
A full formalisation of the Bell and La Padula security model

E. Gureghian, Th. Hardin, M. Jaume�

Abstract

Information access control programs are based on a security policy model. Flaws

in them may come from a lack of precision or some incoherences in the policy model

or from inconsistencies between the model and the code. In this paper, we build a full

mechanized formalization of the well-known Bell and LaPadula policy model, checking

all the steps of the proofs. Then, we derive automatically a program for the access

controls considered in this model. Such a program implements a transition function

which has been formally proved sound according to the three security properties in-

volved in the Bell and La Padula model. All the work is done within Coq, a theorem

prover based on a very strong type theory.

Keywords: security policy, Bell and La Padula model, formal methods

1 Introduction

Security of information systems has becomed a major problem of our societies and

a well-etablished �eld of computer science. Research themes involve access control

mechanisms, modeling of information ow and its applications to con�dentiality poli-

cies [10], mobile code security, cryptographic protocols, etc. The methods to consider

these questions are evolving, just at the ones used in safety area, where ad-hoc and

empirical approachs were progressively replaced by more formal methods. High levels

of safety require that the requirement/speci�cation phase is done using mathematical

models, allowing to have mechanized proofs of the required properties. In the same

way, insurance in the security of systems asks for the use of true formal methods along

the process of software development, starting at the speci�cation level.

Computer information security is usually seen as the combination of three classes of

properties: con�dentiality (denying unauthorised accesses), integrity (denying unau-

thorised modi�cations of information) and availability (denying unauthorised uses of

ressources). To promote the conception of trusted systems, security evaluation crite-

rias have been elaborated by governments agencies, for example the Trusted Computer

Security Evaluation Criterias (1983) (TCSEC), the Information Technology Security

Evaluation Criterias (1991) (ITSEC) and the Common Criterias (1999), which are

a collection of normative documents. These criterias provide both a framework for

the software industry to ensure that software has been carefully designed and a refer-

ential for its customers. A product evaluation and certi�cation against the common

criterias framework is built according to two hypotheses. The �rst one is the \pro-

tection pro�le", that is, under which conditions the evaluated product is supposed to

be used. The second one is its level of assurance, which is simply the level of trust

the system can receive according to the way it was developed. A good security level

can be reached if the product is evaluated at an assurance level greater than EAL-5

�SPI-LIP6, University Paris 6, France

1

against a convincing protection pro�le such as the one given in [13]. Such a pro�le

requires the use of a mandatory formal policy model in order to achieve ab acceptable

level of con�dentiality. Mandatory access control (MAC), contrary to discretionnary

access controls (DAC) such as access control list (ACL), is managed and enforced by

the underlying system rather than by an authorized user.

Such a policy model must be precise and unambiguous and thus must be described

in a mathematical formalism. This is the case for the Bell and La Padula [2] model.

It is exposed in four successive re�nements: the mathematical foundations, the math-

ematical model, a re�nement of the mathematical model and a uni�ed exposition

together with a Multics interpretation [3]. Note that such a model is only concerned

with con�dentiality. Nevertheless, the Biba integrity formal model is very close to the

Bell and LaPadula one and is also considered in the same protection pro�le[13].

Having a mathematical model drawn by hand is a very serious way to increase

con�dence. But, this is not enough. Attempts to check proofs done by hand with

a theorem prover has thrawn away a lot of them. Often, the errors are introduced

by points considered as evident details or by forgotten cases. In this paper, we give

a formal description of Bell and LaPadula model, checked by the theorem prover

Coq [15]. From this speci�cation, an implementation is automatically extracted and

thus fully certi�ed. It is the transition function of an abstract state machine.

In this paper, we expose the model, the code and the proofs. However, as all readers

are perhaps not very acquainted with Coq, we describe the speci�cation and the proofs

with a quite usual mathematical language, in fact very close to Coq syntax. The

complete implementation is available on the site http://www-spi.lip6.fr/~jaume/.

In the following, we �rst give a short presentation of Coq, which is a higher-order logic

proof assistant implementing the calculus of inductive constructions [7] and which

alows to extract programs from proofs [14]. Then , we give a full description of the

Bell and LaPadula model and of its implementation. We assume the reader familiar

with the Bell and La Padula model as presented in [2]. A more general discussion on

it together with a survey on security models can be found in [12].

2 A (very) brief vescription of Coq

We use here version 7.3 of the proof assistant Coq which allows the interactive de-

velopment of formal proofs. In order to make this paper more readable, we adopt

here a pseudo-Coq syntax which di�ers slightly from the usual Coq syntax. The Coq

tool is based on a logical framework known as the calculus of inductive constructions,

which is an extension of a typed �-calculus supporting dependent types, polymorphic

types, and type constructors. The basic idea underlying this logical framework, based

on the Curry-Howard isomorphism, is that a proof of a proposition can be seen as

a functional object. For instance, a proof of a proposition of the form A) B is

a function mapping every proof of A to a proof of B. The type of this function is

isomorphic to the proved proposition, so types and proposition are identi�ed, as are

objects and proofs. Furthermore, this framework allows the de�nition of inductive and

co-inductive types (which are speci�ed by their constructors). Constructing a proof

within Coq is an interactive process: given a goal, the user speci�es which deduction

rule should be applied, and Coq does all the \computations". The theorem prover

solves successive subgoals with tactics (i.e., functions that build a proof of a given

goal from proofs of more elementary subgoals). In all our development, we use a Coq

package for �nite sets implemented as lists: we will write [jAj] the type of �nite sets of

elements of type A, over which classical operations on sets, such as 2, �, [, ..., are

de�ned. Given two terms E1 and E2 of type [jAj], we will write E1 � E2 as a shortcut

2

of E1 � E2 ^ E2 � E1. In order to check if every element of a �nite set satis�es a

(decidable) property, we de�ne a function for all of type [jAj]! (A! IB)! IB where

A is any type needed and IB is the inductive set of booleans. Similarly, we de�ne a

function �lter of type [jAj] ! (A ! IB) ! [jAj] whose result is the set of elements of a

given set which satisfy a (decidable) property. It is important to note that we write

t : T to express that the type of a term t is T , while we write t 2 E to express that a

term t of type T belongs to the set E of type [jT j] (thus the term t 2 E is of type IB).

3 System representation

The system is represented by an abstract machine containing a state that operations

(or requests) can change.

3.1 Parameters and hypothesis

The Bell and La Padula security model describes a set of access control rules between

active entities, called subjects (representing processes, programs in execution ...) and

passive entities, called objects (representing data, �les, programs, subjects, I/O de-

vices ...). Each subject and object is associated with two independent informations:

the set of needs-to-know (i.e., a special access privileges to a subject, the topic of the

data) and the classi�cation (i.e., the clearance level of a subject, the sensibility of the

data) We �rst de�ne O and S as sets of objects and subjects. In order to be able to

enumerate elements belonging to these sets, we suppose O and S to be countable sets,

by indexing them by natural numbers. Then, we introduce a set K of needs-to-know

and a set C of classi�cations as variables, thus these sets are parameters of our devel-

opment. Furthermore, we assume that equality over these sets is decidable. We alse

introduce as an assumption a total order relation � over C.

Definition O : Set := IN. Definition S : Set := IN.

Variable K : Set.

Hypothesis eq dec K : 8c1; c2 : K fc1 = c2g+ fc1 6= c2g.

Variable C : Set. Variable �: C ! C ! IB.

Hypothesis eq dec C : 8c1; c2 : C fc1 = c2g+ fc1 6= c2g.

Hypothesis Total order : 8c1; c2 : C fc1 � c2g+ fc2 � c1g.

Hypothesis ReflC : 8c : C c � c.

Hypothesis ASymC : 8c1; c2 : C c1 � c2) c2 � c1) c1 = c2.

Hypothesis TransC : 8c1; c2; c3 : C c1 � c2) c2 � c3) c1 � c3 .

(+ denotes the disjunction.)

The security level associated with an object or a subject can be seen as a pair

(c; k) where c is a classi�cation and k is a set of needs-to-know. Given two entities e1
and e2 respectively associated with the security levels (c1; k1) and (c2; k2), we will say

that e1 dominates e2 if c2 � c1 and if k1 is a superset of k2. Note that the relation

\dominates" is a partial order.

3.2 States

A state is a pair (m; f) where m is a matrix containing current accesses and access

rights and f is a classi�cation vector. Thus, we de�ne the type of states as the following

product:

Definition �:Set := M�F.

whereM and F are de�ned in the two following subsections.

3

3.2.1 Current accesses and access rights

We de�ne A as the set of access attributes containing the following elements: r for

\read-only" (i.e., \pure read"), w for \read-write", e for \execute", a for \append"

(i.e., \pure-write"), and c for \control" (allowing to update control accesses).

Inductive A:Set := r:A | w:A | e:A | a:A | c:A.

Current accesses and access rights are usually represented by two matrices. One

way to de�ne these notions within Coq is to de�ne the typeM as follows:

Record M : Set := mkM f

M : S ! O ! [jAj] � [jAj] ; No : IN ; Ns : IN g.

Given a term m of typeM, m will be called a matrix and we will write m:M (resp.

m:No, m:Ns) to denote the �eldM (resp. No, Ns) of m. Since, we require the number

of subjects and objects to be �nite (this requirement is needed in order to be able to

enumerate elements of the matrix in a �nite way), we introduce two �elds No and

Ns corresponding respectively to the number of objects and the number of subjects

minus 1 since both the subjects and the objects of the matrix are indexed from 0.

These �elds are used to de�ne an access function AM to the elements of a matrix m

of typeM:

AM :M! S ! O ! [jAj] � [jAj]

:= �m :M:�s : S:�o : O:

�
m:M(s; o) if s � m:Ns and o � m:No

(;; ;) otherwise

where �x : T:e denotes the function whose argument is a term x of type T and whose

body is the term e. In the following we will use the following notations:

� we will write m(1)[s; o] for the �rst projection of AM(m:M; s; o), representing

the current accesses of the subject s over the object o

� we will write m(2)[s; o] for the second projection of AM(m:M; s; o), representing

the access rights of the subject s over the object o

Given a matrix m of typeM, an object o is said to be opened according to the right

� : A, if there is a subject s such that � 2 m(1)[s; o]. Similarly, a subject s is said to

be granted the right � over an object o if � 2 m(2)[s; o]. Since, as we said, elements

of m can be enumerated, we de�ne a function
 of typeM! S ! [jAj] ! [jOj], such

that
(m; s;E) contains all the objects opened by the subject s according to an access

mode � in E. The following property is easily proved:

8m :M 8s : S 8�1 : A 8�2 : A 8o : O

o 2
(m; s; f�1; �2g)) (o 2
(m; s; f�1g) _ o 2
(m; s; f�2g))
(1)

The following operations over matrices are now de�ned. We �rst de�ne a function

�1 :M! S ! O ! A !M allowing to add an access x : A in the current accesses

of a matrix m :M for a subject s : S over an object o : O. We will write m�1 hs; o; xi

the matrix obtained. Of course, only the �eld M is updated (i.e., the �elds No and

Ns are not modi�ed):

M:(m�1 hs; o; xi)

:= �s0 : S:�o0 : O:

�
(fxg [m(1)[s; o];m(2)[s; o]) if s = s0 and o = o0

(m(1)[s
0; o0];m(2)[s

0; o0]) otherwise

Similarly, we de�ne a function �2 : M ! S ! O ! A ! M allowing to add an

access right in a matrix.

M:(m�2 hs; o; xi)

:= �s0 : S:�o0 : O:

�
(m(1)[s; o]; fxg [m(2)[s; o]) if s = s0 and o = o0

(m(1)[s
0; o0];m(2)[s

0; o0]) otherwise

4

Deleting a current access or an access right is de�ned in the same way by the two

functions 	1 and 	2 of typeM! S ! O ! A !M de�ned as follows:

M:(m	1 hs; o; xi)

:= �s0 : S:�o0 : O:

�
(m(1)[s; o]nfxg;m(2)[s; o]) if s = s0 and o = o0

(m(1)[s
0; o0];m(2)[s

0; o0]) otherwise

M:(m	2 hs; o; xi)

:= �s0 : S:�o0 : O:

�
(m(1)[s; o];m(2)[s; o]nfxg) if s = s0 and o = o0

(m(1)[s
0; o0];m(2)[s

0; o0]) otherwise

We also de�ne a function :M! S ! O ! ([jAj]� [jAj])!M allowing to assign a

value to m[s; o]

M:(m hs; o; (E1; E2)i)

:= �s0 : S:�o0 : O:

�
(E1; E2) if s = s0 and o = o0

(m(1)[s
0; o0];m(2)[s

0; o0]) otherwise

Last, we de�ne a function 2 :M ! O ! IB such that, given a matrix m :M and

an object o : O, o2 m is false if and only if for all subject s � Ns, m(2)[s; o] = ;. In

other words, since m(2)[s; o] denotes the access rights over o, we have o2 m if for at

least one subject s, the object o can be accessed. Such objects are called live objects1.

We prove that opened objects by a subject s2 : S, according to a set of access

attributes E : [jAj], are exactly the same if either we add an access attribute for a

subject s1 6= s2 or we add an access attribute x 62 E to the current accesses:

8m :M 8s1; s2 : S 8o : O 8x : A 8E : [jAj]

(s1 6= s2) _ (x 62 E))
(m�1 hs1; o; xi; s2; E) =
(m; s2; E)
(2)

We also prove that, given the matrix m �1 hs1; o1; xi, if an object o2 is opened by a

subject s2 according to a set of access attributes E, then either o1 = o2 or o2 was

already opened in m:

8m :M 8s1; s2 : S 8o1; o2 : O 8x : A 8E : [jAj]

o2 2
(m�1 hs1; o1; xi; s2; E)) o1 = o2 _ o2 2
(m; s2; E)
(3)

Furthermore, we prove the following property over 	1:

8m :M 8s : S 8s0 : S 8o : O 8o0 : O 8� : A (m	1 hs; o; �i)(1)[s
0; o0] � m(1)[s

0; o0]

(4)

Thus, it follows:

8m :M 8s : S 8s0 : S 8o : O 8E : [jAj] 8� : A
(m	1 hs; o; �i; s
0; E) �
(m; s0; E)

(5)

3.2.2 Classi�cation vectors

Each object and subject possesses a classi�cation and a �nite set of needs-to-know.

Thus, we de�ne the type F as follows:

Record F : Set := mkF f

f1 : S ! C; f2 : O ! C ; f3 : S ! [jKj]; f4 : O ! [jKj] g

1In the original paper of Bell and La Padula, the set A(m) of live objects is de�ned and is only used to

test if an object o belongs to it. Hence, since the construction of this set is computationally very expensive,

we only implement the function 2 which stops as soon as it �nds a subject s such that m(2)[s; o] 6= ;.

5

A term f of type F is called a classi�cation vector, and we will write it ('1; '2; '3; '4)

where '1 (resp. '2, '3 and '4) stands for f:f1 (resp. f:f2, f:f3 and f:f4).

As we did for matrices, given an object o : O, a classi�cation c : C and a set of

needs-to-know E : [jKj], we de�ne a function � : F ! O ! C ! [jKj] ! F over a

vector classi�cation f allowing to set new values to '2(o) and '4(o) (note that no

modi�cation is allowed for the functions '1 and '3):

('1; '2; '3; '4)� ho; c; Ei = ('1; '
0

2; '3; '
0

4)

where '02 and '04 are de�ned as follows:

'02 := �o0 : O:

�
c if o = o0

'2(o) otherwise
'04 := �o0 : O:

�
E if o = o0

'4(o) otherwise

3.2.3 Security properties over states

We can now de�ne the security properties over states that are considered in the Bell

and La Padula model. We focus here on two types of access control policies: Discre-

tionnary Access Control (DAC) consisting in the control of access rights (based on �le

ownership), and Mandatory Access Control (MAC) which restricts how users can pass

rights to other users (such a policy is motivated by the existence of programs known

as Trojan Horses
2).

Let � = (m; ('1; '2; '3; '4)) be a state. We de�ne the three following security

properties over �. The type of DAC, MAC and MAC? is �! Prop.

The DAC property states that current accesses must always belong to the set of

authorized accesses. So, we de�ne DAC(�) as the following proposition:

8s : S 8o : O m(1)[s; o] � m(2)[s; o]

Of course, this property remains true when adding an access right in the matrix.

Indeed, it is easy to prove that:

8� = (m; f) : � 8s : S 8o : O 8� : A DAC(�)) DAC((m�2 hs; o; �i; f)) (6)

The MAC property states the no \read-up" property: no subject can gain read

access over an object whose classi�cation is higher than its classi�cation or whose set

of needs-to-know is not included in its set of needs-to-know. Since w is a \read/write"

attribute, both r and w accesses must be enforced. We de�ne MAC(�) as the following

proposition:

8s : S 8o : O (r 2 m(1)[s; o] _ w 2 m(1)[s; o])) ('2(o) � '1(s) ^ '4(o) � '3(s))

Here again, this property remains true when adding an access right in the matrix:

8� = (m; f) : � 8s : S 8o : O 8� : A MAC(�)) MAC((m�2 hs; o; �i; f)) (7)

2An example of Trojan Horses program is a program giving (high-level) rights associated with the user

which executes it to the owner of this program which is associated with low security level.

6

subject

Other

subject

Object 1

Object 2

Security

level

Low

High

read

write

read

malicious

Figure 1: Violation of the MAC
? property

The MAC
? property corresponds to the no \write-down" property: it is prohib-

ited for any subject currently accessing an object o2 in a read-equivalent mode (i.e.,

r or w) to access in a write-equivalent mode (i.e., a or w) any object o1 such that

'2(o2) 6� '2(o1) or '4(o2) 6� '4(o1):

8s : S 8o1 2
(m; s; fw; ag) 8o2 2
(m; s; fr; wg)

'2(o2) � '2(o1) ^ '4(o2) � '4(o1)

This property prevents copying of an object to a lower security level by a \malicious"

subject (see �gure 1). Hence, we de�ne MAC?(�) as the following proposition:

8s : S

for all(
(m; s; fw; ag);

�o1 : O:for all(
(m; s; fr; wg);

�o2 : O:('2(o2) � '2(o1) ^ '4(o2) � '4(o1))))

This property also remains true when adding an access right in the matrix:

8� = (m; f) : � 8s : S 8o : O 8� : A MAC?(�)) MAC?((m�2 hs; o; �i; f)) (8)

We will say that a state is secure if it satis�es each of these three properties. Note

that the Bell and La Padula model is only concerned with con�dentiality aspects and

does not treat integrity and availability of data.

3.3 Requests and answers

The Bell and La Padula model treats three kinds of requests:

1. request by a subject to access to an object in a given mode

2. request by a subject that another subject be given some access attribute with

respect to some object

3. request by a subject to create or delete an object from the system

We encode creating or deleting an object as the activation of an unused object index or

as its desactivation. This allows to avoid the need to dynamically alter the \dimension

of the matrix" (i.e., the �elds No and Ns of the term m : M occurring in a state).

However, for this created object, we want to be able to set values to its classi�cation

and to its needs-to-know: a request altering the classi�cation vector f : F of a state

(with the operator � de�ned above) will be de�ned.

7

Following the notation introduced in the Bell and La Padula model, we de�ne the

set S+ by adding an \empty" element �� to S :

Inductive S+ : Set := � : S ! S+ | �� : S
+.

Hence, an element of S+ is either �(s), where s belongs to S, or ��. The element ��
is used for requests for which no \target" subject is required.

We de�ne RA as the set of request attributes (G for \get" or \give", R for \release"

or \rescind", C for \change" or \create" and D for \delete"):

Inductive RA:Set := G:RA | R:RA | C:RA | D:RA.

We can now de�ne the main parameter of a request: it is either an access attribute,

an \empty" element, or the classi�cation level and the needs-to-know associated with

an object. So we de�ne the type of the parameter of a request as:

Inductive � : Set := �A : A ! � j �� : � j �F : O ! C ! [jKj]! �.

Note that the constructor �F will be used for parameters in requests that are intended

to set values to the classi�cation and the needs-to-know of an object (when creating

or deleting an object for example). Here, we slightly di�er from the original paper

of Bell and La Padula in which the type of the constructor �F is F ! �. Indeed,

instead of changing the classi�cation vector, we just change one of its \entry", in order

to limit the enumeration of subjects and objects during the proof. However, this is

not an \heavy" restriction since it suÆces to consider several requests changing one

\entry" to perform several changes in a classi�cation vector.

We are now in position to de�ne the type R of requests as follows:

Definition R : Set := S+ �RA� S+ �O � �.

The possible answers to a request, also called decisions, are yes (the request is

granted), no (the request is not granted) or undef (the request is not recognized, no

rule is applicable). So, the type D of answers is de�ned as follows:

Inductive D : Set := yes:D | no:D | undef:D.

In the original paper of Bell and La Padula, a supplementary possible answer, the

error answer, was considered in order to indicate that the decision-making mechanism

was confused. Since such an answer is only used during a debugging step, and then

does not appear as an answer in the proposed model, we do not include the error

answer in our de�nition.

3.4 Transitions

A request q de�nes a transition from a state � to a state �0 together with an answer

Æ. Hence we de�ne transition functions as mappings from R�� to D � �:

Definition T : Set := R��! D � �.

We de�ne a predicate Sound:T ! Prop characterising transition functions that pre-

serve security properties. A transition function that maps every state satisfying the

DAC, MAC and MAC? properties, into a state satisfying again these properties is said

to be sound. Hence, for a transition fonction t : T , Sound(t) is de�ned as the following

proposition:

8q : R 8� : �

(DAC(�) ^MAC(�) ^MAC?(�))

) (DAC(�2(t(q; �))) ^MAC(�2(t(q; �))) ^MAC?(�2(t(q; �))))

where �2 stands for the second projection over a pair (i.e., �2((a; b)) = b).

8

It is important to note that this property can be proved for several transition

functions and does not capture \basic security properties". Indeed, in [9], J. McLean

de�nes a transition function that violates \basic security properties" and for which

this property holds. In order to illustrate such problems, in our proof, we will explicit

what are the parts of the de�nition of the Bell and La Padula transition function

which are used to obtain the proof.

4 Bell and La Padula transition function

The approach presented in the inital paper of Bell and La Padula consists in the

de�nition of the 10 following rules of transition:

(R1) get-read (R2) get-append

(R3) get-execute (R4) get-write

(R5) release-read/write/all/execute (R6) give-read/write/all/execute

(R7) rescind-read/write/all/execute (R8) change-f

(R8) create-objecct (R10) delete-object

which are easily encoded into an algorithm. Our implementation is based on sev-

eral pattern matchings over parameters of a request, thus progressively re�ning the

considered request until it corresponds exactly to one of the 10 rules of Bell and La

Padula. For each case, we will explicitly mention the corresponding rule. The �rst

pattern matching over a request q = (s1; p; s2; o; x) is concerned with p : RA. Hence,

the transition function tblp is de�ned as follows:

tblp : R��! D �� := �q : R:�� : �:

8>><
>>:

tg(q; �) when q = (s1; G; s2; o; x)

tr(q; �) when q = (s1; R; s2; o; x)

tc(q; �) when q = (s1; C; s2; o; x)

td(q; �) when q = (s1; D; s2; o; x)

where tg, tr, tc and td are de�ned as transition functions and proved to be sound

according to the desired security properties, in the following subsections (the proofs

we present are close to the formal proofs obtained and thus does not correspond to

the proofs one can �nd in the original paper of Bell and La Padula). Our main

contribution is the formalisation within Coq of the proof of the following theorem:

Theorem 1 (Basic Security Theorem [2]) Sound(tblp)

This result ensures that the DAC, MAC and MAC? properties are the invariant

satis�ed by the abstract machine in every reachable state (under the assumption that

the initial state also satis�es this invariant).

4.1 G-transition

The transition function tg, de�ned in table 1, corresponds to 5 of the 10 rules of

Bell and La Padula. Let use prove that, given a state � = (m; f) (where f =

('1; '2; '3; '4)) satisfying the DAC, MAC and MAC? properties and a request q =

(s1; G; s2; o; x), the state �2(tg(q; �)) also satis�es the DAC, MAC and MAC? proper-

ties.

Cases 1, 3, 4, 6, 7, 9, 10, 12, 14, 15, 16, 17 and 18. In all these cases,

we have �2(tg(q; �)) = � which statis�es, by hypothesis, the DAC, MAC and MAC?

properties. Of course, none of the conditions required in these cases are used in the

proof.

9

tg((s1; G; s2; o; x); �) := (where � = (m; f) and f = ('1; '2; '3; '4))

when s2 = �(s)

then when x = �A(�)

then when s1 = �(s0)

then if � 6= c

then if � 62 m(2)[s
0; o] _ c 62m(2)[s

0; o]

then (no; �) Case 1 (rule (R6))

else (yes; (m�2 hs
0; o; �i; f)) Case 2 (rule (R6))

else (undef; �) Case 3 (rule (R6))

when s1 = ��

then when � = r

then if r 62 m(2)[s; o] _ '1(s) � '2(o) _ '4(o) 6� '3(s)

then (no; �) Case 4 (rule (R1))

else if �lter(
(m; s; fw,ag); �o0 : O:('2(o
0) � '2(o) _ '4(o) 6� '4(o

0))) = ;

then (yes; (m�1 hs; o; ri; f)) Case 5 (rule (R1))

else (no; �) Case 6 (rule (R1))

when � = w

then if w 62 m(2)[s; o] _ '1(s) � '2(o) _ '4(o) 6� '3(s)

then (no; �) Case 7 (rule (R4))

else if �lter(
(m; s; frg); �o0 : O:('2(o) � '2(o
0) _ '4(o

0) 6� '4(o)))[

�lter(
(m; s; fag); �o0 : O:('2(o
0) � '2(o) _ '4(o) 6� '4(o

0)))[

�lter(
(m; s; fwg); �o0 : O:('2(o) 6= '2(o
0) _ '4(o

0) 6� '4(o))) = ;

then (yes; (m�1 hs; o; wi; f)) Case 8 (rule (R4))

else (no; �) Case 9 (rule (R4))

when � = e

then if e 62 m(2)[s; o]

then (no; �) Case 10 (rule (R3))

else (yes; (m�1 hs; o; ei; f)) Case 11 (rule (R3))

when � = a

then if a 62 m(2)[s; o]

then (no; �) Case 12 (rule (R2))

else if �lter(
(m; s; fr,wg); �o0 : O:('2(o) � '2(o
0) _ '4(o

0) 6� '4(o))) = ;

then (yes; (m�1 hs; o; ai; f)) Case 13 (rule (R2))

else (no; �) Case 14 (rule (R2))

when � = c then (undef; �) Case 15 (rule (R6))

when x = �� then (undef; �) Case 16 (rules (R1; R2; R3; R4))

when x = �F (o
0; c0; E) then (undef; �) Case 17 (rules (R1; R2; R3; R4))

when s2 = �� then (undef; �) Case 18 (rules (R1; R2; R3; R4))

Table 1: G-transition

10

Case 2. Let us prove that if � 6= c, � 2 m(2)[s
0; o] and c 2 m(2)[s

0; o], then the

state �0 = (m�2 hs
0; o; �i; f) is secure. The DAC, MAC and MAC? properties directly

follow from (6), (7) and (8).

Case 5. Let us prove that if r 2 m(2)[s; o], '1(s) 6� '2(o), '4(o) � '3(s) and:

�lter(
(m; s; fw,ag); �o0 : O:('2(o
0) � '2(o) _ '4(o) 6� '4(o

0))) = ; (9)

then the state �0 = (m�1 hs; o; ri; f) is secure.

DAC(�0) holds since, by hypothesis, DAC(�) holds and r 2 m(2)[s; o].

Since � is a total order, we have '2(o) � '1(s). Thus, since by hypothesis '4(o) �

'3(s), MAC(�0) holds.

In order to prove MAC?(�0), let s0 be a subject and o1 and o2 be two objects such

that:

o1 2
(m�1 hs; o; ri; s0; fw,ag) o2 2
(m�1 hs; o; ri; s0; fr,wg)

Since, r 62 fw,ag, by (2), we have o1 2
(m; s0; fw,ag), and because MAC?(�) holds,

it follows:

8o0 : O o0 2
(m; s0; fr,wg)) '2(o
0) � '2(o1) ^ '4(o

0) � '4(o1) (10)

Two cases are possible.

1. either s0 = s and

� either o = o2 and, by (9), since o1 2
(m; s0; fw,ag), we have '2(o1) 6�

'2(o2) { from which we obtain '2(o2) � '2(o1) because � is a total order

{ and '4(o2) � '4(o1), and we can conclude.

� or o 6= o2 and, by (3), we have o2 2
(m; s0; fr,wg), and, by (10), we can

conclude.

2. or s0 6= s and, by (2), it follows o2 2
(m; s0; fr,wg), and, by (10), we can

conclude.

Case 8. Let us prove that if w 2 m(2)[s; o], '1(s) 6� '2(o), '4(o) � '3(s) and:

�lter(
(m; s; frg); �o0 : O:('2(o) � '2(o
0) _ '4(o

0) 6� '4(o)))

[�lter(
(m; s; fag); �o0 : O:('2(o
0) � '2(o) _ '4(o) 6� '4(o

0)))

[�lter(
(m; s; fwg); �o0 : O:('2(o) 6= '2(o
0) _ '4(o

0) 6� '4(o))) = ;

(11)

then the state �0 = (m�1 hs; o; wi; f) is secure.

DAC(�0) holds since, by hypothesis, DAC(�) holds and w 2 m(2)[s; o].

Since � is a total order, we have '2(o) � '1(s). Thus, since by hypothesis '4(o) �

'3(s), MAC(�0) holds.

In order to prove MAC
?(�0), let s0 be a subject and o1 and o2 be two objects such

that:

o1 2
(m�1 hs; o; ri; s0; fw,ag) o2 2
(m�1 hs; o; ri; s0; fr,wg)

Two cases are possible.

1. either s0 = s and:

� either o = o1 and we can distinguish two subcases: if o1 = o2, then we can

conclude since � and � are reexive relations, else, we have o2 6= o, and,

by (3), from o2 2
(m�1 hs; o; ri; s0; fr,wg), it follows o2 2
(m; s0; fr,wg),

so, by (1), either o2 2
(m; s0; frg), and, by (11), we can conclude since

� is a total order, or o2 2
(m; s0; fwg), and now, from (11), it follows

'2(o1) = '2(o2) and '4(o1) � '4(o2) and we can conclude since � and �

are reexive relations.

11

� or o 6= o1 and, by (3), o1 2
(m; s0; fw,ag) and we can distinguish two

subcases: if o2 6= o, then, by (3), we have o2 2
(m; s0; fr,wg), and we

can conclude, since, by hypothesis, MAC?(�) holds, or o2 = o and then,

from o1 2
(m; s0; fw,ag), by (1), either o1 2
(m; s0; fwg) and, by (11),

we obtain '2(o1) = '2(o2) and '4(o1) � '4(o2) which allows to conclude

(since � and � are reexive relations) or o1 2
(m; s0; fag) and, by (11),

we can conclude since � is a total order

2. or s0 6= s and then, by (2), we have:

(m�1 hs; o; ri; s0; fw,ag) =
(m; s0; fw,ag)

(m�1 hs; o; ri; s0; fr,wg) =
(m; s0; fr,wg)

and the conclusion follows directly from the hypothesis MAC?(�).

Case 11. Let us prove that if e 2 m(2)[s; o], then the state �0 = (m�1 hs; o; ei; f)

is secure.

DAC(�0) holds since, by hypothesis, DAC(�) holds and e 2 m(2)[s; o].

MAC(�0) holds since, by hypothesis, MAC(�) holds and is only concerned with the

access attributes r and w.

MAC?(�0) holds since, by hypothesis, MAC?(�) holds and, since e 62 fw,ag and e 62

fr,wg, by (2), we have:

(m�1 hs; o; ei; s0; fw,ag) =
(m; s0; fw,ag)

(m�1 hs; o; ei; s0; fr,wg) =
(m; s0; fr,wg)

Case 13. Let us prove that if a 2 m(2)[s; o] and

�lter(
(m; s; fr,wg); �o0 : O:('2(o) � '2(o
0) _ '4(o

0) 6� '4(o))) = ; (12)

then the state �0 = (m�1 hs; o; ai; f) is secure.

DAC(�0) holds since, by hypothesis, DAC(�) holds and a 2 m(2)[s; o].

MAC(�0) holds since, by hypothesis, MAC(�) holds and is only concerned with the

access attribute r and w.

In order to prove MAC?(�0), let s0 be a subject and o1 and o2 be two objects such

that:

o1 2
(m�1 hs; o; ri; s0; fw,ag) o2 2
(m�1 hs; o; ri; s0; fr,wg)

Since a 62 fr,wg, by (2), we have o2 2
(m; s0; fr,wg). Now, if s0 6= s, then, by (2),

we also have o1 2
(m; s0; fw,ag) and MAC?(�0) holds since, by hypothesis, MAC?(�)

holds, else, if s0 = s, then either o1 6= o, and, by (3), we have o1 2
(m; s0; fw,ag)

and MAC?(�0) holds again by hypothesis, or o1 = o and then from s0 = s we obtain

o2 2
(m; s; fr,wg) and, by (12), we have '2(o1) 6� '2(o2) and '4(o2) � '4(o1), and

because � is a total order it follows '2(o2) � '2(o1) and we can conclude.

4.2 R-transition

The transition function tr is de�ned in table 2. Let use prove that, given a state

� = (m; f) (where f = ('1; '2; '3; '4)) satisfying the DAC, MAC andMAC
? properties

and a request q = (s1; R; s2; o; x), the state �2(tr(q; �)) also satis�es the DAC, MAC

and MAC? properties.

Cases 1, 2, 3, 4 and 6 In all these cases, we have �2(tr(q; �)) = � which

statis�es, by hypothesis, the DAC, MAC and MAC? properties. Of course, none of the

conditions required in these cases are used in the proof.

12

tr((s1; R; s2; o; x); �) := (where � = (m; f) and f = ('1; '2; '3; '4))

when x = �� then (undef; �) Case 1 (rules (R5; R7))

when x = �F (o
0; c0; E) then (undef; �) Case 2 (rules (R5; R7))

when x = �A(�)

then when s2 = �� then (undef; �) Case 3 (rules (R5; R7))

when s2 = �(s)

then if � 62 fr,w,a,eg

then (undef; �) Case 4 (rules (R5; R7))

else when s1 = ��

then (yes; (m	1 hs; o; �i; f)) Case 5 (rule (R5))

when s1 = �(s0)

then if � 62 m(2)[s
0; o] _ c 622m(2)[s

0; o]

then (no; �) Case 6 (rule (R7))

else (yes; ((m	1 hs; o; �i) 	2 hs; o; �i; f)) Case 7 (rule (R7))

Table 2: R-transition

Case 5 Let us prove that if x = �A(�) with � 2 fr,w,a,eg, s2 = �(s) and s1 = ��,

then the state �0 = (m	1 hs; o; �i; f) is secure.

DAC(�0) directly follows from (4) since, by hypothesis, DAC(�) holds.

MAC(�0) directly follows from (4) since, by hypothesis, MAC(�) holds.

MAC
?(�0) directly follows from (5) since, by hypothesis, MAC

?(�) holds.

Note that we prove these properties without using the hypothesis � 2 fr,w,a,eg

and s1 = ��.

Case 7 Let us prove that if x = �A(�) with � 2 fr,w,a,eg, s2 = �(s), s1 = �(s0),

and � 2 m(2)[s
0; o], and c 2 m(2)[s

0; o] then the state �0 = ((m	1hs; o; �i)	2hs; o; �i; f)

is secure.

In order to prove DAC(�0), let s0 be a subject and o0 be an object. If

�0 2 ((m	1 hs; o; �i)	2 hs; o; �i)(1)[s0; o0]

then, by de�nition of 	2, we have �0 2 (m 	1 hs; o; �i)(1)[s0; o0]. Two cases are

possible:

1. either s 6= s0 _ o0 6= o and it follows �0 2 m(1)[s0; o0], so, since, by hypothesis,

DAC(�) holds, we obtain �0 2 m(2)[s0; o0], and, by de�nition of 	1, we have

�0 2 (m 	1 hs; o; �i)(2)[s0; o0], and then we obtain �0 2 ((m 	1 hs; o; �i) 	2

hs; o; �i)(1)[s0; o0] since s 6= s0 _ o0 6= o.

2. or s = s0 and o0 = o and, because �0 2 (m	1 hs; o; �i)(1)[s0; o0], we have � 6= �0,

and it follows �0 2 m(1)[s0; o0], so, since, by hypothesis, DAC(�) holds, we obtain

�0 2 m(2)[s0; o0], and, by de�nition of 	1, we have �0 2 (m	1 hs; o; �i)(2)[s0; o0],

and then, since � 6= �0, we obtain �0 2 ((m	1 hs; o; �i) 	2 hs; o; �i)(1)[s0; o0].

By de�nition of 	2, forall subject s0 and forall object o0, we have:

((m	1 hs; o; �i) 	2 hs; o; �i)(1)[s0; o0] = (m	1 hs; o; �i)(1)[s0; o0]

and MAC(�0) directly follows from (4) since, by hypothesis, MAC(�) holds.

13

tc((s1; C; s2; o; x); �) := (where � = (m; f) and f = ('1; '2; '3; '4))

when s1 = �(s) then (undef; �) Case 1 (rules (R8; R9))

when s1 = ��

then when s2 = ��

then when x = �A(�) then (undef; �) Case 2 (rule (R8))

when x = �� then (undef; �) Case 3 (rule (R8))

when x = �F (o
0; c0; E)

then if o02 m

then (no; �) Case 4 (rule (R8))

else (yes; (m; f � ho0; c0; Ei)) Case 5 (rule (R8))

when s2 = �(s0)

then if x = �A(e) _ x = ��

then if o2 m

then (no; �) Case 6 (rule (R9))

else when x = ��

then (yes; (m hs0; o; (;; fr,w,a,cg)i; f)) Case 7 (rule (R9))

when x = �A(�)

then (yes; (m hs0; o; (;; fr,w,a,c,eg)i; f)) Case 8 (rule (R9))

when x = �F (o
0; c0; E)

then (undef; �) Case 9 (rule (R9))

else (undef; �) Case 10 (rule (R9))

Table 3: C-transition

Here again, we can prove that forall subject s0, forall (�nite) set E of access attributes,

we have:

(((m	1 hs; o; �i)	2 hs; o; �i); s0; E) =
(m	1 hs; o; �i); s0; E)

and MAC?(�0) directly follows from (5) since, by hypothesis, MAC?(�) holds.

Note that we prove these properties without using the hypothesis � 2 fr,w,a,eg,

s1 = �(s0), � 2 m(2)[s
0; o], and c 2 m(2)[s

0; o].

4.3 C-transition

The transition function tc is de�ned in table 3. Let use prove that, given a state

� = (m; f) (where f = ('1; '2; '3; '4)) satisfying the DAC, MAC andMAC? properties

and a request q = (s1; C; s2; o; x), the state �2(tc(q; �)) also satis�es the DAC, MAC

and MAC? properties.

Cases 1, 2, 3, 4, 6, 9 and 10 In all these cases, we have �2(tc(q; �)) = � which

statis�es, by hypothesis, the DAC, MAC and MAC? properties. Of course, none of the

conditions required in these cases are used in the proof.

Case 5 Let us prove that if s1 = s2 = ��, x = �F (o
0; c0; E) and o0 62 m then the

state �0 = (m; f � ho0; c0; Ei) is secure.

14

The DAC property is only concerned with the matrix m which is not modi�ed. Thus,

DAC(�0) directly follows from the hypothesis DAC(�).

MAC(�0) holds since given a subject s0 : S and an object o0 : O, either o0 6= o0

and we can conclude since MAC(�) holds, or o0 = o0 and then, since, by hypothesis,

o0 62 m, we have m(2)[s0; o
0] = ;, and because, by hypothesis, DAC(�) holds, it follows

m(1)[s0; o
0] = ; and we can conclude since neither r nor w can belong to m(1)[s0; o

0].

In order to prove MAC?(�0), let s0 : S be a subject and o1 and o2 be two objects such

that o1 2
(m; s0; fw; ag) and o2 2
(m; s0; fr; wg). Here again, from the hypoth-

esis o0 62 m, we have m(2)[s0; o
0] = ;, and because, by hypothesis, DAC(�) holds, it

follows m(1)[s0; o
0] = ;, so o1 6= o0 and o2 6= o0, and we obtain MAC?(�0) as a direct

consequence of the hypothesis MAC?(�).

Case 7 Let us prove that if s1 = ��, s2 = �(s0), x = �� and o 62 m then the state

�0 = (m hs0; o; (;; fr,w,a,cg)i; f) is secure.

DAC(�0) follows from DAC(�) and:

(m hs0; o; (;; fr,w,a,cg)i)(1)[s
0; o] = ;

� (m hs0; o; (;; fr,w,a,cg)i)(2)[s
0; o] = fr,w,a,cg

MAC(�0) holds since (m hs0; o; (;; fr,w,a,cg)i)(1)[s
0; o] = ; and then neither r nor w

can belong to this (empty) set. Hence the hypothesis MAC(�) allows to conclude.

In order to prove MAC?(�0), let s0 : S be a subject and o1 and o2 be two objects such

that:
o1 2
(m hs0; o; (;; fr,w,a,cg)i; s0; fw; ag)

o2 2
(m hs0; o; (;; fr,w,a,cg)i; s0; fr; wg)

Two cases are possible. Either s0 = s0 and then, here again, since:

(m hs0; o; (;; fr,w,a,cg)i)(1)[s
0; o] = ;

we have o1 6= o and o2 6= o, and we obtain MAC?(�0) as a direct consequence of the

hypothesis MAC?(�), or s0 6= s0 and we have:

(m hs0; o; (;; fr,w,a,cg)i)(1)[s
0; o] = m(1)[s0; o]

and the hypothesis MAC?(�) allows again to conclude.

Note that we prove these properties without using the hypothesis o 62 m.

Case 8 If s1 = ��, s2 = �(s0), x = �A(�) and o 62 m then the proof that the state

�0 = (m hs0; o; (;; fr,w,a,c,eg)i; f) is secure is exactly the same as for the case 7.

4.4 D-transition

The transition function td is de�ned in table 4. Let use prove that, given a state

� = (m; f) (where f = ('1; '2; '3; '4)) satisfying the DAC, MAC andMAC? properties

and a request q = (s1; D; s2; o; x), the state �2(td(q; �)) also satis�es the DAC, MAC

and MAC? properties.

Cases 1, 3 and 4 In all these cases, we have �2(td(q; �)) = � which statis�es, by

hypothesis, the DAC, MAC and MAC? properties. Of course, none of the conditions

required in these cases are used in the proof.

15

td((s1; D; s2; o; x); �) := (where � = (m; f) and f = ('1; '2; '3; '4))

when s2 = �(s)

then if s1 6= �� _ x 6= ��

then (undef; �) Case 1 (rule (R10))

else if c 2 m(2)[s; o]

then (yes; (m hs; o; (;; ;)i; f)) Case 2 (rule (R10))

else (no; �) Case 3 (rule (R10))

when s2 = �� then (undef; �) Case 4 (rule (R10))

Table 4: D-transition

Case 2 Let us prove that if s2 = �(s), s1 = ��, x = �� and c 2 m(2)[s; o] then the

state �0 = (m hs; o; (;; ;)i; f) is secure.

DAC(�0) follows from DAC(�) and:

(m hs; o; (;; ;)i)(1)[s; o] = ; � (m hs; o; (;; ;)i)(2)[s; o] = ;

MAC(�0) holds since, by hypothesis, we have MAC(�) and furthermore neither r nor

w can belong to (m hs; o; (;; ;)i)(1)[s; o] = ;.

MAC?(�0) holds since, by hypothesis, we have MAC?(�) and any object o0 belonging

either to
(m hs; o; (;; ;)i; s0; fw; ag) or to
(m hs; o; (;; ;)i; s0; fr; wg) is necessarily

such that o0 6= o.

Note that we prove these properties without using the hypothesis c 2 m(2)[s; o].

5 Conclusion { Future work

This development shows that even from a pratical point of view, formal methods can

be used to increase the security of a software, by providing a mathematical model and

using it to prove the desired security properties. In fact, using mathematical concepts

does not always produce very complex descriptions of systems and the proofs we

have formalised here are not very diÆcult to obtain within the Coq proof assistant.

Furthermore, by providing a way to extract programs from formal developments, the

Coq proof assistant avoids to treat separately the formal modeling work and the

development.

Of course, the proofs presented in this paper are now well-known and one can

wonder about the usefulness of such a formalisation. However, formalising proofs

brings us at a level of detail that is often left to the reader, and by taking into account

these details, often considered as minor in informal presentations, proofs are getting

a little more complicated. Furthermore, our development formally ensures that the

program we have obtained satis�es the desired security properties, thus providing

a greater level of con�dence (while, in a paper, a typographical error can be seen

as a small mistake, in an implementation, it becomes a bug that can cause serious

damages).

The relevance of the choice of the Bell and La Padulla model can also be addressed.

Indeed, this model is not completely satisfactory. For example, as we said, it is only

concerned with con�dentiality. Furthermore, the \basic security theorem" proved

(theorem 1) does not capture the \essence" of security. Indeed, as we said, in [9],

J. McLean proves an essentially similar theorem for a model that clearly violates

16

basic notions of security. Such a work is cited in [16] by J. Rushby which presents a

more general discussion about problems on specifying security requirements. In [11],

J. McLean addresses this problem by de�ning a framework of security models that

contains transition restrictions. Roughly speaking, a function from S [O to [jSj]

which returns the set of subjects that are allowed to change the security level of its

argument is introduced.

However, the Bell and La Padula model has been widely used as a basis for de-

signing systems with speci�ed security properties. For example, in [4, 5], P. Bieber

presents the development of a secure gateway, called FOX, that interconnects two local

area networks and allowing a security evaluation at ITSEC [6] assurance-correctness

level E4, requiring the use of formal methods. The security policy of FOX, concerned

with two kinds of properties: information isolation and information �ltration (between

the two LAN), has been enforced by a formal security policy model based on the access

control rules of the Multics interpretation of the Bell and La Padulla model [3]. For

this, the consistency of this model has been checked using tools associated with the

B-method [1] and last, this formal model has been interpreted in order to show that

security is correctly taken into account in the speci�cation of FOX. Each functional

requirement has been related with access control rules of the model, thus showing that

the functional speci�cation of FOX is consistent with its security model.

Despite of these remarks, we think that this development can be viewed as a base

for several extensions. For example, formalising the framework presented in [11] or

adding several levels of re�nements (together with a formal proof of the coherence of

such extensions) could be interesting future works.

References

[1] J.R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge Univer-

sity Press, 1996.

[2] D. Bell and L. LaPadula. Secure Computer Systems: a Mathematical Model.

Technical Report MTR-2547 (Vol. II), MITRE Corp., Bedford, MA, May 1973.

Reprinted in [8].

[3] D. Bell and L. LaPadula. Secure Computer Systems: Uni�ed Exposition and

Multics Interpretation. Technical Report ESD-TR-75-306, MTR-2997, MITRE

Corp., Bedford, MA, July 1975.

[4] P. Bieber. Formal Techniques for an ITSEC-E4 Secure Gateway. In 12th Annual

Computer Security Applications Conference, pages 236{245, December 1996.

[5] P. Bieber. Interpr�etation d'un mod�ele de s�ecurit�e. Techniques et Sciences Infor-

matiques, 15(6), 1996.

[6] European Economic Communuty. Information Technology Security Evaluation

Criteria (ITSEC). Technical report, CEE, 1990.

[7] T. Coquand and G. Huet. The calculus of constructions. Information and Com-

putation, 76(2-3):95{120, 1988.

[8] L.J. LaPadula and D.E. Bell. Secure Computer Systems: A Mathematical Model.

Journal of Computer Security, 4:239{263, 1996.

[9] J. McLean. A comment on the `basic security theorem' of Bell and LaPadula.

Information Processing Letters, 20(2):67{70, February 1985.

[10] J. McLean. Security models and information ow. In Proceedings of the IEEE

Symposium on Research in Security and Privacy, pages 180{187, 1990.

17

[11] J. McLean. The speci�cations and modeling of computer security. IEEE Com-

puter, 23(1):9{16, 1990.

[12] J. McLean. Security models. In J. Marciniak, editor, Encyclopedia of Software

Engineering. J. Wiley & Sons, 1994.

[13] NSA/Information Assurance Directorate. Protection Pro�le For Multilevel Oper-

ating Systems In Environments Requiring Medium Robustness. Technical report,

National Security Agency, 23 May 2001.

[14] C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system Coq.

Journal of Symbolic Computation, 15(5{6):607{640, 1993.

[15] Logical Project. The Coq Proof Assistant Reference Manual Version 7. INRIA-

Rocquencourt, 2002.

[16] J. Rushby. Security requirements speci�cations: How and what? In Symposium

on Requirements Engineering for Information Security (SREIS), Indianapolis,

IN, March 2001.

18

