
I

CALCULEMUS-2003

11th Symposium on the Integration of Symbolic

Computation and Mechanized Reasoning

September 10-12 2003

Roma, Italy

Th�er�ese Hardin and Renaud Rioboo (Eds)

II

Foreword

The use of Computer Algebra systems is now wide-spread not only in education

or scienti�c contexts but also in industry, where mathematical software systems

help engineers to design systems. In the same way, the growing needs for a more

formal approach in software industry require powerful deduction systems, help-

ing engineers to prove that the developments agree with their requirements. The

combination of automated mathematical computation and automated mathe-

matical deduction is the major topic of the CALCULEMUS symposium. This

includes development of more reliable and accurate computer algebra systems,

more powerful and exible deduction systems. But essentially, the CALCULE-

MUS symposium is intended to researchers and developers interested in coop-

eration and uni�cation between the two families of mathematical based soft-

ware and of their communities. For these reasons, CALCULEMUS symposium

co-locate in alternate years with either a Computer Algebra conference or a de-

duction conferences. This is the case in 2003: CALCULEMUS is co-located with

TABLEAUX2003 and TPHOL2003. We thank Marta Cielda, the local organiser

of this joined conferences.

We would like to thank the members of the program committee and all the

referees for their important work in selecting the submitted papers. We had 29

submissions out of which we selected 6 long papers and 9 short papers. The best

papers will be published in a special issue of the London Mathematical Society's

Journal of Computation and Mathematics. Submissions will be required

Th�er�ese Hardin and Renaud Rioboo

Co-chairs

Organization

Program Commitee

Chairs Th�er�ese Hardin

Renaud Rioboo

Members Andrea Asperti

Henk Barendregt

Chris Benzmuller

Olga Caprotti

James Davenport

William Farmer

Hoon Hong

Fairouz Kamareddine

Michael Kohlhase

Steve Linton

Loic Pottier

Roberto Sebastiani

Volker Sorge

Thomas Sturm

Stephen Watt

Wolfgang Windsteiger

Additional referees

Philippe Aubry

Gilles Audemard

Quoc Bao Vo

Marco Bozzano

Jacques Carette

V�eronique Donzeau-Gouge

Catherine Dubois

Herman Geuvers

Dimitar P Guelev

Manfred Kerber

Temur Kutsia

Roy Mc Casland

Val�erie M�enissier-Morain

Milad Niqui

Martin Pollet

Bas Spitters

Jeremie Wajs

Freek Wiedijk

Claus-Peter Wirth

V

Sponsoring Institutions

http://www.colognet.org/

The European Network of Excellency in Computational Logic

Local Organization

Marta Cialdea Mayer

Table of Contents

The Calculemus Research Training Network | A short Overview : : : : : 1

Christoph Benzm�uller

Querying Distributed Digital Libraries of Mathematics : : : : : : : : : : : : : : : : : 17

Ferruccio Guidi, Claudio Sacerdoti Coen?

FoCDoc: The Documentation System of FoC : 31

Manuel Maarek, Virgile Prevosto

Brokers and Web-Services for Automatic Deduction: a Case Study : : : : : : 43

Claudio Sacerdoti Coen, Stefano Zacchiroli

Trustable Communication Between Mathematics Systems : : : : : : : : : : : : : : 58

Jacques Carette, William M. Farmer, J�er�emie Wajs

System Description: Analytica 2 : 69

Edmund Clarke, Michael Kohlhase, Jo�el Ouaknine, Klaus Sutner

A New Interface to PVS : 74

A. A. Adams

Integrating Computational Properties at the Term Level : : : : : : : : : : : : : : : 78

Martin Pollet, Volker Sorge

Towards a higher reasoning level in formalized Homological Algebra : : : : : 84

Jes�us Aransay, Clemens Ballarin, Julio Rubio

Making proofs in a hierarchy of mathematical structures : : : : : : : : : : : : : : : 89

Virgile Prevosto, Mathieu Jaume

Formal proofs and computations in �nite precision arithmetic : : : : : : : : : : : 101

Sylvie Boldo, Marc Daumas, Laurent Th�ery

Inductive de�nitions versus classical dependent choice in the Minlog

system : 112

Ulrich Berger and Monika Seisenberger
fu.berger,csmonag@swansea.ac.uk
Building Convex Hulls by Combining SAT Solving and Algebraic

Computing : 118

Silvio Ranise

Rings and Modules in Isabelle/HOL : 124

Hidetsune KOBAYASHI, Hideo SUZUKI, HirokazuMURAO

VII

Exploring an Algorithm for Polynomial Interpolation in the Theorema

System : 130

Wofgang Windsteiger

Some Grand Mathematical Challenges in Mechanized Mathematics : : : : : : 137

Jacques Calmet

VIII

The Calculemus Research Training Network

| A short Overview?

Christoph Benzm�uller

FR Informatik, Universit�at des Saarlandes, 66041 Saarbr�ucken, Germany

1 Introduction

This paper sketches the structure and scienti�c contributions of the Calcule-

mus Research Training Network (Calculemus RTN) since its start in Septem-

ber 2000. It has been reproduced from the networks midterm report [22] and

credit is due to all researchers of the Calculemus RTN. More than 28 young

visiting researchers (with a sum of approx. 150 �nanced person-months) have

been supported by the network so far and approx. 47 senior researchers are

involved in the training measures at the di�erent partner sites. Figure 1 pro-

vides the list of the Calculemus RTN partner sites. The network's homepage

is http://www.eurice.de/calculemus/.

2 Motivation

The long-term motivation of the Calculemus research initiative (see www.

calculemus.net) is to foster the development of a new generation of assistant

systems for mathematics and formal methods. Some key characteristics of the

systems Calculemus is aiming at are compiled in the following (incomplete)

list:

{ Combined support for symbolic reasoning and symbolic computation.

{ Interoperability with emerging decentralised and shared mathematical knowl-

edge bases.

{ Support mechanisms for the exploration, validation, and maintenance (in

particular management of change) of domain speci�c knowledge.

{ Support for exible integration of heterogeneous specialist reasoners as sub-

systems (including classical automated theorem provers, model generators,

decision procedures, etc.).

{ Provision of rich and expressive representation languages and communication

means to the users side (probably including rather informal or even natural

language based representations) in combination with human-oriented, multi-

modal user interfaces.

? This work is supported by the EU Research Training Network CALCULEMUS

(HPRN-CT-2000-00102) funded in the EU 5th framework.

2

USAAR
Saarland University, Saarbr�ucken, Germany (J�org Siekmann, Christoph

Benzm�uller)
UED The University of Edinburgh, Scotland (Alan Bundy)

UKA Karlsruhe University, Germany (Jacques Calmet)

RISC
Research Institute for Symbolic Computation, Linz, Austria (Bruno

Buchberger)

TUE
Eindhoven University of Technology, Netherlands (Arjeh Cohen)

University of Nijmegen, Netherlands (Henk Barendregt)

ITC-IRST
Instituto per la Ricerca Scienti�ca e Tecnologica, Trento, Italy (Fausto

Giunchiglia)
UWB University of Bialystok, Poland (Andrzej Trybulec)

UGE Universit�a degli Studi di Genova (Alessandro Armando)

UBIR The University of Birmingham, England (Manfred Kerber)

Fig. 1. The Calculemus RTN

{ Support for transformations between the expressive and user-oriented rep-

resentations employed in the assistant system and the usually highly spe-

cialised machine-oriented representations employed by the integrated spe-

cialist reasoners.
{ Development and utilisation of open system architectures fostering interop-

erability and tool exchange between di�erent assistant systems (for example,

in the emerging mathematical semantic web).
{ Direct support for the preparation and validation of mathematical texts and

publications.
{ Applications in mathematics, mathematics education, and formal methods.

These research goals are ambitious and call for the combination of resources

and the mutual exchange of scienti�c expertise between the involved scienti�c

communities. To tackle them, Calculemus is basically pursuing a bottom-up

approach starting from single research aspects as mentioned above and from the

existing and emerging tools of the involved research groups.

The current scienti�c focus is on the integration of symbolic computation

and symbolic reasoning which has been identi�ed as a major issue. The sociolog-

ical goal of the Calculemus RTN is to combine the scienti�c expertise of the

involved researchers in order to optimally train and develop a new generation of

young researchers in consideration of the implied scienti�c challenges.

3 Calculemus RTN: Research Objectives and Results

A predominant research objective of the Calculemus RTN is to foster the

integration of deduction systems (DS) and computer algebra systems (CAS),

both at a conceptual and at a practical level. The point of origin for this kind of

research is a landscape of heterogeneous approaches and systems on both sides

of the spectrum, where the diversity on the DSs side is greater than on the side

of CASs.

3

Since its start in September 2000 the Calculemus RTN has contributed to

the convergence of DSs and CASs through its research on unifying frameworks

for encoding and combining computation and deduction, the identi�cation of the

architectural requirements for a new generation of reasoning systems with com-

bined reasoning and computational power, and the prototypical implementation

and application of the improved systems. However, a single predominant theo-

retical framework is currently not possible. Such an approach would particularly

involve predominant solutions to the still rather diverging systems at both sides

of the spectrum between DSs and CASs. Therefore a strong line of research in

the Calculemus RTN focuses on the modelling and integration of CASs and

DSs at the systems layer. In this research direction, signi�cant progress has been

made and several systems of project partners and other research institutes have

been connected in order to form networks of cooperating mathematical service

systems. The bene�ts and impacts of such integrations have been investigated

in prototypical case studies.

The researchers of the Calculemus RTN and the Calculemus interest

group also fostered the Mathematical KnowledgeManagement (MKM, EUMKM-

NET) research initiative; see [40, 8]. This relatively young line of research adopts

a broader perspective on the future of mathematics (e.g. research and publica-

tion practice, education, and knowledge maintenance) in the 21st century. A

signi�cant amount of Calculemus research is MKM relevant and is currently

being taken up in this community in order to adopt and integrate it into the

MKM perspective.

The extensive research activities of the Calculemus Network and the Cal-

culemus Interest Group are furthermore shown inter alia by three special issues

of the Journal of Symbolic Computation [101, 4, 78] and the following interna-

tional events: Calculemus Symposium 2000 in St. Andrews, Scotland [69, 101],

Calculemus Symposium 2001 in Siena, Italy [78], Calculemus Symposium

2002 in Marseilles, France [45, 49], Calculemus Autumn School 2002 in Pisa,

Italy [23{25, 128]. The Calculemus Symposium 20031 will be held in Septem-

ber in Rome, Italy, and it will join IJCAR conference in 2004.

In the following paragraphs we sketch the highlights of the Calculemus

RTN since its start in September 2000; for more detailed reports to all tasks we

refer to [22].

Task 1.1: Mathematical Frameworks TUE and Nijmegen University inves-

tigated type theory for the purpose of formalising mathematics: Barendregt and

Geuvers [21] give an overview of type theory, how it is used to represent logic

and mathematics and what issues and choices come up. Type theory (encoded

in OpenMath) as a way for communicating mathematics is proposed in [20]

and in [48] it is shown how a proof presentation can be generated from a for-

malised proof in type theory. This paper argues that `formal contexts' in Coq

can be used as a basis for interactive mathematical documents. This topic is also

1 http://www-calfor.lip6.fr/~rr/Calculemus03/

4

treated in [99]. An in-depth discussion of the various ways to treat computations

in theorem provers is given in [19] and further related work is presented in [36].

TheCalculemusRTN has also studied other approaches to theorem proving

and their capacities to integrate computations (see also [122]). This includes

proof planning, as developed and employed by the nodes USAAR and UED. In

the
mega system [104], at USAAR, symbolic calculations can be integrated

into proof planning in two ways: (i) to guide the proof planner and to prune

the search space by computing hints with control rules and (ii) to shorten and

simplify the proofs by calling a CAS within the application of a method to

solve equations. As a side-e�ect both cases can restrict possible instantiations of

meta-variables. These approaches are discussed in [52, 107, 84, 105].

An investigation into the use of deduction for the implementation of correct

computations within computer algebra system was considered at UGE and is

presented in [1].

The Theorema system, developed at RISC, aims at providing one mathe-

matical framework encompassing all aspects of algorithmic mathematics, notably

the aspects of proving, computing, and solving ; see [39, 37, 38].

In [70, 71] it is critically argued by UBIR that aspects of mathematical con-

cepts, including procedural knowledge, are hard to reconstruct from the formal-

isation in deduction systems. This work points to limitations of the exibility of

mathematical representations which apply to all our current approaches.

Task 1.2: De�nition of Mathematical Service The primary goal of this

Task is the enhancement of existing computer algebra systems and deductive

systems by turning them into open systems capable of using and/or providing

mathematical services. After a preliminary analysis of the state-of-the-art of

reasoning systems, it was decided to tackle the problem, in parallel, by a top-

down and a bottom-up approach.

In the top-down approach, new infrastructures (both at the conceptual, spec-

i�cation, and architectural level) for the seamless integration of mathematical

services have been investigated. This was intended not only for current systems,

but also and in particular for future implementations. To this extent particu-

lar emphasis was on the de�nition of frameworks (languages, protocols, semantic

speci�cations, architectural schemata) suitable for making mathematical services

accessible over the web. The relevant top-down approaches are: OMRS (Open

Mechanised Reasoning Systems) developed by UGE and ITC-IRST [2], LBA

(Logic Broker Architecture) developed by UGE [6, 7], MathWeb-SB (MathWeb

Software Bus) developed by USAAR [129], MathBroker developed by RISC [81].

These networks can themselves be coupled again as, for instance, exemplarily

investigated in [127].

In the bottom-up approach, we have investigated how complex mathematical

services can be built out of simpler ones. A particular emphasis has been devoted

to decision procedures, and in particular to the integration of procedures spe-

ci�c for solving mathematical problems with deductive procedures. Examples for

5

bottom up approaches are CCR (Constraint Contextual Rewriting) developed

by UGE and MathSat [61, 11, 10, 9, 12], developed by ITC-IRST.

In Task 1.2 the Calculemus network also closely cooperates with the EU

project MONET. In MONET special ontologies comprising mathematical prob-

lems, queries and services have been de�ned and investigated.

Task 2.1: Integration of CASs and DSs via Protocols Cooperation among

several software systems can be achieved with indirect, unidirectional and bidi-

rectional communication. The goal of this task is to investigate how protocols

can be de�ned to provide a semantics as well as soundness results for systems ex-

changing mathematical information. This de�nition hints at several other tasks

in the Calculemus RTN dealing with very similar problems. This is for ex-

ample true when de�ning a context for a computation and is partly covered in

Task 1. Unidirectional and bidirectional communication protocols are designed

when coupling directly di�erent modules. Although there are no direct links

between the services with indirect communication, interaction is possible when

systems can communicate with a common user interface, central unit, mediator

or evaluator. This approach, which is partly based on a joint work with ITC-

IRST on OMSCS (Open Mechanised Symbolic Computation Systems), has been

investigated within the Komet system at UKA see [44, 76, 55, 46].

A semantics can be provided by at least three approaches: (a) de�ne a mathe-

matical software bus, (b) de�ne a context from which a semantic can be derived,

(c) formulate the problem as a knowledge representation paradigm.

These approaches are shared by several of the partners. Indeed, they lead

to introduce multi-agent systems, contexts, and ontologies to just quote a few

features (see for instance the LBA and the MathWeb-SB).

Task 2.2: Enhancing the Reasoning Power of Computer Algebra Sys-

tems Enhancement of CAS with reasoning power can be attempted at di�erent

levels: (a) enhancement of CAS on the System Level, (b) enhancement of CAS

on the Theory Level, and (c) enhancement of CAS on the User Level.

Direction (a) can be achieved by adding additional reasoning capabilities,

i.e., logical inference systems, to algorithms built into the CAS. The Constraint

Contextual Rewriting (CCR) framework developed by UGE can be used in order

to integrate the evaluation mechanism of the CAS Maple with an appropriate

decision procedure for checking side-conditions, see [1] and [5].

Direction (b) can be achieved by adding proven knowledge about CAS func-

tions to the CAS knowledge base. The HR system, developed at UED, has been

used to conjecture properties of functions available in the Maple algorithm li-

brary from empirical patterns detected in computational data produced by the

CAS [53].

Direction (c) can be achieved by giving the CAS user the possibility to prove

mathematical statements using proof techniques from logic within the CAS in

addition to the computing facilities that each CAS o�ers. In the framework of the

6

Calculemus RTN, the work of RISC represents this aspect of CAS enhance-

ment: The Theorema system, see [41], is an add-on package for the widespread

and popular CAS Mathematica where the user formulates mathematical theo-

rems and proves them entirely within the Mathematica environment.

Task 2.3: Enhancing the Computation Power of Deductions Systems

UED investigated the combination of the proof-planner �Clam [102] with other

systems for computationally costly tasks. This includes (a) an implementation of

the gs exible decision procedure system framework in (Teyjus) LambdaProlog

and within the �Clam proof planning system [42] and (b) the integration of the

�Clam proof-planner into the MathWeb-SB system [54].

UED also investigated the combination of systems to discover attacks to

security protocols [108, 109]. This work makes use of computational power in

that it generates a large number of clauses in its processing.

Further relevant work has been done in the �Clam proof-planner to construct

very large and modular proof-plans for complicated real analysis theorems [65,

79, 80].

The
mega proof planner at USAAR has been coupled with di�erent CASs

via MathWeb-SB, see [107, 84, 105]. The
ants approach to integrate CASs into

mathematical assistant systems is sketched in [29, 28, 34, 35]. This work proposes

an agent-based modelling of inference rules and external systems at a very basic

level within theorem provers.

Finally, work done at UBIR and UGE which render techniques from auto-

mated reasoning highly eÆcient by using enhanced computational power are

presented in [66{68] and [9, 12, 3]. Further relevant work is given in [100].

Task 3.1: Automated Support to Writing Mathematical Publications

Typically, a mathematical publication contains the following ingredients: natu-

ral language text, mathematical formulae, formal text (i.e. de�nitions and the-

orems), proofs, examples (typically with computations), and graphics (tables,

drawings, sketches, etc.). In the optimal case, a software system for supporting

mathematical publications would support all these facets of mathematical pub-

lications. Several systems and languages have been used for case studies in this

area:

(a) TheMIZAR approach (at UWB) is based on two kinds of software which

automate the process of writing formal mathematical papers: (i) software used

to prepare an article as a formal text whose correctness is computer veri�ed

and (ii) the software for automatic (or semi-automatic) translation into natural

language (particularly English); this includes also the software for translation

into XML-based formats. The cooperation with other Calculemus sites in-

cludes development of the MIZAR Mathematical Library (MML) and also the

above mentioned translation into XML formats. Relevant publications are [88,

60, 16{18,94]. Recently published MIZAR articles in the Journal of Formalized

Mathematics are [113, 74, 95, 63, 117, 73, 103, 15, 14, 64, 89, 97, 90, 111, 112, 98, 93,

116, 59, 114, 91, 92, 62, 115].

7

(b) Theorema is a prototypical software system designed to give computer-

support to the working mathematician during all phases of mathematical ac-

tivity. Several features qualify Theorema as a powerful system for creating

mathematical publications entirely inside the system. \Classical" mathematical

documents can be written that are intended mainly for printout, as for instance

the thesis [125] or the conference papers [123], [124], and [126]. In the case

studies, however, emphasis has been put on using the Theorema system for

developing interactive lecture notes for university mathematics courses. Mostly

since the Theorema language is very similar to the language used in \ordinary

mathematics" the system is highly suitable for this approach, both in illustrating

computation-based courses as well as in supporting proof-oriented courses.

(c) The OMDoc [72] content markup scheme which has been developed at

USAAR, supports authors with writing formal mathematical documents includ-

ing articles, textbooks, interactive books and courses. OMDoc allows to cap-

ture the semantics and structure of these documents. Various tools are available

to transform OMDoc documents into other formats for presentation purposes

(using, e.g., MathML) or to support inter-system communication (e.g., by trans-

formation into the logic of a theorem prover).

(d) TUE has developed the MathDox tool supporting interactive mathe-

matical documents. MathDox is based on DocBook but also has similarities

to OMDoc.

Task 3.2: Support to the Development of an Industrial-Strength Ap-

plication of Formal Methods to Program Veri�cation In addition to

formal methods, which is undoubtedly the most important application area for

our research, we have identi�ed the education sector as another interesting ap-

plication for DSs and CASs. Actually the systems Theorema (RISC) and Ac-

tiveMath [87] (USAAR), which make use of tools and approaches developed

in the Calculemus RTN, are already employed in education practice. Another

example is the MathDox tool developed at TUE since the next version of the

interactive textbook Algebra Interactive! [51] will appear in this format.

Formal method applications currently pursued in the Calculemus RTN in-

clude (a) an approach to support the veri�cation of hybrid systems with the help

of mathematical services in MathWeb-SB [27, 26], (b) the investigation whether

specialised reasoning tools within the MathWeb-SB can fruitfully support the

formal veri�cation of information ow properties and error detection in secu-

rity protocols [12], and (c) the application of proof planning in �rst-order linear

temporal logic (FOLTL) to feature interactions as they arise in large telephone

networks [50].

Task 3.3: Support to the Solution of Undergraduate Exam in Calculus

and Economics In this Task we focus on simple, mathematics education ori-

ented problems with a strong emphasis on the particular way the problems are

solved, how interaction with the user is supported and how the solution is pre-

sented. We analyse whether our systems can be employed in a user friendly and

8

adequate way and whether the interaction and maths presentation capabilities

of the systems are appropriate.

A task relevant case pursued at Nijmegen University compares how the prob-

lem of proving the irrationality of
p
2, which involves computations, can be

proved in �fteen di�erent theorem proving environments (including systems of

the Calculemus RTN) [122, 121, 106, 33, 105].

Among the case studies that are currently being started at USAAR are ex-

ercises from the German Bundeswettbewerb Mathematik and Calculus exercises

being encoded and investigated in the ActiveMath project. Empirical studies

at USAAR investigates the phenomena of natural language dialog with mathe-

matical assistant systems on proof exercises in naive set theory.

Task 3.4: Modelling of Existing Systems as Mathematical Services The

work in this Task so far has concentrated both on developing the required infras-

tructure (languages, protocols, semantic speci�cations, architectural schemata)

for making existing systems inter-operate, and on studying extensions and en-

hancements of the reasoning capabilities of some existing tools. The relevant

contributions are: (i) MathSat framework developed at ITC-IRST [11, 10], (ii)

the RDL (Rewrite and Decision procedure Laboratory), (iii) the LBA [6, 7, 127]

developed by UGE, (iv) the modelling of existing systems, for instance, �Clam

developed at UED [102], as mathematical services in MathWeb-SB developed at

USAAR [54].

Further work at USAAR concentrates on the mediation of mathematical

knowledge between the mathematical knowledge base MBase, which has been

integrated to the MathWeb-SB, and mathematical assistant systems such as

mega [56, 33, 32].

Task 3.5: Challenge Mathematical Problems During the work on the

above tasks some challenging mathematical problems had to be tackled already,

in order to have non-trivial working examples. Some of the examples were done

either by single partner nodes or in collaboration between some of the nodes.

The examples include: (i) Fundamental Theorem of Algebra [58, 57], (ii) Invo-

lutive Bases [47, 43], (iii) Exploration in Finite Algebra, (iv) The Residue Class

Domain [82, 85, 83, 84], (v) Proving with Invariants [86], (vi) The Jordan curve

theorem for special polygons, (vii) Continuous lattices [75], (viii) Order sorted

algebras [119, 110, 118], (ix) Proofs in Homological Algebra, (x) Proofs in Graph

Theory, (xi) Exploration in Zariski Spaces. Further related work is given in [30,

31].

4 Discussion

Prima facie it may appear disappointing that a predominant, single and uniform

solution for the integration of deduction and computation is not possible and

that the network places an emphasis on integration at the systems level (which

9

requires support for heterogeneous problem representations). However, it is the

authors opinion that mathematical assistant systems, in particular those for the-

ory exploration, generally have to �nd a good compromise between a well cho-

sen degree of heterogeneity and exibility of mathematical representations and

the enforcement of representational uniformity. Finding good representations has
been identi�ed as a key issue in arti�cial intelligence and the author is convinced

that it is important for mathematical theory exploration and mathematics edu-

cation as well. Unfortunately many of todays deduction system are still strongly

a�icted with the spirit of Hilbert's program: the possibility to encode mathe-

matics in a uniform, restrictive manner (e.g. based on set theory) does not imply

the usefulness of representational uniformity for theory exploration.

Heterogeneity at the representations and the related systems layer, how-

ever, requires support for the semantically validated exchange of information

and for transformations of representations (probably including algorithms and

proof objects based on them) in various goal directions. For instance, semantical

descriptions of system capabilities and uniform information exchange facilities

can be used for making heterogeneous systems interoperable in \abstract" level

proof development. Transformation mechanisms (if possible and available) may

then be later used to generate proof objects in a uniform goal representation

format. Alternatively the employed systems may be trusted in the context of

their particular usage.

In short, the author claims that a well chosen degree of representational het-

erogeneity and exibility should be considered a design requirement for mathe-

matical assistant systems instead of a drawback.

References

1. A. Armando and C. Ballarin. Maple's evaluation process as constraint contex-

tual rewriting. In B. Mourrain, editor, ISSAC 2001: July 22{25, 2001, University

of Western Ontario, London, Ontario, Canada: Proceedings of the 2001 Inter-

national Symposium on Symbolic and Algebraic Computation, pages 32{37, New

York, NY 10036, USA, 2001. ACM Press.

2. A. Armando, A. Coglio, F. Giunchiglia, and S. Ranise. The Control Layer in Open

Mechanized Reasoning Systems: Annotations and Tactics. Journal of Symbolic

Computation, 32(4), 2001.

3. A. Armando, L. Compagna, and S. Ranise. System Description: RDL|Rewrite

and Decision procedure Laboratory. In Automated Reasoning. First International

Joint Conference (IJCAR'01), Siena, Italy, June 18{23, 2001, Proceedings, vol-

ume 2083 of LNAI, pages 663{669, Berlin, 2001. Springer.

4. A. Armando and T. Jebelean, editors. Calculemus: Integrating Computation and

Deduction, volume 32 (4) of Special Issue of Journal of Symbolic Computation on

Calculemus'99, October 2001.

5. A. Armando and S. Ranise. Constraint Contextual Rewriting. Journal of Symbolic

Computation. Special issue on First Order Theorem Proving, P. Baumgartner and

H. Zhang editors, 2002.

6. A. Armando and D. Zini. Towards Interoperable Mechanized Reasoning Systems:

the Logic Broker Architecture. In AI*IA-TABOO Joint Workshop: `Dagli Oggetti

10

agli Agenti: Tendenze Evolutive dei Sistemi Software', pages 70{75, Parma, Italy,

2000. Reprinted in AI*IA Notizie Anno XIII (2000) vol. 3.
7. A. Armando and D. Zini. Interfacing Computer Algebra and Deduction Systems

via the Logic Broker Architecture. In Kerber and Kohlhase [69], pages 49{64.
8. A. Asperti, B. Buchberger, and J. H. Davenport, editors. Mathematical Knowl-

edge Management, Second International Conference, MKM 2003, Bertinoro, Italy,

February 16-18 2003. Springer.
9. G. Audemard, P. Bertoli, A. Cimatti, A. Korni lowicz, and R. Sebastiani. A SAT

Based Approach for Solving Formulas over Boolean and Linear Mathematical

Propositions. In Voronkov [120], pages 195{210.
10. G. Audemard, P. Bertoli, A. Cimatti, A. Korni lowicz, and R. Sebastiani. EÆ-

ciently Integrating Boolean Reasoning and Mathematical Solving, 2002. Submit-

ted to Journal of Symbolic Computation.
11. G. Audemard, P. Bertoli, A. Cimatti, A. Korni lowicz, and R. Sebastiani. Inte-

grating Boolean and Mathematical Solving: Foundations, Basic Algorithms and

Requirements. In Calmet et al. [45].
12. G. Audemard, A. Cimatti, A. Korni lowicz, and R. Sebastiani. Bounded Model

Checking for Timed Systems. In D. A. Peled and M. Y. Vardi, editors, FORTE

2002: Conference on Formal Techniques for Networked and Distributed Systems,

volume 2529 of LNCS, pages 243{259, Houston, Texas, 2002. Springer.
13. M. Baaz and A. Voronkov, editors. Logic for Programming, Arti�cial Intelligence,

and Reasoning, 9th International Conference, LPAR 2002, volume 2514 of LNAI,

Tblisi, Georgia, 2002. Springer.
14. J. Backer and P. Rudnicki. Hilbert basis theorem. Formalized Mathematics,

9(3):583{589, 2001.
15. J. Backer, P. Rudnicki, and C. Schwarzweller. Ring ideals. Formalized Mathe-

matics, 9(3):565{582, 2001.
16. G. Bancerek. Development of the theory of continuous lattices in mizar. In

Kerber and Kohlhase [69].
17. G. Bancerek, N. Endou, and Y. Shidama. Lim-inf convergence and its compact-

ness. Mechanized Mathematics and Its Applications, 2(1):29{35, 2002.
18. G. Bancerek and P. Rudnicki. A Compendium of Continuous Lattices in mizar:

Formalizing recent mathematics. Journal of Automated Reasoning, 29(3):189{

224, 2002.
19. H. Barendregt and E. Barendsen. Autarkic computations in formal proofs. Jour-

nal of Automated Reasoning, 28(3):321{336, 2002.
20. H. Barendregt and A. Cohen. Electronic communication of mathematics and the

interaction of computer algebra systems and proof assistants. Journal of Symbolic

Computation, 32:3{22, 2001.
21. H. Barendregt and H. Geuvers. Proof Assistants using Dependent Type Systems,

volume 2 of Handbook of Automated Reasoning, chapter 18, pages 1149{1238.

Elsevier, 2001.
22. C. Benzm�uller, editor. Systems for Integrated Computation and Deduction { In-

terim Report of the Calculemus IHP Network, number SR-03-05 in SEKI Report.

Saarland University, 2003. http://www.ags.uni-sb.de/~chris/papers/E5.pdf.
23. C. Benzm�uller and R. Endsuleit, editors. CALCULEMUS Autumn School 2002:

Course Notes (Part I), number SR-02-07 in SEKI Report, 2002. http://www.

ags.uni-sb.de/~chris/papers/E2.pdf.
24. C. Benzm�uller and R. Endsuleit, editors. CALCULEMUS Autumn School 2002:

Course Notes (Part II), number SR-02-08 in SEKI Report, 2002. http://www.

ags.uni-sb.de/~chris/papers/E3.pdf.

11

25. C. Benzm�uller and R. Endsuleit, editors. CALCULEMUS Autumn School 2002:

Course Notes (Part III), number SR-02-09 in SEKI Report, 2002. http://www.

ags.uni-sb.de/~chris/papers/E4.pdf.

26. C. Benzm�uller, C. Giromini, and A. Nonnengart. Symbolic Veri�cation of Hybrid

Systems supported by Mathematical Services. In Caprotti and Sorge [49]. Seki-

Report Series Nr. SR-02-04, Universit�at des Saarlandes.

27. C. Benzm�uller, C. Giromini, A. Nonnengart, and J. Zimmer. Reasoning services

in the mathweb-sb for symbolic veri�cation of hybrid systems. In Proceedings of

the Veri�cation Workshop - VERIFY'02 in connection with FLOC 2002, pages

29{39, Kopenhagen, Denmark, 2002.

28. C. Benzm�uller, M. Jamnik, M. Kerber, and V. Sorge. An Agent-oriented Approach

to Reasoning. In Linton and Sebastiani [77].

29. C. Benzm�uller, M. Jamnik, M. Kerber, and V. Sorge. Experiments with an Agent-

oriented Reasoning System. In KI 2001: Advances in Arti�cial Intelligence, Vi-

enna (Austria), 2001.

30. C. Benzm�uller and M. Kerber. A Challenge for Automated Deduction. In Pro-

ceedings of IJCAR-Workshop: Future Directions in Automated Reasoning, Siena

(Italy), 2001.

31. C. Benzm�uller and M. Kerber. A Lost Proof. In TPHOLs: Work in Progress

Papers, Edinburgh (Scotland), 2001.

32. C. Benzm�uller, A. Meier, and V. Sorge. Distributed assertion retrieval. In First

International Workshop on Mathematical Knowledge Management RISC-Linz,

pages 1{7, Schloss Hagenberg, 2001.

33. C. Benzm�uller, A. Meier, and V. Sorge. Bridging Theorem Proving and Mathe-

matical Knowledge Retrieval. In D. Hutter and W. Stephan, editors, Festschrift

in Honour of Prof. J�org Siekmann, LNAI. Springer, 2003. To appear.

34. C. Benzm�uller and V. Sorge. Oants { an open approach at combining interactive

and automated theorem proving. In Kerber and Kohlhase [69], pages 81{97.

35. C. Benzm�uller and V. Sorge. Agent-based Theorem Proving. In 9th Workshop

on Automated Reasoning, London (GB), March 2002.

36. A. Bove and V. Capretta. Nested general recursion and partiality in type theory.

In R. J. Boulton and P. B. Jackson, editors, Theorem Proving in Higher Order

Logics: 14th International Conference, TPHOLs 2001, volume 2152 of Lecture

Notes in Computer Science, pages 121{135. Springer, 2001.

37. B. Buchberger. Theorema: A short introduction. Mathematica Journal, 8(2):247{

252, 2001.

38. B. Buchberger. Theorema: Extending mathematica by automated proving. In

D. Ungar, editor, Proceedings of PrimMath 2001 (The Programming System Math-

ematica in Science, Technology, and Education), pages 10{11, University of Za-

greb, Electrotechnical and Computer Science Faculty, September 27-28 2001.

39. B. Buchberger, C. Dupr�e, T. Jebelean, K. Kriftner, K. Nakagawa, D. Vasaru,

and W. Windsteiger. The Theorema Project: A Progress Report. In Kerber and

Kohlhase [69].

40. B. Buchberger, G. Gonnet, and M. Hazewinkel, editors. Mathematical Knowledge

Management (MKM 2001) { Special issue of Annals in Mathematics and Arti�cial

Intelligence,. Kluwer, 2003. To appear.

41. B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and D. Vasaru. A

survey of the theorema project. In W. Kuechlin, editor, Proceedings of ISSAC'97

(International Symposium on Symbolic and Algebraic Computation, pages 384{

391, Maui, Hawaii, July 1997. ACM Press.

12

42. A. Bundy and P. Jani�ci�c. A General Setting for Flexibly Combining and Aug-

menting Decision Procedures. Journal of Automated Reasoning, 3(28), 2002.
43. J. Calmet. Intas: Final report. Internal Report: http://iaks-www.ira.uka.de/iaks-

calmet/intas.html, 2002.
44. J. Calmet, C. Ballarin, and P. Kullmann. Integration of deduction and computa-

tion. Applications of Computer Algebra, pages 15{32, 2001.
45. J. Calmet, B. Benhamou, O. Caprotti, L. Henocque, and V. Sorge, editors.

CALCULEMUS-2002: Symposium on the Integration of Symbolic Computation

and Mechanized Reasoning, volume 2385 of LNAI. Springer, 2002.
46. J. Calmet, F. Freitas, and G. Bittencourt. Master-web: An ontology-based inter-

net data mining multi-agent system. In Proceedings of SSGRR 2001, Computer

& e-Business conference, 2001.
47. J. Calmet, W. Hausdorf, and W. Seiler. A constructive introduction to involution.

In R. Akerkar, editor, Proc. Int. Symp. Applications of Computer Algebra - ISACA

2000, pages 33{50. Allied Publishers Limited, 2001.
48. O. Caprotti, H. Geuvers, and M. Oostdijk. Certi�ed and portable mathemati-

cal documents from formal contexts. In B. Buchberger and O. Caprotti, editors,

MKM 2001 (1st International Workshop on Mathematical Knowledge Manage-

ment), Research Institute for Symbolic Computation, Johannes Kepler University,

Hagenberg, September 24-26 2001.
49. O. Caprotti and V. Sorge, editors. Calculemus 2002, 10th Symposium on the In-

tegration of Symbolic Computation and Mechanized Reasoning: Work in Progress

Papers, Marseilles, France, June 2002. Seki-Report Series Nr. SR-02-04, Univer-

sit�at des Saarlandes.
50. C. Castellini and A. Smaill. Proof planning for feature interactions: a preliminary

report. In Baaz and Voronkov [13].
51. A. Cohen, H. Cuypers, and H. Sterk. Algebra Interactive! Springer, 1999.
52. A. Cohen, S. Murray, M. Pollet, and V. Sorge. Certifying solutions to permutation

group problems. Submitted to a major international conference, 2003.
53. S. Colton. Making conjectures about maple functions. In Calmet et al. [45].
54. L. Dennis and J. Zimmer. Inductive theorem proving and computer algebra in

the mathweb software bus. In Calmet et al. [45].
55. R. Endsuleit and T. Mie. Protecting co-operating mobile agents against malicious

hosts. Internal Report 2002-8, University of Karlsruhe, 2002.
56. A. Franke, M. Moschner, and M. Pollet. Cooperation between the Mathematical

Knowledge Base MBase and the Theorem Prover Omega. In Caprotti and Sorge

[49]. Seki-Report Series Nr. SR-02-04, Universit�at des Saarlandes.
57. H. Geuvers, R. Pollack, F. Wiedijk, and J. Zwanenburg. A constructive algebraic

hierarchy in coq. Journal of Symbolic Computation, 34(4):271{286, 2002.
58. H. Geuvers, F. Wiedijk, and J. Zwanenburg. A constructive proof of the funda-

mental theorem of algebra without using the rationals. In P. Callaghan, Z. Luo,

J. McKinna, and R. Pollack, editors, Types for Proofs and Programs, Proceedings

of the International Workshop, TYPES 2000, Durham, number 2277 in LNCS,

pages 96{111. Springer, 2001.
59. M. Giero. On the general position of special polygons. Formalized Mathematics,

10(2):89{95, 2002.
60. G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove, and D. Scott. A

Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New

York, 1980.
61. F. Giunchiglia, R. Sebastiani, and P. Traverso. Integrating SAT solvers with

domain-speci�c reasoners. In Kerber and Kohlhase [69].

13

62. A. Grabowski. On the decompositions of intervals and simple closed curves.

Formalized Mathematics, 10(3):145{151, 2002.

63. A. Grabowski, A. Korni lowicz, and A. Trybulec. Some properties of cells and

gauges. Formalized Mathematics, 9(3):545{548, 2001.

64. E. Gr�adzka. The algebra of polynomials. Formalized Mathematics, 9(3):637{643,

2001.

65. A. Heneveld, E. Maclean, A. Bundy, A. Smaill, and J. Fleuriot. Towards a for-

malisation of college calculus. In Kerber and Kohlhase [69].

66. M. Jamnik, M. Kerber, and M. Pollet. Automatic learning in proof planning.

Technical Report CSRP-02-3, University of Birmingham, School of Computer

Science, March 2002.

67. M. Jamnik, M. Kerber, and M. Pollet. Automatic learning in proof planning. In

F. van Harmelen, editor, ECAI-2002: European Conference on Arti�cial Intelli-

gence, pages 282{286. IOS Press, 2002.

68. M. Jamnik, M. Kerber, and M. Pollet. LearnOmatic: System description. In

Voronkov [120], pages 150{155.

69. M. Kerber and M. Kohlhase, editors. Symbolic Computation and Automated

Reasoning { The CALCULEMUS-2000 Symposium, St. Andrews, UK, August

6{7, 2000 2001. AK Peters, Natick, MA, USA.

70. M. Kerber and M. Pollet. On the design of mathematical concepts. Cognitive

Science Research Papers CSRP-02-06, The University of Birmingham, School of

Computer Science, May 2002.

71. M. Kerber and M. Pollet. On the design of mathematical concepts. In B. McKay

and J. Slaney, editors, AI-2002: 15th Australian Joint Conference on Arti�cial

Intelligence. Springer, LNAI, 2002.

72. M. Kohlhase. OMDoc: Towards an internet standard for the administration,

distribution and teaching of mathematical knowledge. In Proceedings of AI and

Symbolic Computation, AISC-2000, LNAI. Springer Verlag, 2000.

73. A. Korni lowicz and R. Milewski. Gauges and cages. Part II. Formalized Mathe-

matics, 9(3):555{558, 2001.

74. A. Korni lowicz, R. Milewski, A. Naumowicz, and A. Trybulec. Gauges and cages.

Part I. Formalized Mathematics, 9(3):501{509, 2001.

75. J. Kotowicz and Y. Nakamura. Go-board theorem. Formalized Mathematics,

3(1):125{129, 1992.

76. P. Kullmann. Wissensrepraesentation und Anfragebearbeitung in einer logik-

basierten Mediatorumgebung. PhD thesis, University of Karlsruhe, 2001.

77. S. Linton and R. Sebastiani, editors. CALCULEMUS-2001 { 9th Symposium on

the Integration of Symbolic Computation and Mechanized Reasoning, Siena, Italy,

June 21{22 2001.

78. S. Linton and R. Sebastiani, editors. Journal of Symbolic Computation, Special

Issue on the Integration of Automated Reasoning and Computer Algebra Systems,

volume 34 (4). Elsevier, 2002.

79. E. Maclean. Automating proof in non-standard analysis (ii). In Proceedings of

ESSLLI 2001, Helsinki, 2001.

80. E. Maclean, J. Fleuriot, and A. Smaill. Proof-planning non-standard analysis.

In Proceedings of the 7th International Symposium on Ariti�cal Intelligence and

Mathematics, Fort Lauderdale, 2002.

81. Mathbroker - A Framework for Brokering Distributed Mathematical services.

http://poseidon.risc.uni-linz.ac.at:8080/index.html.

14

82. A. Meier, M. Pollet, and V. Sorge. Exploring the Domain of Residue Classes.

Seki Report SR-00-04, Fachbereich Informatik, Universit�at des Saarlandes,

Saarbr�ucken, Germany, December 2000.
83. A. Meier, M. Pollet, and V. Sorge. Classifying Isomorphic Residue Classes. In

Moreno-D��az et al. [96], pages 494{508.
84. A. Meier, M. Pollet, and V. Sorge. Comparing Approaches to the Exploration

of the Domain of Residue Classes. Journal of Symbolic Computation, Special

Issue on the Integration of Automated Reasoning and Computer Algebra Systems,

34(4):287{306, 2002.
85. A. Meier and V. Sorge. Exploring Properties of Residue Classes. In Kerber and

Kohlhase [69], pages 175{190.
86. A. Meier, V. Sorge, and S. Colton. Employing theory formation to guide proof

planning. In Calmet et al. [45], pages 275{289.
87. E. Melis, E. Andres, J. B�udenbender, A. Frischauf, G. Goguadze, P. Libbrecht,

M. Pollet, and C. Ullrich. Activemath: A generic and adaptive web-based learn-

ing environment. Journal of Arti�cial Intelligence and Education, 12(4):385{407,

2001.
88. R. Milewski. Fundamental theorem of algebra. Formalized Mathematics,

9(3):461{470, 2001.
89. R. Milewski. Upper and lower sequence of a cage. Formalized Mathematics,

9(4):787{790, 2001.
90. R. Milewski. Upper and lower sequence on the cage. Part II. Formalized Mathe-

matics, 9(4):817{823, 2001.
91. R. Milewski. Properties of the internal approximation of Jordan's curve. Formal-

ized Mathematics, 10(2):111{115, 2002.
92. R. Milewski. Properties of the upper and lower sequence on the cage. Formalized

Mathematics, 10(3):135{143, 2002.
93. R. Milewski. Upper and lower sequence on the cage, upper and lower arcs. For-

malized Mathematics, 10(2):73{80, 2002.
94. R. Milewski and C. Schwarzweller. Algebraic requirements for the construction

of polynomial rings. Mechanized Mathematics and Its Applications, 2:1{8, 2002.
95. R. Milewski, A. Trybulec, A. Korni lowicz, and A. Naumowicz. Some properties

of cells and arcs. Formalized Mathematics, 9(3):531{535, 2001.
96. R. Moreno-D��az, B. Buchberger, and J.-L. Freire, editors. Proceedings of the 8th

International Workshop on Computer Aided Systems Theory (EuroCAST 2001),

volume 2178 of LNCS, Las Palmas de Gran Canaria, Spain, February 19{23 2001.

Springer Verlag, Berlin, Germany.
97. A. Naumowicz. Some remarks on �nite sequences on go-boards. Formalized

Mathematics, 9(4):813{816, 2001.
98. A. Naumowicz and R. Milewski. Some remarks on clockwise oriented sequences

on go-boards. Formalized Mathematics, 10(1):23{27, 2002.
99. M. Oostdijk. Generation and Presentation of Formal Mathematical Documents.

PhD thesis, Eindhoven University of Technology, Sept. 2001.
100. S. Ranise. Combining generic and domain speci�c reasoning by using contexts.

In Calmet et al. [45].
101. T. Recio and M. Kerber, editors. Computer Algebra and Mechanized Reasoning:

Selected St. Andrews' ISSAC/Calculemus 2000 Contributions, volume 32(1/2) of

Journal of Symbolic Computation, 2001.
102. J. D. C. Richardson, A. Smaill, and I. Green. System description: proof planning

in higher-order logic with Lambda-Clam. In CADE'98, volume 1421 of LNCS,

pages 129{133, 1998.

15

103. C. Schwarzweller. The binomial theorem for algebraic structures. Formalized

Mathematics, 9(3):559{564, 2001.
104. J. Siekmann, C. Benzm�uller, V. Brezhnev, L. Cheikhrouhou, A. Fiedler,

A. Franke, H. Horacek, M. Kohlhase, A. Meier, E. Melis, M. Moschner, I. Nor-

mann, M. Pollet, V. Sorge, C. Ullrich, C.-P. Wirth, and J. Zimmer. Proof devel-

opment with omega. In Voronkov [120], pages 144{149.
105. J. Siekmann, C. Benzm�uller, A. Fiedler, A. Meier, and M. Pollet. Irrationality

of Square Root of 2 - A Case Study in OMEGA. Submitted to an International

Journal, 2002.
106. J. Siekmann, C. Benzm�uller, A. Fiedler, A. Meier, and M. Pollet. Proof de-

velopment with omega: Sqrt(2) is irrational. In Baaz and Voronkov [13], pages

367{387.
107. V. Sorge. Non-Trivial Symbolic Computations in Proof Planning. In H. Kirchner

and C. Ringeissen, editors, Proceedings of Third International Workshop Frontiers

of Combining Systems (FROCOS 2000), volume 1794 of LNCS, pages 121{135,

Nancy, France, March 22{24 2000. Springer Verlag, Berlin, Germany.
108. G. Steel, A. Bundy, and E. Denney. Finding counterexamples to inductive con-

jectures and discovering security protocol attacks. AISB Journal, 1(2), 2002.
109. G. Steel, A. Bundy, and E. Denney. Finding counterexamples to inductive conjec-

tures and discovering security protocol attacks. In Proceedings of the Foundations

of Computer Security Workshop, 2002. Appeared in Proceedings of The Verify'02

Workshop as well. Also available as Informatics Research Report EDI-INF-RR-

0141.
110. A. Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37{42, 1996.
111. A. Trybulec. More on the external approximation of a continuum. Formalized

Mathematics, 9(4):831{841, 2001.
112. A. Trybulec. More on the �nite sequences on the plane. Formalized Mathematics,

9(4):843{847, 2001.
113. A. Trybulec. Some lemmas for the jordan curve theorem. Formalized Mathematics,

9(3):481{484, 2001.
114. A. Trybulec. Introducing spans. Formalized Mathematics, 10(2):97{98, 2002.
115. A. Trybulec. On the minimal distance between sets in Euclidean space. Formalized

Mathematics, 10(3):153{158, 2002.
116. A. Trybulec. Preparing the internal approximations of simple closed curves. For-

malized Mathematics, 10(2):85{87, 2002.
117. A. Trybulec and Y. Nakamura. Again on the order on a special polygon. Formal-

ized Mathematics, 9(3):549{553, 2001.
118. J. Urban. Free order sorted universal algebra. Formalized Mathematics,

10(3):211{225, 2002.
119. J. Urban. Order sorted algebras. Formalized Mathematics, 10(3):179{188, 2002.
120. A. Voronkov, editor. Proceedings of the 18th International Conference on Au-

tomated Deduction (CADE-19), volume 2392 of LNAI, Copenhagen, Denmark,

2002. Springer.
121. F. Wiedijk. The �fteen provers of the world. Unpublished Draft available at

http://www.cs.kun.nl/~freek/notes/index.html.
122. F. Wiedijk. Comparing mathematical provers. In Asperti et al. [8].
123. W. Windsteiger. Building up hierarchical mathematical domains using functors

in mathematica. In A. Armando and T. Jebelean, editors, Calculemus 99: In-

ternational Workshop on Combining Proving and Computation, volume 23(3) of

Electronic Notes in Theoretical Computer Science, pages 83{102, Trento, Italy,

1999. Elsevier. CALCULEMUS 99 Workshop, Trento, Italy.

16

124. W. Windsteiger. A Set Theory Prover in Theorema. In Moreno-D��az et al. [96],

pages 525{539. extended version available as RISC report 01-07.

125. W. Windsteiger. A Set Theory Prover in Theorema: Implementation and Practical

Applications. PhD thesis, RISC Institute, May 2001.

126. W. Windsteiger. On a Solution of the Mutilated Checkerboard Problem using

the Theorema Set Theory Prover. In Linton and Sebastiani [77].

127. J. Zimmer, A. Armando, and C. Giromini. Towards Mathematical Agents {

Combining MathWeb-SB and LB. In Linton and Sebastiani [77], pages 64{77.

128. J. Zimmer and C. Benzm�uller, editors. CALCULEMUS Autumn School 2002:

Student Poster Abstracts, number SR-02-06 in SEKI Report, 2002.

129. J. Zimmer and M. Kohlhase. System Description: The MathWeb Software Bus

for Distributed Mathematical Reasoning. In Voronkov [120], pages 144{149.

Querying Distributed Digital Libraries

of Mathematics

Ferruccio Guidi? and Claudio Sacerdoti Coen?

Department of Computer Science

Mura Anteo Zamboni 7, 40127 Bologna, ITALY.

ffguidi,sacerdotg@cs.unibo.it

Abstract. Several of the most e�ective techniques to query libraries of

structured mathematics are based on pattern-matching. Among them,

there are matching-based queries, uni�cation-based queries and several

kinds of queries up to isomorphisms (as associative-commutative rewrit-

ing). All of these techniques do not scale when the libraries become large

or when they are distributed. In this paper we present a �ltering tech-

nique that can be applied to locate a set of candidates that are likely to

match the given pattern. Thus our technique can be used as a �rst phase

that is followed by the actual matching over the set of candidates. Tests

performed over the library of the Coq system (http://coq.inria.fr)

(about 40.000 theorems) show that the candidates can be located rather

quickly and that the number of false matches is surprisingly low.

1 Introduction

As Jorge Luis Borges pointed out in his beautiful novel \The Library of Ba-

bel" [8], a huge library is completely useless unless we have e�ective methods to

retrieve what we are looking for. Unfortunately, the largest part of the mathe-

matical documents available over the Web are Postscripts or PDF documents.

Thus, the only reasonable way to look for a given mathematical de�nition or

result is to rely on textual matching or to perform queries over the provided

metadata (when available). In particular, the organizations of librarians have

developed several useful classi�cation schemes to index mathematical textbooks

and papers [4, 1, 2]. This approach can be e�ective enough when we are looking

for a general work on a given mathematical topic; but it can not be used to re-

trieve a single theorem or de�nition over the Web, especially when the theorem

is not fundamental enough to be given a well-known name.

The forthcoming development of Web services for automated deduction and

computation put high pressure for the development of alternative e�ective meth-

ods to retrieve a single result. Luckily, at the same time more and more mathe-

matical knowledge is put on the web in a structured form, thanks to the intro-

duction of standard markup languages [6, 3, 5] for the encoding of mathematical

formulae and expressions. Once the statements in a library are marked up, say,

? Supported by MOWGLI: European FET Project IST-2001-33562.

18

in OpenMath, we can use standard pattern-matching or uni�cation techniques

to retrieve a theorem given a part of its statement. For example, the pattern

8x : ?1: 8y : ?1: (?2 x y) = (?2 y x) will retrieve any theorem stating the

commutative property of a binary operation. The question marks are metavari-
ables, which are non-linear placeholders for any (well-typed, if enforceable) sub-

expression closed in the context.

To resolve a query based on pattern matching, the trivial approach consists

in iterating the matching operation over the whole library. This solution does

not scale well and it can not be applied in those cases where the library itself is

physically distributed and no code can be run on the severs1.

To solve this problem, we propose an approach based on four distinct phases:

{ Data-mining : using a spider, we extract a small set of automatically com-

puted metadata from each theorem or de�nition in the distributed library.

These metadata are devised to capture some of the invariants of the chosen

matching operation.

{ Pattern compilation: when the user submits a pattern, we extract a set of

constraints over these metadata from the pattern and we generate a low-level

query2 starting from these constraints.

{ Filtering: we execute the generated query over the database built by the

spider, obtaining our set of candidates.

{ Matching: we iterate the matching operation only on the set of candidates.

If the �ltering operation is both quick and correct (in the sense that no good

candidates are dropped), we are able to achieve both accuracy and performance.

Since the metadata must capture the invariants of matching, we need to

identify several kinds of metadata. In sections 2{4 we will progressively consider

several examples of matching criteria and we will identify the related metadata.

We will also consider the issue of correctness and a tradeo� between correctness

and performance. In section 5 we will present a generic set of metadata and

constraints that can subsume all the previous examples. Finally, section 6 and

section 7 are devoted to comparisons with other works and future developments.

2 Use Case 1: Finding the Applicable Theorems

The �rst use case that we consider is knowing which theorems can be applied to

prove a given goal. A goal is a sequent made of several hypotheses and a con-

clusion. A theorem can be applied if its conclusion, where every bound variable

has been replaced with a metavariable, matches the conclusion of the sequent.

1 Indeed, if the library is distributed, we have only two possibilities: either we can

perform the matching where the theorem is located or we need to download it.

In the second case the download times make the operation unfeasible already for

very small libraries. In the �rst case we need to install software were the library is

published, which is something we would rather avoid.
2 In our prototype, we generated the query in the MathQL Level 1 language [12].

Generating a query in other languages is surely possible.

19

We restrict ourselves to the case of �rst order matching, i.e. only one expression
(the conclusion of the theorem) has metavariables in it; and the expression is

rigid. For example:

{ The theorem 8n: 8m: 8a: a � 0) n � m) an � am can be applied to

prove 2x � 2(x+ 1) since the pattern ?a?n � ?a?m matches 2x � 2(x+ 1).

{ The theorem 8n: 8m: 8a:n � m) an � am can not be applied to prove

x � 2x since the pattern ?a?n � ?a?m does not match x � 2x.

{ The induction principle over natural numbers 8P: (P 0)) (8n: (P n))
(P (n + 1)))) 8n: (Pn) does not match (is prime 5) since the pattern

(?P ?n) is not rigid.

Now we identify a set of invariants of the matching procedure that we want

to capture as metadata:

{ The constant in head position in the conclusion of the theorem. Since the

pattern is rigid, any matching term must have the same head constant of

the pattern.

{ The list of constants in the conclusion. Since we are doing matching and not

uni�cation, any constant in the pattern must also occur in the matching term

(since instantiating a metavariable can not remove an occurring constant).

Thus we identify the following set of metadata: for each theorem in the library

we remember the name of the constant in head position in the conclusion and

the names of all the constants occurring in the rest of the conclusion. Now, to

�nd the theorems that are candidates for the query \give me all the theorems

that can be applied to this goal", we simply compute these metadata over the

conclusion of the goal and we look for every theorem in the library such that:

{ the \constant in head position" metadata is the same as the computed one

{ the set of \constant in conclusion" metadata is a subset of the computed one

The following theorem is a trivial consequence of the fact that our metadata

reects the matching invariants:

Theorem 1. The �ltering operation is correct, i.e. no pattern that matches the
goal conclusion is �ltered out.

Let's see how it works in practice: given the goal 2x � 2(x+ 1)

{ ?a?n � ?a?m is a candidate that will match

{ ?n � ?n2 is not a candidate, since the power operator does not occur in the

goal

{ ?n?a � ?m?a is a candidate that will not match (a false match)

We could also capture a much stronger invariant, that subsumes both our

previous invariants: the rigid skeleton of the term is preserved by metavariable
substitutions. Nevertheless, the stronger invariant has two drawbacks: the �rst

one is that it produces complex metadata (contexts, i.e. terms with holes) that

can not be handled eÆciently within the relational database model or the RDF

20

model (which is often reduced to the relational model); the second drawback is

that the invariant is probably too strong. In particular, it would reject the third

candidate of the previous example. Even if that candidate turns out to be a false

match, it is pretty obvious (at least to a human user) that the statement found

is useful to proceed in the proof. Very often, indeed, the user is also interested

in theorems that can \almost" be applied, since they can reveal an error in the

proof (when a required assumption is missing) or they can suggest a di�erent

way to prove the goal.

Of course, the danger of not adopting the stronger invariant is that of �nd-

ing too many useless false matches. To evaluate our invariants, we tried several

queries over the library of the Coq proof-assistant (about 40.000 theorems). The

queries were not arti�cial: one of the authors used the query engine in order to

retrieve some useful lemmas while developing a new medium-sized Coq contri-

bution. Even for queries involving only frequently used notions (e.g. algebraic

operations), the accuracy of the �ltering phase was always very high: the num-

ber of uninteresting false matches was very low and in more than one occasion

the search engine found false matches that we were actually able to exploit.

Thus, the productivity level of the author was de�nitely raised by the use of the

search-engine.

Let's face now the issue of performance, considering for instance the goal

2x � 2(x+ 1) which generates the constraints:

{ � in head position in the conclusion

{ only 2 and + in other positions in the conclusion

The generated query (in a pseudo-language inspired by MathQL level 1 [12]) is:

select every t in the library such that

t.head = '<=' and t.in_conclusion subset of {'2','+'}

Since the second test can not be performed in a relational DB, we are forced to

extract from the DB all the theorems t that satisfy the �rst constraint together

with their in_conclusion �eld and then iterate the second test. Thus, the com-

putational cost is linear over the size of the result set of the �rst test. If the head

position of the goal is a frequently used constant, the result set is large. For

example, there is an equality in head position in the 11% of the theorems of the

library of Coq, i.e. in 3660 theorems. To reduce the computational cost of the

query, we propose a user-controlled tradeo� with the accuracy of the query: the

user provides an additional set of constraints consisting in a list of constants that

must appear in the conclusion of the matched theorems. To avoid confusion, we

will call these constraints must constraints and we rename the previous set of

constraints only constraints . In order to retrieve a non-empty subset of results,

the set of constants occurring in the must constraints must be a subset of the

constants occurring in the only constraints .
To better understand the must constraints , let us consider the goal 2x �

2(x+1). The generated only constraints are � in head position and 1,2,� and +

in other positions in the conclusion. Let's suppose that the user choice of must
constraints is � in head position and � in other positions. Then

21

{ ?a?n � ?a?m is a candidate that will match (a true match)

{ ?n?a � ?m?a is a candidate that will not match (an interesting false match)

{ ?n � ?n+ 1 is not a candidate since it satis�es the only constraints but not
the must constraints ('�' does not occur). Anyway, it would have been an

uninteresting false match.

Note that the must constraints are meaningful to the user: in the previous

example, themust constraints are stating that the user is interested in a property
of multiplication. Thus, it is not diÆcult to provide an user-friendly interface to

select these constraints. It is also easy to provide some heuristics to automatically

chose the must constraints3.
A non-empty set of must constraints reduces the accuracy of the query, since

some theorems that could have been applied are not found any longer. For ex-

ample, the previous query is unable to �nd the transitivity principle for the �
relation, since it states nothing about multiplication4. The performance gain

achieved can be remarkable. To understand why, let us see the query generated

for the last example:

let S =

select every t in the library such that

t.head = '<=' and '*' occurs in t.in_conclusion

in

select every t in S such that

t.in_conclusion subset of {'1','2','+','*'}

The �rst part of the query (the �rst select) can be performed by a single call

to the database. Then, as before, we need to iterate the second test over the set

returned by the �rst select. The more must constraints we have, the smallest the
set S will be and the smallest the time required to perform the query will be.

In the next two sections we will try to apply the same approach to another

couple of examples, choosing the matching operation we are interested in and

deriving the must and only constraints from it.

3 Use Case 2: Finding the Elimination Principles

Let us consider queries for the retrieval of all the elimination principles \�a la

McBride" [13] over a given datatype. Briey, these are elimination principles

that allow to prove a generic property P over an element n of a datatype T

by proving that P holds in several cases, some of them under additional in-

ductive hypotheses. For example, there are several elimination principles over

lists of natural numbers. Among them, we �nd the structural induction prin-

ciple 8P: (P empty)) (8l: 8n: (P l)) (P n :: l))) 8l: (P l) and the

3 As an example, we provide a prede�ned heuristic that chooses only the constants

occurring in the �rst n levels of the syntactic tree of the goal thesis.
4 In our experience, very often loosing these \very general" theorems can be considered

a feature.

22

induction principle over ordered lists 8P: (P empty)) (8l: 8n: (ordered l))
n � (head l)) (P n :: l))) 8l: (ordered l)) (P l).

Note that, since the pattern (?P ?x) is not rigid, every elimination principle

can always be used to progress in any proof, independently of the goal. Since

there exist literally thousands of elimination principles, it is not a good idea

to include them as results of the query of the �rst use case we considered5.

Nevertheless, we are interested in giving the user the possibility to retrieve all

elimination principles over a given datatype. In particular, given a datatype T ,

we want to retrieve all the theorems whose statement matches6 the schema:

8x : S: 8P : T ! Prop: 8y : S0: 8x : T:8z : S00: (P x)

We identify the following set of constraints:

{ The sort Prop (i.e. the type of every proposition) must occur in the head

position of an hypothesis which is a product7 of length 1.
{ The datatype must occur in the head position of an hypothesis which is a

product of length 0 and and also in another hypothesis (not in main position).
{ The head of the conclusion must be an occurrence of a bound variable.

Every constraint captures a matching invariant, since context metavariables sub-

stitution can not change the shape of the conclusion nor the shape of an hypoth-

esis (which are all rigid parts). As in the previous use-case, there exist stricter

invariants: the set of constraints identi�ed here has been �ne-tuned by hand to

be able to retrieve also a few useful false matches. Even in this case, though, the

�nal set of invariants was identi�ed quite soon and without any major e�ort.

Note that, unlike the previous use case, we derive the matching pattern from

the user input and not from the statements of the theorems in the library. In

section 2 we had just one term to match against several di�erent patterns; here

we have just one pattern to match against the theorems in the library. This

duality is reected in the way the constraints are used to generate the query:

in the previous case the identi�ed constraints were only constraints (only the

constants occurring in the goal can occur in the statement of the theorem); in

this case the constraints are must constraints (all the constants in the pattern

must occur in the statement of the theorem)8.

5 That is the reason why we constrained ourselves to �rst order uni�cation in section 2.
6 We do not specify formally here the kind of match we are interested in. Anyway, note

that the \vector parts" of the schema play the role of context metavariables, in the

sense that they are contexts of formulae that must be instantiated with a context

made of repeated quanti�cations or implications, concluded by a single contextual

hole.
7 The terminology comes from type-theory and is derived by the Curry-Howard iso-

morphism, where universal quanti�cations are seen as (dependent) products. A prod-

uct of length n is a term of the form 8x1: : : : 8xn: t where t does not start with an

universal quanti�cation. An implication is just a special case of universal quanti�ca-

tion: it is a non-dependent quanti�cation where the bound variable does not occur

in the sub-expression.
8 Both sentences are instances of the following invariant that is true for any kind of

matching: \all the constants in the pattern must occur in the matched term".

23

The query generated from the constraints is the following:

select every t in the library such that

Prop occurs in head position at depth 1 in an hypothesis of t and

T occurs in head position at depth 0 in an hypothesis of t and

T occurs not in head position in an hypothesis of t and

a bound variable occurs in head position in the conclusion of t

Unlike the case of section 2, the generated query is already very eÆcient: this

time we do not need any trade-o� to improve the performance.

4 Use Case 3: Finding the Proofs of a Statement

The last use case we present is locating a proof (or a de�nition) whose statement

(i.e. its type) is known. The query seems quite uninteresting, but the inability to

perform it may have very bad implications in terms of waste of e�orts. Indeed,

every time we need to prove a lemma, we would like to issue a query that checks

if somebody else already proved it; the Coq system provides no way to perform

this operation and, as a result, it is not at all unusual to �nd simple arithmetical

properties proved �ve, eight or even more times by di�erent persons working in

remotely located teams9.

The kind of matching we are interested in is extremely simple: no metavari-

ables are present in both the statement of the theorem and the statements in the

library. Close enough false matches, though, play an important role: for example,

when looking for a proof of 8n: n = n � 1, any of the following statements would
be satisfactory: 8n: n = 1 � n ; 8n: n � 1 = n ; 8n:1 � n = n

We identify the following set of metadata, which constitute a close approxi-

mation of the �rst two levels of the abstract syntax tree of the pattern:

{ For each occurrence of a constant, we record its position, as an element

of the following set: fMainConclusion, InConclusion, MainHypothesis,

InHypothesisg. The pre�x Main means that the constant occurs in head

position in the Conclusion/Hypothesis of the theorem.
{ For each occurrence of a bound variable, we record its position in the set

fMainConclusion, MainHypothesisg. Since bound variables occur almost

in every statement, they are not very e�ective for searching. Thus we are

interested only in second order or higher order variables, that are much less

frequent. We syntactically recognize a subset of these variables by the fact

that they occur in head position: these are the only occurrences we record

in the metadata.

9 E.g. the proof of the fact that 1 is the neutral element of multiplication was given �ve

times. Of course everybody suspects that a proof should already exist. Nevertheless,

proving it again is faster than guessing who gave the proof and in what library.

As a consequence, the theorem is proved again and the new proof is stored in the

library under development by the user, which is likely to be unrelated to arithmetical

properties. Thus, without an automatic searching procedure, it is virtually impossible

to know that a proof of the theorem was put in that library.

24

{ For each occurrence of a sort Prop or Set10, we record its position in the set

fMainConclusion, MainHypothesisg
{ For each occurrence in fMainConclusion, MainHypothesisg we record its

depth, i.e. the number of universal quanti�ers in the statement or hypothesis.

On the previous metadata we automatically impose both must constraints
and only constraints11 to achieve both performance and accuracy at the same

time12. As in the previous cases, our experiments over the Coq library show

that the chosen set of constraints is a good compromise between the strictness

of the query (in terms of false matches) and the need to get results close to the

expected ones (interesting false matches).

Expert users of the system can also edit the set of generated constraints,

relaxing both the must constraints or the only constraints . As a result, they are

able to answer similar queries such as: Retrieve every binary relation or Retrieve
any n-ary relation over natural numbers.

Instead of describing here these and other use cases with the introduction

of new ad-hoc constraints, we will present in the next section a generic set of

constraints that have been identi�ed so far in the projects HELM (Hypertextual

Electronic Library of Mathematics, http://helm.cs.unibo.it) and MoWGLI

(Mathematics on the Web: Get it by Logic and Interfaces, European Project IST-

33562, http://mowgli.cs.unibo.it). The set of constraints is general enough

to subsume the constraints identi�ed in the previous use-cases. Moreover it is rel-

atively stable, since no new constraints have been added in the last few months.

The current work is focused on the automatic generation of larger and larger

classes of queries based on these constraints. For example, we are now able to

write by hand queries to retrieve every theorem in the library of Coq stating the

associative or commutative property of any binary operator on any datatype.

The number of false matches for these kind of queries is surprisingly low13. It is

surely possible to generate these queries automatically starting from the formal

de�nition of the wanted property.

5 A Generic Class of Metadata and Constraints

There is an obvious common pattern for the metadata identi�ed in the use cases

above: they provide an approximate description of the abstract syntax tree of

10
Prop is the type of every proposition and Set is the type of any data-type. They are

used to capture second order and higher-order quanti�cations over properties and

types. They can also be used to capture axiom schemas in �rst-order theories.
11 With only constraints we mean that every occurrence of a constant, bound variable

or sort in the matched term must occur in the only constraints. In section 2 this test

was restricted to the occurrences in the conclusion.
12 There is no tradeo� here: the must constraints can not �lter out any good candidate

since there are no metavariables in the pattern.
13 For example, looking for every associative property in the Coq library gives 82 good

matches and just 6 false matches.

25

the statements14 in the library in terms of the constants and bound variables

occurring in them, together with the occurrence locations. This observation leads

us to describe our metadata model using objects having a list of references : the
objects represent the statements in the library at the metadata level, i.e. they

are the entities the metadata are about, while the references are the metadata

describing the occurrences of constants and bound variables in the statements.

As we said, an object may have three kinds of references. Namely:

{ refObj describes the occurrence of a primitive or de�ned constant in terms

of an occurrence, a position and a depth (see below).

{ refSort describes the occurrence of a sort in terms of a sort, a position

and a depth (see below). A sort is the type of propositions or data-types in

higher-order logics (i.e. the second order quanti�cation \for every property
P" can be thought as the typed universal quanti�cation 8P : Prop). Sorts

can also be used to capture axiom schemas in �rst-order theories.

{ refRel describes the occurrence of a bound variable in terms of a position

and a depth (see below).

The value of a reference is a record made of several �elds, whose semantics is:

{ occurrence speci�es the referred de�ned constant. Its value is an object.

{ sort speci�es the referred sort. Its value belongs to a prede�ned collection

of entities representing the possible sorts at the metadata level.

{ position speci�es the position of the described occurrence in the statement.

Its value belongs to a prede�ned collection of entities representing the possi-

ble positions at the metadata level. According to the previous use cases, we

identi�ed the following positions:

� MainHypothesis: in head position of a statement premise.

� InHypothesis: in another position of a statement premise.

� MainConclusion: in head position of the statement conclusion.

� InConclusion: in another position of the statement conclusion.

� InBody: not in the statement (for instance in its proof).

{ depth speci�es a depth index associated to the position of an occurrence

in the statement. Its value is a natural number. As we saw in the use

cases, the depth of a reference is de�ned only when its position is set

to MainHypothesis or to MainConclusion and it represents the number of

premises of that hypothesis or conclusion.

The above description shows that every reference has some �elds for locating

the corresponding occurrence in the statement (position and depth) and may

have one �eld specifying the referred entity (occurrence and sort)15.

The queries we generate on these metadata are once again inspired by the use

cases we saw in the previous sections. Our general approach concerning query

14 With statements here we mean the statements of axioms and theorems, and also the

types of de�nitions.
15 refRel does not have this �eld because, up to now, we did not meet any use case in

which we need to discriminate between the occurrences of di�erent bound variables.

26

generation is that complex queries should be obtained composing basic queries

generated from the imposed atomic constraints on the wanted objects.

We identify the following two classes of basic queries:

A. The wanted objects must have a reference to a given object R (or

to a given primitive constant S or to a bound variable) in a given

position P with a given depth index D.

Here we search for the objects having the assigned values in corresponding

�elds of at least one of their references. Using the pseudo-language exploited

in the previous sections, a query of this class looks like:

select every t in the library such that

the set {

select every r in t.refObj such that

r.occurrence = R and r.position = P and r.depth = D

} is not empty

This class of queries includes what we called the basic must constraints .
B. The wanted objects may have a reference to an object (or to a

primitive constant or to a bound variable) only if its position is

not included in a given set U of positions, or if it concerns a given

object R (or a primitive constant S, or a bound variable) in a given

position P with a given depth index D.

Here we query the objects such that there are no references whose �elds do

not have the assigned values. A query of this class may look like:

select every t in the library such that

the set {

select every r in t.refObj such that

not (r.occurrence = R and r.position = P and r.depth = D)

and r.position belongs to U

} is empty

This formulation exploiting the logical double negation is more convenient,

since it can be expressed more easily in SQL. This class of queries includes

what we called the basic only constraints .

Note that the parameters R, S, P, D, U are always optional.

Coming to the issue of how the above queries should be composed, let us

suppose that we are interested in �nding the objects satisfying a given set (call

it K) of \basic constraints". If the set K contains p constraints in the class A,

the wanted objects are meant to satisfy all of them. Since a query of the class A

(a must constraint) is of the general form

M(i) =

select every t in the library such that

the set m(i) is not empty

the composition of M(1) : : : M(p) is:

27

M = M(1) + ... + M(p) =

select every t in the library such that

the set m(1) is not empty and ... and the set m(p) is not empty

Dually if the set K contains some constraints in the class B, the wanted

objects are meant to satisfy at least one of them. Since a query of the classes B

(an only constraint) is of the general form:

O(j) =

select every t in the library such that

the set o(j) is empty

the composition of O(1) : : : O(q), provided that they concern the same kind of

reference, say refObj, is:

O = O(1) + ... + O(q) =

select every t in the library such that

the set o(1) intersected ... intersected o(q) is empty

and the same holds for the queries O'(1) : : : O'(q') concerning refSort and for

the queries O"(1) : : : O"(q") concerning refRel. Now the �nal query is obtained

composing M, O, O' and O" conjunctively:

M + O + O' + O'' =

select every t in the library such that

the set m(1) is not empty

and ... and the set m(p) is not empty and

the set o(1) intersect ... intersect o(q) is empty and

the set o'(1) intersect ... intersect o'(q') is empty and

the set o''(1) intersect ... intersect o''(q'') is empty

6 Comparison with Other Works

The MBase [14] system resolves a query by matching, by iterating the matching

operation over each thesis in its data-base of (which now holds about 6,600

theorems). Thanks to the clever implementation of the uni�cation procedure,

the time spent to perform the query is still very low, in the order of 0.8 { 0.9

seconds. Nevertheless, a library of just 6,600 theorems is to be considered still

very small; in fact the libraries of the Coq proof-assistant and of the Mizar proof-

assistant already hold 40,000 theorems each and they cover just a small subset

of the overall mathematical knowledge. This approach will de�nitely not scale to

much larger libraries. To solve the problem, the MBase team is now working on

a solution that is extremely close to the one proposed in this paper: the theorems

will be indexed in order to avoid uni�cations that will surely fail. To the authors

knowledge, no details on the indexing technology has been published so far.

The Mizar team is now developing a user-friendly query language for the

Mizar library [7]. The query language is not based on uni�cation, but it never-

theless quite useful in retrieving interesting results from the library. To retrieve

28

a theorem, the user combines a set of �lters over the whole library, until the

wanted result is found. The �lters are not applied to the library itself, but to

a set of indexes (metadata) automatically extracted from the library. Thus the

Mizar approach is extremely close to our approach: the main di�erence is in the

set of metadata that, in the case of Mizar, are often very peculiar to the system.

For instance, in Mizar it is possible that several symbols share the same nota-

tion and there is a query to retrieve the symbols represented by a given notation.

Other metadata, instead, are less re�ned versions of the ones we just presented.

The problem of speeding up matches and uni�cation has already been exten-

sively studied in the literature. In particular, several term indexing techniques

have been proposed to speed up matching and uni�cation by storing the whole

library in an ad-hoc data-structure particularly optimized for matching. Among

the most successful structures, there are discrimination trees, substitution trees

and, more recently, coded context trees [11]. The common idea behind these

data-structures is to share the term structure as much as possible: two shared

substructures are syntactically equal and thus they match one another. Match-

ing and substitutions implemented over these structures can be several orders of

magnitude more eÆcient that iterating uni�cation over the whole library.

Fast term indexing techniques are not incompatible with our approach. In

particular, they can be seen as the limit case where the collected metadata are

so abundant to describe all the statements in the library and the information

about their sharing. Of course, the choice of an eÆcient data-structure to col-

lect the metadata is a necessary requirement to achieve the gain of fast term

indexing. Even if fast term indexing techniques are surely much more perfor-

mant of our implementation, our general approach has some merits. First of all,

since our metadata are RDF triples and not term contexts, they can be easily

stored in a common relational data base, while term indexing techniques require

specialized libraries implementing complex data-structures. As a consequence,

we can easily bene�t from the advancements of the data base community, com-

prising transparent distribution techniques. Moreover, writing spiders to collect

new metadata and implementing new kinds of queries is a minor e�ort in our

approach and leaves complete freedom to the implementor. On the contrary,

even if the great majority of queries can be reduced to uni�cation, uni�cation is

the only operation that is natively provided by term indexing data structures.

Moreover, the experience of the Mizar group, also supported by our implemen-

tative evidence, shows that uni�cation is often overkilling: the results obtained

by querying a very small set of computed metadata are often precise enough to

skip the uni�cation step. Finally, the interesting false matches provided by our

implementation do provide useful information \for free". To retrieve the same

information from term indexing data structures, additional e�ort must be spent.

7 Conclusions and Future Work

In this paper we presented a general methodology for speeding up queries by

matching over large and distributed libraries of mathematical knowledge.

29

Our approach consists in capturing some of the matching invariants by means

of metadata, which can be automatically computed by a batch process (a Web

spider). Every time the user submits a pattern to be matched, we use these

metadata to �lter a small subset of the library items which is made of matching

candidates: we compute a query over the metadata from the matching pattern;

the results of the query are the matching candidates. The correctness of the �l-

tering operation, which is the property of not loosing matching terms, is a trivial

consequence of the fact that our metadata capture the matching invariants.

Depending on the kind of matching we are interested in, we need to identify

a di�erent set of metadata and query over them. A second outcome of this work

has been to identify a rather reasonable and accurate set of metadata that cover

several common matching procedures. They are described in the Section 5.

To judge the eÆcacy of our approach, we implemented a prototype working

over the HELM distributed library, made of about 40.000 theorems coming from

the Coq proof-assistant library. The prototype has been implemented using the

MathQL Level 1 query language [12] and has been turned into a Web service.

A Web interface to the prototype is available following the appropriate link

at the address: http://helm.cs.unibo.it/library.html. The prototype has

been extensively used by one of the authors while developing a medium-sized

Coq contribution. The experiment outcome was extremely positive: the author

was able to locate and reuse several theorems that were given in parts of the

library where the author did not expect them to be. As a consequence, the library

reusage factor was improved and the development e�ort was reduced.

Since the prototype is implemented as a Web service, it can be easily ex-

ploited by theorem provers or proof-planners to retrieve lemmas or theorems and

thus our search engine may become an important component in the Calculemus

perspective. For instance, when a CAS needs to know whether a denominator

is never zero, it can require a proof to a proof-planner that can use the search

engine to retrieve some existent lemmas used to complete the proof.

An important feature of our �ltering technology is that the �ltering operation

is not too strict, in the sense that wrong candidates that are \close enough" to

matching terms are not dropped. These wrong candidates are very interesting,

since the human user can often exploit them reducing his thesis to the one found;

other times, instead, they can reveal missing assumptions in the user statement.

The interest in the wrong candidates, especially the ones that can be reduced

to the user statements, is not a surprise. Indeed, several authors [10, 9] already

pointed out that queries by matching are often too strict. For example, we would

like the pattern 8x:x � 0 to be able to match also the statement 8x:0 � x. Other

typical examples are patterns involving binary operators: often we would like to

match up to associative or commutative rewriting. The most general framework

for this kind of query is provided by the so called \query up to isomorphisms"

[10]: both the pattern and the statements in the library are reduced to a decid-

able normal form before the matching; the reduction is such that a proof of the

pattern can be automatically produced from the results of the query.

As a future work, we plan to apply our approach in a \query up to isomor-

30

phisms" setting. The required modi�cations are really minimal: Firstly the spider

should reduce every term to its normal form before extracting the metadata, and
secondly the query over the metadata should be generated from the pattern af-
ter reducing it to normal form. Even in the \query up to isomorphisms" setting,

though, we still believe that \almost right" wrong candidates are important

to spot false user conjectures and suggest new hypothesis or conditions to be

required to make the theorem true.

Other future works involve identifying larger and larger sets of queries that

can be automatically generated, possibly enlarging the set of metadata. Apply-

ing our technology to other libraries is also interesting to evaluate the scalability

of our approach and the level of precision of our metadata. Indeed, the meta-

data identi�ed in the previous sections are not peculiar of the Coq system, and

should be retrieved from any library of mathematical content; however, it may

be the case that some libraries could be better indexed with more ad-hoc set of

metadatas, as the ones used for Mizar in [7].

References

1. Dewey Decimal Classi�cation

http://www.oclc.org/dewey

2. Library of Congress Classi�cation Scheme,

http://www.loc.gov

3. Mathematical Markup Language (MathML) Version 2.0, W3C Reccomendation 21

February 2001,

http://www.w3.org/TR/MathML2

4. Mathematical Subject Classi�cation, American Mathematical Society,

http://www.ams.org/msc

5. OMDOC: A Standard for Open Mathematical Documents,

http://www.mathweb.org/omdoc/omdoc.ps

6. The OpenMath Standard,

http://www.openmath.org/cocoon/openmath/standard/index.html

7. Grzegorz Bancerek, Piotr Rudnicki, Information Retrieval in MML. In Proceedings

of MKM2003. Springler-Verlag LNCS 2594, 2003.
8. Jorge Luis Borges, The Library of Babel, in Ficciones, Grove Press 1942.
9. David Delahaye, Roberto di Cosmo, Information Retrieval in a Coq Proof Li-

brary using Type Isomorphisms. In Proceedings of TYPES 99, L�okeberg. Springler-

Verlag LNCS, 1999.
10. Roberto di Cosmo, Isomorphisms of Types: from Lambda Calculus to Information

Retrieval and Language Design, Birkhauser, 1995, IBSN-0-8176-3763-X.
11. Harald Ganzinger, Robert Nieuwehuis, Pilar Nivela. Fast Term Indexing with

Coded Context Trees. Journal of Automated Reasoning. To appear.
12. Ferruccio Guidi, Searching and Retrieving in Content-Based Repositories of Formal

Mathematical Knowledge, Ph.D. Thesis in Computer Science, Technical Report

UBLCS 2003-06, University of Bologna, March 2003.
13. Conor McBride, Dependently Typed Functional Programs and their Proofs, LFCS

Ph.D. Thesis, 2000.
14. Michael Kohlhase, Andreas Franke. MBase: Representing Knowledge and Context

for the Integration of Mathematical Software Systems, Journal of Symbolic Com-

putation 23:4 (2001), pp. 365{402.

FoCDoc: The Documentation System of FoC

Manuel Maarek1;2 and Virgile Prevosto1;3

1 L.I.P.6 - �Equipe SPI

8, rue du Capitaine Scott - 75015 Paris, France

[manuel.maarek,virgile.prevosto]@spi.lip6.fr
2 Heriot-Watt University - ULTRA group

Edinburgh EH14 4AS, Scotland UK

manuel.maarek@macs.hw.ac.uk
3 I.N.R.I.A. - Projet Moscova

B.P. 105 - F-78153 Le Chesnay, France

Abstract. FoC is a computer algebra library with a strong emphasis on

formal certi�cation of its algorithms. We present in this article our work

on the link between the FoC language and OMDoc, an emerging XML

standard to represent and share mathematical contents. On the one hand,

we focus on the elaboration of the documentation system FoCDoc. After

an analysis of an OMDoc approach of the documentation we present our

own XML implementation (FoCDoc) and how we generate, from a FoC

program, documentation �les in HTML (MathML), LATEX and OMDoc.

On the other hand, we show how it is possible to build tools to translate

an OpenMath-OMDoc data into FoC. In other words, we describe in

this article how the use of an open standard can help us in providing

a friendly interface to the FoC-user, by allowing an interaction between

FoC and various rendering engines or editors.

1 Introduction

Thanks to the development of the Internet, more and more documents are avail-

able in an electronic form. Moreover, the increasing use of XML [6] allows the

author of such documents to express not only presentational constraints, but also

to focus on the semantical content of the document [10]. This is particularly the
case for Computer Algebra Systems (CAS) and Theorem Provers (TPs) with

OpenMath [8] and OMDoc [15] which are two emerging XML standards to de-

scribe mathematical objects and mathematical structures respectively. The use

of such common markup languages o�ers major bene�ts in some crucial issues

of the design of a mathematical software. In particular:

Documentation: XML o�ers a wide variety of high-quality publishing tools,

either web or paper oriented.

User interaction: If the system is able to handle XML input, then it is pos-

sible for the user to use specialized external editors, to enter its data, thus

providing a \look and feel" close to the usual mathematical one.

32

Interaction with other systems: At last, OpenMath and OMDoc can be

used to let di�erent CAS and/or TPs interact with each other, by providing

them with a common representation of structured data.

In this paper, we show how those three points are addressed within the FoC

system. This is done by:

{ Translating FoC program contents into OMDoc by strictly enforcing the

OMDoc standard format (without adding any FoC-speci�c tag to it). This

translation generates purely formal OMDoc data to ease the communication

with other systems. Thus, we share our experience in OMDoc encoding.

{ Explaining our implementation choices for the FoCDoc system which gener-

ates an OMDoc document and other formats This contribution is a major

step in documenting the FoC library and reusing FoC programs.

{ Explaining the syntactic and semantic extensions of FoC that allow direct

inclusion inside a FoC program of data encoded in the common mathematical

format OpenMath-OMDoc.

2 The languages

2.1 The FoC Language

The FoC4 system provides an environment in which one can write at the same

time speci�cations, programs, and proofs that the programs meet the speci�-

cations. We present now the broad outline of the FoC language and express

documentation needs for this system. FoC contains two main semantical lev-

els. First, we �nd species and collections representing mathematical structures.

Second, functions and properties are the components of species and collections.
In the FoC language, we use species to describe mathematical structures.

A species is composed of a set of functions and properties, and has a carrier
type (introduced by the keyword rep) which represents the type of entities that

the species manipulates. These components are called the methods of the species.
Each method can be either declared or de�ned. A declared function is introduced

by the keyword sig (we only know its signature). A de�ned function is intro-

duced by let. A declared property (i.e a statement) is introduced by property,

while a de�ned (i.e. proved) property deserves the keyword theorem. For in-

stance, the species representing groups declares an element, one, in the carrier

and a binary operation mult. Then, we have to declare the axioms of one and

mult (associativity and neutrality). From that, we can de�ne the exponential,

and prove some property about it (e.g that x1 = x).

A species can inherit all the components of one or several existing species.
For instance, a species representing abstract rings inherits the properties and

functions of abelian groups and of (multiplicative) monoids.

A species can also have parameters which can be a function {or a constant{

or the abstraction of a collection. In both cases the parameter's type is speci�ed,

4 http://www-spi.lip6.fr/~foc

33

using a normal FoC type for the �rst case and a species ' name in the other case.

For instance, a species implementing square matrices takes as parameter an inte-
ger representing their dimensions, and a collection implementing �elds to handle

the coeÆcients of the matrices. Parameters di�er from inheritance in the sense

that a parameter is an abstraction representing any collection implementing a

given species, while a species inherits only from existing ones.

A collection is a completely de�ned species. In other words, every method
is de�ned. For instance, we can implement the ring of integers by a collection
based on the Gmp library (a library that manipulates integers of arbitrary size).

2.2 Presentation of OMDoc

Open Mathematical Document [15] is an XML format for encoding mathemat-

ical content. It extends OpenMath by adding a document and a theory level
(those extensions decide us to choose OMDoc/OpenMath more than MathML).

The document level groups all metadata informations about the mathemati-

cal document. The theory level encodes mathematical content. It is structured
in theories composed of formal (using OpenMath) and informal data. Each

theory is available as an OpenMath Content Dictionary. Moreover, as an open

format, OMDoc evolves through multiple experiences, providing good support

and reliability.

In the following we explain why we have considered OMDoc as a suitable

format for the purposes we have listed previously and why some limitations do

not allow to have a pure-OMDoc documentation tool.

3 Designing the FoC Documentation System

3.1 Needs

In our case, needs for a documentation system can be seen from at least two

points of view. On the one hand, the programmer wants to have a user friendly

interface to navigate trough the language's library as well as in his own FoC

program to quickly �nd and reuse existing FoC species and collections. On

the other hand, the mathematician needs to have a mathematics-oriented output

and to easily other mathematical software.

The library. The documentation system should provide facilities to have an

overview of already de�ned species and collections with their components

from FoC and user libraries. This will help the programmer in addition to the

already existing tools composing the FoC user interface [19].

Mathematical Knowledge. Perhaps the most important aspect of a documen-

tation system for a CAS is to converse with other mathematical softwares and

formats. The next step is to be able to translate existing mathematical format

to allow a complete interaction.

34

Rendering. Since we are dealing with mathematics we need a good rendering of

formulae to keep a correspondence with the common mathematical presentation.

3.2 Relations with FoC

We point out the intrinsic links between elements of the FoC language and

OMDoc constructions. A summary of those correspondences is given in table 1.

Mathematical structures. FoC's species and OMDoc's <theories> are quite

close. They both represent algebraic structures, are de�ned by their components
and may share de�nitions with other structures by inheritance relations.

Components. As said in sec. 2.1, a component of a species in FoC can be

either a function or a property or the carrier type. It corresponds in OMDoc to

a <symbol> (elements de�ned in a theory) or an <assertion> (di�erent kinds

of statements hold in a theory). Components are identi�ed by their names (<id>

for OMDoc) and the species or <theory> name in which they appear.

Constructions. Two constructions are important in FoC. First, inheritance5 al-

lows to create a species from an existing one. In OMDoc this approach exists

also as the <imports> directive. It indicates that all symbols and assertions from

a given <theory> are included in the new <theory>. Then the parametrization
allows to abstract a species with respect to a function or a collection. We ex-

plain below why FoC parametrization can not be completely reected in OMDoc.

Table 1. Correspondences

FoC OMDoc

species and collection <theory>

rep <symbol>

sig and let <symbol>

property and theorem <assertion>

proof of <proof>

inherits and implements <imports>

parameter <symbol>

inheritance with parameters <imports> with <morphism>

3.3 Limits

Using only OMDoc as a documentation format su�ers two problems. Firstly, we

are not able to express correctly some important features of the FoC language.

Secondly, we cannot faithfully represent the needs listed in section 3.1.

5 In FoC, inherits (resp. implements) construction lists inherited species of a new

species (resp. collection).

35

Expressivity limits. Two kinds of parameters exist in FoC: abstraction of func-
tion or collection (see section 2.1). This mechanism can be encoded in OMDoc

using <imports> and <morphism>which allows to express FoC function abstrac-

tion.

In the second case, the parameter stand for a collectionwhich should match

the interface of a speci�ed species. In OMDoc this kind of parametrization is

called actualization. Since the parameter is a mathematical structure, it is

represented by a <theory>. Table 2 shows an example of the transcription of a

parametrized species into OMDoc actualization.

Table 2. Parametrization - actualization

FoC OMDoc

species fractions <theory id="fractions">

(a is gcd_domain) = <imports from="gcd_domain"/>

... </theory>

end

collection rationals <theory id="rationals">

implements fractions(integers) = <imports from="integers"/>

... <imports from="fractions">

end <morphism id="gcd-dom-int-morph">

renaming of each gcd_domain's

symbol into integers' symbols

</morphism></imports></theory>

<theory-inclusion from="fractions"

to="rationals" >

<morphism base="gcd-dom-int-morph"/>

</theory-inclusion>

Thus, a FoC parameter is represented as an imported <theory> in OMDoc.

When a <theory> imports (inherits in the FoC point of view) a parametrized

<theory>, one must de�ne a morphism which maps all the symbols of the old

parameter to the symbols of a new <theory>. The actualization takes place with

this morphism; before the de�nition of this morphism, there were no informa-

tion stating that the imported <theory> was playing a parameter role. On the

contrary, in FoC, the parameter of a species is directly recognized as a real

collection in all the body of the species.

This translation respects the semantics of FoC parameters as well as OMDoc

recommendations. The result is a lack of readability and the loss of the FoC

structure.

Moreover, if a species has several parameters with the same species as

interface, each parameter should be represented by a unique <theory> and each

symbol of those parameter <theory> must then be rewritten to avoid confusion

when importing them in the target <theory>. Consequently, the following FoC

example, in �gure 1, would be expressed in OMDoc by a complicated structure.

36

Fig. 1. FoC inheritance graph and OMDoc actualizations

FoC's species are represented by ellipses and collections by boxes. FoC's arcs represent inheritance

and dotted arcs parametrization. OMDoc's arcs represent, as in table 2, <imports> (with or

without <morphism>) or <theory-inclusion>.

In this example we de�ne the collection integers, which imple-

ments monoid inheriting setoid, and product_integers, which implements

product_monoid inheriting product_setoid. Each species product_setoid

and product_monoid has two parameters whose interfaces are respectively

setoid and monoid.

Usability limits. It is possible to generate documents of di�erent formats from an

OMDoc �le. Using XSL transformation �les provided in the OMDoc distribution

we can get an HTML (including MathML) or a LATEX �le representing a FoC

program. This covers the needs of rendering and of dealing with the Mathemat-
ical Knowledge described in section 3.1, but does not provide a good browsing

tool for the FoC library. Indeed, the HTML rendering supplied by OMDoc-XSL

�les is close to the OMDoc format and is guided by the choices of the OM-

Doc developer team. This output is consequently not linked enough to the FoC

grammar and so will not be as helpful as we need for the FoC programmer (for

instance, di�erentiation between species and collection is no more visible in

the generated set of OMDoc theories).

4 System Description

Due to the issues mentioned above, our choice has been to build our own XML

format, so that it matches all of our needs. From this format we generate HTML

and LATEX �les close to FoC syntax as well as OMDoc document.

37

4.1 The FoCDoc XML Format

The FoCDoc format describes the informations contained in a FoC program

that are suitable for documentation. Consequently its DTD (Document Type

De�nition) is close to the FoC abstract syntax. It contains information coming

from three sources.

The FoC concrete syntax. Here, we mean species, collection and components
names given by the programmer in the FoC code. We retrieve this information

in the FoC abstract syntax.

The type inference and dependencies analysis. The FoC compiler analyzes the

correctness of the programs. The type system infers the type of the elements

of the language. A second step checks methods dependencies and inheritance

resolution. Results of those analysis are stored inside the abstract syntax tree.

Using this, we provide all this information in a FoCDoc �le:

{ the complete list of components of species and collections
{ type informations of all elements de�ned in the program

{ the list of ancestors and descendants of species and collections
{ the location of the last de�nition of a function in the inheritance graph
{ the location of the proof of an inherited property in the inheritance graph

These last two items are very important from a programmer's point of view,

since they allow to �nd very quickly the code of an inherited function or the

proof of an inherited theorem.

Structured comments. In the FoC concrete syntax, speci�c comments are ana-

lyzed to add informal information in the documentation. Title and authors of the

program, common names and comments on elements are concerned here. There

are also special commands in the structured comments to specify the encoding

and/or rendering of the symbols in TEX, OpenMath, and MathML.

4.2 Machinery

The processing of a document is composed of three steps as described in table 3.

We �rst generate the FoCDoc �le using the FoC compiler and its FoCDoc option.

Then we apply an XSL transformation (XSLT) to generate a speci�c XSL �le.

This �le contains a call to a generic XSL and stylesheet templates for symbols

rendering. By applying this XSLT to the FoCDoc �le we obtain the needed

output, OMDoc, HTML or LATEX (depending on which XSL �le is used).

5 Interface with Others Systems: Accepting
OpenMath/OMDoc Input

As we said in the introduction, the link between FoC and OMDoc is two-sided.

Actually, OpenMath objects, and to some extent OMDoc theories, are a very

38

Table 3. Generating process

steps to obtain a format (OMDoc, HTML or LATEX) output

1 creating FoCDoc �le with focc -focdoc

�le.foc �! �le.focdoc

2 applying focdoc2formatxsl.xsl

�le.focdoc �! �le.focdoc2format.xsl

3 applying �le.focdoc2format.xsl (which includes focdoc2format.xsl)

�le.focdoc �! �le.format

powerful tool to get information and data from external resources. The main

categories of objects that could be given to FoC through an XML representation

are the following:

{ A mathematical entity, produced by an external editor or another CAS, on

which the user wishes to perform some computations within FoC.

{ The interface of a species that is to be implemented in FoC. As we will see

in section 5.2, the fact that there exists an OMDoc model of a given FoC

implementation can greatly ease the translation process from an OpenMath

entity to its FoC counterpart.

{ In the longer run, one could imagine that an OMDoc theory may be given

to FoC in order to reect external services that the FoC system could call.

In the remaining of this section, we address the �rst two points. The third one

is described in section 7.

5.1 FoC Extensible Syntax

Before detailing how FoC can be given an XML input, we must introduce one

of the major features of the system which is its extensible syntax. Indeed, the

parser of the language has been written in Camlp4 [11, 16]. This tool o�ers the

possibility to extend the grammar rules of the FoC syntax without changing the

whole system. In other words, it is possible to maintain both a small core syntax

for FoC, which eases the analysis of a FoC expression, and a lot of syntactic

sugar which gives the user the possibility to manipulate expressions close to

traditional mathematical syntax. Moreover, since the extensions are not part

of the language, it is quite easy to adapt them to a particular \dialect" (For

instance, anybody can choose to represent the exponentiation by �� or ^ { or

both of course { depending on his own background). The exibility of the parser

allows then the user to write FoC expressions using its own syntax. We focus

here on the OpenMath/OMDoc application of this feature.

Besides this extensible syntax, FoC has a datatype openmath to represent the

main constructions of OpenMath. Let us now see through an example how an

OpenMath object is translated into FoC. Suppose that we have implemented Z

in a collection called integers, and the product Z�Z through a collection

39

named cart. cart itself has a method called pair to create an element of cart

from two elements of integers.

By adding a rule6 which cast any OpenMath integer into an element of

integer, and another one which binds the other OpenMath constructions into

their FoC counterpart, it is possible to let FoC parse the following code:

let five=<OMI>5</OMI>;;

let pair =

<OMOBJ><OMA>

<OMS cd="cart" name="pair"/>

<OMV name= "#five"/>

<OMV name= "#five"/>

</OMA></OMOBJ>;;

the OMDoc variable <OMV name="#five"> is used as a reference to the global

FoC variable five de�ned just above. The result of the evaluation of pair is the

product (5; 5) (belonging to cart). More generally, there is an easy connexion

between OpenMath objects and FoC expressions:

{ <OMA> are translated into FoC application.

{ <OMBIND> can be reected by an abstraction, or a logical quanti�cation,

depending on the context where it is used.

{ <OMV> can refer to a FoC identi�er.

{ <OMS> can be seen as the equivalent of a method call in FoC.

5.2 A FoC to OpenMath lexicon

Even if the correspondence between OpenMath objects and FoC expressions

can be very useful to let FoC communicate with other systems, there is still an

issue with respect to the names of the OpenMath symbols (<OMS>) used in such

objects. In fact, the \naive" approach, which binds <OMS cd="c" name="m"> to

the FoC method call c!m is very insuÆcient for two main reasons.

First, there are often several concrete implementations for a given mathe-

matical structure. For instance, multivariate polynomials can be implemented

according to a recursive or a distributed representation (see [4]). Depending

on the context where they are used, these implementations can be more or less

eÆcient, and a CAS should let the user choose between all of them. On the con-

trary, OpenMath content dictionaries won't distinguish between those di�erent

representations. So we should provide a way to express the bindings between an

OpenMath content dictionary and a FoC collection. Moreover, these bindings

should be accessible from within FoC, so that one can dynamically change the

representation which is in use for a given mathematical abstract structure. This

can be done easily with an association table, and adding a directive to the FoC

syntax such as change_rep(polynomial,recursive) to update this table.

6 Grammar rules are not given here, since it is beyond the scope of this paper to

present the whole Camlp4 system.

40

The second issue concerns the symbol names themselves. Indeed, it might
be the case that FoC and OpenMath do not use exactly the same vocabulary
for a given structure. For instance, it might be possible that FoC implements
the method add for a given abelian group, while OpenMath expects plus for
the same structure. We could use another association table to avoid that, but,
given that a mathematical structure can be quite complex, such a table might
be diÆcult to create and to maintain. It seems much more pro�table to take
advantage of the OMDoc standard to formalize the symbols that are recognized
by a FoC library. To achieve that, one can take an existing OMDoc theory T ,
and derive a FoC species t from it. An important precondition for that would be
that the formal description of every symbol of T includes its type. For instance,
a minimal theory to describe polynomials would include the following symbols:
(types are omitted due to space constraints).

<theory id="poly">

<symbol id="add"> ... </symbol>

<symbol id="monomial"> ... </symbol>

<symbol id="constant"> ... </symbol>

<symbol id="mult"> ... </symbol>

</theory>

It can be imported as a completely abstract species poly in FoC. Then, we
can derive one or more collection implementing poly through the normal
inheritance process of FoC. Under the assumption that such an implementation
exists and is called my poly, then FoC will be able to parse the program

change_rep(poly, my_poly);;

let p =

<OMOBJ><OMA>

<OMS cd="poly" name="add"/>

<OMA><OMS cd="poly" name="monomial"/><OMSTR>X</OMSTR><OMI>2</OMI></OMA>

<OMA><OMS cd="poly" name="constant"/><OMI>5</OMI></OMA>

</OMA></OMOBJ>;;

so that the variable p is bound to the representation of the polynomial X2 + 5

in my poly. Indeed, since my poly is an implementation of poly, it must provide

a de�nition for all the methods of poly, that is all the symbols of the OMDoc

theory <poly>. Then, it is suÆcient to verify that the XML code refers to

existing symbols to be guaranteed that it will be accepted by FoC.

6 Related Work

A certain number of projects are using XML as an exchange or publishing for-

mat. Among them, we should cite the HELM project [1], which proposes its

own DTD, oriented toward TPs. In particular, HELM's online library [2], al-

lows one to browse through a huge amount of mathematical theorems. Even if

HELM's DTD might not be completely suited for a CAS like FoC, it might be

of a great interest when considering the certi�cation part of FoC, as a possi-

ble interface with other TPs. One of the main attempts to integrate di�erent

41

CAS and TPs inside a common framework has been done inside the MathWeb

project7. MathWeb is distributed through di�erent locations (Edinburgh, Pitts-

burgh, Saarbr�ucken, ...), where di�erent services are interacting with each other

along the MathWeb Software Bus [21]. The communication between the various

services, which include both CAS and TPs is done through OMDoc objects.

7 Perspectives

FoCDoc improvements We see two important issues in the FoCDoc's future.

Firstly, after having improved the fully commented FoC library we should be

able to elaborate a searching engine for it such as the one developed for the Mizar

Mathematical Library [3]. Secondly, we should increase the usability of generated

documents by linking them with the other tools of the user interface (listed

in [19]).

Toward an integration in the MathWeb software bus? In the longer run, the

integration of FoC inside MathWeb seems to be a very promising feature. On

the one hand, we could of course use FoCDoc to produce OMDoc theories to

describe the capabilities of the FoC library, so that other systems could make

requests to the FoC system as OpenMath objects.

On the other hand, one could imagine that FoC itself might send requests

on the software bus, according to the theories that other systems have exposed

and are able to handle. Since there are not only CAS but also TPs in MathWeb,

such an interaction is particularly interesting for the certi�cation part of the FoC

project, which could then be able to delegate some proofs to some state-of-the-art

TPs.

A Front-end for FoC Last, the use of OpenMath/OMDoc as an input language

for FoC o�ers the possibility to use some graphical mathematical editors which

have the possibility to generate OpenMath content. Such editors might be a

convenient way for the end-user to do some computations in FoC without having

to learn all the syntax, together with the list of collections and methods

available.

8 Conclusion

As a conclusion, we can say that the use of an open XML standard both as an

input and as an output language for FoC is a very convincing experience. First,

it allows us to document fairly easily the FoC library, which is a crucial point

of its development, for a great variety of media. Second, it eases the interaction

between FoC and other systems. Thanks to that, we can concentrate our e�orts

on the core of the project, that is the development of the FoC compiler and of

the library, while o�ering to the end-user a decent interface.

7 http://www.mathweb.org

42

References

1. Andrea Asperti, Luca Padovani, Claudio Sacerdoti Coen, and Irene Schena. Helm

and the semantic math-web. In Proceedings of TPHOLs, LNCS, 2001.

2. Andrea Asperti, Irene Schena, Luca Padovani, Ferruccio Guidi, Claudio Sacerdoti

Coen, and Stefano Zacchiroli. HE�M, An Hypertextual Electronic Library of

Mathematics. http://le.cs.unibo.it/helm.
3. Grzegorz Bancerek and Piotr Rudnicki. Information retrieval in mml. In G. Goos,

J. Hartmanis, and J. van Leeuwen, editors, Proceedings of MKM'03. Springer, 2003.

4. Sylvain Boulm�e, Th�er�ese Hardin, and Renaud Rioboo. Some hints for polynomials

in the Foc project. In Calculemus 2001 Proceedings, June 2001.

5. S. Boulm�e, T. Hardin, D. Hirschko�, V. M�enissier-Morain, and R. Rioboo. On

the way to certify computer algebra systems. In Proceedings of the Calculemus

workshop of FLOC'99, volume 23 of ENTCS. Elsevier, 1999.

6. Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language

(XML) 1.0 (second edition). W3c recommendation, World Wide Web Consortium,

October 2002. http://www.w3.org/TR/REC-xml.

7. B. Buchberger et al. A survey on the theorema project. In W. Kuechlin, editor,

Proceedings of ISSAC'97. ACM Press, 1997.

8. O. Caprotti, D. P. Carlisle, and A. M. Cohen. The OpenMath Standard. The

OpenMath Esprit Consortium, http://www.openmath.org, February 2000.

9. Olga Caprotti, Herman Geuvers, and Martijn Oostdijk. Certi�ed and portable

mathematical documents from formal contexts. In Proceedings of MKM 2001,

Linz, Austria, September 2001.

10. World Wide Web Consortium. Semantic web. http://www.w3.org/2001/sw/.
11. Daniel de Rauglaudre. Camlp4 Reference Manual { version 3.06. INRIA, 2002.

available at http://caml.inria.fr/camlp4/manual/.

12. Stephen Deach. Extensible stylesheet language (xsl) recommendation. W3c rec-

ommendation, World Wide Web Consortium, November 1999. http://www.w3.

org/TR/xslt.

13. Andreas Franke and Michael Kohlhase. System Description: MathWeb, an Agent-

Based Communication Layer for Distributed Automated Theorem Proving. In

Conference on Automated Deduction, pages 217{221, 1999.
14. Andreas Franke and Michael Kohlhase. System description: MBASE, an open

mathematical knowledge base. In Conference on Automated Deduction, 2000.

15. Michael Kohlhase. OMDoc: An Open Markup Format for Mathematical Docu-

ments (Version 1.1). http://www.mathweb.org/omdoc, 2003.

16. Manuel Maarek. �Ecriture d'un parseur pour FOC en Camlp4. Travail d'Initiation

�a la Recherche, Universit�e Paris 6, June 2001. In French.

17. Manuel Maarek. Conception d'une librairie omdoc pour foc. Rapport de stage de

D.E.A, Universit�e Paris 6, September 2002. In French.

18. Virgile Prevosto and Damien Doligez. Algorithms and proof inheritance in the

FoC language. Journal of Automated Reasoning, 29(3-4):337{363, December 2002.

19. FoC Project. The FoC System Reference Manual Version 0. SPI LIP6, 2003.

20. J. Zimmer and L. Dennis. Inductive Theorem Proving and Computer Algebra in the

MathWeb Software Bus. In Proceedings of the 10th CALCULEMUS Symposium

2002, Marseille (France), July 2002.

21. J�urgen Zimmer and Michael Kohlhase. System description: The mathweb software

bus for distributed mathematical reasoning. In Proceedings of the 18th Interna-

tional Conference on Automated Deduction, LNAI, 2002.

Brokers and Web-Services for Automatic

Deduction: a Case Study

Claudio Sacerdoti Coen? and Stefano Zacchiroli??

1 Department of Computer Science

University of Bologna

Mura Anteo Zamboni 7, 40127 Bologna, ITALY

sacerdot@cs.unibo.it
2 Department of Computer Science

�Ecole Normale Sup�erieure

45, Rue d'Ulm, F-75230 Paris Cedex 05, FRANCE

zack@cs.unibo.it

Abstract. We present a planning broker and several Web-Services for

automatic deduction. Each Web-Service implements one of the tactics

usually available in interactive proof-assistants. When the broker is sub-

mitted a \proof status" (an incomplete proof tree and a focus on an open

goal) it dispatches the proof to the Web-Services, collects the successful

results, and send them back to the client as \hints" as soon as they are

available.

In our experience this architecture turns out to be helpful both for expe-

rienced users (who can take bene�t of distributing heavy computations)

and beginners (who can learn from it).

1 Introduction

The Web-Service approach at software development seems to be a working so-

lution for getting rid of a wide range of incompatibilities between communicat-

ing software applications. W3C's e�orts in standardizing related technologies

grant longevity and implementations availability for frameworks based on Web-

Services for information exchange. As a direct consequence, the number of such

frameworks is increasing and the World Wide Web is moving from a disorga-

nized repository of human-understandable HTML documents to a disorganized

repository of applications working on machine-understandable XML documents

both for input and output.

The big challenge for the next future is to provide stable and reliable services

over this disorganized, unreliable, and ever-evolving architecture. The standard

solution is to provide a further level of stable services (called brokers) that behave

? Partially supported by `MoWGLI: Math on the Web, Get it by Logic and Interfaces',

EU IST-2001-33562
?? Partially supported by `MyThS: Models and Types for Security in Mobile Distributed

Systems', EU FET-GC IST-2001-32617

44

as common gateways/addresses for client applications to access a wide variety

of services and abstract over them.

Since the Declaration of Linz, the MONET Consortium3 is working on the de-

velopment of a framework, based on the Web-Services/brokers approach, aimed

at providing a set of software tools for the advertisement and the discovery of

mathematical Web-Services.

Several groups have already developed software bus and services4 providing

both computational and reasoning capabilities [3, 4, 15, 16]: the �rst ones are

implemented on top of Computer Algebra Systems; the second ones provide

interfaces to well-known theorem provers. Proof-planners, proof-assistants, CASs

and domain-speci�c problem solvers are natural candidates to be clients of these

services. Nevertheless, so far the number of examples in the literature has been

insuÆcient to fully assess the concrete bene�ts of the framework.

In this paper we present an architecture, namely H-Bugs, implementing a

suggestion engine for the proof assistant developed on behalf of the HELM5

project [5]. We provide several Web-Services (called tutors) able to suggest pos-
sible ways to proceed in a proof. The tutors are orchestrated by a broker (a

Web-Service itself) that is able to dispatch a proof status from a client (the

proof-assistant) to the tutors; each tutor tries to make progress in the proof

and, in case of success, noti�es the client that shows an hint to the user. The

broker is an instance of the homonymous entity of the MONET framework. The

tutors are MONET services. Another Web-Service (which is not described in

this paper and which is called Getter [14]) is used to locate and download math-

ematical entities; the Getter plays the role of the Mathematical Object Manager

of the MONET framework.

A precursor of H-Bugs is the
mega-Ants project [6, 7], which provided sim-

ilar functionalities to the
mega proof-planner [8]. The main architectural dif-

ference between H-Bugs and
mega-Ants is that the latter is based on a black-

board architecture and it is not implemented using Web-Services and brokers.

In Sect. 2 we present the architecture of H-Bugs. A usage session is shown

in Sect. 3. Further implementation details are given in Sect. 4. Sect. 5 is an

overview of the tutors that have been implemented. As usual, the �nal section

of this paper is devoted to conclusions and future works.

2 An H-Bugs Bird's Eye View

The H-Bugs architecture (depicted in Fig. 1) is based on three di�erent kinds of

actors: clients, brokers, and tutors. Each actor presents one or more Web-Service

interfaces to its neighbors H-Bugs actors.

3 http://monet.nag.co.uk/cocoon/monet/index.html
4 The most part of these systems predate the development of Web-Services. Those

systems whose development is still active are slowly being reimplemented as Web-

Services.
5 Hypertextual Electronic Library of Mathematics, http://helm.cs.unibo.it

45

Fig. 1. H-Bugs architecture

In this section we detail the role and requirements of each kind of actors and

we discuss about the correspondences between them and the MONET entities

described in [11]. Due to lack of space, we cannot compare our framework to

similar proposals, as the older and more advanced
mega system. The study

of the correspondences with MONET is well motivated by the fact that the

MONET framework is still under development and that our implementation

is one of the �rst experiments in Web-Servicebased distributed reasoning. On

the other hand, a comparison with
mega would be less interesting since the

functionalities we provide so far are just a subset of the
mega-Ants ones.

Clients An H-Bugs client is a software component able to produce proof status
and to consume hints.

A proof status is a representation of an incomplete proof and is supposed to

be informative enough to be used by an interactive proof assistant. No additional

requirements exist on the proof status, but there should be an agreement on its

format between clients and tutors. A hint is an encoding of a step that can be

performed in order to proceed in an incomplete proof. Usually it represents a

reference to a tactic available on some proof assistant along with an instantiation

for its formal parameters. Hints can also be more structured: a hint can be as

complex as a whole proof-plan.

Using W3C's terminology [1], clients act both as Web-Service providers and

requesters, see Fig. 2. They act as providers receiving hints from the broker;

they act as requesters submitting new status to the tutors. Clients additionally

use broker services to know which tutors are available and to subscribe to one

or more of them.

Usually, when the client role is taken by an interactive proof assistant, new

status are sent to the broker as soon as the proof change (e.g. when the user

applies a tactic or when a new proof is started); hints are shown to the user

by the means of some e�ects in the user interface (e.g. popping a dialog box or

enlightening a tactic button).

H-Bugs clients act as MONET clients and ask brokers to provide access to

a set of services (the tutors). H-Bugs has no actors corresponding to MONET's

46

Fig. 2. H-Bugs Web-Services interfaces

Broker Locating Service (since the client is supposed to know the URI of at

least one broker). The H-Bugs clients and tutors contact the Getter (a MONET

Mathematical Object Manager) to locate and retrieve mathematical items from

the HELM library. The proof status that are exchanged by the H-Bugs actors,

instead, are built on the y and are neither stored nor given an unique identi�er

(URI) to be managed by the Getter.

Brokers Brokers are the key actors of the H-Bugs architecture since they act

as intermediaries between clients and tutors. They behave as Web-Services

providers and requesters for both clients and tutors, see Fig. 2.

With respect to the client, a broker acts as a Web-Service provider, receiving

the proof status and forwarding it to one or more tutors. It also acts as a Web-

Service requester sending hints to the client as soon as they are available from

the tutors.

With respect to the tutors, the Web-Service provider role is accomplished by

receiving hints as soon as they are produced; as a requester, it is accomplished

by asking for computations (musings in H-Bugs terminology) on status received

by clients and by stopping already late but still ongoing musings.

Additionally brokers keep track of available tutors and clients subscriptions.

H-Bugs brokers act as MONET brokers implementing the following com-

ponents: Client Manager, Service Registry Manager (keeping track of available

tutors), Planning Manager (choosing the available tutors among the ones to

which the client is subscribed), Execution Manager. The Service Manager com-

ponent is not required since the session handler, that identi�es a session between

a service and a broker, is provided to the service by the broker instead of being

received from the service when the session is initialized. In particular, a session is

identi�ed by an unique identi�er for the client (its URL) and an unique identi�er

for the broker (its URL).

Notice that H-Bugs brokers have no knowledge of the domain area of proof-

assistants, nor they are able to interpret the messages that they are forwarding.

47

They are indeed only in charge of maintaining the abstraction of several rea-

soning blackboards | one for each client | of capacity one: a blackboard is

created when the client submits a problem; it is then \shared" by the client and

all the tutors until the client submits the next problem. For instance, replacing

the client with a CAS and all the tutors with agents implementing di�erent res-

olution methods for di�erential equations would not require any change in the

broker. Notice that all the tutors must expose the same interface to the broker.

The MONET architecture speci�cation does not state explicitly whether the

service and broker answers can be asynchronous. Nevertheless, the described

information ow implicitly suggests a synchronous implementation. On the con-

trary, in H-Bugs every request is asynchronous: the connection used by an actor

to issue a query is immediately closed; when a service produces an answer, it

gives it back to the issuer by calling the appropriate actor's method.

Tutors Tutors are software components able to consume proof status producing

hints. H-Bugs does not specify by which means hints should be produced: tutors

can use any means necessary (heuristics, external theorem prover or CAS, etc.).

The only requirement is that there exists an agreement on the formats of proof

status and hints.

Tutors act both as Web-Service providers and requesters for the broker, see

Fig. 2. As providers, they wait for commands requesting to start a new musing

on a given proof status or to stop an old, out of date, musing. As requesters,

they signal to the broker the end of a musing along with its outcome (a hint in

case of success or a failure noti�cation).

H-Bugs tutors act as MONET services.

3 An H-Bugs Session Example

In this section we describe a typical H-Bugs session. The aim of the session is to

solve the following easy exercise:

Exercise 1. Let x be a generic real number. Using the HELM proof-engine, prove

that

x =
(x+ 1) � (x + 1)� 1� x � x

2

Let us suppose that the H-Bugs broker is already running and that the tutors

already registered themselves to the broker. When the user starts our proof-

engine gTopLevel, the system registers itself to the broker, that sends back

the list of available tutors. By default, gTopLevel noti�es to the broker its

intention of subscribing to every tutor available. The user can always open a

con�guration window where she is presented the list of available tutors and she

can independently subscribe and unsubscribe herself to each tutor.

The user can now insert into the system the statement of the theorem and

start proving it. Let us suppose that the �rst step of the user is proving that

the denominator 2 is di�erent from 0. Once that this technical result is proven,

48

Fig. 3. Example session.

the user must prove the goal shown in the upper right corner of the window in

background in Fig. 3.

While the user is wondering how to proceed in the proof, the tutors are trying

to progress in the proof. After a while, the tutors' suggestions start to appear

in the lower part of the H-Bugs interface window (the topmost window in Fig.

3). In this case, the tutors are able to produce 23 hints. The �rst and not very

useful hint suggests to proceed in the proof by exchanging the two sides of the

equality. The second hint suggests to reduce both sides of the equality to their

normal form by using only reductions which are justi�ed by the ring structure of

the real numbers; the two normal forms, though, are so di�erent that the proof

is not really simpli�ed. All the residual 21 hints suggest to apply one lemma

from the distributed library of HELM. The user can look at the statement of

any lemma by clicking on its URI.

The user can now look at the list of suggestions and realize that a good

one is applying the lemma r Rmult mult that allows to multiply both equality

members by the same scalar6. Double-clicking on the hint automatically applies

the lemma, reducing the proof to closing three new goals. The �rst one asks the

user the scalar to use as an argument of the previous lemma; the second one

6 Even if she does not receive the hint, the user probably already knows that this is

the right way to proceed. The diÆcult part, accomplished by the hint, is guessing

what is the name of the lemma to apply.

49

states that the scalar is di�erent from 0; the third lemma (the main one) asks

to prove the equality between the two new members.

The user proceeds by instantiating the scalar with the number 2. The

Assumption tutor now suggests to close the second goal (that states that 2 6= 0)

by applying the hypothesis H . No useful suggestions, instead, are generated for

the main goal 2�x = 2�((x+1)�(x+1)�1�x�x)�2�1. To proceed in the proof
the user needs to simplify the expression using the lemma Rinv r simpl m that

states that 8x; y: y = x�y�x�1. Since we do not provide yet any tutor suggesting
simpli�cations, the user must �nd out this simpli�cation by himself. Once she

founds it, the goal is reduced to proving that 2 �x = (x+1) � (x+1)� 1�x �x.
This equality is easily solved by the Ring tutor, that suggests7 to the user how

to complete the proof in one macrostep.

4 Implementation's Highlights

In this section we present some of the most relevant implementation details of

the H-Bugs architecture.

Proof status In our implementation of the H-Bugs architecture we used the proof
assistant of the HELM project (codename gTopLevel) as an H-Bugs client. Thus

we have implemented serialization/deserialization capabilities for its internal sta-

tus. In order to be able to describe Web-Services that exchange status in WSDL

using the XML Schema type system, we have chosen an XML format as the

target format for the serialization.

Each proof is represented by a tuple of four elements: uri, metasenv, proof,
thesis.

uri : an URI chosen by the user at the beginning of the proof process. Once

(and if) proved, that URI will globally identify the term inside the HELM

library (given that the user decides to save it).

thesis : the ongoing proof thesis

proof : the current incomplete proof tree. It can contain metavariables (holes)

that stands for the parts of the proof that are still to be completed. Each

metavariable appearing in the tree references one element of the metavari-

ables environment (metasenv).
metasenv : the metavariables environment is a list of goals (unproved con-

jectures). In order to complete the proof, the user has to instantiate every

metavariable in the proof with a proof of the corresponding goal. Each goal is

identi�ed by an unique identi�er and has a context and a type (the goal the-

sis). The context is a list of named hypotheses (declarations and de�nitions).

Thus the context and the goal thesis form a sequent, which is the statement

of the proof that will be used to instantiate the metavariable occurrences.

7 The Ring suggestion is just one of the 22 hints that the user receives. It is the only

hint that does not open new goals, but the user right now does not have any way to

know that.

50

Each of these information is represented in XML as described in [12]. Addi-

tionally, an H-Bugs status carries the unique identi�er of the current goal, which

is the goal the user is currently focused on. Using this value it is possible to

implement di�erent client side strategies: the user could ask the tutors to work

on the goal she is considering or to work on the other \background" goals.

Hints A hint in the H-Bugs architecture should carry enough information to

permit the client to progress in the current proof. In our implementation each

hint corresponds to either one of the tactics available to the user in gTopLevel

(together with its actual arguments) or a set of alternative suggestions (a list of

hints).

For tactics that do not require any particular argument (like tactics that ap-

ply type constructors or decision procedures) only the tactic name is represented

in the hint. For tactics that need terms as arguments (for example the Apply

tactic that apply a given lemma) the hint includes a textual representation of

them, using the same representation used by the interactive proof assistant when

querying user for terms. In order to be transmitted between Web-Services, hints

are serialized in XML.

It is also possible for a tutor to return more hints at once, grouping them

in a particular XML element. This feature turns out to be particularly useful

for the searchPatternApply tutor (see Sect. 5) that queries a lemma database

and returns to the client a list of all lemmas that could be used to complete

the proof. This particular hint is encoded as a list of Apply hints, each of them

having one of the results as term argument.

We would like to stress that the H-Bugs architecture has no dependency on

either the hint or the status representation: the only message parts that are

�xed are those representing the administrative messages (the envelopes in the

Web-Services terminology). In particular, the broker can manage at the same

time several sessions working on di�erent status/hints formats. Of course, there

must be an agreement between the clients and the tutors on the format of the

data exchanged.

In our implementation the client does not trust the tutors hints: being en-

coded as references to available tactics imply that an H-Bugs client, at the receipt

of a hint, simply try to replay the work done by a tutor on the local copy of

the proof. The application of the hint can even fail to type check and the client

copy of the proof can be left undamaged after spotting the error. Note, however,

that it is still possible to implement a complex tutor that looks for a proof do-

ing backtracking and that send back to the client a hint whose argument is a

witness (a trace) of the proof found: the client applies the hint reconstructing

(and checking the correctness of) the proof from the witness, without having to

re-discover the proof itself.

An alternative implementation where the tutors are trusted would simply

send back to the client a new proof-status. Upon receiving the proof-status,

the client would just override its current proof status with the suggested one.

In the case of those clients which are implemented using proof-objects (as the

Coq proof-assistant, for instance), it is still possible for the client to type-check

51

the proof-object and reject wrong hints. The systems that are not based on

proof-objects (as PVS, NuPRL, etc.), instead, must completely trust the new

proof-status. In this case the H-Bugs architecture would need at least to be

extended with clients-tutors authentication.

Registries Being central in the H-Bugs architecture, the broker is also respon-

sible of housekeeping operations both for clients and tutors. These operations

are implemented using three di�erent data structures called registries : clients
registry, tutors registry and musings registry.

In order to use the suggestion engine a client should register itself to the

broker and subscribe to one or more tutors. The registration phase is triggered

by the client using the Register client method of the broker to send him an

unique identi�er and its base URI as a Web-Service. After the registration, the

client can use the List tutors method of the broker to get a list of available

tutors. Eventually the client can subscribe to one or more of these using the

Subscribe method of the broker. Clients can also unregister from brokers using

Unregister client method.

The broker keeps track of both registered clients and clients' subscriptions

in the clients registry.

In order to be advertised to clients during the subscription phase, tutors

should register to the broker using the Register tutor method of the broker.

This method is really similar to Register client: tutors are required to send

an unique identi�er and a base URI for their Web-Service. Additionally tu-

tors are required to send an human readable description of their capabilities;

this information could be used by the client user to decide which tutors she

wants to subscribe to. As the clients, tutors can unregister from brokers using

Unregister broker method.

Each time the client status changes, it get sent sent to the broker using its

Status method. Using both the clients registry (to lookup the client's subscrip-

tion) and the tutors registry (to check if some tutors have unsubscribed), the

broker is able to decide to which tutors the new status have to be forwarded.

The forwarding operation is performed using the Start musing method of

the tutors, that is a request to start a new computation (musing) on a given

status. The return value of Start musing is a musing identi�er that is saved

in the musings registry along with the identi�er of the client that triggered the

musing.

As soon as a tutor completes an musing, it informs the broker using its

Musing completed method; the broker can now remove the musing entry from

the musings registry and, depending on its outcome, inform the client. In case of

success one of the Musing completed arguments is a hint to be sent to the client;

otherwise there is no need to inform him and the Musing completed method is

called just to update the musings registry.

Consulting the musings registry, the broker is able to know, at each time,

which musings are in execution on which tutor. This peculiarity is exploited by

the broker on invocation of the Status method. Receiving a new status from the

client implies indeed that the previous status no longer exists and all musings

52

working on it should be stopped: additionally to the already described behavior

(i.e. starting new musings on the received status), the broker takes also care of

stopping ongoing computation invoking the Stop musing method of the tutors.

Tutors Each tutor exposes a Web-Service interface and should be able to work,

not only for many di�erent clients referring to a common broker, but also for

many di�erent brokers. The potential high number of concurrent clients imposes

a multi-threaded or multi-process architecture.

Our current implementation is based on a multi threaded architecture ex-

ploiting the capabilities of the O'HTTP library [14]. Each tutor is composed

by one always running thread plus an additional thread for each musing. One

thread is devoted to listening for incoming Web-Service requests; when a request

is received the control is passed to a second thread, created on the y, that han-

dle the incoming request (usual one-thread-per-request approach in web servers

design). In particular if the received request is Start musing, a new thread is

spawned to handle it; the thread in duty to handle the HTTP request returns

an HTTP response containing the identi�er of the just started musing, and then

dies. If the received request is Stop musing, instead, the spawned thread kills

the thread responsible for the musing whose identi�er is the argument of the

Stop musing method.

This architecture turns out to be scalable and allows the running threads to

share the cache of loaded (and type-checked) theorems. As we will explain in

Sect. 5, this feature turns out to be really useful for tactics that rely on a huge

but �xed set of lemmas, as every reexive tactic.

The implementation of a tutor within the described architecture is not that

diÆcult having a language with good threading capabilities (as OCaml has)

and a pool of already implemented tactics (as gTopLevel has). Working with

threads is known to be really error prone due to concurrent programming in-

trinsic complexity. Moreover, there is a non-neglectable part of code that needs

to be duplicated in every tutor: the code to register the tutor to the broker and

to handle HTTP requests; the code to manage the creation and termination

of threads; and the code for parsing the requests and serializing the answers.

As a consequence we have written a generic implementation of a tutor which

is parameterized over the code that actually proposes the hint and over some

administrative data (as the port the tutor will be listening to).

The generic tutor skeleton is really helpful in writing new tutors. Neverthe-

less, the code obtained by converting existing tactics into tutors is still quite

repetitive: every tutor that wraps a tactic has to instantiate its own copy of the

proof-engine kernel and, for each request, it has to override its status, guess the

tactic arguments, apply the tactic and, in case of success, send back a hint with

the tactic name and the chosen arguments. Of course, the complex part of the

work is guessing the right arguments. For the simple case of tactics that do not

require any argument, though, we are able to automatically generate the whole

tutor code given the tactic name. Concretely, we have written a tactic-based

tutor template and a script that parses an XML �le with the speci�cation of

the tutor and generates the tutor's code. The XML �le describes the tutor's

53

port, the code to invoke the tactic, the hint that is sent back upon successful

application and a human readable explanation of the tactic implemented by the

tutor.

5 The Implemented H-BugsTutors

To test the H-Bugs architecture and to assess the utility of a suggestion engine

for the end user, we have implemented several tutors. In particular, we have

investigated three classes of tutors:

1. Tutors for beginners. These are tutors that implement tactics which are

neither computationally expensive nor diÆcult to understand: an expert user

can always understand if the tactic can be applied or not without having to

try it. For example, the following implemented tutors belong to this class:

{ Assumption Tutor : it ends the proof if the thesis is equivalent8 to one of
the hypotheses9.

{ Contradiction Tutor : it ends the proof by reductio ad adsurdum if one

hypothesis is equivalent to False.

{ Symmetry Tutor : if the goal thesis is an equality, it suggests to apply

the commutative property.

{ Left/Right/Exists/Split/Reexivity/Constructor Tutors : the Construc-

tor Tutor suggests to proceed in the proof by applying one or more

constructors when the goal thesis is an inductive type or a proposition in-

ductively de�ned according to the declarative style10. Since disjunction,

conjunction, existential quanti�cation and Leibniz equality are particu-

lar cases of inductive propositions, all the other tutors of this class are

instantiations of the the Constructor tactic. Left and Right suggest to

prove a disjunction by proving its left/right member; Split reduces the

proof of a conjunction to the two proof of its members; Exists suggests to

prove an existential quanti�cation by providing a witness11; Reexivity

proves an equality whenever the two sides are convertible.

8 In our implementation, the equivalence relation imposed by the logical framework is

convertibility. Two expressions are convertible when they reduce to the same normal

form. Two \equal" terms depending on free variables can be non-convertible since

free variables stop the reduction. For example, 2x is convertible with (3�1)x because

they both reduce to the same normal form x+x+ 0; but 2x is not convertible to x2

since the latter is already in normal form.
9 In some cases, especially when non-trivial computations are involved, the user is

totally unable to �gure out the convertibility of two terms. In these cases the tutor

becomes handy also for expert users.
10 An example of a proposition that can be given in declarative style is the � relation

over natural numbers: � is the smallest relation such that n � n for every n and

n � m for every n;m such that n � p where p is the predecessor of m. Thus, a proof

of n � n is simply the application of the �rst constructor to n and a proof of n � m

is the application of the second constructor to n;m and a proof of n � m.
11 This task is left to the user.

54

Beginners, when �rst faced with a tactic-based proof-assistant, get lost quite

soon since the set of tactics is large and their names and semantics must be

remembered by heart. Tutorials are provided to guide the user step-by-step

in a few proofs, suggesting the tactics that must be used. We believe that

our beginners tutors can provide an auxiliary learning tool: after the tutorial,

the user is not suddenly left alone with the system, but she can experiment

with variations of the exercises given in the tutorial as much as she like,

still getting useful suggestions. Thus the user is allowed to focus on learning

how to do a formal proof instead of wasting e�orts trying to remember the

interface to the system.

2. Tutors for Computationally Expensive Tactics. Several tactics have an un-

predictable behavior, in the sense that it is unfeasible to understand whether

they will succeed or they will fail when applied and what will be their result.

Among them, there are several tactics either computationally expensive or

resource consuming. In the �rst case, the user is not willing to try a tactic

and wait for a long time just to understand its outcome: she would prefer

to keep on concentrating on the proof and have the tactic applied in back-

ground and receive out-of-band noti�cation of its success. The second case is

similar, but the tactic application must be performed on a remote machine to

avoid overloading the user host with several concurrent resource consuming

applications.

Finally, several complex tactics and in particular all the tactics based on

reexive techniques depend on a pretty large set of de�nitions, lemmas and

theorems. When these tactics are applied, the system needs to retrieve and

load all the lemmas. Pre-loading all the material needed by every tactic can

quickly lead to long initialization times and to large memory footstamps. A

specialized tutor running on a remote machine, instead, can easily pre-load

the required theorems.
As an example of computationally expensive task, we have implemented a

tutor for the Ring tactic [9]. The tutor is able to prove an equality over a

ring by reducing both members to a common normal form. The reduction,

which may require some time in complex cases, is based on the usual com-

mutative, associative and neutral element properties of a ring. The tactic

is implemented using a reexive technique, which means that the reduction

trace is not stored in the proof-object itself: the type-checker is able to per-

form the reduction on-the-y thanks to the conversion rules of the system.

As a consequence, in the library there must be stored both the algorithm

used for the reduction and the proof of correctness of the algorithm, based

on the ring axioms. This big proof and all of its lemmas must be retrieved

and loaded in order to apply the tactic. The Ring tutor loads and caches all

the required theorems the �rst time it is contacted.

3. Intelligent Tutors. Expert users can already bene�t from the previous class

of tutors. Nevertheless, to achieve a signi�cative production gain, they need

more intelligent tutors implementing domain-speci�c theorem provers or able

to perform complex computations. These tutors are not just plain implemen-

tations of tactics or decision procedures, but can be more complex software

55

agents interacting with third-parties software, such as proof-planners, CAS

or theorem-provers.

To test the productivity impact of intelligent tutors, we have implemented

a tutor that is interfaced with the HELM Search-Engine12 and that is able

to look for every theorem in the distributed library that can be applied

to proceed in the proof. Even if the tutor deductive power is extremely

limited13, it is not unusual for the tutor to come up with precious hints

that can save several minutes of work that would be spent in proving again

already proven results or �guring out where the lemmas could have been

stored in the library.

6 Conclusions and Future Work

In this paper we described a suggestion engine architecture for proof-assistants:

the client (a proof-assistant) sends the current proof status to several distributed

Web-Services (called tutors) that try to progress in the proof and, in case of

success, send back an appropriate hint (a proof-plan) to the user. The user,

that in the meantime was able to reason and progress in the proof, is noti�ed

with the hints and can decide to apply or ignore them. A broker is provided to

decouple the clients and the tutors and to allow the client to locate and invoke the

available remote services. The whole architecture is an instance of the MONET

architecture for Mathematical Web-Services. It constitutes a reimplementation of

the core features of the pioneering
mega-Ants system in the new Web-Services

framework.

A running prototype has been implemented as part of the HELM project [5]

and we already provide several tutors. Some of them are simple tutors that try to

apply one or more tactics of the HELM Proof-Engine, which is also our client.

We also have a much more complex tutor that is interfaced with the HELM

Search-Engine and looks for lemmas that can be directly applied.

Future works comprise the implementation of new features and tutors, and

the embedding of the system in larger test cases. For instance, one interesting

case study would be interfacing a CAS as Maple to the H-Bugs broker, developing

at the same time a tutor that implements the Field tactic of Coq, which proves

the equality of two expressions in an abstract �eld by reducing both members to

the same normal form. CASs can produce several compact normal forms, which

are particularly informative to the user and that may suggest how to proceed in a

proof. Unfortunately, CASs do not provide any certi�cate about the correctness

of the simpli�cation. On the contrary, the Field tactic certi�es the equality of

two expressions, but produces normal forms that are hardly a simpli�cation of

the original formula. The bene�ts for the CAS would be obtained by using the

Field tutor to certify the CAS simpli�cations, proving that the Field normal

form of an expression is preserved by the simpli�cation. More advanced tutors

12 http://helm.cs.unibo.it/library.html
13 We do not attempt to check if the new goals obtained applying a lemma can be

automatically proved or, even better, automatically disproved to reject the lemma.

56

could exploit the CAS to reduce the goal to compact normal forms [10], making

the Field tutor certify the simpli�cation according to the skeptical approach.

We have many plans for further developing both the H-Bugs architecture and

our prototype. Interesting results could be obtained augmenting the informative

content of each suggestion. We can for example modify the broker so that also

negative results are sent back to the client. Those negative suggestions could be

reected in the user interface by deactivating commands to narrow the choice

of tactics available to the user. This approach could be interesting especially for

novice users, but requires the client to increase their level of trust in the other

actors.

We plan also to add some rating mechanism to the architecture. A �rst

improvement in this direction could be distinguishing between hints that, when

applied, are able to completely close one or more goals, and tactics that progress

in the proof by reducing one or more goals to new goals: since the new goals can

be false, the user can be forced later on to backtrack.

Other heuristics and or measures could be added to rate hints and show them

to the user in a particular order: an interesting one could be a measure that try

to minimize the size of the generated proof, privileging therefore non-overkilling

solutions [13].

We are also considering to follow the
mega-Ants path adding \recursion"

to the system so that the proof status resulting from the application of old

hints are cached somewhere and could be used as a starting point for new hint

searches. The approach is interesting, but it represents a big shift towards auto-

matic theorem proving: thus we must consider if it is worth the e�ort given the

increasing availability of automation in proof assistants tactics and the ongo-

ing development of Web-Services based on already existent and well developed

theorem provers.

Even if not strictly part of the H-Bugs architecture, the graphical user in-

terface (GUI) of our prototype needs a lot of improvement if we want it to be

really usable by novices. In particular, a critical issue is avoiding continuous dis-

tractions for the user determined by the hints that are asynchronously pushed

to her.

Our Web-Services still lack a real integration in the MONET architecture,

since we do not provide the di�erent ontologies to describe our problems, solu-

tions, queries, and services. In the short term, completing this task could provide

a signi�cative feedback to the MONET consortium and would enlarge the cur-

rent set of available MONET actors on the Web. In the long term, new more

intelligent tutors could be developed on top of already existent MONET Web-

Services.

To conclude, H-Bugs is a nice experiment meant to understand whether the

current Web-Services technology is mature enough to have a concrete and useful

impact on the daily work of proof-assistants users. So far, only the tutor that

is interfaced with the HELM Search-Engine has e�ectively increased the pro-

ductivity of experts users. The usefulness of the tutors developed for beginners,

instead, need further assessment.

57

References

1. Web Services Glossary, W3C Working Draft, 14 May 2003.

http://www.w3.org/TR/2003/WD-ws-gloss-20030514/

2. Web Services Description Language (WSDL) Version 1.2: Bindings, W3C Working

Draft, 24 January 2003.

http://www.w3.org/TR/wsdl12-bindings/

3. A. Armando, D. Zini. Interfacing Computer Algebra and Deduction Systems via

the Logic Broker Architecture. In Proceedings of the Eighth Calculemus sympho-

sium, St. Andrews, Scotland, 6{7 August 2000.

4. O. Caprotti. Symbolic Evaluator Service. Project Report of the MathBrocker

Project, RISC-Linz, Johannes Kepler University, Linz, Austria, May 2002.

5. A. Asperti, F. Guidi, L. Padovani, C. Sacerdoti Coen, I. Schena. Mathematical

Knowledge Management in HELM. In Annals of Mathematics and Arti�cial Intel-

ligence, 38(1): 27{46, May 2003.

6. C. Benzm�uller, V. Sorge. O-Ants { An Open Approach at Combining Interactive

and Automated Theorem Proving. In M. Kerber and M. Kohlhase (eds.), Integra-

tion of Symbolic and Mechanized Reasoning, pp. 81{97, 2000.

7. C. Benzm�uller, M. Jamnik, M. Kerber, V. Sorge. Agent-based Mathematical Rea-

soning. In A. Armando and T. Jebelean (eds.), Electronic Notes in Theoretical

Computer Science, (1999) 23(3), Elsevier.

8. C. Benzm�uller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,

M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt, J. Siekmann, V.

Sorge. OMEGA: Towards a Mathematical Assistant. In W. McCune (ed), Proceed-

ings of the 14th Conference on Automated Deduction (CADE-14), Springer LNAI

vol. 1249, pp. 252{255, Townsville, Australia, 1997.

9. S. Boutin. Using reection to build eÆcient and certi�ed decision procedures. In

Martin Abadi and Takahashi Ito, editors, TACS'97, volume 1281. LNCS, Springer-

Verlag, 1997.

10. David Delahaye, Micaela Mayero. A Maple Mode for Coq. Contribution to the Coq

library.

htpp://coq.inria.fr/contribs/MapleMode.html

11. The MONET Consortium, MONET Architecture Overview, Public Deliverable

D04 of the MONET Project.

http://monet.nag.co.uk/cocoon/monet/publicsdocs/monet-overview.pdf

12. C. Sacerdoti Coen. Exportation Module, MoWGLI Deliverable D2.a.

http://mowgli.cs.unibo.it/html_no_frames/deliverables/

transformation/d2a.html

13. C. Sacerdoti Coen. Tactics in Modern Proof-Assistants: the Bad Habit of

Overkilling. In Supplementary Proceedings of the 14th International Conference

TPHOLS 2001, pp. 352{367, Edinburgh.

14. S. Zacchiroli. Web services per il supporto alla dimostrazione interattiva, Master

Thesis, University of Bologna, 2002.

15. J. Zimmer and M. Kohlhase. System Description: The MathWeb Software Bus

for Distributed Mathematical Reasoning. In Proceedings of the 18th International

Conference on Automated Deduction CADE 18, LNAI 2392, Springer Verlag, 2002.

16. R. Zippel. The MathBus. In Workshop on Internet Accessible Mathematical Com-

putation at ISSAC'99, Vancouver, Canada, July 28{31, 1999.

Trustable Communication Between

Mathematics Systems?

Jacques Carette, William M. Farmer, and J�er�emie Wajs??

McMaster University

Hamilton, Ontario, Canada

Abstract. This paper presents a rigorous, uni�ed framework for faci-

litating communication between mathematics systems. A mathematics

system is given one or more interfaces which o�er deductive and compu-

tational services to other mathematics systems. To achieve communica-

tion between systems, a client interface is linked to a server interface by

an asymmetric connection consisting of a pair of translations. Answers

to requests are trustable in the sense that they are correct provided a

small set of prescribed conditions are satis�ed. The framework is robust

with respect to interface extension and can process requests for abstract

services, where the server interface is not fully speci�ed.

Keywords: Mechanized mathematics, computer theorem proving, com-

puter algebra, intersystem communication, knowledge representation.

1 Introduction

Current mechanized mathematics systems (MMSs), by and large, fall into one of

three camps: numerics-based (like Matlab, Octave, Scilab, etc), symbolic (Maple,

Mathematica, MuPAD, etc), and theorem provers (Coq, hol, imps, Isabelle,

Nqthm, Nuprl, Otter, pvs, etc). Each has its strong points, although many are

more often bemoaned for their weaknesses. These weaknesses are all the more

frustrating for users as one system's weakness is frequently another's strength.

An increasing majority of users are becoming agnostic in their choice of MMSs,

worrying more about getting a particular task done than whether one �ubersystem

can do it all. Furthermore, it is important to remark that the expertise needed

to build each kind of system is markedly di�erent for all three avors. Although

there have been some e�orts at making some of these MMSs broader, familiarity

with them quickly dispels any notion that this dabbling is particularly successful.

A wiser approach, at least in the medium term, is to construct a larger system

out of trusted specialized pieces.

In simple terms, the problem we wish to address, illustrated in Figure 1, is

the following: if system A needs access to a certain functionality f which it does

not currently implement, but a service providing this functionality is o�ered by

system B, then A should be able to send a request to B containing a translation

of its exact problem into the language of B, wait for B to perform the service,

and then �nally receive an answer in its own language.

? This research was supported by Bell Canada and MITACS.
?? fcarette,wmfarmer,wajsg@mcmaster.ca

59

A-problem
translation
��������! B-problem

f

??y
??yB-service

A-answer
translation
 �������� B-answer

Fig. 1. The basic communication problem

Informally, we wish to think of \perform f" as a request, the pair of transla-

tions above as a connection, and the set of available functions from B-problems

to B-answers as B's services. We then want to assert that meaningful commu-
nication happens when the diagram above commutes.

In this paper we present a uni�ed framework which clearly de�nes these var-

ious concepts (interfaces, services, connections, requests, and answers) in precise

mathematical terms. The overarching concern is that of trust: when one system

requests a service from another, can it trust the result it gets back? Certainly

any system which purports to be trustable must also insist that any communi-

cation it makes to another system satis�es the same requirements. We have not

generally addressed the concept of usefulness of the resulting communication,

as we are not aware of any generally accepted mathematical de�nition of that

concept.

Certainly examples of useful communication between systems abound! Com-
mercial system builders are de�nitely convinced of this fact, as evidenced by

Mathematica's J/Link, Maple's Matlab package, Matlab's Symbolic Toolbox,

and so on.

For example, polynomial arithmetic is frequently a necessary step in a proof;

typical theorem provers will, at best, implement this using rewrite rules, which

are at least an order of magnitude slower than implementations by Computer

Algebra Systems (CASs) [7]. In the opposite direction, closed-form integration

of even simple expressions containing parameters involves complex algorithms

but also complex side conditions which must be veri�ed, forcing a CAS to call a

theorem prover (see [1] and the references therein).

We consider old obstacles (issues of transport and syntax) to be essentially

solved by common technologies (TCP/IP, sockets, XML, etc). What remains to

be solved adequately is the problem of semantics. Referring back to Figure 1,

it should be clear that describing each arrow, in all cases and for all possible

services, is nontrivial. To achieve our aim of trustability, this issue is inescapable.
To a lesser extent, there is also a problem of interpretability: even if the answer

makes sense in system A, is it \the" answer? The notion of \the" answer in a

theorem proving system is qualitatively di�erent than in a system centered on

numerical analysis, even though both are rigorously and uniquely de�ned.

More discussion can be found in the long version [9] of this paper.

The rest of the paper is organized as follows: In section 2, we look at previous

related proposals. In section 3, we give de�nitions for the underlying theory

necessary to the presentation of our framework. In section 4, we give a simple

framework for communication between MMSs. In section 5, we discuss additional

obstacles in achieving communication in real cases, and show how to re�ne the

60

framework presented in section 4 to address some of those obstacles. In section

6, we talk about speci�cation of requests and services. Finally, we conclude in

section 7.

2 Previous Proposals

Several attempts at addressing the problem of communication between MMSs

have been made. We can classify them into two categories: the �rst category

consists of work that attempts to deal with the problem in general. The second

category consists of ad hoc solutions. We review important members of each

category below.

General Solutions The OpenMath project [10] claims to provide a common

platform for communication between various mathematics systems. However,

while it provides a common syntax, it fails in our view to specify a semantics

for that syntax, which is a major drawback when trying to make mathematics

systems based on di�erent logics communicate. In other words, there are too

many implicit assumptions behind OpenMath's version of semantics for it to

apply outside the narrow (but useful) realm of standard operations between the

standard CASs.

OMDoc [15] constitutes a re�nement to the OpenMath approach: it recog-

nizes the need for semantics, and introduces them through a notion of theories.
However, OMDoc does not seem to address the actual mechanics of getting dif-

ferent systems to communicate as much as it provides a common language (syn-

tax + semantics) for them to do so. Nevertheless, OMDoc could be extended to

handle the concepts of our framework: interfaces, services, connections, requests,

and answers.

The
-mkrp [14] approach argues that explicit proofs are needed and that

\external" systems cannot be trusted. This seems very impractical.

The omscs (Open Mechanized Symbolic Computation Systems) [8] work

provides an architecture used to formally specify automated theorem provers

and CASs and to formally integrate them. However, it does not seem to address

the issues of trust or extending theories.

Armando and Zini's Logic Broker Architecture [2], de�nes a general frame-

work for communication between MMSs. This approach is conceptually very

similar to ours. It de�nes interfaces for MMSs and uses a Logic Broker (LB) to

achieve communication between systems. The LB includes facilities for transla-

tion of requests and meaning-preserving translation of answers (thus addressing

the question of trust), as well as (in theory) a logical speci�cation matcher to

match requests to services o�ered. However, we believe that this architecture

does not support extending theories well, which we will show can be achieved

e�ectively by our approach.

The new European mowgli project [3], which aims at providing a com-

mon machine-understandable (semantics-based) representation of mathematical

knowledge and a platform to exploit it, likely �ts here too.

61

Ad-hoc approaches In many such cases in the literature, only unidirec-

tional cooperation exists: one system acts as a master, generating requests, while

the other one serves as a slave, ful�lling those requests. This includes Howe's

work on embedding an hol theory into Nuprl [13], Ballarin and Paulson's work

on using the Sumit library for proofs in Isabelle [5, 7], and Ballarin, Homann,

and Calmet's work on an interface between Isabelle and Maple [6]. Ballarin and

Paulson's work clearly identi�es the issue of trust, and distinguishes between

trustable results, for which a formal proof exists, and ad hoc results, based on

approximations.

Another more complex ad hoc case, intended for bidirectional cooperation,

is Harrison and Th�ery's work on combining hol and Maple [12]. Similarly to

Ballarin and Paulson, they classify the systems by degree of trust, for example
trusting results proved by hol while checking results given by Maple.

All these ad hoc solutions have the major drawback of not seeking generality.
Howe, for instance, does not attempt to make hol and Nuprl communicate
as much as he attempts to embed an hol theory into Nuprl. Why should the

machinery for hol be duplicated in Nuprl when it already exists in hol itself? In

addition, this approach is not valid when the system to be integrated is a black

box. Our approach enables one MMS to use another MMS's services without,

�rst, having to reproduce them, and second, having to know in detail how they

work. We will show how it addresses the issue of trust, and eliminates the need

to verify every single result (which can be painfully burdensome).

3 Biform Theories

At the heart of this work lies the notion of a \biform theory", which is the basis

for ffmm, a Formal Framework for Managing Mathematics [11]. Informally, a

biform theory is simultaneously an axiomatic and an algorithmic theory. Most

of the de�nitions given here are simpli�ed versions of de�nitions given in [11].

A language is a set of typed expressions. The types include �, which denotes

the type of truth values. A formula is an expression of type �. For a formula A
of a language L, :A, the negation of A, is also a formula of L. A logic is a set of
languages with a notion of logical consequence. If K is a logic, L is a language

of K, and � [fAg is a set of formulas of L, then � j=K A means that A is a

logical consequence of � in K.

Let Li be a language for i = 1; 2. A transformer � from L1 to L2 is an

algorithm that implements a partial function � : L1 * L2. For E 2 L1, let

�(E) mean �(E), and let dom(�) denote the domain of �, i.e., the subset of L1

on which � is de�ned.

A formuloid of a language L is a pair � = (�;M) where:

1. � is a transformer from L to L.

2. M is a function that maps each E 2 dom(�) to a formula of L.

M is intended to give the meaning of applying � to an expression E. M(E)

usually relates the input E to the output �(E) in some way; for many trans-

62

formers, M(E) is the equation E = �(E), which says that � transforms E into

an expression with the same value as E itself.

The span of �, written span(�), is the set fM(E) j E 2 dom(�)g of formu-
las of L. Thus a formuloid has both an axiomatic meaning|its span|and an

algorithmic meaning|its transformer. The purpose of its span is to assert the

truth of a set of formulas, while its transformer is meant to be a deduction or

computation rule.

A biform theory is a tuple T = (K; L; �) where:
1. K is a logic called the logic of T .
2. L is a language of K called the language of T .
3. � is a set of formuloids of L called the axiomoids of T .

The span of T , written span(T), is the union of the spans of the axiomoids of

T , i.e.,
S
�2�

span(�). A is an axiom of T if A 2 span(T). A is a theorem of

T , written T j= A, if span(T) j=K A. A theoremoid of T is a formuloid � of L

such that, for each A 2 span(�), T j= A. Obviously, each axiomoid of T is also

a theoremoid of T . An axiomoid is a generalization of an axiom; an individual

axiom A (in the usual sense) can be represented by an axiomoid (�;M) such

that dom(�) = fAg and M(A) = A.

T can be viewed as simultaneously both an axiomatic theory and an algo-
rithmic theory. The axiomatic theory is represented by

Taxm = (K; L; fM(E) j (�;M) 2 � for some � and E 2 dom(�)g);
and the algorithmic theory is represented by

Talg = (K; L; f� j (�;M) 2 � for some Mg):
Let Ti = (K; Li; �i) be a biform theory for i = 1; 2. T2 is an extension of

T1, written T1 � T2, if L1 � L2 and �1 � �2. T2 is a conservative extension of

T1, written T1 � T2, if T1 � T2 and, for all formulas A of L1, if T2 j= A, then

T1 j= A. Note that � and � are partial orders.

Let Ki be a logic and Ti = (Ki; Li; �i) be a biform theory for i = 1; 2. A

translation from T1 to T2 is a transformer � from L1 to L2 that:

1. Respects types, i.e., if E1 and E2 are expressions in L1 of the same type and

�(E1) and �(E2) are de�ned, then �(E1) and �(E2) are also of the same

type.
2. Respects negation, i.e., if A is a formula in L1 and �(A) is de�ned, then

�(:A) = :�(A).
T1 and T2 are called the source theory and the target theory of �, respectively.

� is total if �(E) is de�ned for each E 2 L1. � �xes a language L if �(E) = E

for each E 2 L.
An interpretation of T1 in T2 is a total translation � from T1 to T2 such

that, for all formulas A 2 L1, if T1 j= A, then T2 j= �(A). An interpretation

thus maps theorems to theorems. (Since any translation respects negation, an

interpretation also maps negated theorems to negated theorems.) A retraction
from T2 to T1 is an interpretation � of T2 in T1 such that T1 � T2 and � �xes

L1.

63

Proposition 1. If � is a retraction from T2 to T1, then T1 � T2.

Proof. Let A be a formula of the language of T1 such that T2 j= A. We must

show that T1 j= A. By de�nition, (1) � is an interpretation of T2 in T1 and (2) �

�xes the language of T1. (1) implies that T1 j= �(A), and (2) implies �(A) = A.

Therefore, T1 j= A. 2

4 A Simple Communication Framework

We now present a simple communication framework, based on the theoretical

notions presented in the previous section, that addresses the problem presented

in Figure 1. The framework formalizes the notions we mentioned in the intro-

duction: interface, service, connection, request, and answer. As we will show

after this section, the framework does not address some important obstacles to

e�ective communication between MMSs. A re�ned framework, which is more

practical and which generalizes this simple framework, is presented in section 5.

An interface is a pair I = (T;S) where:
1. T is a biform theory called the theory of I .

2. S is a set of theoremoids of T called the services of I .

As a theoremoid of T , a service of I is a formuloid whose span is a set of theorems

of T and whose transformer is a sound deduction or computation rule for T .

Let Ii = (Ti;Si) be an interface for i = 1; 2. A connection from I1 to I2

is a pair C = (export; import) where export is a translation from T1 to T2, and

import is an interpretation of T2 in T1. I1 and I2 are respectively called the client
interface and the server interface of C. export is for transporting problems from

T1 to T2; it need not be meaning preserving. import transports solutions from T2

to T1; it must be meaning preserving.

An informed request is a tuple R = (C;E; �) where:

1. C = (export; import) is a connection from I1 = (T1;S1) to I2 = (T2;S2).
2. E is an expression of the language of T1.

3. � = (�;M) 2 S2.

The reason to call such a request informed is that it explicitly depends not only

on the interface I2 but on the theoremoid � as well: we assume that I1 \knows"

about �. We will come back to this point in section 5.

If A = (import ÆM Æ export)(E) is de�ned, it is the answer to R; otherwise

the answer to R is unde�ned. When A is de�ned, it is a theorem:

Proposition 2. Let R and A be as above. If A is de�ned, then T1 j= A.

Proof. Assume A is de�ned. Since � is a theoremoid of T2, T2 j= (M Æexport)(E),
and then since import is an interpretation of T2 in T1, T1 j= (import Æ M Æ
export)(E). 2

64

E
export
�����! E

0

?

??y
??y�

answer �����
import

M(E0)

Fig. 2. Communication between two MMSs

Note that, if C and � are not chosen well, A may be a useless theorem such as

true or E = E.

The basic problem (Figure 1) is now addressed as shown in Figure 2. All

that is necessary to perform this type of communication are interfaces for both

systems and a connection between the two interfaces.

This takes care of the question of trust (should A believe the answer it

receives from B?), so crucial to the general problem at hand. Whether an answer

is correct depends on whether a translation is an interpretation and a service

is a theoremoid. Thus an answer is trustworthy if the mechanisms for verifying

interpretations and theoremoids are trustworthy.

Note also at this point that a given system may have many interfaces, each

containing only one or a few services of that system. This approach allows us

to consider trustable subsystems within a system and to use those subsystems

in trustable communication. For example, while a result given by Maple cannot

be fully trusted in general, many subparts of Maple are well encapsulated and

could be proved correct.

Example using Decision Procedures

Suppose Shol is a higher-order interactive theorem proving system with several

implemented theories including COF, a theory of a complete ordered �eld. COF

has one model up to isomorphism, namely, the real numbers with the usual

operations such as +, �, and <. An exceedingly rich theory, COF is adequate

for developing real analysis. Suppose also that Sfol is a �rst-order automated

theorem proving system with several implemented theories equipped with de-

cision procedures including PA, a theory of �rst-order Peano arithmetic. The

theoremoids of PA include �+, a decision procedure for additive number theory

(Presburger arithmetic), and ��, a decision procedure for multiplicative number

theory (sometimes called Skolem arithmetic). The framework outlined above can

be used to give Shol access to the decision procedures in Sfol.

Let I1 = (COF;S1) be an interface of Shol and I2 = (PA;S2) with f�+; ��g �
S2 be an interface of Sfol. Also let C = (export; import) be the connection from

I1 to I2 where export translates \�rst-order natural number formulas" of COF to

formulas of PA and import is a standard interpretation of PA in COF. (Because

COF satis�es Peano's (second-order) axioms for natural number arithmetic, (1)

export is not an interpretation and (2) import exists.) C o�ers a way of deciding

in COF many statements about the natural numbers using the two decision

procedures �+ and ��, both of which are nontrivial to implement. See [9] for

further details.

65

5 A Re�ned Communication Framework

There are several obstacles to e�ectively employing the simple framework pre-

sented in the previous section. In this section, three obstacles involving connec-

tions are addressed.

The �rst obstacle is that constructing connections between interfaces is a

challenging task, especially when the biform theories of the interfaces are based

on di�erent logics. The export translation of a connection must satisfy a syntac-

tic condition, but the import interpretation must satisfy both a syntactic and

semantic condition. As a general principle, it is easier to construct a translation

or interpretation � if the \primitive basis" of its source theory T1 (the primitive

symbols and axiomoids of T1) is small.

The second obstacle is that translating an expression E using the export

translation or the import interpretation of a connection may result in an ex-

pression much larger than E. As a general principle, it is easier to construct a

translation or interpretation � without this kind of size explosion if its target

theory T2 contains a rich set of de�ned symbols.

The third obstacle is that the theory S of an MMS behind the biform theory

T of an interface is likely to be enriched with de�ned symbols over time. De�ning

a symbol in S will have the e�ect of extending T to a new theory T 0. However,

an interpretation � of T will not be an interpretation of T 0 because � will not

be de�ned on expressions of T 0 containing the new de�ned symbol. As a result,

any connection to an interface of the form (T;S) will be broken by the de�nition
of the new symbol.

These three obstacles can be addressed by using a \conservative stack" in

place of a biform theory in the de�nition of an interface. Interface, connection,

informed request, and answer are rede�ned. The resulting re�ned framework is

a generalized version of the simple framework.

A conservative stack is a pair � = (�; �) of sequences where:

1. � = hT0; : : : ; Tni is a �nite sequence of biform theories such that, for all i

with 0 � i < n, Ti � Ti+1. Tn is called the theory of �.
2. � = h�1; : : : ; �ni is a �nite sequence of translations such that, for all i with

0 < i � n, �i is a retraction from Ti to Ti�1.

Notice that, by Proposition 1, the sequence � of retractions implies that � is a

\stack" of conservative extensions, i.e., T0 � � � �� Tn.

An interface is a pair I = (�;S) where � is a conservative stack and S is a

set of theoremoids of the theory of � called the services of I .
Let Ii = ((�i; �i);S i) be an interface with �i = hT i

0; : : : ; T
i
ni
i for i = 1; 2. A

connection C from I1 to I2 is a pair (export; import) where:

1. export is a translation from U1 to V 2.
2. import is an interpretation of U2 in V 1.
3. U1 and V 1 are members of �1.
4. U2 and V 2 are members of �2

Let �i be the composition of elements of �i from T i
ni

to U i for i = 1; 2. It is easy

to see that �i is a retraction from T i
ni
to U i for i = 1; 2. (exportÆ�1; importÆ�2) is

66

a connection from (T 1
n1
;S1) to (T 2

n2
;S2) in the simple framework even if U1 6= V 1

or U2 6= V 2.

An informed request is a tuple R = (C;E; �) where:

1. C is a connection from I1 to I2 as de�ned above.

2. E is an expression of the language of T 1
n1
, the theory of I1.

3. � = (�;M) 2 S2.
If A = (import Æ�2 ÆM Æ exportÆ�1)(E) is de�ned (where �1 and �2 are de�ned

as above), it is the answer to R; otherwise the answer to R is unde�ned. When

A is de�ned, it is a theorem:

Proposition 3. Let R and A be as above. If A is de�ned, then V 1 j= A.

Proof. Assume that A is de�ned. Since � is a theoremoid of T 2
n2
, the theory of

I2, T
2
n2
j= (M Æ export Æ �1)(E), and since �2 is a retraction from T 2

n2
to U2,

U2 j= (�2 ÆM Æ export Æ �1)(E). Since import is an interpretation of U2 in V 1,

we conclude that V 1 j= A. 2

The re�ned framework facilitates the construction of a translation or inter-

pretation � between two interfaces I1 and I2 by allowing the source theory of �

to be chosen from the lower part of the conservative stack of I1 and the target

theory of � to be chosen from the upper part of the conservative stack of I2 (ad-

dressing the �rst and second obstacles discussed above). If a conservative stack

� is extended to a larger conservative stack �0, then � can be freely replaced

with �0 without compromising any existing interfaces or connections (addressing

the third obstacle).

6 Specifying Requests and Services

Until now, we assumed that system A \magically" knows that it wants to use

service � of system B. However, in a more general setting, one would want to

specify a request (like evaluate this computation), and pass that speci�cation on

to some entity able to match it to an available service.

Thus, instead of dealing with services of I2, we need to deal with some

speci�cation S corresponding to some function f : L1 ! L1 (a computational

transformer) associated with a \virtual service" �1. Given S, the task then be-

comes one of �nding an informed request such that our communication diagram

commutes. In theory, this is what we understand that Armando and Zini's LS

Matcher [2] is somehow supposed to perform, although its task is never de�ned

precisely.

Let us de�ne reachable services as those computational theoremoids �2 of T2
that can be given a complete speci�cation in some meta-language Spec. We could,

for example, use casl [4], Z [17] or Specware [16] for this task. In other words,

we wish to de�ne services (and requests) implicitly, allowing nonconstructive

de�nitions as well. Note that we speci�cally exclude theoremoids that cannot

be �nitely axiomatized in Spec. Symmetrically to reachable services, we de�ne

67

(brokered) requests as those virtual services �1 of I1 which can be speci�ed

completely in Spec.

We then need to solve the speci�cation matching problem: given a pair

(S1; S2) of speci�cations for �1 and �2, does there exist a connection C such

that our communication diagram commutes?

Even in the simplest possible case where both systems are the same, this

problem can still be quite diÆcult unless great pains are taken to specify each

system's services in a very uniform manner. However the situation is far from

hopeless: even though there are many di�erent ways to specify that, for example,

a particular function is a primality veri�cation function (or an implementation

thereof), the task of deciding that two such speci�cations are equivalent is con-

siderably simpler than actually providing a provably correct implementation!

7 Conclusion

In this paper we have presented a mathematically rigorous framework for com-

municating mathematics between MMSs. This framework gives precise meanings

to notions such as (biform) theories, interfaces, services, connections, requests,
and answers. It addresses the issue of trust, which has been identi�ed as a central
issue in intersystem communication in related papers, by using interpretations
(meaning-preserving translations) to communicate answers. It also provides fa-

cilities for conservatively extending theories, allowing them to evolve as needed

without needing to rebuild whole new interfaces or to drastically update con-

nections.

We have de�ned precisely the problem of speci�cation of services, and of

logical speci�cation matching. We are aware that any useful implementation of

the ideas detailed in this paper would need to include such a facility, and we are

working in that direction.

References

1. A. Adams, M. Dunstan, H. Gottliebsen, T. Kelsey, U. Martin, and S. Owre. Com-

puter algebra meets automated theorem proving: Integrating Maple and pvs. In

R. J. Boulton and P. B. Jackson, editors, Theorem Proving in Higher Order Logics

(TPHOLs 2001), volume 2152 of LNCS, pages 27{42. Springer-Verlag, 2001.

2. A. Armando and D. Zini. Interfacing computer algebra and deduction systems

via the logic broker architecture. In M. Kerber and M. Kohlhase, editors, Sym-

bolic Computation and Automated Reasoning (CALCULEMUS-2000), pages 49{64.

A. K. Peters, 2001.

3. A. Asperti and B. Wegner. mowgli | a new approach for the content description

in digital documents. In Ninth International Conference on Electronic Resources

and the Social Role of Libraries in the Future, Autonomous Republic of Crimea,

Ukraine, 2002.

4. E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Br�uckner, P. D. Mosses, D. Sannella,

and A. Tarlecki. casl: The Common Algebraic Speci�cation Language. Theoretical

Computer Science, 286:153{196, 2002.

68

5. C. Ballarin. Computer Algebra and Theorem Proving. PhD thesis, Cambridge

University, 1999.

6. C. Ballarin, K. Homann, and J. Calmet. Theorems and algorithms: An interface

between Isabelle and Maple. In International Symposium on Symbolic & Algebraic

Computation (ISSAC-95), pages 150{157, 1995.

7. C. Ballarin and L. C. Paulson. A pragmatic approach to extending provers by

computer algebra - with applications to coding theory. Fundamenta Informaticae,

39:1{20, 1999.

8. P. G. Bertoli, J. Calmet, F. Giunchiglia, and K. Homann. Speci�cation and integra-

tion of theorem provers and computer algebra systems. Fundamenta Informaticae,

39:39{57, 1999.

9. J. Carette, W. M. Farmer, and J. Wajs. Trustable communication between math-

ematics systems. Technical report, McMaster University, 2003.

10. S. Dalmas, M. Ga�etano, and S. M. Watt. An OpenMath 1.0 implementation.

In International Symposium on Symbolic & Algrebraic Computation (ISSAC-97),

pages 241{248, 1997.

11. W. M. Farmer and M. v. Mohrenschildt. An overview of a Formal Framework

for Managing Mathematics. Annals of Mathematics and Arti�cial Intelligence,

38:165{191, 2003.

12. J. Harrison and L. Th�ery. A skeptic's approach to combining hol and Maple.

Journal of Automated Reasoning, 21:279{294, 1998.

13. D. J. Howe. Importing mathematics from hol into Nuprl. In J. Von Wright et al.,

editors, Theorem Proving in Higher Order Logics (TPHOLs 1996), volume 1125 of

LNCS, pages 267{282. Springer-Verlag, 1996.

14. M. Kerber, M. Kohlhase, and V. Sorge. An integration of mechanised reasoning

and computer algebra that respects explicit proofs. Technical Report CSRP-96-9,

University of Birmingham, 1996.

15. M. Kohlhase. OMDoc: An open markup format for mathematical documents (ver-

sion 1.1). Technical report, Carnegie Mellon University, 2002.

16. Y. V. Srinivas and R. Jullig. Specware: Formal support for composing software.

In Mathematics of Program Construction, pages 399{422, 1995.

17. J. Woodcock and J. Davies. Using Z: Speci�cation, Re�nement, and Proof. Series

in Computer Science. Prentice Hall, 1996.

System Description: Analytica 2

Edmund Clarke, Michael Kohlhase, Jo�el Ouaknine, Klaus Sutner

Carnegie Mellon University

{emc|kohlhase|ouaknine|sutner}@cs.cmu.edu

Abstract. The Analytica system is a theorem proving system for 19th

century mathematics written on top of the Mathematica computer alge-

bra system. It was developed in the early 1990's by X. Zhao and E. Clarke

and has since been dormant. We describe recent work to resurrect the

theorem prover and port it to newer versions of Mathematica. The new

system Analytica 2 can still prove the same theorems, but has been sig-

ni�cantly cleaned up. The code has been restructured and documented,

the declarative knowledge has been separated from a logical kernel, and

the system is being made available as a MathWeb service.

1 Introduction

The Analytica system [CZ92,BCZ98] is a theorem proving system for 19th

century mathematics.

It has been able to prove theorems from elementary calculus and number

theory, including a proof of the Bernstein approximation theorem and the the-

orems and examples in the second chapter in Ramanujan's Collected Work

[Ber85,CZ92]. The system was developed in the early 1990's by Xudong Zhao

and Edmund Clarke and has since been dormant.

Analytica is written on top of the Mathematica computer algebra sys-

tem [Wol02], a large commercial computer algebra system that o�ers a highly

developed document-centered front-end that facilitates communication with the

kernel and that allows for the development of multi-modal electronic documents,

so-called notebooks, that can contain code, text, graphics, and data. Notebooks

can render mathematical formulae in near-typeset quality. Moreover, Notebooks

are symbolic structures that can be manipulated by the Mathematica kernel

like any other symbolic expression in the system. They can also be exported in

LATEX and MathML format. We suggest that this computational environment

naturally supports the design and implementation of fairly complicated software

systems using symbolic computation. A description of a similar e�ort in the area

of computational automata theory can be found in [Sut02].

2 Porting the Code Base to Mathematica Version 5

Analytica was originally written for Mathematica version 1.2, which lacked

many of the features of current versions of the product. In particular, no graphi-

cal front-end was available and all communication to the kernel was handled by a

70

text-based interface similar to a command shell. In our work on the Analytica

prover we make substantial use of four new capabilities of Mathematica: the

notebook front-end We have used the front-end in the documentation of the

code base, and as user interface: As formula output in the Mathematica
frontend approaches that of TEX and notebooks supports a powerful folding

operation, Analytica's original LATEX output routines for proofs are now

obsolete and were deleted from Analytica.

external system interface JLink is used for interfacing to knowledge ex-

change formats like OMDoc (see Section 3).

native Xml processing capabilities are used heavily in communication with

Xml based services.

added symbolic computation capabilities in the Mathematica kernel: For

instance, support for symbolic summation and trigonometric simpli�cation

has dramatically improved in Mathematica since version 1.2. Nonetheless,

we have retained existing Analytica modules for these areas as plug-ins,

loadable on demand. These implementations are transparent to the theorem

prover and can thus be used to document proofs and computations that

would be opaque if carried out by Mathematica's built-in version.

The �rst step was to convert the formerly 50 plus source �les into two large

notebooks, one each for the prover and knowledge base parts (see Section 3).

Code for the prover is represented using a special Source style sheet that tightly

integrates the actual Mathematica code with accompanying documentation, ex-

amples and test code. From the Source style notebook one can automatically

generate �les that augment the Mathematica help browser and provide online

help for the Analytica system. From the same source document one can also

extract pure code �les that can be bundled together with the online documen-

tation into an add-on package (see [CKOS03] for details). Installation of this

package is very straightforward, and requires no more than to copy the package

�les to the appropriate place in the Mathematica �le structure.

3 Separating Mathematical Knowledge from Code

There are two kinds of code in Analytica: the program code and mathematical

knowledge used in proof search. To separate causes and make Analytica easier

to port to other mathematical domains, these are separated in Analytica2.

Originally, the mathematical knowledge used in Analytica was represented as

the following Mathematica code.

(* Rules for simplifying expressions involving the absolute value function. *)

UnProtect[Abs];

Abs[a_ b_] := Abs[a] Abs[b];

Abs[a_^n_] := Abs[a]^n;

Protect[Abs];

(* Local rule used in simplification. *)

AbsRule = {Abs[a_] :> If[TrueQ[WeakSimplify[a >= 0]], a,

If[TrueQ[WeakSimplify[a <= 0]], -a, Abs[Factor1[a]]]]};

71

The �rst block speci�es some rewriting rules for the Mathematica symbol

Abs that are subsequently used by Mathematica's built-in simpli�er. The sec-

ond code block speci�es a rewrite rule used in a special simpli�cation engine in

Analytica. The correctness of the Analytica system depends on a couple of

hundreds of such rules.

These rules are now collected in a notebook using as special Knowledge Rep-

resentation style that captures the information implicit in the original code frag-

ments. We have used a variant of the nb2omdoc transformer [Sut03] to trans-

form Knowledge style notebooks into the OMDoc format (Open Mathemat-

ical DOCuments [Koh03]), an Xml-based format for representing mathematical

knowledge in the large. OMDoc can be used as a basis for communicating with

other mathematical software systems and in particular, the MBase mathemat-

ical knowledge base [KF01], which acts as an external knowledge repository for

Analytica 2 (see section 4).

In the transformation we have made explicit and thus documented the math-

ematical knowledge used in Analytica. In the case of our example above, this

is given by the 4 theorems:

formalization the absolute value function . . .

1 8a; b:ja � bj = jaj � jbj commutes with multiplication

2 8a; n:janj = jajn commutes with exponentiation

3 8a:a � 0) jaj = a is the identity on IR+

4 8a:a � 0) jaj = �a is the negative identity on IR�

In the generated OMDoc representation, these theorems are represented in

a special assertion element that combines the formalization in OpenMath

[CCAMC02] representation with the natural vernacular. Note that the Math-
ematica code fragments contain other information than the logical theorems,

mostly of heuristic or computational nature, like the direction of the equation

in the simpli�cation rules. Therefore, the OMDoc representation also embeds

the original Mathematica code. As Mathematica has a native Xml (and thus

OMDoc) parser, Analytica can directly read OMDoc documents.

The main problem in the transformation to OMDoc is that the Analytica

logic is based on and uses many of the unique term representation features of the

Mathematica language, which are geared for programming with mathematical

objects, but whose logical foundations are insuÆciently explored ([Mar03,Kut03]

are recent exceptions).

For instance, functions in Mathematica are polyadic (they can have variable

arities). To make this palatable to the user and programmer, Mathematica em-

ploys sequence variables in pattern matching. Consider for instance the following

fragment from the de�nition for continuous functions.

Continuous[f_[a__], x_, x0_] :=

Apply[and, Map[Function[z, Continuous[z, x, x0]], List[a]]] /; ContFunction[f];

The function Continuous takes three arguments, an expression e, a (bound)

variable x, and a point x0; it is true, if e is continuous at x0 when viewed as

72

a function in x. The interesting part is that the expression e is of the form

f(a1; : : : ; an), where the variable a is a sequence variable that stands for the

sequence a1; : : : ; an
1.

Our OMDoc transformation currently treats sequence variables like arbi-

trary variables, and represents this as

8f; a; x; x0:C (f(a); x; x0), C
0 (f) ^ apply(^;map(�zC (z; x; x0))); list(a)

where we use C for Continuous and C 0 for ContFunction. Of course, this is not

a standard logical representation, and to communicate with other mathematical

software systems we will need to translate this into more standard represen-

tations. One approach we are experimenting with at the moment is to encode

sequence variables into higher-order logic with Currying, e.g. for communication

with the Tps theorem prover for higher-order logic [ABI+96].

4 A MathWeb Interface for Analytica

For the communication with the MBase system, we have equipped Analyt-

ica with an XmlRpc interface, see [Com]. This allows Analytica to store the

OMDoc-encoded knowledge externally and request the fragments needed for

the proofs of the respective theorems. The XmlRpc interface is built on Math-
ematica's JLink facility. and makes the Xml representations of the protocol

documents available to Mathematica, whose native Xml facilities are used to

convert them into Analytica's internal representations.

MBase is part of the MathWeb [ZK02] service infrastructure, which con-

nects a wide-range of reasoning systems (mathematical services), such as au-

tomated theorem provers, (semi-)automated proof assistants, computer algebra

systems, model generators, constraint solvers, human interaction units, and au-

tomated concept formation systems, by a common mathematical software bus .
Reasoning systems integrated in the MathWeb can therefore new services to

the pool of services, and can in turn use all services o�ered by other systems.

The next step in this development will to o�er Analytica as a Math-

Web service, making it possible to send problems in OMDoc form and receive

OMDoc-encoded proofs in return. The main problem here lies in the Mathe-
matica/Analytica logic as we have seen above. We plan to augment the proof

output of Analytica to point to the justifying theorems to make Analytica

proofs independent of the Analytica prover itself: Analytica does not cur-

rently produce proof objects; rather, a trace of the proof search is output as

a side-e�ect. Eventually, we plan to supply proofs from �rst principles for all

the knowledge used in the prover, so that Analytica proofs are grounded in

axiomatics, as they should be for a theorem prover for mathematics.

1 The post�x after the variable name marks a as a sequence variable for Mathemat-

ica. A single underscore marks a normal variable, and a triple one a possibly empty

sequence variable

73

5 Conclusion

We have described a recent e�ort to port the code base of the Analytica

theorem prover to the newest version of the Mathematica language and to re-

structure it, so that can be extended to new mathematical areas. The knowledge

part of Analytica is translated to the OMDoc framework for mathematical

knowledge representation. This general setup seems ideal for a knowledge-rich

deduction component like the Analytica theorem prover, and for the combi-

nation of computer algebra methods with proof engines.

References

[ABI+96] P. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning, and Hong-

wei Xi. TPS: A theorem-proving system for classical type theory. J. of

Automated Reasoning, 16:321{353, 1996.

[BCZ98] A. Bauer, E. Clarke, and X. Zhao. Analytica | an Experiment in Com-

bining Theorem Proving and Symbolic Computation. J. of Automated

Reasoning, 21(3):295{325, 1998.

[Ber85] B. C. Berndt. Ramanujan's Notebooks, Part I, pp. 25{43. Springer, 1985.

[CCAMC02] O. Caprotti, D. P. Carlisle, and eds. A. M. Cohen. The Open Math

standard, version 1.1b. Technical report, The Open Math Society, http:

//www.nag.co.uk/projects/OpenMath/omstd/, 2002.

[CKOS03] E. Clarke, M. Kohlhase, J. Ouaknine, and K. Sutner. Resurrecting the

Analytica theorem prover. In First QPQ Workshop on Deductive Soft-

ware Components, CADE-19, Miami, USA, 2003.

[Com] XML Remote Procedure Call Speci�cation. http://www.xmlrpc.com/.

[CZ92] E. Clarke and X. Zhao. Combining symbolic computation and theorem

proving: Some problems of Ramanujan. In D. Kapur, editor, CADE-11,

volume 607 of LNCS, pages 66{78, 1992. Springer Verlag.

[KF01] M. Kohlhase and Andreas Franke. MBase: Representing knowledge and

context for the integration of mathematical software systems. Journal of

Symbolic Computation, 32(4):365{402, 2001.

[Koh03] M. Kohlhase. OMDoc an open markup format for mathematical docu-

ments (version 1.2). Technical report, Computer Science, Carnegie Mellon

U., 2003. forthcoming.

[Kut03] T. Kutsia. Matching in at theories. In UNIF2003 [UNI03].

[Mar03] M. Marin. Functional programming with sequence variables. In UNIF2003

[UNI03].

[Sut02] K. Sutner. automata, a hybrid system for computational automata theory.

In J.-M. Champarnaud and D. Maurel, editors, CIAA 2002, pages 217{

222, Tours, France, 2002.

[Sut03] Klaus Sutner. Converting mathematica notebooks to OMDoc. to appear

in [Koh03], 2003.

[UNI03] 17th Workshop on Uni�cation, Valencia, Spain, 2003.

[Wol02] S. Wolfram. The Mathematica Book. Cambridge Univ. Press, 2002.

[ZK02] J. Zimmer and M. Kohlhase. System Description: The Mathweb Software

Bus for Distributed Mathematical Reasoning. In A. Voronkov, editor,

CADE-18, number 2392 in LNAI, pages 139{143. Springer, 2002.

A New Interface to PVS

A. A. Adams?

School of Systems Engineering, The University of Reading.

A.A.Adams@Rdg.ac.uk

Abstract. As part of an e�ort to produce a PVS server for MathWeb-

SB, a basic MathWeb-SB was produced. From this prototype, we derived

the speci�cation of an interface to PVS for use as a proof server. The

aim of this project is to develop �rst a server and then a client interface

from PVS to MathWeb-SB. This intermediate stage of simply de�ning

a new interface for PVS, it is hoped, will be of interest generally to the

Calculemus community. Thus, this paper presents this new interface in

both abstract and technical terms, and only in the \further work" section

will the larger project of intergration into MathWeb-SB be considered.

1 Introduction

PVS (Prototype Veri�cation System) [SOR] is a higher order theorem proving

system developed at SRI International in Menlto Park, CA. Of particular inter-

est to the Calculemus community is the development of a real analysis library

by Gottliebsen [Got00]. This development o�ers the possibility of various \proof

services" being o�ered by a PVS process requiring proof attempts of conjectures

involving transcendental functions. These proof attempts can be anything from

special-purpose PVS strategies (tactics), the gneral (quite powerful) PVS auto-

matic proof strategies such as \grind", or even fully interactive proof attempts

(for an experienced PVS user).

With this goal in mind, a prototype of a PVS/MathWeb-SB interface was

produced in 2001. Using the lessons learned from this prototype, a new interface

for using PVS in this manner has been developed. This paper describes this

interface in abstract terms (�rst the full desired interface and then the current

implemented parts of this) and then shows the initial implementation as Allegro

Common Lisp code which can be loaded into an existing PVS installation. Note:

once the interface has been tested it will be merged into the released code base

of PVS.

2 Interface Description

PVS was designed and built to be used via an Emacs interface. Following initial

experiments it was shown that it was possible to run the kernel of the system

? This work is supported by EU Grant Calculemus HPRN-CT-2000-00102 and UK

EPSRC Grant GR/S15044.

75

directly, although a number of diÆculties with the interface were identi�ed.

Not the least of these is that the input/output routines for the top-level of the

ACL session were designed to take input from and return messages to, various

Emacs bu�ers. As such, the resulting prototype interface was rather clumsy and

quite sensitive to changes in the Emacs interface. Proof attempts were starteed

using a function originally designed for a speci�c external program to use the

PVS system as a back end, but this function was optimised for that very speci�c

purpose and was diÆcult or impossible to control the way we desired. In addition,

the prototype had to parse the printing of the PVS kernel during proof to check

for a \Q.E.D." indicating a successful proof attempt.

So, we needed to de�ne a new interface in PVS which was a single new

function with various optional arguments to allow for a variety of behaviours.

We are only interested in a functional speci�cation for the interface.

{ The default setting of the interface function will be to accept two arguments:

a name and a conjecture. The conjecture will be parsed with respect to

the \prelude" (the PVS default theory environment) and then the standard

automatic proof strategy (grind) will be applied in an attempt to prove the

conjecture.

{ In some circumstances it is appropriate to attempt to prove the negaation

of a submitted conjecture, should the attempt to prove it true fail. Note:

PVS is a classical system, so double negation is not a problem. Thus, when

a negative conjecture (NOT F) is submitted, the negation of this can be left

as (NOT (NOT F)) rather than translated to F.

{ There are four possible return values: Proved ; Disproved ; Unknown and Un-
proved. The di�erence between the last two is whether proof of a negation

of the conjecture was attempted (Unproved) or not (Unknown).

{ A variety of options to the interface are also useful:

� An optional list of strategies for both positive and negative proof at-

tempts.

� A (list of) library name(s) (to add one of the distributed libraries to the

prelude).

� A ag to allow interactive proof rather than automated use of a strategy.

3 Interface Speci�cation

The interface is implemented as a lisp function prove-as-black-box, with the fol-

lowing operation.

76

3.1 Arguments

Argument Type Default

name string No whitespace allowed

lemma string PVS speci�cation language

Optional Arguments

pos-strat string or list of strings nil No whitespace allowed

neg-strat string or list of strings nil No whitespace allowed

Keyword Arguments

library string nil

�le string nil

interactive t or nil nil

3.2 Error Reports

Error Type Error Delimiters Information

Parse Error :(end-)pvs-parse-err error location within lemma and PVS message

Typecheck Error :(end-)pve-tc-err error location within lemma and PVS message

Lisp Error :(end-)pvs-lisp-err Debug information and error report instructions

3.3 Return Values

Return Value Interpretation

:proved Positive Proof Attempt Successful

:disproved Negative Proof Attempt Successful

:unknown Unsuccessful, negation not attempted

:unproved Unsuccessful, negation attempted

3.4 Side E�ects

The global variable *pvs-black-box-proof* is set (with the usual PVS proof script

syntax) to the proof resulting from the proof attempt. Thus, if there is a suc-

cessful positive or negative proof attempt then this is stored here. Otherwise the

�nal failed positive proof strategy is stored here.

3.5 Other Details

{ Negated conjectures have \ negated" appended to the provided name.

{ PVS generates Type Checking Conditions (TCCs) during typechecking.

These are added in as conditionals to both positive and negative ver-

sions of the formula. Thus if TCC(F) is the TCCs generated by formula

F then the positive conjecture is TTC(F))F and the negated conjecture is

TCC(F))NOT(F).

77

{ If the positive strategy list is empty and interactive is nil then the default

strategy of grind is applied.

{ If the negative strategy list is nil, no negation proof is attempted. If this is t
rather than a list of strategies then the same strategy or strategies as used

for the positive proof attempt is/are used.

4 Further Work

An implementation of the code as described above has been produced. It will

be tested this summer (hopefully results will be available by the Calculemus

meeting in Rome), and a new version of the MathWeb-SB half of the interface

will be produced during this time. It is hoped that a MathWeb-SB interface for

an automatic invocation of the PVS prover on a variety of libraries (in particular

the real analysis library and continuity-checker of Gottliebsen) will be available

late in 2003. Further work on making interactive use of the PVS prover via

MathWeb-SB is expected in the future. In addition, we hope to develop a system

allowing PVS to use other MathWeb-SB-enaled systems as oracles or black box

provers/calculators in future.

5 Acknowledgements

The work on the PVS/MathWeb-SB interface is dependent on the cooperation

of a number of other researchers:

{ Sam Owre of SRI International.

{ J�urgen Zimmer of The University of Edinburgh.

{ Andreas Franke of Universit�at des Saarlandes.

Thanks and credit are due to them for their collaborative e�ort on this project.

References

[Got00] H. Gottliebsen. Transcendental Functions and Continuity Checking in PVS.

pages 198{215. Springer-Verlag LNAI 1869, 2000.

[SOR] N. Shankar, S. Owre, and J. M. Rushby. The PVS Proof Checker: A Reference

Manual. Computer Science Lab, SRI International.

Integrating Computational Properties at the

Term Level

Martin Pollet1? and Volker Sorge2

1 Fachbereich Informatik, Universit�at des Saarlandes, Germany,

pollet@ags.uni-sb.de, http://www.ags.uni-sb.de/{\homedir}pollet
2 School of Computer Science, University of Birmingham, UK,

V.Sorge@cs.bham.ac.uk, http://www.cs.bham.ac.uk/{\homedir}vxs

1 Introduction

Human mathematicians often use representations for particular mathematical

concepts that allow them to remember properties of the concepts. After its ini-

tial introduction or construction the further use of a concept abstracts from its

construction. Moreover, special representations are used that are suitable for

particular reasoning strategies, for example multiplication tables, matrices and

diagrams [5].

On the contrary the representation of mathematical objects in deduction

systems is often dictated by the requirements of the formalism and logic of a

particular system. For instance, in lambda calculus sets are usually represented

as lambda terms containing a disjunction of equalities. For example, a set of

the form fa; b; cg is represented as �x (x=a_x=b_x=c). While these represen-

tations are theoretically suitable for reasoning about properties of the abstract

mathematical concept they are often a hindrance when dealing with concrete

objects in practice. The representations are often very di�erent from the infor-

mal mathematical vernacular. Furthermore they are typically also less suited for

direct computations and cannot be directly passed to a computer algebra sys-

tem. This has the disadvantage that identi�cation and interpretation of terms

has to be implemented in the interface between deduction and computation.

We present the notion of annotated constants as an abstraction over the

construction of concepts. It enables abstract, concise representation of a math-

ematical object together with implicit handling of its computational properties

inside a theorem proving system. An annotated constant replaces the functional

expression of an object such as a set or a list. It is treated as a constant of the

formal language by the prover, but it is associated with a datastructure that

contains a representation of the object, which is suitable input for special tactics

or computer algebra systems. Moreover, annotated constants distinguish partic-

ular objects from regular constants; a fact that can be exploited for input and

display purposes as well.

With annotated constants, trivial properties of concrete objects are already

implemented on the term level. Moreover, they ease the detection of equality

between objects and abstract from certain proof obligations needed to establish

? The author's work is supported by EU IHP grant Calculemus HPRN-CT-2000-00102.

79

necessary properties of the objects in question. Nevertheless annotated constants

do not extend the formal language of the theorem prover as they can be expanded

to their formal de�nitions on a more primitive term level and their required

properties are rigorously checked.

We emphasise that annotated constants are a pragmatic approach to the rep-

resentation of some concrete mathematical objects inside a theorem prover and

are not a theoretical framework to encode semantic or heuristic informations such

as existing formalisms which include annotations [4] or labels [2]. Moreover, their

introduction does not extend the underlying formalism of the theorem prover as

for instance the extension of type theory to inductive types does (cf. [7]). Finally,

our approach aims at facilitating the application of external computer algebra

systems inside the prover. Therefore, the objects are usually represented in a

form that can be directly used as input for a computer algebra system, which,

as a side-e�ect, also facilitates a human-oriented presentation of the objects. In

particular, we do not intend to implement optimised datastructures for eÆcient

computations (cf. [8]) from computer algebra itself.

2 Annotated Constants

Suppose we have a formal language L, then an annotated constant is a triple

(k; a; t), where k is a constant of L, a is the annotation, and t is a term in L
that is the formal de�nition of k.

The annotation a can be an arbitrary datastructure that may contain other

terms (without free variables) of the language L and must ful�l the property that
the constant k can be identi�ed and the de�ning term t can be generated from

the annotation. The datastructure for annotations is designed in such a way that

particular relevant information about the objects becomes directly accessible,

either to allow tactics to access their information, or to ease the communication

with external systems, such as computer algebra systems. Annotations allow to

identify di�erent classes of mathematical objects not only for tactics but also to

have a special display presentation.

The constant k is the formal representation and part of the language L. With

this representation we can map the properties of the annotations into the formal

system, namely, that two annotations a and a0 are equal if their associated

constants are identical.

Annotated constants are introduced for numbers, lists, tuples, sets, and cy-

cles. We describe the latter two in more detail.

Sets. Finite sets have a special notation in the mathematical vernacular, for

example fa; b; cg. The information connected with this representations is, that it

is a set, it contains �nitely many elements, and the elements are explicitly given.

Usually �nite sets with di�erent ordering of the elements, for example fa; b; cg
and fb; a; cg, are trivially identi�ed. We tried to capture these properties with

annotated constants for �nite sets. The annotated constant allows to access the

elements of a set without further analysis on lambda terms (the de�ning term

80

for the constant) and already implements the equality for sets which di�er only

in the ordering of their elements.

Annotation for �nite sets: The datastructure of sets (unordered lists), the

elements of the sets are terms of the formal language, e.g., fb; a; cg with
a; b; c 2 L.

Constant: The identi�er for the formal constant is generated from a duplicate

free ordering of the elements of the set, for the example kfa;b;cg 2 L.
De�nition: The ordering of the elements of the set that is the annotation is also

used to construct a lambda term as de�nition, e.g., �x:(x=a _ x=b _ x=c).

Cycles. A permutation is a bijective mapping of a �nite set onto itself and is

often given in cycle notation, for example, the permutation de�ned by the cycle

(1 2 3) acting on the set f1; 2; 3g maps 1 to 2, 2 to 3, and 3 to 1. The elements

of a cycle have to be duplicate free, this property is veri�ed during parsing and

allows to detect mistakes already in the input speci�cation (see Section 2.1).

Annotated constants for cycles implement a basic equality on cycles, that is

cycles are identi�ed if their elements are only shifted, for examples, (1 2 3) and

(2 3 1) are equal. For the de�nition of annotated constants for cycles we use

a representation that is similar to the (input) format of the computer algebra

system GAP.

Annotation for cycles: The datastructure of lists, when the elements are in

L and of type integers. Additionally the list must be duplicate free, e.g.,

(k3 k1 k2) with constants k3; k1; k2 2 L which are the constants of the

annotations 3; 1; 2 representing integers.
Constant: A constant representing the cycle in a normal form, that is, the

minimal element of the cycle is shifted to the �rst position, e.g., k(k1 k2 k3)2L.
De�nition: The term representing the shifted cycle constructed with

nil; cons 2 L, e.g., t(k1 k2 k3)=cons(k1; cons(k2; cons(k3; nil))).

The de�nition of annotated constants includes the identi�cation of the cor-

responding constant from its annotation. This identi�cation lies outside of the

formal system and can therefore be a possible source for errors. The veri�cation

of tactic applications which use the information provided by annotations, will

be explained in Section 2.3.

2.1 Implementation of Annotated Constants

The basic functionality for handling annotated constants is implemented on the

term level of the Omega system [6]. An annotated constant is essentially similar

to regular constants: it has the datastructure it denotes as name and the same

type as the expression (i.e. the de�ning term t) it represents. It can also be

replaced by its de�ning term during the proof or when expanding the proof to

check formal correctness. (The latter step is explained in more detail in Sec. 2.3.)

Annotated constants do not have to be explicitly speci�ed in the signature of

the proof and their de�ning term is only computed when necessary.

We extended Omega's input language to provide markup for annotated con-

stants to indicate the type of the object it represents. For each kind of annotated

81

constant the term parser has to be extended by an additional function. This al-

lows to specially parse annotations and to immediately transform them into a

normal form representation. During parsing additional properties can immedi-

ately be checked and errors in the speci�cation can be detected, for example

that the cycle is duplicate free. In other words the check for pure syntactic cor-

rectness via type checking can be enriched by additional functionality to verify

certain semantic properties of the input. An additional output function for each

kind of annotated constant allows to have di�erent display forms for presenting

formulas to the user.

2.2 Manipulating Annotated Constants

Annotated constants are usually manipulated using specialised tactics, which

can directly operate on the datastructures comprising the annotations. These

datastructures are deliberately chosen to reect the intuitive representation and

to ease the communication with external systems by using their input represen-

tation as annotation.

The computations themselves are either implemented in the programming

language underlying Omega or are performed using external computer algebra

systems. For instance, functions on integers such as addition, multiplication,

etc., are simply mapped to their counterpart in the Lisp programming language

in which Omega is implemented. We have one tactic that simpli�es expressions

containing integers by executing the appropriate Lisp functions.

On the other hand operations on cycles such as their application or the

composition of two cycles are executed using tactics that call the computer

algebra system GAP [3]. The results are then directly incorporated into the proof.

Since our notation of cycles is similar to the one used in GAP the translation is

straightforward.

We use annotated constants in a case study in which they substantially con-

tribute to the abstraction and simpli�cation of proofs. The case study itself

is concerned with the veri�cation of computations on permutation groups per-

formed by the computer algebra system GAP with the help of the proof planner

of Omega. Permutations are formalised as sets of cycles and concrete permuta-

tions are represented by annotated constants. Due to lack of space we refer to [1]

for details.

2.3 Guaranteeing Correctness

To guarantee correctness for a proof in Omega the tactics justifying single proof

lines have to be expanded to a machine-checkable calculus level. Thereby it is

often necessary that annotated constants are substituted by their de�ning terms,

for instance, to verify single computational steps. Moreover, additional properties

on the annotated constants need to be checked, if there are any. In particular,

those properties that have been checked informally during parsing or generation

of an annotated constant have to be painstakingly veri�ed at the logic level.

82

For example, for cycles it is always crucial to verify that they are dupli-

cate free lists of integers. This is achieved by recursively checking that a pred-

icate cycle holds. For the concrete cycle (1 2 3) the �rst two steps of this

veri�cation are: L1 : cycle(k(1 2 3)), L2 : cycle(cons(1; cons(2; cons(3; nil)))),

L3 : 1 62 f2; 3g^cycle(cons(2; cons(3; nil))): In the �rst step the constant k(1 2 3)

in line L1 is replaced with its de�ning term cons(1; cons(2; cons(3; nil))). The

second step is the expansion of the cycle predicate in L2 which yields two new

proof obligations in L3: to show that 1 is not an element of f2; 3g and that (2 3)

is again a valid cycle.

3 Conclusion and Future Work

With annotated constants we have introduced a technique to attach information

to objects implemented as constants in the formal language. This extension does

not change the formal system and has therefore no inuence on the correctness.

We have currently implemented annotations for some special types of mathe-

matical objects (numbers, lists, sets, tuples, and cycles), however the extension

for other special representations is straightforward. An interesting case are func-

tions and operations which can be evaluated when they are applied to annotated

constants. The operations of intersection and union could have computational

information annotated to be used when they are applied to concrete sets. With

functional annotations and arguments, one could think about annotations for

terms, which are the result of the evaluation.

We tried to capture some aspects of mathematical representations with an-

notated constants. There are further issues to be considered, for example, how

can di�erent representations of the same concept be expressed. This is especially

important when the key step of a proof is to use a suitable representation of the

problem or if di�erent representations are necessary for eÆcient computations.

Naturally the use of various, possibly interchangeable, representations has sub-

stantial implications for the underlying prover and its formal system. Robustness

of the proving techniques will need to be ensured by designing tactics, planning

methods, appropriate matching algorithms, etc. that can handle di�erent repre-

sentations of the same mathematical object. Moreover, guaranteeing soundness,

in particular for equality, will be less trivial than for annotated constants.

References

1. A. Cohen, S. H. Murray, M. Pollet, and V. Sorge. Certifying solutions to permutation

group problems. Proc. of CADE{19, LNAI, 2003. Springer Verlag. to appear.

2. D. Gabbay. Labelled Deductive Systems { Vol. 1. Number 33 in Oxford Logic Guides.

Oxford University Press, 1996.

3. The GAP Group. GAP { Groups, Algorithms, and Programming, Version 4.3, 2002.

http://www.gap-system.org.

4. D. Hutter. Annotated reasoning. Annals of Mathematics and Arti�cial Intelligence,

29(1-4):183{222, 2000.

5. M. Kerber and M. Pollet. On the design of mathematical concepts. Technical Report

CSRP-02-06, The University of Birmingham, School of Computer Science, 2002.

83

6. The Omega Group. Proof development with Omega. Proc. of CADE{18, vol. 2392

of LNAI, pages 143{148, 2002. Springer Verlag.

7. Coq Development Team. The coq proof assistant reference manual, 2002.

8. R. Zippel. E�ective Polynomial Computation. Kluwer Academic Press, 1993.

Towards a higher reasoning level in formalized

Homological Algebra?

Jes�us Aransay1, Clemens Ballarin2, and Julio Rubio1

1 Dpto. de Matem�aticas y Computaci�on. Univ. de La Rioja. 26004 Logro~no (Spain).

fjesus-maria.aransay,julio.rubiog@dmc.unirioja.es
2 Institut f�ur Informatik. Technische Univ. M�unchen. D-85748 Garching (Germany).

ballarin@in.tum.de

Abstract. We present a possible solution to some problems to mecha-

nize proofs in Homological Algebra: how to deal with partial functions

in a logic of total functions and how to get a level of abstraction that

allows the prover to work with morphisms in an equational way.

1 Introduction

EAT [8] and Kenzo [2] are software systems, written under Sergeraert's direction

in the nineties, for Symbolic Computation in Algebraic Topology and Homolog-

ical Algebra. They have achieved some results (homology groups) that have not

been determined yet by any other means (neither theoretical nor computational

ones). The systems are based on the intensive use of functional programming

techniques, which enable in particular to encode and handle at runtime the in-

�nite data structures appearing in Algebraic Topology algorithms.

In order to increase the reliability of the systems, a project to formally analyze

fragments of the programs was undertaken. Some results related to the algebraic

speci�cation of data structures can be found in [4]. We are now interested in the

algorithms dealing with the data structures; our goal is to give certi�ed versions

of some crucial fragments of Kenzo using the tactical theorem prover Isabelle [6].

Some previous works in the area of Group Theory and Algebraic Topology, useful

libraries mainly for Group Theory and the expressiveness of higher-order logic

were the reasons to choose Isabelle for our approach. ACL2 [3] might have been

another possible environment, since it is written on Common Lisp (as Kenzo

and EAT), but it is harder to deal in ACL2 with functional programming and

higher order logic, both of them needed for our work.

The �rst result that we want to prove mechanically is the Basic Perturbation

Lemma (BPL), since its proof has associated an algorithm which is used in

Kenzo as one of the central parts of the program. Once we obtain a complete

proof of the BPL, we also would like to get a certi�ed version of the program

from it. More information about the BPL can be found in [7]. In Section 2 we

comment some of the proofs we have already obtained. In Section 3 we present

the problems we have found trying to go further in the proof . In Section 4, we

? Partially supported by MCyT, project TIC2002-01626 and by CAR ACPI-2002/06

85

present the framework that we propose to overcome these diÆculties. The paper

ends with a conclusions section.

2 First lemma

In a previous article [1], a detailed proof of the BPL was given. This proof was

based on a collection of seven lemmas which use mainly equational reasoning

and algebraic structures, taking advantage of some special properties of chain

complexes and graded group morphisms. The �rst lemma of this collection is:

Lemma 1. Let (f; g; h) : D�) C� be a chain complex reduction. Then, there
exists a canonical and explicit chain complex isomorphism between D� and the
direct sum Ker(gf) � C�. In particular, F : Im(gf) ! C� and its opposite
F�1 : C� ! Im(gf), de�ned respectively by: F (x) := f(x) and F�1(x) := g(x),
are inverse isomorphisms of graded groups.

Instead of using the complete de�nition of reduction, we selected some of its

properties and then we proved in Isabelle a more generic lemma (the previous

lemma is an immediate consequence of this):

Lemma 10. Let C� and D� be chain complexes, and f : D� ! C� and g : C� !
D� be chain complex morphisms such that fg = idC� . Then C� is isomorphic to
Im(gf).

Isabelle libraries specifying the needed algebraic structures were developed.

The main diÆculty was the very unnatural way of dealing with morphisms:

instead of reasoning with them as \atomic" entities, we had to apply them to

\generic" elements of their domains in order to simplify expressions inside of

the algebraic structures. This task was even more complicated by the fact that

several di�erent domains (even for the same functional map) were involved in

each step of the proof.

3 Second lemma

Once this lemma was proved in Isabelle, the following one to be studied was:

Lemma 2. Let D� be a chain complex, h : D� ! D� (degree +1) a morphism
of graded groups, satisfying hh = 0D� and hdD�h = h. Let p be dD�h+hdD� and
incKer(p) the canonical inclusion from Ker(p) to D�. Then (idD��p; incKer(p); h)
is a reduction from D� to Ker(p).

The same method used for the previous lemma could be also applied to this

one, but some problems appeared. On the one hand, the size of the proof was too

big to continue and the proof scripts were becoming more and more unnatural,

which made it hard to follow the underlying idea of the proof. The reasons for

this were again the use of partial functions within a logic of total functions

86

(higher-order logic) and the lack of a tool to easily build new functions from

the old ones in an equational way. On the other hand, several morphisms with

di�erent domains and codomains (as it can be seen in both lemma 1 and lemma

2) appeared, and this made many steps of the proof repetitive and complicated.

It is almost sure that the lemma could be proved within this framework just

by separating the necessary situations, but for this lemma (and even more for

the following ones) at least 3 basic morphisms and 8 di�erent combinations and

restrictions of them were needed; the size of the proof would do it completely

inaccesible. This is what made us look for a better framework.

4 New framework

The de�nition of equality for functions in Isabelle is taken from the extensionality
principle: f = g , 8x:fx = gx.

Obviously, this is valid for total functions, but in our case (and usually in

computational mathematics) to deal with partiality in domains and codomains is

necessary. When domains are restricted and non-total, this information is stored

via the quanti�ers, and simply a linear combination of morphisms can turn into

something hard to understand (and hard to reason about in a mechanized way).

Moreover, some trivial facts are hard to state and also to prove in a logic of total

functions; for instance, the following one, which claims that for every function f :

fKer f = 0Ker f

Another problem is the composition of morphisms. In Isabelle the usual com-

position is de�ned when functions are total on the types, but when restricted

domains are used and a source set and a target set are declared, composition

has to be compatible with these domains.

In order to satisfy this needs, our proposal is to de�ne morphisms in a more

generic sense storing information explicitly, instead of keeping it in the logical

part. In order to work with the morphisms in an equational way, we also consider

it necessary to keep the source and the target of the function. In Isabelle syntax,

the generic type that we de�ne for a morphism between chain complexes is:

record (0a; 0b) MRP-type =

src :: 0a chain-complex

trg :: 0b chain-complex

map :: 0a) 0b

This de�nition of the MRP-type is useful to work with composition of mor-

phisms, since it allows direct access to the source and target structures and this

is necessary to de�ne compositions correctly from a mathematical point of view.

We also need a new equality de�nition to work with these triples. It should

be more generic than the extensionality principle, in order to be able to prove

identities like fKer f =equiv 0Ker f in a direct way:

87

constdefs

equiv :: [(0a; 0b) MRP-type; (0a; 0b) MRP-type]) bool

equiv mrp1 mrp2 � (src mrp1 = src mrp2) ^ (trg mrp1 = trg mrp2)

^ (8 x 2 carrier (src mrp1): map mrp1 x = map mrp2 x)

Two morphisms are equiv whenever they have the same source and target,

and produce the same result for all the elements of the source set. So, equiv is an

equivalence relation between triples and once this has been proved, is possible

to use it in Isabelle for equational reasoning. With this relation, the proof, for

instance, of fKer f =equiv 0Ker f , becomes trivial. This implementation produces

also a new level of abstraction, allowing to reason about functions without using

elements of their domains.

Another important tool which would allow to reason more eÆciently is the

following lemma (h; ; i denotes an object of MRP-type):

Lemma 3. Laureano's Lemma- Let hg; C;Di and hf;A;Bi be two morphisms
between chain complexes satisfying hg; C;Di Æ hf;A;Bi equivhh;A;Di and let A0

be a subchain complex from A, B0 a subchain complex from C 0, Im f contained
on B0, and Imh contained on D0. Then hg; C 0; D0i Æ hf;A0; B0i equivhh;A0; D0i.

This lemma gives a powerful tool for reasoning about morphisms that would

be quite hard to prove in other environments. Of course, it is also valid to reason

about any other type of algebraic structure (groups, rings, . . .).

Up to now, we have only developed in Isabelle the de�nition of equiv and

some of its basic properties and also some tools about compositions, but we have

developed the proofs by hand and these two features have shown to be exible

enough to prove the lemmas we need. Most of the basic steps of the proofs depend

only on equational reasoning (associativity, sum, inverse, . . .) or in the property

stated in the previous lemma. We do hope that these two tools will help us to

�nish the proof of the BPL much easier. Moreover, this implementation can be

also useful for other works where reasoning about morphisms (and not about a

concrete morphism or function) and their domains is needed and, of course, not

only in Isabelle but also in other theorem provers.

5 Conclusions

We consider that the problem tackled, i.e., the veri�cation of the Kenzo computer

algebra system in Isabelle, is interesting and challenging and gives rise to new

ideas on how to implement mathematical problems on an abstract level in a

theorem prover. Our �rst approach using only the available features in Isabelle

would have been possible, because it o�ers a complete implementation of higher-

order logic, but due to its size it would not have been very useful, and not very

readable. Both reasons led us to introduce tools to give a better mechanized

proof of the BPL (and more generically, to reason about morphisms within any

framework):

88

{ A new de�nition for morphisms storing information about the domain and

codomain, which helped to implement the basic operations (composition, ad-

dition, inverse, . . .) and also a new equivalence relation between morphisms

which allows us to compare partial functions directly in any logic of total

functions.

{ Some lemmas to reason about compositions where domain and codomain

are modi�ed and to state properties of morphisms starting from other mor-

phisms, as we saw in lemma 3.

{ A higher level of abstraction for equational reasoning on morphisms. The

point is to prove in the formal system that the set of morphisms over a chain

complex can be endowed with a ring structure and the morphisms between

di�erent chain complexes produce a group, and that both kind of morphisms

can be composed within a generic framework.

Another solutions have been proposed to deal with partial functions in Is-

abelle (see, for instance, [5] where option types are used to encode partial func-

tions) but a combination of the three tools we have just enumerated should be

enough for reasoning in an abstract way in our problem.

Our aim is to implement in Isabelle these three points. We hope (and our

attempts on paper prove it) that they will be useful to produce new lemmas in a

quite readable way and also with a smaller size. We also think that this approach

may be extended to other areas of mathematics where proving properties of

functions is needed and also to other theorem provers which employ a logic of

total functions.

References

1. J. Aransay, C. Ballarin and J. Rubio. Deduction and Computation in Algebraic

Topology. In Proceedings IDEIA 2002, Universidad de Sevilla, pp. 47-54.

2. X. Dousson, F. Sergeraert and Y. Siret. The Kenzo program.

http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/

3. M. Kaufmann, P. Manolios and J. Strother Moore. Computer-Aided Reasoning: An

Approach. Kluwer Academic Publishers, 2000.

4. L. Lamb�an, V. Pascual and J. Rubio. An object-oriented interpretation of the EAT

system. To appear in AAECC.

5. O. M�uller and K. Slind. Treating Partiality in a Logic of Total Functions. The

Computer Journal, 40(10): 640-652, 1997.

6. T. Nipkow, L. C. Paulson and M. Wenzel. Isabelle/HOL: A proof assistant for higher

order logic. Lecture Notes in Computer Science, 2283, 2002.

7. J. Rubio and F. Sergeraert. Constructive Algebraic Topology. Lecture Notes Summer

School in Fundamental Algebraic Topology, Institut Fourier, 1997.

8. J. Rubio, F. Sergeraert and Y. Siret. EAT: Symbolic Software for E�ective Homology

Computation. Institut Fourier, Grenoble, 1997.

Making proofs in a hierarchy of mathematical

structures

A case study within the Computer Algebra System FoC

Virgile Prevosto1;2 and Mathieu Jaume1

1 SPI { LIP6 { University Paris 6

8 rue du Capitaine Scott, 75015, Paris, France

fVirgile.Prevosto,Mathieu.Jaumeg@lip6.fr
2 INRIA { Projet Moscova

B.P. 105 - F-78153 Le Chesnay, France

Abstract. The FoC language is dedicated to the development of certi-

�ed computer algebra libraries. These libraries are based on a hierarchy

of implementations of mathematical structures. A FoC structure, called

a species, contains the declarations of primitive operations and axioms,

the de�nitions of derived operations, and theorems with their proofs. It is

built through inheritance steps from previously existing structures, which

includes in particular the rede�nition of an operation. In this paper, we

show that such a rede�nition may have an huge impact on some of the

proofs of the species, and may even invalidate some of them. We also

describe what information the FoC system can give to the user about

the proofs he is doing. As a conclusion, we propose a coding style to

minimize the number of proofs that must be redone after a rede�nition.

1 Introduction { Motivation

Whereas proofs of algorithms or \small" programs are usually rather easy to

obtain (or not overall diÆcult), they become more complicated when program-

ming \in the large", since we have to ensure the coherence of the whole soft-

ware architecture. This problem is particularly acute in the context of a hier-

archical architecture, like in the B [1] approach involving re�nements or in an

object-oriented approach involving inheritance. Indeed, using such frameworks

requires to perform analysis in order to check coherence properties (inheritance

lookup, resolution of multiple-inheritance conicts, dependency analysis, type-

checking ...). Nevertheless, such paradigms provide powerful mechanisms that

allow to introduce several concepts (de�nitions, speci�cations ...) in a very con-

cise way and ease the reuse of previous developments. Unfortunately, few logical

frameworks allowing to obtain formal proofs provide inheritance or re�nements

mechanisms.

In fact, when dealing with "standard" logical frameworks, like Coq [19], a

proof assistant based on the calculus of inductive constructions [7], proofs are

easier to obtain and executable code can be directly extracted from proofs [14].

However, making developments becomes a long run task leading to tedious and

90

repetitious work since many de�nitions and properties have to be duplicated.

Another drawback of this approach is that it is very diÆcult to make a prototype

of a given program. On the contrary, it is very often the case that one has to

make an huge proof before extracting the code. Furthermore, reusability becomes

very diÆcult, especially for proofs (see [9]).

Inheritance and re�nement mechanisms are powerful features which are par-

ticularly well-suited to develop a library of mathematical structures for a com-

puter algebra system since they allow to make several re�nements of a speci�ca-

tion until providing an executable code. The computer algebra system FoC [16,

17, 4, 20] provides such features and also allows to express properties about the

code and to make proofs. The computational part of the FoC library, mostly

developed by R. Rioboo, implements mathematical structures up to multivariate

polynomial rings and includes complex algorithms. In order to make proofs, the

FoC compiler provides a completely formalized framework (in which the proof

has to be done) taking into account all the hypotheses implicitly introduced by

re�nements or inheritance. Such a framework is obtained by a static analysis

based on a complete axiomatization in Coq of inheritance and decl- and def-

dependencies [3].

Due to the fact that a lot of proofs are needed, a problem of "proofware

engineering" arises. Suppose, for example, you have given a speci�cation of a

gcd function, and you assert some properties on this function. Some of these

properties may already be proved while others need a de�nition of the gcd

function. The FoC language allows to do the proofs just when you decide, of

course before using the unit being built. Is it a good idea to do the proofs as

soon as possible? as late as possible? In others words, is there a notion of "right

instant" to do proofs? We met this problem when training a group of twenty

undergraduate students to do "little" proofs in FoC. In this paper, we �rst

describe this problem in detail and we make some propositions to avoid it as

much as possible in a FoC development. Note that this problem is quite general

and the issues presented here may be useful in other systems.

2 A brief description of the computer algebra system FoC

The FoC project3 aims at building an environment to develop certi�ed com-

puter algebra libraries. In the FoC language, any implementation must come

with a proof of its correctness. This includes of course pre- and post- condition

statements, but also proofs of purely mathematical theorems. In this context,

reusability of code, but also of proofs is very important: a tool written for the

groups should be available for the rings, provided the system knows that every

ring is a group. Thus, like Axiom, FoC is based on a hierarchy of mathematical

structures.

Since we want to do some proofs, we need also a completely formalized rep-

resentation of the inheritance relations between the di�erent structures of the

3 http://www-spi.lip6.fr/~foc

91

hierarchy. This formalization points out that some invariants must be preserved

when extending an existing structure. We have then elaborated a concrete syn-

tax, allowing the user to write programs, statements, and proofs. It is restrictive

enough to prevent some inconsistencies but not all. So the FoC compiler must

make some analyzes to check the correctness of FoC programs. They are then

translated into our target languages, that is

{ Ocaml, a functional language of the ML-family, which can be compiled in

very eÆcient native code.
{ Coq, a proof-checker which o�ers powerful constructions and is quite close

to Ocaml.

FoC's Ground Concepts

Species. Species are the nodes of the hierarchy of structures that makes up the

library. They correspond to the algebraic structures in mathematics. A species

can be seen as a set of methods, which are identi�ed by their names. In par-

ticular, there is a special method, called the carrier, which is the type of the

representation of the underlying set of the algebraic structure. It is represented

by the keyword self. Every method can be either declared or de�ned.

{ Declared methods introduce the primitive constants and operations of the

structure. Moreover, axioms are also represented by declared methods, as

would be expected by the Curry-Howard isomorphism.
{ De�ned methods represent implementations of operations and proofs of the-

orems.

Currently, a proof in FoC consists in a Coq script interpreted in the context

of the species where it is done. Some syntactic sugar has been added to tell the

FoC compiler what are the dependencies (see below) of such a proof, so that

the compiler can set up the appropriate environment when translating a FoC

program into Coq.

Collection. A collection is built upon a completely de�ned species. This means

that every method must be de�ned. In other words, in a collection, every opera-

tion has an implementation, and every theorem is formally proved. In addition,

a collection is \frozen". Namely, it cannot be used as a parent of a species in

the inheritance graph, and its carrier is considered as an abstract data type. A

collection represents an implementation of a particular mathematical structure,

such as (Z;+; �) implemented upon the GMP library. Note that the user of a

collection does not know the representation of the carrier and thus, cannot break

representation invariants.

Def- and Decl- Dependencies A methodm1 of a given species s can call a method

m2 of s through the use of a method call (self!m2 in the FoC syntax). We then

say that m1 depends upon m2. Dependencies may arise in various places:

{ in the de�nition of a function,

92

{ in the statement of a property or a theorem, or
{ in the proof of a theorem.

In the latter case, we must distinguish between two kinds of dependencies:

{ there is a def-dependency upon m2 if we need to know the exact definition
of m2 to do the proof

4

{ there is a decl-dependency otherwise (we only need to know the declaration
of m2, i.e. its type or its statement).

A more formal de�nition of def- and decl- dependencies, can be found in [18].

To clarify the di�erence between def- and decl- dependencies, we can take the

example of a setoid. The species has the following declared methods: a carrier

rep, an abstract equality eq, and three properties stating that eq is reexive,

symmetric and transitive. From eq, we de�ne its negation neq, and prove, by the

theorem neq nrefl, that it is irreexive. In FoC, we represent such a setoid

like this (some properties and the proof script have been omitted):

species setoid =

rep;

sig eq in self �> self �> bool;

let neq (x,y) = #notb(self !eq(x,y));

property eq refl: all x in self, self !eq(x,x);

theorem neq nrefl: all x in self, not(self !neq(x,x))
proof : def neq;

decl eq refl;

. . . ;

end

If we observe the body of neq, we remark that it def-depends upon eq. Similarly,

eq refl depends upon eq, which is needed to express the statement of the

property. The statement of neq nrefl depends upon neq, but if we want to do

the proof of neq nrefl, it is not suÆcient to know the type of neq. Indeed, we

have to know that neq is the boolean negation of eq, so that we can apply the

reexivity of eq to conclude. This means that there is a def-dependency upon

neq (but also a decl-dependency upon eq refl).

When dealing with inheritance, def-dependencies have a major drawback: if

we want to rede�ne neq in a species that inherits from setoid, then we will have

to provide a new proof for neq nrefl, since the one we have here relies on the

old de�nition of neq given in setoid.

3 Erasure of Proofs during Inheritance: a Complete
Example

In this section, we present a complete example illustrating the problem that may

happen during the rede�nitions. We then give two issues to this problem.

4 Note that proof-irrelevance leads to a system in which there is no def-dependencies

upon theorems.

93

In the FoC hierarchy, the species of partially ordered sets inherits of setoids

and introduces a partial order relation leq together with its properties of re-

exivity, antisymmetry and transitivity. From these declared methods, a strict

order relation lt is de�ned and a theorem expressing the relations between leq,

lt, eq and neq is proved (here again, we omit some properties and proofs):

species partial order inherits setoid =

sig leq in self�>self�>bool;
let lt(x,y) = #and b(self !leq(x,y),#not b(self !eq(x,y)));

theorem lt is not leq : all x y in self,

((self !lt(x,y) �> (self !leq(x,y) and self !neq(x,y))) and
(self !leq(x,y) �> (self !lt(x,y) or self !eq(x,y))))

proof : def: lt neq;

decl: leq;

. . . ;

. . .

end

The proof of theorem lt is not leq depends upon lt and neq. Now, note that

this species introduces lt directly by a de�nition without giving any of its prop-

erties. The relation lt is coded but not speci�ed, thus the only possibility is that

lt is not leq def-depends upon lt and neq.

Going a step further, from partially ordered sets, by adding a property, we

can de�ne totally ordered sets, thus allowing us to use leq to give a de�nition to

eq. Hence, we are now able to prove the reexivity, symmetry and transitivity

properties of eq. Such proofs def-depend upon the de�nition of equality. From

this new property, we can also rede�ne the relation lt from leq.

species ordered set inherits partial order =

property total order : all x y in self,

#or b(self !leq(x,y),self !leq(y,x));
let eq(x,y) = #and b(self !leq(x,y),self !leq(y,x));

proof of equal reflexive = decl: leq reflexive;

def: equal;

. . .;

let lt(x,y) = #not b(self !leq(y,x));
proof of lt is not leq = . . . ;

. . .

end

Now, since the theorem lt is not leq proved in the species partial order

def-depends upon the \old" de�nition of lt, we have to prove it again accord-

ing to the new de�nition of lt. Indeed, due to the management of such def-

dependencies by the compiler, the current proof has been fortunately erased

during inheritance.

Now, depending on the context of development, we can wonder about the use-

fulness of the proof of lt is not leq in the species partial order. Of course,

94

if many species or collections inherit of partial order, proving lt is not leq

in the species partial order allows to avoid many duplications (since the �rst

de�nition of lt is often used). However, in the FoC hierarchy, no species (except

ordered set) or collections inherit of partial order, and then such a proof is

not really necessary since the �rst de�nition of lt is never used. In fact, it is

always the rede�nition of lt which is used in the numerous species or collec-

tions which inherit from ordered set since they use total orderings. But further

developments of the library may use partial orderings.

What are the issues to this question? The �rst one is to give a true speci�-

cation of lt, that is a declaration of lt and a property characterizing it. This

\speci�cation by properties" approach is the one used in the B system. It is

also reminiscent of the de�nition of partial functions by equations where these

equations are described by a predicate that can be directly translated in a Pro-

log style (see [8]). However, in these approaches, the computational part is not

considered. With this approach, partial order would be written that way:

species partial order inherits setoid =

sig leq in self�>self�>bool;
sig lt in self�>self�>bool;
property spec lt : all x y in self,

!lt(x,y) <�> (!leq(x,y) and !neq(x,y));

theorem lt is not leq : all x y in self,
((!lt(x,y) �> (!leq(x,y) and !neq(x,y))) and

(!leq(x,y) �> (!lt(x,y) or !eq(x,y))))

proof : def:neq;
decl: leq spec lt;

. . .;

. . .

end

Remark: A complete application of this solution would have rewritten setoid

as well to give a speci�cation neq spec of neq, so that lt is not leq would not

def-depend upon neq anymore.

Now, the proof of lt is not leq has only a decl-dependency upon lt, thus

it is insensitive to (multiple) inheritance or late-binding. Note that the �rst

de�nition of lt is very close to the speci�cation spec lt. Even if these two

approaches seem similar, they correspond to two di�erent points of view. Later,

at each (re)de�nition of lt, as in the species ordered set for example, we will

have to prove the property spec lt.

The second issue is closer to an implementation. It may be useful when

the �rst de�nition of lt was already given and used, properties and proofs be-

ing added later. So starting from the de�nition of lt, we introduce spec lt

as a new theorem. Then we are able to prove, as in the preceding solu-

tion, lt is not leq without using the de�nition of lt, by using only a decl-

dependency upon spec lt. This property can be seen as the \minimal hypothe-

sis" on lt which is required to prove lt is not leq. Hence, during inheritance,

95

instead of (re)proving lt is not leq, it suÆces to (re)prove is lt (which should

be shorter than the proof of lt is not leq). In other words, the property is lt

seems to be the \good cut".

species partial order inherits setoid =

sig leq in self�>self�>bool;
let lt(x,y) = basics#and b(!leq(x,y),basics#not b(!eq(x,y)));

theorem spec lt : all x y in self,

!lt(x,y) <�> (!leq(x,y) and !neq(x,y))

proof :def : lt neq;

decl: leq;

. . .;

theorem lt is not leq : all x y in self,

((!lt(x,y) �> (!leq(x,y) and !neq(x,y))) and
(!leq(x,y) �> (!lt(x,y) or !eq(x,y))))

proof : def:neq;

decl:spec lt leq;

. . .;

. . .

end

Remark: Once again, it would be possible to have a theorem spec neq in setoid,

so that lt is not leq would not have any def-dependency anymore.

In this case, if one de�nes a species or a collection which inherits of

partial order without rede�ning lt, he can use the proof of spec lt given

in partial order.

4 Adopting a New Coding Style to Make the Proofs

We can now try to analyze this example a bit further in order to state rules that

may ease the development of proofs in such an object-oriented framework. As

we have already noticed, there are two important questions.

{ The �rst one is to �nd a set of properties such that the rede�nition of the

speci�ed function invalidates as few proofs as possible.
{ The second one is to decide at which level of the hierarchy a proof has to be

done.

At the end of the section, we also discuss how the FoC system can help in

making such choices.

As a preliminary step, we assume that the typical development process of

a FoC library is often made of two steps. First, there is the elaboration of the

hierarchy of species with the computational methods attached to each of them,

and the speci�cations of the functions. Then, even if it is not recommended,

the proofs are usually done after the code has been tested (this allows to check

CPU-time or memory needeed). This is a way to avoid trying to prove erroneous

implementations. However, proofs that depend only on speci�cations can be done

before any test.

96

4.1 Expressing Speci�cations

Before doing any proof, the �rst thing to do is to express the properties that

have to be veri�ed by the methods of a species. From the example above, we can

draw the following guidelines to write such properties:

{ even if we do not make the proof formally, we should have in mind what are

its def- and decl- dependencies.

{ there should be as few theorems with def-dependencies as possible

{ theorems with def-dependencies have to be simple, so as to minimize the

work to be done in case of rede�nition

{ a given theorem should have at most one def-dependency. Otherwise, it might

indicate that a function has been underspeci�ed and that we have to rely on

its de�nition instead of its speci�cation. In other words, you have to convince

yourself that there is no way to escape from a def-dependency.

4.2 When Should we do the Proofs ?

The main lesson of the example above, is that it is quite diÆcult to �nd the \right

instant" when to do a proof. More precisely, if one wants to prove a property P

in a given hierarchy of species, one must take into account two things:

1. the framework of each species of the hierarchy. In particular, one has to

know which functions are de�ned and which properties are available in a

given species.

2. the global inheritance graph. Here, the number of child(ren) of each species

can be very important. Indeed, as we said, if this number is big, it may be a

good choice to do proofs as soon as possible, while if this number is rather

small, it may be better to delay the proofs.

By inspecting the local context of each species, we can �nd the �rst species s

which is re�ned enough in order to prove the theorem. But as said before, it does

not mean that we prove P in this species s: if P def-depends upon a method

x and x is rede�ned in every child of s, then the proof given in s will never be

used in any implementation. In this case, it may be better to delay the proof of

P , even if it could be done already in s. On the other hand, if the de�nition of

x found in s persists until a collection is implemented, then P should be proved

in s.

4.3 A Little Help from the Compiler

When the hierarchy of structures is large, it might become diÆcult to track by

hand every inheritance step in order to �nd out where a particular proof has

to be done. To face this problem, some tools are provided by the FoC system

in order to trace dependencies. They take advantage of the analyzes performed

by the FoC compiler to show some informations that may help the user in this

choice.

97

First, a warning is issued each time a proof of a property P is erased due to

the rede�nition of a function x. In addition, the name of the species s1 where P

is proved as well as the name of the species s2 where x is rede�ned are reported.

If this warning is issued too many times for the same P and x, it may indicate

that the proof of P came too early in the inheritance graph and that s2 might

be a better choice.

Second, FoC can tell the user that in a species s, all the functions involved

in the statement of a property P are de�ned. Actually, some experiences showed

that most of the time, if a proof def-depends upon x, x appears in the statement

of the theorem. Thus this warning may be a sign that the species s is a good

place to prove P .

5 Related work

Algebraic hierarchies have been developed in various theorem-provers or proof-

checkers. In particular, Lo��c Pottier [15] has developed an huge library in Coq

about fundamental notions of algebra, up to �elds. H. Geuvers and the FTA

project [11] are also using the Records of Coq to represent algebraic structures,

in order to de�ne abstract and concrete representations of reals and complex

numbers. Similarly, the Mizar Project has built since 1989 a fairly large database

of important theorems of mathematics in the Mizar Mathematical Library [22].

However, none of these works involve a computational counterpart, as in FoC. In

particular, this means that there is no rede�nition issues in these hierarchies: once

a theorem has been proved, its proof remains correct in the following structures.

The need of replacing a proof by another one only arises when one wants to

replace a generic algorithm by a more specialized (and more eÆcient one).

On another side, several attempts have been made to interface an existing

computer algebra system (CAS) and a theorem prover or a proof assistant. The

so-called \Skeptic's approach" of Harrison and Th�ery [12] consists in verifying a

result given by a CAS (for instance the primitive of a given function computed by

Maple) with a Theorem Prover (in their example, by formally deriving the result

in HOL). In other words, instead of proving the correctness of an algorithm, they

simply ensure the correctness of each returned result. This approach is much

lighter than FoC, since it relies on existing an CAS. However, it can be done

only when the veri�cation of the result is much simpler than the computation

(deriving vs. integrating).

Similarly, Dunstan, Gottliebsen Kelsey, and Martin [10] designed and inter-

face between Maple and PVS which allowed them to extend Maple with the

proof features of PVS. In particular this interface can correct some errors such

as a simpli�cation made without paying attention to the validity of the input

(such as
p
x2 ! x, which Maple usually performs whether x is positive or not).

Such an approach is very interesting since it ensures that Maple procedures are

called in a suitable context. But given the lack of semantics of Maple's language

it seems rather diÆcult { if not impossible { to prove the correctness of Maple

procedures as we could attempt to do it in FoC.

98

Another way to provide certi�ed computer algebra programs is to use the

extraction facilities provided by Coq. This has been done by Th�ery [21] on the

Buchberger algorithm. He �rst proved the correctness of this algorithm in Coq.

Then he used the extraction mechanism to get an Ocaml implementation of the

algorithm from his proof. While such an approach guarantees that the extracted

program is correct, it does not allow a \prototyping" phase. Indeed, one must do

the entire proof before extracting any useful program. When dealing with new

algorithms, that may be still under design, one might want to adopt a softer

approach, which, like FoC, allows to test the implantation (its correctness, but

also its eÆciency) before having all the proofs done.

In addition, we must mention the TH9OREM8 [6] system, which is imple-

mented in Mathematica. It consists in several provers able to handle various

proof situations. TH9OREM8 attempts to provide an uni�ed framework in

which the user can specify its problem, make some proofs, but also write some

algorithms which can help him to solve the initial problem. When programming

such an algorithm, the user of the system can also of course take advantage of

the computational power of Mathematica. However, it seems to be quite di�er-

ent from FoC in the sense that it does not rely on a hierarchy of mathematical

structures as the species and collections of FoC.

Last, the notion of development graphs used in the MAYA system [2] seems

to be closely related to the problem of proof erasure during inheritance. Indeed,

development graphs are used to minimize the number of proofs that are to be

done when the speci�cation of a given system changes during the development

(possibly to add a new functionality or to �x a bug). However, there are still

some di�erences. In fact MAYA is mainly dedicated to study the propagation of a

change in an structure through an already existing hierarchy. On the contrary, we

have tried here to address the issue of creating a new structure from existing one

through inheritance step. In other words, MAYA operates on a closed hierarchy

in which nodes may evolve, while FoC uses an open hierarchy with �xed nodes.

6 Perspectives

The current stage of the FoC library contains only a few proofs with respect

to the computational part. One of the main tasks that remain to do is to com-

plete the speci�cations of each of the functions used in the library, following the

methodology of section 4.1. Then, according to section 4.2 we will have to decide

where these speci�cations should be proved, and make the proof.

The last step is likely to be quite long and tedious, especially if it is done with

Coq scripts. Actually, such a script is most of the time done interactively, which

means that in order to do a proof, we must �rst compile all the species into Coq

with a dummy proof, �nd the place which corresponds to the theorem in the

resulting �le, write the script by interacting with the Coq interpreter, and copy-

paste it in the original FoC �le. It is clearly impossible to do a large amount of

proofs that way, and we are currently designing our own proof tool. It is based

on Lamport's hierarchical style [13], in which a proof consists of intermediate

99

lemmas, each of them being proved by other lemmas, until we reach some trivial

properties. One of the interests of this style is that it might allows us to re�ne

the def-dependency analysis, so that a rede�nition might not invalidate a whole

proof, but only some of the intermediate lemmas used in it.

Another point which could help us writing proofs would be of course to reuse

as much as possible the existing ones, especially those who have been done in

Coq. A �rst attempt has been done in [9], which showed on an example from

the group theory that this was possible, but a lot of work is needed to obtain a

systematic way to reuse such proofs.

7 Conclusion

In this paper, we showed how classical inheritance mechanisms of object-oriented

programming are not harmless when dealing with theorems. The main point here

is that the rede�nition of a function during inheritance may invalidate some

proofs, which are then erased and must be redone in the new context.

We also proposed a methodology to try to minimize the impact of such a

rede�nition, that is to invalidate as few proofs as possible, and to invalidate

small proofs rather than long and complicated ones. Thanks to that, we hope to

be able to ease the development of the certi�ed part of the FoC library. Indeed,

when including proofs in the hierarchy, a methodological question arises: when or

where must we include the proofs? As we said, the naive answer to this question

consisting in making proofs as soon as possible might not always be the good

answer, and is de�nitely not suÆcient as a coding style.

In the long run, the FoC compiler might evolve into a system in which

the user could easily specify its algorithms, make some prototypes, and prove

the correctness of the implementations once they are mature. In this context,

the hierarchical structure of the FoC libraries would also allow to build such

programs step by step, and to have a very �ne control over each part of the

algorithms, by choosing the exact place where to do each proof.

References

1. J.R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University

Press, 1996.
2. S. Autexier and D. Hutter. Maintenance of formal software development by strat-

i�ed veri�cation. In Proceedings of LPAR, volume 2514 of LNCS, Tbilisi, Georgia,

October 2002. Springer.
3. S. Boulm�e. Sp�eci�cation d'un environnement d�edi�e �a la programmation certi��ee

de biblioth�eques de Calcul Formel. PhD thesis, Universit�e Paris 6, 2000.
4. S. Boulm�e, Th. Hardin, D. Hirschko�, V. M�enissier-Morain, and R. Rioboo. On

the way to certify computer algebra systems. In Proceedings of the Calculemus

workshop of FLOC'99 (Federated Logic Conference, Trento, Italy), volume 23 of

ENTCS. Elsevier, 1999.
5. B. Buchberger. Symbolic computation: Computer algebra and logic. In F. Baader

and K.E. Schultz, editors, Proceedings of the "Frontiers of Combining Systems"

conference, Applied Logic Series. Kluwer, 1996.

100

6. B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and D. Vasaru. A

survey on the theorema project. In W. Kuechlin, editor, Proceedings of ISSAC'97.

ACM Press, 1997.

7. T. Coquand and G. Huet. The calculus of constructions. Information and Com-

putation, 76(2-3):95{120, 1988.

8. C. Dubois and V. Vigui�e Donzeau-Gouge. A step towards the mechanization of

partial functions: domains as inductive predicates. In Workshop on mechanization

of partial functions, CADE-15, 1998.

9. C. Dubois, J. Grandguillot, and M. Jaume. R�eutilisation de preuves formelles :

Une �etude pour le syst�eme FoC. In INRIA, editor, 14�eme Journ�ees Francophones

des Langages Applicatifs, JFLA'2003, pages 63{75, 2003.

10. M. Dunstan, H. Gottliebsen, T. Kelsey, and U. Martin. Computer algebra meets

automated theorem proving: A maple-pvs interface. In Proceedings of the Calcule-

mus Workshop, 2001.

11. H. Geuvers, R. Pollack, F. Wiedijk, and J. Zwanenburg. The algebraic hierarchy

of the fta project. In Proceedings of the Calculemus Workshop, 2001.

12. J. Harrison and L. Th�ery. A skeptic's approach to combining HOL and Maple.

Journal of Automated Reasoning, 21:279{294, 1998.

13. L. Lamport. How to write a proof. research report, Digital Equipments Corpora-

tion, February 1993.

14. C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system Coq.

Journal of Symbolic Computation, 15(5{6):607{640, 1993.

15. L. Pottier. contrib algebra pour coq, March 1999. http://*pauillac.inria.fr/

*coq/*contribs-eng.html.

16. V. Prevosto and D. Doligez. Algorithms and proof inheritance in the foc language.

Journal of Automated Reasoning, 29(3-4):337{363, dec 2002.

17. V. Prevosto, D. Doligez, and Th. Hardin. Algebraic structures and dependent

records. In S. Tahar C. Munoz and V. Carreno, editors, TPHOLs : 15th Inter-

national Workshop on Higher Order Logic Theorem Proving and Its Applications,

volume 2410. LNCS, Springer-Verlag, August 2002.

18. S. Ranise. Combining generic and domain speci�c reasoning by using contexts. In

Jacques Calmet et al., editors, Proceedings of AISC-Calculemus, volume 2385 of

LNAI, pages 305{318, Marseille, July 2002. Springer-Verlag.

19. The Coq Development Team. The Coq Proof Assistant Reference Manual Version

7. INRIA-Rocquencourt, 2002.

20. The FoC Development Team. The FoC System Reference Manual Version 0.0.

LIP6 { INRIA { CNAM, 2003.

21. L. Th�ery. A certi�ed version of buchberger's algorithm. In Proceedings of CADE-

15, pages 349{364, Lindau, Germany, July 1998.

22. A. Trybulec et al. Mizar mathematical library. http://mizar.uwb.edu.pl/

library/.

Formal proofs and computations in �nite

precision arithmetic

Sylvie Boldo1, Marc Daumas1, and Laurent Th�ery2

1 Laboratoire de l'Informatique du Parall�elisme

UMR 5668 CNRS { ENS de Lyon { INRIA

Lyon, France

Sylvie.Boldo@ENS-Lyon.Fr & Marc.Daumas@ENS-Lyon.Fr

2 Dipartimento di Informatica

Universit�a di L'Aquila

L'Aquila, Italy

Laurent.Thery@di.univaq.it

Abstract. In this paper, we give examples of application in the speci�c

area of oating point arithmetic where being able to mix formal reasoning

and computing power is mandatory.

1 Introduction

Hardware units and algorithms manipulating oating point numbers are applica-

tions where formal proofs and in particular theorem proving have demonstrated

to be useful. Pioneering works such as [9, 20, 29, 34] have shown both the bene-

�ts one could get from using formal methods and some pitfalls that should be

avoided [3]. Inspired by these works, we have been developing our own library

to reason about oating point numbers in the Coq system [25]. This library

has been built as generic as possible. Properties are proved in the most general

possible setting, and only when necessary a particular radix, a particular format,

or a particular rounding mode is introduced.

Using our library, not only already known results have been formally proved

for the �rst time but also new results have been established [7, 10]. In that re-

spect using a theorem prover has been a stimulating and productive experiment.

While trying to apply our library to more and more complex examples, we were

quickly limited by the simple fact that Coq was really bad at computing. The

applications we are considering really require a system good at doing both de-

duction and computation.

In this paper we present some of these applications and propose them as

challenges for systems claiming to integrate deduction and computation. The

paper is organized as follows. In Section 2 we give a short introduction on IEEE

oating point numbers. In Section 3 we present some of our results and explain

how having some basic computations could have largely improved our produc-

tivity. Section 4 and Section 5 have a more prospective avour and describe

some applications we have just started looking at. Section 4 describes two gen-

eral methods for validating approximations of elementary and special functions.

102

Section 5 gives examples where validating the actual code manipulating oating

point numbers used by computer algebra systems could be of some interest.

2 Floating point numbers

Floating point numbers are de�ned by the IEEE-754 standard [37]. They are

represented using bits s, el�1 � � � e0 and d�1 � � � d1�prec interpreted as shown be-

low:8>>>><
>>>>:
(�1)s �

1 +

1�precX
i=�1

di2
i

!
� 2
P

l�1

i=0
ei2

i+1�2l�1 if some ei's are not equal to zero

(�1)s �

1�precX
i=�1

di2
i

!
� 22�2l�1 if all ei's are equal to zero

In our formalization we do not use the exact representation of the hardware

oating point numbers de�ned by the IEEE-754. Instead, we de�ne a generic

oating point number as a pair of integers (n; e). They are mapped from Z
2

onto R by

(n; e) ,! n�
e

where �, the radix of the oating point system, is an integer constant strictly

greater than one. We focus our interest on pairs (n; e) such that n and e are

bounded in order to be representable as a oating point pair. This means

jnj < �
prec and e � �emin

with prec > 1.

Given a number p, the weight of the last bit/digit of the IEEE-like mantissa

is called ulp(p). The rounded value of a real value r is denoted Æ(r) and must

be one of the two oats that are around it. When the real to be rounded can be

represented by a bounded oating point number, the two oating point numbers

around it are purposely equal. The standard de�nes 4 rounding modes (round

to nearest, round up, round down, round to zero) that determine uniquely what

the rounded value of any real value is.

Following the philosophy of the IEEE standard, all operations on oating

point numbers should return the rounded value of the result of the exact opera-

tion. For example, the addition of two oating point numbers a, b should always

return Æ(a+ b) where + is the usual addition over the reals. Sometimes correct

rounding is impossible to ensure and we just have faithfulness. An operations is

faithful if the result is either the rounding up or the rounding down of the real

exact value.

When performing a sequence of oating point operations, each single opera-

tion may introduce a rounding error. Thus, the result can be arbitrary far from

the exact value. The absolute value of the di�erence between the result and the

exact value is called the error.

103

3 Manipulating inequalities explicitly

Proofs in computer arithmetic are mainly used to formally establish bounds on

errors. To illustrate what a proof in computer arithmetic is, consider the theorem

RoundLeGeneral used in [5]. The theorem RoundLeGeneral states that, if p is a

representable oating point number that is a rounding to the nearest of a real

z, then

jpj � jzj
1� ��prec

+
��emin�1

1� ��prec

The beginning of the pen and paper proof looks like this:

jpj � jzj

1���prec
+ �

�emin�1

1���prec

, (1� ��prec)� jpj � jzj+ ��emin�1

, jpj � �jpj � ��prec + ��emin�1
� � jzj

, jpj � �jpj � ��prec + ��emin�1
� � jpj � ulp(p)

�
and jpj � ulp(p)

�
� jzj

The �rst two steps are simpli�cations and the third one splits the inequality into
two subproblems. Unfortunately the interaction with the prover requires many
more steps:

jpj �
jzj

1� ��prec
+

�
�emin�1

1� ��prec

�
1� �

�prec
�
� jpj �

�
1� �

�prec
�
�

�
jzj

1� ��prec
+

�
�emin�1

1� ��prec

�

jpj � jpj � �
�prec �

�
1� �

�prec
�
�

�
jzj

1� ��prec
+

�
�emin�1

1� ��prec

�

jpj � jpj � �
�prec � jzj �

1� �
�prec

1� ��prec
+ �

�emin�1 �
1� �

�prec

1� ��prec

jpj � jpj � �
�prec � jzj � 1 + �

�emin�1 � 1

jpj � jpj � �
�prec � jzj + �

�emin�1

���emin�1
+
�
jpj � jpj � �

�prec
�
� ���emin�1

+
�
jzj+ �

�emin�1
�

���emin�1
+
�
jpj � jpj � �

�prec
�
� jzj

jpj �
�
jpj � �

�prec
+ �

�emin�1
�
� jzj

jpj �
�
jpj � �

�prec + �
�emin�1

�
� jpj �

ulp(p)

�
and jpj �

ulp(p)

�
� jzj

Note that the �rst and fourth steps also require to prove that the quantity
0 < 1� ��prec is strictly positive. This adds an extra four steps to the proof:

0 < 1� �
�prec

�
�prec + 0 < �

�prec + (1� �
�prec)

�
�prec

< �
�prec

+ (1� �
�prec

)

�
�prec

< 1

�
�prec

< �
0

and 1 = �
0

104

The three steps of the paper and pencil proof are now fourteen steps in the

prover.

Another example is the computation of a � x + y. The real computation is

Æ(Æ(a � x) + y) with two rounding errors. In [5] it has been proved that this

computation is faithful under few assumptions:

Theorem 1 (Axpy opt) Given real numbers a0, x0 and y0, and bounded oat-
ing point numbers a, x and y, if no overow occurs and if

5
2 + ulp

2� ulp
�
�
ja� xj+ �� ulp

2

�
� jyj and

jy0 � yj+ ja0 � x0 � a� xj � ulp

8
((1� ulp)� jyj � ja� xj � 2� �) ;

then Æ(Æ(a� x) + y) is a faithful approximation of a0 � x0 + y0.

where � is the smallest normal positive number and ulp is an abbreviation

for ulp(1). For sake of simplicity, we ask that ulp � 2�3. That condition will be

met by every reasonable hardware implementation.

The proofs works as follows. We �rst distinguish two cases. First, if r � f

we prove that jf � rj < ulp(f�) where f� is the oat predecessor of f . Second,

if r � f we prove that jf � rj < ulp(f). These two subgoals are then proved

using a fair amount of simpli�cations but only using few basic properties of the

roundings. Moreover, having to apply manually the simpli�cation steps make it

diÆcult to factorize subproofs. For example, the proof is further split into three

subcases. We note t = Æ(a� x) and u = Æ(Æ(a� x) + y) = Æ(t+ y).

{ When t+ y � u, after some work we are left to prove that

jt+ y � uj � 1

2
ulp(u�):

{ When u < t + y � u + 1
2
ulp(u�), after some work we are left to prove the

(easy) fact that

jt+ y � uj � 1

2
ulp(u�):

{ When u+ 1
2
ulp(u�) < t+ y, after some work, we are left to prove that

jt+ y � uj � ulp(u)� 1

2
ulp(u�):

All the proofs follow the same general pattern but each subcase has its own

details. It follows that the Coq �le is 3 400 lines long and about 80 % of it is

only dealing with equalities/inequalities.

What makes the formal proofs so long is that we have to explicitly guide the

prover for performing simpli�cations. Simplifying expressions automatically is

possible, all computer algebra systems do that. Automatic simpli�cation would

yield a much more comfortable and productive interaction with the proof system.

105

We have been developing dedicated tactics to perform some basic simpli�cations.

With respect to what is proposed by computer algebra systems (see for example

[31]), our simpli�cations try to avoid as much as possible to modify the overall

structure of the formula. The idea is to get as close as possible to simpli�cations

that are done in paper and pencil proofs. For example given the formula

x(z + y + 2) < y(3x+ 1)

all the simpli�cation can do is to modify the coeÆcient of the di�erent monomials

1 x(1 z + 1 y + 2) < 1 y(3 x+ 1):

A possible simpli�cation is

1 x(1 z + 0 y + 2) < 1 y(2 x+ 1)

giving the result

x(z + 2) < y(2x+ 1)

We still need to further develop our set of tactics so to make our library an

e�ective environment to formally check the kind of proofs we have presented

here.

4 Deriving inequalities from function analysis

For a few decades, many implementations have been proposed for the elementary

functions [32] and a few ones for the special functions. These functions cannot be

implemented exactly in a �nite number of steps. They have to be approximated.

Straightforward approximations such as Taylor expansions are quite slow and

many improvements have been used to enhance speed and precision of the algo-

rithms. It seems impossible to avoid small mistakes such as the one presented

in [19] about one seminal publication [38]. As even small errors may trigger

catastrophic results, libraries should be checked with some formal tool.

Lately, designers favour the use of polynomial approximations of the target

function over a set of small intervals, i.e. the function f(x) is approximated by

a polynomial P (X) over an interval I . Below, we consider two of the options

available for establishing and checking the error bounds of such approximations.

The �rst one has already been successfully used to validate an implementation

of the exponential function. It requires some non-trivial computations (Taylor's

expansion, isolating roots). The second one is even more challenging since com-

putation is at the heart of the validating process.

4.1 Root isolation on the derivative of the error function.

The coeÆcients of P (X) are oating point numbers (rational numbers) and have

been computed elsewhere. Formal proof checking is only applied to validate the

106

error bounds f(x)�P (x). As stated in [19], this \procedure has the added advan-
tage that we can take from the literature the polynomial approximations actually

considered by other workers, without worrying about whether they coincide with

the best approximations as we would calculate them."

The error bound can be checked by isolating all the zeros of f 0(x) � P 0(x).

Isolation intervals for the di�erent roots are reduced and f(x)�P (x) is bounded
on each interval containing a root of f 0(x) � P 0(x). Algebraic tools have long

been used to isolate zeros of polynomials, but they do not work on polynomials

mixed with transcendental functions.

Harrison [19] replaced the target function f(x) by a large-degree Taylor's

expansion T (X) that is very close to f(x). The analysis is then carried on using

the well-known Sturm's series to isolate the zeros of the polynomial P 0(x)�T 0(x).

The �nal bound is jjf(x) � T (x)jj1 + jjT (x) � P (x)jj1 where the �rst norm is

bounded by one of Taylor's formulas.

4.2 Interval arithmetic and bisection.

Many authors [18, 27] have proposed to use interval arithmetic to �nd guaran-

teed extrema of functions. Given an expression g or a program that does not use

branches, we can compute a superset of g(J) for any interval J . This could be

achieved by validating formally a program that evaluates the expression g using

a validated library for interval arithmetic.

It is well known that interval analysis usually yields pessimistic bounds. There

is no chance that computing f(x) � P (x) on interval I itself would lead to any

usable error bound on P but this process can be re�ned by replacing I by sub-

intervals Ik such that I 2 S Ik. Recursively sub-intervals Ik can be split down

to the point where all interval supersets f(Ik) are suÆciently accurate.

This is how a more realistic maximum of a function can be computed: we

handle a set of intervals (Ik) and a lower bound on the maximum of f .

{ (Ik) I

fmax �1
{ Each interval Ik is examined: we compute the interval evaluation X of f over

Ik , then:

� If Xmax � fmax, it guarantees that the maximum is not in Ik and Ik is

discarded.

� Otherwise if Ik is the smallest interval allowed (between a oating point

number and its successor in the given format), then the maximum can

be computed on this interval with a realistic bound.

� Otherwise the interval Ik is split in two intervals (lower and upper half)

that are added to the (Ik). The interval Ik itself is discarded. The max-

imum is updated to Xmin if fmax � Xmin.

From a theoretical point of view, this algorithm should work, but a rule of

thumb predicts that we will need as many as 2prec subintervals to obtain a precise

upper bound on the error.

107

To get better results, we use a property of di�erentiable functions over a

compact set: the extrema are located either on the border of the compact set or

on a root of its gradient. If the function can be di�erentiated twice, we can also

test if its Hessian matrix is symmetric positive and de�nite, thus meaning that

the zero of the gradient is not located on a saddle point. Testing the matrix may

be long, so we usually test a weaker condition. For example, we check that all

the diagonal components are positive. If any of these tests fails, the interval is

discarded.

For the computation of the maximum, it means that if the interval evaluation

of the gradient of f does not contain 0 or if its Hessian matrix is symmetric

positive (or something weaker), the interval Ik can be discarded.

In practice, this code is easy to parallelize and program can be signi�cantly

sped up by using multiple processors and/or machines over a network.

5 Aggregating little rounding errors into intervals

Floating point arithmetic has been used by computer algebra systems for di�er-

ent reasons.

5.1 Description and analysis of numerical programs

To describe faithfully the behaviour of a numerical program using oating point

arithmetic, computer algebra systems should include a model of oating point

arithmetic. The model should be very close to the machine implementation and

should have been studied in details. These are two of the goals of our library [10,

6].

Melquiond [28] has implemented and studied a program to detect future

intrusions of airplanes into conict areas. This work is based on an earlier imple-

mentation [14] computing on ideal real numbers and supposing that the airplanes

evolve in a Euclidean 3D space. The algorithm has been thoroughly tested and

its proof of correctness was validated using PVS.

Melquiond took care of oating point round-o� errors and of the fact that

airplanes are localised and move over a spheroid (the earth). Small errors are

scattered along the path of the development of this new algorithm. Both geomet-

ric and round-o� errors are easily de�ned and handled using a computer algebra

system because elaborate mathematics is easily used. Yet the proof should be

validated using an automatic proof checker.

5.2 Approximated solutions

Numerical linear toolboxes such as Matlab or Maple (NAG's library) heavily

use fast oating point arithmetic to compute approximated solutions [23, 2].

Mathematical problems are studied through backward analysis independently of

the implemented algorithm. Quantities such as condition numbers are de�ned

108

for some of these problems. The condition number is estimated by the algorithm

that computes the approximated solution [12, 24].

Validating such developments would need an automatic proof checker able to

handle many results of mathematics. Such developments are becoming available

[16]. Using them for numerical linear algebra would be both a full scale test and a

strong achievement to be promoted to people working in scienti�c computing and

numerical analysis. Such techniques are still applied to develop new algorithms

robust to small errors and to characterise the e�ect of rounding errors on existing

ones.

5.3 Filters

Some libraries use adaptative operators that are able to estimate how accurate

is the temporary result and can re�ne it to a higher accuracy and/or precision

if needed. Some of these libraries, including [36], heavily use the properties on

round-o� errors of oating point operations.

The round-o� errors of the addition [30, 26] and of the multiplication [11]

can be represented by a oating point number, and an algorithm is available to

compute it exactly using only common arithmetic operations. We can compute

in a similar way the remainder of the division or the square root [4]. These

properties have long been used and have been recently validated using Coq [7].

As the round-o� error of each intermediate operation is computed, it is easy to

compensate for it or estimate its e�ect on the temporary result [41].

From a practical point of view, it seems that we should not re�ne any tempo-

rary result. The very �rst step would use fast oating point arithmetic to solve

all the easy problems. The other problems are handled exactly using the multi-

ple precision numbers available in computer algebra systems. We can establish

a law, related to Amdahl's law, since it was proved for many examples that easy

problems appear much more frequently [13, 17].

We are currently working on Horner's rule. This rule appears in transforma-

tions applied in Descartes rule [33] used in computer algebra systems to isolate

roots of polynomials. It is also used in oating point libraries to accurately eval-

uate polynomial approximations of the elementary and special functions [5].

6 Conclusion

The examples we gave in this paper show that computer arithmetic is an area

where mixing deduction and computation would �nd natural applications. Fol-

lowing the pioneering work by John Harrison [22], provers like Coq, Isabelle,

Pvs are actively formalising real analysis and start covering most of the math-

ematics needed for the applications that we have described here.

The ways to get computation and deduction in a single system are well

known. The most pragmatic approach is to link together an existing theorem

prover and an existing computer algebra as in [1]. From the software engineering

109

point of view, the maintenance of such a system should not be underestimated.

Furthermore, keeping the combined system consistent is problematic.

A drastic approach proposed in [21] is to make the prover always check the

result of the computer algebra system. In some particular situations, checking

could be far simpler than computing. It is not clear if such an approach would

be suÆcient for the applications we are considering. Provers like Coq provide

limited amount of compilation that is an order of magnitude smaller than what

is available in a programming language like C. For example, in [39] we have

evaluated that what Coq could reasonably compute amounts to the equivalent

of 1 second of execution time of the corresponding ML program performing the

same computation.

Of course all these problems would not exist if deduction and computation

were built in the system from the beginning. Interesting approaches follow this

line such as [8] but they do not seem mature enough to tackle the applications we

are interested in. A promising alternative is the one proposed in [35]. The idea is

to build a system doing computation and deduction not as a single engine but as

a set of little engines, each engine performing a very precise task. This of course

would only work if the implementations of the various engines were done with

lots of care. They should act like reference implementations where both eÆciency

and correctness were taken into account. Ultimately, it could also be possible to

formally prove the correctness of these implementations, as it has already been

done, for example, for a speci�c algorithm of computer algebra [40]. We are

currently working on this aspect, trying to extend the veri�cation condition

generatorWhy [15] for Coq so to handle programs manipulating oating point

numbers.

References

1. Andrew Adams, Martin Dunstan, Hanne Gottliebsen, Tom Kelsey, Ursula Mar-

tins, and Sam Owre. Computer Algebra Meets Automated Theorem Proving: In-

tegrating MAPLE and PVS. In TPHOLs'01, volume 2152 of LNCS, pages 27{42,

Edinburgh, Scotland, 2001.

2. E. Anderson et al. LAPACK users' guide. Society for Industrial and Applied

Mathematics, 1995. Second edition.

3. Geo� Barrett. Practical algorithms for selection on coarse grained parallel com-

puters. IEEE Transactions on Software Engineering, 15(5):611{621, 1989.

4. Gerd Bohlender, Wolfgang Walter, Peter Kornerup, and David W. Matula. Se-

mantics for exact oating point operations. In Peter Kornerup and David Matula,

editors, Proceedings of the 10th Symposium on Computer Arithmetic, pages 22{26,

Grenoble, France, 1991.

5. Sylvie Boldo and Marc Daumas. Faithful rounding without fused multiply and

accumulate. In IMACS-GAMM International Symposium on Scienti�c Computing,

Computer Arithmetic and Validated Numerics, Paris, France, 2002.

6. Sylvie Boldo and Marc Daumas. Properties of the subtraction valid for any oating

point system. In the 7th International Workshop on Formal Methods for Industrial

Critical Systems, pages 137{149, M�alaga, Spain, 2002.

110

7. Sylvie Boldo and Marc Daumas. Representable correcting terms for possibly un-

derowing oating point operations. In Jean-Claude Bajard and Michael Schulte,

editors, Proceedings of the 16th Symposium on Computer Arithmetic, Santiago de

Compostela, Spain, 2003.

8. Sylvain Boulm�e, Ther�ese Hardin, and Renaud Rioboo. Some hints for polynomial

in the FOC project. In Calculemus 2001 Proceedings, 2001.

9. Victor A. Carre~no and Paul S. Miner. Speci�cation of the IEEE-854 oating-point

standard in HOL and PVS. In 1995 International Workshop on Higher Order Logic

Theorem Proving and its Applications, Aspen Grove, Utah, 1995. Supplemental

Proceedings.

10. Marc Daumas, Laurence Rideau, and Laurent Th�ery. A generic library of oating-

point numbers and its application to exact computing. In 14th International Con-

ference on Theorem Proving in Higher Order Logics, number 2152 in LNCS, pages

169{184, Edinburgh, Scotland, 2001.

11. Theodorus J. Dekker. A oating point technique for extending the available pre-

cision. Numerische Mathematik, 18(3):224{242, 1971.

12. James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

13. Olivier Devillers and Franco Preparata. A probabilistic analysis of the power of

arithmetic �lters. Discrete and Computational Geometry, 20(4):523{547, 1998.

14. Gilles Dowek, C�esar Mu~noz, and Alfons Geser. Tactical conict detection and

resolution in a 3-d airspace. In Proceedings of the Fourth International Air TraÆc

Management R&D Seminar ATM-2001, 2001.

15. Jean-Christophe Filliâtre. Proof of Imperative Programs in Type Theory. In

TYPES '98, number 1657 in LNCS, Eindhoven, Netherlands, 1998.

16. Herman Geuvers, Freek Wiedijk, and Jan Zwanenburg. A constructive proof of

the fundamental theorem of algebra without using the rationals. In TYPES'00,

number 2277 in LNCS, pages 96{111, 2000.

17. Richard W. Hamming. The unreasonable e�ectiveness of mathematics. American

Mathematical Monthly, 87(2):81{90, 1980.

18. Eldon Hansen, editor. Global optimization using interval analysis. Marcel Dekker

publisher, 1992.

19. John Harrison. Floating point veri�cation in HOL light: the exponential function.

Technical Report 428, University of Cambridge Computer Laboratory, 1997.

20. John Harrison. A machine-checked theory of oating point arithmetic. In the 12th

International Conference on Theorem Proving in Higher Order Logics, number

1690 in LNCS, pages 113{130, Nice, France, 1999.

21. John Harrison and Laurent Th�ery. A Skeptic's Approach to Combining HOL and

Maple. Journal of Automated Reasoning, 21(3):279{294, 1998.

22. John R. Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998.

23. Desmond J. Higham and Nicholas J. Higham. MATLAB Guide. SIAM, 2000.

24. Nicholas J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

Second edition.

25. G�erard Huet, Gilles Kahn, and Christine Paulin-Mohring. The Coq proof assistant:

a tutorial: version 7.2. Technical Report 256, Institut National de Recherche en

Informatique et en Automatique, Le Chesnay, France, 2002.

26. William Kahan. Further remarks on reducing truncation errors. Communications

of the ACM, 8(1):40, 1965.

27. R. Baker Kearfott, editor. Rigorous global search: continuous problems. Kluwer

Academic Publishers, 1996.

28. Guillaume Melquiond. Robustesse d'algorithmes d'�evitement des collisions

a�eriennes. Master's thesis, �Ecole Normale Sup�erieure de Lyon, Lyon, France, 2003.

111

29. Paul S. Miner and James F. Leathrum. Veri�cation of IEEE compliant subtractive

division algorithms. In Proceedings of the First International Conference on Formal

Methods in Computer-Aided Design, pages 64{78, 1996.

30. Ole M�ller. Quasi double-precision in oating point addition. BIT, 5(1):37{50,

1965.

31. Joel Moses. Algebraic simpli�cation a guide for the perplexed. In Proceedings of the

second ACM symposium on Symbolic and algebraic manipulation, pages 282{304,

1971.

32. Jean-Michel Muller. Elementary functions, algorithms and implementation.

Birkhauser, 1997.

33. Renaud Rioboo. Programmer le Calcul Formel, des Algorithmes �a la S�emantique.

Habilitation �a diriger des recherches, Universit�e Pierre et Marie Curie, Paris,

France, 2002.

34. David M. Russino�. A mechanically checked proof of IEEE compliance of the

oating point multiplication, division and square root algorithms of the AMD-K7

processor. LMS Journal of Computation and Mathematics, 1:148{200, 1998.

35. Natarajan Shankar. Little engines of proof. In LICS, Copenhagen, Denmark, 2002.

36. Jonathan R. Shewchuk. Adaptive precision oating-point arithmetic and fast ro-

bust geometric predicates. In Discrete and Computational Geometry, volume 18,

pages 305{363, 1997.

37. David Stevenson et al. An American national standard: IEEE standard for binary

oating point arithmetic. ACM SIGPLAN Notices, 22(2):9{25, 1987.

38. Ping Tak Peter Tang. Table driven implementation of the exponential function

in IEEE oating point arithmetic. ACM Transactions on Mathematical Software,

15(2):144{157, 1989.

39. Laurent Th�ery. St�almarck's Algorithm in Coq: A Three-Level Approach. Technical

Report 4353, INRIA, 2002.

40. Laurent Th�ery. A certi�ed version of Buchberger's algorithm. In Automated

Deduction|CADE-15, volume 1421 of LNAI, pages 349{364. Springer-Verlag,

1998.

41. J. H. Wilkinson. The algebraic eigenvalue problem. Oxford University Press, 1965.

Inductive de�nitions versus classical dependent

choice in the Minlog system

Ulrich Berger and Monika Seisenberger

fu.berger,csmonag@swansea.ac.uk
University of Wales Swansea

1 Introduction

Minlog, developed by the group of Helmut Schwichtenberg at the University of

Munich, is an interactive proof system based on Heyting Arithmetic in �nite

types that allows for extracting programs from constructive and classical proofs

[BBS+98,BSS01]. This paper is concerned with extensions of this mechanism by

program extraction from proofs involving constructive inductive de�nitions on

the one hand and classical choice principles on the other. Both extensions will

be discussed by means of an extended case study whereby special emphasis is

put on obtaining optimized extracted code: we distinguish between computa-

tionally relevant and irrelevant predicates and quanti�ers and allow the external

animation of higher order constants using side e�ects to improve eÆciency.

The case study is about Higman's Lemma, a result in in�nitary combina-

torics which is used in term rewriting theory to prove termination of string

rewriting systems. We implemented two versions: one uses Nash-Williams' clas-

sical `minimal bad sequence argument', the other is based on constructive induc-

tive de�nitions but uses the combinatorial idea implicit in Nash-Williams' proof.

While the inductive proof admits a rather straightforward realizability interpre-

tation via in�nitary algebraic data types, the problem of extracting computa-

tional content from Nash-Williams' proof hinges on a translation of classical into

constructive proofs (A-translation) and on a suitable constructive interpretation

of the A-translated principle of classical dependent choice [BO03,BBC98]. For

an overview on Higman's Lemma we refer to [Fri97] or [Sei03]. The inductive

version of Higman's Lemma was �rst proven in [CF94]; a generalization of this

proof to an arbitrary well-quasiordered alphabet may be found in [Sei01]. The

�rst implementation of Nash-Williams' proof is due to [Mur90], cf. section 4.

For later reference we recall the statement of Higman's Lemma and its clas-

sical proof due to Nash-Williams [NW63] whereby, for simplicity, we restrict

ourselves to a two letter alphabet A = f0; 1g. Let A� be the set of �nite se-

quences in A, also called words. A word v is embeddable in w (v �� w) if v can

be obtained from w by deleting some letters. A (�nite or in�nite) sequence of

words (wi)i<I ; I � !, is good if there are indices i < j < I such that wi �� wj ;

otherwise it is called bad.

113

Higman's Lemma Every in�nite sequence of words is good.1

Proof (Nash-Williams,1963). Assume for contradiction that there is an in�nite

bad sequence of words. Then, we de�ne a `minimal' bad sequence as follows:

If w0; : : : ; wn�1 are already chosen, we choose wn minimal with respect to the

initial segment relation such that w0; : : : ; wn�1; wn can be extended to an in�nite

bad sequence of words. Clearly, the resulting in�nite sequence (wn)n<! is bad.

Therefore all wn are nonempty and can be written as wn = vn � an, that is, an
is the last letter of wn. In the sequence (an)n<! either 0 or 1 occurs in�nitely

often, hence there is a strictly increasing sequence of indices (ni)i<! such that

an0 = an1 = � � � . Now, the in�nite sequence w0; : : : ; wn0�1; vn0 ; vn1 ; : : : is bad

and contradicts the de�nition of the minimal bad sequence.

2 Inductive de�nitions

From a constructive point of view it is important that the notion of a well-

quasiorder can be formulated without referring to in�nite sequences using a

(generalized) inductive de�nition instead. In the following we sketch the induc-

tive formulation of Higman's Lemma and use it to explain inductive de�nitions

and their constructive interpretation via in�nitary algebraic types in Minlog. To

this end we inductively de�ne a set Bar � A�� by

Goodws

Barws

8wBarws �w
Barws

where we use the notation ws for a �nite sequence of words [w0; : : : ; wn�1].

Classically, Barws holds if every in�nite sequence starting with ws is good.

Inductive formulation of Higman's Lemma Bar []

Using the induction principle for the predicate Bar , we may prove that the

inductive formulation of Higman's Lemma implies the classical one. The converse

can be shown by a non-constructive choice principle which will be discussed in

detail in the next section.

The inductive proof of Higman's Lemma is carried out in intuitionistic arith-

metic plus induction over inductive predicates and inductive types.

The computational content of an inductive de�nition On the program

side an inductive de�nition corresponds to an inductively de�ned data type

whose constructors are determined by the `types' of the closure axioms. Intu-

itively, this type consists of wellfounded trees indicating how elements entered

the inductively de�ned set. The induction principle for an inductive de�nition is

realized by recursion on the corresponding inductive type.

1 Higman's Lemma in its general form is phrased \If (A;�A) is a well-quasiorder, then

so is (A�
;�A�)" where for a quasi order (A;�A) being a well-quasiorder means that

every in�nite sequence in A is good.

114

Optimizations We allow inductive de�nitions having no computational con-

tent, i.e., no type is assigned to them. Examples are the inductive characteriza-

tions of the embeddability relation

[] �� []
v �� w

v �� w � a
v �� w

v � a �� w � a:

and the predicate Good . Furthermore, we distinguish between two types of

quanti�ers, the usual quanti�er 8 and a quanti�er 8nc which has the same

logical behavior, but carries no computational content. In our example, this

has the e�ect that, for instance, the �rst closure axiom can be reformulated

as 8ncws (Goodws ! Barws) which corresponds to the simple constructor

Leaf : tree.

3 Classical Dependent Choice

Now we show how to extract computational content directly from Nash-Williams'

proof. The essential computational ingredient in the extracted program will be a

form of recursion over wellfounded trees given by continuous type 2 functionals

(in contrast to wellfounded trees as elements of an inductive type).

G�odel- and A-translation of classical proofs Recall that in Nash-Williams'

proof one derives a contradiction from the assumption that a given sequence f

of words is bad. We use G�odel's negative translation combined with the Fried-

man/Dragalin A-translation to transform this classical proof into a construc-

tive proof. For convenience we will in the following call this translation sim-

ply A-translation although we mean in fact the combination of G�odel- and A-

translation. In its original form the A-translation amounts to double negating all

atomic and existential formulas (where :B is de�ned as B ! ?) and replacing?
(falsity) by the formula A stating that f is good, i.e., A :� 9i < j f(i) �� f(j):
Under this translation all axioms concerning classical logic become intuition-

istically provable, and instances of mathematical principles like induction are

translated into (di�erent) instances of the same principle. Most importantly, the

(false) assumption that f is bad is translated into an intuitionistically provable

formula. Altogether one obtains an intuitionistic proof of the translation of ?
from which a program computing indices i; j with f(i) �� f(j) can be extracted.

The translation of dependent choice When applying the A-translation to

Nash-Williams' proof one encounters a problem, namely, the de�nition of the

minimal bad sequence. In order to carry out this de�nition formally one needs

an axiom of the form

DCseq B([]) ^ 8ws(B(ws)! 9wB(ws � w))! 9g8nB(�gn)
where �gn := [g(0); : : : ; g(n � 1)]. This is easily proven to be intuitionistically

equivalent to the more common scheme of dependent choice

115

DC 8n8x9y B(n; x; y)! 8x9f (f(0) = x ^ 8nB(n; f(n); f(n+ 1))):

A-translation of DC leads to a formula DCA which is not an instance of de-

pendent choice nor can be intuitionistically proven from it. Nevertheless it is

possible to give DCA (and hence DCseqA) a constructive interpretation. A

realizer of DCA can be constructed, i.e., (G�odel) primitive recursively de�ned

from the following recursively de�ned functional

BR 	(Y;H; xs) = Y (�k:if k < jxsj thenxsk elseH(xs; �x:	(Y;H; xs � x)))

where xs varies over �nite sequences of some type � and the equation is of ground

type ([BO03]; an interpretation of DCA by 	 appears �rst in [BBC98]).

Optimizations 1. Simplifying types and control. As explained above the (unre-
�ned) A-translation replaces every atomic formula C by (C ! A)! A where A

is an existential formula. This has the e�ect that higher types and many case dis-

tinctions come up in the extracted program. In [BBS02] a re�ned A-translation

is introduced that allows to minimize double negations and hence reduce these

negative e�ects. These re�nements are implemented in Minlog and have been

tested in our case study.

2. Improving eÆciency. In Minlog the functional 	 can be introduced as

a program constant together with a rewrite rule corresponding to BR. When

running (i.e. normalizing) programs containing 	 one observes however a certain

ineÆciency which can be explained by the fact that when (in BR) Y calls its

argument at di�erent values� jxsj the expressionH(xs; �x:	(Y;H; xs�x)) (which
does not depend on k) is evaluated repeatedly. An obvious method to avoid this

ineÆciency is to equip the argument of Y with an internal memory that stores

the value of the expressionH(xs; �x:	(Y;H; xs�x)) after being computed the �rst
time. It is possible to do this in Minlog because Minlog implements normalization

by evaluation [BES98]: Instead of introducing a rewrite rule one animates the

constant 	 by a (Scheme) procedure that accomplishes the desired memoization

via a side e�ect.

4 Conclusion

In this paper we discussed two versions of Higman's Lemma and their extracted

programs (for the implementation see www.minlog-system.de). In both cases

the main computational principle used is recursion on wellfounded trees. How-

ever, whereas in the inductive proof the trees are inductively generated as the

elements of an inductive data-type, in Nash-Williams' proof no new data-types

need to be introduced and wellfounded trees are given by the unsecured sequences

of a total continuous functional. Although both forms of wellfounded recursion

are known to be of di�erent strength in general ([Spe62], [Tro73], Appendix by

J. Zucker), it is possible that the particular instances used here are in some way

equivalent. It was our hope that by analyzing the extracted programs such an

116

equivalence could be revealed. Unfortunately, the program corresponding to the

second version is still too complex to permit such an analysis, although it is con-

siderably shorter than the program extracted in [Mur90]. It also remains unclear

how our programs are related to those extracted in [Mur90] and [Her94].2

Furthermore, we would like to remark that the inductive approach presented

in this paper may be carried out in any theorem prover supporting program ex-

traction from inductive de�nitions.3 The second approach is more speci�c to the

Minlog system, since it requires an implementation of the re�ned A-translation

which does not seem to be available in other systems. In particular, the opti-

mizations via memoization directly rely on Minlog's normalization procedure.

In a future project the re�ned A-translation could also be applied to the

classical proof of Kruskal's Theorem, even in its strong form with gap condition

[Sim85]. The latter would be interesting because then we could extract a program

from a theorem for which no constructive proof is known so far.

References

[BBS+98] H. Benl, U. Berger, H. Schwichtenberg, M. Seisenberger, and W. Zuber.

Proof theory at work: Program development in the Minlog system. In

W. Bibel and P. H. Schmitt, editors, Automated Deduction { A Basis for

Applications, volume II, pages 41{71. Kluwer, Dordrecht, 1998.

[BBC98] S. Berardi, M. Bezem, and T. Coquand. On the computational content of

the axiom of choice. The Journal of Symbolic Logic, 63(2):600{622, 1998.

[BBS02] U. Berger, W. Buchholz, and H. Schwichtenberg. Re�ned program extraction

from classical proofs. APAL, 114:3{25, 2002.

[BES98] U. Berger, M. Eberl, and H. Schwichtenberg. Normalization by evaluation.

In B. M�oller and J.V. Tucker, editors, Prospects for Hardware Foundations,

LNCS 1546, pages 117{137. Springer, 1998.

[BO03] U. Berger and P. Oliva. Modi�ed Barrecursion and Classical Dependent

Choice. 2003. To appear in Lecture Notes in Logic, 19 pages.

[BSS01] U. Berger, H. Schwichtenberg, and M. Seisenberger. The Warshall Algorithm

and Dickson's Lemma: Two Examples of Realistic Program Extraction. Jour-

nal of Automated Reasoning, 26:205{221, 2001.

[Ber03] S. Berghofer. Proofs, Programs and Executable Speci�cations in Higher Order

Logic. PhD thesis, Technical University Munich, 2003. Forthcoming.

[CF94] T. Coquand and D. Fridlender. A proof of Higman's lemma by structural

induction, 1994. ftp://ftp.cs.chalmers.se/pub/users/coquand/open1.ps.Z.

[Fri97] D. Fridlender. Higman's Lemma in Type Theory. PhD thesis, Chalmers

University of Technology and University of G�oteburg, 1997.

[Her94] H. Herbelin. A program from an A-translated impredicative proof of Hig-

man's Lemma. http://coq.inria.fr/contribs/higman.html, 1994.

[Mur90] C. R. Murthy. Extracting Constructive Content from Classical Proofs. PhD

thesis, Ithaca, New York, 1990.

2 [Her94] comprises a program obtained from the A-translated proof in Coq. In [Mur90]

and [Her94] in�nite sequences are formalized as graphs (given by predicates) and

extracted programs are second-order polymorphic.
3 See e.g. [Ber03] for an implementation of Higman's Lemma in Isabelle and [Fri97]

for a formalization of a di�erent proof in Alf.

117

[NW63] C. St. J. A. Nash-Williams. On well{quasi{ordering �nite trees. Proc. Cam-

bridge Phil. Soc., 59:833{835, 1963.

[Sei01] M. Seisenberger. An Inductive Version of Nash-Williams' Minimal-Bad-

Sequence Argument for Higman's Lemma. In P. Callaghan, e.al., Types for

Proofs and Programs, LNCS 2277, Springer, 2001.

[Sei03] M. Seisenberger. On the Constructive Content of Proofs. PhD thesis, Uni-

versity of Munich, 2003. Forthcoming.

[Sim85] S. G. Simpson. Nonprovability of certain combinatorial properties of �nite

trees. In L.A. Harrington, e.al., Harvey Friedman's Research on the Founda-

tions of Mathematics, pages 87{117. North{Holland, 1985.

[Spe62] C. Spector. Provably recursive functionals of analysis: a consistency proof of

analysis by an extension of principles in current intuitionistic mathmatics.

In F. D. E. Dekker, Recursive function theory, 1{27. North{Holland, 1962.

[Tro73] A. S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic

and Analysis, LMS 344, Springer Verlag, 1973.

Building Convex Hulls by Combining

SAT Solving and Algebraic Computing

Silvio Ranise

LORIA & INRIA-Lorraine

Silvio.Ranise@loria.fr

Abstract. Geometric algorithms (such as those for computing convex

hulls) are quite diÆcult to be implemented correctly and eÆciently. This

is so because of errors deriving from arithmetic operations or of contra-

dictory results returned by primitives operations. In this abstract, we

present a combination of SAT solving and algebraic computing to exi-

bly build parsimonious algorithms, which are both correct and eÆcient.

The algorithm can be lifted to handle the case in which input data are

described by means of arithmetic constraints. Finally, we present our

plans of future research.

Context. Computational geometry covers a wide range of �elds including ge-

ometric modelling using curves and surfaces, computer proofs of geometric theo-

rems, and geometric design software. Recent research in computational geometry

has become increasingly sophisticated and tend to abstract from implementation

concerns. In particular, the study of the combinatorial properties of geometric

problems has resulted in many interesting mathematical results (see, e.g., [1]).

However, combinatorial properties are important also for geometric algorithms

and their implementations. In fact, such algorithms take logical decisions both

on (a) geometric data, such as the coordinates of points, and (b) combinatorial

data, such as graphs. The data of type (b) can be represented exactly while those

of type (a) have usually a physical origin with some degree of uncertainty. For

example, it could be diÆcult (if not impossible) to decide whether a point lies

on the right or on the left of a line identi�ed by other two points. To avoid this

problem, the design of geometric algorithms is done by assuming the Random

Access Machine (RAM) [10]. This computational model permits real numbers

to be represented exactly and to perform exact arithmetic operations on them.

Now, geometric data can be assumed to be exact so that deciding whether a

point lies on the left or on the right of a given line is also possible. Furthermore,

to avoid \strange" cases (e.g. a point lying exactly on a line), algorithms are

usually coded in terms of primitive geometric concepts, whose exact characteri-

zation depends on the problem to be solved. For example, algorithms computing

the convex hull of a set of points in the plane are usually speci�ed in terms of the

predicate cc(p; q; r) which holds only if point r is on the left of the line identi�ed

by points p and q (going from p to q). Unfortunately, an algorithm designed for

the RAM and coded in terms of geometric primitives cannot be implemented re-

liably in a straightforward way (see, e.g. [7] for an overview on this problem). In

119

fact, there is more than one way in which the RAM and the geometric primitives

can fail to be adequate in actual processors. One of the most important sources

of inadequacy is the round-o� error of oating-point operations. For example, an

algorithm for convex hull can return incorrect outputs if the predicate cc(p; q; r)

is evaluated to be true and cc(q; r; p) to be false.1 In other words, the evaluation

of geometric primitives may yield mutually contradictory results.

Robustness. An important line of research in computational geometry con-

sists of studying how to correctly implement algorithms designed for the RAM

on actual processors. More precisely, implementations of geometric algorithms

can be classi�ed into several classes depending on their capability of ensuring

precise results. Let us briey consider the two most common types: exact and
robust implementations. The former are guaranteed to produce an exact result

when given an exact input. Indeed, these implementations use a form of exact

arithmetic (e.g. an arbitrary precision arithmetic library). Unfortunately, this

can result in a substantial and, sometimes unacceptable, slow down. Robust al-

gorithms relax the requirement to obtain exact results and accept that solution

are \close enough" in some sense that depends on the application. By dispensing

with exact arithmetic, we can build faster implementations which must be sup-

plied with the ability of producing meaningful results despite the fact that the

geometric primitives return incorrect results because of inexact arithmetic. No

general technique has yet been devised to build robust algorithms; usually, robust

implementations are obtained for a certain algorithm by exploiting sophisticated

techniques for error analysis. Furthermore, there is the more fundamental diÆ-

culty consisting of the fact that the evaluation of geometric primitives may yield

mutually contradictory results.

Parsimonious algorithms. An algorithm (computing a purely combinato-

rial result) will produce a meaningful result if the evaluations of its primitive

predicates are wrong but consistent with each other because there exists an in-

put for which those evaluations are correct. This observation leads Fortune [6]

to the de�nition of a sub-class of robust algorithms called parsimonious. Intu-
itively, an algorithm is parsimonious if it never evaluates a primitive predicate

whose outcome has already been determined as the formal consequence of previ-

ous evaluations of the same predicate on other points. For example, let a; b; and

c three non-collinear points and consider again the relation cc. If we establish

that c lies on the left of the line going from a to b by computing that cc(a; b; c)

holds, then a parsimonious algorithm will derive that b is on the left of the line

going from c to a by deduction without computing cc(c; b; a).

In this abstract, we propose a declarative method to build parsimonious al-

gorithms based on a combination of SAT solving and (algebraic) computing. The

former allows to deduce (if possible) new facts from a knowledge base storing

the results of previous computations of the geometric predicates and the latter

extends the knowledge base when a fact cannot be deduced. To make our ideas

more concrete, we consider the relation cc as the geometric primitive under con-

1 In fact, if point r is on the left of the line pq, i.e. cc(p; q; r), then point p must be on

the left of line qr, i.e. cc(q; r; p).

120

cc(p; q; r) =) cc(q; r; p) (2)

cc(p; q; r) =) :cc(p; r; q) (3)

cc(p; q; r) _ cc(p; r; q) (4)

cc(t; q; r) ^ cc(p; t; r) ^ cc(p; q; t) =) cc(p; q; r) (5)

cc(t; s; p) ^ cc(t; s; q) ^ cc(t; s; r) ^ cc(t; p; q) ^ cc(t; q; r) =) cc(p; q; r) (6)

Fig. 1. The Axioms of cc.

sideration. It is well-known that such a relation can be characterised by the sign

of the determinant of a matrix. In [9], Knuth provides also an elegant and ab-

stract characterization of such a relation which permits to derive many interest-

ing properties in a purely axiomatic setting. (However, Knuth's characterization

of cc is partial since it admits also con�gurations which are not geometrically

realizable.) The SAT solver in our combination relies on Knuth's axiomatisation

of cc to derive new facts for a �nite sets of points. By using Knuth's abstract

characterization of convex hulls, we will see how a parsimonious algorithm can

be obtained as an instance of the proposed combination. We will also see how

the proposed combination is exible enough to handle the case in which con�g-

urations of points are described by means of arithmetic constraints. A possible

application of this can be to obtain the termination of model checking algorithms

for in�nite state system by using convex hulls as approximations of the set of

reachable states.

The Counterclockwise Relation. Let p, q, and r three distinct points

in the plane whose Cartesian coordinates are (xp; yp), (xq ; yq), and (xr ; yr), re-

spectively. We de�ne the counterclockwise relation as (twice) the signed area of

the triangle identi�ed by p, q, and r, i.e.

cc(p; q; r)() det

0
@xp yp 1

xq yq 1

xr yr 1

1
A = (xp�xr)(yq�yr)� (xq�xr)(yp�yr) > 0: (1)

We abbreviate the determinant in (1) with det(p; q; r), which is positive if the

points p, q, and r occur in counterclockwise order, negative if they occur in

clockwise order, and zero if they are collinear. Another possible interpretation

of the relation cc(p; q; r) is that point r lies to the left of the directed line pq

identi�ed by going from p to q.

In [9], the cc relation is abstractly characterised by the set of �ve axioms in

Figure 1. Axioms (2), (3), and (4) holds for all distinct points p, q, and r; axiom

(5) for all distinct points p, q, r, and t; and axiom (6) for all distinct points p,

q, r, s, and t. Axiom (2) says that if p, q, and r occur in counter-clockwise order,

then all their cyclic permutations do. Axiom (3) requires the counterclockwise

relation to be antisymmetric, or if point r lies to the left of the line pq, then it

is not possible that point q lies to the left of the line pr. Axiom (4) requires that

no three points are collinear (this can be easily checked by using de�nition (1)).

121

Axioms (3) and (4) are logically equivalent to cc(p; q; r)�cc(p; r; q) for all distinct
points p, q, and r (where � is the symbol for the exclusive-or). (To see this, it is

suÆcient to derive the conjunctive normal form of the de�nition of � in terms of

^ and :.) Axiom (5) can be rewritten as follows by repeated application of (2)

to the �rst two conjuncts of the antecedent: cc(q; r; t)^ cc(r; p; t)^ cc(p; q; t) =)
cc(p; q; r). Hence, we can read it as if point t lies to the left of the directed

lines qr, rp, and pq , then t must be inside the triangle identi�ed by p, q, and

r occurring in counterclockwise order. (This can also be checked by expanding

de�nition (1) and routine algebraic manipulations.) Axiom (6), intuitively, says

that if points p, q, and r lie to the left of the oriented line ts (�rst three conjuncts

of the antecedent of the implication) and q is to the left of tp and r is to the left

of tq (last two conjuncts in the antecedent), then r is to the left of pq. In the

following, let H be the theory axiomatised by axioms (2){(6).

Any ternary relation satisfying the theory H is called a CC system. It is

important to notice that CC systems do not capture all the properties of coun-

terclockwise relations between points in the plane. An intuitive argument for

this fact is that axioms (2){(6) involve con�gurations of at most �ve distinct

points whereas Pappus' theorem states a property about nine points.2 As a con-

sequence of this, there will be CC systems which can and others cannot arise

from actual points in the plane. If it can arise, we call it realizable.

In general, the advantage of having an axiomatisation is the possibility to

design algorithms based on abstract properties which are easier to reason about

and prove correct. For example, it is possible to give the following abstract

characterization of the convex hull of a CC system (see page 45 of [9]). The

convex hull of a CC system is the set of ordered pairs (t; s) of distinct points s.t.

cc(t; s; p) holds for all p 62 fs; tg. Of course, we can de�ne a binary predicate ch

s.t. ch(t; s) holds i� the ordered pair (t; s) is in the convex hull by means of the

following formulae:

ch(t; s) =) :ch(s; t) (7)

ch(t; s)() 8p:((p 6= s ^ p 6= t) =) cc(t; s; p)) (8)

for each pair of distinct points t and s in fp1; :::; png. We denote the theory

H [f(7); (8)g with H0.

By exploiting this de�nition of convex hull, it is then possible to build algo-

rithms which actually compute the convex hull of a �nite set of points satisfying

the axioms of CC systems (see [9] for details). Indeed, such algorithms are more

general than algorithms that compute convex hulls only with coordinates of

points. As a consequence, we should �nd criteria to check whether a CC system

is realizable or not.

Building Parsimonious Algorithms. In principle, it is possible to make

an algorithm parsimonious if the primitive geometric predicates can be expressed

by polynomial inequalities. In this way, deducing whether the value of a predicate

2 Pappus' theorem roughly states that if eight triples of points are collinear, then also

the ninth triple is collinear.

122

is the logical consequence of previously established ones can be expressed as a

formula of the existential theory of reals [6].3 This is the case, for example, of the

counter-clockwise relation cc. (To see this, it is suÆcient to recall de�nition (1).)

It can be shown that the problem of checking whether a �nite set of points be a

realizable CC-system is NP-complete by reducing the problem of determining its

realisability to checking the satis�ability of a formula of the theory of reals (see

the proof of the corollary at page 22 of [9] for details). So, parsimonious algo-

rithms using the �ve axioms of CC-systems to deduce facts about the cc relation

seem to require the solution of NP-hard problems. However, recent research in

propositional satis�ability checking (the typical NP-complete problem) shows

that it is possible to implement algorithms which are eÆcient in many practical

situations.

Spectacular advances in SAT solvers permit to eÆciently solve the satis�a-

bility problem of huge formulae (see [12] for an overview). There are two main

streams of research to leverage the advances of SAT solvers. First, reductions

to the SAT problem have been devised for a variety of domains ranging from

planning (see e.g. [8]) to protocol veri�cation (see e.g. [2]). Second, combinations

of SAT solvers with decision procedures for more expressive theories have also

been designed and successfully applied (see e.g. [3, 11]). Our methodology to

build parsimonious algorithms is a mixture of the two approaches. In fact, we

use a combination of SAT solving and algebraic computing to �nd the satisfying

assignments of a ground �rst-order formula which is obtained by instantiating

the axioms of CC-systems and formulae encoding the problem to be solved (e.g.

�nding a convex hull of a �nite set of points in the plane).

Given the set of points of which we want to �nd the convex hull, we suitably

instantiate the axioms and the de�nition of H0 and we feed the resulting formula

' to a SAT solver. This last is used to enumerate the propositional assignments

satisfying '. Each such assignment is (incrementally) sent to a module which

is encharged to evaluate cc. If the evaluation of a literal cc(p; q; r) can be made

to a suÆcient degree of precision by the available implementation of arithmetic

operations, then the propositional assignment is accepted or rejected depending

whether the truth values of cc given by the SAT solver and the arithmetic module

are the same or not. If the two modules return the same result then the truth

value of the actual literal is learnt by the SAT solver and the next literal in the

assignment is considered. Otherwise, the literal is marked as unknown and its

truth value will be determined by the SAT solver by exploiting the trustable

results of the arithmetic module. If too many values are marked as unknown so

that there is no way to derive the truth value of any of them by the SAT solver

(i.e. by purely deductive means), then one of the unknown literals is evaluated by

a module implementing exact arithmetic. All these operations are repeated until

the two modules agree on a unique propositional assignment. By the de�nition

of the predicate ch, it is then easy to extract the convex hull of the input points.

If we replace the module implementing arithmetic operations with constraint

solvers for classes of arithmetic constraints (e.g. the Fourier-Motzkin algorithm

3 The decision problem for this theory is in the class PSPACE [5].

123

for linear constraints), then we easily lift the algorithm to the case in which the

points are identi�ed by constraints.

Future Work. The work described above is ongoing and we plan to develop

it in several directions. The most important concerns the implementation. We

plan to implement the proposed algorithm by adapting the code of a state-of-art

SAT solvers. We intend to study the performances of the system by using phase

transition techniques (see e.g. [3]). We will also compare our system with state-of-

the-art implementations of ad-hoc algorithms to compute the convex hull in order

to have a clear picture about the scalability of the proposed approach. Finally,

we want to assess the impact on the performances of instances of axioms (3) and

(4) which generate the CNF of an exclusive-or which is known to be problematic

for SAT solvers (see, e.g. [4] for a discussion of this issue).

Finally, we will also look at how our approach can be adapted to compute

convex hulls in three dimensions, Delaunay triangulations, and their generalisa-

tion to higher dimension along the lines sketched in [9].

References

1. Special Issue on the Complexity of Arrangements. Journal of Discrete and Com-

putational Geometry, Volume 5, 1990.
2. A. Armando and L. Compagna. Automatic SAT-compilation of Protocol Insecurity

Problems via Reduction to Planning. In Proceedings of the Joint International

Conference on Formal Techniques for Networked and Distributed Systems (FORTE

2002), 2002.
3. Alessandro Armando, Claudio Castellini, and Enrico Giunchiglia. SAT-based pro-

cedures for temporal reasoning. In ECP, pages 97{108, 1999.
4. Peter Baumgartner and Fabio Massacci. The Taming of the (X)OR. In Computa-

tional Logic { CL 2000, volume 1861, pages 508{522. Springer, 2000.
5. J. Canny. Some Algebraic and Geometric Computations in PSPACE. In Proc. of

20th Annual Symp. on the Theory of Computing, pages 460{467. ACM, 1988.
6. S. Fortune. Stable Maintenance of Point Set Triangulations in Two Dimensions.

In Proc. of 30th Annual Symposium on Foundations of Computer Science, pages

494{499. IEEE Computer Society Press, 1989.
7. C. M. Ho�mann. The Problems of Accuracy and Robustness in Geometric Com-

putation. The Computer Journal, pages 31{41, March 1989.
8. Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional

logic, and stochastic search. In Howard Shrobe and Ted Senator, editors, Pro-

ceedings of the Thirteenth National Conference on Arti�cial Intelligence and the

Eighth Innovative Applications of Arti�cial Intelligence Conference, pages 1194{

1201, Menlo Park, California, 1996. AAAI Press.
9. D. E. Knuth. Axioms and Hulls, volume 606 of LNCS. Springer-Verlag, 1992.

10. F. P. Preparata and M. I. Shamos. Computational Geometry. Sprigner-Verlag,

1985.
11. R. Sebastiani. Integrating sat solvers with math reasoners: Foundations and basic

algorithms, 2001.
12. L. Zhang and S. Malik. The quest for eÆcient Boolean satis�ability solvers. In Proc.

Conference on Automated Deduction (CADE02), volume 2392 of LNCS, pages 295{

313. Springer-Verlag, 2002.

Rings and Modules in Isabelle/HOL

Hidetsune KOBAYASHI1, Hideo SUZUKI2, and HirokazuMURAO3

1 Department of Mathematics, Nihon University
2 Tokyo Institute, Polytechnic University

3 Department of Computer Science, University of Electro-Communications

1 Introduction

We report formalization of rings and modules over rings in Isabelle/HOL. Top-

ics in this report are Chinese remainder theorem of general type, local rings,

Jacobson radicals, �nitely generated modules and Nakayama lemma.

2 Formalization of groups

To show how to formalize mathematical objects in Isabelle/HOL, we present

formalization of a group:

record ' a grouptype =

pcarrier :: "'a set "

bOp1 :: "['a, 'a]) 'a"

iOp1 :: "'a) 'a "

unit1 :: "'a"

constdefs

Group :: "('a, 'more) grouptype scheme) bool "

"Group G == (bOp1 G) 2 pcarrier G ! pcarrier G ! pcarrier

G

^ (iOp1 G) 2 pcarrier G ! pcarrier G ^
(unit1 G) 2 pcarrier ^
8 x 2 pcarrier G. 8 y 2 pcarrier G. 8 z 2 pcarrier G.

(bOp1 G (unit1 G) x = x) ^
(bOp1 G (iOp1 G x) x = unit1 G) ^
(bOp1 G (bOp1 G x y) z = bOp1 G (x) (bOp1 G y z)))"

See a source code [2] written by Florian Kammueller and L. C. Paulson (old

version). \bOp1 G x y" is the binary operator of the group, and this is expressed

as x �G y if we have two more lines

syntax "BOP1" :: "['a, ('a, 'more) grouptype scheme, 'a])
'a" ("(3 �)" [80,80,81]80)

translations "x �G y" == "bOp1 G x y"

125

Here, \record" de�nes the type of a group and constdefs gives a de�nition

of the group. \pcarrier" is the underlying set of the group, bOp1 is the inverse

operator, and unit1 is the unit of the group.

Subgroup of G is de�ned as a subset of \pcarrier G" having bOp1 closed-

ness and iOp1 closedness, and so subgroup is not a group in Isabelle/HOL. We

introduce \Grp" to make a group with subgroup H as \pcarrier":

constdefs

Grp :: "[('a, 'more) grouptype scheme, 'a set]) 'a

grouptype" "Grp G H == (|pcarrier = H, bOp1 = bOp1 G, iOp1

= iOp1 G, unit1 = unit1 G|)"

Using this Grp, Zassenhaus theorem is formalized as

theorem Zassenhaus: "[| Group G; H � G; H1 � G; K � G;

K1 � G; H1 � Grp G H; K1 � Grp G K |] =)
((Grp G (H1 �G (H \ K)))/ (H1 �G (H \ K1))) �=

((Grp G (K1 �G (K \ H)))/(K1 �G (K \ H1)))"

Here, H� G means H is a subgroup of G, K1 � Grp G K means K1 is a normal

subgroup of Grp G K and K1 �G (K \ H) is the set fkhjk 2 K1; h 2 K \Hg.
In some textbooks, this set is written simply as H1(H \ K) and the theorem is

written as

Theorem. Let G be a group. Let H, H1, K and K1 be subgroups of G

such that H1 �H and K1 �K. Then we have an isomorphism

H1(H \K)=H1(H \K1) �= K1(K \ H)=K1(K \ H1)

To treat rings and modules, we prepare \agrouptype" for abelian groups:

record 'a agrouptype =

carrier :: "'a set"

abOp1 :: "['a, 'a]) 'a"

aiOp1 :: "'a) 'a"

aunit1 :: "'a"

constdefs

AGroup :: "('a, 'more) agrouptype scheme) bool"

"AGroup G == (abOp1 G)2 carrier G ! carrier G ! carrier G

^
(aiOp1 G) 2 carrier G ! carrier G ^
(aunit1 G) 2 carrier G ^
(8x 2 carrier G. 8y 2 carrier G. 8 z 2 carrier G.

(abOp1 G (aunit1 G) x = x) ^ (abOp1 G (aiOp1 G x) x =

aunit1

G) ^ (abOp1 G (abOp1 G x y) z = abOp1 G (x) (abOp1 G y z))

^
(abOp1 G x y = abOp1 G y x))"

The main reason to introduce \agrouptype" is that we will need both multi-

plicative groups and abelian groups later.

126

3 Rings, ideals and Chinese remainder theorem

A ring is an abelian group with one more binary operation \multiplication".

\ringtype" is given as

record 'a ringtype = "'a agrouptype" +

bOp2 :: "['a, 'a]) 'a"

unit2 :: "'a"

A formalized de�nition of a ring is given similarly to a group de�nition.

Zorn lemma is formalized by Jacques D. Fleuriot, and his formalization en-

ables us to treat maximal ideals. The well known property \the nilradical is

equal to the intersection of all prime ideals" is formalized by using Fleuriot's

formalization of Zorn lemma.

We present two lemmas concerning maximal ideals.

lemma local ring diff:"[| Ring R; not ZeroRing R; ideal R

mx; mx 6= carrier R;

8a2 (carrier R - mx). unit R a |] =) local ring R ^
maximal ideal R mx"

This lemma states \Let R be a non-zero ring. Let mx be a proper ideal of R. If

any element not contained in mx is a unit, then R is a local ring and mx is the

maximal ideal of R".

Jacobson radical is the intersection of all maximal ideals. Following lemma

is used to prove Nakayama's lemma.

lemma J rad unit:"[|Ring R; not ZeroRing R; x 2 J rad R|]

=) 8y. (y2 carrier R �! unit R (1R +R (�Rx) �R y))"
This lemma states \ Let R be a non-zero ring. If x is included in the Jacobson

radical, then for any y in R 1� x y is a unit".

To formalize Chinese remainder theorem, we formalize direct products.

constdefs

prodAG::"['i set, 'i) ('a, 'more) agrouptype scheme])
('i) 'a) agrouptype"

"prodAG I A == (| carrier = carr prodAG I A,

abOp1 = prod bOp1 I A, aiOp1 = prod iOp1 I A,

aunit1 = prod unit1 I A|)

In this de�nition, I is an index set and \carr prodAG I A" is the carrier of

the direct product of abelian groups. Direct product of rings is de�ned similarly.

Chinese remainder theorem of general type is formalized as

127

theorem Chinese remThm:"[| Ring R; (8k2Nset (Suc n). ideal

R (J k));

8k2Nset (Suc n). B k = QRing R (J k);

8k2Nset (Suc n). S k = pj R (J k);

8i2Nset (Suc n). 8j2Nset (Suc n). (i 6=j �! coprime ideals

R (J i) (J j)) |] =)
R =r(

T fJ k | k. k2Nset (Suc n)g �= r
Q
Nset (Suc n) B"

Here, Nset (Suc n) is a set of integers from 0 up to n+ 1, and QRing is the

residue class ring.

4 Modules over a ring R

A module is an abelian group having scalar multiplication with a ring.

Direct product of modules is formalized as direct product of rings, and a

formalization of direct sum is derived from it by adding a simple condition.

Let H be a subset of a module M over R. We call linear span, the smallest

submodule containing H. It is equal to a set of all linear combinations of elements

of H. The Linear span is formalized as:

constdefs

linear combination::"[('r, 'm) ringtype scheme, ('a, 'r,

'm1) moduletype scheme, nat]) (nat) 'r)) (nat) 'a)

) 'a"

"linear combination R M n s m == eSum M (�j. (s j) ?M (m

j)) n"

linear span::"[('r, 'm) ringtype scheme, ('a, 'r, 'm1)

moduletype scheme, 'r set, 'a set]) 'a set"

"linear span R M A H == if H = fg then f0Mg else fx. 9n. 9f
2 Nset n ! H. 9s2Nset n ! A. x = linear combination R M n

s fg"

Note that \linear span R M A H" is a submodule generated by H with

coeÆcients in an ideal A of the ring R. If we take carrier R as A, then the

linear span coincides the ordinary linear span.

A �nitely generated submodule is a module having a �nite set H such that \

Linear span R M (carrier R) H = carrier M". Nakayama lemma is

Let M be a �nitely generated module over a ring R, and let A be an

ideal contained in the Jacobson radical. If A M = M then M = 0.

This is formalized as

lemma NAK:"[| Ring R; R Module M; M fgover R; ideal R A; A

� J rad R; A �R M = carrier M |] =) carrier M = f0Mg"

128

Here, A �R M is linear span R M A (carrier M), and M fgover R means M

is �nitely generated over R.

There are two ways to prove this lemma, one is using determinant trick and

another is using a generator with the least number of elements (see [1]). We

formalized the letter proof.

To formalize Nakayama lemma, we have to sum up coeÆcients of similar

terms. More precisely, we need following formalization:

lemma finite lin span:"[|Ring R; R Module M; ideal R A; h

2 Nset n ! carrier M; s 2 Nset na ! A; f2Nset na ! h `

Nset n |] =) 9t2Nset n ! A.

linear combination R M na s f = linear combination R M n t

h"

Corollary to Nakayama lemma is formalized as

lemma NAK1:"[| Ring R; : ZeroRing R; R Module M; M fgover

R; Submodule R M N; ideal R A; A � J rad R; carrier M = A

�R M +M N |] =) carrier M = N"

Finally we give a short note on type restriction of Isabelle/HOL. Points are

(a) type restriction is too strong and mathematical propositions become a little

complicated in formalized expressions, (b) because of type restriction, we cannot

express n objects having n independent types.

(a) For example, even two modules have di�erent type, say ('a, 'r) moduletype

and ('b, 'r) moduletype respectively, these two may happen to be isomorphic.

Ring A and A/0 is isomorphic, but the former has type \'r ringtype" and that

of the latter one is \'r set ringtype".

Because of type restriction, we cannot take a ring R as an R-module. So we

introduced a record bModule

bModule ::"[('r1, 'm1) ringtype scheme, ('r2, 'm2)

ringtype scheme, ('a, 'r1, 'r2, 'more) bmoduletype scheme]

) bool"

This enables us to treat free modules over R.

(b) We cannot formalize exact sequence of any length.

References

[1] M. F. Atiyah and I. G. Mcdonald, Introduction to commutative algebra.

Addison-Wesley, 1969.

[2] Isabelle/src/HOL/GroupTheory/Group.thy

[3] Isabelle/src/HOL/GroupTheory/Ring.thy

[4] L. Chen, H. Kobayashi, H. Murao, H. Suzuki. A Machine Proof of the Proposi-

tion "Ideal� [i PrimeIdeali =) Ideal� PrimeIdeali", RIMS Computer Algebra

- Algorithms, Implementations and Applications Vol. 1295, pages 42-50, 2003.

[5] L. Chen, H. Kobayashi, H. Murao, H. Suzuki. Notes on formalizing induction

129

on the number of sets. In S. Colton and V. Sorge, editors, Second Workshop on

the Role of Automated Deduction in Mathematics: RADM. In conjunction with

CADE-18, pages 11-23, 2002.

Editor's note

This paper could not be edited to comply with the proceedings style

131

132

133

134

135

136

Some Grand Mathematical Challenges in

Mechanized Mathematics

Jacques Calmet ?

Institut for Algorithms and Cognitive Systems (IAKS)

University of Karlsruhe (TH)

calmet@ira.uka.de

Abstract. Grand mathematical challenges do exist in pure mathemat-

ics. Are some of the acute mathematical problems that we face when

mechanizing mathematics true challenges? This short paper tries to as-

sess through a few examples that they are indeed so.

1 Introduction

The quest for mathematically challenging problem is present in any �eld of sci-

ence. A very recent example is from material science (Taylor [2003]). However,

the most famous challenges concern Mathematics itself. A puzzling one was the

proof of Fermat's theorem. It is barely necessary to cite the landmark presen-

tation of David Hilbert at the 1900 Paris Conference. His list of problems for

the 20th century was then extended to the well-known set of the 21 Hilbert's

problems. On the eve of the 21th century, the International Mathematical Union

asked a selected number of top mathematicians to contribute a similar list for the

coming century. The contribution of Steve Smale has been widely distributed. It

appeared �rst in the Mathematical Intelligencer (Smale [1998]). Two years later

a version in French (Smale [2000]) appeared in the January issue of the Bulletin

of the French Mathematical Society. It looks like Smale's list got a wide agree-

ment and no other list of challenge problems has, apparently, been published.

The three greatest open problems of mathematics are: the Riemann Hypoth-

esis (Hilberth's 16th), Poincar�e conjecture and "Does P=NP?". The latter is

already tightly linked to our domain. One of the remaining challenging mathe-

matical problems is very relevant to this community. It amounts to answer the

question "What are the limits of (arti�cial or natural) intelligence?". This sim-

ple, apparently philosophical question leads in fact to very diÆcult mathematical

problems such as the decidability of the Mandelbrot set.

To propose a de�nition of a mathematical challenge in theorem proving or

in computer algebra that can be acknowledged by mathematicians is always

touchy and sometimes impossible. However, if we introduce either of the words

"mechanized" or "constructible" to qualify the part of Mathematics we deal

with, we can then open a few tracks along the following directions.

? Work partially supported by the Calculemus Reserach Training Network, HPRN-

CT-2000-00102

138

(i) Mechanize new areas of Mathematics such as algebraic topology or better

Grothendieck's theory when also including geometry. Inde�nite symbolic inte-

gration is a well-known example where a problem in analysis was turned into an

algebraic problem. The methodology is constructive since Risch's algorithm de-

cides whether or not integrability exists. It is also mechanized since the solution,

when it does exist is constructed,

(ii) Identify and master new representations of mathematical objects. This

is well understood when designing algebraic algorithms for computer algebra

systems. A certainly challenging task is to investigate how algebraic �elds (Lau-

mon [1999]) could be introduced in mechanizing algebraic geometry problems.

Also relevant are proof techniques in algebraic topology. This is a domain where

the in�nity plays a very special part compared to algebra, analysis, geometry of

algebraic geometry. In these domains, the in�nity is not really a challenge since

proofs do not have to namely address this concept. In algebraic topology, the

concept of in�nity is very important when designing proofs,

(iii) Devise new proof techniques for domains where the amount of compu-

tation, not the theoretical diÆculties is the challenge. An example is to prove

some theorems on p-groups that would take a lifetime by hand calculation,

(iv) Space and time complexity issues when designing proofs and algorithms.

Besides the "P=NP ?" problem already quoted, a prototypical example is the

factorization of integer numbers. More practical examples arise when trying to

improve doubly exponential algorithms such as the Gr�obner bases algorithm,

which play an important part in theorem proving in geometry, or when dealing

with parameters as in constraint programming, which concerns any computing

problem

(v) What means to prove? This looks like a silly question but a domain

as demanding and "theoretical" as provable security sheds some light on this

question.

The remaining part of this abstract is devoted to the presentation of some

speci�c problems.

2 Provable security and proofs

The deduction community is much concerned by designing proof techniques for

security protocols and there are many publications in this domain. It may be

worthwhile to restrict the question to the simpler one "what is provable secu-

rity?" and then to assess the part played by proofs in the answer. This is a

domain of standard cryptography and a very nice state of the art is available in

(Stern [2003]). Provable cryptography is an attempt to mathematically establish

security. This is indeed very diÆcult and as a result, what is available is a form

of "practical" provable security. It is possible to decompose provable security

into 5 steps:

1. de�ne the goal of the adversary,

2. de�ne a security model,

139

3. provide a proof by reduction,

4. check the proof,

5. interpret the proof.

A �rst remark is that we are in engineering, not in mathematics but concepts

are expressed mathematically. A second one is that provable security does not

necessary yield proofs that are sound. What really matters, is that public key

encryption cannot be broken. As a consequence it is not that surprising to notice

that the 4th point on checking proofs may assert that a proof for an encryption

mechanism is not correct. In fact "this does not matter so much". Indeed, there

is usually enough time left, before the encryption is broken, to come out with

the right proof.

An open but diÆcult problem is to extend provable security to security proto-

cols. One may guess that this task implies to introduce a concept of randomness

in the date structures and of probability in the proof techniques.

3 Involutive bases

Systems of polynomial equations are solved using Gr�obner bases and the related

Buchberger's algorithm. A Gr�obner basis is simply a basis with "good" proper-

ties in a given ideal. Involutive bases are a very special kind of Gr�obner bases

with additional combinatorial properties that make them very useful for many

applications (Calmet [2001]). They were �rst introduced by Janet a very long

time ago. They exist in many polynomial algebras (also non-commutative ones)

including ordinary polynomials and linear di�erential or di�erence operators.

They are thus a possible approach to investigate symbolic solutions to system of

(partial) di�erential equations. This is a domain where we need to �nd a suitable

representation for di�erential objects. An overview is given in the �nal report of

an INTAS project (Calmet [2002]).

On the theoretical side, numerous results on the relationships between dif-

ferent kinds of involutive bases, Gr�obner bases and characteristic sets have been

obtained both for ordinary and for di�erential ideals. Several characterisation

theorems for involutive bases have been proven and the computation of (di�er-

ential) dimension polynomials has been studied. We have thoroughly investigated

the homological approach to involution via Spencer cohomology. An algebraic

algorithm for the geometric completion to involution was developed (including

a constructive solution of the problem of the so-called delta-regularity).

Although we label these results "theoretical", they are in fact pretty techni-

cal. Any of them require to establish existence and validity proofs. The leading

idea is that when we identify the right representation, then proofs and thus the

algorithms that are images of such proofs are much easier to discover. A much

more challenging facet of what involutive bases are leading to is subsumed by

the concept of global integrability.

140

4 Global integrability

Given a system of non-linear partial di�erential equations, can we decide of its

integrability? A �rst answer is that we have tools, such as the Cartan-Kuranishi

theorem, to decide of the local integrability but none to assess the global integra-

bility. Physicists and mathematicians are investigating this problem for around

50 and 100 years respectively and no satisfactory solution is yet found.

A possible approach is to investigate the impact of involutive techniques

outlined in the previous section in �eld theory, a domain of Physics. Most, if

not all, physical models are represented by systems of partial di�erential equa-

tions. Among such systems are the well-known Yang-Mills or Einstein equations

for instance. Without aiming at doing better than what the very many expert

physicists of �eld theory are doing, it is possible to study whether some sys-

tems are integrable or not. What is challenging is to solve symbolically over- or

under-determined systems of polynomial or di�erential equations or in simpler

terms to extend the concept of Gr�obner bases to such systems. This is again

an old, well-known problem that was much earlier investigated by Cartan and

his co-workers before being put aside. The need to design constructive methods

in mechanized mathematics was at the origin of a revival. But, we still need

to �nd out the proper representations in which to better formulate involutive

bases. Again in very simple words, we are in a situation where we can get some

information on local solutions of non-linear systems and we aim at extending

them to some kind of non-local neighborhood. At this stage it is worthwhile to

assess whether algebraic topology can be the key tool leading to a breakthrough

in this domain. Physics texbooks such as (Weinberg [2002]) report that alge-

braic topology is already playing a role in obtaining approximate solutions to

physical systems. This is a truly challenging problem where the challenge is to

design constructive proofs and decision methods. This is a task better suited for

computer scientists.

5 An example in group theory

This is a prototypical domain where some problems are more tedious and repet-

itive than diÆcult. Some proofs could take a lifetime to be completed by hand

calculation. This area reminds of the beginning of computer algebra. The �rst

successes that established the �eld were obtained in high energy particle physics,

celestial mechanics or general relativity where repetitive, very long and tedious

computations were required. Besides exceeding the human capability, they were

also error prone when done on paper.

A test problem is as follows, where the word suitable is used to avoid a too

long presentation of the problem:

Given a \suitable" in�nite collection of p-groups, give a formula for the
least n such that the i-th group in the collection can be embedded in Sn,
not in Sn�1.

141

This is, according to the experts, a very long term project even when coupling

DSs and CASs. However, when analyzing the problem, it is possible to identify

sub-problems. Many of them are purely computational ones. For instance, one

must compute determinants of matrices. Depending on the size of these matrices,

a very thorough management of the computation is required. There are deduction

problems as well. One of them is supposed to be simple and can be seen as a

test of feasibility. It is to check whether subgroups of the quaternion group of

order 2n are normal.

6 Conclusion

This selection of a few computational domains where a need for new proof tech-

niques looks pretty obvious shows, hopefully, that we are facing some very chal-

lenging mathematical problems. Some may be quali�ed to be grand. The list

here, as said by Smale in his paper, is only taken from problems where the

author has some experience. This is a further proof that it ought to be easely

enlarged. It is not explicitely mentioned in the section on global integrability

that the required tools belong to algebraic topology. This is a domain where

contacts to computer science are rather limited. Two pieces of works are worth

citing. A �rst one is by Jesus Aransay at the University of La Rioja in Spain. It is

on progress and performed within Calculemus. It deals with proving theorems in

algebraic topology. A second one is the KENZO computer algebra system of F.

Sergeraert at the Fourier Institute in Grenoble. It is the only computer algebra

system enabling to perform computations in algebraic topology.

References

[2003] J. E. Taylor: Bulletin of the AMS, Vol. 40, No. 1, January 2003

[1998] S. Smale: Mathematical Problems for the Next Century, Mathematical Intelli-

gencer Vol 20 No. 2, 7-15, 1998

[2000] S. Smale: Probl�emes math�ematiques pour le prochain si�ecle, Gazette des

math�ematiques, SMF, Janvier 2000.

[1999] G. Laumon and L. Moret-Bailly: "Champ alg�ebriques",Vol. 39 in A Series of

Modern Surveys in Mathematics, Springer, 1999

[2001] J. Calmet, M. Hausdorf and W. Seiler: A Constructive Introduction to Involu-

tion. Proceedings of ISACA2000 "Applications of Computer Algebra", R. Akerkar

ed., Allied Publishers Limited, pp. 33-50, 2001

[2002] J. Calmet et al.: "INTAS - Final report", http://iaks-www.ira.uka.de/iaks-

calmet/intas.htlm, 2002

[2003] J. Stern: Why Provable Security Matters?, In "Advances in Cryptology ",

Proceedings of Eurocrypt 2003, Warsaw, May 2003, Biham E., Ed., LNCS 2656 ,

Springer, 2003

[2002] S. Weinberg: The Quantum Theory of Fields, Volume II, Chapter 23, Cambridge

University Press, 1996

