
Understanding DB2
Query Access Plans

IBM Canada Ltd
Ian Finlay
John Hornibrook
UDB Query Optimizer Development

May 3, 2000

DB2 Platform: Unix, Windows, OS/2

International DB2 Users Group

Agenda

The Explain Facility
What is it?
How to invoke it
Viewing options: Visual Explain and db2exfmt
What about db2expln and dynexpln?

The Query Access Plan
Optimized SQL
Plan operators, arguments and properties
Predicate application
Execution flow (serial and parallel)

Performance analysis tips

International DB2 Users Group

Confessions of a True Developer

Development rarely uses the Explain facility as customers would
Preparing this presentation has been a learning experience

Development has internal tools to complement the Explain facility
There is room for improvement with the Explain facility
some of the internal tools need to be externalized
new tools need to be developed

This is not a performance tuning presentation

International DB2 Users Group

Agenda

The Explain Facility
What is it?
How to invoke it
Viewing options: Visual Explain and db2exfmt
What about db2expln and dynexpln?

The Query Access Plan
Optimized SQL
Plan operators, arguments and properties
Predicate application
Execution flow (serial and parallel)

Performance analysis tips

International DB2 Users Group

The Explain Facility - What is it?
Internal phase of the optimizer that captures critical information
used in selecting the query access plan

Two key external tools:
Explain tables with Visual Explain

Visual Explain offers a GUI interface to render and navigate
query access plans

Explain tables with db2exfmt
db2exfmt offers a text-based output from the explain tables

NOT db2expln or dynexpln
these are tools that interpret the runtime operators and
generate limited information about the query access plan
not sufficient details about *why* operations where chosen

International DB2 Users Group

Why is Explain Important?

Offers clues as to why the optimizer has made particular decisions

Allows DBA to maintain a history of problem query access plans
during key transition periods

New index additions
Large data updates/additions
RUNSTATS changes
Release to Release migration
Significant DB or DBM configuration changes

Problem determination is easier, and often faster with a reference
plan to compare against

International DB2 Users Group

How do I use Explain?
Need to create the Explain Tables first

Visual Explain creates the Explain Tables automatically
You can create the Explain Tables manually using
EXPLAIN.DDL, found in the sqllib/misc directory

There are 7 Explain Tables
Engine inserts details of selected plan into the explain tables

Various details about the explain tables and tools can be found in:
V6 SQL Reference, Appendix K - Explain Tables, and
Appendix L - Explain Registers
V6 Administration Guide, Chapter 22 - SQL Explain Facility,
Appendix K - Explain Tables, and Appendix M - db2exfmt

International DB2 Users Group

Explain Argument
Table

Explain Stream
Table

Explain Predicate
Table

Explain Object Table

Explain Operator
Table

Explain Statement
Table

Explain Instance
Table

Explain Table Relationships

These tables
always
populated

These tables are
not populated
when only the
snapshot is
requested

International DB2 Users Group

Visual Explain allows you to enter queries and have them
explained, as well as view previously explained queries

Manually, in static or dynamic SQL, you can use several methods:
Explain Statement:

Prepend explain plan with snapshot for to SQL statement
Prepend explain plan for to SQL statement

Explain special registers (for dynamic SQL only)
set explain mode to yes, no, or explain
set explain snapshot set to yes, no, or explain

Explain bind options (for static and/or dynamic SQL)
explain set to yes, no, or all
explsnap set to yes, no, or all

How do I get data in the Explain Tables?

International DB2 Users Group

My Explain tables are getting big. Why?

The engine only inserts into the explain tables

The user or DBA must decide when plans no longer have value
and clean up the explain tables.

There is a remarks column in the explain instance table that can
be manually updated to provide some details about when the
explain instance was gathered

There are querytag, and queryno columns in the explain statement
table that can be set in the explain statement, or updated
manually to provide additional details about the particular
statement

International DB2 Users Group

What else can I do with the Explain
information?
Run custom queries to mine information about your explain plans

Search for sorts, or group bys on sets of columns and base
tables that occur frequently, and could be beneficial as an index
or AST
Search for expensive operations, large or spilling sorts, high
buffer usage, high TQ usage, etc...
Search for expensive plans to further examine for database
optimizations
Search for common predicates that could form potential
start/stop keys for an index
Your imagination and SQL skills are your only limits!

International DB2 Users Group

Agenda

The Explain Facility
What is it?
How to invoke it
Viewing options: Visual Explain and db2exfmt
What about db2expln and dynexpln?

The Query Access Plan
Optimized SQL
Plan operators, arguments and properties
Predicate application
Execution flow (serial and parallel)

Performance analysis tips

International DB2 Users Group

The Structure of Explain Information
DB and DBM overview

Software release level
Basic Database configuration parameters

Original SQL Statement text
The SQL statement as it was presented to the DB2 engine

"Optimized" SQL Statement text
SQL-like representation of the query after it has been rewritten,
views merged, constraints and triggers added

Access Plan
An overview graph of the query access plan
Details of the LOw LEvel Plan OPerators (LOLEPOPs)

International DB2 Users Group

Understanding db2exfmt output
Explain level, version and build level, application

DB2 Universal Database Version 6, 5622-044 (c)
Copyright IBM Corp. 1995, 1999
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************* EXPLAIN INSTANCE ****************

DB2_VERSION: 06.01.0
BUILD LEVEL: db2_v6:n990611

SOURCE_NAME: SQLC39A3
SOURCE_SCHEMA: NULLID
EXPLAIN_TIME: 1999-06-14-02.32.56.165498
EXPLAIN_REQUESTER: HAIDER

International DB2 Users Group

Database context information
Database and database manager configuration parameters
considered by the optimizer

Database Context:

Parallelism: Inter-Partition Parallelism
CPU Speed: 1.255649e-06
Comm Speed: 2
Buffer Pool size: 95000
Sort Heap size: 22000
Database Heap size: 4800
Lock List size: 3500
Maximum Lock List: 6
Average Applications: 1
Locks Available: 23730

International DB2 Users Group

Package information
Optimization level, static or dynamic SQL, isolation level

Package Context:

SQL Type: Dynamic
Optimization Level: 7
Blocking: Block All Cursors
Isolation Level: Repeatable Read

------------ STATEMENT 1 SECTION 201 -----------
QUERYNO: 1
QUERYTAG: CLP
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

International DB2 Users Group

Original and optimized SQL
Example: TPC-R Q1

Original Statement:

select l_returnflag, l_linestatus, sum(l_quantity) as
sum_qty, sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice * (1 - l_discount)) as
sum_disc_price, sum(l_extendedprice * (1 - l_discount) *
(1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price, avg(l_discount) as
avg_disc, count(*) as count_order
from tpcd.lineitem
where l_shipdate <= date ('1998-12-01') - 90 day
group by l_returnflag, l_linestatus
order by l_returnflag, l_linestatus

International DB2 Users Group

Optimized SQL

Optimized Statement:

SELECT Q3.$C7 AS "L_RETURNFLAG",
 Q3.$C6 AS "L_LINESTATUS", Q3.$C5 AS "SUM_QTY",
 Q3.$C4 AS "SUM_BASE_PRICE", Q3.$C3 AS "SUM_DISC_PRICE",
Q3.$C2 AS "SUM_CHARGE",(Q3.$C5 / Q3.$C0) AS "AVG_QTY",
(Q3.$C4 /Q3.$C0) AS "AVG_PRICE", (Q3.$C1 / Q3.$C0) AS
"AVG_DISC", INTEGER(Q3.$C0) AS "COUNT_ORDER"
FROM
 (SELECT SUM(Q2.$C2), SUM(Q2.$C3), SUM(Q2.$C4),
SUM(Q2.$C5),SUM(Q2.$C6),SUM(Q2.$C7), Q2.$C0, Q2.$C1
FROM
 (SELECT Q1.L_LINESTATUS, Q1.L_RETURNFLAG, Q1.COUNT,
Q1.S5, Q1.S4, Q1.S3, Q1.S2, Q1.S1
 FROM TPCD.L_SUMMARY AS Q1
 WHERE (Q1.L_SHIPDATE <= '09/02/1998')) AS Q2
 GROUP BY Q2.$C1, Q2.$C0) AS Q3
ORDER BY Q3.$C7, Q3.$C6

International DB2 Users Group

Internal column naming convention
Internal name represents position in select list

Optimized Statement:

SELECT Q3.$C7 AS "L_RETURNFLAG", ...
FROM
 (SELECT SUM(Q2.$C2), SUM(Q2.$C3), SUM(Q2.$C4),
SUM(Q2.$C5),SUM(Q2.$C6),SUM(Q2.$C7), Q2.$C0, Q2.$C1
FROM
 (SELECT Q1.L_LINESTATUS, Q1.L_RETURNFLAG, Q1.COUNT,
Q1.S5, Q1.S4, Q1.S3, Q1.S2, Q1.S1
 FROM TPCD.L_SUMMARY AS Q1
WHERE (Q1.L_SHIPDATE <= '09/02/1998')) AS Q2
 GROUP BY Q2.$C1, Q2.$C0) AS Q3
ORDER BY Q3.$C7, Q3.$C6

International DB2 Users Group

Optimized SQL
Reflects effects of query rewrite optimizations
For example - automatic redirection to summary tables

Original Statement:

select ...
from tpcd.lineitem

Optimized Statement:

SELECT ...
FROM
 (SELECT ...
 FROM
 (SELECT ...
 FROM TPCD.L_SUMMARY AS Q1
) AS Q2
) AS Q3

International DB2 Users Group

Optimized SQL
Reflects effects of query rewrite optimizations
For example - pre-computation of constant expressions

Original Statement:

select ...
from tpcd.lineitem
where l_shipdate <= date ('1998-12-01') - 90 day

Optimized Statement:

SELECT ...
FROM
 (SELECT ...
 FROM
 (SELECT ...
 FROM TPCD.L_SUMMARY AS Q1
 WHERE (Q1.L_SHIPDATE <= '09/02/1998')
) AS Q2
) AS Q3

International DB2 Users Group

Optimized SQL
Reflects effects of query rewrite optimizations
For example - aggregation optimization

Original Statement:

select ... sum(l_quantity) as sum_qty,
 avg(l_quantity) as avg_qty,
 count(*) as count_order
from ...

Optimized Statement:

SELECT ... Q3.$C5 AS "SUM_QTY",
(Q3.$C5 / Q3.$C0) AS "AVG_QTY",
INTEGER(Q3.$C0) AS "COUNT_ORDER"
FROM ...

International DB2 Users Group

Access plan graph

Access Plan:

Total Cost: 23296.9
Query Degree: 1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 6
 GRPBY
 (2)
 23296.9
 12728
 |
 24
 MDTQ
 (3)
 23296.9
 12728
 |

 6
 GRPBY
 (4)
 23296.7
 12728
 |
 6
 TBSCAN
 (5)
 23296.7
 12728
 |
 6
 SORT
 (6)
 23296.7
 12728
 |
 478775
 TBSCAN
 (7)
 22453.8
 12728
 |
 496100
 TABLE: TPCD
 L_SUMMARY

International DB2 Users Group

Access plan graph
Data flow diagram comprised of plan operators
Detailed plan operator information follows plan graph
Tip: -TIC option adds rows, total cost and I/O cost info to graph

 Rows
 RETURN
 (1)
 Cost
 I/O
 |

 |
 478775
 TBSCAN
 (7)
 22453.8
 12728
 |
 496100
 TABLE: TPCD
 L_SUMMARY

Base table cardinality

International DB2 Users Group

Represent runtime operations
Plan operators map to a set of runtime operators in access section
Base access methods

TBSCAN, IXSCAN, FETCH
Joins

Nested loop join: NLJOIN
Merge scan join: MSJOIN
Hash join: HSJOIN

Aggregation: GRPBY
See optimized SQL for actual aggregation operation e.g. SUM,
MIN/MAX etc.

Temping (TEMP) and sorting (SORT)

Access plan operators

International DB2 Users Group

Specialized operations
Index ANDing (IXA), dynamic bit map indexing
Index ORing and list prefetch (RIDSCN)
Star join uses dynamic bit map indexing (IXA)
Table queues (TQ)

Broadcast (BTQ)
Directed (DTQ)
Merging option (MDTQ, MBTQ)
Local table queue for SMP intra-partition parallelism (LTQ)

Access plan operators

International DB2 Users Group

Nested loop join of PART and PARTSUPP tables
Access plan examples

 |
 3.87404
 NLJOIN
 (13)
 125.206
 5
 /-------+------\
 0.968511 4
 IXSCAN FETCH
 (14) (15)
 75.0966 100.118
 3 4
 | /----+---\
 4.99966e+06 4 1.99987e+07
 INDEX: TPCD IXSCAN TABLE: TPCD
 UXP_NMPK (16) PARTSUPP
 75.1018
 3
 |
 1.99987e+07
 INDEX: TPCD.UXPS_PK2KSC

Execution flow is bottom up from left to
right.
1. IXSCAN (14)retrieves row from index
2. Row is passed to NLJN (13)
3. NLJN accesses inner table based on

join predicates and local predicates (if
any) (FETCH(15) and ISCAN(16))

4. Each joined row is returned from
NLJN to next operator

5. Execution continues until outer
stream is exhausted

International DB2 Users Group

Nested loop join of PART and PARTSUPP tables
Access plan examples

 |
 3.87404
 NLJOIN
 (13)
 125.206
 5
 /-------+------\
 0.968511 4
 IXSCAN FETCH
 (14) (15)
 75.0966 100.118
 3 4
 | /----+---\
 4.99966e+06 4 1.99987e+07
 INDEX: TPCD IXSCAN TABLE: TPCD
 UXP_NMPK (16) PARTSUPP
 75.1018
 3
 |
 1.99987e+07
 INDEX: TPCD.UXPS_PK2KSC

Data page FETCH
required on inner
Why?

Index only access
on outer

On which columns are the
tables being joined?

International DB2 Users Group

Use plan operator details to understand how query execute

Plan operator details

 13) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 125.206
Cumulative CPU Cost: 164264
Cumulative I/O Cost: 5
Cumulative Re-Total Cost: 0.062461
Cumulative Re-CPU Cost: 49744
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 125.204
Estimated Bufferpool Buffers: 6

 Arguments:

EARLYOUT: (Early Out flag)

FALSE
FETCHMAX: (Override for FETCH MAXPAGES)

IGNORE
ISCANMAX: (Override for ISCAN MAXPAGES)

IGNORE

Plan costs
(this operator and
its subplans)

Operator
arguments

International DB2 Users Group

Total cost in units of timerons
Based on milliseconds

 Not elapsed time in serial environment
 Elapsed time-based in parallel environment

Cost model is based on resource consumption
Total CPU and I/O resources consumed

Communication costs are considered in parallel environment
Elapsed time could be different because of parallel I/O and
overlap between CPU and I/O operations in a serial environment
Plan costs are cumulative

In general, each plan operator adds cost to the plan

Plan operator costs

International DB2 Users Group

Operator cost components

 13) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 125.206
Cumulative CPU Cost: 164264
Cumulative I/O Cost: 5

 Cumulative Re-Total Cost: 0.062461
Cumulative Re-CPU Cost: 49744
Cumulative Re-I/O Cost: 0

 Cumulative First Row Cost: 125.204

 Estimated Bufferpool Buffers: 6

Cumulative costs

Cost to re-execute subplan

Total cost to return first row

Bufferpool pages required by
this operator

International DB2 Users Group

Operator arguments

13) NLJOIN: (Nested Loop Join)
 Arguments:

EARLYOUT: (Early Out flag)

FALSE

 FETCHMAX: (Override for FETCH MAXPAGES)
IGNORE

 ISCANMAX: (Override for ISCAN MAXPAGES)
IGNORE

Provide details on how operator executes
See the Administration Guide, Appendix K - Explain Tables and
Definitions, for complete description

Get next outer after finding
first match on inner.
Guaranteed one match on
inner.

Maximum pages to prefetch
for FETCH and ISCAN.
NLJOIN can override original
settings if an 'ordered'
NLJOIN.

International DB2 Users Group

Operator predicates
Sargable (Search ARGument) predicates

Applied by data manager or index manager without copying
data from data or index page

Residual predicates
Data copied from page to buffer, predicate applied by relational
data service (RDS) runtime layer

Start/stop key predicates
Applied by index scan

Subquery predicates
A subplan must be executed
Results may be temped
Could be correlated
Applied as residual predicates

International DB2 Users Group

Hierarchy of Predicate Application

Salary > ALL
 (SELECT...
 FROM...
 WHERE...)

Name LIKE 'Lo%'

Residual
Predicates

Search
Arguments
(SARGs)

RDS

Data
Manager

SSN= '012-34-5678'
Index
Start/Stop
Conditions
(keycols)

Index
Manager

Buffer pages

International DB2 Users Group

Operator predicates

13) NLJOIN: (Nested Loop Join)

 Predicates:

 16) Predicate used in Join
 Relational Operator: Equal (=)
 Subquery Input Required: No
 Filter Factor: 5.00034e-08

 Predicate Text:

 (Q1.PS_PARTKEY = Q2.P_PARTKEY)

Predicate selectivity estimate

Predicate text based on
optimized SQL

NLJOIN predicate example

International DB2 Users Group

Operator input and output streams

13) NLJOIN: (Nested Loop Join)
Input Streams:

5) From Operator #14
 Estimated number of rows: 0.968511

Partition Map ID: 1
Partitioning: (MULT)

 Multiple Partitions
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+RID+P_PARTKEY+P_NAME

Partition Column Names:

 +1: PS_PARTKEY

NLJOIN example

Stream cardinality

Partitioning information

Stream information

International DB2 Users Group

Operator input and output streams

13) NLJOIN: (Nested Loop Join)
Input Streams:

9) From Operator #15
 Estimated number of rows: 4
 Partition Map ID: 1
 Partitioning: (MULT)

Multiple Partitions
 Number of columns: 4
 Subquery predicate ID: Not Applicable

 Column Names:

 +PS_PARTKEY(A)+PS_SUPPKEY(A)+RID+PS_AVAILQTY

Partition Column Names:

+1: PS_PARTKEY

NLJOIN has 2 input streams, 1 output stream

Inner cardinality is
per outer

International DB2 Users Group

Insight from operator details

15) FETCH : (Fetch)
Arguments:

 ...
Input Streams:

7) From Operator #16
Column Names:

+PS_PARTKEY(A)+PS_SUPPKEY(A)+RID

 8) From Object TPCD.PARTSUPP
Column Names:

+PS_AVAILQTY

Why was FETCH necessary on inner of NLJOIN(13) ?

Column in stream is
not in index

International DB2 Users Group

Insight from operator details

16) IXSCAN: (Index Scan)
Predicates:

16) Start Key Predicate

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 5.00034e-08

Predicate Text:

(Q1.PS_PARTKEY = Q2.P_PARTKEY)

16) Stop Key Predicate
Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 5.00034e-08

Predicate Text:

(Q1.PS_PARTKEY = Q2.P_PARTKEY)

How is NLJOIN join predicate applied ?

Applied as start/stop key
predicate on IXSCAN.
Estimate 4 matching inner
rows per outer.

International DB2 Users Group

Operator Details - Did that SORT spill?

The details for a SORT will indicate if
the SORT spilled
The I/Os indicate that there was I/O,
and thus spilling associated with the
SORT.
The Estimated Bufferpool Buffers
associated with the TBSCAN above the
SORT indicate how many pages of
spilling there was

 |
 3.65665e+07
 TBSCAN
 (15)
 6.87408e+06
 1.45951e+06
 |
 3.65665e+07
 SORT
 (16)
 6.14826e+06
 1.30119e+06
 |
 3.65665e+07
 TBSCAN
 (17)
 2.00653e+06
 1.14286e+06
 |
 3.74999e+07
 TABLE: TPCD
 ORDERS

15) TBSCAN: (Table Scan)
 .
 .
 .

Estimated Bufferpool Buffers: 163976

International DB2 Users Group

Operator Details - What about TQs
3) TQ : (Table Queue)

Cumulative Total Cost: 9.59526e+06
Cumulative CPU Cost: 5.34502e+11
Cumulative I/O Cost: 5.36014e+06
Cumulative Re-Total Cost: 9.33374e+06
Cumulative Re-CPU Cost: 3.44133e+11
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 9.59526e+06
Estimated Bufferpool Buffers: 0

Arguments:

LISTENER: (Listener Table Queue type)

FALSE
SORTKEY : (Sort Key column)

1: L_RETURNFLAG(A)
SORTKEY : (Sort Key column)

2: L_LINESTATUS(A)
TQMERGE : (Merging Table Queue flag)

TRUE
TQREAD : (Table Queue Read type)

READ AHEAD
TQSEND : (Table Queue Write type)

DIRECTED
UNIQUE : (Uniqueness required flag)

FALSE

Table Queue represents
communication between
nodes or subagents
There are 4 key types of TQs:

Merging TQ (MDTQ,
MBTQ)
Broadcast TQ (BTQ,
MBTQ)
Directed TQ (DTQ, MDTQ)
Local TQ (LTQ, LMTQ)

International DB2 Users Group

How do I recognize List prefetch?

 |
 455.385
 SORT
 (11)
 219.091
 17.4697
 |
 455.385
 IXSCAN
 (12)
 218.559
 17.4697
 |
 15009
 INDEX: TPCD
L_SUMMARY2_IDX

 455.385
 FETCH
 (9)
 308.619
 61.2878
 /----+---\
 455.385 15009
 RIDSCN TABLE: TPCD
 (10) L_SUMMARY2
 219.093
 17.4697
 |

Sort RIDs on page number

Apply predicates and
return Row IDentifiers
(RIDs) from the index

Fetch data pages.
Should already be in
bufferpool.

Build list of pages and
pass to prefetchers

International DB2 Users Group

What about Index ORing?

 |
 +-----------------+-----------------+
 59383.3 150.002 4.00006
 SORT SORT SORT
 (5) (7) (9)
 653.127 75.5534 75.1057
 76.2908 3 3
 | | |
 59383.3 150.002 4.00006
 IXSCAN IXSCAN IXSCAN
 (6) (8) (10)
 510.773 75.4177 75.1022
 76.2908 3 3
 | | |
 1.50002e+08 1.50002e+08 1.50002e+08
 INDEX: INDEX: INDEX:
 TPCD.L_SD TPCD.L_SK_PK TPCD.L_OK

 |
 59537.2
 FETCH
 (3)
 62819.1
 37361.7
 /----+---\
 59537.2 1.50002e+08
 RIDSCN TABLE: TPCD
 (4) LINEITEM
 803.781
 82.2908
 |

Sort RIDs on page number
Eliminate duplicate RIDs
Actually the same sort for each arm

Apply predicates and
return Row IDentifiers (RIDs) from
the index

FETCH retrieves data and
reapplies predicates.

List prefetch plan completes
processing.

International DB2 Users Group

Index ORing

 |
 +-----------------+-----------------+
 59383.3 150.002 4.00006
 SORT SORT SORT
 (5) (7) (9)
 653.127 75.5534 75.1057
 76.2908 3 3
 | | |
 59383.3 150.002 4.00006
 IXSCAN IXSCAN IXSCAN
 (6) (8) (10)
 510.773 75.4177 75.1022
 76.2908 3 3
 | | |
 1.50002e+08 1.50002e+08 1.50002e+08
 INDEX: INDEX: INDEX:
 TPCD.L_SD TPCD.L_SK_PK TPCD.L_OK

 |
 59537.2
 FETCH
 (3)
 62819.1
 37361.7
 /----+---\
 59537.2 1.50002e+08
 RIDSCN TABLE: TPCD
 (4) LINEITEM
 803.781
 82.2908
 |

Observe cardinalities in each
arm and after RIDSCN.

Each IXSCAN applies a
different predicate:
l_shipdate = date('1992-01-10')
l_suppkey = 995000
l_orderkey = 995000

Index ORing example
select l_linestatus from tpcd.lineitem
where l_shipdate = date('1992-01-10') or
 l_suppkey = 995000 or
 l_orderkey = 995000

International DB2 Users Group

What about Index ANDing?

 |
 886.281
 IXAND
 (6)
 4026.01
 1100.96
 /------+-----\
 248752 534445
 IXSCAN IXSCAN
 (7) (8)
 1480.95 2509.07
 430.024 670.935
 | |
 1.50002e+08 1.50002e+08
 INDEX: TPCD INDEX: TPCD
L_OK L_SD

 |
 4.4314
 FETCH
 (3)
 5475.6
 1952.4
 /----+---\
886.281 1.50002e+08
RIDSCN TABLE: TPCD
(4) LINEITEM
4027.9
1100.96
 |
886.281
 SORT
(5)
4027.9
1100.96
 |

RIDs are hashed to dynamic
bitmap by IXAND.
RIDs are returned while
processing last index.

Apply predicates and
return Row IDentifiers
(RIDs) from the index

FETCH retrieves data and
reapplies predicates.

List prefetch plan completes
processing.

International DB2 Users Group

Index ANDing

 |
 886.281
 IXAND
 (6)
 4026.01
 1100.96
 /------+-----\
 248752 534445
 IXSCAN IXSCAN
 (7) (8)
 1480.95 2509.07
 430.024 670.935
 | |
 1.50002e+08 1.50002e+08
 INDEX:TPCD.L_OK INDEX:TPCD.L_SD

Index ANDing example

Observe IXSCAN
filtering and combined
filtering after IXAND

select l_linestatus from tpcd.lineitem
 where l_shipdate <= date('1992-01-10') and
 l_suppkey > 995000 and
 l_orderkey < 995000;

l_shipdate <=
date('1992-01-10')l_orderkey < 995000

Different indexes

International DB2 Users Group

Index ANDing

 |
 4.4314
 FETCH
 (3)
 5475.6
 1952.4
 /----+---\
886.281 1.50002e+08
RIDSCN TABLE: TPCD
(4) LINEITEM
4027.9
1100.96
 |
886.281
 SORT
(5)
4027.9
1100.96
 |

Index ANDing example
select l_linestatus from tpcd.lineitem
 where l_shipdate <= date('1992-01-10') and
 l_suppkey > 995000 and
 l_orderkey < 995000;

List prefetch is used to retrieve
data pages efficiently.

IXSCAN predicates are
reapplied by FETCH as well as
any other eligible predicate.
(e.g. all 3 predicates applied)

International DB2 Users Group

Star join

select l_extendedprice, l_discount, l_quantity
from
tpcd.lineitem, tpcd.supplier, tpcd.orders, tpcd.part
where
l_suppkey = s_suppkey and
l_orderkey = o_orderkey and
l_partkey = p_partkey and
s_name = 'Supplier#000419963' and
o_orderdate = date('1996-12-31') and
p_type = 'ECONOMY ANODIZED STEEL'

Large fact table is filtered by multiple dimension tables or more
complex dimensions called 'snowflakes'
Schema is 'star' shaped with fact table in centre of star

International DB2 Users Group

Star join
 0.249524
 IXAND
 (12)
 1.21884e+06
 75692.4
 /----------------+----------------\
 600.354 62345
 NLJOIN NLJOIN
 (13) (17)
 17949.6 1.20089e+06
 10246 65446.4
 /----+---\ /---------+---------\
 4.00371 149.949 15586 4.00006
 BTQ IXSCAN FETCH IXSCAN
 (14) (16) (18) (20)
 17649.1 75.1169 31390.7 75.0923
 10234 3 18688.4 3
 | | /----+---\ |
 1.00093 1.50002e+08 15586 3.74999e+07 1.50002e+08
 TBSCAN INDEX: TPCD IXSCAN TABLE: TPCD INDEX: TPCD
 (15) L_SK_PK (19) ORDERS L_OK
 17648.9 245.131
 10234 20.471
 | |
 250088 3.74999e+07
 TABLE: TPCD.SUPPLIER INDEX: TPCD.O_OD

Uses index ANDing operator
(dynamic bitmap indexes)

Semi-joins return RIDs
from fact table indexes

Dimension tables
filter rows from the
fact table

RIDs are used to form a
dynamic bit map index
using index ANDing

International DB2 Users Group

Star join
 |
 0.249524
 FETCH
 (9)
 1.21884e+06
 75692.7
 /-----+----\
 0.249524 1.50002e+08
 RIDSCN TABLE: TPCD
 (10) LINEITEM
1.21884e+06
 75692.4
 |
 0.249524
 SORT
 (11)
1.21884e+06
 75692.4
 |
 0.249524
 IXAND
 (12)
1.21884e+06
 75692.4
 |

Retrieving fact table rows

List prefetch operation
is used to retrieve
fact table data pages.

Fetch retrieves fact table rows

International DB2 Users Group

Star join

 0.0017328
 DTQ
 (6)
 1.21886e+06
 75693.4
 |
 0.0017328
 NLJOIN
 (7)
 1.21886e+06
 75693.4
 /-------------+-------------\
 0.249524 0.00694444
 DTQ FETCH
 (8) (21)
 1.21885e+06 75.1053
 75692.7 3
 | /----+---\
 0.249524 1 4.99966e+06
 FETCH IXSCAN TABLE: TPCD
 (9) (22) PART
 1.21884e+06 50.0918
 75692.7 2
 /-----+----\ |
0.249524 1.50002e+08 4.99966e+06
 RIDSCN TABLE: TPCD INDEX: TPCD
 (10) LINEITEM P_PK

'Back' joins
 0.0017328
 NLJOIN
 (3)
 1.21886e+06
 75693.5
 /------+-----\
 0.0017328 0.000415628
 DTQ FETCH
 (4) (25)
 1.21886e+06 100.109
 75693.4 4
 | /----+---\
 0.0017328 1 3.74999e+07
 NLJOIN IXSCAN TABLE: TPCD
 (5) (26) ORDERS
 1.21886e+06 75.0952
 75693.4 3
 /------+-----\
| 4.00231e-06
 FETCH
 (23)
 75.095
 3
 /----+---\
 1 250088
 IXSCAN TABLE: TPCD
 (24) SUPPLIER
 50.0815
 2

Dimension tables used in
semi-joins must be rejoined
with fact table rows after index
ANDing because of 'false
positives' due to hash
collisions.

Not all tables are
used in
semi-joins.

International DB2 Users Group

Common sub-expression (CSE) TEMPs

 |
 BTQ
 (25)
 416.596
 16.6216
 |
 0.154962
 TBSCAN
 (26)
 416.418
 16.6216
 |
 0.154962
 TEMP
 (7)
 416.34
 16.6216

Created once and referenced multiple times

 |
 0.154962
 TEMP
 (7)
 416.34
 16.6216
 |
 0.154962
 HSJOIN
 (8)
 416.299
 16.6216
/-----------+----------\ TEMP table with no subplan

(hanging in mid-air !)

Look for TEMP with same
operator number with a
subplan to identify where it is
materialized in plan.
Check operator arguments
also. (CSETEMP = TRUE)

International DB2 Users Group

Agenda

The Explain Facility
What is it?
How to invoke it
Viewing options: Visual Explain and db2exfmt
What about db2expln and dynexpln?

The Query Access Plan
Optimized SQL
Plan operators, arguments and properties
Predicate application
Execution flow (serial and parallel)

Performance analysis tips

International DB2 Users Group

Investigating Problem Queries
db2look can be used to mimic, or simulate a database using
update statistics

db2look extracts the DDL, and all of the relevant statistics that
the optimizer requires to plan a query
Works well for EE or SMP systems,
May not work as well for EEE systems, since different numbers
of nodes can affect the query plan chosen

Internally, we use a simulation tool to get around this problem
System configuration is also important to the optimizer

plan selection is affected by both DBM and DB configuration
parameters
not all parameters can be set in a way that is useful

Internally we have a way to "fake out" the optimizer

International DB2 Users Group

DBM Configuration parameters

Optimizer is affected by the following Database Manager
configuration parameters:

CPUSPEED
COMM_BANDWIDTH (for Intra-partition parallelism)
INTRA_PARALLEL

Optimizer is affected by the following Database configuration
parameters:

DFT_QUERYOPT
SORTHEAP
STMTHEAP
LOCKLIST
AVG_APPLS

MAXLOCKS
DBHEAP (Inter-partition parallelism)
DFT_DEGREE (Inter-partition parallelism)
BUFFPAGE (must account for multiple
bufferpools)

International DB2 Users Group

What will I be looking for?

missed index opportunities
better join opportunities
poor predicate selectivities due to insufficient statistics
FETCH used because an index could use INCLUDE columns
large TEMP or SORT

Did the SORT spill to disk? (I/O increased during SORT)
Inspect TQ location

 poor table partitioning decisions in DB design
TQing large amounts of data due to poor join predicates, or lack
of local predicates
better collocation of tables

International DB2 Users Group

In Summary
Explain provides insight into the optimizer's planning decisions

There are two key tools to use to visualize the explain information:
Visual Explain provides a navigable interface to Explain
db2exfmt provides a text-based view of Explain

 More details about Explain can be found in:
V6 Administration Guide

Chapter 22 - SQL Explain Facility
Appendix K - Explain Tables and Definitions
Appendix M - db2exfmt - Explain Table Format Tool

V6 SQL Reference
Appendix K - Explain Tables and Definitions
Appendix L - Explain Register Values

Visual Explain's Online Help

International DB2 Users Group

In Summary - Other sessions of Interest

Related talks include:
C8 - Using DB2 as a Tool to Select Indexes, by Danny Zilio
C11 (repeat of C2) - DB2 Optimizer's Secrets Revealed by
Visual Explain, by Guy Lohman

