Coding Standards
for Java

New England Java Users Group

http://Amwww.nejug.org

March, 2002

Copyright © 2002 Apex Consulting Group, Inc.
in association with the New England Java Users Group

2nd Revison

This document may be reproduced and distributed in whole or in part, in any medium physica or
electronic, provided that this license notice is displayed in the reproduction. Commercid
redistribution is permitted and encouraged. Thirty days advance notice to the authors a
http:/Amww.nglug.org of redistribution is gppreciated, to give the authors time to provide updated
documents. Please forward corrections and/or comments to NEJUG.

We encourage you to use this document as the basis for adopting your own coding standards.
Rather than modify this document, however, we would rather you create your own with references
to sections contained here.
Y ou may creete a derivative work for the purpose of language trandation provided you:

Send your derivative work (in the most suitable format such as PDF or SGML) to NEJUG.

License the derivative work with this same license or use GPL. Include a copyright notice and
a least a pointer to the license used.

Give due credit to previous authors.

Preface

We have tried to provide a usable guide to establishing and following coding standards.

This guide is intended for any Java developer seeking guidance in establishing standards in their own
work, for their project team, and in their entire organization.

Our goal is to facilitate universal acceptance of our recommendations within your project team,
department, or organization. To that end we have tried to produce a small, approachable document.
To enhanceits use as a reference document we have created an extensive index. \We have aso
organized the individual points so that you can quickly agree on the basics and focus your discussions
on substantive issues only.

We assume you care about doing a good job and achieving excellence in your work. We understand
that following these guidelines will not guarantee your code will be excellent. However, we believe
that ignoring them will make it much harder to attain excellence.

You may resist the restrictions implied by these guidelines and they may seem at first overly
structured. Nevertheless, if your team adopts them we hope you will find that this structure enables
you to shine and empowers you to excel. Rather than constrain us, these guidelines provide a safer
playground in which we can create- without worrying about details which can drain our energy.

Aave

neJjog

The New England Java Users Group

The New England Java Users Group was formed in November 1998 by Mark Richards and Bill
Rushmore of Apex Consulting Group, Inc. with the purpose of providing a forum for exchanging ideas
and discussing various topics and issues relating to Java technology. The group is open to all
individuals, and membership, meetings, and refreshments are free of charge.

With over 1800 registered members as of January 2002, the NEJUG is one of the largest Java Users
Groups in the country. Meetings are held once a month, with the exception of July and December.
The speakers at each meeting include Sun engineers, Java technical authors, technical resources from
local vendors, and NEJUG members. Past speakers have included Peter Coad, Martin Fowler, Peter
Haggar, and Ken Arnold. The meeting topics are technica in nature, and involve some aspect of Java
and J2EE. The NEJUG web site is located at www.nejug.org. It provides a complete list of al past,
present, and future meeting topics, as well as presentation slides from each meeting. Also at the web
site you can find general information about the group, meeting details, directions, meeting registration,
membership registration, a book and product review section, and a NEJUG Bulletin Board.

The administrative body of the group consists of a president and two officers. Mark Richards, Chief
Architect at Apex Consulting Group, Inc. is the NEJUG President (ngjug@apexcgi.com). The
NEJUG Officers are Robert "Red" Rogers, System Engineer from Sun Microsystems
(red@nejug.org), and Donna Alger, a Web Architect and Manager of the Maine Java Users Group
(donna@nejug.org). Mark Richards is the primary NEJUG contact, and can be reached by e-mail at
nejug@apexcgi.com.

The sponsors of the New England Java Users Group include Apex Consulting Group, the founder and
primary sponsor, Sun Microsystems, Sun Education, Addison-Wesley, and JPMorgan. As the primary
sponsor, Apex Consulting Group, Inc. (www.apexcgi.com) provides group leadership, web site
administration and maintenance, marketing materials, meals and refreshments. Sun Microsystems
(www.sun.com) provides the user group with a facility to meet once a month, as does JPMorgan. Sun
Education also sponsors the group by providing meeting space for the NEJUG Special Interest

Groups. Addison-Wesley (www.awl.com/aw) provides the group with technical Java books relating
to each meeting topic, as well as pre-release books, Java Class Library posters, and other technical
resources given away at each meeting.

For more information about the New England Java Users Group or to become a member, please visit
the NEJUG web site at www.nejug.org.

Credits

The Java Coding Styles and Guidelines Special Interest Group was formed as part of the New
England Java Users Group in January of 2001 with the purpose of discussing and investigating the
various standards, styles, and guidelines that are used in Java. After several meetings, the group
decided to create a Java standards, styles and guidelines document to share with the rest of the user
group and Java community. After several more meetings, the SIG decided to formalize the document
and publish it in book form. The book you are reading is aresult of the hard work, efforts, and
dedication of the Specia Interest Group members.

The following are brief biographies of the specia interest group members who dedicated their time,
thoughts, and efforts to produce this guide:

Doug Chamberlin, Editor
dchamberlin@andoversoftware.com

Doug Chamberlin has contributed to the productivity of programming teams with insight and
humor for over 25 years as a professional software developer and project lead. He is
currently an Associate with http://www.dlawton.com and spends much of histime trying to
keep up with current technol ogy.

Mark Johnson
mfjohnson98@yahoo.com

Mark first started programming in the late 70's writing medical software for Apple Il's.
Currently enjoying the power and flexibility of Enterprise Java and object oriented
programming while building strategic sourcing systems.

Theophano Mitsa
TheoMitsa@aol.com

Dr. Theophano Mitsa has 10 years experience in academia and industry in the areas of
software development and image processing. She is the author of 38 technical publications
and holds 7 US patents. She is currently a software consultant with Research Corporation
Technologies.

Sean Murphy
virtualsean@fastdial .net

Vii

Chip Pate
cpate3@yahoo.com

Chip graduated from University of Southern Maine in 1999 receiving the Outstanding Student
in Computer Science Award for the cumulative work throughout his years there. Since then
he has worked as a consultant for wireless networks and for Intel. Currently he enjoys
discovering new technologies that push the envelope of the way we do things today.

Mark Richards
wmrichards@worldnet.att.net or nejug@apexcgi.com

Mark Richardsis the President of the New England Java Users Group, and also a Chief
Architect at Apex Consulting Group, Inc. He has been involved in software design and
development since 1984, and since 1996 has served as a lead developer and architect on
Internet/Intranet and B2B projects using Java and J2EE.

Mark was the President of the Boston Java Users Group from 1997 to 1998, and is a Sun
Certified Java Programmer, a Certified Java instructor, a BEA WebL ogic Certified
Developer, and has passed the first part of the Sun Certified J2EE Architect certification.
Mark holds a Master's Degree in Computer Science from Boston Univerity.

Bill Rushmore
rushmore230@charter.net

Bill Rushmore is along time Java developer and advocate. He is one of the original founders
of the NEJUG and the first NEJUG president.

Brian Tarbox
btarbox@world.com

Brian Tarbox has been leading development teams for over twenty years with two patents
and two InterOp Product of the Year awards. Heis CTO of Been There - Done That
Software, LLC.

Suzanne Trayhan
zanne@attbi.net

Venugopa \easireddy
haripriya2@hotmail.com

viii

Quan Yang
gayang_2000@yahoo.com

Dr. Quan Yang has worked in telecommunication companies such as GTE, Nokiaand in
pharmaceutical companies such as Pharmacia as a software engineer and project lead. He is
now with the Genome Therapeutics Corp.

Hong Zhuang
zhuang@world.std.com

Hong Zhuang is a J2EE consultant. She has helped companies such as State Street Bank,
Thomson Financial, and Fidelity build distributed mission-critical enterprise applications.

Thanks to Dennis Kenny for editing assistance!

PEX

CONSULTING GROUP, INC.

Apex Consulting Group is a Professional Services firm that delivers unique enterprise solutions from
systems integration to digital business models across a broad spectrum of leading technologies for top
companies in the New England region. Apex Consulting Group is the founder and primary sponsor of
the New England Java Users Group, and the sponsor of this Java Standards and Guidelines book.

The Apex Consulting Group solution is business-oriented and technol ogy-based. Apex Consulting
Group works with its clients to identify business goals and designs the business processes and
technical solutions to meet those goals and is focused on delivering measurable ROI, profitability and
customer loyalty. Apex Consulting Group cost-effectively meets the ever evolving and increasingly
demanding needs of our clients with the highest level of quality delivered by senior business and
technology professionals.

In the area of Java and J2EE technology, Apex Consulting Group’s goal is to help companiesin the
Greater Boston area develop and deploy robust, quality J2EE and Java-based applications by
providing high quality technical and information management consulting services. Our focus is on
developing and deploying J2EE-based architectures with an emphasis on reliability, performance, and
scalahility. To design these architectures we rely on JavaServer Pages, Servlets, Enterprise
JavaBeans, Java Messaging, Java Transaction Processing, Security, and JDBC.

Apex Consulting Group aso has expertise in the development of non-J2EE Java-based architectures,
with a special emphasis on high-volume and high-speed transaction processing. Within this area we
rely on experience designing and developing applications such as high-speed financia transaction
processing systems, large-volume order processing and fulfillment systems, and high-volume
automated hardware testing systems. In each of these areas Apex has met or exceeded client
expectations.

To learn more about Apex Consulting Group, please visit their web site at http://www.apexcgi.com or
contact Tom Stephanian at 781-944-0212.

Apex Consulting Group, Inc.
PO. Box 636
Wilmington, MA 01887

Tel: 617-489-9000
Fax: 781-944-1988
email: info@apexcgi.com
web: WwWw.apexcgi.com

Xii

Table of Contents

REfEIENCES
List of Standards
Listof Styles

List of CONVENLIONS oo e e e e e e e e

Xiii

o
[HEN

AN
(BN

AR
[HEN

Ak
=

@
[HEN

o
w

@
o1

N
=

Xiv

Overview

Organization

This document lists our recommendations for coding Java. Each recommendation is numbered,
explained, and examples are provided.

We acknowledge that developers have strong feelings about many of these recommendations. These
feelings are the single most significant factor in preventing recommendations from being adopted by
groups of developers. Achieving a consensus is sometimes very difficult.

To help achieve consensus, we have classified the recommendations into either a standard, a style or
a convention. We expect the standards to be easy to agree on. We expect the styles to be harder to
agree on but our discussion of the choices should help. The relative freedom you have implementing
conventions should make them easier to adopt.

Each group is presented in a separate chapter.
Sandards

Standards are those recommendations which are thought to be so universal that they are strict
requirements. One test for this classification is whether any Java devel oper would immediately expect
the standard to be followed. Another test is how violations are dealt with. We expect that code which
contains violations of standards will be rejected during a code review and not be alowed to reach
production status.

Syles

Styles are recommendations for which there is some legitimate disagreement among experienced
developers. For each style recommendation we present our views on the alternatives. \We expect one
of the alternatives will be chosen and adopted by you. One example of thisis placement of braces
(STY-12). We opted for one style to be used for al examples in this document.

Conventions

Conventions are recommendations in areas where you should make a selection so that your coding
will be consistent and not haphazard. For example, we recommend you set a maximum number of
lines that a method can contain. What that maximum value should be is up to you.

Principles

All decisions made regarding these recommendations should be made keeping certain principlesin
mind. These are the principles which have guided our discussions and which we feel are the most
relevant.

1-1

Balance

Often the goals being sought in determining the best recommendations are in conflict. When this
happens a balance must be struck which allows the essence of each goal to prevail. For example,
some code may be originally well-structured but run slowly. In modifying the code to increase
performance, the original structure sometimes must be atered. The developer must balance the need
for increased performance with the need to retain an understandable structure.

Brevity

Succinct expression is appreciated. However, overly terse expressions are to be avoided. (Thisis
another example of balance!)

Unifor mity

Recommendations of similar types should be adopted as a group. Recognize patterns in the
recommendations and promote them.

Consistency

Maximize the reader’ s understanding when they read your Java code and minimize surprises by
applying these recommendations consistently.

Readability

Code should be written to be readable. Recommendations which are made mainly to enable coders to
write more efficiently should be avoided. Code which is structured to enhance runtime performance
over readability should also be avoided. Review for performance after ensuring that the code is well-
structured, understandable, and works correctly.

References

We have made reference to several previous documents and articles. The most prominent of these is
the Code Conventions for the Java™ Programming Language document from Sun which we
refer to via [Conventions]. See the References list on page 5-1 for details on other references.

1-2

STD-1

STD-2

Sandards

Package naming.

Follow the nearly universal naming convention for packages described in [Conventions]
section 9. Package names contain only lower case letters. Never create a package which
uses a package prefix already being used by another entity, for example “javax”.

Proper package name examples:

package java.util;

package java.io;

package org.w3c.xml.parser;
package com.mycom.mypackage;

Improper package name examples:

// Name should be lower case
package Com.MyCom.Mypackage;

// "javax" has already been used
// MyPackage should be all lower case

package javax.Mypackage;

// Name should be lower case
package com.myCom.Mypackage;

Class and Interface naming.

Again, following the guidelines in [Conventions], class names should be nouns using mixed
case with embedded words capitalized. Do not use embedded underscores within names.

Avoid acronyms and abbreviations unless they are already more widely used than their long
form (e.g. HTML). When using acronyms do not capitalize the whole acronym. Instead
treat it as aword and only capitalize the first |etter.

Interface naming follows class naming exactly.

Proper class name examples:

MyDriver
MyClass
HtmlConverter

Improper class name examples:

myDriver //Name should start with capital letter
My_Class //Name should not have embedded underscores

myclass //Name should start with capital letter
Transform //Names should be nouns

STD-3 Method naming and formatting.

Methods are active and, therefore, should be named using verbs. As with class names, use
mixed case except the initia letter is aways lower case.

No spaces should exist between a method name and the opening parenthesis of a parameter
list.

Proper method name examples:

getX()

createX(x)
updateMyTable()

Improper method name examples:

GetX() // Name should start with
// lower case letter
create X(x) // Name should not have

// space within the name
updateMyTable () // Space between name and

// the parenthesis
converter() // Names should be verbs

STD-4 \Variable naming.

Variable names should follow those of methods. Do not begin variable names with dollar
signs ($) athough the compiler will permit this.

Proper variable name examples:
myVariable
Improper variable name examples:
$my_variable // No dollar sign should be at the beginning

MyVariable // Name should start with lower case letter
my_Variable // Name should not have embedded underscore

STD-5

STD-6

STD-7

STD-8

Constant naming.

In order to make constants stand out in the code they are named with all capital letters. In
order in increase the readability of the names, separate embedded words with asingle
underscore.

Proper constant name examples:

MY_CONSTANT_A
INCHES_TO_CENTIMETERS_FACTOR

Improper constant name examples:

Conversion_Factor A //Name should be all capital letters
MyMagicValue //Name should be all capital letters

my_constant_b //Name should be all capital letters

See CON-18 for more on constants.

Use of JavaDoc comments is required.

Because the public interface to a class is key to being able to use the class effectively,
JavaDoc comments are not optional for public classes and methods. The specific formatting
and minimum content may be open for discussion but the presence of JavaDoc comments is
not.

JavaDoc comments are important in that they provide documentation which is external to the
source code and which can be easily maintained.

Use of implementation comments is required.

JavaDoc comments are intended to define and describe the public interface of a class or
method. Implementation comments are for describing the internal implementation.

All code should be commented to explain the implementation techniques used and the
reasons why the code was written the way it was. Exactly how those comments appear is a
stylistic question (see STY-19). How thoroughly the comments cover the material isa
convention (see CON-11). However, the need for comments is beyond debate.

Consistency of formatting is required within a source file.

Sometimes you acquire source code which differs from the accepted format you usually
employ, including your choices for indentation, use of white space, etc. When this happens
resist the impulse to mix your personal adopted format with the existing one. Respect the
existing code and format your additions consistent with the existing format. Then pursue the
option to reformat the entire source file as a separate task.

2-3

Mixed formatting styles are never acceptable because it confuses the reader and contributes
significantly to misunderstanding. Remember, there are a number of styles described in this
guide which require making a choice. Respect the choices of others.

STD-9 Avoid local declarations which obscure declarations at higher levels.

Do not declare a block variable with the same name as a method or class variable. Doing so
unnecessarily obscures the code.

2-4

STY-1

STY-2

STY-3

STY-4

Syles

Order sections within source files consistently.
Java source files should aways have the following sections in the following order:

Package or file-level comments.
Package and import statements.

Public class and interface declarations.
Private class and interface declarations.

AW DNPRE

Order of import statements.
Use the following order:

1. Standard packages such as java.awt, java.io, etc.
2. Third party packages such as com.ibm.xml.parser.
3. Your own packages.

Within each of the above groupings order the packages in aphabetic order.

Import statement detail.

Two schools of thought exist for how to declare import statements. The first school says to
use the * form to reduce the number of import statements. This also makes it much easier to
introduce the use of classes located within the packages already imported because a new
import statement does not need to be added.

The dternate view is that individual import statements for each imported class makes the
origin of each class explicit and unambiguous.

We recommend use of * for standard packages, reserving explicit class imports for your
own classes or those of third party vendors.

Ordering of class parts.
Class declarations have the following sections in the following order:

1. Javadoc comments.

2. Class declaration statement.
3. Class-wide comments.
4

Class (static) variable declarations in the following order:
1. Public

3-1

STY-5

STY-6

STY-7

2. Protected
3. Package level
4. Private
5. Classinstance variable declarations in the same order (public, protected, package level,
private).
6. Method declarations. See the following style for the ordering of methods.

See [Conventiong] 3.1.3

Ordering of methods within classes.

Some like constructors to appear first, with other methods following in aphabetic order.
Others like al the methods to appear in aphabetic order. A third choice is to group methods
according to some measure of their functionality. However, the goal should always be to
make the methods easy to locate.

It is arguable that constructors are the most important methods of a class and one is always
used when the class is used. They will, therefore, aways need to be located and referenced
by a user of the class and should be prominently located in the source code.

For others, the consistency of a purely alphabetic ordering of all methods is more appealing.
Locating constructors is never a problem because they are always located using the same
procedure as locating any other method. Furthermore, JavaDoc documentation is the proper
place to reference constructor details so the location in the source code is of less
importance.

We recommend placing constructors at the top of a class and follow them by asimple
alphabetic ordering of other methods or a function grouping of other methods. If you use a
functional grouping, then document your placement logic somewhere easy to find.

Limit length of source code lines.

You cannot assume a printed page or someone else’s display window will be as wide as
yours. However, you can assume a minimum 72-80 character display width.

Therefore, in order to ensure that your code displays properly you must limit the length of
lines to a reasonable amount. Our strong suggestion is to use an 80 character working limit.

Line continuation of method signatures.

When formatting a method signature, which is one of the code constructs which will
naturally become quite long, break it before the method identifier and indent continuation
lines twice the usual amount.

3-2

STY-8

STY-9

STY-10

Example:

public static void preformAction(String arg1l,
int arg2, String arg3, Object arg4, String arg5)
{

}

Note the trailing comma on the first line. The need for this is mentioned in the next item
(STY-8).

Line continuation of general code.

Break lines which extend beyond the line length limit at places which suggest a continuation
exists. This helps the reader follow the entire statement. For example, a trailing comma at
the end of a source line suggests that the statement is continued on the next line. Likewise, a
trailing operator suggests another operand follows.

Example:

String createTableCoffees = //ends on the next line
"CREATE TABLE BOOKS " +

"(BOOK_NAME VARCHAR(32)," +
"BOOK_ID INTEGER, PRICE FLOAT, " +

"SALES INTEGER, TOTAL INTEGER)";

If possible, break lines at higher levels of grouping rather than at lower levels.

See section 4.2 in [Conventions] for good examples.

Indentation levels.

Indentation of code should be done using a uniform amount. Common indentation amounts of
2, 3, 4, or 8 spaces should be used. Pick one and stick to it.

Indentation using tabs.

Hard tab characters should not be used to indent code. They force the reader to set tab
stops to a value which conforms to your indentation level in order to see the same source
indentation you are seeing. Using spaces ensures the source code remains formatted as it
was intended.

[Conventionsg] in section 4 allows the use of tab characters for indentation but also specifies
4 spaces as the indentation amount and that tab stops must be set every 8 positions. These

3-3

STy-11

STY-12

specifications do not work well together, so we disagree with [Conventions]. Tabs should not
be used to indent source code.

Some argue that the use of tabs reduces the size of source files but this argument has little
merit relative to the value of ensuring the code is aways properly formatted.

Indentation of controlled statements.

Compound statements (if, while, etc) include a controlled statement block which should
always be indented an indentation level.

Brace placement.

Placement of braces relates to proper indentation. Two major positions exist on the
placement of braces. The first proposes placing of the opening brace at the end of a line of
code. The second proposes placement at the beginning of the following line.

Arguments supporting the end-of-line style are:

1. Reduces the number of lines of code, allowing more code to be seen. Most books and
magazines use this style simply to conserve space.

2. Thetrailing brace suggests to the reader that the statement controls code appearing
below. It is avisual manifestation of the logical structure which is then reinforced by
indenting the controlled code.

3. Some fonts render the opening brace character so thinly it can be missed on the page,
making the line appear to be all white space.

4. Sun supports this style.

Arguments supporting the next-line style:

1. Makesvisud locating of the matching brace easier because they are always positioned

at the same indentation level.

Many programmers coming to Java from C++ are used to this style.

3. Since if/for/while statements are often long, finding the opening brace on the next line
can be easier than at the end of the line.

4. Makesthe location of braces more predictable. The opening brace is aways in the same
place relative to the control structure rather than floating at the end of aline.

N

These positions are difficult to resolve so we make no specific recommendation. Pick one
and stick to it.

3-4

STY-13

STY-14

STY-15

Ternary statement usage.

Ternary statements can easily become difficult to read. Limit their use to single line, simple
cases only. Never nest ternary statements.

Always use a break statement in each case.

Be sure to include a break statement for each case in a switch statement. Although it is
optional, omitting the break statement is an error-prone technique.

Include a default case in all switch statements.

This is a basic defensive programming technique. The default case exists in the Java
language for a reason. Include the default case so the unexpected is handled, but log the fact
that it happened so you are aware that the 'impossible’ case really did occur. At the very
least throw an exception to alert the application that an unexpected condition occurred.

Example:

int thisColor = getStoneColor();
switch(thisColor)
{

case O :
stones[index] = Color.green;
break;

case 1:
stones[index] = Color.red;
break;

case 2 :
stones[index] = Color.blue;
break;

case 3 :
stones[index] = Color.yellow;
break;

default:
stones[index] = Color.white;
System.out.printin("got unexpected stone color, defaulting to white");
break;

}//switch

STY-16 Initidize loca variables where they are declared, but only for non-default values.

The only reason not to initialize at the point of declaration is when a computation is required
which cannot be performed at that point.

Explicitly re-initializing variables to default values is redundant, inefficient, and unnecessary.
Know the default initializations and learn to depend on them. If you want to highlight the fact
that a specific value is assumed then add a comment.

3-5

Example:

Here the initidization is a problem because one constructor initialized the m_thread variable
while depending on the speed variable to be 0 and the other does not initialize m_thread but
overrides the initialization of speed. Findly, the VM aready initializes the speed variable to
0 so explicitly doing so in the code makes the code larger and adds to the execution time
every time this class is instantiated.

Class Foo

{
private Thread m_thread ;
private int speed = 0O;

Foo()
{

m_thread = new Thread();

}

Foo(int x)
{

speed = x;

}
}

Better coding would make the initialization more uniform:

Class Foo

{
private Thread m_thread = new Thread();
private int speed,;

Foo()
{
}

Foo(int x)
{
speed = x;
}
}

Here the existence of the second constructor is clear. It is there so the speed value can be
set to a specific value as soon as the Foo object is created.

See Praxis 37 in [HaggarOQ] for a good treatment of initialization issues.

STY-17

STY-18

Initialize members and sub-objects either in a declaration or in constructors.

Classes which perform some initialization in declarations and some in constructors can be
difficult to debug. If avariable is given avalue in a one of several constructors then it should
be initialized in a similar manner in al congtructors. In this case the variable need not have
an initialization in its declaration. Not only is it confusing to perform an initiaization which is
amost immediately replaced with another but it is redundant and therefore inefficient.

When commenting out code, only use // style comments

One useful practice is to temporarily comment out blocks of code. However, this can be
difficult if the code contains a mix of comment forms because the existing embedded
comments can interfere with the outer comment marks. Thisis particularly problematic using
* x5

Furthermore, using /* .. */ to comment out large blocks leaves the interior code of the blocks
themselves largely unchanged and often looking like it is still active code. While the
widespread use of IDE environments with color-coded syntax editors helps with this
problem, it is still an error-prone activity.

Findly, the widespread use of change management systems (a.k.a. version control systems)
makes this practice somewhat obsolete since previous versions of files which contain
removed code can always be recovered.

We recommend change management systems be used, even for single developer projects,
and therefore do not recommend commenting out large blocks of code.

However, if you must continue this practice, consider the manner in which you perform this
step. The one comment form which will always work for commenting out code is the trailing
comment form (i.e. using //). Therefore, you should always use this form to comment out
code by prefixing each line with the // at the very beginning of the line.

One good side effect of using the trailing comment form is that every line which is
commented out is clearly marked as such. This help prevent the reader from inadvertently
thinking commented out code is active.

Example:

/I
// * Converts this <code>Date</code> object to a
// * <code>String</code> of the form:

// * <blockquote><pre>

// * dow mon dd hh:mm:ss zzz yyyy</pre></blockquote>
/O

// * @return a string representation of this date.

// * @see java.util.Date#tolLocaleString()

// * @see java.util.Date#toGMTString()

/7 */

// public String toString() {

3-7

STY-19

STY-20

// DateFormat formatter = null;

// if (simpleFormatter != null) {

// formatter = (DateFormat)simpleFormatter.get();
/7 }

// if (formatter == null) {

// /* No cache yet, or cached formatter GC'd */
// formatter =

// new SimpleDateFormat("EEE MMM dd HH:mm:ss zzz yyyy,
// Locale.US); //Note standard format defined here!

// simpleFormatter = new SoftReference(formatter);

/7 }

// synchronized (formatter) {

// formatter.setTimeZone(TimeZone.getDefault());

// return formatter.format(this);

// }

// }//toString()

In this example the block insertion of // at the beginning of each line effectively removes the
entire method from the file. The user who commented out this method did not need to be
concerned that there might be existing comments of /* .. */ style or // style. While there are
such existing comments, they are not affected. If the method is ever reinstated the simple
removal of the leading // from each line will return the method intact.

Properly format comments.

A comment can be thought of as the ‘title’ of aline or paragraph of code. As such it should
proceed the code but not be separate from it. This also means it should have the same
indenting and max line width as the code section. By the same token it should be separate
from the preceding section.

Therefore, characteristics of properly formatted comments are:

1. A comment block should be preceded by a single blank line.

2. A comment should precede the code to which it relates.

3. A comment should be indented to the same level as the code it relates to.
4

End of line comments should be offset from the code so that the comment stands out.

Comments should not obscure the code

If you have an algorithm or strategy which requires extensive explanation in comments
consider alarge comment block which precedes the described code. Use this form rather
than sprinkling comments throughout the code if there will be so many comments that the
structure of the code will be difficult to see.

Example:
3-8

If you have complex code you have the following choices, with later choices being better:

A) No comments at al.

double newSpeed = m_currentAngle - newAngle;
double newAccel = m_Speed - newSpeed;
if(newAccel > PI)

{

newAccel = newAccel - TWOPI ;

else if(newAccel < -PI)

{

newAccel = TWOPI - newAccel;

}
B) Sprinkle comments throughout the algorithm, possibly obscuring the code

double newSpeed = m_currentAngle - newAngle;
double newAccel = m_Speed - newSpeed;

// see if we've wrapped around the circle
if(newAccel > PI)

{
// go the other way around the circle
newAccel = newAccel - TWOPI ;

else if(newAccel < -PI)

{

// go the other way around the circle
newAccel = TWOPI - newAccel;

}

C) Create a comment before a block of algorithmic code

/* determine the speed and the accelerations required
* to point there then see if we're wrapped around

* the circle and adjust accordingly

*/

double newSpeed = m_currentAngle - newAngle;
double newAccel = m_Speed - newSpeed;

if(newAccel > PI)

{

newAccel = newAccel - TWOPI ;
else if(newAccel < -PI)

{

newAccel = TWOPI - newAccel;

}

D) Refactor the code to an appropriately named routine which you just call

3-9

STY-21

STY-22

double getAdjustedAcceleration(double oldAngle, double newAngle)
{

double newSpeed = m_ oldAngle - newAngle;
double newAccel = m_Speed - newSpeed;

if(newAccel > PI)

{

newAccel = newAccel - TWOPI ;
}
else if(newAccel < -PI)
{

newAccel = TWOPI - newAccel;
}

return(newAccel);
}// getAdjustedAcceleration

Variable declaration grouping.
Variables declarations should have the following characteristics:

1. One declaration per line. This encourages commenting of each variable.

2. Order the declarations in some fashion. A common ordering is a phabetic by type first,
then by variable name. However, in some cases dependencies can require a different
order.

3. New declarations should go into their appropriate place according to the ordering being
used. A comment should indicate when and why the new variable was added.

Place variable declarations at the beginning of the innermost enclosing block.

Java allows variables to be declared immediately before they are needed. However, rather
than placing the immediately before first use, declarations should be placed at the beginning
of the innermost block in which they are used. This convention provides the reader with
known positions to locate declarations. Without it, the reader must scour the code to find the
declaration.

One example of variable abuse is the re-use of avariable, for a completely different

purpose, just because it has already been declared and is still in scope. One of the best ways
of limiting such abuse of variablesisto limit their existence to the innermost block which
requires them.

To summarize: Class variables should be declared at the top of the class, method variables at
the top of the method, block variables at the top of the block.

The only exception is the declaration of for-loop index variables which can be declared in the
for statement, itself. Thisis useful since it automatically limits the scope of the index variable
to the for loop, preventing the inadvertent use of the index after the loop terminates.

3-10

STY-23

STY-24

Limit the number of Java statements per line to 1.

Multiple statements per line can hide code to the casual observer. Also, it limits the ability to
step through the code statement by statement. Since we limit declarations to one per line,
following the principle of uniformity, you should also limit statementsin a similar manner. See
[Conventions] 7.1

Example:

Public double sumAlIBids(Collection bids) {
double result = 0;
for (Iterator iter = bid.Iterator(); iter.hasNext();) { result +=
calcTotal((BidRecord)iter.next());if (result > 10000) {break;}}
return result;

}

The example above should compile, but will take a significant amount of effort to figure out
exactly what the sumAlIBids() method is really doing.

Optiona braces are not optional.

Compound statements use braces to delimit one or more statements under the control of the
compound statement. These braces should always be used. Thisis true, even if the braces
surround only one statement and would be optiona in that instance. Omitting the braces can
lead to errors since it alows an additional statement to be added. Although this additional
statement appears to be under the control structure, in fact, it is not. See [Conventions] 7.2
and 7.4.

Two different schools of thought exist on whether extra braces should be used. On one hand
the use of braces is the key indicator that multiple statements should be treated as one.
Following this logic, a single statement would never have a set of braces around it.

On the other hand using braces wherever they are allowed provides for a more uniform
coding style. It also sets up the code to easily accommodate multiple statements when a
single statement is grown into more than one. The failure to add braces when a single
statement is changed into multiple statements is a common error which is avoided when
optional braces are always used.

Example 1

if (Character.isLetter(ch))

{
flag = 1;
}
if (Character.isDigit(ch))
{
flag = 2;

}
if (Character.isSpaceChar(ch))
3-11

flag = 3;

The above example is preferable over the following one:

int flag=0;

if (Character.isLetter(ch))
flag = 1;

if (Character.isDigit(ch))
flag = 2;

if (Character.isSpaceChar(ch))
flag = 3;

Example 2a: Using braces

public double sumAlIBids(Collection bids) {
double result = 0O;

for (Iterator iter = bid.Iterator(); iter.hasNext();) {
result += calcTotal((BidRecord)iter.next());

}

return result;

}

Example 2b: Not using braces

public double sumAlIBids(Collection bids) {
double result = O;

for (Iterator iter = bid.lterator(); iter.hasNext();)

result += calcTotal((BidRecord)iter.next());
return result;

}

In the Example 23, it is clearly evident where the for loop begins and ends. In addition, a
very common bug introduced when enhancing code is to forget to add the surrounding brace
asis shown in Example 2c below.

Example 2c: Bug caused by forgetting braces

Public double sumAlIBids(Collection bids) {

double result = 0;
for (Iterator iter = bid.Iterator(); iter.hasNext();)
result += calcTotal((BidRecord)iter.next());
if (result > 10000) {
break;

}

return result;

}

3-12

Example 2c has two problems: (1) inconsistent coding style, and (2) the for loop is missing
the bounding braces. It is difficult for the reader to see why the loop does not end after the
maximum total of 10,000 has been reached.

STY-25 Parameter naming.

Name each method parameter based on the role which it provides. Be descriptive. Clearly
named variables are a critical success factor in avoiding cryptic code which is difficult to use
and maintain.

Consider the following two examples:

public double calcAvgPricel(double b, double a) {
return b/a;

}

public double calcAvgPrice2(double totalPrice, double units) {
return totalPrice/units;

}

Both examples above produce the correct result. However, it is much clearer for someone
caling calcAvgPrice2() to know exactly what value should be passed for each parameter.

STY-26 Method naming for accessor methods.

Names of methods which function as accessors or a manipulators of private variables should
follow the JavaBean convention getX() or setX().

For example:

class ValueObject {
private Integer intValue;

public Integer getintValue() {
return intValue;

public void setintValue(Integer a) {
intValue = a;

}
}

In the example above, the data member intvalue is encapsulated by the methods
getintValue() and setintValue(). Note that the lower case first letter of the data member
variable name is converted to upper case when naming the methods.

3-13

STY-27

STY-28

Use prefixes to indicate variable scope and source.

The overall scope of avariable can be more important than knowing its type so use prefixes
to indicate where and how the variable was declared. Thisis a simple, easy, and non-
intrusive way to designate method parameters, local variables, and class variables.

Sample schemel.:
int m_internalSpeed; //Class-level member variables use
//an “m_" prefix.
int |_loopindex; //Variables local to the method are
//prefixed with “_".
int p_opCode; //Method parameters get a “p_" prefix.

Sample scheme2:

int ginternalSpeed; //Public, class-level variables get
//an “g” prefix (for "global®).

int finternalSpeed; //Private, class-level variables use
//an “f’ prefix (for "field").

int vLooplndex; //Variables local to the method are
//prefixed with “v".

int pOpCode; //Method parameters get a “p” prefix.

Sample scheme 3 (where only class-level variables are distinguished):

int m_internalSpeed; //Class-level member variables use
//an “m_" prefix.

Sample scheme 4:

Use no prefixes at all. If methods are short, which they should be, the code for the
method will be completely viewable as a unit and use of prefixesis not as useful.

Remember, consistency is more important than which style is selected. Pick one style and
stick with it.

Use blank lines to organize code blocks.

Blank lines should be used to group code. The larger the construct the more spacing should
be used to offset it. For example, spacing between methods in a class should be smaller than
between classesin afile.

Single blank lines should be used:

1. Between local variable declarations and the first code in a method.
2. Before ablock comment.
3. Between logica sections of code to improve readability.

3-14

Double blank lines should be used:

1. Between methods
2. Between class and interface definitions.

3. Between any other sections of a source file.

See [Conventions] 8.1

STY-29 Name al constants and define them in one location only.

Avoid embedding magic values in the code. Instead, define them in a central location and
use a named reference in the code. Exceptions are -1, 0, and 1, which might be needed for
loop control and testing boundary conditions. (See [Conventions] 10.3)

When creating a file containing application constants, make the file an interface rather than a
class.

Improper way to handle constant values:

public class MyClass

{
public void myMethod1()
{
if(tl.equals("test string 1"))
{
}
else if(tl.equals(“test string 2"))
}
}
}

Proper way to handle constant values:

interface Test

{
public static string CONDITION1 = “test string 1";

public static string CONDITION1 = “test string 2";
}

public class MyClass implements Test

{
public void myMethod1()

{

if(t1.equals(Test. CONDITION1))
{

3-15

}
else if(tl.equals(Test.CONDITIONZ2))
{

}

}
}

See STD-5 for naming of constants.

3-16

Conventions

CON-1 Protect code using try..finaly.

Try..finaly should be used more than it typically is. Use finally after try..catch statements to
ensure execution of important code. For example, when opening a stream or database
connection in a method, use atry..finally structure to ensure the stream or connection close
method is always called. Assume the worst. Code defensively.

Example:

Here the database connections, statements, and result sets are guarded by try..catch so they
will al be closed.

import java.sql.*;

import java.util.*;

/**

* Database Accessor class
*/

public class DbUsers

{
/**

* Gets database Users of the project xxxx
*/
public Vector getUserNames() throws SQLException

{

Connection conn=null;
Statement stmt = null;
ResultSet rs=null;
Vector names=null;
try
{
conn = getConnection();
stmt = conn.createStatement();
rs = stmt.executeQuery("select name from db_users");
while(rs.next())

{
names.addElement(rs.getString(1));

}//while
Y /try
finally
{

if(conn !'= null) conn.close();
if(stmt != null) stmt.close();

if(rs '= null) rs.close();

return names;
Y/ /finally

}//getUserNames()

/**
* gets Database connection

4-1

*/
public Connection getConnection() throws SQLException
{

try

{

Driver dr =
(Driver)Class.forName("wl.jdbc20.pool.Driver").newlnstance();

return dr.connect("jdbc20:wl:pool:esmmmPool", null);

}

catch (InstantiationException ie)

{

return null;

}

catch (ClassNotFoundException cl)

{

return null;

catch (lllegalAccessException il)

{

return null;

}
}//getConnection()

}//DbUsers

CON-2 Constructors must leave objects in a stable state.

Constructors should be complete enough so that subsequent calling of other methods
immediately after construction should not fail in unexpected ways. In other words, once an
object is constructed, it should be well-behaved even if it is not in a useful state.

Example:

class Purchase {
static int noOfPurchases;
Purchase() {
noOfPurchases++;

}
}

class LigPurchase extends Purchase {
LigPurchase(int age, String day) {
if(age < 21 || day.equals("Sunday")){
System.out.printIn("No liquor purchase possible");
}
}

public static void main(String args[]) {

Purchase pl= new LigPurchase(30,"Monday");
Purchase p2= new LigPurchase(18,"Monday");

//The number of purchases will printed as 2 instead of

// 1, since the second time there was no purchase made.
System.out.printin("Number of purchases: " +

" " + p2.noOfPurchases);

4-2

CON-3

CON-4

CON-5

M ethods should accomplish a single task.

Avoid creating long processing sequences which can be logically divided into separate
methods. If you find yourself naming a method with “And” in the name, consider this a clue
that you may have included too much functionality in one method.

Example:

Here something that could have been placed inline has been divided into four separate
methods, each contributing their part to the overall purchase order.

public String getPurchaseOrderXml()

{
String po =
getXmlHeader() +
getPoHeader() +

getLineltemDetails() +

getPoSummary();
return po;

}

Limit the length of methods.

A method should rarely exceed a*“page’ of code. This helps ensure it accomplishes a single
function and enhances its readability.

A page would normally be considered 30 lines or so. Pick a specific limit and stick to it.

Limit the length of source files.

While you can include an entire package in one source file, that file may grow to be realy
long. Source files should have a maximum length, given in lines, which is used as arule for
deciding when sections should be split into separate files. Although the maximum acceptable
length of a source file is open to discussion, a good working limit is about 2000 lines.

If a source file exceeds this limit due to the inclusion of multiple classes, then move selected
classes into another file. Separating each public class into a separate file makes sense. If a
single class exceeds this limit, consider decomposing it into a set of smaller classes.

4-3

CON-6

CON-7

Limit the number of methods.

Classes which provide services to callers can quickly become ungainly and difficult to
maintain. To keep classes focused on their primary tasks, limit the number of methods.
While the maximum acceptable method count is open to discussion, a good guideline is 20
(including accessor methods).

One manner in which this count can become exceeded is after refactoring. For example, if
you combine two classes into one you may end up with an excessive number of methods in
the resulting class. Therefore, you must balance the benefit of refactoring with the need to
keep the method count low.

Limit the use of public methods and variables.

Because the public designation implies that the method or variable' s usage outside the class
is required for proper use of the class, only make public that which needs to be public.
Remember that the reader will be trying to discern the proper use of the class from its public
interface. Having non-essential elements in that interface will only be confusing. Never
designate a public element on the off chance it might need to be public later. Instead, return
to the class and change the visibility of the element when its purpose changes. And, oh yes,
document the change in the JavaDoc comments by explaining why the element became
public.

See [Conventions] 10.1
Example:

This class has rightfully designated getPrice, getTotal, and getDiscount methods. However,
the getDiscount and getPrice methods remain private until there is a demonstrated need for
them to be public. The private getTotal() method provides a total for any given quantity, while
the public getTotal() method provides the final total amount.

class Summary

{

private double getPrice()

{
}

private double getTotal(int quantity)
{

}

private double getDiscount(float price)

{
}

4-4

public double getTotal()

{
return getTotal(quantity) * getPrice() - getDiscount(price);

}
}

CON-8 All class variables should be private.

Avoid the use of public variables. If public access is needed, then use accessor methods.
Once made public, exported variables become part of the interface contract of the class, so
designating variables as public locks you into always providing these variables. Using
accessor methods allows you to change the internal implementation of the variables, if this
becomes necessary, without changing the interface contract. Code to retain future flexibility.

Example:

// The following class implements the
// database connection pool.
Public ConnectionPool

{
public Vector connectionPool ;
public String url;
public String username;
public String password;
public int poolSize;

public ConnectionPool(String url, String username, String password, String poolSize)

{
}

public synchronized Connection getConnection()

{
}

public synchronized void removeConnection(Connection connection)

{
-

public synchronized void closeConnection()

{
-

All variables can be accessed and reassigned directly since they are public. However,
allowing an external source to read user name and password will introduce a security
problem.

4-5

CON-9

Also, PoolSize is crucid. If it is accidentally or deliberately set to zero, the application will
stop running since the database connection is no longer available. Therefore, it should be
private and set only through an accessary method which can detect problems and avoid
setting Pool size to an invalid vaue.

Limit the number of parameters.

Method signatures present an interface to the caller which is more difficult to use as the
number of parameters grows. While the maximum acceptable parameter count is open to
discussion, a good rule of thumb isto limit parameters to 5.

If more parameters are needed, switch to using accessary methods or pass an instance of a
helper class which carries a complete set of values.

Example:
Public class BankAccount

public BankAccount(String name, String streetAddress, String city,
String state, int zipCode, int ssn, Date dob,
float initialBalance, String phone, String email)

We can use one of the following alternatives:

Public class BankAccount

{
public BankAccount(String name, int ssn, Date dob, float initialBalance)

}
Then call setX method to pass streetAddress, city, Sate, zipCode, phone and email.

Alternatively we can create two classes. HelperAddress and Hel perContact.
HelperAddress class will include street name, city, State and zip code. Contact class
contains phone number and emall. This leaves the congructor with the remaining
parameters.

Public class BankAccount

{

public BankAccount(String name, int ssn, Date dob, float initialBalance)

}

Then calls to setHel perAddress and setHel perContact associate those objects with the bank
account.

For more information see “Introduce Parameter Object” in [Fowler99).

4-6

CON-10 Avoid predefined shallow classes and methods.

Do not implement classes, methods or class data members, which are not immediately
useful. Introduce them later when a subsequent release is ready to be used. Until that point
they are clutter.

CON-11 Include proper content in your implementation comments.

STY-19 describes the formatting of comments. This convention addresses what to put into
those comments.

Implementation comments should first explain why the code is written as it is. The intentions
of the author should be spelled out so the reader does not have to guess them or otherwise
infer them from the code. This way the reader can use any discrepancy between the
intention of the author and the reality of the code to help diagnose a problem.

In other words, do not merely describe how the code is supposed to work but why you
implemented the design that way.

Example:

/**

* The method reads a XML document defined
*in a file given by users and returns a

* composed XML string. A string buffer class is

* used because the string will be changed as
* more characters are read from the file.

* BufferedReader is the best choice in this case.

* It will provide for the efficient reading of lines.
*

*@ parameter filename File
*@return java.lang.String
*/

Public String getXMLString(File fileName)
{
StringBuffer sb = new StringBuffer();
try {
BufferedReader br =
new BufferedReader(new FileReader(fileName));

boolean finished = false;
while(!finished) {
String str = br.readLine();
if(str I=null) {
sb.append(str);
telse{
finished = true;
}
}

}catch (Exception ex) {

4-7

throw ex;

}
return sb.toString();

}

Since implementation comments should focus on how the code is written to achieve the
desired result, the above example properly explains some important details. In contrast, the
following example simply states what the method does.

/**
* Read an XML string from a given file and return the string.

*

*@ parameter filename File
*@return java.lang.String
*/

Public String getXMLString(File fileName)
{

}

One further point: Use specific flag strings to make note of coding practices which are

questionable but work. Use such comments to explain that you understand and acknowledge
the issues with the code. One suggested flag is “Note:” asin:

//Note: This sort method is slow but cheap to
// implement correctly. If the

// size of the array grows too large
// another method will be needed.

Use another specific flag string to highlight broken code which must be fixed later. One
suggested flag is “FIXME:".

See [Conventions] 10.5.4

CON-12 Avoid nesting conditions more than 3 deep.
Rewrite the conditions if more seem to be needed.
For example, this code nests more than 3-levels:

String url = null;
If(propertyList !'= null)

{
for(int i=0;i<propertyList.size(); i++)
{
Properties prop = (Properties)propertyList.elementAt(i);
if(obj != null)
{

If(prop.containsKey("url™))
4-8

{ url = prop.getProperty(“url");
break;
}
}

}
}

This can be re-written using exception catching as:

String url = null;
try
{
for(int i=0;i<propertyList.size(); i++)
{
Properties prop = (Properties)propertyList.elementAt(i);
if(prop.containskKey("url™))

url = prop.getProperty(“url");
break;
}
}

catch (NullPointerException ex)

{

throw ex;

}

CON-13 Define constants in interfaces.

When writing an application, place all application-related constants in a single application
interface rather than spreading them throughout other interfaces or classes.

Any Java class or interface in the application can then gain access to the constants by
simply implementing the application-specific interface. This technique also has the advantage
that al application constants are defined in a single location, making them easy to find and
maintain.

It is important to note here that this convention refers to true applications constants, and not
those variables that have the possibility of changing or being modified. Dynamic variables
should be contained in XML based property files or a similar data store.

Example:

public interface ApplicationConstants

{
public static int NEW_ORDER_REQUEST = 1,

public static int CANCEL_REQUEST = 2;
public static int PAYMENT_REQUEST = 3;
}

4-9

public class SomeClass implements ApplicationConstants

{

public void processRequest(int action, RequestData data)
throws InvalidRequestException

{

if (action == NEW_ORDER_REQUEST)
processNewOrder(data);

else if (action == CANCEL_REQUEST)
cancelOrder(data);

else if (action == PAYMENT_REQUEST)
processPayment(data);

else
throw new InvalidRequestException(action);

}

CON-14 Make good use of spacing.

Blank spaces can be an important formatting tool by visually associating related code and
separating non-related code.

1. When akeyword is followed by a parenthesis, the two should be separated with a single
space. For instance, type casts should aways be followed by a space. However, a
method name should not be separated from its opening parenthesis. This helps the
reader recognize method declarations and distinguish them from type casts.

2. A blank space should appear after acommain alist but not before a comma. Same
with the expressions in a for statement - one space following each semi-colon.

3. Binary operators (except .) should be separated from their operands with a space.
However, if an expression becomes too long, this can be relaxed. When removing
spaces to shorten an expression, remove them from the higher precedence operators
first. This results in visually identifying the operations which are performed first.

4. Unary operators should not be separated from their operands with any spaces.

See [Conventions] 8.2

CON-15 Class methods and class variables should only be accessed via the class identifier.

Never use an instance identifier to access a class variable or method- use the class name
identifier instead. This highlights the nature of the class variable or method.

See [Conventions] 10.2

4-10

CON-16

CON-17

CON-18

CON-19

Use parentheses to clarify expressions.

Even if the default operator precedence is correct, adding parentheses can still clarify an
expression by emphasizing the fact that a certain precedence is required by the code.

See [Conventions] 10.5.1
This is especially true when using the ternary operator “7".
For example
X>=07?X:-X;
should be written
X>=0)?x:-X;

See [Conventions] 10.5.3

Identify closing braces.

Adding a// comment immediately after a closing brace for a class or method helps to
identify the end of the declaration. These can be valuable markers when navigating the code,
especialy when the entire class or method is not visible al at once.

Example:
See example for CON-22.

Some readers may have noted that we have not done thisis al our examplesin this
document. Since most of the examples are short we decided this step was not necessary.
This is a good example of balancing the need for properly identifying closing braces vs. the
desire not to clutter the code.

Favor 1sX() over getX() or hasX() for boolean functions.

For methods returning boolean use names like isX rather than getX or hasX.

Avoid sub-classing the class Error.

Leave Error and sub-classes of Error for use by the VM to indicate resource deficiencies,
invariant failures, or other conditions which make it impossible to continue execution.

4-11

CON-20 Distinguish between checked and unchecked exceptions.

Use checked exceptions for conditions from which the caller can reasonably be expected to
recover. Use runtime exceptions for programming errors. See Item 40 in [BlochQ1].

Likewise, unchecked exceptions (runtime exceptions) should not be included in throws
clauses but should be included in JavaDoc details via the @throws tagged comments.

CON-21 Enhance exceptions with additional data.

Provide additional data members or accessary methods in exceptions you define so that
callers do not need to parse exception strings to determine details.

CON-22 Avoid dependency on side-effects.

Due to short-circuiting of expression evaluation, side-effects will not occur in expressions
that are not executed.

Example:

class CountPurchase {

int hour;
static int noOfPurchase=0;

CountPurchase(int h) {
hour = h;

changeCashier();
System.out.printin("The number of Purchase is: " + noOfPurchase);

}//CountPurchase()

void changeCashier() {
if(hour > 17 || noOfPurchase++ > 40) {
System.out.printIin("Time to change the cashier");

}
}//changeCashier()

public static void main(String args[]) {
CountPurchase c¢1 = new CountPurchase(15);
//The increment operation will not be performed

// the second time and the number of purchases

// printed will be 1 instead of 2.
CountPurchase c2 = new CountPurchase(20);

}//main()
}//CountPurchase

4-12

Refer ences

We have used several previous works as references. These are:

[Ambler00] Ambler, Scott W. Writing Robust Java Code - The AmbySoft Inc, Coding Sandards
for Java v17.01d

http://www.A mbySoft.com/JavaCodingStandards. pdf

A weadlth of good advice is contained in this document.

[BlochOl] Bloch, Joshua. Effective Java Programming Language Guide, Addison-Wedley,
Reading, MA, 2001. ISBN: 0-201-31005-8

[Conventions] Code Conventions for the Java™ Programming Language, Sun Microsystems.

http://java.sun.com/docs/codeconv/

This is the document we used as a starting point in our discussions.

[Fowler99] Fowler, Martin. Refactoring, Improving the Design of Existing Code, Addison-
Wedey, 1999. ISBN 0-201-48567-2

[Haggar00] Haggar, Peter. Practical Java Programming Language Guide, Addison-Wesley,
Reading, MA, 2000. ISBN: 0-201-61646-7

Several recommendations made by Peter Haggar in this book are echoed in our list.

[JLS] Goding, James, Bill Joy, Guy Stedle, Gilad Bracha. The Java™ Language Specification,
Second Edition, Addison-Wedley, Boston, 2000. ISBN: 0-201-31008-2.

5-2

STD-1
STD-2
STD-3
STD-4
STD-5
STD-6
STD-7
STD-8
STD-9

List of Sandards

Package naming. e 2-1
Classand Interface naming.ttt e 2-1
Method naming and formatting. 2-2
Variable naming. 2-2
Constant NAMING.ot e 2-2
Use of JavaDoc commentsisrequired.t e 2-3
Use of implementation commentsisrequired. 2-3
Consistency of formatting is required withinasourcefile. 2-3
Avoid local declarations which obscure declarations at higher levels. 2-3

6-2

List of Syles

STY-1 Order sections within sourcefilesconsistently. 3-1
STY-2 Order of import statements.t 31
STY-3 Import statement detail. 3-1
STY-4 Ordering of Classparts.t e e 31
STY-5 Ordering of methods withinclasses. i, 3-2
STY-6 Limit length of source codelines. e 3-2
STY-7 Line continuation of method signatures. 3-2
STY-8 Linecontinuationof general code. 3-3
STY-9 Indentation leveEls. 3-3
STY-10 Indentationusingtabs 3-3
STY-11 Indentation of controlled statements. 3-4
STY-12 Brace placement. 3-4
STY-13 Ternary stalement USage. v ottt e 34
STY-14 Alwaysuse abreak statementineachcase. 3-4
STY-15 Include adefault casein all switch statements. 3-5
STY-16 Initialize local variables where they are declared, but only for non-default values. 35
STY-17 Initialize members and sub-objects either in a declaration or in constructors. 3-6
STY-18 When commenting out code, only use// stylecomments 3-6
STY-19 Properly format comments. 3-8
STY-20 Comments should not obscurethecode i 3-8
STY-21 Variable declaration grouping.ot 3-9
STY-22 Place variable declarations at the beginning of the innermost enclosing block. 3-10
STY-23 Limit the number of Java statementsper linetol. 3-10
STY-24 Optiond bracesarenot optional. 3-10
STY-25 Parameter Nnaming. 3-12
STY-26 Method naming for accessor methods. 3-12
STY-27 Use prefixesto indicate variable scopeand source.o 3-13
STY-28 Use blank linesto organize code blocks. 313

6-3

STY-29

Name all constants and define them in one location only.

6-4

CON-1
CON-2
CON-3
CON-4
CON-5
CON-6
CON-7
CON-8
CON-9
CON-10
CON-11
CON-12
CON-13
CON-14
CON-15
CON-16
CON-17
CON-18
CON-19
CON-20
CON-21
CON-22

List of Conventions

Protect code using try.findly.
Constructors must leave objectsinastablestate.
Methods should accomplishasingletask.
Limitthelengthof methods.
Limit the length of sourcefiles.
Limit the number of methods. i

Limit the use of public methodsand variables.

All classvarigblesshould beprivate.
Limit the number of parameters.
Avoid predefined shallow classesand methods.
Include proper content in your implementation comments.
Avoid nesting conditionsmorethan3deep.
Define constantsininterfaces.
Make good USe Of SPaCing.o
Class methods and class variables should only be accessed via the class identifier.

Use parentheses to clarify eXpressions.
Identify closing braces. e
Favor 1sX() over getX() or hasX() for boolean functions.
Avoid sub-classingtheclassError.
Distinguish between checked and unchecked exceptions.
Enhance exceptions with additional data.

Avoid dependency on side-effects.

N
o

JF|4.>
oo

N
o

Iy
IN

>
o1

N
o)

N
o

1
\‘

N
oo

N
[(e]

S
=
o

-~
=
o

S
=
o

o o A o A
EEEEEE

6-6

Peter Haggar, v

?

ternary operator, 4-10

used in import statements, 3-1

/*
comment style, 3-6
accessor

methods, 4-3, 4-5, 4-

[ep}

accessor methods

defined, 3-12

naming of, 3-12
Ambler

Scott, 5-1
application

constants, 4-9
Arnold

Ken, v
Balance, 1-2
binary operators

and spacing, 4-10
blank lines

as separators, 3-13
blank space

between code blocks, 3-13
blank spaces, 4-10
Bloch

Joshua, 5-1
block comments

spacing around, 3-13
brace

placement of opening, 3-4

braces

| ndex

closing, 4-11

use of optional, 3-10
bresk

usein switch statements, 3-4
Brevity, 1-2
checked exceptions, 4-11
class

"Error", 4-11
class methods

referencing, 4-10
class variables

delaration location, 3-10

referencing, 4-10

visibility, 4-5
closing braces

matching to opening braces, 4-11
CMS

use of for removing code, 3-6
Coad

Peter, v
coding standards, iii
comment

content, 4-7

formatting, 3-8
comment blocks, 3-8
commented-out code, 3-6
comments

implementation, 4-7

Javadoc, 3-1, 3-2

size of, 3-8

to flag notable code, 4-8
conditions

nested, 4-8

Consistency, 1-2
constant values

naming, 3-14
constants

where defined, 4-9
constructors, 4-2
continuation

of lines, 3-2, 3-3
contract

of the public interface, 4-4
de-activated code, 3-6
dead code, 3-6
default case

in switch statements, 3-5
defensive

coding, 4-1
dynamic

variables, 4-9
Error

class, 4-11
exceptions

enhance with additional data, 4-11

protect against, 4-1
exported variables, 4-5
FIXME:

as aflag comment, 4-8
flag

comments, 4-8
for-loop

declaration of index variables, 3-10
formatting

of comments, 3-8
Fowler

Martin, v, 5-1
getX

method, 4-11

7-2

method, 4-11
identifier prefixes, 3-13
implementation

comments, 4-7
import statements, 3-1

detail, 3-1
in-active code, 3-6
indentation

levels, 3-3

of controlling statements, 3-4

using tab characters, 3-3
initialization

in constructors, 3-6

in declarations, 3-6

of local variables, 3-5
interfaces

uses of, 4-9
Introduction

Section, iii
IsX

method, 4-11
Java statements

per line, 3-10
Javadoc, 4-4

@throws, 4-11

documentation, 3-2
length

of methods, 4-3

of sourcelines, 4-3
line continuation

in generd code, 3-3

in method signatures, 3-2
line length

limiting, 3-2
locd varigbles

default initialization, 3-5

initialization, 3-5
method parameters

naming of, 3-12
method signatures, 4-6
methods

limiting to single tasks, 4-3

spacing around, 3-13
multiple statements

per ling, 3-10
naming

constant values, 3-14

of parameters, 3-12
naming of

accessor methods, 3-12
nested

conditions, 4-8
number

of methods, 4-3

of parameters, 4-6

of public methods, 4-4
object

initialization, 3-6
object state, 4-2
opening parenthesis, 4-10
ordering

import statements, 3-1

methods within aclass, 3-2

parts of aclass, 3-1

sections of sourcefiles, 3-1

variable declarations, 3-9
package

references, 3-1

parameters

naming of, 3-12

parentheses

to clarify expressions, 4-10

Peter Coad, v

prefixes

of variable names, 3-13

principle

of uniformity, 3-10

Principles, 1-1

publi
RCS

Bdance, 1-2
Brevity, 1-2
Consistency, 1-2
Readability, 1-2
Uniformity, 1-2

cvariables, 4-5

use of for removing code, 3-6

refactoring, 3-9

effects, 4-4

References

[Ambler00], 5-1
[Conventiong], 5-1
[Haggar00], 5-1
[LS], 51

runtime exceptions, 4-11
Scott Ambler, 5-1

shallow classes, 4-6

side-

effects

dependency on, 4-11

spaces

spaci

around commeas, 4-10
ng
properly, 4-10

stable

object state, 4-2
standard
defined, 1-1
STD-1
Package naming, 2-1
STD-2
Class and Interface naming, 2-1
STD-3
Method naming and formatting, 2-2
STD-4
Variable naming, 2-2
STD-5
Constant naming, 2-2
STD-6

Use of JavaDoc commentsis required, 2-3

STD-7

Use of implementation comments is required,

2-3
STD-8

Consistency of formatting is required within a

sourcefile, 2-3
STD-9

Avoid local declarations which obscure

declarations at higher le, 2-3
STY-1

Section ordering within source files, 3-1

style

defined, 1-1
switch statements, 3-4

default case, 3-5
tab characters

using for indentation, 3-3
ternary operator, 4-10
ternary statements, 3-4
try

catch, 4-1

finaly, 4-1

7-4

unary operators

and spacing, 4-10
unchecked exceptions, 4-11
Uniformity, 1-2
variable declarations

placement of, 3-10
variable scope

idicating via prefixes, 3-13
variables

re-use of, 3-10
VCS

use of for removing code, 3-6
white space, 4-10

between code blocks, 3-13
[Ambler00], 5-1
[Conventiong], 5-1

[Haggar00], 5-1

7-5

		2002-03-08T10:29:47-0500
	Andover, MA USA
	NEJUG
	<none>

