheral, or the lack of an
acknowledge signal from a peripheral.

BUS TRANSACTION. The final event
qualifier is the target microprocessor
bus transaction type. You may select
Memory Read , Memory Write , All
Memory, 1/0 Read , 1/0 Write , All 1/0,
Instruction Fetch cycles , all Reads, or
all Writes.

• Pass Count. An event pass count of up
to 65,535 events may be selected . This
means that the Event comparison logic
must detect the satisfaction of the event
conditions the number of times called for
in the pass count selection . This is
especially useful when you are
debugging program loops, and you want
to see what happens when you exit from
the loop.

• Delay. A delay of up to 65,535 counts
may be selected in addition to the Pass
Count described above. When you
select the Delay feature , you can specify
the delay " clock". It can be Event com­
parisons, Instruction fetches, Trace
buffer stores, Bus cycles , Milliseconds,
or Microseconds.

One of the most common uses for the
Delay feature is to trace events follow­
ing the satisfaction of the Event condi­
tions. For example, a delay of 64 Trace
buffer stores would center the condition
that satisfied the Event comparison in
the Trace buffer. The Trace buffer
would then contain the 64 transac­
tions preceding the event and the 64
following it.

..

• Trigger. A Trigger Pulse will auto- When both events occur simultaneously, Halt, you can then examine the Trace
matically be generated whenever the your program is attempting to write into the Buffer and see how your program got
Event, Pass Count, and Delay condi- protected area. If you select a breakpoint there.
tions are satisfied. You can use it to trig-
ger another instrument such as a logic
analyzer or oscilloscope, or you can use
it to trigger an event in your prototype
system. You could use it, for example, to

9 i generate an interrupt during a particular
part of your program, and then examine
the trace buffer to see if the interrupt
was processed properly.

~ • Breakpoint Halt. If you want to +
examine machine status upon satis-
tying all Event, Pass Count, and NO NO
Delay conditions, you can specify a
Breakpoint Halt. Once the target
microprocessor is halted, you can

YES examine the Trace Buffer, micro-
processor regsiters and status, and
memory contents. You have the
options of modifying the progam, NO
modifying target microprocessor
registers, loading a new progrc1m, or
any other debugging tasks. You can
continue executing your program from
the point of the Halt or from any
other point you may choose.

NO NO

Limit Mode. The Limit Mode allows you
to set up breakpoints or triggers within a
range of addresses or target micro-
processor conditions. As you can see
from the flow chart, EVENT 1 and EVENT

EVENT 1 EVENT 2 2 conditions must be satisfied
DELAY DELAY

simultaneously in order for a trigger or

-(breakpoint halt to occur on the EVENT 1
path. The EVENT 2 path still functions the
same as in the Independent Mode, but a
breakpoint halt would not normally be GENERATE GENERATE
selected on this side in the Limit Mode. TRIGGER 1 TRIGGER 2

This mode is used when you want to set a
breakpoint within a range of values. For
example, if your program is attempting to
write into a protected area of memory, you NO NO
can set the EVENT 1 address at the upper
end of the range with a comparison on
LESS THAN/EQUAL, and a bus transac- YES
tion qualifier of MEMORY WRITE. The YES
EVENT 2 address would be set at the
lower end of the range with GREATER HALT HALT
THAN/EQUAL comparison selected. TARGET TARGET

PROGRAM PROGRAM

Figure 7. Limit Mode. 9

Arm Mode. The Arm Mode is used when
one event is to be recognized after another
event has occurred. (In the Limit Mode, the
events must occur simultaneously; in the
Arm Mode they must occur sequentially.)
This is a powerful tool which can help you
diagnose some very complex problems.

One example is the interaction of sub­
routines with the main program. A problem
could occur in a subroutine when it is
called from one point in your main pro­
gram, but not when it is called from others.
Set EVENT 1 to an appropriate point in the
calling routine. You can even specify a
Pass Count (the flow chart shows the
sequence).

When the EVENT 1 comparisons and
Pass Count are satisfied, TRIGGER 1
will be generated and will enable the
EVENT 2 path and disable the EVENT 1
path. The EVENT 2 path will then
function as if it were functioning
independently.

If a Breakpoint Halt is selected in the
EVENT 2 path, your program will halt with
the Trace Buffer containing a record of
events in the vicinity of EVENT 2. You can
include a DELAY in the EVENT 2 path in
order to see bus transactions following
EVENT 2.

Freeze Mode. The Freeze Mdde is identi­
cal to the Arm Mode except that the
contents of the Trace Buffer are frozen
following the satisfaction of TRIGGER 1.

The Freeze Mode is used when some
operation must be allowed to run to its
conclusion, but you want to examine
something that happened in real-time prior
to that conclusion. Set EVENT 1 at the end
of the segment which you want to
examine and EVENT 2 at the conclusion
of the operation. Select a Breakpoint Halt.
When the Breakpoint Halt is encountered,
the Trace Buffer will contain a history of
bus transactions immediately preceding
EVENT 1 rather than EVENT 2.

10

The Freeze Mode can be particularly
useful when debugging microprocessor­
based controllers where external
mechanical operations are involved.
EVENT 1 could be the routine which
initiates the operation, and EVENT 2
could be the signal that the external
operation is done. You can examine a
history of the initiating routine without
stopping the external mechanical
operations.

Breakpoint Command File

One significant feature of the 9508S is
its ability to execute a user defined set
of commands whenever a Breakpoint is
encountered. The Breakpoint Command
File may occupy up to 128 bytes of
9508S master RAM (NOT emulation
RAM).

This feature may be used, for example,
to automatically display the contents of
the Trace Buffer or an area of memory,
and then restart the program. You could
have your program running in a tight
loop with a constant update of your
Trace Buffer display at the end of each
pass through the loop. Any command
which may be executed when the 9508S
is in Command Mode may be included
in the Breakpoint Command File.

The command sequence for this example
is simple. Assume that your program seg­
ment starts at location 1000, and your
Breakpoint Halt is set at some point after
that. In order to automatically display the
Trace Buffer and restart program execu­
tion at location 1000 again, your command
sequence would look like this :

ONBRK Defines the command
sequence.

ORT Display Trace Buffer.
GO 1000 Go to 1000 and resume

execution .
(CARRIAGE RETURN) End of

"ON BREAK" sequence.

With this command sequence the contents
of the Trace Buffer will be displayed every
time the Breakpoint Halt is encountered,
and execution will automatically be
resumed at location 1000. You will have a
dynamic history of program execution
displayed on your video terminal.

Command Files

Command files provide a more general
purpose macro capability. They are
designed to make identical setups easier
to repeat, commonly used sequences
easier to use, and especially when used
in conjunction with ONBRK and SVC to
provide a level of automatic test execu­
tion. Command files may occupy up to
128 bytes of 9508S master RAM (NOT
emulator RAM). They can be entered
manually from the console or can be
downloaded from any host machine. A
command file can contain any 9508S
command except for the CFILE com­
mand itself.

FREEZE
TRACE
BUFFER

YES

Figure 8. Arm and Freeze Modes.

HALT
TARGET

PROGRAM

NO

NO

START

ENABLE TRIG 1
DISABLE TRIG 2

GENERATE
TRIGGER 1

ENABLE TRIG 2
DISABLE TRIG 1

NO

NO

DELAY

GENERATE
TRIGGER 2

HALT
TARGET

PROGRAM

NO

YES

11

12

A Powerful Command Set Provides the Control You Need for
Effective Debug of Your Target System

Memory Display and
Modification Control
Commands

The 9508S relative memory addressing
is a significant enhancement in debug­
ging linked modules. The 9508S allows
relative memory addressing with all
commands.

ASM
Used to modify program memory using
assembly language mnemonics rather
than machine language. Command syntax
is:

ASM (address)

where (address) may be relative or
absolute and is the starting address for
memory modification. The 9508S then
prompts for input data. Input data is in
the form:

OPERATION(OPERAND 1
OPERAND 2 .. .)

where OPERATION is an instruction
mnemonic or a pseudo operation . Pseudo
operations that are supported include:

ASCII: for entry of character
strings.

BYTE: for entry of 8-bit data.
BLOCK: to reserve space without

initialization.
WORD: for entry of 16-bit data.

DISM

Used to display program memory is
assembly language mnemonics rather
than hexadecimal numbers. Command
syntax is:

DISM (lower address)
and

(upper address).
Memory address may be relative or
absolute. Display format is:

DUMP

ADDRESS DATA OPERATION
OPERANDS*.

Displays memory in hexadecimal and
ASCII format. The hexadecimal display is
the absolute value of data. The ASCII dis­
play is the upper and lower case alphabe-

*Will appear on one li ne on CRT.

tic, decimal, and special character equiv­
alents of the hexadecimal data. If there is
no printable character equivalent, a period
(.) is displayed. Command syntax is:

DUMP (lower address)
(upper address) .

Memory addresses may be relative or
absolute. Display format is:

ADDRESS SIXTEEN DATA
BYTES ASCII EQUIVALENT*.

EXAM

Used to display memory, one byte at a
time, and optionally modify it. Command
syntax is:

EXAM (address).

The 9508S will respond with the
address, contents of that location, and will
pause for possible modification. For
example,

Input:

EXAM 1500

Response :

1500= A7- .

The 9508 will pause following the "-",
waiting for user action . The user may:

• modify the contents, increment the
address, and examine the next location.

• leave the contents unchanged, incre­
ment the address, and examine the next
location.

• modify the contents of the current loca­
tion and terminate the command .

• leave the contents of the current loca­
tion unchanged and terminate the
command .

FILL

Used to fill a range of memory with a
constant data value. Any string up to 64
bytes long may be specified. When
executing this command, the 9508S will
perform a write followed by a read to
verify each location within the specified
range. Command syntax is:

FILL (lower address) (upper address)
(ASCII or HEX string) .

Example:

FILL 100 200 ABC82F

This example fills locations 100 through
200 with the values " AB", "CB" , and
"2F" .

MOVE

Moves a block of memory from one loca­
tion to another within the target
microprocessor's on board memory, or
9508S emulation memory. Command
syntax is:

MOVE (memory space) (lower FROM
address) (upper FROM address)
(lower TO address) .

"Memory Space" defines the physical
memory affected, wh ich may be either
9508S emulation memory, target system
on-board memory, or both. Specification
codes are S for 9508S System Memory,
and U for User Memory. Possible com­
binations are:

UU Transfer is within user memory
space where the memory is physi­
cally located within the target system.

SS Transfer is within 9508S emulation
memory where segments of the
target system's address space has
been mapped into 9508S emula­
tion memory.

SU From 9508S emulation memory to
target system memory. This com­
bination would be used to move a
segment of memory from mapped
emulation memory to target system
memory. In th is case the FROM
and TO addresses could be.
identical.

US From target system memory to
9508S emulation memory. This
combination could be used to copy
a program from ROM to 9508S
RAM for debugging.

Example:

MOVE US 1500 2000 1500

This example will copy the contents of
target system memory from location
1500 to 2000 into 9508S emulation
memory starting at location 1500.

PATCH

Used to modify memory locations. Up to
64 continuous memory locations can be
modified with a single command. When
executing this command the 9508S will
perform a write followed by a read to
verify each location. Command syntax
is:

PATCH (starting address)
(ASCII or HEX string).

Example:

PATCH 200
00123456789A

This example will patch locations 200
through 205 with 00, 12, 34, 56, 78, 9A
respectively.

Memory Management
Commands

BIAS

Used to establish values for the base
address symbols W,X,Y, and Z. These
symbols are used as offset values for
computing effective addresses in the
ASM, DISM, DUMP, EXAM, and FILL
commands. Command syntax is:

BIAS (base W)(baseX)
(base Y)(base Z).

Example :

BIAS W = 41 A5 Z= 1000

The address specified for each base
register is a hexadecimal value. Base
symbols are used like this with the EXAM
command:

EXAM Z4A.

The effective address is the sum of the
specified symbolic value and the stated
address value. In this case, it is :

1000 + 4A = 104A.

MAP

Used to place segments of 9508S emula­
tion memory within the address space of
the target microprocessor, replacing any
target microprocessor memory that may
reside in that address space. This
enables you to execute programs out of
9508S RAM and debug them in RAM
prior to burning them into PROMs. You

can also copy PROMs from your pro­
totype hardware into RAM for execution
and debug.

The 9508S provides the RAM you need.
You can get either 16K bytes or 64K bytes
of high-speed CMOS static RAM. This
RAM is mappable in 256 byte blocks and
provides write protection for the entire
target system address space. So you can
write protect both emulation memory
mapped in the target system address
space and your prototype RAM. Memory
writes to emulation memory will be
blocked and emulation halted. Memory
writes to prototype RAM cannot be
blocked, but emulation will halt
immediately after the write occurs.
Command syntax is:

MAP (user or system)
(WP or nothing) (starting address
or address range, ...).

Examples: MAP U WP 2000

This will cause the address range of
2000 to 20FF in prototype RAM to be
write protected.

MAPS 0, 1000-1 FFF

This command entry will cause emula­
tion memory to respond to addresses
from O to FF and from 1000 to 1 FFF.
Each time you enter a map command
the 9508S responds with the current
map; after these two examples the cur­
rent map would look like this:

RAM MAP STATUS FROM TO
s 0000 00FF
u 0100 0FFF
s 1000 1FFF
u WP 2000 20FF
u 2100 FFFF

Communications Control
Commands

LINKDEF

Used to define the communications link
when the 9508S is operating with a host
system other than the 9520 Software
Development System. Default conditions
for all of the parameters defined by this
command are those required to com­
municate with the 9520.

Parameters defined by this command
are:

Baud Rate (110 to 19200).
Parity (odd, even, none).
Format for Data Transfer (Tek hex,
Intel hex, Motorola hex, or binary).

ACK Character Sequence.
NAK Character Sequence.
Error Timeout Limit.
Number of Retries for Error
Correction Sequence.

Action on Error.
START Synchronization Character.

HOSTDEF

Used to define the characteristics of the
Host system and its upload and
download programs. This command is
used in conjunction with the LINKDEF
command to define the total communica­
tions environment. The default condi­
tions are those required for operation
with the 9520 Software Development
System.

• Half or Full Duplex.
• Busy Protocol (None, Dsr, XON/

XOFF, ENO/ACK).
• XON Character.
• XOFF Character.
• ENO Character.

13

• ACK Character for ENQ.
• Line turnaround time.
• Delay between characters.
• Host abort sequence.
• End-of-line sequence for data blocks.
• Block prompt sequence.
• End-of-file sequence.
• Wait for Host to echo data characters.

RHEX

Used to download object programs from
the host development system to the
9508S or target system. This command
is preceded by a MAP command if any
portion of the program is to be loaded
into 9508S emulation memory. This
allows some portions to be loaded into
target system memory and other por­
tions to be loaded into 9508S emulation
memory.

There are two modes of operation for
the RHEX command. The first mode is
the Single Command Mode where only
one command is used to establish the
link between the host system and the
9508S and to transfer data. When the
9520 is the host system, the command
syntax is:

RHEX '(file name).

If you must execute several commands
within the host system in order to initiate
the transfer of data, there is a Terminal
Mode which temporarily puts the 9508S
into a "pass through" mode to allow the
transmission of a sequence of com­
mands from the 9508S terminal.
Command syntax is:

RHEXTERM.

There are numerous options with this
command to enable the 9508S to
operate with a number of host systems.
The default condition in every case is
the configuration necessary to com­
municate with the 9520 Software
Development System.

WHEX

This command is used to transfer pro­
grams or data from the target
microprocessor's address space to the
host system. Its modes of operation and
syntax are similar to the RHEX except

14

that the transfer is from the 9508S to the
host system. There are Single Command
and Terminal modes with all default
conditions being those for 9520 com­
munications.

TERMINAL

Puts the 9508S into a Terminal Pass
through Mode where the video terminal
that is connected to the 9508S effec­
tively becomes a terminal on the 9520
Software Development System or other
host system. This mode allows the
9508S operator to access the host
development system to perform edits,
assemblies, or any other functions that
can be performed from a terminal on the
host system. Command syntax is:

TERMINAL.

Register and 1/0 Port Display
and Modification Commands

PORT

Used to display 1/0 ports or to write them.
An optional REPEAT parameter allows
constant read from or write to a port until
the ESC key is pressed. To read from a
port, the command syntax is:

PORT (address).

To read with repeated updates, the com­
mand syntax is:

PORT (address) REP.

To write to a port, the command syntax is:

PORT (address) (data)
or

PORT (address)(data) REP.

REG

Used to read and optionally modify
register contents of the target
microprocessor. The specific operation
is target-microprocessor dependent, but
the general function is to display the
registers and pause for optional
modification. Command syntax is:

REG (register name)
or

blank.

STATUS

Used to display target microprocessor
registers and flags, or 9508S emulation
environment, or both. Display of emula­
tion environment is discussed in another
section.

For displaying target microprocessor
registers and flags, the command syntax
is:

STATUS REG.

The display resulting from this command
is target-microprocessor dependent.

Real-Time Trace, Trigger,
Breakpoint Control Commands

QUAL

Used to specify the types of information
to be recorded in the Trace Buffer. Com­
mand syntax is:

QUAL (parameter).

The parameters which may be used are:

ALL Record everything.

FETCH Instruction fetches only.

All 1/0 cycles.

IR 1/0 read cycles.

IW 1/0 write cycles.

M All memory cycles.

MR Memory read cycles.

MW Memory write cycles.

R All read operations
(memory,1/O).

w All write operations.

DRT
Displays contents of the Trace Buffer.
The operator may specify all entries
since the last GO command, or the last
n entries, where n is 128 or less. Com­
mand syntax is:

ORT (number of trace events)
or blank.

The display format is:

ADDRESS

DATA

BUS

EXTERNAL

Memory or 1/0 port
address.

8-bit data;
hexadecimal.

Type of cycle
recorded.

Binary representa­
tion of external
probe data.

INSTRUCTION Instruction

OPERANDS

mnemonic of the
cycle is an instruction
fetch.

Instruction operands,
in hexadecimal.

Screen format is a header line, one blank
line, and twenty lines of trace data.

EVENT

Used to define the contents of the Event
1 and Event 2 comparison registers for
the Trigger/Breakpoint equations. Com­
mand syntax is:

EVENT (1 or 2) (keyword) .

The 1 or 2 selects the comparison register
to be defined. The (keyword) is the defini­
tion of the values to be set, using this code:

A Address value, 16-bit. Operators are
=, =>, and =<. To "don't care"
address, use the clear option.

D Data value, 8-bit. Operators are
same as Address. To "don't care"
data, use the clear option.

B Control bus activity, or type of
activity to compare on . Codes and
values are the same as for the QUAL
command.

E External probe data. Each bit is set
and compared individually. Opera­
tions are 1, 0, or X, where X is
"don't care".

C Clear the event. This sets A= OFF,
D= OFF, B= ALL and
E = XXXXXXXX.

*Will appear on one line on CRT.

Example :

EVENT 1 A= 1234 D=A4
B=F E= XX110X0X.

TRIG
Used to define the Pass Count and Delay
Count for the Trigger/Breakpoint equa­
tions. Command syntax is:

TRIG (1 or 2)(pass count)(delay
count).

Example :
TRIG 1 P=12 D= 10.

BREAK
Used to enable or disable breakpoints for
the two trigger/breakpoint circuits. Com­
mand syntax is:

BREAK (T1 /T2 BOTH)(DISABLE)
(CONT)* .

The first parameter states which of the two
circuits is affected: T1 is Trigger 1, T2 is
Trigger 2, and BOTH means that T1 and

- .. T2 will be affected by the remainder of the
command.

The DISABLE parameter states that no
breakpoint will occur. The default condition
is to enable a breakpoint , so if this param­
eter is omitted, breakpoints are enabled.

The CONT parameter may be specified
if a breakpoint is enabled. It causes the
9508S to halt target microprocessor
execution upon encountering a break­
point, display a "break line" and
automatically continue execution. The
break line information is target­
microprocessor dependent, but it will
contain this type of information.

Registers Register contents.

PC Last Program counter address
upon occurrence of the
breakpoint.

PC Next Where the target mi.cro­
processor program will
go when execution is
continued.

Cause of Conditions that cause the
Break breakpoint halt.

Status Emulation status at break.

ONBRK

Used to specify a set of commands (a
"command file") to be executed by the
9508S when a breakpoint is
encountered. This is one of the most
powerful commands in the 9508S in that it
allows the operator to set up conditions
which will automatically be accomplished
at a breakpoint. Command syntax is:

ONBRK
(Command file).

The ONBRK command puts the 95088
into an interactive mode for entry of the
command set. If commands are already
in the file, new commands will be
appended. To clear the file and start
fresh, the command syntax is:

ONBRKCLEAR
(Command file).

Example :

ONBRK CLEAR
DRT 10
GO 1000.

This command set will automatically dis­
play the last ten lines of the Trace Buffer
that were accumulated prior to the break
and will resume executibn at
location 1000.

The ONBRK command may be used
with all 9508S breakpoints. Maximum
size of the Break Command File is 128
bytes.

TMODE
Used to define the relationships between
the two trigger circuits and event registers.
Command syntax is:

TMODE (mode).

Mode selections are:

IND Independent mode.
E12 Limit mode, where Events 1

and 2 must occur
simultaneously.

ARM ARM mode.
FRZ Freeze mode.

Descriptions of these modes are
discussed and flow charted elsewhere in
this Product Description on Pages 8, P,
and 10.

15

COUNT

Used to set up the general purpose
counter. Sets the counter to zero and
specifies units to be counted. When the
program encounters a breakpoint, the
counter value can be displayed. Command
syntax is:

COUNT (units)

Units which may be specified are :

() Causes 9508S to display
counter status.

MS Milliseconds for execution
timing.

us Microseconds.
BUS Count all bus transactions.
EMCLK Count all emulator clock

cycles.
FETCH Count all instruction

fetches.
RTT Count all stores into the

real-time trace buffer.
E1 Count all occurrences of

Event 1 comparisons.
E2 Count all occurrences of

Event 2 comparisons.
CLR Sets counter to zero.

REGBRK
Used to monitor internal target
microprocessor registers in a single-step
mode. One instruction is executed
registers are examined to see if th~y
match the break conditions, and the
next instruction is executed if they do
not. If they match the break conditions,
execution is halted. Command syntax is:

REGBRK (CLEAR) (Break conditions)

CLEAR is used to erase previous condi­
tions. If it is omitted, new conditions will be
appended to old ones.

Specific registers which can be monitored
are processor-dependent, but the relations
which can be defined are these:

.EQ. Equal

. NE. Not equal

.LT. Less than.

.ULT. Unsigned, less than.

.GT. Greater than.

.UGT. Unsigned, greater than.

.LE. Less than or equal.

.ULE. Unsigned, less than or equal.

.GE. Greater than or equal.

.UGE. Unsigned, greater than or
equal.

16

A range breakpoint can be set by specify­
ing a register twice. For example,

REGBRK RA .GE. 25
RA .ULE. 7F

Eight break conditions may be established.

Emulation and Execution
Control Commands

EMUL

Used to select one of two possible emula­
tion modes:

System
mode

User
mode

Clock is provided by 9508S;
program memory is 9508S
emulator memory.

Clock is provided by user's
prototype system; program
memory may be in the user's
system or 9508S emulation
memory or both.

System mode will normally be used to
debug software without prototype
hardware being present and in early
stages of hardware debug. User mode will
be used for advanced hardware debug and
system integration. Command syntax is:

EMUL (Sys or User)

CFILE

Used to create a command file of up to
128 characters in length. The file can be
typed in from the console or downloaded
from any host machine. Any 9508S com­
mand can be placed in a command file
except the CFILE command itself. Com­
mand files are cleared with a clear com­
mand parameter or by resetting the
9508S. Command syntax is:

CFILE (clear) (TERM or TRANS)
or or

blank blank

The parameters TERM and TRANS
allow host download using the same pro­
tocol as the RHEX command. If that
parameter is omitted, the current con­
tents of the command file buffer will be
displayed and an interactive mode is
entered to allow the user to add com­
mands to the file.

EXCMD

Used to execute the contents of the
command file. Command syntax is:

EXCMD

Normal output from all the commands in
the file will be displayed at the console
as each command is executed.

GO
Used to specify execution conditions for
the target microprocessor program, and
to start execution. Conditions which may
be selected are:

Continuous run.
Single step or N single steps.
Set a simple breakpoint at a memory

address, a memory read , write, or
both.

Trace program execution, displaying
each instruction executed , or jump
instructions only. Trace may be
specified within a range of addres­
ses or for the entire program, or it
can trace N lines and stop.

Command syntax is:

GO (start address) (UNTIL address or
STEP nnn) (Trace selection).

Example:

GO 1000 UNTIL 2000

This example starts execution at 1 000 and
sets a simple breakpoint at 2000. Remem­
ber, address specification can be either
absolute or relative.

GO O UNTIL 1000 TRACE ALL FR
500 TO 700

This example starts at 0, sets a simple
breakpoint at 1000, and traces instruction
execution for that portion of the program
between 500 and 700. The base registers
W, X, Y, Z could be used to establish
offset addresses .

RESET
Applies a RESET signal to the reset pin
of the target microprocessor. Specific
actions within the target microprocessor
are processor-dependent.

STATUS

Displays current emulation status and
contents of target microprocessor
registers and flags. The emulation status
which is displayed consists of:

Name of Target Microprocessor.
BIAS (W,X,Y,Z Base Register)

settings.
COUNTER selection and value.
EVENT definitions.
MAPPING selections.
REAL TIME TRACE qualifications.
TRIGGER MODE.
TRIGGER and BREAKPOINT

definitions.
REGISTER BREAK definitions.
Emulator State :

Paused, Halted, Faulted , Address
specified in GO encountered,
Breakpoint x encountered, Single
Cycle completed, Memory Write
failure.

SVC

Used to enable user programs to
request service from the 9508S operating
system during their execution. The
request for service is invoked by the user
program writing a service request code
into the memory location specified by the
SVC command. This memory location is
the first byte of a five-byte-long Service
Request Block (SRB). The SRB specifies
which service is to be performed and any
information needed by the 9508S to per­
form that service. Command syntax is:

SVC (clear) (addr)
or

blank.

The clear parameter disables the service
request and the address parameter
specifies the first byte of the SRB.

The SRB contains the following
information:

Byte 0. Service Request Code
specifies which service is to be per­
formed . (The writing of this byte by
the user program causes the service
request.)

Bytes 1 and 2. Two-byte absolute
address that points to a data buffer.

Byte 3. Request dependent
information.

Byte 4. Status of the service re­
quest returned by the 9508S.
00 = Good; FF= Invalid Request.

TERMDEF

Used to display or change Special Func­
tion Key values. Command syntax is:

TERMDEF (key)=(value)

Key values define communication protocol
with the terminal.

17

Hardware Development Is Fast and Accurate
When You Use the 9508S

Figure 9.

The 9508S is the only development tool
you need for developing and debugging
microprocessor-based hardware. The
setup is simple. You just connect the
9508S emulation cable to the
microprocessor socket of your prototype
hardware, and you are ready to start.

9508S
MICROSYSTEM

EMULATOR

Figure 10.

Your system block diagram will probably
look something like the one in the accom­
panying drawing. Here's how you could go
about developing your hardware.

SYSTEM MICRO-
CLOCK - PROCESSOR

(2) (1)
I

1. Replace the microprocessor in your
system with the emulation probe
from the 9508S. This gives you the
ability to observe and control your
hardware's operations using the
powerful debug capabilities of the
9508S.

2. Build your system clock. Use 9508S
RAM in the earlier stages of your
design, and implement your
system's RAM as you need it.

3. Build 1/0 ports into your system and
check them out one at a time.

PROGRAM
ROM (5)

SYSTEM BUS I
I I

RAM 1/0 1/0
PORT 1 PORT 2

(2) (3) (4)

Figure 11.

18

4. No matter how complex your 1/0 may
be, from a simple solenoid control line
to a complex communications channel ,
you can debug it knowing that it is the
only unknown in the system, once your
system clock is functional.

5. You will probably wait until the System
Integration stage of your development
before introducing ROM into your sys­
tem. But you can build in the sockets
and check the data paths. Just plug the
ROMs with known data in them, and
see if you can read them properly.

The key to your hardware development
is that you introduce resources into your
prototype only when you need them. The
9508S substitutes its resources until
yours are available in your prototype
hardware. That way you work with only
one or two unknowns at a time, and you
can concentrate on the problem at hand.
The 9508S will:

• Replace the microprocessor through­
out hardware development.

• Provide a program memory to hold
your development software routines.

• Provide a terminal interface so you
can get your development software
into memory and have an " intelligent
control panel" into your system.

• Provide a command structure that
enables you to observe and control
operations in your prototype hard­
ware.

• Do all of these things without demand­
ing any time from your 9520 Soft-
ware Development System or any
other host computer.

The power of the 9508S emulation and
command structure makes it possible for
you to assign design tasks to several
engineers and have them work
independently. An engineer designing an
1/0 subsystem will not have to depend on
the engineer who is designing the system
RAM. Imagine what that can do for your
schedules.

Software Development Demands
95085 Debugging Power

There are two distinct but closely related
stages in the development of software
for microprocessor-based systems, and
two distinct development tools are
needed to support them. The first stage
involves writing your program and
translating it from symbolic form into a
form which the microprocessor can
execute. This requires a software
development system like Gould
Millennium's 9520.

The second stage involves executing the
program in a controlled environment so
that errors can be detected and
corrected. You need something that can
execute the target microprocessor's pro­
gram where the program is the only
unknown. The 9508S does this very
nicely.

The configuration for software develop­
ment is simple. The 9520 Software
Development System is used to enter,
edit, assemble or compile, and store
your target microprocessor's program. A
temporary link is then established
between the 9520 and the 9508S to
download a program for execution and
debug. When the 9520 is used, with its
multi-tasking capabilities, the download
is invisible to anyone who may be
entering or editing code. The link may
be broken once the download is com­
pleted.

9520

Now you can begin to develop your soft­
ware even before the prototype is
available and be ready for integration as
soon as the hardware is. Here's how you
would go about developing your
software.

1. Start in system mode, using emulation
memory to completely debug all your
non-hardware-dependent subroutines
and main code and simulate 1/0
routines using the SVC facility.

2. Once the target system clock and 1/0
subsystem are ready, use user mode
and emulation memory to integrate
the hardware and software and com­
pletely debug all hardware-dependent
subroutines.

3. When all the target hardware is com­
plete, burn PROMs (if any) and move
all memory resources to the target
system to perform a complete system
test.

4. Replace the 9508S emulator probe
with the microprocessor and watch
your prototype in action .

DEVELOPMENT RS-232 LINK 9508S
MICROSYSTEM

Figure 12.

SYSTEM
(or other host)

Create SOURCE
Edit
Assemble
Compile
Link
Format
List
Store

Link for
Download
Upload,
or transparent
communications

EMULATOR

Execute
Observe
Control
Correct

Software debug is accomplished in the
9508S without need for the software
development system which can be
generating other programs
simultaneously. There are some signifi­
cant benefits to this approach to
software development.

• Your programs are executed in real­
time using the actual type of
microprocessor that will be used in
your final system. You can com­
pletely debug major portions of your
program. Only those portions which
must interact with unique character­
istics of your target system hardware
must be left for system integration.

• No prototype hardware is needed for
this debug stage. The only unknown
is your software. Debugging is
simplified significantly.

• Your development capabilities are
effectively doubled because you don't
tie up the software development
system while debugging your soft­
ware. One 9520 Software Develop­
ment System can support several
9508S Microsystem Emulators.

• The commands that you use for soft­
ware debug are the same ones that
are used for hardware debug and for
system integration. You don't have to
learn the characteristics of several
instruments so engineers and pro­
grammers can concentrate on
debugging software and hardware
rather than trying to remember how
to perform a particular test
sequence.

• The 9508S is transparent to your
software just as it is to your hard­
ware. With the exception of
hardware-dependent code, if it runs
in the 9508S, it will run in your
hardware.

19

READY FOR
SYSTEM

INTEGRATION

NO

(START)

' WRITE
CODE

ENTER SOURCE
CODE: SAVE IT

ON DISK

EDIT SOURCE
MERGE LIBRARY

FILES

TRANSLATE TO
OBJECT: SAVE

ON DISK

LINK OBJECT
MODULES:
FORMAT

DOWNLOAD
TO 9508S

EXECUTE
PROGRAM

LOCATE
ERRORS

MAKE TRIAL
CORRECTIONS:

RUN AGAIN

Figure 13. Software Development Sequence.
20

UPLOAD
FROM 9508S

TO 9520

NO

Off-Line Functions

You must plan and write code off-line, but knowing that you will be
developing it on the 9520 and 9508S lets you write to target
microprocessor specs, not instrument specs.

9520 Software Development System Functions

Enter your code into the 9520 and create a Source File. The 9520's
menu-driven Editor and Operating System will help you all the way.
Save ii on disk.

You can merge previously written library routines into your program so
you don't have to reinvent the wheel with each program.

Translation into machine-executable code can be accomplished by a
Cross Assembler for programs written in assembly language or a
Compiler for programs written in PASCAL.

Object code may consist of relocatable modules. They must be
linked for address resolution and formatted for transmission to a
9508S for execution and debug.

9520/9508S Link

The 9520 and 9508S are linked for downloading or uploading of the
program. Once the load is done, BREAK THE LINK. The 9508S and
9520 can again operate independently.

9508S Microsystem Emulator Software Debug Functions

The 9508S is used to execute and debug the code that is produced
by the 9520 since a software development system usually can 't
execute the programs it generates. The 9508S contains the actual
target microprocessor and the controls necessary to fully execute it
and debug it.

Errors will probably be found during the first debug pass and during
subsequent passes. The 9508S will help you locate them with its
powerful execution control, its powerful breakpoint capabilities, and
its trace capability.

Trial corrections can be made using the 9508S memory display and
modification commands. You can try the corrections immediately or
you can save the partially debugged program by uploading it to the
9520. Download it and continue debugging when you are ready.

You will continue in this loop until your program runs properly. At
certain points you will want to reassemble your code with correc­
tions. You reestabl ish the 9520/9508S link, edit the program,
assemble it, download again , and continue debugging.

When all bugs are exterminated, you are ready for final system test.

The Tough Job is System Integration

The 9508S Makes It Manageable

In hardware development you are working
with a single unknown - your prototype
hardware. Your new software is the only
unknown in software debug. But in system
integration, where you will make your new
software run on your new hardware, you
are working with two unknowns. No matter
how much you test your hardware and
software individually, there will be residual
bugs that won 't show until you try to make
them work together. And these will be the
deepest bugs-the most difficult to
extract and exterminate.

This is where you will truly appreciate
the transparency and debugging power
of the 9508S. During the earlier develop­
ment stages you will consider them to
be useful and convenient. During system
integration, you will realize that they are
absolutely essential.

9520
DEVELOPMENT

SYSTEM
(or other host)

Store source
code and
Object code
Edit
Reassemble
Link
Format
List

Figure 14.

RS-232 LINK

Link for Down­
load, communi­
cations and
Upload

The setup for system integration brings
the 9508S, the 9520, and your prototype
hardware together. The 9520 has both
source code and object code from your
software development stage. You will
connect the 9508S and 9520 together
using the RS232 port, just as you did for
downloading programs for software
debug. The 9508S is connected to your
prototype hardware via the emulation
cable. Now you are ready for final debug
of both software and hardware.

With this configuration you can
methodically debug one program module
at a time. Load your program module
into 9508S emulation memory. Execute it
with your prototype hardware using
in-circuit emulation. Make changes in
either hardware or software when bugs
are found. When you have debugged
your program as far as is possible in
emulation memory, move it to your
prototype hardware. This can be

9508S
MICROSYSTEM

EMULATOR

Execute applications prcgram
in prototype hardware
Observe
Control
Debug
Correct

accomplished by burning a PROM using
any standard PROM programmer (the
9520 will provide files in the appropriate
format), by downloading your program
directly into prototype RAM, or by
moving from 9508S RAM to prototype
RAM. The 9508S will handle all of the
communications functions necessary to
do it. You can then map the next pro­
gram module into 9508S emulation RAM
and repeat the process.

All of the debugging power of the 9508S
will be brought to bear during system
integration. Some of its unique features,
which may not have obvious utility
during hardware or software develop­
ment, will be especially important here.

• Real-time trace will be useful during
all stages of development, but the
ability to record external data along
with internal operations will become
especially important. The "glitch cat­
ching" capability of the external data
probes will be very useful. They
extend your 9508S eyes beyond the
target microprocessor and into your
prototype hardware.

• The complex multiple breakpoint
capability will be appreciated,
especially the Arm, Limit, and Fr.eeze
modes. You will appreciate the ability
to include external probe data in the
breakpoint and trigger equations.
They will let you break on events in
your prototype hardware that are not
immediately visible to the target
microprocessor.

• You may choose to maintain the link
between the 9508S and the 9520
Software Development System. If you
do, you will be able to quickly call,
edit, assemble, and download cor­
rected program modules without
having to reestablish a physical link.
And you can talk to both the 9508S
and the 9520 using the same video
terminal with the 9508S in the Pass
Through mode. Your debugging is
simplified because you don't have to
worry about your instrument con­
figuration .

21

Compatibility and Expandability

The 9508S Microsystem Emulator is the
Gould Millennium best 8-bit stand-alone
in-circuit emulator. Current users of the
9508 Microsystem Emulator can
upgrade their system to a 9508S to take
advantage of the expanded memory,
higher speed and more versatile host
communications, service request
mechanism, and command file capa­
bility. The Gould Millennium 16-bit stand­
alone ICE is the 9516 Microsystem
Integration Station. Its features and
capabilities are in keeping with the
needs of 16-bit microprocessor-based
system development.

9508S

CRT

Figure 15.

22

9540 SOFTWARE
DEVELOPMENT SYSTEM

WITH HARD DISK

9508S

CRT

9520

9508S

CRT

9501
CRT

All of the emulation modules which you
purchase to work with the 9508S will
also work with the 9516.

The 9508S, 9516, and 9520 can all be
used with the multi-user 9540 Software
Development System. High-speed
RS-422 and IEEE488 ports are used to
ensure upward compatibility.

9520

9501
CRT

9516

Specifications

Microprocessor Emulator Support

8021
8035
8035-4
8035-8
8039
8039-6
8040
8041A
8741A
8741 -6

Software:

8048
8748-4
8748-8
8049
8049-6
8050
8080A
8085A-2

Z80A

6800A
6801
6802
6803
6808
6809
68A09
68B09
6809E
68A09E
68B09E

Break on target microprocessor registers.
Compare on equal, greater than, less than.
Exact operation is target microprocessor
dependent.

Simple hardware:
Address compare for instruction fetch.

Complex hardware:
Two Event registers, comparing on

Address, 16-bit: = , ,,;; , ?
Data, 8-bit: = , ,,;; , ?
External data, 8-bit: 1, 0, " Don't care"
Bus transaction: Fetch, Memory read,
Memory write, 1/0 read, 1/0 write, Read,
Write, Memory, 1/0, All.

Pass Count: 1 to 65,535 Events.

Delay Count: 3 to 65,535 counts.
Events.
Instruction fetches.
Trace stores.
Bus cycles.
Microseconds.
Milliseconds.

Satisfaction of Event compare, Pass Count,
and Delay results in a Trigger being
generated, and optionally a Breakpoint.

Modes: Independent, Limit, Arm, Freeze.

Real-Time Logic Analyzer

Trace Buffer:
35 bits and 128 states.

Content of each word:
Address, 16 bits.
Data, 8 bits.
External data, 8 bits.
Bus Operation, 3 bits.

Storage qualifications:
Operator selectable options:

All operations.
Instruction fetches only.
All I/O.
1/0 Reads only.
1/0 Writes only.
All Memory operations.
Memory Read only.
Memory Write only.
All Read operations.
All Write operations.

Base Address Registers

Four, labeled W , X, Y, and Z; 16-bits wide.

Contents added to called address to form
effective address.

Command Files

128-byte buffer in master memory available for
command file execution. Files can be
downloaded from any host.

Service Request

The available service requests are:
Character in.
Character out.
Console status.
Line out.
Message out.

Data Communications Format

Gould Millennium Binary
Block Structured Hexadecimal ("Tek Hex",
Intel Hex, or Motorola Hex)

External Data Probes

Ten probes on external cable:
8 data probes.
Clock probe.
Ground clip.

Stored in Trace Buffer synchronously.
Synchronous or Asynchronous clocking.
Used in Trigger/Breakpoint equations.

"Glitch catching" capability, conditioned by
three switches on external probe pod.

Emulation Characteristics

Emulation speed:
Full speed of target microprocessor, its
programs are stored in target system.

Processor-dependent if programs are stored
in emulation memory (may be slower speed,
or may be full speed).

Address usage:
All address space for memory and 1/0 is
available to the target system. The 9508S uses
a "shadow RAM" technique which does not
intrude on the microprocessor address space.

Emulation RAM:
16K and 64K RAM modules optional.

Mapping:
16K to 64K memory mappable and write pro­
tectable in 256-byte blocks on any 256-byte
block boundary.

23

Gould Inc., Instruments Division
4600 Old Ironsides Drive, Santa Clara, CA 95050-1279
(408) 988-6800 TWX: 910-338-0509
Gould Biomation and Gould Millennium Products

ICE49-101182 Printed ,n USA

\

GOULD
Electronics & Electrical Products

