

ibm.com/redbooks

Legacy Modernization
with WebSphere Studio
Enterprise Developer

Ueli Wahli
Masaaki Agatsuma

Reginaldo Barosa
Gert Hekkenberg

Bob McGoogan
Iwan Winoto

Creating enterprise applications
with Struts

Introducing enterprise
generation language

Developing for
z/OS

Front cover

Legacy Modernization with WebSphere Studio
Enterprise Developer

December 2002

International Technical Support Organization

SG24-6806-00

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (December 2002)

This edition applies to WebSphere Studio Enterprise Developer Version 5 Early Availability
Release and WebSphere Application Server Version 5 for use with the Windows 2000 and
WIndows NT Operating Systems.

Take Note! Before using this information and the product it supports, read thel information in
“Notices” on page xv.

Note: This book is based on a pre-GA version of a product and may not apply when the
product becomes generally available. We recommend that you consult the product
documentation or follow-on versions of this redbook for more current information.

Contents

Notices . xv
Trademarks . xvi

Preface . xvii
The team that wrote this redbook. xviii
Become a published author . xix
Comments welcome. xx

Part 1. Introduction . 1

Chapter 1. Modernization of enterprise applications. 3
Business pressures . 4
Existing information technology investment . 4
The evolution of the software development team. 5
Software architecture considerations . 6

A brief history of software development . 6
Chaos in Web application development . 7
Patterns for e-business . 7
Model-view-controller . 8
MVC applied to Web applications . 8
Struts . 10

Chapter 2. Introduction to WebSphere Studio Enterprise Developer. . . . 11
WebSphere Studio Enterprise Developer . 12
WebSphere Studio Workbench . 13

Workspace . 13
User interface . 13

Workbench window . 15
Perspectives. 15

Perspective basics . 15
Views and editors . 16
Customizing perspectives . 19
New icon . 20
Web perspective . 20
Java perspective . 21
J2EE perspective . 24
EGL perspective . 25
Data perspective . 26
XML perspective . 27
© Copyright IBM Corp. 2002. All rights reserved. iii

Server perspective . 28
Debug perspective . 29
z/OS Projects perspective. 31
z/OS Systems perspective . 32
CVS Repository Exploring perspective . 32
Help . 33
Memory considerations . 34

Projects . 34
Java project. 34
EAR project . 37
Web project . 39
Struts . 40
EJB project . 42
Server project . 43

Servers . 44
Server configuration . 45
Starting and stopping a server . 48
Remote server. 49
Agent Controller . 49

Development for z/OS . 50
Connectors . 50

Chapter 3. Sample application: Trade . 51
Introduction to the trade sample. 52
Assembling a development team . 52

Further reading . 53
Development roles . 53
Web application design session . 54

Sample application deployment topology . 55
Installing the trade sample application . 56

Prerequisites . 56
Loading the trade sample . 57
Setting up a test server . 58
Defining data sources . 59

Running the trade sample application . 60
Sample run . 61

Summary . 63

Part 2. Struts-based applications . 65

Chapter 4. Components of a Struts-based application 67
Overview . 68
Model-view-controller . 68
Web application . 68
iv Legacy Modernization with WebSphere Studio Enterprise Developer

Servlets . 69
JavaServer Pages. 70
Web applications using MVC . 70

Struts application overview. 73
Struts . 73
When to use Struts . 74

Struts components . 75
Struts model . 76
Struts view. 76
Struts controller . 78

Struts application flow . 79
Configurations . 80

Action classes . 80
Action mapping implementation . 81
Action mapping configuration file . 81
Sample configuration file . 84
Web application deployment descriptor . 85
Add Struts components to your application. 90

JSP overview . 90
How JSPs work . 90
Components of JSPs . 91
Directive elements. 92
Scripting elements. 94
Standard actions . 95
Custom actions . 96

Struts tag libraries . 96
Struts bean tags . 97
Struts HTML tags . 98
Struts logic tags. 100
Struts template tags . 100

Chapter 5. Creating a Struts-based Web application 105
Creating a Struts application . 106

Using the wizard to create a Web project . 106
J2EE Navigator view of the wizard’s output . 109
Navigator view of the wizard’s output . 111

Standard Struts components . 112
Application resources properties file . 112
Struts run-time classes . 113
Struts configuration file . 113
Struts taglibs . 114
Web deployment descriptor . 114

Summary . 115
 Contents v

Chapter 6. Adding JSPs and actions to the application 117
Overview . 118
Creating JSP files . 119

Creating the index.jsp . 119
Customizing index.jsp . 123
Creating home.jsp . 125
Customizing home.jsp . 125

Action forms . 126
Creating the LoginForm class . 126
Customizing the LoginForm class . 129
The reset method . 130
The validate method . 130
Checking the Struts configuration file . 131

Action forwards. 132
Action errors . 132
Actions . 133

Creating the LoginAction class . 133
Customizing the LoginAction class . 135

Action mappings. 136
Editing struts-config.xml . 137

Testing the Struts application . 138
Define a server project . 138
Define a WebSphere test server . 138
Running the Struts application . 140

Implementing simple validation . 142

Chapter 7. Struts application diagram editor . 143
Create a Web project for the Struts application . 144

Create the application resources . 146
Create a Struts application diagram file . 146
Design the Struts application using the diagram editor 148

Creating the Web page objects . 148
Creating an action object . 149
Creating connections . 150

Implement the Struts application . 151
Implement Web pages . 151
Implement the form bean class . 156
Implement the action mapping and action class . 157
Complete Struts application diagram . 160
Testing the Struts application . 161

Analyze a Struts application . 162
Install the trade sample application. 162
Drawing the application flow . 162
vi Legacy Modernization with WebSphere Studio Enterprise Developer

Drawing the main path of the flow. 165

Part 3. Enterprise generation language . 169

Chapter 8. Implementing EGL actions . 171
Accessing EGL programs. 172
Creating and generating EGL programs . 173

EGL editing in Enterprise Developer. 173
EGL files and parts. 176

EGL parts . 176
Data parts . 177
Placement of EGL source files . 178
Creating EGL files and parts . 178

EGL scripting language . 185
Evolution from VisualAge Generator language . 185
EGL code generation . 186
EGL language . 187
Eze words . 188

Writing an application in EGL . 189
Creating an EGL logic part . 190
Creating the SQL record . 192
Creating the program logic part. 197
Creating function logic parts for SQL access . 199
EGL visibility and scoping rules . 200

Generating source code from EGL. 202
EGL control parts . 202
Build server . 203
Creating a build descriptor . 206
Configuring control parts for Java generation . 207
Creating linkage options . 208
Creating a Java wrapper build descriptor . 210
Generating Java . 211
Generating the Java wrapper . 212
Generated Java code . 212
Generated deployment descriptor . 212
Defining the default build descriptors . 213

Testing EGL programs . 214
Preparing the project . 214
Create build descriptor for debugging . 214
Generating code for debugging. 216
Debugging EGL code . 216

Incorporating EGL code into a Struts application . 221
Creating an action class for an EGL program . 221
 Contents vii

Creating the Login model object . 226
Creating an action class for the EGL model . 228
Modifying the Struts configuration file . 229
Modifying the welcome page. 230
Preparing the Struts server . 231
Testing the Struts application with the EGL action 234

Recommendations for EGL files. 236

Chapter 9. Implementing EJB actions . 237
Generating EJB session beans from EGL . 238

Creating an EJB project . 238
Creating linkage options for a session EJB wrapper. 238
Creating a build descriptor for a session EJB wrapper 240
Generating the session EJB wrapper and the session EJB 240
Generate the deployed code. 242
Regenerating the EGL program and wrapper . 242

Testing the session EJB. 244
Using the universal test client . 244
Testing the session EJB with the wrapper class . 251

Accessing an EJB from a Struts action class . 254
Using the program wrapper. 254
Using the session EJB directly . 257

Testing the Struts application with the EJB . 259
Using the welcome page. 260
Using the universal test client . 260

Debugging the Java code. 261
Debug perspective . 261

Preparation for deployment . 263

Chapter 10. Generating COBOL for z/OS from EGL 265
COBOL generation and deployment architecture . 266

Prerequisites for COBOL generation . 267
Enterprise Developer Server for z/OS. 268
Allocating z/OS data sets required for EGL COBOL generation 268

Configuring control parts for EGL COBOL generation 269
Build descriptor for COBOL generation. 269
DB2 bind control . 272
Creating a Java wrapper build descriptor for COBOL. 273
Linkage options for COBOL/MVSCICS. 274
Starting the z/OS build server . 275

Generating COBOL and Java wrapper from EGL . 276
Generated Java code . 277
Generated local files . 277
viii Legacy Modernization with WebSphere Studio Enterprise Developer

Generated z/OS files . 281
Build results. 282

Creating the COBOL executable on z/OS . 283
Build scripts. 283
Output of the z/OS build scripts . 284
Creating a DB2 plan . 287
Modifying CICS resource definitions . 287
Modifying the CICS startup job . 288

Chapter 11. Implementing CICS actions . 289
Accessing CICS transactions . 290

Introduction to EIS adapters . 290
J2EE connector architecture (J2C or J2CA) . 292

Resource adapter . 293
System contracts. 294
Common client interface . 294

J2C CICS ECI resource adapter . 294
Installation of the CICS ECI resource adapter . 295
Why CICS Transaction Gateway? . 296
Starting CICS and the CTG. 297

Accessing the EGL-generated COBOL from Struts . 300
Using the Java program wrapper to COBOL . 300
Modifying the Struts action to access COBOL . 302

Configuring the Web application for J2C . 303
Configuring the built-in server for J2C . 304

Installing the CICS ECI resource adapter . 304
Configuring the J2C connector . 305
Configuring the DB2 JDBC connector. 307

Testing the COBOL CICS transactions . 308

Chapter 12. Implementing and using Web services. 309
Web services concepts . 310
Possible uses of Web services with Struts and EGL 310
Preparing a client project for Web services . 310

Creating the client project . 311
Creating a Web service from a Struts model class . 311

Generated files . 315
Creating a Web service from a wrapper class . 316
Testing the Web service . 317

SOAP administrative application . 317
Sample test client . 318

Universal test client . 319
Using the TCP/IP monitor to see the SOAP messages 320
 Contents ix

Configuring a TCP/IP monitoring server . 320
Running the Web service through the monitor . 321

Creating a Web service that returns the working storage 323
Create the data JavaBean . 323
Create the service JavaBean . 324
Create a Web service from the LoginLogws JavaBean 326
Use the universal test client . 327
Use the generated sample . 327
Use the TCP/IP monitoring server . 328

Creating a Web service client. 328
Create the HTML page with an input form . 328
Create the servlet to invoke the Web services . 329
Test the Web service client . 331

Using a Web service in a Struts action. 332
Outline of required actions . 332
Prepare a Web project . 332
Get the WSDL files . 333
Generating a proxy class for a Web service . 333
Running the sample client . 335
Use the proxy bean in a Struts action . 335

Chapter 13. Deploying applications. 337
Deployment steps. 338
Creating the EAR file . 338
Configuring the WebSphere Application Server . 338

Start the server and the administrative console . 338
Configuring the data source for the TRADEDB. 339
Configuring the J2C connector . 341

Installing the enterprise application . 344
Setting up the TRADEDB database . 347
Testing the Web application . 348

Part 4. Development environment for z/OS . 349

Chapter 14. Developing for z/OS . 351
Local project . 352

Creating a local project . 352
Local project for possible move to MVS . 354
Building the local project . 354
Defining and starting a local build server . 355
Performing the build . 357
Potential REXX conflict . 359
Running the local project. 359

Debugging the local project . 360
x Legacy Modernization with WebSphere Studio Enterprise Developer

Remote project introduction . 364
Prerequisites and configuration . 365

Product prerequisites for Enterprise Developer on z/OS 365
Workstation prerequisites . 366
WebSphere Studio Enterprise Developer Options for z/OS 366
OS/390 components for RECD . 366
Setting Enterprise Developer preferences . 368

Define and connect to a remote system. 370
Creating and configuring a remote project . 373

Creating the project. 373
Map data sets for the remote project . 376
Copying files from local to remote project . 377
Operations on members . 377

Distributed build architecture . 378
Define a distributed build server . 378

Building the remote project. 379
Starting a distributed build. 379
Distributed build results. 380
Incremental build. 383
Speeding up the remote build process . 383
JCL generation . 385

Job and command interactions with z/OS . 386
Submitting and monitoring jobs. 386
Issuing z/OS commands . 387

Remote debugging . 388
Preparation . 388
Debugging the remote executable . 389

Code maintenance scenario. 393
Changing projects . 393
Editing . 394
Syntax check. 396
Implement the requirement and test the application 397

Copy remote project to local for offline work . 398
Summary . 400

Chapter 15. XML enablement for COBOL . 401
Introduction. 402
Benefits of XML enablement . 402
Enabling XML for existing COBOL applications . 403
z/OS prerequisites for XML enabling . 404
Using the generated code . 404
XML enablement run-time scenarios . 405
General limitations . 406
 Contents xi

Early availability limitations . 407
Sample application topology . 407

Installing the CICS application sample in z/OS . 408
Running the existing 3270 CICS legacy application 408
Requirements for changing the existing application 409

XML enablement in Enterprise Developer . 410
Preferences. 411
Prepare a sample project . 411
Generating the XML converters and drivers . 412
Understanding the generated code. 414
Modifying the converter driver programs. 418
Running the XML enabled application . 421
Errors messages parsing input XML data . 422
Modifying the XML converter interface . 423

Summary . 424

Part 5. Appendixes . 425

Appendix A. Team development . 427
Team environment . 428
Concurrent Versions System . 428

CVS installation and configuration . 428
What is new in Version 5?. 429
What changes could impact your work? . 430
Ignoring resources from version control . 431

Development scenario for a single user . 432
Connecting to a CVS repository . 432
Adding a project to CVS control . 433
Create a version . 435
Making changes and synchronizing . 436
CVS console . 437
Resource history . 438
File compare . 438
Disconnecting a project . 439

Development scenario for a team . 440
Where to be careful . 440

Appendix B. WebSphere Studio Asset Analyzer 441
Inventory. 442
Impact analysis on the mainframe . 443
Impact analysis distributed . 452
Reuse of existing code . 456
Summary . 457
xii Legacy Modernization with WebSphere Studio Enterprise Developer

Appendix C. Additional material . 459
Locating the Web material . 459
Using the Web material . 460

System requirements for downloading the Web material 460
How to use the Web material . 460
DB2 installation . 460

Abbreviations and acronyms . 461

Related publications . 463
IBM Redbooks . 463

Other resources . 463
Referenced Web sites . 464
How to get IBM Redbooks . 464

IBM Redbooks collections. 464

Index . 465
 Contents xiii

xiv Legacy Modernization with WebSphere Studio Enterprise Developer

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2002. All rights reserved. xv

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks(logo)™
AIX®
CICS®
CICS/MVS®
COBOL/370™
Database 2™
DB2®

IBM®
IMS™
Language Environment®
MQSeries®
MVS™
OS/390®
RACF®

Redbooks™
SAA®
S/390®
SP™
VisualAge®
WebSphere®
z/OS™

The following terms are trademarks of International Business Machines Corporation and Lotus Development
Corporation in the United States, other countries, or both:

Lotus®
Word Pro®

Lotus Notes®
Notes®

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
xvi Legacy Modernization with WebSphere Studio Enterprise Developer

Preface

The ability to connect components is the first step in modernizing your
application portfolio. In this IBM Redbook, we look at a real-world example of
creating and connecting a Web application to enterprise business logic using the
Struts-based model-view-controller (MVC) framework and associated tooling
within the the Enterprise Developer that makes this a snap.

To address the needs of large enterprises, a model-based paradigm for building
applications in a Struts-based MVC framework is being delivered in the
WebSphere Studio Suite. It provides a visual construction and assembly-based
environment supporting the implementation of enterprise-level applications and
including support for the multiple developer roles and technologies required by
those applications. Examples of the technologies supported include HTML, Java,
servlet, EJB, COBOL, EGL, PL/I, and connectors.

EGL is a high-level language that supports the development of applications in
either WebSphere (Java) or traditional transactional environments (CICS). EGL's
focus is to allow developers of various backgrounds to be able to write
mission-critical business processes for the Internet, which can be leveraged from
Struts-based Web applications.

This redbook introduces a sample application that encompasses Enterprise
Developer concepts and best practices.
© Copyright IBM Corp. 2002. All rights reserved. xvii

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Ueli Wahli is a Consultant IT Specialist at the IBM International Technical
Support Organization in San Jose, California. Before joining the ITSO 18 years
ago, Ueli worked in technical support at IBM Switzerland. He writes extensively
and teaches IBM classes worldwide on application development, object
technology, VisualAge for Java, WebSphere Studio and WebSphere Application
Server products. Ueli holds a degree in Mathematics from the Swiss Federal
Institute of Technology.

Masaaki Agatsuma is a member of the AD tool development team in the IBM
Software Group, Yamato Software Laboratory, Japan. He has been working with
IBM since 1986, in various areas such as product development, technical
support, and systems integration. His areas of expertise include middleware and
portals in general, as well as XML, Lotus Notes, and Java 2 Enterprise Edition
(J2EE). He holds a degree in Computer Science from the Science University of
Tokyo, Japan.

Reginaldo Barosa is an IBM Certified Application Development Specialist. He
provides sales support, helping customers with WebSphere application
development tools such as VisualAge Generator and WebSphere Studio. Before
joining IBM US two years ago, Reginaldo worked for 27 years in IBM Brazil. He
has co-authored IBM Redbooks, has written many articles, is the author of two
books, and has written four articles for the WebSphere Developer Domain
(WSDD). He holds a degree in Electrotechnic Engineering from Instituto Mauá
de Technologia, São Paulo, Brazil.

Gert Hekkenberg is a Senior IT Specialist from IBM Software Group EMEA
region North, based in Amsterdam, The Netherlands. He has over 18 years of
application-enabling experience with a focus on application development
solutions. One area of special interest is software configuration management
(SCM). He is currently working as Technical Sales Consultant designing E2E
application development solutions for the larger customers in his region and The
Netherlands in particular. He has written extensively on application development
and SCM in various Redbooks over the years and was involved in developing
various ITSO workshops as well. Gert holds a Masters degree in Business
Information Systems from Erasmus University, Rotterdam, The Netherlands, and
a Bachelors degree in economics from Vrije Universiteit, Amsterdam, The
Netherlands.
xviii Legacy Modernization with WebSphere Studio Enterprise Developer

http://www.ethz.ch
http://www.ethz.ch
http://www.siciliano.com.br/livro.asp?tipo=10&id=barosa&tema=livro.asp&pesquisa=3&x=8&y=7
http://www.siciliano.com.br/livro.asp?tipo=10&id=barosa&tema=livro.asp&pesquisa=3&x=8&y=7
http://www.siciliano.com.br/livro.asp?tipo=10&id=barosa&tema=livro.asp&pesquisa=3&x=8&y=7
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0206_barosa/barosa.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0206_barosa/barosa.html

Bob McGoogan is an IT Specialist in RTP, NC. He has 17 years of experience in
the IT field, in both software development and technical sales. He has spent the
last 4½ years developing Java-based Proof-of-Concepts for customers, using
VisualAge for Java, WebSphere Studio, and WebSphere Studio Application
Developer.

Iwan Winoto is a Senior Technical IT Specialist in IBM Software Group in
Sydney, Australia. He started with IBM in December 2000 and has specialized in
WebSphere Application Server and related development tools. Iwan has been in
the IT industry since 1990, working mostly in the finance and insurance industry
in Australia and Switzerland. He has had various roles from application developer
to project manager and has worked with various programming languages
including Clipper, COBOL, SmallTalk and Java. He holds a degree in Electronic
Engineering from Swinburne Institute of Technology in Melbourne, Australia.

Thanks to the following people for their contributions

Clifford Meyers, John Casey, Stephen Hancock, Jason Garcowski, Jon Gregory,
John Snyder, Mark Evans, Roger Newton, Rajesh Daswani, Keith Tapp and
Henry Koch of the Enterprise Developer development team in the IBM RTP lab,
Raleigh.

Larry England, Gary Mazo, Wilbert Kho, Kent Hawley, Mel Fowler, Pavan
Immaneni, Venkat Balabhadrapatruni, Teodoro Cipresso, and Anthony Flusche
of the Enterprise Developer development team in the IBM Silicon Valley Lab, San
Jose.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
 Preface xix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
xx Legacy Modernization with WebSphere Studio Enterprise Developer

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Part 1 Introduction

In Part 1 we introduce the challenge of modernization of legacy applications, the
WebSphere Studio Enterprise Developer product, and the sample application
that is used to illustrate the concepts.

Part 1
© Copyright IBM Corp. 2002. All rights reserved. 1

2 Legacy Modernization with WebSphere Studio Enterprise Developer

Chapter 1. Modernization of enterprise
applications

This chapter discusses the problems that today’s businesses face when
optimizing access to enterprise data and applications through modern dynamic
Web interfaces.

In this chapter, the following topics are discussed:

� Current business pressures, driving the move to enable Web access to some
enterprise application capability

� Current state of enterprise applications and Web application development

� New approach in modernizing legacy applications using a version of the
model-view-controller pattern for Web applications

1

© Copyright IBM Corp. 2002. All rights reserved. 3

Business pressures
There is significant pressure to move many phases of business to emerging
e-business models because solutions based on e-business models optimize
fundamental business processes. The pressure to optimize business processes
comes from an increasingly competitive marketplace, where timeliness, access
to information, and accuracy of information are critical to success. As a result,
today’s enterprise must make applications and data available to any level of the
business at any time. With e-business solutions, an enterprise can more
effectively manage relationships with customers and suppliers, speed decision
making, reduce project cycle times and increase control over inventory.

e-business means making business applications and data more accessible to the
user, whether they be an external customer, Business Partner or employee of the
enterprise. With e-business, users are expecting access to information and
functions that make their job easier. Moreover, users want that access to be fast,
efficient and flexible. e-business also allows the business processes to be
dynamically changed.

Existing information technology investment
Many computer industry analysts agree that large enterprises’ IT investment over
the last 30 years has been in building and maintaining legacy systems (source:
CBDi interact report). Legacy systems do not only include host-based COBOL
business applications. A more general definition of legacy systems are systems
that are not flexible enough to adapt to new business computing paradigms as
they emerge.

Current legacy systems that have been built over the last 30 years have used
paradigms such as:

� Mainframe batch
� Host terminals
� Client/server
� Distributed components and packaged applications

The evolution of each of these paradigms has been accompanied by a new
programming language and toolset and therefore a new set of skill requirements.
In order for a new paradigm to make use of existing legacy systems, that new
paradigm must be able to interact with the technologies of the paradigms that
came before it.
4 Legacy Modernization with WebSphere Studio Enterprise Developer

Typically legacy systems, especially the older ones, have evolved over many
years as business requirements have changed. These systems have become
monolithic and unable to support evolutionary enhancements as new paradigms
have emerged. Monolithic legacy systems also have layers of functionality and
technologies (to manage data, process and presentation), which have hard-wired
dependencies on each other. This is true also of some client/server-based
systems, where there is a tight coupling between the presentation technology
and the underlying business logic implementation.

Legacy applications also arise through a lack of foresight in skills and tools
investment. Many systems exist that are maintained using low-level APIs and
tools such as Notepad. Replacing and maintaining such systems becomes
difficult because the knowledge and skills are held by a few expert developers.

The evolution of the software development team
The process for planning and building software applications has been evolving
for many years. Historically, requirements were gathered, project leads were put
in place, and a team was enlisted. Next, the work was distributed, milestones
were set, and project-tracking mechanisms were put in place. An entire software
project might be built in Cobol, PL/I, C, C++, or some other programming
language. In the past, software development teams were fairly homogeneous.
Generally, the entire application would run on a single platform. Within the project
everyone basically spoke the same language, learned the same processes, and
set similar milestones. This is not the case for teams creating e-business
solutions.

Today’s Web application development teams often include business analysts,
managers, host programmers, application programmers, Web page designers,
graphics designers, Java programmers, and component developers. One person
might fill each role, or any one person might be required to play multiple roles.
Planning a Web application has become complex because of the varied skills
and numerous roles required.

For example, the enterprise information systems may have COBOL or PL/I
programmers with experience building CICS transactions or other applications
and databases associated with current business logic. Their approach to
development is probably based on models of structured programming (and most
likely do not separate the user interface from the business logic). The processes
for building such systems are specific to the host environment.
 Chapter 1. Modernization of enterprise applications 5

As indicated previously, your team needs people with experience in your current
business applications (perhaps host programmers) working on aspects of the
middle-tier. Yet, on the middle-tier, you have Java programmers building servlets,
classes, or perhaps JSPs. Their development and architectural model is likely to
be more object-oriented. The middle-tier application server environment has its
own set of run-time issues. Build and deployment tasks are also particular to the
middle-tier. It is crucial to get the business knowledge that is embedded in your
existing applications and leverage it as you develop in the middle-tier.

Graphic designers and HTML programmers develop for presentation on client
systems (graphics, JSPs, HTML). Most recently, this has meant browsers but
other client platforms, such as hand-held devices and data-enabled phones are
becoming popular. Team members with these skills tend to have backgrounds in
building user interfaces.

Of course, managers of teams developing Web applications might come from
any of these programming disciplines or perhaps a technical business role, or
some other technical lead position. Teams require development tooling that not
only allows diverse roles to interact, but tooling that enables them to work
together as an integrated team.

Software architecture considerations
In this section we discuss what forces have driven application implementation up
to now, and what can be done to bring these applications to the modern
e-business computing paradigm.

A brief history of software development
Today’s enterprise may find it difficult to create e-business solutions and Web
applications. Why is this so?

Over the last 30 years, enterprises have made significant information technology
investments. During that time frame, enterprises have sought to increase their
effectiveness by centralizing critical data and applications, by leveraging
high-end transaction processing systems, and by developing untold numbers of
software applications that have, over time, become core to the day-to-day
operation of their businesses.

The result is 30 years’ worth of applications and significant business processing
power that must be surfaced in an architecture, where it can be used and
extended in e-business solutions. This situation creates a significant challenge,
which hinders Web application development, modernization, and ultimately, time
to market.
6 Legacy Modernization with WebSphere Studio Enterprise Developer

Chaos in Web application development
The problems facing enterprise development teams are compounded by the fact
that the evolution of Web application development has been rocky, at best. The
Web application development environment has been fractured and piece-meal
and so have been the results. Many early Web applications have been little more
than chaotic strings of HTML and scattered programs written in CGI or PERL
scripts. These are not the components of a robust, 24x7 enterprise application.
Security, reliability, and maintainability have often been suspect. A significant
contributing factor to this situation has been the lack of adequate development
tooling for building complex Web applications.

Web applications and their middle-tier components have often been created by
what can best be called “point-tools”; development tools that were extremely
narrow in terms of their function and focus. Stated plainly, there have been no
tools that provide sufficient assistance with the creation of complete end-to-end
e-business solutions. Development teams entering the emerging Internet space
early have been forced to cobble together development environments as best
they could.

To make matters worse, the basic development process of building Web
applications can be described as somewhat haphazard, or perhaps even as an
“anti-development process”. It can be argued that some developers entering the
new Web space initially set aside (or perhaps at times abandoned) approaches
and processes that had become standard practice in enterprise development
shops.

Generally, this turning away from process has been defended by intent to build
applications in “Web-time”. The reality is that the development processes that
have historically helped ensure quality code are just as important as ever.
Today’s point tools do not incorporate the knowledge and best practices of the
last 30 years of application development.

Patterns for e-business
To bring structure into Web application development, IBM has come up with the
Patterns for e-business, a set of proven topologies, technologies, and products.
For more information, refer to the Web site at:

http://www.ibm.com/developerworks/patterns/
 Chapter 1. Modernization of enterprise applications 7

http://www.ibm.com/developerworks/patterns/

Model-view-controller
In order to improve the Web application development process, we must consider
the following technologies in the design of a Web application for the J2EE
environment:

� Java servlets and JavaServer Pages (JSP)
� JavaBeans and Enterprise JavaBeans (EJB)

Together, these object types form the core of a powerful J2EE architecture
expressed in the model-view-controller (MVC) design pattern that was originally
developed to help manage change in software application development.

Model-view-controller separates the user interface from business logic and data.
The key aspects are:

Model The model contains the core of the application function. The
model captures the state of the application. It does not include
knowledge of the view or controller.

View The view is the look of the application. The view presents,
gathers, and submits information, but it does not include
knowledge of the model or controller.

Controller The controller manages the execution flow of the application,
passing appropriate state information between the model and the
view.

MVC applied to Web applications
Applying the model-view-controller approach to Web application design allows
the key aspects of a Web application to be isolated and maintained
independently.

For Web applications, the classical form of model-view-controller needs
modification. This is true because the Web brings unique challenges to software
developers, most importantly the stateless connection between the client and
server. This stateless behavior makes it difficult for the model to notify the view of
changes. On the Web, the browser must re-query the server to discover
modification to the state of the data within the application.

Another change is that the view is implemented using different technologies (for
example, Java, PERL, C/C++) from the model or controller. This fact creates the
requirement to separate key development roles. For instance:

� Business programmers should focus on developing services, not HTML.

� The page designer does not require direct involvement in (or awareness of)
service development.
8 Legacy Modernization with WebSphere Studio Enterprise Developer

� Changes to page layout (by a page designer) should not require changes to
code (of a service developer).

� Customers of the service should be able to create views to meet their specific
needs.

Model-view-controller, modified for the Web, is called MVC2 or model-2.
Figure 1-1 presents the MVC2 approach as it might appear in an N-tier
environment:

� Input from the user is taken at the client and passed to a controller (servlet)
that examines the input and the current state of the model.

� The model (or business objects) may reside on application servers, host
servers, or both.

� The controller then populates the appropriate response view with data
obtained from the model.

� The view (display page) is then presented to the user.

Figure 1-1 Model-2

We can see that using a design pattern such as model-2 helps to separate code
responsibility and associated roles within the development team. Such
separation helps ensure that changes (regardless of where they occur) are
isolated.
 Chapter 1. Modernization of enterprise applications 9

Struts
In an effort to bring the advantages of the MVC design pattern to J2EE Web
application development, this model has been implemented in an open source
framework called Struts, released under the Apache Software License in July
2001.

The Struts framework provides the benefits of modularity, flexibility, and
reusability of components, combined with the easy development associated with
MVC-based Web applications.

In Chapter 4, “Components of a Struts-based application” on page 67, we
describe the basic Web application technologies and introduce the components
of a Struts-based application.
10 Legacy Modernization with WebSphere Studio Enterprise Developer

Chapter 2. Introduction to WebSphere
Studio Enterprise Developer

This chapter provides an overview of WebSphere Studio Enterprise Developer
(abbreviated as Enterprise Developer), which we use to develop the sample
application. We provide a tour of the integrated development environment (IDE)
in which we discuss:

� WebSphere Studio Workbench open tooling platform

� The different perspectives available in Enterprise Developer, such as the
Web, Java, J2EE, EGL, Data, XML, Server, z/OS Projects, and Debug
perspectives

� The different types of projects within Enterprise Developer, such as the Java,
EAR, Web, EJB, server, and MVS projects

� Support for Struts development as a special Web project

� Servers and their configuration for testing of applications

� Support for z/OS development

2

© Copyright IBM Corp. 2002. All rights reserved. 11

WebSphere Studio Enterprise Developer
Enterprise Developer builds on WebSphere Studio Application Developer
(Application Developer). Application Developer brings together most of the
features offered by VisualAge for Java and WebSphere Studio Classic Edition.
Besides the features of these two products, new features were added, as shown
in Figure 2-1.

You can learn about the new and adopted features of Enterprise Developer when
you explore this chapter. To gain a more detailed understanding and some
practical experience of Application Developer, please read the redbook
WebSphere Studio Application Developer Programming Guide, SG24-6585.

Figure 2-1 also shows the capabilities that Enterprise Developer adds to
Application Developer. These features are discussed in more detail in this
chapter. The rest of this book focuses on the features in the Enterprise
Developer; however, it is not necessary for the reader to have an in-depth
knowledge of Application Developer.

Figure 2-1 Enterprise Developer features

V is u a lA g e fo r J a v a
In c re m e n ta l C o m p ila t io n
C o d e A s s is t
U n it Te s t E n v ir o n m e n t
S c ra p b o o k
E J B D e v e lo p m e n t
E n te r p r is e A c c e s s
D y n a m ic D e b u g g in g

W e b S p h e re S tu d io
P a g e E d i t in g (H T M L , J S P)
L in k M a n a g e m e n t
A d v a n c e d P u b lis h in g
S Q L /D a ta b a s e W iz a rd s
W e b A p p lic a tio n P a c k a g in g

A p p lic a t io n D e v e lo p e r F e a tu re s
V e n d o r P lu g - in
F ile -b a s e d ID E
X M L To o lin g
W e b S e rv ic e s To o lin g
P lu g g a b le J D K S u p p o rt
F le x ib le O p e n Te a m D e v e lo p m e n t E n v ir o n m e n t
W e b A p p lic a tio n V is u a l A s s e m b ly
... . . .

+
E n te rp r is e D e v e lo p e r F e a tu r e s

E n te rp r is e G e n e ra tio n L a n g u a g e
C O B O L a n d P L /1 s u p p o r t
J 2 E E C o n n e c to r A r c h ite c tu r e s u p p o rt
M ic ro f lo w e n te rp r is e s e rv ic e s s u p p o r t
..

+

12 Legacy Modernization with WebSphere Studio Enterprise Developer

WebSphere Studio Workbench
WebSphere Studio Workbench is the brand name for the new open, portable
universal tooling platform and integration technology from IBM. It forms the base
for the new WebSphere Studio suite (WebSphere Studio Site Developer,
WebSphere Studio Application Developer, WebSphere Studio Application
Developer Integration Edition, and WebSphere Studio Enterprise Developer).

The Workbench is for customers and for tool builders who want to plug their tools
into the WebSphere Studio product set. The Eclipse open source project
(http://www.eclipse.org) enables other tool vendors to develop plug-ins for the
WebSphere Studio Workbench. The tool providers write their tools as plug-ins for
the Workbench, which operates on files in the workspace.

When the Workbench is launched, the user sees the integrated development
environment composed of the different plug-ins. WebSphere Studio Workbench
provides APIs, building blocks, and frameworks to facilitate the development of
new plug-ins. There can be interconnections between plug-ins by means of
extension points. Each plug-in can define extension points that can be used by
other plug-ins to add function. For example, the Workbench plug-in defines an
extension point for user preferences. When a tool plug-in wants to add items in
that preferences list, it just uses that extension point and extends it.

Workspace
The resources you work with are stored in the workspace. By default, the
workspace is a directory called workspace inside the product installation
directory.

It is possible and suggested to place the workspace directory anywhere on the
file system by starting the Enterprise Developer with a flag:

wsenterprise.exe -data d:\MyWorkspace

User interface
The Workbench user interface (UI) is implemented using two toolkits:

� Standard widget toolkit (SWT)—a widget set and graphical library integrated
with the native Window operating system but with an OS-independent API.

Restriction: This does not work in the early availability product, which
displays a pop-up window where you can enter the workspace path and
directory name. Do not use Select to not display this dialog again, because
you cannot get it back to change the workspace location.
 Chapter 2. Introduction to WebSphere Studio Enterprise Developer 13

http://www.eclipse.org

� JFace—a UI toolkit implemented using SWT.

The whole Workbench architecture is shown in Figure 2-2.

Figure 2-2 The Workbench architecture

Here are some explanations about the acronyms used in Figure 2-2.

Concurrent Versions System (CVS)
CVS is the open standard for version control systems. More information
on CVS can be found at http://www.cvshome.org.

ClearCase (CC and CCLT)
ClearCase LT is from Rational and is shipped with the Enterprise
Developer. ClearCase full function can be purchased separately from
Rational. More information can be found at http://www.rational.com.

Other versioning systems will be supported in future versions of the Enterprise
Developer product or by code shipped by other vendors (Merant, for example).

Rapid AD Rapid AD
ToolsTools WebWeb

ToolingTooling

Java Tooling Java Tooling
 IDE IDE

Modeling Modeling
ToolTool

DesktopDesktop
Standalone Standalone

ToolToolPublishedPublished
ExtensionExtension

PointsPoints

ISV plugin or ISV plugin or
contributioncontribution

CC CC
InterfaceInterface

CVS CVS
InterfaceInterface

Other Other
InterfacesInterfaces

Platform APIs / Extension PointsPlatform APIs / Extension Points
Common ServicesCommon Services
Resource managementResource management
Project modelProject model
Team programming modelTeam programming model
DebuggingDebugging
Extensibility frameworkExtensibility framework

Common FrameworkCommon Framework
Widget ToolkitWidget Toolkit
UI FrameworkUI Framework
Editing FrameworksEditing Frameworks
Builders, Markers, HelpBuilders, Markers, Help

Software Configuration ManagementSoftware Configuration Management
14 Legacy Modernization with WebSphere Studio Enterprise Developer

http://www.cvshome.org
http://www.rational.com

Workbench window
In this redbook, we refer to the interface of Enterprise Developer as the
Workbench. It is an integrated development environment that promotes
role-based development. For each role in the development of your e-business
application, it has a different and customizable perspective.

A perspective is the initial set and layout of the views in the Workbench. Each
perspective is related to a development task or role. For example, if you want to
develop Java applications, you first create a Java project. When you work in a
Java project, you probably use the Java perspective because that is the most
useful perspective to do Java developing. We give an overview of the different
perspectives and projects in the next sections.

Perspectives
Perspectives are a way to look through different glasses to a project. Depending
on the role you are in (Web developer, Java developer, EJB developer) and/or the
task you have to do (developing, debugging, deploying) you open a different
perspective. The Workbench window can have several perspectives opened, and
each can have its own window on the desktop if desired (select Window ->
Preferences -> Workbench -> Perspectives to set the option for multiple
windows).

Perspective basics
Figure 2-3 shows the Web perspective. You can switch easily between
perspectives by clicking the different icons in the perspective tool bar.

� You can open a new perspective by clicking the icon in the perspective
toolbar. Alternatively you can select Window -> Open Perspective and then
select the desired perspective from the list (in some cases you have to select
Other to get a list of all perspectives).

� Each perspective has its own views and editors that are arranged for
presentation on the screen (some may be hidden at any given moment).
Several different types of views and editors can be open at the same time
within a perspective.

� There are several perspectives predefined (Resource, Java, Web, J2EE,
EGL, Data, XML, Server, Debug) in the Workbench. You can customize them
easily by adding, deleting, or moving the different views.

� You can also compose your own perspective by defining the views it should
contain.
 Chapter 2. Introduction to WebSphere Studio Enterprise Developer 15

Figure 2-3 Web perspective

Views and editors
We first discuss the different views that appear in most perspectives and then
take a closer look at some of the most used perspectives. Some of the views
appear in most of the perspectives.

Navigator view
The Navigator view shows you how your resources are structured into folders.
The Navigator view is available in most perspectives and it always displays all the
folders and files of all projects. There are three kinds of resources:

Projects You use projects to organize all your resources and for version
management. When you create a new project, a folder with the
name of the project is created in the workspace.

Folders Folders are like directories in the file system. They can contain files
as well as other folders. Folders are usually stored in the project
directory, but they can also be outside of the workspace.

Files Files correspond to files in the file system and reside in folders.

P
er

sp
ec

ti
ve

 t
o

o
lb

ar

Page designer

Tabs

Multiple editors opened
16 Legacy Modernization with WebSphere Studio Enterprise Developer

Editors
By double-clicking a resource, the associated editor opens and allows you to
modify it. In Figure 2-3, the active editor is the page designer, associated with
JSP and HTML files. If no editor is currently associated with a particular file
extension, the Workbench checks if there is one associated in the operating
system and uses that editor to edit the file. You can also open OLE document
editors such as Word, which is associated with the .doc extension.

You can change or add editors associated with a file extensions:

� From the menu bar, select Window -> Preferences.

� In the left pane, select File editors under the Workbench hierarchy.

� You can then select a file extension and associate an internal or external
editors for it.

When you double-click another resource, a different editor shows up. You can
easily switch between the different opened resources by selecting them on the
top bar above the editor area. If the tab of your editor contains an asterisk (*), it
means that it contains unsaved changes.

Outline view
The Outline view is always associated with the active editor.

The Outline view gives you an overview of the key elements that make up the
resource that is being edited. It allows quick and easy navigation through your
resource. By selecting one of the elements in the Outline view, the line in the
editor view that contains the selected element gets highlighted and the editor
pane is adjusted to make the element visible.

Properties view
When you click a resource in the Navigator view and then open the Properties
view, you can view the different properties of that resource. The Properties view
contains general things such as the full path on the file system, the date when it
was last modified, and the size, as shown in Figure 2-4.

Figure 2-4 Properties view
 Chapter 2. Introduction to WebSphere Studio Enterprise Developer 17

Tasks view
The Tasks view contains a list of two types of elements:

Problems Problems are tool-determined issues that have to be resolved.
Example problems are Java compile errors, or broken links for
HTML/JSP files. They are automatically added to the Tasks view
when working with the tool. When you double-click a problem, the
editor for the file containing the problem opens and the cursor is
pointed at the location of the problem.

Tasks You can manually add tasks yourself. For example, you can add a
task that reminds you that you have to implement a Java method.
Place the cursor in the method’s implementation, right-click and
select Add -> Task. When you double-click, the file opens and the
cursor is located in the method. You can also add general tasks
that do not refer to a specific file.

You can set up several filters to show only the tasks you really want to see. For
example, by clicking the filter icon , you can specify to show only the Java
compile errors from a particular Java class or for the particular project. An
example of the Tasks view with a Java code error is shown in Figure 2-5.

Figure 2-5 Tasks view

Double-clicking an error opens the file with the error at the point of the error.

Console view
The Console view displays console output of Java programs that you run or
messages of servers that you start.

Other views
There are many other views in the different perspectives, tailored for certain user
tasks. Some of the other views will be explained when we discuss other
perspectives.
18 Legacy Modernization with WebSphere Studio Enterprise Developer

Customizing perspectives
You can highly customize the different perspectives by:

� Closing or opening views.

� Maximizing the view by double-clicking the title bar. You do this when you
need a large pane for code editing. Double-click again to restore the layout.

� Moving views to other panes or stack them behind other views. To move a
view:

– Select the view's title bar and start dragging the view.

– While you drag the view, the mouse cursor changes into a drop cursor.
The drop cursor indicates what will happen when you release the view you
are dragging:

The floating view appears below the view underneath the cursor.

The floating view appears to the left of the view underneath the
cursor.

The floating view appears to the right of the view underneath the
cursor.

The floating view appears above the view underneath the cursor.

The floating view appears as a tab in the same pane as the view
underneath the cursor. You can also drop the view on the
perspective toolbar to make it a fast view.

You cannot dock the floating view at this point.

� Adding views and icons. You can add a view or a set of icons through:

– Select Window -> Customize Perspective from the main menu bar.

– Select the views you want to add and the icons (Other) you want to add
and click OK.

– Select Window -> Show View and select the view you just added.

Once you have configured the perspective to your liking, you can also save it as
your own perspective by selecting Window -> Save Perspective As.

When you want to reset a perspective to its original state, select Window ->
Reset Perspective from the main menu.
 Chapter 2. Introduction to WebSphere Studio Enterprise Developer 19

New icon
The icon (New) opens a dialog where you can create any type of resource
from a selection list. This dialog is also opened when selecting File -> New ->
Other from the main tool bar (Figure 2-6).

Figure 2-6 New wizard

You can also select the drop-down menu next to the New icon. This action
displays a list of most used resources that you may want to create in the current
perspective. If the desired resource is not in the list, select Other to open the New
dialog.

Web perspective
In Figure 2-3 on page 16 you see the Workbench opened in the Web
perspective. You use the Web perspective when you want to develop Web
applications. The Web perspective is the best perspective to add and organize
static content (HTML, images) and dynamic content (servlets and JSPs) to a
Web application.
20 Legacy Modernization with WebSphere Studio Enterprise Developer

On top of the perspective, you see the Workbench toolbar. The contents of the
toolbar change based on the active editor for a particular resource. The current
editor is the page designer for editing our JSP page. The toolbar now reflects
JSP development and contains icons to add JSP tags and a JSP menu item.

The Outline view shows the outline of a JSP page. It contains all the tags from
which the JSP page is constructed. When you switch to the source tab of the
page designer and you select a tag in the Outline view, the matching line in the
Source view is highlighted.

We use the Web perspective in the chapters that follow, where we develop the
sample Web application and the Web services.

Web Structure view
The Web Structure view (Figure 2-7) shows the logical layout of a Web
application with Web pages and actions. This is most useful in a Struts-based
Web application:

� Web pages are shown with referenced files and Struts actions.

� Struts actions are shown with forms and action mappings.

Figure 2-7 Web Structure view

Java perspective
When you want to develop Java applications, you use the Java perspective. The
Java perspective is shown in Figure 2-8. It contains a lot of useful editors and
views which help you in your Java development.
 Chapter 2. Introduction to WebSphere Studio Enterprise Developer 21

Figure 2-8 Java perspective

You navigate in the Java perspective through the Package Explorer view, which
enables you to define and manage Java packages and the Java classes defined
in the packages.

When you select a Java class in the Packages view and select Navigate -> Open
Type Hierarchy, the Hierarchy view for that Java class opens. The Hierarchy view
allows you to see the full hierarchy of a Java class. In Figure 2-8, the Hierarchy
view is currently hidden by the Package Explorer view.

When you double-click a Java file the Java editor opens. You can open multiple
Java files at the same time. The Java editor features syntax highlighting and a
code assistant by pressing Ctrl+spacebar.

The Outline view in the Java perspective gives an overview of all the methods
and fields for the Java file that is currently opened. When you click a method in
the Outline view, the cursor is positioned in the method signature in the Java

fields

methods

Editor

Tabs to other views

error

packages
22 Legacy Modernization with WebSphere Studio Enterprise Developer

editor. The tool bar at the top contains filters to include or exclude static methods
or fields, and to sort the Outline view.

In the Java perspective, the Workbench toolbar contains several icons to add
new packages, new Java classes, new Java interfaces, or to create a new
Scrapbook page.

Search
Clicking the search icon invokes the search dialog as shown in Figure 2-9.
Now you can either do a full text search, or a more intelligent Java search, to
look, for example, for a particular type declaration or references to it.

The Search view (Figure 2-10) shows the results of a search action. From the
search view you can double-click any of the result lines to open the class that
contains the declaration or reference.

Figure 2-9 Search dialog

Figure 2-10 Search results
 Chapter 2. Introduction to WebSphere Studio Enterprise Developer 23

J2EE perspective
The J2EE perspective provides useful views for the J2EE or EJB developer. The
J2EE Hierarchy view in Figure 2-11 shows you a list of all the different modules
such as Web modules, EJB modules or servers and configurations that make up
your enterprise application. You can expand the module you want to explore and
you can edit the associated deployment descriptors for that module by
double-clicking.

In Figure 2-11, the EJB deployment descriptor (ejb-jar.xml) is currently opened
in the EJB editor.

Figure 2-11 J2EE perspective

The J2EE Navigator view, hidden by the J2EE Hierarchy view in Figure 2-11,
shows a hierarchical view of all the resources in the workspace. When you
double-click a resource, the registered editor for that file extension opens and the
Outline view shows the outline for the file you are editing.

EJB Editor

EJBs

Tabs to other views
24 Legacy Modernization with WebSphere Studio Enterprise Developer

EGL perspective
As part of Enterprise Developer, IBM is also introducing enterprise generation
language (EGL), a high-level programming language (based on IBM’s VisualAge
Generator product). EGL is a fourth-generation programming language that
enables traditional developers to code model aspects of an application at a high
level and then generate the appropriate source code for targeted run-time
environments.

From the visual assembly environment (Figure 2-22 on page 41), a traditional
developer can choose to implement a particular action using EGL. Then, using
the EGL part editor and the associated scripting language (optimized for rapid
application development), developers can create programs, functions, records,
and other structures, and then generate COBOL or Java source code as needed.
The EGL tooling also includes task wizards to help developers quickly create the
parts they need.

Figure 2-12 shows the EGL perspective with an EGL part opened in the editor.

Figure 2-12 EGL perspective with EGL part editor

EGL program

EGL files

EGL parts

Tabs to other views
 Chapter 2. Introduction to WebSphere Studio Enterprise Developer 25

The EGL language is similar to COBOL and PL/I, providing the developers with
those skills sets the ability to quickly generate applications that can run in either
the middle-tier (Java) or enterprise information systems (EIS usually
implemented in COBOL/CICS) of a Web application. This capability provides the
developer with options when they want to write code once and then have it
potentially run in multiple environments (through COBOL or Java generation as
needed).

Moreover, EGL provides traditional developers with an easy way to create new
back-end COBOL applications, and the associated Java wrappers (and their
connectors) needed in the middle-tier. This capability helps development teams
bridge the middle-tier problem. Because the Java wrappers (and associated
connectors) are created automatically, Java programmers are not required to
develop wrappers for COBOL applications they did not create. The wrappers are
created automatically and can be directly leveraged in the visual assembly
environment.

EGL source code is contained in a resource called an EGL file. An EGL file
contains parts, such as programs, functions, structures, records, and data items.

Creating EGL files with EGL parts is described in Chapter 8, “Implementing EGL
actions” on page 171.

Data perspective
You use the Data perspective (Figure 2-13) for relational database design for
your application. You can either create a relational database schema yourself, or
import it from an existing database. Afterwards, you can browse, query or modify
it. The data perspective provides the views to manage and work with database
definitions.

In the DB Servers view, you can create a connection to an existing database and
browse its schema. When you want to modify or extend the schema, you have to
import it into the Data Definition view.

The Data Definition view allows you to define new tables, or to modify existing
tables. If you double-click a table in the Data Definition view, the table editor
opens and you can add or change columns and primary or foreign keys.

The Navigator view shows all the resources in the folder structure.
26 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 2-13 Data perspective

XML perspective
The XML perspective is the perspective for XML development. The XML
perspective contains several editors and views that help you in building XML,
XML schemas, XSD, DTD, and integration between relational data and XML.

In Figure 2-14, the XML editor is opened on a Struts configuration file. You can
switch between the Design and Source tabs of the editor to develop your XML
file. The Outline view contains all the XML tags that make up the XML document
that is currently opened in the XML editor.

tables
Table editor

db

Tabs to other views
 Chapter 2. Introduction to WebSphere Studio Enterprise Developer 27

Figure 2-14 XML perspective

Server perspective
When you want to test a Web application or EJB module, you need the Server
perspective (Figure 2-15). The server perspective contains views and editors that
enable you to define, configure, and manage server instances and
configurations.

The Server Configuration view (left bottom) enables you to define or modify
server instances and configurations, and bind them to a project. When you
double-click the server configuration file in the Server Configuration view, the
Server Configuration editor opens.

The Servers view (right bottom) lists all the currently defined server instances.
Here you can start or stop their execution, or assign another server configuration
to a server instance.

XML editor

Tabs to other views
28 Legacy Modernization with WebSphere Studio Enterprise Developer

The Console view (currently hidden by the Servers view) shows all the output
listed by a running server instance.

The Debug view allows you to step through the code when debugging. This view
is not opened when running in normal mode.

The Variables view allows you to inspect the values of variables when
debugging. This view is not opened when running in normal mode.

Figure 2-15 Server perspective

Debug perspective
Use the Debug perspective (Figure 2-16) when you want to debug your code.
The Debug perspective automatically opens when you click the Debug icon in
the Java perspective to run an application in debug mode. It allows you to step
through your code, inspect the values of variables, modify your code and resume
execution.

Server configuration editor

Tabs to other views

Web browser (testing)

Projects
Servers

Data Sources
 Chapter 2. Introduction to WebSphere Studio Enterprise Developer 29

Figure 2-16 Debug perspective

The Debug perspective is built from the following views:

� The Debug view lists all threads within the different processes and shows
you where the execution is halted when reaching a breakpoint.

� Beneath the Debug view there is a Java editor that shows the source of the
code you are stepping into.

� The Breakpoint view lists all currently defined breakpoints. The Exception
icon on top of the Breakpoint view allows you to define exceptions that
will halt execution when thrown.

� The Variables view lists all variables defined currently in the running thread.
You can view and modify their values and set up filters to exclude for example
static fields.

� In the Expressions view you can enter Java code and execute it using all the
variables that are visible at the current breakpoint.

� The Console view (bottom) shows the output of your application.

Breakpoint

Standard output

Tabs to other views

Source

Step through code
Filters
30 Legacy Modernization with WebSphere Studio Enterprise Developer

z/OS Projects perspective
The z/OS Projects perspective provides views tailored for connecting to a z/OS
system and for developing z/OS applications (Figure 2-17).

Figure 2-17 z/OS Projects perspective

Projects for z/OS development can be local projects or remote projects. Remote
projects keep the data on the z/OS system. Editors are provided for COBOL,
PL/I, and other languages.

The z/OS Projects view shows the list of projects. Remote data sets are mapped
to local folders that show the members within the data set.

The z/OS Systems view (not shown) is used to connect to the z/OS system.

The z/OS Job Monitor view shows the remote jobs and can be used to retrieve
job output.

The z/OS Commands view is used to issue TSO commands to the remote
system.

Tabs to other views

Projects
Editor

Jobs
 Chapter 2. Introduction to WebSphere Studio Enterprise Developer 31

z/OS Systems perspective
The z/OS Systems perspective provides a subset of the z/OS Projects
perspective, tailored to connect to z/OS systems and configure the interface.

The z/OS Directories view is used to define high-level qualifiers that are used to
access z/OS data sets.

The z/OS File Extension Mappings view defines the mapping between local file
extensions and z/OS data sets, including how the files are transferred.

Figure 14-20 on page 371 shows the z/OS Systems view and Figure 14-21 on
page 372 shows the z/OS Directories and z/OS File Extension Mappings views.

CVS Repository Exploring perspective
The CVS Repository Exploring perspective provides an interface to the
Concurrent Versions System (CVS), which is one of the supported products for
team development (Figure 2-18).

Figure 2-18 CVS Repository Exploring perspective

Jobs
32 Legacy Modernization with WebSphere Studio Enterprise Developer

The CVS Repositories view displays connections to repositories, the projects
that have been shared with team members, either as a branch (current code) or
as versions (frozen code).

The CVS Resource History view shows the revisions that have been performed
on a file.

Revisions of files can be compared and the differences are shown in the
Compare view.

We describe simple usage procedures for CVS in Appendix A, “Team
development” on page 427.

Help
The Enterprise Developer provides help in a separate window that you can open
using Help -> Help Contents (Figure 2-19).

Figure 2-19 Help window
 Chapter 2. Introduction to WebSphere Studio Enterprise Developer 33

The Help window contains a lot of useful information about the Workbench. It
provides information about the different concepts used by the Workbench, the
different Tasks you can do within the Workbench and some useful samples. The
Search field allows you to do a search in the help.

Memory considerations
After working with Enterprise Developer for some time, you will have opened
several perspectives. You might have the impression that Enterprise Developer is
working slower. It is good practice to close down the perspectives you have not
been using for a while, because they can consume a lot of memory, and hence,
slow down the overall performance.

Projects
A project is the top-level construct for organizing the different resources. It
contains files as well as folders. In the Workbench you can create different kinds
of projects, and they will have a different structure. A Web project, for example,
has a different nature from a Java project; therefore it will have a different folder
structure.

We will now briefly discuss the types of projects referred to in this document:

� Java project
� EAR project
� Web project with Struts
� EJB project
� Server project
� z/OS Local project
� z/OS MVS project

Java project
When you want to create a Java application, you first have to create a Java
project to contain the Java files. Each Java project has a Java builder and builder
path associated with it, which are used to compile the Java source files.

Creating a Java project
Here are the steps to create a Java project:

� Select File -> New -> Project.

� In the New dialog select Java in the left pane and Java Project in the right
pane. Click Next.
34 Legacy Modernization with WebSphere Studio Enterprise Developer

� Specify a name for the project and the location of the project contents. By
default the content is stored in the workspace. Click Next.

� The Java build settings dialog (Figure 2-20) contains four tabs to specify the
folders, projects, and libraries used for compilation.

Figure 2-20 Java build settings

Source In the Source tab you specify where the source files should be
stored, either within the normal project folders or in folders
designated by you.

Projects In the Projects tab you specify whether other projects are
required in the build path. For example, a Web project may
require an EJB project.

Libraries In the Libraries tab you can add internal and external JAR files to
the build path:

� An internal JAR is contained in the Workbench. The
advantage of an internal JAR is that it can be treated like a
normal resource within the Workbench, which allows
version management.
 Chapter 2. Introduction to WebSphere Studio Enterprise Developer 35

� External JARs are referenced with absolute paths in the
file system. This may make it difficult to share them in a
team environment. Variables can be used to alleviate the
issue introduced by absolute paths. An example of an
external JAR file would be the db2java.zip file used for
JDBC access to DB2.

Order/Export The Order and Export tab enables you to specify the order in
which the different items in the build path are accessed, when
loading Java classes. You can also select which directories and
files are exported with the project.

You can modify the Java build path after you have created a project through the
Properties context menu of the project.

When you are finished creating the Java project, the Workbench switches
automatically to the Java perspective.

Creating a package and a class
To create a Java package select File -> New -> Java Package or click the New
Package icon in the toolbar. Enter the package name, click Finish. The
package appears in the Packages view.

To create a class in the new package, select the package and select File -> New
-> Java Class or select the New Class icon in the toolbar. In the SmartGuide,
check the package name and enter the desired class name and superclass. If
you want a main method in your class, select the main method under Which
method stubs would you like to create. Click Finish. The class appears under the
package and a Java editor opens and you can start coding.

Java editing
The following useful features are available when you edit Java code:

� Double-clicking in the title bar of the Java editor maximizes the editor so that it
occupies the whole perspective. Double-click again to restore its original size.

� Use Ctrl+spacebar to launch the code assist in the Java editor when coding.

Tip: Use the predefined variables instead of adding external JARs with
absolute paths to your build path whenever possible. The Workbench contains
various predefined variables such as the DB2JAVA variable, which defines the
db2java.zip file. You can add variables for other JAR files through the
Window -> Preferences -> Java -> Classpath Variables dialog.
36 Legacy Modernization with WebSphere Studio Enterprise Developer

� If you select the edited Java source and you click the Show Source of
Selected Element Only icon in the toolbar then only the source of the
selected element in the Outline view is displayed in the editor.

� If you place the cursor in the Java editor on a variable then the full package
name of that variable displays in the hover help (a small pop-up that opens at
the cursor location over the text). Hide the hover help by clicking the Text
Hover icon in the toolbar .

� If you select a method in the Outline view and then select Replace from Local
History from the context menu, a dialog opens and shows all the states of the
method that you saved. You can replace the method with an older version.
The same can be done for the class itself from the Navigator view.

EAR project
To develop a J2EE enterprise application you have to create an enterprise
application project (EAR project). An EAR project usually consists of one or more
EJB modules, one or more Web modules (Web applications), and one or more
application client modules.

Creating an EAR project
To create an EAR project do the following:

� Select File -> New Project.

� Select J2EE in the left pane and Enterprise Application Project in the right
pane, click Next.

� Specify a Name for the EAR project.

� Specify contained modules (client, EJB, and Web projects) that you want to
include in the EAR project, and click Finish.

� We recommend that you follow a naming standard for your projects.

EAR deployment descriptor (application.xml)
When you create an EAR project, a deployment descriptor (application.xml) is
created in the /META-INF folder. The EAR deployment descriptor defines all
modules in the EAR file.

To open the EAR deployment descriptor do the following:

� Open the J2EE perspective and J2EE Hierarchy view.

� Expand Enterprise Applications and double-click the EAR project.
Alternatively double-click the application.xml file in the Navigator view.
 Chapter 2. Introduction to WebSphere Studio Enterprise Developer 37

J2EE packaging
An EAR project can be packaged as an enterprise archive file (EAR file). An
enterprise application consists of the following modules:

� Web applications, which are packaged in .WAR files. The WAR file contains the
resources that compose the Web application and a deployment descriptor
(web.xml). A Web application is contained in a Web project, which we discuss
in “Web project” on page 39.

� EJB modules, which are packaged in .JAR files. The EJB JAR file contains all
the EJBs and a deployment descriptor (ejb-jar.xml). EJBs are contained in
an EJB project, which we discuss in “EJB project” on page 42.

� Optionally we can have stand-alone client applications that use EJBs, for
example. An application client is also packaged in a JAR file. The application
client JAR contains all the Java classes of the application client and a
deployment descriptor (application-client.xml).

Figure 2-21 shows how WAR files and JAR files together constitute the EAR file,
which also contains the application deployment descriptor (application.xml).

Figure 2-21 J2EE packaging

EAR deployment
Exporting an EAR project into an EAR file assembles all the components (EJB,
Web, and client projects) into a .EAR file that can be deployed into a J2EE
conforming application server, such as WebSphere Application Server.

J2EE
.EAR file

EJB
module
.jar file

Client
module
.jar file

Web
module
.war file

EJBs Servlets JSPs

HTML,GIF,..

Client
classes

ejb-jar.xml web.xml application-client.xml

application.xml EAR
project

EJB
project

Web
project

Client
project

Application
Developer
38 Legacy Modernization with WebSphere Studio Enterprise Developer

Web project
You use a Web project when you want to create and maintain resources that
compose a Web application. A Web project contains the structure of folders to
contain all files that are needed to build a Web application. Typically, a Web
application consists of HTML pages, images, XML, servlets, JSPs, and
JavaBeans. How to build a Web application is described in “Creating a Struts
application” on page 106.

Creating a Web project
To create a Web project do the following:

� Select File -> New -> Project.

� Select Web at the left side of the pane, Web Project at the right side of the
pane, and click Next to start the wizard.

� Specify the Project name and the workspace location for the project. Select
between a J2EE Web project (with servlets, JSPs, and EJBs) and a Static
Web project (HTML only). For this document, we always create J2EE Web
project. Optionally, select Create a CSS file (HTML style sheet).

Here is also where you specify if you want Struts support in the J2EE Web
project. See “Components of a Struts-based application” on page 67 for
information on Struts.

� On the J2EE Settings page you specify the EAR project, either an existing
one, or a new one. Specify the Context root, the alias that will be used in
URLs to access project resources. Select the J2EE level, 1.3 or 1.2. Note that
you can run a 1.3 project only in a WebSphere Version 5 server, but you can
run a 1.2 project in either WebSphere Version 4 or Version 5.

� On the Module Dependencies page you can specify JAR files required by the
Web application, for example EJB modules within the same EAR project.

� On the Struts Settings page you specify if and where the Struts resource
bundle should be created. The resource bundle holds text constants that can
be used in Web pages.

� Click Finish. Your Web project is automatically opened in the Web
perspective.

When you create a new Web project, a default directory structure is created that
reflects the J2EE view of a Web application. A Web deployment descriptor
web.xml is generated in the /webApplication/WEB-INF folder.
 Chapter 2. Introduction to WebSphere Studio Enterprise Developer 39

Web application archive files (WAR files)
As defined in the J2EE specification, a WAR file is an archive format for Web
applications. The WAR file is a packaged format of your Web application that
contains all the resources (HTML, servlets, JavaBeans, JSPs, XML, XML
schemas) that compose your Web application.

You can deploy a Web application by itself to an application server by creating a
WAR file. Select File -> Export -> WAR and specify the output file and directory.

In general, however, it is easier to have the Workbench create the EAR file that
contains the WAR file and deploy the EAR to an application server.

Struts
A difficult aspect of building a Web application is connecting components that
comprise disparate technologies (for example, building the controller, in MVC
terms).

Enterprise Developer leverages Struts, an emerging open standard for
constructing MVC-based Web applications. Struts provides (among other things)
an action servlet that manages the run-time relationship between JSPs and
Actions. The use of Struts helps to ensure an effective separation of code
responsibilities and developer roles (see “Components of a Struts-based
application” on page 67 for a more detailed description of Struts).

Enterprise Developer provides a powerful visual component assembly
environment, the Struts application diagram editor, for Struts-based Web
applications (Figure 2-22).

The diagram editor is used to define basic flow of the Web application graphically,
connecting JSPs with component services (or actions) as desired. This approach
simplifies the creation of an MVC application by masking the complexity of the
disparate technologies involved.

The diagram editor is used initially as part of the design process, helping a
development team quickly lay out view (JSP) and model (action) components
without having to consider the technical issues of combining disparate
technologies that have yet to be created or harvested from existing capability.
Throughout the development process the diagram editor can be used to extend
and test a Web application’s capability.

As we will see later, the actions defined in the visual assembly environment can
be implemented in whatever technology is most appropriate for your specific
needs (COBOL, PL/I, Java, or IBM’s enterprise generation language).
40 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 2-22 Visual assembly of Web application flow

The Enterprise Developer also provides a number of wizards to define Struts
components, such as action classes, action forms, and JSPs.

Struts project
A Struts project is a special case of a Web project that includes:

� Struts taglibs and Struts configuration file (struts-config.xml) in the WEB-INF
folder

� Struts run-time JAR file (struts.jar) in the WEB_INF/lib directory

� Struts resource bundle (ApplicationResources.properties) for the
externalized user interface resources

A Struts project is defined as a Web project. The Struts support is added to the
Web project during the creation of the project through the new Web project
wizard.
 Chapter 2. Introduction to WebSphere Studio Enterprise Developer 41

EJB project
If you want to develop Enterprise JavaBeans (EJBs) you have to create an EJB
project first. An EJB project is a logical group for organizing the EJBs. To create
an EJB project:

� Select File -> New -> Project.

� Select EJB on the left pane and EJB project on the right pane and click Next.

� Specify the Name of the EJB project and the workspace location. You also
have to specify an EAR project name that will contain your EJB project. You
can select an existing EAR project or create a new one. Click Next.

� On the Module Dependencies page you can specify JAR files required by the
EJB application, for example other EJB modules within the same EAR
project.

� When you click Finish, the EJB project opens in the J2EE perspective. The
deployment descriptor for the EJB module (ejb-jar.xml)is created in the
/YourProject/ejb-module/META-INF folder.

The use of EJB projects is illustrated in “Generating EJB session beans from
EGL” on page 238.

EJB deployment descriptor (ejb-jar.xml)
An EJB module requires a deployment descriptor (ejb-jar.xml) in the same way
a Web application requires a deployment descriptor (web.xml).

In addition to the standard deployment descriptor, the Workbench also defines
EJB bindings and extensions. Both binding and extension descriptors are stored
in XMI files, ibm-ejb-jar-bnd.xmi and ibm-ejb-jar-ext.xmi, respectively.

EJB editor
To edit the deployment descriptor for the EJB module:

� In the J2EE view of the J2EE perspective, expand EJB Modules.

� Right-click the EJB module and select Open With -> EJB Editor, or just
double-click the module.

� The ejb-jar.xml deployment descriptor opens in the EJB editor
(Figure 2-23).
42 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 2-23 EJB deployment descriptor editor

The ejb-jar.xml is presented in several sections defined by the tabs at the
bottom of the EJB editor.

Server project
To test an EJB or Web project, you have to define a server and a server
configuration to publish and run the code. Servers and server configurations are
defined in server projects.

Creating a server project
To create a new server project:

� Select File -> New -> Project.

� Select Server on the left pane and Server project on the right pane.

� Specify a Name for your project and click Finish. We will use ItsoServers as
our project name.

After creating a project, the Server perspective opens and you can now add a
server and a server configuration.
 Chapter 2. Introduction to WebSphere Studio Enterprise Developer 43

Servers
A server identifies the server used to test your application. Unlike VisualAge for
Java, Enterprise Developer has the option to deploy to and test with both local
and remote instances of the WebSphere application server, and additionally
Apache Tomcat. Here is a brief explanation of each of the servers.

WebSphere Version 5.0
This enables the developer to work with an integrated version of WebSphere
Application Server Version 5, which supports the entire J2EE 1.3 and 1.2
programming model. This is the best option for testing EJB-based applications.
Three options are provided:

� Test Environment—Built-in server inside the Enterprise Developer.
Enterprise Developer publishes the code to the server and starts it.

� Remote Server—Stand-alone server on the same or another machine. When
the application is executed, Enterprise Developer publishes the code to the
external server and attempts to start the server using the IBM Agent
Controller service, which is supplied with Enterprise Developer. This feature
provides a very efficient approach to remotely deploying an application.

� Remote Server Attach—A server instance that will attach to a WebSphere
Version 5 server that is already started.

WebSphere Version 4.0
This enables the developer to work with an integrated version of WebSphere
Application Server Advanced Edition Single Server V4.0.1, which supports the
entire J2EE 1.2 programming model. The same three options as for Version 5.0
are provided.

Apache Tomcat Version 4.0
Tomcat Version 4 has been developed by the Apache group on a completely
separate code base from the V3.2 release, and is the reference implementation
for the Servlet 2.3 and JSP 1.2 specifications. For more information on Tomcat
and the Apache Jakarta project, see http://jakarta.apache.org. Enterprise
Developer does not ship with the Tomcat binaries, only a toolkit to support its
execution. You must already have a working Tomcat instance installed in order for
this to work. Two options are provided:

� Test Environment—Runs Tomcat inside the Enterprise Developer.

� Local Server—Stand-alone Tomcat server on the same machine. Permits
publishing and execution of the Web application to an external version of
Tomcat 4.0. Unlike the WebSphere Remote Server option, this is only
supported for a local instance on the same machine.
44 Legacy Modernization with WebSphere Studio Enterprise Developer

http://jakarta.apache.org

Apache Tomcat Version 3.2
This release supports the servlet 2.2 and JSP 1.1 specifications. The same two
options as for Version 4.0 are provided.

Publishing Server
The publishing server supports the publishing of static Web projects, as well as
J2EE projects such as EAR projects, Web projects, and EJB projects.

Static Web Server
A static Web server is a Web server that runs static Web projects. Use the static
Web server for the testing of HTML and Java script files. JSPs and EJBs are not
supported.

Remote Application Server Attach
This is a server instance that will attach to a generic application server that is
already started.

TCP/IP Monitoring Server
This is a simple server that forwards requests and responses, and monitors test
activity. This run-time environment can only be run locally, and it only supports
Web projects. You cannot deploy projects to the TCP/IP Monitoring Server. The
TCP/IP Monitoring Server is illustrated in “Configuring a TCP/IP monitoring
server” on page 320.

Because Tomcat does not have EJB support, you cannot deploy EAR files to it,
only WAR files containing servlets and JSPs.

Server configuration
A server configuration contains the information about the server.

The Server Configuration view of the Server perspective shows the servers, the
configurations, and the projects that are assigned to a configuration. The Servers
view shows the servers for start and stop operations (Figure 2-24).

A server configuration is stored in XML files in the server project. The properties
can be set by opening (double-clicking) the configuration in an editor.

Important: Before you can do a remote unit test you have to install and run
the IBM Agent Controller, which comes with Enterprise Developer, on the
remote machine. IBM Agent Controller is a process that runs on the remote
machine and which enables client applications to start new host processes.
 Chapter 2. Introduction to WebSphere Studio Enterprise Developer 45

Figure 2-24 Server configuration and servers

A server configuration defines:

� Port numbers for the different processes such as the naming service
� Mime types
� JDBC drivers
� Data sources
� Security enablement
� EJB test client enablement

A server configuration can be reused by multiple servers but each server will only
point to one server configuration. Each server configuration can point to multiple
projects as shown in Figure 2-25.

Figure 2-25 Relationship between server instance, configurations, and projects

Each project has a preferred server configuration that is used when the project is
run by selecting Run on Server from its context menu (this can be set in the
project by selecting Properties -> Server Preference).

Server 1

Server 3

Server 2

Server
Configuration 1

Server
Configuration 2

Project 1

Project 3

Project 2
46 Legacy Modernization with WebSphere Studio Enterprise Developer

Creating a server and a configuration
In the server perspective, select New -> Server -> Server and server
configuration and complete the dialog as shown in Figure 2-26.

On the next page you can set the port (default is 8080) and click Finish.

The new server appears in the Server perspective and you can assign EAR
projects to the server. Those projects will be loaded when the server is started.
To assign a project to a server, select the server configuration and select Add ->
Project from the context menu.

Figure 2-26 Creating a server instance and configuration

Server templates
When you have to create several similar servers or configurations, you can
create them from a template to save time. You could also share a template
across a team so that team members can start personalizing their server
configuration or instance starting from a template. To create a template:

� Select Window -> Preferences.
� Expand Server on the left pane and select Templates.
� Click Add and specify the server to be stored as a template.
 Chapter 2. Introduction to WebSphere Studio Enterprise Developer 47

Starting and stopping a server
A server can be started from the Servers view in normal or debug mode. To
debug servlets or JSPs at the source level, you must start the server in debug
mode. Note that startup and execution is slower in debug mode.

A server can be started implicitly by selecting a Web resource (for example an
HTML file) and Run on Server or Debug on Server from the context menu:

� The first time you are prompted to select a server (Figure 2-27). You can
bypass this dialog in the future by selecting Do not show this dialog the next
time. From then on, the server associated with the Web project is started
automatically.

Figure 2-27 Selecting a server and making it the preferred server

Before a server is started, the associated projects are published.

When you are done with testing, you stop the server explicitly from the Servers
view. When certain resources are modified (or example EJB definitions), a server
must be restarted.
48 Legacy Modernization with WebSphere Studio Enterprise Developer

Publishing
Publishing means copying all the resources that are required to test a project to
the right place so that the server can find them. In cases when you are testing
within the Workbench, the resources might already be at the right place.
However, when you are testing with WebSphere Application Server on a local or
remote machine, or with Tomcat on a local machine, publishing means to copy
the resources outside of the Workbench.

By default, the Automatically publish before starting server option is turned on.
This option can be found in the Window -> Preferences -> Server item. When this
option is turned on, all files and folders on the server are synchronized with the
Workbench whenever starting or restarting that server.

You can manually publish by selecting the server in the Servers view of the
Server perspective and selecting Publish from the context menu.

Remote server
For a remote WebSphere Application Server, you must configure how the files
are transferred to the server. The Create a Server dialog prompts you for:

� The installation directory where the server is installed, for example,
C:\WebSphere\AppServer.

� The platform (Windows or Other).

� One of two possible transfer mechanisms:

– Copy file transfer mechanism—you must specify the remote target
directory (as seen from the local machine on a LAN drive), for example,
X:\WebSphere\AppServer.

– FTP file transfer mechanism—you must specify the remote target directory
(on the remote machine), the host name, login user ID and password,
connection time-out, and optionally firewall settings.

Agent Controller
The IBM Agent Controller is a service that must be installed on the remote
machine. The Agent Controller code is provided with the Enterprise Developer for
all platforms supported by WebSphere Application Server.
 Chapter 2. Introduction to WebSphere Studio Enterprise Developer 49

Development for z/OS
Actions defined in the visual assembly environment may also be implemented in
COBOL or PL/I. Traditional developers can create and edit host-based resources
using Enterprise Developer’s z/OS projects perspective. It includes the ability to
connect to various host systems to locate the development resources. It also
includes an editor with syntax highlighting, a job monitor to retrieve job output,
and the ability to enter TSO commands.

z/OS local and remote projects are used for z/OS development. Using a remote
projec,t a developer can work directly with the files stored in z/OS data sets,
without having a local copy of the file. Distributed builds can be issued from the
workstation to preprocess, compile, and link z/OS programs.

Chapter 14, “Developing for z/OS” on page 351 describes the development
process for z/OS applications in more detail.

Connectors
A key aspect of creating a Web application involves leveraging existing
applications, and harvesting components from within the enterprise. However,
developers may encounter significant difficulties when they try to create
components based on traditional applications. Enterprise Developer simplifies
the process by providing powerful componentization tooling that helps
development teams turn existing applications into reusable components.

Enterprise Developer’s adapter tooling provides a wizard-based user interface
that helps the developer identify important aspects of the host component. The
tooling automatically creates a J2C interface to the host component. This
component interface is a Java class that runs on the Web server but can
communicate with transactions or other capability on the host. This component
interface can then be incorporated into the visual design tool, making it available
as an action within the Web application.

Note: The connector support was not available in the product when this book
was written. We could only use the J2C connector in a WebSphere Application
Server to connect a Struts application to an EGL-generated CICS COBOL
program.
50 Legacy Modernization with WebSphere Studio Enterprise Developer

Chapter 3. Sample application: Trade

This chapter describes the sample application that is used throughout the
remainder of this book to illustrate the many features of WebSphere Studio
Enterprise Developer. It shows you how to install the sample application,
configure a WebSphere test environment, and test the sample application.

This chapter also discusses development roles that would be required in a
project that aims to build a similar application as well as the design process for
the sample application.

3

© Copyright IBM Corp. 2002. All rights reserved. 51

Introduction to the trade sample
The trade sample application provides an example of how heterogeneous
technologies can be brought together effectively to solve a real business problem
using Enterprise Developer. At its core, the trade sample application is a
Struts-based Web application that includes source code from native Java,
Enterprise generation language (EGL), and COBOL. It also includes examples of
connector technologies used to bridge the divide between middle-tier and
traditional enterprise information systems (EIS) systems.

The trade sample application includes basic functional elements that involve
registering users, login, logout, a list of items that can be purchased, and the
ability to buy and sell items. Such capability might be expected in any business
Web site.

The Enterprise Developer trade sample application is modeled on a fictitious
financial brokerage (called TRADE). Users can log in, change their personal
account information, view their portfolio, buy and sell stocks and get stock
quotes. Because this sample application is intended to provide a context for
understanding the structure and capability of Enterprise Developer (and not as a
primer on building Web applications, per se), the underlying capability has been
greatly simplified and some complex details of building Web applications (such
as embedded JavaServer Pages, user management, security, and so forth) are
not covered. IBM provides numerous Redbooks that describe various aspects of
building Web applications (see http://www.redbooks.ibm.com/).

We recommend that you install the trade sample and run it, to become familiar
with its design and flow. Subsequent chapters in this book will demonstrate how
to use various features of WebSphere Studio Enterprise Developer by having you
build part of the login function of the trade sample application. Being familiar with
how to use the application will help you understand what you are building.

Assembling a development team
Systems that bring legacy systems into the e-business world are created by
multidisciplinary teams. The skills required are contributed from graphic artists,
Web page designers, client- and server-side script writers, Java and host
programmers.

Whether there is only one person or one hundred, the concept of the separation
of roles and responsibilities is key to the successful creation and maintenance of
the e-business application.
52 Legacy Modernization with WebSphere Studio Enterprise Developer

http://www.redbooks.ibm.com/

The model-view-controller pattern involves separating the tasks by each role,
such as:

� The HTML developer uses a tool like WebSphere Page Designer to generate
HTML pages and JSP templates.

� The Script developer uses a Java programming environment such as
WebSphere Studio Enterprise Developer to edit, test, and debug servlets and
JSPs.

� The Java business logic developer uses a Java programming environment,
such as WebSphere Studio Enterprise Developer, and builders, such as the
integrated EJB builder, to specify the details of the business, to access legacy
applications and data, and to build the commands.

� Depending on the implementation language, the host developer uses a
programming environment to remotely edit, compile, and debug the host
application code to perform specific business function and access enterprise
data. WebSphere Studio Enterprise Developer supports COBOL and PL/I in
this fashion.

Further reading
A good reference for assembling a development team is the book The Rational
Unified Process, An Introduction by Philippe Kruchten.

Development roles
In this book, for the sake of clarity, when we refer to, for instance, the senior
business analyst, we mean “the person who plays the role of senior business
analyst”. It might be the same person who plays the role of, say, the junior Java
developer.

In considering our fictitious project analysis and design, we assume that the
project team will consist of a number of persons who broadly fit into the following
categories:

Business analyst This person is supposed to have a lot of business
knowledge while few technical skills. He can write
documents in good language. In this particular context
he knows about the use case-driven approach and has
basic notions of OO analysis and application
development.

OO designer This person is highly skilled in IT and OO and knows
most of the technical environment. He works
intensively with the application architect.
 Chapter 3. Sample application: Trade 53

Java developer Senior developers have significant experience from
working on previous projects. They are entrusted with
delivering the more technically challenging and
performance-critical sections of the code.

Junior developers are competent Java programmers
with less experience than their more senior
colleagues. The junior developers concentrate their
coding efforts on the servlet and client portions of the
code.

Application architect The application architect is the technical lead on the
project. He has overall responsibility for determining
the high-level structure of the application, and the
interaction between components. He is also a senior
developer.

Web developer Web developers are skilled in the use of HTML and the
tools used to develop and maintain Web content. They
are responsible for delivering HTML and JSP pages
and the various interface elements such as images
contained within them.

Host Developer The host developer has knowledge of the legacy
system that the e-business applications need to
interact with. The Java developer needs to have a
good relationship with the host developer in order to
understand the interface that needs to be built
between the Java components and the host
components.

Web application design session
The first page of the trade sample allows the user to log into their account or
register as a new customer of the trade brokerage.

After logging in, the user is presented with their personal portfolio page. From
this page, they can see their current holdings, buy stocks (assuming they have
enough money), sell all stocks in a particular lot, and obtain quotes. They can
also access their account information (name, address, etc.) or log out.

Note: The stock symbols used in the sample are fictitious. Within the sample
application, valid stock symbols are in the form of “s:1” to “s:499”.
54 Legacy Modernization with WebSphere Studio Enterprise Developer

When the user buys or sells a parcel of stock, the portfolio page is updated, as
are the holdings and account balance.

From a software perspective, the trade sample application has a set of JSPs that
access business logic via action mappings defined in one or more XML
configuration files. The action servlet uses these action mappings (and
associated action classes) to pass data and control flow between the JSPs (view)
and the business logic (model). This approach helps ensure that the JSPs
include no business logic, and the business logic need not be concerned with
presentation issues.

Another important benefit of this approach is that Struts action classes can be
used to access business logic that has been created using various technologies.
In the sample application the business logic (model) portion has been
implemented four different ways:

� Using native Java (via Enterprise JavaBeans)
� Using Java generated using EGL
� Using native COBOL / CICS transactions
� Using COBOL transactions generated using EGL

The action classes that access CICS COBOL transactions can do so using IBM’s
connector technologies. Creating such connectors is a key aspect of
modernizing traditional host-based applications for use as part of Web
applications.

Sample application deployment topology
The trade sample application comprises JSPs, the Struts action servlet, a
struts-config.xml file, a struts-config.gph file, Struts action classes, and business
logic written in native Java, generated Java (via EGL), native COBOL (including
the appropriate connectors), and generated COBOL (via EGL). Figure 3-1
provides a simplified view of how these elements are deployed and how they
interact.

Note: IBM’s EGL is a high-level language (based on IBM’s VisualAge
Generator) that allows developers to create programs and then generate Java
or COBOL depending on their target platform. Java classes generated using
EGL are directly accessible via Struts action classes. When EGL is used to
generate CICS COBOL, appropriate connectors are used to invoke the target
program.
 Chapter 3. Sample application: Trade 55

Figure 3-1 Simplified deployment topology

The JSPs reside on the WebSphere server and are presented on the client
system. The Struts action servlet (and actions classes), and Java business logic
also reside in the middle-tier (both native Java and EGL-generated Java). The
CICS transactions reside in the S/390 (z/OS) environment (both native CICS and
EGL-generated CICS). Notice that the connectors link Struts actions in the
middle-tier with the associated transactions in the host environment.

The Struts-based model-view-controller design approach helps ensure that the
JSPs and the business logic (regardless of how implemented) remain separate
so that changes to one do not require changes to the other.

Installing the trade sample application
The trade sample application is shipped with the Enterprise Developer and can
be installed using a wizard.

Prerequisites
The trade sample application uses a DB2 database. You will have to install DB2
Version 7.2 with the latest Fixpack, and know the DB2 user ID and password. You
do not have to define a database; that will be done as part of the installation of
the sample.

WebSphere

z/OS

Native
Java
Logic

EGL
Generate

Java
Logic

Struts

Native
CICS
logic

EGL
Generated

CICS
Logic

connectors

connectors

JSPs
56 Legacy Modernization with WebSphere Studio Enterprise Developer

In addition, you have to make sure you use the JDBC 2.0 driver by running the
command file x:\SQLLIB\java12\usejdbc2.bat (where x:\sqllib is the location
of your DB2 installation).

Note that you have to stop all DB2 services before you run this command. Upon
successful completion, a file named x:\SQLLIB\java12\inuse is created.

Loading the trade sample
To load the trade sample application, perform the following steps:

� Select the New Wizard icon (or select File -> New -> Project).

� In the left-hand pane, expand Examples and select Trade Sample.

� In the right-hand pane, select All Trade Samples then click Next.

� Keep the default project name (TradeSample) and location then click Next.

� Select the Install Database using IBM DB2 radio button and enter your DB2
user ID and password (for example, db2admin), then click Finish.

The database will be created and populated and the sample will be imported.
You should see an enterprise application named TradeSample, an EJB project
named TradeEJBs, and two Web projects named Trade and TradeTutorial
(Figure 3-2).

Also, you can open the DB2 Control Center and verify a database named
TRADEDB was created and populated.

Important: Remember the user ID and password you used to install the trade
sample application database. You will have to specify these values when
accessing the database from EGL programs.
 Chapter 3. Sample application: Trade 57

Figure 3-2 The imported trade sample application

Setting up a test server
WebSphere Studio Enterprise Developer includes a server environment in which
you can run and test your applications. You must first set up a server
configuration and instance before you can run any applications.

The trade sample application was exported with a server already configured. To
see the server, perform these steps.

� Open a Server perspective (select Window -> Open Perspective -> Other ->
Server).

� In the Server Configuration view (bottom left) and in the Servers view (bottom
right) a server and a server configuration named Trade Server is visible.

� Before we start the server we verify that a data source is configured to access
the TRADEDB database.

Important: A server named Trade Server should be defined automatically
when importing the Trade application. If the server is not defined, follow the
instructions in the sampleguide.pdf to define a WebSphere Version 4.0 Test
Environment (the sample as shipped uses a WebSphere Version 4 server).
58 Legacy Modernization with WebSphere Studio Enterprise Developer

Defining data sources
The trade sample application uses EJBs to access the database. Before you can
run the sample application, you have to define to the server the data source that
the EJBs are using.

To define a data source, perform these steps:

� In the Server Configuration view, in the Server Configurations folder, open the
Trade Server configuration by double-clicking it.

� Select the Data source tab. Select the Db2JdbcDriver and check the data
sources configured for that driver. If the Trade Sample Data Source is
configured, click Edit; if not, click Add to define the data source. The Data
Source dialog should be filled as shown in Figure 3-3.

Figure 3-3 Defining a data source

� The JNDI name should be jdbc/TradeSample and the Database Name
TRADEDB.
 Chapter 3. Sample application: Trade 59

� For Default user ID enter your DB2 user ID (your actual user ID or the user ID
that installed DB2).

� For Default user password, enter your DB2 password (your actual password
or the password that installed DB2).

� Click OK.

� Press Ctrl+S to save your work.

Running the trade sample application
Once trade sample has been imported, the server configuration restored and the
data source defined, you are ready to run the application.

� In the Server perspective, select the Trade project and Run on Server from
the context menu.

� In the Server Selection dialog, select the Trade Server (under existing
servers) and select the check box Do not show this dialog next time (Set this
server as the preferred server). Click Finish.

The project is added to the server configuration and published to the server. The
server starts. You can see the messages in the console. If everything works
correctly, a browser opens with the trade sample home page.

Explore the sample application. Notice from the home page you can go to a
registration page, or enter your user ID and password to log in.

Note upon login that you receive your current portfolio. You can buy or sell
shares, or obtain a quote (all fictitious transactions, of course, although they will
update the TRADEDB database).

Once you are done exploring the sample application, you can log out. To stop the
test server, go to the Servers view, and stop the server. Once the server has
stopped, you can close the Server perspective.

Note: You can use this process for each data source you have to define. You
will only need to define a data source one time for a particular server; the
definition will be saved in the server’s configuration.

Note: The user ID and password that appear on the home page are valid. You
can use them for exploring the sample, without having to create an account.
60 Legacy Modernization with WebSphere Studio Enterprise Developer

Sample run
Here are a few screen captures of a sample run of the trade sample.

Login

Figure 3-4 Trade sample: home page

Register

Figure 3-5 Trade sample: register
 Chapter 3. Sample application: Trade 61

Portfolio

Figure 3-6 Trade sample: portfolio

Quote

Figure 3-7 Trade sample: quote
62 Legacy Modernization with WebSphere Studio Enterprise Developer

Account

Figure 3-8 Trade sample: account

Summary
In this chapter, you learned about the trade sample application that ships with
WebSphere Studio Enterprise Developer. You also learned about the roles
needed for a development team. Finally, you loaded the trade sample application
and tested it.

The next chapters will help you understand how to develop using WebSphere
Studio Enterprise Developer, and will focus on developing the login capability of
the trade sample application.
 Chapter 3. Sample application: Trade 63

64 Legacy Modernization with WebSphere Studio Enterprise Developer

Part 2 Struts-based
applications

In Part 2 we introduce the Struts concepts and then start building a subset of the
sample application to illustrate the concepts.

We touch on basic Struts components and implement a simple action in a Struts
application. We also introduce the Struts application diagram editor and build the
same example using the diagram editor.

Part 2
© Copyright IBM Corp. 2002 65

66 Legacy Modernization with WebSphere Studio Enterprise Developer

Chapter 4. Components of a
Struts-based application

Struts is an open source framework for building Web applications using the
model-view-controller (MVC) architecture. This chapter introduces Struts by
describing:

� MVC architecture and Web applications
� Struts introduction
� Components of a Struts-based application
� Configuration of a Struts-based application
� JSP details

Subsequent chapters show you how to use WebSphere Studio Enterprise
Developer to create the components of a Struts application, complete the
application, and test it.

4

© Copyright IBM Corp. 2002. All rights reserved. 67

Overview
Struts provides a way for developers to apply the model-view-controller (MVC)
design pattern to Web applications. In order to understand how that is done, we
must first understand what Web applications are, what MVC is, and what it
means to apply MVC to a Web application.

In this chapter, we first look at MVC and Web applications. We then introduce
Struts and how Struts ties MVC and Web applications together. Then we look at
the components and configuration of a Struts-based application in detail.

Finally, we detail JSPs and taglibs, which are major components of Struts.

Model-view-controller
The model-view-controller (MVC) design pattern separates the parts of an
application. MVC is not unique to Web applications; it was around well before
Web applications.

MVC separates an application into:

Model The model contains the core of the application function. The model
captures the state of the application. It does not include knowledge
of the view or controller.

View The view is the look of the application. The view presents, gathers,
and submits information, but it does not include knowledge of the
model or controller.

Controller The controller manages the execution flow of the application,
passing appropriate state information between the model and the
view.

The parts are independent of each other, so that changing how one part is
implemented does not require changes to the other parts. For example, the view
of a Web application may change many times due to usability testing. However,
the business logic (the model) acting on the input does not need to change
(assuming the inputs to the business logic stay the same).

Web application
Web applications are defined in the servlet specification as “a collection of
servlets, HTML pages, classes, and other resources that can be bundled and
run...”. The specification defines the elements of a Web application:
68 Legacy Modernization with WebSphere Studio Enterprise Developer

� Servlets
� JavaServer Pages (JSP)
� Utility classes
� Static documents (HTML, images, sounds, etc.)
� Client-side applets, beans and classes
� Descriptive meta information that ties all of the above elements together

This definition of a Web application evolved as problems were identified and
solved. Initially, servlets and static documents made up a “Web application”.
JSPs were designed to help solve a problem with returning dynamic HTML
pages to users and were added to the definition.

Note that there is no definition of model, view, or controller components.

In this section, we briefly discuss servlets and JSPs, problems they solved—and
created—and how they can work together to implement an MVC architecture.

Servlets
Servlets are Java alternatives to Common Gateway Interface (CGI) programs. As
in CGI programs, servlets can respond to user events from an HTML request,
and then dynamically construct an HTML response that is sent back to the client.
Servlets have the following advantages over traditional CGI programs:

� Java-based—Because servlets are written in Java, they inherit all the benefits
of the Java technologies.

� Persistence and performance—A servlet is loaded once by a Web server and
invoked for each client request. Servlets do not incur the overhead of
instantiating a new servlet with each request. CGI processes typically must
be loaded with each invocation.

Servlets can work better than CGI programs, especially for business logic and
control flow.

However, for a servlet to return an HTML page to a browser, it must output HTML
from within the Java code. A Java programmer ends up writing a bunch of
out.println statements to return the HTML. This ends up mixing the roles of the
content developer and the Java programmer, even limiting the usefulness of
content-authoring tools.

JSPs were developed to address the problem of writing HTML statements in
Java source code.
 Chapter 4. Components of a Struts-based application 69

JavaServer Pages
JSPs are an HTML extension for doing server-side scripting in Web pages. JSPs
are similar to HTML files, but provide the ability to display dynamic content within
Web pages. Here are some of the advantages of using JSP technology over
other methods of dynamic content creation:

� Separation of dynamic and static content—This allows for the separation of
application logic and Web page design, reducing the complexity of Web site
development and making sites easier to maintain.

� Platform independence—Because JSP technology is Java-based, it is
platform independent. JSPs can run on nearly any Web site application
server. JSPs can be developed on any platform and viewed by any browser
because the output of a compiled JSP page is HTML.

� Scripting and tags—JSPs support both embedded Java and tags. Java is
typically used to add page-level capability to the JSP. Tags provide an easy
way to embed and modify JavaBean properties and to specify other directives
and actions.

While JSPs look like HTML pages that access dynamic data, they are actually
servlets. The application server compiles JSPs and executes them. Being a
servlet is what allows JSPs to easily add dynamic content.

Because JSPs solved the problem of having HTML produced by Java code,
many Web applications were written solely as JSPs (known as JSP Model 1).

However, while JSPs are good for producing HTML, they are not good for writing
business logic and control because having Java code inside JSPs could easily
make them hard to read or maintain.

Web applications using MVC
JSPs were designed to help simplify the process of servlets returning HTML
pages. But because JSPs are themselves servlets, you now have all the
advantages of a servlet and the advantages of the JSP. Many Web applications
were written solely as JSPs. This helped by not having to write HTML in Java, but
introduced a new problem—writing Java code in an otherwise HTML document.
Whereas servlets had the problem of writing HTML from within Java code, Model
1 JSPs had the problem of writing Java code in HTML.

A solution to that problem is to use servlets and JSPs together to implement Web
applications using the MVC architecture. This became known as JSP model-2, or
just model-2. According to the Struts User’s Guide, “It is now commonplace to
use the terms model-2 and MVC interchangeably.“
70 Legacy Modernization with WebSphere Studio Enterprise Developer

Using a servlet as the controller and JSPs as the view, we can use the MVC
design pattern for Web applications.

Model The business logic invoked by the servlet. This is typically
implemented by JavaBeans or Enterprise JavaBeans, accessing
back-end databases or legacy systems.

View The JSPs used to interact with the application.

Controller The servlet controlling the flow between the JSPs and the business
logic classes.

Figure 4-1 shows a basic Web application structure that complies with the MVC
design pattern.

Figure 4-1 Basic Web application using the MVC design pattern

Let us review how the Web interaction works:

� An HTML page is displayed in a browser. The HTML page contains a form
where the user can enter data and submit the form for processing.

� The Web server passes the request to an application server that schedules a
servlet to process the form.

� In the model-view-controller (MVC) design pattern, the servlet is the
controller. The servlet uses a JavaBean (the model) for the business logic.
The JavaBean performs the requested tasks, for example, by accessing a
relational database.

Servlet

compiled

JSP

Browser Server

relational
data

DB2

HTML
page
(form)

HTML
page
(result)

prepare bean

call

access bean

request
bean
 Chapter 4. Components of a Struts-based application 71

� The servlet then invokes a JSP (the view) to format the HTML result page.
The JSP accesses the JavaBean to retrieve the result data of the model.

In many real Web applications, processing is more complex. Figure 4-2 shows a
refined structure of the basic Web application.

Figure 4-2 Basic Web application: refined

1. A servlet is invoked from an HTML form.

2. The servlet uses command beans to process the request.

3. Command beans perform the business logic by accessing databases and/or
back-end transaction systems.

4. The result of commands are data beans (JavaBeans); for example, the result
of a CICS transaction is a COMMAREA represented in a Java record.

5. The servlet allocates view beans that are used to process and format the data
stored in the data beans into formats suitable for HTML output. (This is
optional, but sometimes required data beans may be predefined.)

6. The servlet invokes a JSP to generate the HTML output. Depending on return
codes from the command beans, one of multiple JSPs may be invoked.

7. The JSP uses the view beans to retrieve formatted results.

8. The view beans use the data beans to process and format the results.

9. The JSP generates the HTML result page.

Browser

HTML
page
with
Form

Servlet

 Data
Beans

 View
Beans

 Result
JSPs

Application
Server

DB2

CICS

MQ

other

 Command
Beans

HTTP Server

1

2

3

456

7

89
72 Legacy Modernization with WebSphere Studio Enterprise Developer

Struts application overview
Struts is an open source framework for building MVC-based Web applications.
Struts is part of the Jakarta project, sponsored by the Apache Software
Foundation.

In this section we introduce Struts and its components and put them in the MVC
context.

Struts
The goal of the Struts project is to provide an open source framework useful in
building MVC-based Web applications using servlet and JSP technologies. From
an MVC point of view, Struts provides:

Model Struts provides no special support for the model. The business
logic must be provided by the Web application developer usually
as Java objects (JavaBeans or Enterprise JavaBeans).

View An org.apache.struts.action.ActionForm class to create form
beans that are used to pass data between the controller and
view. In addition, Struts custom tag libraries that assist
developers in creating interactive form-based applications.

Controller An org.apache.struts.action.Action class that developers use
to create the classes that control the flow of the application. Also,
Struts provides an org.apache.struts.action.ActionServlet
class to implement a controller servlet.

Note: This section and its subsections contain documentation taken from the
official Jakarta project Struts home page and from the official Struts user’s
guide at:

http://jakarta.apache.org/struts
http://jakarta.apache.org/struts/userGuide/introduction.html

It also contains some quotes from Kyle Brown’s articles on Struts in the
VisualAge Developer Domain (VADD):

http://www7b.software.ibm.com/wsdd/

� Apache Struts and VisualAge for Java, Part 1: Building Web-based
Applications using Apache Struts

� Apache Struts and VisualAge for Java, Part 2: Using Struts in VisualAge for
Java 3.5.2 and 3.5.3
 Chapter 4. Components of a Struts-based application 73

http://jakarta.apache.org/struts
http://jakarta.apache.org/struts/userGuide/introduction.html
http://www7b.software.ibm.com/wsdd/

Struts also provides utility classes to support XML parsing, automatic population
of JavaBeans properties based on the Java reflection APIs, and
internationalization of prompts and messages.

A typical Struts Web application has a single servlet (extending
org.apache.struts.action.ActionServlet), which uses an XML file for
configuration information. There would be multiple Action classes (extending
org.apache.struts.action.Action) and JSPs (using the Struts taglibs).
Figure 4-3 shows the Struts components in the MVC architecture.

Figure 4-3 Struts components in the MVC architecture

When to use Struts
Most common Web applications can find some benefit in using Struts. As we
have seen earlier, the MVC pattern allows us to design the model (business
logic) of the application in a traditional fashion. Adding a Web controller and view
transforms this model into a Web application. Struts helps building the controller
and view parts, thus allowing you to focus on the business logic.

While J2EE APIs make it possible to develop Web-based applications that
implement the MVC pattern, there are a number of common problems that must
be solved in every servlet project (from Kyle Brown’s articles on Struts in the
VisualAge Developer Domain):

� Mapping HTTP parameters to JavaBeans—One of the most common tasks
facing servlet programmers is to map a set of HTTP parameters (from the
command line or from the POST of an HTML form) to a JavaBean for
manipulation. This can be done using the <jsp:useBean> and

 : ActionForm

 : JSP

View Controller Model

ActionServlet

Action

Action

Action

Action
configuration

file

Model
74 Legacy Modernization with WebSphere Studio Enterprise Developer

<jsp:setProperty> tags, but this arrangement is cumbersome because it
requires POSTing to a JSP, something that is not encouraged in a model-2
MVC architecture.

� Validation—There is no standard way in servlet/JSP programming to validate
that an HTML form is filled in correctly. This leaves every servlet programmer
to develop his own validation procedures, or not, as is too often the case.

� Error display—There is no standard way to display error messages in a JSP
page or generate error messages in a servlet.

� Message internationalization—Even when developers strive to keep as much
of the HTML as possible in JSPs, there are often hidden obstacles to
internationalization spread throughout servlet and model code in the form of
short error or informational messages. While it is possible to introduce
internationalization with the use of Java resource managers, this is rarely
done due to the complexity of adding these references.

� Hard coded JSP URIs—One of the more insidious problems in a servlet
architecture is that the URIs of the JSP pages are usually coded directly into
the code of the calling servlet in the form of a static string reference used in
the ServletContext.getRequestDispatcher method. This means that it is
impossible to reorganize the JSPs in a Web site, or even change their names,
without updating Java code in the servlets.

The problem is that programmers are too often faced with "reinventing the wheel"
each time they begin building a new Web-based application. Having a framework
to do this work for them would make them more productive and let them focus
more on the essence of the business problems they are trying to solve, rather
than on the accidents of programming caused by the limitations of the technology
(from No Silver Bullet: Essence and Accident in Software Engineering, by Fred
Brooks. IEEE Computer, April 1987).

Simply put, Struts is an open-source framework for solving the kind of problems
described above. Information on Struts, a set of installable JAR files, and the full
Struts source code is available at the Struts framework Web site. Struts has been
designed from the ground up to be easy to use, modular (so that you can choose
to use one part of Struts without having to use all the others), and efficient. It has
also been designed so that tool builders can easily write their tools to generate
code that sits on top of the Struts framework.

Struts components
True to the model-view-controller design pattern, Struts applications have three
major components: a servlet (the controller), JavaServer Pages (the view), and
the application's business logic (the model).
 Chapter 4. Components of a Struts-based application 75

Struts model
Struts does not define its own model component. In a Web application (and a
Struts application), most of the model (the business logic) can be represented
using JavaBeans or EJBs. Access to the business logic is through Struts action
objects (classes that subclass org.apache.struts.action.Action).

The action object can handle the request and respond to the client (usually a
Web browser), or indicate that control should be forwarded to another action. For
example, if a login succeeds, a loginAction object may want to forward control to
a mainMenu action.

Action objects are linked to the application controller, and so have access to that
servlet’s methods. When forwarding control, an object can indirectly forward one
or more shared objects, including JavaBeans, by placing them in one of the
standard collections shared by Java servlets.

An action object can for instance create a shopping cart bean, add an item to the
cart, place the bean in the session collection, and then forward control to another
action, which may use a JSP to display the contents of the user's cart. Because
each client has its own session, each also has its own shopping cart.

Struts view
The view in a Struts application is made up of various components. JSPs are the
main component. JSPs, of course, are not Struts components. However, Struts
provides two components that work with JSPs:

� Form beans
� Custom tags

Form beans
JavaBeans can also be used to manage input forms. A key problem in designing
Web applications is retaining and validating what a user has entered between
requests. With Struts, you can easily store the data for an input form in a form
bean (a class that extends org.apache.struts.action.ActionForm). The bean is
saved in one of the standard, shared context collections, so that it can be used by
other objects. The action receives the form bean as input to perform its task.

The form bean can be used:

� To collect data from the user
� To validate what the user entered
� By the JSP to repopulate the form fields
76 Legacy Modernization with WebSphere Studio Enterprise Developer

In the case of validation errors, Struts has a shared mechanism for raising and
displaying error messages. It automatically invokes the ActionForm.validate
method whenever the JSP page containing the form corresponding to this
ActionForm submits the form. Any type of validation can be performed in this
method. The only requirement is that it returns a set of ActionError objects in
the return value. Each ActionError corresponds to a single validation failure,
which maps to a specific error message. These error messages are held in a
properties file that the Struts application refers to.

Custom tags
There are four JSP tag libraries that Struts includes:

1. The HTML tag library, which includes tags for describing dynamic pages,
especially forms.

2. The beans tag library, which provides additional tags for providing improved
access to Java beans and additional support for internationalization.

3. The logic tag library, which provides tags that support conditional execution
and looping.

4. The template tag library for producing and using common JSP templates in
multiple pages.

Using these custom tags, the Struts framework can automatically populate fields
from and to a form bean, raising two advantages:

� The only thing most JSPs need to know about the rest of the framework is the
proper field names and where to submit the form. The associated form bean
automatically receives the corresponding value.

� If a bean is present in the appropriate scope, for instance after an input
validation routine, the form fields will be automatically initialized with the
matching property values.

Therefore, an input field declared in a JSP using Java code as:

<input type="text" name="fName" value="<%= bean.getFirstName() %>">

can be replaced by a more elegant and efficient Struts tag:

<html:text property="fName"/>

with no need to explicitly refer to the JavaBean from which the initial value is
retrieved. That is handled automatically by the JSP tag, using facilities provided
by the framework.
 Chapter 4. Components of a Struts-based application 77

Struts controller
The controller component in a Struts application is implemented in two parts: the
action servlet and action classes.

Action servlet
The Struts framework provides the org.apache.struts.action.ActionServlet
class for servlets. The action servlet bundles and routes HTTP requests from the
client (typically a user running a Web browser) to action classes and
corresponding extended objects, deciding what business logic function is to be
performed, then delegates responsibility for producing the next phase of the user
interface to an appropriate view component like a JSP.

When initialized, the action servlet parses a configuration file. The configuration
file defines, among other things, the action mappings for the application. The
controller uses these mappings to turn HTTP requests into application actions.

At a minimum, a mapping must specify:

� A request path
� The object type to act upon the request

Each mapping defines a path that is matched against the request URI of the
incoming request, and the fully qualified class name of an action class.

Action classes
An action class is one that extends org.apache.struts.action.Action. The
action classes interface with the application’s business logic. Based on the
results of the processing, the action class determines how control should
proceed. The action class specifies which JSP or servlet control should be
forwarded to.

Note: The action class can contain the actual business logic, in which case it
would be considered the model and not the controller. However, this practice is
discouraged, as it would then mix the application’s business logic with the
Struts framework code; this would limit the ability to reuse the business logic.
The recommended practice is to use the action class as an interface to the
business logic, and allow it to share in the controller role, guiding the flow of
the application.
78 Legacy Modernization with WebSphere Studio Enterprise Developer

Struts application flow
A Struts form bean is defined in the configuration file and linked to an action
mapping using a common property name. When a request calls for an action that
uses a form bean, the controller servlet retrieves the form bean (or creates it if it
does not exist), and passes it to the action (Figure 4-4).

Figure 4-4 ActionForm handling

The action can then check the contents of the form bean before its input form is
displayed, and also queue messages to be handled by the form. When ready, the
action can return control with a forwarding to its output form, usually a JSP. The
controller can then respond to the HTTP request and direct the client to the JSP.
Figure 4-5 summarizes these operations.

Figure 4-5 Struts request sequences

Action

+ perform()

ActionServlet

ActionForm

+ validate()

<<instantiate>> <<use>>

 : Web user
(Browser)

 : ActionServlet : Action : ActionForm : JSP

HTTP setXxx() validate()

perform()

forward()

getXxx()

getXxx()
 Chapter 4. Components of a Struts-based application 79

Configurations
Struts includes a servlet that implements the primary function of mapping a
request URI to an action class. Therefore, your primary responsibilities related to
the controller are:

� Write an action class for each logical request that may be received (extend
org.apache.action.Action).

� Configure an action mapping (in XML) for each logical request that may be
submitted. The XML configuration file is usually named struts-config.xml.

� Update the Web application deployment descriptor file (in XML) for your
application to include the necessary Struts components.

� Add the appropriate Struts components to your application.

Action classes
The action class defines two methods that could be executed depending on your
servlet environment:

public ActionForward perform(ActionMapping mapping,
 ActionForm form,
 ServletRequest request,
 ServletResponse response)
 throws IOException, ServletException;

public ActionForward perform(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException;

Most projects would only use the HttpServletRequest version.

The goal of an action class is to process a request, via its perform method, and
return an ActionForward object that identifies where control should be forwarded
(in most cases a JSP) to provide the appropriate response. In the MVC model-2
design pattern, a typical action class often implements logic performing these
functions in its perform method:

� Validate the current state of the user's session (for example, checking that the
user has successfully logged on). If the action class finds that no logon exists,
the request can be forwarded to the JSP page that displays the username
and password prompts for logging on. This could occur because a user tried
to enter an application "in the middle" (say, from a bookmark), or because the
session has timed out, and the servlet container created a new one.
80 Legacy Modernization with WebSphere Studio Enterprise Developer

� If validation is not complete, validate the form bean properties as needed. If a
problem is found, store the appropriate error message keys as a request
attribute, and forward control back to the input form so that the errors can be
corrected.

� Perform the processing required to deal with this request (such as saving a
row into a database). This can be done by logic code embedded within the
action class itself, but should generally be performed by calling an appropriate
method of a business logic bean.

� Update the server-side objects that will be used to create the next page of the
user interface (typically request scope or session scope beans, depending on
how long you need to keep these items available).

� Return an appropriate ActionForward object that identifies the JSP page to be
used to generate this response, based on the newly updated beans. Typically,
you acquire a reference to such an object by calling findForward on either the
ActionMapping object you received (if you are using a logical name local to
this mapping), or on the controller servlet itself (if you are using a logical
name global to the application).

Action mapping implementation
In order to operate successfully, the Struts controller servlet has to know several
things about how each request URI should be mapped to an appropriate action
class. The required knowledge has been encapsulated in a Java class named
ActionMapping.

Action mapping configuration file
How does the controller servlet learn about the mappings you want? It would be
possible (but tedious) to write a small Java class that simply instantiated new
ActionMapping instances, and called all of the appropriate setter methods. To
make this process easier, Struts has a capability of reading an XML-based
description of the desired mappings, creating the appropriate objects along the
way.

The developer's responsibility is to create a struts-config.xml file and place it in
the WEB-INF directory of your application. The format of the document is defined
in struts-config_1_0.dtd. The outermost XML element must be
<struts-config>.

Note: By convention the configuration file is named struts-config.xml. This
name is configurable as an initialization parameter to the action servlet in the
web.xml deployment descriptor file.
 Chapter 4. Components of a Struts-based application 81

Inside of the <struts-config> element, there are four elements that are used to
describe your actions:

� Form beans
� Action mappings
� Global and local forwards
� Data sources

Form beans
This section contains your form bean definitions. You use a <form-bean> element
for each form bean, which has the following important attributes:

� name—A unique identifier for this bean, which is used to reference it in
corresponding action mappings. Usually, this is also the name of the request
or session attribute under which this form bean is stored.

� type—The fully qualified Java classname of your form bean.

Action mappings
This section contains your action definitions. You use an <action> element for
each of your actions you would like to define. The following are the attributes of
action element:

attribute Name of the request-scope or session-scope attribute under
which our form bean is accessed, if it is other than the bean's
specified name. Optional if name is specified, else not allowed.

className Fully qualified Java class name of the action mapping
implementation class to use. Defaults to the value configured as
the mapping initialization parameter to the Struts controller
servlet.

forward Context-relative path of the servlet or JSP resource that will
process this request, instead of instantiating and calling the
action class specified by type. Exactly one of forward, include, or
type must be specified.

include Same as forward, but a request dispatcher include is issued, that
is, control comes back after calling the target servlet or JSP.

input Context-relative path of the input form to which control should be
returned if a validation error is encountered. Required if name is
specified and the input bean returns validation errors. Optional if
name is specified and the input bean does not return validation
errors. Not allowed if name is not specified.

name Name of the form bean, if any, that is associated with this action.
82 Legacy Modernization with WebSphere Studio Enterprise Developer

path The context-relative path of the submitted request, starting with a
"/" character, and without the filename extension if extension
mapping is used.

parameter General-purpose configuration parameter that can be used to
pass extra information to the action selected by this mapping.

prefix Prefix used to match request parameter names to form bean
property names, if any. Optional if name is specified, else not
allowed.

scope Identifier of the scope (request or session) within which our form
bean is accessed, if any. Optional if name is specified, else not
allowed.

suffix Suffix used to match request parameter names to form bean
property names, if any. Optional if name is specified, else not
allowed.

type Fully qualified Java class name of the action class (implements
org.apache.struts.action.Action) to be used to process
requests for this mapping if the forward or include attribute is not
included. Exactly one of forward, include, or type must be
specified.

unknown Set to true if this action should be configured as the default for
this application, to handle all requests not handled by another
action. Only one action can be defined as a default within a
single application.

validate Set to true if the validate method of the form bean should be
called prior to calling this action, or set to false if you do not want
validation performed.

Global forwards
The <global-forwards> section is used to create logical name mappings for
commonly used JSP pages. Each of these forwards is available through a call to
your action mapping instance, for example:

mapping.findForward("logicalName")

Local forwards
Optional but very useful are the local forward elements. They are similar to global
forwards, except that they are defined for a specific action. This allows an action
to refer to a forward by a logical name rather than a specific file name or servlet
URI.
 Chapter 4. Components of a Struts-based application 83

Data sources
One more section of good use is the <data-sources> section, which specifies
data sources that your application can use. This is how you would specify a basic
data source for your application inside of struts-config.xml:

<data-sources>
 <data-source
 autoCommit="false"
 description="Example Data Source Description"
 driverClass="org.postgresql.Driver"
 maxCount="4"
 minCount="2"
 password="mypassword"
 url="jdbc:postgresql://localhost/mydatabase"
 user="myusername"/>
 </data-sources>

Sample configuration file
The struts-config.xml file from the example application includes the following
mapping entry for the logon function, which we will use to illustrate the
requirements. Note that the entries for all the other actions are left out:

<struts-config>
 <form-beans>
 <form-bean
 name="logonForm"
 type="org.apache.struts.example.LogonForm" />
 </form-beans>
 <global-forwards
 type="org.apache.struts.action.ActionForward" />
 <forward name="logon" path="/logon.jsp"
 redirect="false" />
 </global-forwards>
 <action-mappings>
 <action
 path="/logon"
 type="org.apache.struts.example.LogonAction"
 name="logonForm"
 scope="request"
 input="/logon.jsp"
 unknown="false"
 validate="true" />
 </action-mappings>
</struts-config>
84 Legacy Modernization with WebSphere Studio Enterprise Developer

First the form bean is defined. A basic bean of class
org.apache.struts.example.LogonForm is mapped to the logical name
logonForm. This name is used as a session or request attribute name for the form
bean.

As you can see, this mapping matches the path /logon. When a request that
matches this path is received, an instance of the LogonAction class is created
(the first time only) and used. The controller servlet will look for a session or
request scoped bean under key logonForm, creating and saving a bean of the
specified class if needed.

Also notice the local forwards. In the example application, many actions include a
local success and/or failure forward as part of an action mapping.

<!-- Edit mail subscription -->
<action path="/editSubscription"
 type="org.apache.struts.example.EditSubscriptionAction"
 name="subscriptionForm"
 scope="request"
 validate="false">
 <forward name="failure" path="/mainMenu.jsp"/>
 <forward name="success" path="/subscription.jsp"/>
 </action>

Using just these two extra properties, the action classes in the example
application are almost totally independent of the actual names of the JSP pages
that are used by the page designers. The pages can be renamed (for example)
during a redesign, with negligible impact on the action classes themselves. If the
names of the next JSP pages were hard coded into the action classes, all of
these classes would also need to be modified. Of course, you can define
whatever local forward properties makes sense for your own application.

Web application deployment descriptor
The final step in setting up the application is to configure the application
deployment descriptor (stored in file WEB-INF/web.xml) to include all the Struts
components that are required. Using the deployment descriptor for the example
application as a guide, we see that the following entries have to be created or
modified.

Configure the action servlet instance
Add an entry defining the action servlet itself, along with the appropriate
initialization parameters. Such an entry might look like this:

<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>
 Chapter 4. Components of a Struts-based application 85

 org.apache.struts.action.ActionServlet
 </servlet-class>
 <init-param>
 <param-name>application</param-name>
 <param-value>
 org.apache.struts.example.ApplicationResources
 </param-value>
 </init-param>
 <init-param>
 <param-name>config</param-name>
 <param-value>
 /WEB-INF/struts-config.xml
 </param-value>
 </init-param>
 <init-param>
 <param-name>debug</param-name>
 <param-value>2</param-value>
 </init-param>
 <init-param>
 <param-name>mapping</param-name>
 <param-value>
 org.apache.struts.example.ApplicationMapping
 </param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
</servlet>

The initialization parameters supported by the controller servlet are described
below. Square brackets describe the default values that are assumed if you do
not provide a value for that initialization parameter.

application Java class name of the application resources bundle base
class. [NONE]

bufferSize The size of the input buffer used when processing file uploads.
[4096]

config Context-relative path to the XML resource containing our
configuration information. [/WEB-INF/struts-config.xml]

content Default content type and character encoding to be set on each
response; may be overridden by a forwarded-to servlet or JSP
page. [text/html]

debug The debugging detail level for this servlet, which controls how
much information is logged. [0]

Note: The definition of the ActionServlet can be done using the web.xml
editor by adding the servlet and defining the initialization parameters.
86 Legacy Modernization with WebSphere Studio Enterprise Developer

detail The debugging detail level for the digester we utilize in
initMapping, which logs to System.out instead of the servlet
log. [0]

factory The Java class name of the MessageResourcesFactory used to
create the application MessageResources object.
[org.apache.struts.util.PropertyMessageResourcesFactory]

formBean The Java class name of the ActionFormBean implementation to
use [org.apache.struts.action.ActionFormBean].

forward The Java class name of the ActionForward implementation to
use [org.apache.struts.action.ActionForward].

locale If set to true, and there is a user session, identify and store an
appropriate java.util.Locale object (under the standard key
identified by Action.LOCALE_KEY) in the user's session if there
is not a Locale object there already. [true]

mapping The Java class name of the ActionMapping implementation to
use [org.apache.struts.action.ActionMapping].

maxFileSize The maximum size (in bytes) of a file to be accepted as a file
upload. Can be expressed as a number followed by a "K" "M",
or "G", which are interpreted to mean kilobytes, megabytes, or
gigabytes, respectively. [250M]

multipartClass The fully qualified name of the MultipartRequestHandler
implementation class to be used for processing file uploads.
[org.apache.struts.upload.DiskMultipartRequestHandler]

nocache If set to true, add HTTP headers to every response intended to
defeat browser caching of any response we generate or
forward to. [false]

null If set to true, set our application resources to return null if an
unknown message key is used. Otherwise, an error message
including the offending message key is returned. [true]

tempDir The temporary working directory to use when processing file
uploads. [The working directory provided to this Web
application as a servlet context attribute]

validate Are we using the new configuration file format? [true]

validating Should we use a validating XML parse to process the
configuration file (strongly recommended)? [true]
 Chapter 4. Components of a Struts-based application 87

Configure the action servlet mapping

There are two approaches to defining the URLs that are processed by the
controller servlet—prefix matching and extension matching. An appropriate
mapping entry for each approach will be described below.

Prefix matching
Prefix matching means that you want all URLs that start (after the context path
part) with a particular value to be passed to this servlet. Such an entry might look
like this:

<servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>/execute/*</url-pattern>
</servlet-mapping>

which means that a request URI to match the /logon path described earlier might
look like this:

http://www.mycompany.com/myapplication/execute/logon

where /myapplication is the context path under which your application is
deployed.

Extension mapping
Extension mapping, on the other hand, matches request URIs to the action
servlet based on the fact that the URI ends with a period followed by a defined
set of characters. For example, the JSP processing servlet is mapped to the *.jsp
pattern so that it is called to process every JSP page that is requested. To use
the *.do extension (which implies “do something”), the mapping entry would look
like this:

<servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>

A request URI to match the /logon path might look like this:

http://www.mycompany.com/myapplication/logon.do

Note: The material in this section is not specific to Struts. The configuration of
servlet mappings is defined in the Java servlet specification. This section
describes the most common means of configuring a Struts application.
88 Legacy Modernization with WebSphere Studio Enterprise Developer

Configure Struts tag library
Next, you must add an entry defining the Struts tag library. There are currently
four taglibs that Struts is packaged with.

� struts-bean—The struts-bean.tlb taglib contains tags useful in accessing
beans and their properties, as well as defining new beans (based on these
accesses) that are accessible to the remainder of the page via scripting
variables and page scope attributes. Convenient mechanisms to create new
beans based on the value of request cookies, headers, and parameters are
also provided.

� struts-html—The struts-html.tlb taglib contains tags used to create struts
input forms, as well as other tags generally useful in the creation of
HTML-based user interfaces. There is also a struts-form taglib, which seems
to be a subset of struts-html.

� struts-logic—The struts-logic.tlb taglib contains tags that are useful in
managing conditional generation of output text, looping over object collections
for repetitive generation of output text, and application flow management.

� struts-template—The struts-template.tlb taglib contains tags that define
a template mechanism.

Below is the code for defining all taglibs for use within your application. In reality
you would only specify the taglibs that your application uses:

<taglib>
 <taglib-uri>
 /WEB-INF/struts-bean.tld
 </taglib-uri>
 <taglib-location>
 /WEB-INF/struts-bean.tld
 </taglib-location>
</taglib>
<taglib>
 <taglib-uri>
 /WEB-INF/struts-html.tld
 </taglib-uri>
 <taglib-location>
 /WEB-INF/struts-html.tld
 </taglib-location>
</taglib>
<taglib>
 <taglib-uri>
 /WEB-INF/struts-logic.tld
 </taglib-uri>
 <taglib-location>
 /WEB-INF/struts-logic.tld
 </taglib-location>
</taglib>
 Chapter 4. Components of a Struts-based application 89

<taglib>
 <taglib-uri>
 /WEB-INF/struts-template.tld
 </taglib-uri>
 <taglib-location>
 /WEB-INF/struts-template.tld
 </taglib-location>
</taglib>

This tells the JSP system where to find the tag library descriptor, for example, in
the Web application WEB-INF (or WEB-INF\lib) directory instead of on the Internet
somewhere.

Add Struts components to your application
To use Struts, you must copy the .tld files that you require into your WEB-INF
directory, and copy struts.jar into your WEB-INF/lib directory. This is done for
you when you use Enterprise Developer to define a Web project with Struts
support.

JSP overview
Struts makes extensive use of JSPs. Therefore it is important to understand how
JSPs work, and in particular customer taglibs. This section focuses on providing
background information on JSPs.

JSP technology provides the ability to build applications containing dynamic
content such as HTML and XML. To facilitate embedding of dynamic content,
JSPs use a number of tags that enable the page designer to insert the properties
of a JavaBean object and script elements into a JSP file.

JSP technology was developed by Sun Microsystems. JSP specification is
available at:

http://java.sun.com/products/jsp/

How JSPs work
The following process outlines the tasks performed on a JSP file on the first
invocation of the file or when the underlying JSP file is changed by the developer.

� The Web browser makes a request to the JSP page.

� The application server Web parses the contents of the JSP file, creates
temporary servlet source code based on the contents of the JSP, and
compiles the source into a servlet class file. The generated servlet is
90 Legacy Modernization with WebSphere Studio Enterprise Developer

http://java.sun.com/products/jsp/

responsible for rendering the static elements of the JSP specified at design
time in addition to creating the dynamic elements of the page.

� The servlet is instantiated. The init and service methods of the servlet are
called, and the servlet logic is executed.

� The combination of static HTML and graphics combined with the dynamic
elements specified in the original JSP page definition are sent to the Web
browser through the output stream of the servlet’s response object.

Subsequent invocations of the JSP file simply invoke the service method of the
servlet created by the above process to serve the content to the Web browser.
The servlet produced as a result of the above process remains in service until
the application server is stopped or the Web application is restarted.

Components of JSPs
JSPs are composed of template data and elements. The template data such as
HTML text is passed through the JSP container and is sent to the requesting
client. Elements are known to the JSP container and classified as follows:

� Directive elements

– Page directive
– Include directive
– Taglib directive

� Scripting elements

– Declarations
– Scriptlets
– Expressions

� Comments

� Action elements

– Standard actions
– Custom actions

The following sections describe each of these categories in more detail.

Note: JSP can be precompiled by development tools or by the application
server when an EAR file is installed.
 Chapter 4. Components of a Struts-based application 91

Directive elements
A JSP directive is a global definition sent to the JSP container. A directive always
appears at the top of the JSP file, before any other JSP tags. This is due to the
way the JSP parsing engine produces servlet code from the JSP file.

The syntax of a directive is:

<%@ directive directive_attr_name = value %>

Page directive
The page directive defines page-dependent attributes to the JSP container.

<%@ page language="java" buffer="none" isThreadSafe="yes"
errorPage="/error.jsp" %>

The attributes of the page directive are listed in Table 4-1.

Table 4-1 Attributes of the page directive

Attribute Name Description

language Identifies the scripting language used in scriptlets in the JSP file or
any of its included files. JSP supports only the value of “java”.
<%@ page language = "java" %>

extends The fully qualified name of the superclass to which this JSP page
will be transformed. Using this attribute can affect the JSP
container’s ability to select specialized superclasses based on the
JSP file content, and should be used with care.

import When the language attribute of "java" is defined, the import
attribute specifies the additional files containing the types used
within Java programing language environment.
<%@ page import = "java.util.*" %>

session
"true" | "false"

If true, specifies that the page participates in an HTTP session and
enables the JSP file access to the implicit session object. The
default value is true.

buffer
"none" |
"sizekb"

Indicates the buffer size for the JspWriter. If none, the output from
the JSP is written directly to the ServletResponse PrintWriter
object. Any other value results in the JspWriter buffering the output
up to the specified size. The buffer is flushed in accordance with the
value of the autoFlush attribute.
The default buffer size is no less than 8 kb.

autoFlush
"true" | "false"

If true, the buffer is flushed automatically. If false, an exception is
raised when the buffer becomes full.
The default value is true.
92 Legacy Modernization with WebSphere Studio Enterprise Developer

Include directive
The include directive allows substitution of text or code to occur at translation
time. You can use the include directive to provide a standard header on each JSP
page, for example:

<%@ include file="copyright.html" %>

The include directive has the attributes shown in Table 4-2.

Table 4-2 Attributes for the include directive

Taglib directive
The taglib directive declares the usage of a custom tag library. Users have to
specify a tablib directive on each JSP page where they want to use tags from the
taglib. The syntax is:

<%@ taglib uri="tagLibraryURI” prefix=”tagPrefix” %>

isThreadSafe
"true" | "false"

If true, the JSP processor may send multiple outstanding client
requests to the page concurrently. If false, the JSP processor sends
outstanding client requests to the page consecutively, in the same
order in which they were received.
The default is true.

info Allows the definition of a string value that can be retrieved using
Servlet.getServletInfo().

errorPage Specifies the URL to be directed to for error handling if an exception
is thrown and not caught within the page implementation.

isErrorPage
"true" | "false"

Identifies that the JSP page refers to a URL identified in another
JSP’s errorPage attribute. Default is false.

contentType Specifies the character encoding and MIME type of the JSP
response. Default value for contentType is text/html. Default value
for charSet is ISO-8859-1. The syntax format is:
contentType="text/html; charSet=ISO-8859-1"

Attribute Name Description

Attribute Name Description

file Directs the JSP container to substitute the text or code specified by
file or URL reference. The URL reference can be another JSP file.
 Chapter 4. Components of a Struts-based application 93

Table 4-3 Attributes for the taglib directive

Scripting elements
Scripting elements are Java code fragments.

Declarations
A declaration block contains Java variables and methods that are called from an
expression block within the JSP file. Code within a declaration block is usually
written in Java. Code within a declaration block is often used to perform
additional processing on the dynamic data generated by a JavaBean property.

The syntax of a declaration is:

<%! declaration(s) %>

For example:

<%!
private int getDateCount = 0;
private String getDate(GregorianCalendar gc1)

{ ...method body here...}
%>

Scriptlets
JSP supports embedding of Java code fragments within a JSP by using a
scriptlet block. Scriptlets are used to embed small code blocks within the JSP
page, rather than to declare entire methods as performed in a declarations block.
The syntax for a scriptlet is:

<% scriptlet %>

The following example uses a scriptlet to output an HTML message based on the
time of day. You can see that the HTML elements appear outside the script
declarations.

<% if (Calendar.getInstance().get(Calendar.AM_PM) == Calendar.AM)
{%>

How are you this morning ?
<% } else

Attribute Name Description

uri Specifies the location of the tag library descripter associated with
the prefix. An absolute URI or a relative URI can be accepted.

tagPrefix Defines the prefix in prefix:tagname to distinguish a custom
action.
94 Legacy Modernization with WebSphere Studio Enterprise Developer

{ %>
How are you this afternoon ?

<% } %>

Expressions
Expressions are scriptlet fragments whose results can be converted to String
objects and subsequently fed to the output stream for display in a browser. The
syntax for an expression is:

<%= expression %>

Typically, expressions are used to execute and display the String representation
of variables and methods declared within the declarations section of the JSP, or
from JavaBeans that are accessed by the JSP. If the conversion of the
expression result is unsuccessful, a ClassCastException is thrown at the time of
the request.

The following example calls the incrementCounter method declared in the
declarations block and prints the result:

<%= incrementCounter() %>

All primitive types such as short, int, and long can be automatically converted to
Strings. Your own classes must provide a toString method for String conversion.

Comments
You can use two types of comments within a JSP. The first comment style, known
as an output comment, enables the comment to appear in the output stream on
the browser. This comment is an HTML-formatted comment whose syntax is:

<!-- comments ... -->

The second comment style is used to fully exclude the commented block from the
output and is never delivered to the browser. The syntax is:

<%-- comment text --%>

You can also create comments containing dynamic content by embedding a
scriptlet tag inside a comment tag. For example:

<!-- comment text <%= expression %> more comment text ->

Standard actions
JSP specifications include the standard action tags shown in Table 4-4.
 Chapter 4. Components of a Struts-based application 95

Table 4-4 JSP standard actions

For a complete description of all tags supported by the JSP specifications,
please refer to the Sun JavaServer Pages Specifications available on the Sun
Web site.

http://java.sun.com/products/jsp/

Custom actions
Custom actions can be defined using the tag library extension mechanisms. The
Struts tag libraries are implemented using the tag library extension mechanism.

Struts tag libraries
JSP tag library facility provides a mechanism to define a special sub-language
used by JSP page authors. Struts provides the following custom libraries for the
Web page developers to build the view component of the Struts application. In
this section, we explain these tag libraries.

� Struts bean tags
� Struts HTML tags
� Struts logic tags
� Struts template tags

Tag Description

jsp:forward This tag is used for the run-time dispatching to an HTML file, a file
or a Servlet.

jsp:getProperty Once the bean has been declared with jsp:useBean, you can
access its exposed properties through this tag.

jsp:include This tag allows the inclusion of data from another file.

jsp:plugin This tag downloads a Java plug-in to the Web browser to execute
an applet or a bean.

jsp:setProperty The properties of beans can be set by using this tag.

jsp:useBean The jsp:useBean tag is used to declare a JavaBean object that
you want to use within the JSP.

Note: These subsections contain documentation taken from the official
Jakarta project Struts home page at:

http://jakarta.apache.org/struts
96 Legacy Modernization with WebSphere Studio Enterprise Developer

http://java.sun.com/products/jsp/
http://jakarta.apache.org/struts

Struts bean tags
This tag library contains tags useful in accessing beans and their properties, as
well as defining new beans (based on these accesses) that are accessible to the
remainder of the page via scripting variables and page scope attributes.
Convenient mechanisms to create new beans based on the value of request
cookies, headers, and parameters are also provided.

The following is the brief description of the tag names of Struts bean tags.

cookie Define a scripting variable based on the value(s) of the specified
request cookie.

define Define a scripting variable based on the value(s) of the specified
bean property.

header Define a scripting variable based on the value(s) of the specified
request header.

include Load the response from a dynamic application request and make
it available as a bean.

message Render an internationalized message string to the response.

page Expose a specified item from the page context as a bean.

parameter Define a scripting variable based on the value(s) of the specified
request parameter.

resource Load a Web application resource and make it available as a
bean.

size Define a bean containing the number of elements in a Collection
or Map.

struts Expose a named Struts internal configuration object as a bean.

write Render the value of the specified bean property to the current
JspWriter.

Struts bean tags in trade sample
Struts bean tags are utilized in the trade sample in Enterprise Developer. The
whole source of index.jsp is listed in Example 4-1 on page 101. To use this tag
library, users have to define the JSP directive in JSP page:

<%@ taglib uri="WEB-INF/lib/struts-bean.tld" prefix="bean" %>

The following message tags are used for internationalization.

<bean:message key="market.text.title" />
<bean:message key="market.text.dowJones" />
<bean:message key="market.text.nasdaq" />
 Chapter 4. Components of a Struts-based application 97

The message contents referred by the key attribute are stored in the application
resource file whose file name is specified in the deployment descripter (web.xml).
The trade sample uses ApplicationResources.properties for the resource file
and the corresponding data is defined as follows:

market.text.title=Current Market Conditions
market.text.dowJones=Dow Jones Industrial
market.text.nasdaq=Nasdaq Composite

When the Struts application detects the locale of the client request, the
message can be changed to the corresponding language. To change the
message, the application resource file named
ApplicationResources_XX.properties whose language code defined in ISO 639
is “XX” should be placed in the same directory as the resource file.

Struts HTML tags
This taglib contains tags used to create Struts input forms, as well as other tags
generally useful in the creation of HTML-based user interfaces.

base Render an HTML <base> element

button Render a button input field

cancel Render a Cancel button

checkbox Render a checkbox input field

errors Conditionally display a set of accumulated error messages

file Render a file select input field

form Define an input form

frame Render an HTML frame element

hidden Render a hidden field

html Render an HTML <html> element

image Render an input tag of type image

img Render an HTML tag

javascript Render JavaScript validation based on the validation rules
loaded by the validator plug-in

link Render an HTML anchor or hyperlink

messages Conditionally display a set of accumulated messages

multibox Render a checkbox input field

option Render a select option

options Render a collection of select options
98 Legacy Modernization with WebSphere Studio Enterprise Developer

optionsCollection Render a collection of select options

password Render a password input field

radio Render a radio button input field

reset Render a Reset button input field

rewrite Render an URI

select Render A select element

submit Render a Submit button

text Render an input field of type text

textarea Render a text area

Struts HTML tags in trade sample
The following tag is used for displaying the error message(s). If error objects
(ActionError), which represent error messages, exist in the ActionErrors object,
the error messages are rendered; otherwise nothing is rendered. The
ActionError objects are usually added by Action or ActionForm classes.

<html:errors />

To use this tag, user have to define a header and a footer description in the
application resource file ApplicationResources.properties. The following
definitions are in the trade sample:

errors.header=<p class="errors">The Action failed because of the following
reason(s):<ul class="errors">
errors.footer=</p>
error.login.failed=Login Failed, please try again.
error.login.database=Could not access database, please try again later.

In the index.jsp, an html:form tag is used for rendering the HTML form. The
form is enclosed between <html:form> and </html:form>. A text field and
password field are rendered using html:text and html:password tags. The field
lengths are specified using the size attribute, and default values are in the value
attribute. The Submit button is rendered using the html:submit tag.

<html:form action="/login">
<bean:message key="global.field.username" />
<html:text property="username" size="10" value="uid:1" />
<bean:message key="global.field.password" />
<html:password property="password" size="10" value="xxx" />
<html:submit property="submit">
<bean:message key="welcome.button.login" />
</html:submit>
</html:form>
 Chapter 4. Components of a Struts-based application 99

Struts logic tags
This tag library contains tags that are useful in managing conditional generation
of output text, looping over object collections for repetitive generation of output
text, and application flow management.

equal Evaluate the nested body content of this tag if the requested
variable is equal to the specified value.

forward Forward control to the page specified by the specified
ActionForward entry.

greaterEqual Evaluate the nested body content of this tag if the requested
variable is greater than or equal to the specified value.

greaterThan Evaluate the nested body content of this tag if the requested
variable is greater than the specified value.

iterate Repeat the nested body content of this tag over a specified
collection.

lessEqual Evaluate the nested body content of this tag if the requested
variable is greater than or equal to the specified value.

lessThan Evaluate the nested body content of this tag if the requested
variable is less than the specified value.

match Evaluate the nested body content of this tag if the specified value
is an appropriate substring of the requested variable.

notEqual Evaluate the nested body content of this tag if the requested
variable is not equal to the specified value.

notMatch Evaluate the nested body content of this tag if the specified value
is not an appropriate substring of the requested variable.

notPresent Generate the nested body content of this tag if the specified
value is not present in this request.

present Generate the nested body content of this tag if the specified
value is present in this request.

redirect Render an HTTP Redirect

Struts template tags
Struts template tags enable you to create dynamic JSP templates for sharing
common format pages. These templates are useful when a shared layout of the
pages is likely to change.

get Retrieves content from a request scope bean, for use in the template
layout.
100 Legacy Modernization with WebSphere Studio Enterprise Developer

insert Retrieves (or includes) the specified template file, and then inserts
the specified content into the template's layout. By changing the
layout defined in the template file, any other file that inserts the
template will automatically use the new layout.

put Creates a request scope bean that specifies the content to be used
by the get tag. Content can be printed directly or included from a JSP
or HTML file.

Example 4-1 Trade sample index.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<%@ taglib uri="WEB-INF/lib/struts-html.tld" prefix="html" %>
<%@ taglib uri="WEB-INF/lib/struts-bean.tld" prefix="bean" %>
<jsp:useBean

id="tickerBean" class="tradecommon.TickerBean"
scope="application" />

<%
 tickerBean.setDowJones(tickerBean.perform(tickerBean.getDowJones()));
 tickerBean.setNasdaq(tickerBean.perform(tickerBean.getNasdaq()));
%>

<html>
<head>
<link href="theme/Master.css" rel="stylesheet" type="text/css">
<title>Welcome to Trade Sample</title>
</head>

<body background="theme/grid.gif">
<table height="100%" width="100%" cellpadding="0"

cellspacing="0" border="0">
<tr>
<td valign="top" height="100pt"><img hspace="0" vspace="0"

src="theme/tradebanner1.gif" border="0" width="100%"></td>
<td valign="top" height="100pt"><img hspace="0" vspace="0"

src="theme/tradebanner2.gif" border="0" width="100%"></td>
</tr>
<tr>
<td colspan="2" valign="top">

<table width="90%" border="0">
<tr>
<td align="right" width="90%">

<bean:message key="market.text.title" />
 </td>

<td align="right"></td>
</tr>
<tr>
<td align="right">

<bean:message key="market.text.dowJones" />
 Chapter 4. Components of a Struts-based application 101

</td>
<td align="right" style="background: #ddeeff">

<%=tickerBean.getDowJones() %> (<%=tickerBean.getDJChange() %>)
</td>

</tr>
<tr>
<td align="right">

<bean:message key="market.text.nasdaq" />
</td>

<td align="right" style="background: #ddeeff">
<%=tickerBean.getNasdaq() %> (<%=tickerBean.getNasdaqChange() %>)
</td>

</tr>
<tr>
<td colspan="2"><center>
<h2>Welcome to the TRADE Brokerage home page.

Enter your username and password below to Login.</h2></center>
</td>
</tr>
<tr>
<td colspan="2">

<table width="100%">
<tr>
<td><html:errors /></td>
</tr>
<tr>
<td>

<table align="right">
<html:form action="/login">
<tr>
<td align="right">

<bean:message key="global.field.username" /></td>
<td align="right">

<html:text property="username" size="10" value="uid:1" />
</td>
</tr>
<tr>

<td align="right">
<bean:message key="global.field.password" /> </td>

<td align="right">
<html:password property="password" size="10" value="xxx" />

</td>
</tr>
<tr>
<td colspan="2" align="right">

<html:submit property="submit">
<bean:message key="welcome.button.login" />
</html:submit>
102 Legacy Modernization with WebSphere Studio Enterprise Developer

</td>
</tr>
</html:form>
</table>

</td>
</tr>
</table>

</td>
</tr>
<tr>
<td colspan="2"> Not a member?? Click Here to register. </td>
</tr>
</table>

</td>
</tr>
<tr>
<td colspan="2">

 <bean:message key="global.createdBy" />
<bean:message key="global.copyright" /></td>

</tr>
</table>

</body>
</html>
 Chapter 4. Components of a Struts-based application 103

104 Legacy Modernization with WebSphere Studio Enterprise Developer

Chapter 5. Creating a Struts-based Web
application

This chapter describes how to create a Struts-based Web application using
WebSphere Application Enterprise Developer. We show you how to use
Enterprise Developer’s wizard to create the initial Struts Web application. This
chapter also describes the components that are created by the wizard.

5

Note: You can create a Web project at J2EE level 1.2 or 1.3. A J2EE 1.3
project can only run in a WebSphere Version 5 server, whereas a J2EE 1.2
project can run in a WebSphere Version 4 or Version 5 server.

� In this book we describe how to create the J2EE 1.3 project and run it in a
WebSphere Version 5 server.

� If you choose to create a J2EE 1.2 project and a WebSphere Version 4
server, then the server configuration for the data source is somewhat
different, but you should be able to find your way through that.
© Copyright IBM Corp. 2002. All rights reserved. 105

Creating a Struts application
In this section we use the Enterprise Developer wizard to create a Struts-based
Web application, then briefly explore what the wizard has created for us.

Because a Struts application is a type of Web application, we use the Web
application wizard to create the Struts application.

Using the wizard to create a Web project
Starting from a Web perspective, you create a Struts-based application by
performing these steps:

� Select the New Wizard icon, Web in the left-hand pane and Web Project in
the right-hand pane, click Next (alternatively, you could select File -> New ->
Web Project). The Define the Web Project dialog opens (Figure 5-1).

Figure 5-1 Dialog for creating a new Web project

Note: When editing files in WebSphere Studio Enterprise Developer, each file
has a default editor associated with it. Double-clicking the file opens the file
using the default editor. If the default editor is not your preference, you can
select the file and select Open With -> from the context menu and then select
the desired editor from the list.
106 Legacy Modernization with WebSphere Studio Enterprise Developer

� There are several things to notice about this dialog:

– You have to supply a project name for your Web application. We use
ItsoMyTradeWeb for the trade example.

– You can accept the default location where Enterprise Developer stores the
files, or you can specify a location. We use the default location.

– You can select a J2EE Web application or a static Web project. A static
Web project consists of only items served by a traditional Web server -
HTML, JavaScript, CSS files, image files, etc. In order to make a Web
application that includes servlets, JSPs, or EJBs, you have to select J2EE
Web application. This includes a Struts-based application.

– This is where you designate to have Struts support added to your project.
In order for the wizard to add Struts support, you select the Add Struts
support check box.

� Click Next and the J2EE Settings Page dialog is next (Figure 5-2).

Figure 5-2 Defining the J2EE settings for a Web project

– Because we are creating a J2EE Web application, we have to create it as
part of a J2EE enterprise application. You can either select an existing
enterprise application or specify that a new enterprise application be
 Chapter 5. Creating a Struts-based Web application 107

created. If you choose to select an existing enterprise application, you can
use the Browse button and select an enterprise application. We chose to
have a new enterprise application created, and called it ItsoMyTradeEAR.

– Specify the context root for the Web application. The default value is the
name of the Web application, but you can also use a shorter alias name,
such as MyTrade.

– Select the J2EE specification level for the Web application. Because we
are targeting WebSphere Application Server Version 5.0, we selected
J2EE 1.3.

� Click Next and the Struts Settings dialog is displayed (Figure 5-3).

Figure 5-3 Struts Settings dialog

� The Struts Settings dialog lets you specify Struts-specific items for the Web
application.

Select the Create Resource Bundle for the Struts Project check box. This
creates the file that contains the message definitions used by the Struts
framework.

By default, this file is called ApplicationResources.properties. You can
specify a Java package for the properties file; we use a package name of
strutscommon.

� Click Finish and your Struts-based Web application has been created.

Note: It is good practice to use a package name rather than use the default
package.
108 Legacy Modernization with WebSphere Studio Enterprise Developer

J2EE Navigator view of the wizard’s output
We will now look at what the wizard generated for us. To begin, make sure you
are in a Web perspective. Then look in the upper left view, called J2EE Navigator
(Figure 5-4).

Figure 5-4 J2EE Navigator view of a Struts Web application

The J2EE Navigator view shows the Web projects you have defined in Enterprise
Developer. The wizard has created the ItsoMyTradeWeb project. Expand the tree
to see the folders and files what were created.

Deployment descriptor
The wizard creates the deployment descriptor resource, web.xml, which is the
required deployment descriptor for a Web application, as defined by the servlet
specification.
 Chapter 5. Creating a Struts-based Web application 109

Java source files
The Java Source folder contains any of the Java source files you create (servlets,
JavaBeans). In addition, any property files are stored in this folder.

The wizard creates the ApplicationResources.properties file and stores it in
the package strutscommon within this folder. The wizard does not create any Java
source files.

Web content files
The Web Content folder contains all HTML pages, JavaScript files, JSP, images
and all other Web page resources. The wizard creates the Web Content folder.

META-INF
This folder contains the MANIFEST.MF file, where dependencies between projects
are kept.

theme
You can store Web resources for your HTML pages in this subdirectory. The
wizard creates the theme subdirectory with the default cascading style sheet
Master.css.

WEB-INF
This is the subdirectory recommended by the servlet specification. The wizard
creates the WEB-INF subdirectory. Inside this directory are:

� The classes subdirectory, which holds the servlet and utility compiled classes
(including ApplicationResources.properties)

� The lib subdirectory, which holds any .jar files (including struts.jar)

� The web.xml deployment descriptor (this is the same as the Deployment
Descriptor resource described above)

� The IBM bindings and extensions .xmi files

� The Struts configuration file (struts-config.xml)

� The Struts tag library files

Libraries
This folder contains any JAR files required by the application. It is the same as
the WEB-INF/lib directory defined by the servlet specification.

The wizard creates the Libraries subdirectory and adds the struts.jar file that
contains the Struts run-time classes. In addition J2EE JAR files, such as rt.jar,
j2ee.jar, and so forth, are added to the Libraries folder.
110 Legacy Modernization with WebSphere Studio Enterprise Developer

Navigator view of the wizard’s output
To see the actual folder and file structure, switch to the Navigator view
(Figure 5-5). If the Navigator view is not open in the Web perspective, select
Window -> Show view -> Navigator (you may have to find the view by selecting
Other -> Basic).

Figure 5-5 Navigator view of the Struts project

Note: There is a repeat of some of the resources in the J2EE Navigator view.
For example, the Deployment Descriptor resource that is listed immediately
under the ItsoMyTradeWeb folder in Figure 5-4 on page 109 is the same as the
web.xml file listed in the WEB-INF directory. Also, the Libraries resource is the
same as the Web Content/WEB-INF/lib subdirectory. Keep in mind, then, that
this view is showing you the same resources in multiple places.
 Chapter 5. Creating a Struts-based Web application 111

The Navigator view shows the actual folders and files of the Web project. Java
Source and Web Content are the main folders of the project. The wizard creates
both these folders. The content of these folders was described in “J2EE
Navigator view of the wizard’s output” on page 109.

The wizard also creates the .classpath, .project and .websettings files.

In the Navigator view, you can also see the ItsoMyTradeEAR project.

Standard Struts components
In this section we take a closer look at the Struts components that the wizard
created for us.

Application resources properties file
Struts applications use a properties file for holding message text. The text can be
for titles, links, buttons, error messages or any other text field. Using a resource
file for the messages allows you to change the message text without having to
change any of the Java code. It also facilitates translating the messages into
other languages.

The wizard creates the properties file as ApplicationResources.properties; you
can change the name and the package in the Struts Settings dialog, as shown in
Figure 5-3 on page 108. The wizard places the file into the Java source package
specified in the Settings dialog and also into the WEB-INF/classes subdirectory.
The initial content of the file is minimal (Figure 5-6).

Figure 5-6 Initial application resources properties file

The name of the properties file is defined to the action servlet as its application
initialization parameter. The file itself is full of key=value pairs, defining the
message text for each key, for example:

error.login.failed=Invalid user ID and/or password entered.

Using a properties file, a Java class could reference error.login.failed when it
determined that an unauthorized user ID/password combination was entered,
rather than having to have the actual message text in the class.

Optional header and footer for <errors/> tag.
#errors.header=
#errors.footer=
112 Legacy Modernization with WebSphere Studio Enterprise Developer

Use the Properties File Editor to edit this file (Figure 5-7).

Figure 5-7 Properties file editor with sample application resources

Note that by removing the # signs from the header and footer you can tailor the
output of error messages.

Struts run-time classes
The struts.jar file contains all the Struts run-time classes, as well as properties
files, custom taglibs, and .dtd files. This is the same file that you would download
as part of the Struts build from the Struts Web site if you were building a Struts
application outside of Enterprise Developer.

The wizard places the struts.jar file in the WEB-INF/lib subdirectory.

Struts configuration file
The struts configuration file is used to describe the Struts application. The default
name of this file is struts-config.xml. It is specified in the web.xml deployment
descriptor as an initialization parameter of the action servlet.

The Struts action servlet (ActionServlet) reads this configuration file. This file
defines two important elements, form beans and actions.

� A form bean represents the data from or to a particular form.

� The actions define action classes, including what input they use, any form
beans the class uses, and the JSPs or other action classes the class can
forward execution to. When you create an action class using the Struts
wizard, you can specify that the action mapping be automatically added to the
struts-config.xml file.

The wizard creates the struts-config.xml file in the WEB-INF subdirectory, but
does not define any actions or form beans.
 Chapter 5. Creating a Struts-based Web application 113

You can double-click the struts-config.xml file to edit it using the Struts
configuration file editor. We will edit that file and cover form beans and actions in
Chapter 6, “Adding JSPs and actions to the application” on page 117.

Struts taglibs
As defined in “Custom tags” on page 77, Struts includes four JSP tag libraries.
The files are struts-bean.tld, struts-html.tld, struts-logic.tld, and
struts-template.tld; these files are part of the Struts build.

The wizard places these files in the WEB-INF subdirectory.

Web deployment descriptor
The web.xml file is the deployment descriptor for a Web application. It is used to
define, among other things, the servlets and JSPs that make up the Web
application.

Because a Struts application is a Web application, the Struts application has a
web.xml file. The wizard creates the web.xml file in the WEB-INF directory. In
addition, the wizard defines:

� ActionServlet, a servlet as the target of form actions
� Servlet mapping for the ActionServlet
� Initialization parameters for the ActionServlet

You can double-click the web.xml file to edit the file with the web.xml editor. Click
the Servlets tab to see the servlet that was defined by the wizard (Figure 5-8):

� You can see that the servlet is called action and its type is
org.apache.sturts.action.ActionServlet.

� The URL mapping defines that all URLs ending in .do will be mapped to this
servlet.

� The initialization parameters include the configuration file and the resource
file (struts-config.xml, ApplicationResources).
114 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 5-8 web.xml editor with the action servlet

Summary
In this chapter you used a wizard to create the structure and common
components of a Struts-based Web application. You examined the components
of the Web application that the wizard created for you. In the next chapter you will
add actions and JSPs to the Web application.
 Chapter 5. Creating a Struts-based Web application 115

116 Legacy Modernization with WebSphere Studio Enterprise Developer

Chapter 6. Adding JSPs and actions to
the application

This chapter builds upon the initial Struts Web application that the WebSphere
Studio Enterprise Developer’s wizard creates. We show you how to add JSPs,
action forms, actions and action mappings, and how to tie all these components
together using the configuration file.

6

© Copyright IBM Corp. 2002. All rights reserved. 117

Overview
Chapter 5, “Creating a Struts-based Web application” on page 105 showed you
how to create the common components of a Struts application. The Enterprise
Developer wizard created the structure and components common to all Struts
applications.

Recall the flow of a Struts application from Chapter 4, “Components of a
Struts-based application” on page 67 (see Figure 6-1). The wizard created the
action servlet. In this chapter we will add the rest of the components to complete
a Struts application.

Figure 6-1 Flow of a Struts application

We address the following components and show you how they fit together to form
the Struts application:

� JSPs
� ActionForm
� Action
� ActionForward
� ActionMapping
� ActionError and ActionErrors

The sample application that we will build is based on the diagram shown in
Figure 6-2.

 : Web user
(Browser)

 : ActionServlet : Action : ActionForm : JSP

HTTP setXxx() validate()

perform()

forward()

getXxx()

getXxx()
118 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 6-2 Flow of the sample Struts application

Users start with index.jsp and enter the user ID and password. When they
submit the login form, the ActionServlet calls the login action. If the login is
successful, control passes to home.jsp; otherwise, the user gets the error page
(error.jsp), listing the errors and providing a link back to the login page.

Creating JSP files
In this section we create the JSPs used in the sample application.

Creating the index.jsp
To create the index.jsp page, complete the following steps:

� Make sure you are in the Web perspective.

� In the J2EE Navigator view, select the Web Content folder in the
ItsoMyTradeWeb project.

� Select File -> New -> JSP File and the dialog shown on Figure 6-3 appears:

– Verify that the Folder field has the value /ItsoMyTradeWeb/Web Content.

– In the File Name field, enter index.jsp.

– Verify that the Create as JSP Fragment check box is not selected.

– Verify that the Code Generation Model field selects Struts JSP to include
the Struts taglib in the taglib directive.

Note: In the first implementation, we omit the error.jsp and route errors back
to the index.jsp to display error messages.
 Chapter 6. Adding JSPs and actions to the application 119

Figure 6-3 Create a new JSP file

� Click Next and the Add Tag libraries dialog is next (Figure 6-4).

Figure 6-4 Add tag libraries

� In the top pane, Struts-html taglib and Struts-bean taglib are predefined.
When the user selects a taglib in the list, the available tag and attribute list is
shown in the bottom pane.
120 Legacy Modernization with WebSphere Studio Enterprise Developer

If you click Add taglib, perform these steps:

– Select the tag library in the taglibs list box

– At the prefix field, specify the prefix to use

– Click OK to define the taglib to use

� Click Next to proceed. The page directive information dialog is next
(Figure 6-5).

Figure 6-5 JSP page directive information

� In this dialog you can specify the variables for the page directive. Refer to
Table 4-1 on page 92 for the meaning of each field.

� Click Next to proceed. The document type selection dialog is shown. In this
dialog, the user can select the document type and the style sheet
(Figure 6-6).

Note: If you need to add additional tag libraries, you can click the Add
taglib button and select additional tag libraries. We are not adding any
beyond the HTML and bean tag libraries already selected.
 Chapter 6. Adding JSPs and actions to the application 121

Figure 6-6 Document type selection

� Click Next and the method stub creation and registration to the deployment
descriptor dialog is shown (Figure 6-7).

Figure 6-7 Method stub creation and registration to the deployment descriptor
122 Legacy Modernization with WebSphere Studio Enterprise Developer

� If you want to create the init method or destroy method in the JSP page,
select the appropriate check boxes at the top of the dialog. We do not create
either of these methods.

� If you want to register this JSP page as a servlet, select the Add to web.xml
check box. The default is to register the JSP in the deployment descriptor.

– You can specify the servlet name and mapping using the corresponding
fields. You can also specify the initialization parameters for the servlet in
this dialog.

� Click Finish to create the JSP.

Customizing index.jsp
The index.jsp opens in the page designer so that you can tailor the text and look
of the JSP.

To customize index.jsp, replace the code between the <BODY> and </BODY> tags
with the code shown in Figure 6-8. Use the Source tab to make the changes.

Figure 6-8 Customizing index.jsp

Note: Typically you would not register a Struts JSP as a servlet.

<h1 align="center"><bean:message key="index.title"/></h1>
<html:form action="/loginAction">
<html:errors/>
<p>
<table>
 <tr>

<td><bean:message key="global.field.username"/></td>
<td><html:text property="username" size="20" maxlength="30"/></td>

 </tr>
 <tr>

<td><bean:message key="global.field.password"/></td>
<td><html:password property="password" size="20" maxlength="30"/></td>

 </tr>
</table>
<p>
<html:submit><bean:message key="welcome.button.login"/>
</html:submit>
<input type="reset">

</html:form>
 Chapter 6. Adding JSPs and actions to the application 123

This page uses the Struts custom JSP tags to create a basic input page with two
text fields (username and password) and submits the form to the action servlet
specifying the /loginAction action.

The <html:errors/> tag displays any errors that are defined in an ActionErrors
object.

Figure 6-9 shows the index.jsp in the design view of the page designer. Notice
that the Struts custom tags have been replaced with the text from the application
resource file.

When you hold the mouse over any of the custom tags, the corresponding source
text is shown in the hover help.

Figure 6-9 Design view of index.jsp

Save the index.jsp. Note that a warning appears in the Tasks view because the
form action /LoginAction points to an non-existing action class that we create
later.

Note: We will show how to insert custom tags in the design view of the page
designer in “Tailoring the index.jsp with custom tags” on page 152.
124 Legacy Modernization with WebSphere Studio Enterprise Developer

Creating home.jsp
To create the home.jsp page, use the JSP wizard in the same way you did to
create index.jsp, the only difference being the name.

Customizing home.jsp
To customize home.jsp, replace the code between the <BODY> and </BODY> tags
with the code shown in Figure 6-10.

Figure 6-10 Customizing home.jsp

This page uses the Struts custom tags to retrieve the username from the
LoginForm object. This is not really a home page and we show a Thank you text
content instead of a page constructed with custom tags.

Figure 6-11 shows the home page in the design view of the page designer.

Figure 6-11 Design view of home.jsp

<H1 align="center">Trade Application Home Page</H1>

<H2>Welcome to: <bean:write name="loginForm" property="username"/></H2>

<H2>Thank you for using our trading application</H2>
 Chapter 6. Adding JSPs and actions to the application 125

Action forms
While JSPs provide the view component of a Struts application, action forms
provide the state of the model that the JSPs (views) reflect. The data that the
user inputs to the application through a JSP and the data the application returns
to a JSP are processed using action forms.

An action form can be thought of as a JavaBean whose fields represent the data
items in a corresponding JSP. Input from a JSP to the application passes through
its associated action form. Similarly, application output to a JSP passes through
its action form.

For example, a JSP that is used for login may contain a form that has two entry
fields: username and password. The corresponding action form class for this JSP
would have two fields—username and password—and getter/setter methods for
each. Then, assuming successful login, the application returns a JSP that
contains data retrieved from a database; this data would be passed to the JSP in
the action form that is associated with the JSP.

Struts provides support for taking the parameters from the request object and
storing them in the action form. You no longer have to process the parameters in
your code. The action servlet takes care of this for you, before calling your action
class.

Another function of the action form class is the validation of user-entered data.
Your action form class can override the validate method, and you can then
validate the user’s data. Calling the validate method is optional, and is another
function of the action servlet.

Creating the LoginForm class
An action form class extends org.apache.struts.action.ActionForm. For our
sample application, we use a package named strutscommon, and a class named
LoginForm. You can follow these steps to use the wizards to create the package
and the class.

Create the package
The strutscommon package was already created when we specified the
ApplicationResource file.

Note: The method outlined here to create the package and class is just one
way of doing it. There are other ways (some even quicker) to create the
package and class. If you prefer another way, feel free to use it; just be sure to
use the same names.
126 Legacy Modernization with WebSphere Studio Enterprise Developer

� To create a Java package in the Web perspective you would:

– Select the Java Source folder and New -> Package, enter the name of the
package, and click Finish.

Create the LoginForm class
Next, to create the LoginForm class as an action form, perform these steps:

� Select File -> New -> Other (or use the New icon).

� In the New dialog, expand Web, and select Struts (in the left pane) and
ActionForm Class (in the right pane), and click Next get the dialog shown in
Figure 6-12.

Figure 6-12 Creating the LoginForm class
 Chapter 6. Adding JSPs and actions to the application 127

� In the New ActionForm Class dialog:

– Enter LoginForm as the class name.
– Note the superclass, org.apache.struts.action.ActionForm.
– Leave the default selections to inherit abstract methods and have reset

and validate methods generated.
– Select constructors from superclass.
– Make sure the Code Generation Model is set to Generic ActionForm.
– Click Next.

� In the Choose new accessors dialog, expand the ItsoMyTradeWeb project and
select username and password in the index.jsp (Figure 6-13). Click Next.

Figure 6-13 Choose accessors for the LoginForm

� The Create new accessors dialog is next. The username and password are
listed. Click Next.

� In the Create a mapping dialog, select Add new mapping (preselected), check
the configuration file name, and leave the default mapping name of loginForm
(Figure 6-14). Click Finish to generate the code.

This panel is
different when
the PTF is
applied
128 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 6-14 Create the Struts mapping for the LoginForm

Customizing the LoginForm class
The LoginForm is open in the Java editor. The generated code is shown in
Figure 6-15.

Figure 6-15 Generated code for the LoginForm class (abbreviated)

package strutscommon;
// import statements not shown

public class LoginForm extends ActionForm {
private java.lang.String username = null;
private java.lang.String password = null;
// getter and setter for username and password not shown
// constructor not shown
public void reset(ActionMapping mapping, HttpServletRequest request) {

username = null;
password = null;

}
public ActionErrors validate(ActionMapping mapping,

HttpServletRequest request) {
ActionErrors errors = new ActionErrors();
// Validate the fields in your form,
// adding to this.errors as errors are found, e.g.
// if ((field == null) || (field.length() == 0)) {
// errors.add("field", new ActionError("error.field.required"));
// }
return errors;

}
}

 Chapter 6. Adding JSPs and actions to the application 129

Notice that the two fields from the index.jsp have been generated into the action
form, including getter and setter methods.

The reset method
The reset method should be used to initialize the bean properties to their default
state. This method is called before populating the properties from the HTML input
form by the controller servlet.

The generated method resets both fields to null, so no tailoring is necessary.

The validate method
Recall that one of the functions the action form class can provide is to perform
validation of the user’s data. This is done in the validate method of the action
form class. The action servlet calls the validate method after the action form has
been processed and before the perform method of the action class is called.

The decision to include a validate method should be made in the bigger context
of your application. Because the action form class knows nothing about the
business logic for your application, it can do nothing more than simple field
checking, for example:

� Are the mandatory fields filled in?
� Do fields that require all numbers contain all numbers?
� Do fields requiring alphanumeric entries contain valid alphanumeric

character?

However, there will probably be additional validation done by the business logic,
where additional knowledge about the fields is known. Keeping all such validation
in a single place is one design consideration.

Another design consideration concerns the reusability of the business logic code.
If your intent is to re-use the business logic, you would not want to put some of
the basic input validation in the validate method, because you are essentially
leaving it out of the business logic. This would require that all other modules
interfacing with the business logic also implement the basic validation done in the
validate method.

For now we will not add any validation logic and perform all validation in the
business logic. Later, in “Implementing simple validation” on page 142, we will
show a simple validation example.

Close the editor.
130 Legacy Modernization with WebSphere Studio Enterprise Developer

Checking the Struts configuration file
The LoginForm was automatically added to the Struts configuration file. Open the
Struts configuration editor (double-click the struts-config.xml file).

Select the Form Beans tab and the loginForm entry (Figure 6-16).

Figure 6-16 LoginForm in Struts configuration editor

The important fields are:

name Unique identifier of this bean, used to reference it in corresponding
action mappings. We use the loginForm name in home.jsp.

type Fully qualified Java class name of the implementation class to be
used or generated.

classname Fully qualified Java class name of the ActionFormBean
implementation class to use. It defaults to the value configured as
the formBean initialization parameter of the Struts controller
servlet.

Note: The current implementation does not create the formBean initialization
parm in web.xml nor does it define the classname in struts-config.xml upon
defining a new form bean unless you enter something for Specify Form Bean
Mapping Extensions in Figure 6-16.
 Chapter 6. Adding JSPs and actions to the application 131

� Switch over to the Source tab, and in the XML file you can see the definition of
the LoginForm within the <form-beans> section:

<!-- Form Beans -->
<form-beans>

<form-bean name="loginForm" type="strutscommon.LoginForm">
</form-bean>

</form-beans>

� Close the editor.

You have now defined a form bean (LoginForm), and associated a Java class with
it (strutscommon.LoginForm).

Action forwards
The controller (ActionServlet) uses an ActionForward object to define the
destination of a RequestDispatch.forward call. The business logic processing
determines how the application proceeds, and passes that information back to
the controller in the form of the ActionForward.

For example, when the users try to log in they may be successful or they may
not. If they are successful, they may be granted access to the home page of the
application. In this case, the business logic would set the destination of the
ActionForward to be the home page JSP. If they are not successful, they may be
sent back to the login page to try again. In this case, the business logic would set
the destination of the ActionForward to be the index.jsp. The controller then
passes control to the destination.

By default, the controller uses a RequestDispatch.forward to transfer control.
You can specify that HttpServletResponse.sendRedirect be used instead.

You can use the ActionForward in conjunction with the ActionMapping to use
named destinations. For instance, you can name a forward success pointing to
the home.jsp and name another failure pointing back to the index.jsp. You then
code your business logic to forward to success or failure as appropriate, and not
have to worry about coding the actual JSP names in your logic. Defining forwards
with ActionMapping is covered in “Action mappings” on page 136.

Action errors
Struts provides a simple way to collect errors and have messages available to
any JSP. Individual errors are created as ActionError objects. A group of
individual errors makes up an ActionErrors object.
132 Legacy Modernization with WebSphere Studio Enterprise Developer

There are two ways the ActionErrors object is used:

� First, ActionErrors is the return type for the ActionForm.validate method. If
you implement ActionForm.validate, it must return an ActionErrors object
encapsulating any errors it found. The controller (ActionServlet) determines
that errors were found (by checking that the ActionErrors object is not null or
empty) and forwards to the JSP specified by the input parameter of the
ActionMapping.

� Second, ActionError objects can be created by the business logic and added
to an ActionErrors object. The business logic can then save the
ActionErrors object using its Action.saveErrors method, which will make
the ActionErrors object available to JSPs that use the Struts <html:errors/>
tag.

Actions
The action class is where you implement the calls to your business logic (model)
of your application. You can include all the business logic in your action class, or
you can use the action class as a wrapper class for the business logic. The
second approach is recommended, as it lends itself much better to code reuse of
the business logic—you do not tie your business logic to a Struts class.

Action classes extend the class org.apache.struts.action.Action. The main
processing is done in the perform method. This is the minimum method that you
have to override. The action servlet finds or instantiates an action class, then
calls its perform method. Note that only one instance of each action class is
created by the action servlet, so the action classes must be thread-safe.

Creating the LoginAction class
You can create an action class using a wizard in the Enterprise Developer. For
our sample application, we use a package named strutsaction, and for the login
action a class named LoginAction. You can follow these steps to use the wizards
to create the package and the class.

First, create a Java package named strutsaction in the Java Source folder.

Note: The input property specifies the JSP that should be returned when
validation errors are discovered. The idea is to use a JSP similar to (if not
exactly the same as) the JSP the user originally filled out. The JSP can be
pre-populated with the values that were correct, and error messages will
be displayed for values that failed the validation.
 Chapter 6. Adding JSPs and actions to the application 133

Next, to create the action class:

� Select File -> New -> Other, expand Web -> Struts (in the left pane) and
select Action Class (in the right pane) and click Next.

� The Create a generic Action class dialog opens (Figure 6-17).

Figure 6-17 Defining the LoginAction class

– Enter a name of LoginAction and make sure the superclass is
org.apache.struts.action.Action. and the package is strutsaction.

– Make sure the perform(..., HttpServletRequest, HttpServletResponse) and
the inherited abstract methods check boxes are selected.

– Make sure the Code Generation Model is set to Generic Action Class.

– Click Next.
134 Legacy Modernization with WebSphere Studio Enterprise Developer

� In the Mapping Description dialog (Figure 6-18):

– Set the Mapping Path to /loginAction.

– Click Add twice for Forwards. Change the two Name fields to success and
failure, and the two Path fields to /home.jsp and /index.jsp.

– Select loginForm from the Form Bean Name drop-down.

Figure 6-18 Mapping for the Login action

� Click Finish.

Customizing the LoginAction class
The LoginAction file opens in the editor. The signature of the perform method is
shown in Figure 6-19.

Figure 6-19 Signature of the perform method

public ActionForward perform(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException
 Chapter 6. Adding JSPs and actions to the application 135

Note that the action class has access to the action mapping (discussed in “Action
mappings” on page 136), the action form (which gives the action access to the
data the user entered) and the request and response objects. The action class
must return an action forward object, which is used to tell the action servlet
where to pass control to next.

Add the code shown in Figure 6-20 to the try/catch block inside the perform
method.

Figure 6-20 Customizing the LoginAction class

This code checks that the user ID is the string userid, and if not causes an
ActionError to be created.

Save the code and close the editor.

Action mappings
So far we have added JSPs, action forms, and actions to our basic Struts
application. We have added action forwards and action errors to our action. We
will now tie all those pieces together using action mappings to complete the login
portion of our application.

See “Action mappings” on page 82 for a list of the action mapping properties.

The action mappings are defined in the struts-config.xml file. Each of these
properties can be defined in the struts-config.xml file using the Enterprise
Developer’s Struts configuration file editor.

try {
// do something here
String userID = loginForm.getUsername();
if (!userID.equals("userid")) {

errors.add("login", new ActionError("error.login.failed"));
}

} catch (Exception e) {
// Report the error using the appropriate name and ID.
errors.add("login", new ActionError("error.login.exception"));

}

136 Legacy Modernization with WebSphere Studio Enterprise Developer

Editing struts-config.xml
To edit the struts-config.xml file, start in a Web perspective and Web or
Navigator view. The file is in the WEB-INF subdirectory. To verify that the Struts
configuration file editor is the default editor, select the file, right-click it and select
Open With -> Struts Configuration File Editor.

The editor opens. Notice the tabs at the bottom of the editor. There are tabs for
Actions, Form Beans, Global Forwards and Data Sources. These are the four
areas defined by this configuration file.

Completing the login action
The login action is visible in the editor (Figure 6-18); it was added when the
LoginAction class was defined.

All we have to add to this mapping is /index.jsp as the input. Save your action
mapping.

You should examine the XML source of the configuration file by clicking the XML
Source tab. You will be able to see the form beans and actions that you have
defined.

Figure 6-21 Struts configuration file editor
 Chapter 6. Adding JSPs and actions to the application 137

Testing the Struts application
With the setup of the basic Struts application completed, we can test the
application in the built-in WebSphere Application Server.

Define a server project
To test Web and EJB applications we have to define test servers. Such
definitions are best stored in a server project.

To define a server project:

� Open the Server perspective.

� In the New dialog (click File -> New -> Other), select Server in the left pane
and Server Project in the right pane and click Next.

� Enter ItsoServers as the project name and click Finish.

Define a WebSphere test server
To define a test server, we need a server and a server configuration:

� Click the Create Server and Server Configuration icon in the tool bar (or in the
New dialog select Server -> Server and Server Configuration).

� In the dialog (Figure 6-22), enter StrutsServer as the name, expand
WebSphere Version 5.0 and select Test Environment.

� Optionally click Next and see the default port number (9080).

� Click Finish.
138 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 6-22 Define the StrutsServer

The StrutsServer appears in the Servers view, and the server and configuration
appear in the Server Configuration view.

Add the enterprise application project to the server configuration:

� In the Server Configuration view, expand Server Configurations.

� Select the StrutsServer and Add -> ItsoMyTradeEAR from the context menu.

� Figure 6-23 shows the Server Configuration view with the StrutsServer and
the EAR project.
 Chapter 6. Adding JSPs and actions to the application 139

Figure 6-23 StrutsServer configuration with project

Running the Struts application
We can start the StrutsServer in two ways:

� Explicit start from the Servers view.

� Implicit start by selecting an HTML or JSP file (or a Web project) and
selecting Run on Server or Debug on Server from the context menu.

Start the server
Expand the ItsoMyTradeWeb application, select the index.jsp file and Run on
Server from the context menu.

In the Select a Server dialog, select the StrutsServer, select Set this server as
the preferred server (to bypass this dialog in the future), and click Finish.

The application is published to the server and the server starts. Watch the
Console view for messages. The server is ready when the message Server open
for e-business appears.

Test the application
The index.jsp is displayed (Figure 6-24).

� Enter userid for the username field and any password, then click Login. This
action should display the home JSP.

� Enter any other user ID and the index.jsp is redisplayed with an error
message:

Invalid user ID and/or password entered.
140 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 6-24 Struts application test run
 Chapter 6. Adding JSPs and actions to the application 141

Implementing simple validation
Now let’s try a simple validation. Open the LoginForm bean (in strutscommon),
add an import statement, and add validation logic to the validate method
(Figure 6-25).

Figure 6-25 Adding simple validation

Restart the server and retest the application. If you leave the user ID field empty,
the error message from the ApplicationResources file is displayed (Figure 6-26).

Figure 6-26 Validation error message

Stop the server.

import org.apache.struts.action.ActionError;
......
public ActionErrors validate(

ActionMapping mapping,
HttpServletRequest request) {
org.apache.struts.action.ActionErrors errors =

new org.apache.struts.action.ActionErrors();
// validation logic
if (username.trim().equals(""))

errors.add("login", new ActionError("error.login.nouserid"));
return errors;

}

142 Legacy Modernization with WebSphere Studio Enterprise Developer

Chapter 7. Struts application diagram
editor

In this chapter, we create a simple Web application to show the usage of the
Struts application diagram editor.

Our sample Web application has a simple flow:

� A welcome page is displayed initially.

� A user can enter a user ID and a password on the welcome page and click
Submit.

� The server invokes a Struts action class to verify the user ID and password.

� If the authentication is successful, the user can proceed to the home page of
the application.

� If the authentication fails, an error page is shown and the user can go back to
the welcome page.

To implement this Web application, we use the Struts application diagram editor,
from which we can implement the JSPs and the action.

7

© Copyright IBM Corp. 2002. All rights reserved. 143

Create a Web project for the Struts application
In the Web view of the Web perspective we create a Web project named
ItsoMyTradeSade for our Struts application (Figure 7-1).

Figure 7-1 Create Web project for Struts diagram editor application

� Make sure that Add Struts support is selected.

� Click Next and enter the J2EE settings (Figure 7-2).
144 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 7-2 J2EE settings of the Struts diagram editor project

� Select Existing for the Enterprise Application Project radio button and select
ItsoMyTradeEAR as the EAR project name.

� Enter MyTradeSade as the context root.

� Click Finish to create the Web project.

We skipped the other panels. Therefore the ApplicationResources.properties
file is created in the default package (directly in the Java Source folder).

To design the Struts application in the Workbench, make these views active in
the Web perspective:

� J2EE Navigator in the top left pane.

� Select the Web Structure view in the bottom left pane.

� Select the Properties view in the bottom right pane (use Window -> Show
View -> Other -> Basic -> Property if the view is not open).

Important: You get a prompt to repair the server configuration and add the
new Web project to the StrutsServer, because it belongs to the
ItsoMyTradeEAR enterprise application that is attached to the server. Click OK.
 Chapter 7. Struts application diagram editor 145

Create the application resources
Edit the ApplicationResources file and add the same content to the file as for the
ItsoMyTradeWeb application (Figure 5-3 on page 108).

Figure 7-3 shows the complete ApplicationResources file with two extra error
message lines and the error header and footers shown in boldface.

Figure 7-3 Application resources file

Create a Struts application diagram file
To create a Struts application diagram file, follow these steps:

� Select the Web Content/WEB-INF folder in the Web view and New -> Other.
In the New dialog, select Web -> Struts in the left pane, Web Diagram in the
right pane, and click Next (Figure 7-4).

Figure 7-4 Create new Struts application diagram

index.title=Welcome to MyTrade Application
welcome.button.login=Login
global.field.username=Username
global.field.password=Password
error.login.nouserid=You must enter a user ID.
error.login.failed=Invalid user ID and/or password entered.
error.login.exception=Exception occurred in action.
error.invalidUsername=User ID is invalid.
error.invalidPassword=Password is invalid
Optional header and footer for <errors/> tag.
errors.header=
errors.footer=
146 Legacy Modernization with WebSphere Studio Enterprise Developer

� Specify Login for the file name and click Finish.

The Struts application diagram file Login.gph is created in the Workbench and
the editor opens (Figure 7-5).

Figure 7-5 Initial Struts application dialog editor

� The editor pane is empty for now.

� A number of icons are available in the toolbar to create and connect objects in
the Struts application diagram editor:

early availability with PTF
– Select an Object
– Connect Two Nodes
– New Web Page Node
– New Action Mapping Node
– New Web Application Node

– New Form Bean Node
– New Java Bean Node
 Chapter 7. Struts application diagram editor 147

Design the Struts application using the diagram editor
Initially, the diagram editor is used during the design phase of a project to lay out
important aspects of the desired application. With this editor, users can quickly
design the flow of the Web application, organizing pages and actions based on
the application requirements, setting aside some of the issues associated with
implementation.

In this section, we design the flow of the login sample application as described in
the chapter introduction.

Creating the Web page objects
.We place three Web pages in the editor for the welcome page, home page, and
error page:

� Click the New Web Page Node icon in the tool bar.

� Without holding down a mouse button, move the cursor to the diagram area.

� Click where you want the page to be.

� Overtype the default name /page.jsp with the name of your Web page, or
change the name later using Change Path in the context menu.

These icons can be moved by dragging the icon. We put the welcome page at
the top left of the editor, the home page at the top right, and the error page at the
bottom.

� Right-click the icon for the welcome page and select Change Path in the
context menu.

� Enter /index.jsp for the welcome page context path and press Enter.

� Right-click the icon and select Change Description to enter a description.
Enter any text to describe the page, for example, This is the welcome page of
the login sample.

Figure 7-6 shows the initial layout of the Web pages with the hover help on the
welcome page. The name and description are also visible in the Properties view.
148 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 7-6 Web pages layout with hover help

Notice that all the icons are grey, indicating that they have not been realized, that
is the JSPs have not been implemented. When an object is implemented, the
grey icons turn into colored icons.

Complete the initial diagram by setting the path names and description for the
/home.jsp (right) and the /error.jsp (bottom).

Creating an action object
For the verification for the user ID and password, we place an action mapping
into the diagram editor:

� Click the New Action Mapping Node icon in the toolbar.

� Move the cursor to the diagram area and drop an action mapping object into
the center area.

� Select the action mapping object and Edit Path in the context menu. Enter
/login for the context path. Optionally add a description.

Figure 7-7 shows the layout of the Web pages and the login action.
 Chapter 7. Struts application diagram editor 149

Figure 7-7 Web pages and action layout

Creating connections
We draw these connections between the objects

� From the welcome page to the action mapping
� From the action mapping to the home page
� From the action mapping to the error page
� From the error page to the welcome page

To create a connection:

� Click the Connect Two Nodes icon in the toolbar.

� Click the source object in the editor and then click the destination object.

Alternatively, click an object and select Connection from the context menu, and
then click the destination object.

You can enter the forward name on the connections from the action mapping icon
by overtyping the <new> that is displayed. Alternatively:

� Right-click the connection between the login action mapping icon and
home.jsp icon and select Edit the forward name in the context menu. Enter
valid for the forward name.

� Repeat this for the connection to the error page and enter invalid for the
forward name.

Figure 7-8 shows the diagram with the connections.
150 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 7-8 Login sample completed at the design phase

Save the current state of the diagram.

Implement the Struts application
The diagram editor can also be used to access the underlying resource files that
compose the application. Here is the procedure for implementing the login
sample:

� Implement Web pages
� Implement the form bean class
� Implement the action class
� Implement the action mapping

Implement Web pages
We are going to implement three Web pages:

index.jsp The welcome page defined in the deployment descriptor
(web.xml).

home.jsp The home page to proceed to when the verification of user ID
and password is successful.

error.jsp The error page that shows the reason of the verification failure.
This page contains a link to the index.jsp to return to the
welcome page.
 Chapter 7. Struts application diagram editor 151

We will use the Struts custom tags to lay out the Web pages. All the text
constants must be defined in the ApplicationResources file, as defined in
Figure 7-3 on page 146.

Welcome page
To implement the welcome Web page (index.jsp):

� Open the Struts application diagram (Login.gph).

� Double-click the index.jsp page icon in the diagram to open the wizard for a
new JSP.

� The file name is prefilled with index.

� You can go through all the panels or just click Finish to create the page.

Figure 7-9 Creating index.jsp

The index.jsp file is created and the page designer opens to edit the content.

Tailoring the index.jsp with custom tags
Note that after installing the PTF, a form has already been added.

� Delete the text Place index.jsp’s content here.

� Add a Struts form by selecting JSP -> Insert Custom. Select html and form in
the Insert Custom Tag dialog and click Insert and Close (Figure 7-10).
152 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 7-10 Inserting JSP custom tags

� Select the form tag and in the Properties view enter the value /login for the
action property.

� Inside the form, add two message beans (JSP -> Insert Custom -> bean ->
message.

Switch to the Source tab (or stay in the Design tab). Select each message tag
and in the Properties view enter global.field.username and
global.field.password for the key property.

� After the username message, add a custom tag html -> text. Select the text
and in the Properties view enter username for the property property.

� After the password message, add a custom tag html -> password. Select the
password tag and in the Properties view enter password for the property
property.

� Below user ID and password, add a custom tag html -> submit. Inside this tag,
add a message bean and set the key property to welcome.button.login.

� Above the form, add a heading (select Insert -> Paragraph -> Heading 1) and
inside the heading add a custom tag for the heading text (bean -> message)
with index.title as key.

� Add some line breaks for nice formatting.

Switch to the Source tab and check that the <body> content is similar to
Figure 7-11.
 Chapter 7. Struts application diagram editor 153

Figure 7-11 Login JSP HTML code

Figure 7-12 shows the index.jsp in the Design tab of the page designer.

Figure 7-12 Login JSP design view

� Save and exit the page designer.

In the Tasks view, the message Action /login does not exist is shown. We will
solve this problem later by defining an action mapping.

<BODY>
<H1><bean:message key="index.title" /></H1>
<html:form action="/login">

<bean:message key="global.field.username" />
<html:text property="username"></html:text>

<bean:message key="global.field.password" />
<html:password property="password"></html:password>

<html:submit>

<bean:message key="welcome.button.login" />
</html:submit>

</html:form>
</BODY>
154 Legacy Modernization with WebSphere Studio Enterprise Developer

Home page
Next, we create the home.jsp. Follow the sequence of the welcome page to
create the home page:

� In the JSP wizard, make sure the file name is set to home.

� In the page designer, delete the text Place home.jsp’s content here and add
these lines as an initial home page layout:

<h1><bean:message key="index.title"/></h1>
<h2>Home Page</h2> <=== should use bean:message

� Save and exit the page designer.

Error page
Finally, we create error.jsp in the same way:

� In the JSP wizard, make sure the file name is set to error.

� In the page designer, delete the text Place error.jsp’s content here and add
these tags to create an HTML link to the welcome page:

<h1><bean:message key="index.title"/></h1>
<h2>Error Page</h2> <=== should use bean:message
<p>
<html:errors/>
<p>
Welcome Page

� Save and exit the page designer.

Switch to the diagram editor. We can see the pages realized with colored icons
on Figure 7-13.

Figure 7-13 Diagram editor with JSPs realized
 Chapter 7. Struts application diagram editor 155

Implement the form bean class
WIth the early availability release, we have to create the form bean class by
hand. With a PTF applied, we can use the diagram editor.

Creating the form bean by hand
We create an action form to handle the input of the index.jsp. This process is
identical to “Creating the LoginForm class” on page 126:

� Create a package named struts in the Java Source folder.

� Create an action form class (New -> Web -> Struts -> ActionForm Class). Use
the struts package and enter LoginForm as the name. Click Next.

� For accessors, expand the ItsoMyTradeSade project and select username and
password of the /login action in the index.jsp.

� Skip the other pages and click Finish.

� The LoginForm opens in the editor. The code is complete and you can close
the editor.

� Open the struts-config.xml file and you can see the loginForm on the Form
Beans tab. Close the editor.

Creating the form bean using the diagram editor
Select the form bean icon and drop a form bean into the diagram. Enter
loginForm as name. Then use the connector icon to connect the form bean to the
action (Figure 7-14).

Figure 7-14 Diagram editor with new form bean
156 Legacy Modernization with WebSphere Studio Enterprise Developer

Double-click the form bean and the form bean wizard opens. Complete the
information in the same way as for “Creating the form bean by hand” on
page 156.

Implement the action mapping and action class
We implement the action mapping for the LoginAction from the diagram editor:

� Double-click the login action mapping icon in the Struts diagram editor.

� The New Action Mapping dialog opens on the default struts-config.xml file
(Figure 7-15):

– The Mapping Path is set to /login.

– The Forwards valid and invalid are shown and they point to /home.jsp
and /error.jsp respectively.

– Select the loginForm from the Form Bean name pull-down.

– Select Generic Action Mapping for the Model pull-down.

– Click Next.

Figure 7-15 Creating a new action mapping

� In the Create an Action class dialog (Figure 7-16):

– Select Add new Action class.
 Chapter 7. Struts application diagram editor 157

– Select the struts package and enter LoginAction as class name.

– Leave all other fields as defaults.

– Click Finish.

Figure 7-16 Creating the action class for the action mapping

Complete the perform method in the action class
The Java editor opens and you can see the generated code in the editor.

Add the validation logic to the perform method (Figure 7-17).

Figure 7-17 Action class user ID and password validation

The valid user ID and password are userid and password. Note that the errors
point to the text constants defined in the application resources file.

try {
// do something here
if (!loginForm.getUsername().equals("userid"))

errors.add("login", new ActionError("error.invalidUsername"));
else if (!loginForm.getPassword().equals("password"))

errors.add("login", new ActionError("error.invalidPassword"));
} catch (Exception e) {

// Report the error using the appropriate name and ID.
//errors.add("name", new org.apache.struts.action.ActionError("id"));
errors.add("login", new ActionError("error.login.exception"));

}

Note: The generated action class does not use the forward names we
specified in the dialog—hopefully this will be fixed.
158 Legacy Modernization with WebSphere Studio Enterprise Developer

Although we entered valid and invalid as forward names, the generated code
uses success and failure as default forward names. Change the names to valid
and invalid as shown in Figure 7-18.

Save the LoginAction class and close the editor.

Figure 7-18 Success and failure in the action class

Complete the Struts configuration file
Open the struts-config.xml file in the editor. Select the /login action on the
Actions tab:

� Enter /index.jsp in the Input field.

� Check that the Forwards are set to valid and invalid.

� Check that the loginForm in the Form Bean Name is selected.

� Select the Form Beans tab at the bottom of the editor. The LoginForm was
added already with the name loginForm.

� Save the changes.

You can confirm the updates by switching to the Source tab where you can view
the XML source of the configuration file as shown in Figure 7-19.

if (!errors.empty()) {
saveErrors(request, errors);
// Forward control to the appropriate 'failure' URI (change name ...)
forward = mapping.findForward("invalid");

} else {
// Forward control to the appropriate 'success' URI (change name ...)
forward = mapping.findForward("valid");

}

 Chapter 7. Struts application diagram editor 159

Figure 7-19 Source of Struts configuration file (extract)

Complete Struts application diagram
You can see the implemented login sample in Figure 7-20. The icons have all
turned into colored icons and the connections are represented using solid lines.

Figure 7-20 Login sample implemented

<!-- Form Beans -->
<form-beans>

<form-bean name="loginForm" type="struts.LoginForm">
</form-bean>

</form-beans>

<!-- Action Mappings -->
<action-mappings>

<action name="loginForm"> path="/login" type="struts.LoginAction"
input="/index.jsp"

<forward name="valid" path="/home.jsp">
</forward>
<forward name="invalid" path="/error.jsp">
</forward>

</action>
</action-mappings>

with PTF
160 Legacy Modernization with WebSphere Studio Enterprise Developer

Testing the Struts application
To test the Struts application we can use the existing StrutsServer because the
ItsoMyTradeSade Web application is part of the ItsoMyTradeEAR enterprise
application that is attached to the server:

� Start the StrutsServer.

� Select the ItsoMyTradeSade project and Run on Server from the context
menu.

� You can confirm the run-time behavior of the login sample by trying out
different user ID and password combinations. The only valid values are userid
and password.

� Stop the StrutsServer.

Figure 7-21 shows the Web browser for a sample run of the application.

Figure 7-21 Struts application run

valid invalid

userid other
 Chapter 7. Struts application diagram editor 161

Analyze a Struts application
Using the diagram editor, a developer can draw a diagram of the application flow
from an existing Struts application.

In this section, the flow analysis capabilities of the diagram editor are described.
We use the trade sample to show a sample usage.

Install the trade sample application
The trade sample is bundled as a sample application with the Application
Developer.

If you installed the trade sample application already, then skip this section.
Otherwise, follow the instructions in “Installing the trade sample application” on
page 56:

� Create the application using the New wizard.

� This process installs the TradeSample enterprise application project, the Trade
Web project, and the TradeEJBs EJB project, and creates a DB2 database
named TRADEDB. Creating the database is not required to complete this
chapter; however, the database is required for the EGL chapters.

Drawing the application flow
The diagram editor has a capability of drawing the application flow of an existing
Struts application.

First we have to create a new Struts application diagram:

� Select the Trade -> Web Content -> WEB-INF folder in the Web view and New
-> Other from the context menu.

� Select Web -> Struts in the left pane and Web Diagram in the right pane. Click
Next to proceed. Enter Trade as the file name and click Finish.

The diagram editor opens. We initialize the diagram with the index.jsp file:

� Drag the index.jsp and drop it in the top left of the diagram editor.

� Select the index.jsp icon in the diagram editor and click Draw -> Draw All in
the context menu.

� The flow of the trade application is automatically rendered in the editor as
shown in Figure 7-22.
162 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 7-22 Application flow rendered by the diagram editor

With the PTF applied, the form beans are also added to the diagram
(Figure 7-23).

Figure 7-23 Application flow rendered by the diagram editor (with PTF)

The icons and connections can be repositioned by dragging the mouse to create
a better visual appearance. The result is shown in Figure 7-24.
 Chapter 7. Struts application diagram editor 163

Figure 7-24 Tailored application flow, without and with PTF

with PTF

without
PTF
164 Legacy Modernization with WebSphere Studio Enterprise Developer

To understand the diagram, you can:

� Select icons and connections and see the definition in the Properties view.

� Double-click Web pages to open the page designer.

� Double-click action icons to open that action in the Struts configuration editor.

� Double-click form beans to open that form bean in the Struts configuration
editor.

� Double-click connections to open the Struts configuration editor for that
success or failure link.

� Hold the mouse over an icon or connection to see the hover help with the
name and description.

� Red arrows indicate the input JSP.

Drawing the main path of the flow
The diagram shown in Figure 7-24 is a busy diagram. When the application gets
more complicated, it is difficult to grasp the overview of the application flow. In
this section we take a different approach to draw parts of the diagram.

While the complete flow of the trade sample is composed of many paths
including error handling, we are creating a diagram for the normal path in order to
analyze the application flow:

� We create a new diagram named TradeMain.

� Place the welcome page of the trade sample on the diagram editor. (Drag the
index.jsp into the editor.)

� We will inspect the application flow using the Draw All From function step by
step.

index.jsp
Right-click the index.jsp icon and select Draw -> Draw All From in the context
menu.

The action mapping icon named Login and the page icon named register.jsp
are shown in the diagram editor (Figure 7-25).

Note: We only show this process without the PTF, that is the form beans are
not shown.
 Chapter 7. Struts application diagram editor 165

Figure 7-25 Drawing the main path (1)

register.jsp
The register.jsp is used for user registration. We remove the icon from the
diagram.

� Select the register.jsp and Delete from the context menu.

� You are prompted whether you want to Delete underlying resource? Click No.
Select the No action in all future delete requests.

Login action mapping
We continue the analysis with the login icon:

� Select the login icon and Draw -> Draw All From in the context menu
(Figure 7-26).

Figure 7-26 Drawing the main path (2)

You can see the home action mapping icon on the diagram. Two links from the
login icon to the index.jsp are shown.

When you move the cursor on the red link from login to index.jsp, the hover
help displays <input>--><index.jsp>, meaning the error handling path for the
validation in the FormBean class. We remove this link from the dialog. Select the
red link and Delete from the context menu (do not delete the underlying
resource).
166 Legacy Modernization with WebSphere Studio Enterprise Developer

The hover help shows failure-->/index.jsp on the black link from login to
index.jsp. The LoginAction class returns failure if the authentication fails. We
also delete this link from the dialog.

Home action mapping
We expand the home action mapping with Draw All From (Figure 7-27).

Figure 7-27 Drawing the main path (3)

An action mapping of portfolio is added to the diagram. You can also see the link
from home to index.jsp. This is the failure forward of the home action. We delete
this link from the diagram.

Portfolio action mapping
Next, we inspect the portfolio action mapping with Draw All From (Figure 7-28).

Figure 7-28 Drawing the main path (4)

We delete the failure link from portfolio to index.jsp.

portfolio.jsp
We contine the analysis on the portfolio.jsp with Draw All From (Figure 7-29).

On the diagram the action mappings account, buy, logout, quote and sell are
added.
 Chapter 7. Struts application diagram editor 167

Figure 7-29 Drawing the main path (5)

Iteration for all action mappings
For each action mapping, we iterate the Draw All From operation. For each
added object, we iterate again. Finally we delete all the failure connections. The
result, after some rearranging, is shown in Figure 7-30.

Figure 7-30 Drawing the main path (6)

Using this technique, users can prepare diagrams for each sub-scenario of the
application flow, which is very effective for more complicated application flows.
168 Legacy Modernization with WebSphere Studio Enterprise Developer

Part 3 Enterprise
generation
language

Enterprise generation language (EGL) is a new language for creating complex
business applications running on a variety of platforms.

EGL is a high-level language from which Java and COBOL code is generated.

In Part 3 we describe how EGL can be used to generate Java programs running
on Windows and COBOL programs running on z/OS. We also describe how such
programs can be accessed as Struts action programs.

Part 3
© Copyright IBM Corp. 2002. All rights reserved. 169

170 Legacy Modernization with WebSphere Studio Enterprise Developer

Chapter 8. Implementing EGL actions

In this chapter, the following topics are described:

� Enterprise generation language (EGL) fundamentals
� Building business applications using EGL
� Generating Java and COBOL from EGL
� Incorporating EGL-generated code into Struts action classes

We use the ItsoMyTradeWeb project to implement EGL actions.

8

© Copyright IBM Corp. 2002. All rights reserved. 171

Accessing EGL programs
Enterprise generation language (EGL) will replace VisualAge Generator as the
tool for creating complex business applications using a high-level programming
specification, in the next version of the product, when all features existing today
in VisualAge Generator will be implemented.

The current release of EGL generates Java source code (for Windows or z/OS
UNIX System Services) and COBOL (for CICS/MVS). To access the generated
EGL code, the generation process can also generate Java wrappers that can be
included in Java programs that have to access EGL-generated code such as
Struts action classes. The Java wrappers can be wrappers for both Java and
COBOL code generated by the EGL build process.

When the EGL generator generates COBOL code, it can also generate a Java
wrapper class that uses a J2EE Connector resource adapter (J2C Connectors)
to access the COBOL code through a CICS transaction gateway.

Figure 8-1 shows the process of how business logic defined using EGL is
generated and applied at run time.

Figure 8-1 Accessing EGL-generated components

1. Enterprise Developer is used to define the business logic and the database
records in EGL.

2. The developer can then generate source code in either Java or COBOL that
implements this business logic.

3. The developer can also choose to create a Java wrapper for the
EGL-generated source code. In this example, the Java wrapper class is used
by a Struts action class to access EGL-generated code.

EGL
CICS COBOL

Program

Database

ActionServlet
2. route

(web.xml)
Action subclass3. call

(struts-config.xml)

business logic
(Model objects)

5. return
ActionForward

4. invoke

my_page.jsp
(View)

6. invoke JSP
(struts-config.xml)7. response

ActionServlet
Action subclass

(Controller)

Business logic
(EGL Java)

my_page.jsp
(View)

Browser

Runtime

Build
23

4EGL Java Wrapper

EGL
File

1

Build
172 Legacy Modernization with WebSphere Studio Enterprise Developer

4. If COBOL source is generated, then a Java wrapper is generated to access a
J2EE connector resource adapter (J2C) for the CICS/MVS system.

Enterprise Developer also includes a test run-time environment and debugger.

In the remainder of this chapter, we will discuss EGL in more detail. We will show
how to create an EGL program and how to generate Java and COBOL source
code from the EGL program. We will also discuss how an EGL-generated
component can be tested and debugged and how EGL-generated programs can
be accessed through Struts.

Creating and generating EGL programs
In this section we discuss the architecture of EGL and how it is used to create
programs and generate source code.

In general, the development process for creating programs with EGL is as
follows:

� Iteratively develop and test

– Create EGL parts and write EGL scripts

– Validate the EGL to verify a correct specification

– Generate source code in Java or COBOL

– Debug with built-in debugger

� Deploy

– Generate 3GL source code from EGL specifications (Java or COBOL)

– Prepare run-time executable by compiling the generated 3GL source code

� Run

– In z/OS UNIX System Services, Windows 2000 or Windows NT (this
executes in either tier 2 or 3 of the typical application topology)

– CICS for MVS (this executes in tier 3 of the typical application topology)

EGL editing in Enterprise Developer
When you open an EGL file in Enterprise Developer (a file with extension of
eglpgm, egldef or eglbld), the EGL editor opens, if it is the default.

EGL editors
The Enterprise Developer provides two EGL editors—the EGL Part Editor and
the EGL Source Editor.
 Chapter 8. Implementing EGL actions 173

The default editor for EGL files is set by selecting Window -> Preferences,
Workbench -> File Associations. We suggest that you set the default for .egldef,
.eglpgm, and .eglbld to the EGL Part Editor.

An example of the EGL Part Editor is shown in Figure 8-2.

Figure 8-2 EGL Part Editor

These are the various views of the EGL perspective that are involved when
editing EGL parts:

1. The Navigator view shows the project resources. EGL files are designated by
three icons:

This icon denotes EGL definition files that contain common
definitions of parts that can be referred to by other parts in other EGL
files.

This icon denotes EGL program files that contain EGL logic parts
and any other parts particular to the program (data parts).

This icon denotes EGL build files that contain EGL control parts to
define the build process.
174 Legacy Modernization with WebSphere Studio Enterprise Developer

The default behavior of opening one of these resources is to open the EGL
editor and EGL Outline view. The first part defined in the file is opened in the
EGL editor.

2. The top tab of the editor pane shows all the currently open EGL files.

3. The Outline view shows the parts contained in the EGL file that is currently in
focus. You can open a part by selecting it and pressing the Enter key, or by
double-clicking the part.

4. The bottom tab of the EGL Part Editor shows the parts of the EGL file that
have been opened from the Outline view. The tab with the “X” icon is the
currently active part. You can close any part by selecting the tab and clicking
the “X” icon when it appears. Also, the imported files are shown when the
icon is clicked.

5. Each part can have multiple pages and different types of parts have a set of
different pages. For example, only logic parts have a script page. The list
below shows all the icons that can appear in the various part editors and
which page of the editor they open. The first sentence in the description is the
hover help label that appears for that icon if the mouse is held over the icon.

Show Script—The script editor is used to edit program and function
code.

Show Signature—Clicking this icon allows you to specify input
parameters for a program.

Show Variables—This action opens the variable declaration page for
a program part.

Show Signature— This action allows you to specify the input
parameters and the return value for a function.

Show Variables—This action opens the variable declaration page for
a function part.

Show SQL Statement or Show SQL Default Select Conditions—This
part of the editor is used to edit SQL statements in programs,
functions, and SQL record parts.

Show Structure— For a record part, this action shows the record
structure.

Show Organization Properties— For some record parts, this action
shows the properties that can be specified for the part. An SQL
record, for example, will have a table name specified here, while an
MQ record will have the queue definitions specified here.

Show SQL Item Properties—This icon appears for an SQL record.
 Chapter 8. Implementing EGL actions 175

EGL files and parts
EGL is made up of special programming parts and a procedural scripting
language. The intent is to allow developers to create complex business
applications using a high-level procedural scripting language without having to
know the details of the implementing technologies. The final implementation of
the business logic is generated as Java or COBOL source code by Enterprise
Developer from the EGL script and parts.

EGL parts
An EGL program is structured as parts that developers use to implement the
different concepts within an EGL program. The overall EGL program uses a set
of different types of parts to implement its business logic.

EGL parts can be categorized as one of three types:

Logic parts Logic parts are program or function parts that implement
business logic. The file name extension for program parts is
eglpgm. A program is the only top-level part allowed in an
eglpgm file; functions and data parts can be nested under the
program. Functions can also be defined in files with
extension egldef.

The definition of program and function used here have the
same meaning as in VisualAge Generator.

Data parts Data parts provide access to the state of the application or to
data in persistent storage tables or working storage. You can
place data parts into files with the extension egldef, or you
can nest them under programs in an eglpgm file.

The definition of data parts used here has the same meaning
as in VisualAge Generator (with the exception of the new
structure part).

Control parts Control parts define how the source code is generated from
the EGL parts and scripts. Control parts are build
descriptors, linkage options, resource associations, link edit,
and bind control. The file name extension for control parts is
eglbld.

In VisualAge Generator, these parts were called generation
options, linkage table, resource associations, bind control,
and link edit.
176 Legacy Modernization with WebSphere Studio Enterprise Developer

Data parts
Data parts define data items and structures that are accessed by logic parts.
There are three different types of data parts:

Data item A data item is a specification of the format and structure of
data. Data items can be defined and used in logic parts to
allocate memory to contain data of the type defined by the
data part. A data item can be passed as a parameter to a
logic part.

Structure A structure is a collection of memory areas called structure
items. SQL item properties may also be included in a
structure. A structure cannot be used to perform I/O
operations.

Record A record is also a collection of memory areas that is internal
to a program and has a certain organization type. Record
parts can be used to manipulate data that is internal to a
program and some organization types can be used to
transfer data to and from persistent storage and memory.

Like a structure, an SQL record can also contain SQL items.
However, an SQL record can also be used to perform I/O
operations and can reference a structure as a type definition.

Records
A record data part is further specified by how it is used to access data:

Indexed An indexed record is used to declare a file that is accessed
through a key value that represents the logical position of the
record in persistent storage (for example, VSAM KSDS).

Relative A relative record is used to define a record of fixed length
within a data set. The record is accessed by specifying its
(numeric) sequential position in the data set (for example,
VSAM RRDS).

Serial A serial record is associated with a file or data set. The file is
read sequentially and a write adds a record to the end of the
file.

MQ An MQ record is used to work with messages from
WebSphere MQ.

SQL SQL records are used to read and write to relational tables
through SQL statements.

Working storage Working storage is used to hold data for internal processing
within a program.
 Chapter 8. Implementing EGL actions 177

Placement of EGL source files
Within a Web application, you can place EGL source folders in three locations:

� Under Java Source
� Under Web Content
� Directly under the project

Table 8-1 shows the pros and cons of each selection.

Table 8-1 Placement of EGL source folders

For the time being we will place EGL source folders under Java Source,
although EGL is not Java code. Note that we could use a completely separate
simple project for the EGL code, and generate the Java code into the Web
project.

Creating EGL files and parts
EGL parts are usually created in the EGL perspective of Enterprise Developer.
We will be creating record parts for the trade sample application in a new folder
under the Java Source folder of the ItsoMyTradeWeb project.

Placement Pros Cons

Java Source EGL source are source files, so
they belong into the source
category.

Export of the project into a WAR file
includes the EGL source folders.

By being placed under Java
Source, the EGL files are
copied to Web Content\
WEB-INF\classes. This creates
duplicates that show up when
selecting a build descriptor to
generate Java or COBOL code.

Web Content There will be no duplicates.

Export of the project into a WAR file
includes the EGL source folders.

EGL source files do not belong
under Web Content; their
purpose is very different.

In Web
project

A separate EGL source folder
makes most sense because EGL is
not Java code and not Web
content.

There will be no duplicates.

Export of the project into a WAR
file does not copy EGL source
folders.

Tip: To remove all the warnings from the trade sample projects from the Tasks
view, click the Filter icon and in the filter dialog select On any resource in same
project.
178 Legacy Modernization with WebSphere Studio Enterprise Developer

Create a folder
We create a separate folder for EGL parts to distinguish them from Java:

� Open an EGL perspective (select Window -> Perspective).

� In the Navigator view, select the Java Source folder and New -> Other ->
Simple -> Folder and click Next.

� In the New Folder dialog, make sure that Java Source is selected. Specify
eglsource as the folder name and click Finish.

Create an EGL file
To create an EGL file in the eglsource folder:

� Select the eglsource folder and New -> Other -> EGL -> EGL Definitions File
from the context menu.

� In the Create EGL Definitions File dialog, make sure that the eglsource folder
is selected.

� In the File name field, enter common as the name for the EGL file and click
Finish.

You should now have a common.egldef file in the eglsource folder and it should
also be open in the EGL editor and visible in the Outline view (Figure 8-3).

Figure 8-3 EGL definition file common.egldef
 Chapter 8. Implementing EGL actions 179

We can now start adding data parts to the EGL definitions file common.egldef.
The parts in this file will be referenced by other EGL parts that we create later.

Create an EGL part
To add a working storage record:

� Select common in the Outline view and Add Part... from the context menu.

� For Select Type of EGL Part to Add, select Record and click Next.

� In the Name field, enter profws. We create the working storage record to hold
profile information of the site user. Click Next.

� In the Select Record Organization page, select Working Storage Record.

� Click Finish.

You should now have an empty working storage part in the common.egldef EGL
definitions file, and the record editor for profws should be open (Figure 8-4).

Figure 8-4 New working storage record part

Important: There is an EGL Part Editor and an EGL Source Editor. You may
have to close the file and reopen it in the EGL Part Editor to get this view.
Select the file and Open With -> EGL Part Editor.
180 Legacy Modernization with WebSphere Studio Enterprise Developer

To build the structure of the record part, use the Add and Remove drop-downs to
the right of the structure table.

� Select Add -> Add After. This adds the first item in the structure with a name
of NewName.

� The new item should be selected. Select the Name cell to edit it and enter a
name of userid.

� Select the Type cell to put it in edit mode. In the drop-down, select CHA. This
specifies the item as being a character type. Press Enter.

� Select the Length cell to put it in edit mode. Enter 251. This specifies the item
as being 251 characters in length. Press Enter.

You can also add sub-structures to the record. Insert an item by clicking Add ->
Add Before or Add After. Select the item and then add a child by clicking Add ->
Add Child.

An existing item can also be made into a new sub-structure. Select the item you
want to make part of a new sub-structure. Click Add -> Add Parent. This creates
a parent part with the originally selected part as a child within it.

Follow the procedure above to enter the rest of the items for the profws record
part as shown in Figure 8-5.

Figure 8-5 Definition of the profws part

Save the changes to common.egldef.

Create the working storage records and data items shown in Table 8-2 into the
common.egldef file.
 Chapter 8. Implementing EGL actions 181

Table 8-2 Working storage items

Important: For the small sample application described in this chapter, only the
logws record is required.

Working storage
record name

Item name Type Length Decimal

logws userid CHA 251

password CHA 251

action CHA 10

status CHA 1

acctws userid CHA 251

current_balance PACK 11 2

balance_change PACK 11 2

action CHA 10

status CHA 1

indxws indx BIN 9

action CHA 10

status CHA 1

quotws action CHA 10

status CHA 1

symbol CHA 5

price NUM 10 2

details CHA 20

portws userid CHA 251

action CHA 10

status CHA 1

nbr_stock BIN 4
182 Legacy Modernization with WebSphere Studio Enterprise Developer

The common.egldef file in the EGL Part Editor with all the parts open is shown in
Figure 8-6.

Figure 8-6 Complete common.egldef file with all EGL parts

portws
(continued)

portfolioinfo: occurs 50 CHA 39

symbol
indx
price
quantity
value

CHA
BIN
NUM
NUM
NUM

5
9
10
10
10

2
1
2

singleinfo CHA 29

single_symbol
single_indx
single_price
single_quantity

CHA
BIN
NUM
NUM

5
9
10
10

2
1

Working storage
record name

Item name Type Length Decimal
 Chapter 8. Implementing EGL actions 183

A new concept for part definitions: typeDef
One major improvement in part definitions compared to VisualAge Generator is
the concept of type definition (typeDef).

TypeDef is used as a model format for parts for these reasons:

� To identify the characteristics of a variable
� To reuse part declarations
� To enforce formatting conventions
� To clarify the meaning of data

In general a typeDef is used to identify an abstract grouping. You can declare a
structure part named address, for example, and divide the information into
streetAddress1, streetAddress2, and city. If a personnel record includes the
structure items workAddress and homeAddress, each of those structure items
can point to the format of the structure part named address. This use of typeDef
ensures that the address formats are the same.

A typeDef also can be used to declare a variable that is more complex than a
data item. For instance, if you declare a variable named myRecord and point to
the format of a part named myRecord, EGL models the declared variable on that
part. If you point instead to the format of a part named myRecord02, however, the
variable is called myRecord, but has all characteristics of the part named
myRecord02.

The table and sections that follow give details on typeDefs in different contexts.

EGL source code
If you open the common.egldef file with the EGL Source Editor (close the file, then
select the file and Open With -> EGL Source Editor) then you can see how the
information is stored in the file system. An extract of the EGL source is shown in
Figure 8-7.

You can use the EGL Source Editor to make changes to EGL parts. You must
have an understanding of the format used to store EGL files.

When using the EGL Source Editor, the content assist feature of the editor
comes in very handy to help you with the syntax.
184 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 8-7 EGL source (extract)

EGL scripting language
Logic parts are programs and functions that have their implementation specified
using the EGL scripting language. An EGL program part is the main logical unit
and can be composed of other EGL data and function parts. An EGL function
part is a logic unit that is called from another program or function. A function can
accept parameters and return a value. A program can be separately generated,
but a function cannot.

The definition of program and function used here have the same meaning as in
VisualAge Generator.

This discussion does not provide details on the scripting language except to
explain the code that is presented herein. To fully understand the language,
please read the Enterprise Developer online documentation.

Evolution from VisualAge Generator language
EGL is based on the 4GL technology used in VisualAge Generator. This
language provides a number of benefits:

� You can quickly implement business logic by using the EGL procedural
language and an EGL-based debugger.

Record profws
10 userid CHA(251);
10 action CHA(10);
10 status CHA(1);
10 profileinfo;
15 fullname CHA(251);
15 address CHA(251);
15 email CHA(251);
15 creditcard CHA(251);

end
Record logws

10 userid CHA(251);
10 password CHA(251);
10 action CHA(10);
10 status CHA(1);

end
...
 Chapter 8. Implementing EGL actions 185

� You can focus on the problem your code is addressing rather than on the
technical complexities of systems, such as CICS, MQSeries, and SQL. For
example, you can use similar I/O statements to access different types of
external data stores.

� You can code in response to current platform requirements without worrying
about future migration. An EGL program written for one target platform can be
converted easily for use on another.

� You can produce multiple parts of an application system from the same
source. After developing an EGL program, for example, you can generate a
Java wrapper, an Enterprise JavaBean (EJB) session bean, and a tier 3
program. This increased efficiency comes into play when you develop
software to give users access to a tier 2 servlet, which in turn passes data to
a generated Java wrapper, which in turn accesses either a generated
program on tier 3 or an EJB server.

� You avoid having to configure a CICS connector when you deploy a generated
program on CICS for MVS. A generated Java wrapper on tier 2 reformats the
data to be passed between tier 2 and tier 3.

� Because Java or COBOL code is generated from the EGL language,
developers do not have to migrate when new versions of Java or COBOL are
released. A regeneration creates the updated Java or COBOL code.
Developers can leave the complexity of migration to the generation engine.

EGL code generation
From EGL you can generate Java and COBOL code. Java is generated for tier 2
and 3 platforms, Windows 2000, Windows NT, and z/OS UNIX System Services
(also known as USS). COBOL programs are generated for the tier 3 platform
CICS for MVS.

The code generation process works as follows:

� The source code and necessary components are produced and optionally
Enterprise Developer sends each generated part to a target platform.

� Enterprise Developer oversees a preparation step to compile Java programs,
to translate, compile, and link CICS COBOL programs, and to bind load
modules to a DB2 database. This is performed by a build processor on the
target platform.

� The build processor returns a confirmation message and, when sent to z/OS,
also returns files with the results of the translation, compilation, link edit, and
bind.

� Java code can be generated into an Enterprise Developer project and then no
build processor is involved.
186 Legacy Modernization with WebSphere Studio Enterprise Developer

EGL language
Table 8-3 shows an extract of the EGL language. For details, refer to the
Enterprise Developer Help. Statements can span multiple lines and must be
terminated by a semicolon (except for the end statement). Keywords can be
entered in uppercase or lowercase.

Table 8-3 EGL elements

Element Description and syntax

Assignment Assign a value or expression to a data item:
target = expression; // blanks around = sign
aRecord.anItem = a * (b + c);

if, else Conditional statement, with optional else clause:
if (expression)

// other statements;
else

// statement;
end
if (anItem IS BLANKS) ...
if (anItem NOT NUMERIC) ...
if (aRecord IS ERR) ...

while Executes statements in a loop:
while (expression)

// other statements;
end

set Initialize a record or structure or set an SQL item to null:
set aRecord empty; // blank (char) or zero (numeric)
set sqlRecord.anItem null;

select Multiple sets of statements where at most one set is executed:
select (item or expression)

case value1:
// statements;

case value2, value3:
// statements;

default:
// statements;

end

call Call another program. Arguments are passed as reference, that is the
called program can change the values of the calling program:

call progA(arg1, arg2);
on exception // optional

// statements;
end
 Chapter 8. Implementing EGL actions 187

Eze words
Eze words are special function words that you can use in your programs. These
words provide access to many system-provided values (such as the date and
time, or the environment in which the program is running) and useful functions
(such as mathematical and string operations).

functions Functions can be called like programs or they can return a value:
functA(arg1, arg2);
functB();
anItem = functC(b,c);

A function that returns a value must use EZERTN:
// statement;
ezertn(result);

I/O statements

add Put a record into a file, message queue, or database:
add aRecord;
add aSQLrecord

on exception // optional on all i/o statements

inquiry Read single record from file or database:
inquiry aSQLrecord;

replace Replace current record in file or database:
replace aSQLrecord;

delete Delete current record in file or database:
delete aSQLrecord;

update Read and lock a record in file or database, followed by replace or
delete:

update aSQLrecord;
// statement to change content;
replace aSQLrecord;

setinq
setupd
scan
close

Select a set of rows from a database for retrieval with scan.
Select a set of rows for retrieval followed by replace/delete.
Read the next row (also read records in a file).
Close setinq/setupd, or close a file.

setupd aSQLrecord;
while (....)

scan aSQLrecord;
if (....) // change content;
replace aSQLrecord;

end
close aSQLrecord;

Element Description and syntax
188 Legacy Modernization with WebSphere Studio Enterprise Developer

For a full description of all eze words, refer to the help of the Enterprise
Developer.

Here is an extract of some very useful eze words:

ezefec Controls continuation after hard errors. If set to 1 and an error
routine is specified, execution continues.

ezesys Identifies environment: WIN, USS, MVSCICS.

ezecomit Function to commit resources: ezecomit();

ezerollb Function to roll back resources: ezerollb();

ezesize Function to return size of an array: ezesize(item);

ezeclos Function to end the current program: ezeclos();

ezertn Return a value from a function: ezertn(value);

ezesqcod Item with SQL return code of last SQL statement.

ezesqlca Item with entire SQL communication area.

ezeconct Function to connect to a database:
ezeconct(userid, password, jdbc/DataSourceName);

Mathematical functions:

ezeabs (absolute value), ezeceil (round up), ezefloor (round down),
ezemin (minimum), ezemax (maximum)

String manipulation functions:

ezescmpr (compare substrings), ezescnt (concatenate),
ezescopy (copy substring), ezesfind (find in substring)

Java access functions:

ezeJava (invoke method), ezeJavaGetField (retrieve property value),
ezeJavaSetField (set property value), ezeJavaIsNull (check for null object)

Writing an application in EGL
We create a program to handle the login action from the trade sample Struts
application. We start by creating an EGL logic part (logac.eglpgm) and then start
adding other parts that perform various functions to validate the user and to add
a new user. All of this work is done in the Enterprise Developer EGL perspective.
 Chapter 8. Implementing EGL actions 189

The code for the login program uses the logws working storage record (defined in
the common.egldef file) as the input parameter and an SQL record as the data
part to perform the SQL select and insert statements against the
traderegistrybean table based on the value in logws.action.

The logac.eglpgm file is made up of several parts: one program part, two function
parts, and one SQL record part.

Creating an EGL logic part
In the EGL perspective, select the eglsource folder in the ItsoMyTrade project in
the Navigator view and New -> EGL Program File from the context menu.

The Create EGL Program File wizard opens (Figure 8-8):

� For the folder select the eglsource folder you created earlier.

� Enter logac as the filename and click Next.

� In the import statements field, insert the common.egldef file by selecting Add
and Browse for the file in the project.

� Click OK to add the file as an import statement.

Figure 8-8 Create EGL program file
190 Legacy Modernization with WebSphere Studio Enterprise Developer

� Click Next and enter logac as the external name for the program.

� Click Next. In the Enter Program Parameters page, we can select a record
part from the included common.egldef file (Figure 8-9). Click Add. In the Add
Parameter dialog box, select logws from the Parameter name and TypeDef
drop-down lists and click OK.

� Click Finish.

Figure 8-9 Using a working storage record as parameter

The logac part is added to the Outline view (Figure 8-10) and the logac program
is open in the EGL part editor. If the EGL Source Editor is open, close the file and
use Open With -> EGL Part Editor.

Figure 8-10 logac program in the Outline view
 Chapter 8. Implementing EGL actions 191

Creating the SQL record
The logac program part should already be open now; otherwise, double-click the
logac.eglpgm file in the Trade project eglsource folder. This opens the EGL file in
the Outline view and the first part defined in the file in the EGL part editor. To
open other parts in the EGL file, expand the parts hierarchy in the Outline view
and double-click the part you want to open.

SQL preferences
Before we can populate the data items of the SQL record from the database
catalog, we have to set the SQL preferences for the EGL plug-in.

� From the Enterprise Developer main menu, select Window -> Preferences.

� In the preferences tree on the left-hand side, open the EGL section and select
SQL (Figure 8-11).

Figure 8-11 SQL preferences

� For the connection URL, enter jdbc:db2:tradedb.

� For database, enter TRADEDB.

� Enter a valid user ID and password.

� If you are using DB2 UDB Version 7.2 as the database system, then complete
the page with this information:
192 Legacy Modernization with WebSphere Studio Enterprise Developer

– Database vendor type is DB2 UDB V7.2.

– JDBC driver is IBM DB2 APP DRIVER.

– JDBC driver class is COM.ibm.db2.jdbc.app.DB2Driver.

– For the class location enter <SQLLIB HOME>java\db2java.zip where
<SQLLIB_HOME> is the location where DB2 is installed.

� Click OK.

Add SQL record to EGL program part
We can now proceed to add the SQL record named registry.

� Select the logac program part in the Outline view and Add Part from the
context menu.

� In the Add EGL Part wizard, select the Record radio button and click Next.

� Enter registry as the part name and click Next.

� In the Select Record Organization page, select the SQL Record radio button
and click Next.

� In the Enter SQL Properties page, we have to specify the tables that are used
for this SQL record. This record interacts with the traderegistrybean table in
the tradedb database:

– Click the Add button. In the Name column for the new entry, type
traderegistrybean and press the Enter key to commit the changes. Leave
the label as T1.

– Click Finish.

The registry SQL record part is added to the Outline view and opened in the
part editor in the right-hand pane. The part editor is opened to the structure page
where the structure of the SQL record can be entered. Because we already have
the table defined in the tradedb database, it is easier to import the table structure
from the database into the EGL part.

Import the table structure
Place the cursor inside the structure table and select Retrieve SQL from the
context menu and wait for the request to complete.

The editor obtains the SQL structure from the TRADEREGISTRYBEAN table in the
TRADEDB database. It knows the table name because it was defined when we
created the registry record. We also defined the database connection
properties in the SQL preferences. The SQL structure for the table appears in the
SQL structure view shortly (Figure 8-12).
 Chapter 8. Implementing EGL actions 193

Figure 8-12 SQL record structure for the registry

Open the SQL Select Definitions page by clicking the icon labeled Show SQL
Select Definitions at the top-right of the part editor (hold the mouse pointer over
the icon to see the label appear in hover help). Note that a default select
statement for the table has been generated for you.

In the Default select conditions white space area, the user can enter the
condition that would be used in the SQL where clause for this table. For the
registry SQL record, enter the default select condition as:

userid = :registry.userid

Figure 8-13 shows the SQL record with the where clause.
194 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 8-13 Default SQL and select condition for the registry SQL record

SQL syntax check
It is a good idea to check that the SQL select statements are correct. This can be
done before closing the dialog. Place the cursor inside the Default select
conditions pane, select Check SQL Statement from the context menu, and wait
for the request to complete (Figure 8-14). If the SQL statement is correct, a
message box displays Check SQL statement successful.

Figure 8-14 SQL statement syntax check
 Chapter 8. Implementing EGL actions 195

Save the file and close the registry SQL record part by clicking the ‘X’ on the
registry tab. This completes defining the SQL record part and we can now refer
to it in the program and functions that we add to the logac.eglpgm file.

Declare SQL record as program variable
The registry record part must be declared to the logac program as a variable:

� Make sure the logac program part is in focus in the part editor by selecting the
logac tab. If the logac tab does not exist, then open the logac part by
double-clicking it in the Outline view for the logac.eglpgm file.

� Click the Show Variables icon .

� Click Add.

� In the Add Variable dialog box, select registry from both the variable name
and TypeDef drop-down lists and click OK.

� The record variable is added to the program (Figure 8-15).

Figure 8-15 SQL record as variable
196 Legacy Modernization with WebSphere Studio Enterprise Developer

Creating the program logic part
Make sure the logac program part is in focus in the part editor by selecting the
logac tab. Open the script page for the logac program part by clicking the Script
icon . In the script pane, enter the code shown in Figure 8-16.

Figure 8-16 Logac program part script

While entering the code, you can also get help with program statements and
variables by pressing Ctrl+spacebar to activate content/code assist:

� The content assist feature of the EGL editor enables you to automatically
complete part names, eze words, insert statement templates, and more.

� Given the context of the cursor position, content assist provides a list of
possible additions to the current statement based on the position of the cursor
within the script.

� Content assist proposals are based on EGL visibility and scoping rules, and
the part definitions in effect at the time the feature is invoked. Experiment with
using content assist as you enter the code.

ezefec = 1;
registry.userid = logws.userid;
registry.password = logws.password;
registry.status = -1;
logws.status = "1";

if (logws.action = "inquire")
 registry-select();
 if (registry is nrf)
 logws.userid = " ";
 logws.status = "0";
 end

if (logws.password != registry.password)
logws.status = "0";

end
else
 if (logws.action = "add")
 registry-add();
 if (registry is err)
 logws.status = "0";
 end

else
logws.status = "0";

 end
end
ezefec = 1; // better would be ezertn()
 Chapter 8. Implementing EGL actions 197

When you have completed entering the code, save the changes. The Tasks list
shows many errors because we have not yet defined the underlying functions.

At the top of the program, the ezefec special variable is set to 1. This determines
how EGL handles hard I/O errors encountered while running the program:

� Setting ezefec to 1 causes EGL to run a specified exception clause if one is
present.

� If ezefec is set to 0, then a system error results and the program stops
running.

� Exception clauses are shown in the script for the registry-select and
registry-add functions in Figure 8-17 on page 199 and Figure 8-18 on
page 200.

The program then initializes the registry SQL record item with the user ID and
password from the logws input parameter. The requested action is stored in the
logws.action field and can be either inquire or add.

For an inquire request, the registry-select function is called:

� At the completion of the registry-select function, the error state of the
registry record is tested. The value nrf is a soft I/O error meaning “no record
found”. If no record is found, then the status is set to 0 and the user ID set to
an empty string.

� For a successful retrieve the passwords are compared and the status is set to
0 if they do not match.

For an add request, the registry-add function is called:

� This function attempts to add the user ID and password to the
traderegistrybean table. After the add function, the registry record is tested
for a hard I/O error called err. This error signifies that a nonzero return code
was received from the I/O operation.

The final statement (ezefec = 1) is there to be able to set a breakpoint. A better
statement at this point would be ezertn() to return to the caller.

Note: The logws.status variable indicates success or failure of the logac
program: 1 is success, 0 is failure.
198 Legacy Modernization with WebSphere Studio Enterprise Developer

Creating function logic parts for SQL access
The main program calls two functions, registry-select and registry-add, that
use SQL to retrieve a row from or insert a row into the table.

Create function to retrieve SQL record
To add a function part:

� Click the logac program part in the Outline view and select Add part from the
context menu.

� In the Add EGL Part wizard, make sure the Function radio button is selected
and click Next.

� Specify registry-select as the function name and click Next.

� This function does not return a value and does not require any parameters, so
click Next.

� This function does not use any local variables, so click Finish.

The registry-select function part is added to the Outline view as a child of the
logac program part. The part editor for the function is opened in the right-hand
pane. In the script editor, enter the code shown in Figure 8-17.

Figure 8-17 registry-select function

inquiry is an EGL keyword for SQL statements that execute a select statement
on a row record. In this case the select acts on the registry record and an SQL
statement labeled registry-select is executed. Because ezefec has been set to
1 in the logac program part (see “Creating the program logic part” on page 197),
the on exception clause causes the statements before the end keyword to be
executed if there is a hard I/O error as a result of the SQL statement.

We now have to define the SQL statement registry-select. The SQL statement
view is opened by clicking the Show SQL Statement icon and selecting inquire
registry (registry-select) from the drop-down list.

A default SQL statement has already been generated by the EGL editor. Review
the SQL statement. There should be no need to change the statement:

inquiry registry statementID=registry-select on exception
 logws.status = "0";
 ezertn();
end
 Chapter 8. Implementing EGL actions 199

SELECT
USERID, PASSWORD, STATUS

INTO
:registry.USERID, :registry.PASSWORD, :registry.STATUS

FROM traderegistrybean T1
WHERE

 userid = :registry.userid

Save the file and click the X button on the registry-select tab to close the
function part.

Create function to add SQL record
Repeat the above procedure to add a new function called registry-add. In the
script editor, enter the code shown in Figure 8-18.

Figure 8-18 registry-add function

The SQL record that is generated for the add function is:

INSERT INTO traderegistrybean
(USERID, PASSWORD, STATUS)

VALUES
(:registry.USERID, :registry.PASSWORD, :registry.STATUS)

After saving this part, all errors disappear from the Tasks list and you can close
the logac.eglpgm editor.

EGL visibility and scoping rules
For validation of data declarations and for references between programs and
functions, there are two sets of rules: visibility rules and scoping rules. This is a
new feature of the EGL that was not present in VisualAge Generator.

Visibility rules
Visibility rules enforce which defined data parts can be declared in a logic part
and which logic parts (programs and functions) can be called from another part.

Each part is visible to:

� The parent part
� Other descendants of its parent (to any depth)

add registry statementID=registry-add on exception
 logws.status = "0";
 ezertn();
end
200 Legacy Modernization with WebSphere Studio Enterprise Developer

Parts defined at the top level are visible to all parts in that file.

Visibility rules example
In the example shown in Figure 8-19, the indentation of a name indicates that the
named part is declared inside another part.

Figure 8-19 Example of visibility rules

Assume that you are working on part A. The part A is protected code and is
visible only to the parts in boldface and inside of the box. Part A is not visible to
the Grandparent or to any part subordinate to the Grandparent other than the line
of descent that starts with ParentOfA.

Resolving an EGL part reference
The parts hierarchy is used to find a part referenced by another part. The search
order is:

� Children of the part (in the listed order in the file)
� Siblings (in listed order)
� Parent and siblings of the parent (in listed order)
� Repeat the last step for grandparents and their siblings, and so forth
� Top-level parts of imported files

Import
An EGL file can import other files of the same project or other required projects.
This is mainly used in program files (.eglpgm) to import data parts from definition
files (.egldef).

In “Creating an EGL logic part” on page 190, the logac.eglpgm program imports
the data definitions from common.egldef.

Grandparent
 ParentOfA
 A
 ChildOfA
 GrandChildOfA
 GreatGrandChildofA
 SiblingOfA
 ChildOfSiblingOfA
 GrandChildOfSiblingOfA
 GreatGrandChildOfSiblingOfA
 ParentOfB
 B
 ChildOfB
 SiblingOfB
 Chapter 8. Implementing EGL actions 201

Scoping rules
Scoping rules enforce which declared data parts are accessible by a logic part.
Data parts can be in global or local scope.

� Data parts are in global scope if they are program parameters or declared
parts (variables) in a program, such as input/output records. These parts are
accessible to the program and all functions that are invoked.

� Data parts are in local scope if they are parameters or declared parts
(variables) in a function. These parts are only accessible to that function.

Generating source code from EGL
Generation of Java or COBOL source code is controlled by special EGL control
part. Control parts control the EGL generation process for generating Java and
COBOL source code and for generating Java wrapper code to be used to call
EGL programs from hand-coded Java classes such as Struts action classes and
J2EE client applications. This section discusses how control parts are used to
generate COBOL and Java code from the EGL program.

EGL control parts
EGL control parts exist in the build file, which has a file extension of eglbld.

There are many control parts that impact different aspects of the generation
process, and their settings depend on the target generation language and
run-time system. The following is a list of the control parts:

Build descriptor A build descriptor controls the overall generation
process. The properties in a build descriptor specify
how to generate source code from EGL programs and
prepare generated output for execution. Some of the
properties in this part also define how other control
parts are used.

Linkage options A linkage options part specifies how a generated
program interacts with other programs. This applies for
calls made from generated Java programs or wrappers
to other EGL-generated code, generated COBOL
program calls to other generated code, and for
accessing files on a remote CICS region.

Resource associations An EGL record part has a logical name for a physical
file to which it is associated. The resource association
control part specifies a file that maps the logical file
name to a physical location. A different physical file
202 Legacy Modernization with WebSphere Studio Enterprise Developer

can be specified for each target system in which a
logical file is used. The correct association is used
during the generation process.

Link edit Link edit parts apply to COBOL generation where the
run-time environment is MVS only. This part specifies
how to combine COBOL programs into a load module.

Bind control Bind control parts apply to COBOL generation where
the program accesses SQL tables on DB2 and the
target environment is MVS only. The bind control part
specifies which database request modules (DBRMs)
to include in the DB2 plan that is created at
preparation time.

Build server
The build server allows generated source code to be compiled on a different
machine from the generation machine. Enterprise Developer comes with a build
server for each target platform. The build server for Windows and z/OS USS
invokes the Java compiler. The build server for MVS invokes the CICS translator,
the COBOL compiler, and the DB2 preprocessor if necessary.

Figure 8-20 describes the interactions between Enterprise Developer and the
build server.

Figure 8-20 Build server interactions

EGL generated
source files

Enterprise Developer
Workstation

Build Server

Compiled runtime
objects

Build command
and source files

Compiler
console output

1 2
3

4

 Chapter 8. Implementing EGL actions 203

1. EGL code written in the Enterprise Developer IDE is used to generate source
code in either COBOL or Java using an appropriately configured build
descriptor part. The generated source code is stored on the Enterprise
Developer machine in a location specified in the build descriptor.

2. The generation process sends a build request to the build server along with
the source code. The build request is either COBOL or Java, depending on
the settings in the build descriptor.

3. The build server stores the source files and performs a build using the options
passed to it by the Enterprise Developer workstation. If the build is successful,
the built run-time objects are stored on the build server machine in a location
specified in the build descriptor.

4. The output of the build process (a success message or compiler errors) is
sent back to Enterprise Developer. The output is stored in local files.

The process is the same regardless of whether COBOL or Java source code is
compiled.

z/OS build server
We will describe the build server on z/OS in Chapter 10, “Generating COBOL for
z/OS from EGL” on page 265.

Windows build server

A Windows machine can be set up as a build server. This may be an approach
where large builds are required and you do not want to tie up the developers’
machine.

The build server executable for Windows is named ccublds.exe in:

<WSED Home>\wstools\eclipse\plugins\com.ibm.etools.egl.distributedbuild_5.0.0\bin

where <WSED Home> is the file system location where Enterprise Developer is
installed.

Note: The Windows build server is not required for builds on a local machine.
We recommend that developers build Java code inside the Enterprise
Developer Workbench into a project.
204 Legacy Modernization with WebSphere Studio Enterprise Developer

Accessing the build server from Enterprise Developer
Before the build server can function properly, the run-time environment on the
host machine must be properly configured to compile EGL-generated Java
source code. This means setting the path system variable such that javac.exe is
available and setting the CLASSPATH system variable such that all class referenced
in the Java source can be found.

When Enterprise Developer performs a remote build with the build descriptor
option PREP set to YES, it makes a call to the build server program executable to
pass it the source code for compiling.

For this to occur, Enterprise Developer requires access to the executable
ccubldc.exe, which resides in the directory:

<WSED Home>\wstools\eclipse\plugins\com.ibm.etools.egl.distributedbuild\bin

When you install the Enterprise Developer, the system PATH is updated with the
directory of the build server and a JAR file is added to the CLASSPATH environment
variable.

Starting the Windows build server
Once the PATH and CLASSPATH environment variables have been configured on
the build server machine, start the build server by executing this command:

ccublds.exe -p 2000 -V -V

The -p flag sets the TCP/IP port that the build server will listen on. Make sure the
port number is not already in use. The -V flag sets the build server console
output verbosity level. This can be set up to three times for maximum verbosity.
This does not affect the output from the Java compiler.

The console output appears as shown in Figure 8-21.

Figure 8-21 Windows build server console output

C:\>ccublds.exe -p 2000 -V -V
verbosity = '2'
serverPort = '2000'
authority = '(null)'
02/09/26 14:52:32
 __
| Build Server for Windows
| Version: 1.0.3.5.IBM
| (c) Copyright, IBM Corp. 2001
| Copyright (c) 2002 Rational Software Corporation
| Ready to serve build clients on port: 2000
|__
 Chapter 8. Implementing EGL actions 205

Creating a build descriptor
We are creating a build descriptor for the trade sample application that can be
used to generate Java programs with an EJB session bean wrapper and COBOL
programs with a standard JavaBean wrapper.

� In the EGL perspective, select the eglsource folder of the sample application
and New -> EGL Build File from the context menu.

� The Create EGL build file wizard opens. In the Select container page Folder
name, select the eglsource folder.

� Enter buildDescriptors as the file name.

� Click Next.

� We do not have to import any other files, so click Next.

� In Select type of EGL part to add, select the Build Descriptor radio button and
click Next.

� Enter winbld as the name for the build descriptor part and click Finish.

Figure 8-22 shows the resulting Enterprise Developer view with the Outline view
showing the contents of the build descriptor file and the winbld build descriptor
part shown in the EGL part editor.

Figure 8-22 Enterprise Developer view with build descriptor
206 Legacy Modernization with WebSphere Studio Enterprise Developer

Configuring control parts for Java generation
The build descriptor part editor shows all the options by default. The option list
can be narrowed down using the Category drop-down list.

Our first build descriptor part generates Java code, so in the Category drop-down
list, select Java Target System (Basic).

Enter the following values for the options:

genProject ItsoMyTradeWeb—The name of the project (with Java support)
to store the generated source code into. If the project does not
exist in the workspace, it is created during generation.

genProperties YES—Specifies that you want to generate environment files that
contain settings derived from the build descriptors, linkage
options, and resource associations when you generate the
Java server program.

packagename tradeEGL.genned—Specifies the name of a Java package in
which to group related classes and interfaces. If the package
does not exist in the project, it is created.

sqlDB jdbc/tradedb—Specifies the name of the database accessed
by the application. In a J2EE environment, this specifies the
data source.

sqlID db2admin—The user ID used when installing the trade sample
application (see “Loading the trade sample” on page 57).

sqlPassword db2admin—The password used when installing the trade
sample application.

system WIN—Specifies the target system for the generated source
code. Java code for a J2EE environment on Windows is
generated.

If you select Java Target System (All), then you can set more options, for
example:

destXxxx You would specify destHost and destPort when building on
another machine using a build server. For building on the local
machine, this is not required and no build server must be
started.

Figure 8-23 show the build descriptor options.
 Chapter 8. Implementing EGL actions 207

Figure 8-23 Build descriptor options for Java

Save the changes and close the winbld part by clicking the X on its tab. Refer to
the Enterprise Developer Help for details on the build description options not
presented here.

Creating linkage options
To access the generated Java code from Struts action classes, we also have to
generate Java wrapper classes for the programs. A Java wrapper is a generated
Java program that calls another generated program; therefore the build process
requires linkage options to specify how the call will be made. The linkage options
part is then used as input to a build descriptor part that generates the wrapper
code.

We first create linkage options for a simple Java-to-Java call.

� Make sure the buildDescriptors.eglbld file is visible in the EGL Outline
view.

� Select the buildDescriptors node at the top of the hierarchy and select Add
Part from the context menu.

� Select the Linkage Options radio button and click Next.

� Enter wrapperopts as the name of the part and click Finish.

The linkage options are visible in the parts editor; however, the CallLink elements
list is empty.
208 Legacy Modernization with WebSphere Studio Enterprise Developer

� Click Add at the bottom of the CallLink elements table. This adds a line for a
program.

� Replace NewName with an asterisk character *. This column identifies the
program to be invoked by name. By entering an asterisk, we specify that this
entry is used for all programs.

� In the type column, select remoteCall from the drop-down list. A remote call
uses EGL middleware and allows for a return value; a local call would not use
EGL middleware.

We must now adjust the properties for the call. With the CallLink entry of *
selected, make the following adjustments:

package tradeEGL.genned—The package into which the EGL program
is generated.

remotePgmType EGL—The called program is an EGL-generated Java
program.

remoteBind GENERATION—The properties used for the call are set at
generation time. The other option is runtime, in which case
the calling options can be set at run time.

remoteComType DIRECT—The invocation should be a direct Java invocation in
the same process.

Figure 8-24 shows the resulting linkage option part. Save the changes.

Figure 8-24 Linkage options for Java wrapper generation
 Chapter 8. Implementing EGL actions 209

Creating a Java wrapper build descriptor
A Java wrapper build descriptor is a normal build descriptor but with some
options set to generate Java wrapper code and an associated linkage options
part.

� Make sure the buildDescriptors.eglbld file is visible in the EGL Outline
view.

� Select the buildDescriptors node at the top of the hierarchy and select Add
Part from the context menu.

� Select the Build Descriptor radio button and click Next.

� Enter wrapperbld as the name of the part and click Finish.

� In the Category drop-down list, select Java Wrapper (Basic). Enter the
following values for the options:

genProject ItsoMyTradeWeb—The Java wrapper code is generated
into this project.

genProperties YES—we want environment files generated.

linkage wrapperopts—The wrapperopts linkage options part is
used to generate the calling properties for the wrapper
code.

packageName tradeEGL.genned—Java package for output.

system JAVAWRAPPER—Java wrapper classes are generated.

� Save the changes and close the buildDescriptors.eglbld file (Figure 8-25).

To make easier for you to see which options have been specified, check the box
Show only specified options.

Figure 8-25 Java wrapper build descriptor
210 Legacy Modernization with WebSphere Studio Enterprise Developer

Generating Java
Once the control parts have been configured as described, Java code can be
generated from the EGL perspective.

� Select the eglsource folder and select Generate EGL With -> Target System
Build Descriptor from the context menu.

� In the dialog box, make sure the check box for logac is ticked. Click Next.

� For the build descriptor, select the correct winbld entry from the drop-down
list. You can choose the entry either for all of the parts, or for an individual
part. Because we only have one part, it has the same effect (Figure 8-26).

winbld (ItsoMyTradeWeb/Java Source/eglsource/buildDescriptors.eglbld)

Figure 8-26 Selecting the build descriptor

Be careful to select the correct build descriptor. The Trade project from the
real sample application shipped with Enterprise Developer also contains a
build descriptor named winbld.

� Click Next (we can skip the SQL user ID panel) and click Finish.

The Java source is now generated and placed in the project and package that is
specified in the control parts of the build descriptor specified. The Generation
Results view opens with messages:

IWN.VAL.9994.i 1/1 Program logac generated using build descriptor winbld
from file ItsoMyTradeWeb/Java Source/eglsource/buildDescriptors.eglbld.
IWN.VAL.9996.i 1/1 Generation completed for program logac with no errors.
 Chapter 8. Implementing EGL actions 211

Generating the Java wrapper
We can now generate the Java wrapper code that is used in the Struts action
classes. Perform the same steps as for generating the Java program:

� Select the eglsource folder and select Generate EGL With -> Java Wrapper
Build Descriptor from the context menu.

� In the dialog box, make sure the check box for logac is ticked. Click Next.

� For the build descriptor, select the correct wrapperbld entry from the
drop-down list and click Finish.

wrapperbld (ItsoMyTrade/Java Source/eglsource/buildDescriptors.eglbld)

Generated Java code
Five Java classes are generated into the tradeEGL.genned package—the first
three from winbld and last two from wrapperbld:

� logac—The program. The main script is in the start method. The two
functions are in the $funcregistry$002dselect and $funcregistry$002dadd
methods.

� Ezelogws—This class represents the logws working storage record.

� Ezeregistry—This class represents the SQL record.

� LogacWrapper—This is the Java wrapper class.

� Logws—This class represents the logws working storage record for the Java
wrapper.

Generated deployment descriptor
The environment variables, such as database connection information, is stored in
the Web application deployment descriptor web.xml (in the WEB-INF folder).

Open the web.xml file and select the Environment tab (Figure 8-27).

Tip: You can select Generate EGL With -> Target System and Java Wrapper
Build Descriptors to combine the two generation steps. You are then prompted
to select the build descriptor for each steps.
212 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 8-27 Web deployment descriptor with EGL environment variables

Defining the default build descriptors
Instead of selecting the build descriptor each time you generate code, you can
set up the default build descriptors for a project or for an individual file. Select the
ItsoMyTradeWeb project and Properties from the context menu.

Select EGL Default Build Descriptors and set the defaults for the three actions
(target system, debug, Java wrapper) as shown in Figure 8-28.

Figure 8-28 Defining default build descriptors

You can define the default for debug later after we have defined a build descriptor
for debugging purposes.
 Chapter 8. Implementing EGL actions 213

Testing EGL programs
EGL programs can be tested through the EGL debugger in Enterprise Developer
without having to create a J2EE application.

Preparing the project
Because the EGL program accesses the TRADEDB database, we have to add the
JDBC driver to the Java build path:

� Open the properties of the ItsoMyTradeWeb project (select the project and
Properties from the context menu).

� Select the Java Build Path entry and on the Libraries page, click Add Variable.

� In the New Variable Classpath Entry dialog, select the DB2JAVA variable and
click OK to add the db2java.zip file to the class path.

� Click OK to close the properties of the project.

Create build descriptor for debugging
EGL code can be debugged directly in the Enterprise Developer environment.
This is done by creating a mapping file that cross-references generated Java
code with the EGL source lines from which it was generated. As the Java class
runs, the Enterprise Developer EGL debugger views shows the EGL source. The
user can step through the EGL statements, inspect EGL data items, and change
data values.

To create the appropriate Java code for debugging EGL, we have to create a
special build descriptor part. In the buildDescriptors.eglbld file, add a new
build descriptor part called windebugbld. Set the build options as follows:

dbms DB2—Tells EGL the database type.

debug YES—Tells EGL to generate Java code with debug hooks into
the EGL script.

genProject ItsoMyTradeWeb—The Workbench project where the generated
code will be stored.

genProperties YES—Causes EGL to generate the environment properties file.

J2EE NO—The code will not run in a J2EE environment. EGL will
store the run-time parameters in a properties file and create a

Tip: Set the category in the build descriptor part editor to Java Debugging
(Basic) to narrow the build descriptor options list.
214 Legacy Modernization with WebSphere Studio Enterprise Developer

main method for the Java class. This is required for debugging
the Java class.

packageName tradeEGL.debug—Target Java package.

sqlDB jdbc:db2:tradedb—For debugging outside of J2EE. It
specifies the JDBC URL of the database.

sqlID db2admin—The user ID used when installing the trade sample
application (see “Loading the trade sample” on page 57).

sqlJDBCDriverClass
COM.ibm.db2.jdbc.app.DB2Driver— JDBC driver class used to
access the database.

sqlPassword db2admin—The password used when installing the trade
sample application.

system WIN—The target system is Windows.

Save the build descriptor and close buildDescriptors.eglbld (Figure 8-29).

Figure 8-29 Build descriptor for debugging
 Chapter 8. Implementing EGL actions 215

Generating code for debugging
We are now ready to generate EGL code that we can debug:

� In the eglsource folder, select the logac.eglpgm file and Generate EGL With
-> Java Debugging Build Descriptor from the context menu.

� Make sure the check box for the logac program is ticked and click Next.

� Select the windebugbld build descriptor and click Finish.

windebugbld (ItsoMyTradeWeb/Java Source/eglsource/buildDescriptors.eglbld)

Generated files
Three Java classes (logac, Ezelogws, Ezeregistry) are generated into the
tradeEGL.debug package.

Two files are generated into the Java Source folder:

� The logac_debug.xml file is the mapping file between EGL source code and
generated Java code.

� The logac.properties file contains the database connection information.

Debugging EGL code
An EGL-generated Java program can be launched with the EGL debugger by
setting up a launch configuration when starting the Java class.

Setting breakpoints
You can set breakpoints in an EGL program in the same way as in a Java
program. Open the logac.eglpgm program, place the cursor into the left-hand
border of the code, and select Add Breakpoint from the context menu (or
double-click in the border):

� Set a breakpoint at the start of the program (at the line ezefec = 1).

� Set breakpoints in the two functions that issue SQL calls.

� Set a breakpoint at the last line of the main program. This makes it easy to
check the variables after the SQL calls have been processed.

� Close the editor (save is not necessary).

Note that you lose breakpoints when you update the source using the Part Editor.

Note: You can add the windebugbld build descriptor as the default to the
project properties (Figure 8-28 on page 213).
216 Legacy Modernization with WebSphere Studio Enterprise Developer

Configuring the logac program for debugging
The EGL program is run from the Java code that has been generated.

� In a Java perspective, navigate to the logac Java program in the
tradeEGL.debug package.

� Select the logac class and click the Debug icon or select Run -> Debug...

� The Launch Configurations dialog opens (Figure 8-30).

– Select Debug an EGL Java program and click New (at the bottom).

– logac is added under Debug an EGL Java program.

– In the right-hand pane, logac (as name) and ItsoMyTradeWeb (as project)
are prefilled. Enter tradeEGL.debug.logac as the class name.

– Click Apply and then Debug.

Figure 8-30 Launch configurations

Tip: After setting up the launch configuration, the next time you want to debug
the logac class, click the arrow pull-down of the Debug icon and select the
logac entry.
 Chapter 8. Implementing EGL actions 217

Debug perspective
The Debug perspective opens and the program stops at the breakpoint
(Figure 8-31):

� Expand the program in the Variables view to see the data items of the logws
working storage record.

� You can also expand the parameters, variables, and parts in the Outline view.

Figure 8-31 Debugging an EGL program

Important: The source pane looks different depending on what EGL editor
was used last on the logac.eglpgm file. Figure 8-31 shows the format used
when the EGL Part Editor was used last.
218 Legacy Modernization with WebSphere Studio Enterprise Developer

Debugging the logac program
To run through the retrieve of an existing user, we have to set up the userid
variable in the logws working storage record.

� In the Variables view, select the userid item and Change Variable Value from
the context menu (or double-click the variable name).

� The space after the item name opens for editing. Enter uid:1 as the new
value and press Enter. (uid:1 is a valid user ID in the traderegistrybean
table.)

� Change the value of the password item to xxx in the same way.

� Change the value of the action item to inquire in the same way (Figure 8-32).

Figure 8-32 Change variable values

Step through the program:

� Use the Step over icon in the Debug view. Note how values of changed
variables appear in red in the Variables view.

� Use the Step into icon when you come to the registry-select() line.
This brings you into the function instead of stepping over it.

� Continue stepping through the code.

To test the registry-add function:

� Restart the debugger by selecting the logac entry in the Debug icon
pull-down.

� At the first breakpoint, change the logws variables to:

– userid: anything (for example, your name)
– password: anything
– action: add

� Step through the code or click the Run icon .
 Chapter 8. Implementing EGL actions 219

� When finished, you can check that a row was inserted into the registry table
by executing these SQL statements in a DB2 command window:

D:\SQLLIB\BIN>db2 connect to tradedb
D:\SQLLIB\BIN>db2 select substr(userid,1,8), substr(password,1,8), status

from db2admin.traderegistrybean where userid = 'anything'

Experiment with the debugger:

� Look at the Breakpoint view to see all the breakpoints. You can remove them
easily from this view.

� In the Variables view, select Show Type Names and Show Detail Pane from
the context menu. This displays the types and definitions of selected variables
(Figure 8-33).

Figure 8-33 Variable details

Close the Debug perspective when done.
220 Legacy Modernization with WebSphere Studio Enterprise Developer

Incorporating EGL code into a Struts application
An EGL-generated Java wrapper for an EGL-generated program is a JavaBean
class. This makes it very easy to incorporate the EGL programs into other Java
applications as well as Struts applications.

The recommended design practice is to create a model object that accesses the
EGL wrapper classes and performs other business logic. The Struts action class
calls the model object passing the parameters from the input form. The results
from the model object are passed to the output form, which renders the results
on the client workstation.

This approach may seem like overkill in our sample application, because we are
only accessing one EGL program and not performing any further processing on
the result of the EGL program call. However, in a more complex environment, we
may be accessing many EGL programs and combining the results using some
business logic from another EGL program before returning to the calling object.
This processing is too complex for a Struts action class because it will embed too
much business logic in the controller components of the MVC-2 pattern.

The Enterprise Developer can create an action class that calls an EGL program
wrapper to execute an EGL program. Using this approach, we can see what
coding is required in the model class that we want to create.

Our approach is:

� Create an action class for an EGL program.

� Break the code into a model class with the processing and a simple action
class that calls the model class.

Creating an action class for an EGL program
We create a new action class in the ItsoMyTradeWeb project in a new Java
package called strutsEGL. This package will contain action classes and model
objects that access EGL Java programs.

� In the Web perspective create a Java package named strutsEGL in the Java
Source folder.

� Create a EGLLoginAction class (New -> Other -> Web -> Struts -> Action
Class), subclass of org.apache.struts.action.Action (Figure 8-34).

– Make sure the package is set to strutsEGL.

– Select perform and inherited abstract methods.

– Select EGL Struts Action for the Code Generation Model.
 Chapter 8. Implementing EGL actions 221

Figure 8-34 EGLLoginAction class

– Click Next.

� For the mapping that is added to the Struts configuration file (Figure 8-35):

– Change the mapping path to /EGLLoginAction.

– Add two forwards, failure and success, to point to /index.jsp and
/home.jsp (click Add twice, then change the two entries).

– Select loginForm in the pull-down for the form bean name.

– Click Next.
222 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 8-35 EGLLoginAction class mapping

� For the program or wrapper name (Figure 8-36):

– Select Select EGL Wrapper and click Browse to locate the LogacWrapper.

– We could also select the EGL program itself and a wrapper would be
generated for us. Because we already have the wrapper, we just use it.

– Click Next.

Figure 8-36 EGLLoginAction class program wrapper
 Chapter 8. Implementing EGL actions 223

� For the data mappings (Figure 8-37):

– Click Add (form bean). In the dialog, expand the Loginform (input, left side)
and the Logws record (output, right side). Select matching pairs
(username—userid, password—password) and click Add for each pair.

Figure 8-37 EGLLoginAction data mappings

� Click Finish and the EGLLoginAction class is opened in the Java editor.

Tailor the perform method
Change the perform method try/catch block as shown in Figure 8-38.

The perform method creates an instance of the wrapper class (LogacWrapper)
and the input record (Logws), and fills the record with the form data. We set the
action and execute the wrapper. The status variable of the Logws record signifies
if the credentials were successfully authenticated (value 1).

If the authentication was successful, the request object uidbean attribute is
updated with the user ID information so that further processes know that the user
has been authenticated. If the authentication was unsuccessful, then the uidbean
attribute in the request object is reset and an error object is created and added to
the error list.
224 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 8-38 EGLLoginAction class extract (changes are in bold)

......
import tradeEGL.genned.LogacWrapper; <=== generated
import tradeEGL.genned.Logws; <=== not generated

public class EGLLoginAction extends Action {
private CSOPowerServer powerServer;
public EGLLoginAction() {

try {
powerServer = new com.ibm.vgj.cso.CSOLocalPowerServerProxy();

} catch (com.ibm.vgj.cso.CSOException e) {
e.printStackTrace();

}
}
public ActionForward perform(

ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)

throws IOException, ServletException {
// Get the form bean.
strutscommon.LoginForm actionForm = (strutscommon.LoginForm) form;
// Create ActionErrors.
org.apache.struts.action.ActionErrors errors = new ActionErrors();
// Declare the return value.
org.apache.struts.action.ActionForward forward = null;
// Create an instance of the wrapper class
LogacWrapper wrapper = new LogacWrapper(powerServer);
// Create instances of each of the record parms
//
Logws newLogws = wrapper.getLogws();
// Add your code here to set up newLogws
newLogws.setUserid(actionForm.getUsername()); <=== generated
newLogws.setPassword(actionForm.getPassword()); <=== generated
newLogws.setAction("inquire"); <=== set action
try {

// execute the wrapper
wrapper.execute();
if (Integer.parseInt(newLogws.getStatus()) == 1) { <=== test value

request.getSession(true).setAttribute("uidBean",
actionForm.getUsername());

} else {
request.getSession(true).setAttribute("uidBean", "");
errors.add("login", new ActionError("error.login.failed"));

}
powerServer.close();

} catch (Exception e) {
// Report the error using the appropriate name and ID.
// errors.add("name", new ActionError("id"));
errors.add("login", new ActionError("error.login.exception"));
e.printStackTrace();

}
........
 Chapter 8. Implementing EGL actions 225

The power server is closed so that any connections to remote systems are
closed.

If an exception is thrown, we add an error to the errors list.

The rest of the generated perform method code (not shown in Figure 8-38) either
forwards a success or failure mapping, depending on wheter errors are present
in the error list.

Creating the Login model object
To enable our action class to work with different implementations, we extract the
main logic from the perform method into its own model class called Login:

� Create a Login class in the strutsEGL package.

� The Login class is opened in the Java editor. Add the import statements and a
perform method to the class, with code as shown in Figure 8-39.

� Save the new class.

Remember that the logac program can perform an inquiry of user credentials as
well as add a new user to the user registry. In this case, we want to perform an
inquiry. Therefore, the perform method sets the action item for the record
instance to inquire and also sets the userid and password that is passed as a
parameter to the method.

The execute method on the LogacWrapper performs the action using the Logws
instance that was set in the wrapper class. The Logws data record also contains
an item for the status, which is passed back to the calling program.

Basically, the perform method contains the logic from the EGLLoginAction class:

� Create a power server, a LogacWrapper, and a Logws.

� Set the user ID, password, and action into the Logws record and execute the
wrapper.

� The perform method returns the status from the Logws record. If exceptions
are thrown, a status value of 0 is returned.
226 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 8-39 Login class with perform method

package strutsEGL;

import com.ibm.vgj.cso.CSOException;
import com.ibm.vgj.cso.CSOLocalPowerServerProxy;
import com.ibm.vgj.cso.CSOPowerServer;
import tradeEGL.genned.LogacWrapper;
import tradeEGL.genned.Logws;

public class Login {

private CSOPowerServer powerServer;

public int perform(String userid, String password) {
try {

powerServer = new CSOLocalPowerServerProxy();
} catch (CSOException e) {

e.printStackTrace();
return 0;

}

// Create an instance of the wrapper class
LogacWrapper wrapper = new LogacWrapper(powerServer);

// Set up parameter Logws
Logws newLogws = wrapper.getLogws();

try {
newLogws.setUserid (userid);
newLogws.setPassword(password);
newLogws.setAction ("inquire");

// execute the wrapper
wrapper.execute();
powerServer.close();

try { return Integer.parseInt(newLogws.getStatus()); }
catch (NumberFormatException e) { return 0; }

} catch (Exception e) {
System.out.println("Login Exception: " + e.getMessage());
e.printStackTrace();
return 0;

}
}

}

 Chapter 8. Implementing EGL actions 227

Creating an action class for the EGL model
We could now remove the logic from the EGLLoginAction class and use the Login
model object for the processing. However, it is almost easier to create a new
simple action class that uses the Login model. This also enables us to keep the
EGLLoginAction untouched:

� Create a EGLLoginAction2 class (New -> Other -> Web -> Struts -> Action
Class), subclass of org.apache.struts.action.Action:

– Make sure the package is set to strutsEGL.
– Select perform and inherited abstract methods.
– Select Generic Action Class for the Code Generation Model.
– Click Next.

� For the mapping that is added to the Struts configuration file:

– Change the mapping path to /EGLLoginAction2.
– Add two forwards, failure and success, to point to /index.jsp and

/home.jsp.
– Select loginForm in the pull-down for the form bean name.

� Click Finish and the EGLLoginAction2 class is opened in the Java editor.

� Change the perform method try/catch block as shown in Figure 8-40.

� Save the class.

Figure 8-40 EGLLoginAction2 perform method extract

try {
// do something here
int status = 0;
String userid = loginForm.getUsername();
String password = loginForm.getPassword();
// make EGL call
Login login = new Login();
status = login.perform(userid, password);
if (status == 1) {

request.getSession(true).setAttribute("uidBean", userid);
} else {

request.getSession(true).setAttribute("uidBean", "");
errors.add("login", new ActionError("error.login.failed"));

}
} catch (Exception e) {

// Report the error using the appropriate name and ID.
errors.add("login", new ActionError("error.login.exception"));
e.printStackTrace();

}

228 Legacy Modernization with WebSphere Studio Enterprise Developer

The perform method creates an instance of the Login model class and calls its
perform method passing in the username and password from the input form. The
Login.perform returns an integer signifying if the credentials were successfully
authenticated.

If the authentication was successful, the request object uidbean attribute is
updated with the user ID information so that further processes know that the user
has been authenticated.

If the authentication was unsuccessful, then the uidbean attribute in the request
object is reset and an error object is created and added to the error list.

The generated perform method code then either forwards a success or failure
mapping depending on errors being present in the error list.

This completes the changes required to have the Struts application access the
EGL-generated code.

Modifying the Struts configuration file
The Struts configuration file has to be modified so that the action class
implementation is mapped correctly for the application.

� Open the Struts configuration file (struts-config.xml) located in the Web
Content/WEB-INF folder.

� There are now three actions—loginAction, EGLLoginAction, and
EGLLoginAction2.

� Select the EGLLoginAction action path:

– Add /index.jsp in the Input field. We use the same welcome page for the
EGL action.

– Make sure that the Form Bean Name is set to loginForm.

– Make sure that success and failure map to home.jsp and index.jsp.

� Make the same change for the EGLLoginAction2:

– Add /index.jsp as the Input field.

– Check the Form Bean Name and the success/failure actions.

� Save the changes.

� The Actions page of the configuration file should appear as in Figure 8-41.
 Chapter 8. Implementing EGL actions 229

Figure 8-41 Struts configuration for the EGLLoginAction

Modifying the welcome page
The welcome page (index.jsp) invokes the loginAction. To use the EGL
program we can use either the EGLLoginAction or the EGLLoginAction2.

We will use the EGLLoginAction2 and invoke the EGL program through the Login
model object.

We can change the action in the form:

from: <html:form action="/loginAction">
to: <html:form action="/EGLLoginAction2">

Alternatively, we create a duplicate form inside the index.jsp so that we can
invoke either the Struts action or the EGL action (Figure 8-42).
230 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 8-42 Welcome page with two actions

Preparing the Struts server
The Struts application accesses the TRADEDB database through the EGL program.
We defined the data source as jdbc/tradedb (see “Configuring control parts for
Java generation” on page 207), and therefore have to define this data source to
the test server.

In the Server perspective, open the StrutsServer configuration from the Server
Configuration view. The only change we have to perform is in the Data source
page. Note there are Node Settings and Server Settings. Scroll down to Server
Settings.

� For JDBC provider list, click Add.

<body>
<h1 align="center"><bean:message key="index.title"/></h1>
<h2>Struts Normal</h2>
<html:form action="/loginAction"> <==== ORIGINAL FORM
<html:errors/>
<p>
<table>
 <tr>

<td><bean:message key="global.field.username"/></td>
<td><html:text property="username" size="20" maxlength="30"/></td>

 </tr>
 <tr>

<td><bean:message key="global.field.password"/></td>
<td><html:password property="password" size="20" maxlength="30"/></td>

 </tr>
</table>
<p>
<html:submit><bean:message key="welcome.button.login"/>
</html:submit>
<input type="reset">

</html:form>
<hr>
<h2>Struts EGL</h2>
<html:form action="/EGLLoginAction2"> <==== DUPLICATE FORM
...
... same as above
...
</html:form>
</body>
 Chapter 8. Implementing EGL actions 231

� In the dialog, select IBM DB2 for the database type, DB2 JDBC Provider for
provider type, and click Next.

� Enter DB2JdbcDriver as the name. The implementation class name is prefilled
with COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource, and the class path
points to the db2java.zip file. Click Finish.

� The DB2JdbcDriver is added to the JDBC provider list (Figure 8-43).

Figure 8-43 Adding a JDBC driver to the server

� Select the DB2JdbcDriver.

� For data source (below the driver) click Add. In the data source dialog:

– Select Version 5.0 data source and click Next.

– Enter TRADEDB (as the name), jdbc/tradedb (as the JNDI name), and
com.ibm.websphere.rsadapter.DB2DataStoreHelper for the helper class
(Figure 8-44).

– Click Next.
232 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 8-44 Defining the data source for the TRADEDB database

– For the resource properties, select the databaseName property and enter
TRADEDB as value. Leave the other properties as defaults. Click Finish.

The Server Settings are shown in Figure 8-45.
 Chapter 8. Implementing EGL actions 233

Figure 8-45 Data source for the trade database

� Save and close the server configuration.

Testing the Struts application with the EGL action
The ItsoMyTradeEAR project is attached to the StrutsServer. In the Server
perspective, start the StrutsServer, wait for the console message
Server...open for e-business, then select the ItsoMyTradeWeb project and Run
on Server from the context menu.

The welcome page (index.jsp) appears. In the Struts EGL form, enter a user ID
of uid:1 and a password of xxx (three x’s). If the application is working, you
should see the home page in the Struts Web application flow.

The login is authenticated against the registered users in the database. The
traderegistrybean table has been primed with 500 user IDs starting with uid:0
up to uid:499. The password for each user ID is xxx.
234 Legacy Modernization with WebSphere Studio Enterprise Developer

Sample run
From the modified welcome page, we can select the normal action or the new
EGL action (Figure 8-46).

Figure 8-46 Struts application run with EGL action

success

failure
 Chapter 8. Implementing EGL actions 235

Recommendations for EGL files
Here are some recommendations for the number and size of EGL files. These
recommendations are based on the facts that:

� EGL files can reference other EGL files

� EGL files can contain multiple parts

� EGL parts can include other parts

� Whenever a file is changed, a rebuild of the file is performed

Rebuilding of a file can be time consuming, depending on how many other files
are referenced by the changed file, and by how many other files include the
changed file. On the other hand, putting too many parts into a single file has
adverse effects on the performance of the editor.

To work efficiently with EGL files and parts, we recommend:

� Put less than 500 parts into a file.

� Keep non-shared parts in the same file as the program that uses them.

� Avoid wildcard includes.

� Group shared parts in egldef files by affinity. Avoid putting lots of unrelated
parts in the same shared parts file.

� After following the other rules, minimize the number of shared files you have
to include.
236 Legacy Modernization with WebSphere Studio Enterprise Developer

Chapter 9. Implementing EJB actions

This chapter describes creating EJBs from EGL programs and how to access
EJBs from a Struts action class.

For a more in-depth discussion on EJBs, please refer to the redbook Web
Services Wizardry with WebSphere Studio Application Developer, SG24-6292.

In this chapter, the following topics are discussed:

� How to generate a session EJB as a wrapper to an EGL program
� How to incorporate a session EJB into a Struts action class
� Testing EJB code

9

© Copyright IBM Corp. 2002. All rights reserved. 237

Generating EJB session beans from EGL
EGL can generate Java wrapper code as session EJBs. This allows the wrapper
code to take advantage of J2EE EJB container functions, such as transaction
management, object caching, and object life-cycle management.

Creating an EJB project
Session EJBs must be stored in an EJB project. Create a new project as follows:

� In the New dialog, select EJB (left pane) and EJB Project (right pane).

� For the EJB Version, select Create 2.0 EJB Project.

� Enter ItsoMyTradeEJB as the name of the project.

� For the enterprise application project, select Existing and Browse to the
ItsoMyTradeEAR project.

� Click Finish.

The J2EE perspective opens and you can see the new EJB module.

Set the EJB module dependency in the Web project
The ItsoMyTradeWeb project will use the session EJB in the EJB project:

� Select the ItsoMyTradeWeb project (expand Web Modules) and Properties
from the context menu.

� Select Java JAR Dependencies and select the ItsoMyTradeEJB.jar file.

� Select Java Build Path and on the Projects page select the ItsoMyTradeEJB
project.

� Click OK.

Switch back to the EGL perspective.

Creating linkage options for a session EJB wrapper
The linkage options for a Java wrapper control if a session EJB is created. When
the call link type for a called program is set to ejbCall, EGL generates a wrapper
as well as a session EJB. The linkage options part is specified in the build
descriptor for a Java wrapper.

Important: You get a prompt to repair the server configuration and add the
EJB project to the server because the owning EAR project is attached to the
server. Click OK.
238 Legacy Modernization with WebSphere Studio Enterprise Developer

� Edit the buildDescriptors.eglbld file (in eglsource of the ItsoMyTradeWeb
project) and create a new linkage options part called ejbwrapperopts by
selecting Add Part, select Linkage Options, and enter the name
ejbwrapperopts (Figure 9-1).

Figure 9-1 Build descriptor options for EJB generation

� Click Add under the CallLink elements table.

� For the new entry set the program name to * and the type to ejbCall.

� Set these options:

package tradeEGL.genned—The package into which the EGL
program was generated. This is not the package where
the session EJB will be generated.

remoteBind GENERATION—The properties used for the call will be set
at generation time. The other option is runtime, in which
case the calling options can be set at run time.

remoteComType DIRECT—The invocation should be a direct Java
invocation in the same process.

remotePgmType EGL—The called program is an EGL-generated Java
program.

� Save the changes.

Essentially, the only difference between the linkage options part of an EJB
session bean and a standard JavaBean is the callLink type.
 Chapter 9. Implementing EJB actions 239

Creating a build descriptor for a session EJB wrapper
We can create a new build descriptor to reference this linkage options part:

� Create a new build descriptor for a Java wrapper called ejbwrapperbld.

� In the Category drop-down list, select Java Wrapper (Basic). Enter the
following values for the options (similar to the options used for wrapperbld
(see “Creating a Java wrapper build descriptor” on page 210):

genProject ItsoMyTradeEJB—The EJB project where the session bean
is generated.

genProperties YES—we want environment files generated.

linkage ejbwrapperopts—The linkage options part.

packageName tradeEGL.ejbs—Java package for output session EJB.

system JAVAWRAPPER—Java wrapper classes are generated.

� Save the changes and close the file.

Generating the session EJB wrapper and the session EJB
We are now ready to generate the EJB session bean wrapper:

� Select the eglsource folder and Generate EGL With -> Java Wrapper Build
Descriptor from the context menu.

� In the dialog box, make sure the check box of logac is selected. Click Next.

� For the build descriptor, select ejbwrapperbld from the drop-down list.

� Click Finish.

The EJB session bean source code is generated into the tradeEGL.ejbs package
of the ItsoMyTradeEJB project.

Generated session EJB and helper code
Switch to the J2EE perspective and J2EE Hierarchy view. You can see a session
EJB named LogacEJBBean (Figure 9-2):

The session EJB consists of three Java classes:

� LogacEJBHome—This is the home interface (used by clients to create an
instance). The only method in this class is create.

� LogacEJB—This is the remote interface (used by clients to access the EJB).
The only method in this class is call.

� LogacEJBBean—This is the session bean implementation. This class extends
CSOSupportSessionBean and implements the call method.
240 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 9-2 Session EJB in J2EE Hierarchy view

The assembly descriptor specifies that transactions are required for the call
method on the LogacEJB session bean.

Switch to the J2EE Navigator view and you can see that two more classes have
been generated into the tradeEGL.ejbs package (Figure 9-3):

� LogacWrapper—This is the wrapper class that calls the session EJB (in a way,
this is the client that uses the EJB).

� Logws—This class represents the working storage record that is used as a
parameter to the call method of the EJB.

Figure 9-3 Session EJB in J2EE Navigator view
 Chapter 9. Implementing EJB actions 241

EJB deployment descriptor
In the J2EE view, double-click the ItsoMyTradeEJB module. This opens the EJB
deployment descriptor editor, where you can see the definition of the
LogacEJBBean by going through the tabs.

Generate the deployed code
Before an EJB can be used, the deployed code and the RMI-IIOP code must be
generated and built from the generated EJB session bean source code.

� Select the ItsoMyTradeEJB project and Generate -> Deploy and RMIC Code
from the context menu.

� Select the check box for the LogacEJBBean and click Finish.

The deploy and RMI code is generated. You can see a number of additional
classes in the tradeEGL.ejbs package (in the Navigator view).

Regenerating the EGL program and wrapper
The session EJB is in the EJB project and will run in the EJB container of the
application server. The generated logac program is in the Web project, but will be
accessed by the session EJB. This is not possible in an application server.

We have to generate the logac program into the EJB project for this to work.
There is no problem for the Struts application to access the logac program in the
EJB project; a Web project can refer to an EJB project.

Edit the build descriptor
Edit the buildDescriptors.eglbld file:

� Edit the winbld part and change the genProject to ItsoMyTradeEJB.

� Edit the wrapperbld part and change the genProject to ItsoMyTradeEJB.

Important: If you leave the EGL program (tradeEGL.genned package) in the
Web project, then not even the direct Struts action to Java wrapper to EGL
program will work once the session EJB has been generated.

Moving the package from the Web project to the EJB project is not enough
either. When the logac program is generated into the EJB project, information
is added to the EJB deployment descriptor of the session bean.
242 Legacy Modernization with WebSphere Studio Enterprise Developer

Regenerate the EGL program and the wrapper
Select the eglsource folder and Generate EGL With -> Target System and Java
Wrapper Build Descriptors from the context menu:

� In the dialog box, make sure the check box of logac is selected. Click Next.

� For the Java wrapper build descriptor, select wrapperbld from the drop-down
list.

� For the target system build descriptor, select winbld from the drop-down list.

� Click Finish.

The generation process creates the tradeEGL.genned package in the
ItsoMyTradeEJB project (under ejbModule).

Check the EJB deployment descriptor
Edit the ItsoMyTradeEJB module in the J2EE perspective (double-click the
module):

� On the Beans page, select the LogacEJBBean.

� Scroll down to Environment Variables. You should find a number of
environment variables, such as vgj.jdbc.database, that were added to the
EJB deployment descriptor.

These variables provide the connection information for the logac program.

Delete the generated code from the Web project
In the ItsoMyTradeWeb project delete the tradeEGL.genned package (select the
package and Delete from the context menu).

Important: Check that the EJB wrapper bean (tradeEGL.ejbs.LogacWrapper)
uses iiop:/// to access the name server. In early code iiop:// was generated.

This may be corrected in your system, but check the code to make sure that
iiop:/// is used (there are four occurrences).
 Chapter 9. Implementing EJB actions 243

Testing the session EJB
You can test your session EJB using the StrutsServer that was created in
“Define a WebSphere test server” on page 138.

Start the server
� Open the Server perspective.

� In the Server Configuration view, double-click the StrutsServer. Select the
Configuration tab and make sure that Enable universal test client is selected.
Close the editor.

� In the Servers view, select the StrutsServer and start it. You know it is ready
when the Server open for e-business message appears in the Console view.

� Select the ItsoMyTradeEJB project and Run on Server from the context menu.
Select the StrutsServer. The universal test client starts in the browser.

Using the universal test client
The universal test client opens on the home page (Figure 9-4).

Figure 9-4 Universal test client home page

JNDI Explorer
Select the JNDI Explorer (Figure 9-5).

Tip: You can also start the universal test client in a browser using the URL:

http://localhost:9080/UTC/
244 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 9-5 Universal test client JNDI Explorer

EJB page with references
Select the LogacEJB to open the EJB page where the home interface is visible
under EJB References. Let us create an instance (Figure 9-6).

Figure 9-6 Universal test client EJB page with home interface

� Expand the LogacEJB and LogacEJBHome by clicking the arrows. Select the
LogacEJB create method and it appears in the Parameters pane. Click
Invoke.

� An instance of the session EJB is created and appears under Results. Click
Work with Object and the session EJB instance is added to the EJB
References.
 Chapter 9. Implementing EJB actions 245

We want to invoke the call method of the session EJB (Figure 9-7).

Figure 9-7 Universal test client EJB page with remote interface

� Expand the LogacEJB instance to see its methods. Select the Object[] call
method; this is the method to invoke the EGL program.

� The call method appears in the Parameters pane. Looking at the signature,
we see that a tradeEGL.ejbs.Logws bean is required as the parameter.

� The tool allows us to use a constructor to create a Logws bean by selecting the
Constructors pull-down and click the Logws() constructor. However, this
constructor creates an empty bean with no values for user ID and password.

� Alternatively, we can use a saved object from the Objects pull-down.

Creating objects for reuse
To create and populate a Logws object, we use the Utilities section (Figure 9-8).

Figure 9-8 Universal test client loading a class
246 Legacy Modernization with WebSphere Studio Enterprise Developer

� Expand Utilities and click Load Class.

� Enter tradeEGL.ejbs.Logws as class name and click Load.

� Click Work with Object and the class appears under Class References.

Next we invoke the constructor of the class to create a Logws object (Figure 9-9).

Figure 9-9 Universal test client creating a JavaBean

� Expand the Logws class and click the Logws() constructor.

� Click Invoke and then Work with Object and the Logws object appears under
Object References.

Next, we have to fill the Logws record with values (Figure 9-10).

Figure 9-10 EJB test client setting values
 Chapter 9. Implementing EJB actions 247

� Expand the Logws JavaBean under Object References.

� Select the setUserid method. Enter uid:1 as String value and click Invoke.

� Repeat this for the setPassword method with a value of xxx.

� Repeat this for the setAction method with a value of inquire.

� You can check the contents by invoking the getXxxx methods.

� The Logws working storage object is now ready to be used as a parameter in
the call method.

Using an object in a method
Select the call method of the LogacEJB bean again. In the Parameters, select the
Objects pull-down and select the Logws object that was created (Figure 9-11).

Figure 9-11 Universal test client using a JavaBean

We now have a valid Logws JavaBean that can be used as a parameter for the
call method.

Click Invoke to run the call method of the session EJB.

The call method of the session bean invokes the logac EGL program. The
method returns an array of objects with one instance.

Click Work with Object to have the result object added under Object References
(Figure 9-12).

Tip: If you get an error message that the CORBA object does not exist, then
the session bean instance has expired. Remove the session bean from the
EJB References (click the scissor icon), then create a new session bean using
the create method of the home (Figure 9-6 on page 245).
248 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 9-12 Universal test client invoking the call method

Analyze the result
We have to extract the object from the result array (Figure 9-13).

Figure 9-13 EJB test client result object

� Expand the result Object[1] and click Inspect Fields.

� Select the icon at the end of the object (Work with Object) and it appears
under Results.

� Click Work with Object and a Logws object appears under Object References.

To examine the result object, we have to cast it to a real Logws (Figure 9-14).
 Chapter 9. Implementing EJB actions 249

Figure 9-14 EJB test client casting a result object

� Select Cast Class under Utilities.

� Select tradeEGL.ejbs.Logws in the Object pull-down.

� Select Logws in the Cast to pull-down (it is the only one) and click Cast.

� Click Work with Object under Results and a Logws object appears under
Object References.

Expand the Logws object and select the getStatus method and click Invoke. The
result value 1 indicates success (Figure 9-15).

Figure 9-15 EJB test client result status indicates success
250 Legacy Modernization with WebSphere Studio Enterprise Developer

Testing the session EJB with the wrapper class
The test with the session EJB is very cumbersome because the result is an array
of objects. This becomes easier with the wrapper class.

Setting up the wrapper class is somewhat complex because we require a unit of
work object, CSOLocalPowerServerProxy.

Create power server and wrapper objects
In the EJB test client under Utilities, select Load Class. Enter a name of
com.ibm.vgj.cso.CSOLocalPowerServerProxy, click Load, and then Work with
Object under Results (Figure 9-16).

Figure 9-16 Load the power server unit of work class

Use the constructor to create a CSOLocalPowerServerProxy object. Select the
CSOLocalPowerServerProxy() constructor, click Invoke, and click Work with
Object.

Repeat this sequence for the wrapper class:

� Select Load Class under Utilities.

� Enter a name of tradeEGL.ejbs.LogacWrapper, click Load, and then Work
with Object under Results.

� Select the constructor LogacWrapper(CSOPowerServer) to create a
LogacWrapper object (Figure 9-17).

� Select the CSOLocalPowerServerProxy created earlier in the Objects pull-down
as parameter.

� Click Invoke and Work with Object.
 Chapter 9. Implementing EJB actions 251

Figure 9-17 Create the wrapper object

You have now two objects under Object References—LogacWrapper and
CSOLocalPowerServerProxy.

Create the working storage record
From the wrapper object, use the getLogws method to get a Logws working
storage record object (Figure 9-18).

Figure 9-18 Get a Logws record
252 Legacy Modernization with WebSphere Studio Enterprise Developer

Use the setUserid, setPassword, and setAction methods of the Logws object to
set the values to uid:1, xxx, and inquire.

Issuing the call to the session EJB
Select the call method of the LogacWrapper object to run the EGL program
through the session EJB. Use the Objects pull-down to select the Logws instance
(Figure 9-19). Alternatively, use the execute method.

Figure 9-19 Preparing the call from the wrapper class

Now click Invoke to issue the call (Figure 9-20).

Figure 9-20 Issuing the call from the wrapper class

The call method of the wrapper has no result; we have to retrieve the result from
the Logws object.
 Chapter 9. Implementing EJB actions 253

Retrieving the result
To retrieve the result, invoke the getStatus method in the returned Logws object
(Figure 9-21).

Figure 9-21 Retrieving the result of the wrapper call

Close the universal test client and stop the server.

Accessing an EJB from a Struts action class
As previously mentioned, a Struts action class represents a part of the controller
in the MVC-2 pattern. As such, the action class should interpret messages from
the view pages and call the appropriate model objects. Model objects can
interact with the EJB through the program wrapper or directly.

Using the program wrapper
The business logic is implemented as EJBs wrapped with a program wrapper,
and the action class interacts with the program wrapper. Figure 9-22 shows this
interaction in a simplified diagram.
254 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 9-22 Struts to EJB interaction using the program wrapper

We create a model object that makes use of the program wrapper to complete
the business logic.

In the ItsoMyTradeWeb project under the Java Source folder, there should already
be a Java package called strutsEGL. This package contains model objects that
access EGL Java programs.

Create a LoginEJB class in the strutsEGL package.

The LoginEJB class opens in the Java editor. Make the changes in the LoginEJB
class as shown in Figure 9-23. Save the LoginEJB class.

This is basically the same code as the Login model class; however, it uses the
LogacWrapper and Logws classes from the tradeEGL.ejbs package of the
ItsoMyTradeEJB project.

EGL
Program
Wrapper

Struts page

Struts action
class

EGL generated
session

Enterprise
JavaBeanEGL

Generated
Progam

Model
Object

EJB
 Chapter 9. Implementing EJB actions 255

Figure 9-23 LoginEJB model class for EGL EJB access through a wrapper

package strutsEGL;

import com.ibm.vgj.cso.CSOException;
import com.ibm.vgj.cso.CSOLocalPowerServerProxy;
import com.ibm.vgj.cso.CSOPowerServer;
import tradeEGL.ejbs.LogacWrapper;
import tradeEGL.ejbs.Logws;

public class LoginEJB {
private CSOPowerServer powerServer;

public int perform(String userid, String password) {

try {
powerServer = new CSOLocalPowerServerProxy();

} catch (CSOException e) {
e.printStackTrace();
return 0;

}

// Create an instance of the wrapper class
LogacWrapper wrapper = new LogacWrapper(powerServer);
// Set up parameter Logws
Logws newLogws = wrapper.getLogws();

try {
newLogws.setUserid (userid);
newLogws.setPassword(password);
newLogws.setAction ("inquire");

// execute the wrapper
wrapper.execute();
powerServer.close();

try { return Integer.parseInt(newLogws.getStatus()); }
catch (NumberFormatException e) { return 0; }

} catch (Exception e) {
System.out.println("LoginEJB Exception: " + e.getMessage());
e.printStackTrace();
return 0;

}
}

}

256 Legacy Modernization with WebSphere Studio Enterprise Developer

Using the session EJB directly
The business logic is implemented as EJBs and the action class can call the
session EJB directly. Figure 9-24 shows this interaction in a simplified diagram.

Figure 9-24 Struts to EJB interaction without using the program wrapper

We create a model object that looks up and uses the session EJB to complete
the business logic.

Create a LoginClient class in the strutsEGL package.

The LoginClient class opens in the Java editor. Make the changes in the Login
class as shown in Figure 9-25.

The logic of this implementation follows this path:

� First the home of the session EJB is acquired.
� A working storage record is setup with the user ID and password parameters.
� An instance of the session bean is created and the call method is invoked.
� The status is extracted from the result working storage record.

Save the LoginClient class.

Struts page

Struts action
class

EGL generated
session

Enterprise
JavaBeanEGL

Generated
Progam

EJB

Model
Object
 Chapter 9. Implementing EJB actions 257

Figure 9-25 LoginClient model class for EGL EJB direct call

import javax.ejb.EJBException;
import javax.naming.*;
import javax.rmi.PortableRemoteObject;
import tradeEGL.ejbs.*;

public class LoginClient {

public int perform(String userid, String password){
LogacEJBHome logacHome;
LogacEJB logacEJB;
Logws logws;
Logws result = null;

try {
InitialContext initCtx = new InitialContext();
Object objref = initCtx.lookup("LogacEJB");
logacHome = (LogacEJBHome)PortableRemoteObject.narrow

(objref,LogacEJBHome.class);
} catch (NamingException ex) {

System.out.println("Logac EJB home failed: " + ex.getMessage());
ex.printStackTrace();
return 0;

}
logws = new Logws();
logws.setUserid(userid);
logws.setPassword(password);
logws.setAction("inquire");

try {
logacEJB = logacHome.create();
Object resultobj[] = logacEJB.call(logws);
result = (Logws)(resultobj[0]);
try { return Integer.parseInt(result.getStatus()); }
catch (NumberFormatException e) { return 0; }

} catch (Exception e) {
System.out.println("Logac EJB call failed: " + e.getMessage());
e.printStackTrace();
return 0;

}
}

}

258 Legacy Modernization with WebSphere Studio Enterprise Developer

Testing the Struts application with the EJB
To run the trade application with the EJB all we have to do is change the
EGLLoginAction2 class to use the LoginEJB or LoginClient class instead of the
Login class.

In the perform method, change the code so that the Login, LoginEJB, or
LoginClient class is selected, depending on the user ID entered (Figure 9-26).

Figure 9-26 EGLLoginAction2 class calling different actions

public class EGLLoginAction2 extends Action {

public ActionForward perform(
......
try {

// do something here
int status = 0;
String userid = loginForm.getUsername();
String password = loginForm.getPassword();

// make EGL call
// - regular or EJB call depending on userid
// uid:x -> normal
// uid:xx -> EJB through wrapper
// uid:xxx -> EJB directly
if (userid.length() < 6) {

Login login1 = new Login();
status = login1.perform(userid, password);

}
else if (userid.length() < 7) {

LoginEJB login2 = new LoginEJB();
status = login2.perform(userid, password);

}
else {

LoginClient login3 = new LoginClient();
status = login3.perform(userid, password);

}

if (status == 1) {
request.getSession(true).setAttribute("uidBean", userid);

} else {
request.getSession(true).setAttribute("uidBean", "");
errors.add("login", new ActionError("error.login.failed"));

}
} catch
 Chapter 9. Implementing EJB actions 259

Using the welcome page
Redo the test as described in “Testing the Struts application with the EGL action”
on page 234:

� Start the server.

� Run the Web application (index.jsp) with different user IDs to test the access
to the session bean through the wrapper or directly:

uid:1 ==> non-EJB access through wrapper
uid:11 ==> session EJB access through wrapper
uid:111 ==> direct access to session EJB

� The output should be identical.

Using the universal test client
You can also use the universal test client to run the EGL part of the Struts
application that uses the session bean:

� Use the Load Class function to load the strutsEGL.LoginEJB class.

� Use the constructor to create an instance of LoginEJB.

� Use the perform method with parameters uid:1 and xxx to issue the call to
the session bean.

� The result is shown in Figure 9-27.

Figure 9-27 Universal test client using the LoginEJB class
260 Legacy Modernization with WebSphere Studio Enterprise Developer

Alternatively use the LoginClient class:

� Use the Load Class function to load the strutsEGL.LoginClient class.

� Use the constructor to create an instance of LoginClient.

� Use the perform method with parameters uid:1 and xxx to issue the call to
the session bean.

� The result is identical to Figure 9-27.

Debugging the Java code
You can set a breakpoint anywhere in your Java source code, including EJB and
Java code generated from EGL, to stop execution at that point in the code. To set
breakpoints:

� Open the strutsEGL.LoginAction class and set a breakpoint in the perform
method.

� Open the tradeEGL.ebjs.LogacEJBBean class and set a breakpoint in the call
method.

� In the Server perspective, start the server in debug mode.

� The Debug perspective opens. It provides better facilities than debugging in
the Server perspective.

� Run the application from the Server or Web perspective by selecting the
index.jsp and Run on Server.

� If you are prompted to step into the index.jsp, select Skip and Disable step
by step mode. Click OK. Step by step mode can be enabled and disabled in
the Debug view using the icon.

� The index.jsp displays in the Web browser. Enter uid:1 and xxx in the Struts
EGL form and click Login.

� The application stops at the first breakpoint encountered, and the Debug
perspective is displayed.

Debug perspective
In the Debug perspective you can see the source code of the program where the
breakpoint was encountered (Figure 9-28).

� Use the icons in the Debug view to step through the code.
 Chapter 9. Implementing EJB actions 261

Figure 9-28 Debug perspective for debugging Java code

� Use the Variables view to see the values of the currently accessible variables.
You can also change the values by selecting Change Variable Value from the
context menu.

– Select Show Type Names from the context menu and the variable names
are displayed with their full name (with package).

– Select Show Detail Pane from the context menu and a subpane opens that
displays the value.

– Select variables or expressions in the source and select Inspect or Display
from the context menu. Inspect opens the Expressions view, and Display
opens the Display view, where the result values are shown.

� You can place the cursor over a variable in the source and wait; the variable
value or its definition is displayed as a hover pop-up.
262 Legacy Modernization with WebSphere Studio Enterprise Developer

Preparation for deployment
Each EJB has a JNDI name that is registered with a name server. For testing, we
did not set a JNDI name and the default name LogacEJB was used (Figure 9-5 on
page 245).

In a real application server environment, JNDI names must be unique. A more
appropriate name may be trade/Logac. To change the JNDI name for
deployment:

� In the J2EE view of the J2EE perspective, open the ItsoMyTradeEJB module
in the EJB editor.

� On the Beans tab, select the LogacEJBBean and on the right side under
WebSphere Bindings change the JNDI name from LogacEJB to trade/Logac.

� Save the changes.

Important: Changing the JNDI name is currently not supported. The CSO
middleware is assuming a certain EJB naming convention based on the name
of the program being called. This may be allowed in the future.
 Chapter 9. Implementing EJB actions 263

264 Legacy Modernization with WebSphere Studio Enterprise Developer

Chapter 10. Generating COBOL for z/OS
from EGL

In this chapter we look at the process of generating COBOL programs from EGL
to run under CICS on z/OS.

We describe the deployment architecture, the prerequisites on z/OS, and the
process of generating the COBOL code using a build processor on z/OS.

10
© Copyright IBM Corp. 2002. All rights reserved. 265

COBOL generation and deployment architecture
Figure 10-1 shows how the Enterprise Developer generates and deploys the
code to z/OS.

Figure 10-1 EGL generation for z/OS

The sequence of operations is as follows:

� The Enterprise Developer generates the COBOL code as well as the control
files required for link edit, bind to relational database, and CICS tables into a
directory at the workstation.

� A build plan, which is an XML file, is generated. This build plan provides the
commands and instructions to control such operations as DB2 precompile,
CICS translation, compile, and link edit.

� Once the build plan is complete, the Enterprise Developer transfers the
generated files to the target platform using standard TCP/IP protocols.

� Once the transfer is complete, the z/OS build server is triggered to process
the build commands created.

EGL

Build
Descriptors
Options

EGL
Generation

Cobol

Build
Plan
(XML)

Bind
control

file

Link
edit
file

z/OS Build
Server

CICS
table
files

Executable

Enterprise Developer
266 Legacy Modernization with WebSphere Studio Enterprise Developer

� Results of the build process on z/OS are transmitted back to the originating
machine and the Enterprise Developer is notified of the success or failure.
Files, such as compile listings, are created at the workstation.

After Enterprise Developer applications are generated, prepared, and stored on
the z/OS system, the applications can be run with the support of Enterprise
Developer Server for z/OS (5655-I57). This product can also be used to run z/OS
programs developed with VisualAge Generator Developer.

The run-time library implements data conversion, file and database services,
CICS services, error handling, transaction control, and other functions shared
among generated applications.

Prerequisites for COBOL generation
Before you start generating COBOL, make sure that the following tasks are
completed on the workstation and on z/OS.

Workstation configuration
Make sure that you followed all the installation instructions described in the
Installation Guide, which is on the first installation CD-ROM (install.html or
install.pdf), particularly:

� The Microsoft Loopback Adapter is installed and configured.

� If your workstation is running Windows 2000, the file etc\hosts is modified.

z/OS configuration
The z/OS build server must be configured and started. Details on this task are in
Program Directory for WebSphere Studio Enterprise Developer Options for z/OS,
document number GI10-3242, which is on the installation CD-ROM that is
labeled WebSphere Studio Enterprise Developer for z/OS & FFS (FMID:
HEDS500).

The foreign file system (FFS) server must be configured and started if you use
the Enterprise Developer z/OS IDE to prepare COBOL code.

The Enterprise Developer Server (5655-I57) is installed and configured. Note
that this program is not shipped with Enterprise Edition CDs and must be ordered
for z/OS.
 Chapter 10. Generating COBOL for z/OS from EGL 267

Enterprise Developer Server for z/OS
IBM Enterprise Developer Server for z/OS provides multiple components to
support the development and execution of programs when using Enterprise
Developer and generating code for z/OS:

� The run-time libraries required by COBOL and Java programs generated
using enterprise generation language (EGL).

� A z/OS build server used for building native COBOL programs generated
using EGL.

� The sample JCL build scripts used by the build server to build COBOL
programs generated using EGL programs.

� The modules necessary for Enterprise Developer to interface with Software
Configuration Library Manager (SCLM).

� The modules necessary for COBOL to receive error feedback when doing
remote project builds.

IBM Enterprise Developer Server for z/OS (Program number 5655-I57, FMID
H284500) provides the modules and materials for EGL and IBM Enterprise
Developer Options for z/OS (Program number 5724-B67, FMID HEDS500)
provides the remaining components.

For Enterprise Developer Options for z/OS installation and details, see the
Program Directory (GI10-3242), which is part of the delivered CDs, and for
Enterprise Developer Server for z/OS installation and details, see the Program
Directory (GI10-3241).

Allocating z/OS data sets required for EGL COBOL generation
After you have installed and customized the Enterprise Developer Server, each
user performing COBOL generations must have some data sets allocated to hold
the generated code and the build output.

The CLIST ELACUSER in ELA.V5R0M0.ELACLST can be used to allocate the required
user data sets for COBOL generation. This CLIST can allocate data sets for
multiple target environments (MVSCICS, IMSVS, IMSBMP, MVSBATCH, TSO,
and OS2CICS).

For EGL generation, we only require the MVSCICS environment and a sample
invocation can be issued as:

ex 'ELA.V5R0M0.ELACLST(elacuser)' 'MVSCICS(Y)'
268 Legacy Modernization with WebSphere Studio Enterprise Developer

Table 10-1 shows the data sets that are allocated for EGL generation. Note that
some data sets are not used by EGL generation, but could be used by VisualAge
Generator, which is also supported by the Enterprise Developer Server.

Table 10-1 Example of required data sets for MVSCICS

Configuring control parts for EGL COBOL generation
Now let’s configure our Web application for generation of CICS COBOL code for
the EGL logac program.

Build descriptor for COBOL generation
In the ItsoMyTradeWeb project, create a new build descriptor part called cobolbld
in the buildDescriptors.eglbld file and set up these options (select CICS Target
System (All) as filter):

bind <bindTemplate>—Required for DB2. The bind template
identifies the bind control part for DB2 access in z/OS. We
have to create this part afterwards (see “DB2 bind control” on
page 272). For our sample we use coboldb2.

cicsEntries RDO—Optional for MVSCICS. Specifies whether to produce CICS
definitions when you generate a COBOL program. It will help

z/OS data set name Purpose

userid.MVSCICS.DBRMLIB DB2 DBRM

userid.MVSCICS.EZEBIND DB2 bind

userid.MVSCICS.EZEFOBJ COBOL generated object code

userid.MVSCICS.EZEJCLP Used only by VisualAge Generator to hold JCL when
generating for batch execution

userid.MVSCICS.EZELINK COBOL linkage editor

userid.MVSCICS.EZEPCTL Used only by VisualAge Generator to contain REXX
preparation scripts

userid.MVSCICS.EZEPPT CICS generated entries when specifying cicsEntries
in the build descriptor

userid.MVSCICS.EZESRC COBOL source (see “Tailoring the build script to keep
the COBOL source” on page 283)

userid.MVSCICS.LOAD COBOL generated load modules

userid.MVSCICS.OBJECT COBOL modules for link edit
 Chapter 10. Generating COBOL for z/OS from EGL 269

the CICS expert to find which entries must be added to the
PPT. Options can be RDO or MACRO.

commentLevel 1—Specifies the level of EGL comments that are included in the
generated COBOL source code. This is useful for catching
errors when you have to relate the COBOL code to the EGL
source code. The possible values are 0 or 1.

destHost <z/OS machine name or IP address>—This is the name of the
machine where the target build server is running, for example
carmvs1.raleigh.ibm.com.

destPassword <z/OS password>—Password used for the user ID for
processing on z/OS.

destPort <z/OS build server port number>—This is the port number of
the z/OS build server. This number must match the number
specified in the job used to start the z/OS build server (see
“Starting the z/OS build server” on page 275), for example
9112.

destUserID <z/OS user ID>—User ID used for processing on z/OS.

genDirectory <windows directory>—Specifies the location on the
workstation’s file system where Enterprise Edition places
generated output and preparation status files, for example
d:\WSEDworkspace\EGLgenout.

projectID <z/OS PDS prefix>—High-level qualifier for z/OS PDS for
generated code, usually your user ID. Based on that qualifier,
Enterprise Edition will look for the z/OS data sets, such as
userid.MVSCICS.xxxx. See “Allocating z/OS data sets required
for EGL COBOL generation” on page 268 for the required data
sets.

system MVSCICS—Specifies the target system for the generated source
code. Currently the only possible option for COBOL generation
is z/OS (MVSCICS). In the future other operating systems will
be available.

Additional options if the generated application accesses a DB2 database:

sqlID <user ID>—Specifies a user ID that is used to connect to a
DB2 system during generation-time validation of SQL
statements.

sqlPassword <password>—Specifies a password that is used to connect to a
DB2 system during generation-time validation of SQL
statements.
270 Legacy Modernization with WebSphere Studio Enterprise Developer

Additional options where the default is usually sufficient:

buildPlan <YES or NO>— If set to YES (default), specifies that a build plan
is generated.

prep <YES or NO>—If set to YES (default), specifies that, upon
successful completion of generation (return code <= 4),
preparation of the generated objects is automatically initiated.
This will send the source code to the build server for building
the run-time objects.

targetNLS <ENU>—Specifies the target national language code used for
run-time output. Note that the Enterprise Developer Server for
the specified language must be installed. This is a very
important option in countries where English is not the spoken
language, since the messages generated to the end user will
be based on this specification. For instance, for Brazil this
parameter should be PTB. If set to ENU (default), the messages
will be in US English.

Figure 10-2 shows the cobolbld build descriptor part shown in the EGL Part
Editor.

Figure 10-2 Build descriptor for COBOL/CICS generation (cobolbld)
 Chapter 10. Generating COBOL for z/OS from EGL 271

DB2 bind control
In the ItsoMyTradeWeb project, create a new part of type Bind Control called
coboldb2 in the buildDescriptors.eglbld file and set up the bind options that
are required for the DB2 bind operation.

The part is created but is empty. You have to add the statements manually:

TSOLIB ACTIVATE DA('DSN6.DSNLOAD')
ALLOC FI(DBRMLIB) SHR DA('userid.MVSCICS.DBRMLIB')
DSN SYSTEM(DSN6)
BIND PACKAGE(TRADE) -

MEMBER(%EZEMBR%) -
ACT(REP) -
VALIDATE(BIND) -
ISOLATION(CS) -
QUALIFIER(TRADE)

Figure 10-3 shows the DB2 bind control part.

Figure 10-3 DB2 bind control part
272 Legacy Modernization with WebSphere Studio Enterprise Developer

You can use symbolic parameters in the bind control part. For many projects, this
may allow you to develop one bind control part that can be used for generation of
all SQL programs used in the project. A build descriptor would be used to set any
symbolic parameters, such as DSN and user ID.

Creating a Java wrapper build descriptor for COBOL
In “Creating a Java wrapper build descriptor” on page 210 you have already
created a Java wrapper build descriptor for that will invoke the EGL-generated
Java code. Now we will call the generated COBOL program instead of the Java
code, so the build descriptor has to use another linkage options part.

We could just simply change the wrapperbld that we defined before and change
the linkage value to point to new linkage options part, but it is better to create a
new build descriptor.

In the ItsoMyTradeWeb project, create a new part of type Build Descriptor called
cobolwrapper in the buildDescriptors.eglbld file and set up the options as you
did before. Be sure that you change the linkage options pointing to cobolcics.
We will create the linkage option part right afterwards.

The Java generated code will be created under the project ItsoMyTradeWeb in the
tradeEGL.cobolwrapper package.

Figure 10-4 shows the cobolwrapper build descriptor to be used when generating
COBOL.

Figure 10-4 Java wrapper build descriptor used with COBOL generation

Note that you get error messages when you save this part. This is because the
cobolcics part referenced is not defined yet.
 Chapter 10. Generating COBOL for z/OS from EGL 273

Linkage options for COBOL/MVSCICS
In the ItsoMyTradeWeb project, create a new part of type Linkage Options called
cobolcics in the buildDescriptors.eglbld file and set up the linkage options
that are required for the z/OS COBOL generation with MVSCICS.

Click Add to insert a CallLinks element. Overtype the program name with logac,
and set the call type to remoteCall.

Select the line entered and set the properties:

pgmName logac—Specifies the name of the program part to which the
CallLink element refers.

type remoteCall—Specifies that the call uses EGL middleware,
which adds 12 bytes to the end of the data passed. Those
bytes allow the caller to receive a return value from the called
program.

conversionTable CSOE037—Specifies the name of the conversion table that is
used to convert data on a call. CSOE037 is the table for
English, another table would be used for other languages.

location eis/ITSOResourceAdapter—Specifies how the location of a
called program is determined at run time. Because we are
using CICSJ2C as remoteComType, this refers to the JNDI
name of the ConnectionFactory object that you establish for
the CICS transaction invoked by the call when setting up the
J2EE server. By convention, the name of the
ConnectionFactory object begins with eis/.

luwControl SERVER—Specifies whether the caller (CLIENT) or called
program (SERVER) controls the unit of work. SERVER means
that a unit of work started by the called program is
independent of any unit of work controlled by the calling
program.

parmForm COMMDATA—Specifies that the caller places business data
(rather than pointers to data) in the COMMAREA. Each
argument value is moved to the buffer adjoining the previous
value without regard for boundary alignment.

remoteBind GENERATION—The properties used for the call are set at
generation time.

remoteComType CICSJ2C—Specifies the communication protocol used.
WebSphere uses a J2C connector.

remotePgmType EGL—Specifies that the called program is a COBOL program
that was generated by Enterprise Developer EGL language.
274 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 10-5 shows the resulting linkage options part.

Figure 10-5 Linkage options for COBOL/MVSCICS generation

Starting the z/OS build server
Before submitting the generation to the z/OS system, be sure that the build
server is running.

The instructions to start the z/OS build server are in the document Program
Directory for WebSphere Studio Enterprise Developer Options for z/OS, Program
Number 5724-B67. This document can be found on the CD labeled WebSphere
Studio Enterprise Developer Options for z/OS & FFS.

The sample z/OS build server startup job looks like this:

//JOBNAME JOB (ACCT#),'TSO ID',CLASS=A
//RUNPGM EXEC PGM=CCUMAIN,REGION=7400K,
// PARM='-p 9112 -V -a 2 -n 2 -q 10'
//STEPLIB DD DSN=hlq.CCU.V5R0M0.SCCULOAD,DISP=SHR
//CCUWJCL DD DISP=SHR,DSN=hlq.CCU.V5R0M0.SCCUSAMP(CCUMVS)
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//CCUBLOG DD SYSOUT=*
//

Note that the parameter -p must match the port number specified in the
parameter destPort of the cobolbld build descriptor.
 Chapter 10. Generating COBOL for z/OS from EGL 275

Generating COBOL and Java wrapper from EGL
Once the control parts have been configured as described, COBOL code can be
generated from the EGL perspective and if the z/OS build server is up the code
can be sent to create the executable.

Because the build descriptor is not changing at each generation, its a good idea
to have it assigned to a specific default value. That will prevent errors and will
keep the necessary descriptor for each component.

Once all the options are already specified, you can generate the components:

� Select the eglsource folder and select Generate EGL With -> Target System
and Java Wrapper Build Descriptor from the context menu.

� In the dialog box, make sure the check box for logac is ticked. Click Next.

� For the Java wrapper select the cobolwrapper build descriptor and click Next.
For the target system select the cobolbld build descriptor (Figure 10-6).

Figure 10-6 Selecting the build descriptors for COBOL generation

� Click Next (you can skip the SQL user ID panel) and click Finish.

Tip: See “Defining the default build descriptors” on page 213 on how to set up
the cobolbld descriptor as the default build descriptor.
276 Legacy Modernization with WebSphere Studio Enterprise Developer

Generation process
Generation is a three-step process:

� The Java wrapper class is generated into the tradeEGL.cobolwrapper
package.

� The COBOL code and its necessary components are generated into the
specified directory:

d:\WSEDworkspace\EGLgenout

� Because we specified prep=yes in the cobolbld, the code is sent to z/OS and
prepared according to a build plan that is generated as well.

The Generation Results view opens with messages as shown in Figure 10-7.

Figure 10-7 COBOL generation results

Generated Java code
In the ItsoMyTradeWeb project, the tradeEGL.cobolwrapper package has been
created with two classes:

� LogacWrapper.java—The Java wrapper class that will invoke the generated
COBOL program.

� Logws.java—The working storage record used as a parameter when the
wrapper is invoked.

We will enhance the Struts application later (“Accessing the EGL-generated
COBOL from Struts” on page 300) to invoke the new wrapper class.

Generated local files
A number of files are generated into the local directory specified as the
genDirectory option in the build descriptor (Figure 10-8):

d:\WSEDworkspace\EGLgenout
 Chapter 10. Generating COBOL for z/OS from EGL 277

Figure 10-8 Files created during COBOL generation

The most important files are:

� LOGAC_Results_timestamp.xml—The detailed results of each step with
messages about the input and output files.

We examine the results file in “Build results” on page 282 after we understand
all the generated code.

� LOGACBuildPlan.xml—The build plan that drives the preparation of the
COBOL code on z/OS.

Build plan
The build plan (LOGACBuildPlan.xml) has two steps:

1. The fdaptcl command invokes the DB2 precompiler, CICS translator,
COBOL compiler, and linkage editor.

2. The fdabind command invokes the DB2 bind.

Figure 10-9 shows an extract of the build plan.
278 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 10-9 Build plan for EGL COBOL generation (extract)

Notice the references to input files and dependencies to other files.

<?xml version="1.0"?>
<buildplan name="Build_LOGAC_20021002125625"

results="d:\WSEDworkspace\EGLgenout\LOGAC_Results_20021002125625.xml">
<commands force="ALL">

<command name="fdaptcl" id="Build1" buildCondition="LT"
buildReturnCode="5" prefix="d:\WSEDworkspace\EGLgenout\LOGAC." >

<host name="carmvs1.raleigh.ibm.com" port="9112"
platform="MVSCICS"

loginID="BAROSA" >
<codepage client="IBM-850" server="IBM-037" />

</host>
<input_files>

<dir name="d:\WSEDworkspace\EGLgenout">
<file name="LOGAC.cbl" type="TEXT"/>

</dir>
</input_files>
<dependencies>

<dir name="d:\WSEDworkspace\EGLgenout">
<file name="LOGAC.led" type="TEXT"/>
<file name="LOGAC.ppt" type="TEXT"/>

</dir>
</dependencies>
<env name="CGHLQ" value="BAROSA"/>

</command>
<command name="fdabind" id="Build2" depends="Build1"

buildCondition="LT" buildReturnCode="5"
prefix="d:\WSEDworkspace\EGLgenout\LOGAC." >

<host name="carmvs1.raleigh.ibm.com" port="9112"
platform="MVSCICS"

loginID="BAROSA" >
<codepage client="IBM-850" server="IBM-037" />

</host>
<input_files>

<dir name="d:\WSEDworkspace\EGLgenout">
<file name="LOGAC.bnd" type="TEXT"/>

</dir>
</input_files>
<env/>

</command>
</commands>

</buildplan>
 Chapter 10. Generating COBOL for z/OS from EGL 279

COBOL program and control files
The LOGAC.cbl file is the generated COBOL program (Figure 10-10). Notice the
comments in bold, based on the build descriptor commentLevel=1 parameter,
which can help locate EGL source in case of execution errors.

Figure 10-10 Generated COBOL source program

IDENTIFICATION DIVISION. 00001
 PROGRAM-ID. LOGAC. 00002
 ENVIRONMENT DIVISION. 00003

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 EZEAPP-PROFILE SYNCHRONIZED.
 05 FILLER PIC X(8) VALUE "ELARHAPP".
 05 EZEAPP-APPL-NAME PIC X(8) VALUE "LOGAC".
 05 EZEAPP-PGM-VERSION.
 10 EZEAPP-GEN-DATE PIC X(8) VALUE "20021001".
 10 EZEAPP-GEN-TIME PIC X(8) VALUE "10242461".
 05 EZEAPP-RTS-PTR USAGE IS POINTER VALUE NULL.
 05 EZEAPP-GEN-VERSION PIC X(16) VALUE "040405".
 05 EZEAPP-COB-SYS PIC X(8) VALUE "MVSCICS".

.....

.....
 * 12 *> if (logws.action = "inquire") 00613
 IF ACTION IN LOGWS = "inquire"
 GO TO EZECONDLBL-1
 END-IF
 GO TO EZECONDLBL-2
 CONTINUE.
 EZECONDLBL-1.
 * 13 *> registry-select();
 PERFORM REGISTRY-SELECT
 MOVE "LOGAC" TO EZERTS-PRC-NAME
 * 14 *> if (registry is nrf)
 IF EZESTA-REGISTRY-NRF
 * 15 *> logws.userid = " ";
 MOVE " " TO EZE6-USERID IN LOGWS
 * 16 *> logws.status = "0";
 MOVE "0" TO EZE9-STATUS IN LOGWS
 * end;
 END-IF
 * 17 *> if (logws.password != registry.password)
 IF EZE7-PASSWORD IN LOGWS NOT = EZE3-PASSWORD IN REGISTRY
 * 18 *> logws.status = "0";
 MOVE "0" TO EZE9-STATUS IN LOGWS
 * end;
 END-IF

.....
280 Legacy Modernization with WebSphere Studio Enterprise Developer

The LOGAC.bnd file contains the generated DB2 bind statements from the
coboldb2 bind control part (Figure 10-3 on page 272).

The LOGAC.led file contains the linkage editor control statements:

INCLUDE OBJLIB(LOGAC)
 INCLUDE SELALMD(ELARSINC)
 INCLUDE SYSLIB(DFHEAI,DSNCLI)
 NAME LOGAC(R)

The LOGAC.ppt file contains the CICS program properties table command that
can be used to update the CICS resource definitions:

* ***
* ****************** CICS RDO PROGRAM COMMAND *******************
* ***
*
* A CICS Resource Definition Online (RDO) command is required
* for each application, map group and table generated by
* VisualAge Generator. This model entry contains the recommended
* values for this generated part.
*
* PART: LOGAC
* GENERATION DATE: 20021002
* GENERATION TIME: 125625439

DEF PROG(LOGAC) GROUP(XXXX) L(COBOL) REL(NO) RES(NO) S(ENABLED)

* RES(YES) might provide better performance for frequently used members.
* L(COBOL) parameter should be changed to L(LE370) if you compile
* the program using COBOL/370.

The LOGAC.x.SYSPRINT files contain print output from DB2 precompiler (x=P),
CICS translator (x=T), COBOL compiler (x=C), and linkage editor (x=L). The
LOGAC.B.SYSTSPRT file contains the print output from DB2 bind and the other
LOGAC.B.xxx files are empty files from DB2 bind operation. See “Output of the
z/OS build scripts” on page 284 for more details.

Generated z/OS files
The output files of the EGL COBOL generation in z/OS data sets based on the
specified build descriptor are:

� userid.MVSCICS.EZEBIND(LOGAC)—The contents of the DB2 bind file
LOGAC.bnd.

� userid.MVSCICS.EZEPPT(LOGAC)—The contents of the CICS PPT file
LOGAC.ppt. This file is created because cicsEntries=RDO is specified in the
build descriptor.
 Chapter 10. Generating COBOL for z/OS from EGL 281

� userid.MVSCICS.DBRMLIB(LOGAC)—The DBRM created by the DB2
precompiler.

� userid.MVSCICS.OBJECT(LOGAC)—The object module created by the COBOL
compiler.

� userid.MVSCICS.LOAD(LOGAC)—The load module created by the linkage
editor.

Build results
The build results file contains status information for the code preparation steps
that were done on z/OS and the files that were produced (Figure 10-11).

Figure 10-11 Build results (extract)

<?xml version="1.0" encoding="UTF-8" ?>
<buildresults name="Build_LOGAC_20021002125625">
 <commandoutput>
 <command id="Build1" name="fdaptcl" buildCondition="LT"

buildReturnCode="5" prefix="d:\WSEDworkspace\EGLgenout\LOGAC.">
 command data from build plan
 </command>
 <generatedcommand><![CDATA[ccubldc -h carmvs1.raleigh.ibm.com@9112 -b
fdaptcl -au BAROSA -k IBM-850 -r IBM-037 -P
d:\WSEDworkspace\EGLgenout\LOGAC. -it d:\WSEDworkspace\EGLgenout(LOGAC.cbl
-dt d:\WSEDworkspace\EGLgenout(LOGAC.led
d:\WSEDworkspace\EGLgenout(LOGAC.ppt -c LT -n 5 -v SYSTEM=MVSCICS EZENLS=ENU
EZEPID=BAROSA MBR=LOGAC EZEDATA=31 EZEENV=MVSCICS CGHLQ=BAROSA DATA=31
EZEMBR=logac EZEGDATE=10/02/02 EZEGMBR=logac EZEGTIME=12:56:25 EZESQL=N
EZETRAN=logac]]></generatedcommand>
<stdout><![CDATA[02/10/02 12:56:25 (c) Copyright, IBM Corp. 2001
 Copyright (c) 2002 Rational Software Corporation
02/10/02 12:56:36 *** Success ***
......return code of each step......
02/10/02 12:56:36 Message files from build:
02/10/02 12:56:36 1:d:\WSEDworkspace\EGLgenout\LOGAC.P.SYSPRINT
02/10/02 12:56:37 2:d:\WSEDworkspace\EGLgenout\LOGAC.T.SYSPRINT
02/10/02 12:56:38 3:d:\WSEDworkspace\EGLgenout\LOGAC.C.SYSPRINT
02/10/02 12:56:41 4:d:\WSEDworkspace\EGLgenout\LOGAC.L.SYSPRINT
02/10/02 12:56:42 *--
]]></stdout>
 <stderr><![CDATA[]]></stderr>
 <returncode>0</returncode>
 </commandoutput>

......
</buildresults>
282 Legacy Modernization with WebSphere Studio Enterprise Developer

Creating the COBOL executable on z/OS
Run-time objects from COBOL source code for MVSCICS cannot be built on the
workstation. The build is always performed on a build server running in z/OS
using build scripts.

Build scripts
A build script is a z/OS command file used by a build server to transform one set
of files into another. For example, the MVS build server uses a build script written
in pseudo-JCL to transform a COBOL source file into an object file and (in some
cases) to transform one or more object files into a load module.

The build scripts that are provided by the Enterprise Developer server for z/OS
and placed in the PROCLIB library of the z/OS build server (allocated by ddname
CCUPROC) when the build server is installed as a feature of Enterprise Developer
are:

fdacl Invokes the COBOL compiler and the linkage editor for
generated COBOL source code that does not require the CICS
translator or the DB2 preprocessor.

fdatcl Invokes the CICS translator, the COBOL compiler, and the
linkage editor for source code generated from an EGL program
part that runs in a CICS environment and that does not include
SQL.

fdaptcl Invokes the DB2 preprocessor, the CICS translator, the COBOL
compiler, and the linkage editor for EGL-generated source code
that runs in a CICS environment and that includes SQL.

fdabind Binds a generated program to DB2. This build script is used in
conjunction with fdaptcl for EGL-generated source code that
runs in a CICS environment and that includes SQL.

Our build plan used the build scripts fdaptcl and fdabind (see Figure 10-9 on
page 279).

Tailoring the build script to keep the COBOL source
By default, the fdaptcl build script does not keep the generated COBOL source
in the z/OS data set userid.MVSCICS.EZESRC. You can tailor the script to keep the
source by removing the comments from these lines:

//*UPLOAD EXEC PGM=IEFBR14
//*EZESRC DD DSN=&CGHLQ..&SYSTEM..EZESRC,DISP=SHR,CCUEXT=CBL

For the other build scripts change the //*EZESRC line in the same way.
 Chapter 10. Generating COBOL for z/OS from EGL 283

Output of the z/OS build scripts
In this section we describe the tasks that must be performed to run the example
application in the z/OS system and that were performed by the z/OS build script.

DB2 precompiler
The results of the DB2 precompiler are sent back to the Enterprise Edition
workstation and can be found in the file LOGAC.P.SYSPRINT. An extract of the file is
shown here.

DB2 SQL PRECOMPILER VERSION 6 REL. 1.0 PAGE 1

OPTIONS SPECIFIED: HOST(COB2),APOSTSQL,QUOTE
OPTIONS USED - SPECIFIED OR DEFAULTED

DB2 SQL PRECOMPILER MESSAGES PAGE 2

DSNH050I I DSNHMAIN WARNINGS HAVE BEEN SUPPRESSED DUE TO LACK OF TABLE
DECLARATIONS
DB2 SQL PRECOMPILER STATISTICS PAGE 3

SOURCE STATISTICS
 SOURCE LINES READ: 998
 NUMBER OF SYMBOLS: 231
 SYMBOL TABLE BYTES EXCLUDING ATTRIBUTES: 13688

THERE WERE 1 MESSAGES FOR THIS PROGRAM.
THERE WERE 0 MESSAGES SUPPRESSED BY THE FLAG OPTION.
175480 BYTES OF STORAGE WERE USED BY THE PRECOMPILER.
RETURN CODE IS 0

CICS translator
The results of the CICS translator are sent back to the Enterprise Edition
workstation and can be found in the file LOGAC.T.SYSPRINT. An extract of the file is
shown here.

CICS 5.3.0 COMMAND LANGUAGE TRANSLATOR TIME 15.57 DATE 2 OCT 02 PAGE 1

OPTIONS SPECIFIED:-COBOL2,QUOTE,NOSEQ,SP,DBCS
OPTIONS IN EFFECT
......
LINE SOURCE LISTING

00001 IDENTIFICATION DIVISION. 00001
..... source program

NO MESSAGES PRODUCED BY TRANSLATOR.
TRANSLATION TIME:- 0.00 MINS.
284 Legacy Modernization with WebSphere Studio Enterprise Developer

COBOL compiler
The results of the COBOL compiler are sent back to the Enterprise Edition
workstation and can be found in the file LOGAC.C.SYSPRINT. An extract of the file is
shown here.

PP 5655-G53 IBM Enterprise COBOL for z/OS and OS/390 3.1.0 Date 10/01/2002
Time 13:28:04 Page 1

Invocation parameters:
NOSEQ,QUOTE,LIB,RENT,NODYNAM,OPT,DBCS,TRUNC(BIN),NUMPROC(NOPFD),OFFSET,NOLI
ST,MAP,DATA(31)

PROCESS(CBL) statements:
 CBL RENT,RES,NODYNAM,LIB

Options in effect: NOADATA ADV QUOTE ARITH(COMPAT) ZWB
....
PP 5655-G53 IBM Enterprise COBOL for z/OS and OS/390 3.1.0 LOGAC
000001 IDENTIFICATION DIVISION. 00001
000002 PROGRAM-ID. LOGAC. 00002
000003 ENVIRONMENT DIVISION. 00003
....
1666 IGYOP3091-W Code from "procedure name EZEOVER-ROUTINE" to "GO (line
1684.01)" can never be executed and was therefore discarded.

1904 IGYOP3094-W There may be a loop from the "PERFORM" statement at
"PERFORM (line 1904.01)" to itself. "PERFORM" statement optimization was
not attempted.
Messages Total Informational Warning Error Severe Terminating
Printed: 11 1 10

* Statistics for COBOL program LOGAC:
* Source records = 1943
* Data Division statements = 1156
* Procedure Division statements = 348

End of compilation 1, program LOGAC, highest severity 4.
Return code 4

Linkage editor
The results of the linkage editor are sent back to the Enterprise Edition
workstation and can be found in the file LOGAC.L.SYSPRINT. An extract of the file is
shown here.

z/OS V1 R3 BINDER 13:28:06 TUESDAY OCTOBER 1, 2002
 BATCH EMULATOR JOB(BAROSA0) STEP(RUNPGM) PGM= IEWL
 IEW2278I B352 INVOCATION PARAMETERS -
RENT,REUS,LIST,XREF,MAP,AMODE(31),RMODE(ANY)
 Chapter 10. Generating COBOL for z/OS from EGL 285

IEW2322I 1220 1 INCLUDE OBJLIB(LOGAC)
 IEW2322I 1220 2 INCLUDE SELALMD(ELARSINC)
 IEW2322I 1220 3 INCLUDE SYSLIB(DFHEAI,DSNCLI)
 IEW2322I 1220 4 NAME LOGAC(R)
 IEW2646W 4B07 ESD RMODE(24) CONFLICTS WITH USER-SPECIFIED RMODE(ANY) FOR

SECTION ELARSVCS.
 IEW2646W 4B07 ESD RMODE(24) CONFLICTS WITH USER-SPECIFIED RMODE(ANY) FOR

SECTION ELAASADR.

1 *** M O D U L E M A P ***

CLASS B_TEXT LENGTH = 42B8 ATTRIBUTES = CAT, LOAD, RMODE=ANY
...
...
z/OS V1 R3 BINDER 13:28:06 TUESDAY OCTOBER 1, 2002
 BATCH EMULATOR JOB(BAROSA0) STEP(RUNPGM) PGM= IEWL
 IEW2008I 0F03 PROCESSING COMPLETED. RETURN CODE = 4.

DB2 bind
The results of the DB2 bind are sent back to the Enterprise Edition workstation
and can be found in the file LOGAC.B.SYSTSPRT. An extract of the file is shown
here.

READY
TSOLIB ACTIVATE DA('DSN6.DSNLOAD')
READY
ALLOC FI(DBRMLIB) SHR DA('BAROSA.MVSCICS.DBRMLIB')
READY
DSN SYSTEM(DSN6)
DSN
BIND PACKAGE(TRADE) MEMBER(logac) ACT(REP) VALIDATE(BIND)

ISOLATION(CS) QUALIFIER(TRADE)
DSNT254I -DSN6 DSNTBCM2 BIND OPTIONS FOR
 PACKAGE = NRARDSN6.TRADE.LOGAC.()
 ACTION REPLACE
 OWNER BAROSA
 QUALIFIER TRADE
 VALIDATE BIND
 EXPLAIN NO
 ISOLATION CS
 RELEASE
 COPY
DSNT255I -DSN6 DSNTBCM2 BIND OPTIONS FOR

DSNT232I -DSN6 SUCCESSFUL BIND FOR
 PACKAGE = NRARDSN6.TRADE.LOGAC.()
DSN
END
286 Legacy Modernization with WebSphere Studio Enterprise Developer

Creating a DB2 plan
After having compiled a number of CICS COBOL modules and having built
individual DB2 packages, a DB2 plan must be created from the packages.

Run this DB2 command to create a DB2 plan:

DSN SYSTEM(DSN6)
BIND PLAN(TRADE) -
 PKLIST(TRADE.*) -
 ACT(REP) -
 VALIDATE(BIND) -
 ISOLATION(CS) -
 QUALIFIER(TRADE)

Modifying CICS resource definitions
Additionally, for CICS, you must define your program and transactions to the
environment.

The CICS environment uses resource definitions to identify startup parameters,
transactions, programs, files, databases, transient data destinations, and system
locations for proper operation. You must add to or modify these resource
definitions to correctly identify all objects to be used in the new or changed
program.

When using CICS tables, the tables are compiled as assembler programs and
stored in a run-time library. Some tables can also be maintained through an
online facility as described in the resource definition online (RDO) manual for
your version of CICS. CICS requires that the online facility be used in place of
processing program table (PPT) entries.

Program definition
Either the batch program DFHCSDUP utility or the resource definition online
command (CEDA DEFINE PROGRAM) can be used to define the server program to
CICS. Refer to the CICS resource definitions guide for additional information on
providing definitions.

One PPT entry is required for each Enterprise Developer generated program.
The command generated into the LOGAC.ppt file and userid.MVSCICS.EZEPPT is:

DEF PROG(LOGAC) GROUP(XXXX) L(COBOL) REL(NO) RES(NO) S(ENABLED)
 Chapter 10. Generating COBOL for z/OS from EGL 287

Transaction definition
The DB2 plan must be attached to a CICS transaction. In our case a transaction
entry of TRDE is used. This transaction name must be specified in the J2C
connector factory in the WebSphere Application Server, when we configure the
J2C connection specified in “Linkage options for COBOL/MVSCICS” on
page 274.

The TRDE transaction invokes the CICS mirror program DFHMIRS and is attached to
the DB2 plan TRADE that we generated.

Modifying the CICS startup job
You must include the load library where your generated programs reside in the
DFHRPL DD concatenation. Your system administrator included the LE run-time
libraries and the Enterprise Developer Server load library in the DFHRPL DD
concatenation when the Enterprise Developer Server product was installed.

The CICS startup JCL may have to be modified to add or change allocations for
files used by Enterprise Developer programs. These include VSAM files and
extrapartition transient data destinations. A sample CICS startup job is shown in
“Starting CICS and the CTG” on page 297.

At this point, you are ready to configure the J2C connectors on WebSphere to
test the code generated.
288 Legacy Modernization with WebSphere Studio Enterprise Developer

Chapter 11. Implementing CICS actions

In this chapter we describe how CICS transactions can be accessed using the
J2C connector architecture.

We then connect the Struts application to the COBOL CICS transaction that was
generated in Chapter 10, “Generating COBOL for z/OS from EGL” on page 265.

11
© Copyright IBM Corp. 2002. All rights reserved. 289

Accessing CICS transactions
For the purposes of this discussion, the CICS transaction processing
environment can be considered to be an enterprise information system (EIS). In
this discussion, other examples of EISs include:

� Enterprise resource planning applications such as PeopleSoft, SAP

� Customer relationship management systems such as Siebel

� Legacy applications and computing systems outside of the Java environment,
such as a custom-built or vendor business system.

� Database systems not accessible through JDBC

In this section, the following topics are discussed:

� Introduction to connecting to enterprise information systems from a J2EE
environment

� Accessing the CICS transaction environment through the J2EE Connection
Architecture

� Setting up the CICS resource adapter in Enterprise Developer and in
WebSphere Application Server

� Accessing the CICS EIS from an EGL-generated wrapper

For more details on the use of the CICS J2C resource adapters, see the redbook
Java Connectors for CICS: Featuring the J2EE Connector Architecture,
SG24-6401.

Introduction to EIS adapters
As more businesses extend the reach of their applications to their employees,
Business Partners, and customers through the use of thin-client Web
technologies, they are finding that they need to integrate their existing enterprise
information systems (EIS) into the new applications in order for their e-business
strategies to be successful. In a J2EE programming model, this means finding
some way of accessing heterogeneous enterprise information systems from a
Java application server.

There were many different ways of integrating EISs into J2EE applications that
were proprietary and not easily portable between J2EE implementations and
EISs. J2EE architects integrating EISs required an in-depth knowledge of the EIS
they were accessing as well as the transport protocols between the Java
290 Legacy Modernization with WebSphere Studio Enterprise Developer

application server and the target EIS. Since EIS vendors needed to customize
their product for each application server, and application server vendors needed
to customize their product to enable connectivity to EISs, applications relying on
a particular EIS vendor or application server were less portable.

As can be seen in Figure 11-1, the Enterprise Developer requires knowledge of
many EIS adapters. In cases where a single J2EE component needed to access
two different EIS systems, it would need to have knowledge of two different EIS
adapter APIs.

Figure 11-1 J2EE-EIS integration before J2C

IBM provided one architecture for integrating EISs that was called Common
Connector Framework (CCF). CCF was delivered with the CICS Transaction
Gateway (CTG) and the VisualAge for Java Version 3.02 development
environment.

The CCF architecture and programming model provided a level of abstraction
between the Java business application and the protocol for accessing the EIS.
IBM then provided components for accessing many popular EISs such as CICS,
SAP, JD Edwards, PeopleSoft, and Oracle Financials. The CCF architecture
allowed developers to concentrate more on the business logic of application and
less on the method of access data and transactions in EIS.

J2EE
Component 1

Provided by EIS vendor
or Third Party vendor

EIS Adapter
API 1

EIS 2

EIS Adapter 1
EIS 1

EIS 3

J2EE Server Runtime Environment

J2EE
Component 2

EIS Adapter
API 2

EIS Adapter 2

J2EE
Component 3

EIS Adapter
API 3

EIS Adapter 3
 Chapter 11. Implementing CICS actions 291

J2EE connector architecture (J2C or J2CA)
Recognizing the potential of CCF to help system architects to integrate EISs into
business applications, IBM offered the CCF architecture as a Java Specification
Request (JSR) for inclusion in the Java platform of open standards. After minor
modifications through the Java community process, the CCF architecture was
released as J2EE connector architecture (J2C). J2C is now recommended as the
strategic method for connecting J2EE applications to EISs instead of CCF. The
compete specification for J2C can be found at:

http://java.sun.com/j2ee/download.html#connectorspec

The J2C provides a Java specification that for a standard architecture to integrate
heterogeneous EISs into J2EE applications. Because it is an accepted open
standard, many vendors are now building adapters that comply with the J2C
standard. A list of products and that comply with the standard can be found at the
JavaSoft site:

http://java.sun.com/j2ee/connector/products.html

Even though J2C is not part of the J2EE Version 1.2 set of technologies, IBM has
provided an implementation of J2C with WebSphere Application Server Version
4.01 as a technology preview. Since Version 4.02 of WebSphere Application
Server, the implementation of J2C has been fully supported. J2C has been
included in J2EE Version 1.3.

The J2C architecture (Figure 11-2) allows a vendor to provide one EIS-specific
interface, or resource adapter, that will plug into any J2EE application server that
provides an implementation of the J2C architecture. An application server that
provides a J2C implementation can manage several EIS resource adapters to
provide a scalable, secure, and transactional environment for application access
to services from multiple EISs.

The sections that follow provide an overview of the components of J2C.
292 Legacy Modernization with WebSphere Studio Enterprise Developer

http://java.sun.com/j2ee/download.html#connectorspec
http://java.sun.com/j2ee/connector/products.html

Figure 11-2 J2C architecture

Resource adapter
The J2C architecture provides a set of system-level contracts that define the
interface between the EIS and an application server. These contracts define
transaction, security and connection API.

A resource adapter provides the EIS-side implementation of these contracts
much as a JDBC driver implements the JDBC contract. Because the contract is
standard, the resource adapter can plug into any application server that
implements J2C. Therefore the resource adapter vendor does not have to
customize the adapter for each application server. When the resource adapter is
plugged into the application server, it collaborates with the application server to
provide the transaction, security and connection management service
implementations required by J2C.

Because the transaction, security, and connection management services are
provided transparently, the application developer can concentrate on
implementing the business logic and functional requirements of the application.
This provides faster and easier application development that is scalable, secure,
and transactional. Also the portability of the application design between
application servers and EIS vendors is assured.

J2C resource adapters are files that have an extension of .rar.

Provided by EIS vendor
or Third Party vendor

J2EE Server Runtime Environment

Included with WebSphere

J2EE
Component

J2EE
Component

J2EE
Component

Common
Client

Interface
API

EIS
(IMS)

EIS
(CICS)

EIS
(SAP)

Resource Adapter
for the EIS CICS

Connection, transaction and
security services

Resource Adapter
for the EIS IMS

Connection, transaction and
security services

Resource Adapter
for the EIS SAP

Connection, transaction and
security services
 Chapter 11. Implementing CICS actions 293

System contracts
J2C extends the application server using system contracts. The system contracts
provide the services listed below and the resource adapters provide the
implementation of these services.

Connection management service
The connection management service provided by the resource adapter allows an
application server to provide scalable access to EIS from a large number of
clients. The services provides EIS connection pooling capabilities to application
servers and allows application components connectivity to the EIS.

Transaction management service
The transaction service allows an application server to provide transactional
access to EIS resource managers across multiple resource managers.
Transactions that are internal to the EIS resource are also supported without the
use of an external transaction manager.

Security management service
The security service allows for a managed and secured access to the EIS
resource. The application server can reduce the security threat to an EIS by
protecting the EIS from unauthorized access.

Common client interface
The common client interface (CCI) provides a standard Java API for an
application component to interact with any EIS. The CCI is intended for
enterprise application integration and enterprise tool vendors.

J2C CICS ECI resource adapter
IBM provides two J2C resource adapter for accessing CICS through the CICS
Transaction Gateway Version 4.01. The resource adapters are the CICS external
call interface (ECI) and the CICS external presentation interface (EPI) J2C
resource adapters.

The ECI resource adapter can be used by non-CICS applications to call CICS
programs while connected to several CICS servers at the same time. Data is
transferred between the two via a COMMAREA as in CICS interprogram
communication. The application can call the CICS program either synchronously
or asynchronously. ECI calls may also be extended, that is, the application may
294 Legacy Modernization with WebSphere Studio Enterprise Developer

make several CICS program calls within a single logical unit of work and several
logical units of work can be managed if the calls are asynchronous.

The EPI resource adapter allows a non-CICS application to be viewed as a 3270
terminal by a CICS server system to which it is connected. The application can
connect to several CICS servers and behave as if it were many 3270 terminals.
Data is passed between the application and the CICS program through 3270
data streams and events. The application can then process the data into an
appropriate form for its operating environment.

Installation of the CICS ECI resource adapter
The current implementation of EGL for generation of CICS wrapper code is only
supported with the ECI type CICS resource adapter. This discussion assumes
that you already have access to a CICS Transaction Gateway server (CTG) at
Version 4.01 or higher.

CICS Transaction Gateway
The CTG CICS resource adapters, cicseci.rar and cicsepi.rar, can be found
in <CTG_HOME>\deployable where CTG_HOME is the directory where the CICS
Transaction Gateway is installed. Note that CTG is not delivered as part of
Enterprise Developer.

Enterprise Developer
The cicseci.rar file is also available in:

<WSED-Home>\wstools\eclipse\plugins\com.ibm.etools.ctc.binding.eis_0.5.0\
runtime

WebSphere Application Server
WebSphere Application Server implements the J2C architecture from Version
4.02 and higher. If the CTG is installed on a different machine, you should get a
copy of the resource adapter files on to your WebSphere Application Server
machine.

The process of defining installing and configuring the J2C CICS resource
adapter in WebSphere Application Server Version 5 is described in “Configuring
the J2C connector” on page 341.

Setting up the WebSphere server for CICS J2C calls
You must set up a J2C connection factory in the J2EE server for each CICS
transaction accessed through the CICS J2C connector.
 Chapter 11. Implementing CICS actions 295

If a generated Java wrapper is making the CICS J2C call, you can handle
security in any of the following ways (where a wrapper-specified value overrides
that of the J2EE server):

� Set the user ID and password in the wrapper's CSOCallOptions object

� Set the user ID and password in the ConnectionFactory configuration in the
J2EE server

� Set up the CICS region so that user authentication is not required

When calling a program from WebSphere 390, the following restrictions apply:

� If the CallLink element property luwControl is set to CLIENT, the call fails. The
WebSphere 390 connect implementation does not support an extended unit
of work.

� The setting of deployment descriptor property cso.cicsj2c.timeout has no
effect. By default, timeouts never occur. In the EXCI options table generated
by the macro DFHXCOPT, however, you can set the parameter TIMEOUT, which
lets you specify the time that EXCI will wait for an ECI request to complete. A
setting of 0 means to wait indefinitely.

Why CICS Transaction Gateway?
CTG is a set of client and server software components that allow a Java
application to invoke services in a CICS region. The Java application can be an
applet, a servlet, an enterprise bean, or any other Java application.

CTG is required by the CICS ECI resource adapter that acts as a Java client and
opens a CTG network connection and sends and receives ECI requests to the
CICS region. The classes are supplied in the ctgclient.jar file, which is
provided by Enterprise Developer.

The latest edition of the CTG is V5.00, and the currently supported platforms are
z/OS, OS/390, Linux for S/390, AIX, HP-UX, Sun Solaris, Windows NT, and
Windows 2000.

When using z/OS systems, CTG can run on z/OS or a distributed platform. The
examples described here and used in our installation is based on the fact that the
CTG is installed on the z/OS.

Note: We will set up the J2C connection factory with user ID and password in
“Configuring the CICS ECI resource adapter” on page 342.
296 Legacy Modernization with WebSphere Studio Enterprise Developer

On z/OS, the external CICS interface (EXCI) provides access to
COMMAREA-based CICS programs (Figure 11-3). There are few differences
between the ECI support on z/OS and the ECI support on distributed platforms.

Note that the user ID and password flowed on ECI requests are verified within
the CTG with RACF; afterwards the verified user ID is then flowed to CICS.

Figure 11-3 CICS Transaction Gateway z/OS

For product information on using CTG, refer to the CICS Transaction Gateway
Administration Guides. For information on configuring the CTG, refer to the
redbook CICS Transaction Gateway V5 The WebSphere Connector for CICS,
SG24-6133.

Starting CICS and the CTG
This topic assumes that you have sucessfully installed and configured the CICS
Transaction Gateway and CICS.

Before testing the application, be sure that those products are running under
z/OS.

Example 11-1 shows a sample CICS startup job. The elements marked in bold
are used by the J2C definitions. Also note in bold italic the data sets that are
required by Enterprise Developer Server, including the data set of the load
module of the EGL generation.

Example 11-1 Sample CICS startup job

//NRACSP2 JOB (3A0195,NONE,,,,N),CLASS=O,NOTIFY=&SYSUID,
// MSGCLASS=T,MSGLEVEL=(1,1),REGION=0M
//CICS EXEC PGM=DFHSIP,PARM=SYSIN,REGION=0M,PERFORM=12,TIME=1440
//SYSIN DD *

CTG
 Chapter 11. Implementing CICS actions 297

SIT=6$, SUFFIX OF CICS SYSTEM INIT TABLE
EDSALIM=120M,
APPLID=NRACSP2, NAME OF THIS CICS REGION
GRPLIST=CSPLIST, LIST OF GROUPS TO BE USED AT REGION STARTUP
START=INITIAL, SPECIFICES THE TYPE OF CICS START TO BE PERFORMED
GMTEXT='VGEN 1.2 ON TS 1.3 STARTED BY BAROSA - CSP2',
DCT=NO, DCT DEFINED USING RDO (NO STATIC TABLES)
FCT=NO, FCT DEFINED USING RDO (NO STATIC TABLES)
PLTPI=PI, TELL CICS TO USE DFHPLTPI FOR START UP
PLTSD=SD, TELL CICS TO USE DFHPLTSD FOR SHUT DOWN
DFLTUSER=TK4CICS, DEFAULT USERID FOR CICS AUTHORITY IF NOT LOGGED ON
STGPROT=YES, USE STORAGE PROTECTION?
SEC=YES, REQUIRES LOGON TO CICS SESSION
CSDACC=READWRITE, ALLOW ONLINE UPDATE OF CSD
CSDBKUP=STATIC, BACKUPTYPE OF CSD (STATIC OR DYNAMIC
CSDBUFND=10, NUMBER OF DATA BUFFERS FOR THE CSD
CSDBUFNI=11, NUMBER OF INDEX BUFFERS FOR THE CSD
CSDDISP=SHR, CSD DISPOSITION FOR DYNAMIC ALLOCATION
CSDDSN=VGEN.NRACSP2.CTS130.DFHCSD, DSN OF CSD BEING USED
CSDFRLOG=NO, JOURNAL ID. FOR CSD FORWARD RECOVERY
CSDJID=NO, JOURNAL ID. FOR CSD AUTOMATIC JOURNALING
CSDLSRNO=1, THE VSAM LSR POOL NUMBER FOR THE CSD
CSDRECOV=NONE, CSD RECOVERABLE FILE OPTION
CSDSTRNO=200, CSD NUMBER OF STRINGS
DB2CONN=YES, AUTO CONNECT TO DB2?
XCMD=NO, USE DEFAULT NAME FOR RACF CHECK?
XDB2=NO, USE DEFAULT NAME FOR RACF CHECK?
XDCT=NO, USE DEFAULT NAME FOR RACF CHECK?
XFCT=NO, USE DEFAULT NAME FOR RACF CHECK?
XJCT=NO, USE DEFAULT NAME FOR RACF CHECK?
XPCT=NO, USE DEFAULT NAME FOR RACF CHECK?
XPPT=NO, USE DEFAULT NAME FOR RACF CHECK?
XPSB=NO, USE DEFAULT NAME FOR RACF CHECK?
XRF=NO, EXTENDED RECOVERY FEATURE (XRF) OPTION
XTRAN=YES, USE DEFAULT NAME FOR RACF CHECK?
XTST=NO, USE DEFAULT NAME FOR RACF CHECK?
XUSER=NO, USE DEFAULT NAME FOR RACF CHECK?
ISC=YES, INTERSYSTEM COMMUNICATION OPTION
SPOOL=YES, SYSTEM SPOOLING INTERFACE OPTION
PDIR=NO, DL/I PSB DIRECTORY OPTION/SUFFIX
IRCSTRT=YES, INTERREGION COMMUNICATION START
MQCONN=YES, AUTO CONNECT TO MQSERIES
INITPARM=(DFHD2INI='DSN7',CSQCPARM='SN=SVAG,TN=001,IQ=NRACSP2.INITQ'),
.END
//STEPLIB DD DISP=SHR,DSN=CICS.CTS130.PDO0152.SDFHAUTH
.....
// DD DISP=SHR,DSN=DSN6.DSNLOAD
// DD DISP=SHR,DSN=VGEN.DSN6.RCTLIB
.....
298 Legacy Modernization with WebSphere Studio Enterprise Developer

// DD DISP=SHR,DSN=BAROSA.MVSCICS.LOAD
//*
//DFHRPL DD DISP=SHR,DSN=VGEN.HS.V1R2M0.NEW.SELALMD
// DD DISP=SHR,DSN=VGEN.CTS130.LOADLIB
// DD DISP=SHR,DSN=CICS.CTS130.PDO0152.SDFHLOAD
// DD DISP=SHR,DSN=DSN6.DSNLOAD
// DD DISP=SHR,DSN=BAROSA.MVSCICS.LOAD <=== load module
...
//*
//DFHAUXT DD DISP=SHR,DSN=VGEN.NRACSP2.CTS130.DFHAUXT
//DFHDMPA DD DISP=SHR,DSN=VGEN.NRACSP2.CTS130.DFHDMPA
//DFHDMPB DD DISP=SHR,DSN=VGEN.NRACSP2.CTS130.DFHDMPB
//SYSUDUMP DD SYSOUT=*
//*
//DFHINTRA DD DISP=SHR,DSN=VGEN.NRACSP2.CTS130.DFHINTRA
//DFHTEMP DD DISP=SHR,DSN=VGEN.NRACSP2.CTS130.DFHTEMP
//DFHGCD DD DISP=SHR,DSN=VGEN.NRACSP2.CTS130.DFHGCD
//DFHLCD DD DISP=SHR,DSN=VGEN.NRACSP2.CTS130.DFHLCD
//DFHLRQ DD DISP=SHR,DSN=VGEN.NRACSP2.CTS130.DFHLRQ
....
//

Example 11-2 shows a sample CTG startup job. Note the CTG port number
(22002 in bold) that must match the definitions created in Figure 11-11 on
page 307.

Example 11-2 Sample CTG startup job

//CTGCSP2 JOB (123456,C463,062,,,N),VGUSER,NOTIFY=VGUSER,
// MSGCLASS=H,CLASS=A,MSGLEVEL=(1,1),REGION=0M
//OEEXCI EXEC PGM=BPXBATCH,
// PARM='sh /u/ctg402/ctg/bin/ctgstart -port 22002 -noinput'
//STDIN DD PATH='/u/ctg402/ctg/null',
// PATHOPTS=(ORDONLY)
//STDOUT DD PATH='/u/ctg402/ctg/logs/ctgcsp2o.log',
// PATHOPTS=(OWRONLY,OCREAT),PATHMODE=SIRWXU
//STDERR DD PATH='/u/ctg402/ctg/logs/ctgcsp2e.log',
// PATHOPTS=(OWRONLY,OCREAT),PATHMODE=SIRWXU
//STDENV DD *
DFHJVPIPE=JAVACTG
DFHJVSYSTEM_00=NRACSP2-CTG LISTENER FOR NRACSP2 SERVER
/*
//
 Chapter 11. Implementing CICS actions 299

Accessing the EGL-generated COBOL from Struts
The current Struts Web application is not configured to use the Java wrapper
created in “Generating COBOL and Java wrapper from EGL” on page 276.

We could write a new Struts action class, but we use the same approach as for
the EGL session bean (see “Accessing an EJB from a Struts action class” on
page 254) and extend the EGLLoginAction2 class to call the generated EGL
COBOL program.

Using the Java program wrapper to COBOL
The business logic is already implemented in the EGL COBOL program. We
have to extend the Struts model object to use the EGL program through the Java
wrapper. Figure 11-4 shows the interaction in a simplified diagram.

Figure 11-4 Struts to EGL COBOL using a program wrapper

In the ItsoMyTradeWeb project under the Java Source folder, there should already
be a Java package called strutsEGL. This package contains model objects that
access EGL Java programs. We create a new model object called LoginCOBOL:

� Create a LoginCOBOL class in the strutsEGL package.

� The LoginCOBOL class opens in the Java editor. Make the changes in the
LoginCOBOL class as shown in Figure 11-2 and save it.

This is basically the same code as the Login model class. However, it uses the
LogacWrapper and Logws classes from the tradeEGL.cobolwrapper package of
the ItsoMyTradeWeb project.

EGL
Program
Wrapper

Struts page

Struts action
class

COBOL/CICS
EGL

Generated
Progam

Model
Object

WebSphere
using J2C
300 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 11-5 LoginCOBOL model class for COBOL access through a wrapper

package strutsEGL;
import com.ibm.vgj.cso.CSOException;
import com.ibm.vgj.cso.CSOLocalPowerServerProxy;
import com.ibm.vgj.cso.CSOPowerServer;

import tradeEGL.cobolwrapper.LogacWrapper;
import tradeEGL.cobolwrapper.Logws;

public class LoginCOBOL {
private CSOPowerServer powerServer;

public int perform(String userid, String password) {

try {
powerServer = new CSOLocalPowerServerProxy();

} catch (CSOException e) {
e.printStackTrace();
return 0;

}
// Create an instance of the wrapper class

LogacWrapper wrapper = new LogacWrapper(powerServer);

// Set up parameter Logws
Logws newLogws = wrapper.getLogws();

try {

newLogws.setUserid (userid);
newLogws.setPassword(password);
newLogws.setAction ("inquire");

// execute the wrapper
wrapper.execute();

try { return Integer.parseInt(newLogws.getStatus()); }
catch (NumberFormatException e) { return 0; }

} catch (Exception e) {

System.out.println("LoginCOBOL Exception: " + e.getMessage());
e.printStackTrace();
return 0;

}
}

}

 Chapter 11. Implementing CICS actions 301

Modifying the Struts action to access COBOL
To run the trade application accessing COBOL through the LoginCOBOL class, we
have to change the EGLLoginAction2 class. This class already uses the Login,
LoginEJB and LoginClient classes. See “Testing the Struts application with the
EJB” on page 259 for details of this implementation.

In the perform method, change the code so that the Login, LoginEJB,
LoginClient, or LoginCOBOL class is selected, depending on the user ID entered:

uid:1 - uid:9 Java wrapper -> EGL program
uid:10 - uid:99 Java wrapper -> Session EJB -> EGL program
uid:100 - uid:199 Session EJB using JNDI -> EGL program
uid:200 - uid:499 Java wrapper -> J2C connector -> EGL COBOL

The change of the perform method is shown in Figure 11-6.

Figure 11-6 Changing the Struts action class to invoke EGL COBOL

public class EGLLoginAction2 extends Action {
......

public ActionForward perform(
try {

......
// make EGL call
// - regular or EJB call or COBOL call depending on userid
// uid:x -> normal
// uid:xx -> EJB through wrapper
// uid:xxx -> EJB directly
// uid:200+ -> EGL COBOL
if (userid.length() < 6) {

Login ...
}
else if (userid.length() < 7) {

LoginEJB ...
}
else if (userid.compareTo("uid:200") < 0) {

LoginClient ...
}
else {

LoginCOBOL login4 = new LoginCOBOL();
status = login4.perform(userid, password);

}
if (status == 1) {

......
302 Legacy Modernization with WebSphere Studio Enterprise Developer

Configuring the Web application for J2C
The Java wrapper for the EGL COBOL program uses the J2C connector to
access CICS. We defined the location value of eis/ITSOResourceAdapter in the
linkage options (see “Linkage options for COBOL/MVSCICS” on page 274). This
value is a local JNDI name that we have to map to a global JNDI name.

Open the web.xml deployment descriptor of the ItsoMyTradeWeb project (in Web
Content\WEB-INF):

� Select the References page (at the bottom) and then the Resources tab (at
the top).

� Click Add to define a new resource reference.

� Overtype the generated (new ResourceRef) with eis/ITSOResourceAdapter.

� For Type, click Browse, enter connectionfactory, and select the
javax.recource.cci.Connectionfactory.

� For Authentication, select Container, and for Connection management, select
Default. We will have to set up the user ID and password authentication for
the container when we configure the J2C connector in WebSphere.

� For the JNDI name (global name) enter any unique name; we use the eis
prefix and the name of the CICS server (eis/NRACSP2).

� Save the deployment descriptor.

� Figure 11-7 shows the completed dialog.

Figure 11-7 Defining the resource reference for J2C
 Chapter 11. Implementing CICS actions 303

Configuring the built-in server for J2C
To test the application with the J2C connector to invoke the CICS COBOL
program, the server must be configured.

Some of the configuration tasks cannot be completed in the server configuration
dialog and must be done using the administrative console. To enable the console,
edit the StrutsServer configuration and on the Configuration page select Enable
administration client.

Installing the CICS ECI resource adapter
In the final product, a resource adapter can be installed from the J2C page of the
configuration editor. Currently the Add option is greyed out.

Figure 11-8 Installing a resource adapter

Instead we can use the administrative console to install a resource adapter:

� Start the StrutsServer.

� Start the console by selecting the StrutsServer in the Servers view and Run
administrative client from the context menu.

The installation process for a resource adapter is described in “Install the
resource adapter archive (RAR) file” on page 341, where we install the
resource adapter on a real WebSphere Application Server.

� Save the configuration, stop the console (Logout action), and stop the server.

Important: This task is not supported with the early release of the Enterprise
Developer. We had to make some manual corrections to get this to work.
304 Legacy Modernization with WebSphere Studio Enterprise Developer

Configuring the J2C connector
When the resource adapter is installed correctly, we can progress with the
configuration of the J2C connector. Open the StrutsServer configuration to
complete this task.

J2C security
On the Security page, click Add to define a new JAAS authentication entry. You
can use any alias name, but the user ID and password must be valid to run the
CICS transaction (Figure 11-9).

Figure 11-9 Defining container authentication for J2C

Important: The install process did not complete normally and we had to fix
the resources.xml file manually. This file is in:

WSEDworkspace\ItsoServers\StrutsServer.wsc\cells\localhost\node\localhost
 Chapter 11. Implementing CICS actions 305

Connection factory
Switch to the J2C page in the configuration editor. Select the CICSECI resource
adapter and click Add to define a connection factory. In the dialog (Figure 11-10):

� Enter NRACSP2 (the CICS server name) as name.
� Enter eis/NRACSP2 as JNDI name (this matches the Web application).
� Select EGLCOBOL for container authentication.
� Click OK.

Figure 11-10 Defining a connection factory

Note: the labels for container and component authentication are wrong in the
dialog; they should be reversed.

Properties of the connection factory
Next, we have to define the properties of the connection factory. In the
configuration dialog (Figure 11-11) select each property and change the values:

� ServerName—NRACSP2, the name of the CICS server
� ConnectionURL—tcp://carmv1.raleigh.ibm.com, the z/OS machine
� PortNumber—22002, the port of the CICS Transaction Gateway
� TPNName—TRDE, the name of the CICS transaction that runs the DB2 plan

The other properties can be left unchanged.

Component
Container
306 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 11-11 Connection factory properties

Save and close the configuration.

Configuring the DB2 JDBC connector
After configuring the J2C connector, our basic Struts EGL application did not
work any more. We had to configure container authentication also for DB2:

� Open the StrutsServer configuration.

� On the Security page, define another entry with the name DB2user and user
ID and password set to db2admin (same process as in Figure 11-9 on
page 305).

� On the Data source page, select the DB2JdbcDriver and click Edit for the
TRADEDB data source (Figure 8-44 on page 233). For the container-managed
authentication alias, select the DB2user entry.

� Save the StrutsServer configuration.
 Chapter 11. Implementing CICS actions 307

Testing the COBOL CICS transactions
Start the StrutsServer in the Server perspective, then select the index.jsp and
Run on Server. Try the login action with different uid:xxx values.
308 Legacy Modernization with WebSphere Studio Enterprise Developer

Chapter 12. Implementing and using
Web services

In this chapter we briefly introduce the concept of Web services.

We look at different ways to create Web services from our application parts. In
particular we want to access EGL program as Web services. In this way, the EGL
program becomes a callable function that can be used from any Web service
client.

12

Note: Development is planning enhancements in the area of Web services for
the final Enterprise Developer product. These enhancements will make it
easier to create Web services from EGL programs.
© Copyright IBM Corp. 2002. All rights reserved. 309

Web services concepts
A good introduction to Web services concepts can be found in the redbook Web
Services Wizardry with WebSphere Studio Application Developer, SG24-6292.

Possible uses of Web services with Struts and EGL
When analyzing the concept and implementation of Struts-based Web
applications and of EGL-generated code, we think that Web services could be
used in multiple ways.

Creating Web services
In general, Web services can be created from JavaBeans and from session
EJBs. (There are other ways, such as SQL statements and stored procedures,
but they do not apply here.)

� Struts model classes that are usually invoked by Struts action classes can be
turned into a Web service.

� A Java wrapper class that invokes an EGL program cannot be turned into a
Web Service, because the call and execute methods do not return any data.
A JavaBean with similar function can be created and turned into a Web
service.

� A session EJB generated from an EGL program cannot be turned into a Web
service, because the generated EJB is a stateful session bean; only stateless
session beans can be converted into a Web service.

Consuming Web services
Web services created from any source could be consumed by Struts or
non-Struts applications.

� Struts actions (action classes or model classes) can use Web services in their
processing. The result of the Web services must be analyzed to decide on the
proper success or failure actions.

� EGL programs could use Web services, but this may require complex code.

Preparing a client project for Web services
Web services are created in a Web project. We will use our ItsoMyTradeWeb
project to create and run the Web services. For testing and client access, we use
a new Web project called ItsoMyTradeWebClient.
310 Legacy Modernization with WebSphere Studio Enterprise Developer

Creating the client project
Here are the steps to create the client Web project. The sequence is the same as
in “Using the wizard to create a Web project” on page 106:

� Start the wizard using New -> Web -> Web Project.

� Enter ItsoMyTradeWebClient as the name. Select J2EE Web Project.
Deselect Add Struts support. Select Create a default CSS file. Click Next.

� Select Existing for the enterprise application and Browse to ItsoMyTradeEAR.
Select 1.3 for the J2EE Level. Click Finish.

� Click OK to repair the server configuration (this adds the Web project to the
server configuration under the EAR project).

Creating a Web service from a Struts model class
Let us turn one of the Struts model classes into a Web service. For this exercise,
we use the strutsEGL.Login class.

� Make sure all servers are stopped.

� In the Web perspective, select the strutsEGL.Login class and New -> Other
-> Web Services -> Web Service. Click Next.

� Figure 12-1 shows the starting panel of the Web service wizard.

Figure 12-1 Web service wizard: start
 Chapter 12. Implementing and using Web services 311

– Select JavaBean Web service for the type of Web service.
– Select Start Web service in Web project.
– Select Generate a proxy and Generate a sample.
– Select Overwrite files without warning and Create folders when necessary.
– Click Next.

� For Deployment Settings (Figure 12-2), select Choose server first and then
select the StrutsServer. For the Web project, make sure that ItsoMyTradeWeb
is selected. Click Next.

Figure 12-2 Web service wizard: Deployment Settings

� For JavaBean Selection (Figure 12-3), the strutsEGL.Login bean is
preselected. Click Next.

Figure 12-3 Web service wizard: JavaBean Selection
312 Legacy Modernization with WebSphere Studio Enterprise Developer

� For the JavaBean Identity (Figure 12-4), change the URI to
urn:StrutsEGLLogin. Leave all other fields unchanged. Click Next.

Figure 12-4 Web service wizard: JavaBean Identity

� For JavaBean Methods (Figure 12-5), the perform method is preselected and
you can see that SOAP encoding is used for parameters and results. Select
Show server (Java to XML) type mappings. Click Next.

Figure 12-5 Web service wizard: JavaBean Methods

� No change is required for Java to XML Mappings. Click Next.
 Chapter 12. Implementing and using Web services 313

� For Binding Proxy Generation (Figure 12-6), Generate Proxy is preselected.
The project name should be set to ItsoMyTradeWebClient. Leave the proxy
class as proxy.soap.LoginProxy. Select Show mappings. Click Next.

Figure 12-6 Web service wizard: Binding Proxy Generation

� No change is required for Java to XML Mappings. Click Next.

� No change is required for SOAP Binding Mapping Configuration. Click Next.

� Skip the Test Client panel (we do not start it). Click Next.

� For Sample Generation (Figure 12-7):

– Generate a sample is preselected.

– Select Generate Web service sample JSPs.

– Leave the folder as sample/Login and the JSP folder as
ItsoMyTradeWebClient/Web Content/sample/Login.

– Do not select Launch the sample.

– Click Next.
314 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 12-7 Web service wizard: Sample Generation

� Skip the Publication panel. We will not launch the UDDI explorer.

� Click Finish. Be patient..... the code is generated and the server is started.

Generated files
The Web service wizard generates the following files into the Web Content of the
project where the Web service is installed (ItsoMyTradeWeb):

� Administrative application in the admin folder.

� A Login.isd file into WEB-INF\isd\java\strutsEGL. The ISD file contains the
deployment information of the Web service:

<isd:service id="urn:strutsEGL.Login" xmlns:isd="......">
 <isd:provider type="java" scope="Application" methods="perform">
 <isd:java class="strutsEGL.Login" static="false"/>
 </isd:provider>
 <isd:mappings>
 </isd:mappings>
</isd:service>
 Chapter 12. Implementing and using Web services 315

� Two JAR files, soapcfg.jar and xsd.bean.runtime.jar, are added to
WEB-INF\lib. These files contain the SOAP run-time library and encoding.

� Two SOAP servlets, rpcrouter and messagerouter into the WEB-INF\web.xml
file. The rpcrouter servlet will be used to invoke our Web service.

� Four Web Service Description Language (WSDL) files into the
wsdl\strustEGL folder. These WSDL files describe the Web service with its
name, methods, parameters, and results.

– The Login.wsdl and LoginBinding.wsdl files contain the specification of
the service.

– The LoginService.wsdl file points to the actual server where the service is
installed.

– The LoginJava.wsdl file is an alternative binding file.

� The SOAP deployment descriptor, dds.xml. This file is the concatenation of all
the individual ISD files.

� The SOAP configuration file, soap.xml. This file points to the configuration
manager that reads the dds.xml file.

The Web service wizard generates the following files into the client project
(ItsoMyTradeWebClient):

� The client proxy class, LoginProxy, into the soap.proxy package under Java
Source.

� A test sample into the Web Content\sample\Login folder. The sample consists
of four JSPs; the starting point is the TestClient.jsp file.

Creating a Web service from a wrapper class
The wrapper classes that are generated to invoke an EGL program could also be
converted into a Web service.

These wrapper classes are, however, not well suited to become Web services. If
you analyze the generated code, for example, the LogacWrapper class (in the
tradeEGL.genned package) you notice that you require two methods to invoke the
EGL program and retrieve the result:

� call(Logws)—execute the EGL program with a Logws record as parameter

� getLogws()—retrieve the Logws to extract the result data

This would result in two Web services interactions. It is therefore easier to
combine the processing into a model class, such as the Login class used in
“Creating a Web service from a Struts model class” on page 311.
316 Legacy Modernization with WebSphere Studio Enterprise Developer

Testing the Web service
Note that the StrutsServer has been started automatically. The Web service has
been installed in the server and is running.

SOAP administrative application
First we run the administrative application. It will show us that the Web service is
installed and running.

� Select the index.html file in ItsoMyTradeWeb\Web Content\admin and Run on
Server from the context menu.

� The XML SOAP Admin Web page displays (Figure 12-8).

� Select List all services and the urn:strutsEGL.Login service is listed.

� Select the service to see its details.

Figure 12-8 SOAP administrative application

You can use the Start/Stop a Web service actions to make Web services
available or unavailable. The SOAP server will remember the setting when the
WebSphere server is restarted and only make started Web services available to
clients.

A stopped Web service returns a SOAP fault to the calling client application.
 Chapter 12. Implementing and using Web services 317

Sample test client
Next we run the sample test client that was generated for us:

� Select the TestClient.jsp in ItsoMyTradeWebClient\Web Content
\sample\Login and Run on Server from the context menu.

� The test client is displayed (Figure 12-9).

Figure 12-9 Web service test client

� Select the perform method. The input pane displays the parameters. Enter
uid:1 and xxx for user ID and password, and click Invoke.

� After invoking the Web service, the result pane shows the result (1) of a
successful login.

� Enter a bad user ID or password and the result is 0.

How does this work?
The work is performed in the Result.jsp:

� The proxy class (LoginProxy) is allocated as a JavaBean:

<jsp:useBean id="id" scope="session" class="proxy.soap.LoginProxy" />

� For the perform method, the parameters are extracted from the request block
and the Web service is invoked using the perform method of the proxy bean.

Note: You should change the scope to request to enable multiple test
clients of different Web services to execute in the same run. With session
scope, you can encounter class cast errors.
318 Legacy Modernization with WebSphere Studio Enterprise Developer

� The proxy bean allocates a SOAP Call object that is filled with parameter and
encoding information. Finally the invoke method of the Call object calls the
Web service in the server. The result object is converted to the required return
type (int) and passed back to the caller (Result.jsp).

� The Result.jsp displays the return value.

Universal test client
We can also use the universal test client to test the Web service. To run the Web
service, we have to instantiate the LoginProxy class and invoke its perform
method.

After starting the StrutsServer, select the LoginProxy class in the proxy.soap
package of the ItsoMyTradeClient project and Launch Universal Test Client from
the context menu.

The universal test client starts and preloads an instance of the LoginProxy class.
Select the perform method, enter uid:1 and xxx as user ID and password, and
click Invoke. The result of the Web service is displayed (Figure 12-10).

Figure 12-10 Web service testing with the universal test client
 Chapter 12. Implementing and using Web services 319

Using the TCP/IP monitor to see the SOAP messages
With all the testing methods explored, we wonder what the actual SOAP
messages of a Web service interaction look like.

The Enterprise Developer provides a TCPIP monitoring server that can display
the traffic.

Configuring a TCP/IP monitoring server
In the Server Configuration view of the Server perspective, select New -> Server
and Server Configuration from the context menu. In the dialog (Figure 12-11):

� Enter TCPMonitor as name
� Select ItsoServers as folder (project)
� Select TCP/IP Monitoring Server as server type
� Click Finish.

Figure 12-11 Creating a TCP/IP Monitoring Server

The TCPMonitor server appears in the Server view.
320 Legacy Modernization with WebSphere Studio Enterprise Developer

Running the Web service through the monitor
First we start the TCPMonitor server. from the Servers view. The Console
displays:

Monitoring server started
localhost:9081 -> localhost:9080

By default the proxy (LoginProxy) sends the SOAP request to the rpcrouter
servlet using port 9080 (the default WebSphere port):

stringURL = "http://localhost:9080/MyTrade/servlet/rpcrouter";

To display the traffic, we have to send the request through port 9081 (the default
TCP/IP monitor port). There are two ways to accomplish this:

� We can edit the LoginProxy class (in soap.proxy of ItsoMyTradeClient) and
change the URL to go through port 9081:

stringURL = "http://localhost:9081/MyTrade/servlet/rpcrouter";

� Alternatively we can change the port dynamically. The proxy class provides
getEndpoint and setEndpoint methods to manipulate the SOAP address.

Changing the port of the SOAP request
We will use the second alternative. In the universal test client, select the
setEndpoint method, the URL(string) constructor for the parameter, enter the
new request address, and click Invoke (Figure 12-12).

Figure 12-12 Changing the SOAP endpoint address

Note that you can use the getEndpoint method to retrieve the existing address.
 Chapter 12. Implementing and using Web services 321

Run the Web service
Select the perform method and run the Web service call again with uid:1 and
xxx as parameters.

View the SOAP messages
In the Server perspective, open the TCP/IP Monitor view and select the
rpcrouter request (Figure 12-13).

Figure 12-13 TCP/IP Monitor view

In the left pane, you can see the SOAP input message with two parameters:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>
<ns1:perform xmlns:ns1="urn:struts.EGLLogin"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<userid xsi:type="xsd:string">uid:1</userid>
<password xsi:type="xsd:string">xxx</password>

</ns1:perform>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
322 Legacy Modernization with WebSphere Studio Enterprise Developer

In the right pane you can see the SOAP output message with the return value:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>
<ns1:performResponse xmlns:ns1="urn:struts.EGLLogin"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xsi:type="xsd:int">1</return>

</ns1:performResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Note that SOAP encoding supports the standard data types, such as string, int,
float, double, and so forth. These data types are defined xsi:type in a SOAP
XML schema.

Creating a Web service that returns the working storage
The current Struts model class (Login) only returns an integer to signal a
successful or unsuccessful login. A more interesting approach would be to
retrieve the complete working storage record (although it currently does not hold
much information).

In addition, the Logws carries a number of EGL class references with it.
Therefore, it is easier to create a simple JavaBean that hold the Logws data.

To illustrate this concept, we create a new service JavaBean (LoginLogws) that
returns a simple JavaBean (LogwsBean). Then we create a Web service from the
service JavaBean.

Create the data JavaBean
In the ItsoMyTradeWeb project, create a package named webserv. In this package,
create a simple class named LogwsBean:

� The class must implement java.io.Serializable.

� Add four properties (strings):

private String userid = "";
private String password = "";
private String action = "";
private String status = "";
 Chapter 12. Implementing and using Web services 323

� Create getter and setter methods for the properties. You can do that easily
from the Outline view using the context menu on the properties.

� The code of the class should look similar to Figure 12-14.

Figure 12-14 LogwsBean data bean as result class (abbreviated)

Create the service JavaBean
Create a copy of the Login class in the webserv package of ItsoMyTradeWeb.
(Select the Login class and Copy, then select the webserv package and Paste.)
Rename the copy LoginLogws (select Rename from the context menu).

Edit the LoginLogws class:

� Change the perform method:

– Change the return type to webserv.LogwsBean.
– Change all return 0 to return null.
– Return the webserv.LogwsBean when successful.

package webserv;

public class LogwsBean implements java.io.Serializable
{

private String userid = "";
private String password = "";
private String action = "";
private String status = "";

public java.lang.String getAction() { return action; }
public java.lang.String getPassword() { return password; }
public java.lang.String getStatus() { return status; }
public java.lang.String getUserid() { return userid; }

public void setAction(String action) {
this.action = action;

}
public void setPassword(String password) {

this.password = password;
}
public void setStatus(String status) {

this.status = status;
}
public void setUserid(String userid) {

this.userid = userid;
}

}

324 Legacy Modernization with WebSphere Studio Enterprise Developer

� The code of the LoginLogws class is shown in Figure 12-15.

Figure 12-15 LoginLogws service bean

package webserv;
import com.ibm.vgj.cso.CSOException;
import com.ibm.vgj.cso.CSOLocalPowerServerProxy;
import com.ibm.vgj.cso.CSOPowerServer;
import tradeEGL.genned.LogacWrapper;
import tradeEGL.genned.Logws;

public class LoginLogws {
private CSOPowerServer powerServer;

public webserv.LogwsBean perform(String userid, String password) {
try {

powerServer = new CSOLocalPowerServerProxy();
} catch (CSOException e) {

e.printStackTrace();
return null;

}
// Create an instance of the wrapper class
LogacWrapper wrapper = new LogacWrapper(powerServer);
// Set up parameter Logws
Logws newLogws = wrapper.getLogws();

try {
newLogws.setUserid (userid);
newLogws.setPassword(password);
newLogws.setAction ("inquire");

// execute the wrapper
wrapper.execute();

LogwsBean logwsbean = new LogwsBean();
logwsbean.setUserid (newLogws.getUserid());
logwsbean.setPassword(newLogws.getPassword());
logwsbean.setAction (newLogws.getAction());
logwsbean.setStatus (newLogws.getStatus());
return logwsbean;

} catch (Exception e) {
System.out.println("LoginLogws Exception: " + e.getMessage());
e.printStackTrace();
return null;

}
}

}

 Chapter 12. Implementing and using Web services 325

Create a Web service from the LoginLogws JavaBean
To create the Web service from the LoginLogws JavaBean, repeat the steps of
“Creating a Web service from a Struts model class” on page 311:

� Select the LoginLogws class and New -> Web Services -> Web Service.

� Select Generate a proxy and Generate a sample.

� The URI becomes urn:weserv.LoginLogws

� The proxy becomes LoginLogwsProxy. Make sure the project for the proxy is
ItsoMyTradeWebClient.

� The sample client goes into sample/LoginLogws (make sure to select
Generate Web service sample JSPs).

Generated files
The Web service wizard generates the following additional files into the Web
Content of the project where the Web service is installed (ItsoMyTradeWeb):

� A LoginLogws.isd file into WEB-INF\isd\java\webserv. The ISD file contains
the deployment information of the Web service, including information about
encoding classes for the JavaBean:

<<isd:service id="urn:webserv.LoginLogws"
xmlns:isd="http://xml.apache.org/xml-soap/deployment">

 <isd:provider type="java" scope="Application" methods="perform">
 <isd:java class="webserv.LoginLogws" static="false"/>
 </isd:provider>
 <isd:mappings>
 <isd:map encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:x="http://webserv/" qname="x:LogwsBean"
javaType="webserv.LogwsBean"
java2XMLClassName="org.apache.soap.encoding.soapenc.BeanSerializer"
xml2JavaClassName="org.apache.soap.encoding.soapenc.BeanSerializer"/>

 </isd:mappings>
</isd:service>

� Four WSDL files into the wsdl\webserv folder. These WSDL files describe the
Web service with its name, methods, parameters, and results. The folder also
contains an XML XSD file (LogwsBean.xsd) that describes the JavaBean.

� The SOAP deployment descriptor, dds.xml is updated with the new ISD file.

The Web service wizard generates the following files into the client project
(ItsoMyTradeWebClient):

� The client proxy class, LoginLogwsProxy, into the soap.proxy package.

� The sample in the sample\LoginLogws folder.

� A copy of the LogwsBean class in a new webserv package.
326 Legacy Modernization with WebSphere Studio Enterprise Developer

Use the universal test client
Select the LoginLogwsProxy class in the ItsoMyTradeWebClient project and
Launch Universal Test Client (context). The test client starts and loads an
instance of the proxy bean:

� Select the perform method, enter uid:1 and xxx as parameters and click
Invoke.

� The result is a LogwsBean. Click Work with Object to add the result to Object
References (Figure 12-16).

� Expand the LogwsBean and run its getStatus (and other get methods) method
to retrieve the result data values.

Figure 12-16 Universal test client run with JavaBean result

Use the generated sample
We will run the generated sample later (see “Running the sample client” on
page 335). You can select the sample\LoginLogws\TestClient.jsp and Run on
Server, then select the perform method, enter values for user ID and password
and click Invoke. The result data of the LogwsBean is displayed as shown in
Figure 12-22 on page 335.
 Chapter 12. Implementing and using Web services 327

Use the TCP/IP monitoring server
When you use the TCP/IP monitoring server for the LoginLogwsProxy, the SOAP
output displays as:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>
<ns1:performResponse xmlns:ns1="urn:webserv.LoginLogws"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xmlns:ns2="http://webserv/" xsi:type="ns2:LogwsBean">

<status xsi:type="xsd:string">1</status>
<userid xsi:type="xsd:string">uid:1</userid>
<password xsi:type="xsd:string">xxx</password>
<action xsi:type="xsd:string">inquire</action>

</return>
</ns1:performResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Notice how the LogwsBean has been serialized into XML. The four fields of the
JavaBean are clearly visible in the SOAP XML output.

On the client side, the JavaBean is reconstructed from the XML.

Creating a Web service client
Let us create a small Web client that uses the two Web services. This client
consist of an HTML file (LoginClient.html) with a form for user ID and password.
From the form a servlet (LoginServlet) is invoked. The servlet calls the Web
services using the appropriate proxy class and displays the result.

Create the HTML page with an input form
Create a new HTML file in ItsoMyTradeWebClient\Web Content (select New ->
HTML/XHTML file). Name the file LoginClient.html.

Edit the code and replace the source with the file shown in Figure 12-17.
328 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 12-17 Web service client HTML

Notice that the form has two buttons to invoke either of the two Web services we
created.

Create the servlet to invoke the Web services
In ItsoMyTradeWebClient\Java Source, create a new package named client. In
the client package, create a servlet named LoginServlet (New -> Servlet) and
add it to the web.xml file.

Edit the code and replace the source with the file shown in Figure 12-18.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=WINDOWS-1252">
<META name="GENERATOR" content="IBM WebSphere Studio">
<TITLE>LoginClient.html</TITLE>
</HEAD>
<BODY>
<H1> Web Service Login Client </H1>
<FORM action="LoginServlet">
<TABLE border="0">

<TR>
<TD>Enter the user ID:</TD>
<TD><INPUT type="text" name="userid" size="10" maxlength="10"></TD>

</TR><TR>
<TD>Enter the password:</TD>
<TD><INPUT type="password" name="password" size="10"

maxlength="10"></TD>
</TR><TR>

<TD> </TD> <TD> </TD>
</TR><TR>

<TD><INPUT type="submit" name="logws" value="LoginLogws"></TD>
<TD><INPUT type="submit" name="login" value="Login"></TD>

</TR>
</TABLE>
</FORM>
</BODY>
</HTML>
 Chapter 12. Implementing and using Web services 329

Figure 12-18 Web service client servlet

package client;
import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.*;
import java.io.PrintWriter;
import proxy.soap.*;
import webserv.LogwsBean;

public class LoginServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
doPost(req, resp);

}
public void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {
PrintWriter out = resp.getWriter();
out.println("<html><body><h1>Web Service Login Client</h1>");
String loginBut = req.getParameter("login");
String logwsBut = req.getParameter("logws");
String userid = req.getParameter("userid");
String password = req.getParameter("password");
try {

if (loginBut != null) { // Login Web service
out.println("<h2> Login and display status </h2>");
LoginProxy loginProxy = new LoginProxy();
int status = loginProxy.perform(userid, password);
if (status == 1)

out.println("<p>Login successful");
else out.println("<p>Login failed");

}
if (logwsBut != null) { // LoginLogws Web service

out.println("<h2> Login and display record </h2>");
out.println("<TABLE border=\"1\"><TBODY>");
LoginLogwsProxy logwsProxy = new LoginLogwsProxy();
LogwsBean logws = logwsProxy.perform(userid, password);
out.println("<tr><td>User ID:</td><td>"+logws.getUserid()+"</td></tr>");
out.println("<tr><td>Pasword:</td><td>"+logws.getPassword()+"</td></tr>");
out.println("<tr><td>Action: </td><td>"+logws.getAction()+"</td></tr>");
out.println("<tr><td>Status: </td><td>"+logws.getStatus()+"</td></tr>");
out.println("</TBODY></TABLE>");
if (logws.getStatus().trim().equals("1"))

out.println("<p>Login successful");
else out.println("<p>Login failed");

}
out.println("</body></html>");

} catch (Exception ex) { ex.printStackTrace();
out.println("<p>Error in Login Web Service: "+ex.getMessage());

}
}}
330 Legacy Modernization with WebSphere Studio Enterprise Developer

Test the Web service client
Start the StrutsServer, select the LoginClient.html file and Run on Server.
Enter uid:1 and xxx and run either of the Web services. The output of a sample
run is shown in Figure 12-19.

Figure 12-19 Web service client application run
 Chapter 12. Implementing and using Web services 331

Using a Web service in a Struts action
A Struts action or model class can use a Web service is the same way the
sample client servlet uses a Web service.

Such an action would only make sense when the Web service is remote, that is,
running in a different server. Calling one of our own Web services in the same
server would only add overhead to the process.

To call a Web service in a Struts action, use similar code as in the client servlet:

LoginLogwsProxy logwsProxy = new LoginLogwsProxy();
LogwsBean logws = logwsProxy.perform(userid, password);

From this example, you realize that you require a proxy class and you must know
the data type that is returned.

Outline of required actions
To generate a proxy class for a Web service, you require the description of the
Web service, that is, the WSDL files.

The general sequence of actions is as follows:

� Have a Web project ready from which you want to call the Web service.

� Get the WSDL files. You require the complete set of files: the specification,
the binding, the service implementation, and the XML schema of the result.

For our LoginLogws example:

LoginLogws.wsdl
LoginLogwsBinding.wsdl
LoginLogwsService.wsdl
LogwsBean.xsd

You would get these files either from the service provider directly, or by using
a UDDI registry that has pointers to the files.

� Run the Web service wizard from the LoginLogwsService.wsdl
implementation file to generate the proxy class.

� Use the proxy class in a Struts action.

Prepare a Web project
To illustrate the process, we will use our existing client project,
ItsoMyTradeWebClient.
332 Legacy Modernization with WebSphere Studio Enterprise Developer

Get the WSDL files
It does not matter how you get the WSDL files. In our case, we just copy the files
from the ItsoMyTradeWeb project to the ItsoMyTradeWebClient project:

� Create a folder named wsdl in ItsoMyTradeWebClient\Web Content.
� Select the files in ItsoMyTradeWeb\Web Content\wsdl\webserv and Copy.
� Select the ItsoMyTradeWebClient\Web Content\wsdl folder and Paste.

Generating a proxy class for a Web service
Run the Web service wizard to generate the proxy:

� Select the LoginLogwsService.wsdl file (in ItsoMyTradeWebClient) and New
-> Web Services -> Web Service Client.

� In the dialog (Figure 12-20), all the defaults are fine. We can also generate a
sample (but we do not require one). Click Next.

Figure 12-20 Web service client proxy generation

� For the WSDL file selection make sure that the LoginLogwsService.wsdl file
is selected. Click Next.

� For Binding Proxy Generation (Figure 12-21), make sure that the
ItsoMyTradeWebClient project is selected. Change the proxy class name to
proxy.soap.client.LoginLogwsProxy. We do not want to overwrite the
existing proxy class we used for testing. Click Next.
 Chapter 12. Implementing and using Web services 333

Figure 12-21 Web service client proxy generation class

� Skip the universal test client and click Next.

� For Sample Generation, select Generate Web service sample JSPs and set
the JSP folder as:

/ItsoMyTradeWebClient/Web Content/sample/client/LoginLogws

We do not want to overwrite the sample generated in “Create a Web service
from the LoginLogws JavaBean” on page 326. (Actually the code is identical.)

� Click Finish.

Generated files
The generated files include:

� The proxy class proxy.soap.client.LoginLogwsProxy

� The sample client JSPs in Web Content\sample\client\LoginLogws

� The result JavaBean, webserv.LogwsBean, is copied to the project (in our case
it is already there)
334 Legacy Modernization with WebSphere Studio Enterprise Developer

Running the sample client
Start the StrutsServer, select the sample\client\LoginLogws\TestClient.jsp
and Run on Server. The sample client is displayed.

Select the perform method, enter appropriate user ID and password, and click
Invoke. A sample run is shown in Figure 12-22.

Figure 12-22 Web service sample client run

Use the proxy bean in a Struts action
This step is not illustrated here.

Once you have a proxy for a Web service, invocation of the Web service
becomes very easy. Just allocate the proxy class, call the method with
appropriate parameters, and retrieve the result.

The result can be a simple Java type (int, as illustrated in the Login example), a
JavaBean (LogwsBean, as illustrated in the LoginLogws example), an array of
JavaBeans, or an XML document in memory (an org.w3c.dom.Element).
 Chapter 12. Implementing and using Web services 335

336 Legacy Modernization with WebSphere Studio Enterprise Developer

Chapter 13. Deploying applications

In this chapter we discuss the deployment of the sample application into a
WebSphere Application Server.

Part of the deployment is the configuration of the WebSphere Application Server.
For our purposes we only use the base server, one server in one machine
(node).

13
© Copyright IBM Corp. 2002. All rights reserved. 337

Deployment steps
Deployment of the sample application includes these activities:

� Creating the enterprise application archive (EAR) file from the Enterprise
Developer

� Configuring the WebSphere Application Server for DB2 and CICS resource
adapters

� Installing the enterprise application in a WebSphere Application Server

Creating the EAR file
Make sure that the enterprise application and its modules are error free and that
the deployment descriptor of the ItsoMyTradeWeb project is configured for the
J2C resource (see “Configuring the Web application for J2C” on page 303).

Select File -> Export -> EAR file. In the export dialog select the ItsoMyTradeEAR
application. For the destination enter any location, for example:

d:\itsomytrade.ear

Do not select any other options and click Finish.

Copy the file to the WebSphere Application Server directory for installable
applications on the server machine, for example:

d:\WebSphere\AppServer\installableApps

Configuring the WebSphere Application Server
In this section, we configure a WebSphere Application Server Version 5 for our
sample application. We assume that a Version 5 server has been installed on a
server machine.

Start the server and the administrative console
Start the WebSphere server (select Start -> Programs -> IBM WebSphere ->
Application Server V5.0 -> Start the server).

Start the administrative console (select Start -> Programs -> IBM WebSphere ->
Application Server V5.0 -> Administrative Console). This opens a browser with:

http://127.0.0.1:9090/admin
338 Legacy Modernization with WebSphere Studio Enterprise Developer

You can also start the administrative console from another machine by pointing
to:

http://yourservermachine:9090/admin

You are prompted for a user ID that is used to track the changes. This section
assumes that security has not been enabled and that we only have one node
with one server called server1.

Configuring the data source for the TRADEDB
When configuring a data source, environment variables are used to point to
installation directories. First we check that a variable is configured pointing to the
DB2 JDBC directory:

Expand Environment and select Manage WebSphere Variables. For the Node
(top), scroll down to the variable DB2 JDBC Driver Path and make sure that it
points to the java subdirectory of the DB2 installation. If the variable value is
empty, select the DB2 JDBC Driver Path variable and enter the correct path in
the dialog that is displayed. Click OK and save the configuration.

Figure 13-1 WebSphere variable for DB2 JDBC drivers
 Chapter 13. Deploying applications 339

Define a DB2 JDBC driver
Expand Resources and select JDBC Providers. For the scope (top), select
Server and click Apply.

If you do not have a DB2 JDBC Provider, click New. Select DB2 JDBC Provider
from the pull-down and click OK. In the dialog, check that the classpath points to
${DB2_JDBC_DRIVER_PATH}/db2java.zip and the implementation class points to
COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource. Click OK.

Define the data source for the TRADEDB
Click the new or existing DB2 JDBC Provider. In the dialog, scroll down and
select Data Sources.

Click New to define a data source. Enter TRADEDB as the name, jdbc/tradedb as
the JNDI name, and optionally include a description. Check that the data store
helper class name is com.ibm.websphere.rsadapter.DB2DataStoreHelper. Click
Apply.

The dialog is expanded at the bottom. Click Custom Properties. Click
databaseName and enter TRADEDB as value (the other properties are optional).
Select Data Sources in the top line.

Figure 13-2 shows the TRADEDB data source defined. Save the configuration.

Figure 13-2 Defining the TRADEDB data source
340 Legacy Modernization with WebSphere Studio Enterprise Developer

Configuring the J2C connector
To configure the J2C connector, we have to install the resource adapter archive
file (RAR) and then define the connection to CICS.

The resource adapter archive file for CICS is cicseci.rar. You can get that file
from the CICS Transaction Gateway or from the Enterprise Developer at:

<WSED-Home>\wstools\eclipse\plugins\com.ibm.etools.ctc.binding.eis_0.5.0\
runtime

Install the resource adapter archive (RAR) file
Select Resources -> Resource Adapters. For the scope, select Server and click
Apply. Click Install RAR.

Select Local path and click Browse. Locate and select the cicseci.rar file. Click
Next. Enter CICSECI as the name and click OK.

The CICSECI adapter appears in the list (Figure 13-3).

Figure 13-3 CICS ECI resource adapter

Configuring container-managed authentication
We have to configure authentication for the J2C connector for the container
because we selected container authentication in the Web application (see
“Configuring the Web application for J2C” on page 303).
 Chapter 13. Deploying applications 341

Expand Security -> JAAS Configuration -> J2C Authentication Data. Click New to
define a new user ID. Enter any alias name, for example, EGLCOBOL, and enter
a user ID and password that are allowed to run the CICS EGL transaction
(Figure 13-4).

Figure 13-4 J2C authentication

Configuring the CICS ECI resource adapter
Expand Resources - Resource Adapters and select the CICSECI resource
adapter. At the bottom of the dialog, click J2C Connection Factories (under the
heading Additional Properties).

Click New to define a connection factory. In the dialog (Figure 13-5):

� Enter NRACSP2 as the display name.

� Enter eis/NRACSP2 as the JNDI name (to match the Web application).

� For the authentication preference, select None.

� For the Container-managed Authentication Alias, select EGLCOBOL from the
pull-down.

� Click Apply.
342 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 13-5 J2c connection factory

Select Custom Properties at the bottom. Select these properties and define their
values (Figure 13-6). Save the configuration when done.

ConnectionUrl tcp://carmvs1.raleigh.ibm.com—your CICS Transaction
Gateway (CTG) node

PortNumber 22002—the port of the CTG

ServerName NRACSP2—name of the CICS server

TPNName TRDE—CICS transaction for the DB2 plan
 Chapter 13. Deploying applications 343

Figure 13-6 Properties of the CICS ECI connector

Note that UserName and Password are not required because we selected
container authentication. These properties can be specified when selecting
component authentication and they overwrite any specification done for the
connection factory Component-managed Authentication Alias.

Installing the enterprise application
In this section, we install the ItsoMyTradeEAR application into the application
server.

In the administrative console, expand Applications and select Install New
Application:

� In the dialog, select Local path and click Browse to locate the
itsomytrade.ear file (for example, WebSphere\AppServer\installableApps).
Click Next.

� Leave all defaults on the second preparation panel and click Next.
344 Legacy Modernization with WebSphere Studio Enterprise Developer

� Step 1: Provide installation options. Select Pre-compile JSP and leave all
other defaults. (EJBs have already been deployed in the Enterprise
Developer.)

� Step 2: JNDI names for beans (no change). The JNDI name of the session
EJB generated by EGL is visible.

� Step 3: Map resource references (no change). The reference of the J2C
connection and JNDI name defined in the web.xml file is visible.
 Chapter 13. Deploying applications 345

� Step 4: Map virtual hosts for Web modules (no change). All modules map to
default_host.

� Step 5: Map modules to application servers (no change). All modules run on
the only server (server1).

� Step 6: Method protection (no change).
346 Legacy Modernization with WebSphere Studio Enterprise Developer

� Step 7: Summary (no change).

� Click Finish. Wait for the message Application ItsoMyTradeEAR installed
successfully. Click Save to master configuration.

� Stop the server and then start the server.

Setting up the TRADEDB database
To test the application on an application server, you require at least the
TRADEREGISTRYBEAN table in the TRADEDB database with the user IDs loaded.

To load the table with the sample data, you require the exported data. Copy the
traderegistrybean.ixf file from:

<WSED>\wstools\eclipse\plugins\com.ibm.etools.examples.trade_x.x.x\scripts

Run these commands in a DB2 command window to define and load the
database and table:

db2 create database tradedb
db2 connect to tradedb
db2 create table db2admin.traderegistrybean

(userid varchar(251) not null, password varchar(251), status integer,
primary key (userid))

db2 import from traderegistrybean.ixf of ixf insert into
db2admin.traderegistrybean

db2 connect reset

If you used a user ID other than db2admin in your application, be sure to change
the prefix in the commands.
 Chapter 13. Deploying applications 347

Testing the Web application
Start a browser with the URL of the Web application:

http://servmachine:9080/MyTrade

Note that we can use the HTTP server that is built into WebSphere Application
Server. To use an external HTTP server, we have to regenerate the plug-in and
stop/start the HTTP server.

In the welcome page enter values into the bottom form to execute the EGL
program in different configurations:

uid:1 Struts -> Java wrapper -> EGL program
uid:11 Struts -> Java wrapper -> session EJB -> EGL program
uid:111 Struts -> session EJB -> EGL program
uid:222 Struts -> Java wrapper -> J2C -> CICS COBOL EGL program
348 Legacy Modernization with WebSphere Studio Enterprise Developer

Part 4 Development
environment for
z/OS

In Part 4, we describe the z/OS development environment that is provided by the
Enterprise Developer.

Part 4
© Copyright IBM Corp. 2002. All rights reserved. 349

350 Legacy Modernization with WebSphere Studio Enterprise Developer

Chapter 14. Developing for z/OS

This chapter discusses and illustrates the functionality behind the perspectives
that are geared at supporting the development of artifacts that eventually will
reside on z/OS.

We illustrate the functionality using a COBOL sample. The focus is on the
features offered within Enterprise Developer to support the remote-edit-
compile-debug (RECD) scenario. However, we also illustrate some of the local
capabilities that are instrumental in support of the RECD scenario.

14
© Copyright IBM Corp. 2002. All rights reserved. 351

Local project
In this section we will create, load and work with a local project. This local project
will subsequently move to z/OS to illustrate the RECD capabilities. It is likely that
z/OS customer would use Enterprise Developer to maintain existing systems
residing on the mainframe. Therefore, we will not discuss the local capabilities at
great length.

Creating a local project
Starting from a z/OS Projects perspective, you create a (local) project using
sample code that is shipped with Enterprise Developer by performing these
steps:

� Select File -> New -> Other. The New wizard dialog opens (Figure 14-1).

Figure 14-1 New Wizard dialog to create Cobol sample project

� Select Examples -> COBOL and in the right-hand pane COBOL Sample1 and
click Next, after which the COBOL sample project dialog is displayed
(Figure 14-2).
352 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 14-2 Cobol Sample project dialog

� Enter ItsoCobolLocal as the project name and accept the default workspace
as the location where the project data will be stored.

� Click Next. For now we bypass the compile options and builder choices
panels and click Finish.

� After processing has completed, the z/OS Projects view should look like
Figure 14-3 and contain two COBOL sources and a .project file.

Figure 14-3 z/OS project after creation

Important: You might have noticed that a .project file is created. Do not
touch the .project files, which are part of each project.

Tip: If you are interested only in the remote-edit-compile-debug (RECD)
scenario, go directly to “Remote project introduction” on page 364.
 Chapter 14. Developing for z/OS 353

Local project for possible move to MVS
When defining a new MVS local project from scratch, the user is offered an
interesting option on the first panel (Figure 14-4).

Figure 14-4 Local project dialog for possible move to MVS

If you select Mark project for possible move to an MVS system, the Enterprise
Developer enforces certain rules within that local project as if it were a remote
project. An example would be that file names can only be 8 characters long.

Building the local project
In order to be able to run and debug the programs that are part of the
ItsoCobolLocal project, we exploit the capabilities of a (local) distributed build
server. For a local project, we use a build server on Windows (NT, 2000), which
can be on the same machine or on another machine in the network.

Based upon a so-called build plan, which is generated when a rebuild for a
project is requested, the build server does know what processes must be invoked
in a particular order using the various sources and artifacts created during build
processing.

For our projec, this means that the build plan must reflect that two compiles have
to be performed and afterwards a link is performed to create an executable.
Moreover, the build server will report back to the requesting build client what has
been done and if requested brings the generated output artifacts (various
listings) back into the project as well (Figure 14-5).
354 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 14-5 Local build server overview

Defining and starting a local build server
To start the build server, run this command in a Command Prompt window:

ccublds -p 2345 -V

Note that the system PATH must include the Enterprise Developer distributed
build directory and the COBOL compile command:

d:<WSED>\wstools\eclipse\plugins\com.ibm.etools.egl.distributedbuild_5.0.0\bin
d:\IBM\vac\BIN <=== this is missing in the PATH

You can also create a command file to set the PATH and start the build server
(Figure 14-6).

Figure 14-6 Command to start the local build server

Build
preferences
and build
properties

Local
Distributed

Build

Build
Plan
(XML)

Enterprise Developer

REXX
command

files

YourLocalProject

.adt

Buildresults.XML

Used Generated

Local
Distributed

Build
Server

.asm

.lst

.exe

.obj

Could be on other machine

Stored

Used

Used

set path=D:\WSED\wstools\eclipse\plugins\
com.ibm.etools.egl.distributedbuild_5.0.0\bin;D:\IBM\vac\BIN;%path%

ccublds -p 2345 -V
 Chapter 14. Developing for z/OS 355

Note that the port 2345 is just a number. As long as this number is not in use as
the port for another process, one can choose any number. In the services file
(c:\winnt\system32\drivers\etc\services), you can see which port numbers
are potentially in use. We suggest you update this file to reflect the fact that 2345
will be used for the local build server.

After starting the build server, the command window should look like Figure 14-7.
The build server is waiting for work!

Figure 14-7 Local build server up and listening

When the build server is up and running, it should be defined to the development
environment. The (local) build server is defined as follows:

� Select Windows -> Preferences -> z/OS Distributed Build Servers
(Figure 14-8):

Figure 14-8 Defining (local) build server in the preferences file

� For a local workstation, enter localhost as server address and 2345 as port.

� Click Test to verify that the server is running and click OK to save the
preferences.
356 Legacy Modernization with WebSphere Studio Enterprise Developer

Performing the build
Now let’s perform the build operation.

Fixing the system PATH
The build failed in our system because the system PATH does not include the
COBOL compile command file d:\IBM\vac\BIN\iwzvcomp.cmd.

Invoking the build
In order to create an accurate load module, the main COBOL programs must be
flagged as being a MAIN program. In our case the StartApp program is a MAIN
program. After that we can perform the build:

� Select StartApp.cbl and Set As Main from the context menu.

� Select the ItsoCobolLocal project and Rebuild Project from the context
menu.

Checking the build output
After the build completes, all progress windows have closed, and after
performing a refresh action on the project (select Refresh from the context
menu), open the BuildResults.xml file to view the results of the processing
(Figure 14-9).

Notice the generated files in the cobol folder:

� Compiler listings (.lst)
� Intermediate files (.adt, .asm, .OBJ)
� Executable (.exe)

Note that although an error is displayed for the XML file, the executable is in good
shape. The Outline view is useful to navigate through the BuildResults.xml file.

Important: Open the environment variables (select Advanced on system
properties) and add the directory to the WSEDPATH variable:

D:\WSED\runtimes\base_v5\java\bin;D:\WSED\wstools\eclipse\plugins\com.ibm
.etools.egl.distributedbuild_5.0.0\bin;D:\IBM\vac\BIN;

Note that WSEDPATH is appended to the system PATH. You must reopen a
command window and restart the build processor (ccublds).
 Chapter 14. Developing for z/OS 357

Figure 14-9 COBOL project after build processing

The build output shows a successful completion of the build process:

02/10/01 12:49:40 *** Success ***
02/10/01 12:49:40
Input Files: D:\WSEDworkspace\ItsoCobolLocal\cobol(StartApp.cbl
 D:\WSEDworkspace\ItsoCobolLocal\cobol(PrintApp.cbl
Command: rexx.exe IWZVCOMP.CMD -qTEST,LIST -b/de -PP" "
-main:StartApp PrintApp.cbl StartApp.cbl
****************** Build Script Output Follows *****************
PP 5639-I44 IBM VisualAge for COBOL (Windows) 3.0 in progress ...
End of compilation 1, program PRINTAPP, no statements flagged.
PP 5639-I44 IBM VisualAge for COBOL (Windows) 3.0 in progress ...
End of compilation 1, program STARTAPP, no statements flagged.
COBOL compile complete, return code = 0.
****************** End Of Build Script Output ******************
358 Legacy Modernization with WebSphere Studio Enterprise Developer

Alternative way to perform build
For a local project it is possible to perform build action (compile and link) from the
z/OS Projects view by selecting a COBOL source and Build in the context menu.

A build started like this has a scope of only a single source file and does not
exploit the distributed build architecture. Behind the build action is a REXX script
issuing a command-line invocation of the distributed COBOL compiler (cob2) and
linker.

Potential REXX conflict
When running builds or a syntax check, you may encounter a REXX version
conflict if you already have Object REXX installed on your system. The error
message shows up in a pop-up dialog as shown in Figure 14-10.

Figure 14-10 REXX version conflict

To resolve this conflict, open the Windows Task Manager, find the rxapi.exe
process, and click End Process to kill that task. Then retry the operation.

Running the local project
To see what the sample program is all about, run the executable:

� Double-click StartApp.exe from the z/OS Project view and enter a name
when prompted. A sample output is shown below:

Enter a name or Q to quit:
Gert Hekkenberg
Thanks to Gert Hekkenberg for succeeding!

Enter a name or Q to quit:
q

Restriction: Performing a build operation from the COBOL file context menu
will only create an executable for stand-alone programs. The distributed build
discussed earlier is capable of handling programs that call other programs.
Note that a project is restricted to having only one main program.
 Chapter 14. Developing for z/OS 359

Debugging the local project
To debug the local project, we set a breakpoint in the COBOL program, open the
Debug perspective, and start the debug session:

� Open the StartApp.cbl program. Scroll to the line Move 1 to Char-count and
double-click in the grey left border to set the breakpoint (Figure 14-11).

Figure 14-11 COBOL program with breakpoint set

� Open the Debug perspective by selecting Window -> Open Perspective ->
Other -> Debug and click OK (or use the shortcut through the open
perspectives icon).

� Now we start a debug session for debugging the COBOL program. Select
Run -> Debug and the Launch Configuration dialog opens (Figure 14-12):

– Select Debug a Compiled Application.

– Click New to define a new configuration.

– Overtype the name with StartAppLocalDebug.

– For the project, click Browse and select the ItsoCobolLocal project.

– For the program name, click Browse and navigate to the StartApp.exe in
the workspace.

– Click Apply.
360 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 14-12 Launch debug configuration for local debug

� Click Debug to start debugging the COBOL program. The COBOL source
opens in the Debug view at the start of the program (Figure 14-13).
 Chapter 14. Developing for z/OS 361

Figure 14-13 Debug perspective: Local Debug session started

� Note that the application has opened a command window. We have to enter
input in the command window.

� Click the Resume icon in the Debug view to run the program to the
breakpoint.

� Enter Hekkenberg as the name in the command window of the running
program.

� Expand the program variables in the Variables view (Figure 14-14).
362 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 14-14 Local Debug At Breakpoint with variables expanded

� Select the INPUT-NAME variable and Change Variable Value (context). Change
the string "Hekkenberg" to "Your Name" (including quotes).

� Step through the program using the icon. Watch the variables change in
the Variables view.

� When you arrive at the line:

Call 'PrintApp' using Program-pass-fields

use the icon to step into the PrintApp.cbl subroutine.

� Step through the subroutine until the output is displayed in the command
window of the running application and a new prompt is issued (Figure 14-15).

� Enter q to terminate the application. You must click the Resume icon to
terminate the debug session.
 Chapter 14. Developing for z/OS 363

Figure 14-15 Application output after changing the name

Obviously this has been a very simple example, but you have seen the debugger
at work. We will come back to the debugger when discussing the remote project.

Remote project introduction
From a customer perspective, this is the most likely scenario to use. All the
advantages offered from a workstation platform are leveraged while maintaining
the actual development location on the host.

Among the advantages are:

� Multithreading (multiple sessions)
� Visual orientation
� Color capabilities
� Mouse orientation
� Faster development cycle (RECD) than using 3270 interface
� Host software configuration management in place
� No need to replicate subsystems in distributed environment
� Integration with other development tooling/perspectives

In this section, we touch upon many of the aspects of working according to the
RECD scenario. Given that this chapter is meant to provide a starter introduction,
it is not geared solely at the scenario but we also want to provide some
background on the system environment and the mechanics of things. Especially
the nomenclature of the workstation requires discussion and the mapping onto
the nomenclature familiar to an ISPF-based developer. After a discussion of the
prerequisites and its configuration, we illustrate the functionality on bringing the
local project towards z/OS.
364 Legacy Modernization with WebSphere Studio Enterprise Developer

Prerequisites and configuration
In this section, we look at the prerequisites in regard to products, workstation,
and z/OS.

Product prerequisites for Enterprise Developer on z/OS
These prerequisites are described in The Program Directory for WebSphere
Studio Enterprise Developer Options for z/OS, GI10-3242-00. We only mention
some aspects of the prerequisites. Please make sure that all products that your
environment and your applications require are installed and configured.

IBM Debug Tool for z/OS and OS/390 V3.1
Enterprise Developer relies on this product to provide the mainframe debug
engine for performing remote debug. The release mentioned is the lowest that
will work with the workstation debug engine that comes with Enterprise
Developer. It can be obtained as a stand-alone product or as being part of the full
function offering of the IBM Enterprise COBOL for z/OS V3.1 or higher product.

UNICODE support
This support is needed when you want to exploit the XMl support that comes with
the V3 level of COBOL. Information on how to obtain the code can be found in
the Program Directory for WebSphere Studio Enterprise Developer Options for
z/OS, GI10-3242-00 on page 13 and 14.

COBOL compiler
Although IBM Cobol for OS/390 and VM V2.x is a supported environment, both
the error feedback function and the COBOL XML support will not be available. If
you would like to have access to all functionality, you will need IBM Enterprise
COBOL for z/OS V3.1 or later.

REXX/370
Make sure that this prerequisite is in place, because Enterprise Developer uses
the REXX executable. IBM SAA REXX/370 Alternate Library is actually shipped
with Enterprise Developer as a separate install. So if your installation does not
happen to have REXX in place, it can be installed from Enterprise Developer
media.

Note: If you are going to use the shipped version of REXX, the performance of
the REXX will be less than when using the full library. In this case, the REXX
will run interpreted.
 Chapter 14. Developing for z/OS 365

Workstation prerequisites
You must install and enable the Microsoft Loopback Adapter. For instructions
on how to do this, see Chapter 4 of the Enterprise Developer Installation Guide.

WebSphere Studio Enterprise Developer Options for z/OS
In this section, we briefly discuss the options that are needed from the z/OS
development perspective.

z/OS build server
This server provides the capabilities to perform remote builds for either native
code or EGL-generated COBOL. It potentially performs the following tasks,
depending on what needs to be done:

� Receives build requests and associated files
� Performs character conversions
� Runs builds within the destination environment
� Optionally collects and returns results to the client
� Reports back what has been done

Error feedback modules
These modules are required to provide error feedback exits. In order to exploit
these, one needs to point at the appropriate library (SCCULOAD). If these routines
are available, the user will get feedback from preprocessors and alike that might
be used during compile without them having a separate job step.

OS/390 components for RECD
The next sections provide a short description of the components. More
information and configuring information can be found in the INST390.pdf file,
which is titled Installing and Configuring OS/390 Components for Remote ECD,
SC18-7046-00.

Foreign file system server
The foreign file system (FSS) server provides Enterprise Developer users with
transparent access to their MVS data sets. Users can connect their MVS
systems to their workstations and explore, edit, copy, delete, and create
sequential data sets, partitioned data sets and partitioned data set members.
The FFS server functions as an extension of the IBM HTTP Server. The FSS
client on the workstation functions as an installable file system.
366 Legacy Modernization with WebSphere Studio Enterprise Developer

You can verify that the FFS server has been installed correctly without going
through Enterprise Developer by entering the following address from a browser:

http://systemname:webserverport/FFSDS/

Here systemname is the TCP/IP host name or address of the OS/390 system and
webserverport is the port number for the IBM HTTP Server (standard is 80; on
the system we used it was 4080). Upon successful access, you should be able to
see the home page of the foreign file system server.

Job monitor server
The job monitor server provides Enterprise Developer users with function similar
to SDSF: the ability to view job status, view job output and purge, cancel, and
release jobs and job output. It is installed together with FFS.

TSO remote command server
This optional feature allows users to issue TSO commands from the workstation
and receive their feedback.

Figure 14-16 provides an overview of the software required to have all functions
in working order. It does not show the components of Enterprise Developer.

Figure 14-16 Overview of software required

Important: The FFSDS/ must be uppercase and the final slash must be used.
You will be prompted for user ID and password as well.

Subsystem:
CICS, DB2,

IMS.......

APPC

Language
Environment

Debug Tool

TCP/IP

TCP/IP

z/OS or OS/390

WebSphere Studio Enterprise Developer

Windows NT/ 2000 / XP Microsoft Loopback Adapter

APPC

Remote
Commands

server
(IGYFSERV)

Subsystem:
CICS, DB2,

IMS.......
Language

Environment

Debug Tool

Job Monitor
server

IBM HTTP
Server

Foreign File
System server

U
S

S

Distributed
Build server

Compiler

Error feedback REXX 370

JES
 Chapter 14. Developing for z/OS 367

z/OS sample data sets
In order for our sample to be moved to z/OS, we have to create several
partitioned data sets. The reader could certainly use existing data sets, but it is
probably a good idea to create a separate set of data sets to get familiar with the
RECD approach of Enterprise Developer, thus separating the sample from
production.

Please create the data sets using ISPF according to the specifications that can
be found in Table 14-1, where userID is substituted with your user ID.

Table 14-1 z/OS data sets for a user

Setting Enterprise Developer preferences
Preferences can be set on various levels within the Enterprise Developer
product. At this point, we describe only a few preferences that have to be set on
the Workbench level and are relevant for our project. When we define our remote
project, we will define overrides to the Workbench-level preferences specific to a
remote project.

� The first preference option we want to change is shown after selecting
Window -> Preferences -> Workbench (Figure 14-17).

PDS name Record format Record length Block size

userID.ENTDEV.COBOL FB 80 6160

userID.ENTDEV.COPYLIB FB 80 6160

userID.ENTDEV.JCL FB 80 6160

userID.ENTDEV.LISTING FBA 133 2660

userID.ENTDEV.OBJECT FB 80 3200

userID.ENTDEV.LOAD U 0 6233

Tip: Default preferences can be set by an administrator and imported by the
various users. Users can also export their settings in order to share them or for
backup purposes. For that purpose, the Preferences dialog has an Import and
Export button. The suffix of the file is always .epf.

Restriction: These preferences are not moved when a project is moved to a
software configuration and version management tool. A procedure should be
in place to export and position the .epf file within project as a file.
368 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 14-17 Workbench preferences

� We advise the developers working on remote projects to deselect Perform
build automatically on resource modification. This way rebuilds will not start
automatically when a change is applied to an artifact.

� The next preference option is under z/OS Build Options -> JCL Generation
Options -> Job Card. After the changes, the job card should resemble
Figure 14-18 where ADT01 is your user ID.

This job card will be used by Enterprise Developer when it generates JCL
either on request or as part of its operations.

Figure 14-18 Job card preferences

Tip: In the text behind the check boxes, one character has an underscore.
When you press the Alt key and this character on your keyboard, the check
mark will switch.
 Chapter 14. Developing for z/OS 369

Define and connect to a remote system
We have to define one or more remote systems for which we are going to use
data sets in our remote projects. It is more convenient to define the system(s)
prior to the definition of the remote project(s), because this will enable easy
referral to the system(s) when defining the project(s).

To define a remote system:

� Open (or switch to) a z/OS Systems perspective.

� Select Remote Systems in the z/OS Systems view and Add System (context).
The Add System dialog (Figure 14-19) is displayed.

Figure 14-19 Defining a z/OS system for Enterprise Developer

– MVS System Name—should reflect the fully qualified TCP/IP name of the
z/OS system. From a command window, you should be able to ping the
system (ping fullqualifiedname) and should receive an answer.

– System Short Name—is yours to choose; it will be used when Enterprise
Developer lists the system.

– MVS User ID—should be your user ID.

– Local Code Page—represent the active code page of your workstation.

– Host Code Page—This should be provided to you by the z/OS system
support people.

ctfmvs07.raleigh.ibm.com

ctf07
ADT01

4080
370 Legacy Modernization with WebSphere Studio Enterprise Developer

– Web Port—should be the same as discussed in “Foreign file system
server” on page 366.

– Job Port—obtain the number from your systems support people; most
installations tend to keep the default (6715).

� Click Finish. You are prompted to connect to the system. Click Yes and OK in
the pop-up dialog asking you if it is OK to close all existing connections before
attempting to connect to the newly defined system.

� Fill in your password and click OK.

Now your remote system is defined! Figure 14-20 shows the expanded z/OS
Systems view. As you can see, the data sets under your user ID are listed.

Figure 14-20 Remote system in connected state

Tip: We suggest that your installation provides a separate HTTP server
for the exclusive use of Enterprise Developer users. This way the server
can be started and stopped without interfering with other HTTP
applications.

You can disconnect from
the system.

On reconnect you are
prompted for the password.
 Chapter 14. Developing for z/OS 371

Select the system you just defined and you should see the Properties, z/OS
Directories, and z/OS File Extension Mappings views at the bottom of the
Enterprise Developer window (Figure 14-21).

Figure 14-21 z/OS systems perspective for a connected system

� The Properties view speaks for itself.

� The z/OS Directories view shows your user ID as the high-level qualifier.

Enterprise Developer is using the high-level qualifier to see what data sets
and sequential files are available. These data sets can then be mapped onto
the project to indicate that this project can access the associated artifacts.
Directory can be regarded as being the workstation’s analogy for the
high-level qualifier.

There are dialogs available to create additional directories so that projects
can map to a variety of data sets as needed. These dialogs are available from
the context menu of the defined system.

� The z/OS File Extensions Mappings view displays how host files in
partitioned data set members are mapped onto workstation files.

For example, the members of our data set ADT01.ENTDEV.COBOL (**COBOL in
this pane) will have workstation names *.cbl and are transferred in text
format. Load modules are mapped to .exe and are transferred in binary.

Thus far we have not identified the analogy for partitioned data sets as a
means to group multiple members of the same type. The analogy here is
folder. Workstation files with the suffix .cbl will be grouped into folders that
can be seen in the dialogs of Enterprise Developer.

Important: Although the directories, folders, and files can be seen on the
various dialogs, this does not mean that these artifacts are physically present
in the file system. The workstation representation merely acts as a view on the
remote artifacts. Likewise, ISPF dialogs provide a view into the physical
artifacts within the host system.
372 Legacy Modernization with WebSphere Studio Enterprise Developer

Creating and configuring a remote project
In this section we define a remote project to map to the remote MVS system.
Then we set up COBOL files in the remote data sets.

Creating the project
A project can be regarded as being a view upon a collection of artifacts that
represent a development effort. From a z/OS perspective, this more often is a
collection of artifacts representing a program, transaction, or system. It should be
possible to operate upon a project as being an entity. Operations, such as build
for instance, should be able to run on the project level.

Let us define a remote project to work with our z/OS COBOL artifacts:

� Open the z/OS Projects perspective (you can close the z/OS Systems
perspective because the z/OS Systems view is also part of the z/OS Projects
perspective).

� Select File -> New -> z/OS -> MVS Project (or New -> MVS Project from the
context of the z/OS Project view).

� Enter ItsoCobolzOS as project name and select ctf07 and ADT01 from the
pull-downs for system name and directory (Figure 14-22). Obviously you have
to select your system’s short name and high-level qualifier, but there is little
choice if this is your first encounter with Enterprise Developer.

Figure 14-22 New remote project dialog
 Chapter 14. Developing for z/OS 373

� After three clicks on Next (we can skip those panels), the CICS Subsystem
Options dialog is displayed. Given that our project is not using CICS, we can
skip this dialog as well. The same is true for the next two dialogs for DB2 and
IMS.

� After these three clicks on Next, the COBOL Compiler Options dialog is
displayed. We modify the options to match our MVS system (Figure 14-23).

Figure 14-23 New project COBOL compiler options

In this dialog you can indicate whether or not compile listings and object
decks have to be saved. Also note that for the Compile Steplib the error
routine load library (SCCULOAD) is added.

� Click Next three times (we skip the PLI and Assembler panels) and we come
to the Linkage Editor Name Choice dialog. We modify the options to match
our MVS system (Figure 14-24).

ADT01.ENTDEV.LISTING

ADT01.ENTDEV.OBJECT

ADT01.ENTDEV.COPYLIB

COBOL.V3R1M0.SIGYCOMP
CUST.SCCULOAD
374 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 14-24 New project linkage editor options

Note that we specify STARTAPP as being the entry point for this project’s
program load module.

� Click Finish. We skip the Run Options page. We will adapt these options in
“Debugging the remote executable” on page 389.

The project appears in the z/OS Projects view with a composed name of the
project, system, and high-level qualifier (ItsoCobolzOS-ctf07.ADT01).

STARTAPP

ADT01.ENTDEV.LOAD

CEE.SCEELKED
 Chapter 14. Developing for z/OS 375

Project properties
All the preferences we set in the New wizard can be viewed and modified by
selecting the project and Properties (context). These values are project overrides
to the Workbench preferences that we set up in “Setting Enterprise Developer
preferences” on page 368 (see Figure 14-17).

Map data sets for the remote project
Now we have to map our data sets to the project by adding appropriate folders,
which represent the partitioned data sets, to the project:

� In the z/OS Systems view, select the data sets for our COBOL project (use
the Ctrl key for multiple selections). Select Add To Project (context), in the
dialog select the ItsoCobolzOS project, and click Finish (Figure 14-25). Notice
that the folders actually disappear from the z/OS Systems view and are added
to the project in the z/OS Projects view.

Figure 14-25 Add folders to the remote project

Tips:

� Properties can be set at the project (high-level qualifier), folder (PDS), and
file (PDS member) level. In a production development environment, it is
likely that you would prefer to define the link options at the file level.

� You can save considerable time when configuring projects if the
Workbench administrator defines appropriate defaults for the preferences
at the Workbench level.

Important: If the connection to the remote system is closed or you stop
Enterprise Developer, the remote projects are closed as well. They can only
be opened (by hand or automatically depending on the situation) after you
have restored the connection.

Add To Project
376 Legacy Modernization with WebSphere Studio Enterprise Developer

Copying files from local to remote project
Instead of writing new COBOL programs, we use our existing local project and
copy the COBOL programs to the remote project:

� Expand the cobol folder in the ItsoLocalCobol project. Select PrintApp.cbl
and StartApp.cbl and Copy (context). In the destination container dialog,
select the ENTDEV.COBOL folder in the remote project and click OK. The two
programs are copied to the z/OS system and they appear in the remote
project (Figure 14-26).

Figure 14-26 Copy files from a local to a remote project

� Note that the cobol programs are actually moved to z/OS during this
operation. If you don’t believe us, log on to the MVS system and have a look!

� The StartApp.cbl flag still carries the MAIN notation from the local project.
You can select a program and Set As Main (context).

Operations on members
You can select a member in the z/OS folder (ENTDEV.COBOL) and perform
operations such as:

� Delete the member.

� Rename the member.

� Syntax check.

� Open with an editor. The default editor is JLPEX, a Java LPEX editor that is
integrated into the Workbench.
 Chapter 14. Developing for z/OS 377

Distributed build architecture
Figure 14-27 is a representation of the way the distributed build operates when
used for building remote z/OS projects.

Figure 14-27 Distributed build for z/OS development

Define a distributed build server
The distributed build server that will handle build requests must be defined and
up and running for the build clients to use it:

� Select the ItsoCobolzOS project in the z/OS Projects view and Properties ->
z/OS Distributed Build Servers.

� Your development support staff should provide you the information specific to
your installation, being the port number for the build server and the fully

Build
preferences
and build
properties

Distributed
Build

function

Build
Plan
(XML)

z/OS distributed
Build Server

Function

Enterprise Developer

MVS build
scripts

(pseudo JCL)

z/OS

zOSBuildResultsProj

Sysprint

PseudoJCL

Builder log

Buildresults.XML

Listings

Executables

Intermediate

Sources

Partitioned Data Sets

YourRemoteProject
folders

Trigger

Used Generated

Sent

Sent
View

Made
378 Legacy Modernization with WebSphere Studio Enterprise Developer

qualified name of the host system. Enter the server address and port, then
click Test to test the connection (Figure 14-28).

Figure 14-28 Defining and testing a distributed build server

� Click OK and you will be able to exploit the capabilities of the distributed build
server.

Building the remote project
Building the project with all the setup done is quite simple.

Starting a distributed build
Select the ItsoCobolzOS project in the z/OS Projects view and Rebuild Project
(context). Soon thereafter, the progress indicator of the distributed build is
displayed (Figure 14-29).

Note: In the test output pane, you can see that the build server is configured to
run with Authentication Mode: 2. This actually can differ from what you are
seeing, depending on your installation preference. More information on the
possibilities here can be found in the help.
 Chapter 14. Developing for z/OS 379

Figure 14-29 Progress indicator for distributed build

Figure 14-30 CCU Security Manager

Distributed build results
After the build is finished, a new project called zOSBuildResultsProj appears in
the z/OS Projects view.

Select the new project and the ItsoCobolzOS project and Refresh (context) to see
the new files that were created.

Figure 14-31 shows the z/OS Projects view with the projects expanded.

Important: While performing the build, a command window with the title CCU
Security Manager might be started on your machine (Figure 14-30). You have
to close this window; otherwise the build will never finish. Note that this can
occur multiple times and that the window is sometimes hidden or minimized.
We expect that this will be fixed.

Important: In some circumstances you may get an additional project named
zOSOutputProj. This seems to happen if JCL errors are encountered during
the build. Check the build results, fix the problem, delete the generated
project, and rerun the build.
380 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 14-31 z/OS projects after distributed build

Now let us discuss some of the files in more detail.

BuildResults.xml
This file is always created on your workstation when a distributed build has run.
Normally it is enough to look at this file to know what happened during the build
(Figure 14-32).

The red ovals are positioned in the editor display at various places of interest:

� BuildPlan: the top part of this file actually reflects the build plan.
� Success: the build plan was executed successfully within the error limits set.
� Return code 4 (twice): these are the return codes of both compiles.
� Return code 0: this is the return code of the linkage editor.
� ctf07.JCL is the folder where the full output of the translators is held (three

*.sysprint files); which are in effect local copies of the members in the listing
data set (link edit listing is not kept on the host system).

Compiler listings

Load module

Object code

Build results
Log of all activities
Linkage editor listing
JCL used for build

Cobol source

Compiler listings
 Chapter 14. Developing for z/OS 381

Figure 14-32 BuildResults.xml after distributed build

ccubldc.log
The ccubldc.log file is a continuous log of all the builds. It contains parts of the
BuildResults.XML file.

ENTDEV folders
In the respective folders of the ItsoCobolzOS project, you can find the load
module, the object decks, and the translator listings.
382 Legacy Modernization with WebSphere Studio Enterprise Developer

StartApp.JCL
StartApp.JCL is the actual generated pseudo JCL that was used by the build
server. The job card is not included in the file. Note that this file is referred to as
buildscript in the BuildResults.xml file.

You can modify the generated JCL. For example, the generated JCL has this
statement for the linkage editor listing:

//SYSPRINT DD CCUEXT=CCUOUT

� Changing the JCL as shown here will save the output in the LISTING data set:

//SYSPRINT DD CCUEXT=CCUOUT,DISP=SHR,DSN=ADT01.ENTDEV.LISTING(LKED)

� Changing the JCL as shown here will not send the listing to the workstation:

//SYSPRINT DD DISP=SHR,DSN=ADT01.ENTDEV.LISTING(LKED)

Incremental build
The Build Project action of a project performs an incremental build and will only
build the artifacts that have changed. The difference in our project is not a lot
(saving one compile) but can be substantial for larger projects.

Speeding up the remote build process
You may have noticed that when you build the project, the progress window
shows COBOL first, then PLI, then CPP, then ASM, so actually four build
processors are running.

The build processors used in a project can be seen in the project properties on
the External Tool Builders page (Figure 14-33).

This dialog does not allow you to remove any of the builders.

Restriction: If you issue another rebuild project (for instance to build with
changed parameters), a new JCL deck is generated named STARTAP.JCL.
However, this new deck is not picked up by the build plan, which still points to
StartApp.JCL.

Currently the new STARTAP.JCL has an error in the member name of the
SYSLMOD statement.

Therefore, to use a new JCL deck, fix the error, then rename the new deck to
StartApp.JCL.
 Chapter 14. Developing for z/OS 383

Figure 14-33 External tool builders for the remote project

We know that our project only includes COBOL. To remove the unwanted
builders, edit the .project file in the ItsoCobolzOS project.

Remove the PLI, CPP, and ASM tool builders as shown in Figure 14-34.

Figure 14-34 Removing unwanted build operations

<?xml version="1.0" encoding="UTF-8"?>
<projectDescription>

<name>ItsoCobolzOS</name>
<comment></comment>
<projects>
</projects>
<buildSpec>

<buildCommand>
<name>com.ibm.ftt.ui.views.navigator.pbCobolCompileAndLink</name>
<arguments></arguments>

</buildCommand>
<buildCommand>

<name>com.ibm.ftt.ui.views.navigator.pbbuilderpli</name>
<arguments></arguments>

</buildCommand>
<buildCommand>

<name>com.ibm.ftt.ui.views.navigator.pbbuildercpp</name>
<arguments></arguments>

</buildCommand>
<buildCommand>

<name>com.ibm.ftt.ui.views.navigator.pbbuilderasm</name>
<arguments></arguments>

</buildCommand>
</buildSpec>
<natures>

....
</natures>

</projectDescription>
384 Legacy Modernization with WebSphere Studio Enterprise Developer

JCL generation
Apart from the facilities of the distributed build server, Enterprise Developer is
offering other means to build programs.

Building a single file
If you select PrintApp.cbl and Generate JCL, three options are provided
(Figure 14-35). The first option generates JCL to compile the program, the
second option generates JCL to compile and link, and the third option generates
JCL to compile, link and run.

Figure 14-35 Generate JCL options menu

Let us generate JCL for Compile for PrintApp.cbl at this point.

Another project named zOSGeneratedJCLProj is generated. After the Refresh
action on the project, you can see the JCL file created. Actually this JCL is a local
file in the file system. This is probably OK for test and trial JCL. If you want it to be
present on the host, then you have to copy or move it into a remote project.

You can look at the generated JCL by opening an editor.

Building a partial project
JCL can also be generated on the folder level and as such you can generate JCL
for building a partial project. In our case, we do not have more folders and
modules in our project, but this has potential use in larger projects. The same
three options shown in Figure 14-35 are offered here.

Notes:

� The user should have application knowledge to know which option is
meaningful. In our case only the first option is meaningful because this is a
called module that cannot run as a stand-alone application.

� (Build) properties can also be set at the file (member) level, thus allowing
you to perform compile and link operations with other options if needed for
test/debug purposes.
 Chapter 14. Developing for z/OS 385

Let us generate JCL for the ENTDEV.COBOL folder for Compile Link Go. After
refresh, you can see the newly created ENTDEV.JCL member. From the name, you
can see that this is JCL for a partial project build. All files within the folder are
built when this JCL is submitted. Furthermore, a run step is created to run the
application.

Job and command interactions with z/OS
In this section we look at interactions with the z/OS system, such as submitting
jobs, monitoring jobs, retrieving job output, and issuing TSO commands.

Submitting and monitoring jobs
After the creation of JCL, we would like to be able to submit the JCL for execution
on the host. Select the ENTDEV.JCL and Submit (context).

To see the jobs that were executed, open the z/OS Job Monitor view (select
Window -> Show View -> Other -> z/OS Projects Views -> z/OS Job Monitor).

Figure 14-36 shows the z/OS Job Monitor view with the jobs owned by user ID
ADT01. This view is not automatically refreshed, so click the Refresh icon to see
the latest status.

Tips:

� Properties can be set at the folder level, thus completing the full range of
places where one can set properties: Workbench preferences, project,
folder and file level properties.

� Options have to be carefully set on file and folder levels to generate JCL
that will produce the wanted results.

� Only one JCL member with the same name can exist, so only the last
request is reflected in the generated JCL.

Note: In the JCL, the newly created load module is named ENTDEV, although
from a functional perspective it is the STARTAPP application.

Restriction: This currently does not work. You can move the job to MVS
yourself and submit it from a TSO user ID.
386 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 14-36 Job monitor view

You can select a job and Output or Purge (context). If you select Purge, it is
obvious what will happen. If you select Output, the job output is downloaded into
a new project named zOSOutputProj and an editor is opened on the output file.

For the compile, link, go job the output displays all the steps, and at the bottom
the actual output of the execution:

Enter a name or Q to quit:
 Hello HEKKENBERG You did it !

 Enter a name or Q to quit:

Issuing z/OS commands
One of the views available to the user that we did not discuss thus far is the z/OS
Commands view, which is part of the z/OS Projects perspective. From this view,
you can issue z/OS commands and see the command output (Figure 14-37).

Notice that you can save the command output into a local file by clicking . This
file (tsox.out) is placed into a new project named LocalProj.

Tip: The job monitor can use a filter to limit the number of jobs shown. In our
case, the filter is set to show all jobs that we own. The job filter can be defined
for the system in the z/OS Systems view, but only if you are not connected.
 Chapter 14. Developing for z/OS 387

Figure 14-37 z/OS Commands view

Remote debugging
In this section, we look at the remote debugger. First we set up the run-time
options, then we start the remote program and debug it.

Preparation
Before we can start a debug session, we have to set up z/OS run-time options.
We suggest you do that at the project level by selecting the ItsoCobolzOS project
and Properties -> z/OS Run Options:

� Select Run in the debugger.

� If required specify run-time environment libraries.

We select CUST.V2R10M0.SCEERUN, the Language Environment V2.1 run-time
library.

� If required, specify run-time environment options (nothing specified in our
case).

� Code additional JCL in the appropriate space. Besides specifying steplib(s)
required at execution time, you have to specify the program input
(Figure 14-38).

status command

time command
388 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 14-38 Additional JCL in z/OS run-time options

Debugging the remote executable
A debug session on our executable can now be started by:

� Selecting the STARTAPP.exe file in ENTDEV.LOAD and Debug Application
(context).

� In the background, this results in submitting STARTAPP.JCL, which is generated
into the zOSGeneratedJCLProj project (Figure 14-39).

Notice the /TEST option with your own TCP/IP address and the port number
(8001), and the additional JCL that we provided. The port number is set by
selecting Window -> Preferences -> Debug -> Debug Daemon.

Figure 14-39 JCL to start the remote debug session

� Clicking OK in the dialog that is displayed (Figure 14-40)

//******ADDITIONAL JCL HERE*******
// DD DSN=CUST.V2R10M0.SCEERUN,DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 HEKKENBERG
 Q
/*
 Chapter 14. Developing for z/OS 389

Figure 14-40 Debugger message on startup

Debugging the program
Now the debugger should be started with the listing of StartApp opened
(Figure 14-41).

Figure 14-41 Remote debug: after startup (batch debug)
390 Legacy Modernization with WebSphere Studio Enterprise Developer

Follow the next steps to debug the program:

� Set a breakpoint in the source on line 44 by double-clicking in the grey area
beside the line (Figure 14-42).

Figure 14-42 Remote debug: set breakpoint

� Run the debugger until the breakpoint by clicking (the Resume icon).

� In the Variables view, change the TEMP-NAME variable by double-clicking and
change HEKKENBERG to ‘YOURNAME’ (your own name), including quotes
(Figure 14-43).

Figure 14-43 Remote debug: change variable

� Step into the PrintApp program by clicking (the Step Into icon).

Notice that variable view is changing. Keep stepping through the code by
clicking (the Step Over icon) until you are back in StartApp and continue
until you see Q as the value in the INPUT-NAME variable (Figure 14-44).
 Chapter 14. Developing for z/OS 391

.

Figure 14-44 Remote debug: variables view before ending

Q indicates that loop should finish and the loop flag is raised. You can step
through the program or click (the Step Return icon) to jump to the end.

Debug job output
One way of looking at the output of the debug job would be to go to SDSF on the
mainframe and have a look (Figure 14-45). Notice YOURNAME in the output.

Figure 14-45 Remote debug: job output in SDSF

However, we have shown in “Job and command interactions with z/OS” on
page 386 that you do not have to leave Enterprise Developer to look at your
output. Use the z/OS Job Monitor view and retrieve the output of the newest job:

� In the z/OS Perspective, refresh the job display in the job monitor by clicking
 (the Refresh icon).

� Double-click the top job, and jobnumber.out file is opened (Figure 14-46)
392 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 14-46 Remote debug: job output through job monitor

Code maintenance scenario
Let’s assume that our application is now in production and a requirement is
raised to change the text that is returned by the application.

If you try to define another project to work with the same data sets, you will fail.
Remember that data sets assigned to a project are removed from the z/OS
Systems view.

Changing projects
To illustrate the code maintenance task, we will use a new project. To use the
same MVS data sets in the new project, we have two choices:

� Remove the ItsoCobolzOS project from the Workbench by selecting Remove
Project (context). This action deletes all the local workstation files of the
project.

� Select all the ENTDEV.* folders in the ItsoCobolzOS project and Subtract from
MVS Project (context). This action deletes the local folders from the project.
The project itself remains and folders can be assigned again later.

Both actions leave the z/OS data sets untouched and return the folders to the
z/OS Systems view. Now these folders can be assigned to another project.

Restriction: A given folder (MVS data set) can exist in only one project.

Important: Do not use the Delete Project And Content action, unless you are
absolutely sure that you want to delete the local project with all folders and
also the data sets with all the members on z/OS.
 Chapter 14. Developing for z/OS 393

For our purposes, we remove the folders from the ItsoCobolzOS project and
return them to the z/OS Systems view.

Define a new MVS project
Define a new MVS project called ItsoCobolMaintzOS. Follow the steps illustrated
in “Creating and configuring a remote project” on page 373.

� Be sure to set the COBOL compiler options and linkage editor options.

� Select the ENTDEV.* folders in the z/OS Systems view and Add to Project.
(see “Map data sets for the remote project” on page 376).

Thus far, we have not discussed and illustrated the edit and syntax check
capabilities within the z/OS perspective of Enterprise Developer. Let us do that
now.

Editing
Editors are always up for debate. For our COBOL programs, we can choose
between:

� JLPEX—Java LPEX editor with limited features, integrated into the
Workbench

� LPEX—LPEX editor, full function, non-integrated, must refresh after save

� Text—simple text editor, integrated into the Workbench

� System—defaults to file associations, in this case the LPEX editor is used

JLPEX editor
Here we discuss some of the features of the LPEX editor that comes with
Enterprise Developer. By no means do we discuss all functions and features. It
will be up to the developers to decide how they will exploit its functionality.

Colors
The editor uses colors to distinguish the various language constructs.

Preferences
The preferences for the editor are set through Window -> Preferences -> LPEX
Editor.

� On the LPEX Editor page, you can set the editor profile, that is, the
personality. Instead of the default lpex, you could use ispf or xedit personality.

� On the Appearance page, fonts can be set.

� On the Controls page, you can set if a status, format, command line, or a
prefix area is displayed.
394 Legacy Modernization with WebSphere Studio Enterprise Developer

� On the User page, you can tailor the behavior even further by adding all sorts
of user-defined actions and scripts.

� On the Parser Associations page, file types are associated to available
parsers.

� On the Parsers page ,all the available parsers are displayed.

These parsers enable the language sensitivity of the editor and provide the
means to be able to show the Outline view in the perspective.

Outline view
The Outline view is a powerful instrument to navigate through the source code.
The editor will reposition itself depending on what language construct is selected
in the outline view.

Figure 14-47 is a representation of the outline view of our PrintApp program.

Figure 14-47 Outline view of JLPEX editor

Editor context menu
The editor context menu has a lot of features that are available to you depending
on where you are positioned in the file and what you have selected.

Notes:

� While you are editing a file, the source code is in memory. It will be saved
on disk only if FFS experiences problems. In that case, the source can be
found on the local disk.

� Open editor sessions are reflected in the Preferences pages as well.
\\ffssash\ indicates that the source is rendered to the editor through FFS.
A local source edit session would have the path of your workspace instead.
 Chapter 14. Developing for z/OS 395

We have only scratched the surface here. You and your development support
people can tailor the behavior to your projects and individual needs, thus
optimizing the value-add of the editor within your environment.

Syntax check
Another feature that we have not discussed thus far is the capability of
performing a syntax check on the source. Syntax checking can reduce to only
one the number of compile jobs needed to get a clean compile.

When you submit a compile job after a clean syntax check, you are assured that
the source is correct from a language syntax point of view.

For local projects, syntax check is done automatically when you save the file. For
remote projects, no local file exists and a syntax check must be invoked explicitly.

Let’s see syntax checking at work:

� Open a JLPEX editor on PRINTAPP.CBL.

� Remove the right parenthesis on the PIC clause in line 9:

05 Out-Name PIC X(100.

� Save the change.

� Select SyntaxCheck from the context menu with PRINTAPP.cbl selected.

Notice that in the Tasks view a message appears and an icon is displayed at
line 9 (Figure 14-48).

Figure 14-48 Error message from syntax check
396 Legacy Modernization with WebSphere Studio Enterprise Developer

� Double-clicking the error in the Tasks view brings you to the line in the editor
that contains the error. If the editor is not open, it is opened as well.

This is a real productivity feature. Compare this with the steps you need to
take in ISPF to accomplish the same.

� Correct the error by adding a right parenthesis.

Implement the requirement and test the application
Fulfill the application requirement by changing the strings:

"Thanks to " ==> "Hello "
" for succeeding" ==> " You did it!"

Build the application
Define the remote build server to the project. See “Define a distributed build
server” on page 378 if you don’t remember.

Perform Rebuild Project to trigger a complete build and check the output.

Run the application
Set up run-time options for the application (see “Debugging the remote
executable” on page 389).

Note: Under the covers, the local compiler is invoked to enable this. With
the early availability level of the code, you can see this due to the fact that
two command windows are displayed, one for retrieving the code through
FSS, and another for invoking the local compiler.

If you receive a REXX version conflict window, see “Potential REXX
conflict” on page 359 for a solution.

Note: The syntax check action creates a new Syntax folder in the
zOSOutputProj. It holds the output of the invocation of the local compiler
needed for the actual syntax check.

Tip: In a production environment it is probably better to have a standard build
server defined in the preferences and there would be no need to define it now
as a project property.
 Chapter 14. Developing for z/OS 397

Select the STARTAPP.EXE file and run the application by selecting Run Application
from the context menu. If successfully submitted, a message box will be
displayed (Figure 14-49). Click OK.

Figure 14-49 Run Application message box

Refresh the z/OS Job Monitor view. Look at the bottom of the output of the
newest job (Figure 14-50).

Figure 14-50 Output of changed application

This is according to the specifications, so your maintenance project is finished
now!

Copy remote project to local for offline work
It is possible to copy projects between local and remote state. This enables a
developer to work offline for a while and afterwards copy the work back to z/OS.

Copy remote project to local
To copy a remote project to local:

� Start the local build server (see “Defining and starting a local build server” on
page 355). A build is invoked after the files are copied.

� Select New -> Other -> z/OS -> Copy z/OS Project.

� Select the remote project (for example ItsoCobolMaintzOS), Local as target,
and enter a local project name (for example, ItsoCobolMaintLocal).
398 Legacy Modernization with WebSphere Studio Enterprise Developer

� Click Finish.

As a result of the operation a local project is created. The folders in the local
project have the names of the z/OS folders, as they are in the remote project.

Browse the BuildResults.xml file for error messages.

Figure 14-51 shows the resulting local project.

Figure 14-51 Local project as result of copy from remote

Work offline
For example, edit the PRINTAPP.CBL file to reply with Hello again (instead of
Hello).

Important: Be patient; the operation takes a while to complete. You may
encounter pop-up windows for the CCU Security Manager (see Figure 14-30
on page 380), which you have to close. Otherwise the operation does not
complete.

Local project

Remote project

Copy
 Chapter 14. Developing for z/OS 399

Copy local project to remote
To copy a local project to remote:

� Select New -> Other -> z/OS -> Copy z/OS Project.

� Select the local project (for example ItsoCobolLocal), Remote as target, and
enter a remote project name (for example, ItsoCobolMaintzOS). Select the
target system and directory (high-level qualifier).

� Click Finish.

We get error messages for the BuildResults.xml file and for the object code,
which has no extension in the local project.

Delete the file and the two object modules in ENTDEV.OBJECT. Rerun the copy.

Summary
In this chapter we provided a guided tour on the setup and exploitation of the
functionality available within the z/OS perspectives of Enterprise Developer. We
did that bearing in mind that this way of working with mainframe artifacts,
combining the strength of two platforms, is quite different from using a mainframe
development environment such as ISPF.

We also focused on the RECD scenario. In the last section we walked through a
maintenance scenario. We hope you enjoyed this tour and have a big appetite to
explore more on your own. There is plenty more to discover!

Note: The Tasks list shows errors for files that cannot be stored on the remote
MVS system.

Important: This process produces error messages that the PDSs already
exist on the z/OS system, and the result is that the files are not copied.
Updates are not supported in the current level of the product.
400 Legacy Modernization with WebSphere Studio Enterprise Developer

Chapter 15. XML enablement for COBOL

In this chapter, we describe how IBM WebSphere Studio Enterprise Developer
helps you in modernizing your Enterprise assets and adapting them to process
and produce XML messages. The following topics are discussed:

� XML enablement architecture, its benefits, the run-time scenarios, and
current limitations

� A complete example of modernizing an existing COBOL CICS application
with instructions on how to modify the generated code

15
© Copyright IBM Corp. 2002. All rights reserved. 401

Introduction
Since the advent of the World Wide Web, mainframe applications, which used to
rely only on binary interfaces for communication, have been trying to use XML as
a new means of information exchange. This approach presents challenges to the
programmers who are trying to efficiently adapt business applications in order to
process and produce XML documents with minimal disruptions to the existing
system infrastructure. There have been requests from IBM's enterprise
customers to support the processing of XML messages from COBOL.

XML enablement for the enterprise lets you easily adapt existing COBOL-based
business applications so that they can process and produce XML messages into
native COBOL data, and to transform COBOL data into an XML output message.
The converter programs use the new high-performance XML parsing capabilities
of the IBM Enterprise COBOL compiler. The tool also generates a template
COBOL program that shows how to invoke the converter along with the existing
application.

By using XML enablement for the enterprise, you can use data produced by
existing COBOL programs to communicate with systems that use XML for data
interchange, including systems based on Web services. The XML parsing is
done using a simple API for XML (SAX) parser.

Benefits of XML enablement
Existing COBOL applications can be modernized so they can communicate with
J2EE applications or handle XML messages. XML enablement makes it a lot
easier to provide an interface to existing COBOL applications to support XML
messages.

The generation of converter and template driver programs in COBOL eliminates
the time-consuming and error-prone part of using the XML support provided by
the IBM Enterprise COBOL V3.1. Keeping things in COBOL leverages the
customers' existing assets and skills. Overall, this contributes to measurable
programmer productivity gains.

The XML parsing and conversions run on the z/OS system, leveraging the
high-performance XML parser to realize performance gains.
402 Legacy Modernization with WebSphere Studio Enterprise Developer

Enabling XML for existing COBOL applications
Enterprise Developer has the possibility to create new COBOL programs that
generate XML data, using existing COBOL programs as input. Figure 15-1
shows an overview of the XML enabling architecture.

Figure 15-1 XML enablement architecture

The input to the XML enablement tool is either the COBOL data structure, for
example a COMMAREA, or the complete COBOL program.

The output consists of input and output converter programs, a driver program,
and an XML schema. In the current version of the product (Early Availability),
three output files are created after executing the XML transformation:

� The converter program, which contains both the inbound XML message
processor that converts XML to native COBOL data and the outbound XML
producer that converts native COBOL data to XML.

� The driver program, which is a template that has to be modified. It illustrates
how the input and output converters are used in conjunction with the
unchanged COBOL program. It also shows a way of doing error handling that
can be adapted to suit the needs of the application.

� The document schema definition that describes the XML message that
corresponds to the COBOL data structure we are using. This can be used to
validate the input XML messages.

Note: The generated inbound and outbound programs will be in separate files
when the Enterprise Developer is released (general availability).

COBOL
Data

declarations
(or complete

program)

Input
converter

Driver program

XML schema
definition (.xsd)

WebSphere
Studio

Enterprise
Developer

XML
Enablement

Output
converter
 Chapter 15. XML enablement for COBOL 403

z/OS prerequisites for XML enabling
The following software is required to develop and run the XML enabling feature of
Enterprise Developer:

� IBM Enterprise COBOL for z/OS and OS/390 Version 3 Release 1 (program
number 5648-A25) or later

� IBM Language Environment for OS/390 Version 2 Release 10 (program
number 5647-A01) or later with PTF for APAR PQ65085 (available September
2002)

� OS/390 R8/R9/R10 and z/OS V1R1 support for Unicode is required for the
XML converters generated by Enterprise Developer General Availability
release

Using the generated code
After code generation it is the user’s responsibility to change the generated
COBOL driver program to invoke the original business program, depending on
the environment (batch, CICS) of that program.

The generated COBOL converters should not be modified. These converters are
also known as inbound/outbound programs.

Figure 15-2 shows how the generated COBOL programs are used:

� The existing legacy business COBOL program (1) is the program being XML
enabled. This program will be used by Enterprise Developer as input and no
modifications are necessary on this program.

� The converter programs (2) are generated and will be called by the driver
program (3) to perform the data transformation.

� The driver program (3) must be updated and modified to be able to call the
existing business program (1).

All new systems that require the existing data in XML format will use the driver
program instead of the existing business program.
404 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 15-2 Using the XML converters

XML enablement run-time scenarios
The same XML COBOL converters can be used (called) by CICS, IMS, and
batch applications that take XML messages as input.

Figure 15-3 shows three scenarios where we could use the XML converters:

� Scenario 1—Shows a CICS or IMS transaction being invoked from a Web
service through a JCA connector. This transaction will call the input XML
converter to map the XML message into native COBOL data before passing
that COBOL data to the existing COBOL application or transaction.

� Scenario 2—Is slightly different from scenario 1 in that an application server
is not involved. The XML message may come from some source, say another
CICS application or a WebSphere MQ application.

� Scenario 3—Shows a new batch COBOL application working with XML input
and interfacing with the existing COBOL application.

Notice that a mid-tier application server is not a prerequisite to running the XML
converters generated by the XML enablement tool.

XML to Data
Structure
Converter

Inbound

 Data
Structure to

XML
Converter

Outbound

Local-Storage Section.
1 business-datastructure.
 2 coordinates occurs 5 times.
 3 x pic 9(4)v9(4) binary.
 3 y pic 9(4)v9(4) binary.
 3 z pic 9(4)v9(4) binary.

Linkage Section.
1 XML-Interface.
 2 XML-length pic 9(9) binary.
 2 XML-Bytes pic x(1048576).

Procedure Division.
call 'inbound' using
 business-datastructure
 XML-length xml-bytes

call 'busprog' using
 business-datastructure

call 'outbound' using
 business-datastructure
 XML-length XML-bytes

goback

XML Bytes

Count XML Bytes

XML Bytes

Count XML Bytes

Business
Program

Being XML
Enabled

Business Program

Driver

1

2

2

3

 Chapter 15. XML enablement for COBOL 405

Figure 15-3 Run-time scenarios for XML enablement

General limitations
Some limitations apply when using the XML enablement tool with Enterprise
Developer:

� The source and target, that is, the input and output to the XML enablement
tool, must reside on the local workstation and not on a remote z/OS system.

� Copy books must be fully expanded, that is, they must be inline. This is a
restriction imposed by the COBOL importer.

� The workstation COBOL compiler that comes with WebSphere Studio
Enterprise Developer has not been upgraded to the Enterprise COBOL 3.1
level and thus has no XML support. Consequently, you cannot run the
generated code on a workstation.

� COMP-X is a MicroFocus extension, not supported by the IBM host
compilers. This is an issue only if porting a COBOL program written using
MicroFocus to the z/OS platform.

� Mapping of XML element attributes are not supported.

� Only the original data items are handled; redefined data items are ignored.
For example, if A is defined as PIC X(30) and B redefines A as PIC X(20),
data item B is ignored by the tool.

Existing
COBOL
program

XMLXML

data

datacall

JCA

XML
converter

CICS/IMS
Txn

built from
generated driver

template

WebSphere

SOAP server

Web Service

call
Built from
generated

driver
template

New COBOL app z/OS

Scenario #1

Scenario #3

Scenario #2

XML-based
application

XMLXML
XML-based
application

XML
converter

CICS/IMS Systems

Batch
406 Legacy Modernization with WebSphere Studio Enterprise Developer

Early availability limitations
The version used in this book is the early availability version that has additional
limitations:

� Online help is not available for the XML enablement tool. Refer to the XML for
the Enterprise white paper for additional information on tool usage (see
“Installing the CICS application sample in z/OS” on page 408).

� Inbound message processing Unicode UTF-16 is not supported.

� Outbound message generation limitations:

– Simple occurs-depending-on (ODO) not supported.

– Trailing/leading blanks in character content are not removed.

– Trailing/leading zeroes in numeric content are not removed.

– The characters <, >, ', ", & are not allowed in character content.

Sample application topology
The best way to understand how the XML transformation works is by using the
sample COBOL programs that are shipped with the Enterprise Developer on the
third CD in the directory ..\Samples\XMLEnterprise. Figure 15-4 shows how
these programs interact with each other.

Figure 15-4 Sample CICS application distributed with Enterprise Developer

This CICS application consists of an interactive program, LEGFRNT, which calls
two CICS programs, DFH0ACTD and DFH0CSTD. They, in turn, access DB2 tables to
retrieve customer and account information. This information is exchanged in
binary format in the CICS COMMAREA and the results are displayed on a 3270
terminal. Screens that illustrate the interaction are shown in “Running the existing
3270 CICS legacy application” on page 408.

3270
CICS

Terminal

z/OS CICS

DB2

Account
Details

"DFH0ACTD"

Customer
Details

"DFH0CSTD"

Interactive
Program

"LEGFRNT"
 Chapter 15. XML enablement for COBOL 407

Installing the CICS application sample in z/OS
To install and run this sample program in the z/OS system, you must follow the
instructions detailed in XML for the Enterprise - Providing an XML Interface to a
CICS Application, found in the root of the CD where you get the samples or at
the Web site:

http://www-3.ibm.com/software/ad/studioenterprisedev/library/

Here are the required COBOL programs for the current application:

� DFH0ACTD (account details sample program)

� DFH0CSTD (customer details sample program)

� LEGFRNT (CICS front-end program for executing the business programs)

� LEGMAP (CICS BMS map for front-end program)

� DFH$EDB2 (creates the DB2 tables for the sample programs)

� DFH$ESQL (DB2 bind for the sample programs DFH0ACTD and DFH0CSTD)

� XML$CEDA (creates CICS table entries)

These COBOL programs are included in the Enterprise Developer samples. The
following products are prerequisites for this example:

� IBM Database 2 Universal Database Server for OS/390 (DB2) Version 6
Release 1 (program number 5675-DB2) or later

� CICS Transaction Server for OS/390 Version 1 Release 3 (program number
5655-147) or later

Running the existing 3270 CICS legacy application
To start the application, bring up a CICS terminal and connect to the CICS
system:

� Run the transaction LEGF.

� The first screen asks for entering the transaction type.

� Enter 2 to execute the program DFH0ACTD and press Enter.

� The second screen appears. Enter a valid customer number, for example,
00001 and press Enter. The account number and balance are displayed.

� Figure 15-5 shows a sample run.
408 Legacy Modernization with WebSphere Studio Enterprise Developer

http://www-3.ibm.com/software/ad/studioenterprisedev/library/

Figure 15-5 CICS 3270 sample run

Requirements for changing the existing application
Any of the three scenarios described in “XML enablement run-time scenarios” on
page 405 could be the requirement to change the existing application. The entire
transformation can be done without having to change any existing program
(DFH0ACTD and DFH0CSTD).

To allow XML documents to flow through to the existing business programs, the
source of those programs is passed through the XML enablement tool. The tool
generates a set of COBOL programs called XML converters (inbound and
outbound) based on the original binary interface. The tool also generates a
template COBOL program called converter driver that illustrates how to invoke
the converters.
 Chapter 15. XML enablement for COBOL 409

Figure 15-6 shows the structure of the modernized application.

Figure 15-6 Sample application enabled for XML

We show in “Modifying the converter driver programs” on page 418 how to
extend the generated driver programs with EXEC CICS statements to call the
existing business application in concert with calling the XML converters.

An interactive menu-driven 3270 front-end program (XMLFRNT) facilitates local
testing of the new application. Note that this program is not generated by the
Enterprise Developer and is used in our example as a test program.

XML enablement in Enterprise Developer
The XML enablement sample is provided with Enterprise Developer. In this
section, we document how to generate the driver and converter programs from
the sample COBOL code.

CICS
Terminal

CICS

XML
Converter

Driver
"ACTDCNVD"

Interactive
Program

"XMLFRNT"

X
M

L

X
M

L

Inbound XML
Converter

"ACTDCNVI"

Outbound XML
Converter

"ACTDCNVO"

XML
Converter

Driver
"CSTDCNVD"

Inbound XML
Converter

"CSTDCNVI"

Outbound XML
Converter

"CSTDCNVO"

DB2

Account
Details

"DFH0ACTD"

Customer
Details

"DFH0CSTD"

Internet or
Web

Services

Internet or
Web

Services
410 Legacy Modernization with WebSphere Studio Enterprise Developer

Preferences
Preferences for XML enablement can be set in Enterprise Developer by selecting
Window -> Preferences (Figure 15-7).

Figure 15-7 COBOL generator preferences for XML converter

Prepare a sample project
To load the XML sample, start the Enterprise Developer and use any perspective
that has the Navigator view, for example the Resource perspective:

� Select File -> New -> Project and in the New Project pane select Simple ->
Project and click Next.

� Enter ItsoXMLConv as the project name and click Finish.

Import the two legacy programs (DFH0ACTD.cbl and DFH0CSTD.cbl) that will be
called by the front-end interactive CICS programs:

� Select the ItsoXMLConv project and Import (context menu). Select File system
-> Next and click Browse to locate the directory Samples\XMLEnterprise on
the third distribution CD.

� Select the two programs DFH0ACTD.cbl and DFH0CSTD.cbl and Create
selected folders only and click Finish.

Figure 15-8 shows the result of the import.
 Chapter 15. XML enablement for COBOL 411

Figure 15-8 Imported COBOL source programs

Generating the XML converters and drivers
We use the XML converter wizard to generate the XML converters and drivers for
the two sample programs:

� Select the DFH0ACTD.cbl program and Enable XML -> Generate XML
Converter (context) to start the wizard (Figure 15-9).

Figure 15-9 XML converter wizard file names

ACTDCNV.cbl

ACTDDRV.cbl
412 Legacy Modernization with WebSphere Studio Enterprise Developer

� This first page of the wizard is used to specify input and output file names.
The default names for the converter and driver is the input file name with a C
(converter) or D (driver) prefix.

� We change the file name for the converter programs to ACTDCNV.cbl and the
file name for the driver program to ACTDDRV.cbl. We accept the default file
name for the XML schema.

� Click Next.

� For generation options (Figure 15-10) enter the program name ACTDCNV that
will be used to create the PROGRAM-ID COBOL statements in the generated
files. The actual program IDs will be formed with suffixes I an O for converters
and D for the driver.

Figure 15-10 XML converter wizard generation options

� In the data structures dialog, select DFHCOMMAREA as input and output data
structure (Figure 15-11) because this is the structure to be converted.

� Click Finish to complete the XML generation.

Important: Because the file names could be greater than 8 characters long,
you may run into problems when you try to move these into a z/OS partitioned
data set (PDS). Therefore check the generated names!

ACTDCNV
 Chapter 15. XML enablement for COBOL 413

Figure 15-11 XML converter wizard data structure

When the generation is finished, you will find the three generated files in the
Navigator view.

Repeat this operation by starting the wizard for the DFH0CSTD.cbl program:

� Enter CSTDCNV.cbl and CSTDDRV.cbl as the file output names.

� Enter CSTDCNV as the program name.

� Select DHFCOMMAREA for the input and output data structures.

Understanding the generated code
Table 15-1 shows the XML converter input and generated output.

Table 15-1 XML enablement generated code

Note that the converter files hold three programs, the inbound (I) and outbound
(O) converters and a utility program (N). The driver files hold two programs, the
driver (D) and an exception utility program (H). This may change in the final
Enterprise Developer product.

Input program Generated converter
- program IDs

Generated driver
- program IDs

Generated
XML schema

DFH0ACTD.cbl ACTDCNV.cbl
- ACTDCNVI
- ACTDCNVO
- ACTDCNVN

ACTDDRV.cbl
- ACTDCNVD
- ACTDCNVH

DFH0ACTD.xsd

DFH0CSTD.cbl CSTDCNV.cbl
- CSTDCNVI
- CSTDCNVO
- CSTDCNVN

CUSTDDRV.cbl
- CSTDCNVD
- CSTDCNVH

DFH0CSTD.xsd
414 Legacy Modernization with WebSphere Studio Enterprise Developer

Inbound converter
Figure 15-12 shows the input COBOL program and the generated inbound
converter program used in the sample.

Figure 15-12 Input COBOL and XML generated inbound

The generated ACTDCNVI COBOL program processes incoming XML data and
converts the contents of its elements into a COBOL data structure that matches
the existing application. The inbound converter uses high-performance XML
parsing capabilities of the latest IBM Enterprise COBOL compiler and run-time
library. The conversion and moving of data is based on proprietary algorithms
that provide high efficiency in transforming character data from the XML
document into appropriate COBOL data.

Note that a new COBOL instruction parse is used in the Inbound program. It
validates the incoming XML and in case of errors an exception is thrown (see an
example in Figure 15-20 on page 422).

Example 15-1 shows the generated parse statement.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DFH0ACTD.
 ...
 ...
 LINKAGE SECTION.
 01 DFHCOMMAREA.
 05 CUSTNO PIC S99999.
 05 ACCTNO PIC S99999.
 05 BALANCE PIC S9999V99.

 PROCEDURE DIVISION.
 START-PARA.

 MOVE 999999999 TO ACCTNO
 MOVE 'SQLCODE: ' TO MSG.
 MOVE 'DFH0ACTD PROGRAM STARTED. ' TO TMP.
 EXEC CICS WRITEQ TD QUEUE('CSMT')
 FROM(TMP)
 LENGTH(40)
 END-EXEC.

 MOVE CUSTNO TO HV-CUSTNO.
 ...
 ...
 EXEC CICS RETURN
 END-EXEC.

DFH0ACTD.cbl
 Process opt,lib,codepage(01140)
 Identification Division.
 Program-Id. 'ACTDCNVI'.
 Author. GENERATED.

** -=XML ELEMENT NAMES=-
 ** <custno>
 ** <acctno>
 ** <balance>

 01 DFHCOMMAREA .
 05 CUSTNO PIC S99999 .
 05 ACCTNO PIC S99999 .
 05 BALANCE PIC S9999V99 .
 1 a-input-xml-len pic 9(9) binary.
 1 a-input-xml pic x(1024000).
 1 a-optional-feedback-code pic x(12).
 1 a-converter-return-code pic s9(9) binary.
 procedure division using
 DFHCOMMAREA
 a-input-xml-len
 a-input-xml
 a-optional-feedback-code
 RETURNING
 a-converter-return-code.
 Mainline Section.
 if a-input-xml-len > 1024000
 move 285 to a-msgno
 perform a-signal-condition
 goback
 end-if
 perform a-register-exception-handler
 xml parse a-input-xml (1:a-input-xml-len)
 processing procedure a-xml-handler
 thru a-general-logic-exit
 on exception
 perform a-unregister-exception-handler
 perform a-signal-condition
 not on exception
 perform a-unregister-exception-handler
 move zero to a-converter-return-code
 end-xml
 goback

DFH0ACTD.xsd ACTDDRV.cbl

ACTDCNVI

ACTDCNVOACTDCNV.cbl
 Chapter 15. XML enablement for COBOL 415

Example 15-1 New parse statement used in the converter

xml parse a-input-xml (1:a-input-xml-len)
 processing procedure a-xml-handler
 thru a-general-logic-exit
 on exception
 perform a-unregister-exception-handler
 perform a-signal-condition
 not on exception
 perform a-unregister-exception-handler
 move zero to a-converter-return-code
 end-xml

Outbound converter
Figure 15-13 shows the generated outbound converter program.

Figure 15-13 Input COBOL and XML generated outbound

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DFH0ACTD.
 ...
 ...
 LINKAGE SECTION.
 01 DFHCOMMAREA.
 05 CUSTNO PIC S99999.
 05 ACCTNO PIC S99999.
 05 BALANCE PIC S9999V99.

 PROCEDURE DIVISION.
 START-PARA.

 MOVE 999999999 TO ACCTNO
 MOVE 'SQLCODE: ' TO MSG.
 MOVE 'DFH0ACTD PROGRAM STARTED. ' TO TMP.
 EXEC CICS WRITEQ TD QUEUE('CSMT')
 FROM(TMP)
 LENGTH(40)
 END-EXEC.

 MOVE CUSTNO TO HV-CUSTNO.
 ...
 ...
 EXEC CICS RETURN
 END-EXEC.

DFH0ACTD.cbl

DFH0ACTD.xsd ACTDDRV.cbl ACTDCNVI

 Process opt,codepage(01140)
 Identification Division.
 Program-Id. 'ACTDCNVO'.
 Author. GENERATED.
 Date-Written. 10/8/02 1:02 PM.
 Data Division.
 Working-Storage Section.
 Local-Storage Section.
 1 a-xml-response.
 2 pic x(21) value '<?xml version="1.0"?>'.
 2 pic x(13) value '<DFHCOMMAREA>'.
 2 pic x(8) value '<custno>'.
 2 CUSTNO pic -9(5).
 2 pic x(9) value '</custno>'.
 2 pic x(8) value '<acctno>'.
 2 ACCTNO pic -9(5).
 2 pic x(9) value '</acctno>'.
 2 pic x(9) value '<balance>'.
 2 BALANCE pic -9(4).9(2).
 2 pic x(10) value '</balance>'.
 2 pic x(14) value '</DFHCOMMAREA>'.
 Linkage Section.
 01 DFHCOMMAREA .
 05 CUSTNO PIC S99999 .
 05 ACCTNO PIC S99999 .
 05 BALANCE PIC S9999V99 .

 Procedure Division using
 DFHCOMMAREA
 a-output-xml-len
 a-output-xml
 a-optional-feedback-code
 returning
 a-converter-return-code.
 Mainline Section.
 move corresponding DFHCOMMAREA
 to a-xml-response

 End Program 'ACTDCNVO'.

ACTDCNVOACTDCNV.cbl
416 Legacy Modernization with WebSphere Studio Enterprise Developer

The outbound converter takes the results of the original program and converts
COBOL data into an XML message. This message is returned to the client. In
case of an error during execution of the transaction, an XML-based error
message is returned.

Converter driver and XML schema
Figure 15-14 shows the generated sample converter driver template and the
XML schema. Note that the file name specified was ACTDDRV (Figure 15-10 on
page 413), and the program ID is ACTDCNVD.

Figure 15-14 Input COBOL and XML driver and XSD generated

The XML schema is automatically generated and contains the description of the
names and types of XML elements. These elements can be present in an XML
document that our program will be able to process and generate. For more
information on XML schema, visit:

http://www.w3.org/XML/Schema

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DFH0ACTD.
 ...
 ...
 LINKAGE SECTION.
 01 DFHCOMMAREA.
 05 CUSTNO PIC S99999.
 05 ACCTNO PIC S99999.
 05 BALANCE PIC S9999V99.
 PROCEDURE DIVISION.
 START-PARA.

 Process opt,lib,codepage(01140)
 * XML Converter Driver Program
 Identification Division.
 Program-Id. 'ACTDCNVD'.
 ...
 Data Division.
 ...
 01 DFHCOMMAREA .
 05 CUSTNO PIC S99999 .
 05 ACCTNO PIC S99999 .
 05 BALANCE PIC S9999V99 .
 Linkage Section.
 * ** New XML Inbound / Outbound Interface **
 1 a-xml-interface.
 2 a-interface-xml-text-len pic 9(9) binary.
 2 a-interface-xml-text pic x(1024000).
 Procedure Division using a-xml-interface.
 Mainline Section.

 * + -------------------------- +
 * | Execute Legacy Application |
 * + -------------------------- +
 * . EXEC CICS LINK
 * . PROGRAM('LEGACY')
 * . COMMAREA(DFHCOMMAREA)
 * . call 'LEGACY' using DFHCOMMAREA
 ...
 a-inbound-conversion.
 call 'ACTDDRVI'
 using
 DFHCOMMAREA
 a-interface-xml-text-len
 a-interface-xml-text

 a-outbound-conversion.
 call 'ACTDDRVO'
 using DFHCOMMAREA a-interface-xml-text-len
 a-interface-xml-text

 returning
 a-converter-return-code .
 End Program 'ACTDCNVD'.

ACTDCNVO

 <?xml version="1.0" encoding="UTF-8"?>
 <schema
 targetNamespace="http://www.DFH0ACTD.
 xmlns="http://www.w3.org/2001/XMLSchema"...">
 <complexType name="DFHCOMMAREA">
 <sequence>
 <element name="custno">
 <simpleType>
 <restriction base="int">
 <minInclusive value="-99999"/>
 <maxInclusive value="99999"/>
 </restriction>
 </simpleType>
 </element>
 <element name="acctno">
 ...
 </element>
 </sequence>
 </complexType>
 </schema> DFH0ACTD.xsd

DFH0ACTD.cbl

ACTDCNVI

ACTDDRV.cbl
 Chapter 15. XML enablement for COBOL 417

http://www.w3.org/XML/Schema

Modifying the converter driver programs
The XML converter driver (ACTDDRV.cbl) is a COBOL program that shows the
invocation sequence for the inbound converter, the existing program, and the
outbound converter.

You can now modify this converter driver template and call the existing
application using the EXEC CICS language. The driver template also provides
error-handling mechanisms that can be modified to suit your needs.

Changes to the data division
Because we want to call the driver program as a CICS transaction, we make the
XML data structure the COMMAREA and we change the legacy communication
area into a business structure that is passed to the legacy program as COMMAREA
in the call.

Figure 15-15 shows the changes to the process statement and the Data
Division.

Figure 15-15 Data division changes

Changes to the procedure division
Figure 15-16 shows the modified Procedure Division where the legacy program
is invoked. Also the goback statements must be changed to exec cics return.

 Process opt,lib,codepage(01140),cics
* XML Converter Driver Program *
Identification Division.

 Program-Id. 'ACTDCNVD'.
....
Data Division.
....

 * ** Legacy Application Inbound / Outbound Binary Interface **
 * **

01 DFHCOMMAREA BUSINESS-DATASTRUCT .
 05 CUSTNO PIC S99999 .
 05 ACCTNO PIC S99999 .
 05 BALANCE PIC S9999V99 .
 Linkage Section.

* **
 * ** New XML Inbound / Outbound Interface **
 * **

1 a-xml-interface DFHCOMMAREA .
 2 a-interface-xml-text-len pic 9(9) binary.
 2 a-interface-xml-text pic x(1024000).
418 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure 15-16 Procedure division changes

Procedure Division using a-xml-interface DFHCOMMAREA.
 Mainline Section.
 ,....

 * Send Failure Response Message If Error Was Detected
if a-exception-occurred = 'Y'

 move a-message-buffer to a-error-description
...
 move a-failure-response
 to a-interface-xml-text(1:a-interface-xml-text-len)
 perform a-unregister-exception-handler
 goback

 exec cis return
 end-exec

 end-if
 * + -------------------------- +
 * | Execute Legacy Application |
 * + -------------------------- +

* . EXEC CICS LINK
 * . PROGRAM('LEGACY')
 * . COMMAREA(DFHCOMMAREA)
 *
 * . END-EXEC ...OR
 * .
 * . call 'LEGACY' using DFHCOMMAREA

exec cics link
program(‘DFH0ACTD’)
commarea(BUSINESS-DATASTRUCT)

end-exec
* + -------------------------------- +

 * | Execute Outbound XML Transformer |
 * + -------------------------------- +
 perform a-outbound-conversion
 * + ---------------------------- +
 * | Unregister Exception Handler |
 * + ---------------------------- +
 perform a-unregister-exception-handler
 * + -------- +
 * | Finished |
 * + -------- +
 goback

 exec cis return
 end-exec
 Chapter 15. XML enablement for COBOL 419

Changes to converter calls
Figure 15-17 shows the changes in the converter calls where the original
communication area (now the business structure) must be passed.

Figure 15-17 Converter invocation changes

Exception handling routine
The generated driver file also contains a program called ACTDCNVH that does the
exception handling. The only change required in this program is the additional
process statement (Figure 15-18).

Figure 15-18 Exception handling changes

 a-inbound-conversion.
 call 'ACTDCNVI'
 using
 DFHCOMMAREA BUSINESS-DATASTRUCT
 a-interface-xml-text-len
 a-interface-xml-text
 omitted
 * a-optional-feedback-code
 returning
 a-converter-return-code
 .
 a-outbound-conversion.
 call 'ACTDCNVO'
 using
 DFHCOMMAREA BUSINESS-DATASTRUCT
 a-interface-xml-text-len
 a-interface-xml-text
 omitted
 * a-optional-feedback-code
 returning
 a-converter-return-code

* ***
 * Exception Handler
 * ***

Process nocics
Identification Division.

 Program-Id. 'ACTDCNVH'.
 Author. GENERATED.
 Date-Written. 10/8/02 5:03 PM

Data Division.
.....
420 Legacy Modernization with WebSphere Studio Enterprise Developer

Changes to CSTDRV.cbl
Repeat all the modifications for the CSTDDRVD.cbl program.

Install the programs in a CISC environment
For the installation of those programs in the CICS environment, refer to the
instructions of the paper XML For the Enterprise - Providing An XML Interface To
A CICS Application that can be found in the root of the CD where you get the
samples or at the site:

http://www-3.ibm.com/software/ad/studioenterprisedev/library/

Running the XML enabled application
In this section we run the XML enabled application. We assume that the XML
front-end program (XMLFRNT) has been installed as a CICS transaction.

To start the application, bring up a CICS terminal and run transaction XMLF. A
sequence of screens from a sample run is shown in Figure 15-19.

Figure 15-19 Testing the XML generated programs
 Chapter 15. XML enablement for COBOL 421

http://www-3.ibm.com/software/ad/studioenterprisedev/library/

� Enter 2 to run the account transaction.

� The XML input record is displayed. You can overtype the customer number
and press Enter.

� The request is executed and the result XML is displayed, showing the account
number and balance.

Errors messages parsing input XML data
The XML converters are able to report errors. You can verify that by performing
tests with an invalid XML input structure or invalid input data.

Figure 15-20 shows a run with an invalid XML structure where the </balance>
end tag was modified, and Figure 15-21 shows a run where a non-numeric
customer number was entered.

Figure 15-20 XML converter error message for invalid XML structure

Figure 15-21 XML converter error message for invalid data
422 Legacy Modernization with WebSphere Studio Enterprise Developer

Modifying the XML converter interface
Both the inbound and outbound XML converters are invoked using a call
statement. Arguments to the converters are a mixture of input and output
parameters whose contents may be changed upon return from invocation. The
call signature of the converters is displayed in Figure 15-22.

Figure 15-22 Converter call interface

This COBOL code is an example of a call to a converter. Input and output
properties for each argument are displayed in parenthesized italics. Because the
structure of each argument is unique, it must not vary from the description here.

DATA-STRUCTURE is a piece of storage whose structure is identical to that of the
data structure that was nominated as the inbound data structure when the
converter was generated. During an inbound conversion, DATA-STRUCTURE will be
populated with values from the input XML document provided in the arguments
XML-MESSAGE-LEN and XML-MESSAGE-TEXT. In the case of an outbound conversion,
DATA-STRUCTURE is used to populate an XML message, whose properties are
placed in the XML-MESSAGE-LEN and XML-MESSAGE-TEXT arguments.

FEEDBACK-CODE is a 12-byte language environment condition token that can be
omitted by using the OMITTED keyword on the call. Choosing to omit this argument
will cause any error encountered by the converter to be signaled as a severe
condition containing information about the error.

On the other hand not omitting this argument will cause the converter to simply
place a condition token representing the error into FEEDBACK-CODE without
signaling a condition. The structure of FEEDBACK-CODE is displayed in
Figure 15-23.

More detailed information about the structure and use of this condition token can
be found in the Language Environment Programming Guide.

CALL ‘CONV’ USING
DATA-STRUCTURE (input)
XML-MESSAGE-LEN (input + output)
XML-MESSAGE-TEXT (input + output)
(FEEDBACK-CODE or OMITTED) (output)

RETURNING
CONVERTER-RETURN-CODE (output)
 Chapter 15. XML enablement for COBOL 423

Figure 15-23 Cobol program structure of FeedBack-Code

CONVERTER-RETURN-CODE is an output only argument, which will contain one of two
classes of return codes upon completion of the call:

� If the converter encounters an error within its own facilities, that is, not an
error from the XML parse statement, then the language environment
message ID associated with the error will be placed in the argument.

� The second class of return codes is the codes returned from the XML parse
statement. These will occur in the case where something was syntactically
incorrect in the input XML document. Note that this second class of errors
only occurs during an inbound conversion.

Summary
Although this feature can be greatly improved in the future, it is a good starting
point for modernizing existing COBOL applications to support XML messages.

Developers can achieve significant productivity gains by utilizing the converter
and driver template generators.

The application will benefit in regard to performance by running XML parsing and
conversions on the z/OS systems.

The total cost of ownership (TCO) can be reduced by having one development
environment.

1 FEEDBACK-CODE.
2 CONDITION-TOKEN-VALUE.
COPY CEEIGZCT.
3 CASE-1-CONDITION-ID.

4 SEVERITY PIC S9(4) BINARY.
4 MSG-NO PIC S9(4) BINARY.

3 CASE-2-CONDITION-ID
REDEFINES CASE-1-CONDITION-ID.
4 CLASS-CODE PIC S9(4) BINARY.
4 CAUSE-CODE PIC S9(4) BINARY.

3 CASE-SEV-CTL PIC X.
3 FACILITY-ID PIC XXX.

2 I-S-INFO PIC S9(9) BINARY.
424 Legacy Modernization with WebSphere Studio Enterprise Developer

Part 5 Appendixes

Part 5
© Copyright IBM Corp. 2002. All rights reserved. 425

426 Legacy Modernization with WebSphere Studio Enterprise Developer

Appendix A. Team development

In this appendix we describe software configuration management support in
Enterprise Developer Version 5.

The description provided here is in no way complete. We only scratch the surface
of the team support capability of Enterprise Developer. Also we describe only
how to work with Concurrent Versions System (CVS) and do not cover the
support for ClearCase LT.

A

© Copyright IBM Corp. 2002. All rights reserved. 427

Team environment
For a good description of the team environment of the Application Developer
Version 4, refer to Part 7 of the WebSphere Studio Application Developer
Programming Guide, SG24-6585.

The concepts of team programming described in that redbook apply also to the
Enterprise Developer, although there have been many changes in Version 5 of
the products.

Concurrent Versions System
Concurrent Versions System (CVS) is an open-source network-transparent
version control system. CVS is useful for everyone from individual developers to
large, distributed teams.

CVS is not distributed with Enterprise Developer, but support for CVS is
integrated in Enterprise Developer. CVS provides a team programming
environment where team members do all of their work in their own Workbench,
isolated from each other, and eventually share their work through a CVS
repository.

CVS also can be used by a developer in stand-alone mode to keep versions of
the code.

For general information about CVS and downloadable code for UNIX, go to:

http://www.cvshome.org/

For downloadable code for Windows, go to:

http://www.cvsnt.org/

CVS installation and configuration
We installed CVS for Window NT Version 1.11.1.2 for this redbook project.

After installation, the CVS server must be configured. Select Programs -> CVS
for NT -> Configure server. In the CVSNT dialog, select the protocols that you
want to support, and add the repository locations. You can set up multiple
repositories for different development efforts. Start the server when done.

Figure A-1 shows a sample CVSNT configuration dialog.
428 Legacy Modernization with WebSphere Studio Enterprise Developer

http://www.cvshome.org/
http://www.cvsnt.org/

Figure A-1 CVS for NT configuration

What is new in Version 5?
The most important improvements in team support in Application Developer and
Enterprise Developer Version 5 are:

� CVS Repository Exploring perspective to browse the content of repositories

� CVS Console view, shows messages returned from the CVS server

� Consistent CVS terms used throughout, for example, branch instead of
stream

� File compression options for transferring files to the CVS repository

� New resources must be explicitly added to CVS control

� Text/binary support by identifying what file types are text or binary

� Synchronize outgoing changes optimizations (only outgoing changes are
synchronized, which reduces network traffic)

� CVS decorators are visual indicators next to resources

This list does not show all the new features, but points to the major differences
compared to previous versions of WebSphere Studio products.
 Appendix A. Team development 429

What changes could impact your work?
In Version 4, after adding an EJB project to CVS, you can delete the project from
the workspace and when necessary import it again and all the components are
reloaded.

In Version 5, this scenario will lead to many errors, such as missing classes, and
you have to redeploy the EJBs. The reason is that some of the components, such
as the deployed code, are not stored in the CVS repository in the default setup.

To store the deployed code in the CVS repository, you have to change the
preferences of the Workbench:

� Select Window -> Preferences -> Team -> Ignored Resources (Figure A-2).

� Remove the first three check marks to store EJB deployed code in CVS.

� Click OK.

Figure A-2 CVS ignored resources preferences

More details on ignored resources preference
On the Ignored Resources page, you can specify file name patterns to be
excluded from the version control management system.

Files are matched against the list of patterns, before they are considered as
version control candidates. A file or directory that matches any one of the
patterns will be ignored during update or commit operations. The patterns may
contain the wildcard characters * (any sequence of zero or more characters) and
? (any one character).
430 Legacy Modernization with WebSphere Studio Enterprise Developer

To add a file type to the ignore list, click the Add button. In the dialog, enter a file
type (for example, *.class). To remove a file type from the ignore list, select the
file type in the ignore list and click Remove. You can temporarily disable ignoring
the file pattern by de-selecting it from the list; you do not have to remove the
specified file pattern from the list.

Ignoring resources from version control
When synchronizing resources, you may not want to commit all resources to the
repository. There are two ignore facilities provided, allowing the user to specify
which resources should be excluded from update and commit operations:

� The first is a global ignore facility, provided by the Workbench as shown
Figure A-2.

� The second is the CVS ignore facility, which reads the contents of a special
.cvsignore file to determine what to ignore.

CVS ignore facility
The Eclipse CVS client recognizes a file named .cvsignore in each directory of a
project. This is a standard CVS facility and many existing CVS projects may
contain such a file.

This text file consists of a list of files, directories, or patterns. In a similar way to
the global ignore facility, the wildcard * and ? may be present in any entry in the
.cvsignore file. Any file or subdirectory in the current directory that matches any
one of the patterns is ignored.

It is important to note that the semantics of this file differs from that of the global
ignore facility in that it applies only to files and directories in the same directory
as the .cvsignore file itself. A project may contain one .cvsignore file in each
directory. For more information, visit http://www.cvshome.org.

Resources that have not been added to CVS control can be ignored by selecting
Team > Add to .cvsignore from the context menu of the resource in the Navigator
view. This menu option is also available in the Synchronize view.
 Appendix A. Team development 431

http://www.cvshome.org

Development scenario for a single user
In this section, we provide a short scenario using the CVS support in Enterprise
Developer. This scenario includes:

� Connecting to a CVS repository
� Adding a project to CVS
� Version a project
� Changing files and synchronizing a project

Connecting to a CVS repository
To connect the Workbench to a CVS repository:

� Open the CVS Repository Exploring perspective.

� Select New -> Repository Location from the context menu of the CMS
Repositories view.

� Complete the dialog as shown in Figure A-3.

Figure A-3 New repository location
432 Legacy Modernization with WebSphere Studio Enterprise Developer

You must know the repository path on the target machine. The pserver
connection type validates your user ID and password with the Windows
system.

� The repository location is added to the CVS Repositories view (Figure A-4).

Figure A-4 ICVS Repositories view after connecting

Adding a project to CVS control
The next step is to add projects to CVS control:

� Open the Web perspective, select the ItsoMyTradeSade project and Team ->
Share Project (context).

� Select CVS in the dialog, click Next, select the repository, click Next to go
through the rest of the dialog, and click Finish (Figure A-5).

Figure A-5 Share a project

Refresh
 Appendix A. Team development 433

� Refresh the CVS Repositories view to see the project name under HEAD and
Versions (use the Refresh icon or the Refresh View context menu).

� Notice that no folders or files are visible; we have to add them to version
control explicitly.

� In the Web perspective, select the folders of the ItsoMyTradeSade project you
want to have under version control, for example, Java Source and Web
Content, and Team -> Add to Version Control (context). Also select the project
control files (.project, .classpath, ...) and Team -> Add to Version Control in
a Navigator view.

� Now you can commit individual files, folders, or the whole project. Initially the
easiest is to select the ItsoMyTradeSade project and Team -> Commit. You are
prompted for a comment (enter Initial).

� Figure A-6 shows the CVS Repositories view after adding two projects to
version control and committing the files. Notice that all files carry 1.1 as the
revision number.

Figure A-6 Projects added to CVS
434 Legacy Modernization with WebSphere Studio Enterprise Developer

Create a version
Now we can freeze the initial code:

� In the Web perspective, select the ItsoMyTradeSade project and Team -> Tag
as Version.

� You are prompted for a tag (Figure A-7); enter V1-1, for example (periods are
not allowed).

Figure A-7 Version tag

� Refresh the CVS Repositories view and the project version is visible
(Figure A-8).

Figure A-8 Project version
 Appendix A. Team development 435

Making changes and synchronizing
The next step is to show how changes to the code are handled with CVS:

� In the ItsoMyTradeSade project change two files, for example:

– Change the comments in the LoginForm.java source.
– Add a line (<h3>xxxxx</h3>) after the form in the index.jsp file.

� After saving the files, select both files and Team -> Synchronize with
Repository (context). The files are compared with the branch in the repository
and the Synchronize view opens. Use the down arrow icon to display the first
change (Figure A-9).

Figure A-9 Synchronize view

� Move from change to change using the arrow icons and see the differences in
the two files.

� Select the ItsoMyTradeSade project in the Structure Compare pane and
Commit (context). This commits the changes to the repository. When
prompted, enter Change1 as comment.

� Refresh the CVS Repositories view and you can see that the two files carry
1.2 as the revision number.

� You could have committed the changes to the files by selecting Team ->
Commit and the Synchronize view would have been bypassed.

� Select the project and Tag as Version and assign V1-2 to the new version.
436 Legacy Modernization with WebSphere Studio Enterprise Developer

Synchronizing the project
When synchronizing a project, you may be prompted that the project includes
files that have not been added to version control (Figure A-10). Click Yes to add
the files to version control.

Figure A-10 Adding files to version control using synchronize

CVS console
In the CVS Console view, you can see all the interactions between Enterprise
Developer and CVS. Select Window -> Show View -> Other -> CVS -> CVS
Console to open the view (Figure A-11).

Figure A-11 CVS Console view
 Appendix A. Team development 437

Resource history
The Resource History view shows all the changes that have been applied to a
file. Select the index.jsp file in the CVS Repositories view and Show in
Resource History (Figure A-12).

Figure A-12 Resource history

File compare
There are a number of ways to compare two revisions of a file:

� Select two revisions in the Resource History view and Compare (context).

� Select a revision and a version in the CVS Repositories view and Compare.

� Select a file in any Navigator view and Compare With. In the dialog, select a
repository version, repository revision, or a local history file for the compare
operation (Figure A-13).

Figure A-13 Comparing files

� The file comparison opens and you can step from change to change using the
arrow icons (Figure A-14).

Note: You can compare any two files with each other; we use revisions of one
file as an example.
438 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure A-14 File compare

Disconnecting a project
You can disconnect a project from the repository. Select the ItsoMyTradeSade
project and Team -> Disconnect. You are prompted to confirm and also if you
want to delete CVS control information (Figure A-15).

Figure A-15 Disconnect confirmation

CVS adds special directories named CVS to the project and its folders. These
directories can be deleted or kept on disconnect.

Reconnect
You can reconnect a project to the repository (Team -> Share Project).
Reconnect is easier if the CVS folders are still in the project. If they were deleted,
you are prompted to synchronize your code with the existing repository code.
 Appendix A. Team development 439

Development scenario for a team
In a team environment, the CVS server is placed onto a server machine. All
members of the team connect to the same CVS server. You can have multiple
repositories managed by the same CVS server.

We will not explore real team operation in this redbook, and only outline a
development scenario:

� All team members connect to the same repository.

� A team leader defines a new project.

� The project is added to CVS version control (Team -> Share Project).

� An initial version is created (Team -> Tag as Version).

� Team members load the project from CVS into their workspace. They select a
project version in the CVS Repositories view and Checkout as Project.

� Team members add files and make changes to files. Periodically (frequently)
they synchronize their work with the repository:

– Commit own changes to the repository
– Pick up changes from other team members

� If the same file has been changed by two team members, a conflict exists and
must be resolved by merging the changes.

� Periodically, the team leader creates a new version of the project.

� For maintenance work and new development in parallel, a branch can be
created. By default there is only one branch, called HEAD.

Where to be careful
The dangerous areas in such a team environment are files that are changed
frequently, for example, deployment descriptors (web.xml, ejb-jar.xml):

� Every time a servlet is added, the deployment descriptor is updated.
� Every time an EJB is added, the deployment descriptor is updated.

The best way to handle this is to give such project updates to one team member,
or to synchronize very frequently to minimize conflicts.
440 Legacy Modernization with WebSphere Studio Enterprise Developer

Appendix B. WebSphere Studio Asset
Analyzer

In this appendix, we provide a description and illustrate some aspects of
WebSphere Studio Asset Analyzer.

Asset Analyzer’s prime functions are geared towards providing information on the
current inventory of development artifacts on both mainframe and distributed
environments. It provides developers with valuable insight on the structure of
existing systems and relationships that exist between development artifacts. As
such, it offers means to do impact analysis.

Furthermore, Asset Analyzer provides functionality in support of discovery and
enablement of reusable code. The information is presented to the end user
through a browser-based interface, thus allowing widespread usage of the
information. This appendix can be seen as a enticement to encourage you to
look at WebSphere Studio Asset Analyzer.

B

© Copyright IBM Corp. 2002. All rights reserved. 441

Inventory
In order for Asset Analyzer to provide information about your application, it has to
gather metadata. Asset Analyzer is using a wealth of scanners and crawlers
during the buildup of its inventory. Artifacts on the mainframe, which are held in
partitioned data sets, can be scanned either from the mainframe through an
ISPF dialog or from the workstations through the browser interface.

The scanning can be done on the basis of IBM SCLM or Serena Changeman
projects, confining the scanning to the PDSs within a tools project. Rescanning
can be triggered when, for instance, a system is moved into production.

After the initial scan, Asset Analyzer links the various artifacts found according to
relationships defined in the information model.

On the distributed side, there is an Administrator GUI interface to initiate the
crawling of artifacts held in the file system, ClearCase, or any WebDav enabled
SCM server.

Figure B-1 provides an overview of WebSphere Studio Asset Analyzer.

Figure B-1 Overview of WebSphere Studio Asset Analyzer

OS/390, NT or UNIXz/OS or OS/390

Distributed

OS/390, NT or UNIX
z/OS or OS/390

Import

Servlet, jsp

Inventory
Tools

Quick scanner
COBOL

PL/I
C

JCL
CICS
IMS
Java

C/C++
JSP
XML

HTML
WAR
EAR

EJB JAR

Text file for
data

transport

Import

Servlet, JSP

Analysis
Tools

Inventory
Reconciliation

Interrelationship
Analsysis

E-business
rating

Data Collection Data Analysis

IMS

Source

Web
browser

DB2

HTML

JSP

EJB

JCL

CICS

Java

C/C++
442 Legacy Modernization with WebSphere Studio Enterprise Developer

On the left-hand side of Figure B-1, you can get an impression of the artifacts
supported. Note that several deployed artifacts are supported as well. All
information is stored in a z/OS DB2 database. The functionality of Asset Analyzer
can be exploited from a browser interface, which is served by servlets running on
WebSphere. On the right side, you see three analysis functions mentioned.

Impact analysis on the mainframe
To illustrate the impact analysis capabilities of Asset Analyzer for mainframe
artifacts, we loaded the sample COBOL code used in Chapter 15, “XML
enablement for COBOL” on page 401 into Asset Analyzer.

There are several ways provided in the user interface of Asset Analyzer to get to
the information. Let’s have a look at the home page of Asset Analyzer by
selecting Launch -> WSAA -> Impact Analysis in the Enterprise Developer
(Figure B-2).

Note: Upon loading, Asset Analyzer indicated that some of the syntax was
unknown, which resulted in flagging the analysis as not complete. The
unknown syntax included statements, such as XML parse, which were only
introduced in the latest level of COBOL. Our stand-alone version of Asset
Analyzer uses a parser that does not recognize the latest syntax. In itself, it is
a good thing that this was identified and put aside for future improvement.

Note: We created this chapter using a stand-alone version of Asset Analyzer.
As a consequence, this is running on localhost instead of pointing to the URL
on a mainframe. Some dialogs might differ slightly as well. For instance, the
taking inventory dialogs will not have the mainframe options.
 Appendix B. WebSphere Studio Asset Analyzer 443

Figure B-2 Asset Analyzer home in Enterprise Developer

In order to get to the information, we can either provide search criteria or click
one of the links displayed at the bottom of the screen.

Let’s look at an overview of all MVS artifacts held in our database by selecting
MVS assets (Figure B-3).
444 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure B-3 MVS assets overview

Grouped into four columns you can see:

� Inventory (we will only mention a few here):

– Application—is a grouping you can define to hold a collection of artifacts
– Project—activities in Asset Analyzer can be grouped into projects to hold

all information gathered for a specific analysis or connector definition
project

� Run time: these fields are quite clear

� Program: literals are strings

� Data: fields are clear

There now are multiple ways to get to the information for our DFH0ACTD program.
Either use search or click Programs Total and find it. Either way, you can get to
the program detail screen (Figure B-4 and Figure B-5).
 Appendix B. WebSphere Studio Asset Analyzer 445

Figure B-4 Program details: top half

Here you see information on the program and various actions you can perform.
446 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure B-5 Program details: bottom half

Note that in the bottom part you get a graphical representation of the artifacts
that are related to this program:

� Entry point (top)
� Account table, which is used by the program
� CICS table

Also note that you can click the artifacts in the picture and drill down to their
information, as well as click all information in blue to drill down to the details
behind.

If we click Show structure diagram from the action list at the top, we get a detailed
program structure (Figure B-6).
 Appendix B. WebSphere Studio Asset Analyzer 447

Figure B-6 Program structure diagram

Once more you can directly get to additional information by clicking an artifact.
Note that there is a facility to zoom in and out as well. When we click HV-DATA,
the details are displayed (Figure B-7).
448 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure B-7 Data element use

When you click Data Definition, the declaration statements in the source code
are displayed (Figure B-8).

Figure B-8 Structure details

Let’s assume we need to expand the HV-CUSTNO definition to accommodate our
growing customer base. From the program details screen (Figure B-4 on
page 446), select the View program data elements action (Figure B-9).
 Appendix B. WebSphere Studio Asset Analyzer 449

Figure B-9 Program data structures and elements

After drilling down to the details of CUSTNO (Figure B-10), you can select View
impact if changed , which will take you to the panel shown in Figure B-11.

Figure B-10 Data element details (extract)
450 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure B-11 Impact analysis overview screen

Figure B-11 provides an overview of the potential affected artifacts on changing
custno. It not only shows the direct impact, in this case three data elements in
one program affecting a data store that is referenced by SQL, but also shows the
indirect impact if, for instance, the data store is used in other programs.

Once more, further analysis can be done by just clicking your way through to
assess what really needs to be changed. After analysis, the identified work can
be done using Enterprise Developer.

Tip: From the HELP information within the product, you can go to WSAA’s
Web site. On this Web site, after selecting the library entry, there are a number
of scenarios available that take you in detail through the functionality of the
product.
 Appendix B. WebSphere Studio Asset Analyzer 451

Impact analysis distributed
The goal is the same as for impact analysis on the mainframe. We want to
assess the impact that a change would have. The approach for distributed
artifacts is different due to the fact that the information model for distributed
artifacts is different from the one used for mainframe artifacts; therefore the
capabilities of Asset Analyzer are different.

Lets have a look at the distributed artifacts within our database by selecting the
distributed artifacts (Figure B-12).

Figure B-12 Distributed artifacts (extract)

Note: We loaded our sample ItsoMyTrade into Asset Analyzer including all
EGL-generated Java classes, which can be reflected in amazingly complex
figures, proving that EGL exploits many small discrete functional pieces of
code when generating. It is unlikely that you would want to do this in a
production environment, because you should not have an interest in changing
the generated Java code. Another consequence of using our sample is that
Asset Analyzer did detect some constructs from WebSphere Version 5 that it
does not support yet, with the result that not all the information was loaded,
which in itself is a good thing. The other loaded sample is the well-known
mini-bank sample.
452 Legacy Modernization with WebSphere Studio Enterprise Developer

Let’s have a look at the single .war file we have (Figure B-13).

Figure B-13 Mini-bank WAR file reference graph

Note that the representation differs from what we have seen thus far. Functions
are made available here to hide the things you are not interested in.

Click Customer to go deeper into the diagram (Figure B-14).

Through the graphical capabilities, you get insight into the structure of your
applications.
 Appendix B. WebSphere Studio Asset Analyzer 453

Figure B-14 Customer reference graph

On the top of the pane displaying the diagram in Figure B-14, you can find which
methods are defined for the Customer class (Figure B-15).

Figure B-15 Method names used by customer

If you click a method name, for instance getName, you will get a list of classes that
use this method. So in effect you have done impact analysis to find out the
potential impact if the getName method is changed (Figure B-16).
454 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure B-16 References to the getName method

Another way of accomplishing this is to exploit the Advanced Search capabilities
that Asset Analyzer offers.

When you click Advances Search on the Explore distributed assets page
(Figure B-12 on page 452) you get the Advanced Search dialog (Figure B-17).

Figure B-17 Advanced search
 Appendix B. WebSphere Studio Asset Analyzer 455

If you click Go, you would see the same result as previously. With the pull-downs
you can create complex queries on all source types and attributes of those
source types. You can set query arguments for multiple attributes. You can
confine the search to a specific collection, which can be all artifacts defined in the
database due to a specific load operation.

So although the interface and the means vary somewhat, impact analysis for
distributed artifacts is well supported.

Reuse of existing code
All the functionality covered so far helps you to get insight into your existing
systems and can make you more productive while maintaining your systems.

Another challenge within system development is how to leverage the existing
implementation of business rules buried in your systems. Typically various
business rules are implemented within a single transaction. It would be nice if
one could get some guidance on where to look for potential reusable code.

Asset Analyzer provides some help here. Based upon various attributes of
system artifacts whose weight can be changed, Asset Analyzer provides you with
an e-business rating of your existing code artifacts.

If we go back to our mainframe sample, we can have a look at this capability
(Figure B-18).

Figure B-18 e-business transformation index

Let’s assume that you decide to have a look at the program to actually see if
there is some code with reuse potential. For this, you can invoke the code
extraction function (Figure B-19).
456 Legacy Modernization with WebSphere Studio Enterprise Developer

Figure B-19 Code extraction

Another function that can be helpful is the connector builder assistant function.
Based upon the existing COBOL interface information, Asset Analyzer will guide
you through a process to identify the parameters that should be used when
exploiting this transaction from an e-business perspective. Based upon that, it will
generate the I/O information in XML format, which can be fed into Enterprise
Developer to create the appropriate connector.

Summary
We have rushed through WebSphere Studio Asset Analyzer with a focus on its
impact analysis capabilities. We hope you enjoyed the ride and have obtained a
feel for its capabilities.

Functionality like this is critical to make your developers more productive and
take steps on the path leading to the reuse of existing code. As such,
WebSphere Studio Asset Analyzer is an important asset in meeting the
challenge of supporting the IBM enterprise modernization strategy.
 Appendix B. WebSphere Studio Asset Analyzer 457

458 Legacy Modernization with WebSphere Studio Enterprise Developer

Appendix C. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246806

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG24-6806.

C

© Copyright IBM Corp. 2002. All rights reserved. 459

ftp://www.redbooks.ibm.com/redbooks/SG246806
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
sg246806code.zip Sample code for following the trade sample though

the book

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space 3 GB
Operating System Windows 2000 or Windows NT
Processor 700 MHz or better
Memory 512 MB, recommended 784 MB

How to use the Web material
Unzip the contents of the Web material sg246806code.zip file onto your hard
drive. This creates a folder structure c:\SG246806\sampcode\xxxx, where
xxxxx refers to a chapter in the book:

createstruts Creating a Struts-based Web application
jspaction Adding JSPs and actions to the application
sade Struts application diagram editor
implegl Implementing EGL actions
implejb Implementing EJB actions
implzos Generating COBOL for z/OS
implcics Implementing CICS actions
webserv Implementing and using Web services
zoside Developing for z/OS
zosxml XML enablement

DB2 installation
The examples in this book assume that you have DB2 Version 7.2 with Fixpack
6 or 7 installed on your machine.

Also it is required that you run the command file java12\usejdbc2.bat to enable
the JDBC Version 2 support for data sources.
460 Legacy Modernization with WebSphere Studio Enterprise Developer

acronyms
AAT application assembly tool

API application programming
interface

BMS basic mapping support

CCF Common Connector
Framework

CCI common client interface

CICS Customer Information Control
System

CTG CICS Transaction Gateway

DBMS database management
system

DOM document object model

EAR enterprise application archive

ECI external call interface

EGL enterprise generation
language

EIS enterprise information system

EJB Enterprise JavaBeans

EJS Enterprise Java Server

EPI external presentation
interface

EXCI external CICS interface

FFS foreign file system

GUI graphical user interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IBM International Business
Machines Corporation

IDE integrated development
environment

IIOP Internet Inter-ORB Protocol

IMS Information Management
System

Abbreviations and
© Copyright IBM Corp. 2002. All rights reserved.
ITSO International Technical
Support Organization

J2CA J2EE connector architecture

J2C J2EE connector architecture

J2EE Java 2 Enterprise Edition

JAR Java archive

JCL job control language

JDBC Java Database Connectivity

JDK Java Developer’s Kit

JNDI Java Naming and Directory
Interface

JSP JavaServer Pages

MVC model-view-controller

RAD rapid application development

RAR resource adapter archive

RDBMS relational database
management system

RECD remote edit compile debug

RMI Remote Method Invocation

SCCI source control control
interface

SCM software configuration
management

SCMS source code management
systems

SDK Software Development Kit

SOAP Simple Object Access
Protocol (also called Service
Oriented Architecture
Protocol)

SQL structured query language

TCP/IP Transmission Control
Protocol/Internet Protocol

TSO TIme Sharing Option
 461

UDDI Univeral Description,
Discovery, and Integration

UOW unit of work

URL uniform resource locator

UTC univeral test client

WAR Web application archive

WSDL Web Service Description
Language

WWW World Wide Web

XMI XML metadata interchange

XML eXtensible Markup Language

XSD XML schema definition
462 Legacy Modernization with WebSphere Studio Enterprise Developer

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 464.

� WebSphere Studio Application Developer Programming Guide, SG24-6585

� Web Services Wizardry with WebSphere Studio Application Developer,
SG24-6292

� Self-Study Guide: WebSphere Studio Application Developer and Web
Services, SG24-6407

� IBM WebSphere V4.0 Advanced Edition Handbook, SG24-6176

� WebSphere Version 4 Application Development Handbook, SG24-6134

� Programming J2EE APIs with WebSphere Advanced, SG24-6124

� CICS Transaction Gateway V5 The WebSphere Connector for CICS,
SG24-6133

� Enterprise JavaBeans for z/OS and OS/390 CICS Transaction Server V2.2,
SG24-6284

� EJB Development with VisualAge for Java for WebSphere Application Server,
SG24-6144

� Design and Implement Servlets, JSPs, and EJBs for IBM WebSphere
Application Server, SG24-5754

Other resources
These publications are also relevant as further information sources:

� The Rational Unified Process, An Introduction (Second Edition) by Philippe
Kruchten, published by Addison-Wesley, ISBN 0-201-70710-1

� XML for the Enterprise - Providing an XML Interface to a CICS Application,
found on the samples CD or at the Web site:

http://www-3.ibm.com/software/ad/studioenterprisedev/library/
© Copyright IBM Corp. 2002. All rights reserved. 463

http://www-3.ibm.com/software/ad/studioenterprisedev/library/

Referenced Web sites
These Web sites are also relevant as further information sources:

� IBM software for application development and Enterprise Developer
http://www.ibm.com/software/ad/
http://www.ibm.com/software/ad/studioedm/

� WebSphere Developer Domain
http://www7b.software.ibm.com/wsdd/

� IBM Patterns for e-business
http://www.ibm.com/developerworks/patterns

� Eclipse
http://www.eclipse.org

� Struts
http://jakarta.apache.org/struts

� Sun JavaServer Pages
http://java.sun.com/products/jsp

� XML schemas
http://www.w3.org/XML/Schema

� Common Versions System
http://www.cvshome.org
http://www.cvsnt.org

� Rational
http://www.rational.com

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
464 Legacy Modernization with WebSphere Studio Enterprise Developer464 Legacy Modernization with WebSphere Studio Enterprise Developer

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/software/ad/
http://www.ibm.com/software/ad/studioedm/
http://www7b.software.ibm.com/wsdd/
http://www.ibm.com/developerworks/patterns
http://www.eclipse.org
http://jakarta.apache.org/struts
http://java.sun.com/products/jsp
http://www.w3.org/XML/Schema
http://www.cvshome.org
http://www.cvsnt.org
http://www.rational.com

Index

A
action 76

class 78, 80, 133
form 126–127, 156
mapping 81–82, 136

wizard 157
object 149
servlet 85

mapping 88
session EJB 257

ActionError 77, 118, 132
ActionErrors 118, 132
ActionForm 76, 118, 126
ActionForward 118, 132
ActionMapping 118
ActionServlet 78, 113, 132
administrative console 338
Agent Controller 44, 49
Apache

Software Foundation 73
Tomcat 44

applet 69
application

architect 54
client 38
flow 164
programmer 5

application.xml 37
ApplicationResources.properties 41, 108, 112, 145
Asset Analyzer
attribute 82
authentication 341

B
bind control 203, 272
breakpoint 216, 261, 391

view 30
build

descriptor 202, 207
COBOL 269
debugging 214
default 213
Java program 207
© Copyright IBM Corp. 2002. All rights reserved.
Java wrapper 210
session EJB 240

incremental 383
local project 354
log 382
output 357
plan 266, 278, 381
processor 186
results 282, 357, 380
scripts 268, 283
server 203

distributed 378
local 355
Windows 204
z/OS 204, 275

settings 35
builder 34, 384
BuildResults.xml 381
business

analyst 5, 53
logic 72
pressures 4

C
C++ 8
call method 248
cast 249
CGI 7, 69
Changeman 442
CICS

external call interface 294
legacy application 408
processing program table 287
program properties 281
resource definitions 287
startup job 288, 297
transaction 5, 72, 288
Transaction Gateway 291, 295

startup job 299
translation 266
translator 203, 284

ClearCase 442
ClearCase LT 14, 427
 465

client proxy 316, 326
COBOL

compiler 203, 285
options 374

EGL generated program 280
generate from EGL 265
parse 415
XML enablement 401

code
assist 22, 36
maintenance 393

command
bean 72
server 367

COMMAREA 72
comments

JSP 95
common client interface 294
Common Connector Framework 291
compare

files 33, 439
view 33

component developer 5
Concurrent Versions System

see CVS
configuration

server 24
Struts 41, 84

connection
diagram editor 150
factory 306
management 294

connector 50
console

view 18, 29–30
constructor 247
context root 39, 108
control

parts 176
controller 8

servlet 71, 79
CSOLocalPowerServerProxy 251
custom tags 124, 153
customize perspective 19
CVS 14, 427

add project 433
configuration 429
connect repository 432
console view 429, 437

control information 439
homepage 428
ignore facility 431
ignored resources 430
installation 428
repositories view 33, 433
repository exploring perspective 32, 429
resource history view 33
revision number 434
version 435

D
data

bean 72
definition view 26
element use 449
item 177
parts 176
perspective 26
set mapping 376
source 46, 59, 84

trade 339
tradedb 231

DB servers view 26
DB2

bind 286
control 272

control center 57
installation 460
JDBC

provider 340
ZIP file 36

package 287
plan 287
precompiler 284
preprocessor 203

DB2ConnectionPoolDataSource 232
DB2DataStoreHelper 232
db2java.zip 36, 232
dds.xml 326
debug

build descriptor 214
icon 29, 219
Java 261
local project 360
perspective 29, 218
remote 388
server 48
466 Legacy Modernization with WebSphere Studio Enterprise Developer

view 29–30, 361
declaration 94
default build descriptor 213
deployment 337

descriptor 37
EJB 24, 42
Web 109

development
roles 53
scenario

single use 432
team 440

team 52
diagram editor 143, 162

connections 150
distributed

build 378
object server 71

DTD 27

E
EAR

deployment descriptor 37
export 338
file 38
project 37

e-business 4
ECI resource adapter 294, 296

configuration 342
installation 304

eclipse 13
editor 15, 17

EJB 42
Java 22, 36
JLPEX 394
LPEX 394
server configuration 28
Struts configuration 137
Struts diagram 143
table 26
XML 27

EGL 172
build descriptor

see build descriptor
build file 206
code generation 186
control parts 202
data item 177

debugger 214
debugging 217
definitions file 179
editors 25, 173
function 199
generate

COBOL 265, 276
EJB 240
for z/OS 266
Java 211
wrapper 212

generated deployment descriptor 212
import 190
language 26, 187
linkage options 208
logic part 190
part 25, 176

editor 173
perspective 25
program 197
recommendations 236
record 177
scoping rules 200
scripting language 185
source

code 26, 184
editor 173
files 178

SQL structure 193
structure 177
Struts action 221
universal test client 260
visibility 200
z/OS

data sets 268
generated files 281

EIS adapters 290
EJB 42

actions 237
deployment descriptor 24, 42, 242–243
editor 42
from Struts 254
JAR file 38
module 24, 42, 238
project 42

create 238
ejb-jar.xml 38, 42
encoding 323
enterprise
 Index 467

application
installation 344

archive file
see EAR

generation language
see EGL

Enterprise Developer 11
features 12
preferences 17
product 12
project 34
sample application 51
Server 267
XML enablement 410

Enterprise JavaBeans
see EJB

EPI resource adapter 295
exception

icon 30
execute method 226
expression

JSP 95
expressions

view 30
extension point 13
external JAR 36
eze words 188
ezefec 189, 198

F
file compare 439
flow analysis 162
foreign file system 267, 366
form 76

bean 76, 82
forward 83
FTP 49
function

EGL 199

G
generation results

view 277
global forward 83
graphics

designer 5

H
help 33

hover 37
window 33

hierarchy view 22
host

developer 54
programmer 5

hover help 37, 124, 149
HTML

developer 53
programmer 6
style sheet 39

I
IBM Agent Controller

see Agent Controller
ibm-ejb-jar-bnd.xmi 42
ibm-ejb-jar-ext.xmi 42
icon

debug 29, 219
exception 30
new 20

class 36
package 36

refresh 392
resume 362, 391
run 219
search 23
step

into 219
over 219
return 392

Struts diagram 147
text hover 37

impact analysis
distributed 452
mainframe 443

import
EGL 190

include
JSP 93

incremental build 383
integrated development environment 13
internationalization 112

Struts 75
468 Legacy Modernization with WebSphere Studio Enterprise Developer

J
J2C 173, 292

architecture 293
configuration 303
connection factory 306
connector configuration 305, 341
security 305

J2EE
architecture 8
connector 173

architecture 292
hierarchy view 24
level 105
navigator view 24
packaging 38
perspective 24, 37

j2ee.jar 110
JAR file 35, 38
Java

build settings 35
builder 34
debugging 261
developer 53–54
editor 22, 36
package 36
perspective 21
programmer 5
project 34
wrapper 208, 210
XML mappings 313

JavaServer Pages
see JSP

JCL
build scripts 268
generated 383
generation 385
submit 386

JDBC
connector 307
driver 46, 340
provider 231

jdbc/tradedb 232, 340
JLPEX editor 394
JNDI

explorer 244
name

data source 59
EJB 263
J2C 303

session EJB 345
job

monitor
server 367
view 387

output 387, 392
job card 369, 383
JSP 69–70, 72

comment 95
components 91
create 119
custom tags 152
customize 123
declaration 94
directive 92
expression 95
include 93
life-cycle 91
overview 90
page 92
precompile 91
scriptlet 94
tag library 96
taglib 93
wizard 152

L
Language Environment 404
legacy systems 4
limitations

XML enablement 406
linkage

editor 285
options

COBOL 274
Java wrapper 208
part 202
session EJB wrapper 238

local
forward 83
MVS project 352

logic parts 176
loopback adapter 267, 366
LPEX editor 394

M
mapping

servlet 88
 Index 469

Struts 88
master.css 110
memory

considerations 34
Merant 14
messagerouter 316
method

call 248
execute 226
getRequestDispatcher 75
perform 135, 158, 224, 259
reset 130
validate 130, 142

mime type 46
model 8

Struts 76
model-view-controller 68, 71

see MVS
module

dependencies 39, 42
dependency 238

monitor server 45
MVC 8, 40, 67, 71

design pattern 71
model 68
pattern 75
Struts 74
Web application 70
Web applications 8

MVC2 9
MVS

assets 445
controller 68
project 373
view 68

N
navigator view 16
new

class
icon 36

icon 20
package

icon 36
wizard 20

O
object

reuse 248
OO designer 53
open source 13, 67
outline view 17

P
package

Java 36
package explorer view 22
page

designer 123, 154
JSP 92

parse
COBOL 415

part
EGL 175

patterns for e-business 7
perform method 135, 158, 224, 259
performance 34
PERL 7
perspective 15

customize 19
CVS repository exploring 32
data 26
debug 29
EGL 25
J2EE 24
Java 21
server 28
toolbar 15
views 15
Web 15, 21
XML 27
z/OS

projects 31
systems 32

plug-ins 13
port 46
power server 226, 251
preferences

automatic build 369
CVS 430
editors 17
SQL 192
variables 36
XML enablement 411
z/OS build options 369

prerequisites 365
470 Legacy Modernization with WebSphere Studio Enterprise Developer

XML enablement 404
problem 18
program

data structures and elements 450
EGL 197
structure 447
wrapper 255

project 34
copy 398
disconnect from CVS 439
EAR 37
EJB 42
Java 34
local COBOL 352
MVS 373
properties 376
remote COBOL 373
server 43
Struts 41
tracking 5
Web 39

properties view 17, 145
proxy 314
publishing 49

server 45

R
RACF 297
RAR file 341
Rational 14
recommendations

EGL 236
record 177
Redbooks Web site 464

Contact us xx
refresh icon 392
relational database design 26
remote

debugger 388
project 373

build 379
server 49

remote-edit-compile-debug 351
reset method 130
resource

adapter 173, 293
CICS 341

association 202

bundle 108
history view 438

resume icon 362, 391
REXX conflict 359
REXX/370 365
rpcrouter 316, 322
rt.jar 110
run icon 219

S
sample

application
trade 51

data source 59
run 61
topology 55
Web projects 57

SAX 402
SCLM 268, 442
scoping rules 202
scrapbook 23
script

developer 53
scriptlet 94
search

dialog 23
icon 23
view 23

select condition 194
Serena Changeman 442
server 24, 44

attach 45
build 203
configuration 24, 45

create 138
editor 28
view 28, 45

debug mode 48, 261
monitor 45
perspective 28, 47
project 43

create 138
publishing 45
remote 44, 49
start 48, 140
static Web 45
stop 48
TCP/IP monitoring 45, 320
 Index 471

template 47
Tomcat 44
trade sample 58
WebSphere version 4.0 44
WebSphere version 5.0 44

servers view 28, 48
servlet 69, 71

controller 71
specification 68
Struts 85

session EJB 238
testing 244–245
wrapper 240

sg246806code.zip 460
SOAP

address 321
administrative application 317
configuration file 316
deployment descriptor 316, 326
encoding 323
endpoint address 321
messages 322
run-time library 316
servlet 316

soapcfg.jar 316
software

architecture 6
configuration management 427
development 6
development team 5

SQL
preferences 192
record 177, 192
structure 193
syntax check 195

standard widget toolkit 13
start

server 48, 140
static Web server 45
Step

into icon 219
over icon 219

step
return icon 392

stop
server 48

structure 177
diagram 447

structured programming 5

Struts 10, 40
action 76, 133

servlet 85, 113
Web service 332

application
analysis 162
create 106
diagram file 146
overview 73
test 161

bean tags 97
components 74–75, 112
configuration file 41, 80, 84, 113
controller 73, 78
custom tags 124, 152
data source 84
diagram editor 143
editor 137
EGL action 221
EGL COBOL access 300
EJB access 254
error handling 132
form bean 79
home page 96
HTML tags 98
implement diagram 151
J2EE navigator view 109
logic tags 100
message internationalization 75
model 73, 76
MVC 74
navigator view 111
overview 68
project 41
resource bundle 108
run-time classes 113
settings 39, 108
tag library 89
taglibs 41, 114
tags 77
template tags 100
testing 138
validation 75, 142
view 73, 76
Web services 310

struts.jar 41, 90, 110, 113
struts-config.xml 41, 80–81, 110, 113, 131, 137,
159, 229
style sheet 39, 121
472 Legacy Modernization with WebSphere Studio Enterprise Developer

synchronize view 436
syntax

check 195, 377, 396
highlighting 22

T
table

editor 26
tag libraries 121
taglib directive 93
taglibs

Struts 41
tasks view 18
TCP/IP

monitor view 322
monitoring server 45, 320, 328

team development 427
template 47
test client 318
text hover

icon 37
theme subdirectory 110
thread-safe 93
tips

variables 36
Tomcat 44
toolbar 15
trade

sample 51–52
installation 56
run 60
server 58

tradedb database 57, 231
traderegistrybean 193
TSO

command 31, 50
remote command server 367

type
definition 184
hierarchy 22

typedef 184

U
UNICODE 365
universal test client 244

EGL 260
Web service test 319

usejdbc2.bat 57, 460

user interface 13

V
validate method 130, 142
validation 142

Struts 75
variable

external JAR files 36
variables

view 29–30, 262
version 435

control 434
view 8, 15

bean 72
breakpoint 30
compare 33
console 18, 29–30
CVS

repositories 33
resource history 33

data definition 26
DB servers 26
debug 29–30
expressions 30
hierarchy 22
icons 19
J2EE

hierarchy 24
navigator 24

navigator 16
outline 17
package explorer 22
properties 17
resource history 438
search 23
server configuration 28
servers 28
Struts 76
synchronize 436
tasks 18
variables 29–30
Web structure 21
z/OS

commands 31
directories 32
file extension mappings 32
job monitor 31
projects 31
 Index 473

systems 31
visibility rules 200
VisualAge for Java 12
VisualAge Generator 172

W
WAR file 38, 40
Web

application 39
archive 40
deployment descriptor 85, 212
development 7
MVC 70

deployment descriptor 39, 114
developer 54
interaction 71
module 24
page designer 5
perspective 15, 20
project 39

wizard 106
server 71
service 309

client 328
create 311
gerenated files 315
JavaBean 323
proxy 314
Struts 310
Struts action 332
test client 318
testing 317

structure
view 21, 145

web.xml 39, 81, 85, 109, 114, 212, 303
WebDav 442
WebSphere

Application Server
configuration 338

Studio
Application Developer

Integration Edition 13
Asset Analyzer

see Asset Analyzer
Classic 12
Enterprise Developer

see Enterprise Developer
Site Developer 13

Struts 80, 85
Workbench 11

see Workbench
test environment 44

Windows
build server 205

wizard
action

class 134, 221
form 127
mapping 157

add EGL part 193
EGL

build file 206
program file 190

JSP 152
new 20
Web

project 106
service 311

XML enablement 412
Workbench 13

architecture 14
perspective 15
toolbar 21, 23
user interface 13
window 15

working storage 177
workspace 13
WSDL 316

X
XML

converter
driver 417

converters 409
editor 27
enabled application 421
enablement

Enterprise Developer 410
for COBOL 401
scenarios 405
tool 403

parsing 402
perspective 27
schema 27, 417

XSD 27
file 326
474 Legacy Modernization with WebSphere Studio Enterprise Developer

Z
z/OS

build
preferences 369
scripts 284
server 204, 266, 275, 366

commands 31, 387
view 387

data sets
for COBOL 368
for EGL 268

development 31, 50, 351
directories

view 32, 372
EGL data sets 281
file extension mappings view 32, 372
job monitor view 31
prerequisites 365
projects

perspective 31, 352
view 31

run-time options 388
systems

perspective 32
view 31, 370

XML enablement sample 408
 Index 475

476 Legacy Modernization with WebSphere Studio Enterprise Developer

(1.0” spine)
0.875”<

->1.498”
460 <

-> 788 pages

Legacy M
odernization w

ith W
ebSphere Studio

Enterprise Developer

®

SG24-6806-00 ISBN 0738425710

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Legacy Modernization
with WebSphere Studio
Enterprise Developer
Creating enterprise
applications with
Struts

Introducing
enterprise
generation
language

Developing for
z/OS

The ability to connect components is the first step in modernizing your
application portfolio. In this IBM Redbook, we look at a real-world
example of creating and connecting a Web application to enterprise
business logic using the Struts-based model-view-controller (MVC)
framework and associated tooling within WebSphere Studio
Enterprise Developer that makes this a snap.

To address the needs of large enterprises, a model-based paradigm
for building applications in a Struts-based MVC framework is being
delivered in the WebSphere Studio Suite. It provides a visual
construction and assembly-based environment supporting the
implementation of enterprise-level applications and including support
for the multiple developer roles and technologies required by those
applications. Examples of the technologies supported include HTML,
Java, servlet, EJB, COBOL, EGL, PL/I, and connectors.

EGL is a high-level language that supports the development of
applications in either WebSphere (Java) or traditional transactional
environments (CICS). EGL's focus is to allow developers of various
backgrounds to be able to write mission-critical business processes
for the Internet, which can be leveraged from Struts-based Web
applications.

This redbook introduces a sample application that encompasses
Enterprise Developer concepts and best practices.

Back cover

	Front cover
	Contents
	Notices
	Trademarks

	Part 1 Introduction
	Chapter 1. Modernization of enterprise applications
	Business pressures
	Existing information technology investment
	The evolution of the software development team
	Software architecture considerations
	A brief history of software development
	Chaos in Web application development
	Patterns for e-business
	Model-view-controller
	MVC applied to Web applications
	Struts

	Chapter 2. Introduction to WebSphere Studio Enterprise Developer
	WebSphere Studio Enterprise Developer
	WebSphere Studio Workbench
	Workspace
	User interface

	Workbench window
	Perspectives
	Perspective basics
	Views and editors
	Customizing perspectives
	New icon
	Web perspective
	Java perspective
	J2EE perspective
	EGL perspective
	Data perspective
	XML perspective
	Server perspective
	Debug perspective
	z/OS Projects perspective
	z/OS Systems perspective
	CVS Repository Exploring perspective
	Help
	Memory considerations

	Projects
	Java project
	EAR project
	Web project
	Struts
	EJB project
	Server project

	Servers
	Server configuration
	Starting and stopping a server
	Remote server
	Agent Controller

	Development for z/OS
	Connectors

	Chapter 3. Sample application: Trade
	Introduction to the trade sample
	Assembling a development team
	Further reading

	Development roles
	Web application design session
	Sample application deployment topology

	Installing the trade sample application
	Prerequisites
	Loading the trade sample
	Setting up a test server
	Defining data sources

	Running the trade sample application
	Sample run

	Summary

	Part 2 Struts-based applications
	Chapter 4. Components of a Struts-based application
	Overview
	Model-view-controller
	Web application
	Servlets
	JavaServer Pages
	Web applications using MVC

	Struts application overview
	Struts
	When to use Struts

	Struts components
	Struts model
	Struts view
	Struts controller

	Struts application flow
	Configurations
	Action classes
	Action mapping implementation
	Action mapping configuration file
	Sample configuration file
	Web application deployment descriptor
	Add Struts components to your application

	JSP overview
	How JSPs work
	Components of JSPs
	Directive elements
	Scripting elements
	Standard actions
	Custom actions

	Struts tag libraries
	Struts bean tags
	Struts HTML tags
	Struts logic tags
	Struts template tags

	Chapter 5. Creating a Struts-based Web application
	Creating a Struts application
	Using the wizard to create a Web project
	J2EE Navigator view of the wizard’s output
	Navigator view of the wizard’s output

	Standard Struts components
	Application resources properties file
	Struts run-time classes
	Struts configuration file
	Struts taglibs
	Web deployment descriptor

	Summary

	Chapter 6. Adding JSPs and actions to the application
	Overview
	Creating JSP files
	Creating the index.jsp
	Customizing index.jsp
	Creating home.jsp
	Customizing home.jsp

	Action forms
	Creating the LoginForm class
	Customizing the LoginForm class
	The reset method
	The validate method
	Checking the Struts configuration file

	Action forwards
	Action errors
	Actions
	Creating the LoginAction class
	Customizing the LoginAction class

	Action mappings
	Editing struts-config.xml

	Testing the Struts application
	Define a server project
	Define a WebSphere test server
	Running the Struts application

	Implementing simple validation

	Chapter 7. Struts application diagram editor
	Create a Web project for the Struts application
	Create the application resources

	Create a Struts application diagram file
	Design the Struts application using the diagram editor
	Creating the Web page objects
	Creating an action object
	Creating connections

	Implement the Struts application
	Implement Web pages
	Implement the form bean class
	Implement the action mapping and action class
	Complete Struts application diagram
	Testing the Struts application

	Analyze a Struts application
	Install the trade sample application
	Drawing the application flow
	Drawing the main path of the flow

	Part 3 Enterprise generation language
	Chapter 8. Implementing EGL actions
	Accessing EGL programs
	Creating and generating EGL programs
	EGL editing in Enterprise Developer

	EGL files and parts
	EGL parts
	Data parts
	Placement of EGL source files
	Creating EGL files and parts

	EGL scripting language
	Evolution from VisualAge Generator language
	EGL code generation
	EGL language
	Eze words

	Writing an application in EGL
	Creating an EGL logic part
	Creating the SQL record
	Creating the program logic part
	Creating function logic parts for SQL access
	EGL visibility and scoping rules

	Generating source code from EGL
	EGL control parts
	Build server
	Creating a build descriptor
	Configuring control parts for Java generation
	Creating linkage options
	Creating a Java wrapper build descriptor
	Generating Java
	Generating the Java wrapper
	Generated Java code
	Generated deployment descriptor
	Defining the default build descriptors

	Testing EGL programs
	Preparing the project
	Create build descriptor for debugging
	Generating code for debugging
	Debugging EGL code

	Incorporating EGL code into a Struts application
	Creating an action class for an EGL program
	Creating the Login model object
	Creating an action class for the EGL model
	Modifying the Struts configuration file
	Modifying the welcome page
	Preparing the Struts server
	Testing the Struts application with the EGL action

	Recommendations for EGL files

	Chapter 9. Implementing EJB actions
	Generating EJB session beans from EGL
	Creating an EJB project
	Creating linkage options for a session EJB wrapper
	Creating a build descriptor for a session EJB wrapper
	Generating the session EJB wrapper and the session EJB
	Generate the deployed code
	Regenerating the EGL program and wrapper

	Testing the session EJB
	Using the universal test client
	Testing the session EJB with the wrapper class

	Accessing an EJB from a Struts action class
	Using the program wrapper
	Using the session EJB directly

	Testing the Struts application with the EJB
	Using the welcome page
	Using the universal test client

	Debugging the Java code
	Debug perspective

	Preparation for deployment

	Chapter 10. Generating COBOL for z/OS from EGL
	COBOL generation and deployment architecture
	Prerequisites for COBOL generation
	Enterprise Developer Server for z/OS
	Allocating z/OS data sets required for EGL COBOL generation

	Configuring control parts for EGL COBOL generation
	Build descriptor for COBOL generation
	DB2 bind control
	Creating a Java wrapper build descriptor for COBOL
	Linkage options for COBOL/MVSCICS
	Starting the z/OS build server

	Generating COBOL and Java wrapper from EGL
	Generated Java code
	Generated local files
	Generated z/OS files
	Build results

	Creating the COBOL executable on z/OS
	Build scripts
	Output of the z/OS build scripts
	Creating a DB2 plan
	Modifying CICS resource definitions
	Modifying the CICS startup job

	Chapter 11. Implementing CICS actions
	Accessing CICS transactions
	Introduction to EIS adapters

	J2EE connector architecture (J2C or J2CA)
	Resource adapter
	System contracts
	Common client interface

	J2C CICS ECI resource adapter
	Installation of the CICS ECI resource adapter
	Why CICS Transaction Gateway?
	Starting CICS and the CTG

	Accessing the EGL-generated COBOL from Struts
	Using the Java program wrapper to COBOL
	Modifying the Struts action to access COBOL

	Configuring the Web application for J2C
	Configuring the built-in server for J2C
	Installing the CICS ECI resource adapter
	Configuring the J2C connector
	Configuring the DB2 JDBC connector

	Testing the COBOL CICS transactions

	Chapter 12. Implementing and using Web services
	Web services concepts
	Possible uses of Web services with Struts and EGL
	Preparing a client project for Web services
	Creating the client project

	Creating a Web service from a Struts model class
	Generated files

	Creating a Web service from a wrapper class
	Testing the Web service
	SOAP administrative application
	Sample test client

	Universal test client
	Using the TCP/IP monitor to see the SOAP messages
	Configuring a TCP/IP monitoring server
	Running the Web service through the monitor

	Creating a Web service that returns the working storage
	Create the data JavaBean
	Create the service JavaBean
	Create a Web service from the LoginLogws JavaBean
	Use the universal test client
	Use the generated sample
	Use the TCP/IP monitoring server

	Creating a Web service client
	Create the HTML page with an input form
	Create the servlet to invoke the Web services
	Test the Web service client

	Using a Web service in a Struts action
	Outline of required actions
	Prepare a Web project
	Get the WSDL files
	Generating a proxy class for a Web service
	Running the sample client
	Use the proxy bean in a Struts action

	Chapter 13. Deploying applications
	Deployment steps
	Creating the EAR file
	Configuring the WebSphere Application Server
	Start the server and the administrative console
	Configuring the data source for the TRADEDB
	Configuring the J2C connector

	Installing the enterprise application
	Setting up the TRADEDB database
	Testing the Web application

	Part 4 Development environment for z/OS
	Chapter 14. Developing for z/OS
	Local project
	Creating a local project
	Local project for possible move to MVS
	Building the local project
	Defining and starting a local build server
	Performing the build
	Potential REXX conflict
	Running the local project

	Debugging the local project
	Remote project introduction
	Prerequisites and configuration
	Product prerequisites for Enterprise Developer on z/OS
	Workstation prerequisites
	WebSphere Studio Enterprise Developer Options for z/OS
	OS/390 components for RECD
	Setting Enterprise Developer preferences

	Define and connect to a remote system
	Creating and configuring a remote project
	Creating the project
	Map data sets for the remote project
	Copying files from local to remote project
	Operations on members

	Distributed build architecture
	Define a distributed build server

	Building the remote project
	Starting a distributed build
	Distributed build results
	Incremental build
	Speeding up the remote build process
	JCL generation

	Job and command interactions with z/OS
	Submitting and monitoring jobs
	Issuing z/OS commands

	Remote debugging
	Preparation
	Debugging the remote executable

	Code maintenance scenario
	Changing projects
	Editing
	Syntax check
	Implement the requirement and test the application

	Copy remote project to local for offline work
	Summary

	Chapter 15. XML enablement for COBOL
	Introduction
	Benefits of XML enablement
	Enabling XML for existing COBOL applications
	z/OS prerequisites for XML enabling
	Using the generated code
	XML enablement run-time scenarios
	General limitations
	Early availability limitations

	Sample application topology
	Installing the CICS application sample in z/OS
	Running the existing 3270 CICS legacy application
	Requirements for changing the existing application

	XML enablement in Enterprise Developer
	Preferences
	Prepare a sample project
	Generating the XML converters and drivers
	Understanding the generated code
	Modifying the converter driver programs
	Running the XML enabled application
	Errors messages parsing input XML data
	Modifying the XML converter interface

	Summary

	Part 5 Appendixes
	Appendix A. Team development
	Team environment
	Concurrent Versions System
	CVS installation and configuration
	What is new in Version 5?
	What changes could impact your work?
	Ignoring resources from version control

	Development scenario for a single user
	Connecting to a CVS repository
	Adding a project to CVS control
	Create a version
	Making changes and synchronizing
	CVS console
	Resource history
	File compare
	Disconnecting a project

	Development scenario for a team
	Where to be careful

	Appendix B. WebSphere Studio Asset Analyzer
	Inventory
	Impact analysis on the mainframe
	Impact analysis distributed
	Reuse of existing code
	Summary

	Appendix C. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material
	DB2 installation

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

